“This book won't sit on your shelf, Itll live on your desk.®

0N Hlowl, S5 Seatene, o

Practical J2EE

Application Architecture

= Build large-scale J2EE
apphcations usng
use-case-driven process

= Learn Struts implementation
Semantics uaing three
introductory patterm

"= Implement best-practice
dosign pattarns in an
MV C-basad architecturs

— Develop an and-to-end
solution from regquirensencs
o implementation

== Devolop Web services using
JEEE components

FOREWIRD BY
Simon Rowell

NEI:"I" EU!ZEF Divecks, Teoiical Mansgenssl
1T salilaas aichilsd and 2| izl elcbor] AWt Yoaeberm U
L LS di| i sl Sries BE.!I E“HIEM "I:

Govy Munamala

et LT mchitecd

Kartik Ganeshan |
JEra mielibae] wilh San Software Sivvees ﬁﬂ“ﬂﬁl‘l % E E E n H H E

Practical J2EE
Application Architecture

This page intentionally left blank.

Practical J2EE
Application Architecture

Nadir Gulzar

McGraw-Hill/Oshorne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

The McGraw-Hill Companies

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-223044-4

The material in this eBook also appears in the print version of this title: 0-07-222711-7

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention
of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in cor-
porate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare @mcgraw-
hill.com or (212) 904-40609.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in
and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the
right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify,
create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-
RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors
shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any dam-
ages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, con-
sequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such
claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072230444

7L Professional

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you’d like
more information about this book, its author, or related books
and websites, please click here.

To Mother, Farrah, and Munira
The journey was hard but I had you

About the Author

Nadir Gulzar has over 16 years of IT industry experience. Over the last several years, he
held the positions of senior architect, chief architect, and director of technology. Nadir is also
a J2EE evangelist and mentor, and has created and delivered several training courses. He has
worked on projects for global brand names like Sprint, Sears Roebuck, McKesson, and Visa
International where he was responsible for architecting and designing medium to large-scale
software systems. Nadir leads cross-functional teams comprising of business, creative, and
technology personnel for delivering solutions based on object-oriented principles and concepts
with particular emphasis on use case driven process.

About the Contributors

Govy Munamala is a Sr. Systems Architect at Inovant, a subsidiary of Visa International.
Govy has been involved at Inovant with major re-architecture effort for creating next
generation eCommerce applications using J2EE platform and XML-based technologies.
Govy is involved in architecting high volume transaction validation system deployed globally
by leveraging the latest advances in Java and XML-based technologies.

Kartik Ganeshan is a Java Architect with the Sun Software Services consulting organization
focused on delivering application architecture services, Java technology expertise, best practices
and methodologies for software development and design. Over the years, Kartik has had
extensive involvement in leveraging J2SE and J2EE platforms including the Sun ONE
architecture for building mission-critical enterprise applications and web services. His core
interests include J2EE architecture, Web service technologies, XML, and security.

Mansour Kavianpour has extensive experience in systems integration, CORBA, J2EE and
Web Services technologies. He is a well-known expert in the EAI community. Mansour was
involved in the creation of several OMG specifications. He has developed many successful
large-scale component-based systems.

Terry Markou has many years of experience in designing and developing various interactive
Web applications, using J2EE and XML technologies. His clients encompass the
transportation, real estate, medical, non-profit, and manufacturing industries, among others.
He has unique understanding and proficiency in both the artistic as well as the technical
aspects of Web application development.

Sarah Stritter Murgel is a usability and visual design specialist. She has worked on
interactive projects for global brands such as BEA Systems, SBC, and Visa.

! -

enferpulse

Enterpulse is fortunate to have professionals on its team who continue to
pioneer the technology landscape —providing insight into the application
frameworks we leverage to continually bring business value to our clients.

Our team is committed to enhancing and evolving our capabilities
through dedicated research into emerging technologies.
This McGraw-Hill/Osborne Media publication, focusing
specifically on application architecture using the J2EE platform,
is a testament to that commitment.

Enterpulse (www.enterpulse.com) is the professional services
firm that applies Internet technologies to improve human
connections among customers, suppliers, and employees.
The company's unique framework, ACE (Apply, Connect,

ExtendSM), is a proven approach that creates business
value by helping companies proactively understand
customer expectations, better manage supplier
relationships, and drive employee productivity

while achieving the highest possible rates of return.
We have deep competencies in advanced programming
and system infegration, business process analysis
and vendor evaluation, and best-in-class partner
platforms. Our content management, custom
application, and portal solutions bring value
to the entire enterprise.

Atlanta, GA | New York, NY | Chicago, IL | San Ramon, CA
800.442.5177 | www.enterpulse.com

This page intentionally left blank.

For more information about this title, click here.

Contents at a Glance

Partl Requirements and Architecture Definition
Chapter 1 Requirements Analysis with Use Cases 3
Chapter 2 Information Architecture for Use Case Elaboration 29
Chapter 3 Application Architecture, Security, and Caching 49
Partll Design and Construction
Chapter 4 Struts-Based Application Architectore 89
Chapter 5 Presentation Tier Design and Implementation 135
Chapter 6 Domain Model Design and Implementation 207
Chapter 7 Business Tier Design and Implementation 231
Chapter 8~ Web Services for Application Integration 273
Chapter 9 Application Assembly and Deployment 317
Part Il Appendixes
Chapter A Detailed Use Case Description Template 333
Chapter B GreaterCause Wire Frames 335
Chapter C ~ GreaterCause Site Flow 351
Chapter D FeaturedNPOQueryService WSDL 355

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

For more information about this title, click here.

Contents

Foreward Xvii
Acknowledgments Xix
Introduction Xxi
Partl Requirements and Architecture Definition

Chapter 1 Requirements Analysis with Use Cases 3
Use Case DrivenModeling 4
Defining the Problem Domain, 6
GreaterCause System Definifion 6
[dentifying System Confext 8
GreaterCause Context Diagramsand Actors 10
dentifying Risk Factors and Dependencies 1
GreaterCause Risk Factors 11
Greaterause Dependencies 11
dentifying Use Case Packages 12
GreaterCause Use Cose Packages 12
Documenting Use Cases 13
Documenting Scenarios with Activity Diagrams 14

Factoring Common Behavior and Variant Behavior 14

(reafing a Use Case Summary 15
GreaterCause Use Case Summary 16
Manage Donor and Donations 16
SearchNPO 19

Perform GreaterCause.com Site Administration 20

Manage Campaigns 22
NPOCaching 23

Portal Pass-through 25

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xi

xii

Practical J2EE Application Architecture

Chapter 2

Chapter 3

SUMMATY . . o e 27
References 27
Information Architecture for Use Case Elaboration 29
Beginning of Information Architecture 30
Organizing Content 31
Navigafing Content 34
CreatingWire Frames 35
Defailing Use Cases 36
GreaterCause Detailed Use Case Description 3
SUMMOrY . . 48
Application Architecture, Security, and Caching 49
Application Architecture 50
The 4+1 View Model of Architecture 51
(reating a J2EE Architecture Blueprint 52
J2EE Componentsin an Architecture 54
Planning Application Security 54
Identifying Security Requirements 55
Functional Classification of Application Security 57
Digital Signatures 61
Public Key Cryptography in Digital Signatures 62
XMLSignatures 63
Single Sign-On 65
Credentiol MappinginSSO 67
Elements of Single Sign-On 67
Preventing Replay Attacks 68
Java Authentication and Authorization Service 69
Federated Network Identity 73
Liberty Architecture 74
Caching Overview 79
Application Data Caching 80
Cache Architecture 81
Cached Data Invalidation in a Distributed Cache 81
SUMMONY . . e 84

References o oo 85

Contents
Partil Design and Construction

Chapter 4 Struts-Based Application Architecture 89
Struts as a Presentation Framework L 91
MVCImplementation 91
Internationalization and Localization Support 98
ErrorHandling 101
ExcepionHandling 105
Once-Only Form Submission 107
CopturingFormData 108
Custom Extensionswith Plug-Ins 117

Struts Configuration Semantics, .. 118
Parsing the ConfigurationFile 118
(reating Configuration Objects 120

Struts MVCSemantics 126
The Controller Object 127

The Dispatcher Object 128

The RequestHandler 130
Message Resources Semantics L L 131
SUMMArY .. e 133
References 133
Chapter 5 Presentation Tier Design and Implementation 135
Implementing Presentation Tier Classes 137
Implementing ActionForm Subdasses 138
Implementing Request Handlers 140
Implementing the Business Delegate Pattern 143
Implementing the Service Locator Pattern 145
Factoring Tags into Design Process 147
Factoring Validator into the Design Process 149
dentifying Package Dependencies 152
Implementing Application Security 153
Realization of Site Administrafion Use Cases 161
Manage NPO Profile Use Case 161

Pattern Discovery and Documentation 161

xiii

Xiv

Practical J2EE Application Architecture

Chapter 6

Chapter 7

Register Portal-Allionce Use Case 169
Manage Portal-Alliance Profile Use Case 176
Register NPOUse Case 181
Realization of Search NPO Use Cases 186
SearchNPOUseCase 186
Realization of Manage Campaigns Use Cases 188
Create the Campaign Use Case 188
Update Compaigns Use Case 201
SUMMATY . . o e 205
References 205
Domain Model Design and Implementation 207
Discovering Domain Objects 208
Relationships in the Domain Model 209
Creating the Data Model 211
Implementing the Domain Model 213
Defining the Admin Interface, 214
Defining the PortalAllionce Interface 223
Using EJB QL with Find and Select Methods 225
Defining the Campaign Interface 228
SUMMATY . . o 229
References 229
Business Tier Design and Implementation 231
Applying Design Patterns 232
Implementing the Session Fagade Pattern 233
Implementing the Business Interface Pattern 236
Implementing the Data Transfer Object Pattern 238
Implementing EJB Home Factory Pattern 242
dentifying Package Dependencies 244
Realization of the Site Administration Use Case Package 245
Register NPOUse Case 0. 246
Realization of the Manage Campaigns Use Case Package 259
(reate Campaigns Use Case 259

Update Campaigns Use Case 262

Chapter 8

Chapter 9

Contents

Realization of the Search NPO Use Case Package 267
Search NPOUseCase 267
SUMMONY . . 271
References 271
Web Services for Application Integration 273
Introductionto Web Services 274
What IsSOAP? 276
What SWSDL? 278
What sUDDI? 278
Web Services Architecture 279
Development Methodologies and Supporting Tools 282
Introduction to Web Services Description Language 284
Summary of the WSDL Formal Specification 284
A Closer Look ot a Sample WSDLFile 285
Infroduction to Simple Object Access Protocol, 295
SOAPEnvelope 296
SOAPHeader 297
SOAPBody 298
SOAPFault 299
GreaterCause B2B Integration 299
Web Service Implementation 302
Workshop SOAP:style Semantics 314
SUMMArY .. e 316
Application Assembly and Deployment 317
Installing and Configuring Struts 320
Configuring the Struts Validator 321
Configuring the Weblogic Domain 322
Configuring the JDBC Connection Pool 324
Configuring GreaterCause Users 325
Deploying the GreaterCause Application 326
Priming the Database 328
Deploying GreaterCause.ear 328

Building the GreaterCause Application 329

XV

XVi

Practical J2EE Application Architecture

Part Il Appendixes
Chapter A Detailed Use Case Description Template 333
Chapter B GreaterCause Wire Frames 335
Chapter C ~ GreaterCause Site Flow 351
Chapter D FeaturedNPOQueryServiee WSDL 355

Foreword

onsumers know what they want. Nowadays, the Internet is accessible to everybody.

Our children start playing with it at a very early age, but there is no upper age limit

for its use. We learn to be able to find any information we want quickly and easily.
We have little patience for slow web sites, knowing that there’s always somewhere else you
can turn. Just think, what’s your patience level for getting the information you want? Generally,
people start becoming impatient after only four seconds! And now the same technology has
become common in our workplace and we carry over those same levels of expectation onto
our corporate web experience. We start complaining about the static content of our work
systems and how we wish they were personalized and could learn from our use of them.
Most of all we wish we didn’t have to remember so many passwords and enter the same
information repeatedly.

The technically high-level might say, “well that’s all very simple—all you need is a Portal
system with personalization capabilities, campaign management, a solid application server to
support your business logic, single-sign-on security and probably some integration technology;’
and in essence they are quite right. They are right in the same way that you only need a dam
to control the Yangtze River in China—they’re overlooking the implementation detail, which
is often unexpectedly complex.

In the aerospace industry, this is very well known and we should all be thankful every time
we step on a plane for the painstaking analysis and design phases that took place before the
implementation and test phases began (of course, we’re not thankful and hardly give a moments
thought to the physics involved in getting a large metal tube to fly and all the interacting systems
that have to work in order to keep it flying—perhaps it’s better that we don’t). Aerospace
engineers have to get it right; lives are at stake. Even though we might think that commercial
software does not require such stringent development, it shouldn’t be that far removed. After
all, there are plenty of implementations, especially in the financial sector where system
downtime can cost millions of dollars per day. Even on a smaller scale, if your competitors
have a system that is more flexible to change in customer demand than yours, your bottom
line is likely to suffer.

So we have a paradox. User expectations on the systems we build are at an all-time high
(and can only get greater) and the consequent system requirements are increasing rapidly. At
the same time, the focus these days is on Return on Investment (ROI), value for money, speed
to market and flexibility to change. So how do we resolve this paradox? Quite simply, you
need to design carefully. As we have already observed, such sweeping statements are misleading

1)

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Xvii

Practical J2EE Application Architecture

and the design process can easily be a very involved undertaking. But at the end of the day,
your system should be all the better for it. In all likelihood you will have avoided scope creep
(adding new requirements part-way through development that derails the project planning)
and, best of all, you may even have delivered what the customer wanted when they wanted it.

Understanding what your customer wants and rendering those requirements in a J2EE
framework is what this book is all about. Enterprise application development can be a daunting
task, so it is good to know there’s now a contemporary source of relevant material to show
you the way. This book pulls off the hardest trick of all—explaining complex topics simply,
enabling you to see the relevance in your work. After all, chances are you are new to some or
all of this technology and need to get up to speed in the fastest possible time.

So next time you check your account balance online or phone a support desk, gauge your
expectations against the experience you receive. Do you think they designed their system well?

Simon Rowell

Director, Technical Management
Global Alliances, Western US
BEA Systems, Inc.

Acknowledgements

his book has been made possible by contributions from several individuals who
provided text, insight, guidance, and support in shaping of the book’s content.

I am indebted to Govy Munamala for his significant contributions in the shaping of
Chapters 6 (Domain Model Design and Implementation) and Chapter 7 (Business Tier
Design and Implementation), and in the design and development of business tier components
and the creation of corresponding data model. Govy also provided the Ant build script
explained in Chapter 9. My deepest appreciation to Kartik Ganeshan for contributing to the
security-related content, and to Ali Siddiqui for helping shape the caching-related content
that appears in Chapter 3. Special thanks go to Mansour Kavianpour for helping me shape
Chapter 8 and for his significant contributions to this chapter. I am very grateful to Terry
Markou for his assistance in the production of Web pages and to Sarah Murgel for creating
the graphics for the site. Both Terry and Sarah provided assistance in validating the information
architecture. I am very appreciative of the help provided by Enterpulse staff—most importantly
the support provided by Geoff Faulkner, Jennifer Wilde, and Jacques Vigeant.

[am very grateful to the staff of McGraw-Hill/Osborne Media publication for their support
throughout this project. The content of this book has the benefit of technical editing from
Anne Horton and copy editing from Darren Meiss, and their efforts have greatly improved
the presentation. Many thanks go to Athena Honore and Julie Smith for helping me focus
on the delivery dates, and for providing the coordination, guidance, and encouragement
during the project. Julie Smith worked tirelessly with the production team to get this book
out on time. I am eternally grateful to Wendy Rinaldi for her encouragement and support,
for without her belief in me this book would not have been written.

My very special thanks to Denyse Kehoe for introducing me to Osborne/McGraw-Hill
publications.

I have benefited greatly from reading the works of other successful authors whose books
have been mentioned in several chapters. My sincerest thanks to these authors for broadening
my horizon in various disciplines of software development.

Last but most importantly, I would like to express my gratitude to my wonderful daughter
Farrah and my lovely wife Munira for their infinite patience, support, and sacrifice during the
course of this project.

Nadir Gulzar

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Xix

This page intentionally left blank.

Introduction

eveloping large-scale enterprise applications involve several processes and

technologies for creating a truly extensible, maintainable, and resilient object-

oriented architecture. To be able to deliver an application that both completely
meets the business goals set forth, and is able to evolve over the years without requiring
significant redesign, warrants an open, flexible, and standards-friendly architecture. Careful
articulation of the problem domain, and the requirements of its consumers, is just one aspect
of ensuring that an architecture is created for supporting the current and future needs of the
business. The problem domain definition must also become a means of driving the design,
and development process. We should be able to trace the design and development artifacts to
the original requirements to ensure consistency between the stated requirements and what is
being delivered. This traceability between requirements and other project related artifacts
ensure that the design view of the system is consistent with its use-case view.

Creating a use case view of the system is a meticulous process in which Information
Architecture also plays a significant role. Translating the use case view into a corresponding
design view for a multi-tiered architecture entails using the incremental and iterative process
of domain modeling, business-tier process modeling, implementing presentation semantics—
all within the context of a design that will allow maximum reuse within all tiers of the
application. When you add to this compendium the need to understand the underlying
component technologies, and the need to follow development methodologies and processes
for managing project life-cycle, you can see that we are faced with a huge learning curve for
creating a prototypical application that validates our approach for a large-scale solution.
While the processes and technologies required to address all of the varied disciplines we just
discussed are well-documented in several books, it is not practical for all J2EE enthusiasts to
pour through each several-hundred page book before they’re able to create a real world
end-to-end solution. Serially learning each of the disciplines of software development is not
efficient either, since it takes a lot more time, and is further compounded by our inability to
retain unused information for long time. This book offers a “what you learn is what you use”
approach that provides a blueprint for establishing a base-line architecture for most Web-
based applications. This approach gives J2EE enthusiasts the opportunity for a fast ramp-up
by allowing them to immediately apply the concepts they’ve learned to solve a real-world

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xxi

Practical J2EE Application Architecture

problem. It also provides both developers, and students aspiring to become architects, a
one-stop source for the following:

Use case driven modeling and development
Role of Information Architecture in use case elaboration

Formulating the security strategy of the application

vVvyyvyy

Understanding the need for presentation framework in the context of
an MVC architecture

v

Using the Struts framework

v

Identifying implementation patterns for enabling Struts adoption in a consistent manner

P> Capturing static aspects of the Design View of the system using class diagrams, and
dynamic aspects using sequence diagrams

» Modeling interactions between the presentation tier components, interactions between
the business tier components, and interactions between inter-tier components (between
presentation and business tiers) using best practice design patterns

» Implementing the Design View using J2EE component technologies

P> Implementing Web services using J2EE component technologies

Who Should Read This Book

Part I of this book is helpful for architects, developers, project managers, quality assurance
teams, information architects, and anybody else who cares to understand the process of
requirements analysis. The rest of the book is for budding architects, corporate developers,
and students who are planning to build enterprise-class business applications for the J2EE
platform. For Part II of this book, it is expected that the readers are familiar with object-
oriented principles and concepts, and familiarity with UML is essential. This book assumes
that the readers have familiarity with basic J2EE concepts, and the development and
deployment of simple J2EE components.

Technology teams who will be creating a reference architecture or a prototypical
programming model for upcoming projects will be able to harvest design templates from
the accompanying material for their baseline architecture. Several best-practice J2EE design
patterns, and their interactions and dependencies, have been captured in the accompanying
sample application. The sample application provides a good place to start evolving the
programming model based on your unique project requirements. Technology teams wanting
to understand the architecture and adoption of presentation tier frameworks will benefit from
the discussion on Struts.

The book’s emphasis in on architecture and design and less on programming aspects, and
as such, this book is not a complete coverage of the J2EE platform or Struts framework.
Readers are provided with references to resources and books for completing their understanding

Introduction

of the material covered in this book. Also, this book is not exhaustive in its coverage of design
patterns, as the subject of design patterns is vast and covered by large number of books, and
there are several sites dedicated to discussing design patterns. The Web service implementation
in this book is based on BEA WebLogic Workshop, which provides an abstraction over
JAX-RPC API, as such programming with JAX-RPC API is not covered in this book.

How to Use This Book

Since this book employs a blueprint-like approach, it is best to read this book from beginning
to end. This book develops the use cases for the sample philanthropic application GreaterCause
in Chapter 1 and then discusses the impact of information architecture on evolving the use
cases in Chapter 2. Chapter 3 is an optional read, however we encourage the readers to skim
through the Application Architecture section as it sets the stage for the rest of the book. If
you are already familiar with Struts and the related architecture then you can skip Chapter 4.
Chapter 5 through 7 builds components for each of the application tiers and the associated
use cases are realized incrementally in each of these chapters. Chapter 8 implements a Web
service using the components developed in Chapters 6 and 7. Please note that the Web service
implementation in Chapter 8 is based on BEA WebLogic Workshop. Chapter 9 provides
information on installing and exercising the sample application. If your choice of application
server is WebLogic, then Chapter 9 provides step-by-step instructions on installing the WebLogic
Server 7.0, and deploying and exercising the sample application.

About Companion Website and Download

The sample application with accompanying binaries, source files, documentation, and errata
links is available at http://www.osborne.com. Please follow the instructions provided by
Osborne Media to locate the book specific links. References to source distribution in this
book refers to the source made available in the download package. Complete information on
the content of the download package is provided in Chapter 9.

Organization of this hook

Part |, Requirements and Architecture Definition consists of Chapters 1 through 3.

Chapter 1, “Requirements Analysis with Use Cases” explains the process of defining the
problem domain in the form of a use case view of the system. The sample application is
decomposed into discrete functional units, with each such functional unit expressed as a
separate use case. Each use case is explained using a standardized template, which explains
the system behavior from the perspective of external entities interacting with the use case. A
use case view is essential for creating a common understanding of the system behavior between

XXi

Practical J2EE Application Architecture

the business domain experts, the application architect, and developers, without specifying
how that behavior is implemented. The use case view developed for the sample application is
prerequisite for understanding other chapters of this book.

Chapter 2, “Information Architecture for Use Case Elaboration” explains the impact of
information architecture for comprehensively defining the use cases. In this chapter, we
elaborate the use cases of our sample application by being more explicit in expressing the
user interaction with the system, and the associated transactional semantics. Information
architecture is crucial for devising schemes for organizing, labeling, navigating, indexing,
and searching content. These aspects converge into a storyboard when creating a prototypical-
view of the system’s UI. The navigation semantics of the application are explained using a
site flow that clearly articulates the page transitions associated with user actions—this
information will be used when configuring the Struts framework.

Chapter 3, “Application Architecture, Security, and Caching” introduces important
aspects of application architecture as it pertains to the J2EE platform (although the actual
architecture of the sample application is gradually build throughout this book using a use
case driven approach). This chapter discusses security, and provides a high-level architectural
overview in the context of prominent technologies and specifications which should assist the
readers in determining their unique security infrastructure needs, and the eventual selection
of a best-of-breed solution. This chapter also covers federated network identity based on the
Project Liberty Architecture. Finally, the chapter ends with a discussion on caching that explains
common caching solutions and explores a basic caching architecture.

Part 1l, Design and Construction consists of Chapters 4 through 9.

Chapter 4, “Struts-Based Application Architecture” discusses the benefits and design
considerations for a presentation-tier framework based on Model-View-Controller
architecture. This chapter discusses key aspects of such a framework in the context of Struts.
We explore Struts architecture, its implementation and configuration semantics, and basic
usage for providing quick familiarity to our readers on varied aspects of Struts. The material
provides under-the-hood information on Struts, giving readers the necessary background to
evaluate its applicability in their problem domain. The information provided in this chapter
will be adequate to follow the use case realizations in Chapter 5.

Chapter 5, “Presentation Tier Design and Implementation” is focused on use-case
realization for the presentation tier functionality of the sample application. Emphasis in this
chapter is on creating the static and dynamic models of the system while utilizing the best
practice J2EE design patterns for realizing client-side semantics. This chapter also identifies
Struts implementation patterns that provide repeatable solutions for solving complex user
interactions. Templates can be derived from these patterns for assisting the development team
in establishing a consistent design vocabulary and implementation across all use cases,
thereby improving readability and maintainability of the code. These patterns will serve as a
starting point from which to evolve.

Chapter 6, “Domain Model Design and Implementation” is focused on creating a domain
model and the corresponding database schema for persisting the domain objects. In this
chapter we identify domain entities and their relationships. We use J2EE container services to

Introduction

both access and persist the domain entities and their relationships. This chapter also discusses
configuration aspects of container-managed fields and container-managed relationships for
entity beans with container-managed persistence. The domain model implemented in this
chapter forms the basis for implementing business tier components in Chapter 7.

Chapter 7, “Business Tier Design and Implementation” is focused on use-case realization
for the business tier functionality of the sample application. This chapter discusses and
implements several best-practice business tier design patterns. Emphasis in this chapter is on
identification of appropriate design patterns in the context of our problem domain and the
application of these patterns for solving common problems during the design and development
of the business tier. This chapter also discusses the configuration aspects of stateful and
stateless session beans and the transactional semantics associated with Enterprise JavaBeans.

Chapter 8, “Web Services for Application Integration” introduces the Web services
technology and its associated standards. It brings to light key aspects of the WSDL and
SOAP specification so that readers are able to discern the relationships between WSDL
constructs and the corresponding SOAP message constructs. The concepts learned in this
chapter are subsequently applied in the creation of a Web service in the context of our sample
application using BEA WebLogic Workshop.

Chapter 9, “Application Assembly and Deployment” focuses on installing and configuring
the WebLogic Platform 7.0, and deploying the sample GreaterCause application.

XXv

This page intentionally left blank.

PART

Requirements and
Architecture Definition

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

Requirements Analysis
with Use Cases

IN THIS CHAPTER:

Use Case Driven Modeling

Defining the Problem Domain

Identifying System Context

Identifying Risk Factors and Dependencies
Identifying Use Case Packages
Documenting Use Cases

GreaterCause Use Case Summary

Summary

topyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Practical J2EE Application Architecture

eveloping large-scale software solutions reminds us of the many different perspectives

that different stakeholders have about the end product. At the outset, there is nothing

concrete to visually depict the semantics and mechanics of the end product. At this
juncture of the project, we have an abstract view of the software to be developed. As such, it
is imperative to find a common ground for all stakeholders to agree upon, without which we
run the risk of creating a product that tends to lend itself to the vision of only a certain interest
group. It is necessary to ensure creation of a product that is a representation of the organization’s
business needs and the needs of all its users and sponsors. Therefore, we must resort to providing
a requirements vocabulary that is easily understood by all stakeholders. This chapter’s focus
is to assist the readers in creating such a vocabulary using use cases, activity diagrams, and
flow of events.

However, before we begin, there has to be an expectation about the level of impact the artifacts
in this chapter will have on defining a project’s requirements. Use cases are at the center of this
effort. Use cases can be created at different levels of abstraction. A use case diagram can be used
to model the behavior of an entire system, subsystem, or a class. Getting too detailed in the first
iteration could result in a lot of rework if the requirements are not well understood. Therefore,
it is important to remain at a level of abstraction that clearly captures the requirements from the
point of view of business domain experts, project sponsors, end users, customers, and executive
management. We will call this group collectively stakeholders. For this group, we want to avoid
too much, too fast, too early in the project. You will experience that just getting to agree on high-
level requirements takes several iterations. This is not unusual since the process of requirements
definition is evolutionary, and with every iteration we have opportunity to discover and improve.
The requirements team is made up of stakeholders and one or more members of the technical
staff; use cases are a contract between these two groups, and therefore appropriate representation
from both sides is critical to the success of the project. Special needs of the project can be met by
augmenting the requirements team with appropriately skilled members; for example, if the system
is going to interface extensively with a CRM solution, it will be helpful to have assistance from a
person experienced in the CRM space and CRM software.

Another viewpoint that we would like to suggest is that all through the process think reuse
and think decomposition. This mode of thinking helps us factor common behavior into use
cases, and finally package a set of related use cases into subsystems. The next chapter is a
logical progression from this chapter and helps us map the requirements of this chapter in
terms of information architecture that provides a prototype of the end product to the stakeholders
and developers. Use cases will be elaborated during information architecture, therefore our
endeavor for completely capturing functional requirements will conclude in Chapter 2. Use
case realization is the focus of Chapters 5 through 8.

Use Case Driven Modeling

The Unified Modeling Language User Guide (UML) defines a use case as follows:

A use case specifies the behavior of a system or a part of the system and is a
description of a set of sequences of actions, including variants, that a system
performs to yield an observable result of value to an actor.

Chapter 1: Requirements Analysis with Use Cases

A use case is an outside view of the system as seen by the entities interacting with the use
case. It is used for capturing the requirements of a system. A use case is not atomic; a use
case representing a complex system behavior can be further decomposed into more use cases.
A use case is essential for creating a common understanding of the system behavior between
the business domain experts, the application architect, and developers, without specifying
how that behavior is implemented. During design, a use case is realized by a set of related
objects working together to deliver the behavior prescribed by the use case. Models created
during design must be able to map back to the requirements by their ability to satisfy each
use case within the problem domain. The use cases therefore help validate the architecture.
In an iterative design and development process, use cases enable catching of deviation from
requirements early in the life cycle; all models and project artifacts are synchronized for
accurately reflecting the purpose of the system all throughout the project life cycle. As such,
risks are identified early in the process, therefore preventing major rework later.

Use cases document the system and form the bases of test cases for user acceptance,
integration, regression, and system tests. This approach has built-in traceability because all
design, development, and testing is performed based on use case scenarios. The use cases
become a contract between the business units and the IT organization. By employing incremental
and iterative approaches, this contract is enforced throughout the development life cycle by
verifying intermediate artifacts against the behavior prescribed by the use cases. The use case
model is central to all analysis and design artifacts, and for project planning.

NOTE

This book consistently strives to live by the word “practical” in its name. Therefore, every concept presented
in this book is explained using the fictitious GreaterCause application. The use cases discussed in this chapter
will lay the foundation for understanding the problem domain. The use cases will be subsequently realized
using architecture and design artifacts explained in the rest of the book.

Subsequent sections in this chapter explain what, why, when, and how to capture system
requirements for the sample application. In this chapter, the following sections denote the
artifacts created for the sample application:

GreaterCause System Definition
GreaterCause Context Diagrams and Actors
GreaterCause Risk Factors

GreaterCause Dependencies

GreaterCause Use Case Packages

vVvvyVvVvyTyypey

GreaterCause Use Case Summary

Familiarity with the preceding structure will assist you in distinguishing the project artifacts
from the commentary that surrounds the artifacts.

6 Practical J2EE Application Architecture

Defining the Problem Domain

To promote understanding of the problem domain, we ask ourselves several questions, some
of which can be stated as follows:

What business needs will the software try to solve?
Who are the users of the system?
What functionality will be supported by the system?

What are the interactions between different subsystems?

vVvyvVvyyvyy

What components in the problem domain can be provided by a third party as
off-the-shelf components?

v

What components of the system can be isolated to form reusable, self-contained
subsystems?

The answers to these and myriad other questions help us understand the solution space.
We will be gradually answering these questions as we proceed through the book.

The first step in understanding the problem domain is to create a project description. A project
description should explain the purpose of the project. It must be concise, and it should quickly
demonstrate the business objective. You will be surprised how many different perspectives
evolve at this time from different stakeholders. At this stage of the project, most stakeholders
are concerned with return on investment. A project description is therefore the first consensus
point between stakeholders because it clearly states the objectives of the new system.

TIP

Before you begin to write the system description, you may find it helpful to define domain-specific terms for
your audience; this will establish a common vocabulary for communication. You may optionally provide an
operational model for added clarification, as shown in Figure 1-1.

GreaterCause System Definition

The following terminology is consistently used in defining the problem domain.

P GreaterCause is a philanthropic application that is hosted at a central location.

» GreaterCause.com is the domain name of the site where the GreaterCause application
is accessible as a hosted service. For brevity, the term “site” will refer to the
GreaterCause.com site.

> Portal is a personalized single point of access for business and consumer services.

v

Portal-Domain is the domain that hosts a consumer portal or a corporate intranet.

» GreaterCause.com Portal-Alliance is formed as a result of portals providing a
pass-through or gateway component, also called a portlet, on the portal page for
redirecting portal users to the GreaterCause.com site.

Chapter 1: Requirements Analysis with Use Cases

» NPO is a non-profit organization that registers with GreaterCause.com site for
soliciting charitable contributions from prospective donors.

The GreaterCause.com domain is responsible for hosting the GreaterCause charitable-
giving application at a central location. The site is accessible to the donors via various
consumer portals and corporate intranets.

Portal-providers create an alliance (i.e. a service contract) with GreaterCause to procure
the GreaterCause services for their user base. An agreement between a portal-provider and
GreaterCause to serve the portal’s users is termed Portal-Alliance. Each portal-alliance has
an associated administrator ID and password using which the portal-alliance Administrator
(an employee of the portal provider, or its designate) can maintain the portal-related profile
information. The portal-provider interposes itself as a gatekeeper to the GreaterCause application
by using a portion of the portal’s real estate to provide an intelligent gateway or pass-through
to the GreaterCause site for their subscriber base. The GreaterCause pass-through is available
as a portlet. This portlet is aggregated into the portal view of the partnering portal-domains.

Non-profit organizations (NPOs) register with GreaterCause to list themselves in the
GreaterCause database for receiving charitable contributions (i.e. donations) from the visitors
of the GreaterCause.com site. Each registered NPO is provided with an administrator ID and
password using which the NPO administrator can maintain its related profile information.

Although, GreaterCause.com visitors can donate to any of the available charities (i.e.
NPOs), a portal-provider can influence the decision of a donor in the selection of a preferred
charity; this is done by campaigning for the preferred NPOs. Portal-alliance administrators

GreaterCause.com portal-alliance

Corporate intranet or
consumer portal

GreatferCause.com
ASP site

Before redirection

After redirection

Administrator

Portal user

Figure 1-1 GreaterCause operational model

7

Practical J2EE Application Architecture

have the ability to log in to the GreaterCause.com site with their administrator ID and create
campaigns for non-profit organizations at both the national and regional level. These portal-
alliance—specific campaigns for preferred NPOs are stored at the GreaterCause.com site and
subsequently featured by the portal-domains on their respective portal-page. The list of featured
non-profit organizations (featured-NPOs), created by the portal-alliance administrator in the
GreaterCause.com database, is provided via a web service to each portal-domain; this list is
subsequently displayed by the portlet hosted within the portal-page. Prospective donors
visiting the portals are provided with the option to donate to either the featured non-profit
organizations, or pass through directly to the GreaterCause.com site for searching and
donating to a non-profit organization of the donor’s choice.

Once a portal-user is redirected to the GreaterCause.com site by the portal-provider, the
GreaterCause service, as viewed by a portal-user, is customizable by portal-alliance administrators
for preserving the branding and navigation structure of their respective portal-domains. The
portal-domain, before redirecting the portal-user to GreaterCause.com, is responsible for
authenticating the portal-user (a.ka. the donor). The portal-domain and the GreaterCause.com
site mutually authenticate before redirecting the donors. Donor’s registration information is
provided by the portal-domain to GreaterCause.com during the redirection process.

All transaction history is logged using the donor’s registration ID and portal-domain
affiliation. Donors have the ability to view their history of donations for the current and
previous year.

TIP

The description of the system provides a vocabulary that consists of real-world objects. Use case names are
derived from this vocabulary and tend to express the behavior of the system in short, present-tense verb
phrases in active voice; the use case being named must represent a reasonably atomic behavior of the
system. In the use case confext, a client is an external actor to the use case— which could be a human,
another software system, or an asynchronous message. Therefore, a use case name is most effective when
expressed from the perspective of the user.

Identifying System Context

The behavior and semantics of the system is best understood from the point of view provided
by who needs the system, how they intend to use it, and who the system interacts with to satisfy
the needs of its users. Each entity surrounding and interacting with the system constitutes the
system’s context, whether it be a consumer or a provider; this is illustrated in Figures 1-2 and
1-3 by the directed lines representing paths of communication.

Modeling the context of the system is useful in understanding how it interacts with other
systems in an ecosystem of interconnected systems. An external entity communicating with
the system is an instance of an actor; actors are not part of the system. An actor could be an
individual, another software system, an asynchronous message, or a piece of external hardware.
More specifically, an actor defines a particular role played by an entity within the context of
the system; this implies that an entity may be represented by one or more actors because the
entity takes different roles with regard to the system and, similarly, an actor represents one or
more entities that represent the same role within the context of the system.

Chapter 1: Requirements Analysis with Use Cases

GreaterCause System Context

Manage
Donation Cart
A

1
1
<<extend>>

- I
1

N — .
o

<<include>>

<<include>>

Manage

NPO Profile
NPO Administrator 7N

<<include>> |
1

Register NPO
§ g
]

|

GreaterCause.com

Site Administrator |

Perform Ul
T\ Customization

f Create Campaigns
//
\

Portal Administrator [Update Campaigns

noge Donor
Preferences
\4
Update Donation
History
- Display Donation
Register Porta
Alliance T
! <<include>>

i Provide Featured-NPO List
Manage Portal
Alliance Profile

“""a;;;'e'n;;i;;;""\ §
(" Search NPO

Credit Card

Processor

Donate to

featured-NPO

X

Portal Domain

1

1

1

1

1

1

1

:

1

. 1
<<|nc|uc|e>>:
1

1

1

1

1

1

1

1

U

History

d

Figure 1-3 GreaterCause System Context Diagram

Portal-Domain Context

<<portal function>>
Display Featured-NPOs

<<portal function>>

Get NPO list o

Cache Featured-NPOs

<<portal function>>
Redirect to GreaterCause.com Site

v

Donor

7
GreaterCause.com

Donate and/or Redirect

Figure 1-2 Portal-domain context diagram

10

Practical J2EE Application Architecture

GreaterCause Confext Diagrams and Actors

It is apparent from the project description that we are dealing with two interacting systems,
the core GreaterCause service and the GreaterCause components residing on the servers of
the portal-domains. For brevity, we will not evolve the documentation for both systems separately
but show separate models where appropriate. You will see in the context diagrams for the two
systems that they appear as actors within the other’s context.

NOTE

Stereotyping is a UML extension mechanism, with which one can provide additional semantics to a model
element in the context of a specific problem domain. We have extended the actors, packages, and use cases
with two stereotypes, <<GreaterCause.com>>and <<Portal Domain>>, fo
identify entities or elements on the GreaterCause.com domain and on the portal-domain, respectively.

The following is a list of all actors interacting with the GreaterCause application:

>

>

Donor A donor is a user of the GreaterCause services. A donor has an affiliation with
a portal, with which the donor can access the GreaterCause application.

Credit card processor A credit card processor is an external system that processes
the credit cards.

GreaterCause.com site administrator The primary responsibility of a site administrator
is to create configuration information for registering portal-alliances and NPOs. Only
portals configured in the GreaterCause.com site can provide the GreaterCause services
to its user base. The site administrator can impersonate an NPO administrator or a
portal-alliance administrator; this allows a site administrator to function as a stand-in
for an NPO administrator or portal-alliance administrator.

Portal-Alliance administrator Portal-alliance administrators are responsible for
creating global and regional campaigns for featuring non-profit organizations on their
respective portals, and for maintaining the profile information for their portal-domain.
Portal administrators are also responsible for providing the configuration information
required to customize the Ul experience of GreaterCause.com site users. Login
credentials for portal-alliance administrators are created by the GreaterCause.com
site administrator.

NPO administrator The NPO administrator is responsible for maintaining the
profile information for NPO. Login credentials for the NPO (non-profit organization)
administrators are created by the GreaterCause.com site administrator.

Portal domain Portal domains rely on the GreaterCause.com site to provide the list
of featured-NPOs associated with active campaigns. The portal domains provide donors
with an option to donate to one of the featured-NPOs before redirecting donors to the
GreaterCause.com site.

The following is a list of all actors interacting with the portal-domain:

Chapter 1: Requirements Analysis with Use Cases

> Donor Explained in context with GreaterCause actors.

> GreaterCause.com GreaterCause.com provides charitable giving—related services to
the users of the portal-domains. Additionally, it provides a list of featured-NPOs to the
portal-domains.

Identifying Risk Factors and Dependencies

Once the project description is completed, the next step is to assess the risks and dependencies
associated with the project. Knowing this information up front mitigates the risks early in the
project life cycle. You must also document all assumptions. Once you obtain factual data,
some of the assumptions become assertions and can be removed from the list. Some of the
risk factors and dependencies for the GreaterCause application are listed in the following
sections to illustrate some possibilities.

GreaterCause Risk Factors

Following are some of the GreaterCause risk factors:

» Portals may be restrictive in how they exchange information with GreaterCause.com site.

» Will a generic composite view template with limited UI customization meet the needs
of the portal providers?

P Will the architecture support phase-2 functionality for funds disbursement?

» Will the portal provider agree to single sign-on semantics? It is expected that the
portal-domain will authenticate the user before forwarding the request to the
GreaterCause.com site.

GreaterCause Dependencies

Following are some of the GreaterCause dependencies:

P Project will use the Struts MVC framework. Engineers associated with this project will
need to be trained on Struts.

P Site functionality can only be finalized after obtaining buy-in of pilot portal-alliances.

P Pilot portal-alliances must agree on using Web services for receiving the featured-NPO list.

NOTE

Apart from documenting functional requirements of the system, one must also document the nonfunctional
requirements that address the need for performance, load balancing, failover, platform dependencies,
framework usage, adherence to standards, vendor preference, usability, etc. These are specific to
organizations, applications, and platforms; as such, they will not be discussed in any detail in this book.

12

Practical J2EE Application Architecture

Identifying Use Case Packages

A use case diagram represents some behavioral aspect of a system, subsystem, or a class. It
consists of a set of conceptually and semantically related use cases. The aggregate of all the
use cases in all the use case diagrams represents the system functionality; this is also called
the static use case view of a system. However, each individual use case with its associated set
of sequences of actions constitutes the dynamic view of the system. The focus should be on
creating use cases that factor common behavior, and then grouping use cases that are relevant
to each other, both conceptually and semantically, in producing a desired system behavior.
Such groupings form independent, self-contained functional units that could be packaged as
subsystems during the analysis phase. Use cases in each package must have strong cohesion
to each other and exhibit loose coupling with other packages.

Decomposing the system into packages has the advantage of modularizing the system,
making it simpler to understand, manage, and document. The atomicity at the level of
subsystems enables concurrent analysis, design, and development effort of different subsystems.
The package hierarchy defined in the requirements phase can be used to model the structural
view of the system during the analysis phase, and each package could potentially result in a
subsystem. However, during the analysis phase you will also discover several supporting objects
interacting with multiple packages. For example, the authentication module, the error reporting
module, and the service locator module could be common to several packages; therefore, in
the analysis phase, the package structure will need to be modified for housing such components.
During the analysis phase, you may find the need to break down a package into subordinate
packages; make sure the nesting is not more than a couple of levels, otherwise the packages
get harder to manage.

Once the key abstractions are identified in the system context, we are able to distinguish
functionally related use cases and move these into packages. Let’s briefly define these groupings
and then assess whether each grouping cohesively expresses an independent functional unit.
Figure 1-4 depicts the system’s use case packages with dependency relationships between
several packages. This relationship is shown using a dashed line with an arrowhead pointing
in the direction of the package that the other depends on. The dependency implies that a
package is dependent on another package for some services or has structural knowledge
about the elements in the other package.

GreaterCause Use Case Packages

GreaterCause use cases are distributed among packages shown in Figure 1-4. Refer to the use
case diagrams corresponding to each package under the later section “GreaterCause Use Case
Summary” for package description and for the use cases allocated to each package. The use
case diagrams associated with each package in the section “GreaterCause Use Case Summary”
depicts package interactions or dependencies using actors as stand-ins for related packages.

Once the decomposition has been accomplished, the use case diagrams can show package
interactions or dependencies using actors as stand-ins for package-related functions. This
notation supports the definition of a system context where every subsystem boundary scopes
the behavior from the point of view of all the actors interacting with the subsystem.

Chapter 1: Requirements Analysis with Use Cases

<<GreaterCause.com>> I <<GreaterCause.com>>
Manage Donor and Donations Search NPO

<<GreaterCause.com>> |, | <<GreaterCause.com>>
GreaterCause Site Administration Manage Campaigns
N
i
<<Portal Domain>> <<Portal Domain>>
Portal Pass-through NPO Caching

Figure 1-4 Decomposing the system into packages

Documenting Use Cases

Use cases can be documented quite extensively. One can include activity diagrams to model
primary and alternate scenarios of the use cases, and sequence diagrams to model interaction
between various actors and the system. Although one could model sequence diagrams for use
cases, in most cases you will find that the activity diagrams are sufficient for documenting
the various use case scenarios. Again, you do not have to have an activity diagram for every
use case; use it to explain complex scenarios.

The use case documentation should be augmented by text that explains the main flow of
events (primary scenarios) and alternate flow of events (secondary scenarios). These flows of
events are documented in the language of the problem domain. Recall that a use case describes
a set of sequences, therefore other than the main flow we need alternate flows to document
those sequences that support exceptional behavior resulting from changes in system state,
application exceptions, or an actor exercising different options. Each sequence or scenario
is an instance of the use case the same way an object is an instance of a class. The flow of
events must state the event or action that starts a use case, and it must clearly state how the
use case ends. It must also include interactions with actors; this could include actions taken
by the actor for requesting a system service or actions taken by the system for requesting
service from the actors. The steps in a scenario are expressed as request-response interactions;
for example, an actor requests a service and the system responds with an action. Scenarios
are always written from an actor’s viewpoint. This flow of events could be numbered for
improved readability and may also contain preconditions and postconditions. We will see
numbered flows of events, preconditions, and postconditions in Chapter 2, dealing with
information architecture, where we will further elaborate a limited number of use cases
using wire frames.

Use case documentation must clearly explain the purpose of the system without being too
specific or too brief to cover essential system behavior. Focus should be on being complete
rather than detailed in requirements analysis. Use cases have this duality of capturing

13

14

Practical J2EE Application Architecture

requirements and expressing these requirements as behavior from an actor’s viewpoint. Tailor
the documentation to your audience and ask yourself, “Will the documentation effectively
communicate the purpose of the system to the stakeholders, QA engineers, web production
engineers, designers, and developers?” It may also help to engage a technical writer for
documenting use cases. In this chapter, we are going to focus on a higher level of abstraction
and then elaborate the use cases in Chapter 2.

Documenting Scenarios with Activity Diagrams

Activity diagrams model the dynamic aspects of a system. During use casing, an activity
diagram helps a modeler to comprehensively depict a use case’s dynamic behavior and its
interaction with actors. Other than clearly articulating the flow of events for the stakeholders
and developers, the knowledge derived from creating activity diagrams can be applied for
adjusting the architecture such that conceptually and semantically related use cases with high
degrees of cohesion are allocated in the same package. The cohesion between use cases is
represented using the include or extend relationships, as explained in the next section, “Factoring
Common Behavior and Variant Behavior.” Should a readjustment in architecture lead to a use
case being reallocated to another package, then any previously existing “include” relationships
will become a “dependency” relationship.

Although the interaction diagram focuses on objects passing messages to each other, the
activity diagrams focus on messages passed between objects. The messages make up the
activity state in an activity diagram. The level of abstraction for depicting states in an activity
diagram depends on whether you are using an activity state or an action state. An activity
state is non-atomic and can be further decomposed in more activity states and/or action states.
An action state represents an executable atomic computation that cannot be decomposed any
further. A transition from a source state to target state is triggered by the completion of all
activities in the source state.

TIP

In an activity diagram, the transitions leaving a decision node (diamond-shaped node) can be labeled
with guard conditions. These guard conditions represent if-else scenarios. Also, you can label a transition
as an event.

Factoring Common Behavior and Variant Behavior

Use the “include” relationship to factor common behavior in use cases. Factoring common
behavior into separate use cases makes the system modular and promotes reuse. Later, in section
“Manage Donor and Donations” (Figure 1-5), you will observe that the Register Donor process
always includes Manage Donor Preferences; this is because donor preferences are always set
the first time the registration process is instantiated. Also, Checkout includes Update Donation
History because a successful checkout results in the creation of transaction history.

The include relationship is used when a use case is always going to be included in another
use case. Its execution is not conditional. For conditional includes, use the extend relationship.
The extend relationship differs from the include relationship in that the use case in an extend

Chapter 1: Requirements Analysis with Use Cases

Manage Donor and Donations

Change Preferences _ ~Manage Donor
“_Preferences

7

<<i nc|ude>/>, --""Create Preferences

: . Portal
<—> S~ <<extend>> Pass-through
A .
Donor ~ Modify or Display \mcmqge . Add Donation %

Donation Cart

<<include>> i Clear Envelope
Checkout —> %

<<include>> i Credit Card

'| Processor
Dl Manage Donation
History

Figure 1-5 Use case diagram—Manage Donor and Donations

relationship conditionally injects itself into a base use case, at predetermined extension
points. Factoring variants helps isolate exceptional behavior into separate use cases thereby
simplifying the base use case.

An include relationship is represented by a directed link from the including use case to the
included use case; an extend relationship is represented by a directed link from the extending
use case to the use case that it extends. In the use case model, the include and extend relationships
are rendered as stereotypes. In the flow of events, use the notation “include” (included use
case) to include the behavior of another use case, as shown in the Checkout and Register
Donor use cases in the package Manage Donor and Donations. Both include and extend must
instantiate within the system boundary of its base use case; in other words, include or extend
relationships cannot span between use case diagrams.

Creating a Use Case Summary

Consider a use case summary as an initial milestone in the requirements analysis effort.
A use case summary is critical for several reasons:

For quickly and accurately identifying the behavior of the system to stakeholders
For requesting appropriate project funding and staff for subsequent phases of the project
For project managers to prepare project plans

For communicating requirements to the next phase of the project

vvYyyvyy

For fast ramp-up of individuals coming onboard the project team in the middle of the project

15

16

Practical J2EE Application Architecture

In this section, we will explain all the packages of the GreaterCause application, and their
subordinate use cases and associated flow of events. Although explaining UML is beyond the
scope of this book, wherever essential, we will explain how to appropriately use certain key
notations accompanied with practical examples. The documentation style used in this book
is suggestive and not prescriptive. You may have a variation of this based on your unique
environment and team dynamics. For further information on applying use cases and associated
techniques please refer to “Applying Use Cases” by Geri Schnieder et. al. [Use Cases], “Use
Case Driven Modeling with UML” by Doug Rosenberg [Object Modeling], and “The Unified
Modeling Language User Guide” by Grady Booch et. al. [UML].

GreaterCause Use Case Summary

This section documents each use case package independently. The packages are explained using
use case diagrams and, where appropriate, activity diagrams are shown as well. The documentation
also consists of a high-level summary of main and alternate flows of events for each use case.

Manage Donor and Donations

This package pertains to donor-related services. These services primarily include donor
registration, making donations, managing the shopping cart, and providing donors with the
ability to view their donation history (a.k.a. tax record) for the current and previous year.

TIP

The activity diagram of Figure 1-6 is focused on communicating a single aspect of the system, and that is
“Making a Donation.” Use more activity diagrams to show other aspects of the system. Activity diagrams
can be used to explain systems, subsystems, class, operations, and use cases. You want fo create activity
diagrams mostly for explaining complex processes.

NOTE

The activity diagram of Figure 1-6 depicts the flow of events when a donor selects an NPO to donate fo. The
diagram clearly articulates the various processes involved in completing a donation process. The readers of
the documentation will find it helpful to have a high-level view of certain complex sequences of events,
especially the ones that illustrate a process flow.

Manage Donation Cart Use Case

This use case handles the process of displaying, adding, removing, and modifying donations
in the donation cart.

Main Flow of Events The use case is instantiated when a donor selects an NPO on the search
results page, or selects the donate function for a featured-NPO in a portal-page. The donor is
presented the donation cart with the selected NPO added to the cart. The donor enters the donation
amount for the new donation. At this time, the donor can also modify donation amounts for

Chapter 1: Requirements Analysis with Use Cases

Donate from search results or
donate to featured non-profits
from portlet

\

(Verify registration)
\
[unregistered] [registered]
v
(Register donor)
\
C Set preferences)
\

\
(Add non-profit to donation cart)

\
Display donation cart >

7

\
(Modify donation cart

/

A

(Perform Checkout)

\
Display thank you page)

M

Figure 1-6 Process Flow for “Making a Donation”

existing donations and maybe decide to remove existing donations from the cart. The donor
confirms the changes by selecting the checkout or update function, thus ending the use case.

NOTE

In the preceding use case, notice that the emphasis is on behavior rather than the user inferface. Wire
frames depicting user interactions are developed as part of information architecture in Chapter 2. Wire
frames, coupled with navigation semantics, will further augment the use cases.

17

18

Practical J2EE Application Architecture

Alternate Flow of Events If the donor is making a donation for the first time, the donor is
presented with a registration form. The donor verifies the registration information, some of
which could have been provided by the affiliated portal-domain, and submits the information
to the system. The system validates this information and presents the new donor with a form
that enables a donor to provide a set of preferences that personalizes a donor’s donation
experience. The donor provides this information to the system, which validates and stores the
information in the database for future use. The donor is then presented with the donation cart.

Checkout Use Case

This use case interfaces with the credit card processor and creates transaction history. At the
donor’s discretion, this use case can also update credit card information.

Main Flow of Events The use case is instantiated when the donor selects the checkout
function. The donor is presented with a checkout page. The donor has the option of changing
the credit card information on this page and saving the new credit card information as part of
the checkout process. When the donor confirms, the information is validated. If the validation
is successful, the credit card processor is contacted. If the credit card transaction is successful,
include (Update Donation History) for creating transaction history of all
donations in the donation cart and include (Manage Donation Cart) for clearing
the cart. A thank you page is presented to the donor, thus ending the use case.

Update Donation History Use Case

This use case records all transaction history.

Update History Main Flow of Events The use case is instantiated by the checkout function.
Completed donations from the checkout function are added to the data store, and the use
case ends.

Display Donation History Use Case

This use case also displays a cumulative history of a donor’s donations for the current year
and, optionally, the previous year. The current year’s history is shown by default; the previous
year’s history is displayed only when selected.

Display History Main Flow of Events The use case is instantiated when a donor selects the
reporting function. The system displays the transaction history for the current year, and the
use case ends.

Display History Alternate Flow of Events The donor can select to display the previous year’s
history.

Register Donor Use Case
This use case creates a new donor in the GreaterCause data store.

Main Flow of Events The use case is instantiated for an unregistered donor. The donor is
provided with a registration page. The registration page is initialized with a registration ID,

Chapter 1: Requirements Analysis with Use Cases

and donor-related information provided by the portal-domain. The donor verifies or modifies
the information. If the information entered by the donor is validated successfully, then use
include (Manage Donor Preferences)and the use case ends.

Manage Donor Preferences Use Case

This use case enables a donor to input personal preferences for customizing his or her
donation process.

Main Flow of Events The use case is instantiated either by the donor registration process or
when the donor selects to modify his or her personal preferences. The donor makes the
required changes and confirms. If the information entered by the donor is validated successfully
by the system, the donor preferences are updated in the data store. The system acknowledges
the changes and the use case ends.

Search NPO

This package provides the search functionality to donors, the site administrator, and portal-
alliance administrators. NPO entries are analogous to items in a catalog. Searching a non-
profit organization is analogous to searching an item from the catalog; in this context, the
non-profit organization is itself an item in the supply-chain sense.

Search NPO Use Case

This use case provides search algorithms for searching the NPOs. A generic keyword-based
search is available along with an advanced search capability for location-based searches.

Keyword Search Main Flow of Events This use case is instantiated when the donor uses the
generic keyword search function. The system searches the database for matching NPOs and
displays a results page to the user, and the use case ends.

Advanced Search Main Flow of Events This use case begins when the donor, the site administrator,
or the portal-alliance administrator selects the advanced search function. The user is

Search NPO

S 2
Portal Administrator Donor

GreaterCause.com
Site Administrator

Figure 1-7 Use case diagram—Search NPO

19

20

Practical J2EE Application Architecture

presented with a query page. The user enters the search criteria. The system searches the
database for matching NPOs and displays a results page to the user, thus ending the use case.

Perform GreaterCause.com Site Administration

This package enables the maintenance of the configuration information for proper operation
of the site. Key facilities provided by this package are NPO registration, portal alliance
registration, profile maintenance, and portal-specific UI customizations.

TIP

Actors can be organized using the generalization relationship. The inheritance semantics are the same

as that in classes; the child inherits the behavior of the parent and can add to or override this behavior.

For example, in Figure 1-8 the site administrator inherits from the NP0 and portal-alliance administrators.
Because Java does not support multiple inheritance, it is likely that during implementation the site administrator
will extend a base class that has implemented the interfaces for NPO and portal-alliance administrators;

this will allow the site administrator fo be substituted wherever NPO and portal administrators can appear.

Register NPO Use Case
This use case is responsible for registering new NPOs for the site. Every NPO, prior to
registration, is verified for validity. The NPO verification is an offline process.

Main Flow of Events The use case begins when the site administrator selects the NPO
registration function. The site administrator enters all the necessary information pertaining

GreaterCause Site Administration

Manage
// NPO Profile

<<include>> |
1

T Register NPO
_—— R Register Porta
=~ Alliance

GreaterCause.com i
Site Administrator

NPO Administrator

1

! <<include>>
1

\'4

‘L Manage Portal

/ Alliance Profile
- o Perform Ul

Portal Administrator Customization

Figure 1-8 Use case diagram—Perform GreaterCause.com Site Administration

Chapter 1: Requirements Analysis with Use Cases

to a non-profit organization. The system validates the information. If the validation process
is successful, the system stores the registration information in the data store. The system
initializes an NPO profile record, acknowledges the actions, and the use case ends.

Manage NPO Profile Use Case

This use case enables the site administrator and NPO administrator to change the profile
information associated with an NPO.

Main Flow of Events The use case starts when an NPO or site administrator selects the update
profile function. The administrator is presented with a page with relevant profile information.
The administrator updates the information and confirms changes. If the validation process is
successful, the system commits those changes in the data store. The system acknowledges the
changes, and the use case ends.

Register Portal-Alliance Use Case

This use case is responsible for registering new portal-alliances for the site. Only registered
portal alliances can redirect their users to the GreaterCause.com site for making donations.

Main Flow of Events The use case begins when the site administrator selects the portal-
alliance registration function. The site administrator enters the necessary information
associated with the portal-domain. The system validates the information. If the validation
process is successful, the system stores the registration information in the data store. The
system acknowledges the actions, and the use case ends.

Manage Portal-Alliance Profile Use Case

This use case enables the site administrator and portal-alliance administrator to change the
profile information associated with a portal-domain.

Main Flow of Events The use case starts when a portal-alliance administrator or site administrator
selects the update profile function. The administrator is presented with a page with relevant
profile information. The administrator updates the information and confirms changes. If the
validation process is successful, the system commits those changes in the data store. The
system acknowledges the changes, and the use case ends.

Perform Ul Customization Use Case

This use case empowers the portal administrator and GreaterCause.com site administrator
to provide portal-specific UI customizations. These customizations preserve the look and

feel of the portal-domain when the users affiliated with a portal-domain are accessing the

GreaterCause services.

Main Flow of Events The use case begins when the site administrator or portal administrator
selects the UI customization feature. The administrator provides the location of a portal-specific
custom navigation bar’s HTML for portal branding. The system acknowledges the changes,
and the use case ends.

21

22

Practical J2EE Application Architecture

Manage Campaigns

This package enables the portal administrators and site administrators to create portal-specific
campaigns for featuring selected NPOs at both the global and regional levels. The campaign
creation service is available only at the GreaterCause.com site. A list of featured- NPOs
associated with active campaigns is made available as a Web service by GreaterCause for
consumption by portal-domains. The portal-domains extract this information via the Web
service and cache it locally. Subsequently, the portal-domains can exhibit the featured-NPOs in
their portlets from a local cache rather than fetching that information from the GreaterCause.com
site for every user signing on to the portal.

Create Campaign Use Case

This use case provides site and portal administrators with the ability to create campaigns for
selected NPOs. NPOs could be promoted at the global or regional level, but no more than five
NPOs can be displayed in the portlet (pass-through UI component) at any given time.

CAUTION

Be careful when using extend relationships. It is possible to end up with an extend relationship for simple
logic. For example, in Figure 1-9, for use case Manage Campaigns we could have factored two variants,
Manage National Campaigns and Manage Regional Campaigns, as two new use cases that extend the
behavior of Manage Campaigns. For now, it is best not to express these variants as separate use cases
because their behavior is only marginally different from each other.

Create Campaign Main Flow of Events The use case starts when the portal administrator or
the site administrator selects the new campaign function. The search facility is invoked for
finding the desired non-profit. The administrator selects a non-profit from the search result
page. The system displays a campaign detail page with the selected NPO. The administrator
enters the campaign dates and optionally a region code. The administrator then submits the
information. The system validates the information and, on successful validation, saves the

Fe

Search NPO

Update Campaigns
/ Portal Domain
/

Manage Campaigns

NPOs can be
--------------------------- ----1 featured at National
and Regional level.

Create Campaign

NPO Caching

Portal Administrator Provide Featured-NPO List

Figure 1-9 Use case diagram—Manage Campaigns

Chapter 1: Requirements Analysis with Use Cases

Create Campaign

y
(Search and select an NPO)

v
C Display campaign details)

y
(Enter campaign data)

v
C Save campaign)

Figure 1-10 Activity diagram for Create Campaign

campaign in the data store. The system acknowledges the changes, and the use case ends.
Figure 1-10 illustrates the Create Campaign main flow events.

Update Campaigns Use Case

This use case provides site and portal-alliance administrators the ability to modify existing
campaigns.

Update Campaigns Main Flow of Events The use case starts when a portal or site administrator
selects the function for modifying existing campaigns. The administrator either selects the
global campaigns or supplies a region code for selecting regional campaigns for a specific
region. The system displays the available active campaigns. The administrator modifies and
submits the campaign information. The system updates the data store, thus ending the use case.

Provide Featured-NPO List Use Case

This use case enables the extraction of featured-NPOs for a given portal-domain. The featured-
NPOs are made available to the portal-domain via a Web service.

Main Flow of Events This use case is instantiated as a result of Web service invocation. The
GreaterCause.com domain provides the featured-NPO list to the portal-domain via the Web
service, and the use case ends.

NPO Caching

This package enables the retrieval of a list of featured-NPOs from the GreaterCause.com
domain; after the NPOs are retrieved, they are stored in a local cache.

23

24 Practical J2EE Application Architecture

Update Campaigns
v

[Site Adminisfrcﬂor];

v
(Enter Portal ID) [Portal Administrator]

v
—>< Search and select non-profit)

v
(Display campaign details)

v
(Enfer campaign data)

v
(Store new campaign)

Figure 1-11 Activity diagram for Update Campaigns

Cache Featured-NPOs Use Case

This use case enables the caching of featured-NPOs. The portlet that represents a pass-through
to the GreaterCause.com site uses this cache to display featured-NPOs, associated with active
campaigns, to portal users.

NPO Caching

P Get Featured-NPOs <<Portal Domain>>
N Cache Featured-NPOs

<<GreaterCause.com>>
Manage Campaigns

Figure 1-12 Use case diagram—NPO Caching

Chapter 1: Requirements Analysis with Use Cases

Main Flow of Events This use case is instantiated when the portal-domain invokes a Web
service. The Web service provides a list of featured-NPOs that are retrieved and cached
within the portal domain, thus ending the use case.

Portal Pass-through

This package enables the fetching and display of the cached featured-NPOs associated with
active campaigns. The featured-NPOs are displayed in the GreaterCause-specific portlet
provided within the portal page. The donor can choose to donate to one of the featured-NPOs.
A donate action will signal the system to redirect the user to the GreaterCause.com site.

TIP

An ambiguity in the activity diagram is caused when two outbound transitions are specified for an activity or
action state. For example, in Figure 1-13, we could put a self-recursion on Display National Campaign and
Display Regional Campaign to display a maximum of five featured-NPOs, and then an outbound transition
from these activity states fo the next activity states; this will make the transitions ambiguous. Instead, you
should implement an iteration logic with action states to set and increment the value of an iterator, and
implement a decision node (branch node) to evaluate the completion of all iterations; only after the
iterations are completed will you transition to another activity or action state.

NOTE

The activity diagram of Figure 1-14 uses swimlanes to depict the activities across both the portal-domain and
GreaterCause domain. The purpose of this diagram is to clearly show the activities and transitions within and
across each domain. Swimlanes can be also be used for showing interactions between different subsystems
and business objects.

Display Featured-NPOs Use Case

This use case displays global and regional featured-NPOs in the GreaterCause portlet within
the portal.

Portal Pass-through

<<portal function>>
Redirect to
GreaterCause.com site

<<portal function>>
Display Featured-NPOs GreaterCause.com

Figure 1-13 Use case diagram—Portal Pass-through

Donor

25

26 Practical J2EE Application Architecture

Portal Domain

GreaterCause.com

[regional counter > 0 and v
global counter = 0] (Verify registration)

l [global counter > 0] l -

(Display global campaigns) [registered] [unregistered]
i v
(Register donor
Not to exceed 5
NPOs, National and
Regional combined. v
i (Set preferences

! A

! v
—>< Display regional campaigns)

D " A4 v
onaie (Add non-profit to donation cart)

v
(Redirect to GreaterCause.com)

v
Display donation cart)

N

v

(Modify donation cart)

v

(Perform Checkout)

v
Display thank you page)

N

Figure 1-14 Workflow for making a donation to a featured-NPO

Chapter 1: Requirements Analysis with Use Cases

Main Flow of Events The use case begins when the portal-page is displayed to the portal user.

The portlet’s logic will display the featured-NPOs available in the local cache. A maximum
of five NPOs are displayed, starting with NPOs associated with national campaigns. The
successful rendering of the portlet within the portal’s page terminates the use case.

Redirect to the GreaterCause.com Site Use Case
This use case is responsible for routing a portal user to the GreaterCause.com site.

Main Flow of Events The use case begins when the portal user selects the donate function for
a featured-NPO. The portal-domain mutually authenticates with the GreaterCause.com domain.
GreaterCause.com then generates an authentication token that will identify a valid redirection.
The portal-domain assembles donor-specific information required for registration, and
packages the token supplied by the GreaterCause.com domain. The system then redirects the
donation request to the GreaterCause.com site with donor-specific information, along with
the choice of NPO, thus ending the use case.

Alternate Flow of Events The portal user can select to pass-through to the GreaterCause.com
site without selecting the donate function for a featured-NPO. In this case, the portal user is
taken to the advanced search function of the GreaterCause application.

Summary

In a use case—driven approach, use cases are used as primary artifacts for understanding
system requirements, for documenting the system, for validating the system’s architecture,
for driving the analysis and design models, for assessing project risks, for project planning,
and for quality assurance. The next step in the process is to elaborate the use cases as part
of information architecture. The use case scenarios are augmented once the site navigation
semantics, wire frames, and field-level details are completed.

References

[UML] The Unified Modeling Language User Guide by Grady Booch et. al.
(Addison Wesley, 1999)

[Object Modeling] Use Case Driven Object Modeling with UML by Doug Rosenberg
(Addison Wesley, 1999)

[Use Cases] Applying Use Cases, A Practical Guide by Geri Schneider et. al.
(Addison Wesley, 1998)

27

This page intentionally left blank.

CHAPTER

Information Architecture
for Use Case Elaboration

IN THIS CHAPTER:

Beginning of Information Architecture
Organizing Content

Navigating Content

Creating Wire Frames

Detailing Use Cases

Summary

opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 29

30

Practical J2EE Application Architecture

uccess or failure of a project is dependent on several factors. At the outset, the single

overwhelming factor is the ability to comprehensively define the behavior of the system

as desired by its consumers. A large number of projects have seen their demise as a
result of unstructured approach toward defining requirements. Traceability is the key word
here. The use case model of Chapter 1 is a living document with built-in traceability. Any
evolution of the system will be based on those use cases. At all times, the use cases will
comprehensively reflect the behavior of the system. In this chapter, we will elaborate the use
cases and be more explicit in expressing the user interaction and associated transactional
semantics. We begin by answering the following questions:

» How do we articulate the user interaction semantics?

> How do we articulate the interactions between the use case and other parts of the
system or external systems?

» How do we visualize these interactions?

> What information is exchanged during these interactions? How is this information
affecting page transitions?

» How do we understand all possible flow of events?

To answer all of the preceding questions, we create an information architecture. Information
architecture constitutes schemes for organizing, labeling, navigating, indexing, and searching
content; these aspects converge into a storyboard that is the first mockup or prototypical view
of the UL The navigation semantics of Ul is explained using a site flow that clearly articulates
the page transitions associated with user actions. The information architecture is therefore
very significant in defining system behavior from a Ul perspective; this behavior is incorporated
for comprehensively defining the detailed use cases of the system. The topic of information
architecture is discussed in several books; we will keep our discussion limited to evolving
the sample GreaterCause application and highlight a few important concepts of information
architecture.

Beginning of Information Architecture

An information architect is a specialist who has the following focus:

P> Creating a persona of the site’s user base and tailoring the site to meet the needs of
its audience.

» Devising schemes for organizing and labeling content. This effort results in the creation
of a content taxonomy.

P Providing the access path to information from various touch points. This effort results
in the creation of a navigation taxonomy.

P> Spearheading the creation of a mockup UI; working with stakeholders and focus
groups to refine the usability aspects of the site.

>

Chapter 2: Information Architecture for Use Case Elaboration

Creating an information architecture style guide that controls the evolution of the site
according to well-established guidelines.

For information architects to be successful in their efforts, they need the assistance of subject
matter experts, business analysts, technology teams, graphics designers, and content editors.

>

Subject matter experts and business analysts provide the business knowledge with related
information to be made available in the site. They provide the context and significance
of the information, and its impact to the business and to the information consumers.

A representative from the technology team, usually the application architect, validates
completeness of the information exchanged between the application and the user,
assesses consistency in accessing information from multiple touch points, validates the
transactional semantics, and generally comments on the technical complexity or risks
associated with the recommended information architecture.

Graphic designers provide the site with a consistent look and feel that represents the
site’s purpose and its identity. They prepare a style guide for ensuring consistent
evolution of the site. With assistance from marketing, graphic designers also create
the branding of the site.

Content editors create guidelines for ensuring a consistent voice and tone in the
creation of the site’s content. Content editors may also perform copy editing and
proofreading tasks, and be responsible for creating an editorial calendar.

In the entire information architecture process, two most significant aspects need to be
constantly monitored by the project manager. These are expressed as follows:

>

The site’s functionality as expressed by the information architecture and its constituent
mockup Ul must be in line with the use case summary. The use case summary scopes
the system, and any deviation from this could be considered as scope change. When
scope changes occur, the use cases should be retrofitted and redistributed to stakeholders
for consensus.

The user interface is the most volatile component of the system; applications are
always architectured with this awareness. However, once the development process
begins, the information architecture cannot evolve radically to significantly change

the transactional semantics, the business logic, or the functional requirements; the
consequences of this are severe in terms of rework, cost escalation, and delivery schedule.
Information architecture plays a significant role, although not the only role, in nailing
down the behavior of the system; therefore, this process cannot be taken lightly.

Organizing Content

Site content must be organized from the perspective of its users; therefore, an information
architect must think like a critical consumer. A user accessing a site is analogous to a shopper

31

32

Practical J2EE Application Architecture

at a department store. A well-designed department store will clearly direct the shoppers to the
appropriate aisle. The labeling used in identifying various sections of the store lets the shopper
know what to expect when he or she gets there. For example, the Children’s Apparel section
will not be labeled as Children’s Accessories because the word “accessories” is ambiguous in
this context. A few visits to the store makes a shopper adapt to its organization, labeling, and
navigation scheme, and he or she is able to find items more quickly.

There are several techniques for organizing a site’s content. Some of these techniques are
explained in the context of the sample application as follows:

> Alphabetical An example of alphabetical organization is a directory service that
lists the entries by name. In the sample application, the non-profits resulting from a
search query are ordered alphabetically.

> Topical An example of topical organization is an educational site that lists the content
by subjects. Most sites use topical organization in conjunction with other organization
schemes. In the sample application, the grouping of administrator services resembles a
topical organization scheme, segregated from the grouping of donor services. In the
following illustration, the services are arranged under Registration, Portal Configuration,
and NPO Configuration.

Site Administrator Services

Registration L. i .
Administration Guide

Portal Alliance . } L ;
NPO Plzase select an administrative function in the navigation bar to procead

Portal Configuration

Update Registration
Update Profile
Navigation Bar Setup
Create New Campaign
Update Campaigns

NPO Configuration

Update Registration
Update Profile

> Geographical Examples of geographical organization are observed on sites dealing
with weather forecasts, distribution centers, and store locators. Content on such sites is
location specific. In the sample application, the featured non-profits are organized by
the region code.

» Hierarchical An example of hierarchical organization is a corporate site that is
structured according to divisions and departments. Hierarchical information is easily
understood and therefore easier to navigate. This organization scheme is encountered
very frequently in our day-to-day lives. Several simple hierarchies are present in the
sample application.

» Indexed Indexed organization schemes are powerful for dynamic content. The
content is usually indexed in a relational database, and the indexing mechanism drives

Chapter 2: Information Architecture for Use Case Elaboration

content selection. Templating mechanisms may use this organization scheme for serving
dynamic content. In the sample application, the campaigns are indexed by portal-domain
and the region code. Even though the campaigns are changing on a frequent basis, the
indexing mechanism reorganizes the content and helps in the retrieval of only those
campaigns that are relevant for a given portal-domain and region combination.

Role-oriented For a given role, content can be organized statically according to a
predetermined taxonomy or created dynamically on role detection. A role-oriented
content organization scheme can be coupled with a goal- or task-oriented content
organization scheme. In the sample application, each type of administrator is provided
with an administrative page with a navigation bar based on the administrator’s type;
furthermore, the page sequence for a site administrator is different from the page
sequence for a portal or an NPO administrator. The following illustration shows the
navigation bar that is customized for different administrators.

Site Administrator Services

Registration L. . .
Administration Guide

Portal Alliance - . - -
NPO Please select an administrative function in the navigation bar to proceed

Portal Configuration

Update Registration
Update Profile
Navigation Bar Setup
Create New Campaign
Update Campaigns

NPO Configuration

Update Registration
Update Profile

Portal Administrator Services

Registration .. N .
Administration Guide

View Registration . . S -
gt Please select an administrative function in the navigabion bar to procesd

Portal Configuration

Update Profile
Navigation Bar Setup
Create New Campaign
Update Campaigns

NPO Administrator Services

Registration

Administration Guide

View Registration . . L o
£ Please select an administrative function in the navigation bar to proceed

NPO Configuration

Update Profile

33

34 Practical J2EE Application Architecture

The following page only appears in the navigation scheme of a site administrator; this is
because the site administrator has to identify the Portal ID for which he or she desires to act
as a stand-in for the portal administrator.

Site Administrator Services

Registration . _
Portal Configuration > Enter Portal ID
Portal Alliance

NPO ;
Enter Portal ID |

Portal Configuration

Update Registration
Update Profile
Navigation Bar Setup
Create New Campaign
Update Campaigns

NPO Configuration

Update Registration
Update Profile

Navigating Content

The navigation aspect of a site must be intuitive for a first-time visitor; there are no second
chances at making a good first impression. Navigation mechanisms that make it hard to find
relevant information are discouraging, and users will lack the motivation to visit the site
again. Although appropriately organized content is the first step toward creating a user-centric
information access taxonomy, this taxonomy is ambiguous unless associated with a context.
Navigation schemes complement the content taxonomies by providing the needed context,
and they are augmented by an appropriate labeling scheme.

There are several approaches for creating an appropriate navigation scheme. Some of
these approaches are explained in the context of the sample application as follows:

> Global The primary navigation bar of a site usually provides access to coarse-grained
functionality with the capability to navigate both laterally and vertically through the
site; this navigation bar is often referred to as the global navigation bar because the
navigation elements are accessible consistently across the entire site or across conceptually
and semantically related pages, also called subsites. Most sites are designed with global
navigation at the top or bottom of the page.

» Local When the page hierarchy is traversed, we encounter several pages that are
gateways to fine-grained content or functionality. A marketing page will have an
information hierarchy that is different from the customer service page. To accommodate
for functionally different subordinate information hierarchies, we use local navigation
bars to support the navigation semantics that are specific to each of the subordinate
information hierarchies. You can think of a local navigation bar as a form of nested
navigation. In the sample application, each administrator page differs in the navigation

Chapter 2: Information Architecture for Use Case Elaboration 35

elements available to the type of administrator interacting with the system; as shown
previously in the section “Organizing Content,” the applicable local navigation bar for
each type of administrator appears at center-left of the page. The selection of a navigation
element in a local navigation scheme is often accentuated, for contextualization, by
highlighting the selected element.

» Bread crumbs When shopping in Mall of America, we get our bearings by looking
at ““You are Here” signs. In a complex navigation scheme, it is always good to let the
users know their locations within the overall site, and provide trails that they can take to
get to certain pages; hence the bread crumbs analogy. Usually, an additional navigation
bar is inserted at the top within the content portion of the page. This additional navigation
bar is of the form Element] > Element2 > Element3; selecting Element3 in the previous
page results in the delivery of content for the current page.

> Site map A site map aggregates the navigational elements of a site. Representing a
complex site structure using a site map could quickly clutter the map and make it unwieldy.
Provide only the navigation elements essential to portraying the site’s purpose while
implementing a design that harmonizes form and function. The site map never provides
an entry point in the middle of a workflow because this will jeopardize the transactional
semantics of an application, which in turn could pose a serious security and data
integrity risk.

> TOC A table of contents is often used for content that is hierarchical in nature. Sites
offering user guides and documentation usually sport an ad hoc navigation scheme built
around a table of contents. A TOC can be implemented inline with page transitions or as
a separate window.

» Embedded links Often links are embedded within the content for creating an ad hoc
navigation scheme.

P> Adaptive A navigation scheme can adapt to reflect a user’s preference and/or behavior.
An example of this is apparent at online retail stores where a shopper could have additional
navigation elements on a page added as a result of his or her shopping pattern.

Creating Wire Frames

In this section, we are going to apply the principles of information architecture in defining
the user interface of an application. The user interface, or Ul for short, is very critical for an
eCommerce application. It synthesizes different aspects of information architecture into a
common view. The organization and navigation taxonomies are clearly articulated through
mockup user interfaces called wire frames. Creating a mockup or a prototypical Ul early in
the process, for systems with significant Ul, will clarify the interaction semantics that could
potentially change the behavior and scope of the system. Sharing a prototypical Ul will assist
the users in identifying serious problems with navigating the workflow and processes that
they are so familiar with. Many times, new requirements are discovered at this stage, and its
impact could be significant. At this state, there is always a possibility that the end users will
ask for a lot more than scoped by the use case summary. A scope creep will jeopardize the

36

Practical J2EE Application Architecture

time and cost commitments made through a preliminary project plan created in conjunction
with the use case summary. The information architect and the application architect must
assess and document such changes, and involve the stakeholders and/or decision makers for
making the final call.

Appendix B illustrates a storyboard for the sample application. It consists of a set of wire
frames that, in conjunction with the site flow, help the users understand the workflow associated
with accomplishing various tasks. Storyboards are void of graphics; their main purpose is to
illustrate the content and navigation taxonomies exposed to a user and to show the various site
traversal scenarios. Appendix C illustrates a site flow. The site flow is an important artifact
for articulating the navigation semantics and provides a bird’s-eye view of the site. Site flow
does not encompass each and every navigational aspect because doing so will make it less
readable. To avoid the clutter, a common technique used for creating site flows is to draw it
like a tree structure where most nodes have only one parent. The site flow will complete the
storyboarding effect by showing the transitions between various uniquely numbered wire
frames according to the navigation semantics established for the functional web site.

A wire frame can be further augmented with additional documentation as stated here:

P> Relationships between navigation elements and corresponding pages or secondary
navigation elements can be explained using a side bar.

» Content mapping details can be added for identifying the content, the content’s source,
and the contributors.

» Callouts can be used to provide additional context for page elements.

Detailing Use Cases

The following sections illustrate the results of applying information architecture to use cases.
Among the available use cases, we have chosen to elaborate a cross-section of use cases for
illustrating how information architecture can be used to refine the use cases. The scenarios
depicted in the following detailed use cases contain more Ul-specific information than found
in the use case summary. We now have the ability to predict the sequencing of pages (or
screens) and the associated navigation semantics, and specify this order in the use cases. In
detailed use cases, the system’s interactions with actors are more refined, and we are able to
discern, to some degree, the flow of information between interacting subsystems. We have
provided notes with the following use cases to annotate certain aspects for improved readability.
The format used in the upcoming section “GreaterCause Detailed Use Case Description”
for detailing use cases is specified in Appendix A. This format is suggestive, and you may
modify it according to the needs of your organization and project. Appendix B contains the
wire frames essential for expressing the information architecture for the GreaterCause system.
Appendix C contains the site flow and provides the navigation semantics for wire frames
in Appendix B. Refer to Figure 2-1 for an abridged version of the site flow. The figure is
distilled from Appendix C and is relevant for the discussion in the section.

Chapter 2: Information Architecture for Use Case Elaboration 37

Flow is top-down and left-right |

1 1.3 2
GreaterCause [] Administrator [| Administrator
Home Page Login Services
One time login for Portal Alliance Admin
administrators when
Administrator Servi
T e 2.3C 2.3.4 Create| [2.3.4.1 2.3.4.2
Enter Portal ID New Step 2: Step 3: Enter
Site Admin| " Campaign [Select NPO [Cqmpqign
tH Step 1: Details
Search NPO
2.3.5 Update 2.3.5.1
L| Compaigns [| Step 2:
Step 1: Enter Update
Region Code | | Campaigns
P.1
Portlet .
Registered-Donor Path
P.3 P.3.1 P.3.1.1 P3.1.2
| |GreaterCause| | Select Donation | | Checkout
Advanced Non-Profit Cart
Search
P.2 P2.1 P3.1.1 P3.1.2
Registration | Donor < Donation Checkout
Preferences Cart

Unregistered-Doner Path

Registered-Donor Path for donating to featured non-profits

P3.1.1 P.3.1.2
H Donation [Checkout
Cart

Unregistered-Donor Path for donating to featured non-profits

P2 P.2.1 P.3.1.1 P3.1.2
UGreaterCausef-{ Donor [+ Donation - Checkout
Registration | | Preferences Cart

Figure 2-1 GreaterCause abridged site flow

GreaterCause Detailed Use Case Description

The following sections present the detailed use cases for the GreaterCause system. The use
case description for each use case encompasses various aspects of information architecture,
workflow transaction semantics, and system interactions. Where appropriate, an activity
diagram is used for explaining a complex flow.

38 Practical J2EE Application Architecture

Create Campaign Use Case

This use case provides portal administrators and site administrators the ability to create
campaigns for featuring selected non-profits on their respective portals.

Actors

» Search NPO
» Portal administrator

P Site administrator (as a stand-in for the portal administrator)

NOTE

Notice that in the preceding list of actors, the Search NPO package is an actor that represents an external
subsystem. In most cases, the package classification usually translates into a separate subsystem or part of
another subsystem implying that the functionality of the Create Campaigns use case will always be in a
different subsystem than that of the Search NPO.

Precondition(s)

» An administrator is logged in as a portal administrator or a site administrator.
Postcondition(s)

» A new campaign is created and saved by the system.

User Interface The following illustrates the user interface for Create Campaign use case.

| 23 | Home > Site Administrator Services = Portal Configuration = Enter Portal ID
LOGO | Site Administrator Services
Registration Portal Configuration > Enter Portal ID
Partal Al . ..
N;OaRe ':‘;Dn Site administrators must
Portal Coiriguration identify the portal ID that
lipern Ragkwation Enter Portal 0 | they want to administer.
. Portal ID is not required
Update Profile N o
Navigation Bar Setup for portal administrators
Greaie N paig !:)ecouse this information
Undste Campsigns is po’r'r.of the p'ormlf'|
NPO Configuration administrators” profile.
Update Registration
Update Profile
Content for Site administrator

Chapter 2: Information Architecture for Use Case Elaboration

| 2342 | Home = Site Administrator Services » Portal Configuration = Create New Campaign |

Loco | Site Administrator Services
Reqgistration Portal Configuration > Create Mew Campaign
Portal Alliance Step 3 of 3 = Enter Campalgn Detallks
MPO Registration
Fortal Configuration | Poral ID ACME
Updste Registration EIM 122456789
Update Profile MPC Marne City of Hope

Mavigation Bar Setup Start Date ﬁ
Create Hews Campaign End Date ,—

Updale Campaigns
. . Region Code ioral Cat
NPQ Configuration g Leave blark for Mational Campaigns

Update Registration

Update Profile Create

NOTE

The granularity chosen for this use case is pretty coarse. This has resulted in a situation where several Ul
interactions are being addressed by a single use case. The advantage of a coarse-grained use case in this
instance is that we are able to explain the flow of events as a related set of actions.

Create Campaign Main Flow of Events

1.

The use case is instantiated when an administrator or site administrator selects Create
New Campaign on the Administrator Services page.

If the administrator is a site administrator,

a. The system displays the Enter Portal ID page.

b. The site administrator provides the portal ID for which he or she wants to perform
administration functions.

c. The system validates the portal ID; if the validation is successful, the system allows
further processing, else the site administrator is requested to re-enter the portal ID.

The Create Campaign use case invokes the services of the Search NPO use case for

searching and selecting an NPO. The Search NPO function delivers the selected NPO

to the Enter Campaign Details page.

The administrator furnishes the start date, the end date, and the region code.
The administrator requests the creation of a new campaign.

The system validates the campaign attributes supplied by the administrator and on
successful validation stores the campaign in the system.

The system acknowledges the creation of a new campaign, and the use case ends.

39

40 Practical J2EE Application Architecture

NOTE

Comparing the preceding flow of events with the flow of events in the use case summary, it is apparent that
the information architecture and the resulting wire frames have enabled us to visualize, to a much greater
degree, the interactions between the user and the system. The details added to the use case description as a
result of the information architecture will make it possible to use it as a contract between the stakeholders
and implementation team. This level of detail also serves as a starting point for generating test cases. We
can freeze requirements at this juncture and start design and development.

Activity Diagram The following illustrates the activity diagram for the Create Campaign use case.

Create campaign

[Site Administrator]
v

(Enter portal ID) [Portal Administrator]

\
‘(Search and select non-profit)

(Display campaign details)

\
(Enter campaign data)

(Store new campaign)

NOTE

Activity diagrams, although at a coarser grain than the textual flow of events, provide a comprehensive view
into the use case by depicting all possible main and alternate flows.

Chapter 2: Information Architecture for Use Case Elaboration

Update Campaigns Use Case

This use case provides portal administrators and site administrators the ability to update
existing campaigns for a given portal-domain.

Actors

» Portal administrator

P Site administrator (as a stand-in for the portal administrator)
Precondition(s)

P> An administrator is logged in as a portal administrator or a site administrator.
Postcondition(s)

P> Changes to campaigns are saved by the system.

User Interface The following illustrates the user interface for the Update Campaigns use case.

| 235 | Home = Site Administrator Services > Portal Configuration > Update Campaigns |

L0G0 | Site Administrator Services
Registration Portal Configuration > Update Campaigns
Portal Alliance Step 1 of 2 =» Enter Region Code
NPO Registration Enter Portal ID

Portal Configuration
Update Registration Enter Region Code |
Update Profile
Mavigation Bar Setup
Create Mew Campaign
Update Camp aigns

NPO Configuration
Update Registration
Update Profile

41

42 Practical J2EE Application Architecture

| 23541 ‘ Home = Site Administrator Services > Portal Configuration > Update Campaigns

LOGO | Site Administrator Services
Registration Portal Configuration > Update Campaigns
Portal Alliance Step 2 of 2 = Upd ate Campaigns

NPO Regisiration
Portal Configuration
Update Registration

Update Profile 123456729 Stari Date
; 01012004
Mavigation Bar Setup City of Hope

San Francisco, CA, USA, End Date ,—
Create Mew Campaign 12/312004

Update Camp aigns

Portal 1D ACME
Region Code PACIFIC

NPO Configuration 123456729 Start Date 03152004
Update Registration Montetey Peninsula United YWay
peat ? San Francisco, CA, LISA End Date 04407 2004

Update Profile

Update Campaigns Main Flow of Events

1. The use case is instantiated when a portal administrator selects Update Campaigns on
the Administrator Services page.

2. If the administrator is a site administrator,

a. The system displays the Enter Region Code page, which requires the administrator
to provide a portal ID and the region code.

b. The site administrator provides the portal ID for which he or she wants to perform
administration functions. The administrator submits the region code for which
campaigns are to be updated or leaves the field blank for updating global campaigns.

c. The system validates the portal ID; if the validation is successful, the system allows
further processing, else the site administrator is requested to reenter the portal ID.

3. Ifthe administrator is a portal administrator,
a. The system requests a region code.

b. The administrator submits the region code for which campaigns are to be updated
or leaves the field blank for updating global campaigns.

4. The system displays active campaigns in the Update Campaigns page. Active
campaigns are those whose end dates have not expired.

Chapter 2: Information Architecture for Use Case Elaboration

5. The administrator modifies the campaigns and submits the changes to the system.

6. The system validates the campaign attributes supplied by the administrator, and on
successful validation stores the changes in the system.

7. The system acknowledges the changes, and the use case ends.

Adtivity Diagram The following illustrates the activity diagram for the Update Campaigns use case.

Update campaigns

[Site Administrator]
(Enter Portal ID) [Portal Administrator]
id ¥ d Y Region ID of spaces
(Prow e region code (ophonq|)>— ---------- A N A

[Update regional campaigns]
[Update global campaigns]

Display campaigns for
C Display global campaigns) a specific region code

C Modify campaign data)’

C Store changes to campaigns)

Manage Donation Cart Use Case

This use case handles the process of displaying, adding, removing, and modifying donations
in the donation envelope.

NOTE

This use case was selected for elaboration to depict the usage of nested “includes.” The Manage Donation Cart
use case is extended by the Register Donor use case, which in turn includes the Manage Donor Preferences use
case. The Manage Donation Cart use case inferacts with an external subsystem Portal Pass-through.

43

44

Practical J2EE Application Architecture

Actors

» Donor
P Portal Pass-through

Precondition(s)
» Portal-domain of the donor is registered with GreaterCause.
Postcondition(s)

» Donation Cart is updated according to the action taken by the actor.

» Unregistered donors are registered by the system.

Indude/Extend Use Cases

P> Register Donor

» Manage Donor Preferences

User Interface The following illustrates the user interface for the Manage Donation Cart use case.

| P3.1.1 | Donation Cart |

Customn or Default Mavigation Bar to Preserve Porta Branding

LOGO | Jane Doe, Making a Difference Search
. Proceed to . Donor Advanced
Hame Donation Cart Checkout Tax Record Preferences Sesrch

Flease enter donation amount and optionally the preferred cause

NFO Name Preferred Cause
Am ount &g, MissiEsipp Flood Rem ove
¢[00 =
Ereast Cancer Action |
San Francisco, CA, USA
15.00 Oakland Fi =
Monterey Peninsula United YWay § | ’ | aKlang Fires A
San Francisco, CA, U
-
City of Hope $| 2500 |

San Francisco, A, USA
Total § 100

Proceedmcheckoul| | Update Cart | | Continue Danating]

UnitedWay will be
accepting donations
for several causes.

Chapter 2: Information Architecture for Use Case Elaboration 45

Manage Donation Cart Main Flow of Events

1. The use case is instantiated when a donor either selects to donate to a non-profit from the
search results page, or donates to a featured-NPO from the portal-domain’s portlet. The
system adds the selected NPO to the Donation Cart.

2. (set unregistered).

3. The system displays the Donation Cart.

NOTE

(set unregistered) is a label used for the extension point where the use case Register Donor will conditionally
inject itself in the Manage Donation Cart use case if the donor is not a registered donor. The label
“unregistered” may appear in the flow of the Manage Donation Cart, which is the base use case.

4. The donor provides the donation amount and the preferred cause.
5. The donor requests Proceed To Checkout.

6. The use case ends.

NOTE

Exceptional flow of events infer most of the action-sequence from the main flow, therefore terseness is
acceptable.

Exceptional Flow of Events

» Donor selects Update Cart After editing the Donation Cart, the donor could select
Update Cart instead of Proceed To Checkout.

» Donor selects Continue Donating After editing the Donation Cart, the donor could
select Continue Donating instead of Proceed To Checkout.

» Donor removes NPOs from Donation Cart While editing the cart, the donor could
select certain non-profits for removal.

Register Donor Use Case

This use case creates a new donor identity in the system. The identity is provided by the
portal-domain with which the donor has affiliation. This is a one-time process for donors.
The donor need only log in once to the portal, and access to GreaterCause does not require
another login.

Actors

» Donor

46

Practical J2EE Application Architecture

Precondition(s)
P Prospective donor wants to make his or her first donation.
Postcondition(s)

» Donor is registered, and donor preferences are created in the system.

» Donor is taken to the Donation Cart page.
Include Use Cases
P> Manage Donor Preferences

User Interface

| P2 | Registration ‘

Only the donors
will see this

I~ portal-specific
navigation bar.

Custom or Default Navigation Bar to Preserve Portal Branding <4+—

LOGO | Jane Doz, Making a Cifference

Please take a moment to fill out the missing information. We are thrilled to have your support.

Registration ID Acme_Portal_User Address |

First Name [|

Last Mame | City

Email | State ,ﬁ
P — ‘_‘
Country 'I

Most
information is

provided by the
portal-domain.

The following illustrates the user interface for Register Donor use case.

Main Flow of Events
1. The use case is instantiated by the Manage Donation Cart use case, when an unregistered
user attempts to make a donation.
2. The system verifies the authentication token presented by the donor.

3. The donor is presented with a Registration page. The registration page is pre-populated
with attributes that were provided by the portal-domain.

4. The donor provides the missing information and submits the registration information.

Chapter 2: Information Architecture for Use Case Elaboration 47

5. The system will validate and store the registration information. The system will also
create a Donor Preferences record and initialize it with a registration ID.

6. Include (Manage Donor Preferences).

The use case ends.

Manage Donor Preferences Use Case

This use case enables donors to create personal preferences for customizing their donation
process.

Actors

> Donor
Precondition(s)

» Donor is already registered into the system.
Postcondition(s)

» Modified preferences are stored in the system.

User Interface The following illustrates the user interface for the Manage Donor Preferences
use case.

| P21 | Donor Preferences |

Custom or Default Mavigation Bar to Preserve Portal Branding

LOGO | Jane Doe, Making a Difference [Search
o Froceed to Donar Advanced
Home benation Cart Checkout Taw Record Preferences Search

For best experience, customize following settings. All information is optional.

Disclose Name and Address to Mor-Profits & ves ¢ Mo

Card Mumber

Default Donation Amaunt | Your Credit Card Information
Limit Search tnl non-profits Mame on Card |
Primary Ermail®
¥ I Card Type | j

Subrnit Pref ; 'I i | j'
| ubmit Preferances Expiry Day Expiry Year

T Frimary email will supersede registration email

Following is your registration information. To change click here.

Jane Doe

555 Bay Drve

Fremont, CA 94585

USA

Email: jdos@americauniied. com

48 Practical J2EE Application Architecture

Main Flow of Events

1.

2.
3.
4.
5.

This use case is instantiated either by the donor registration process or when the donors
select to modify their personal preferences.

The donor is presented with the Donor Preferences page.
The donor makes the required changes to the attributes and submits the information.
On successful validation, the system stores the donor preferences.

The system acknowledges the changes, and the use case ends.

NOTE

Now that we have elaborated selected use cases, compare it with summary-level use cases of Chapter 1. It is
apparent that with the help of the detailed use cases, we are able to discern the invocation order of each use
case for realizing a specific process flow, and the associated transaction semantics, from the point of view of
the system user.

Summary

During information architecture, we create schemes for organizing, labeling, and navigating
the content of a site. Storyboard and site flow are reflective of the taxonomies produced during
this process. For systems with significant Ul, information architecture provides a much needed
reality check for users, stakeholders, and implementers of the system at the very outset. It is
used for flushing out the detailed requirements of workflows and processes, the implications
of which are immediately reflected in the detailed use case description of the system. The
consensus on detailed use case descriptions among stakeholders, users, information architects,
and the technical team ensures that the vision set forth by the extended team addresses both
the business needs and technical feasibility of the system within the specified time and budget.

CHAPTER

Application Architecture,
Security, and Caching

IN THIS CHAPTER:

Application Architecture

Planning Application Security

Digital Signatures

Single Sign-On

Java Authentication and Authorization Service
Federated Network Identity

Caching Overview

Cache Architecture

Summary

References

topyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

49

50

Practical J2EE Application Architecture

his book progressively builds the application using a use case driven approach.

Chapters 4 through 8 explicitly discuss the design, J2EE component development,

and configuration aspects of the sample GreaterCause application. However, before
we start developing the application, we need to look at several other aspects of the design to
ensure a reliable, scalable, extensible, and robust operational environment for the application.
In addition to discussing the architecture elements, this chapter assists in putting a perspective
around the application security. The discussion on security will assist the readers in envisioning
ahead of time the specific needs of their application and plan toward a solution that adequately
secures the system from malicious use. Since vendor-specific security implementations and
the application requirements differ significantly from one application to another, the focus
in this chapter is to provide a high-level overview based on prominent technologies and
specifications. This should assist the readers in determining their unique design needs and
arriving at a solution that takes advantage of best of breed solutions. Please note that the
declarative security provided by the J2EE platform, and the J2EE platform security API
used for programmatic security, are discussed in Chapter 5. The final section in this chapter
focuses on the design aspects in the creation of an application-level cache. Since this chapter
is not a prerequisite for the rest of the book, you may decide to come back to it later.

We assume that J2EE is a platform of your choice, and hence we do not get into the details
of why it is a good choice. Several books do a good job at explaining this. We highly recommend
Designing Enterprise Applications with the J2EE Platform [J2EE] for getting a solid roundup
of all pertinent J2EE technologies. We also recommend Core J2EE Patterns [Core], which
covers several of the patterns implemented in this book. For the purpose of reading this book,
we expect that the readers have only a basic knowledge of JSP, servlet, and EJB technologies.
Some excellent tutorials are available at java.sun.com to quickly bring you up to speed with
these technologies.

Application Architecture

The subject of architecture is exhaustive as it refers to several design aspects and relevant
artifacts used for the construction of an application. Several of the design artifacts developed
during the course of this book contribute to the overall architecture but represent architecture
at different levels of granularity. For example, the MVC architecture discussed in Chapter 4
addresses tier-level responsibilities, whereas the design patterns used for implementing EJBs
(discussed in Chapter 7) address component-level responsibilities. A security architecture
that complements the application architecture will also be at different levels of granularity,
as explained in the section “Planning Application Security.” Some discernable artifacts and
processes of an architecture can therefore be summarized as follows:

» Functionality of the system as expressed by use cases and augmented by wire frames.

> Application layers, their interactions, responsibilities, and the elements they contain for
satisfying the use cases.

» Components identified for each layer and their interactions, dependencies, and their
roles. This will include both infrastructure and application components.

| 2

Chapter 3: Application Architecture, Security, and Caching

Composition of these components; expressing their interaction using appropriate design
patterns to form fundamental structural elements that provide repeatable, reusable, and
extensible solutions.

Composition of fundamental structural elements into larger units called modules, or
subsystems.

Composition of the software modules and corresponding configuration files into
deployable units.

The 4+1 View Model of Architecture

The overall architecture of a system can be modeled with the following interlocking view as
proposed by Philippe Kruchten in a paper “The 4+1 View Model of Architecture” [Kruchten].

| 2

The Use Case View of a system constitutes the use cases that describe the behavior of
the system from the perspective of external entities interacting with the use case. The
use case view is a static view of the system. It captures requirements that are used in
the creation of the system’s architecture. This view ties all other views together.

The Logical View (also called the Design View) of a system consists of classes,
interfaces, and their collaborations.

The Implementation View describes the physical organization of the software and
includes the components, files, libraries, and so, on required to assemble the system.

The Deployment View focuses on hardware topology consisting of physical nodes and
computing hardware on which the executables are deployed.

The Process View is concerned with the concurrency and synchronization aspects of
the software—for example, the processes, tasks, and threads.

This book focuses explicitly on the Use Case View and the Logical View of the system.
The Use Case View of the sample application was created in Chapters 1 and 2. The static
aspects of the Logical View are captured using class diagrams of Chapter 5 where we model
interactions between the presentation tier components, and in Chapter 6 where we model
interactions between the domain entities, and in Chapter 7 where we model the interactions
between various EJBs and helper classes for realizing the business tier functionality. The dynamic
aspects of the Logical View are represented using sequence, collaboration, state-chart, and
activity diagrams. Sequence diagrams are used extensively in Chapters 5, 6, and 7 to show
the interactions between application objects. The Logical View helps create the vocabulary
of the problem and its solution. This vocabulary is complemented by the vocabulary of the
design patterns employed to solve recurring problems within the system. Design patterns help
us articulate commonly occurring interactions between objects in the problem domain and
are discussed in several chapters.

51

52

Practical J2EE Application Architecture

Creating a J2EE Architecture Blueprint

Architecture is the software’s blueprint, which is derived from the use cases created in Chapters 1
and 2. However, we cannot expect to take the use cases and arrive at the final architecture
without going through a refinement process. The architecture of a system evolves as decisions
are made in terms of feasibility, technical challenges, trade-offs, cohesion between stated
requirements, fluctuating needs of the stakeholders, and so on. This is very much an iterative
process where use cases will provide a starting point but there will be a need to modify or
extend the use cases as the architect creates the Design View of the system.

The J2EE architectural style does not strictly recommend adherence to a layer-like architecture
in which layers have a hierarchical structure and each layer can only communicate with the
layer above or below. Instead, it encourages a tiered approach in which different tiers can
communicate based on the way the requirements are implemented. Several scenarios depict
this approach, as shown in Figure 3-1.

» Clients can interact directly with a Web tier; the Web tier accesses the database tier
(database tier is shown as EIS tier).

» Clients can interact directly with the EJB tier; the EJB tier accesses the database tier.

P Clients can interact directly with the Web tier; the Web tier interacts with the EJB tier,
and the EJB tier accesses the database tier.

Client Tier Web Tier Business Tier EIS Tier
| | I | |
P
Client Machine J2EE Server
EIS Specific
Web B .
(AppTeI C?r:tg:er) HTTP/ Web Container | | Resource Adapter |« > EIS
HTTPS

) :

EJB Container

Application Client g
Container Services Services
Application INDI INDI
Client JDBC JDBC
JAXP JAXP
Services HTTP/ IMS IMS
JNDI |] HTTPS JAAS JAAS
JoBC 7 JTA JTA
JAXP JavaMail JavaMail
IMS JAF JAF
JAAS JCA ICA
7y L A
RMI-IIOP

Figure 3-1 J2EE architecture

Chapter 3: Application Architecture, Security, and Caching 53

From Figure 3-1, it is apparent that the role of the container is central to the J2EE architecture.
The container interposes itself between the application components and the J2EE platform
services. This gives the container the ability to transparently inject the platform services
based on the configuration information declaratively specified in the deployment descriptors.
An EJB container, running on the J2EE server, manages the execution of all EJBs for one
J2EE application. It handles the life cycle of EJBs and provides all the system-level services
for the EJB. It provides transaction management, security, resource management, and naming
services for the EJBs. A web container, running on the J2EE server, manages the execution
of JSPs and Servlets for one J2EE application. The application client container, running on
the client machine, manages the execution of application client components for one J2EE
application.

The purpose of this book is to sufficiently demonstrate the architecture of a J2EE-based
solution for large-scale development. As such, we have used the multi-tiered approach identified
by the third item in the preceding list. We have employed container-managed persistence for
data access and manipulation, which is covered in Chapters 6 and 7. For accessing a large
volume of read-only data, we have favored using a session bean with Data Access Object
Pattern [Core] for accessing data directly from the data store when implementing the Value
List Handler Pattern [Core]. Please refer to Chapter 7 for design and implementation details.

Employing Frameworks

The architecture employed in this book is greatly simplified as a result of using the open
source Struts framework. Struts employs MVC (Model-View-Controller)—style semantics for
breaking up the application responsibilities between three distinct layers as suggested by the
name. Struts framework is discussed in detail in Chapter 4, with corresponding implementation
for the sample application in Chapter 5. Employing frameworks such as Struts provides an
architect with the ability to focus on creating elements that plug into the framework and/or
framework-related extensions. We therefore architect based on the extension points and

the framework’s ability to interact with other elements of the application for realizing the use
cases. The usage of framework therefore provides a standard way of implementing a specific
system functionality, which in this case is the mapping of user actions in the presentation tier
to the services offered by the business tier.

A presentation-layer framework will typically solve a recurring problem, namely, mapping
of user actions to an application service. This problem space is solved using best-practice
patterns such as Front Controller [Core], View Helper [Core], or a combination pattern such
as Service to Worker [Core] or Dispatcher View [Core]. Creating a custom application-specific
framework (a one-off solution) is not a trivial undertaking, as is obvious in the discussion of
Struts framework in Chapter 4. The class diagrams of Chapter 5 clearly show how simplistic
the approach is when designing with a framework like Struts. We simply focus on implementing
abstract methods or subclass Struts-provided request handler class. By employing a few
design patterns, such as Command [Gof], Business Delegate [Core], Service Locator [Core],
and Session Fagade [Core], we are able to create a design vocabulary that is consistently
replicated across most use cases. This greatly promotes understanding between developers
who create implementations for realizing different use cases but with the semantics that
adhere to the common design vocabulary of the system.

54

Practical J2EE Application Architecture

Designing for a responsibility-driven tiered architecture enables construction of software
in a manner that addresses the objective of isolating infrastructure-specific functionality from
application-specific functionality (that is, custom functionality) for each tier. With the Struts
framework, the Model-View-Controller semantics provide for three different layers of
responsibilities.

Generally speaking, use of a framework could impose an architectural template for building
applications within a specific domain. However, frameworks provide reusable infrastructure
service that are used by many use cases in the system. Bypassing the framework approach
will entail that each use case with a common set of functionality will have to address its
needs by creating a one-off solution. Obviously such approaches are self-defeating in the
long run since they create inflexible and hard to maintain code.

J2EE Components in an Architecture

When developing business applications, a large amount of time could be spent building

core system services like transaction management, resource management, security, remote
connectivity, and object relational mapping services. These services are essential to all
enterprise applications and can be abstracted into a reusable and declaratively configurable
framework that could provide these essential services to all applications at runtime. Such a
framework enables architects and engineers to focus on solving the business problem, thus
simplifying the designing and coding effort and offering consistent implementation semantics
for all applications using the framework. The J2EE architecture offers a standard set of system
services to application components as part of the runtime environment referred to as containers.

J2EE provides component-based approach for the design, development, assembly, and
deployment of enterprise applications. There is clear separation of responsibility between the
different tiers, as shown in Figure 3-1. The tiered approach decomposes a problem domain
into fundamental units of application functionality that are appropriate for each tier. This makes
it possible to offer a highly reusable component-based architecture in which a Model-View-
Controller (MVC) architecture is a natural fit.

The services offered by the containers are configurable declaratively and interpreted at
deployment time, thus insulating code from any modification should there be a need to modify
the behavior of these system-level services. For example, transactional semantics are specified
declaratively for a set of interrelated components composing a service. The components from
one domain can be mixed with components from another domain to offer a new set of services
whose transactional semantics could be specified differently (and declaratively) using XML-
based deployment descriptors. Similar discussion is true for configuring security roles for
describing access privileges for a set of users in the newly composed application. The
deployment descriptors are explained in Chapters 5, 6, and 7 for components of the sample
GreaterCause application. The J2EE specification ensures that code written in accordance
with the specification will be portable across various vendors.

Planning Application Security

The Internet is an established vehicle for personal, communal, and commercial interactions.
All forms of information from personal e-mails to high-value financial transactions are

Chapter 3: Application Architecture, Security, and Caching 55

dispatched over the Internet. It is a known fact that information constitutes what is arguably
the most valuable asset of an individual or an organization. Protecting these assets is almost
as important as the tasks or business they are intended for.

System security is an extremely sought after “ingredient” in any mission-critical enterprise
application, almost at par with the coveted application feature-list. Security is also very unique
in that it is one of the most pervasive components in an application. This implies that security
isn’t necessarily limited to a particular part of a system, such as its presentation, business logic,
database, servers, or networks, but in fact applies to all aspects of the system. It is therefore
crucial that any design or analysis of a system take a /olistic approach to addressing security
rather than that of a modular one. Though security may be realized differently in various
parts of the system, all security operations must seamlessly tie together in order to achieve a
manageable and secure system. Securing an enterprise application, a complex task in many
regards follows three basic tenets (outlined in this section and the next).

Tenet I: “It is a doctrine of war not to assume the enemy will not come, but rather to
rely on one’s readiness to meet him, not to presume that he will not attack, but rather
to make one’s self invincible.” (Sun Tzu, “The Art of War”)

Security in electronic commerce is vital for every business application. It is foolhardy to
assume that information sent and received over the Internet will not be listened to, intercepted,
or manipulated in any way, shape, or form. Instead it is always considered prudent when
security requirements and security limitations of the data and operations of an enterprise
application are thoroughly understood and communicated to the appropriate stakeholders.

|dentifying Security Requirements

It is very important that all enterprise applications, internal or external, client-facing or back-
office enabling, must go through constant “security preparedness” analysis during their entire
project life cycle. These reviews and analyses allow stakeholders to become aware of the
capabilities and vulnerabilities of the system. These reviews are not necessarily meant to
build a “perfect” defense but rather to increase one’s preparedness by determining the following:

P> Risk estimation A deterministic estimation of the system’s overall security scope
(intranet, extranet, Internet, protected back-end, and so on) and specific measures taken
to ensure against relevant attack scenarios provide an accurate picture of the system’s
risk exposure. An untainted declaration of known security limitations and vulnerabilities
provides stakeholders with information necessary for making an informed decision on
the acceptability of the system given the sensitivity of data and operations involved.

> Damage estimations Damage estimations provide the “silent” scenarios wherein
damage (financial, political, opportunity, and so on) caused by a breach in the system
is summarized and estimated. This information is critical to allow organizations to be
prepared for eventual fallouts (financial, legal, public, and so on) if and when their
systems are compromised.

P Security breach identification and recovery procedures Recovery procedures
provide organizations with guidelines on how to identify and recover from a security

56

Practical J2EE Application Architecture

breach quickly and effectively. These procedures must also provide a recovery process
detailing the manner in which to recover from the identified breach in the shortest
possible period of time. This may include creating a patch, and subsequently testing
and deploying it in the production environment. Severe, unexpected compromises in
system security may require that the system (or part of it) be taken offline.

Evolutionary requirements From a security perspective, it is important to understand
the evolution of the enterprise application or system being built. Major security concerns
that may need to be addressed for an evolving application include the following:

» Communication scope (intranet, extranet, Internet) and encryption requirements
P Establishing partnerships, trust relationships, and identities

» Authorization requirements
>

Resource protection and access control

It is essential that an application’s security design is adequately flexible and extensible in
order to incorporate demands made during “foreseeable” future evolutions of the application.
This will increase the trust level placed in the system, ensuring that it can effectively meet the
security demands made by an ever-changing environment of trusted relationships.

Tenet II: “There are no invincible countries, no foolproof defenses and no
impregnable fortifications. Those who passively wait to be attacked are vulnerable.”
(Sun Tzu, “The Art of War”)

The term “secure” is a relative concept and hence the notion of “perfect security” is
non-existent. Instead it is more practical to investigate what constitutes a “secure-enough”
environment for the enterprise system being built. The following aspects (among others) must
be taken into account when providing such an environment:

>

Resources Building a secure-enough system has a lot to do with resources and often
comes with a price. In order to be secure enough, it is necessary to stay one step ahead
of the resources committed toward malicious acts. It requires a talented and seasoned
skill set, top-notch hardware (often required to overcome security-related performance
bottlenecks), and people knowledgable about existing security processes within an
organization. Such resources are either expensive and/or difficult to find.

Risk exposure The scope or exposure (intranet, extranet, Internet, and so on) of the
system being built is an important factor in building a secure-enough environment.
Standard technologies (such as SSL, digital signatures, shared-key encryption, public
key infrastructure, and so on) can be selected once basic scope requirements have been
identified.

Trust A notable limitation, but yet an ever-present component of anything related
to securing a system is trust. No matter what the nature of defense, or the amount of
resources committed to designing and installing secure technologies, there are certain
entities that must be trusted.

Chapter 3: Application Architecture, Security, and Caching

Since trusted entities are critical links in determining the overall strength of a defense, it
is crucial that usage of such frusted technologies or relationships, their capabilities, and the
processes that manage them are clearly documented and communicated to the parties concerned.
For example, SSL, a technology that is often used for mission-critical Internet applications
forms the basis of #rust for all secure communications.

Tenet III: “If you know your enemy and know yourself, you will not be defeated in a
hundred battles.” (Sun Tzu, “The Art of War”)

An important aspect of designing secure-enough systems involves a good understanding
of possible attack scenarios and how those malicious acts, if committed, may exploit the
system. This critical and strategic observation consists of two fundamental aspects :

» Internal and external system boundaries There are many interaction points in an
application. Some interactions points in the system are externally facing (that is, interact
with computing services or users outside the organization that owns the system) and
some are internal. Each such interaction point must clearly be documented from a
security standpoint, including its relevance to the system, its sensitivity, and most
importantly the processes put in place that manage them.

P> Assailants and attacks A thorough profile of possible malicious acts that target
internal and external interaction points as well as the assailants that orchestrate them is
needed. Such profiles detail, among other things, an assailant’s capabilities, resources,
and their ability to inflict damage using information appropriated through unauthorized
means. As stated previously in Tenet II, securing “everything” from “everyone” is an
impossible task. Thus, such profiles, examined in the context of the sensitivity of
operations involved, help determine whether the measures taken to protect the system
are sufficient.

Functional Classification of Application Security

Security-related issues cover a wide range of subject matter from network hacking and
denial-of-service attacks to managing a user’s network identity. Covering all such aspects in
detail would require its own book and is not the goal of this chapter. This section provides a
perspective on how application security can be functionally classified under distinct areas
of responsibilities. Security at the application layer can be logically partitioned into three
primary areas of responsibility, or zones, each handling a specific set of tasks that contribute
to the overall security of the system. These three zones (shown in Figure 3-2) are as follows:

» Channel security
> Network identity management

» Authentication and authorization

57

58 Practical J2EE Application Architecture

Network Identity Zone

(Project Liberty Implementations,
Infernet LDAP based implementations, etc.)

Channel Security Zone

(SSL, TLS, Client &

Server Certificates, etc.
) Authentication and

Authorization Zone

(JAAS, Application specific
access control polices, efc.)

The Authentication and Authorization
Zone ensures controlled access to all
enferprise resources accessed by a
user or another computing service.

Enterprise Resources

Figure 3-2 Application security zones

NOTE

These zones are logical partitions based on areas of responsibility and are not related to the physical
infrastructure in which they are deployed.

The rest of this section provides a high-level overview of each zone, following which we
discuss technologies applicable to these zones.

Channel Security

Channel security addresses how the communication between various entities on the Internet
takes place. The most commonly used technology is Secure Sockets Layer (or SSL), which
preserves confidentiality and integrity of data between communicating endpoints. Certificates
are also used as part of SSL communication to establish the identity of the communicating
endpoints on either end of a secure channel. Message security addresses the mechanisms that
may be applied to discrete pieces of information or documents that are passed between
communicating endpoints. In order to preserve data integrity, authenticity, and non-repudiation
of the information exchanged, digital signatures (discussed further in the section “Digital
Signatures™) are used.

The following table provides a summary of the various technologies employed in this zone
and their use.

Chapter 3: Application Architecture, Security, and Caching

Mechanism Channel Security Channel Message Security
Confidentiality SSL, TLS
Data integrity Message transformation algorithms

and message-digests

Authentication Client- and server-side certificates
for transport-level encryption

Data origin authentication Certificates used for digital
signature verification

Non-repudiation Digital signatures

Network Identity Management

As more and more people, communities, and businesses use the Internet as their primary
means of interaction, the notion of an identity (just as in real life) becomes a crucial part of
online communication. Simply put, an identity consists of a set of attributes that uniquely
defines who you are as a system user and how you are represented in various system
interactions. Albeit, the concept of a user identity may sound simple, however, defining and
establishing identities for sophisticated multiuser enterprise applications is a task much easier
said than done. Couple that with the possibility that identities may need to be “portable” in
order to be shared among various networked services and you have a complex problem at
hand. Today, a person’s Internet identity is strewn across various entities connected to the
Internet including portals, business services, organizations, and so on. This fragmentation of
information results in “closed,” inextensible and isolated relationships.

Federated network identity is the key to addressing the issue of identity fragmentation, and
in doing so, it enables businesses to realize new opportunities and explore revenue potential in
relatively new economies of scale. In this world of identity federation, a user’s online identity,
personal profile, interests, preferences, purchase history, and so on, can be administered
securely by the user and privately shared with trusted organizations of the user’s choosing.
The natural means to realizing this goal will first involve the establishment of a standardized
method to create, disseminate, and manage simple federated identities across multiple identity
management systems (a.k.a. identity providers) based on commonly deployed technologies.
Project Liberty (http://www.projectlibery.org), an alliance consisting of a broad spectrum of
industries, envisions such a world in which businesses and their users can engage in virtually
any type of interaction without compromising the privacy and security of their identity. An
overview of the Liberty 1.1 architecture, and the vendors implementing this specification, is
provided in section “Liberty Architecture.”

The network identity management zone is the basis for conducting most system transactions.
It is this zone that determines who you are and defines what you can do. The identity of a
user must therefore be established in this zone before any application services can be accessed,
and thus it is crucial that mechanisms used in this zone are protected, isolated, and managed
by clearly defined processes. The network identity zone is often a cornerstone for sophisticated
identity-related operations. For example, during user logon

» The user submits his/her credentials via a secure channel for authentication.

59

60

Practical J2EE Application Architecture

P User authentication is performed by retrieving the user credentials stored within the
identity zone and validating it against the one submitted by the user.

It is therefore obvious that a breach in the network identity zone may prove fatal in that
the system will be unable to distinguish a valid user from a malicious one.

Authentication and Avthorization

The authentication and authorization zone have two main functions in the system—the first
being that of establishing the authenticity of user credentials (authentication) and the second,
“translating” a user’s identity into permissible actions (authorization). The authentication
and authorization zone is more a “gatekeeper” to system resources and data rather than an
“administrator” to the information used to access its protected assets. This zone consists of
polices, rules, and processes that protect resources and ensure that system operations are
executed securely in a manageable and consistent manner. Authentication and authorization
functionality are complex and nontrivial but are unarguably a crucial component in almost all
enterprise applications. They often are combined with network identity solutions and offered
as a centralized, integratable service to allow for improved manageability. It is thus recommended
that functions of this zone be designed and built based on established standards to increase
extensibility and preserve vendor neutrality. One such technology is Java Authentication

and Authorization Service (JAAS), which is discussed in the section “Java Authentication and
Authorization Service.”

Authentication is a relatively simple process since the tasks involved are few and bounded.
After all, only a finite set of credentials (for example, username and password) are validated
to establish user identity. Thus the authentication module need only be designed to handle
those specific types of credentials.

Authorization, in contrast, requires a completely different approach. This is because
authorization in general is involved in a significantly larger number of transactions whose
design is closely tied to business processes and regulations. This, however, does not imply that
the entire authorization process must be designed and built from scratch for each application.
The authorization process, though different in each application, does have a common set of
fundamental concepts such as roles, actions, permissions, rules, access control lists, and so on.
In fact, well-designed authorization frameworks contain both infrastructure- and application-
specific components. The main goal of such frameworks is to minimize tight coupling between
the authorization process and the application. For example, in order to grant access to a protected
resource to users of role “myRole,” one should ideally require simple modification to policy
files rather than a change to the application.

Introduction to Single Sign-On A popular and widely implemented extension to the authentication
process is single sign-on (SSO). A technical overview of the single sign-on process, its
motivations, and issues is provided in the “Single Sign-On” section. Single sign-on defines a
series of interactions that occur between trusted systems in order to sign on an authenticated
user without his/her direct involvement to one or more systems. The following steps detail
the SSO process:

Chapter 3: Application Architecture, Security, and Caching 61

Two systems, A and B, establish trust that allows them to share user identity
information. This implies (among other things) that any user identity information
originating from A or B and destined for B or A, respectively, is considered to be
trustworthy, valid, and secure.

User identity is first established at one trusted source (say A) using a standard
sign-on process involving a direct user challenge.

User then attempts to access a service hosted in system B from A.
System A forwards the user’s identity to system B on behalf of the user.

Since system B trusts system A (step 1), system B accepts user identity information
sent by system A.

System B validates and establishes the user’s identity in its system without explicitly
challenging the user and provides access to the requested service.

User has thus single signed-on to system B as the user was challenged only once to
provide his/her credentials (at system A in step 2).

The crux of the interactions that occur within this zone are defined by the metadata and
schemas (discussed in the “Single Sign-On” section) conveyed as part of these interactions.
Metadata and schemas generically refer to the identity information, and the formats in which
they are exchanged between the various systems participating in single sign-on operations.
The main classes of information exchanged include account/identity, authentication context,
and participant metadata, which are explained here:

>

Account/identity This is simply the user’s account/identity information accessed
through a handle (refer to the section “Single Sign-On and Identity Federation”). The
comprehensive list of attributes in a user’s account/identity is application specific.

Authentication context Many mechanisms and techniques are available to authenticate
users into a system. Different parties may choose different technologies and follow different
processes, and may be bound by myriad legal obligations regarding how they authenticate
their users. The choices made in this area will largely be driven by the requirements of
each party, the nature of the service, the sensitivity of information exchanged, financial
constraints, and risk tolerance. Additionally, if a service is to trust the user authentication
data it receives from an external source, the service may wish to know the technologies,
protocols, and processes that were employed by that source to obtain the data. The
authentication context provides a means for the exchange of such information.

Provider metadata In order for identity sources and target services to communicate,
they must have obtained metadata about each other. Such metadata primarily aid in
establishing trust and operational agreements between the two communicating parties.

Digital Signatures

Security technologies deployed today in run-of-the-mill Internet environments are inadequate
for securing mission-critical business transactions. For example, the Secure Sockets Layer

62

Practical J2EE Application Architecture

(SSL) does guarantee the secure exchange of confidential data, but once the data has been
received, it is decrypted and often retained in its original form for processing. Thus, SSL only
protects the data while it is in “secure” transport, neither before nor after. This shortcoming
is further exacerbated when messages are routed through multiple nodes and unencrypted for
processing at each node. This may leave the data vulnerable to unauthorized alteration on
relatively insecure servers. In addition to protecting the sensitivity of the data transacted,
ensuring the data’s long-term integrity, authenticity, and origin is crucial. This allows for non-
repudiation—the ability to unequivocally assure both the sender and recipient of the data that
its origin is authentic, its contents unchanged and as the sender intended.

Digital signatures address the need of transacting and storing highly sensitive commercial
data both during and after the life of the transaction thus ensuring long-term non-repudiation.
As XML becomes the de facto standard for conducting electronic business transactions, a
trusted and secure XML-message exchange mechanism is essential. XML digital signature is
a key technology enabling both long-tem integrity and origin authenticity of the document.
The XML Signature specification is a promising standard that provides a means for signing
XML documents. Capturing resulting signatures using the very same XML syntax allows for
seamless integration into XML-based business applications.

Public Key Cryptography in Digital Signatures

Digital signatures use a prominent and well-known technology called public key cryptography.
Public key cryptography provides the transactions the confidence that data involved in the
transaction will not be modified or appropriated by anyone other than the intended recipient.
This is accomplished by generating a public and a private key combination known as asymmetric
keys. The asymmetric key set has the following unique characteristics:

» The relationship between the private and public key is such that any cryptographic
operation that is performed using one key can only be reversed by the other. Thus a
message encrypted using the public key component of the asymmetric key-pair can
only be decrypted by the private key of the very same key-pair.

» Unlike symmetric key cryptography, this technique does not require that the sender
or receiver exchange any secret information as part of the transaction.

The characteristics of public key cryptography just described make it an absolute
“must-have” to construct reliable digital signatures. The functionality offered by public key
cryptography include

> Integrity Ensuring that any changes to the original message can be unambiguously
identified (explained in the upcoming section “Ensuring Data Integrity”).

P> Authenticity Ensuring that the origin of the message can be unambiguously identified.

This functionality, and through it, the realization of non-repudiation, give electronic transactions
qualities similar to that of signatures on standard paper transactions known and used by all.

Chapter 3: Application Architecture, Security, and Caching 63

Certificate Authorities

A digital signature is created by providing a confidential private key as an input to a PKCS
(Public Key Cryptography Standard) transform (for example, multi-prime RSA algorithm)
that is applied to the data to be signed. Since only the public key of the asymmetric key-pair
can reverse that transform, the recipient of the “signed” data on successfully reversing the
applied transform with the public key, can be confident that the data is in fact from the sender.

It is also important to note that the validity of the digital signature stems from the confidence
that the public key does, in fact, belong to the sender. It is for these reasons that Certification
Authorities (for example Verisign Inc.) issue certificates that assert the validity of the relationship
between the public key and that of the certificate’s owner/subject.

Ensuring Data Integrity

Due to the computationally intensive nature of PKCS algorithms, only a small document/
message identifier is actually signed with the private key. This identifier is commonly known
as a hash or message-digest. The hash or digest for a given input data-stream is unique in that
it is highly unlikely that there exists a single computed hash value for two dissimilar data-streams.
Hence an alteration to the data content will fail to produce the same hash value indicating
that the content was changed in transit. The computed hash value is then transformed, in
other words signed, with the sender’s private key thus allowing the recipient to verify, using
the sender’s public key, that the content/document is in fact from the sender. Thus, the signed
hash/digest preserves both the integrity and the authenticity of the transacted data.

The received data is verified by first obtaining its hash value by applying a reverse PCKS
transform on the signature using the sender’s public key. The hash value is then recomputed
on the received data and compared with the data’s original #ash value. If they are the same,
the recipient can then be confident that the data indeed came from the sender, unaltered.

XML Signatures

The same challenges associated with encryption, integrity, and non-repudiation also exist for
XML data. Two new XML specifications addressing the subject of securing, encrypting, and
non-repudiating XML data are XML Signature and XML Encryption.

A unique feature in XML Signature is the ability to allow only specific parts of an XML
document to be signed. This becomes extremely useful if an XML document is to be handled
by multiple parties, each with certain delegated responsibilities that are to be unequivocally
captured in the document. This ensures the integrity of all signed portions of the document.
An example in context is business process workflows. A business process workflow may
involve an XML document exchange between multiple participants where each participant
may wish to sign only specific parts of the document maintaining a certain level of commitment
for which they are liable. Prior digital signature standards did not provide the capability to
address signatures at such a high level of granularity, nor did they provide a means to specify
signed portions of a document by multiple parties. Figure 3-3 provides an overview of the
various components in an XML Signature.

XML-based interchange formats allow data to be easily understood between two or more
communicating parties. XML schema rules allow for flexible data representation. The very

64 Practical J2EE Application Architecture

The <CanonicalizationMethod> element primarily
specifies the algorithm that was used to canonicalize
the <Signedinfo> element.

Each resource to be signed has its own <Reference>
element, identified by the URI attribute.

The optional <Transform> element specifies an
ordered list of processing steps that were applied to
the referenced resource's content before it was

<Signature> digested.
<Signedinfo> O The output of each <Transforms is the input to
(Canonicalization Method) the nexl.<Trqns|:orm>.. .
(Signature Method) Q The input to the first <Transform> is the result of
(<Reference (URI=)2> de-referencing the URI attribute of the <Reference>

2 < element.
{glq r:j(;vr\r;;)c; d) O The output from the final <Transforms is the input
9 for the <DigestMethod> algorithm.

(DigestValue)
Ref \
</References)+ The <DigestValue> element holds the value of the

ignedinf
</Signedinfo> calculated digest of the referenced resource.

(SignatureValue)

(Keylnfo)2

(Object)* The <SignatureValue> element holds the actual value
of the digital signature (encoded in base64);

</Signature>
¢ obtained by “signing” the digest.

The optional <Keylnfo> element enables recipients
to obtain the key needed to validate the signature.
<KeylInfo> may contain key names, certificates, key
management information, or key agreement data.
The optional <Object> element when present may
contain any data such as MIME type, Object ID, and

Source: . .
http:/ /www.xml.com/pub/a/2001/08/08/xmldsig.html encoding affributes.

Figure 3-3 Components of an XML Signature

same piece of data may be represented in different XML structures (or documents). Consider
the following XML document fragments:

<?xml version="1.0"7?>
<books>
<book type="fiction" cost="15" binding="soft"/>
<book type="history" cost="29 binding="hard"/>
</books>

<?xml version="1.0"?>
<books>

Chapter 3: Application Architecture, Security, and Caching 65

<book type="fiction" binding="soft" cost="15"/>
<book type="history" binding="hard" cost="29"/>
</books>

These XML document fragments though logically equivalent do not contain the same
sequence or ordering of characters. In this particular scenario, the fragments differ by the
order of attributes that appear in the “book” element.

In order to determine that two XML documents or fragments are logically equivalent, it
is necessary to arrive at a unified (or canonical) format. In order to address this issue there
exists canonicalization algorithms that transform XML documents into canonical forms that
can be compared octet by octet. XML canonicalization is essential to the process of signing
and verifying XML documents. Prior to signing an XML document, the document is first
canonicalized using accepted algorithms based on W3C rules for XML canonicalization. It is
the canonicalized form of the document that is digitally signed, not the document’s original
form.During verification, it is the digital signature of the canonicalized form of the XML
document that is verified. Thus the verification of the digital signatures of all logically
equivalent versions of the signed XML document should be successful.

An important aspect to consider is the performance characteristics of canonicalization.

As can be inferred from the description of the canonicalization operations in prior sections,
canonicalization operations may involve multiple traverses of the XML document. Furthermore,
conversion of an XML document to a uniform canonicalized format (such as octet sequences)
may be resource intensive. The performance characateristics are further exacerbated as the
XML document size increases.

(] (]
Single Sign-On
As the number of enterprise applications increases in large organizations, coordinating
authentication and authorization operations for these applications becomes a complex task.
In addition to dealing with the security aspects of each application, a centralized and robust
policy management infrastructure is essential. This ensures that the organization’s information
and services are accessed in a consistent manner.

Usability considerations in a diverse environment consisting of multiple security domains
requires integration of user sign-on functions with that of identity management. This need is
addressed by a service or a set of services that coordinate user authentication and credential
forwarding between security domains. This is commonly known as single sign-on (SSO),
termed after the end user’s perception of this functionality. SSO provides operational and
cost benefits through the following:

» Increased simplicity of user sign-on function
» Improved user experience

P> Reduced management overhead as administrators may easily add, remove, or limit a
user’s access to enterprise resources in a consistent manner as dictated by access policies

66

Practical J2EE Application Architecture

The single sign-on process can be envisioned as a method of authenticating to multiple
resources or services, each in its own security domain, by only being challenged once to
submit authentication credentials. A high-level overview of the single sign-on process is
shown in Figure 3-4. Important elements of SSO include the following:

» Primary domain The domain that initially challenges the user for his/her credentials.
This domain is responsible for mapping sign-on credentials (example, userid and
password) to accounts in other security domains.

> Secondary domains All other security domains that authenticate the user based on
credentials provided by the primary domain.

Trust is a crucial factor in any secure operation and is no different in SSO. In SSO, the
secondary domains trust the primary domain to do the following:

P> Accurately assert the authentication credentials submitted by the end user

» Prevent user credentials from unauthorized use

NOTE

The primary and secondary domains do not necessarily represent entities within the bounds of an enterprise
system or an organization. These domains may be systems belonging to external organizations and those
that share user identity information though well-established trust and operational agreements.

User Sign-On
I_,) o .| Primary Domain
Primary Domain Sign-On Identity Management
User SINGLE
Sign-ON
Shared or Mapped
Identity
-------------------- :
T T Secondary Domain 3L {5
S Secondary Domain 2L+ {5 |

Secondary Domain 1

_______ 1 Secondary Domain
Secondary Domain Sign-On Identity Management

Figure 3-4 Single sign-on architecture

Chapter 3: Application Architecture, Security, and Caching

Credential Mapping in SSO

Usually, user-supplied credentials submitted to a primary domain are first forwarded to a
centralized identity management infrastructure where these credentials are used to obtain the
user’s identity profile. Through this profile a user is mapped to another set of independent
credentials, in the context of the secondary domain, which are then used for user sign-on to
the secondary domain. Credential mapping, though complex from a design standpoint, yields
many advantages with regard to security, manageability, and user experience.

For example, a user may wish to access divisional sales reports through a corporate portal.
The user is challenged only once when entering the corporate portal. Signing on to the
reporting service is automatically handled via the single sign-on process using the credential
mapping process as explained earlier.

One way to optimally map users between domains is through roles. Since the secondary
domain trusts the primary domain and its authenticated users, the secondary domain can control
access to its resources and services through roles. Role mapping is advantageous in that as users
are added and removed from the system, the application remains unaffected. Role mapping may
also be combined with other credentials to customize access control mechanisms as each
application’s authorization needs (which may be implemented using JAAS, please refer to
section “Java Authentication and Authorization Service” for details) are unique.

Elements of Single Sign-On

Single sign-on, as described earlier, is a means by which a primary domain conveys to a
secondary domain that the user is in fact authenticated. However, as simple as this operation
may sound, there are various elements related to designing, deploying, and managing this
operation in a mission-critical environment. The following sections discuss various elements
of the single sign-on process.

Profiles

As part of the single sign-on operation, user identity is exchanged securely between primary
and secondary domains using profiles. Profiles map messages exchanged between primary and
secondary domains to a specific protocol such as HTTP, SOAP, and so on. These profiles are
required to clearly define the sequence of interactions, format, message content, and #rust
attributes established between participating domains. Profiles may be designed using a
proprietary approach or based on standardized profiles (for example, Project Liberty—see
http://www.projectliberty.org).

Credentials

Identity in a system is established by validating a set of credentials that corroborate a set of
one or more identity assertions. For example, in a role-based system, with a password-based
authentication model, a username and password would be considered as credentials that
prove a user’s assertion that he/she belongs to a specific role. Credentials are used in various

67

68

Practical J2EE Application Architecture

Preventing Replay Attacks

Often, system-generated URLs have some user identification information for authenticated
users. Such URLs maintain time-bound information and are required to have the property
of a nonce. A nonce is a random, non-repeating value incorporated as part of the data
exchanged by a protocol to protect against replay attacks. A replay attack occurs when
a message that has a definite validity period is replayed (that is, sent again) after its
validity has expired. Using a nonce ensures that a time-bound entity such as a URL that
is valid at a given point in time cannot be replayed or reused after it expires. Since the
contents of a replayed (expired) message may look authentic (formatting, credentials,
signatures, and so on), unsuspecting server processes may end up reprocessing the message
constituting a serious security breach. Thus time-based assurance of the freshness of the
message must be employed to protect against such an occurrence.

ways in a single sign-on operation and are often the basis for establishing trust with the
credential bearer. Examples of credentials include the following:

» Sensitive information such as private cryptographic keys, pin numbers, passwords, and
so on, that are required to be protected from unauthorized access. Such information
may also be protected from tampering or fabrication.

P Shared information such as public key certificates, pseudonyms, and so on.

Multi-Layered Authentication

It may be possible that credentials and the mechanisms used for authentication or authorization
are not of sufficient quality to complete an attempted operation. For example, after initial sign-on,
a user attempts to conduct a high-valued operation (such as an account withdrawal) that requires a
more secure form of authentication. In such a scenario, a user may be required to provide a
stronger assertion of identity, such as a digital signature or personal pin number. This action
is known as re-authentication, and the overall process as multi-layered authentication. Employing
multi-layered authentication can be a policy decision, a contractual agreement, or at the discretion
of the service. Such polices and agreements may include details about the following:

» User identification methods when enrolling (registering) credentials
» Credential renewal policies

P Credential storage, protection, and distribution (for example, encryption, access
controls, and so on)

Authentication assertions should provide an indication of the quality of credentials and the
mechanism in which they are exchanged between security domains. For example, authentication
assertion established between security domains may be deemed of type strong if the following
are true:

Chapter 3: Application Architecture, Security, and Caching 69

» Digital certificates and SSL are used to authenticate the user.

P> Biometric identity verification in addition to digitally signed documentation are used
during user registration/enrollment.

Thus, if a security domain provides authentication assertions of type strong to a secondary
domain as part of single sign-on, the secondary domain may trust the assertions to a certain degree.
However, this degree of trust is unlikely to be placed on assertions that originate from other
security domains that do not use assertions of type strong. Thus, it is crucial that single sign-on
participants clearly define their authentication type and multi-layered authentication process.

Mutual Authentication

Another extension to the standard authentication mechanism is mutual authentication. Mutual
authentication implies that both the user and the service authenticate themselves with each
other in a reciprocal manner. For example, when establishing an SSL connection, the client
and server may mutually authenticate themselves using client-side and server-side certificates,
respectively. Though this feature may provide greater assurance, it does introduce a certain
degree of vulnerability in that a user/client may not be adequately prepared to discern or
evaluate bogus server certificates.

Validating Liveness

Liveness simply refers to whether a user attempting to perform an operation at time t, is the
same user who was authenticated into the system at time t,. For example, after logging in, the
user may conduct several operations and then attempt to conduct an operation that the service
deems high-value. The service may thus decide to initiate re-authentication to ensure that the user
attempting to conduct the high-valued operation is in fact the same authenticated user. Though
this approach does not protect against rogue users, it does augment the service’s audit trail.

Java Authentication and Authorization Service

Java and J2EE technology today is being used in large-scale, multi-user environments. This
requires the ability to deal with multiple users concurrently, as well as handle their credentials,
privileges, and identities in a consistent, manageable fashion. The Java Authentication and
Authorization Services (JAAS) provides a framework and a standard API for user authentication,
privilege management, and credential verification for the Java 2 and J2EE platforms. This
section provides an overview of JAAS and its importance in securing enterprise applications.

In the Java platform, security policies can place fine-grained access control upon protected
resources by verifying the identity of code source and who signed it. However, this model lacks
enforcing control based on the user who runs the code. The code-centric model is important
for executing code that is downloaded from other sources, as is common in browser-based
applications. However, most applications are used in a multi-user environment and serve the
needs of a wide audience with different levels of access privileges. JAAS complements the
code-centric model by providing user-based authentication and authorization on top of the
existing Java security model.

70

Practical J2EE Application Architecture

Subjects, Principals, and Credentials

In JAAS, a user or a computing service that desires to access protected resources or other
protected computing services is represented as a subject. A subject interacts with a computing
service using an identifier and will typically have a unique identifier with each service it interacts
with. The JAAS specification calls this identifier a name. The term principal represents a name
associated with a subject. A subject therefore comprises a set of principals as shown here:

public interface Principal {
public String getName() ;

}

public final class Subject {
public Set getPrincipals() { }

During the authentication process, a user or a computing service (subject) presents some
form of evidence to another computing service (another subject) to prove its identity. The
credentials provided during authentication may be userid/password and/or digital certificates,
signed data, and so on. The JAAS security model takes into account that most services rely
on named principals to access protected resources. Principals are associated with a subject
once it successfully authenticates to a service.

Services that implement a conventional access control mechanism define a set of protected
resources that may be accessed by a named principal. Principals in large-scale enterprise
applications may use verifiable public key as identifier to ensure a unique, indisputable
identity. In addition to principals, services may also require the subject to present added
security-related attributes that may include password, PIN, public key certificates, and so on,
as part of the request to access the service. These attributes are known as credentials in the
JAAS framework and are typically used for SSO operations. JAAS credentials can be any
type of object. Therefore, existing and third-party implementation may be plugged into the
framework. Credential implementation may reference data that may physically reside on a
separate server or even in hardware devices like smart cards. A credential implementation
may also delegate to third parties using its own delegation protocol.

JAAS credentials are of two types: public and private. Public credentials include a subject’s
public identity attributes like PKCS certificates that are accessible without requiring any
permission. Private credentials include a subject’s private security-related attributes such as
PCKS private keys, password, and so on, that have access controls. Please refer to the JAAS
API for further details on the Subject class.

Authentication

Each service may have an authentication mechanism that is specific to it. Therefore the security-
related attributes required by each service may be different. The JAAS framework supports a
flexible architecture that allows the plugging in of different authentication services (called
LoginModules) to meet the security requirements of an application. This architecture creates
a loose coupling between the applications and the authentication services, thus enabling
modification or replacement of authentication services without affecting the existing
applications.

Chapter 3: Application Architecture, Security, and Caching

JAAS authentication framework is based on pluggable authentication module (PAM)
framework and therefore supports the notion of stacked LoginModules. The JAAS LoginContext
class represents a Java implementation of the PAM framework as shown here:

public final class LoginContext {
public LoginContext (String name) { }
public void login() { }
public void logout () { }
public Subject getSubject() { }
}
public interface LoginModule {
boolean login() ;
boolean commit () ;
boolean abort ()
(

boolean logout() ;

The LoginContext consults a configuration file to determine the list of configured
LoginModules. A sample configuration file that identifies the LoginModule(s) is shown here:

GreaterCauseModules {com.gc.security.donor.DonorLoginModule required;}

Note the use of the required flag in the configuration file. Other possible values are Requisite,
Sufficient, and Optional. These flags control the overall behavior of the authentication process.
More information about these flags is available at http://java.sun.com/j2se/1.4.1/docs/api/
javax/security/auth/login/Configuration.html.

The LoginContext is instantiated as follows:

LoginContext lc = new LoginContext ("GreaterCauseModules",
new myCallbackHandler ()) ;

Objects implementing the CallbackHandler interface are used for performing the user
interaction for obtaining the credentials required for successful authentication. This is
because there are various ways of communicating with a user, and we need to keep the
LoginModule(s) independent of the different types of user interactions.

JAAS performs the authentication steps in two phases:

» In the first phase, the LoginContext’s login method invokes the login method of each
LoginModule specified in the configuration file. The login method of each LoginModule
performs the authentication (for example, prompting/challenging the user for username
and password). The LoginModule’s login method will return true or false (indicating
success or failure, respectively), or it may throw a LoginException. In case of a failure,
if an application decides to retry the authentication, then phase 1 is repeated.

» In the second phase, if the LoginContext’s overall authentication succeeded, then the
commit method on each configured LoginModule is invoked. The commit method of the
LoginModule will check its internal state to ensure if its own authentication succeeded.

71

72

Practical J2EE Application Architecture

Once it is verified that both the overall LoginContext’s authentication and
the LoginModule’s authentication has succeeded, then the relevant principals
(authenticated identities) and credentials are associated with the subject.

Authorization

JAAS authorization is accomplished by enforcing the appropriate access controls on the
principals associated to the subject during the authentication process. Services based on the
JAAS access control model define a set of protected resources and the means through which
principals may access them. The JAAS policy is built on top of the Java 2 codesource-based
security policy, forming a complete authorization scheme for the Java 2 runtime system. The
following code snippet is a sample principal-based policy entry supported by JAAS:

grant Codebase "http://www.gc.com", Signedby "gcadmin",
Principal com.gc.Principal "pHolmes" {
Permission com.gc.siteAdmin.AccessPermission "administrator"

}

This example grants code loaded from the remote resource "http://www.gc.com", that has
been digitally signed by "gcadmin", and executed by "pHolmes" permissions to administer
the site. To be executed by "pHolmes", the subject associated with the current access control
context (explained later in this section), must contain a principal of class com.gc.Principal,
whose getName function returns "pHolmes".

Roles are treated as “named” principals by JAAS. Access controls can thus be applied to
roles just like to any other principal, as shown in the following code snippet:

grant Codebase "http://www.gc.com", Signedby "gcadmin",
Principal com.gc.Role "administrator" ({
Permission com.gc.siteAdmin.AccessPermission "administrator"

}

The JAAS authorization framework also allows for the Principal class in a particular
policy entry to programmatically determine if the principal is “implied” by a given subject.
In this scenario, the Principal class (specified in the policy entry) “implements” the
PrincipalComparator, whose implies method is invoked when permissions are determined
for a subject.

Public interface PrincipalComparator {
boolean implies (Subject subject);

Role hierarchies may be realized in this manner where a specific role (such as com.gc.Role)
implements the PrincipalComparator interface and returns "true" if a specified subject contains
an "administrator" role principal.

Associating a Subject with an AccessControlContext The java.lang.SecurityManager is consulted
any time an untrusted code attempts to access protected resources. To determine whether the

Chapter 3: Application Architecture, Security, and Caching

subject has sufficient authority to access a protected resource, the SecurityManager delegates
to java.security.AccessController, which ensures that the AccessControlContext contains
sufficient permission to allow access to the resource. JAAS dynamically associates an
authenticated subject to AccessControlContext by providing a Subject.doAs method.

After a service performs user authentication, and before protected resources can be
accessed, the service can associate the subject with the current access control context. This
is done by preparing the operation to be performed as a java.security. PrivilegedAction and
then calling the static Subject.doAs method and passing it an authenticated subject and a
Java.security.PrivilegedAction object. The doAs method associates the subject with the
current access control context and then invokes the run method from the PrivilegedAction
object. The action thus executes as the specified subject. When security checks occur during
this execution, the SecurityManager queries the JAAS policy and updates the current
AccessControlContext with the permissions granted to the subject and the executing codesource,
and then performs its regular permission checks. When the PrivilegedAction run method
finally completes, the doAs method removes the subject from the current AccessControlContext,
and returns the result back to the caller.

Federated Network Identity

Users accessing Internet-based services often use such services in ways that cater to their
personal tastes and preferences. Each user account associates the user with his/her information
that may include anything from personal preferences on web pages to more sensitive data
such as credit card and bank account numbers. The network identity of the user is the complete
set of all such information constituting the user’s different accounts. However, in today’s
world, user accounts are scattered all over the Internet and the concept of a portable and
flexible network identity is rare.

Project Liberty (http://www.projectliberty.org), a broad alliance of a wide spectrum of
industries, attempts to address this issue through a series of technical specifications that can
be used to realize a wide range of network-identity operations. Project Liberty implementations
may ultimately provide a convenient and secure framework in which organizations may
leverage new or existing relationships with customers and partners allowing for new business
opportunities and increased customer satisfaction. Project Liberty provides a standards-based
approach to network identity management. Several products supporting Liberty Alliance 1.1
specifications are now available—a complete list can be obtained at http://www.projectliberty.org.
The solution providers include RSA Security, Entrust, Sun Microsystems, Oblix, Novell, and
many others. This section primarily discusses key concepts of Project Liberty’s Federated
Network Identity architecture.

In a federated identity system, it is crucial that the following key objectives are realized:

» The privacy and security of personal information.

P Participating entities must be able to manage trusted relationships using a
standards-based approach rather than a one-off solution.

73

74 Practical J2EE Application Architecture

» The realization of single sign-on standards that allow decentralized authentication and
authorization of users, that is, each service provider must be able to authenticate
and authorize users without having to forward user credentials to other non-essential
third parties.

These objectives are realized by establishing circles of trust, an agreement common to all
participants. It is based on such circles of trust that operational agreements and trust relationships
are formed between service providers and users. Users can choose to federate (share) their local
identities, and include them into circles of trust. A circle of trust thus becomes a federation of
trusted participants that provide a seamless environment in which to conduct secure transactions.
Figure 3-5 illustrates circles of trust within a federated network identity framework.

Liberty Architecture

This section provides a high-level overview of the Liberty architecture, its components,
and its processes.

Definitions

The provider definitions are as follows:

P Service provider Organizations providing Internet-based services. These may
include virtually anything with a web presence, including businesses, portals, banks,
media portals, government, and so on.

P> Identity provider A type of service provider that offers identity-related services that
are the basis for forming trust circles between affiliated service providers. An example
of an identity provider may be a trusted system that manages employee identities
across an organization and its subsidiaries.

The Liberty-enabled implementations must support the following functional requirements:

» Identity federation Protocols and stipulations that ensure users, service providers,
and identity providers within a circle of trust are notified when identities are federated
and de-federated (that is, added and removed from circles of trust). These protocols
also mandate that all service and identity providers provide each of its users a list of the
user’s federated identities at that provider.

> Authentication The authentication processes in a networked identity federation
requires that the following minimal scenarios be supported:

P Navigating between identity and service providers (to exchange user-related
information.

P Preserving confidentiality, authenticity, and integrity of any information exchanged
between user agents and identity providers, or between identity and service providers.

P Presentating verifiable form(s) of identity by the Identity provider to the user
before the user provides credentials or personal information to that provider.

Chapter 3: Application Architecture, Security, and Caching

» Enabling service providers to request the identity provider to re-authenticate a user
using the same or a different authentication class.

» Support for pseudonyms The ability to support pseudonyms (that is, aliases,
assumed names, and so on) that are unique to each identity federation, across all
identity and service providers.

» Global logout Support for “logout” notifications (on user logout) to related identity
and service providers with whom the user has established a federated identity.

Circle of Trust

John Doe’s travel profile

Y

Car Rental

Federated Idenﬁty Locall Identity

Service
Provider

Airline Reservation

Identity

Provider

Service

Local Identity
Provider

Federating
Identity Providers

Hotel Reservation

Identity

Provider

Service

Local Identity
Provider

Federating an Identity Provider
and a Service Provider

Circle of Trust

John Doe’s work profile

Accounts Payable

Service
Provider

Local Identity

Human Resources

Federated Identity

Service
Provider

Identity

Provider

Local Identity

Corporate Benefits

Service

Local Identi
Provider ocal ldentity

Figure 3-5 Circles of trust

75

76 Practical J2EE Application Architecture

Figure 3-6 illustrates the overall Liberty architecture. The Liberty architecture is based on
three orthogonal components:

>

Web redirection Enables Liberty entities such as service provider, identity providers,
and user agents to interact over today’s installed http-based environments. On attempting

to access a service hosted at a service provider, the user is first redirected to the identity
provider for sign-on, subsequent to which the user is redirected back to the service provider.

Web services Liberty protocols detail various interactions that occur between two or
more Liberty-enabled providers. Each set of interactions is based on RPC-like call
semantics conveyed via Simple Object Access Protocol (refer to Chapter 8 for details
on RPC-oriented SOAP messages). SOAP is a well-recognized specification for
conducting RPC-like interactions using XML over HTTP and is thus useful for
realizing Liberty-specific protocols and orchestrations.

Schemas and metadata A set of data formats employed by Liberty entities to exchange
provider-specific information and other identity artifacts among each other. Please refer
to section 5.3 of the Liberty Architecture Overview [Version 1.1] document for further
information.

Single Sign-On and Identity Federation

The first time that users use an identity provider to log in to a service provider, they must be
provided with an option to federate their existing local identity on that service provider with
the identity provider. This allows the identity provider to use the user’s federated identity in a

Web Services

Architectural Component

Metadata & Schemas
Architectural Component
v v
Identity Providers Service Providers
User Agents
Web Redirection

Avrchitectural Component

Source: http://www.projectliberty.org

Figure 3-6 Liberty architecture

Chapter 3: Application Architecture, Security, and Caching

confidential manner for single sign-on purposes with service providers within the same circle
of trust. This is explained further in this section in conjunction with Figure 3-7.

In a federated identity system it is essential that users must be uniquely identified and
asserted across all service and identity providers. A quick solution that comes to mind is the
use of a Global ID (global identifier). However, implementing global identifiers that are not
provider specific and are “portable” across services is a significant challenge. Furthermore
global identities pose risks—if they are compromised, malicious users can gain access into
virtually every provider in the federation.

As an alternative to global identifiers, Liberty employs explicit trust relationships that are
created when a user decides to federate his/her identity between an identity and service provider.
When federating a user’s identity, opaque handles (also know as name identifiers) instead of
actual account identifiers are used to uniquely resolve users. An explicit trust relationship is
created when the user chooses to federate his/her identity the first time a user logs in to a
service provider using an identity provider. Figure 3-7 illustrates the creation of handles.

As shown in Figure 3-7, upon identity federation, the user directories of the identity
provider and the service provider make use of opaque handles to reference the user account
on either provider. In this way, the real identity of the user is concealed and the usage of a
specific alias is restricted only to this link as other links may use different aliases. This
mechanism securely establishes a federated user identity without the use of a single global
identifier.

Federation Scenarios

Based on the federated identity mechanism discussed in the preceding, it is possible to realize
three useful scenarios.

Federating Single Identity Provider, Multiple Service Providers A user may use a single identity
provider to access multiple service providers. To allow the service providers to exchange
information about the user, the user must explicitly federate the two service provider
identities. The following hold true in this scenario:

P Service providers cannot directly exchange information about a user identity federated
through an identity provider. The service providers may only communicate with the
identity provider individually.

Identity Provider A Service Provider B
JoneDoe@IP_A.com JaneD@SP_A.com
<dalias="ns4uUK45mnO3DE" <alias="eUwm|SdNJgDrWw7yY"

SecurityDomain="SP_A.com" SecurityDomain="IP_A.com"
Name="eUwm{SdNJgDrW7yY" Name="ns4uUK45mnO3DE"
/> />

Figure 3-7 Identity federation between an identity provider and a service provider

77

78

Practical J2EE Application Architecture

P The identity provider holds individual/isolated relationships with each service provider
(through separate user handles), thus ensuring privacy and confidentiality of user
information.

P User can sign on to multiple service providers using a single identity provider.

Federating Multiple Identity Providers, Single Service Provider A user may use multiple identity
providers to access a single service provider. A federated identity between multiple identity
providers and a service provider can be very useful if a user requires access to a designated
service from multiple locations. For example, when a user swifches from a corporate intranet
to the Internet, or to a mobile device, the user may typically use different identity providers,
each within a different circle of trust in order to access the service.

Federating Multiple Identity Providers In order for the user to avoid having to “remember” to
federate a new service with multiple identity providers a user may federate identity providers
together allowing them to access each other’s information. Thus when a new service is made
accessible to a primary identity provider, all other identity providers privy to that information
may be used to access the service. When a user’s identity is federated across many identity
providers, an explicit link exists between each identity on different identity providers, forming
a trust chain. Providers cannot skip identities in a trust chain to access services or request
information because user identity must be checked at each step.

The following are issues and risks are associated with federating identity providers:

P Liberty protocols do not dictate the underlying semantics of federated relationships.
Reasons for not doing so could be due to the variable factors that often drive the design
and implementation of such semantics. Such factors may include organizational
agreements between providers, capabilities of the Liberty implementations deployed,
political influences, and legal liabilities.

» How trust relationships between identity providers are established, and how those
relationships are represented to service providers, are unspecified. Organizations that
host identity providers must define policies that govern such trust relationships and the
means for representing them.

> Agreements and policies that govern circles of trust must also address how federation
failures are communicated to users.

P Creating several local identities with many service providers and/or identity providers
and then federating them constitutes a security risk when identity providers possess
reusable user credentials such as a username and password. Such reusable credentials
can be used to impersonate the user at every service provider federated with that account.

The Liberty approach is more secure than a global identifier in the following ways:
P If an identity provider in a circle of trust is compromised, the rest of the members in

the trust circle need to just record the incident and “sever” links to that provider to
re-establish secure access. Since the identities compromised at that provider are only

Chapter 3: Application Architecture, Security, and Caching 79

useful to access other providers at adjacent links, only the adjacent providers need to
be cleansed of any reference to compromised identities. In contrast, if a global unique
identifier is compromised, every provider in the circle of trust is affected, and hence
recovery becomes a more arduous task.

P In the Liberty network identity architecture, information about a user may be
“spread-out” over multiple identity providers in a trust circle. Hence if a provider is
compromised, only the user information at that provider is exposed. In contrast, if a
global unique identifier is compromised potentially all personal information of a user
may be exposed, which constitutes a serious privacy violation.

Defederation

Users have the ability to terminate federations, or defederate identities. Defederation is the
process of terminating the validity of a federated identity at a service or identity provider. The
defederation process may be initiated at the identity or service provider. When defederation is
initiated at an identity provider, the identity provider is stating to the service provider that it
will no longer provide user identity information to the service provider, and it will no longer
respond to any requests by the service provider made on behalf of the user. When defederation
is initiated at a service provider, the service provider is stating to the identity provider that
that user has requested that the identity provider no longer provide the user identity information
to the service provider and that the service provider will no longer ask the identity provider to
do anything on behalf of the user.

Caching Overview

A typical enterprise application spans multiple tiers and may be distributed over several machines.
Data may be accessed from any of these tiers based on the application design. For example,
in a multi-tiered J2EE application, data from the persistent store will usually be accessed in
the EJB tier. An application with high transaction volume and with a need to provide short
response time to the clients may have multiple machines in the EJB tier accessing a single
data store. In such applications, access to the data store can become very expensive because
generally the backend data stores run on high-performance expensive hardware and software.
Even when expensive hardware and software is used, the system may not easily scale when
more users and information are added to the data store since the amount of information to be
retrieved could grow exponentially. In order to provide a scalable solution, a cache should be
incorporated in the enterprise applications. A cache provides the following benefits:

P Reduces the number of network calls by minimizing calls to the data store
> Reduces application latency

» Improves response time of the application

80 Practical J2EE Application Architecture

Common solutions offered today include the following:

>

A web-tier cache is generally used to cache HTML pages or JSP fragments and sits in
the web tier in front of the web server. More and more applications are moving toward
JSP fragment caching. Some vendors provide custom tags for caching JSP fragments,
which enables caching content produced within the body of the tag. The contents cached
can be the final view of the content, or simply the values calculated for variables. The
latter is useful when the presentation is independent of the computed data. The JSP Tag
Library for Edge Side Includes, or JESI (JSR 128 at www.jcp.org), is a specification
for a custom tag library that developers can use to automatically generate ESI code
(ESI is a markup language that enables partial page caching for HTML fragments)
using JSP syntax. For more on the ESI standard, refer to http://www.esi.org.

An application-level cache is generally useful in applications that access data store directly
in servlets, JSPs, session beans, or entity beans with bean-managed persistence. The
cache then sits between the application and the data store. In this case, a JCACHE
specification (JSR 107 at www.jcp.org)—compliant cache can be used to provide caching
of Java objects once the objects are retrieved from the data store and transformed to its
appropriate Java type. JCACHE standardizes caching of Java objects and provides for
cache expiration, spooling, and cache consistency. For entity beans with container-
managed persistence, the containers employ appropriate caching strategies. Vendors
may provide some control over the caching strategy by using vendor-specific deployment
descriptors.

Some container vendors offer EJBs classified as read-only entity beans. This allows
caching of entity beans that were marked as read-only. The configuration of caching
attributes are provided via the vendor-specific deployment descriptor. Vendors also
provide proprietary API for invalidating cached data. This solution is vendor specific
and therefore not portable. It is expected that read-only entity beans with container-
managed persistence will become part of the post-EJB 2.1 standard.

Data stores also implement sophisticated caches. For example, an RDBMS will have
a database cache to speed up database access and minimize the expensive disk block
access and look ups. In this section, we discuss only application-level caches.

Application Data Caching

J2EE technology provides infrastructure support to enable developers to build multi-tiered,
distributed applications using EJBs. In most multi-tiered applications, the most expensive
resource from a price and access perspective is a data source such as an RDBMS. In such
applications, it is beneficial to architect and design an application-level data cache.

NOTE

It is most beneficial if an architect adheres to Java standards such as JCACHE when designing and
implementing a cache.

Chapter 3: Application Architecture, Security, and Caching

Most application being built today have two types of data access needs:

» Transactional data In this case, the application reads and writes data to the data store.

> Read only data In this case, the application only reads data from the data store.

Transactional data does not lend itself well to caching. Generally, the frequency of
changes to data causes too many cache invalidations. The frequency of updates also does not
allow for a stable cache. This results in too many cache misses and defeats the purpose of
caching. Thus, it is not a good practice to have a cache of transactional data. This is also true
for any data where the frequency of updates can be measured in seconds and minutes rather
than hours and days. In this scenario, the services offered by a J2EE container and the
contracts specified for a container-managed persistence bean will be adequate. In cases where
data is read-only, or it is updated less frequently, caching application data can provide good
benefits. Resources permitting, read-only data is a prime candidate for caching in memory.

Cache Architecture

It is very important that the cache architecture clearly defines the objectives of a cache up
front. There are several important issues to consider:

» Distributed caching s a distributed cache needed? Is a hierarchical/tiered cache required?
» Capacity planning What is the size of the cache?

» Caching algorithm Which algorithm to use in order to purge a cached object:
algorithm based on LRU (least recently used), frequency of usage, or LRU and
frequency combined?

P> Cache population Define process for loading the cache. Is there a cache priming
process like populating the cache in a servlet’s init() method?

» Cached data invalidation Define process for invalidating a cache when data
changes in a data store and define process for propagating this change to other
JVMs in a distributed caching scheme.

Cached Data Invalidation in a Distributed Cache

When an object is in memory, its corresponding image can be changed on disk, or it can
be changed by another thread in memory. In this scenario, the object needs to be purged
from the cache. The object can either be read back immediately into the memory or read
into memory the next time it is requested. In a distributed cache, invalidation is more
complicated. An object may be in several distributed JVMs, in which case, if an object
in the cache is made dirty then all the caches in a distributed caching topology need to
be notified. Similarly, if the object is changed on the disk then all the caches need to be
notified. JMS can be used to provide this notification and synchronization between
distributed caches. J2EE offers a mature network communications infrastructure and is

81

82 Practical J2EE Application Architecture

designed from the ground up to support distributed computing, therefore it is well suited
for a distributed cache. Vendors such as spiritsoft offer caching frameworks based on
JCache, which allows users to implement multi-tiered caching solutions using JMS for
intercache communication. SpiritCache from spiritsoft offers such services as clustering,
fault-tolerance, and XA transactions.

Desirable features for a cache will include the following:

| 2
>
>

Distributed cache across JVMs
JMS-based invalidation and refresh

A CacheFactory to handle cache creation via specialized data-aware cache-creator
classes, such as Named cache

Cache priming or bulk loading at a predefined time

Built-in statistics via ValueObject (see Figure 3-8) objects to help in invalidation and
cache sizing based on the following:

P> Frequency of use (accessed how many times?)
P> Last accessed (when was it last accessed?)
P Time bound expiration (how long in the memory?)

Figure 3-8 depicts important elements of a cache.
The possible interactions between different cache objects are as follows:

>

| 2

The CacheFuctory is used to create a named cache such as an instance of TokenCache.
The factory object creates a CacheManager object and associates it with the TokenCache.

The TokenCache implementation may use a HashMap object in which case we can use
a key/value pair (that is, a concrete implementation of ValueObjectKey/ValueObject)
for storing and retrieving objects. TokenCache is implemented as a Singleton object.
Appropriate synchronization semantics should be associated with the cache.

The ValueObject implementation maintains a reference to the cache that contains it.
This reference can be used to inform the cache when a ValueObject is invalidated or
updated. The ValueObject is an abstract class providing the base implementation for
certain methods. The TokenCache is populated with the ValueObject subclass
(TokenObject), as shown in Figure 3-8.

The factory associates a CacheEventListener object (a concrete implementation of this
interface could be a JMS-based listener subscribing to a JMS topic associated with the
cache) with the CacheManager. This event listener responds to events such as
INVALIDATE and RELOAD.

The factory associates a CacheltemCreator object (implemented by a concrete class
TokenCacheltemCreator) with the CacheManager .

When the gef method of TokenCache is called, and if there is a miss, the CacheManager
calls the create method of TokenCacheltemCreator object. This will load the data from
the data store.

Chapter 3: Application Architecture, Security, and Caching

CacheFactory

CacheManager

interface

-eventListener:CacheEventlistener

+createcache:Cache

-createCacheManager:CacheManager
-createCacheEventListener:void
-createCacheltemCreator:void

----- > -itemCreator:CacheltemCreator
-cache:Cache

CacheEventlistener

+actionPerformed:void

+populate:void

+invalidate:void

(..-____.

inferface
Cache

I

oo

ValueObject

+add:void
+invalidate:void
+get:ValueObject
+init void

K

-cache:Cache

+isDirty:boolean
+accessFrequency:int

TokenCacheEventListener

-cacheManager:CacheManager

+actionPerformed:void

+timeSincelastAccess:Date

interface

TokenCache

T CacheltemCreator

+add:void
+invalidate:void
+get:ValueObject
+init:void

+create:void

\\\\ %
TokenObiject N\ TokenCacheltemCreator
d
inferface +create:void
Cacheable ’

Figure 3-8 Elements of a cache

» When a TokenCache object is updated by a client, or when an object is invalidated, the
CacheManager sends an invalidate notification to all the caches in a distributed caching
topology. This is done by posting an INVALIDATE event for that object to the JMS topic.

> An INVALIDATE event will invoke the event listener’s actionPerformed method,
which will instruct the CacheManager of the invalidation. The Cache Manager will
in turn call the invalidate method of the TokenCache. An invalidation results in the
removal of the corresponding item from all the caches.

Cache Optimization

When designing an application-level cache, one needs to optimize cache hits. A cache #it
means that the data was found in the cache and hence the request can be serviced from the
cache. If there is cache miss, the client needs to be serviced from the data store. The bigger
the cache size, the better the chance of a cache hit. An architect needs to optimize the
application cache size such that the cache hit is at a ratio above the acceptable threshold.
Since applications have only finite resources available, the cache size is limited by the

83

84

Practical J2EE Application Architecture

amount of memory available to the application. It is advisable to build a prototype cache

and simulate the cache hits. With Java, it is best to fix a cache size and not let it grow above a
certain threshold. This works well with the Java memory model and garbage collection since
memory is not given back to the operating system even after the garbage collector frees it.
Fixing the cache size, instead of constant readjustment, will therefore prevent the operating
system process from growing out of bounds.

To put a limit on the cache size implies creating a purging algorithm for keeping the cache
optimally configured. The most common purging algorithms are LRU (least recently used)
and access-frequency-based (popularity-based). In the LRU case, an object is purged because
it was accessed the longest time ago. In the access-frequency case, an object is purged based
on the number of times the object was accessed. For example an object with three accesses is
purged before an object with five accesses. A more generalized algorithm is to use a combination
of LRU and access-frequency. The combination can give each parameter a different weight.
The weight is determined by the data access pattern of the particular application:

Weight = accessFrequency * exponent ((-decayConstant) * timeSincelastAccess);

P> accessFrequency Number of times the object was accessed since it has been in the cache.
> timeSinceLastAccess Time elapsed since the object has was last accessed.

» decayConstant This is normalized to be between 0 and 1. If accessFrequency is to
be given more weight, set decayConstant close to 0. If timeSinceLastAccess is to be
given more weight, set decayConstant close to 1. Adjust decayConstant for getting the
right value based on cache optimization needs.

Summary

Although this chapter introduced the significant aspects of architecture as it pertains to the
J2EE platform, the actual architecture of the sample application is gradually built throughout
this book using a use case—driven approach. In the chapters to come, we will incrementally
build out each use case in the presentation and business tier employing an MVC-based
architecture. Central to our discussion are the various design patterns that can be leveraged
to provide consistent implementation across all use cases.

Application security is another important aspect of the overall application design for
controlling access to protected resources. Security is pervasive in an application, at the same
time the security must be incorporated in a manner that offers a high degree of loose coupling
between the security components and the components that implement the business logic. A
change in the access control mechanism should have little or no effect on the business logic.
Classifying the security requirements in terms of channel security, network identity management,
and authentication and authorization offers us the opportunity to clearly discern the interaction
points between the application and the security infrastructure. This further assists in the creation
of guidelines that are helpful in the evaluation of third-party products that may provide either
part of the solution or the complete solution.

Chapter 3: Application Architecture, Security, and Caching 85

References

[RUP] The Rational Unified Process, An Introduction, Second Edition by Philippe
Kruchten (Addison-Wesley, 2000)

[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice-Hall, 2001)

[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

[Kruchten] The 4+1 View Model of Architecture by Phillippe Kruchten (IEEE Software
12 (6), November 1995)

This page intentionally left blank.

PART

Design and Construction

'-%opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 87

This page intentionally left blank.

CHAPTER

Struts-Based
Application Architecture

IN THIS CHAPTER:

Struts as a Presentation Framework
Struts Configuration Semantics
Struts MVC Semantics

Message Resources Semantics
Summary

References

opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

89

90

Practical J2EE Application Architecture

or enterprise software development, we constantly strive to use standards-based

platforms and software. Standards-based software offers the flexibility of developing

solutions that are interoperable, use industry best practices, and provide the option of
selecting the infrastructure from any vendor without the risk of breaking the architecture. JSP,
Servlet, and EJB specifications, among others, have enabled the programmers to declaratively
obtain system-level services from the implementations of these standards; the result is that
the developers have been able to experience large productivity gains by focusing on business
problems rather than trying to deal with system-level services such as transaction, security,
and resource management.

Standards-based development factors common system functionality into core platform services
that use proven design patterns and best practices; this creates a foundation framework on
which custom functionality can be built. However, one area where a standard was not prescribed,
for an infrastructure-level service, was the mapping of client-side actions (or events) to server-
side method invocation on business components using the HTTP protocol, the corresponding
navigation semantics, and HTML forms processing. The challenge of assimilating a request/
response-based HTTP protocol in an event-based MVC (Model-View-Controller) pattern has
resulted in another industry of solution providers. During the early years of J2EE, an enterprise
application architect who was dealing with large projects involving a large number of Web
pages was expected to roll his or her own version of a presentation framework that implemented
an MVC-like architectural style; as you will appreciate, this was no small feat to accomplish.
The more recent JavaServer Faces standard addresses issues such as representing Ul components
and their state management, defining navigational semantics, event handling, forms validation,
internalization support, and so on. However, the Jarkarta open source project ‘Struts’ has already
achieved the mind share and acceptance from enterprise architects as a viable MVC-based
presentation framework that supports much of the functionality offered by JavaServer Faces.
At the time of this writing, the expectation is that Struts-based implementations will use
JavaServer Faces components for component-level functionality within a page, but continue
to use the their own application model for dealing with higher level functionality, such as
forms and actions. For more information on JavaServer Faces, refer to http://java.sun.com/j2ee/
javaserverfaces. The future direction of Struts is to transition over to JavaServer Pages
Standard Tag Library (JSTL) and JavaServer Faces tags.

Another framework that is worth mentioning is the XMLC-based Barracuda Presentation
Framework. XMLC is an XML compiler that converts document templates, including HTML,
cHTML, WML, XHTML, and XML, into Java objects that implement the DOM interface.
Java programs can manipulate the DOM representations of these documents on the server side
by merging the state information from the application’s model into the DOM representations.
Once the DOM is modified, it can be serialized into the source document type or other XML-
compliant format that represents the response; this enables a high degree of separation between
the presentation and the business logic. A web production engineer (a.k.a. form designer),
therefore, works completely independent of the application engineer, who depends only on
finding and replacing tags with certain ID and class attributes set by the production engineer;
XMLC generates access methods for these special tags, and these access methods serve as a
formal interface between production engineer and the application engineer. You can get more
information on Barracuda by visiting http://www.enhydra.org.

Chapter 4: Struts-Based Application Architecture

In this chapter, we define the requirements of a robust presentation framework and
simultaneously discuss how these requirements are implemented in the Struts framework.
We also explore the design patterns implemented by Struts and the semantics of the controller
and associated helper components, and we examine various Struts-related configuration
resources; this knowledge will be useful when designing components that will interact with
the framework, and when there is a need for extending the framework for accommodating
special needs of a project. Struts-based application architecture with practical examples will
be covered in Chapter 5 where we have identified several Struts-related patterns that can be
used as implementation templates in implementing complex behaviors. This chapter cites
several examples, where appropriate, from Chapter 5. We cover “under the hood” semantics
of Struts to gain a better understanding of how Struts is architectured, and what possibilities
exist should you decide to extend the framework; as such, only limited coverage of examples
have been provided in this chapter, with the rest of the discussion deferred to Chapter 5.

Struts as a Presentation Framework

This section discusses some of the most common requirements that are essential for a viable
presentation framework. Along with identifying the requirements, we map these to the features
offered by Struts and corresponding usage scenarios.

MVC Implementation

The MVC (Model-View-Controller) architecture is a way of decomposing an application into
three parts: the model, the view, and the controller. It was originally applied in the graphical
user interaction model of input, processing, and output.

Querylrhe Model State Model |
NotifyAView of Change Invoke Methods in the
in Model State Model’s Public API
v
—— Select View
View Controller
____________________________________ >

User Actions/Commands

— Method Invocations
----» Events

Model A model represents an application’s data and contains the logic for accessing and
manipulating that data. Any data that is part of the persistent state of the application should
reside in the model objects. The services that a model exposes must be generic enough to
support a variety of clients. By glancing at the model’s public method list, it should be easy
to understand how to control the model’s behavior. A model groups related data and operations
for providing a specific service; these groups of operations wrap and abstract the functionality
of the business process being modeled. A model’s interface exposes methods for accessing
and updating the state of the model and for executing complex processes encapsulated inside

91

92

Practical J2EE Application Architecture

the model. Model services are accessed by the controller for either querying or effecting a change
in the model state. The model notifies the view when a state change occurs in the model.

View The view is responsible for rendering the state of the model. The presentation
semantics are encapsulated within the view, therefore model data can be adapted for several
different kinds of clients. The view modifies itself when a change in the model is communicated
to the view. A view forwards user input to the controller.

Controller The controller is responsible for intercepting and translating user actions into
command objects [Gof] that invoke methods on the model’s public API. The controller is
responsible for selecting the next view based on user actions and the outcome of model
operations.

In a J2EE-based application, MV C architecture is used for separating business layer
functionality represented by JavaBeans or EJBs (the model) from the presentation
layer functionality represented by JSPs (the view) using an intermediate servlet-based
controller. However, a controller design must accommodate input from various types of
clients, including HTTP requests from web clients, WML from wireless clients, and XML-based
documents from suppliers and business partners. For the HTTP Request/Response paradigm,
incoming HTTP requests are routed to a central controller, which in turn interprets and
delegates the request to the appropriate request handlers. This is also referred to as MVC
Type-II (Model 2) Architecture. Request handlers are hooks into the framework provided
to the developers for implementing request-specific logic that interacts with the model.
Depending on the outcome of this interaction, the controller can determine the next view
for generating the correct response.

NOTE

In this book, the term Request Handler is used interchangeably with Action class and its subclasses.

The following is an illustration of the MVC implementation in Struts. Struts implements
the MVC pattern using the Service to Worker pattern [Core]; we discuss this further in the
section “Struts MVC Semantics.”

HttpServlet
P ForwcrdConFig
<<front controller>>

org.apache.struts.action.ActionServlet

org.apache.struts.action.ActionForward

N N AN

1 1
1 1
| 1
| 1
1 1
| 1

1

i

<<dispatcher>> b
org.apache.struts.action.RequestProcessor [~~-~~"=""""1- >

ActionConfig
org.apache.struts.action.ActionMapping

A 4 Vi
) Serializable < <<request handler>>
<<view he|Rer>> . org.apache.struts.action.Action
org.apache.struts.action.ActionForm

Chapter 4: Struts-Based Application Architecture

The following discusses the interactions depicted in the preceding illustration.

Controller

In Struts, the Controller is implemented by the ActionServlet class. The ActionServlet is
declared in web.xml (the deployment descriptor) as follows:

<servlet>
<gservlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
</servlet>

All request URIs with the pattern *.do are mapped to this servlet in the deployment
descriptor as follows:

<servlet-mapping>
<gservlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>

A request URI that matches this pattern will have the following form:
http://www.my_site name.com/mycontext/action Name.do.

The preceding mapping is called extension mapping, however, you can also specify path
mapping where a pattern ends with /*, as shown here:

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>/do/*</url-pattern>
</servlet-mapping>

A request URI that matches this pattern will have the following form: http://www.my _site
name.com/mycontext/do/action_Name.

In Struts 1.1, the Struts required configurations are loaded in the ActionServiet.init()
method. The configurations control the behavior of the framework; this includes mapping of
URIs to request handlers (discussed in section “Model Interaction with Request Handlers™),
configuring message resources, providing access to external resources via plug-ins, and so
on. In fact, processing of incoming requests actually occur in the RequestProcessor to which
ActionServlet delegates all the input requests.

Dispatcher

All incoming requests are delegated by the controller to the dispatcher, which is the
org.apache.struts.action. RequestProcessor object.

NOTE

The behavior of the dispatcher, and the behavior of the request handlers that the dispatcher interacts with, is
controlled via a configuration file struts—config.xml. Various aspects of this configuration file are explained
throughout this chapter.

93

94

Practical J2EE Application Architecture

The RequestProcessor examines the request URI for an action identifier, creates a request
handler instance using the information in the ActionMapping configuration object (explained in
the next section), and calls the requesthandler.execute method. The execute method of the
request handler is responsible for interacting with the application model. Depending on the
outcome, the request handler will return an ActionForward configuration object (ActionForward is
the runtime representation of the <forward> element and is explained in the section “Navigation
Using ActionForward”) to the RequestProcessor. The RequestProcessor will use the ActionForward
object for invoking the next view by calling either RequestDispatcher.forward or response
.sendRedirect, depending on the configuration.

Command Pattern Using ActionMapping

Struts provides a declarative way to specify the mapping between the servlet path in the
request URI and an appropriate request handler using XML syntax. This implementation is
very similar to the command pattern [Gof]. The following snippet is from the struts-config.xml
file; these declarations are used for creating an ActionMapping configuration object, which is
the runtime representation of the <action> element.

<action-mappings>
<action path="/PortalAllianceRegistration"
type="com.gc.prez.admin.PortalAllianceRegistrationAction"
name="PortalAllianceRegistrationForm"
scope="session"
validate="false">
<forward name="ShowPage" path="/2_1_ PortalAllianceRegistration.jsp"/>
<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>
<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>
</action>

</action-mappings>

NOTE

All examples used in this chapter are from Chapter 5. Should you need to explore the examples in parallel
(not necessary), please refer to the accompanying source distribution for fully functional code.

The following briefly explains the attributes used in the preceding declaration:

path The context relative path in the HTTP request that is used for identifying this action
mapping.

type Class name that will be used for creating an instance of the request handler for
handling this request.

name The logical name of a JavaBean, also called a form-bean, that will be used to hold
form data. The form-bean will be saved in the specified scope using this name.

scope Request or session scope for saving the form-bean.

Chapter 4: Struts-Based Application Architecture

Dynamic URL Generation

Dynamic URL generation for the action attribute using the custom org.apache.struts
.taglib.html. FormTag (explained further in Chapter 5) will protect the HTML documents
from being adversely impacted as a result of change of context path or <url-pattern>.
For a *.do URL pattern, the custom FormTag <html : form action="/
editCustomerProfile?customerType=preferred"> will dynamically
generate an HTML <form> tag with the action attribute containing the following
server-relative URL:

<form action="/contextPath/editCustomerProfile.do?customerType=preferred" />

The path attribute shown in the preceding snippet maps to the action attribute of the
HTML <form> element. The declarative specifications prevent hard coding of mappings
in the code base and enable convenient visualization of how servlet path specifications in
HTML forms are mapped to instances of request handlers; in addition, application behavior
and navigation semantics can be changed by simply altering the action mappings. A request
handler is a subclass of the Struts-provided Action class.

Using the name attribute, an action mapping can declaratively specify a JavaBean whose
properties will hold the parameters from the HTTP request; this JavaBean is subclassed from
the ActionForm class. The name in the action mapping declaration is a unique identifier using
which the instances of ActionForm classes are stored in the specified scope. The ActionForm
subclass is declared in the struts-config.xml file using the <form-beans> tag as follows.

<form-bean name="PortalAllianceRegistrationForm "
type="packageName.PortalAllianceRegistrationForm "/>

Model Interaction with Request Handlers

A subclass of Action is used as an adaptor between incoming requests and the model. The
Action subclass, also called the request handler, is created specific to every request. The
base Action class provides common functions for accessing framework-related resources
and methods for saving errors detected by the execute(...) method of its subclass. The
errors are subsequently extracted and displayed in the HTML form using the custom
org.apache.struts.taglib.html. ErrorsTag as explained in the section “Displaying Errors with
ErrorsTag.” The execute(...) method of a request handler should contain control flow for
dealing with request parameters and the associated ActionForm, it should encapsulate model
interaction semantics, and it should provide the next view based on the outcome of model
operations. Request handlers are cached by the RequestProcessor when first created, and
subsequently made available to other incoming requests; as such, request handlers must not
contain user-specific state information; also, request handlers must synchronize access to
resources that require serialized access. More discussion on request handlers is available

in the section “Request Handler Semantics.”

95

96 Practical J2EE Application Architecture

The following is a simple request handler PortalAllianceRegistrationAction. Refer to the
GreaterCause directory in the accompanying source distribution for complete code listing.

public class PortalAllianceRegistrationAction extends Action {
public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest req, HttpServletResponse res) throws Exception ({
PortalAllianceRegistrationForm regForm =
(PortalAllianceRegistrationForm) form;
String action = regForm.getAction();
if (action.equals("Create"))
{ return (createRegistration(mapping, form, req, res)); }
else if (action.equals("Update")) {
return (updateRegistration(mapping, form, req, res));
}
else if (action.equals("View"))
{ return (viewRegistration(mapping, form, req, res)); }
else { return null; }
}
public ActionForward createRegistration(ActionMapping mapping,
ActionForm form, HttpServletRequest redq,
HttpServletResponse res) throws Exception {

//return an ActionForward object for displaying the next view

}

public ActionForward updateRegistration(ActionMapping mapping,
ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception ({

//return an ActionForward object for displaying the next view

}

public ActionForward viewRegistration(ActionMapping mapping,
ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception ({

//return an ActionForward object for displaying the next view

}

Navigation Using ActionForward

ActionForward objects are configuration objects. These configuration objects have a unique
identifier to enable their lookup based on meaningful names like “success,” “failure,” and so
on. ActionForward objects encapsulate the forwarding URL path and are used by request
handlers for identifying the target view. ActionForward objects are created from the <forward>
elements in struts-config.xml. The following is an example of a <forward> element in Struts
that is in the local scope of an <action> element:

Chapter 4: Struts-Based Application Architecture

<action-mappings>
<action path="/PortalAllianceRegistration"
type="com.gc.prez.admin.PortalAllianceRegistrationAction"
name="PortalAllianceRegistrationForm"
scope="session"
validate="false">
<forward name="ShowPage" path="/2 1 PortalAllianceRegistration.jsp"/>
<forward name="EnterPortalID" path="/2 3A EnterPortallID.jsp"/>
<forward name="success"
path="/2_SiteAdministratorServicesMainPage.jsp"/>
</action>
</action-mappings>

Global <forward> elements are typically specified for common destinations within the
application as illustrated by the following example:

<global-forwards>
<forward name="success" path="/1_HomePage.jsp"/>
<forward name="failure"
path="/1_3_AdministratorLoginFailure.jsp"/>
</global-forwards>

Based on the outcome of processing in the request handler’s execute method, the next
view can be selected by a developer in the execute method by using the convenience
org.apache.struts.action.ActionMapping. findForward method while passing a value that
matches the value specified in the name attribute of the <forward> element. This is
illustrated by the following snippet.

return mapping.findForward("ShowPage");

The ActionMapping. findForward method will provide an ActionForward object either
from its local scope, or from the global scope, and the ActionForward object is returned to
the RequestProcessor for invoking the next view using the RequestDispatcher.forward(...)
method or response.sendRedirect. The RequestDispatcher.forward method is called when the
<forward> element has an attribute of redirect="false" or the redirect attribute is absent;
redirect="true" will invoke the sendRedirect method. The following snippet illustrates the
redirect attribute usage:

<forward name="success" path="/1_HomePage.jsp" redirect="true"/>

The <controller> element in the struts-config.xml file provides yet another feature
for controlling how the <forward> element’s name attribute is interpreted; the
<controller> element is used in conjunction with the input attribute on the <action>
element, as shown here:

<action-mappings>
<action path="/PortalAllianceRegistration"
type="com.gc.prez.admin.PortalAllianceRegistrationAction"
name="PortalAllianceRegistrationForm"

97

98 Practical J2EE Application Architecture

scope="session"

input="ShowPage"

validate="false">
<forward name="ShowPage" path="/2 1 PortalAllianceRegistration.jsp"/>
<forward name="EnterPortalID" path="/2_3A_ EnterPortallID.jsp"/>
<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>
</action>

</action-mappings>

<controller>
<set-property property="inputForward" value="true"/>
</controller>

The preceding <action> element has an input attribute with a forward name; this
forward name is identical to the one used in the <forward> element. With the preceding
<controller> configuration, when the ActionForm.validate returns a non-empty or
non-null ActionErrors object, the RequestProcessor will select the <forward> element
whose name attribute has the same value as the input attribute of the <action> element;
unless overridden by a subclass of RequestProcessor, this behavior is standard when
validation errors are encountered. With the following <controller> element declaration,
when the ActionForm.validate returns a non-empty or non-null ActionErrors object, the input
attribute provides a forwarding URL instead of an ActionForward name to which the forward
occurs. In the absence of the inputForward property, this is the default behavior.

<controller>
<set-property property="inputForward" value="false"/>
</controller>

The forward is done to the specified path, with a / (slash) prepended if not already included
in the path specification. For forward or redirect, URLs in Struts are created internally by the
RequestProcessor with the following structure:

» If redirect=true, the URL is created as /contextPath/path because for
HttpServletResponse.sendRedirect the container interprets a URL with a leading /
(slash) as relative to the servlet container root.

P If redirect=false, the URI is created as /path because
ServietContext.getRequestDisptacher uses context-relative URL.

Infernationalization and Localization Support

Internationalization, or 118N, is the process of engineering an application such that it can be
adapted to various languages and regions without requiring any change to the application
logic. For internationalization support, an application must consider the following:

Chapter 4: Struts-Based Application Architecture

» Textual content, error messages, exception messages, and labels on GUI components
must be externalized into resource files. These resource files will contain locale-
specific information as discussed shortly.

» Date, time, currency, numbers, measurements, and phone numbers must be formatted
based on local preferences and culture.

In today’s global marketplace, it is important to design the applications with internationalization;
doing this upfront takes relatively less time and effort than incorporating 18N after the
application has been developed. The JDK provides the Locale class that is used by internationalized
classes to behave in a locale-sensitive way. A Locale object represents a specific geographical,
political, or cultural region. The following is a discussion on how Struts implements [18N
and localization.

The Locale Object

Struts classes providing 118N support retrieve the locale-specific information from the
HttpSession using getAttribute(Action. LOCALE KEY). The Locale object is saved in the
session in several different ways, as explained next.

Using HtmlTag The custom tag org.apache.struts.taglib.html. HtmITag is inserted in a JSP

as <html:html locale="true">. This is a declarative way of populating Locale in
the session. When locale=true is specified, the tag logic will retrieve the Locale object using
the HttpServietRequest.getLocale() method. The getLocale() method returns the preferred
Locale that a client browser will accept content based on the Accept-Language header. A
default locale for the server is returned when the client does not provide an Accept-Language
header. A session object is created if it does not exist, and the Locale object is then stored in
the session object using Action. LOCALE KEY. The HTML tag is subsequently written to the
output stream with the lang attribute set to the language specified in the locale. The Locale
object is stored only once in this manner; subsequent locale=true specification will not be
able to replace the Locale object in the session. This method of setting locale works best
when the users have their browsers set with the preferred locale list.

Using the Action Object For programmatically changing the Locale object, the Action class
provides the setLocale(...) method for saving the Locale object in the session using
Action.LOCALE KEY. This method of setting locale works best when a user has the option of
choosing locale in the HTML form by clicking a UI component. However, using this method
can sometimes cause problems if locale-specific resources are preloaded and a user is allowed
to switch locale in the middle of a process flow. It is best to allow this functionality in a
controlled manner and reset all locale-specific resources when a locale change is requested.

Using <controller> Element Under this scheme, the <controller> tag from the struts-
config.xml file is used to flag the RequestProcessor to get the locale from the HttpServietRequest
object and put it in the session using Action.LOCALE KEY. This is illustrated here:

<controller>
<set-property property="locale" value="true"/>

</controller>

99

100

Practical J2EE Application Architecture

If value=true, then the Locale object obtained from request getLocale() is saved in the
session if not previously saved.

Internationalized Messaging and Labeling

For 118N support, all error messages, instructional messages, informational messages, titles,
labels for GUI components, and labels for input fields must be stored externally and accessed
in a locale-specific way. The Struts framework provides the MessageResources class that
mimics the ResourceBundle class provided by the JDK. Locale-specific resource bundles
provide a way of isolating locale-specific information. Resource bundles belong to families
whose members share a common base name, but whose names also have additional components
that identify their locales. The default resource bundle has the same name as the base name of
a family of resource bundles and is the bundle of last resort when locale-specific bundles are
not found. Locale-specific bundles extend the base bundle name with locale-specific identifiers
like the language, country, and variant of a locale. Consider the following example.

If base ResourceBundle name is MyApplicationResources, resource bundles belonging to
this family may be identified as follows:

MyApplicationResources_en identifies the bundle for the English language.
MyApplicationResources_fr identifies the bundle for the French language.
MyApplicationResources_fr FR identifies the bundle for the French language for France.

vVvyyy

MyApplicationResources_fir CA identifies the bundle for the French language for Canada.

If the desired locale is fir FR and the default locale is en_US, the search order for accessing
resource bundles can be summarized as follows. The search goes from being more specific
to less specific:

» MyApplicationResources_fir FR The desired resource bundle
» MyApplicationResources fr Less specific bundle if the desired bundle is not found

» MydpplicationResources_en_US The default bundle if no matching bundles are
found thus far

» MyApplicationResources _en Less specific bundle if the default bundle is not found
» MyApplicationResources The base bundle

Struts provides a facility for accomplishing the preceding mechanism using MessageResources
objects. MessageResources objects are initialized from the key/value pairs specified in
underlying properties files. You have to specify only the base name for a MessageResources
properties file in the struts-config.xml file to access all the locale-specific properties files
using search order that is similar to the one specified for the ResourceBundle(s). The following
depicts how message resources are declared in the struts-config.xml file:

<message-resources parameter="packageName.MyApplicationResources" key="MyResources"/>

Chapter 4: Struts-Based Application Architecture

The value of the parameter attribute declares the base non-locale-specific properties file. This
base resource file will have the name MyApplicationResources.properties, while locale-specific
files will have the name MyApplicationResoures localeSpecificExtension.properties. For each
application, we can specify one or more base bundle names. MessageResources objects are
created by the controller, that is ActionServlet, and saved in the ServietContext using either
a generic key Globals. MESSAGES KEY (same as Action. MESSAGES KEY) or using the
key attribute provided in the <message-resources> element (in case of multiple
MessageResources).

For accessing message resources objects in request handlers, the Action class provides a
convenience method—Action.getResources—for retrieving a message resource from the
ServletContext using the key (i.e., unique identifier) associated with the MessageResources
object. Each MessageResources object will be responsible for getting locale-specific
messages by accessing the underlying set of locale-specific properties files; the properties
files are identified by the base MessageResources name specified by the parameter attribute
in the <message-resources> tag.

To retrieve a locale-specific message, use MessageResources.getMessage while passing
locale and message key as arguments as follows:

protected static MessageResources messages =
MessageResources.getMessageResources ("packageName.MyApplicationResources ") ;

The locale can be retrieved from the session using Action. LOCALE KEY. When an
Object[] is provided as an argument for MessageResources.getMessage, the message
retrieved is treated as a message format pattern and is converted to a MessageFormat object.
The MessageFormat object is subsequently used for calling the MessageFormat.format
method while passing the object/] to be appropriately formatted and inserted into the pattern
at appropriate places. The MessageFormat class is not locale specific, therefore the corresponding
message format pattern and the Object/] must take localization into account. MessageResources
API provides several convenience methods for retrieving messages; the corresponding Javadoc
is available at http://jakarta.apache.org/struts/api/index.html. On most occasions, the logic for
retrieving messages from a resource bundle is transparent to the Struts user; this is explained
in the next section. Refer to the section “Message Resources Semantics” in this chapter for
additional information on this topic.

Error Handling

Most form interactions require that the user be informed of the possible outcome of the

form submission. Displaying error and informational messages in a consistent manner is a
desirable feature of a framework. In the preceding section, we discussed locale-specific
messaging using the MessageResources objects. The set of properties files associated with
each MessageResources object has key/value pairs. A Struts-based application will accumulate,
for message lookup, the keys associated with validation and informational messages in an

101

102

Practical J2EE Application Architecture

ActionErrors object as a precursor to accessing resource bundles. The following static model
illustrates the classes involved in the error handling mechanism provided by Struts.

Serializable
org.apache.struts.action.ActionMessages

Serializable
org.apache.struts.action.ActionMessage

#ActionMessageltem

<<request handler>>
org.apache.struts.action.Action

Serializable Serializable

B org.apache.struts.action.ActionErrors | > org.apache.struts.action.ActionError

<__________.

Serializable
org.apache.struts.util. MessageResources

We will briefly discuss the interactions depicted in the preceding illustration. This
discussion will provide us with insight on how message keys are captured in Struts to get
locale-specific messages, and how the messages are rendered in a consistent manner in the
view. For this discussion the view component is a JSP.

Identifying Errors with ActionError

Implementations of Action.execute or ActionForm.validate form. validation (discussed in the
section “Storing Form Data Using ActionForm”) should capture validation and application-
specific errors in ActionErrors objects, which aggregates ActionError objects. An ActionError
object consists of a message key and optionally an object/] to be used for parametric replacement
in the retrieved message. Refer to earlier section “Internationalized Messaging and Labeling”
for relevant information. ActionError objects must be created without worrying about the
locale or the associated resource bundles. We will deal with I18N when the ActionError
objects are used for retrieving messages. Refer to the ActionError API for a complete list of
available convenience methods for creating ActionError objects. Once an ActionError object is
created, it should be added to the ActionErrors object using the ActionErrors.add method while
passing as arguments the ActionError and the property name for which a validation error was
detected. The following snippet from the ManagePortalAllianceAction class illustrates this.
Chapter 5 discusses the implementation of the sample application in detail.

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest req, HttpServletResponse res) throws Exception ({
ManagePortalAllianceForm portalForm =
(ManagePortalAllianceForm) form;
ActionErrors errors = portalForm.validate(mapping, req);
String action = portalForm.getAction();
if (lerrors.empty() && portalForm.getPage() == 1) {
saveErrors(req, errors);
return mapping.findForward("EnterPortalID");

Chapter 4: Struts-Based Application Architecture

}
if (('errors.empty()) && (portalForm.getPage() == 2) &&
(action.equals("updateProfile"))) {
saveErrors(req, errors);
return mapping.findForward("ShowPortalProfile");
}
if ((!errors.empty()) && (portalForm.getPage() == 2) &&
(action.equals("navigationBarSetup"))) {
saveErrors(req, errors);
return mapping.findForward("ShowNavigationBarSetup");
}
// rest of the code
}

Within the associated ManagePortalAllianceForm, the validate() method will add error
messages to the errors object as follows:

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest req) {
ActionErrors errors = new ActionErrors();
if ((page == 1) && ((portalID == null) ||
(portalID.trim().length() < 1))) {
errors.add("portalID", new ActionError("error.portalID.required"));
}
else if ((page ==) && (action.equals("updateProfile"))) {
errors = super.validate(mapping, req);
if (searchLimit.intValue() < 10) {
errors.add("searchLimit",
new ActionError("error.PortalAllianceProfile.SearchLimit"));

}

For saving error messages not related with a property, a convenience instance member
ActionErrors. GLOBAL ERROR is available for use in place of a property argument in
ActionErrors.add(...). Usage of property name in creating an ActionErrors object is clarified
in the upcoming section “Compiling Errors ActionErrors.”

Compiling Errors with ActionErrors

ActionErrors objects hold all ActionError objects in a HashMap whose key is the name of the
property for which messages have been accumulated, and the value is an ActionMessageltem
object. ActionMessageltem is declared as an inner class of ActionMessages. Each
ActionMessageltem object consists of a unique sequence number and an ArrayList object
representing all possible validation errors for a given property. The sequence number is used
for sorting the ActionMessageltem collection such that validation errors are reported according
to the property that was first flagged as invalid. ActionErrors.get returns an Ilterator on an
ArrayList containing ActionError objects. This Iterator object is referenced by the custom

tag ErrorsTag and will be discussed in the next section, “Displaying Errors with ErrorsTag.”

103

104

Practical J2EE Application Architecture

In request handlers, i.e., in the Action.execute method, ActionErrors should be saved in the
HittpServletRequest using the attribute name Action. ERROR KEY; this is done by calling a
convenience saveErrors method on the base Action class while passing as arguments the request
object and the ActionErrors object The ActionErrors generated as a result of ActionForm.validate
are saved by RequestProcessor (the dispatcher) in the request object using Action. ERROR KEY.
The next view can use the ErrorsTag for retrieving the ActionErrors object; the ErrorsTag
can be used in a JSP as follows:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<html:errors/>

The ActionErrors class extends the ActionMessages class. ActionErrors provides the static
member GLOBAL ERROR and ActionMessages provides the static member GLOBAL MESSAGE;
these static members can be used as keys when the messages are not property specific. For
saving the ActionMessages object in a request handler, the convenience Action.saveMessages
method can be used while passing the request object and the ActionMessages object; the
ActionMessages object is saved in the request using the Action. MESSAGE KEY.

For simply capturing message keys, without the property name and the substitution
parameters, a convenience method org.apache.struts.util. RequestUtils.getActionErrors is
available for converting a String object, a String array, or an ErrorMessages object (a Vector
of message keys) into an ActionErrors object. For these implementations, the getActionErrors
method will use the ActionErrors. GLOBAL _ERROR in place of a property argument.

Displaying Errors with ErrorsTag

This custom tag renders the messages in an HTML document. It retrieves the ActionErrors
from the HttpServietRequest using Action. ERROR_KEY and then using the ActionErrors.get()
method retrieves an lterator on an ArrayList containing ActionError objects. For each ActionError
object in the ArrayList, a locale-specific message is retrieved and sent to the response stream.
By default, the /ocale object in the session is used; but an alternate /ocale attribute can be
specified for the tag. By default, the resource bundle saved in the ServletContext with the key
Action. MESSAGES KEY will be used unless overridden by the bundle attribute on the tag.
You will need to override the resource bundle if more than one base resource file is being used
for manageability. As of Struts 1.1 beta 2, an ErrorsTag can only use one resource bundle
family (i.e., the bundles have the same base name), therefore all errors in the ActionErrors
object must be available in this resource bundle family. Because all ActionError objects
within the ActionErrors object are logged by a property name, the messages displayed can be
restricted to a single property by specifying a property attribute specification on the ErrorsTag.

Chapter 4: Struts-Based Application Architecture

The sample application ‘GreaterCause’ uses a default resource bundle
‘ApplicationResources.properties’. Following is a snippet from this properties file.

error.portallID.required=Portal ID must be provided
error.invalidToken=Either this form has been submitted once already, or,
this form is not in proper submission sequence</11>
error.ein.required=<1i>EIN must be provided</1li>

The ErrorsTag uses message keys ‘errors.header’ and ‘errors.footer’ for providing caption
and formatting around error messages, as shown here:

errors.header=<h3>Please review following message(s) before
proceeding:</h3>

errors.footer=

Exception Handling

In addition to an error handling mechanism, a presentation framework must provide a
mechanism for showing locale-specific exceptions of meaning and relevance to the user. A
recommended way to do this is to capture the actual exception and its context in a log file and
then send a meaningful informational message for assisting the user in determining a suitable
course of action. Uncaught exceptions in JSPs are handled by the errorPage mechanism as
specified in JSP 1.2 specification. Similarly, uncaught exceptions in servlets are handled
using the <error-page> specification in the web.xml deployment descriptor. Struts
provides a simple mechanism that is somewhat similar to the error page mechanism provided
by JSP and servlet containers. The following configuration can be specified in the struts-
config.xml file:

<action path="/editCustomerProfile"
type="packageName.EditCustomerProfileAction"
name="customerProfileForm"
scope="request"
input="profile">
<forward name="profile" path="/CustomerProfile.jsp"/>
<forward name="success" path="/MainMenu.jsp"/>
<exception
key="profile.inaccessible"
type=" packageName.ProfileAccessException"
path="/login.jsp"/>
</action>

105

106

Practical J2EE Application Architecture

The exception handling mechanism builds on top of the error handling mechanism and
therefore uses the MessageResources for providing locale-specific messages. The following static
model illustrates the classes involved in the exception handling mechanism provided by Struts.
The discussion that follows explains the Exception mechanism provided with Struts.

<<dispatcher>>
org.apache.struts.action.RequestProcessor | _______5

i

<<request handler>> i
org.apache.struts.action.Action !
!

1

i

v .
ActionConfig [~~~ ~""""""=~ !
org.apache.struts.action.ActionMapping

T
1
i
Vi Vi

ForwardConfig

org.apache.struts.ActionForward

A"4

org.apache.struts.action.ExecptionHandler

R

Serializable l¢- -~ _______
org.apache.struts.config.ExeptionConfig

T
i
v

- ActionMessage
. Ex<.:ephon Serializable
org.apache.struts.util. AppException org.apache.struts.action.ActionError

Role of the Dispatcher

As discussed in the section “Dispatcher,” the dispatcher (a.k.a. the request processor)
calls the execute method of the request handler. Any exception thrown by the request
handler is caught by the RequestProcessor and interrogated for a possible match with
the <exception> elements in the struts-config.xml file. The RequestProcessor will
call the ActionMapping.findException method to find an ExceptionConfig configuration
object (ExceptionConfig objects are runtime representations of <exception> elements)
whose #ype attribute matches the type of the exception. If an attempt to find an <exception>
configuration for the original exception fails, the findException method will look up the
exception superclass chain for a suitable match until it reaches the top of the chain.
ActionMapping.findException will search for the <exception> element both in the
local scope of the ActionMapping object, and in the global scope.

Global <exception> elements are typically specified for common exceptions within
the application as illustrated by the following example:

<global-exceptions>
<exception
key="profile.inaccessible"
type=" packageName.ProfileAccessException"
path="/logon.jsp"/>
</global-exceptions>

Chapter 4: Struts-Based Application Architecture

If an ExceptionConfig object is found for a given exception type, the RequestProcessor
will create an exception handler and call its execute method,; this is explained further in the
section “Converting an Exception into ActionErrors.” The RequestProcessor will forward to
the URL specified in the ActionForward object returned by the exception handler.

Exception Handling with AppException

This is a convenience base class for creating exceptions within the request handlers. It
encapsulates both, the attribute causing an exception (optional) and associated ActionError
object. A subclass of AppException will be responsible for providing the appropriate constructors
for correctly instantiating this object by using a message key, and optionally the attribute
name and an object/] for parametric substitution. The message key can be extracted from
the ExceptionConfig object that corresponds to this exception. Refer to the section “Struts
Configuration Semantics” for information on navigating the configuration objects. Refer to
the AppException API for an available list of constructors that can be called from the constructor
of its subclass. The AppException is passed as an argument in the ExceptionHandler.execute(...)
method.

Converting an Exception into ActionErrors

The RequestProcessor checks the ExceptionConfig for an exception handler specification. The
RequestProcessor creates the specified ExceptionHandler and calls its execute(...) method while
passing the AppException as one of the arguments. A default exception handler specification
of org.apache.struts.action. ExceptionHandler is preconfigured in the ExceptionConfig object.
The ExceptionHandler retrieves the ActionError from the AppException object and creates an
ActionErrors object for consumption by ErrorsTag. If the exception is not of type AppException
or one of its derived classes, then the ExceptionHandler will create the ActionErrors object
using the key specified in the <exception> element; this alleviates the request handler
developer from writing extra code for exception handling; however this limits the ability of
the framework to call only a single constructor of ActionError that only accepts a key value.
Use the handler attribute on the <exception> element to override the default exception
handler if desired. The ExceptionHandler or a subclass of ExceptionHandler will create an
ActionForward object using the path property of the ExceptionConfig; if this path is not specified,
it will use the path specified in the input attribute of the ActionMapping configuration object.
The ExceptionHandler will also save the original exception in the request object using
Action. EXCEPTION KEY. A view is free to access this information in any way desired. The
Action. EXCEPTION KEY can be also be used to retrieve and rethrow the original exception
for using the error-page mechanism provided by the servlet container.

Once-Only Form Submission

A problem always encountered in developing browser-based clients is the possibility of a
form getting submitted more than once. It is apparent that such submissions are undesirable
in any eCommerce application. Struts provides a mechanism to protect the model layer from
the adverse effect of multiple form submissions by using a token generated by the base

107

108

Practical J2EE Application Architecture

Action class generateToken method. To control transactional integrity and atomicity, simply
call the saveToken method in a request handler before selecting the next view with an
ActionForward. The saveToken method calls the generateToken method to create a unique
identifier and then saves it in the session with the key Action. TRANSACTION TOKEN KEY.
The FormTag retrieves the token from the session and saves it as a hidden field with the name
Constants. TOKEN KEY.

On a subsequent request, the request handler can check for token validity by calling the
convenience isTokenValid method on the base Action class. Should this method return false,
the request handler must implement suitable logic to account for the problem. An example
of this is illustrated here:

ActionErrors errors = new ActionErrors();

if (!isTokenValid(req)) {
errors.add(ActionErrors.GLOBAI_ERROR, new ActionError("error.invalidToken"));
saveErrors(req, errors);
return mapping.findForward(“ShowPage”);

}
resetToken(req);

The isTokenValid(...) method synchronizes the session object to prevent multiple requests
from accessing the token. In the request handlers, the method isTokenValid(...) must be
followed by a resetToken(...) to remove the token from the session; this will ensure that any
subsequent request will result in isTokenValid(...) returning false, thus preventing a form
from multiple submissions. The saveToken(...) should be called in the request handler to
recreate a new transaction token for the next request. A call to the resetToken is not required
when the isTokenValid method parameter list includes the reset flag.

Capturing Form Data

The JSP specification provides a standard way for extracting and storing form data at request
time in JavaBeans using <jsp:useBean> and <jsp: setProperty>. However, this
solution creates a strong coupling between the presentation layer and the JavaBeans; furthermore,
the HTML document creator has to be aware of such components and their correct usage in the
context of a page. Because the JavaBeans can be created and placed in a specified scope by
the <jsp:useBean> tag or by another server component, there could be problems with
bean life cycle management between different components sharing the JavaBean. Struts
provides a mechanism for extracting, storing, and validating form data; at the same time,
it overcomes the shortcomings of the <jsp:useBean> and <jsp:setProperty>.
The following is a recap of the <action> and <form-bean> elements:

<form-bean name="PortalAllianceRegistrationForm"
type="packageName.PortalAllianceRegistrationForm" />

Chapter 4: Struts-Based Application Architecture

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

scope="session"
input="ShowPage"

validate="false">

<forward name="ShowPage"

path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID"
path="/2_3A_EnterPortalID.jsp"/>
<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>
</action-mappings>

The preceding snippet maps a JavaBean of type=
packageName Portal AllianceRegistrationForm with name= “Portal AllianceRegistrationForm”
(unique identifier) to an <action> element with name= “Portal AllianceRegistrationForm;”
the request handler is uniquely identified by the path / PortalAllianceRegistration in the
incoming request. The semantics of the form creation and usage are illustrated with the

following static model.

ActionConfig
org.apache.struts.action.ActionMapping

A

SN org.apache.struts.action.Action

<<request handler>>

<<dispatcher>>
org.apache.struts.action.RequestProcessor

<<front controller>> HitpServlet

org.apache.struts.action.ActionServlet

A4

. Serializable
<<view helper>>

org.apache.struts.action.ActionForm

DynaBean
org.apache.struts.action.DynaActionForm

First, we will explore the semantics of forms processing while employing simple
JavaBeans objects. These objects are subclassed from as ActionForm and are also referred to
as form-beans. We will then discuss forms processing using the DynaActionForm object that
can support dynamic sets of properties at request time.

109

110

Practical J2EE Application Architecture

The following is an abbreviated version of the PortalAllianceRegistrationForm from the
sample application. Please note that the ValidatorForm extends the ActionForm. ValidatorForm
is discussed in detail in Chapter 5.

public class PortalAllianceRegistrationForm extends ValidatorForm implements
Serializable {
public PortalAllianceRegistrationForm() {
}
public String getPortalID() {
return portallD;
}
public void setPortalID(String portalID) {
this.portalID = portallD;
}
public String getPortalName () {
return portalName;
}
public void setPortalName(String portalName) {
this.portalName = portalName;
}
private String portallD;
private String portalName;
// rest of the code goes here
public void reset(ActionMapping mapping, HttpServletRequest req) {
portalName = null;
// rest of the code goes here
}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest req) {
ActionErrors errors = super.validate(mapping, req); //Struts Validator
if (errors == null) {
errors = new ActionErrors();
// Additional validations to be placed here
}

return errors;

Initializing ActionForm Objects in FormTag

As mentioned earlier in this section, the action URL in the HTML form is mapped to an
<action> configuration, which in turn is mapped to a <form-bean> configuration.
The URL specified in the action property of the FormTag is translated by the FormTag
into a URL whose path structure conforms to the <url-pattern> specified in the
deployment descriptor. For extension mapping, this implies that the resource extension
is the same as that specified for the <url-pattern>. Therefore, a URL of the form
/editCustomerProfile? customerType=preferred, is translated into /contextName/
editCustomerProfile.do? customerType=preferred .

Chapter 4: Struts-Based Application Architecture

The FormTag calls the org.apache.struts.util. RequestUtils.createActionForm method,
which will search for an ActionFormBean configuration object (ActionFormBean is the
runtime representation of the <form-bean> element) with a name that matches the name
specified on the corresponding <action> element. A new instance of the ActionForm is
created using the #ype attribute of the <form-bean> element; a new instance is created
when the ActionForm instance is not found in the specified scope, otherwise the FormTag
calls the ActionForm.reset method on the existing form-bean to clear it in preparation
for the form data from the next request. The scope is specified by the scope attribute in the
<action> element; the new ActionForm instance or the existing reinitialized instance is
saved in the specified scope using the name attribute.

Storing Form Data Using ActionForm

The ActionForm-derived objects are used for storing the parameters from a request object,
and therefore they are tightly coupled to a user. An ActionForm subclass is a JavaBean with
accessor methods for properties corresponding to parameters in the HtpServietRequest object.
If an ActionForm object is created by the FormTag (discussed in the preceding section), then
in the request subsequent to form rendering by the FormTag, the RequestProcessor (that is,
the dispatcher) will access the form from the specified scope; the form to be retrieved is
identified by the related action mapping. The RequestProcessor will then reset the form
properties, populate the form with request time parameters, and then call the validate method
on the form object to perform server-side validation of user input. The validate method is
called only when the validate property in the ActionMapping object is set to true; this is the
default behavior. The result of validation could be an ActionErrors object, explained in the
section “Error Handling,” which is used by org.apache.struts.taglib.html. ErrorsTag to display
the validation errors to the user. The ActionForm can also be used for storing intermediate
model state, which is subsequently referenced by a view (a JSP) for presenting to the user.
An ActionForm class can also be created by the RequestProcessor. This happens when
a forward is done to a URL that maps to the controller servlet rather than a JSP and the
corresponding action mapping specifies the form property. In this case, an attempt by the
RequestProcessor to look up the form-bean may result in the creation of a new ActionForm
object if not found in the specified scope. The ActionForm objects are found in the specified
scope using the name attribute specified in the <action> element; when a form-bean is
found by the RequestProcessor, it is passed to the request handler’s execute method. You may
also decide to instantiate an action form in a request handler; you may find this need when
initializing instance variables based on application state. This is illustrated by the following
example.

public class CreateCampaignAction extends Action {

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest req, HttpServletResponse res) throws Exception {
ManageCampaignsForm campaignForm = (ManageCampaignsForm) form;
// other code appears here
return (searchAndSelectNPO(mapping, form, req, res));

112

Practical J2EE Application Architecture

}
public ActionForward searchAndSelectNPO(ActionMapping mapping, ActionForm form,
HttpServletRequest req,
HttpServletResponse res) {
ManageCampaignsForm campaignForm = (ManageCampaignsForm) form;
SearchAndListNPOForm searchForm =
(SearchAndListNPOForm)reqg.getSession() .getAttribute
("SearchAndListNPOForm") ;
if (searchForm == null) {
searchForm = new SearchAndListNPOForm() ;
reqg.getSession() .setAttribute("SearchAndListNPOForm", searchForm) ;
}
/* Initialize state information with the objective of Search */
searchForm.setAction("createNewCampaign");
campaignForm.setAction("createNewCampaign") ;
return mapping.findForward("ShowSearch");

Form objects created for the purpose of providing intermediate model state to the JSP should
use request scope; this will ensure that the objects do not hang around after their usefulness
expires. By default, all forms are saved in the session scope. The existence of form objects in
the session beyond their usefulness could result in wasted memory, as such, the request handlers
must track the life cycle of form objects stored in the session. A good practice for capturing
form data is to use a single form-bean for related forms that span several user interactions. form-
beans can also be used to store intermediate model state, which can be adapted by custom
tags for use in a view at response time. Tag usage prevents incorporation of Java code (scriptlets)
in the view, thus achieving a good division of responsibility between a web production team that
primarily deals with markup, and an application development team that primarily deals with
writing Java code. The tags factor out logic for accessing intermediate model state; this logic
could be quite complex when accessing nested objects or when iterating through a collection.

Creating ActionForm with Dynamic Properties

A DynaActionForm object is an object with a dynamic set of properties. DynaActionForm
extends the ActionForm; its usage permits creation of a form object through declarations
made in the struts-config.xml as follows:

<form-bean name="logonForm"
type="org.apache.struts.action.DynaActionForm">
<form-property name="username" type="java.lang.String"/>
<form-property name="password" type="java.lang.String"/>
</form-bean>

The RequestProcessor creates, populates, and validates the DynaActionForm in the same
way it does ActionForm, i.e., the parameters in the request object are populated in the
DynaActionForm for the dynamic set of properties specified in the <form-bean> element;
other parameters are simply skipped.

Chapter 4: Struts-Based Application Architecture 113

Request Parameter Type-Conversion

This discussion focuses on how String/] type retrieved by Struts framework using request
.getParameterValues(parameterName) is converted to the target property type of the form-bean
object. The following is a list of supported target types:

java.lang.BigDecimal
java.lang.BigInteger

boolean and java.lang.Boolean
byte and java.lang.Byte

char and java.lang.Character
double and java.lang.Double
float and java.lang.Float
int and java.lang.Integer
long and java.lang.Long
short and java.lang.Short
java.lang.String
java.sqgl.Date

java.sqgl.Time
java.sqgl.Timestamp

The target types, i.e., the type associated with form-bean object properties, are found
using an introspection mechanism; a Struts-specific custom introspection mechanism is
used for DynaActionForm objects. Struts also supports indexed parameter names of the form
parameterName[n]; where the index » is zero based. The form-bean methods corresponding
to this naming convention are created according to the indexed property design patterns
prescribed by the JavaBeans specification, as shown next.

The following methods are used to access all array elements of an indexed property:

public <PropertyType>[] get<PropertyName> () ;
public void set<PropertyName> (<PropertyType>[] value) ;

The following methods are used to access individual array elements:

public <PropertyType> get<PropertyName> (int index)
public void set<PropertyName> (int index, <PropertyType> value)

The following describes the usage scenarios for indexed properties and simple properties:

1. When the bean property is an array, and the parameter name in the request does
not use the indexing notation parameterName[n], the String[] returned by
request.getParameterValues(parameterName) is converted to an array of target
component type. The ActionForm subclass should be defined with the following
method signatures:

public void set<PropertyName> (<PropertyType>[] value)
public <PropertyType>[] get<PropertyName> () ;

114

Practical J2EE Application Architecture

2. When the bean property is of type array, and the parameter name in the request
uses the indexing notation parameterName/[n], the String[] returned by request
.getParameterValues(parameterName) is assumed to be containing only a single
value; as such, only String/0] is converted to the component type of the array.
The ActionForm subclass should be defined with the following method signatures
that accept an index argument:

public void set<PropertyName> (int index, <PropertyType> value)
public <PropertyType> get<PropertyName> (int index)

These method signatures follow the design patterns of indexed properties as stated in
the JavaBeans specification. In the absence of these methods, indexed access using the
indexing notation is also possible by implementing the following method:

public <PropertyType>[] get<PropertyName> () ;

In this scenario, the required array element to set is accessed by the Struts framework
by first getting the underlying array object, accessing the element for the given index,
and finally setting the accessed object. This pattern can also support a List-based
implementation for request parameters that use the indexing notation parameterName[n].
We discuss a List-based implementation next in the section “A Simple Example of
Nested Properties.”

3. For simple property types, the String/] returned by request
.getParameterValues(parameterName) is assumed to be containing only a single
value; as such only String/0] is converted to the target type. For simple properties,
the ActionForm subclass should be defined with the following method signatures.

public void set<PropertyName> (<PropertyType> value)
public <PropertyType> get<PropertyName> () ;

A Simple Example of Nested Properties

An example of List-based implementation with List update capability is illustrated in this section.
Following is a stripped-down version of the JSP code from 2 3 5 [UpdateCampaigns.jsp that
can be found in the GreaterCause directory. In the following snippet, Collection "campaigns" is
extracted from the ActionForm "ManageCampaignsForm" using getCampaigns() and saved in the
session using the identifier "campaignDTO"; this identifier is subsequently used to retrieve the

elements of the collection in the <iterate> tag.

<logic:iterate id="campaignDTO" name="ManageCampaignsForm" property="campaigns">
<table>

<tr>

<%-- Each element of the Collection campaigns (identified in the session by
the identifier campaignDTO) is iterated and the corresponding nested property written

Chapter 4: Struts-Based Application Architecture

to the output stream. The property indexed="true" will create an index for
each form field where this property is specified; the index is zero based and
increments for each iteration --%>
<html :hidden name="campaignDTO" property="ein" indexed="true"/>
<td><bean:write name="campaignDTO" property="ein"/></td>
<td><bean:message key="prompt.StartDate"/></td>
<td><html : text name="campaignDTO" property="startDate" size="10"
maxlength="10" indexed="true"/></td>
</tr>
<tr>
<td class="txt">
<!-- other HTML appears here -->
</td>
<td><bean:message key="prompt.EndDate"/></td>
<td><html: text name="campaignDTO" property="endDate" size="10"
maxlength="10" indexed="true"/></td>
</tr>
</table>

</logic:iterate>

The preceding <iterate> tag will result in the following HTML that shows two iterations of
the <iterate> logic, and results in indexes [0] and [1]. The field name campaignDTO[0].ein
can be decomposed as follows: campaignDTO references the Collection "campaigns" in
the ActionForm "ManageCampaignsForm"; the index [0] references the first element of the
Collection "campaigns", which is made available using the method getCampaignDTO(int
index) in the ActionForm; the simple property ein is an instance variable of the first element
of the Collection "campaigns"; each element of the Collection is an object of the type
CampaignDTO. When the form is submitted, the Struts framework applies the updates
to the corresponding simple properties in the CampaignDTO by first calling the method
getCampaignDTO(int index); it then applies the form input to the corresponding instance
variable in the DTO. It is important to reiterate here that when the framework retrieves the
campaign DTO object, the framework takes the responsibility of updating the individual
instance variables of campaign DTO objects.

<table>

<tr>
<input type="hidden" name="campaignDTO[0].ein"value="EINO">
<td>EINO</td>
<td>Start Date</td>
<td><input type="text" name="campaignDTO[0].startDate" maxlength="10"

size="10" value="2003-12-12"></td>

</tr>

<tr>
<td>
<!-- other HTML appears here -->
</td>

<td>End Date</td>

115

116

Practical J2EE Application Architecture

<td><input type="text" name="campaignDTO[0] .endDate" maxlength="10"
size="10" value="2004-12-12"></td>
</tr>
</table>

<table>
<tr>
<input type="hidden" name="campaignDTO[1l].ein"value="EIN1">
<td>EINl</td>
<td>Start Date</td>
<td><input type="text" name="campaignDTO[1l].startDate" maxlength="10"
size="10" value="2003-01-01"></td>
</tr>
<tr>
<td>
<!-- other HTML appears here -->
</td>
<td>End Date</td>
<td><input type="text" name="campaignDTO[1l].endDate" maxlength="10"
size="10" value="2003-12-31"></td>
</tr>
</table>

For the preceding logic to work correctly, we need the following ActionForm definition.

public class ManageCampaignsForm extends ValidatorForm implements

Serializable {

public ManageCampaignsForm() {

}

public String getEin() {
return ein;

}

public void setEin(String ein) {
this.ein = ein;

}

public String getStartDate() {
return startDate;

}

public void setStartDate(String startDate) {
this.startDate = startDate;

}

public String getEndDate () {
return endDate;

}

public void setEndDate(String endDate) {
this.endDate = endDate;

Chapter 4: Struts-Based Application Architecture

/** Coarse grained DTO is provided by the service layer */
public void setCampaigns(List campaigns) {
this.campaigns = campaigns;
}
/** Coarse grained DTO is provided to the service layer */
public List getCampaigns() {
return campaigns;
}
private String ein;
private String startDate;
private String endDate;
private List campaigns;
/* The identifier CampaignDTO specified in the <iterate> tag is used to get
the appropriate element from the underlying Collection campaigns */
public CampaignDTO getCampaignDTO(int index) {
return (CampaignDTO)campaigns.get(index);

The nested property can nest to any number of levels, using both indexed and non-indexed
properties. Chapter 5 implements the use case Update Campaigns that employs simple and
indexed properties in a nested combination.

Custom Extensions with Plug-Ins

A framework must provide a facility for creating custom extensions by allowing a mechanism
for plugging external services seamlessly into the framework. This implies that the framework
must provide extension points, using which the life cycle management (i.e., init() and destroy())
of the pluggable component is possible. By providing such extension points, a developer can
write a service that conforms to the interface supported by the extension mechanism, in this
case the Plugln interface, for controlling the creation, usage, and cleanup of the service and its
corresponding resources within the context of the framework.

The Struts Validator is an example of a plug-in that enables declarative form validation.
The corresponding entry in struts-config.xml is depicted here:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathnames"
value="/WEB-INF/validator-rules.xml, /WEB-INF/validation.xml"/>
</plug-in>

The ValidatorPlugln class, and all other plug-in classes, are instantiated by the controller
during its initialization. Each plug-in object is instantiated using the className attribute in
the <plug-in> element. This plug-in object adheres to the design patterns of JavaBeans

117

118

Practical J2EE Application Architecture

specification by providing the property accessor methods for each property specified in the
<plug-in> element. Once a plug-in is instantiated, its inif method is called to enable the
developer to perform plug-in—specific initialization. For example, the ValidatorPlugln.init
method will initialize its resources and save the resources in the ServletContext using
ValidatorPlugin. VALIDATOR KEY, these resources are subsequently used for creating an
instance of the class org.apache.commons.validator. Validator in the context of the framework.
The plug-in(s) instantiated by the controller are saved in the ServletContext as an array of
org.apache.struts.action. Plugin objects using the key Action.PLUG _INS _KFEY. This array is
subsequently used by the controller’s destroy() method to call the destroy method on each
plug-in for releasing acquired resources. Plug-in usage provides an elegant solution for
initializing and saving objects that provide a specific set of services and whose usage can
augment the functionality of the framework.

Struts Configuration Semantics

This section discusses the configuration objects that the controller creates, caches, and uses
for controlling the behavior of the framework. All configuration objects are available to a
developer in request handlers via the ModuleConfig object; this object can be accessed using
the Action.getModuleConfig() method; the configuration objects can be extended for
implementing custom functionality.

Parsing the Configuration File

The configuration file, struts-config.xml, is parsed in the controller’s init() method

using an instance of org.apache.commons.digester.Digester; the Digester extends
org.xml.sax.helpers. DefaultHandler. Internally, the Digester uses a SAX parser to parse the
configuration file. From the configuration file, the Digester constructs an object hierarchy
of configuration objects, rooted in the ModuleConfig object, using the rules specified in
org.apache.struts.config. ConfigRuleSet; these rules govern object creation and population.
More information about Digester is available at http://jakarta.apache.org/commons/digester.html.
The rule set provided by ConfigRuleSet can be augmented by specifying the rulesets
initialization parameter that provides a comma-delimited list of class names containing
additional rules. The configuration file location is provided in web.xml by the config
initialization parameter as follows:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>
</servlet>

Chapter 4: Struts-Based Application Architecture

The configuration object hierarchy is created in the init() method of the controller and
saved in the ServletContext using org.apache.struts.Globals. MODULE. At the root of the
configuration hierarchy is the ModuleConfig object. The ModuleConfig object contains
references to collections of all other configuration objects, with convenience methods for
saving and retrieving these objects. The semantics of creating a configuration object tree is
explained in the section “Creating Configuration Objects.” The following sections briefly
explain the purpose for each configuration object.

ActionMapping This object is created from the <action> element. It provides the mapping
between an incoming request and the corresponding request handler. It also embeds
ExceptionConfig and ActionForward objects; these subordinate objects are in the local scope
of the ActionMapping object.

ActionForward This object is created from the <forward> element. It provides the URI of
the next web component. ActionForward(s) are specified both in the local and global scope.
Global scope is used when a required ActionForward is not found in the scope of the current
ActionMapping object.

ActionFormBean This object is created from the <form-bean> element. It provides the
mapping between a form name in the ActionMapping to an ActionForm subclass.

FormPropertyConfig This object is created from the <form-property> element. It
provides the dynamic attribute names and types for creating a DynaActionForm object.

DataSourceConfig This object is created from the <data-source> element. It provides
information for configuring a data source in the framework.

MessageResourcesConfig This object is created from the <message-resources>
element. It provides the base name of a family of resource bundles.

ExceptionConfig This object is created from the <exception> element. It provides a
message key and a URI of the next web component when an exception of a given type is
thrown by the request handlers. ExceptionConfig(s) are specified both in the local and global
scope. Global scope is used when a required ExceptionConfig is not found in the scope of
the current ActionMapping object.

PluginConfig This object is created from the <plug-in> element. It provides the class
name of an external resource that needs to be instantiated within the framework, and whose
init and destroy methods are to be called by the framework.

ControllerConfig This object is created from the <controller> element. It provides
information for configuring the framework.

For a complete list of all the attributes that can be specified for each configuration object,
refer to the API at http://jakarta.apache.org/struts/api/index.html.

119

120 Proctical J2EE Application Architecture

ModuleConfig The ModuleConfig object caches configuration information as follows:

1. ActionMapping objects are cached using a HashMap, keyed by the path attribute of the
<action> element. The default ActionMapping class
org.apache.struts.action.ActionMapping specified in the ModuleConfig class can be
overridden using the mapping initialization parameter in the <servlet> declaration.

Each ActionMapping object caches subordinate configuration information as follows:

» ActionForward objects are cached using a HashMap, keyed by the name attribute
in the <forward> element nested within the <action> tag.

» ExceptionConfig objects are cached using a HashMap, keyed by the fype attribute
in the <exception> element nested in the <action> tag.

2. ActionForward objects are cached using a HashMap, keyed by the name attribute of the
<forward> element nested within the <global-forwards> tag.

3. ActionFormBean objects are cached using a HashMap, keyed by the name attribute of
the <form-bean> element.

Each ActionFormBean caches subordinate configuration information as follows:

» FormPropertyConfig objects are cached using a HashMap, keyed by name attribute
of the <form-property> element nested within the <form-bean> tag.

4. DataSourceConfig objects are cached using a HashMap, keyed by a default
Globals. DATA_SOURCE _KEY or the key attribute on the <data-source> element.

5. ExceptionConfig objects are cached using a HashMap, keyed by the type attribute of
the <exception> element nested in the <global-exceptions> tag.

6. MessageResourcesConfig objects are cached using a HashMap, keyed by a default
Globals. MESSAGES KEY or key attribute of the <message-resources> element.

7. PluginConfig objects are cached using an ArrayList.
8. A single ControllerConfig is placed in the ModuleConfig.

Creating Configuration Objects

Each rule in the ConfigRuleSet is associated with an element nesting pattern; an example
pattern appears as the first argument in the addObjectCreate (...) signature shown next.
The patterns and associated rules are first registered with the Digester using several
addRuleName('..) methods encapsulated in ConfigRuleSet class. During struts-config.xml
parsing, the rules are fired when an element nesting pattern in the struts-config.xml file
matches with a pattern for which a rule is registered. For a given pattern, there could be more
than one registered rule; in this case all matching rules are evaluated in the order they were
first registered. Refer to the API documentation at http://jakarta.apache.org/commons/
digester/api/index.html for additional information.

In this section, the ConfigRuleSet is annotated for clarifying the relationship between
different configuration objects and their creation sequence. The following convention is
used for adding rules to the digester’s rules cache.

Chapter 4: Struts-Based Application Architecture

digester.addObjectCreate ("struts-config/data-sources/data-source",
"org.apache.struts.config.DataSourceConfig",
"className") ;

The preceding snippet is equivalent to the following code:

digester.addRule ("struts-config/data-sources/data-source",
new ObjectCreateRule ("org.apache.struts.config.DataSourceConfig", "className"));

Annotated ConfigRuleSet

It is not necessary to read this subsection if your intent is only to use the Struts framework;
however, if you wanted to extend the framework to suite the needs of your project, this “under
the hood” discussion can provide you with useful information on how you can declaratively
add additional properties to the various configuration objects used by Struts, and even add
new configuration objects.

Digester uses a stack to create the configuration object hierarchy. It pushes the most
recently created object on top of the stack, therefore, the object to which all rules apply is
the object that was most recently created and pushed on the stack by the Digester using the
ObjectCreateRule. The object on the top of the stack goes out of scope, and is subsequently
popped, when the corresponding tag in struts-config.xml goes out of scope. It is convenient
to equate the ModuleConfig object to document root, which is <struts-config>. The
runtime representation of rules are concrete objects that extend the Rule class. The order of
rules firing, as depicted next, is important for creating an appropriate object hierarchy.

The ObjectCreateRule instantiated as a result of the element nesting pattern
struts-config/data-sources/data-source shown here will create a DataSourceConfig object.
If the <data-source> element specifies a className attribute, the class specified by this
attribute will be used, instead of DataSourceConfig, for creating the configuration object. The
default DataSource object created by DataSourceConfig is of the type org.apache.struts.util
.GenericDataSource.

digester.addObjectCreate ("struts-config/data-sources/data-source",
"org.apache.struts.config.DataSourceConfig",
"className") ;

The SetPropertiesRule shown next will set the properties of this object with attributes
specified in the <data-source> element of the configuration file.

digester.addSetProperties ("struts-config/data-sources/data-source") ;

The SetNextRule shown next will call the addDataSourceConfig method of the root object
in the configuration hierarchy to add a reference to the DataSourceConfig object in the root
object; the configuration root object is ModuleConfig.

digester.addSetNext ("struts-config/data-sources/data-source",
"addDataSourceConfig",
"org.apache.struts.config.DataSourceConfig") ;

121

122

Practical J2EE Application Architecture

The AddDataSourcePropertyRule instantiated as a result of the element nesting pattern
struts-config/data-sources/data-source/set-property shown next will add dynamic properties
and their values to the DataSourceConfig object as specified in the <set-property>
element of the configuration file.

digester.addRule ("struts-config/data-sources/data-source/set-property",
new AddDataSourcePropertyRule (digester)) ;

The struts-config.xml file will have following declarations for the preceding rule:

<struts-config>
<data-sources>
<data-source>
<set-property property="autoCommit" value="false"/>
<set-property property="password" value="mypassword" />
</data-source>
</data-sources>
</struts-config>

The SetActionMappingClassRule instantiated as a result of the element nesting pattern
struts-config/action-mappings, as shown next, will set the class name of the action mapping
class for instantiating ActionMapping objects. The action mapping class name is set in the
ModuleConfig object using the type attribute in the <action-mappings> element. A
default action mapping class org.apache.struts.action.ActionMapping is preconfigured in
ModuleConfig.

digester.addRule ("struts-config/action-mappings",

new SetActionMappingClassRule (digester));
//As of Struts 1.1 beta 2, SetActionMappingClassRule class is in
ConfigRuleSet.java file

The FactoryCreateRule is instantiated as a result of the element nesting pattern
struts-config/action-mappings/action, as shown next. This rule will instantiate an
ActionMapping object via the ActionMappingFactory.createObject(...) method which uses
the class specified by the className attribute in the <action> element; if this element is
not specified, it will use the action mapping class specified in the ModuleConfig object.

digester.addFactoryCreate ("struts-config/action-mappings/action",
new ActionMappingFactory());

//As of Struts 1.1, ActionMappingFactory class is in

ConfigRuleSet.java file

The SetPropertiesRule shown next will set the properties of the ActionMapping object
with attributes specified on the <action> element of the configuration file; the SetNextRule
shown next will call the addActionConfig method to add a reference to this ActionMapping object
in the parent object, which is ModuleConfig. As discussed in the earlier section “Parsing the
Configuration File,” all ActionMapping objects are cached inside the ModuleConfig in a

Chapter 4: Struts-Based Application Architecture

HashMap. Similar discussion holds good for all other configuration objects with the
exception of PluginConfig, which is cached in an ArrayList.

digester.addSetProperties ("struts-config/action-mappings/action") ;

digester.addSetNext ("struts-config/action-mappings/action",
"addActionConfig",
"org.apache.struts.config.ActionConfig") ;

The SetPropertyRule shown next is instantiated as a result of the element nesting pattern
struts-config/action-mappings/action/set-property. This rule allows declaration of two attributes;
the first attribute will contain the name of the property, and the second attribute will contain the
property value. Incidentally, in the following example, the first attribute that will contain the
name of the property has a value “property”, and the second attribute that will contain the
property value is named “value”. The ActionMapping object accessor is called for setting the
value of the specified property for each <set-property> element. This is just another
way of setting properties of the configuration objects.

digester.addSetProperty ("struts-config/action-mappings/action/set-property",
"property", "value");

The struts-config.xml file will have the following declarations for the preceding rule:

<struts-config>
<action-mappings>
<action path="/editCustomerProfile"
type="packageName.EditCustomerAction"
name="customerProfileForm"
scope="request">
<set-property property="scope" value="request"/>
</action>
</action-mappings>
</struts-config>

The following snippet creates the ExceptionConfig object, sets it properties as specified
in the <exception> element of the configuration file, and sets a reference in its parent
object, which is currently the ActionMapping object. The parent object is apparent from the
element nesting pattern /action/exception:

digester.addObjectCreate("struts-config/action-mappings/action/exception",

"org.apache.struts.config.ExceptionConfig",

"className") ;
digester.addSetProperties("struts-config/action-mappings/action/exception") ;
digester.addSetNext ("struts-config/action-mappings/action/exception",

"addExceptionConfig",

"org.apache.struts.config.ExceptionConfig") ;
digester.addSetProperty ("struts-config/action-mappings/action/exception/set-
property",

"property", "value");

123

124

Practical J2EE Application Architecture

The following snippet creates the ActionForward object, sets it properties as specified in
the <forward> element of the configuration file, and sets a reference in its parent object,
which is currently the ActionMapping object. The parent object is apparent from element
nesting pattern /action/forward:

digester.addObjectCreate ("struts-config/action-mappings/action/forward",

"org.apache.struts.action.ActionForward",

"className") ;
digester.addSetProperties("struts-config/action-mappings/action/forward") ;
digester.addSetNext ("struts-config/action-mappings/action/forward",

"addForwardConfig",

"org.apache.struts.config.ForwardConfig") ;
digester.addSetProperty ("struts-config/action-mappings/action/forward/set-prop
erty",

"property", "value");

For the next rule, notice that the parent object is again the ModuleConfig object that is
associated with the document root <struts-config>. The following snippet creates the
ControllerConfig object, sets it properties as specified in the <controller> element of the
configuration file, and sets a reference in its parent object, which is currently the
ModuleConfig object:

digester.addObjectCreate ("struts-config/controller",
"org.apache.struts.config.ControllerConfig",
"className") ;

digester.addSetProperties ("struts-config/controller") ;

digester.addSetNext ("struts-config/controller",
"setControllerConfig",
"org.apache.struts.config.ControllerConfig") ;

digester.addSetProperty ("struts-config/controller/set-property",
"property", "value");

The following creates the ActionFormBean object, sets it properties as specified in the
<form-bean> element of the configuration file, and sets a reference in its parent object,
which is currently the ModuleConfig object:

digester.addObjectCreate ("struts-config/form-beans/form-bean",
"org.apache.struts.action.ActionFormBean",
"className") ;
digester.addSetProperties ("struts-config/form-beans/form-bean") ;
digester.addSetNext ("struts-config/form-beans/form-bean",
"addFormBeanConfig",
"org.apache.struts.config.FormBeanConfig") ;
digester.addSetProperty ("struts-config/form-beans/form-bean/set-property",
"property", "value");

The following snippet creates the FormPropertyConfig object, sets it properties as
specified in the <form-property> element of the configuration file, and sets a reference
in its parent object, which is currently the ActionFormBean object:

Chapter 4: Struts-Based Application Architecture

digester.addObjectCreate ("struts-config/form-beans/form-bean/form-property",

"org.apache.struts.config.FormPropertyConfig",

"className") ;
digester.addSetProperties("struts-config/form-beans/form-bean/form-property") ;
digester.addSetNext ("struts-config/form-beans/form-bean/form-property",

"addFormPropertyConfig",

"org.apache.struts.config.FormPropertyConfig") ;
digester.addSetProperty (

"struts-config/form-beans/form-bean/form-property/set-property",

"property", "value");

The following snippet creates the global ExceptionConfig object, sets it properties as
specified in the <exception> element of the configuration file, and sets a reference in
its parent object, which is currently the ModuleConfig object:

digester.addObjectCreate ("struts-config/global-exceptions/exception",
"org.apache.struts.config.ExceptionConfig",
"className") ;

digester.addSetProperties ("struts-config/global-exceptions/exception") ;

digester.addSetNext ("struts-config/global-exceptions/exception",
"addExceptionConfig",
"org.apache.struts.config.ExceptionConfig") ;

digester.addSetProperty ("struts-config/global-exceptions/exception/set-property",
"property", "value");

The following snippet creates the global ActionForward object, sets it properties as
specified in the <forward> element of the configuration file, and sets a reference in its
parent object, which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/global-forwards/forward",
"org.apache.struts.action.ActionForward",
"className") ;

digester.addSetProperties ("struts-config/global-forwards/forward") ;

digester.addSetNext ("struts-config/global-forwards/forward",
"addForwardConfig",
"org.apache.struts.config.ForwardConfig") ;

digester.addSetProperty ("struts-config/global-forwards/forward/set-property",
"property", "value");

The following snippet creates the MessageResourcesConfig object, sets it properties as
specified in the <message-resources> element of the configuration file, and sets a
reference in its parent object, which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/message-resources",
"org.apache.struts.config.MessageResourcesConfig",
"className") ;

digester.addSetProperties ("struts-config/message-resources") ;

digester.addSetNext ("struts-config/message-resources",
"addMessageResourcesConfig",
"org.apache.struts.config.MessageResourcesConfig") ;

125

126 Practical J2EE Application Architecture

digester.addSetProperty ("struts-config/message-resources/set-property",

"property", "value");

The following snippet creates the PluglnConfig object, sets it properties as specified in the
<plug-in> element of the configuration file, and sets a reference in its parent object,
which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/plug-in",
"org.apache.struts.config.PlugInConfig") ;

digester.addSetProperties ("struts-config/plug-in") ;

digester.addSetNext ("struts-config/plug-in",
"addPlugInConfig",
"org.apache.struts.config.PlugInConfig") ;

digester.addRule ("struts-config/plug-in/set-property",
new PlugInSetPropertyRule (digester));

//As of Struts 1.1, PlugInSetProperty class is in ConfigRuleSet.java file

Struts MVC Semantics

Building upon the knowledge of how Struts offers various infrastructure services, this section
will discuss the design patterns and implementation details of the key components of the
framework. The semantics of key Struts components will assist in recapping this chapter,

and at the same time offer an “under the hood” view that will be helpful in extending the
framework, should such a need arise. The Struts framework uses the Service to Worker
design pattern [Core].

ActionConfig
org.apache.struts.action.ActionMapping

HttpServlet
<<front controller>>

org.apache.struts.action.ActionServlet

-

\l, ForwardConfig
<<dispatcher>> ~ foooo__ > org.apache.struts.action.ActionForward
org.apache.struts.action.RequestProcessor N

i S — >)

v <<request handler>>

org.apache.struts.action.Action

Serializable &--------1

<<view helper>>
org.apache.struts.action.ActionForm

<
P—

ActionMessages

DefaultHandler

org.apache.commons.digester.Digester a

org.apache.struts.action.ActionErrors

Serializable

Chapter 4: Struts-Based Application Architecture

NOTE

Struts is constantly evolving, as such, it is very likely that the semantics captured here may change fo some
degree as the 1.1 beta undergoes bug fixes and optimizations.

The Controller Object

The controller semantics are realized by the ActionServlet class. It provides a central place
for handling all client requests. This promotes a cleaner division of labor for the controller
layer that typically deals with view and navigation management, leaving the model access
and manipulation to request handlers (Command objects [Gof]) that are typically request
specific. All incoming requests are mapped to the central controller in the deployment
descriptor as follows:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>

The logical mapping of resources depicted in the preceding permits modification of
resource mappings within the configuration file without the need to change any application
code; this mapping scheme is also referred to as Multiplexed Resource Mapping. The controller
provides a centralized access point for all presentation-tier requests. The controller delegates
each incoming request to the RequestProcessor, which in turn dispatches the request to the
associated form bean for form validation, and to a request handler for accessing the model.
The combination of controller and RequestProcessor forms the core controller process. The
abstraction provided by the controller alleviates a developer from creating common application
services such as managing views, sessions, and form data; a developer leverages standardized
mechanisms such as error and exception handling, navigation, internalization, data validation,
data conversion, and so on.

Controller Object Semantics

The controller servlet (ActionServiet) essentially initializes the resources required for
controlling the behavior of the framework; all request processing function is delegated by

127

128 Proctical J2EE Application Architecture

the controller to the RequestProcessor. The following is a listing of the init() method—related
key controller operations in the order of execution sequence:

1. Get the initialization parameters declared in the deployment descriptor (refer to the
ActionServlet API for a complete list of available initialization parameters and their usage).

2. Parse the web.xml deployment descriptor to retrieve the <url-pattern> element’s
body; this will assist the RequestProcessor in understanding how to extract the path
information from the request URI and strip the .do extension. The URL mapping is
saved in the ServletContext using Action.SERVLET KEY.

3. Parse the struts-config.xml using the Digester instance and the ConfigRuleSet
(discussed earlier in this section), and create the configuration object hierarchy
rooted in the ModuleConfig object. The ModuleConfig is saved in the context
using Globals. MODULE KEY.

4. Create a MessageResources object for each MessageResourcesConfig object and
save it in the ServletContext using the key supplied for each message resource, or
the default key Action. MESSAGES KEY (a.k.a. Globals. MESSAGES KEY).

5. Create a DataSource object for each DataSourceConfig object and save it in the
ServletContext using the key supplied for each data source, or the default key
Action.DATA_SOURCE_KEY (a.k.a. Globals. DATA_ SOURCE_KEY).

6. Create a Plugln[] object for all PluginConfig objects and save the array in the
ServletContext using the key Action.PLUG INS KEY. Initialize each Plugln object
with the properties available in the corresponding PluginConfig object. For each
Plugin object created, call its init(...) method.

7. Freeze the configuration from further modification. This logic prevents changes to
the configuration objects once the servlet begins accepting client requests.

In the process(...) method, the ActionServiet will create a RequestProcessor if it has not
been created already, and delegate the request processing to the RequestProcessor by calling
the process(...) method of the RequestProcessor. In the following section, we will continue
the discussion on the RequestProcessor.process(...) method.

The Dispatcher Object

The RequestProcessor functions as a dispatcher and handles client requests by instantiating
(or reusing) a request handler, and a corresponding form bean. The errors created, or exceptions
thrown by the form beans and the request handlers, (and processed by the RequestProcessor)
which influences the view management function of the RequestProcessor. Form beans assist
RequestProcessor in storing the form data and/or staging intermediate model data required
by the view. The RequestProcessor uses the <action> declarations, as shown next, for
instantiating request specific request handlers.

<form-bean name="PortalAllianceRegistrationForm"
type="packageName.PortalAllianceRegistrationForm" />

Chapter 4: Struts-Based Application Architecture

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"
name="PortalAllianceRegistrationForm"
scope="session"
input="ShowPage"
validate="false">

<forward name="ShowPage" path="/2_1_ PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID" path="/2_3A_ EnterPortallD.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

</action-mappings>

The path specified in the request URI is used for locating the corresponding <action>
element (which is the corresponding ActionMapping object) whose type property specifies
the class for instantiating request handler objects.

Dispatcher Object Semantics

The following is a listing of process method-related key dispatcher operations in the order of
execution sequence:

1.

From the servlet path, get the path information (after stripping the .do extension). This
path information will be used to find the matching ActionMapping object. (A client
request encapsulates the desired action in the request URI as servlet path.)

="

If ControllerConfig specifies locale="true", get the locale from the request and store
it in the user’s session using Action. LOCALE KEY. If the locale is already existing,
no action is taken.

If ControllerConfig provides a content type, set the content type for responses.

o

If ControllerConfig specifies nocache="true ", set no-cache HTTP headers on each
response.

Call the processPreprocess method. This method is provided for doing any custom
processing prior to form processing. A return value of true indicates success, otherwise
the process method is terminated with a refurn.

Get the ActionMapping object from ModuleConfig for the given path; if a match is not
found, an ActionMapping object associated with the property unknown="true" is used.
The resulting ActionMapping is saved in the request scope using Action. MAPPING KEY.
If no mapping is found, the response.sendError method is called for sending an error
message to the client, and the process method is terminated with a return.

Perform Java Authentication and Authorization Service (JAAS)-based authentication
using the request.isUserInRole method for verifying privilege to perform the current
action; the roles are specified as a comma-delimited string in the roles property of the
ActionMapping. 1f no roles are provided in the action mapping object, or the user is in
the appropriate role, then the processing will continue, otherwise the response.sendError
is called for sending an error message to the client, and the process method is terminated
with a return.

129

130

Practical J2EE Application Architecture

10.

11.

12.

13.

14.

Try finding the ActionForm associated with ActionMapping in the specified scope. If
found, use this ActionForm, else, create a new ActionForm object or DynaActionForm
object using the fype property of the corresponding ActionFormBean; save the form in
the specified scope using the name property from the ActionFormBean. Call the
reset(...) method of the ActionForm object or DynaActionForm object to initialize the
form; populate the form object with the parameters in the request object.

The form object’s validation method is called if the validate property of the
ActionMapping object is set to true. If the validation is successful, then we proceed

to the next step. If the validation returns a non-null or non-empty ActionErrors
object, an ActionForward object with the name property that is the same as the input
property of ActionMapping object is chosen as the candidate ActionForward object.
The ActionForward object provides the URL (path property of ActionForward) of the
next view. This is usually the same view whose processing generated the ActionErrors.
The ActionErrors object is saved in the request object using the key Action.ERROR _KEY.

Check for presence of the forward property in the ActionMapping object. This property
is mutually exclusive with the #ype and include property. If found, the URI specified by
the forward property is used for forwarding the current request instead of using a
request handler object to handle this request. After the forward is done, the process(...)
method is terminated with a refurn.

Check for presence of the include property in the ActionMapping object. This property
is mutually exclusive with the fype and forward properties. If found, the URI specified
by the include property is used in RequestDispatcher.include() for processing the current
request instead of using a request handler object to process this request. After the include
is done, the process method is terminated with a refurn. If an include property was not
specified then we precede to the next step.

Find an instance of the request handler from the request handler cache using its fully
qualified class name specified by the type property of the ActionMapping object. If an
instance is found, use this instance for the next step, else create a new instance of the
class specified by the type property and save it in the cache.

Call the execute method of the request handler. The request handler will return an
ActionForward object depending on the outcome of its processing.

The path property in the ActionForward object is used for forwarding the current
request to the next view.

The Request Handler

A subclass of an Action class is used as an adaptor between incoming requests and the
model. A request is intercepted initially by the RequestProcessor, which in turn instantiates

a corresponding request handler. This Action class—derived object, also called the request
handler, is created specific to every request as explained in the preceding section. The request
handler implements the Command pattern [Gof]. A client request encapsulates the desired
action in the request URI as servlet path, the path information is subsequently extracted by

Chapter 4: Struts-Based Application Architecture 131

the dispatcher (RequestProcessor) for creating an instance of the corresponding request
handler. The command pattern decouples the UI from request handlers.

NOTE

User-specific state information must not be stored in request handlers because they are used for servicing
requests from all users.

Request Handler Semantics

For distributed applications, an action class houses the control logic required for interacting
with business logic in EJB components and will typically use a Business Delegate [Core]
object for this purpose. Business delegate shields the request handlers from having to deal
with the complexity of accessing distributed components. The business delegate design pattern
promotes loose coupling between the request handlers and the server-side components since
the logic for accessing server-side components is embedded in the business delegate. A request
handler is written by a developer working in the presentation tier; a business delegate is
usually written by a developer responsible for creating the business tier services. For smaller
nondistributed applications, the action class may contain business logic. When distributed
processing is not required, and business logic is embedded in request handlers, a Data Access
Object [Core] can be used to abstract the underlying data access implementation; this provides
a loose coupling between the request handlers and the data access layer, thus protecting the
presentation tier from implementation changes in the integration tier. The base Action class of
request handlers provides several convenience methods; please refer to the API documentation
at http://jakarta.apache.org/struts/api/index.html.

Message Resources Semantics

This section will briefly discuss the semantics of MessageResources and
PropertyMessageResources classes. Each message resource bundle has a base name, which
corresponds to the name of a properties file, as discussed in the section “Internationalized
Messaging and Labeling.” This base name is identified by the property attribute in the
<message-resources> element of the configuration file. The controller creates a
MessageResourcesConfig object for every <message-resources> element in the
configuration file. The controller then creates a MessageResources object for each
MessageResourcesConfig object and saves it in the context using the key supplied for each
message resource, or the default key Action. MESSAGES KEY (a.k.a. Globals. MESSAGES KFEY).
The MessageResources objects are created using a MessageResourcesFactory. A factory
class can be specified using the factory attribute in the <message-resources>
element. However, for the accessing messages housed in a properties file, a default
factory org.apache.struts.util. Property MessageResourcesFactory is preconfigured in the
MessageResourcesConfig object; the ActionServlet uses this factory object for instantiating

132 Proctical J2EE Application Architecture

the PropertyMessageResources object. The following illustration depicts the static model
providing internationalized messaging and labeling facility.

<<dispatcher>> <<request handler>>

org.apache.struts.action.RequestProcessor 2 org.apache.struts.action.Action

€---=

Serializable Serializable
org.apache.struts.util.MessageResourcesFactory [_______ >| org.apache.struts.util. MessageResources

1 1

org.apache.struts.util.PropertyMessageResourcesFactory | | org.apache.struts.util.PropertyMessageResources

A message from a specific resource bundle is retrieved by the framework by
first retrieving the PropertyMessageResources object from the context using the
appropriate key and then calling its getMessage(...) method while passing a locale
and a message key. PropertyMessageResources.getMessage(...) is used when the
retrieved message does not require parametric substitution; otherwise, for parametric
substitution the MessageResources.getMessage(...) method is used, which accepts a
locale, a message key, and an Object/[] as arguments. When an Object/[] is specified, the
MessageResources.getMessage(...) method retrieves the message format pattern by calling
the PropertyMessageResources.getMessage(...) method and uses this format pattern in the
MessageFormat.format(...) method to perform parametric substitution of Object/].

A cache of locale (converted to its String value) is maintained in the PropertyMessageResource
object to identify if messages for a particular locale have already been loaded in the message
cache. If a locale is not found in the locale cache, the entire properties file associated with
that locale is loaded into the message cache. Refer to the section “Internationalized Messaging
and Labeling” for naming conventions used for the properties files. The message cache is
keyed by 'locale.toString() + "." + key' and the value is the value in the properties file for the
corresponding key. When retrieving messages, it is possible that after loading the properties
file for a particular locale, the desired key may not exist. In such situations, an attempt is
made to find a key that is less restrictive for the specified locale; this is accomplished by
stripping the locale variant from the key, if present, and doing another search with the less
restrictive key; if this search is unsuccessful, then the locale’s country code is stripped from
the key and another search is performed. If the key is found using the less restrictive version
of the locale, then the corresponding message is added to the message cache using the
complete original key without country code or variant stripping; this increases the number
of messages in the cache but provides faster response time for finding messages. If the key
is not found even after locale stripping, the default locale is loaded in the message cache, if
it already hasn’t been loaded, and the key search is performed with the key modified for the
default locale; if this search is unsuccessful, the base resource bundle without any locale
specification is searched. If the key is found using the default locale or the base bundle, the
corresponding message is added to the message cache using the complete original key.

Chapter 4: Struts-Based Application Architecture

Summary

Before embarking on a major project, it is always beneficial to evaluate off-the-shelf or
out-of-box solutions that address a significant part of the requirements. Implementing MVC
semantics for a request/response-based HTTP protocol demands significant investment of
time and effort. Selecting a suitable framework for solving this problem provides a head start
for a project while allowing the architects and developers to focus on realizing the business
use cases rather than integration semantics. This chapter has provided insight into Struts
framework, its MVC semantics, its configuration semantics, and the core services it offers
out-of-box. The knowledge gained from this chapter is instrumental in designing and
implementing the presentation tier components of Chapter 5. Chapter 5 will also cover the
Struts Validator for declarative form validation. More information on Struts and the related
configuration and installation instructions can be found at http://jakarta.apache.org/struts/
userGuide/index.html. Because Struts development is an ongoing endeavor, it is likely that by
the time you read this chapter, some of the implementation may change, therefore it is best to
complement the information provided in this chapter with release notes and updates posted at
http:// jakarta.apache.org/struts.

References

[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice-Hall, 2001)
[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

133

This page intentionally left blank.

CHAPTER

Presentation Tier
Design and
Implementation

IN THIS CHAPTER:

Implementing Struts Request Handlers and
Form-Beans

Implementing Presentation Tier Design Patterns
Designing with Struts Tags and Validator
Implementing Application Security

Realization of the Sample Application Use Cases
Abstracting Patterns from the Sample Application

topyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 135

136

Practical J2EE Application Architecture

hapter 1 started out with a high-level use case view. Chapter 2 employed information

architecture to move toward a detailed use case view. Chapter 2 provided us a sense

of process flow, transactional semantics, and subsystem interactions. Chapter 4 was a
look at using Struts as a framework of choice for implementing the presentation tier. If you have
not reviewed Chapter 4, please do so before proceeding with this chapter. The use case view
developed in Chapters 1 and 2 is employed for creating a project plan; this use case view can
provide us with essential information for planning work allocation to development teams, while
identifying architecturally significant use cases for building our first thread of end-to-end
functionality. The development process in this chapter follows the use case-driven approach;
this will provide us with the traceability required for adhering to the functionality prescribed
by the use cases in Chapters 1 and 2.

While the focus of Chapter 4 was to explain the architecture employed in creating a
presentation framework, and to provide the essential base for working with Struts, this chapter
focuses mainly on implementing the use cases using the Struts framework. Emphasis in this
chapter is on creating the static and dynamic models of the system, and identifying patterns
that provide repeatable solutions for solving complex user interactions. Templates can be
derived from these patterns for assisting the development team in establishing consistent
design vocabulary and implementation across all use cases. In this chapter, we will develop
presentation-side tier functionality for all the use cases identified by the packages GreaterCause
Site Administration, Manage Campaigns, and Search NPO. We have endeavored to implement
these use cases using different design implementation patterns to provide readers with insight
into leveraging the Struts framework in different ways; these patterns will serve as a starting
point from which to evolve and create more repeatable solutions by leveraging several other
features of Struts not covered by this book. Since the focus of this book is architecture, a
large portion of this chapter is dedicated to discussing design implementation patterns that
can be used repeatedly in creating consistent solutions across the system.

To follow along with this chapter, you may want to install the GreaterCause application, as
explained in Chapter 9. The complete administration functionality of the GreaterCause application
is rooted in the Administrator Services button on the GreaterCause.com home page. Appendix C
provides a complete site flow for Administrator Services.

NOTE

Readers of this book should have a basic knowledge of servlet and JSP technologies. In order to provide an
optimum reading time, we have deliberately tried to avoid explaining these technologies. Should you desire
to learn about servlets and JSPs, excellent tutorials are available at java.sun.com and at the sites of J2EE
container vendors.

The class diagrams depicted in this chapter will cover the presentation tier components
and related vocabulary; the business tier (service layer) model and associated design patterns
are explained and developed in Chapter 6 and Chapter 7. So long as the business interfaces
are clearly defined for the business tier, construction of components in the presentation tier
can be done in parallel with the construction of components in the business tier. In large projects,
we tend to use the specialized skill of a web production team, presentation tier engineers, and
business tier engineers. Therefore, for each use case being developed, the artifacts created by

Chapter 5: Presentation Tier Design and Implementation

this cross-functional team must be available at the right time for integration testing to proceed.
Parallel development of different tiers has to be managed effectively in order to provide a
cohesive set of deliverables that can be tested end-to-end; the key learning from the integration
testing can be leveraged by the subsequent iterations in creating quality deliverables.

Implementing Presentation Tier Classes

Because the presentation tier leverages the Struts framework for providing the controller
component, the number of classes participating in realizing each GreaterCause use case are
minimal; the heavy duty work is performed by the Struts itself. Whether you have a preference
for Struts or not, one important aspect of this discussion is to understand how simple the
development process is when an MVC-based implementation is provided as a bundled
solution. Our focus is on creating request handlers, and supporting helper classes such as
business Delegates, ActionForm subclasses (form-beans), and DTOs (data transfer objects).
We endeavor to identify the relationships between request handlers and the rest of the helper
classes, and use sequence diagrams to model the interactions between these classes. For each
use case, we shall create a single class diagram, and subsequently identify design patterns
that will abstract key interactions between the Views (JSPs), the Struts Framework, and the
classes participating in the realization of each use case.

The detailed use case view provides us with a clear understanding of the work flow involved
in accomplishing various application tasks. These application tasks, or actions, can be represented
as methods in the request handlers, and subsequently mapped to the business interfaces provided
by the service layer via the business delegates. At this juncture, we may find the need to
evolve the coarse-grained tasks defined in the use case into its constituent parts, and identify
suitable operations for these tasks on the class diagrams.

DEFINITION

ADTO (Data Transfer Object) represents a coarse-grained object that aggregates server side data before it is
serialized and marshalled across the wire from the business tier to the presentation tier or vice versa. The
purpose of using DTO is to reduce network traffic since calls made fo EJBs are expensive. The DTO pattern is
explained in Chapter 7, in the section “Data Transfer Object Pattern.”

DEFINITION

ABusiness Delegate is used to reduce the coupling between the presentation tier and the business fier; it
hides the implementation details of the business interfaces. Details are available in the section “Implementing
the Business Delegate Pattern.”

NOTE

The sequence diagrams depicted in this chapter have been distilled to make them easy to read while
maintaining focus on the key aspects of object interactions. As such, please refer to the code illustrations
or the accompanying source distribution for complete details.

137

138

Practical J2EE Application Architecture

Implementing ActionForm Subclasses

The properties defined in an ActionForm subclass follow the JavaBean patterns described
in Chapter 4. The Struts framework uses these patterns, that is the gef and sef accessor
methods, to manage the ActionForm (a.k.a. the form-bean, which is discussed in Chapter 4)
state. Struts uses the org.apache.commons.beanutils package to perform operations on
JavaBeans; this includes automatic type conversion (from request parameters to the form-
bean, and vice versa), handling simple and nested bean properties, and automatic field
initialization based on field type. The beanutils package provides increased productivity
and convenience of working with JavaBean-compliant classes.

Capturing Form Data

The primary function of an ActionForm subclass is to capture form data submitted by an HTML
document. The key/value pairs submitted as part of the HTTP request are used to populate the
properties specified in the ActionForm subclass. As such, you can implement an ActionForm
subclass for staging the data provided by the HTML form. The form-beans used by the
GreaterCause application are not limited to capturing information from a single form. In our
sample application, the site administrator has to typically go through two screens, one for
identifying the entity that it is going to impersonate (either the portal-alliance or a non-profit),

and the other for working with data pertaining to the entity. Multi-page interactions are explained
in the section “Multi-Page Pattern.” Another case of multi-page interaction is involved with
search semantics, where up to four screen interactions are possible; this is explained in the section
“Shared Request Handler Pattern.” As explained in Chapter 4, the data types used in form-beans
are transformed automatically from the String type of HTTP protocol to the target type used by
the bean properties. The initial value for blank fields is also set automatically by the framework
using helper classes from the beanutils package. Care should be taken to ensure that all form fields
are represented in the form-bean, otherwise the Struts framework simply ignores extra parameters
in the request. Also, you must try to prevent naming conflicts between the field names used in
the HTML form with the field names used within the form-bean for the purpose of managing
application state. In several cases, you can design a form that can handle input from multiple
pages; this technique reduces the number of forms used by the application, which in turn reduces
form clutter, increases manageability, and promotes modularity.

Validating Data

The ActionForm bean can optionally contain a validate method that is called either by the
framework or through the request handler classes. If the validate method is not to be invoked
by the framework, then you must set the validate attribute in the <action> element of the
struts-config.xml to "false"; otherwise the framework will automatically call the validate
method immediately after populating the form-bean. The semantics of the framework are
explained in Chapter 4. An alternate technique allowing declarative validation is provided
by the framework by extending the form-bean with the ValidatorForm class; this is discussed
in the section “Factoring Validator into the Design Process.”

For our sample application, we have deliberately set the validate attribute to "false". One
reason for doing this is the way the ValidatorForm behaves when used with the page property.
The validation.xml file (explained later) contains declarative validation, which could be tied

Chapter 5: Presentation Tier Design and Implementation

to a numeric page identifier. The page attribute in validation.xml controls which validations
must be evaluated based on the value of the page property in the form-bean. If the page
number associated with the page property of the form is #, then all validations with page value
n and less are evaluated. For the GreaterCause application, this behavior is not desired since
the sequence of pages shown to the user is based on the administrator type, and therefore the
set of validations associated with a site administrator will fail for other types of administrators
for whom a corresponding form was not processed and the data was not collected; the sample
application therefore explicitly calls the validate method from the request handlers. Another
reason for not letting the framework automatically call the validation is to have control over
which pages get shown when the validation fails. The automatic validate method by the
framework is inflexible when dealing with several <forward> possibilities. Should a validation
fail, the framework will automatically invoke the URL associated with the <forward>
element that has the same name attribute as the input attribute on the <action> element.
Using automatic validation implies that only one response view is possible no matter which
form gets submitted. The GreaterCause application has several <forward> elements
associated with an <action> element, therefore the validate method is explicitly called by the
request handlers, and the use of the input attribute on <action> elements is not entertained.

Managing Application State

The GreaterCause application uses form-beans to manage the application state. One reason for
doing this is because the state of the application is very much influenced by the form-bean’s
page and action properties; the second reason is that state information cannot be stored in
the request handlers since request handlers are not thread safe. The action property is used in
identifying an action associated with a link or a button that the system remembers and adapts
its behavior based on the value; one such case is when a single form is used to create, update,
and view the registration information associated with a Portal-Alliance or a non-profit (NPO).
The page property is useful in identifying the pages in a multi-page interaction; the ValidatorForm
(that extends ActionForm) contains the page property that can be used to number the forms
participating in a multi-form interaction. The page property is useful in creation of wizard-like
behavior. The action property combined with the page property makes the request handlers
highly modular in that a single request handler can be used to handle a variety of forms and
user actions. The multi-page pattern, multi-action pattern, and Shared Request Handler pattern
(all patterns are explained later in the chapter) rely on this mechanism in creating highly
flexible request handlers. Using state information, we are able to package related functionality
within a single request handler class rather than spreading out related functionality across
multiple action classes; this increases manageability and promotes modularity.

Transferring ActionForm Properties to DTO

Although form-beans can function as data transfer objects (DTOs), it is not advisable to do so
because form-beans are “presentation layer centric.” The Ul is the most volatile part of the
system, therefore we want to shield the business tier from changes in the form-beans of the
presentation tier. For service layer calls, especially when using EJBs, it is desirable to make
fewer calls to increase throughput. The Value Object pattern recommended by Core J2EE
Patterns [Core] is used for transferring data between application tiers using objects (a.k.a. DTOs)
whose level of granularity is coarse; this is further explained in Chapter 7. The process of

139

140

Practical J2EE Application Architecture

transferring form data staged in the form-bean to data transfer objects, and vice versa, is greatly
simplified if data transfer object and form-beans use the same naming convention for property
accessors. The beanutils package provides helper classes for transferring the state from one
bean to another; the GreaterCause application uses the method PropertyUtils.copyProperties(
toBean, fromBean) from the beanutils package to accomplish this transfer in a single method
call. The DTOs are typically designed by the service layer developer and contain flags for
identifying whether a particular property was modified; these flags are used in optimizing
method calls in the domain layer (see Chapter 6 for details) when modifying entity bean
properties. The DTOs are packaged with both the web module (.war) and the EJB module
(.jar) because these objects are common to both the web tier (presentation tier) and the EJB
tier (business tier for GreaterCause).

Managing the Form-Bean Life Cyde

The scope attribute on the <action> element in the struts-config.xml file instructs the
Struts framework about placement of the form-bean, upon its creation, in either the request
object or the session object. When request scope is chosen, the form is placed in the

request object and made available to the next resource invoked by the framework using the
RequestDisptacher.forward method. The request objects are valid only within the scope of

a servlet’s service method, therefore the form-bean is not valid in the next invocation of the
service method. The GreaterCause application uses the session scope to store all forms because
all form-beans are designed to support multiple forms; employing this technique puts the
responsibility of removing the form-beans on the developer when such beans are no longer
useful. Keeping the form-beans in the session provides an added benefit of reuse when
existing form-beans need to be frequently recycled during a user session; for such forms the
reset method is implemented to prevent the annoyance of stale data being displayed to the
users. Recall from Chapter 4 that the reset method is automatically called by the Struts
framework just prior to form-bean population, so care must be taken in creating a reset method
for cases where form data is captured from multiple forms. For such cases, it is best to check
the page property and then conditionally initialize form-bean properties.

Implementing Request Handlers

Request handlers implement the Command pattern [Gof]. The controller servlet maps a request
to the execute method of a request handler. The request handler is a subclass of the Action
class, or any of the classes specified in the org.apache.struts.actions package; all classes in
this package extend the Action class. In our sample application, we use the Action class as
well as a variant of this class, the DispatchAction class from the actions package. The request
handlers are cached by the controller and used for servicing subsequent requests from any
user, as such, the request handlers are not thread safe; any state information pertaining to a
user must not be stored in request handlers. Consider request handlers as an extension of the
controller servlet; as discussed in Chapter 4, it is the controller servlet that instantiates the
dispatcher, which in turn instantiates a request handler. One can write directly to the response

Chapter 5: Presentation Tier Design and Implementation

stream from request handlers or pass control to another resource using the RequestDispatcher
Jorward method; the common practice is that a request handler will service a request, and
when exiting its execute method, it will return an ActionForward object to the dispatcher
instructing the dispatcher which view should be displayed next. When the request handler uses
the RequestDispatcher.forward method, it can return a null as ActionForward to indicate to the
controller that a response has already been sent and that the controller should take no further
action. A typical request handler will have the following logic. This snippet has been taken from
the class PortalAllianceRegistrationAction (Register Portal-Alliance use case); the code has
been modified and made generic. Please refer to the accompanying source distribution for the
exact code.

public ActionForward execute(ActionMapping mapping, ActionForm form,
HttpServletRequest req,HttpServletResponse res) throws Exception {
PortalAllianceRegistrationForm regForm =
(PortalAllianceRegistrationForm) form;
ActionErrors errors = new ActionErrors();
/* Check transaction token to ensure that the page is not stale.
* This check will also invalidate the token. isTokenValid()
* method is synchronized on the session object */
if (!isTokenvalid(req, true)) {
errors.add(ActionErrors.GLOBAL_ERROR,
new ActionError("error.invalidToken"));
saveErrors(req, errors);
/* Redisplay the input form; this stale page does not
* need transaction token */
return mapping.findForward("ShowPage");
}
/* Validate the form fields */
errors = form.validate(mapping, req);
if (l!errors.empty()) {
saveErrors(req, errors);
saveToken(req);
/* Redisplay the input form */
return mapping.findForward("ShowPage");
}
PortalAllianceRegistrationDTO dto = new PortalAllianceRegistrationDTO() ;
/* Transfer form properties to DTO */
try { PropertyUtils.copyProperties(dto, regForm); 1}
catch (InvocationTargetException e) {
Throwable rootCause = e.getTargetException() ;
if (rootCause == null) { rootCause = e; }
throw new ServletException(rootCause);
}
catch (Throwable e) { throw new ServletException(e); }
/* Access service layer using the delegate */
PortalAllianceRegistrationDelegate delegate =
PortalAllianceRegistrationDelegate.getInstance() ;

141

142 Practical J2EE Application Architecture

try { delegate.createPortalAllianceRegistration(req, dto); }
/* Catch service layer Exception */
catch (GCNestingException e) {
errors.add(ActionErrors.GLOBAL_ERROR,
new ActionError(e.getMessageToken()));
saveErrors(req, errors);
/* Create a new token before redisplaying the page */
saveToken(req);
return mapping.findForward("ShowPage");
}
/* Clean up the form-bean */
reqg.getSession () .removeAttribute("PortalAllianceRegistrationForm") ;
/* Specify the next View */
return mapping.findForward("success");

The request handler can check the transaction token, perform form validations, and interact
with the model using the business delegate. Token usage is discussed in Chapter 4. The sample
application sets the transaction token for every transactional page; it then checks this token for
validity when the request handler gets the control, and rejects any request with a stale token.

Managing User-Specific State

An ActionMapping object, created from the <action> element of the struts-config.xml file,
is associated with a single request handler and a single form-bean. Other than the simplest
scenarios, one can seldom expect that a single request handler will process a single page with
a single operation. An example of such operations (which we subsequently refer to as “action”)
in the context of the sample application are the create/update/view actions on the registration
page. It is highly unlikely that one will create three different request handlers for accommodating
three different actions, because it will create manageability issues and defeat modularity.
Among the available solutions, we will discuss the multi-page pattern and the multi-action
pattern (using both the Action subclass strategy and DispatchAction subclass strategy) that
uses the form-bean to manage application state; this state is queried by the request handler
for deciding the process flow.

Although in most cases the Struts framework will instantiate and initialize the form-bean
associated with a request handler (as specified by the #ype attribute in the <form-bean>
element of struts-config.xml file), sometimes it becomes necessary for the request handlers
to instantiate the form-beans required by a subsequent view. The sample application uses this
technique when it invokes the search facility. The search facility is a common service available
to any request handler wanting to couple itself with the search facility. The search facility’s
request handler has to remember the calling request handler such that it can seamlessly transfer
control back to the calling request handler after the search request is satisfied. To enable this,
the calling request handler has to instantiate the form-bean associated with the search facility
and set the action property that will instruct the search facility which ActionForward it
should use when exiting; this is explained in the section “Shared Request Handler Pattern.”

Chapter 5: Presentation Tier Design and Implementation

Implementing the Business Delegate Pattern

A business delegate [Core] provides an extra level of indirection in accessing business tier
services. A delegate essentially decouples the presentation tier from the business tier by
brokering all calls from the presentation tier to the business tier. This design protects the
presentation tier from changes in the business tier interfaces so long as the delegate is able
to adapt the new business tier interface to existing method calls from the presentation tier.
The business delegate also encapsulates the JNDI lookups, which reduces the complexity
of the request handlers. Following is an example of a business delegate that is implemented
to access the registration services of the EJB com.gc.services.admin.SiteAdminBean. The
complete code is available in the accompanying source distribution. If you want to learn
more about the package structure and naming conventions used by the sample application,
please refer to the section “Identifying Package Dependencies.”

package com.gc.prez.admin;
public class ManageNPODelegate {
private ManageNPODelegate () {
super () ;
}
/* Implement the Singleton pattern */
public static ManageNPODelegate delegate =
new ManageNPODelegate() ;
public static ManageNPODelegate getInstance() {
return delegate;
}
/* Get the remote reference of the EJB */
public NPOAdmin getBusinessInterface(HttpServletRequest req)
throws Exception {
/* Use the generic Service Locator */
ServicelLocator service = ServiceLocator.getInstance();
NPOAdmin businessInterface =
(NPOAdmin)service.getRemoteForStateless(NPOAdminHome.class);
return businessInterface;
}
/* Access the business tier service */
public NPOProfileDTO getNPOProfileDTO(HttpServletRequest redq,
String ein, String adminID) throws Exception {
NPOAdmin businessInterface =
getBusinessInterface(req);
try {
return (NPOProfileDTO)businessInterface.getNPOProfile (
ein, adminID);

143

144 Practical J2EE Application Architecture

}
catch (RemoteException e) {
throw new ServletException
(Constants.Communication_ Error, e);

. rest of the code ...

The sequence diagram of Figure 5-1 illustrates the business delegate interactions. The request
handler method ManageNPOAction.showNPOProfile() will access the delegate. The delegate in

% action manageNPODelegate service businessinterface
bicct ManageNPOAction ManageNPODelegate Servicelocator NPOAdmin
objec : .

1: i E
showNPOProfile(ActionMapping, ActionForm, HttpServletRequest,
HttpServletResponse):ActionForward

»L
»

try

ifinpoForm.getPage()==1)

1.1.1.1: dto:=getNPOProfileDTO(req, npoForrﬁ.gefEin(),
nu||):NPOPro|:i|eDTOI
1.1.1.1.1: businesslnterche:=getBusiness|qterFqce

(req):NPOAdmin | '

1.1.1.1.1.1: getRemoteForStateless(NPOAdminHome.class,
req.getSession()):Object

L
T try

1.1.1.1.2.1: gefNPOIProfiIe{ein, adminlD}:NPOProfi/eDTO

U

LT

Y

Figure 5-1 Business delegate sequence diagram

Chapter 5: Presentation Tier Design and Implementation

turn will get the remote reference to the business layer EJB using the getBusinessinterface method,
and subsequently access the business tier service getNPOProfile().

Implementing the Service Locator Pattern

The Service Locator encapsulates the logic for creating the initial context, JNDI lookup, and
EJB remote reference creation. The service locator also optimizes access to EJBs by caching
home references and EJB objects. It reduces code complexity for the business delegates
whose only concern is to obtain the remote reference from the service locator and use it for
making calls to the business tier. The sample application provides a more generic approach
to implementing service locators using the reflection API; this has resulted in a single service
locator for the entire GreaterCause application. You may want to evolve this implementation
to suit your unique project requirements. The service locator implemented with the GreaterCause
application provides the following generic service locator methods.

NOTE

For the GreaterCause application, the JNDI names follow the naming convention ejh/homelnterfaceName.
This convention is used while implementing the methods of the service locator.

P getRemoteForStateless(Class homeClass,) This method will accept a stateless EJB
home interface name and return a remote reference for the EJB. Home reference
caching is used for optimization.

» getRemoteForStateless(Class homeClass, Object[] args,) This method will accept
a stateless EJB home interface name and return a remote reference for the EJB. This
method is called when the create method of the home interface accepts arguments; the
arguments are passed to the create method using Object/]. Home reference caching is used
for optimization.

» getRemoteForStateful(Class homeClass, HttpSession session) This method will
accept a stateful EJB home interface name and return a remote reference for the EJB.
This method caches an EJB handle in the HttpSession for subsequently getting the
remote reference. Because the bean is stateful in nature, the corresponding EJB handle
is saved in HttpSession as against a globally available cache that was used for caching
home references in getRemoteForStateless method implementations. An EJB handle
object is saved in the HttpSession instead of the remote reference because remote
references are not guaranteed to be serializable when the HttpSession is passivated
by the servlet engine.

The following demonstrates a simple service locator implementation that employs the
reflection API. Please note that this version is abridged for improved readability; only one

145

146 Proctical J2EE Application Architecture

method from those listed is shown. The complete code is available in the accompanying
source distribution.

package com.gc.prez.common;
public class ServiceLocator {
/* Implement Singleton Pattern */
private static ServiceLocator service = new ServiceLocator();

private Class[] parmsGlobal = new Class|[0];
private Object[] argsGlobal = new Object[0];
private HashMap ejbHomeCache
private ServiceLocator () {
super () ;

}
public static ServiceLocator getInstance() {
return service;
}
/* Get InitialContext for JNDI lookup() */
private InitialContext getInitialContext () throws ServletException {
Properties env = new Properties();
env.put (Context.INITIAL_CONTEXT_ FACTORY,
"weblogic.jndi.WLInitialContextFactory");
/* Provide the appropriate URL based on your server configuration */
env.put (Context.PROVIDER_URL, "t3://localhost:7001");
try {
return new InitialContext(env);
}
catch (NamingException e) {
rest of the code

}
public Object getRemoteForStateless(Class homeClass,
session) throws ServletException {
/* Get the cached home reference (EJBHome reference) */
Object ejbHomeInterface = ejbHomeCache.get(homeClass.getName());
try {
if (ejbHomeInterface == null) {
InitialContext ic = this.getInitialContext () ;
Object home = ic.lookup("ejb/" +
homeClass.getName ());
/* Create home reference (EJBHome reference) */
ejbHomeInterface =
PortableRemoteObject.narrow(home, homeClass);

Chapter 5: Presentation Tier Design and Implementation

ejbHomeCache.put (homeClass.getName (),

ejbHomeInterface) ;
}
Method method = homeClass.getMethod("create", parmsGlobal);
/* Create remote reference (EJBObject reference) */
Object ejbRemoteInterface =

method. invoke(ejbHomeInterface, argsGlobal);

return ejbRemoteInterface;

}
catch (NamingException e) {
. rest of the code ...

Factoring Tags into Design Process

Custom tags bundled with Struts are organized into several tag libraries; the sample application
uses Struts-provided bean, html, and logic tag libraries along with an application-specific
GreaterCause tag library. Only some of the custom tags provided with Struts depend on the
Struts framework; most tags can be used without the Struts framework. The following brief
discussion has been included to demonstrate the impact of tags on the design process.
Tags are like any other Java classes and should be factored into your overall design process.
For additional details and a full list of custom tags and their functionality, please refer to
http://jakarta.apache.org/struts/userGuide/index.html, and http://jakarta.apache.org/struts/
resources/index.html; the resources section at this URL lists several good books for learning
about Struts in greater detail.

The main purpose of using custom tags is to avoid coding scriptlets in JSPs. Scriptlet
usage is highly discouraged because it embeds Java code within the JSP, which makes the
JSP less modular and maintainable. Factoring all logic from JSP into tags reduces the
complexity of the JSP, and provides flexibility for web production engineers who have to
only work with a defined set of tags without concern for coding any logic. Code reuse is yet
another reason why Java code must not be embedded in JSPs. The sample application uses
the custom bean tags to retrieve bean properties for dynamic HTML generation; it uses the
custom logic tags to test the values of form-bean properties for conditional processing; and it uses
the custom Arml tags for dynamically generating HTML page elements.

NOTE

Several fags designed to work with JavaBeans have three essential atfributes. The name attribute provides
an identifier using which a JavaBean is saved and retrieved from the context specified by the scope afribute,
and the property aftribute specifies the property of the named JavaBean.

147

148

Practical J2EE Application Architecture

The following is a sampling of custom tags used in the JSP page 2 1 PortalAllianceRegistration
Jsp. The process of portal-alliance registration is explained in the use case “Register Portal
Alliance” in Chapter 1. Let’s examine how some of these custom tags factor into the design
decisions:

>

<html:errors/> The request handlers and form-beans accumulate validation errors in
the ActionErrors object. The sample application uses the <html : errors/> tag for
subsequently displaying the accumulated errors. Chapter 4 discusses this tag in detail.
Struts 1.1 offers the <html : messages> tag, which has more capabilities than the
<html:errors/>tag.

<html:form method="POST" action="/PortalAllianceRegistration.do'"> This
tag makes use of the Struts framework in identifying the ActionMapping configuration
object associated with the path="/PortalAllianceRegistration". The mapping specification
assists the tag in identifying and creating (if not already existing in the specified scope)
the form-bean associated with the ActionMapping object, and pre-populating the HTML
form with the values specified in the form-bean. The action attribute of the HTML form
tag is dynamically generated using the context-relative path name. This is important
when changing the context path name because no corresponding change is required in
the JSP since it is not hard coded in the JSP.

<html:hidden property="page'" value="2"/> This tag is used to create an HTML
<input> element with an input type of hidden. The sample application uses hidden
fields for saving process flow—related state of the application in the form-beans. The
request handlers of the sample application use hidden properties in the HTML form for
tracking multi-page form interaction using the page property of the form beans, and
for tracking the actions embedded within the forms using the action property of the
form-beans.

<bean:message key=""PortalAdminServices.registration'/> The sample application
is an internationalized application. This tag plays a vital role in internationalizing the
application. It accepts a key and a set of optional arguments to generate a localized
label, prompt, error message, or a heading from the resource bundle specified by the
<message-resources> tag in the struts-xml.config file. Please refer to Chapter 4
for information on internalization and localization.

<bean:write name=""PortalAllianceRegistrationForm" property=
"activationDate"/> This tag is used to extract the specified property from the bean
Portal AllianceRegistrationForm that is stored in one of the contexts, and write it to
the output stream. The sample application uses the <bean :write> tag for fields
that are read-only, as is the case when viewing the registration data, or displaying

the Portal ID, or the EIN.

<logic:equal name=""PortalAllianceRegistrationForm' property="action"
scope="session'" value="Create"> This tag is used in the sample application for
enabling a single JSP to create different views based on the action property of the

Chapter 5: Presentation Tier Design and Implementation

form- bean Portal AllianceRegistrationForm. The action property associated with
the form-bean Portal AllianceRegistrationForm stores the processing state of the
application, which could take the value Create, Update, or View. Conditionally
executing logic based on the value of the action property renders the same page
differently for each action property variation.

Several other tags are used in the sample application. You can learn more about these
tags at the URL suggested earlier in this section. The procedure for installing and using tag
libraries is explained in Chapter 9. It is apparent from the preceding discussion that a good
part of application functionality that pertains to rendering views can be factored into tags; as
such, the architect must be cognizant of its impact to the overall development process, and
define appropriated usage scenarios or patterns for the development team.

Factoring Validator into the Design Process

Use of the Jakarta Commons Validator influences the design direction by providing yet another
option for the creation of form-beans. The validate method of the ActionForm subclass, or
the validations embedded within the request handlers are only one way of doing server-side
validations. By extending the form-bean with the ValidatorForm class, the framework
provides the ability to perform both client-side and server-side validations using declarative
style of validations. This declarative style of specifying validations for form elements greatly
reduces the need to code common validations that are used with almost every form submission.
Common validations such as required fields, field formats (date, phone, zip, e-mail address,
and so on), numeric or not, field length checking, and so on, are repeatedly coded by developers,
therefore increasing the code volume and redundancy. Abstracting these common validations
into another layer promotes reuse.

The Validator services are injected into the Struts framework using the following declaration
in the struts-config.xml file:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathnames"
value="/WEB-INF/validator-rules.xml, /WEB-INF/validation.xml" />
</plug-in>

The Validator requires the following two configuration files:

» Validator-rules.xml This file contains the basic validators that are packaged with the
framework.

» Validation.xml In this configuration file, we specify the validations associated with
the form-bean properties. A condensed version of this file from the sample application
is shown next; it demonstrates several different kinds of validations.

149

150 Proctical J2EE Application Architecture

NOTE

A detailed discussion of Validator is available at http://home.earthlink.net/~dwinterfeldt/overview. html,
For installation instructions, please refer to Chapter 9.

<form-validation>
<formset>
<form name="PortalAllianceRegistrationForm">
<field property="portalID" page="1"
depends="required,minlength, maxlength">
<arg0 key="prompt.PortalID" />
<argl key="${var:minlength}" name="minlength"
resource="false"/>
<arg?2 key="${var:maxlength}" name="maxlength"
resource="false" />
<var>
<var-name>maxlength</var-name>
<var-value>l6</var-value>
</var>
<var>
<var-name>minlength</var-name>
<var-value>3</var-value>
</var>
</field>
rest of the declarations
<field property="email" page="2" depends="required,email">
<arg0 key="prompt.email" />
</field>
<field property="activationDate" page="2"
depends="required,date">
<arg0 key="prompt.ActivationDate" />
<var>
<var-name>datePatternStrict</var-name>
<var-value>yyyy-MM-dd</var-value>
</var>
</field>
rest of the declarations
</form>
<form name="ManagePortalAllianceForm">
<field property="firstName" depends="required">
<arg0 key="prompt.FirstName" />
</field>
<field property="lastName" depends="required">
<argl key="prompt.LastName" />
</field>

Chapter 5: Presentation Tier Design and Implementation

<field property="email" depends="required,email">
<arg0 key="prompt.email" />
</field>
<field property="phone" depends="required">
<arg0 key="prompt.Phone" />
</field>
<field property="searchLimit" depends="required, Integer">
<arg0 key="prompt.SearchLimitLabel" />
</field>
</form>
rest of the declarations ...
</formset>
</form-validation>

The Validator framework provides support for internationalization by using the same
resource bundle as the Struts framework. For the sample application, this resource file is
identified in the struts-config.xml file using the <message-resources> element. In the
validation.xml file, the page attribute has been used on several <field> elements. The
purpose of this attribute is to selectively fire away the validations depending on the value
of the page property in the form-bean. The page property is provided by the base class
ValidatorForm, and is populated from a hidden field specified within an HTML form. For a
given page with value #, all validations that pertain to the page numbered # and less will be
evaluated. When the page property is not specified in a JSP, it is initialized to 0 by the
form-bean (unless initialized previously to some other value).

NOTE

Since this book is focused on architecture and design, we have deliberately kept the examples light on
programming aspects such as writing comprehensive validations. Effort has been made to bring to light
those components of the application that are significant in understanding the architecture and design
aspects during the development life cycle.

When the basic validations provided by the Validator are inadequate, you may need to
override the validate method of the ValidationForm subclass. When additional validations
are desired in a form-bean, create a validate method in the ValidatorForm subclass that calls
super.validate method to perform Validator-based validations, and then perform additional
validations in the subclass’s validate method. The following sample application uses this
technique for the ManagePortalAllianceForm.validate method; refer to the section “Manage
Portal-Alliance Profile Use Case” for additional details. By employing the page attribute
property in the ManagePortalAllianceForm.validate method, we are able to process different
sets of validations for different process flows.

public ActionErrors validate(ActionMapping mapping,
HttpServletRequest req) {

ActionErrors errors = new ActionErrors|();

/* page 1 is for identifying a Portal ID */

if ((page == 1) && ((portalID == null) ||

151

152

Practical J2EE Application Architecture

(portalID.trim().length() <1))) {

errors.add("portalID", new ActionError("error.portalID.required"));
}
/* page 2 is for updating the profile of a portal-alliance */
else if ((page ==) && (action.equals("updateProfile"))) {

errors = super.validate(mapping, req):;

if (searchLimit.intValue() < 10) {

errors.add("searchLimit",
new ActionError("error.PortalAllianceProfile.SearchLimit"));

}

return errors;

|dentifying Package Dependencies

Let’s revisit the package diagram depicted in Chapter 1 (Figure 1-4); the package dependencies
depicted in this diagram were an approximation based on our requirements. After creating the
class diagrams for the use case packages GreaterCause Site Administration, Manage Campaigns,
and Search NPO, we are able to discern the true dependencies between these packages. Although
it is likely that the design time packages may deviate from the analysis model, the simple
nature of our system follows the same packaging convention, both at analysis and design
time. For the sake of manageability, the package naming conventions used by the sample
application in the presentation tier and the business tier follow the following convention.

Presentation Tier Business Tier

com.gc.prez.admin com.gc.services.admin

com.gc.prez.managecampaigns com.gc.services.managecampaigns

com.gc.prez.searchnpo com.gc.services.searchnpo

This naming convention makes the process of identifying related components fairly intuitive.
The package dependencies are illustrated in Figure 5-2.

Packaging is convenient for collocating related classes into self-contained units. When a large
number of classes are responsible for realizing use cases, then it is best to use an extra level
of package nesting; nesting more than a couple of levels will make the packaging structure
unwieldy. Packaging is very helpful in promoting parallel development since each package
and its constituent use cases expose an interface that provides the required services to the
dependent packages. It is not uncommon to call each package a subsystem. A subsystem is
a grouping of components whose behavior constitutes the behavior offered by the contained
elements. The dependencies between packages shows the impact the dependent classes can
have when package elements are modified. In Chapter 1, while modeling the system context
of a use case, package dependencies were articulated by showing use cases in other packages
as actors.

Chapter 5: Presentation Tier Design and Implementation

]
admin

]

+NPORegistrationAction
+NPORetgistrationForm

+ManagePortalAllianceForm

+ManagePortalAllianceAction
+ManageNPODelegate
+ManageNPOAction
+NPORegistrationDelegate
+ManageNPOForm

+PortalAllianceRegistrationDelegate <
+PortalAllianceRegistrationForm

+ManagePortalAllianceDelegate

+PortalAllianceRegistrationAction

managecampaigns

+ManageCampaignsForm
+ManageCampaignsDelegate
+UpdateCampaignsAction
+CreateCampaignAction

A4

+Servicelocator

+Constants

common K------

+AdminLoginAction K-

_________________________>

I m o

searchnpo

+SearchAndListNPOAction
+SearchAndListNPOForm
+SearchAndListDelegate

Figure 5-2 Administration Services package diagram

Implementing Application Security

The sample application uses a container-provided authentication and authorization
mechanism. The servlet specification prescribes declarative security, which is the means

of expressing an application’s security structure including roles, access control, and
authentication requirements in a form external to the application. For the sample application,
the security configuration is specified declaratively in the deployment descriptor (web.xml)
using the <security-constraint> element for protecting web resources as follows:

<security-constraint>

<display-name>Administration Gateway</display-name>

<web-resource-collection>

<web-resource-name/>

<description>Administration Menu</description>

<url-pattern>/AdministratorServices.do</url-pattern>

<http-method>POST</http-method>
<http-method>GET</http-method>
</web-resource-collection>

<auth-constraint>

<description>Administrator Access</description>

<role-name>NPOAdministrator</role-name>

<role-name>PortalAdministrator</role-name>

153

154

Practical J2EE Application Architecture

<role-name>SiteAdministrator</role-name>
</auth-constraint>
</security-constraint>

In this deployment descriptor specification, the resource identified by the <url-
pattern> element (/AdministatorServices.do) is protected by the container from unauthorized
access. The security constraints apply to the specified HTTP methods. Only users in the role
specified by the <role-name> (within <auth-constraint>) specification will be able
to access this resource. The security constraints are effective only when the client tries to
directly access the protected resources; resources are not protected when a servlet invokes
another resource using the RequestDispatcher.forward() or RequestDisptacher.include().

It is advisable to control resource access using container provided authentication and
authorization because the process of requesting user credentials, validating and maintaining
login credentials, and subsequently tracking access to requested resources is provided by the
container based on standards established for providing these services. This significantly reduces
custom code and leverages the security solutions provided by vendors. J2EE application
servers use the JAAS (Java Authentication and Authorization Service) framework for
providing user authentication, and for enforcing access control. The JAAS authentication
framework is based on Pluggable Authentication Module (PAM), and therefore supports an
architecture that allows system administrators to plug in the appropriate authentication services to
meet their security requirements. With the availability of new or updated authentication services,
system administrators can easily plug them in without having to change existing applications.
To write your own LoginModule for the JAAS framework, please refer to http:/java.sun.com/j2se/
1.4/docs/guide/security/jaas/JAASLMDevGuide.html, and http://java.sun.com/security/jaas/
doc/api.html. Container vendors also provide useful templates as a starting point for writing
JAAS extensions. JAAS was also discussed in Chapter 3.

The sample application uses the default security realm provided by the container; this
security realm has limitations, but one could write custom JAAS LoginModules or procure
a vendor-provided extension that seamlessly plugs into the JAAS framework. This style of
managing security employs container-managed authentication and authorization, which
makes the code portable across different vendor implementations. Also, third-party vendors
provide support for JAAS framework, thus enabling wider choice of security solutions.

The sample application also employs programmatic security. Programmatic security is
provided using the following methods of the HttpServletRequest interface:

» getRemoteUser
» isUserInRole
» getUserPrincipal

The getRemoteUser method returns the username that was used in the login page. The
login page is shown to an unauthenticated remote user when the user tries to access a
protected resource. Form-based authentication is used when a developer wants to control
the look and feel of the login screen. The login form must contain fields with the name

Chapter 5: Presentation Tier Design and Implementation

j_username for entering a username, and j password for entering the password; the action
of the login form must always be j_security check. The login form used by the sample
application is shown here. Refer to AdministratorLogin.jsp for complete code.

<form method="POST" action="j_security_check" name="adminLogin">
<table border="0" cellspacing="0" cellpadding="5">
<tr>
<td class="txt"><bean:message key="Login.AdministratorID"/></td>
<td><input type="text" name="j_username" size="16", maxlength="16"></td>
</tr>
<tr>
<td class="txt"><bean:message key="Login.Password"/></td>
<td><input type="password" name="j_password" size="16" maxlength="16"></td>
</tr>
<tr>
<td> </td>
<td><html : submit><bean:message key="prompt.submit"/><html:submit></td>
</tr>
</table>
</form>

When the user tries to access a protected resource, the container will send the login form
to the user. Once the user posts the username and password to the server, the container will
attempt to authenticate the user. Upon successful authentication the container will redirect
the user, along with the original request parameters, to the resource originally requested; the
redirection to the requested resource will occur only if the user is in the role authorized for
accessing the resource. Form-based authentication is usually used with a secure transport
mechanism like SSL (using HTTPS protocol). In order to use HTTPS, specify <user-
data-constraint> in the deployment descriptor as follows.

<security-constraint>
<display-name>Administration Gateway</display-name>
<web-resource-collection>
rest of the declarations
</web-resource-collection>
<auth-constraint>
rest of the declarations
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
<user-date-constraint>
</security-constraint>

155

156

Practical J2EE Application Architecture

If the original request was over HTTP, and CONFIDENTIAL is specified, the container will
redirect the client to the HTTPS port. For further information on switching between the HTTP
and HTTPS protocols using the Struts framework, please refer to http://sslext.sourceforge.net.

The Ffollowing declarations are used in the web.xml file to specify a login page that uses
form-based authentication:

<login-config>
<auth-method>FORM</auth-method>
<realm-name>myrealm</realm-name>
<form-login-config>
<form-login-page>/1_3_AdministratorLogin.jsp</form-login-page>
<form-error-page>/1_3_AdministratorLoginFailure.jsp</form-error-page>
</form-login-config>
</login-config>

Other forms of authentication include basic, digest, and client authentication. Please refer
to the URL http://java.sun.com/j2ee/tutorial/1 3-fcs/doc/Security.html for further information.

The use of isUserInRole determines if a remote user is in a specified security role. A
group is a collection of users; users within a group inherit the access privileges assigned to
the group. Roles are assigned either at the group level or user level. The container enforces
access to resources based on roles. We saw previously how this is accomplished using the
<auth-constraint> declarations in the deployment descriptor.

The System Administrator creates groups and users (called principals) in the security
realm. Please refer to Chapter 9 for complete details on setting up groups and users in the
security realm. The principal-to-role mapping is declared in the WebLogic-specific deployment
descriptor weblogic.xml as follows:

<security-role-assignment>
<role-name>NPOAdministrator</role-name>
<principal-name>NPOAdmin</principal-name>
</security-role-assignment>
<security-role-assignment>
<role-name>PortalAdministrator</role-name>
<principal-name>PortalAdmin</principal-name>
</security-role-assignment>
<security-role-assignment>
<role-name>SiteAdministrator</role-name>
<principal-name>SiteAdmin</principal-name>
</security-role-assignment>

During code construction, developers can freely choose role names for use in programs;
at deployment time, roles created by the system administrator are mapped to the ones defined
by the developer using the following mapping in web.xml.

Chapter 5: Presentation Tier Design and Implementation 157

System administrator—defined roles are listed below here:

<security-role>
<role-name>SiteAdministrator</role-name>

</security-role>

<security-role>
<role-name>PortalAdministrator</role-name>

</security-role>

<security-role>
<role-name>NPOAdministrator</role-name>

</security-role>

The following is the mapping of system administrator—defined roles and roles used in
the programs:

<servlet>
rest of the declarations
<security-role-ref>
<role-name>SiteAdminRole</role-name>
<role-link>SiteAdministrator</role-link>
</security-role-ref>
<security-role-ref>
<role-name>PortalAdminRole</role-name>
<role-link>PortalAdministrator</role-link>
</security-role-ref>
<security-role-ref>
<role-name>NPOAdminRole</role-name>
<role-1link>NPOAdministrator</role-link>
</security-role-ref>
</servlet>

The sample application uses three different roles, as illustrated in the preceding snippet.
These three roles influence the application logic in how the Views are selected and processed,
and how the resulting form data is handled. The sample application uses a special pattern to
handle programmatic security, as illustrated by the following code:.

public class AdminLoginAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest redq,
HttpServletResponse res) throws Exception {
HttpSession session = reqg.getSession(true);
if (reqg.isUserInRole("SiteAdminRole")) {
session.setAttribute("GreaterCause.AdminRole",
"SiteAdminRole") ;

158

Practical J2EE Application Architecture

}

else if (reqg.isUserInRole("PortalAdminRole")) {
session.setAttribute("GreaterCause.AdminRole",
"PortalAdminRole") ;

}
else if (reqg.isUserInRole("NPOAdminRole")) {
session.setAttribute("GreaterCause.AdminRole",
"NPOAdminRole") ;
}

return mapping.findForward("success");

The AdminLoginAction class is invoked by the Struts controller when access to the protected
resource 2_SiteAdministratorServicesMainPage.jsp is attempted. The corresponding declaration
in the struts-config.xml file is shown here:

<action path="/AdministratorServices"
type="com.gc.prez.common.Adminl,oginAction">
<forward name="success"
path="/2_SiteAdministratorServicesMainPage.jsp" redirect="false"/>
</action>

At first glance, it may seem that 4dminLoginAction is redundant because it simply provides
a mapping between the role names used in the web.xml file to the role names used in the
application. Although not demonstrated in the AdminLoginAction class, this class has been
designed based on the fact that many eCommerce applications have to rely on runtime
variables and user entitlements for dynamically configuring a user-centric process flow;
isUserInRole() is not adequate in such scenarios. AdminLoginAction provides a hook for
evaluating other runtime parameters in deciding the most appropriate system behavior
tailored to the user’s environment rather than just the role name. The sample application
leverages the information saved in the session to define a custom hasAccess tag to provide
dynamic behavior in views (JSPs); this tag is used for controlling the formatting and processing
of HTML forms, as shown here:

<gc:hasAccess role="SiteAdminRole">
<html:1link page="/PortalAllianceRegistration.do?action=Create">
<bean:message key="SiteAdminServices.PortalRegistration"/>
</html:1link>

<html:1link page="/NPORegistration.do?method=ShowNPORegistrationForm">
<bean:message key="SiteAdminServices.NPORegistration"/>
</html : 1ink>

</gc:hasAccess>

Chapter 5: Presentation Tier Design and Implementation

Site Administrator Services

Registration . . .
g Administration Guide

7;22';5' Alliance Flease select an administrative function in the navigation bar to proceed

Portal Configuration

Update Reqgistration
Update Prafile
Mavigation Bar Setup
Create Mew Campaign
Update Campaigns

MPO Configuration

Update Registration
Update Profile

Figure 5-3 Site Administrator Services

This snippet is extracted from 2_AdministrativeServicesNavBar, which is a highly dynamic
navigation bar that is created based on a user’s role. The <gc : hasAccess> tag will test the
role, and if the role matches the one specified by the role attribute, then the body of the tag
will be evaluated. The GreaterCause tag library containing the hasAccess tag is specified in
the deployment descriptor as follows:

<taglib>
<taglib-uri>/WEB-INF/GreaterCause.tld</taglib-uri>
<taglib-location>/WEB-INF/GreaterCause.tld</taglib-location>
</taglib>

Using the <gc:has Access> tag, the 2 _AdministrativeServicesNavBar produces three
different views for the three administrator roles, as illustrated in Figure 5-3, Figure 5-4, and
Figure 5-5.

Portal Administrator Services

Registrati - . .
S R Administration Guide

Wiew Reqistration Please select an administrative function in the navigation bar to proceed

Portal Configuration

Update Profile
Mavigation Bar Setup
Create Mew Carmpaign
Update Campaigns

Figure 5-4 Portal Administrator Services

159

160 Practical J2EE Application Architecture

NPO Administrator Services

Registrati - . .
SUB Administration Guide

Wiew Reqgistration Flease select an administrative function in the navigation bar to proceed

MPO Configuration

Update Profile

Figure 5-5 NPO Administrator Services

In the sample application, the various administrator-related functions are grouped together
based on the <auth-constraint> specifications that list the authorized role names. To
prevent any attempts by assailants to defeat the access mechanism tailored by the navigation
bar, we specify the following constraints in the web.xml to prevent unauthorized access to
protected resources:

<security-constraint>
declarations to protect /AdministratorServices.do
</security-constraint>
<!-- Declarations to protect PortalAdministrator functions -->
<security-constraint>
<display-name>Portal Alliance Administration</display-name>
<web-resource-collection>
<web-resource-name/>
<description>Portal Alliance Management Functions</description>
<url-pattern>/PortalAllianceRegistration.do</url-pattern>
<url-pattern>/ManagePortalAlliance.do</url-pattern>
<url-pattern>/CreateCampaignStepl.do</url-pattern>
<url-pattern>/CreateCampaignStep2.do</url-pattern>
<url-pattern>/UpdateCampaignsStepl.do</url-pattern>
<url-pattern>/UpdateCampaignsStep2.do</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>SiteAdministrator</role-name>
<role-name>PortalAdministrator</role-name>
</auth-constraint>
</security-constraint>
<security-constraint>
declarations to protect NPOAdministrator functions
</security-constraint>

Chapter 5: Presentation Tier Design and Implementation 161

The Java Servlet Specification Version 2.3, Chapter SRV.13 provides detailed information
on the various elements of the deployment descriptor.

Realization of Site Administration Use Cases

The following subsections will provide the use case realization for use cases in the Site
Administration package.

NOTE

The following subsections will provide readers with an opportunity to understand class interactions and
dependencies visualized through class and sequence diagrams. Please refer to Chapter 1 for use case
descriptions. Recurring solutions have been documented as patterns to enhance the readability and reuse
of the GreaterCause implementation.

Manage NPO Profile Use Case

The task of updating the NPO Profile information is preceded by the registration process.
However, since this is a much simpler implementation, it is being discussed before other use
cases. Several concepts exposed in this section will create the foundation for realizing other
use cases. Figure 5-6 illustrates a class diagram for realizing this use case; the semantics of
this class diagram is explained using the multi-page pattern.

Pattern Discovery and Documentation

Object-oriented architectures contain repeatable solutions, also called patterns. Recognizing
and documenting these patterns promotes reuse of solutions that otherwise may be
implemented by another developer in a different way, thus reducing manageability and
increasing complexity of the system. Patterns establish a vocabulary for the system,
and permit efficient reuse of this vocabulary in the design and implementation phases.
A problem solved by one developer can be reapplied in several other scenarios. Harvesting
such reusable design patterns, applied within a context, will provide leverage for other
parts of the solution because such patterns are proven to follow best practices and have
endured the test of time. The advantage of using patterns is that it will make the software
easier to understand by the development team, reduces the complexity of the system,
and builds upon the success of other developers.

In later sections, I have attempted to document certain recurring solutions discerned
in the course of developing the GreaterCause site administration services. The recurring
solutions are documented to assist the readers in understanding how certain complex
user interactions can be addressed using the Struts framework. Use of these proven
techniques enables faster assimilation of Struts functionality into applications.
Hopefully, these patterns will serve as templates for our readers, and a starting point
from which to evolve.

162

Practical J2EE Application Architecture

==

Serializable
org.apache.struts.action.ActionForm

i

=

Serializable

org.apache.struts.validator.ValidatorForm

com.gc.prez.admin.ManageNPOAction

+execute:ActionForward

page:int
validatorResults:ValidatorResults +shownNPOProfile: ActionForward
resultValueMap:Map +updateProfile:ActionForward

5 i v

Serializable

com.gc.prez.admin.ManageNPOForm

action:String

ein:String
adminID:String
firstName:String
lastName:String
email:String
phone:String

url:String
missionStatement:String

Serializable
com.gc.services.admin.NPOProfileDTO

adminlD:String
email:String
firstName:String
lastName:String
phone:String

ein:String
missionStatement:String
url:String

com.gc.prez.admin.ManageNPODelegate

-ManageNPODelegate
+getlnstance:ManageNPODelegate
+getBusinessinterface:NPOAdmin
+getNPOProfileDTO:NPOProfileDTO
+updateNProfile:void

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1

A4

<_ __________ 3
interface
com.gc.services.admin.NPOAdmin
< _______
+updateNPOProfile:void
+getNPOProfile:NPOProfileDTO
+getEIN:String

Figure 5-6 Manage NPO Profile class diagram

Multi-Page Pattern

This pattern is applicable when user interaction constitutes a series of forms. Functionally,
it may be desirable to collect information from multiple pages into a single form-bean for

Chapter 5: Presentation Tier Design and Implementation

accomplishing a unit of work. Using fewer form-beans keeps the number of form-beans to a
minimum, and keeps related data together. It is easier to manage changes when page semantics
are altered because the changes are localized to a single form-bean.

Structure The implementation of this pattern employs the page property of the form-bean.
If the form-bean extends ValidatorForm, then it will inherit the page property from the
ValidatorForm; if the form-bean extends the ActionForm, then this property will have to
be defined in the form-bean. Figure 5-7 and Figure 5-8 illustrates the static and dynamic
aspects of the multi-page pattern. Updating NPO profile is a two-step process when the
site administrator impersonates an NPO administrator. First, as illustrated in Figure 5-9,
the site administrator has to specify the EIN (for identifying a non-profit) it would like to
impersonate; in the next step, the system allows the site administrator to update the profile
information, as illustrated in Figure 5-10. The NPO administrator is taken directly to the
update page without the intervening Enter EIN page because the system can identify the
related EIN using the NPO administrator’s login username. Figure 5-8 shows the usage

of the page property in controlling the process flow within the request handler.

EIJ ActionForm
Serializable

org.apache.struts.validator.ValidatorForm

page:int
validatorResults:ValidatorResults
resustValueMap:Map
Action = Serializable
com.gc.prez.admin.ManageNPOAction |~ >‘ com.gc.prez.admin.ManageNPOForm
A A
51 5 1
& @l
[0] 1 D !
1 il!
- N
<<View>> <<View>>
EnterEIN ShowNPOProfile

Figure 5-7 Multi-page pattern

163

164

Practical J2EE Application Architecture

<<Dispatcher>> action npoForm
. processor ManageNPOAction ManageNPOForm
equestProcessor
1: i

i execuIe(ActionMcppirlmg,ActionFrom,HHpServletRequest,
! HttpServletResponse):ActionForward

» L
»

1.1: errors:=validate(mapping, req):ActionErrors

»
»

if(npoForm.getPage() == 1)

1.2.1:showNPOProfile(mapping, form, req, res):ActionForward

if(npoForm.getPage() == 2)

LT 1.3.1:updateProfile(mapping, form, req, res):ActionForward

1.4: showNPOProfile(mapping, form, req,res):ActionForward

Figure 5-8 Multi-page pattern sequence diagram

Site Administrator Services

Registrati
SyBATETn MWPO Configuration > Enter EIN

Portal alliance

NP Enter EIN [94-0385620]
Portal Configuration

Update Registration
Update Profile
Mawigation Bar Setup
Create Mew Campaign
Update Campaigns

MPO Configuration

Update Registration
Update Profile

Figure 5-9 Enter EIN

Chapter 5: Presentation Tier Design and Implementation

Site Administrator Services

Registrati ; i i
BB NPO Configuration > Update Profile

Portal alliance

NPD EIM 94-0355620
Portal Configuration Adrninistrator ID CALHisSoc
Update Reqgistration Contact Information
Update Profile .
Mawvigation Bar Setup First Marne ||
Create Mew Campaign
Update Campaigns Last Mame I
NPO Configuration Ernail I
Update Registration Fhone I

Update Profile

NPO Detail Page Info

URL

Mission Staterment =

Figure 5-10 Update Profile

NOTE

All class diagrams using the stereotype <<View>>, do not show the intermediate Struts controller for the
sake of simplifying the diagram. The controller will intercept the request resulting from a view and invoke
the corresponding request handler. Also, note that with few exceptions, the view names used in pattern
diagrams are labeled using their < £ oxrwaxrd > names of struts-config.xml file.

In the sample application, we use the page field (as a hidden field) in most forms for
two reasons:

P The site administrator navigation scheme is different from the navigation scheme of
the NPO administrator. The site administrator can impersonate an NPO administrator,
and therefore has to specify the EIN as a precursor to most operations. The Enter EIN
page has the page field setto 1.

» The validations performed by the ValidatorForm.validate method have to be advised
which properties must be validated based on the navigation scheme chosen for different
administrators. For example, the ein property is not required to be validated when the
administrator is an NPO administrator. Please refer to the section “Factoring Validator
into the Design Process” for further details.

165

166

Practical J2EE Application Architecture

Configuration Semantics The struts-config.xml declarations are shown in the following code.
The site administrator is attached to an extra step "/ManageNPOStep1”, which is invoked from
the navigation bar illustrated in the next subsection.

<form-bean name="ManageNPOForm" type="com.gc.prez.admin.ManageNPOForm" />

<!-- Site Administration step invoked from navigation bar -->
<action path="/ManageNPOStepl" forward="/2_4B_ EnterEIN.jsp"/>

<action path="/ManageNPOStep2"

type="com.gc.prez.admin.ManageNPOAction"

name="ManageNPOForm"

scope="session"

validate="false">

<forward name="EnterEIN" path="/2_4B_EnterEIN.jsp"/>

<forward name="ShowNPOProfile" path="/2_4_2_ UpdateNPOProfile.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>
</action>

Please note that the ActionMapping identified by the path "/ManageNPOStep2" will have
three possible ActionForward(s); the resulting views are discussed in the next section.

View Semantics The following snippet is from the dynamic navigation bar 2_Administration
ServicesNavBar that is included with all administrator JSPs. The navigation bar will invoke
the ActionMapping identified by the path/render "/ManageNPOStep1" which will invoke the
view 2 4B EnterEIN.jsp shown next; in turn this view will use the ActionMapping identified
by the path "/ManageNPOStep2". The NPO administrator will use the ActionMapping
identified by the path "/ManageNPOStep2", which will invoke the view

2 4 2 UpdateNPOProfile.jsp shown later in this subsection.

<gc:hasAccess role="SiteAdminRole">
rest of JSP ...
<html:link page="/ManageNPOStepl.do"> <!-- Invoke 2 4B EnterEIN.jsp -->
<bean:message key="NPOAdminServices.UpdateProfile"/>
</html : 1ink>

rest of JSP ...
</gc:hasAccess>

<gc:hasAccess role="NPOAdminRole">
rest of JSP ...
<html:1link page="/ManageNPOStep2.do"> <!-- Invoke
2 4 2 UpdateNPOProfile.jsp -->
<bean:message key="NPOAdminServices.UpdateProfile"/>
</html : link>

rest of JSP ...
</gc:hasAccess>

Chapter 5: Presentation Tier Design and Implementation

The view 2_4B_EnterEIN.jsp will result in the invocation of the request handler
ManageNPOAction using the ActionMapping identified by the path "/ManageNPOStep2"
(refer to struts-config.xml shown earlier) with the page attribute property of the corresponding
form-bean set to 1. The view 2 4B EnterEIN.jsp is shown here:.

<html:form method="POST" action="/ManageNPOStep2.do" focus="ein">
<table border="0" cellspacing="0" cellpadding="5">
<tr>
<td class="txt"><bean:message key="SiteAdminServices.EnterEIN"/></td>
<td><html:text property="ein" size="14" maxlength="14"/></td>
<html:hidden property="page" value="1"/>
</tr>
<tr>
<td> </td>
<td><html : submit><bean:message key="prompt.Submit"/>
</html :submit></td>
</tr>
</table>
</html: form>

ActionMapping identified by the path “/ManageNPOStep2” will be responsible for
invoking the request handler ManageNPOACction. This request handler will render the view
2 4 2 UpdateNPOProfile.jsp. This is discussed in the Request Handler section of this
pattern. The view 2 4 2 UpdateNPOProfile.jsp can also invoke the request handler using
the ActionMapping identified by the path “/ManageNPOStep2” (refer to struts-config.xml
shown earlier) with the page property of the corresponding form-bean set to 2. The view
2 4 2 UpdateNPOProfile.jsp is shown here:

<html : form method="POST" action="/ManageNPOStep2.do" focus="firstName">
<html :hidden property="page" value="2"/>
. rest of JSP ...
<p align="center"><html : submit><bean:message key="prompt.Update"/></html :submit></p>
</html : form>

ActionfForm Bean The action form-bean corresponding to ActionMapping identified by the path
"/ManageNPOStep2" is shown here. A single form is used to store information gathered from
two views, namely, 2 4B EnterEIN.jsp and 2 4 2 UpdateNPOProfile.jsp.

public class ManageNPOForm extends ValidatorForm implements Serializable {

public ManageNPOForm() {

}

/* EIN is collected from page 1 */

public String getEin() {

return ein;
}
public void setEin(String ein) {

this.ein = ein;

167

168 Practical J2EE Application Architecture

. rest of the accessors ...

//Form Data
private String ein;
private String adminID;
private String firstName;
private String lastName;
private String email;
private String phone;
private String url;
private String missionStatement;
public void reset(ActionMapping mapping, HttpServletRequest req) {
}
public ActionErrors validate(ActionMapping mapping,
HttpServletRequest req) {

ActionErrors errors = new ActionErrors();

/* NPO Administrator does not have to specify an EIN */

if ((page == 1) && ((ein == null) ||

(ein.trim().length() < 1))) {
errors.add("ein", new ActionError("error.ein.required"));

}

/* Call the validate method of ValidatorForm */

else if (page ==) {

errors = super.validate(mapping, req);
}

return errors;

Request Handler This request handler is created from the ActionMapping identified by the
path "/ManageNPOStep2". The page attribute property will identify the current page, which
will also decide the resulting ActionForward shown earlier. Note that for the NPO administrator,
the initial invocation of the request handler will have the page attribute property set to the
value 0 because no HTML form with a page parameter has been processed yet; the first view
displayed to the NPO administrator will be the profile page with the page attribute property
set to 2. The semantics of the corresponding request handler is illustrated using the following
code fragment. Please refer to Figure 5-8 for a high-level sequencing diagram.

public class ManageNPOAction extends Action {

public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {
ManageNPOForm npoForm = (ManageNPOForm) form;
ActionErrors errors = npoForm.validate(mapping, req);
/* Ensure EIN is present on EnterEIN page (First page for

* gite administrator) */
if (npoForm.getPage() == 1) {
if (l!errors.empty ()) {

Chapter 5: Presentation Tier Design and Implementation

saveErrors (req, errors);
return mapping.findForward("EnterEIN");
}
/* Show profile information if EIN is provided
* (page 2 for updating profile information) */
return showNPOProfile(mapping, form, req, res);
}
/* The Profile page is identified by page == 2 */
if (npoForm.getPage() ==) {
if (lerrors.empty()) {
saveErrors (req, errors);
return mapping.findForward("ShowNPOProfile");
}
return (updateProfile(mapping, form, req, res));
}
/* 'page' property is set to 0 for NPO Administrator,
* and this step is executed */
return showNPOProfile(mapping, form, req, res);
}
public ActionForward showNPOProfile(ActionMapping mapping,
ActionForm form, HttpServletRequest redq,
HttpServletResponse res) throws Exception {
rest of the code
return mapping.findForward("ShowNPOProfile");
}
public ActionForward updateProfile(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
rest of the code
return mapping.findForward("success");

Register Portal-Alliance Use Case

A site administrator can create and update the registration information for a portal-alliance.
However, the portal-alliance administrator can only view this information. Figure 5-11 illustrates
the class diagram for realizing this use case; the semantics of this class diagram is explained
using the multi-action pattern.

Multi-Action Pattern Using the Action Class Strategy

A multi-action pattern can be used for enabling a request handler to process different actions
(a.k.a. commands) submitted by one or more forms. The sample application defines three
actions: create, update, and view. If different forms are utilized for each of these actions,

169

Practical J2EE Application Architecture

] Serializable |, | FF org.apache.struts.action.Action
org.apache.struts.action.ActionForm

i i

] Serializable com.gc.prez.admin.PortalAllianceRegistrationAction
org.apache.struts.validator.ValidatorForm

+execute:ActionForward
+createRegistration:ActionForward

page:int Siratic c
validatorResults:ValidatorResults _| +updateRegistration: ActionForward
resulValueMap:Map +viewRegistration:ActionForward

mmmmmmmmy
<_-._.

Serializable

com.gc.prez.admin.PortalAllianceRegistrationForm

Serializable
com.gc.prez.admin.PortalAllianceRegistrationDTO

N N
1
1
1
1
1
1
1
1
1
1
1
1

=)

com.gc.prez.admin.PortalAllianceRegistrationDelegate B)
<<Session Bean Business Interface>>

interface
com.gc.services.admin.SiteAdmin

- PortalAllianceRegistrationDelegate
+getinstance:Portal AllianceRegistrationDelegate

+getBusinessinterface:SiteAdmin -~ po----3 > - :
+getPortal AllianceRegistrationDTO: +registerl NPO.'VOI'd .
PortAllianceRegistrationDTO +registerPor fa/AI/-lance:vo:'d ' -
+createPortal AllianceRegistration:void +updatePor fa/A//l-c:nceReglsi{'at:on:vo:d
+updatePortal AllianceRegistration:void +updateNPORegistration:void
+getNPORegistration:NPORegistrationDTO
+getPortalAllianceRegistration:

PortalAllianceRegistrationDTO
+isPortallDValid:boolean

Figure 5-11 Register portal-alliance class diagram

then related fields will be spread across, or duplicated across, multiple forms, which creates
redundancy and defeats modularity; in this scenario, a change in the form will require retrofitting
several forms. The multi-action pattern enables creation of multiple views from a single JSP
based on the action chosen by the user, while allowing the same request handler to service all
variations of the view (in this case, a JSP).

Structure Both, dynamic view creation and request processing are synergistic functions. The
participating view must indicate the initiated “action,” and the request handler must save this
knowledge in a JavaBean (which is usually the form-bean) for controlling conditional processing.
The intent projected by the state of the action property in the form-bean will subsequently
influence the view generated from a single JSP. The Portal-Alliance Registration use case is
realized using a multi-action pattern in conjunction with a multi-page pattern. Figures 5-12
and 5-13 illustrate the static and dynamic aspects of the multi-action pattern. Figure 5-13 shows
the usage of the action property in controlling the process flow within the request handler.

Chapter 5: Presentation Tier Design and Implementation

Action = ValidatorForm
com.gc.prez.admin.PortalAllianceRegistrationAction Serializable
com.gc.prez.admin.PortalAllianceRegistrationForm
+execute:ActionfForward 7o >
+createRegistration: ActionForward]]
+updateRegistration: ActionForward qchon:Sfrmg
+viewRegistration:ActionForward POF".’"D:S"'."Q
~ - - ; adminID:String)
5 ! - ; portalName:String
8 8 ! email:STring
H i H i = activationDate:String
- N i testCertification:String
H Il
I

<<View>>

EnterPortallD | % ¢+ 11 teeoedeooood > com.gc.prez.admin.PortalAllianceRegistrationDelegate

(ma1A /e4ppdn /840817 = uoldp) () = 8bnd

1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L

Instance variable -PortalAllianceRegistrationDelegate
action is set fo +getInstance:PortalAllianceRegistrationDelegate
Create, Update, or +getBusinessinterface:SiteAdmin
View from the --{ +getPortalAllianceRegistrationDTO:
navigation bar. The PortalAllianceRegistrationDTO
action property, +createPortal AllianceRegistration:void
combined with the +updatePortal AllianceRegistration:void
<<global view>> | i_| page property,

AdministartionServicesNavBar invokes the j

appropriate method.

<<View>>
PortalAllianceRegistration

Figure 5-12 Multi-action form pattern

Configuration Semantics The struts-config.xml declarations are shown in the following code.
In this pattern, we will use a single Action class and a corresponding ActionForm. The
ActionForm extends ValidatorForm, which provides the page property for muti-page
interaction, as explained in the section “Multi-Page Pattern.”

<action path="/PortalAllianceRegistration"
type="com.gc.prez.admin.PortalAllianceRegistrationAction"
name="PortalAllianceRegistrationForm"
scope="session"
validate="false">
<forward name="ShowPage"
path="/2_1_PortalAllianceRegistration.jsp"/>
<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>
<forward name="success"
path="/2_SiteAdministratorServicesMainPage.jsp"/>
</action>

171

172

Practical J2EE Application Architecture

<<Dispatcher>>

rocessor action regForm
processor PortalAllianceRegistrationAction PortalAllianceRegistrationForm
] g

RequestProcessor
T | |
I execute{ActionMappingActionForm,HttpServletRequest, HitpServletResponse):

ActionForward I i
> 1.1:action:=gefAction():String |
if(action.equals(”Create”)) |T|
1.2.1: createRegistration(mapping, form, req, res):ActionForward

else i
if(action.equals(”Update”)) E

1.3.1.1 :updafeRegisfrotion(mcp}oing, form, req, res):ActionForward
else i
if(action.equals(“View”)) |

1.3.2.1.1 :viewRegistroﬁon(map'ping, form, req, res):ActionForward
" L

Figure 5-13 Multi-action form pattern sequence diagram

Please note that the ActionMapping identified by the path "/PortalAllianceRegistration”
will have three possible ActionForward(s); the resulting views are discussed in the next section.

View Semantics The following snippet is from the dynamic navigation bar 2_Administration
ServicesNavBar that is included with all administrator JSPs. Observe that all requests
are directed to same URL, "/PortalAllianceRegistration", which is the identifier for the
ActionMapping object that will be used by the framework for invoking the associated request
handler PortalAllianceRegistrationAction. Because the "Update" action by the site administrator
requires a Portal ID, the request handler will invoke the view 2 3A_EnterPortalID.jsp. For
the "View" action by the portal-alliance administrator, the request handler will use the login
username to identify the associated Portal ID. Observe that the request time action parameter
is used for setting the action property in the corresponding form-bean shown later.

<gc:hasAccess role="SiteAdminRole">
<html:1link page="/PortalAllianceRegistration.do?action=Create">
<bean:message key="SiteAdminServices.PortalRegistration"/>
</html : 1ink>

Chapter 5: Presentation Tier Design and Implementation

</gc:hasAccess>
<gc:hasAccess role="SiteAdminRole">
<html:1link page="/PortalAllianceRegistration.do?action=Update">
<bean:message key="SiteAdminServices.UpdatePortalRegistration"/>
</html:1link>

</gc:hasAccess>
<gc:hasAccess role="PortalAdminRole">
<html:1link page="/PortalAllianceRegistration.do?action=View">
<bean:message key="PortalAdminServices.ViewRegistration"/>
</gc:hasAccess>

The view 2_3A_EnterPortallD.jsp will invoke the request handler
PortalAllianceRegistrationAction using the ActionMapping identified by the path
"/PortalAllianceRegistration" (refer to struts-config.xml shown earlier) with the page
property of the corresponding form-bean set to 1. The view 2_3A_EnterPortallD.jsp
is shown here:

<html:form method="POST" action="/PortalAllianceRegistration.do" focus=portalID">
<html:hidden property="page" value="1"/>
<table border="0" cellspacing="0" cellpadding="5">
<tr>
<td class="txt"><bean:message
key="SiteAdminServices.EnterPortalID"/></td>
<td><html:text property="portalID" size="16" maxlength="16"/></td>
</tr>
<tr>
<td> </td>
<td><html : submit><bean:message key="prompt.Submit"/></html:submit>
</td>
</tr>
</table>
</html : form>

The view 2_1_PortalAllianceRegistration.jsp will invoke the request handler using the
ActionMapping identified by the path "/ PortalAllianceRegistration” (refer to struts-config.xml
shown earlier) with the page attribute property of the corresponding form-bean set to 2. The
action property of the form beanform-bean PortalAllianceRegistrationForm is checked for the
values Create/UpdatelView; the <logic:equal> custom tag will conditionally display parts
of the JSP based on the value of the action property. The view
2 1 PortalAllianceRegistration.jsp.jsp is shown here:

<html: form method="POST" action="/PortalAllianceRegistration.do"
focus="portalID">
<html:hidden property="page" value="2"/>
<logic:equal name="PortalAllianceRegistrationForm"
property="action" scope="session" value="Create">

173

174

Practical J2EE Application Architecture

... display the registration creation part ...
<html:submit>
<bean:message key="prompt.Register"/>

</html:submit></td>

</logic:equal>

<logic:equal name="PortalAllianceRegistrationForm"

property="action" scope="session" value="Update">
... display the registration update part ...
<html:submit>
<bean:message key="prompt.Update"/>

</html:submit>

</logic:equal>

<logic:equal name="PortalAllianceRegistrationForm"

property="action" scope="session" value="View">
... display the registration view part ...
<html : submit>
<bean:message key="prompt.Back"/>

</html : submit>

</logic:equal>

</html: form>

ActionForm Bean The action form-bean corresponding to ActionMapping identified by the path
" /PortalAllianceRegistration” is shown here. The form has the action and the page property
that is used for controlling the application flow. The page is inherited from ValidatorForm.

public class PortalAllianceRegistrationForm extends ValidatorForm
implements Serializable {
public PortalAllianceRegistrationForm() {
}
public String getAction() {
return action;
}
public void setAction(String action) {
this.action = action;

rest of the accessors
private String action;
private String portallD;
private String adminID;
private String portalName;
private String email;
private String activationDate;
private String testCertification;
public void reset(ActionMapping mapping,
HttpServletRequest req) {

Chapter 5: Presentation Tier Design and Implementation

rest of the code
}
public ActionErrors validate(ActionMapping mapping,
HttpServletRequest reqg) {
rest of the code
return errors;

Request Handler This request handler is created from the ActionMapping identified by the
path "/PortalAllianceRegistration”. The page property is used to identify the HTML form
being currently processed. Please review the entire code in the accompanying source
distribution to see how the action property is used in conjunction with the page property.
The following code fragment demonstrates how the request handler
PortalAllianceRegistrationAction uses the same form to provide different views for different
user actions. In this example, the site administrator can create and update the Portal Alliance

Registration, whereas a portal-alliance administrator can only view the registration information.

Please refer to Figure 5-13 for a high-level sequence diagram.

public class PortalAllianceRegistrationAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
PortalAllianceRegistrationForm regForm =
(PortalAllianceRegistrationForm) form;
String action = regForm.getAction() ;

if (action.equals("Create"))
{ return (createRegistration(mapping, form, req, res)); }
else if (action.equals("Update")) {

return (updateRegistration(mapping, form, req, res));
}
else if (action.equals("View"))
{ return (viewRegistration(mapping, form, req, res)); }
else { return null; }
}
public ActionForward createRegistration(ActionMapping mapping,
ActionForm form, HttpServletRequest redq,
HttpServletResponse res) throws Exception {
rest of the code
return mapping.findForward("success");
}
public ActionForward updateRegistration(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
rest of the code

175

176

Practical J2EE Application Architecture

return mapping.findForward("success");

}

public ActionForward viewRegistration(ActionMapping mapping,
ActionForm form, HttpServletRequest redq,

HttpServletResponse res) throws Exception {

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

rest of the code

return mapping.findForward("success");

Manage Portal-Alliance Profile Use Case

The development of this use case has been combined with the Perform Ul Customization use
case by making use of the multi-action pattern discussed in the preceding section. Figure 5-14
illustrates the static model used in the realization of this use case.

org.apache.struts.action.ActionForm

i

== Serializable

org.apache.struts.validator.ValidatorForm

= Serializable

com.gc.prez.admin.ManagePortalAllianceForm

o Serializable ¢ -------- E~i:' org.apache.struts.action.Action

= Serializable

com.gc.services.admin.PortalAllianceProfileDTO

N
1
I

<<Session Bean Business Interface>>
inferface
com.gc.services.admin.PortalAllianceAdmin

+updatePortalAllianceRegistration:void
+setNavigationBar:void
+getPortallD:String
+getPortalAllianceProfile:
PortalAllainceProfileDTO

K- - +getBusinessinterface:Portal AllianceAdmin

i

com.gc.prez.admin.ManagePortalAllianceAction

+execute:ActionForward
+updateProfile: ActionForward
+navigationBarSetup:ActionForward

A
|
i
1
1
I
|
|
|
1
1
|
1
|
|
|
I

A4

com.gc.prez.admin.ManagePortalAllianceDelegate

-ManagePortalAllianceDelegate
+getnstance:ManagePortalAllianceDelegate

+getPortalAllianceProfileDTO:
PortalAllianceProfileDTO
+updatePortal AllianceProfile:void

setNavigationBar:void f

Figure 5-14 Manage portal-alliance class diagram

Chapter 5: Presentation Tier Design and Implementation

Multi-Action Pattern Using Action Class Strategy

The implementation here is only slightly different from the one used in the “Register
Portal-Alliance Use Case” section. Here we define two actions—updateProfile and
navigationBarSetup— to realize the use cases ‘Manage Portal-Alliance Profile’ and Perform
UI Customization, respectively. The only difference in this implementation is that the actions
are associated with different views, as depicted later in the upcoming “Configuration

Semantics” section.

Structure Figures 5-15 and 5-16 illustrates the static and dynamic aspects of the multi-action
pattern. Figure 5-16 shows the usage of page and action properties in controlling the process

flow within the request handler

Action
com.gc.prez.admin.ManagePortalAllianceAction

Eb ValidatorForm

Serializable

com.gc.prez.admin.ManagePortalAllianceForm

+execute:ActionForward
+updateProfile: ActionForward
+navigationBarSetup:ActionForward

adminlD:String

action:String

i
~ ~ ~ AT | portallD:String
o | T | i b i firstName:String
& & | : o ! lastName: Stri
g . Q ‘ L } astName:String
Iy "o 1 b ; email:String
i O | P ! phone:String
l g } P | searchLimit:Inte
. = i b ! nieger
<<View>> S ! v i navigationBar:String
EnterPortallD no ! b |
5 i P 1 1
o 1 1 1 ! ! !
g | i P |
(o ! b v:'” Instance variable action is set to updateProfile or
o i | | ! navigationBarSetup from the navigation bar. The action
o ! ! | property, combined with the page property, invokes the
§ A R T "~7| appropriate method, which in turn will invoke the related View.
@ 8r B 1 i
Qi1 Q@i Qi w i
>0 0 ® v '
Siont a4))
FoN N com.gc.prez.admin.ManagePortalAllianceDelegate
17 S i |
[0} 1 ! 1 1
=R i i
= i i -MangagePortalAllianceDelegate
HE | i -
. ! ! +gefinstance:ManagePortalAllianceDelegate
. .<<9|?b°| view>> | | +getBusinessinterface:Portal AllianceAdmin
AdminisirativeServicesNavBar ! ! +getPortal AllianceProfileDTO:Portal AllianceProfileDTO
| | +updatePortal AllianceProfile.void
! ! +setNavigationBar:void
i i
I I
L
<<View>> <<View>>

ShowPortalProfile ShowNavigationBarSetup

Figure 5-15 Multi-action pattern

177

178

Practical J2EE Application Architecture

<<D|rs°pc(:::sh:rr>> initial portalForm
processor ManagePortalAllianceAction ManagePortalAllianceForm
RequestProcessor '

1: execute(AcﬁonMapping,AI\ctionForm,HHpServ|etRequest,
HitpServletResponse):ActionForward

Lt

1.1: errors:=validate(mapping, req):ActionErrors

1.2: action:=getAction():String |

ii‘(uciion.equa|s(”upt:luteProfile”)}TI

?

1.3.1: updateProfile(mapping, form, req, res):ActionForward

if(action.equuls("nuviguﬁonBarSeI}up”))

1.4.1: navigationBarSetup(mapping, form, req, res):ActionForward

e

Figure 5-16 Multi-action pattern sequence diagram

Configuration Semantics The struts-config.xml declarations are shown here. In this pattern,
we will use a single Action class and a corresponding ActionForm. The ActionForm extends
ValidatorForm, which provides the page property for mutlti-page interaction:

<action path="/EnterPortalID"
name="ManagePortalAllianceForm"
scope="session"
validate="false"
forward="/2_3B_EnterPortalID.jsp"/>

<action path="/ManagePortalAlliance"
type="com.gc.prez.admin.ManagePortalAllianceAction"
name="ManagePortalAllianceForm"
scope="session"
validate="false">
<forward name="EnterPortalID" path="/2_3B_EnterPortalID.jsp"/>
<forward name="ShowPortalProfile" path="/2_3_2_ UpdatePortalProfile.jsp"/>

<forward name="ShowNavigationBarSetup" path="/2_3_3_PortalNavBar.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>
</action>

Chapter 5: Presentation Tier Design and Implementation

Site Administrator Services

Registrati i i i
egistration Portal Configuration > Update Profile

Portal alliance

NED Fortal ID ACME
Portal Configuration Contact Information
Update Registration First Mare IJohn
Update Prafile
Mawigation Bar Setup I
Create Mew Carmpaign Last Name Daly
Update Carmpaigns .
Ernail IJohn@acme.com

MPO Configuration
Fhane [(e50)555-1234

Update Registration
Update Profile Search Optimization

Limit my searches to |2EI non-profits,

Figure 5-17 Update portal-alliance profile

Note that the ActionMapping identified by the path "/ManagePortalAlliance” will have
four possible ActionForward(s). The ShowPortalProfile <forward> declaration is selected
for updateProfile action, which will result in the view illustrated in Figure 5-17; and the
ShowNavigationBarSetup <forward> declaration is selected for navigationBarSetup
action, which will result in the view illustrated in Figure 5-18 . The rest of the semantics are

Site Administrator Services

Registrati . . .
SgBEAn Portal Configuration > Navigation Bar Setup

Portal alliance

NED Paortal ID ACME
Location of Customn Mavigation Bar http: s/ Iwww.acme.com,-"GC,-"Nav.html|
Portal Configuration
Update Registration Update

Update Profile
Mawigation Bar Setup
Create Mew Carmpaign

Update Campaigns Provide the URL of the Custorn Mavigation Bar,
The specified navigation bar must be available at

NPO Configuration this URL at all times.

Update Registration
Update Profile

Figure 5-18 Update navigation bar URL

179

180

Practical J2EE Application Architecture

similar to the one demonstrated in the “Register Portal-Alliance Use Case” section. Readers
are encouraged to review the implementation provided in the accompanying CD-ROM.

Request Handler The request handler in this case has to track the page sequence, that

is the value of the page property of two different views, and the action property of these
views; this makes the request handler slightly complex to implement. The semantics of the
request handler is illustrated using the following code fragment. Please refer to Figure 5-16
for a high-level sequence diagram.

public class ManagePortalAllianceAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
ManagePortalAllianceForm portalForm =
(ManagePortalAllianceForm) form;
ActionErrors errors = portalForm.validate(mapping, req);
String action = portalForm.getAction() ;
/* First page for Site Administrator */
if (!errors.empty() && portalForm.getPage() == 1) {
saveErrors(req, errors);
return mapping.findForward("EnterPortallID");
}
/* Second page for updating profile */
if ((!errors.empty()) && (portalForm.getPage() ==)
&& (action.equals("updateProfile"))) {
saveErrors(req, errors);
return mapping.findForward("ShowPortalProfile");
}
/* Second page for navigation bar setup */
if ((!errors.empty()) && (portalForm.getPage() ==) &&
(action.equals("navigationBarSetup"))) {
saveErrors(req, errors);
return mapping.findForward("ShowNavigationBarSetup");
}
/* Page number is 0, i.e. request handler was invoked from
* navigation bar by portal-alliance administrator using the
"Update Profile" or the Navigation Bar Setup" link*/
if (action.equals("updateProfile")) {
return (updateProfile(mapping, form, req, res));
}
if (action.equals("navigationBarSetup")) {
return (navigationBarSetup(mapping, form, req, res));
}

return null;

Chapter 5: Presentation Tier Design and Implementation

}
public ActionForward updateProfile(ActionMapping mapping,
ActionForm form, HttpServletRequest req, HttpServletResponse res)
throws Exception {

rest of the code ...
}
public ActionForward navigationBarSetup(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {

rest of the code ...

Register NP Use Case

A site administrator can create and update the registration information for a non-profit, while
the NPO administrator can only view this information. Figure 5-19 illustrates the class
diagram for realizing this use case; the semantics of this class diagram are explained in the
following section.

Mvulti-Action Pattern Using DispatchAction Class Strategy

The multi-action pattern discussed in the section “Register Portal-Alliance Use Case” was
implemented using an Action subclass. The Struts framework invokes the execute method on

a request handler that extends the Action class. In this section, we will implement the
multi-action pattern using the DispatchAction subclass. When a request handler extends the
DispatchAction class, it must provide a parameter attribute in the <action> declaration of
the struts-config.xml file, whose value is the name of a request time parameter that will be
used to identify method names to be called in the DispatchAction subclass. This is depicted
shortly in the “Configuration Semantics” section. The advantage of being able to specify
method names other than the standard execute method is that the request handler methods can
be directly coupled to user actions, embedded within the HTML form, rather than having to
route all actions through the execute method. In the following subsections, we will look at an
implementation that is identical in terms of functionality to the Register Portal Alliance Use
Case but differs in implementation.

Structure Figures 5-20, 5-21, and 5-22 illustrates the static and dynamic aspects of the
multi-action pattern using the DispatchAction class strategy. Figure 5-21 shows the setting
of the action property as a result of the method call specified in the navigation bar using
the request time parameter method (refer to the subsection “View Semantics” for more
information); Figure 5-22 shows how the action property is used to control the process
flow within the request handler.

181

182 Proctical J2EE Application Architecture

Serializable €----------- |-:|:' org.apache.struts.action.Action
org.apache.struts.action.ActionForm - ______ .
T org.apache.struts.actions.DispatchAction

== Serializable +execute:ActionForward

org.apache.struts.validator.ValidatorForm +unspecified:ActionForward

#dispatchMethod: ActionForward
T #getMethod:Method

= Serializable |,

com.gc.prez.admin.NPORegistrationForm E

com.gc.prez.admin.NPORegistrationAction

(- ializable €------ +multiplexer:ActionForward

Serializable +ShowNPORegistrationForm:ActionForward
+createRegistration: ActionForward
+preUpdateRegistration:ActionForward

com.gc.services.admin.NPORegistrationDTO |¢____
E i +updateRegistration:ActionForward

N

+viewRegistration:ActionForward

<<Session Bean Business Interface>> :
interface v
com.gc.services.admin.SiteAdmin com.gc.prez.admin.NPORegistrationDelegate

+registerNPO:void
+registerPortalAlliance:void +NPORegistrationDelegate
+updatePortalAllianceRegistration:void +getinstance:NPORegistrationDelegate
+updateNPORegistration:void +getBusinessinterface:SiteAdmin
+getNPORegistration:NPORegistrationDTO N +getNPORegistrationDTO:
+getPortalAllianceRegistration: NPORegistrationDTO

PortalAllianceRegistrationDTO +createNPORegistration:void
+isPortallDValid:boolean +updateNPORegistration:void

instance:NPORegistrationDelegate

Figure 5-19 Register NPO class diagram

Configuration Semantics The struts-config.xml declarations are shown here. Observe the
parameter attribute specification that identifies the request time parameter method to be used
for identifying the request handler method that will be called instead of the execute method.

<action path="/NPORegistration"
type="com.gc.prez.admin.NPORegistrationAction"
name="NPORegistrationForm"
scope="gsession"

parameter="method"

Chapter 5: Presentation Tier Design and Implementation

validate="false">

<forward name="ShowPage" path="/2_2_NPORegistration.jsp"/>
<forward name="EnterEIN" path="/2_4A EnterEIN.jsp"/>
<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

View Semantics Again, the following snippet is from the dynamic navigation bar
2 AdministrationServicesNavBar that is included with all administrator JSPs. Observe that
all requests are directed to same URL "/NPORegistration"”, which is the identifier for the
ActionMapping object that will be used by the framework for invoking the associated request
handler NPORegistrationAction. However, in this case the execute method of the request handler
is not invoked; instead, the method to be invoked is specified by the request time parameter

+ShowNPORegistrationForm:

+createRegistration:ActionForward
+preUpdateRegistration: ActionForward
+updateRegistration:ActionForward
+viewRegistration:ActionForward

N N N
o | o]
Q| Q
Q «Q
o [}
[1 1=
—! N

<<View>>
EnterPortallD

The View provides the
method parameter
whose value is a
method name; the
corresponding request
handler is instantiated
and the method is
invoked. The invoked
method will in turn set

<<View>> the action property
NPORegistration| | of the form.

(paiy1oads usjewnind poyjew) = obnd

<<g|oba| view>>
AdministrationServicesNavBar

ActionForward bemememeeoo N

com.gc.prez.admin.NPORegistrationForm

action:String
ein:String
adminID:String
npoName:String
address:String
city:String
state:String
zip:String
county:String

activationStatus: String

- The method parameter specified in the URL that instantiates
Action the request handler will invoke the specified methods; the
org.apache.struts.actions. DispatchAction methods invoked will in turn set the action state in the
ActionForm to Create, Update, or View. This action state
is subsequently used fo control the program flow.
com.gc.prez.admin.NPORegistrationAction !
X —————— 7 - ValidatorForm
+mu|hp|exer:AchonForward Serializable

]

com.gc.prez.admin.NPORegistrationDelegate

+NPORegistrationDelegate
+getlnstance:NPORegistration Delegafe
+getBusinessinterface:SiteAdmin
+getNPORegistrationDTO:
NPORegistrationDTO
+createNPORegistration:void
+updateNPORegistration:void

]

Figure 5-20 Multi-action pattern using dispatch action class strategy

183

184 Proctical J2EE Application Architecture

<<view>> action regForm mapping
AdministrationServicesNavBar NPORegistrationAction NPORegistrationForm ActionMapping

1: | i
ShowNPOReg|strchonForm(AchonMapplng ActionForm Hh‘pServ|etRequest

HttpServletResponse): AchonForwarcI

"] 1.1: setAchon("Create”) v0|d

1.2: FlndForward(”ShowPuge") AchonForward

T
I
I
1
I
|
I
|
I
|
I
» | I
I
I
1
I
|
I
|
I
|
!

2:
preUpdafeReg|sfrohon(AchonMapp|ng ActionForm HHpServ|etRequesf
HttpServletResponse):ActionForward

= 2.1 setAchon(”Updote”) v0|d

T

2.2:findForward(”EnterEIN”):ActionForward

v

3.
viewRegistration(ActionMapping,ActionForm HﬁpServ|etRequesr
HttpServletResponse): AchonForword :

» 3. 1:setAction(”View”): v0|d

3.2:findForward(”ShowPage”:ActionForward

EV

Figure 5-21 Multi-action pattern sequence diagram

method, as shown next. Each of the methods shown in the following snippet is responsible for
setting the corresponding action property; this was illustrated in Figure 5-21.

<gc:hasAccess role="SiteAdminRole">
<html:1link page="/NPORegistration.do?method=ShowNPORegistrationForm">
<bean:message key="SiteAdminServices.NPORegistration"/>
</html:link>

</gc:hasAccess>

<gc:hasAccess role="NPOAdminRole">
<html:1link page="/NPORegistration.do?method=viewRegistration">

Chapter 5: Presentation Tier Design and Implementation 185

<bean:message key="NPOAdminServices.ViewRegistration"/>
</html:link>

</gc:hasAccess>

<gc:hasAccess role="SiteAdminRole">
<html:1link page="/NPORegistration.do?method=preUpdateRegistration">
<bean:message key="SiteAdminServices.UpdateNPORegistration"/>
</html:link>

</gc:hasAccess>

<<Dispatcher>> action regForm mapping
processor NPORegistrationAction NPORegistrationForm ActionMapping
RequestProcessor
1: i

multiplexer(ActionMappingActionForm, HitpServletRequest,
HttpServletResponse):ActionForward

1.1:action=getAction():String

L]

if(action,equals(“Create”))

1.2.1:createRegistration(mapping, form, req, res):ActionForward

1
1
1
1
1
1
1
i
i
)
1
1
1
:
1
1\ else !
1
1
1
1
1
1
1
1
1
1
1

if(action.equals(“Update”))

1.3.1.1:updateRegistration(mapping, form, req, res):ActionForward

else E
if(action.equals(“View”)) !
1.3.2.1.1:findForward(“success”):ActionForward

L

'
T
1
|
1
|
|
|
1
1
1
|
|
|
1
1
|
|
|
|
1
— — 1
1
1
|
1
|
|

Figure 5-22 Multi-action pattern sequence diagram

186

Practical J2EE Application Architecture

In the preceding snippet, a selection on the navigation bar will first invoke a method that will
set the desired action and then exit with an ActionForward pertinent to that action. For example,
the ShowNPORegistration method will execute the following code:

public ActionForward ShowNPORegistrationForm(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) {
NPORegistrationForm regForm = (NPORegistrationForm) form;
regForm.setAction("Create");
saveToken(req);
return mapping.findForward("ShowPage");

Comparing the DispatchAction subclass strategy with the Action subclass strategy, it is
obvious that while this strategy reduces the complexity in the request handler, it introduces
extra methods for displaying the initial view (the process start-up view). Applications with
complex navigation schemes can benefit from this strategy at the cost of coupling the method
invocations to the request time method parameter specified in the HTML form; however, it does
take away the need to specify the action parameter at request time, as shown in the section View
Semantics for the Multi-Action Pattern Using the Action Class Strategy.

The views participating in this use case, namely, 2 4A_ EnterEIN.jsp and 2 2 NPORegistration
.jsp, both invoke the method multiplexer of the request handler NPORegistrationAction
(again, using the request time method parameter); this method has similar functionality as
the execute method of the PortalAllianceRegistrationAction of the Register Portal Alliance
Use Case. All other semantics of the DispatchAction subclass strategy are similar to the
Action subclass strategy, readers are urged to review the implementation provided with the
accompanying source distribution for additional details.

Realization of Search NPO Use Cases

The following subsections will explain the use case realization for the use cases in the Search
NPO package. Please refer to Chapter 1 for use case descriptions.

Search NPO Use Case

The search facility is a generic facility that can seamlessly plug into the navigation scheme of any
functionality desiring to use the NPO search function. Plugging of a search function into the
navigation scheme of other functions is accomplished by using a combination of three techniques:

» The request handler calling the search function does so by rendering a search function-
related view that transfers control to the request handler of the search facility.

» The search facility’s request handler remembers the request handler that invoked the
search facility.

P After the search is completed, the search facility transfers the control back to the calling
request handler by rendering.

187

wpiBpIp sspPP OdN Y2410as §7-6 aanbiy

{SI:ABIgYPIDBS+

SITXeN Y2405+

JuLYPIDaS+
QdNY?4pag:2o04a4ulssauIsngeb+

SJOBBRISTPUYPIP8G SoUDJSU[et+

pron:xepujjesal+ ajoBajpqisIpuUYYPIaG-

1s17:spuswa|gxoNyeb+
{s17:sjuaWwa|snoIARI4jeb+
OLAMINOIN:HusWd|Fpua.LInHjeb+

ajobajeqisiipuyyr4pag-oduypinas-zaid-26-wo> _Hﬂ

Presentation Tier Design and Implementation

Chapter 5:

Jur:azigeb+ w)
" W
i
Joyp.ayjysr1ain|op *oduyd1pas sadIAISS DB wod m pAomIojuodY BjpUOP+
200 Ja|Ul Ju ! papmiojuoldy:uBiodwp)ymeN@poeI+
y i PAPMIOJUODY/:OdNIPRRS+
,

UOHIYOJNISITPUYY2a09g oduydinas-zeid->6 wod
uoipYYodsiq

,
v

isI:ynsaYYPI0es

JUL:YoIDBGBINBX D+ Bulyg:Ayunod

|
R POMIO{UOIDY/:DI08GEIUDAPO+
|
i
i Buiyg:diz

Buiyg:ayois

a Buiyg:Ayo

OdNY?21035 0duyd.10as°5921A195"6°Wod
Buiyg:spiomAey

2004I34ul
<<®dDJIBju] SSBUISNE UDSE UOISSEG>>

/|

OLAMIIAOJN UIWPD*$3D1AIS 2B Wod

Buiyg:ule

w0 JOdNISITPUYY2apag oduydnas-zaid o6 wod

9|qozi[pLIeg

s|qpzi[pLIag ﬂu

1
1
1
1
W

This use case is realized using the class structure depicted in Figure 5-23. The complete

\'4

m‘_O.—OEU‘_nvmr_U‘_Gwm.O&Cr_u._awm.mwu_>._0m.um.=__°u

| Buyg:uoyoo
a|qozijoLiag !

wLiojuoldy uoydD sinys aydodo-bio

semantics will be are explained later in the section “Create the Campaign Use Case.” Observe

that the SearchAndListNPOAction is subclassed from DispatchAction.

s|qpzifoLiag

188

Practical J2EE Application Architecture

SearchAndListNPOForm uses a Collection object searchResult, which is a coarse-grained
object consisting of NPOViewDTO objects. The business tier uses the value list handler pattern
[Core] to provide this collection; this pattern is explained in Chapter 7.

Realization of Manage Campaigns Use Cases

The following subsections provide the use case realization for use cases in the Manage
Campaigns package. Please refer to Chapter 1 for use case descriptions.

Create the Campaign Use Case

The campaign management function requires the ability to search and select an NPO for which
a campaign has to be created. In order to accomplish this, the Create Campaign function will
chain itself to the Search function. The Shared Request Handler pattern discussed in this
section is used in demonstrating how we can accomplish this using the Struts framework.
Figure 5-24 illustrates a class diagram for realizing this use case.

Shared Request Handler Pattern

A use case may include or depend on other use cases. Often a common set of functionality is
shared between several use cases. A navigation scheme can be conditionally altered by injecting
new services in the process flow. In the sample application, the search-related functionality
(search parameter page and search result page) and the associated request handlers can be
invoked by both the NPO administrators as well as the donors. An NPO administrator (or

a Site admin as stand-in) will require search services for creating campaigns based on NPOs
selected using the search process. A donor will require the search service to find a desired NPO
prior to making a donation. In both cases, the same search functionality is invoked. Upon
invocation, the search facility will provide a search parameters page, whose submission will
provide a list of NPOs from which the administrators or donors can select the desired NPO.
Selection of an NPO during the campaign creation process will take the administrator to a page
for entering campaign details, whereas selection of an NPO during the donation process will
take a donor to the donation cart.

Structure Figure 5-25 illustrates the class diagram of the Shared Request Handler pattern.
There are several dynamic views to demonstrate the campaign creation function, as such,
the associated sequence diagrams are discussed progressively through the section.

NOTE

From Figure 5-25, we observe that the Multi-Page pattern will be a foundational for implementing the
Shared Request Handler pattern. We would have had significant difficultly implementing Shared Request
Handler pattern without this foundational pattern. This demonstrates that the process of harvesting and
documenting pattern is a continuous process. Over time, creating large-scale solutions implies looking af the
catalog of design patterns whose implementation is already proven and the vocabulary well understood,
and applying these pattern within the context of the problem domain fo create a highly modular, scalable,
maintenable, and extensible solution.

189

Presentation Tier Design and Implementation

Chapter 5

wpuBpip sspp ubiodwo) sjpar) -6 ainbiy

8|qpzipLIaS
WLIOJI0§PPIOA

wJogsubindwn)yaboupyy subindwniaboupw zaid 26 wod P ,

uolyoajjoD:subiodwneb+
proa:subiodwneyopdn+
proa:ubindwoymeNppp+

ubindwo)*subiodwpiaboupw-sadiaies 6 wod

b wu_uu_._vt‘__

<<®2D}JB}u[sSBUISNG UDBGUOISSIG>>

UIIPY/a}IG UILIPD*S3JIAIas 6 W0
90DyI84Ul
<<®DD}JI9JU|SSAUISNG UDBGUOISSIG>>

N

UPB|0Oq: PIPAQI[PHOJS!+

proa:suBipdwnyspopdn+
is1:suBiodwnnyjeB+
pioA:uBiodwp)meNeal+
ubiodwn?):eoppisjussaursngeb+

3jpBaEEsUBIDAWD)eBPUBYY SOUBSU[D+
ajpbajegsubindwn)ysBounyy-

ajpbajagsubindwn)ebounyy subipdwniebounw-zaid-26 wod

w0 JOdNISITPUYY20ag oduydipas-zaid b wod | <--
9|qozijpLIag <
wJo4uoydy ﬂu

{sI:AR1gYPI0RS+
{ST:pXeNYPI0as+

juiyoIpes+
OdNY?4pag:200484ujssausngieb+
SJbBaEISTPUYPI08G SoUDJSUFaD+
ajpBajeistipuyYyPI0eg-

apbajaqysipuyya0ag-oduydinas-zaid-ob-wod ﬂu
N

PIOMIO4UOHD/:BjDUOP+
papmIojuoly:uBiodwp)meNipaI+
PAPMIOJUOHIY/ OdNHOR[9S+
PAPMIOJUOHDIV/:DI08GEIUDAPD+

uolpy/yodsiq

uoHIYOJNISITPUYY210ag oduydinas-zaid o6 wod

1
1
W

8|qozipLiag

01qubiodwny-subindwpaboupwsadiAlas 6 wod

papMmIO{uOlDY UBIDAWD) MONRIPRI+ |- -

PADMIOLUOHIY/: OJNIPR[SPUY YIRS+
PIOMIOJUOIDY:OJNJOX+ === ,

uoipyubindwn)yaipas) subindwpiaboupw-zaid->6 wod
uolpy

190

Practical J2EE Application Architecture

ValidatorForm ActionForm
Serializable Serializable
com.gc.prez.managercampaigns.ManageCampaignsForm com.gc.prez.searchnpo.SearchAndLIstNPOForm
n N N E
Action DispatchAction
com.gc.prez.managercampaigns.CreateCampaignAction com.gc.prez.searchnpo.SearchAndListNPOAction
+execute:ActionForward +advanceSearch:ActionForward
+searchAndSelectNPO:ActionForward +selectNPO: ActionForward
+createNewCampaign:ActionForward +createNewCampaign:ActionForward
~ D ~ +donate:ActionForward
B B 4 x x
CH @ @ 31 3!
I I I E 3
S o g g
- - 3§ 3y
! <<View>> <<View>> g' i ol
i | EnterPortallD | | CreateNewCampaign 3! Z!
. & o}
1 o 1
! 2. !
[sI i
<<global view>> Gl i
AdministrationServicesNavBar <<View>> <<View>>
ShowSearch SelectNPOForNewCampaign

Figure 5-25 Shared Request Handler Pattern

Configuration Semantics The struts-config.xml declarations are shown in this section. The
Create Campaign use case employs the multi-page pattern. The view associated with page 1 is
2 3C _EnterPortallD.jsp, and the view associated with page 2 is 2 3 4 2 CampaignDetails.jsp;
this is shown in the following struts-config.xml declaration. However, please note that the
views 2_3C_EnterPortallD.jsp and 2 3 4 2 CampaignDetails.jsp need intervening views
provided by the search function to search and select the NPO. Therefore, we should transfer
control to the search function from the Create Campaign function. CreateCampaignAction
request handler accomplishes this by creating an ActionForward with name="ShowSearch"
for displaying the view 2_3 4 NewCampaignSearch.jsp after successfully processing the
view 2_3C_EnterPortallD.jsp and before processing the view 2 3 4 2 CampaignDetails.jsp.

<!-- Use Case: Create Campaigns (Use Case Package: Manage Campaigns)-->
<action path="/CreateCampaignStepl" forward="/2_3C_EnterPortalID.jsp"/>
<action path="/CreateCampaignStep2"
type="com.gc.prez.managecampaigns.CreateCampaignAction"
name="ManageCampaignsForm"
scope="session"
validate="false">
<forward name="EnterPortalID" path="/2_3C_EnterPortalID.jsp"/>

Chapter 5: Presentation Tier Design and Implementation

<forward name="ShowSearch" path="/2 3 4 NewCampaignSearch.jsp"/>
<forward name="CreateNewCampaign" path="/2_3_4_2_ CampaignDetails.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

The view 2 3 4 NewCampaignSearch.jsp includes a generic search parameter view
G_AdvancedSearchForNPO.jsp whose HTML form’s action parameter attribute has the URL
"/SearchAndListNPO.do?method=advanceSearch". Submitting this form will cause the search
parameter page to invoke ActionMapping identified by the path "/SearchAndListNPO", which
in turn will be used for invoking the SearchAndListNPOAction.advanceSearch method of the
request handler, therefore accomplishing a transfer of control from the campaign function to
the SearchAndListNPOAction request handler. This transfer of control also includes transfer
of application state from the action property stored in the forms ManageCampaignsForm

to the action property of SearchAndListNPOForm. The action property informs the
SearchAndListNPOAction request handler, whose function must be returned control when

the search function exits after completing NPO selection. The action property provides a kind
of callback facility when the SearchAndListNPOAction request handler is ready to transfer
control back to the calling request handler. For example, in the sample application, when the
action property is set to createNewCampaign, the SearchAndListNPOAction request handler
will return control to the campaign function’s next view (page 2 of campaign process) using
the <forward> specification identified by the name="CreateNewCampaign"; the action
property can also be set to "Donate", in which case the SearchAndListNPOA ction request handler
will return control to the donate function’s next view using the <forward> specification
identified by the name="Donate". This is shown here by the forward declarations “Create
New Campaign” and “Donate”. Note that the SearchAndListNPOAction is subclassed from
DispatchAction.

<!-- Use Case: Search NPO (Use Case Package: Search NPO) -->

<action path="/SearchAndListNPO"
type="com.gc.prez.searchnpo.SearchAndListNPOAction"
name="SearchAndListNPOForm"
scope="session"
parameter="method"
validate="false">
<forward name="ShowSearchForCampaign" path="/2_3_4_NewCampaignSearch.jsp"/>
<forward name="ShowSearchForDonation" path="P_3_DonorServicesAndSearch.jsp"/>
<forward name="SelectNPOForNewCampaign" path="/2_3_4_1_SelectNPO.jsp"/>
<forward name="SelectNPOForDonation" path="/P_3_1_SelectNPO.jsp"/>
<forward name="CreateNewCampaign" path="/2 3 4 2 CampaignDetails.jsp"/>
<forward name="Donate" path="/P 3 1 1 DonationCart.jsp"/>
<forward name="failure" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

In the preceding struts-config.xml declaration, observe that the views selected by the
SearchAndListNPOAction are specific to the calling function (Create Campaign or Donor Search);
the "ShowSearchFor..." and "selectNPOFor ..." <forward> specifications are associated
with caller-specific views that embed a generic search form G_AdvancedSearchForNPO.jsp,

191

192

Practical J2EE Application Architecture

and a generic select NPO form G_NPOSearchList.jsp, respectively. This embedding of search-
related forms inside of other views is necessary to maintain the look and feel of the calling
function and provide a consistent user experience.

View Semantics The following snippet is from the dynamic navigation bar

2 AdministrationServicesNavBar that is included with all administrator JSPs. This is
just another case of multi-page pattern where the site administrator has an extra step
"/CreateCampaignStep1"; this will invoke the view 2 4B _EnterEIN.jsp shown next:

<gc:hasAccess role="SiteAdminRole">
<html:link page="/CreateCampaignStepl.do">
<bean:message key="PortalAdminServices.CreateNewCampaign"/>
</html:link>

</gc:hasAccess>
<gc:hasAccess role="PortalAdminRole">
<html:1link page="/CreateCampaignStep2.do">
<bean:message key="PortalAdminServices.CreateNewCampaign"/>
</html:link>

</gc:hasAccess>

The view 2_3C_EnterPortallD.jsp will invoke the request handler CreateCampaignAction
using the ActionMapping identified by the path "/CreateCampaignStep2" (refer to struts-config
.xml shown earlier) with the page attribute property of the corresponding form-bean set to 1.
The request handler CreateCampaignAction may also be directly invoked from the navigation
bar using the ActionMapping identified by the path " /CreateCampaignStep2" when the
user is a portal-alliance administrator. The view 2_3C_EnterPortalID.jsp is shown next; the
corresponding page is shown in Figure 5-26, and the multi-page pattern semantics are depicted
in Figure 5-27.

<html: form method="POST" action="/CreateCampaignStep2.do" focus="portalID">
<html:hidden property="page" value="1"/>
<table border="0" cellspacing="0" cellpadding="5">
<tr>
<td class="txt"><bean:message
key="SiteAdminServices.EnterPortallID"/></td>
<td><html:text property="portalID" size="16" maxlength="16"/></td>
</tr>
<tr>
<td> </td>
<td><html : submit><bean:message key="prompt.Submit"/></html:submit>
</td>
</tr>
</table>
</html: form>

Chapter 5: Presentation Tier Design and Implementation 193

Site Administrator Services

Registrati ; i
€gistration Portal Configuration > Enter Portal ID

Portal alliance

NFO Enter Portal 1D [ACHE]
Portal Configuration

Update Registration
Update Profile
Mavigation Bar Setup
Create Mew Carmpaign
Update Campaigns

NPO Configuration

Update Registration
Update Profile

Figure 5-26 Enter Portal ID page

<<Dispatcher>> action campaignForm
processor CreateCampaignAction ManageCampaignsForm
RequestProcessor : T
1 1

1: execute (ActionMcpping,ActionForm,HHpServ|etRéquesf,
HttpServletResponse):ActionForward i

1
1
1
1 1
> 1
1
1
1

Jif(cumpuignFrom.getPuge()==1)

1.1.1: errors::volidutePo:rtalID(mupping, req):ActionErrors
1.1.2: getPortallD():Strinlg

i

if(cumpaignForm.getPage(') ==2)

1.2.1: createNewCampuign(mopping, form, req, res):ActionForward

1.3:searchAndSelectNPO(mapping, form, req, res):ActionForward

Figure 5-27 Multi-page Pattern sequence diagram

194

Practical J2EE Application Architecture

Once invoked, the CreateCampaignAction request handler will in turn invoke the search
facility—related view 23 4 NewCampaignSearch.jsp using the <forward> specification
identified by name="ShowSearch" in the method SearchandSelectNPO; the corresponding
page is shown in Figure 5-28. Figure 5-29 is a sequence diagram for the method
CreateCampaignAction.searchAndSelectNPO that depicts the flow of events for invoking
the search facility page 2 3 4 NewCampaignSearch.jsp. Observe that this page has an
embedded view /G_AdvancedSearchForNPO jsp that will invoke the SearchAndListNPOAction
request handler. This is how the Create New Campaign function manages to transfer control
to the search function.

As mentioned earlier, the view 2 3 4 NewCampaignSearch.jsp includes the
search function—related view G_AdvancedSearchForNPO.jsp. A condensed version
of G_AdvancedSearchForNPO.jsp is shown next. When this form is submitted, it
will result in the invocation of the SearchAndListNPOAction request handler. The
SearchAndListNPOAction request handler is subclassed from DispatchAction, therefore the
method invoked for this request handler is the one specified by the request time parameter
method specified in the query portion of HTML form’s action attribute URL.

<html:form method="POST"
action="/SearchAndListNPO.do?method=advanceSearch"
focus="keywords">
. rest of the JSP containing search parameters. ..
</html : form>

After successfully processing the parameters of the view 2_3 4 NewCampaignSearch.jsp, the
request handler will list the results of the search by invoking the view 2 3 4 1 _SelectNPO.jsp;
the corresponding page is shown in Figure 5-29. The SearchAndListNPOAction request handler
SearchandListNPOAction invokes this view by creating the ActionForward object related to

the <forward> specification identified by name= “SelectNPOForNewCampaign” (refer to

Site Administrator Services

Reaqgistrati . - .
SBIRATIn Portal Configuration > Create New Campaign

Step 1 of 3 = Search NPD

Portal alliance
MP

Keywords I
Portal Configuration

City ISan Francisco
Update Registration
Update Profile State ICaIifornia 'l
Mavigation Bar Setup
Create Mew Carnpaign zip

Update Carmpaigns

5 B Country
MPO Configuration

Update Reqistration

Update Profile

Figure 5-28 Enter Search Parameters page

Chapter 5: Presentation Tier Design and Implementation

% action campaignForm mapping
bioct CreateCampaignAction ManageCampaignsForm ActionMapping
objec

1: sedrchAndSe|e:c1NPO(AcﬁonMapping,AcﬁonForm,HHpServ|erRequ:esr,
HttpServletResponse):ActionForward

»

if(searchForm = = null)
1.1.1: <constructor>0

searchForm
SearchAndListNPOForm

1.2: setAction(“createNewCampaign”):void

L]

1.3: setAction(“createNewCampaign”):void

»
Lg

1 .4:findForward(”ShowISea rch”):ActionForward |

|
1 |

1 1

1 1

. 1 |
! 1 1
! I 1
1 I 1
1 I 1
! 1 1
! 1 1
1 | 1
1 I 1

Figure 5-29 Invoke the search facility view using ActionForward

struts-config.xml declarations specified in the preceding discussion). This view is selected because
the state maintained in the SearchAndListForm form-bean identifies that the search is being
performed on behalf of the Create Campaign function and therefore the look-and-feel of this
function is desired.

The view 2 3 4 1 _SelectNPO.jsp includes the generic view G_NPOSearchList.jsp for
selecting an NPO from the selection list; the corresponding page is shown in Figure 5-30.

The specification action="/SearchAndListNPO.do?method=selectNPO" in the following HTML
form (generated with view 2 3 4 1 Select.jsp) will use the ActionMapping object identified by
the path "/SearchAndListNPO" to invoke SearchAndListNPOAction. The selection is applied to
the corresponding form-bean, and the controller then calls the method SearchAndListNPOAction
.selectNPO() of the request handler; this method is identified by the request time parameter
method specified in the query portion of HTML form’s action attribute URL.
<html:form method="POST"

action="/SearchAndListNPO.do?method=selectNPO">

. rest of the JSP for displaying search results...
</html: form>

The SearchAndListNPOAction.selectNPO method will re-invoke the calling
CreateCampaignAction by exiting with an ActionForward that invokes the next view
2 3 4 2 CampaignDetails.jsp (with the page property set to 2) in the campaign creation
process using the <forward> declaration identified by name="CreateNewCampaign".
This is how the search function manages to transfer control back to the Create Campaign
function.This is shown in the Figure 5-31.

195

196

Practical J2EE Application Architecture

Registration

Portal Alliance
P

Portal Configuration

Update Registration
Update Profile
Mavigation Bar Setup
Create Mew Carmpaign
Update Campaigns

NPO Configuration

Update Registration
Update Profile

Site Administrator Services

Portal Configuration > Create New Campaign
Step 2 of 3 = Select NPO

Califarnia Historical Society
San Francisco , C& , United States of America

I American Red Cross Bay Area
San Francisco , C& , United States of America

I Corporation of the Fine Arts Museums
San Francisco , C& , United States of America

Figure 5-30 Select NPO from the selection list

<<Dispatcher>>

processor
RequestProcessor

1:

action seachForm
SearchAndListNPOAction SearchAndListNPOForm

HﬂpServ|efResponse):AcﬁonF<:>rworc|

»L

-1

selectNPO(ActionMapping,ActionForm, HttpServletRequest, i

1.1: action:=getAction():String

")

if(acﬁon.equa|s(”createNewCampluign”))

&ﬁ;l: createNewCampaign(mapping, form, req, res):
ActionForward i

else
if(action.equals(”donate”))

1.3.1.1: donate(mapping, form, req, res):ActionForward

Figure 5-31 Transfer control to the caller

197

Presentation Tier Design and Implementation

Chapter 5:

Je|pupy ysenba. Buiypd sy 4o upaq-w.ioy ayy ul seysadoud jog 7e-¢ ainbiy

paomojuoipy:(,ubindwnymanaipal),,)pipmiolpuly :G°|

PIOA: (uoydD)uOdYISS T P L

—

(e

proa:((voEcZomZ_wm.m_EoEcZomZ_wm HorAall

<

m:_.__m_; JownNodNyeb 17z L

ploA:

RZ”_mvw_uo_o&:_m_wm HA Al

((NIZpaefos Jsjonbar(JusgioB-oupl |

Bul

_____________________________;l____________

m Buryg:(JuizieB : 'y L
! ((J1xoNSsPYIospIa)3[IyM

Cle

“m.i Jynsayydapagiab ¢ |
_I_A

m:_‘:ﬁ.v:_m_omuuz_m_uﬁuo_om Al

(

Juoyoyeb=:uoyop 3|

n
._._m”“

i PAOMIOJUOLDY: Ammcoa_mow_,_w_twwo_:I
ﬁwawmwzm_?_mwo_tI\E._on_:mzu{mc_Qacico:uﬁ:m_oacmoukoZ&om._u 1

Buiddoyyuonoy
Burddow

w0 suBiodwpyaBounyy
o subiodwns

OLAMIACIN

WIO{OdNISIT 1C<£ULU®W
op WIoyPInas

UoIPYONISTTPUYYPRIeS
[oRiuI

199190

$

The SearchAndListNPOAction.selectNPO method, prior to exiting, will first transfer
the information on the selected NPO to the form-bean associated with the calling request

handler. This is illustrated in Figure 5-32. The resulting page (basedon2 3 4 2

CampaignDetails.jsp) is shown in Figure 5-33. The rest of the process is similar to the multi-

page pattern.

198

Practical J2EE Application Architecture

Site Administrator Services

Registrati . . .
egistratian Portal Configuration > Create New Campaign

Step 3 of 3 = Enter Campaign Details

Portal Alliance

P
Portal ID ACME
Portal Configuration EIM 94-0385620
Uil Pl NPO Mame California Historical Society
Update Profile
Mavigation Bar Setup Start Date Il yyyy-mm-dd
Create Mew Campaign
Update Campaigns End Date I yyyy-rnm-dd

NPO Configuration Region Code I Leave blank for National Campaigns

Update Registration
Update Profile

Figure 5-33 Create New Campaign page

Successful submission of the Campaign page will result in the creation of a campaign for
the corresponding Portal ID. This is illustrated in Figure 5-34, which shows the flow of events
for the final step in campaign creation.

<<Dispatcher>> - - -
action mapping campaignsForm delegate

processor - - - . - .
RequestProcessor CreateCampaignAction | | ActionMapping| | ManageCampaignsForm || ManageCampaignsDelegate

1: !
createNewCampaign(ActionMapping,ActionForm, HttpServletRequest,
HttpServletResponse):ActionForward i i

1.1: errors:=validateCampaignForm(mapping, req):ActionErrors

iy | T

—I 1.2.1: creuleNewéumpaign(req, dto):voia

A 4

catch(GCNesﬁngE)j(cepﬁon e

1.4: findForwurd(”s:uccess”) :ActionForward

Figure 5-34 Final step in campaign creation

Chapter 5: Presentation Tier Design and Implementation 199

Request Handler In the following abridged version of the CreateCampaignAction request
handler, when the searchAndSelectNPO method is called from the execute method, the request
handler initializes the action property of the search form-bean SearchAndListNPOForm with

a value that informs the SearchAndListNPOAction of the ActionForward that it will

have to create when the search function has completed selecting the desired NPO. The
CreateCampaignAction request handler transfers control to the search function by creating
an ActionForward relating to the <forward> specification identified by name="ShowSearch".
This is illustrated using the following code fragment:

public class CreateCampaignAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
/* The logic here is similar to multi-page pattern */
rest of the code

}

public ActionForward searchAndSelectNPO(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) {
ManageCampaignsForm campaignForm = (ManageCampaignsForm) form;
/* Find or create a new search form-bean */
SearchAndListNPOForm searchForm =
(SearchAndListNPOForm)reqg.getSession().getAttribute (
"SearchAndListNPOForm") ;
if (searchForm == null) {
searchForm = new SearchAndListNPOForm() ;
reqg.getSession() .setAttribute("SearchAndListNPOForm", searchForm) ;
}
/* Store information on the calling module in search form-bean */
searchForm.setAction("createNewCampaign");
campaignForm.setAction("createNewCampaign") ;
/* Display the search page for transferring control to the
* gsearch function */
return mapping.findForward("ShowSearch");
}
/* Process page 2 after the NPO is selected by the search facility */
public ActionForward createNewCampaign(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
...rest of the code...
/* The logic here is similar to multi-page pattern */
return mapping.findForward("success");

200

Practical J2EE Application Architecture

In the following SearchAndListNPOAction request handler, the advanceSearch method will
set the searchResult property of the SearchAndListNPOForm; this property is a Collection
object consisting of NPOViewDTO objects the SearchAndListNPOAction.selectNPO method
will invoke the view of the calling function that was responsible for instantiating the search
service; before transferring control to the Create Campaign view, the request handler will
transfer information about the selected EIN from the search form-bean to the campaign
form-bean.

public class SearchAndListNPOAction extends DispatchAction {
public ActionForward advanceSearch(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {

SearchAndListNPOForm searchForm = (SearchAndListNPOForm)form;

..rest of the code...

if (

}

int resultCount =
SearchAndListDelegate.getInstance() .search(req, searchParameters);
/* Get a Collection object from the business tier */

resultCount > 0) {

searchForm.setSearchResult (
(SearchAndListDelegate.getInstance()) .searchNext (
req, Constants.PageSize));

..rest of the code...
/* Show custom selection view related to the calling function */
if (action.equals("createNewCampaign")) {
return mapping.findForward("SelectNPOForNewCampaign") ;
}
else if (action.equals("donate"))
{ return mapping.findForward("SelectNPOForDonation"); }

else { return null; }

/* Based on action property value, transfer control to the caller */
public ActionForward selectNPO(ActionMapping mapping,
ActionForm form, HttpServletRequest req,

HttpServletResponse res) {
SearchAndListNPOForm searchForm = (SearchAndListNPOForm)form;
String action = searchForm.getAction() ;

..rest of the code...
/* Invoke post-search page of the calling function */
if (action.equals("createNewCampaign")) {
return createNewCampaign(mapping, form, req, res);

Chapter 5: Presentation Tier Design and Implementation

}

else if (action.equals("donate")) {
return donate(mapping, form, req, res); }
else { return null; }

}
/* Initialize calling function's form-bean with selected NPO */

public ActionForward createNewCampaign(ActionMapping mapping,

ActionForm form, HttpServletRequest req, HttpServletResponse res) {
SearchAndListNPOForm searchForm = (SearchAndListNPOForm) form;
String action = searchForm.getAction () ;
ManageCampaignsForm campaignsForm = (ManageCampaignsForm)

reqg.getSession () .getAttribute("ManageCampaignsForm") ;
String selectedEIN = searchForm.getEin() ;
Iterator iterator =

((Collection)searchForm.getSearchResult ()).iterator();
while (iterator.hasNext ()) {

NPOViewDTO dto = (NPOViewDTO)iterator.next();

if (dto.getEin() .equals(selectedEIN)) {

/* Transfer the information on selected NPO

* to campaign form-bean */
campaignsForm.setEin(selectedEIN);
campaignsForm.setNpoName (dto.getNpoName ());
campaignsForm.setAction(action);
reqg.getSession () .removeAttribute("SearchAndListNPOForm") ;

break;

}
saveToken(req);
return mapping.findForward("CreateNewCampaign") ;

}

public ActionForward donate(ActionMapping mapping,

ActionForm form, HttpServletRequest req, HttpServletResponse res) {
donor search function related code

Update Campaigns Use Case

A site administrator or a portal-alliance administrator can modify existing campaigns by
altering the start and end dates of the campaigns. The implementation of this use case employs
the multi-page pattern. Figures 5-35 and 5-36 illustrate the static and dynamic aspects of the
Update Campaigns use case.

The use of nested indexed properties in realizing this use case is explained in Chapter 4,
which demonstrates the ability to map request time parameters to properties of JavaBean

201

Practical J2EE Application Architecture

202

wpibpip ssop subiodwo) eippdn ¢g-6 ainbiy

uoyds|jo):subindwoyjeb+
proa:subipdwpyeyppdn+
proa:uBiodwpymeNppp+

ubipdwp) subipdwpiaboubw‘sadialas 26 wos
20D I3jul

T
1
!
|
A4

UDB|00q:PIPACI[PHOJSI+ |------
pioa:suBindwpeyppdn+
Js1]:suBiodwoyeb+

proa:uBindwpymeNeipa.I+ 8|qozl[eres

01qubipdwp) subindwniabpubwsadialas o6 wod

uBiodwp):eonyejulssauIsngieB+
SjpBa[ESUBIOAWRHSBPUDYY-S5UBSUFeb+

AN
]
]
]
|

ajpbajpgsubiodwnysBounyy-

ajobajagsubindwp)aboupyy-subindwniaboubw-zeid->6-wo>

_H_H_ 8|qozipLISS

wio4subindwp)aboubyy-subipdwniabpupw-zaid>6wod

=

papmao uoydyy:subipndwnyspopdn+
papmiouoyoyy:subindwnymoys+
PAPMIOJUOLDY/:8jNdBXS+

doyy:dpyyen|opdnsas
SJ|NSOYIOJOPI[DASHNSIYIOHOPI[DA
jui:abod

uoipysubiodwp)ysyopdn subipdwpisboupw-zeid->6-wod

uoly*uold*synys-aydndn-Bio

W.10410}DPI|DA J0§OPI[DA°siNYs aydpdD B0
8|qpzIpLIeg _H_H_

:

w.ojuoydyy-uoyd*synlys-aysndo-bio

8|qozi[pLIeg

Chapter 5: Presentation Tier Design and Implementation 203

<<Dispatcher>> action campaignForm
processor UpdateCampaignsAction ManageCampaignsForm
RequestProcessor

1: E
execute{ActionMapping,ActionForm, HttpServletRequest,
HttpServletResponse):ActionForward

ifcampaignForm.getPage() = = 1)

1.1.1: showCampaigns(mapping, form, req, res):Actitl)nForward

if(campaignForm.getPage() = =2)

1.2.1: updateCampaigns(mapping, form, req, res):ActionForward

if(campaignForm.getPage() = =0)

1.3.1: showCampaigns(mapping, form, req, res):ActionForward

L L

Figure 5-36 Update Campaigns sequence diagram

objects contained in a Collection object. The declarations in the struts-config.xml file are
depicted here:

<action path="/UpdateCampaignsStepl" forward="/2_3_5_EnterRegionCode.jsp"/>

<action path="/UpdateCampaignsStep2"

204

Practical J2EE Application Architecture

type="com.gc.prez.managecampaigns.UpdateCampaignsAction"

name="ManageCampaignsForm"

scope="session"

validate="false">

<forward name="EnterRegionCode"
path="/2_3_5_EnterRegionCode.jsp"/>

<forward name="ShowUpdateCampaigns"
path="/2_3_5_1_UpdateCampaigns.jsp"/>

<forward name="success"
path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

The ActionMapping identified by the path “/UpdateCampaignsStepl” will render the
view 2_3 5 EnterRegionCode.jsp; the corresponding page is shown in Figure 5-37. In turn,
this view will use the ActionMapping identified by the path “/UpdateCampaignsStep2”
to invoke the UpdateCampaignsAction request handler which in turn will render the view
2 3 5 1 UpdateCampaigns.jsp using the <forward> specification identified by name=
“ShowUpdateCampaigns”. The corresponding page is shown in Figure 5-38. Readers are
urged to review the implementation provided in the accompanying source distribution.

Site Administrator Services

Registrati . . .
SR Portal Configuration > Update Campaigns

Step 1 of 2 > Enter Region Code

Enter Portal ID IMCME
Enter Region Code INORCAL

Portal Alliance
NEO

Portal Configuration

Update Registration

Update Profile

Mavigation Bar Setup

Create Mew Campaign

Update Campaigns

NPO Configuration

Update Reqistration
Update Profile

Figure 5-37 Enter region code page

Chapter 5: Presentation Tier Design and Implementation

Site Administrator Services

Registration . . .
il Portal Configuration > Update Campaigns
. Step 2 of 2 > Update Campaigns
Portal Alliance
NEO
Portal ID ACME
Portal Configuration Region Code MORCAL
Update Reqistration
Update Profile 94-03835620 Start Date |2004-12-Dl
Mavigation Bar Setup) o))
Create Mew Carmpaign California Historical Society I— N
Update Campaigns San Francisco , CA , United States of Armerica End Date 2004-12-26
NPO Configuration
94-3045430 Start Date |2004-Ul-01
Update Reqgistration
Update Profile Arnerican Red Cross Bay Area I—
San Francisco , CA , United States of America End Date 2004-04-30
Update I

Figure 5-38 Update Campaigns page

Summary

In this chapter, we followed the iterative approach for realizing use cases that is pervasive
in this book. The solution abstracted and documented several Struts-related implementation
patterns for creating a consistent implementation vocabulary; this allows the developers to
implement recurring problems in a consistent manner, therefore improving readability and
maintainability of the code. The Struts-related patterns employed form-beans and request
handlers, and utilized the standard J2EE design patterns for realizing client-side semantics.
Struts-related patterns made use of the ValidatorForm’s page property for providing wizard-
like behavior; when used in conjunction with other properties, we were able create a wide
range of process flows within a single request handler, and use a single JSP for providing
varying HTML forms.

References

[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice-Hall, 2001)
[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

205

This page intentionally left blank.

CHAPTER

Domain Model Design
and Implementation

IN THIS CHAPTER:

Discovering Domain Objects

Creating the Data Model

Implementing the Domain Model

Using EJB QL with Find and Select Methods

Summary

opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 207

208

Practical J2EE Application Architecture

n Chapter 5, the business tier interfaces exposed to the presentation tier enabled us

to create an implementation for realizing the use cases identified by the packages

GreaterCause Site Administration, Manage Campaigns, and Search NPO. The business
tier interfaces, explained in detail in Chapter 7, employ the session fagade pattern that is
implemented using either stateless or stateful session beans. These session beans encapsulate
business logic, which in turn employs domain entities. Domain entities are real-world things
and concepts that are part of the problem domain. Domain modeling is the task of discovering
these entities and defining their relationships in the context of the problem domain. The
discovery of domain entities and their implementation is the focus of this chapter. Basic EJB
concepts like home, remote, and local interfaces are not covered in any detail in this chapter.
Readers are urged to review the basic material from excellent tutorials and examples available
at java.sun.com. The EJB 2.0 specification also has a wealth of material; rather than reproduce
this information, we suggest specific sections to read from the EJB 2.0 specification in the
context of the material being discussed.

Discovering Domain Objects

Domain modeling involves identifying objects that represent the persistent state of the system.
This does not imply that there exists a one-to-one mapping between domain objects and
entity beans (or any other object persistence technology). This is because domain objects may
represent a conceptual thing that may require services of other entities. The domain objects
encapsulate logic that acts upon the domain objects. This logic is aware of the relationships
between domain objects and the rules enforced for manipulating the state of the object.
Therefore, one must clearly distinguish between logic that resides in the domain objects and
the logic that resides in the business tier (business tier is the topic of Chapter 7).

From the Site Administration and Manage Campaigns use case packages described in
Chapters 1 and 2, we infer the following requirements for the persistence state of the application.

» The Site Administrator will create the registration information for portal-alliances and
NPOs, a portal-alliance administrator will modify the portal-alliance profile, and an NPO
administrator will modify the NPO profile. A PortalAlliance and NPO object can provide
the encapsulation for accessing and manipulating registration and profile information.

» Portal-alliance and NPO administrators are authorized to access and modify related
portal-alliance or NPO profiles. An Admin object can provide us with this association.
Although each administrator can be embedded in the PortalAlliance or the NPO domain
object, we have chosen to separate the Admin object with the anticipation that in the
future the Admin object may have many-to-one relationship with either the PortalAlliance
or the NPO domain object.

P Campaigns are created by the portal-alliance administrator. A portal-alliance administrator
creates portal-specific campaigns, i.e., each Portal-Alliance domain object is associated
with a Campaign domain object. Each campaign will also be associated with an NPO
object. A Portal-Alliance object can encapsulate the access mechanisms for portal-alliance—
specific campaigns.

Chapter 6: Domain Model Design and Implementation

From the preceding discussion, we define the domain model shown in Figure 6-1. We assume
that readers have the knowledge of UML and object-oriented analysis and design, therefore we
do not explain those concepts here. Normally, the practice adopted during domain modeling is
to first create an analysis-level class diagram, which we continue to refine as we walk through
our requirements expressed in the use cases, and consulting with domain experts to validate
the domain model. The problem domain of our sample application is limited in scope, as
such we have gone straight to the design-level domain model. We also assume that the domain
objects will be implemented as entity beans with container-managed persistence. We continue
our discussion on the domain model and its implementation in the section “Implementing
the Domain Model.” Please note that although the methods on each of the domain objects
are identified in Figure 6-1, in reality these methods are discovered incrementally during
analysis, design, and implementation of the domain objects, as well as during the design
and implementation of business objects that employ the services of these domain objects.
Generalization relationships, associations, and multiplicity are discovered in a similar fashion.

Relationships in the Domain Model

The following is a discussion of relationships, roles, and multiplicity identified on the domain
model in Figure 6-1.

TiP

When creating the domain model, we need to capture all the relationships, roles, and the multiplicity for
each side of the relationship. This information is essential for configuring the deployment descriptors.
Deployment descriptors are discussed later in the chapter.

> Admin-NPO The relationship between Admin and NPO objects is represented by an
association Admin-NPO. This relationship is unidirectional, implying that the Admin
interface can access NPO and not the other way around. This directionality is manifested
by the getNpo and setNpo accessor methods in the Admin interface. These accessors
are defined in the deployment descriptor using the cmr-field-name element whose value
is “npo”. The relationship is supported in the database using a foreign key field in the
ADMIN table to reference the NPO object. We observed in Chapter 5 that an NPO
administrator’s login username is used for determining the associated NPO object.
Using the Admin-NPO relationship, the corresponding getNpo accessor is used for
retrieving the associated NPO object. Domain objects will be accessed in the business
tier session beans described in Chapter 7.

> Admin-PortalAlliance The relationship between Admin and PortalAlliance objects
is represented by an association Admin-PortalAlliance. This relationship is unidirectional,
implying that the Admin interface can access Portal Alliance and not the other way
around. This directionality is manifested by the getAlliance and setAlliance accessor
methods in the Admin interface. These accessors are defined in the deployment
descriptor using the cmr-field-name element whose value is “alliance”. The relationship
is supported in the database using a foreign key field in the ADMIN table to reference
the PortalAlliance object. We observed in Chapter 5 that a Portal-Alliance administrator’s
login username is used for determining the associated PortalAlliance object. Using the

209

210 Practical J2EE Application Architecture

<<Domain-Object Interface>>
interface
com.gc.persistence.admin.Admin

+getAdminID:String ! Admin-NPO !

com.gc.persistence.admin.NPO

<<Business Inferface>>
interface

+getNpo:NPOLocal admin npo
+getAlliance:PortalAlliancelocal
+setAlliance:void

+setNpo:void
1| admin
Admin-PortalAlliance
1, npo

<<Domain-Object Interface>>
Interface
com.gc.persistence.admin.PortalAlliance

+getPortalld:String
+getPortalName:String
+setPortalName:void
+getContactFirstName:String
+setContactFirstName:void
+getContactEmail:String
+setContactEmail:void
+getContactlastName:String
+setContactlastName:void
+getContactPhone:String
+setContactPhone:void
+getActivationDate:Date
+setActivationDate:void
+getNpolimit:int
+setNpolimit:void

+getEin:String
+getNpoName:String
+setNpoName:void
+getContactFirstName:String
+setContactFirstName:void
+getContactEmail:String
+setContactEmail:void
+getContactlastName:String
+setContactlastName:void
+getContactPhone:String
+setContactPhone:void
+getMissionStatement:String
+setMissionStatement:void
+getUrl:String

+setUrl:void
+getAddress:String
+setAddress:void
+getCity:String
+setCity:void
+getState:String
+setState:void
+getCountry:String
+setCountry:void
+getZip:String

+setZip:void
+getActivationStatus:String
+setActivationStatus:void

1| npo

Campaign-NPO

0..* | campaigns

+getNavigationBar:String <<Business Interface>>

+setNavigationBar:void Interface

+getTestCertification:String com.gc.persistenc g paigns.Campaig

+setTestCertification:void

+getCampaigns:Collection +getCampaignID:Integer

+setCampaigns:void 1 PortalAlliance-Campaign 0..* +getRegionCode:String

:gzﬁgg:;zﬁ::gg;gnsrCo//ecﬂon liance campaigns| +sefRegionCode:void

: +getStartDate:Date

+setStartDate:void
+getEndDate:Date
+setEndDate:void
+getNpo:NPOLocal
+setNpo:void

Figure 6-1 Domain model for Site Administration and Manage Campaigns use case packages

Admin-PortalAlliance relationship, the corresponding getAlliance accessor is used for

retrieving the associated PortalAlliance object.

P> PortalAlliance-Campaign The relationship between PortalAlliance and Campaign
objects is represented by an aggregation relationship PortalAlliance-Campaign. This
relationship is unidirectional, implying that the Portal Alliance interface can access

Chapter 6: Domain Model Design and Implementation 211

Campaigns and not the other way around. This type of relationship represents a “has-a”
relationship, meaning that the PortalAlliance object has objects of the type Campaign.

This directionality is manifested by the getCampaigns and setCampaigns accessor methods
in the PortalAlliance interface. These accessors are defined in the deployment descriptor
using the cmr-field-name element (for container-managed relationship) whose value is
“campaigns”. The aggregation relationship is implemented as a Collection. This is apparent
from the getCampaigns accessor method that returns a Collection. The corresponding
cmr-field-type element in the ejb-jar.xml deployment descriptor also declares the Collection
type. The relationship is supported in the database using a foreign key field in the
CAMPAIGN table to reference the PortalAlliance object. This relationship is utilized for
retrieving a Collection of Campaigns associated with a given Portal-Alliance.

> Campaign-NPO The relationship between Campaign and NPO objects is represented
by an association Campaign-NPO. This relationship is unidirectional, implying that the
Campaign interface can access NPO and not the other way around. This directionality
is manifested by the getNpo and setNpo accessor methods in the Campaign interface.
These accessors are defined in the deployment descriptor using the cmr-field-name
element whose value is “npo”. The relationship is supported in the database using a
foreign key field in the CAMPAIGN table to reference the NPO object. This relationship
is utilized for retrieving the NPO associated with a given Campaign.

Creating the Data Model

More often than not, projects may be forced to use an existing data model, perhaps from a
legacy system. In this situation, there is no other option but to start with the existing data model
and build your domain model around it. A comprehensive analysis should be undertaken to map
domain objects to existing database schema and determine if the new application’s processes fit
into the model. It’s a challenging architectural feat—you must be careful not to bring over the
legacy tables wholesale because the tables may contain columns that may not belong in the
context of the domain model. However, in the context of our sample application, we can start
designing the data model from scratch. For the domain model of Figure 6-1, we define the data
model using the ER diagram of Figure 6-2. Please note that the data model of Figure 6-2 uses
IDEF1X notation. Using this notation, an optional non-identifying relationship is drawn as a
dashed line with a solid dot on the child end and a diamond on the parent end.

NOTE

In a non-defining relationship, the foreign key becomes a non-key attribute in the child entity.

The data model in Figure 6-2 contains the ADMIN table that maintains the relationship
between the portal-alliance administrators and NPO administrators with their corresponding
portal-alliance and NPO objects. Later we review the implementation that establishes these
relationships using container-managed persistence (CMP) and container-managed relationships
(CMR). The ADMIN table is related to the NPO table through an NPO_Admin relationship. The
ADMIN table is also related to the PORTAL ALLIANCE table through a PortalAlliance Admin

212

Practical J2EE Application Architecture

NPO
EIN

ADMIN
ADMIN_ID

NPO_Admin NPO_NAME
CONTACT_FIRST_NAME
CONTACT_LAST_NAME
CONTACT_PHONE
CONTACT_EMAIL
ACTIVATION_STATUS
ADDRESS

cry

STATE
PortalAlliance_Admin ZIP

COUNTRY

URL
MISSION_STATEMENT

T
|

PORTAL_ID(FK)
EIN(FK)

|
NPO_Campaign |
PORTAL_ALLIANCE |
PORTAL_ID H
PORTAL_NAME CAMPAIGN
ACTIVATION_DATE CAMPAIGN_ID
CONTACT_FIRST_NAME
A PORTAL_ID(FK)
CONTACT_LAST_NAME PortalAlliance_Campaign EIN(FK)
CONTACT PHONE =~ | ——————o =T m O
CONTACT_EMAIL oyl
NPO_LIMIT A
TEST_CERTIFICATION REGION_CODE
NAVIGATION_BAR

Figure 6-2 Data model for Site Administration and Manage Campaigns use case packages

relationship. Please note that both the profile and registration information for portal-alliances
are kept in the PORTAL ALLIANCE table; the same is true for the NPO table.

The PORTAL ALLIANCE table is related to the CAMPAIGN table through Portal Alliance
Campaign relationship. This is an optional relationship, which means that a Campaign may
or may not exist for a given Portal-Alliance. The CAMPAIGN table is related to the NPO
table through a NPO_Campaign relationship. This relationship mandates that each campaign
be associated with an NPO.

Once we have designed the data model and decided the table names and column names,
we can implement the domain objects as entity beans with container-managed persistence.
The table names and columns will be referred to in the deployment descriptors for the entity
beans. The container will provide the implementation for getting and setting the values of the
table columns using accessor methods for each column declared as container-managed. This
concludes the initial setup required for arriving at a suitable domain-model and the corresponding
persistence strategy. Note that for many-to-many relationships, you will probably want to use
an associative table, but no such cases were present for our sample use cases.

NOTE

The ID column in the CAMPAIGN table is populated using the sequence number generation facility of the database.
This usage is associated with vendor-specific deployment descriptors, which we address later in this chapfer.

Chapter 6: Domain Model Design and Implementation

Implementing the Domain Model

Before we begin our implementation of domain objects identified in Figure 6-1, we first
examine a design pattern for simplifying the implementation of the entity bean interfaces. At
this point, we suggest that you take a little detour to the section “Implementing the Business
Interface Pattern” of Chapter 7. Business interface is an inappropriate stereotype for domain
objects, as such, this same design pattern will be used with the stereotype <<Domain-Object
Interface>>. We found that this business tier pattern used for session beans serves equally
well for entity beans. A review of this pattern reveals several advantages:

» The Domain-Object interface (Admin, PortalAlliance, NPO, and Campaign interfaces
shown in Figure 6-1) shows only the interface methods relevant to the business tier.
The container callbacks defined in the javax.ejb.EntityBean interface and the javax.ejb.
EJBLocalHome interface (assuming that we are using local home interface) appear on
the bean implementation, for example, the AdminBean. The client can use only the
Domain-Object interface.

» The analysis-level domain model contains only the Domain Object interfaces with their
associated methods. We do not assume implementation aspects such as CMP at this
time. This model directly maps to the interfaces described using Domain-Object
interfaces. The analysis time artifacts can be used directly during development.

» The accessors for container-managed fields are declared as abstract methods on the
Bean class (for example, AdminBean). The corresponding implementation is provided
by container provider’s tools. When using the Domain-Object interface, we do not have
to declare these methods as abstract methods on the Bean class. When new properties
are added or old ones removed, only the Domain-Object interface will change.

The following discussion focuses on the CMP semantics defined in the EJB 2.0 specification.
For the most part, using CMP implies that the developer provides the accessors for container-
managed fields. If CMR is being used, the developer provides the accessors for the CMR
fields; other than that, all of the implementation is generated by the vendor tool using the
configuration options specified declaratively in the deployment descriptors.

EJB 2.0 specification introduced local interfaces for EJBs. Local interfaces are used when
the domain objects are collocated in the same JVM as the business objects utilizing them.
This improves the performance significantly by eliminating the overhead associated with
remote interfaces, while taking away location transparency. The objects that implement the
local home interface and local interface are local java objects, therefore the arguments and
results of the methods of the local home interface and local interface are passed by reference.
Because the local programming model is relatively less expensive in terms of making method
calls, it can support fine-grained access to components. For our sample application, we have
chosen to implement all entity beans using local interfaces. While designing applications
using local interfaces, one must be aware of the pass-by-reference semantics inherent in the
local programming model. The remote programming model uses pass-by-value semantics
and therefore offers a level of isolation from inadvertent modification to the data.

213

214 Practical J2EE Application Architecture

NOTE

According to the EJB 2.0 specification, in order to be the target of a confainer-managed relationship, an
entity bean with container-managed persistence must provide a local inferface.

Defining the Admin Interface

In this section, we complete the Admin Domain-Object interface and define the CMP and
CMR fields for the AdminBean. Figure 6-3 shows the CMP- and CMR-related accessors
defined on the Admin interface that the container will implement. Once the primary key for
an entity bean has been set, no attempt should be made to change it using the set accessor
methods. Therefore, the set accessor method for the primary-key is not provided on the Domain-
Object interface, instead it is specified only on the AdminBean as an abstract method.

The following snippet shows the accessors defined in the Admin interface. It has accessors
for the CMP field adminID and the CMR fields alliance and npo. The adminID provided
by the presentation tier is used to identify the association between the remote user and the
associated NPO entity bean or the PortalAlliance entity bean. According to the Register NPO
use case and the Register Portal-Alliance use case, only NPO and Portal-Alliance administrators
can change their respective NPO and Portal-Alliance profiles. The implementation for the
accessor methods is supplied by the container. All accessors must be public and must be
structured according to the cmp-field and cmr-field element specification in the ejb-jar.xml
file. This is discussed later in this section.

package com.gc.persistence.admin;
public interface Admin ({
/* CMP field adminID */
public String getAdminID() ;
/* Because adminID is primary-key, setAdminID is
* defined only in the bean class */
/* CMR field alliance */
public PortalAllianceLocal getAlliance() ;
public void setAlliance(PortalAllianceLocal alliance) ;
/* CMR field npo */
public NPOLocal getNpo () ;
public void setNpo (NPOLocal npo) ;

In order to create the AdminBean entity bean that implements the Admin interface, the
local home interface shown in the following snippet exposes two create methods: one method
is for creating an AdminBean object with a local reference to the corresponding NPO entity
bean, and the other create method is used for creating an AdminBean object with a local
reference to the corresponding PortalAlliance entity bean. The corresponding implementations
are shown in the AdminBean class. The local home interface also exposes a set of find methods.
The findByPrimaryKey method is implemented by the container based on the prim-key-class
element in the deployment descriptor. The rest of the find methods use EJB QL (Query Language)

215

20Dy84UI UIWPY Y pub ubaguiwpy sy Buluyeq ¢-9 ainbiy

PloA:gJuIWpY/4Os+

PoOTUIWPY:[[PIO4AgPUL+
\UUO.\E\E*uq..Z\m\AmﬁEt.‘T
[pooTuIWpY Aoy ApWiLigAgpul+

ploa:ajpaIDisogqle+
ploAiajpaiDisogle+
Buiyg:aypainqle+
Buiyg:aypainqle+

[PoOTUIWPY: j[oHO4AgPUL+
[pooTUIWPY/NIFAGPUL+ proa:pootqle+
[pooTuIWpPY:ASy A IpwWiLigAgpul+ pioa:aiojgqle+
ploa:aaowayqle+

PloA:ajpAISSDq lo+
ploa:ajpARY/glo+
ploAixejuoDAyugjesun+
PloAix@juoDAUFIRS+

\UUOQE._E\O{..Q*GQ\U.?
[PoOTUIWPY/:8jDRIO+

Buiyg:quiwpo

IXRUODAIUT:XPD-

Butyg:Bup) oap]
SWOHH|P20TUIWPY/ UIWpD @ouBjsisiad o6 wod

SWODI0TUIWPY UIWpPD*33udysistad 2B wod pr0TUIWPY “ulWpD*a3udysistad IBwod

Chapter 6: Domain Model Design and Implementation

queries and therefore these methods are implemented by the container based on the query
elements specified in the deployment descriptors. Please note that we have deferred

“““““““ » PoOTUIWPY UIWPD8dUB)sIsiad B wod
20DIRuUI mu ERIIENT] guIpy“uIpD-asuaysisiad o6 wo> mﬂ
v My
PloA:xajuoDAjuFEsUN+
PloAixejuoDA U S+
- 10A:0dNjjos+ proa:aiojgqlo+
UPB|OOG-[PIHUSPIS w._ohmu:a.simm+ pior:arowayqle+
ploa-arowat+ \nuoqmu:n_\\ictom..mu:n_\\.imm+ Eo\,..m_c\,.amomﬁm+
192lqO Bupy oAD]:AoyA1oWiige6+ . s ; I
I0A:9A0WR.I+ lowop|0207gr3 °qle xoAbl:awop207g 3106+ 02010dN-0dN#oB+ prowpoonq ot
pion: HIP201873°9! 1-OLLOH[20Tg| Burys:quiupysob+ ploaapAdY/qlo+
PR
unupyulwpp-asusysisiad-o6-wos upagAyu3z-qle-pan]
awoHpr07gr3-qle-xoAp] palqojpoo1gr3-qle-xoan! ERIITET Qonyajul
R 920Ul ﬂu <<@dbylaju] ppolgO-utowog>> ﬂu upagastdiajuz qlo-xoaol

216

Practical J2EE Application Architecture

discussing deployment descriptors for the later part of this section. For a complete discussion
on EJB QL, please refer to Chapter 11 of the EJB 2.0 specification.

package com.gc.persistence.admin;
public interface AdminLocalHome extends javax.ejb.EJBLocalHome {
/* Create Methods */
public AdminLocal create(String adminId, NPOLocal npo)
throws CreateException;
public AdminLocal create(String adminId, PortalAllianceLocal alliance)
throws CreateException;
/* Finder Methods */
public AdminLocal findByPrimaryKey (String adminId)
throws FinderException, ObjectNotFoundException;
public AdminLocal findByEin(String ein)
throws FinderException, ObjectNotFoundException;
public AdminLocal findByPortalID(String portallD)
throws FinderException, ObjectNotFoundException;

Observe that the finder methods throw ObjectNotFoundException. The CMP implementation
raises this exception when the corresponding entity bean is not found in the persistent store.
The business tier (which is the client in this case) must catch this exception instead of trying
to catch FinderException. Chapter 7 explains the difference between these two exceptions in
the section “Handling Exceptions in Transactions.”

The create methods of the AdminLocalHome are delegated to the ejbCreate methods of the
EntityBean by the container. The ejbCreate methods shown in the following code will set the
appropriate CMP field. Observe that the CMR fields must be set only in the ejbPostCreate
methods. The parameter list for ejbCreate and ejbPostCreate is identical. As you will see later
in the discussion on deployment descriptor, the container persists the objects and relationships
based on the abstract persistence schemas of entity beans and their container-managed
relationships.

package com.gc.persistence.admin;
public abstract class AdminBean implements EntityBean, Admin {
private EntityContext ctx;
public String ejbCreate(String adminID, NPOLocal npo)
throws CreateException{
this.setAdminID (adminID) ;
return null;
}
public String ejbCreate(String adminID, PortalAllianceLocal alliance)
throws CreateException{
this.setAdminID (adminID) ;
return null;
}
public void ejbPostCreate (String adminID, NPOLocal npo)
throws CreateException{

Chapter 6: Domain Model Design and Implementation 217

this.setNpo (npo) ;
}
public void ejbPostCreate (String adminID, PortalAllianceLocal alliance)
throws CreateException{
this.setAlliance(alliance) ;
}
/* The set method for adminID appears only in the bean class definition because
* it is the primary-key */
public abstract void setAdminID(String adminID) ;
. other container callback methods ...

Instead of using the setNpo method (or the setAdlliance method) in the ejbPostCreate method,
we could have easily done the sef in the business tier session beans. However, this will break the
encapsulation. We must let the logic for CMR be part of the AdminBean creation process.

The bean developer must define the entity bean class as an abstract class. The container-
managed persistent fields and container-managed relationships are exposed to the client
through get and set accessor methods. These fields are not present in the bean class since
these are virtual fields. The bean implementation produced by the container is aware of these
fields through cmp-field and cmr-field element declarations in the ejb-jar.xml deployment
descriptor. One must therefore follow the JavaBean naming convention for specifying the
names for CMP and CMR fields in the deployment descriptor, that is, the name must begin
with a lowercase letter.

Specifying the Deployment Descriptors

In this section, we configure various deployment descriptors associated with setting up the
SiteAdmin bean with container-managed persistence and container-managed relationships.
This section discusses the specifics of configuring the ejb-jar.xml file, vendor-specific
weblogic-ejb-jar.xml, and weblogic-cmp-rdbms-jar.xml files. We first discuss the ejb-jar.xml
deployment descriptor file.

NOTE

The sample application GreaterCause was developed and tested on the WebLogic Server 7.0 (SP1); as such,
all vendor-specific deployment descriptors discussed in this chapter will confirm to WebLogic Server 7.0.

<enterprise-beans><entity>
<description>Admin Bean Description</description>

<!-- Logical name of the EJB within the ejb-jar file -->
<ejb-name>AdminEntityEJB</ejb-name>

<!-- Specify abstract schema type for use in EJB QL -->
<abstract-schema-name>Admin</abstract-schema-name>

<local-home>com.gc.persistence.admin.AdminLocalHome</local-home>

218 Practical J2EE Application Architecture

<local>com.gc.persistence.admin.AdminLocal</local>
<ejb-class>com.gc.persistence.admin.AdminBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>

<!-- Describe the container-managed fields -->
<cmp-field><field-name>adminID</field-name></cmp-field>

<!-- Name of the primary key field; this field is mapped to the
database schema in weblogic-cmp-rdbms-jar.xml file -->
<primkey-field>adminID</primkey-field>

<!-- Query for findByEin method in home interface; note the use
of abstract schema type 'Admin' defined previously using
abstract-schema-name element -->

<query>

<query-method>

<method-name>findByEin</method-name>

<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-gl>

SELECT OBJECT (a)

FROM Admin AS a

WHERE (a.npo.ein = ?1)

</ejb-gl>
</query>
<!-- Query for findByPortalID method in home interface -->
<query>

<query-method>
<method-name>findByPortalID</method-name>
<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-gl>
SELECT OBJECT (a)
FROM Admin AS a

WHERE (a.alliance.portallID = ?1)
</ejb-gl>
</query>
</entity></enterprise-beans>

Chapter 6: Domain Model Design and Implementation

The ejb-name element specifies an EJB’s logical name in the deployment descriptor. The
name AdminEntityEJB is assigned to AdminBean. This name is used to reference the bean in
several places within ejb-jar.xml, weblogic-ejb-jar.xml, and weblogic-cmp-rdbms-jar.xml.

The prim-key-class element contains the fully qualified name of an entity bean’s primary
key class. The definition of the primary key can be deferred to deployment time, in this case
use prim-key-class as java.lang.Object. The findByPrimaryKey method of the local home
interface uses this class name as method parameter type. Database-assisted key generation
can also be supported by providing the object type of the key that is generated by the database;
any primitives must be converted to the corresponding Java object types.

The primkey-field element specifies the cmp-field that contains the primary key. Once the
primary key for an entity bean has been set, no attempt should be made to change it using the
set accessor methods. Therefore sef accessor methods are not provided on the Domain-Object
interface. When the primary key is made of more than one CMP field, the composite key can
be represented using a custom type. All fields in the primary key class must be declared
public. The primkey-field element is not used when the primary key is a compound key, that
is, it maps to multiple cmp-fields.

The container-managed persistent fields and container-managed relationship fields are
specified in the deployment descriptor using the cmp-field and cmr-field elements, respectively.
Java types assigned to cmp-field can be Java primitive types and Java serializable types.

The names assigned to cmp-fields and cmr-fields must begin with a lowercase letter. The
corresponding accessor methods defined in the bean class follow the JavaBean method
naming convention, that is, the first letter of the name of the cmp-field or cmr-field is uppercased
and prefixed by get or set. Note that all cmp-fields and cmr-fields are mapped to the database
schema using the vendor-specific weblogic-cmp-rdbms-jar.xml file. We discuss this deployment
descriptor later in this section.

The container-managed fields are virtual fields since they are not explicitly declared in the
bean class. Instead, the bean developer declares an abstract set of ger and sef accessor methods
for each container-managed field. These abstract methods are declared in the entity bean
class. The corresponding implementation is generated by the container provider’s tools at
deployment time. For the purpose of our example, we have a slight deviation in that the abstract
accessor methods are not made explicitly part of the entity bean class but rather these accessors
are defined in a separate Domain-Object interface. In the case of the AdminBean class, the
accessors are defined on the Admin interface, which is implemented by the AdminBean class
and extended by the AdminLocal interface as shown previously in Figure 6-3. The advantages
of doing this have been discussed in the section “Implementing the Domain Model.”

The guery element is used to specify queries for both the finder and select methods. The
container will provide the implementation for methods declared in the guery element. The
container uses the query specified by the ejb-g/ element as part of the method implementation.
Queries are expressed using EJB QL (for a complete discussion on EJB QL, please refer to
Chapter 11 of the EJB 2.0 specification). Input parameters to queries are designated by the
question mark (?) prefix followed by an integer. This integer specifies the position of the
parameter in the method declared in the deployment descriptor by the query-method element.
For the findByEin method shown in the deployment descriptor in the preceding, there is only
one method parameter of type java.lang.String.

219

220

Practical J2EE Application Architecture

As part of our discussion on ejb-jar.xml deployment descriptor file, we examine the
relationships element declared in the descriptor file. The following snippet shows the descriptors
required for configuring the relationship between Admin and NPO entity beans. Please note
that the persistence mechanism is configured accordingly, and the mapping between the
persistence layer and the EJBs is provided by a vendor-specific weblogic-cmp-rdbms-jar.xml
deployment descriptor.

<!-- Define container-managed relationships -->
<relationships>
<ejb-relation>
<!-- Provide unique name for a relationship; this name is used in
weblogic-cmp-rdbms-jar.xml for mapping the relationship to the
database schema -->
<ejb-relation-name>Admin-NPO</ejb-relation-name>

<!-- Define the relationship in the context of role name 'admin' -->
<ejb-relationship-role>
<ejb-relationship-role-name>admin</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<!l-- Identify the EJB previously described
using ejb-name element -->
<ejb-name>AdminEntityEJB</ejb-name>
</relationship-role-source>
<cmr-field>
<l-- get and set accessors are defined for this field;
this also indicates the direction of the relationship -->
<cmr-field-name>npo</cmr-field-name>
</cmr-field>
</ejb-relationship-role>

<!-- Define the relationship in the context of role name 'npo' -->

<ejb-relationship-role>
<ejb-relationship-role-name>npo</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>NPOEntityEJB</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>
</relationships>

Figure 6-1 shows the association Admin-NPO between Admin and NPO entity beans. We
defined the accessors for this unidirectional relationship in the Admin interface using getNpo
and setNpo CMR-related methods. Note that we have chosen the role-name as the cmr-field
name. The following code fragment shows the accessors that form the Admin-NPO relationship.

Chapter 6: Domain Model Design and Implementation

public interface Admin {
public NPOLocal getNpo () ;
public void setNpo (NPOLocal npo) ;

To explain the associated deployment descriptors, we take a bottom-up approach. The
basic structure that establishes a relationship is a container-managed-relationship field that is
declared using the cmr-field element. In the preceding snippet for the Admin entity bean, we
have the Admin bean declaring a cmr-field element npo, the corresponding accessors are
declared in the Admin interface, and the weblogic-cmp-rdbms-jar.xml defines a weblogic-
rdbms-relation element that provides a concrete schema of how this relationship will be
physically persisted. For the Admin-NPO relationship, the corresponding weblogic-rdbms-
relation:column-map (subordinate to weblogic-rdbms-relations element) element indicates
that the ADMIN table column name EIN is a foreign key associated with the primary key
column EIN of the NPO table. We will see usage of the column-map element shortly.

The ejb-relationship-role element is defined in the context of the role name associated with
the relationship-role-source element. For our sample descriptor, the source is identified by the
logical name assigned to the AdminBean, which is AdminEntityEJB, and the corresponding role
name identified by the ejb-relationship-role-name is admin. The relationship-role-source
NPOEntityEJB does not have a cmr-field because the association between Admin and NPO
is undirected when traversing from NPO to Admin.

The multiplicity element describes the multiplicity of the role identified by the ejb-
relationship-role-name element—it can take the value One or Many. A little digression is in
order to explain this. The multiplicity of 0..* specified in Figure 6-1 for the Campaign entity
bean side of the PortalAlliance-Campaign relationship will be specified as <multiplicity>
Many</multiplicity>. This creates a collection-valued relationship. The getCampaigns
method on the PortalAlliance entity bean will return a Collection object containing objects
of the type CampaignLocal (which extends the Campaign domain-object interface. We discuss
this again in the section “Defining the PortalAlliance Interface.” You can refer to section 10.3.6
of the EJB 2.0 specification for a detailed discussion of collection-valued relationships, but
this knowledge is not required for understanding the rest of this chapter.

Recapping the preceding discussion, we have successfully defined the bean classes,
corresponding interfaces, and the ejb-jar-xml deployment descriptor that implements a
one-to-one unidirectional relationship from Admin to NPO entity bean. The following
discussion explains the vendor-specific deployment descriptor necessary for vendors to
generate the concrete classes for the abstract bean classes we defined earlier. We begin by
discussing the declarations in the weblogic-ejb-jar.xml file—a snippet of this file appears
here in the context of AdminBean class:

<!-- Admin Entity Bean Definition -->
<weblogic-enterprise-bean>

221

222 Practical J2EE Application Architecture

<ejb-name>AdminEntityEJIB</ejb-name>
<entity-descriptor>
<entity-cache>
<max-beans-in-cache>1000</max-beans-in-cache>
</entity-cache>
<persistence>
<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>7.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>
</persistence-use>
</persistence>
</entity-descriptor>
<local-jndi-name>ejb/local/com.gc.persistence.admin.AdminLocalHome
</local-jndi-name>
</weblogic-enterprise-bean>

The ejb-name element provides the logical name by which the bean declarations are
identified in the ejb-jar.xml deployment descriptor. The entity-descriptor:type-storage element
defines the location of the deployment descriptor weblogic-cmp-rdms-jar.xml for the RDBMS-
based persistence mechanism. The local-jndi-name element provides the INDI name for the
entity bean. The EJB specification recommends prefixing JNDI names with “ejb/.”

Moving forward, we look at how the persistence mechanism ties into container-managed
entity beans using the weblogic-cmp-rdbms-jar.xml deployment descriptor. We use the
Admin entity bean example for this purpose.

<weblogic-rdbms-bean>
<ejb-name>AdminEntityEJB</ejb-name>
<data-source-name>jdbc/gcOracleTxPool</data-source-name>
<table-map>
<table-name>ADMIN</table-name>
<field-map>
<cmp-field>adminID</cmp-field>
<dbms-column>ADMIN_ID</dbms-column>
</field-map>
</table-map>
</weblogic-rdbms-bean>

The value of the ejb-name element is a logical name that refers to the bean configuration
defined in the ejb-jar.xml deployment descriptor. The value of the data-source-name element
specifies the JNDI name given to the connection pool while configuring the server. We discuss
this configuration in Chapter 9.

The table-map element defines the mapping between the entity bean and the database
table. The table-name element identifies the table name, and the field-map entries identify

Chapter 6: Domain Model Design and Implementation

the mapping between a cmp-field and the corresponding table column. This mapping must be
provided for all the cmp-fields defined for the entity bean. The AdminBean has only one cmp-field.

<weblogic-rdbms-relation>
<relation-name>Admin-NPO</relation-name>
<weblogic-relationship-role>
<!-- This role name was defined in the ejb-jar.xml file -->
<relationship-role-name>admin</relationship-role-name>
<relationship-role-map>
<column-map>
<foreign-key-column>EIN</foreign-key-column>
<key-column>EIN</key-column>
</column-map>
</relationship-role-map>
</weblogic-relationship-role>
</weblogic-rdbms-relation>

We can draw a parallel between the weblogic-rdbms-relation element of the weblogic-
cmp-rdbms-jar.xml and the ejb-relation element of the ejb-jar.xml file. While the ejb-relation
element specified the cmr-field names, the weblogic-rdbms-relation:column-map specifies
the column name of the ADMIN table that will be used to persist the relationship. The
foreign-key-column element provides the column name of the foreign key in the ADMIN
table, while the key-column element provides the column name of the primary key for the
NPO table that will map to the foreign key of the ADMIN table.

This concludes the implementation and configuration of the AdminBean class and its
corresponding interfaces and deployment descriptors. In the following section, we discuss
the semantics for implementing a one-to-many relationship that involves a collection-valued
cmr-field.

Defining the PortalAlliance Interface

In this section, we define the methods pertinent to the PortalAlliance domain-object interface.
This interface has the standard accessor methods for the cmr-field “campaigns” except that in
this case we are dealing with a collection-valued cmr-field. Also, a couple of convenience methods
have been declared to work in conjunction with EJB QL for returning Collection objects.

Figure 6-1 shows that a Portal Alliance object can be associated with zero or more Campaign
objects. The direction of relationship is from PortalAlliance to Campaign. The accessors
associated for this relationship are created for the Portal Alliance interface as getCampaigns
and setCampaigns. Observe that the getCampaigns accessor method returns a Collection
object, whereas the setCampaigns accessor method specifies a collection-valued parameter.
We strongly recommend that you refer to section 10.3.6 of the EJB 2.0 specification for details
on collection-valued relationships. However, this knowledge is not required for understanding
the rest of this chapter. A convenience method addCampaign is specified on the Portal Alliance

223

224

Practical J2EE Application Architecture

domain object interface for adding a single Campaign object to this collection-valued
relationship. Another convenience method getRegional Campaigns is added for extracting
the qualifying campaigns based on a regionCode parameter. The Portal Alliance interface
is shown here:

public interface PortalAlliance {
/* CMP Field Accessors */
public String getPortalID() ;
public String getPortalName () ;
public void setPortalName (String portalName) ;
...other cmp-field accessor methods

/* CMR Field Accessors */
public Collection getCampaigns() ;
public void setCampaigns (Collection campaigns) ;

/* Other Convenience Methods */

public Collection getRegionalCampaigns (String regionCode)
throws FinderException;

public void addCampaign (Campaign campaign) ;

As discussed before, the cmp-field’s and cmr-field’s accessor method implementation is
provided by the container provider’s tools; however, the bean class must provide implementation
for the convenience methods getRegionalCampaigns and addCampaign that access the collection-
valued cmr-field. The convenience methods are shown in the following code fragment:

public abstract class PortalAllianceBean
implements EntityBean, PortalAlliance {
private EntityContext ctx;

/* Adding a new Campaign to a collection-valued relationship */
public void addCampaign (Campaign campaign) {

Collection campaigns = getCampaigns|() ;

campaigns.add (campaign) ;
}
public Collection getRegionalCampaigns (String regionCode)

throws FinderException{

return ejbSelectRegionalCampaigns (getPortalID(),regionCode) ;
}
public abstract Collection ejbSelectRegionalCampaigns (String portalID,

String regionCode) throws FinderException;

other bean methods

There are two ways we can add a Campaign object for a given PortalAlliance, using either
the container-implemented sefCampaigns method, or the bean class implemented addCampaign

Chapter 6: Domain Model Design and Implementation

method. When the setCampaigns method is used, the collection-valued parameter completely
replaces existing relationships. The setCampaigns method therefore has the semantics of the
Java.util.Collection’s clear method, followed by java.util. Collection’s addAll method. For
adding a new Campaign to the existing relationship set, we use the addCampaign method.
This method first retrieves a container-managed collection on which the java.util. Collection’s
add method is called. This has the effect of adding the new PortalAlliance-Campaign
relationship in the CAMPAIGN table using the foreign-key PORTAL ID specified for the
CAMPAIGN table. Readers are recommended to review section 10.3.7 of the EJB 2.0
specification for further details on manipulating container-managed collections.

To obtain a filtered collection of objects based on a specific regionCode, we use the
getRegionalCampaigns method on the local interface. This method delegates to
ejbSelectRegional Campaigns of the PortalAllianceBean class. This indirection is provided
because the EJB specification does not permit exposing of the ejbSelect<method> method
(where <method> is any given suffix that uniquely identifies the method name) to the
client. The use of the ejbSelect<method> method is permitted only for an entity bean class.
The ejbSelect<method> method was preferred in this case over the ejbFind<method>
method because the ejbFind<method> method can only return an object (or collection)
of type PortalAllianceLocal (the type corresponding to the interface itself), whereas the
ejbSelect<method> method can return objects (or collection) of any cmp-field or cmr-field
type; for the ejbSelectRegionalCampaigns, the desired collection is of type Campaigns.
Observe that the ejbSelectRegional Campaigns is declared as abstract as the actual implementation
of the ejbSelect<method> method is provided by the container provider’s tools. A corresponding
EJB QL is provided in the ejb-jar.xml deployment descriptor using the query element, which
is discussed in the following subsection.

Using EJB QL with Find and Select Methods

EJB QL is used for defining queries for accessing entity beans with container-managed
persistence in a portable way. The queries created using EJB QL are specified in the
ejb-jar.xml deployment descriptor using the entity:query element. The query element is
specified for all ejbFind<METHOD>(s) (with the exception of ejbFindByPrimaryKey) and
ejbSelect<METHOD>(s). The suftfix <METHOD> is a stand-in for the name of the method.
Only the finder methods are exposed to the entity bean clients through the beans home
interface. ejbSelect< METHOD>(s) are used internally by the bean class, and declared as
abstract method on an entity bean class. For container-managed persistence, the implementation
for the finder and select methods are generated by the container provider’s tools at
deployment time.

One important distinction between finder and select methods is that the finder methods can
only return a type that represents the entity bean’s local or remote interface (depending on local
or remote usage), or a type representing a collection of objects that implement the entity bean’s
local or remote interface, whereas select methods can return objects of any cmp-field or cmr-field
type. Another important distinction is that the select methods execute in the transaction context
determined by the transaction attribute of the invoking business method. The container is

225

226

Practical J2EE Application Architecture

responsible for ensuring that changes to the states of all entity beans in the same transaction
context as the select method are visible in the results of the select method.

Single-object finder methods and select methods should always return a single entity
object, otherwise the container will throw the FinderException. Multi-object finder methods
specify a result type as a java.util. Collection type. For remote interface types, the client must
use the PortableRemoteObject.narrow method to convert the objects contained in a collection.
Multi-object select methods specify a result type as a java.util. Collection type or java.util.Set
type. For Collection type, the objects returned in the collection may contain duplicates if
DISTINCT is not specified in the SELECT clause of the query. For Set type, SELECT
DISTINCT is default when DISTINCT is not specified in the SELECT clause.

Specifying the Deployment Descriptors

We begin discussing deployment descriptors with an emphasis on collection-valued
cmr-fields because of the one-to-many relationship between PortalAlliance and Campaign
EJBs. Figure 6-1 shows the PortalAlliance-Campaign relationship, which is a one-to-many
unidirectional relationship. We represent this relationship using the following deployment
descriptor declarations. The ejb-relationship-role element is defined in the context of the role
name associated with the relationship-role-source element. For the deployment descriptor
shown in the following code, the source is identified by the logical name assigned to the
PortalAlliance entity bean, which is PortalAllianceEntityEJB, and the corresponding role
name identified by the ejb-relationship-role-name is alliance. The relationship-role-source
CampaignEntityEJB does not have a cmr-field indicating that association between Portal Alliance
and Campaign does not have directivity from Campaign to PortalAlliance.

<ejb-relation>
<ejb-relation-name>PortalAlliance-Campaign</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>alliance</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>PortalAllianceEntityEJB</ejb-name>
</relationship-role-source>
<cmr-field>
<cmr-field-name>campaigns</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>
<ejb-relationship-role-name>campaigns</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>
<ejb-name>CampaignkEntityEJB</ejb-name>
</relationship-role-source>

Chapter 6: Domain Model Design and Implementation

</ejb-relationship-role>
</ejb-relation>

In this snippet, observe that the cmr-field-name has the value campaigns. This value
corresponds to the getCampaigns and setCampaigns accessor methods, and follows the JavaBean
convention for naming accessor methods. The cmr-field-type specifies that the ger and set
methods will use a collection-valued object in their method signatures.

The following snippet from ejb-jar.xml depicts the ejbSelectRegional Campaign method
and query configurations..

<entity>
other declarations appear here
<abstract-schema-name>PortalAlliance</abstract-schema-name>
<cmp-field><field-name>portalID</field-name></cmp-field>
<cmp-field><field-name>portalName</field-name></cmp-field>
rest of cmp-fields
<primkey-field>portalID</primkey-field>
<query>
<gquery-method>
<method-name>ejbSelectRegionalCampaigns</method-name>
<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-gl>
SELECT OBJECT (c)FROM PortalAlliance AS p,
IN (p.campaigns) c
WHERE (p.portalID = ?1 AND c.regionCode = ?2)
</ejb-gl>
</query>
</entity>

The getCampaigns method on the Portal Alliance returns a collection as a result of one-
to-many relationships existing between the PortalAlliance entity bean and Campaign entity
beans. This is shown in Figure 6-2. The EJB 2.0 specification mandates that the iterator
obtained over a collection in a container-managed relationship must be used within the
transaction context in which the iterator was obtained. Therefore the getCampaigns method

of the PortalAlliance entity bean is associated with the transaction attribute value of Mandatory.

This constraint automatically enforces a requirement on the client to call the getCampaigns
method of the PortalAlliance entity bean with a transaction attribute Required, this is because
the client is going to iterate over the collection. Transactions are discussed in Chapter 7 in

227

228

Practical J2EE Application Architecture

the section “Transaction Semantics for Enterprise Beans.” The following snippet shows the
transaction attribute declaration for the getCampaigns method in the ejb-jar.xml file.

<container-transaction>
<method>
<ejb-name>PortalAllianceEntityEJB</ejb-name>
<method-name>getCampaigns</method-name>
</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>

The deployment descriptor files are included in their entirety in the accompanying source
distribution. This concludes the discussion for implementing and configuring the PortalAlliance
entity bean.

Defining the Campaign Interface

Figure 6-1 depicts the Campaign-NPO relationship between Campaign entity bean and the
NPO domain-object interfaces entity bean. The relationship is unidirectional implying that
only the Campaign bean has cmr-field accessor methods defined. The following code
segment represents the methods required on the campaign interface:

public interface Campaign {
public Integer getCampaignID() ;
/* setCampaignID is specified only in the bean class */
Other cmp-fields accessors
/* Accessors for cmr-field npo */
public NPOLocal getNpo() ;
public void setNpo (NPOLocal npo) ;

Observe that the getCampaignID method returns an integer. This is because the
CAMPAIGN_ID of the CAMPAIGN table, as shown in Figure 6-2, uses a database-
generated key. For developing the sample application, we have used the Oracle database
server, which provides a sequence generation facility. The vendor-specific implementation
wraps the sequence number in an /nteger object; this is discussed in the following section.

Specifying the Deployment Descriptors
The following declarations in the vendor-specific weblogic-ejb-jar.xml deployment descriptor
are for configuring a primary key that employs automatic key generation:

<weblogic-rdbms-bean>
<ejb-name>CampaignEntityEJB</ejb-name>
<data-source-name>jdbc/gcOracleTxPool</data-source-name>
<table-map>
<table-name>CAMPAIGN</table-name>
<field-map>

Chapter 6: Domain Model Design and Implementation

<cmp-field>campaignID</cmp-field>
<dbms-column>CAMPAIGN_ID</dbms-column>
</field-map>
Other field-map declarations
</table-map>
<automatic-key-generation>
<generator-type>ORACLE</generator-type>
<generator-name>CAMPAIGN ID SEQUENCE</generator-name>
<key-cache-size>10</key-cache-size>
</automatic-key-generation>
</weblogic-rdbms-bean>

The sequence CAMPAIGN ID SEQUENCE specified for the generator-name element
is created using the following DDL:

CREATE SEQUENCE CAMPAIGN_ID_SEQUENCE
START WITH 10 INCREMENT BY 10 CACHE 20;

Providing key-cache-size optimizes access to the database because the container caches
the sequence number and increments the sequence without requesting the next value from
database for each entity creation. When using WebLogic with Oracle’s sequence generator,
the WebLogic document recommends using the same value for the key-cache-size element and
INCREMENT; if these values differ, you will most likely experience duplicate key problems.

Summary

During domain modeling, we essentially discover classes from use cases. Most likely, the
nouns and noun phrases provide an indication of entities that would be considered objects
and attributes, and verbs and verb phrases will likely become operations and associations. The
key abstractions from the problem domain must be identified at the outset, which forms the
basis of the static model of the system. Business requirements are implemented on top of the
domain model, therefore the domain model is a foundational artifact on which the business
and presentation components are dependent. During domain modeling, we also identify the
relationships between the domain objects. The type of relationship between entities and the
multiplicity associated with roles on either side of the relationship will provide guidance for
the creation of the database schema required to persist the corresponding entities. To arrive
at an optimum design, we iterate and refine the model through the analysis phase. This
optimization process can also continue through the design phase. To understand the object
modeling process, we suggest that you read Use Case Driven Object Modeling with UML
by Doug Rosenberg [Object Modeling], which further elaborates on this subject.

References

[Object Modeling] Use Case Driven Modeling with UML by Doug Rosenberg
(Addison Wesley, 1999)

229

This page intentionally left blank.

CHAPTER

Business Tier Design
and Implementation

IN THIS CHAPTER:

Implementing Business Tier Design Patterns
Realization of the Sample Application Use Cases
Enterprise JavaBean’s Transaction Semantics
Enterprise JavaBean’s Configuration Semantics
Summary

References

opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 231

232

Practical J2EE Application Architecture

n Chapter 5, we looked at various design patterns applicable for the presentation tier

along with implementation of the use case packages GreaterCause Site Administration,

Manage Campaigns, and Search NPO. In this chapter, we discuss and implement
several design patterns that are appropriate for the business tier. Emphasis in this chapter is
on identification of appropriate design patterns in the context of our problem domain and
applying these patterns for solving common problems during the design and development
of the business tier. The patterns discussed in this chapter cover only those patterns that are
relevant to realizing the above-mentioned use cases; for a comprehensive patterns list and
related discussion, please refer to the references provided at the end of the chapter. A good
understanding of this chapter will assist the readers in quickly assimilating other design
patterns covered in the reference books and be able to discern their use in the context of
different problem domains.

NOTE

It is assumed that the reader of this chapter has a basic understanding of EJBs and related technologies
identified under J2EE framework. This chapter does not explain these technologies in great detail: instead

it applies these technologies in the context of realizing the use cases identified in the preceding. We do
discuss EJB usage and associated development and configuration semantics to provide the complete rationale
behind our design decisions. For additional information on developing distributed systems using EJBs, please
refer to tutorials available at java.sun.com.

Applying Design Patterns

In this section, we examine selected patterns that have been effectively used across most
GreaterCause use cases. The Value List Handler pattern [Core] will be discussed in the
section “Search NPO Use Case.”

When designing distributed applications, appropriate partitioning of application logic
across application tiers, coupled with efficient data transfer between tiers, is required to
satisfy such concerns as scalability, performance, extensibility, and maintainability. A brief
description of patterns follows; this is followed by a detailed discussion of the pattern usage
in the context of the GreaterCause implementation.

» Session Facade This design pattern is used where there is a requirement to loosely
couple the interactions between the client and the business logic residing on a server.
This pattern minimizes the dependencies between the client tier and the business tier
by providing a stable and simple interface to the business logic accessible by the client
tier; it hides the complexities of the business processes within the methods of a session
bean. This enables simpler client design and protects the client from the effects of
business process changes in the business tier of the application.

» Business Interface This design pattern is used to provide a compile-time checking of
method signatures for remote/local interface implementation in the EJB bean classes.

> Data Transfer Object Pattern This design pattern is used to transfer coarse-grained
objects to and from the business tier and presentation tier, thus reducing overall network

Chapter 7: Business Tier Design and Implementation

traffic and transferring more data in fewer remote call invocations.

> EJB Home Factory Pattern This design pattern is used to encapsulate the vendor-

specific details required for looking up home interfaces; it also provides caching of
home references for reuse.

Implementing the Session Facade Pattern

We first examine a scenario in which the presentation tier will try to implement the Register

NPO Use Case by directly accessing the entity beans without the intervening business-tier
objects, which are usually implemented using session beans. Register NPO Use Case is

described in Chapter 1. The objective of this use case is to register an NPO, which includes
creating the associated domain objects Admin and NPO (both are container-managed entity
beans) for storing the administrator-related information and the NPO registration information,
respectively. At the analysis level, the steps involved in implementing the Register NPO Use

Case are depicted in the sequence diagram of Figure 7-1.

presentationTierObject

<<Client-side Factory>>

ejbHomeFactory
EJBHomeFactory

<<Entity Bean Home>>

npoHome
NPOHome

<<Entity Bean Home>>
adminHome
AdminHome

1: lookup NPO entity bean’s home reference

!
»

i

2: find NPO entity bean using primary key

A 4

3: If NPO entity does not exist then create a new instance

4: lookup Admin entity bean’s home re

T]

5: find Admin entity bean using primary key

ference

6: If Admin bean does

not exist then create a new instance

A 4

Figure 7-1 Directly accessing domain objects from the presentation tier

233

234 Practical J2EE Application Architecture

NOTE

Please note that the sequence diagrams illustrated in this chapter are analysis-level diagrams. They are used
to provide a high-level understanding of the underlying interaction semantics.

In this scenario, the presentation tier will make several calls over the network (assuming
remote reference usage) to achieve the objective of registering the NPO in the data store. The
number of calls for registering the NPO creates network chatter that does not effectively use the
network bandwidth. Also, in this scenario the presentation tier has embedded logic for accessing
and manipulating the domain objects, which will increase the complexity of the presentation tier
logic. As discussed in Chapter 4, the presentation tier must follow the MVC semantics. This
implies that it must not concern itself with manipulating the model; the logic for manipulating
the model must be abstracted into a different tier, which we call the business tier.

A best practice approach to addressing these inefficiencies uses a session bean for
implementing the model portion of the problem domain. The business semantics are expressed
in a session bean that also encapsulates access to domain objects, thus effectively hiding the
complexity of accessing and manipulating domain objects implemented as entity beans. This
implementation of the session bean is referred to as a Session Fagade [Core]. When a session
facade pattern is used, the presentation tier effectively makes a single network call to a method
on the session bean with relevant arguments, which could potentially be a data transfer object
(this is further explained in the section “Implementing the Data Transfer Object Pattern”); the
facade method in turn deals with the complexities of business processes and data manipulation.
The session facade isolates the presentation tier from the implementation aspects of the domain
tier and the related business processes, thus providing a loosely coupled interaction semantics.
Should the business tier logic change, or there is a change in the domain model, the
presentation tier will usually remain unaffected. Figure 7-2 depicts the interaction between the
presentation tier and the session fagade.

The sequence diagram depicts that fewer calls are made by the presentation tier over the
network instead of several calls as compared to Figure 7-1. In this scenario, the session
fagade is implemented by the SiteAdmin session bean.

From the preceding discussion, you will observe that the presentation tier is now limited
in its responsibility while delegating most of the application logic to the session facade. By
applying the session fagade pattern, we have moved the business logic from the presentation
tier to the business tier and introduced the MVC semantics for isolating the presentation tier
from the intricacies of the domain model and the logic that manipulates the model. The
session fagade pattern is also extensively used when there is need to prevent the client from
making fine-grained method calls to domain objects. Roughly speaking, the pattern could be
used to wrap all the method calls required to get relevant data from entity beans in a single
network call to the business tier. This pattern is usually used in conjunction with the Data
Transfer Object pattern. The session bean implementing the session fagade does not have to
restrict itself to accessing domain objects; a session fagade could in fact interact with other
session beans for servicing the client request. This architecture is useful for solving complex
business problems as well as promoting reuse and modularity.

235

ion

Business Tier Design and Implementat

Chapter 7

<
<

PR

:
1
1
1
1
1
1
1
1
i
1
QUED._wT_ M3U D 3jpaId Em_.T \._w_xm jou

wOO_U b;:@ C_E_vd\ *_ Q¢

app3p uoissag Buisn 160y ssauisng Buissaddy g-7 ainbiy

 [—

[l m |
Uq : ! m
m ; Aoy Asowid Buisn upaq Ayu3 uiwpy puy :g'g ; m
m m @dDyIBjul BuIoy m‘:cmg\,bzcm ulwpy dnyoo :y°¢g m m
| [k , | |
m muc_wﬂ: M3U D 3jP3Id UL 4sIX® JOu $30p Ajjus OdN TR m m
m m Aoy Aipwiid Buisn c,owg Aus OdN PuY :z°€ m m
! | [l | m
' ! @duaIafel awoy s,unaq Ajyue OdN dmyjoo) i|g T < T T OdN-essiBal i¢ |
m m m m i) | i
” ” ” : i UDa| UOISSas UILIPY/BHIG Bj0aId 57 |
W W W W W souBI9fel BWoY s,Unaq :o_mmmm unwpyeng dmjoo 1| 1
SWoHuIWpY SWOHOJN AiojopJowoHg(3 uLagUILIPY/3HS SWOHUIWPYaHS AioppawopHgra
SWOoHuIWpp awopodu AIo50 JowoHqe UIWIpY/3yis SWOHUIWPY/3}IS AIopbjswoHqle

<<dWOH upnag Ajyuz>>

<<dWoH unag Ajyug>>

<<Alopp 8pis-1oniag>>

<<upag uoIssag>>

<<9WOH upnag uolssag>>

<<AI0pp] Bpis-juslD>>

236

Practical J2EE Application Architecture

Optimization Note

For the reasons of scalability, you may want to consider using stateless session beans
instead of stateful session beans. A stafeful session bean requires that you maintain the
conversational state for a client across method invocations; therefore a stateful bean
cannot be assigned to another client. A sfateless session bean does not maintain the
conversational state and hence any free instance of the session bean from the bean pool
may service any client. This provides better opportunities for the EJB container to scale
the number of available instances of session beans for servicing the clients. However,
using a stateless session bean may not be practical in certain situations; for example, the
implementation of Search NPO use case (discussed in section “Search NPO Use Case”)
employed a stateful session bean to support the paging mechanism required by the
presentation tier.

For small- to medium-sized applications, it may be tempting to implement all the use
cases using a single session facade bean. This is not a recommended approach because
this leads to unnecessary concentration of unrelated services into a single session bean.
Instead, break up the business logic into manageable chunks based on application
functionality and implement the use cases across multiple session beans as described in
the following sections. This approach makes the application scalable, manageable, and
modular. However, the architects must endeavor to keep the number of session fagade
beans to a manageable number.

Implementing the Business Interface Pattern

A session bean class or an entity bean class must implement all the methods defined on the
remote interface. However, according to the EJB specification, the bean class is only required
to implement the javax.ejb.SessionBean interface; therefore, at compile time, there is no
checking to ensure that the methods of remote interface have been implemented by the bean
class. It is only during the post-compilation process that the proprietary compliance checkers
provided by EJB vendors will check that the bean class methods conform to the remote
interface definition. The post-compilation checkers usually are very slow and are outside
of the regular development environment.

An elegant solution for this problem is to define a special interface, called Business
Interface [EJB Patterns], which the remote interface extends; this business interface is
implemented by the bean class. Observe that by extending the remote interface with the
business interface, the remote interface does not have to specify any business methods.

As illustrated in Figure 7-3, SiteAdminRemote extends the required EJBObject, and it also
extends the SiteAdmin business interface. The SiteAdminBean class implements the required
Javax.ejb.SessionBean interface (in the case of entity beans it is the javax.ejb. EntityBean
interface) and it also implements the SiteAdmin business interface. During compilation, the
SiteAdminBean class must have the implementation for methods defined by the SiteAdmin
business interface, otherwise the compiler will flag this as an error; this makes it possible

Chapter 7: Business Tier Design and Implementation

javax.ejb.EnterpriseBean <<Business Inferface>> interface
interface interface java.rmi.Remote
javax. e[b. SessionBean SiteAdmin =
+setSessionContext:void || +registerNPO:void
+ejbRemove:void +registerPortalAlliance:void
+ejbActivate:void +updateNPORegistration:void
+ejbPassibate:void +updatePortalAllianceRegistration:void
+getNPORegisttration:NPORegistrationDTO
A +getPortalAllianceRegistration:PortalAllianceRegistrationDTO
| +isProtallDValid:boolean
! A A
E <<Session Facade>> interface
siteAdminBean javax.ejb.EJBobject
-createAdmin:Admin +getEJBHomejavax.ejb.EJBHome
+ejbActivate:void +getPrimaryKeyjava.lang.Object
+ejbPassivate:void +remove:voi
+ejbRemove:void +getHandlejavax.ejb.Handle
+isidentical:boolean
+ejbCreate:void

+registerNPO:void E interface
+registerPortalAlliance:void SiteAdminRemote

+updatePortal AllianceRegistration:void
+updateNPORegistration:void
+getNPORegistration:
NPORegistrationDTO
+getPortalAllianceRegistration:
PortalAllianceRegistrationDTO
+isPortalDValid:boolean

Figure 7-3 Using the Business Interface for accessing an EJB

to detect any mismatch between the method signatures on the business interface and the bean
class. Using this solution, the EJB client can conveniently use the business interface instead
of remote or local interface to interact with a session bean as shown by the SiteAdmin business
interface in Figure 7-3.

The business interface differs slightly if it has to expose a remote interface or a local
interface to the client. The EJB 2.0 specification specifies that all methods in a remote
interface should throw a RemoteException, whereas the methods in a local interface must
not throw a RemoteException. So if the remote interface extends a business interface, each
method in the business interface must throw a RemoteException; as a result, this business
interface cannot be used to extend the local interface.

This pattern provides a powerful mechanism for compile-time checking of method signatures
defined in the remote/local interfaces that are being implemented by the EJB bean class.
This pattern is sometimes called a double-interface pattern.

237

238

Practical J2EE Application Architecture

Implementing the Data Transfer Object Pattern

In a typical distributed application like GreaterCause, the presentation tier needs to interact
with the business tier for getting information pertaining to the view being processed. For
example, the Register NPO use case requires the view to show the registration information
to the administrator; some of this information includes EIN, NPO Name, Address, and so on.
One solution for requesting this data from the business tier is to have a session fagade expose
the methods getEin(), getNpoName(), getAddress(), and so on. The presentation tier will then
call the appropriate method on the session bean to get the information for display purpose.
This form of access is commonly referred to as fine-grained access in that the information
required by the presentation tier is obtained incrementally using several calls to the business
tier. This interaction is captured in Figure 7-4.

It is obvious from the sequence diagram in Figure 7-4 that there is a lot of traffic between
the presentation tier and business tier. Each remote method call on the session bean is going
across the wire, which in turn results in marshalling and unmarshalling of the objects EIN,
NPO Name, Address, and so on. This level of object granularity is expensive when
communicating over the network.

An elegant solution will be to make a single call to the session bean, which returns a
serialized object that aggregates the fields required by the view, as shown in Figure 7-5. In this
scenario, the presentation tier requests the session bean for registration data, and the session
bean in turn makes all the necessary calls to the domain objects for assembling a serializable
object; this object is called a Data Transfer Object (DTO) [EJB Patterns]. Further discussion
on DTO is available at http://c2.com/cgi-bin/wiki?UseDataTransferObjects. This serializable
object is used for exchanging data between the presentation and the business tiers. The use
of DTO minimizes the traffic between the presentation tier and the business tier (EJB tier) in
a distributed environment, and it reduces the complexity of the logic in the presentation tier.
The DTO can be used to assemble data from several views (as in multipage interaction) when

siteAdminSessionBean npoEntityBean
SiteAdmin NPO
Presentation Tier E E
L getEin | |
p— 1.1: getEin !

v

2: getNpoName

2.1: getNpoName

3: getAddress

v

3.1: getAddress

A 4

L
|
|
1

Figure 7-4 Fine-grained access of business functionality

Presentation Tier

1: getNPORegistration : returnslNPORegisirqrionDTO

Chapter 7: Business Tier Design and Implementation

siteAdminSessionBean
SiteAdmin

npoEntityBean

NPO

> 1.1: create npoRegistrationDTO E
» NPORegistrationDTO !
1.2: getEin L,_I |

1.3: setEin i L—l

1.4: getNpoName

1.5: setNpoName

1.6: getAddress

1.7: setAddress

Figure 7-5 Coarse-grained access using a DTO

transporting data from the presentation tier to the business tier, or the DTO can be used to
assemble data to be shown across several views when transporting data from the business tier
to the presentation tier. Under certain circumstance one may require exchanging more than

one DTO between different tiers; in such cases one can use a collection of DTO objects.

The data transfer objects are usually simple serializable JavaBean classes, as shown in

the following code segment:

package com.gc.services.admin;

import java.io.Serializable;

public class NPORegistrationDTO implements Serializable({

private
private
private
private
private
private
private
private
private

String
String
String
String
String
String
String
String
String

ein = null;

npoName = null;

adminID = null;

address = null;

city = null;

state = null;

zip = null;

country = null;
activationStatus = null;

. property accessors appear here

239

240

Practical J2EE Application Architecture

Depending on your implementation need, the DTOs can be mutable or immutable.
Immutable DTOs are employed when the presentation tier should not update data values of
the object, and therefore the DTO can only be used for display purposes. However, if the
presentation tier requires the data to be updated, then mutable DTOs are employed, which
allows the instance variables of the DTO to be changed. The changed DTO is sent back to
the business layer for applying the changes to domain objects.

When the business tier receives an updated DTO, it needs a mechanism to identify the
instance variables that have been changed. In the absence of this mechanism, the business
layer may have to blindly update the domain objects with values from DTO, potentially
updating unchanged attributes; avoiding such updates optimizes the database access
performed by container-managed persistence EJB (CMP). A simple solution to recognize
the changed value for an instance variable is to set a flag corresponding to the variable, as
shown in the following code snippet:

package com.gc.services.admin;
import java.io.Serializable;

public class NPORegistrationDTO implements Serializable({

private String _ein = null;
private String _npoName = null;
rest of the code ...
/* Following members provide the index for the flags[] array */
public static final int EIN = O;
public static final int NPO_NAME = 1;
rest of the code ...
private boolean[] flags = new boolean([9];
public NPORegistrationDTO () {
this.resetModifiers();

accessors are listed here
public void setEin(String ein) {
_ein = ein;
flags [EIN] = true;
}
public void setNpoName (String npoName) {
_npoName = npoName;
flags [NPO NAME] = true;
}
public boolean isFieldModified (int fieldIndex) {
/* Returns true if the corresponding setter method was called */
return flags[fieldIndex] == true;
}
public void resetModifiers() {
for (int index = 0; index <= flags.length-1; index++) {

Chapter 7: Business Tier Design and Implementation

flags[index] = false;

In the business tier, the session bean simply needs to call the isFieldModified method
to determine if the field has been updated by the presentation tier; this is illustrated in the
following code segment. Please note that the variable npo corresponds to a domain object.
Domain objects are discussed in Chapter 6.

public void updateNPORegistration (NPORegistrationDTO details) {
if (details.isFieldModified (NPORegistrationDTO.NPO_NAME)) {
npo.setNpoName (details.getNpoName ()) ;

check other attributes for modification ...

}

Proliferation of Data Transfer Objects

For a small-sized application like Greater Cause, only a handful of data transfer objects

were needed to satisfy the requirements of the presentation tier. For large applications, the
requirements of the presentation tier may require a large number of data transfer objects.

To keep the number of DTOs manageable, one solution would be to create DTOs that have
several common data elements; the flip side of this approach is that the data transfer object
will contain more data than required for satisfying a presentation tier request; populating
additional data also implies making unnecessary calls to the domain layer. Optionally, a data
transfer object based on HashMapmay be appropriate in situations where an arbitrary amount
of data needs to be transferred across tiers in a generic manner.

When Not to Use Data Transfer Objects

From the outset, the DTO pattern may be used between different tiers of the application—
between the presentation and business tiers, and between the business and domain tiers.
However, it is considered a bad practice to apply a data transfer object pattern for interactions
with the domain tier.

Back in the days of EJB 1.x—based implementations, the DTO pattern surfaced due to
the mandatory requirement that the calls to entity beans be remote even when the session or
entity beans accessing them were co-located. To reduce the network overhead of these remote
calls, the data transfer object pattern was applied in a fashion similar to the discussion in this
section. Under this circumstance, if the same DTOs were used by both the presentation tier
and the domain tier, then if the domain tier changed, the associated DTO changed and
therefore the presentation tier was required to change, and vice versa. This tight coupling
between the view and the domain objects will result in unnecessary dependency between
tiers, which also undermines MV C semantics. Note that with the introduction of local
interfaces in EJB 2.0, the method calls to entity beans are no longer required to be remote.

241

242

Practical J2EE Application Architecture

Implementing EJB Home Factory Pattern

The EJB specification standardizes the access mechanisms for locating the EJBs. A client
locates a session or entity bean’s home interface using JNDI. For example, the home interface
for the SiteAdmin session bean (from the Register NPO Use Case) can be located using the
following segment of code:

//Vendor specific code

Hashtable props = new Hashtable() ;

props.put (InitialContext.INITIAL_CONTEXT_ FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

props.put (InitialContext.PROVIDER_URL,
"t3://localhost:7001") ;

InitialContext ctx = new InitialContext (props);

SiteAdminHome siteAdminHome = (SiteAdminHome)
javax.rmi.PortalRemoteObject.narrow (
ctx.lookup ("ejb/com.gc.services.admin.SiteAdminHome"), SiteAdmin.class) ;

This code first packages the necessary vendor-specific values into a Hashtable and calls
PortalRemoteObject.narrow with the corresponding JNDI name that was declared in the
deployment descriptors. The preceding snippet has the following disadvantages:

P Each client accessing the EJB is providing vendor-specific code, and therefore the code
is repeated in multiple places where access to EJBs is required.

P Getting the initial context and subsequently the home interface is a resource-intensive
process, which will impact performance.

To overcome these limitations, the EJB Home Factory pattern [EJB Patterns] should be
introduced as follows:

P> Develop a helper class that hides all the vendor-specific details. In the sample
application, this helper class is called EJBHomeFactory.

» Using a combination of Factory and Singleton [Gof] patterns, create a single instance
of EJBHomeFactory that creates the InitialContext only once, and provides a suitable
caching mechanism for home references.

The following code fragment shows the implementation for EJBHomeFactory:

public class EJBHomeFactory ({
private HashMap _ejbHomes;
/* Singleton pattern */

Chapter 7: Business Tier Design and Implementation 243

private static EJBHomeFactory factory = new EJBHomeFactory();
private static InitialContext _ctx = null;
private EJBHomeFactory () {
_ejbHomes = new HashMap () ;
}
public static EJBHomeFactory getFactory () {
return _factory;

}

public static InitialContext getContext () throws NamingException{
/* Check if initial context already exists */
if (_ctx == null) {

/* Vendor specific parameters */
Hashtable props = new Hashtable() ;
props.put (
InitialContext.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;
props.put (InitialContext.PROVIDER_URL, "t3://127.0.0.1:7001");
_ctx = new InitialContext (props) ;
}
return _ctx;
}
public EJBHome lookUpHome (Class homeClass) throws NamingException{
EJBHome home = null;
/* Check whether the reference for the EJB already exists in the
* cache _ejbHomes */
if ((home = (EJBHome)_ejbHomes.get (homeClass)) == null) {
home = (EJBHome)PortableRemoteObject.narrow (
getContext () .lookup ("ejb/"+homeClass.getName ()), homeClass) ;
// Cache the reference for future use
_ejbHomes .put (homeClass, home) ;
}

return home;

The EJBHomeFactory has the getFactory method, which returns an instance of
EJBHomeFactory. The convenience method lookUpHome creates the InitialContext only
once using vendor-specific details in the getContext method. The InitialContext is used in

the PortableRemoteObject.narrow method for looking up the home reference for the given
JNDI name.

244

Practical J2EE Application Architecture

The following snippet illustrates usage of the EJB Home Factory class for accessing the
home reference of the desired EJB. Note that the developers do not have to concern themselves
with vendor-specific details. The home factory pattern provides a mechanism for caching
home references while hiding vendor-specific details.

SiteAdminHome adminHome = (SiteAdminHome)EJBHomeFactory.getFactory ().
lookUpHome (SiteAdminHome.class) ;

The JNDI name for the home interface is described in the weblogic-ejb-jar.xml file, as
shown here:

<weblogic-enterprise-bean>
<ejb-name>SiteAdminEJB</ejb-name>
<jndi-name>ejb/com.gc.services.admin. SiteAdminHome</jndi-name>

</weblogic-enterprise-bean>

Identifying Package Dependencies

The package structures shown in Figure 7-6 depict the dependencies between packages in the
business tier. The package naming conventions used by the GreaterCause application in the
business tier and the domain tier follow the following conventions:

Business Tier Domain Tier
com.gc.services.admin com.gc.persistence.admin
com.gc.services.managecampaigns com.gc.persistence.managecampaigns

com.gc.services.searchnpo

The basic premise of this book is use of object-oriented paradigm and a use case—driven
approach. As such, we now examine how we have used the different patterns discussed in
the preceding sections for realizing the use cases discussed in Chapter 1. In this chapter, we
develop the use cases identified by the packages Site Administration, Manage Campaigns,
and Search NPO. The intent of this endeavor is to assist the readers in understanding how
to implement an architecture based on the patterns we just discussed; at the same time, we
create static and dynamic models for representing our problem domain.

Moving Forward

The basic premise of this book is use of object-oriented paradigm and use case—driven
approach. As such, we now examine how we have used the different patterns discussed
in the preceding sections for realizing the use cases discussed in Chapter 1. In this
chapter, we develop the use cases identified by the packages Site Administration, Manage
Campaigns, and Search NPO. The intent of this endeavor is to assist the readers in
understanding how to implement an architecture based on the patterns we just discussed,
at the same time, we create static and dynamic models for representing our problem domain.

245

Chapter 7: Business Tier Design and Implementation

Realization of the Site Administration
Use Case Package

The following subsections provide the use case realization for use cases in the Site Administration
package. To avoid repetition, we cover only essential use cases that introduce new concepts;
for the rest of the use cases, please refer to the implementation on the accompanying CD-ROM.
In this section we apply all the business patterns we discussed earlier in this chapter. We also
discuss the deployment descriptors required to configure the EJBs that will be created for
realizing the Register NPO use case, along with the declarations that specify the transaction
semantics for the various EJB methods. We conclude this section with a brief discussion on
exceptions in the context of transactions.

NOTE

The following subsections provide readers with an opportunity to understand class interactions and
dependencies visualized through class and analysis-level sequence diagrams. Please refer to Chapter 1
for use case descriptions.

admin managecampaigns
+AdminNotFoundException - +CampaignDTO
+NPORegistrationDTO +CampaignRemote
+NPONotFoundException +Campaign
+NPOAdmin +CampaignNotFoundException
+NPOAdminRemote +CampaignHome
+PortalAllianceAdminHome +CampaignBean

+NPOProfileDTO
+SiteAdminHome |
+NPOAdminBean
+AdnimHelper
+PortalAllianceAdminRemote
+PortalAllianceAdmin

searchnpo

+Valvelistlterator
+ValuelistHandler

+PortalAllianceAdminBean

+PortalAllianceNotFoundException +SearchParameters
+SireAdm{nRemofe . e +SearchNPORemote
+RegistrationException +SearchNPO
+SiteAdminBean +SearchNPOHome
+NPOViewDTO +SearchNPOBean
+PortalAllianceRegistrationDTO +NPOlListHandler
+PortalAllianceProfileDTO +NPODAO
+NPOAdminHome

+SiteAdmin

Figure 7-6 Business Tier Package Diagram

246

Practical J2EE Application Architecture

Register NPO Use Case

This section covers the implementation of Register NPO use case. The implementation
details described here provide the necessary foundation for other use cases; and the same
concepts are reapplied for implementing other use cases.

Discovering Business Interface Methods

The first step in realizing the use case is to identify the methods of the business interface
necessary for realizing the use case. We identify the business interface methods by following
the flow of events described for the use case. Since the Register NPO is an administration
service, applying the business interface pattern described earlier in the section “Implementing
the Business Interface Pattern,” we define a business interface called SiteAdmin. This interface
must provide a method called registerNPO for allowing the presentation tier to register NPO
data. Using the data transfer object pattern, the presentation tier provides the required data in
an object called NPORegistrationDTO. We can identify the attributes of this DTO from the
wire frames identified during the use case elaboration process. The following code fragment
shows the required attributes for the NPORegistrationDTO class that represent registration
information:

public class NPORegistrationDTO implements Serializable {

//Instance variables

private String ein = null;

private String npoName = null;

private String adminID = null;

private String address = null;

private String city = null;

private String state = null;

private String zip = null;

private String country = null;

private String activationStatus = null;
rest of the code

Since this DTO will go across the wire using RMI, ensure that it implements the
Serializable interface. Once the registration information is created in the GreaterCause
data store, the Register NPO use case will also need to maintain this information using the
updateNPORegistration and getNPORegistration methods; these additional methods are
added to the business interface as well. The following code fragment shows the business
methods identified thus far in the business interface SiteAdmin:

public interface SiteAdmin ({
void registerNPO (NPORegistrationDTO detail) throws RemoteException,
RegistrationException;
void updateNPORegistration (NPORegistrationDTO details)

Chapter 7: Business Tier Design and Implementation

throws RemoteException, NPONotFoundException, GCAppException;
NPORegistrationDTO getNPORegistration(String ein, String adminID)

throws RemoteException, NPONotFoundException,

AdminNotFoundException, GCAppException;

The method signatures identified for the business interface shown were selected based
on the design decision that we will be employing the services of a stateless session bean.
Because the stateless session bean does not maintain any state information, the client must
provide all the details necessary for the session bean to service the request; this design may
complicate the client logic because the onus is on the client to maintain the application state.
In the business interface of SiteAdmin, note two methods are used by the client for getting
and updating the registration information; these methods are getNPORegistration and
updateNPORegistration. The design of the client has accounted for the fact that both of these
methods will be serviced by different session bean instances, therefore the client design will
ensure that when updateNPORegistration is invoked, the corresponding parameters (that is,
NPORegistrationDTO) will include the ein (EIN is the primary key for the NPO entity bean
and is not updatable by the client) in addition to all the other information required by the
session bean to service this request. Had we decided to use a stateful session bean instead
of a stateless session bean, the update method would not require the ein because the session
bean would be aware of the parameters that were supplied when getNPORegistration was
invoked for constructing the NPORegistrationDTO. This is further clarified by the sequence
diagrams shown in Figure 7-8, 7-9, and 7-10.

Please observe that the business methods declared in the business interface also declare
the possible exceptions the business methods may throw to the presentation tier. In addition
to the application exceptions, the business methods must also throw RemoteException; this
is because the remote interface for the session bean will be extended from this business
interface. Recall from the discussion in the section “Implementing the Business Interface
Pattern” that the business methods must throw RemoteException if they are to be exposed
through a remote interface as required by the EJB 2.0 specification.

Implementing Business Interface

In this section, we discuss the implementation aspects of the business interface SiteAdmin
defined in the preceding section. Figure 7-7 shows the class diagram for realizing the Register
NPO use case. You will find additional methods on the SiteAdminBean class pertaining to other
use cases, which you should ignore for now. Figure 7-7 shows the interactions between various
business tier components. The SiteAdmin interface employs the Business Interface pattern; the
SiteAdminBean class employs the Session Facade pattern; and the NPORegistrationDTO class
employs the Data Transfer Object pattern. The SiteAdminBean class employs the services of
the EJBHomeFuactory class for getting references to domain tier entities such as Admin and
NPO entity beans. For brevity, Figure 7-7 does not show application-specific exceptions and
the usage of EJBHomeFactory.

247

248

Practical J2EE Application Architecture

<<Business Interface>>
interface
com.go.services.admin. SiteAdmin

+registerNPO:void
+registerPortalAlliance:void
+updateNPORegistration:void
+updatePortalAllianceRegistration:void
+getNPORegisttration:NPORegistrationDTO
+getPortalAllianceRegistration:
PortalAllianceRegistrationDTO
+isProtallDValid:boolean

A

]

Serializable

com.gc.services.admin.NPORegistrationDTO

activationStatus. String
address:String
adminlD:String
city:String
country.String
ein:String
npoName:String
state:String

zip:String

;
E SessionBean
<<Session Facade>>

com.gc.services.admin.SiteAdminBean

-obc:Session Context

-createAdmin:Admin

+ejbCreate:void

+registerNPO:void
+registerPortalAlliance:void
+updatePortalAllianceRegistration:void
+updateNPORegistration:void
+getNPORegistration:
NPORegistrationDTO
+gefPortalAllianceRegistration:
PortalAllianceRegistrationDTO
+isPortallDValid:boolean

v

com.gc.services.admin.AdminHelper

+getPortalAlliance:PortalAlliance
+getNPO:NPO
+getAdmin:Admin
+getAdminByEin:Admin

7777777 >{ +getAdminByPortallD:Admin

com.gc.persistence.admin.NPOBean

EntityBean

java.lang.String

T
1
1
1
1
1
I
1
1
1
|
1
1
1
1
1
|

v

<<Domain-Object Interface>>
interface
com.gc.persistence.admin.NPO

npo

Admin-NPO

admin

<<Domain-Object Interface>>
interface
com.gc.persistence.admin.Admin

K

EntityBean
com.gc.persistence.admin.AdminBean
java.lang. String

Figure 7-7 Register NPO class diagram

Figure 7-8 depicts the creation of domain objects Admin and NPO using the DTO supplied
by the presentation tier, whereas Figure 7-9 depicts the creation of DTO using the information
from the domain objects Admin and NPO. From the sequence diagram, it is apparent that
the session fagade SiteAdmin is responsible for handling all the complexities of creating and
managing domain objects while the presentation tier need only make a single call to the session
facade. For brevity, certain steps are removed from the sequence diagrams and the reader is
requested to check the accompanying CD-ROM for the complete source code.

SiteAdmin Session Bean Deployment Descriptors

The session bean SiteAdminBean defined in the preceding section needs to be configured for
deployment in an EJB container. We use deployment descriptors for providing the configuration

information.

There is essentially more than one deployment descriptor associated with the deployment
of a session bean. The ejb-jar.xml file contains standard declarations as dictated by the EJB
specification. Additionally, the vendor will provide other deployment descriptors that are

249

ion

Business Tier Design and Implementat

Chapter 7

OdN-@is1Ba. 1oj woibpip sousnbag g-7 ainbiy

A

upaq Aus OdN Yim nw__;m:o:_u_m_ S}l pup upaq b_t”hw UIWPY M3U 9jpaud 18" |

upaq Ajiue OdN Jayjoun ypm painBiyuod puo Buysixe Appai|o jou si upaq Ajjus ulwpy
By} Joy} a1nsus of 3paYyd ‘Buipesdoid aiojeq ‘ai0jelay)

‘OdN 4ed ulwpy auo Ajuo mojp app

]

Aoy Aapwiid o Buisn cc,wg Ayus uiwpy puy :/°|

eduB.BeI BWOY S,unaq Ajyus s,ulwpy dnyoo| 19" |

L

<

al uwpy 196 G|

T
1
1
1
L

jA

1
1
1
1
1
1
1
1
1
1
L
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|

i
1
1
1
1
1
1
|
T
1
1
1
1
1
1
1
1
1
1
1
L
1
1
1
1
1
1
1
1
1
1
1

Aoy Aipwiid Buisn :,cwm Aus OdN PuYy iz°Z'L

],

palqo ¢ ._h_:o_ﬁ\zm_wwmon_z woy pap0IXa
salytadoid yjm upeq b:.._m OdN Mau ajpald i7" |

[,

salladoud vm.c_wr Mcwo_ Ayus OgN 498 :¢|

i

peusjsiBal Apoai|o jou st OdN e
oy} 21nsud o} }Payd \mc_wwwuoa auojeg

20UBIBRI BUWOY Mcum& Ayus OdN dnyoo) 1z |

uig Buisn mucwhm*ww_ upaq Ajua OdN 16 :Z°|

uig eb 7|

(O1qUoNDLSIBEYOUN] OdN JoistBes : |

SWOH|P0TUIWPY
SWORUTwPD
<<dWOH unag Ajyug>>

SWOH|P2010dN
swopodu

<<dWOH unag Ajjug>>

AiopojowoHqrg
Kio30WoHq®

JsedjpHuiwpy
5B

CmeC_ETJ«Q:W
01quoypLsIBaOdN TWpY/fS
[oRp <<UDAQUOISSAG>>

uoypys1BayOJNieb 1oj woiboip aousnbag -7 ainbly

:cmg Aus OdN woy spjal ;:3 salysadoid ojp jes 19|

“poyusw 10ssa2p jas ayj Buisn O ey ul Apedoud m:__u:o%otnvu ayj ajpjndod _o:c poyiew
Josse0op 4o ey} Buisn pjey-dwe upaq Ajyue OdN Yooe job o} st aiay pasn senbiuydsy oyl

unaq Ayus OdN woy ”m_u_wc pabBoupw-iauipjuod 1&0_@_ uonp.ysiBou job g |

1 1
ﬁum,_ao OlquonpysiBayOdN 3 SOUDJSUI MBU BJDAID i7" |
i i

diysuoypje. peBoupw-. Lwc_Ecou yBnouyy eouaiejel :cwn_ Ajyua OdN 196 :g° |

j; | | r

13 Buisn uoeq x.z:m ulwpy puy iz 1z’ L

L |

| eduaiejal swoy sunaq Ajjiie uiwpy dnyoo| | °|°Z"|

[,

h Aoy Asowid Buisn upeq Ajyue ulwpy puy iz |||

I

@dUaJIejRl BWOY S,unaq bz:w ulwpy dnyooy 1|7

A

<
<

m NI3 Busn eouaiejes :cmgwbzcm ulwpy B 11 z"|
m Tm:.:o:aEwmmi w{vﬁ 1@1_>Q._Qm_c_mz_.mm_w

D
al C.E_Ud\ m:_ma wucw‘_mwmg Ccmﬂ b_.cm C_E_U< ¢®mw L'LL

m (+ay-uoyjuasaid ey 3 papiaoid st q| EE@(:J
! OLQuouDs|BYOIN suinjes :(qluiwpp ‘ure)uoyoisiBay OdN #96 :|

Practical J2EE Application Architecture

250

BWOH [P0 UIW)
nwmﬂ_w_ ?g AiopoJowongr3 sedjopunpy ”__Hﬂ«m“__m
<<oopyIBjupalqouIWOg>>| | <<edppaju| palqO-Ubwog>>| | <<awol uoeg Augz>> HOPDASWOHTe SHOFS <<@dDyI0ju[sSBUISNG>>

251

1on

uoypysiBayOdNaopdn 1oy wpibBoip sousnbag (]-7 ainbiy

il Il E TR
A

palqo O] woy sansadoid yym spjpy-dwd upaq Ayua 4es iy |

“pPoyjew 10ssa2p jes ayy Buisn ubaq Ayue OdN ays ut pjey-dwd Buipuodsaiiod sy sjojndod
pup poyjew Jossedop 4ob ayy Buisn Apadosd O] Yore 196 o} st aiay pasn anbiuydsy ay|

saipiadoid o1 196 :g" |

Business Tier Design and Implementat

Chapter 7

<
<

R s Il R

urg Buisn upaq Aude OdN Py :Z°Z" |

O

@duaudjal dwoy s,unaq Aus OdN dnyoo] 1| Z"|

:_Am_ Buisn eouaiejel uopg Ayus OdN 406 17" |

[l

(OLadoHoSIBEYOUN) UoUDASTEY OdN ajopdn ;|

uig b 1|

OdN SWOH|P20T0dN ulwpyelS
odu swopodu KiojopjowoHgr3 Jadjppuiwpy OlquonpisiBayOIN UIWpY/3yIs
<<@oDpIBjU| $98lqO-UIPWOQ>> | | <<ewop upeg Aug>> | | AIoppIsWoHqs 505 [oRp <<e0DyIBju| ssauISNg>>

252

Practical J2EE Application Architecture

proprietary in nature. We first discuss the ejb-jar.xml deployment descriptor and the
associated semantics. Following snippet provides configuration information for the
SiteAdmin session bean.

<session >

<description>Site Admin Definitions</description>

<ejb-name>SiteAdminEJB</ejb-name>

<home>com.gc.services.admin.SiteAdminHome</home>

<remote>com.gc.services.admin.SiteAdminRemote</remote>

<ejb-class>com.gc.services.admin. SiteAdminBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<!-- Referencing NPO Entity Bean -->

<ejb-local-ref>
<ejb-ref-name>com.gc.persistence.admin.NPOLocalHome</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>com.gc.persistence.admin.NPOLocalHome</local-home>
<local>com.gc.persistence.admin.NPOLocal</local>
<ejb-1ink>NPOEntityEJB</ejb-1link>

</ejb-local-ref>

<!-- Referencing Admin Entity Bean -->

<ejb-local-ref>
<ejb-ref-name>com.gc.persistence.admin.AdminLocalHome</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<local-home>com.gc.persistence.admin.AdminLocalHome</local-home>
<local>com.gc.persistence.admin.AdminLocal</local>
<ejb-link>AdminEntityEJB</ejb-link>

</ejb-local-ref>

</session>

Using the ejb-name element, we assign a logical name to the session bean. This logical name
must be unique within the ejb-jar.xml file. This name is referenced in other constructs such as
the subelements of the container-transaction element and ejb-relation element (refer to the
element ejb-name in these constructs). The session EJB is further described using the home,
remote, and ejb-class elements that provide the fully qualified class names for the home
interface, remote interface, and the bean class, respectively. The session-type element is used
for specifying whether the bean is stateful or stateless. Changing the session-type element’s
values without properly analyzing the impact of the current implementation could produce
unpredictable results. The transaction-type element specifies the bean’s transaction type, which
could be either Bean, implying that the bean is providing transaction demarcation, or Container,
implying that the container is providing the transaction demarcation based on the transaction
attributes specified as part of the container-transaction element in the ejb-jar.xml file. The
transaction-type element must not be specified for entity beans because all entity beans must
use container-managed transaction demarcation.

Recall that when a client accesses an EJB in a container, it uses the following code that
employs vendor-specific properties for correctly creating an /nitialContext. Note that this
vendor-specific code is required only when you are accessing EJBs from outside the container.

Chapter 7: Business Tier Design and Implementation

//Vendor specific code

Hashtable props = new Hashtable() ;

props.put (InitialContext.INITIAL_CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

props.put (InitialContext.PROVIDER_URL,
"t3://localhost:7001") ;

InitialContext ctx = new InitialContext (props);

SiteAdminHome siteAdminHome = (SiteAdminHome)
javax.rmi.PortalRemoteObject .narrow (
ctx.lookup ("ejb/com.gc.services.admin.SiteAdminHome"), SiteAdmin.class) ;

The access mechanism shown here is not required when an EJB is accessing another EJB.
The session bean SiteAdminBean references NPO and Admin entity beans as part of the
implementation of Register NPO use case. The EJB 2.0 specification simplified the access
mechanisms when an EJB in a container is accessing another EJB within the same or a
different container. To reference an EJB from another EJB, you do not need to specify any
JNDI initialization parameters; instead you acquire default INDI InitialContext as follows:

Context initialContext = new InitialContext();

When default INDI /nitialContext is used, the lookup mechanism will take the following
form. In this form, the java:comp/env/ string specifies the default environment naming context.

NPOHome npoHome = (NPOHome)
initialContext.lookup ("java:comp/env/"+NPOHome.class) ;

The NPOHome.class is mapped by the container to the value of the ejb-ref-name element
within the deployment descriptors; the value of the ejb-ref~name element is subsequently
used by the container to get the descriptors of the corresponding EJB. The ejb-ref-name
element has a sibling ejb-link element (defined under the parent ejb-local-ref element); this
ejb-link element provides the link to the original definition of the entity bean; the value of
this element is the logical name given in the ejb-name element of the corresponding entity
bean where it was originally defined. Since the NPO entity bean is described in the same
ejb-jar.xml file for our sample application, we can simply provide the value NPOEntityEJB
for the ejb-link element .

For the session bean deployment descriptors being discussed in this section, notice that
the ejb-ref-name element occurs under the ejb-local-ref element; these constructs assist the
container in accessing the NPO and Admin entity beans. This concludes the discussion on
the deployment descriptors for the SiteAdmin session bean. The INDI name for the session
bean is defined in a vendor-specific deployment descriptor; since we have used the WebLogic
Server, the corresponding deployment descriptor is the weblogic-ejb-jar.xml file.

<!-- SiteAdmin Definition -->
<weblogic-enterprise-bean>
<ejb-name>SiteAdminEJB</ejb-name>
<jndi-name>ejb/com.gc.services.admin.SiteAdminHome</jndi-name>
</weblogic-enterprise-bean>

253

254

Practical J2EE Application Architecture

The ejb-name element refers to the ejb-name defined in the ejb-jar.xml file. The jndi-name
element represents the JNDI name to be used for accessing the session bean. The EJB 2.0
specification recommends prefixing the JNDI names with “ejb/.”

Transaction Semantics for Enterprise Beans

The EJB Specification greatly simplified declarative transaction management. Without this,
the developer had to explicitly manage the transactions with fairly complex Java Transaction
Service (JTS), which is based on OMG’s Object Transaction Service (OTS) API. Explicit
transaction management is prone to errors, especially for those who are new to transactional
application development. Including transaction semantics in business applications increases
the code complexity, which results in high maintenance cost; a change in the transactional
behavior will force a change to business logic. The EJB specification allows declarative
transaction management through deployment descriptors. The transaction semantics are
introduced at the time of deployment, which introduces flexibility in manipulation of
transactional behavior of the application without resorting to code changes. For this chapter,
we use container-managed transaction demarcation where the container demarcates the
transactions based on the instructions provided through the deployment descriptor.

The bean provider may also choose to use programmatic transaction demarcation; this is
called bean-managed transaction demarcation. With bean-managed transaction demarcation,
the enterprise bean demarcates transactions using the javax.transaction. UserTransaction
interface. Accesses to container-managed resources, between UserTransaction.begin() and
UserTransaction.commit(), are part of this transaction. Please refer to the EJB specifications
or Mastering Enterprise JavaBeans [JavaBeans] for detail information on using programmatic
bean-managed transaction demarcation.

NOTE

The EJB architecture supports flat transactions, implying that a transaction cannot have other nested (child)
transactions. We assume that the reader has prior knowledge of what a transaction is and the associated
ACID properties.

Scope of a Transaction When using container-managed transaction demarcation, the scope
of a transaction is controlled by the transaction attribute specified for the EJB’s methods.
Following briefly discusses these transaction attributes so that we can understand its impact
in the context of our implementation.

Transaction Attributes A transaction attribute is a value associated with a method of a
session or entity bean’s home or component interface that specifies how the Container must
manage transactions for a method when a client invokes the method via the enterprise bean’s
home or component interface (i.e., local or remote interfaces). EJB specification supports the
following values for the transaction attribute when using container-managed transaction
demarcation for EJBs:

» NotSupported When the transaction attribute is set to NotSupported, the container
invokes the related enterprise bean method with an unspecified transaction context.
When a client is associated with a transaction context, the container suspends the

Chapter 7: Business Tier Design and Implementation

client’s transaction context until the enterprise bean’s business method returns. This means

that the transaction context is not propagated to the bean method. After completion of

the bean method’s execution, the client’s transaction context is resumed. This attribute

value is specified when the bean method needs to access a resource that cannot or should
not participate in a transaction.

Required When the transaction attribute is set to Required, the container must invoke
the related enterprise bean method with a valid transaction context. If the client invokes
the enterprise bean’s method with a transaction context, the same transaction context is
propagated to the bean’s method. If the client is not associated with a transaction context,
the container automatically starts a new transaction before calling the business method.
This option is selected when the bean method is changing the state of the application;
for example, creating one or more entity beans or updating the value of entity beans,
and so on. This option is not necessary if the bean method is just reading the contents
from the data store, and the application is not concerned with holding stale data. The
Required attribute value is the most widely used option in EJB declarations for injecting
transactional semantics into method calls. The registerNPO method of the SiteAdminBean
session bean is declared with the Required transaction attribute because the use case
requires the creation of a new Admin entity bean and NPO entity bean. Both beans
must be successfully created and their relationship established in the same transaction
for the transaction to succeed.

Supports When the transaction attribute is set to Supports, the container invokes the
related enterprise bean method as follows:

P Ifthe client call is associated with a transaction context, the semantics applicable
are similar to the Required case.

P> If'the client call is not associated with a transaction context, the semantics
applicable are similar to the NotSupported case.

RequiresNew When the transaction attribute is set to RequiresNew, the container
invokes the related enterprise bean method with a new transaction context. This transaction
context is propagated to methods of other enterprise beans. When the client invokes the
enterprise bean while the client is already associated with a transaction context, then
that transaction is suspended. The bean method starts a new transaction and completes
its execution under this new transaction. When the bean method returns, the Container
resumes the client’s transaction. This option is usually selected if the bean’s method
cannot participate in the callers transaction context.

Mandatory When the transaction attribute is set to Mandatory, the container must
invoke the related enterprise bean method in a client’s transaction context. If the client
calls with a transaction context, the container performs the same steps as described

in the Required case; if the client calls without a transaction context, the container
throws the javax.transaction. TransactionRequiredException for a remote client, or
Jjavax.ejb. TransactionRequiredLocalException for a local client.

Never When the transaction attribute is set to Never, the container invokes the
related enterprise bean method without a transaction context. If the client calls with a
transaction context, the container throws java.rmi.RemoteException for a remote client,

255

256

Practical J2EE Application Architecture

or javax.ejb. EJBException for a local client. If the client calls without a transaction
context, the container performs the same steps as described in the NotSupported case.

Transaction Attributes for SiteAdmin Session Bean Methods

The transaction attributes for each EJB are defined in deployment descriptors. The descriptors
have the flexibility for providing a single transaction attribute for all the methods using the *
notation, as shown here:

<container-transaction>
<method>
<ejb-name>SiteAdminEJB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

This representation specifies that all methods of SiteAdminEJB will have the transaction
attribute of Required. This implies that all the SiteAdminEJB method invocations are always
under a transaction context even if the bean method is simply reading the data from data
store. The transaction attribute must be set to Required for those methods that affect the
persistent state of the application. For example, the transaction attribute is set to Required for
the registerNPO and updateNPORegistration methods of the SiteAdmin session bean because
these methods change the persistent state of the application. Transaction attributes for individual
methods of the SiteAdminBean can be specified as follows.

<container-transaction>
<method>
<ejb-name>SiteAdminEJB</ejb-name>
<method-name>registerNPO</method-name>
</method>
<method>
<ejb-name>SiteAdminEJB</ejb-name>
<method-name>updateNPORegistration</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

Handling Exceptions in Transactions

The EJB 2.0 specification introduces conceptual difference between application exceptions
and system exceptions. The EJB developer must understand this difference in addition to the
relationship between exceptions and transaction semantics.

An application exception is an exception defined in the throws clause of a method of
the enterprise bean’s home and component interfaces (remote and local interfaces), other
than java.rmi.RemoteException or javax.ejb.EJBException. An application exception is a
direct or indirect subclass of java.lang. Exception; it must not be defined as a subclass of
Jjava.lang. RuntimeException or java.rmi.RemoteException. Application exceptions are used

Chapter 7: Business Tier Design and Implementation

to inform the client about abnormal conditions in the business logic; clients catching such
exceptions are expected to recover from the exception and to provide alternative business
logic to deal with the situation, provide information to the user about corrective action, or
fail gracefully with appropriate logging of the exception and instructions for the client. In
our sample application, all the exceptions subclassed from GCAppException are application
exceptions. The container also throws application exceptions such as
Javax.ebj.CreateException, javax.ejb.RemoveException, javax.ejb. FinderException, and so on.

On the other hand, system-level exceptions are created as a result of situations that prevent
EJB methods from completing successfully; for example, failure to obtain a database
connection, JNDI exceptions, unexpected RemoteException from invocation of other enterprise
beans, RuntimeException, JVM errors, and so on. The bean methods must not try to catch these
RuntimeExceptions but let them propagate to the container. When a bean method is processing
a checked exception and discovers that it cannot recover from the exception, the bean method
should throw the javax.ejb. EJBException; EJBException is a subclass of RuntimeException,
and therefore it does not have to be listed in the tArows clause of business methods. The
Container catches all non-application exceptions, logs the exception, marks the transaction for
rollback, and subsequently throws a RemoteException (for clients using remote interfaces) or
EJBException (for clients using local interfaces). The following code fragment has been
excerpted from the getNPORegistration method of the SiteAdmin session bean:

try {
NPOLocalHome npoHome =
(NPOLocalHome) EJBHomeFactory.getFactory () .lookUpLocalHome (
NPOLocalHome.class) ;
Rest of the code
} catch (NamingException ne) {
throw new EJBException(
"Unable to locate local reference to NPO:", ne);

NamingException is thrown by the container during JNDI lookup; since this signifies
a configuration issue, the application will throw an EJBException and not an application
exception because the client is not expected to recover from this exception.

According to the EJB 2.0 specification, when a system exception is encountered in the
business method of an EJB, the container must either mark the transaction for rollback (this
is true when the method runs in the context of the caller’s transaction), or roll back the transaction
started by the container (this is true when the method runs in the context of a transaction that
the container started immediately before dispatching the business method). When the container
discards an instance of a bean because of a system exception, the container releases all the
connections to the resource managers that the instance acquired through resource factories
declared in the enterprise bean environment such as JDBC DataSource references, JMS
connection factories, JavaMail connection factories, URL connection factories, and so on; the
container cannot release “unmanaged” resources that the instance may have acquired directly.

When the business method encounters an application exception, and if the exception
is deemed unrecoverable, it is the EJB developer’s responsibility to identify and mark the

257

258

Practical J2EE Application Architecture

transaction for rollback using setRollbackOnly() on EJBContext; this marks the transaction
for rollback. The setRollbackOnly method can be invoked only when bean methods are
participating in a transaction context. Observe from the following code fragment that the
setRollbackOnly method is invoked prior to throwing the RegistrationException, which is an
application exception; the intent here is to mark the transaction for rollback because the NPO
entity bean has already been created. Please note that the code shown is slightly modified for
explaining the concepts; the actual code can be found in SiteAdminBean implementation.

try {
AdminLocalHome adminHome =
(AdminLocalHome) EJBHomeFactory.getFactory () .lookUpLocalHome (
AdminLocalHome.class) ;
admin = adminHome.create(adminID, (NPOLocal) npo) ;
} catch (CreateException ce) {
ctx.setRollbackOnly () ;
throw new RegistrationException ("error.CannotCreateAdmin",
"Unable to Register Admin with AdminID:" + adminID, ce);

} catch (NamingException ne) {
/* setRollbackOnly() not required because the EJBException is a system exception */
throw new EJBException("Unable to locate local reference to Admin:", ne);

The following is a brief discussion of standard application exceptions for entity beans.
We discuss this in the context of marking transaction for rollbacks.

» CreateException This exception is thrown by the container when using container-
managed persistence, or this exception can be thrown by the bean developer in the
ejbCreate or ejbPostCreate method. The transaction may or may not be marked for
rollback, although it is advisable that the bean developer should mark the transaction for
rollback to leave the database in a consistent state. When bean-managed transaction is
in effect, the session bean method can determine the status of the transaction using the
getStatus method on the javax.transaction. UserTransaction interface; when container-
managed transaction is in effect, the session bean method can determine the status of
the transaction using the getRollbackOnly method of the javax.ejb. EJBContext.

» DuplicateKeyException This exception is a subclass of CreateException. 1t is thrown
by the ejbCreate method to indicate to the client that the requested entity bean could not
be created because an entity bean with the same key already exists. Normally, the
ejbCreate method will not mark the client’s transaction for rollback; it is left to the client
to take corrective measures.

» FinderException This exception indicates an application-level error occurring in the
find methods on the home interface of an entity bean. The bean provider throws this
exception to flag an error in the ejbFind method; this exception is not used to indicate
entity not found conditions; for entity not found conditions, the bean provider uses the
ObjectNotFoundException, which is discussed next. Typically, the bean provider will not
mark the client’s transaction for rollback; it is left to the client to take corrective measures.

» ObjectNotFoundException This exception indicates that the requested entity was not
found by the ejbFind method. This exception can be thrown only by a finder method that

Chapter 7: Business Tier Design and Implementation

returns a single object. Finder methods that return a collection object do not use this
exception; such methods return an empty collection to indicate that no matching objects
were found. The EJB container typically does not mark the transaction for rollback. The
container or the bean provider does not mark the client’s transaction for rollback when
ObjectNotFoundException is encountered; it is left to the client to take corrective measures.

» RemoveException This exception is thrown by the container when using container-
managed persistence, or this exception can be thrown by the bean developer in efbRemove.
The client receiving this exception does not generally know if the entity bean was
removed or not. The transaction may or may not be marked for rollback, although it
is advisable that the bean developer should mark the transaction for rollback to leave
the database in a consistent state. When bean-managed transaction is in effect, the bean
method can determine the status of the transaction using the getStatus method on the
Jjavax.transaction. UserTransaction interface; when container-managed transaction is in
effect, the bean method can determine the status of the transaction using the getRollbackOnly
method of javax.ejb. EJBContext.

Realization of the Manage Campaigns
Use Case Package

The following subsections describe use case realization for use cases in the Manage Campaigns
package. Please refer to Chapter 1 and Chapter 2 for use case descriptions of this package.

Create Campaigns Use Case

In this section, we define and implement the components necessary for the implementation of
the Create Campaigns use case. In this section we will implement a one-to-many relationship
existing between a PortalAlliance entity bean and Campaign entity beans (refer to Figure 7-10)
using a collected-valued container-managed relationship PortalAlliance-Campaign. This
discussion is continuation of the material discussed in Chapter 6.

Discovering Business Interface Methods

In this use case, we define the Campaign business interface. We pick up the development of
this use case from where Chapter 5 left off. There are numerous calls from the presentation
tier for satisfying this use case because the process of creating a campaign involves several user
interactions; these user interactions include checking existence of a Portal-Alliance (provided
by the site administrator) for which campaigns are to be created, followed by search and
selection of the desired NPO for which a campaign needs to be created; finally the campaign
information is stored in the data store for the given Portal-Alliance. Please refer to Chapters 1
and 2 for complete details of this use case; Chapter 5 exhaustively explains the various user
interaction within the context of the Struts framework and the associated Shared Request
Handler Pattern. Although we have been progressively building this use case from use case
analysis and implementing the presentation tier, nothing precludes us from developing the
Create Campaign business-tier functionality in parallel with presentation-tier development;

259

260

Practical J2EE Application Architecture

you will recall that the business delegate pattern used in the presentation tier offers the point
of integration between the presentation tier and the business tier. Once the development of
the presentation tier and business tier is accomplished, the integration between the two tiers is
achieved using the business delegate (presentation tier side) and session fagade (business tier
side) with the intervening service locator for getting the references to business-services in the
business tier.

We begin by identifying the methods required on the new Campaign business interface.
The presentation tier will need the method addNewCampaign on the new business interface
to add campaign details. The following code segment shows the method in the business
interface.

public interface Campaign {
void addNewCampaign (CampaignDTO campaign)
throws RemoteException ,NPONotFoundException,
AdminNotFoundException, PortalAllianceNotFoundException,
GCAppException;

Observe that this method will require CampaignDTO to carry the campaign information
across tiers. CampaignDTO has complete information on the campaign being created, as well
as the Portal ID with which the campaign is to be associated. Refer to the accompanying CD-
ROM for CampaignDTO implementation. However, before the campaign creation process
can proceed, the site administrator has to ensure that the corresponding portal ID is valid and
active in the system (from the use cases you will recall that only site administrator has to
specify the portal ID; for portal-alliance administrator the portal ID is detected by AdminlD
association). We must add a method to support checking of the portal ID in support of site
administrator process flow.

public interface SiteAdmin {
rest of the methods
boolean isPortalIDValid(String portallD)
throws GCAppException, RemoteException;
}

Implementing Business Interface

In Chapter 5, we took the approach of developing each package as a separate subsystem.
Building upon this approach, we create all campaign-related components with their own
package. Figure 7-11 illustrates a class diagram for realizing this use case.

For realizing the Create Campaign use case, we have several interacting classes and patterns
that work harmoniously to provide a cohesive solution. The CampaignBean class implements
the Session Facgade pattern, whose Campaign business interface is exposed to the clients. The
DTO pattern is implemented using the CampaignDTO JavaBean. The Campaign domain object
(this is different from the Campaign session fagade and is discussed in Chapter 6) is used for
persisting campaign data.

The addNewCampaign method on the CampaignBean will first retrieve references to
the PortalAlliance entity bean and NPO entity bean; it then creates a new instance of the

Chapter 7: Business Tier Design and Implementation

':j <<Domain-Object Interface>>
interface

com.gc.persistence.admin.PortalAlliance <<Domain-Object Interface>>

com.gc.services.managecampaigns. Campaign

+getCampaigns:collection

+getCampaigns:void S +addNewCampaign:void

+getRegionalCampaigns:Collection +updateCampaigns:void

+addCampaign:void +getCampaigns:Collection
+getFeaturedNPOs:FeaturedNPODTO]]

1 alliance | A
ProtalAliance-Campaign |

0.r campaign

i ; SessionBean
<<Domain-Object Interface>>) M
interface CampaignBean

com.gc.persistence.managecampaigns. Campaign

Serializable
t--> CampaignDTO

+getNpo:NPOLocal
+getNpo:void

campaigns

Please note that, for brevity, the cmp-

T
Campaign-NPO !
ampaign ! field accessor methods are not shown

on all Domain-Object Interfaces

1 npo

<<Domain-Object Interface>>
interface R et
com.gc.persistence.admin.NPO

Figure 7-11 Create Campaign class diagram

Campaign entity bean with the information provided by the CampaignDTO; subsequent to
this, the convenience method addCampaign on the PortalAlliance domain-object interface

is invoked to add the newly created campaign entity bean to the collection-valued container-
managed relationship PortalAlliance-Campaign as shown in Figure 7-11. The PortalAlliance
entity bean and related methods are explained in detail in Chapter 6.

The domain model of Figure 6-1 shows the relationship between the Campaign entity
bean and the PortalAlliance entity bean. Although a campaign can only be related to a single
PortalAlliance, a PortalAlliance can have 0 or more (0.*) campaign(s). With the same token,
a campaign can only be associated with a single NPO, while for a given NPO there may be 0
or more campaign(s).

In order to persist these relationships, we must first establish a relationship between the
campaign and the NPO entities. Because there should always be an NPO for each campaign
(multiplicity of “1° for the npo role provides this constraint), the Campaign entity bean ensures
this linkage by accepting a reference to the NPO bean in its create method, as shown here:

try{
Rest of the Code

261

262

Practical J2EE Application Architecture

Campaign newCampaign =
campaignHome.create (startDate, endDate,
campaign.getRegionCode (), (NPOLocal)npo);
Rest of the Code

This code segment creates the newCampaign object. Observe that during campaign
creation, the primary key value CampaignID is not being provided since the CampaignID
is system generated. Once the campaign entity bean is created, it has to be related to the
PortalAlliance entity bean. This is accomplished by calling the addCampaign convenience
method available on the PortalAlliance domain-object interface of the PortalAlliance entity
bean, as shown in the following code. Please refer to Chapter 6 for additional details.

portalAlliance.addCampaign (newCampaign) ;

Update Campaigns Use Case

In this section, we identify and implement the components needed for the realization of the
Update Campaigns use case. A large part of this use case was developed in Chapter 5 to address
the needs of the presentation tier. The presentation tier expects a collection of CampaignDTO
object, which it uses for creating a dynamic view; subsequently the user updates various
campaigns, and the presentation tier repackages the updated CampaignDTO(s) and sends it
back to the business tier.

Discovering Business Interface Methods

We continue to add to the Campaign business interface discussed in the preceding section; this
is to ensure that logically related functionality is encapsulated within the same interface and
to avoid unnecessary proliferation of business interfaces. We also use the same CampaignDTO
that was used as part of the Create Campaign use case. Therefore, we have most of the essential
classes and interfaces already available to us for realizing this use case.

The following interface methods are added to the Campaign interface for realizing the
Update Campaigns use case.

public interface Campaign {
. Other Methods ...
/* Method takes a Collection of type CampaignDTO from the Presentation Tier*/
void updateCampaigns (Collection campaigns

throws RemoteException , CampaignNotFoundException, GCAppException;

/* Method provides a Collection of type CampaignDTO to the Presentation Tier*/
Collection getCampaigns (String portalID, String adminID, String regionCode)
throws RemoteException , PortalAllianceNotFoundException,

CampaignNotFoundException, AdminNotFoundException, GCAppException;

Chapter 7: Business Tier Design and Implementation

Implementing the Business Interface

Since we are reusing the same business interface and associated components that were used in
the realization of the Create Campaigns use case, the class diagram represented by Figure 7-11
is still relevant for the following discussion.

We now examine some interesting aspects of the getCampaigns business method of the
Campaign session bean.

public Collection getCampaigns (String portallID, String adminID,
String regionCode)
Rest of the Code
if (adminID != null) {
/* This branch applicable only for Portal-Alliance Administrator
* because the Portal ID association is derived from adminID */
Admin admin = getAdmin (adminID); //Get Admin Entity bean
portalAlliance = admin.getAlliance(); //Get PortalAlliance Entity bean
} else if (portalID != null) {
/* This branch applicable only for Site Administrator
* because the portalID is explicitly provided by administrator */
/* Get PortalAlliance Entity bean */
portalAlliance = getPortalAlliance (portallID) ;
}
/*Collection of Campaign Entity bean references */
Collection campaigns = null;
try {
if (regionCode == null)
campaigns = portalAlliance.getCampaigns() ;
else
campaigns = portalAlliance.getRegionalCampaigns (regionCode) ;
} catch (FinderException fe) {

rest of the code

code for verification appear here

/* Finally create a Collection of DTOs */

ArrayList results = new ArrayList();

Iterator itr = campaigns.iterator();

while (itr.hasNext()) {
Campaign campaign = (Campaign) itr.next();
// Get the cmr-field npo (i.e. the NPO Entity bean related to the Campaign)
NPO npo = campaign.getNpo () ;
CampaignDTO theCampaignDTO =
new CampaignDTO (npo.getEin(), portalAlliance.getPortalID());
theCampaignDTO.setCity (npo.getCity()) ;
theCampaignDTO.setCampaignID (campaign.getCampaignID()) ;
theCampaignDTO. setCountry (npo.getCountry()) ;
theCampaignDTO.setEndDate (campaign.getEndDate () .toString()) ;
theCampaignDTO. setNpoName (npo.getNpoName ()) ;
theCampaignDTO.setRegionCode (campaign.getRegionCode ()) ;
theCampaignDTO.setStartDate (campaign.getStartDate () .toString()) ;
theCampaignDTO.setState (npo.getState()) ;

263

264

Practical J2EE Application Architecture

results.add (theCampaignDTO); //Add to the Collection of DTOs
}

return results;

In this snippet, observe that the portallD is provided by the presentation tier when the
user is a site administrator, whereas an adminlD is provided by the presentation tier when
the use is a portal-alliance administrator. The code also demonstrates retrieval of the Campaign
entity bean collection for the cmr-field campaigns (the campaigns cmr-field is specified in
the deployment descriptor subordinate to the ejb-relation element) and subsequent packaging
of DTOs in a Collection object for use by the presentation tier.

In Chapter 6, we observed that the PortalAlliance entity bean has a helper
getRegional Campaigns method; this convenience method has been specially designed to
accommodate the filtering of campaign entities based on a given region code; please refer to
Chapter 6 for a complete discussion on how EJB QL is being used to accomplish this filtering.

In the preceding code snippet, we observed the packaging of DTOs for the presentation
tier; the following code snippet for the updateCampaigns method of the campaign session
bean illustrates the use of collection of updated DTOs received from the presentation tier,
and its effect on the current transaction.

public void updateCampaigns (Collection campaigns)
throws CampaignNotFoundException, GCAppException {
Other Code for checking pre-conditions ...
Iterator itr = campaigns.iterator();
while (itr.hasNext()) {
CampaignDTO campaignDTO = (CampaignDTO) itr.next();
/* Stateless bean expects that the client remember and
* resend the Campaign ID */
if (!campaignDTO.isFieldModified (CampaignDTO.CAMPAIGN_ID)) {
ctx.setRollbackOnly() ;
throw new GCAppException ("error.MustProvideCampaignID",
"Campaign ID must be provide to update campaign");
}
// Get reference to the Campaign entity bean
Campaign campaign =
getCampaign((Integer) campaignDTO.getCampaignID()) ;
// Set all cmp-fields that need to be changed in the Campaign entity bean
if (campaignDTO.isFieldModified (CampaignDTO.START DATE))
campaign.setStartDate (Date.valueOf (campaignDTO.getStartDate())) ;
if (campaignDTO.isFieldModified (CampaignDTO.END_DATE))
campaign.setEndDate (Date.valueOf (campaignDTO.getEndDate())) ;
if (campaignDTO.isFieldModified (CampaignDTO.REGION_CODE)
campaign.setRegionCode (campaignDTO.getRegionCode ()) ; }

From this snippet, it is apparent that the stateless nature of the session bean expects that
DTOs sent to the client, using the getCampaigns method, must be cached by the client.
Once the DTOs are updated by the client, the client must send the complete DTOs back to
the campaign session bean’s updateCampaigns method and ensure that the primary key

Chapter 7: Business Tier Design and Implementation

campaignID is present in all DTOs for the updates to be successful. Please observe that failure
to get a campaignID on any of the DTOs will result in marking of the transaction for rollback.

The campaign updates are expected to be low volume, therefore we did not hesitate using
collection-valued portalAlliance.getCampaigns() or
portalAlliance.getRegional Campaigns(regionCode) methods within the gefCampaigns method
of the CampaignBean. Normally, high-volume read only data must be extracted using patterns
like DAO (Data Access Object) [Core] that directly queries the database rather than obtaining
a collection of references to the entity bean. EJBs are heavy-weight objects requiring system
resources for their creation, life-cycle management, and network overhead involved in their
access. However, for updating high volume data, one should not circumvent entity beans since
the business logic for ensuring data integrity and consistency resides in the entity bean methods;
directly manipulating data would be breaking away from the object-oriented encapsulation
technique, which will lead to manageability and modularity issues.

Figure 7-12 depicts the implementation of the updateCampaigns business method defined
in the campaign bean’s business interface.

NOTE

For marshalling tabular data from a JDBC ResultSet to the client without the hassle of converting it to DTOs
and then back to tabular list on the client side, a special technique is demonstrated in the book EJB Design
Patterns [EJB Patterns]: the design pattern employed is called Data Transfer Rowset.

Campaign Session Bean Deployment Descriptors

The declarations in the deployment descriptors for the campaign session bean are similar to
descriptors we discussed in the section “SiteAdmin Session Bean Deployment Descriptors.”

<<Business Interface>>| | campaignDTO | | ejbHomeFactory | | <<Entity Bean Home>> | | <<Domain-Object Interface>>
campaign campaignDTO | | EJBHomeFactory CampaignHome campaign
Campaign CampaignlocalHome Campaign
presentationTier T

1: update Compaigr;s (Collection of CampaignDTO objects)

| 1.1:getiterator | | The iterator is over a collection
of CampaignDTO objects

1

while(iterator has nexjt CampaignDTO obiéct)
1.2.1: get Campaign ID |

1.2.2: lookup Campaign entity bean’s home reference

1.2.3: find Campaign entity bean using primary bean J

i
1.2.4: get DTO properties required to update the Campaign entity bean.
f v

The technique used here is fo get each DTO property using the get accessor method and populate
the corresponding cmp-field in the Campaign entity bean using the set accessor method.

1.2.5: set Compuigr& entity bean cmp-ﬁe)ds with properties from bTO object

T

Figure 7-12 Sequence diagram for updateCampaigns

265

266

Practical J2EE Application Architecture

This section discusses the transaction-related deployment descriptors for the campaign
session bean.

The addNewCampaign and updateCampaigns methods modify the application state by
adding or changing the Campaign entity beans, therefore these methods are specified with
the transaction attribute value of Required. The getCampaigns method on the PortalAlliance
entity bean returns a collection as a result of a one-to-many relationship existing between the
PortalAlliance entity bean and Campaign entity beans. The EJB 2.0 specification mandates
that the iterator obtained over a collection in a container-managed relationship must be used
within the transaction context in which the iterator was obtained; therefore the getCampaigns
method of the PortalAlliance entity bean (discussed in Chapter 6) is associated with the
transaction attribute value of Mandatory; this constraint automatically enforces a requirement
on the getCampaigns method of the campaign session bean to call the gertCampaigns method
of the PortalAlliance entity bean with a transaction attribute Required. The following
segment shows the appropriate configuration semantics for the Campaign session bean and
PortalAlliance entity bean.

<container-transaction>
<method>
<ejb-name>CampaignEJB</ejb-name>
<method-name>addNewCampaign</method-name>
</method>
<method>
<ejb-name>CampaignEJB</ejb-name>
<method-name>updateCampaigns</method-name>
</method>
<method>
<ejb-name>CampaignEJB</ejb-name>
<method-name>getCampaigns</method-name>
</method>
<method>
<ejb-name>CampaignEJB</ejb-name>
<method-name>getFeaturedNPOs</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

<container-transaction>
<method>
<ejb-name>PortalAllianceEntityEJB</ejb-name>
<method-name>getCampaigns</method-name>
</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>

Chapter 7: Business Tier Design and Implementation

Realization of the Search NPO Use Case Package

The following subsections describe realization of use cases in the Search NPO package.
Please refer to Chapter 1 and Chapter 2 for description of this package.

Search NPO Use Case

In this section, we look into the design and implementation of the Search NPO use case.
The search function uses a stateful session bean for incrementally providing the result of
the search to the presentation tier. The NPO data is retrieved using the Value List Handler
pattern; the rationale for using this pattern is explained in the following discussion.

Discovering Business Interface Methods

From the use case, it is apparent that the presentation tier will be providing a search criteria
to the business tier. If we were to use the collection-valued approach for retrieving entity
beans, we would get references to a large number of entity beans; entity beans are heavy-
weight objects demanding system resources for their construction and access. Since we are
doing a read-only operation on the NPO data, it is convenient to access them directly using a
DAO pattern [Core] that may use JDBC to access the NPO table data. Most often, the users
will prefer some form of paging mechanism to browse through the result; this is convenient
from the user perspective and from the perspective of keeping network traffic to a minimum
by reducing the amount of data that goes across the network. One approach is to provision
the result set with a single call to the database tier and then incrementally supply the results
to the client. A design pattern that readily meets our requirement is the Value List Handler
pattern [Core]; in this section, we discuss how this pattern is implemented for realizing the
Search NPO use case.

We begin by creating a business interface that contains a search function that accepts the
search criteria provided by the presentation tier and returns an integer to signal the presentation
tier if it found any corresponding data. The following code segment shows the definition of
the business method executeSearch on the business interface SearchNPO:

public interface SearchNPO {
int executeSearch (SearchParameters searchDetails)
throws RemoteException, GCAppException;

The ValueListHandler class implements the following ValueListlterator interface. The
ValueListlterator defines the methods required for navigating the result set.

public interface ValuelListIterator {
/* Returns the number of items in the collection */
public int getSize()
throws IteratorException, RemoteException;

/* Returns the current element based on the current index of iterator */
public NPOViewDTO getCurrentElement ()

267

268

Practical J2EE Application Architecture

throws IteratorException, RemoteException;

/* Returns the requested number of elements occurring before the current position
* of the iterator */
public List getPreviousElements (int count)
throws IteratorException, RemoteException;

/* Returns the requested number elements occurring after the current position
* of the iterator */
public List getNextElements (int count)
throws IteratorException, RemoteException;

/* Repositions the iterator position to the beginning of the result list */
public void resetIndex ()
throws IteratorException, RemoteException;

The methods described in this interface satisfy the navigational semantics necessary
to implement the Search NPO use case. The ValueListHandler class provides a default
implementation of ValueListlterator. Please check the accompanying CD-ROM for the
complete source code of this class. Figure 7-13 illustrates the usage of the Value List
Handler pattern in the context of the client requests.

Implementing the Business Interface

The presentation tier imposes upon the SearchNPO session bean the need to maintain state
information; therefore the SearchNPO bean is implemented as a stateful session bean. The
SearchNPOBean implements the SearchNPO business interface, which in turn extends the
ValueListlterator; the existence of all required methods in the SearchNPOBean will therefore
be guaranteed at compile time. For servicing client requests, the SearchNPO session bean
instantiates the NPOListHandler class, which is a subclass of ValueListHandler, and
delegates navigation-related operations, such as getNextElements and getPreviousElements to
NPOListHandler. The implementation of NPOListHandler is specific to accessing the NPO
table using the NPODAO object. The NPODAO object uses JDBC for accessing the data.
Please check the accompanying CD-ROM for complete source code.

Figure 7-14 shows the class diagram for realizing the Search NPO use case.

Chapter 7: Business Tier Design and Implementation 269

<<Business Inferface>> searchCriteria
searchNPO SearchParameters
Search NPO

presentation Tier

1: execute Search LSgurchParcmeters)

1.1: create M
» NPOListHandler

1.1.1: create dao
» NPODAO

1.1.2: executeSelect(§earch Parameters): List of NPOViewDTO
1.1.2.1: get seqr§h parameters

1.1.2.2: prepare and execute SQL for the search criteria

1.1.2.3: create a 1new Arraylist object
for adding NPOViewDTO objects

i
while(resultset has next record)

1.1.2.4.1: create! view
Sk NPOViewDTO

I

1.1.2.4.2: set dto properties from current result set row

2. get Next E|ement;‘r

2.1: get Next Elements

g

N
3: get Previous Elements

_ I

Figure 7-13 Value List Handler Pattern Usage

3.1: get Previous Elements

;] | i
P | [T 1.1.2.4.3: add DTO to the Arraylist object

Practical J2EE Application Architecture

O]

interface
Valvelistlterator

+getSize:int

+get CurrentElement:NPOViewDTO
+get PreviousElements:List
+getNextElements:List
+resetindex:void

size:int
currentElement:NPOViewDTO

A

0

ValuelistHandler

#list:List

#listlterator:Listlterator

<<Business Inferface>>
interface
SearchNPO

+ValueListHandler
#setlist:void
+getList:Collection
+getSize:int

+resetindex:void

+gefCurrentElement:NPOViewDTO
+getPreviousElements:List
+getNextElements:List

+execute Search:int

size:int

currentElement:NPOViewDTO

i

i

A
SessionBean
SearchNPOBean
-npolist:NPOListHandler

<<Data Access Object Pattern>>
NPODAO

-tableName:String
-fields:String

+NPODAO
+executeSelect:List
-perpareResult:List

NPOListHandler

+ejbCreate:void

e

-dao:NPODAO

-criterion:SearchParameters

F

+NPOlListHandler
+executeSearch:void

+executeSearch:int

+getSize:int
+getCurrentElement:NPOViewDTO
+getPreviousElements:List
+getNextElements:List
+resetindex:void

Figure 7-14 Search NPO class diagram

Chapter 7: Business Tier Design and Implementation

Summary

In this chapter, we looked at the implementation of various design patterns and their appropriate
usage in the context of the GreaterCause application. Design patterns implemented in this
chapter make the application modular, scalable, and extensible. The implementation of design
patterns discussed in this book provide reusable solutions for interaction between components
in various application tiers; the patterns provide a consistent design vocabulary, making

it easier to develop software that is implemented based on best practices; this increases
understandability and maintainability of the design artifacts and the corresponding code.

This chapter also covered the transactional semantics and attributes associated with EJBs,
and the responsibilities of the bean developer to ensure transactional integrity. The emphasis
on use cases is even more evident in this chapter; we developed our solutions based on the
use cases identified in Chapters 1 and 2; this was done in a manner similar to Chapter 5, where
presentation-tier objects were developed based on a use case—driven approach.

The knowledge gained from this chapter can be complemented by referring to the EJB
specification for getting a thorough understanding of bean lifecycle management, container-
managed relationships, EJB QL, transaction support, message-driven beans, and declarative
and programmatic security. We also recommend reading Mastering Enterprise JavaBeans
(2nd Edition) by Ed Roman et al., and EJB Design Patterns: Advanced Patterns, Processes,
and Idioms by Floyd Marinescu.

References

[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice Hall, 2001)

[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

[EJB Patterns] EJB Design Patterns by Floyd Marinescu (Wiley, 2002)
[JavaBeans] Mastering Enterprise JavaBeans, Second Edition by Ed Roman et al.
(Wiley, 2002)

271

This page intentionally left blank.

CHAPTER

Web Services for
Application Integration

IN THIS CHAPTER:

Introduction to Web Services

Web Services Architecture

Development Methodologies and Supporting Tools
Introduction to Web Services Description Language
Introduction to Simple Object Access Protocol
GreaterCause B2B Integration

Workshop SOAP:style Semantics

Summary

topyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 273

274

Practical J2EE Application Architecture

n this chapter, we introduce the Web services technology and the associated standards.

We bring to light key aspects of the WSDL and SOAP specification such that readers

are able to discern the relationships between WSDL constructs and the corresponding
SOAP message constructs. The evolution of systems integration and emergence of Web
services as a new way of integrating disparate applications and systems are discussed. The
chapter’s emphasis is on WSDL, SOAP, and other aspects of Web services technology.

The concepts learned in this chapter are subsequently applied in the creation of a Web
service, in the context of our sample application using BEA-provided IDE called WebLogic
Workshop. This is covered in the section “GreaterCause B2B Integration,” which discusses
the integration requirements, the rationale for selecting an appropriate architecture, followed
by complete Web service implementation. Web services are built on a stack of technologies
in which XML plays an important role in the overall architecture. This chapter does not talk
about XML technologies nor the pertinent APIs. To learn more about XML, a good place to
begin is http://java.sun.com/xml, http://www.xml.org (hosted by OASIS) and http://www.w3.org/
TR/REC-xml (XML specification).

Introduction to Web Services

Software technology emerged from linkage of programming statements into object code and
linkage of object code into monolithic programs (applications). Monolithic programs were
developed using many different programming languages and operating systems—specific
system linkers. Early requirements for process and data integration gave birth to a new
business: the systems integration. Systems integration, after years of evolution, arrived at
Enterprise Application Integration (EAI). EAI space created a host of new technologies,
tools, and processes, and in some cases development methodologies. EAI competitions also
created confusing terminologies such as data-centric EAI, process-centric EAI, message-
centric EAIL and object broker EAI Each EAI segment tried to address part of the old “systems
integration” problem, but in nonintegrated and broken ways, such as data, process, objects,
and messages. Although, traditional EAI made a great improvement in building “integrated
solutions,” the artificial marketing-driven separation of integration as a whole failed to converge
the EAI technology into a uniform eBusiness application construction platform.

On the other hand, the necessity of conducting business on the World Wide Web created
an extremely complex set of requirements for building eBusiness applications. Constructing
eBusiness applications requires the integration of business functions that are embedded in
thousands of applications, each implemented in different programming languages, object
models, messaging systems, databases, and operating system platforms. The integration
itself is dynamically driven by the business rules and requirements, that is, it is the business
rules that decide what business function, and therefore application, should be executed next.
Traditional EAI failed because it did not allow for the diversity of things to be integrated in
a standard manner and did not deal with business functions at all.

Taking a low-level tour of a single execution thread in an eBusiness application, that is,
performing a business function, one may discover that a specific application interface (legacy,
CORBA, J2EE, .NET, or just pure Java) has to be invoked within the required application context.

Chapter 8: Web Services for Application Integration

The application context (with or without transaction) may include the application adapter, the
messages/parameters that need to be sent to the application, and the application execution engine.
The execution engine may be a proprietary application server, a CORBA server, a J2EE server,
a .NET server, or it may just be a stand-alone JVM. The execution context may include a
Web server (Apache, Tomcat, IS, and so on). The execution itself may result in generating
some new information that needs to be fetched into the next thread of execution in order to
perform the next business function. With traditional EAI, extensive development had to take
place to develop the adapters and the required messages. The business rules have to be coded
either in the applications, adapters, or messages, or all of these entities. Changes to the
business rules require changes in execution order, applications, adapters, messages, and other
contextual information.

One of the complex spaces that never standardized in the traditional EAI approach was the
messaging mechanism. In fact, the proliferation of messaging models resulted in creation of
several messaging systems by many EAI vendors. Each messaging system suggests its own
way of adapter development, communication models, and protocols. The emergence of XML
not only unified the application-messaging paradigm, but it has created significant opportunities
for infrastructure vendors to simplify, in a cost-effective manner, the construction of eBusiness
applications. Although XML can be used in many different ways, in the context of Web
services it can be thought as the “language of the Internet.” By “language of the Internet”
we mean the XML representation of the information or messages exchanged between the
applications. Web services are computer programs that are accessible through the Web. In a
typical Web services scenario, a business application sends a request, represented as XML,
to a Web service at a given URI. The remote service receives the request, processes it, and
returns a response. The XML-based request and response messages are based on a standard
format called Simple Object Access Protocol (SOAP). The SOAP specification defines bindings
for using SOAP in combination with HTTP and HTTP extension framework; however, SOAP
can be potentially used with a variety of other protocols.

Web services cover the RPC model that is epitomized by the EJB or CORBA models and
hold the promise of knocking down barriers among operating systems, programming languages,
and geography, all in a secure, standards-based manner. Web services and consumers of Web
services are typically businesses, making Web services predominantly business-to-business
transactions. An enterprise can be the provider of Web services and also the consumer of
other Web services. For example, an automobile parts distributor could be in the consumer
role when it uses a Web service to check the availability of specific automobile parts, and in
the provider role when it supplies prospective customers with different vendors’ prices for the
automobile parts.

Web services combine the best aspects of component-based development and the Web—
delivering true distributed “peer-to-peer” computing. Web services can vary in function from
simple operations, like the retrieval of a stock quote, to complex business systems that access
and combine information from multiple sources. Web services also can be thought of as the
building blocks in the move to distributed computing on the Internet. Enterprise class Web
services are usually loosely coupled, asynchronous, and coarse-grained. Loose coupling allows
Web service providers to change an implementation without disrupting users. Asynchronous Web
services tend to be more scalable than Web services based on Remote Procedure Call (RPC).

275

276 Practical J2EE Application Architecture

There are probably as many definitions of Web service as there are companies building
them, but almost all definitions have the following in common:

P Web services expose useful functionality to Web users through a standard Web protocol.
In most cases, the protocol used is SOAP.

> Web services provide a way to describe their interfaces in enough detail to allow a user
to build a client application to talk to them. This description is usually provided in an
XML document called a Web Services Description Language (WSDL) document.

P> Web services are registered in directories so that potential users can find them easily.
This is done with Universal Discovery, Description, and Integration (UDDI).

A Web service is a software system identified by a URI, whose public interfaces and bindings
are defined and described using XML. Its definition can be discovered by other software systems.
These systems may then interact with the Web service in a manner prescribed by its definition,
using XML-based messages conveyed by Internet protocols.

Once a Web service is defined and implemented, it needs to be described with a WSDL
file and registered in UDDI. By exposing existing applications such as XML, Web services
will allow users to build new, more powerful applications. For example, a user might develop
a purchasing application to automatically obtain price information from a variety of vendors,
and allow the user to select a vendor, submit the order, and then track the shipment until it is
received. The vendor application, in addition to exposing its services on the Web, might in
turn use Web services of other businesses to check the customer’s credit, charge the customer’s
account, and set up the shipment with a shipping company. In the next sections, we discuss
the three essential Web services building blocks: SOAP, WSDL, and UDDI. SOAP and
WSDL are also covered in detail in later sections. The SOAP specification is available at
http://'www.w3.org/ TR/SOAP, the WSDL specification is available at http://www.w3.org/
TR/wsdl, and the UDDI specification is available at www.uddi.org.

What Is SOAP?

SOAP is a lightweight protocol for exchange of information in a decentralized, distributed
environment. It is an XML-based protocol that consists of three parts: an envelope that defines
a framework for describing what is in a message and how to process it, a set of encoding rules
for expressing instances of application-defined data types, and a convention for representing
remote procedure calls and responses.

NOTE

From an architectural perspective, making encoding an integral part of the message makes SOAP
language neutral.

SOAP is defined as a communications protocol, but unlike DCOM or CORBA, it does
not support object activation and does not rely on any naming service. The XML schema
for SOAP messages (http://schemas.xmlsoap.org/soap/envelope) specifies a standard structure
that needs to be supported by any compliant SOAP implementation.

Chapter 8: Web Services for Application Integration 277

When using CORBA, the IDL had to be compiled to client- and server-side implementation
language in order to produce proper stubs and skeletons. When using SOAP, developers will
not have to concern themselves with encoding rules because the vendor-provided tools handle
serialization (analogous to parameter marshalling in CORBA) and deserialization (analogous
to parameter demarshalling in CORBA) of application-defined datatypes.

SOAP defines two separate styles of messages—the RPC-oriented (messages containing
parameters and return values) and document-oriented (messages containing documents). The
SOAP RPC defines a convention that can be used to represent remote procedure calls and
responses. In an RPC-oriented style, a SOAP request containing a callable function (an operation
exposed by a Web service) with associated function parameters is sent from the client to the
server. The server returns a response with the results of the executed function. Most current
implementations of SOAP are based on RPC-style Web service because programmers who
are used to developing COM or CORBA applications easily understand the RPC style.

RPC and document-style Web services are discussed in the section “Introduction to Web
Services Description Language.”

The SOAP specification defines HTTP bindings that describe how a SOAP message can
be carried in HTTP messages, with or without the HTTP extension framework. The HTTP
binding is optional, but almost all SOAP implementations support it because it’s the only
standardized protocol for SOAP. For this reason, there’s a common misconception that SOAP
requires HTTP. Implementation may support SMTP, FTP, RMI/IIOP, or a proprietary messaging
protocol, but most current Web services use HTTP because it is ubiquitous. Since HTTP is
a core protocol of the Web, most organizations have a network infrastructure that supports
HTTP and people who understand how to manage it. Security, monitoring, and load-balancing
infrastructure for HTTP are also readily available.

Generally, Developers who use SOAP don’t write SOAP messages directly—instead they
use a SOAP toolkit to automate their development. For example, vendor tools like CapeClear,
PolarLake, Apache Toolkit, and BEA WebLogic Workshop provide facility for automatically
generating SOAP interfaces, for existing EJB, Java, CORBA, and .NET components. These
server-side interfaces are exposed to the SOAP client as Web services. A practical example of
this scenario using the BEA WebLogic Workshop is discussed in the section “GreaterCause
B2B Integration,” where the vendor tool handles the Web service protocols, allowing the
developers to focus on the business logic embedded in the EJB. By the same token, the
Microsoft SOAP Toolkit 2.0 translates COM function calls to SOAP.

SOAP Security

Early in its development, SOAP was seen as an HTTP-based protocol, so the assumption was
made that HTTP security would be adequate for SOAP. After all, there are thousands of Web
applications running today using HTTP security. When SOAP expanded to become a more
general-purpose protocol running on top of a number of transports, security became a bigger
issue. For example, HTTP provides means for authenticating which user is making a SOAP
call, but how does that identity get propagated when the message is routed from HTTP to an
SMTP transport? SOAP was designed as a building-block protocol, so fortunately there are
already new specifications in the works. The idea is to build on SOAP so it can provide additional
security features for Web services. The WS-Security specification describes enhancements
to SOAP messaging to provide quality of protection through message integrity, message

278

Practical J2EE Application Architecture

confidentiality, and single message authentication. It’s a mechanism for accommodating a
wide variety of security models and encryption technologies—this and related specifications
are available at http://xml.coverpages.org/ws-security.html. The section “Introduction to Simple
Object Access Protocol” presents additional discussion on SOAP.

What Is WSDL?

WSDL stands for Web Services Description Language. A WSDL document contains XML
constructs for describing network services as collections of communication endpoints capable
of exchanging messages. It also provides a recipe for automating the details involved in
application communication. A WSDL file describes SOAP messages and how the messages
are exchanged. In other words, WSDL is to SOAP what IDL is to CORBA. Since WSDL is
XML, it is readable and editable; however, in most cases, it is generated and consumed by
software tools. WSDL specifies, in XML notation, what a request message must contain and
what the response message will look like. The notation that a WSDL file uses to describe
messages is based on the XML schema standard, which makes the Web services both
programming-language neutral and accessible from a wide variety of platforms.

In addition to describing request and response messages, WSDL defines the location
of the Web service and the communication protocol used for accessing the service. This
means that the WSDL file defines everything required to communicate with a Web service.
Fortunately, there are several tools available to read a WSDL file and generate the code required
to communicate with a Web service. The existing SOAP toolkits include tools to generate WSDL
files from existing program interfaces (such as CORBA IDL, EJB, and .NET components).
Like CORBA IDL tools, these tools can generate proxies and stubs used by Web services clients.
The WSDL specification can be found at http://www.w3.org/TR/wsdl. The section “Introduction
to Web Services Description Language” discusses the details of the WSDL.

What Is UDDI?

Universal Discovery, Description, and Integration can be seen as the yellow pages of Web
services. As with traditional yellow pages, one can search for a company that offers the
required services, read about the service offered, and contact someone for more information.
If the Web service is designed and planned to be accessible by many clients, it should be
registered with the UDDI. A UDDI directory entry is an XML document that describes a
business and the services it offers. There are three parts to an entry in the UDDI directory.
The “white pages” describe the company offering the service—name, address, contacts, and
so on. The “yellow pages” include industrial categories based on standard taxonomies such as
the North American Industry Classification System and the Standard Industrial Classification.
The “green pages” describe the interface to the service in enough detail for someone to write
an application to use the Web service. Services are defined through a UDDI document called
a Type Model, or tModel. In many cases, the tModel contains a WSDL document that
describes a SOAP-based Web service, but the tModel is flexible enough to describe almost
any kind of service.

Chapter 8: Web Services for Application Integration

One of the primary potential uses of Web services is for business-to-business integration.
For example, a company might expose a movie ticket purchasing Web service that allows its
consumers to send requests over the Internet. If a travel agency wanted to purchase movie
tickets over the Internet, it would need to search for all vendors who sell movie tickets. To
do this, the travel agency will require a directory of all businesses that expose Web services.
This directory is called Universal Description, Discovery, and Integration, or UDDI.

Like a typical yellow-pages directory, UDDI provides a database of businesses searchable
by the type of business. You typically search using business taxonomy such as the North
American Industry Classification System (NAICS) or the Standard Industrial Classification
(SIC). You could also search by business name or geographical location. Going back to our
example, the travel agency could search UDDI for NAICS and some identifier, perhaps
“entertainment.” This search would return a list of companies registered with UDDI that sell
movie tickets.

Web services exposing functionality for use by other businesses are registered with UDDI.
Services are grouped by a type. The service type has a unique identifier and comes from
a pool of well-known service types that are registered with UDDI. These service types are
called tModels in UDDI terminology. Each tModel has a name, description, and a unique
identifier. This unique identifier is a Universal Unique Identifier (UUID) and is called the
tModelKey. By having a pool of well-known service types, UDDI makes it possible to find
out how to do electronic business with a company. The UDDI directory may be searched in
several ways. For example, one can search for providers of a service in a specified geographic
location or for business of a specified type. The search may result in information such as
contacts, links, and technical data that can be used to evaluate against service requirements.

Web Services Architecture

Let’s observe the Web services architecture in the context of a distributed computing
environment. The basic requirements for a network node to play the role of requestor or
provider in XML messaging—based distributed computing are the ability to build and/or parse
a SOAP message and the ability to communicate over a network. There are two important
actors in the SOAP model. One actor is the network node that plays the role of requestor,
which might be a Web service executing on a network computer (node) requesting the service
of another Web service. The other actor is another network node that plays the role of a
provider: this is a Web service executing on a network computer (node) providing the service.
Note that a provider of a service may in turn make several requests to other providers to
complete a request; by the same token the requestor of a Web service could be a Web service
trying to satisfy other requests. So a Web service may play the role of both the provider and
the requester. Since SOAP messages are represented in XML, there has to be some mechanism
on both the client and the server side to build and/or parse a SOAP message. These functions
in most cases can be provided by a SOAP server running in an HTTP server. The SOAP server
implements the functionality expressed by the SOAP specification. Given this summary,
a service-oriented architecture of Web services environment is illustrated in Figure 8-1.
Figure 8-1 illustrates Web-servicel hosted in a SOAP server and running in an HTTP server
at http://www.business1.com. Web-service?2 is hosted in a SOAP server running in an HTTP

279

280 Practical J2EE Application Architecture

UDDI
(Service Description)

Find/pub|ish Find/pub|ish

_ [l v
w

@] >

: :
5 5
3 <xml %l
hﬂp://www.business] .com /X'f.ﬁl> hﬁp://www.businessQ.com

Figure 8-1 Service-oriented architecture: peer-to-peer pattern

server at http://www.business2.com. The UDDI services are also exposed as Web services
according to the UDDI standards, but for simplicity’s sake we do not show this in the diagram.

The following discussion summarizes this architecture by tracing a request-response
transmission between the requestor (assuming Web-servicel is in the role of the requestor)
and the provider (assuming Web-service? is in the role of the provider) of Figure 8-1. The
service requestor could very well be a requestor that may not be a Web service, however, to
demonstrate a service-centric architecture we assume that several Web services may need
to interact for fulfilling the original service request.

1.

Web-servicel (the requestor) creates a SOAP message that invokes the operation exposed
by Web-service2 (the provider). The XML payload in the body of the message can be a
RPC-style or a document-style message. We discuss these two styles of messaging when
discussing WSDL in the section “Introduction to Web Services Description Language.”
The Web-servicel presents this message together with the network address of the Web-
service2 to the SOAP infrastructure (SOAP client runtime). The SOAP client runtime
interacts with an underlying network protocol (such as HTTP) to send the SOAP message
over the network. The network infrastructure delivers the message to Web-service2’s
SOAP runtime which is the SOAP server.

The SOAP server routes the request message to Web-service2. The SOAP runtime is
responsible for converting the XML message into programming language—specific
objects if required by the Web-service2 implementation. This conversion is governed
by the encoding schemes specified within the message. Web-service?2 is responsible for
processing the request message and formulating a response. The response is also a
SOAP message. The response SOAP message is presented to the SOAP runtime with
Web-servicel as the destination.

Chapter 8: Web Services for Application Integration

3. The response message is received by the networking infrastructure on the Web-servicel’s
node. The message is routed through the SOAP infrastructure; the SOAP runtime will
potentially convert the XML message into objects corresponding to the target programming
language, that is the implementation language of Web-servicel.

4. The response message is then presented to the Web-servicel.

In this architecture, the granularity is at the service level and not the object or component
level; component in this context means EJB, NET, CORBA, or Java bean components and
objects that are not executable entities unless they are packaged, according to their component
model, into a coarser-grained entity known as a container; the containers ultimately execute
in their respective application servers (J2EE, .NET, CORBA). From granularity perspective, a
Web service is analogous to a container. Services are the entities known at the network level
(distribution) that expose their public interfaces as contracts to the outside world. Interacting
services can be hosted on any operating system platform and can be implemented in any
programming language.

SOAP provides semantic constructs like the SOAP Header element, which adds more
flexibility to this service-oriented architecture. For example, using the flexibility and
extensibility of XML, a Header element can be modified by an intermediary service along
the message path and passed to the next service. The semantics of header entries are only
known between the sender and the receiver, a receiver cannot forward the Header element to
the next application in the SOAP message path; however, the recipient may insert a similar
Header element but in that case, the contract is between that application and the recipient of
the Header element. The header entries assist in adding extra semantics to the message being
delivered. For example, a Header element may provide a transaction ID that is not part of the
application code but instead part of an infrastructure component; by adding a header entry
with a transaction ID, the transaction manager on the receiving side can extract the ID and
use it without affecting the SOAP construct that represents a remote procedure call. Therefore,
the header part of a message can include information pertinent to extended Web services
functionality, such as transaction context, security, orchestration information, or message
routing information.

Figure 8-1 showed the software agents participating in the basic architecture. The Web
Services Architecture document specifies an extended architecture that describes Web services
support for message exchange patterns (MEPs) that group basic messages into higher-level
interactions, details how support for features such as security, transactions, orchestration,
privacy, and others may be represented in SOAP messages, and describes how additional
features can be added to support business-level interactions.

In a service-oriented architecture, many different kinds of interactions between service
requester and service provider are possible. One-way interaction is comprised of a message
sent from a requestor to a provider, Conversational interaction comprises several messages
exchanged between a requestor and a provider, and Many-to-Many interaction comprises a
message sent from a requestor to many providers, or a service provider responds to many
requestors. These interactions can be defined by a choreography language. More information
is available at www.w3.org/TR/ws-arch.

281

282

Practical J2EE Application Architecture

Development Methodologies and Supporting Tools

At the time of writing this book, Web services—related technologies are still growing. It is
predictable that several related specifications will be added to the existing specifications.
For example, Microsoft is working on some of these supporting Web services—related
specifications. These specifications will extend the Web services environment by including
infrastructure services that will define operational management functions such as ability to
route messages among many servers and dynamic configuration of servers. These services
are specified in the WS-Routing specification and the WS-Referral specification. More
information about these specifications is available at http://msdn.microsoft.com/library/
en-us/dnglobspec/html/ws-routing.asp and http://msdn.microsoft.com/library/en-us/
dnglobspec/html/ws-referral.asp.

Dealing with protocol-specific constructs and programming models makes it difficult to
develop Web services. Fortunately numerous vendors offer Web service development tools;
companies like CapeClear, Polarlake, BEA, IBM, IONA, and others provide visual tools for
editing XML, and automatic creation of Web service interface from existing legacy components
like Java classes, EJBs, CORBA, and .NET components. Most of these tools allow development,
deployment, and maintenance of Web services—based applications.

Web services are good candidates for widely used legacy systems. Message-oriented
middleware (MOM) and transaction managers like IBM MQSeries, Microsoft MSMQ, Tibco
Rendezvous, BEA MessageQ, and BEA Tuxedo offer out-of-the-box Web services interfaces,
ready for plugging into a larger business solutions.

Web services can

P Create new business opportunities and value-add for customers, by exposing services
over the Internet.

P> Revitalize and/or reuse existing applications with new, powerful, and integrated
business solutions.

» Increase developer productivity by simplifying the task of distributed systems
development.

» Provide a standards-based solution, which in turn provides a portable and extensible
solution, therefore “future proofing” the investment in integration technologies.

Although it is outside the scope of this book to discuss specific development paradigms
for Web services, we briefly discuss a development methodology recommended by Object
Management Group (OMG). OMG proposes a model-driven architecture (MDA), which tries
to simplify the challenging problem of dealing with multiple industry standards and competing
middleware architectures and information models/vocabularies. MDA tries to simplify this
problem by unifying these diverse technologies using information models/designs and mapping
these models to one or more implementation technologies (middleware, databases, languages,
and so on). MDA also raises the level of abstraction at which these applications and integration
scenarios can be designed and implemented, which is a key requirement to managing software
integration complexity. MDA defines a software architecture that complements existing
middleware, and modeling tools, and allows integration and interoperability to be addressed

Chapter 8: Web Services for Application Integration 283

across the application life cycle and not just between individual objects or components. MDA
provides an open, vendor-neutral approach to the challenge of interoperability, building upon
and leveraging the UML, Meta-Object Facility (MOF), and Common Warehouse Meta-Model
(CWM) standards. MDA allows a developer to design a model of an application or a component
only once, and automatically map this model to several technologies. Additional information
about MDA is available at http://www.omg.org/mda.

Other methodologies may be used by some mainstream tool vendors. For example, Polarlake’s
“Transactional XML.” Transactional XML suggests a programming model where XML is at
the center of the architecture. Transactional XML has the following modes:

> Web services Exposing existing IT assets, and providing mechanisms for discovering
and interacting with those assets. Typically, a Web service exposes the assets as a series
of remote procedure calls. These services fit into the larger eCommerce context using
XML integrations .

» XML services Similar to Web services, without the notion of request-response model
implicit in Web services.

» XML integrations Creating process flows from combinations of Web services and
XML services.

> XML applications Creating new applications from a combination of XML integrations
and services.

This methodology is useful in composing coarse-grained solutions by aggregating
fine-grained solutions. It promotes modularity and reuse. Further information is available
at www.polarlake.com.

From an application and component architecture perspective, Web service adds a new way of
integrating the existing legacy applications, components, and systems into larger solutions. Note
that applications and components themselves will still be designed, developed, and deployed
using their respective mainstream object models, specifically J2EE, .NET, and CORBA. For
example, one may use a tool to generate Web service interface from an exiting CORBA
application, or one can implement a new Web service, by first implementing its business
logic using any mainstream object model and then generating the required WSDL.

The Web services standard can be broken into three parts:

> SOAP The communication protocol
» WSDL The service description
> UDDI A directory through which one can query for an existing Web service

The following sections visit WSDL and SOAP standards. The method used to describe
these standards is broken into two steps. The first step introduces the standard using its
formal definition. In this step we provide an abstract summary of the formal specification
developed by W3C. In the second step, we provide an example of how the standard applies
to a real-world problem.

284

Practical J2EE Application Architecture

Introduction to Web Services Description Language

WSDL was originally designed by IBM, Microsoft, and Ariba to provide a standard mechanism
for describing Web services. This work was then submitted to the W3C for standardization
and has grown to encompass a large number of vendors. Similar to CORBA IDL, WSDL was
designed to meet the needs of distributed systems. WSDL is a standard format for describing
Web service interfaces. Using WSDL, tools can automate the generation of proxies for Web
services in a language-independent and platform-independent way. Like CORBA IDL, a WSDL
file is a contract between client and server.

Note that WSDL has been designed such that it can express bindings to protocols other
than SOAP. In this chapter, we examine WSDL as it relates to SOAP over HTTP.

Summary of the WSDL Formal Specification

The elements within a WSDL document can be divided into two groups: the service interface
definition and service implementation definition. A service interface definition is an abstract
or reusable service definition that may be referenced by multiple service implementation
definitions. This is analogous to defining an abstract interface in a programming language
and having multiple concrete implementations. The service interface contains three elements
that comprise the reusable portion of the service description, including <types>, <message>,
<portType>, and <binding> elements. The service implementation definition describes
how a particular service interface is implemented by a given service provider, and it also describes
its location so that a requestor can interact with it. In WSDL, a Web service is modeled as a
<service> element. It contains a collection of <port> elements—the <port> element
associates a URL (endpoint) with a <binding> element from the service interface definition.
This discussed in more detail below.

WSDL documents use the following elements for defining network services:

» Types Machine- and language-independent type definitions are specified by the
<types> element. This element provides data type definitions used in messages
using some type system. For maximum interoperability and platform neutrality,
WSDL prefers the use of XSD as the canonical type system.

> Message Abstract, typed definition of the data being transmitted. A message consists of
logical parts, each of which is associated with a type-definition within some type system
or encoding scheme. A message can be thought of as an operation/method parameter.

> Operation Abstract description of an action supported by the service. An operation
element, including its sub-elements, collectively define a signature (operation name,
input parameters, and output parameters). There are four forms of primitive operations
based on the nature of the interaction: one-way, request-response, notification, and
solicit-response.

> PortType Abstract interface (set of operations) supported by one or more endpoints.
An interface refers to one or more operations, input messages, and output messages.
Like the CORBA IDL interface, a <portType> element including its sub-elements
collectively define a group of operations.

Chapter 8: Web Services for Application Integration

NOTE

Recapping this discussion, the <port Type > is an abstract inferface that consists of abstract
<operations(s). <operat ionx> has parameters defined by abstract <message >(s).
Fach <message > parameter is defined within the < t ype s > element.

» Binding Specifies concrete protocol and data format specifications for the
<operation>(s) and <message>(s) defined by a particular <portType>. A
<portType> is abstract and not realizable unless associated with a <binding>.
Similar to a Java class that implements an Interface, a <binding> provides the
implementation details for the <portType>.

» Port Specifies an address for a binding, thus defining a single communication endpoint.
It is actually defining the network address (IP) of the machine that is hosting the service.

P> Service Specifies a collection of related ports that make up the service. This has the
effect of packaging all the previously discussed elements into a single service offering.

We recap these definitions with a WSDL document in the next subsection. One way of
looking at a WSDL file is that it determines what gets sent over the wire. WSDL, in addition
to defining the “interface contract,” also specifies the transport protocol for interacting with
the service interface. WSDL also specifies whether SOAP messages employ RPC- or document-
style semantics. An RPC-style message looks like a function call with zero or more parameters,
and employs the request-response semantics, whereas a document-style message is used for
exchanging an XML document. We elaborate further on this in later sections.

A Closer Look at a Sample WSDL File

WSDL is very verbose. To understand each element of a WSDL construct, we use a very simple
example. We take a bottom-up approach starting with a Java class with a single method. We
examine the automatically generated WSDL representation of our simple Java class. As noted
earlier, developers will usually use a tool for generating the WSDL; in our case we have employed
the BEA WebLogic Workshop for building this simple Web service example. Think of WSDL
as our contract on the Internet to the outside world—in this section we generate WSDL for
the simple service MyService shown here:

public class MyService {
public int foo(int arg) {
return arg;

This Java class contains a method foo(), which accepts an integer parameter and returns
the same value. A WSDL document needs to be created for describing foo() within the context
of a Web service. The following WSDL has been generated using the BEA WebLogic Workshop
tool; as such, some of the URIs used in this document are BEA specific. The WSDL document
shown can be used by any SOAP client to access MyService’s (the Web service) foo() method.

285

286 Practical J2EE Application Architecture

Observe the complexity of representing a simple service using WSDL. We discuss each
element of the following WSDL document later in this section.

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:conv="http://www.openuri.org/2002/04/soap/conversation/"
xmlns:cw="http://www.openuri.org/2002/04/wsdl/conversation/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:jms="http://www.openuri.org/2002/04/wsdl/jms/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:s="http://www.w3.0rg/2001/XMLSchema"
xmlns:s0="http://www.openuri.org/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xm="http://www.bea.com/2002/04/xmlmap/"
targetNamespace="http://www.openuri.org/">
<types>
<s:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.openuri.org/">
<s:element name="foo">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1"
name="arg" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="fooResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1"
name="fooResult" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="int" type="s:int"/>
</s:schema>
</types>
<message name="fooSoapIn">
<part name="parameters" element="s0:foo"/>
</message>
<message name="fooSoapOut">
<part name="parameters" element="s0:fooResponse"/>
</message>
<message name="fooHttpGetIn">
<part name="arg" type="s:string"/>
</message>
<message name="fooHttpGetOut">

<part name="Body" element="s0:int"/>

Chapter 8: Web Services for Application Integration

</message>
<message name="fooHttpPostIn">
<part name="arg" type="s:string"/>
</message>
<message name="fooHttpPostOut">
<part name="Body" element="s0:int"/>
</message>
<portType name="MyServiceSoap">
<operation name="foo">
<input message="s0:fooSoapIn"/>
<output message="s0:fooSoapOut"/>
</operation>
</portType>
<portType name="MyServiceHttpGet">
<operation name="foo">
<input message="s0:fooHttpGetIn"/>
<output message="s0:fooHttpGetOut" />
</operation>
</portType>
<portType name="MyServiceHttpPost">
<operation name="foo">
<input message="s0:fooHttpPostIn"/>
<output message="s0:fooHttpPostOut"/>
</operation>
</portType>
<binding name="MyServiceSoap" type="s0:MyServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation name="foo">
<soap:operation soapAction="http://www.openuri.org/foo"
style="document" />
<input>
<soap:body use="literal"/>
</input>
<output>
<gsoap:body use="literal"/>
</output>
</operation>
</binding>
<binding name="MyServiceHttpGet" type="s0:MyServiceHttpGet">
<http:binding verb="GET"/>
<operation name="foo">
<http:operation location="/foo"/>
<input>
<http:urlEncoded/>
</input>
<output>
<mime:mimeXml part="Body"/>

</output>

287

Practical J2EE Application Architecture

</operation>
</binding>
<binding name="MyServiceHttpPost" type="s0:MyServiceHttpPost">
<http:binding verb="POST"/>
<operation name="foo">
<http:operation location="/foo"/>
<input>
<mime:content type="application/x-www-form-urlencoded"/>
</input>
<output>
<mime:mimeXml part="Body"/>
</output>
</operation>
</binding>
<service name="MyService">
<port name="MyServiceSoap" binding="s0:MyServiceSoap">
<soap:address
location="http://serverl:7001/WS_MyService/MyService.jws"/>
</port>
<port name="MyServiceHttpGet" binding="s0:MyServiceHttpGet">
<http:address
location="http://serverl:7001/WS_MyService/MyService.jws"/>
</port>
<port name="MyServiceHttpPost" binding="s0:MyServiceHttpPost">
<http:address
location="http://serverl:7001/WS_MyService/MyService.jws"/>
</port>
</service>

</definitions>

You will probably agree that for the simple service depicted by class MyService, one will
not want to manually define WSDL. Developing Web services without the use of advanced
tools is not recommended. Once the WSDL is created, the vendor tool can help create stubs
and proxies, and the Web service can be subsequently used by a SOAP client written in any
programming language. The wide availability of tools to automate development of Web
services from existing server-side components allows the developer to focus on developing
business services rather than develop any infrastructure components. Developing a Web
service requires two steps:

1. Implement the business logic in a server-side component. This is discussed in Chapter 7.

2. Expose the business component interface as a Web service using WSDL. This is the
subject of this section.

WSDL data typing is based on “XML Schema: Datatypes” (XSD), which is now a W3C
recommendation. There are different versions of this document (1999, 2000, and 2001), and
declaring it as one of the namespace attributes in the <definitions> element specifies
which version is used in our WSDL file. For instance the declaration, xm/ns:s="http://www.w3

Chapter 8: Web Services for Application Integration

.org/2001/XMLSchema", makes all the predefined types, specified in the XMLSchema 2001
version, available to the MyService WSDL definition. This namespace is referred by other
constructs using the s prefix, as in s:in#, which makes a reference to the predefined type int
defined in the XMLSchema.

WSDL Namespaces

Several namespaces have been declared in the root element <definitions>. These namespace
declarations provide a shorthand for each namespace used in the document. For instance xmins.xsd
defines a shorthand xsd for the namespace http://www.w3.org/ 2001/ XMLSchema. This enables
references to this namespace later in the document simply by prefixing (or “qualifying”) a name
with xsd: as in xsd.int, which is a qualified type name. Normal scoping rules apply for the
shorthand prefixes. For example, a prefix defined in an element only holds within that element.

The purpose of namespaces is to avoid naming conflicts. It is similar to namespace in
C++ or in the Java programming language. Two separate Java packages may define the same
variable or method names. An importer of these packages can refer to a name, unambiguously,
if package qualification is used. In our example, all types in the conv namespace can be
referenced by using conv.typename. conv: is a shorthand for http://www.openuri.org/2002/
04/soap/conversation/.

Note that URIs are used as namespaces because they guarantee uniqueness. The location
pointed to by the URI does not have to correspond to a real Web location. The targetNamespace
attribute declares a namespace to which all element names declared within the MyService WSDL
will belong. In the sample WSDL file, the targetNamespace specified in <definitions> is
http://www.openuri.org/.

In the sample GreaterCause example discussed later, you will observe that the
targetNamespace is www.GreaterCause.com, and the corresponding datatypes as seen
by the clients of the Web service will use com.GreaterCause.www as package prefix.

Types

The <types> element may be omitted if there are no data types that need to be declared.
For those who programmed CORBA IDL, this section resembles IDL type definitions that
are used by the IDL operation definitions. For maximum interoperability and platform neutrality,
WSDL prefers the use of XSD as the canonical type system, and treats it as an intrinsic type

system. This is apparent from the use of the namespace xmlns:s="http://www.w3.org/2001/
XMLSchema" in our sample WSDL.

<types>
<s:schema ...>
<s:element name="foo">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1"
name="arg" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="fooResponse">

289

290 Practical J2EE Application Architecture

<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1"
name="fooResult" type="s:int"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="int" type="s:int"/>
</s:schema>
</types>

The type names "arg” and "fooResponse"” are defined within the body of the <types>
element using the <s: element> element. These definitions are subsequently used within
the <message> element to define the parameters—this is done using the name and element

attributes of its subordinate <part> element.

Messages

A <message> element defines the parameters for an operation/method. Each <part>
child element in the <message> element corresponds to a parameter that is passed to the
operation. Input parameters are defined in a single <message> element, separate from
output parameters, which have their own <message> elements. Parameters that are both
input and output have their corresponding <part> elements in both input and output
<message> elements. By convention, the name of a return <message> element ends in
Response, as in fooResponse to correspond to the method foo. Each <part> element has a
name and fype attribute, just as a method parameter has both a name and a type, where the
attribute element refers to the element we described using the <element> construct in
the <types> section. When used for document exchange (in contrast to RPC operations),
WSDL allows the use of <message> elements to describe the document to be exchanged.
The message-typing attribute element refers to an XSD element using a QName (prefixed by
s0:). The message-typing attribute #ype refers to an XSD simpleType or complexType using
a OName (prefixed by s.). Prefix s0: refers to targetNamespace="http.//www.openuri.org/,
which is the namespace associated with this WSDL, and therefore references the elements
with name foo and fooResponse from the <types> section. Prefix s. refers to xmins:s=
"http://www.w3.0rg/2001/XMLSchema and the related XSD type system. A message binding
describes how the abstract content is mapped into a concrete format. We cover a more
complex scenario when discussing the sample application’s (GreaterCause) Web service

implementation in the section “Web Service Implementation.”

<message name="fooSoapIn">

<part name="parameters" element="s0:foo"/>
</message>
<message name="fooSoapOut">

<part name="parameters" element="s0:fooResponse"/>
</message>
<message name="fooHttpGetIn">

Chapter 8: Web Services for Application Integration

<part name="arg" type="s:string"/>
</message>
<message name="fooHttpGetOut">

<part name="Body" element="s0:int"/>
</message>
<message name="fooHttpPostIn">

<part name="arg" type="s:string"/>
</message>
<message name="fooHttpPostOut">

<part name="Body" element="s0:int"/>
</message>

The WSDL tool generated <message> elements for three separate bindings—fixed
XML, HTTP Get, and HTTP Post as follows:

» For XML binding fooSoaplin, fooSoapOut
» For HTTP Get binding fooHttpGetin, fooHttp GetOut
» For HTTP Post binding foorHttpPostIn, fooHttpPostOut

The message names provide a unique name for messages defined within the enclosing
WSDL document, while the part name provides a unique name among all parts within the
enclosing message.

Port Types

A <portType> element defines one or more abstract operations using <operation>
elements. For our simple service, MyService the tool produces three separate contracts as
follows. Notice that the messages bound to the various operations have been defined in the
current namespace (prefixed by s0:) using the <message> elements discussed in the
preceding subsection.

<portType name="MyServiceSoap">
<operation name="foo">
<input message="s0:fooSoapIn"/>
<output message="s0:fooSoapOut" />
</operation>
</portType>
<portType name="MyServiceHttpGet">
<operation name="foo">
<input message="s0:fooHttpGetIn"/>
<output message="s0:fooHttpGetOut" />
</operation>
</portType>
<portType name="MyServiceHttpPost">
<operation name="foo">
<input message="s0:fooHttpPostIn"/>

291

292

Practical J2EE Application Architecture

<output message="s0:fooHttpPostOut"/>
</operation>
</portType>

The port type name attribute provides a unique name among all port types defined within
the enclosing WSDL document. MyServiceSoap allows access to MyService using standard
fixed XML format (document-style messages). MyServiceHttpGet allows access to MyService
using a standard HTTP Get call, and MyServiceHttpPost allows access to MyService using a
standard HTTP Post call. These abstract operations (contracts) will “bind” to their corresponding
concrete protocols and associated data formats using the <binding> element discussed in
the next section. The <operation> element can have one, two, or three child elements,
namely, the <input>, <output>, and <fault> elements. These constructs specify how
SOAP messages are constructed; this is discussed further in the section “Introduction to
Simple Object Access Protocol.”” WSDL has four transmission primitives or message
exchange patterns that an endpoint can support.

> One-way The endpoint receives a message. Only the <input> element is specified
for the corresponding WSDL construct. This is used for creating asynchronous services.
In this scenario, the client application that invokes the Web service never receives
a response, including any exceptions.

> Request-response The endpoint receives a message, and sends a correlated message.
This model is used in the GreaterCause example. In this scenario, the <input>,
<output>, and an optional <fault> element specify the abstract message format.

P> Solicit-response The endpoint sends a message, and receives a correlated message.
In this scenario, the <input>, <output> and an optional <fault> element specify
the abstract message format. Specification precedes <input> and <fault>
specifications.

P> Notification The endpoint sends a message. Only the <output> element is
specified for the corresponding WSDL construct.

WSDL refers to these primitives as operations. Although request-response or solicit-response
can be modeled abstractly using two one-way messages, it is useful to model these as primitive
operation types. These primitives represent message exchange patterns. Although the request-
response or the solicit-response operations are semantically related, they may be implemented
as part of one or two actual network communications. The primitives are merely an abstract
representation. It is the binding that will specify how the messages are actually sent. WSDL
only defines bindings for one-way and request-response primitives.

Bindings

The purpose of the <binding> element is to specify how each <operation>, with
corresponding parameters, and the correlated response is sent over the wire using the SOAP
message format. The immediate child elements of the <binding> element are used to
specify the concrete grammar for the input, output, and fault messages. In MyService WSDL
snippet shown below, the <soap : binding> element specifies the protocol (using the

Chapter 8: Web Services for Application Integration

transport attribute) and data format (using style attribute) for each <operation> scoped
within the parent <binding> element. Each binding must specify exactly one protocol.
SOAP allows each operation to be realized using a different invocation style. Let’s examine
the binding MyServiceSoap, which specifies document-style message exchange; this is the
first <binding> element in the following snippet. The binding MyServiceSoap references
the corresponding portType that it binds using the type attribute.

<binding name="MyServiceSoap" type="s0:MyServiceSoap">
<gsoap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation name="foo">
<soap:operation soapAction="http://www.openuri.org/foo"
style="document" />
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<binding name="MyServiceHttpGet" type="s0:MyServiceHttpGet">
<http:binding verb="GET"/>
<operation name="foo">
<http:operation location="/foo"/>
<input>
<http:urlEncoded/>
</input>
<output>
<mime:mimeXml part="Body"/>
</output>
</operation>
</binding>
<binding name="MyServiceHttpPost" type="s0:MyServiceHttpPost">
<http:binding verb="POST"/>
<operation name="foo">
<http:operation location="/foo"/>
<input>
<mime:content type="application/x-www-form-urlencoded"/>
</input>
<output>
<mime:mimeXml part="Body"/>
</output>
</operation>
</binding>

293

294

Practical J2EE Application Architecture

For binding MyServiceSoap, the transport attribute in the WSDL fragment instructs the
SOAP runtime to use HTTP as the transport because it is set to http://schemas.xmlsoap.org/
soap/ http. The transport attribute also instructs it to use document-oriented messages, because
the style attribute of the <soap :binding> element is set to "document"; the value of the
style attribute is the default attribute for each contained <soap: operation> element. The
<operation> element with name="foo" specifies binding information for the operation
foo defined in the portType element. The following snippet is a mapping of the MyServiceSOAP
binding construct to its corresponding SOAP message (wire format):

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:foo xmlns:m="http://www.openuri.org/">
<arg>2222</arg>
</m:foo>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

The <soap : body> element specifies how the message parts appear inside the SOAP
Body element. When the operation ‘style’attribute is ‘rpc’, each part is a parameter or a
return value and appears inside a wrapper element within the body (refer to section 7.1 of the
SOAP specification). This wrapper element in named identically to the operation name. Each
message part appears under the wrapper, represented by an accessor named identically to the
corresponding parameter of the call. If the operation ‘style attribute is ‘document’, there are
no additional wrappers, and the message parts appear directly under the SOAP Bod)y element.
A comparison between 7pc’and ‘document’style messages is discussed in the section
“Workshop SOAP:style Semantics.”

The mandatory ‘use’attribute indicates whether the message parts (the parameters of f00)
are encoded using some encoding rules, or whether the parts define the concrete schema of
the message. If the ‘use’attribute is set to ‘encoded’, each message part references an abstract
type using the ‘#ypeattribute. In our example, the use is set to "/iteral” meaning that each part
of the message (that is, foo’s parameters) references a concrete definition using the ‘element’
or ‘type’attribute specified in the message elements. Note that WSDL includes a binding for
HTTP 1.1’s GET and POST verbs in order to describe the interaction between an HTTP
client and an HTTP server. For details on serialization rules for message parts, please refer
to the SOAP specification at http://www.w3.org/TR/SOAP/.

Observe the use of <http:urlEncoded/> in the binding MyServiceHttpGet. The
urlEncoded element indicates that all message parts are encoded into the HTTP request URI
using the standard URI-encoding rules.

Services

The services element contains <port> elements, each of which refers to a <binding>
element discussed previously. A port defines an endpoint; it specifies the location of the Web
service and the associated binding. In our sample MyService WSDL, the following construct
is created for identifying the MyService Web service:

Chapter 8: Web Services for Application Integration

<service name="MyService">
<port name="MyServiceSoap" binding="s0:MyServiceSoap">
<soap:address
location="http://serverl:7001/WS_MyService/MyService.jws"/>
</port>
<port name="MyServiceHttpGet" binding="s0:MyServiceHttpGet">
<http:address
location="http://serverl:7001/WS_MyService/MyService.jws" />
</port>
<port name="MyServiceHttpPost" binding="s0:MyServiceHttpPost">
<http:address
location="http://serverl:7001/WS_MyService/MyService.jws" />
</port>
</service>

MyServiceSoap defines the endpoint for MyService. The tool generated three separate
bindings (XML, HTTP GET, and HTTP POST), and defined a corresponding port for each
binding. Note that all locations point to MyService, implying that the same service can be
called by three different clients, each associated with a different binding. Each port provides
semantically equivalent behavior. The SOAPAction attribute of the HTTP header specifies
the URI of the end point servicing the SOAP request.

Introduction to Simple Object Access Protocol

Similar to the WSDL definition, we visit the SOAP constructs, which are important in context
of service-centric architecture. Especially, we discuss the constructs that add flexibility to
a service-centric architecture and provide mechanisms for better B2B implementation.

NOTE

A SOAP message is an XML document that consists of a mandatory SOAP envelope, an optional SOAP
header, and a mandatory SOAP body. This XML document is referred to as a SOAP message as per the
SOAP specification.

A SOAP message contains the following:

> Envelope The envelope is the root element of the XML document representing the
message. The element must be present in a SOAP message and may contain namespace
declarations and additional attributes. The envelope contains an optional SOAP header,
and a mandatory SOAP body.

» Header The header is a generic mechanism for adding features to a SOAP message
in a decentralized manner without prior agreement between the communicating parties.
SOAP defines certain header attributes that can be used to indicate who should deal
with a given feature and whether it is optional or mandatory. The Header element is
optional in a SOAP message. If present, the element must be the first immediate child

295

296 Practical J2EE Application Architecture

element of a SOAP Envelope element. It may contain a set of header entries, each
being an immediate child element of the SOAP Header element. The child elements
must be namespace-qualified. The header entries are an extensibility feature that are
leveraged to provide semantic information to nodes along a message path; it may also
carry information necessary for infrastructure components that provide transactional
and security semantics.

» Body The body is a container for mandatory information intended for the ultimate
recipient of the message. The Fault element is subordinate to the Body element, and is
used for reporting errors. The Body element must be present in a SOAP message. When
the Header element is present, the Body element must directly follow the Header element;
otherwise the Body element must be the first immediate child element of the Envelope
element. This element may contain a set of body entries, each being an immediate
child element of the Body element.

For the MyService example, a SOAP request message that accesses the operation foo(2222)
exposed by MyService will take the following form:

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV: Body>
<m: foo xmlns:m="http://www.openuri.org/">
<arg>2222</arg>
</m:foo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The correlated SOAP response received back from the service will take the following form:

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV : Body>
<m: fooResponse xmlns:m="http://www.openuri.org/">
<fooResult>2222</fooResult>
</m: fooResponse>
</SOAP-ENV: Body>
</SOAP-ENV:Envelope>

In the following subsection, we examine SOAP message constructs that are architecturally
significant in designing a Web service.

SOAP Envelope

The SOAP envelope defines the overall framework for expressing what is in a message, who
should deal with the message, and whether parts of the message are optional or mandatory.

Chapter 8: Web Services for Application Integration

The SOAP encodingStyle global attribute (specified using the namespace declaration
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/") can be used to
indicate the serialization rules used in a SOAP message. This attribute may appear on any
element, and is scoped to that element’s contents and all child elements not themselves
containing such an attribute. There is no default encoding defined for a SOAP message. The
attribute value is an ordered list of one or more URIs; these URIs identify the serialization
rules that can be used to deserialize the SOAP message indicated in the order of most specific
to least specific.

SOAP Header

The SOAP header provides an extension mechanism for adding additional semantics to a
SOAP message when such information cannot be ordinarily added to the SOAP body, or it

is inappropriate to add such information to the SOAP body. When a SOAP message follows
a message path—that is, it travels from the originator to its final destination—it can potentially
pass through a set of SOAP intermediaries that fall along the message path. A SOAP intermediary
is an application that is capable of both receiving and forwarding SOAP messages. The role
of a recipient of a Header element is similar to that of accepting a contract in that it cannot be
extended beyond the recipient; this is because the meaning of the header is understood only
between the sender and the recipient. This does not preclude the recipient from adding a Header
element when it forwards the message to another node; in this case the contract is between
the sender application and the recipient of that Header element. Examples of extensions that
can be implemented as header entries are security context, transaction context, and so on.

For example, an originating service constructs a Header element targeted for an authentication
service along the message path; the authentication service performs authentication, and if
the authentication is successful, it forwards the SOAP message to the next destination in the
message path. The SOAP global attribute ‘actor’can be used to indicate the recipient of
a Header element. The value of the SOAP ‘actor’attribute is a URI. Omitting the ‘actor’
attribute implies that the recipient is the ultimate destination of the SOAP message. When
the SOAP ‘actor’attribute is set to the special URI http://schemas.xmlsoap.org/soap/actor/
next, it indicates that the Header element is intended for the very first SOAP application that
Connection header field in HTTP. The SOAP Header element has a significant architectural
feature. It can be used to build a complex B2B system where numerous Web services are
collaborating to realize a set of complex business functions. The SOAP mustUnderstand
global attribute indicates whether a header entry is mandatory or optional for the recipient to
process. If the mustUnderstand attribute has the value "1", the recipient of the header entry
must either obey the semantics and process the header entry correctly or must fail processing
the message. In the following representation of a SOAP message, the Header element contains
a header entry Transaction; this header entry’s meaning is known only to the receiving application
that may be capable of dealing with the transactional context of the caller.

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
<SOAP-ENV:Header>

297

298 Practical J2EE Application Architecture

<t:Transaction
xmlns:t="some-URI"
SOAP-ENV:mustUnderstand="1">
1234
</t:Transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
. body entries ...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Body

According to the SOAP specification, the SOAP Body element provides a simple mechanism
for exchanging mandatory information intended for the ultimate recipient of the message.
Typical uses of the Body element include marshalling RPC calls and error reporting. All
immediate child elements of the Body element are called body entries and each body entry is
encoded as an independent element within the SOAP Body element. SOAP defines one body
entry called the fault entry used for reporting errors. The encoding rules for body entries are
as follows:

» A body entry is identified by its fully qualified element name, which consists of the
namespace URI and the local name. Immediate child elements of the SOAP Body
element may be namespace-qualified.

» The SOAP encodingStyle attribute may be used to indicate the encoding style used for
the body entries.

The following example illustrates a SOAP message in which the function foo exposed by
the Web service is being accessed; the function takes an integer value as parameter. You
will recall from our WSDL discussion how WSDL will be used in the creation of stubs and
proxies that will understand the semantics embedded in this SOAP message.

<SOAP-ENV:Envelope
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
<SOAP-ENV:Header>
. header entries
</SOAP-ENV:Header>
<SOAP-ENV : Body>
<m:foo xmlns:m="http://www.openuri.org/">
<arg>2222</arg>
</m:foo>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Chapter 8: Web Services for Application Integration

SOAPFqult

The SOAP Fault element defines the following four sub-elements:

>

>

faultcode Intended for use by software to provide an algorithmic mechanism for
identifying the fault.

faultstring Intended to provide a human readable explanation of the fault and is not
intended for algorithmic processing.

faultactor Intended to provide information about who caused the fault to happen
within the message path.

detail Intended for carrying the application-specific error information related to

the Body element. It must be present if the contents of the Body element could not be
successfully processed. The absence of the detail element in the Fault element indicates
that the fault is not related to processing of the Body element. This can be used to
distinguish whether the Body element was processed or not in case of a fault situation
where the problem could be with the server process and not the Body element itself.

The following demonstrates the use of the Fault element. If we call the MyService Web
service, whose foo operation expects an integer value, with a bad string like "garbageString”,
we receive the following SOAP response:

<SOAP-ENV:Envelope

xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
<SOAP-ENV :Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:ServiceError</faultcode>
<faultstring>Invalid request</faultstring>
<detail>Error deserializing arguments. 'garbageString' is not
a valid encoding for type java.lang.Integer</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

GreaterCause B2B Integration

To understand the B2B requirement for the Web service required by the GreaterCause application,
let’s recap the use cases. Once the portal provider is registered in the GreaterCause.com

site by the site administrator, a portal-alliance is formed between GreaterCause.com and

the portal provider. This relationship allows the portal provider to provide a pass-through

or gateway component, also called a portlet, on the portal page for redirecting portal users

to the GreaterCause.com site. This portlet is responsible for displaying the list of available
campaigns, such as NPOs featured by the portal provider.

299

300 Practical J2EE Application Architecture

NOTE

The campaigns for featuring selected NPOs are created by the portal administrator using
the Create Campaign functionality offered by the GreaterCause.com site. This Create Campaign
Use Case was discussed in Chapters 1 and 2, and developed in Chapters 1, 2, 5, and 7. Note
that the campaigns are created and stored in the GreaterCause data store; these portal-domain—
specific featured NPOs must be extracted by the respective portal domains and displayed in
the portlet. The campaign list is obtained only once and cached locally by the portal domain;

A portlet can be implemented as part of the portal infrastructure provided by vendors, or as part of a JSP
using a custom tag. It is left to the readers to decide how a portlet is integrated into a portal page. In the
following discussion, we assume that the portlet is housed in a JSP page using a custom tag.

the portlet is subsequently populated from the local cache. The solution discussed in the

chapter is part of the realization of the Cache Featured-NPOs use case discussed in Chapter 1.
To access the list of featured-NPOs from the GreaterCause data store, the portlet can make a
call to the FeaturedNPOQueryService Web service for retrieving the list of campaigns related
to the portal domain, which it can subsequently caches in the ServietContext (the Application
Scope). This is an oversimplification of the caching strategy; there are several caching strategies
possible for handling caching of campaigns. FeaturedNPOQueryService is a Web service that
exposes a method called getFeaturedNPOs. This method returns an array of FeaturedNPODTO
objects; we have used an array because the SOAP encoding does not support the Collection
API. The B2B scenario uses the request-response message interaction. The corresponding

interaction semantics are depicted in Figure 8-2.

WebLogic Web services implement the Java API for XML-based RPC (JAX-RPC) as part
of a client JAR that client applications can use to invoke both WebLogic and non-WebLogic
Web services. Although the knowledge of JAX-RPC is not essential for implementing Web
services when using vendor-provided tools, you can refer to http://java.sun.com/xml/jaxrpc/
index.html to read more on this subject. The generated client includes a proxy for invoking

the operations of a Web service. Because the GreaterCause Web service is called

FeaturedNPOQueryService, the client JAR created for accessing the Web service uses the

Weblogic Server

> |dentify Operation '—P

Deserialize
Operation
Parameters

@
®

-
= SOAP request

2

g ®

o
[ou

<

5

(@]

@ SOAP response

(N

Serialize Java |,

®

Invoke EJB

Objects

~

Figure 8-2 Request-response—based interaction

Chapter 8: Web Services for Application Integration

a factory class FeaturedNPOQueryService_Impl to get the related stub implementation
FeaturedNPOQueryServiceSoap Stub using this stub which the Web service method is called.
Before proceeding with implementation details, let’s review the architecture provided by
WebLogic for servicing client requests. The request-response message exchange pattern of
Figure 8-2 is explained here.

1.

The client application sends a SOAP message by invoking the Web service method
on FeaturedNPOQueryServiceSoap interface. This interface is implemented by the
FeaturedNPOQueryServiceSoap Stub. Based on the URI in the request, the server
identifies the Web service and passes the XML payload to the Web service.

The FeaturedNPOQueryService Web service identifies the operation to be performed.
For FeaturedNPOQueryService, the server-side components generated for the Web
service embed a reference to the stateless session bean Campaign on which the identified
operation must be called. The implementation of the Campaign bean and pertinent use
case is explained in Chapter 7.

The FeaturedNPOQueryService Web service transforms the parameters in the SOAP
Body using the appropriate encoding scheme to Java objects; this may require using
appropriate deserializer class. For non-built-in data types, a deserializer class is created
as part of Web service creation process. For our sample application, the FeaturedNPODTO
deserializer class is automatically created by the vendor tool. This is discussed in the
implementation section to follow.

The FeaturedNPOQueryService Web service invokes the appropriate method that
accesses the Campaign bean. The Campaign bean’s method processes the request
and creates a response.

The FeaturedNPOQueryService Web service converts the response object from Java to
XML using the appropriated serializer class for the array of FeaturedNPODTO objects; this
serialized array of FeaturedNPODTO objects is packaged into a SOAP message response.

The FeaturedNPOQueryService Web service sends the SOAP message response back
to the client application that invoked the Web service.

The client SOAP runtime transforms the response value in the SOAP Body using the
appropriate encoding scheme to Java objects; this may require using an appropriate
deserializer class. For non-built-in data types, a deserializer class is created as part of
Web service creation process. For our sample application, the FeaturedNPODTO array
deserializer class is automatically created by the vendor tool. This is discussed in the
implementation section to follow.

The view (JSP) containing the portlet uses FeaturedNPOQueryService’s client-side jar
file, generated automatically by the vendor tool; which employs a WSDL document for
defining the correct SOAP message semantics between the client and the server. Now that we
have an understanding of the overall architecture and the interaction semantics between the
client view and the GreaterCause.com domain, let’s explore the FeaturedNPOQueryService
Web service’s implementation.

301

302

Practical J2EE Application Architecture

Web Service Implementation

Without using a tool like BEA WebLogic Workshop, developing a Web service in Java
implies writing a large amount of code to interface with a SOAP library and possibly with
WSDL or UDDI. Tools like BEA WebLogic Workshop automate the creation of Web services,
handle all the SOAP protocol coding, and allow the developers to focus on implementing the
business logic. For example, in the case of the FeaturedNPOQueryService Web service, we
have implemented only the necessary EJB and left the generation of WSDL, the Web service
client-side proxies, and server-side components to the Workshop. Therefore our implementation
responsibility is reduced to proper use of EJB programming model.

This section of the document describes step-by-step the design and implementation of
FeaturedNPOQueryService using BEA WebLogic Workshop. We test this service using a simple
JSP. Readers who would like to create FeaturedNPOQueryService should follow the instructions
for installing WebLogic platform provided in Chapter 9. The focus of our discussion is creation
and consumption of a Web service, as such we spend very little time explaining the tool itself;
information regarding Workshop is available at www.bea.com; a user manual also accompanies
the download, and is accessible from the Workshop’s Help menu option.

Design Considerations

In this section, we briefly discuss some design aspects for implementing server-side components.
Let’s recap our requirement: the FeaturedNPOQueryService must expose a single
getFeaturedNPOs method (contract) to the outside world. The method getFeaturedNPOs
accepts two parameters, a PortalID and a RegionCode, both of String type; the Web service
returns an array of type FeaturedNPODTO,; this array consists of all the global campaigns,
and regional campaigns for the region specified in the method signature.

P> Deciding between synchronous or asynchronous operation The synchronous
interaction employ the RPC-oriented semantics; in this scenario a SOAP message sent
to a Web service is paired with a response from the Web service. Using the asynchronous
interaction semantics the client does not expect a response from the Web service; the
back-end components return void, also in-out parameters cannot be specified in the
operation signature. The web-services.xml deployment descriptor uses the invocation-
style attribute for the operation element for specifying this behavior; you can specify
either "one-way" or "request-response"; the default value is "request-response". From
the requirements, it is apparent that we will be using the default “request-response”
style for a synchronous Web service.

» Deciding the type of back-end component The FeaturedNPOQueryService uses the
stateless session bean for providing the core implementation. The Campaign EJB was
developed as part of the GreaterCause application in Chapter 7. This EJB employs the
Session Fagade pattern whose operation getFeaturedNPOs implements the required
business logic and implements the necessary semantics for interacting with pertinent
CMP Entity beans; the return value is implemented using the Data Transfer Object
pattern. The J2EE component architecture used for creating the Campaign bean
provides a solid foundation on which we can build the FeaturedNPOQueryService
Web service; the use of EJB automatically provides several features such as security

Chapter 8: Web Services for Application Integration

management, resource pooling, container managed transactions, and persistence
services. Alternately, one can use Java classes, or a JMS message consumer or
producer, such as a message-driven bean; for these alternate implementations and
associated design rationale, please consult vendor documentation.

Although the Web services cannot use stateful session beans, one can mimic a
conversational Web service by creating a persistent unique ID and associate it with
the conversational state stored in a data store using JDBC or Entity beans.

» Deciding between RPC-oriented or document-oriented Document-oriented Web
service operation can support only one parameter of any supported data type; this style uses
literal encoding. RPC-oriented Web service operation has no restrictions on the number of
parameters. The FeaturedNPOQueryService employs document-oriented semantics.

P> Data types Built-in data types are specified by the JAX-RPC specification. Using
these data types offers automatic conversion between XML and the corresponding
Java representation. For Web service operations that employ non-built-in data types as
parameters and return values, one must create the serialization class that converts the
data between its XML and Java representation. For our FeaturedNPOQueryService,
the data type mapping and accompanying serializer classes are automatically generated
by the vendor tool. For manually assembling serializer classes, please refer to the vendor
documentation.

FeaturedNPOQueryService Implementation Using BEA WebLogic Workshop

Constructing and deploying Web services using the BEA WebLogic Workshop involves
several steps. These are summarized here, followed by additional details on how the vendor
tool assists in accomplishing these steps.

1. Set up the development environment.

2. Create the stateless EJB that will expose its method through the Web service.
Deploy the EJB.

Create the Web service that exposes the stateless EJB business method.

4. Create serialization classes that convert Java objects to its XML representation
and vice versa.

5. Generate client proxies for accessing the Web service. Build a test client and verify
the working of the Web service.

6. Deploy the Web service to a production server.

Setting Up the Development Environment BEA WebLogic Server 7.0 provides templates for
creating server domains that are preconfigured for offering different test and development
environments. Using the Domain Configuration Wizard we must first create the WebLogic
Workshop domain (for detailed insructions please refer to Chapter 9). This domain has support

for the Workshop IDE that creates JAX-RPC— compliant client and server runtime components.

The runtime components created by the Workshop IDE interpose between the client call on
the Web service and the server-side component servicing the request.

303

304

Practical J2EE Application Architecture

The Workshop IDE is installed with the WebLogic server installation. Workshop requires
that a Workshop domain server be up and running for creating Web services. You can configure
Workshop to use a specific server as shown in Figure 8-3. After starting the workshop IDE,
choose Tools/Preferences, select the paths tab and provide the werver-related information.
Observe that the domain directory selected is the workshopDomain directory created by the
Domain Configuration Wizard. The startWebLogic.cmd script in $(workshopDomain) directory
configures the environment for use with the Workshop IDE. If a server pertaining to the domain
identified in Figure 8-3 is already running, Workshop will indicate this by a green light at the
bottom of the screen; the server can be started using the Tools option in the menu bar.

Creating the Stateless EJB In Chapter 6 and 7, we created the Campaign entity bean and the
Campaign stateless session bean. We simply add an additional getFeaturedNPOs method on
the stateless session bean. This method returns an array of FeaturedNPODTO objects. We
have used an array because the SOAP encoding does not support the Collection API. In the
Jws class file (to be discussed shortly), we associate this method and associated Home and
Remote interfaces with the method exposed by the Web service. For assisting the tool in
identifying the Home and Remote interfaces, copy the client jar for the EJB to the
${workshopDomain }\applications\ GreaterCause WebService\WEB-INF\lib directory.

Please refer to Chapter 9 for additional information on creating GreaterCauseEJBClient.jar
file and setting up of Data Source for accessing the database server. Please ensure that the
GreaterCause application is deployed before attempting to access the Web service. The
GreaterCauseEJBClient.jar is supplied with the download and can also be generated using
the Ant build script explained in Chapter 9.

Creating the Web Service ~ Web services are organized by projects in Workshop; therefore,
create a new project under any name; say GreaterCauseWebService. This name is subsequently
used by Workshop for hot deploying a web application appsdir GreaterCauseWebService
dir that is accessible by HTTP clients for testing the Web Service.

Fweblogic development server

Tarmne: | localhost |

Example: localhost

Fort: | 7001 |

Example: 7001

Diarnain: |wnrkshnpDu:|main |v |

Config directory:

| Ci\bealuser_projects | | Browse. .

Example: c:\bealweblogic700isamples

Figure 8-3 Selecting the Weblogic server

Chapter 8: Web Services for Application Integration 305

Create New File E

This action will create a new file in the current praject,
Type of file to create:

®) Web service
Creates a new JWS file that implements a weh
service,
D Java
Creates a new Java file,
(D JavaScript
Creates a new Javascript File.

O Text
Creates a blank text file.

File name: | FeaturedNPDQueryService”

File: extension:

Create in Folder: ' {project rook directory)

Mote: To create afile in a different Folder, cancel this
dialog, right-click the desired Folder in the project
tree, and choose Mew File,

Figure 8-4 Setting up FeaturedNPOQueryService

We are now ready to create Web services under this project. From the menu, select File |
New | New Web Service; provide a name for the Web service, as shown in Figure 8-4; call
this service FeaturedNPOQueryService.

Workshop creates a .jws file under the $ {workshopDomain}\applications\
GreaterCauseWebService. This is the main class file that will create a link between the Web
service seen by the outside world to the server component actually providing the service; a
control interface CampaignControl.ctrl (an EJB Control for this example) is used within this
Jjws class file to provide additional information about the server-side component interfaces
and the corresponding JNDI names. Workshop uses a set of custom tags based on Javadoc
technology to inject specialized behavior and information, in classes and interfaces, required
by Workshop in the generation of a Web service. These tags begin with @jws. and are not
explained in the following discussion because they are fairly intuitive in what they represent;
for complete details please refer to the vendor documentation. Figure 8-5 illustrates the directory
structure once the project directory for GreaterCauseWebService is created.

&0 C:\bea\user_projects\workshopDomain\applications\GreaterCauseWebS ervice

|J File Edit “iew Favortez Toolz Help |“

_\.I WER-INF
] FeaturedNPOQueniService. jws
& | indes html

Figure 8-5 Project directories used by Workshop

306

Practical J2EE Application Architecture

Workshop hot deploys a web module in the WebLogic server; this module is named
_appsdir_GreaterCauseWebService _dir, it has the context GreaterCauseWebService, and its
path is defined as $ {workshopDomain }\applications\GreaterCause WebService; this
is illustrated in Figure 8-6. This can be verified by accessing the WebLogic console using
http://localhost:7001/console; in the left hand frame select workshopDomain | Deployments |
Web Applications | _appdir_GreaterCauseWebServe dir.

This testing module is used by Workshop to provide a console and test environment for the
Web service before it is deployed; this is shown in Figure 8-7. The test page, also called the
test view, is launched using the menu option Debug | Start, or Debug | Restart. The test page
should be launched only after a Web service is successfully configured as explained in the
subsequent steps.

Workshop provides the design view for enabling creation of the EJB control and the
corresponding .jws class file, as shown in Figure 8-8. The getCampaigns method was created
selecting the Add Method option available on the Add Operation drop-down. The Web service
is going to expose this method to the outside world. The variable “campaign™ represents the
CampaignControl; this control interface was created using the Add EJB Control option
(Figure 8-9) available on the Add Control drop-down; the control shows all the business
methods exposed by the Campaign session bean.

The Add EJB Control provides the dialog box shown in Figure 8-9.

Once the EJB control is configured, the CampaignControl.ctrl file defines the following
interface. We use CampaignControl in the FeaturedNPOQueryService.jws class file, as
shown in Figure 8-10.

import weblogic.jws.*;
import weblogic.jws.control.*;
/**
* @jws:ejb home-jndi-name="ejb/com.gc.services.managecampaigns.CampaignHome"
* @Qeditor-info:ejb home="GreaterCauseClient.jar" bean="GreaterCauseClient.jar"
*/
public interface CampaignControl
extends com.gc.services.managecampaigns.CampaignHome, // home interface
com.gc.services.managecampaigns.CampaignRemote, // bean interface
weblogic.jws.control.SessionEJBControl // control interface

{1}

oSG - Targets || Deploy | Monitoring | Notes
General | Files | Other

42 Name: _appsdir_GreaterCause\WebService_dir

7 Path Cibealuser_projectsworkshopDomainiapplications\GreaterCauseWebService
A7 staging Mode: [rostage]
2 Deployment Order. [1000

Apphy

Figure 8-6 Testing module deployed by Workshop

Chapter 8: Web Services for Application Integration 307

BEA Weblogic Workshop: FeaturedNPOQueryService. jws Web Service - Microsoft Internet Explorer
J File Edit ‘“iew Favorites Toole Help

o= Iy BES Welloge

Overview | [Consale | | Test Farm | [Test XML | http: Ainadir 1. 7001/Greater CauseiebService FeaturedNPOQueryService, jws
Test operations

Refresh getCampaigns

string portalID; ,m—|

string regionCode: [NORCAL

getCampaigns

|
|®j ’_ ’_ l_ E Local intranet 4

Figure 8-7 Launching the test environment

J Design View | | Source Yisw | FeaturedNPOQueryService.jws* X
Add Operation | - | FeaturedMPOGUeryService | Add Control | -
campaign
CLIEMT
[> getCampaigns addMewCampaign P
create »
&
getCampaigns » EJE
getFeaturedhPOs >
updateCampaigns w
Member Yariables S

Figure 8-8 Design view

308

Add EJB Control

STEP 1

‘ariable name for this contral: | campaign |

Practical J2EE Application Architecture

STEP 2

T would like to

(2 Use an EJB contral already defined by a CTRL fils

(® Create a new EJB control bo use with this service

Mews CTRL name: | Campaign

[]Make this & control Factory that can create multiple instances at runtime

STEP 3

This EJB control finds the EJB with this INDT narme

indi-namme: | .ser\-’ices.managecampaigns.CampaignHome| | Etowse. .. |

This EJB control uses the Following interfaces

home interface: | .ser\.-'ices.managecampaigns.CampaignHome| |Br0wse... |

bean interface: |:.CampaignRemote (GreaterCauseCIient.jar)| |Br0wse... |

Figure 8-9 Configure CampaignControl.ctrl file

Fle Edk Wew Service Debug Tools Window Help

50 ¢ B ¥ T R B ty 50 & -
PEEdihBEs | E|@E0H O 0adde il
Prajed: Trez x | | Deesian Ve | | SourceVizw | FeaturedMPODueryService.jws x
(=128 Project 'GreamerauseWeh Sarvice’ [
A Prosect [Festuredipoquerysenice [&3 ipsinison -]
[- | WEB-INF L
L] CampaigriCarizal.ctl inport weblogic. Jus. control, Juatontext; |~
[LE com. . services. atnin, PFortaldllianceNotFoundEx ception:
| @] indleze, bl n.gc.ssc . Cempaignbiot: ion;
Qo 22Evices. kanagecanpaigns. FeaturedNEFODTD
target-nanespace haweapeace="http:// s, Greaterfa
public class FesturedlPOQuery$ervice
[
-
sz control
private CanpailgnContiol canpelgnr
/7% Bjusicontext T/
JusContext context;
Sruckure Pane ® #jus:operation
=] @ * @jus:protocol soap-suples"document'”
i = gabCampaigre(STing porkally, String regi o
i) [& campaion . . . - . . :
L fea public Featured¥PODTO[] getCempaigns(String portalID, Htring cegionCode) throws Exception
-] context (
FeaturedWPODTO[] feataraddPls = mall:
retum featured¥Pls < cawpaign. gecFeaturediPOs{portalll, cegiomCode):
H
3
[| [l [

Euld Comalete.

& Server Running Ln 23 col&

Figure 8-10 Source view for FeatureNPOService.jws

Chapter 8: Web Services for Application Integration

Figure 8-10 shows the source view of the .jws file that ties the various components of the
FeaturedNPOQueryService Web service. The .jws file and the control file are used for creating
the client runtime and the server runtime classes and interfaces.

With the .jws completed, we are now ready to generate the client-side proxies and the
server-side components that will provide access to the getCampaignNPOs method on the
Campaign session bean. Use the menu option Debug | Build (or Debug | Start). At this time
access the WebLogic console using http://localhost:7001/console; in the left hand frame
select workshopDomain | Deployments | EJB. Note that Workshop has hot deployed a new
ejb module GreaterCauseWebService.FeaturedNPOQueryService EJB whose ejb-jar file
path is 8{workshopDomain}\mySever\.jwscompile\ jwsdir GreaterCauseWebService\
EJB\FeaturedNPOQueryServiceEJB.jar. Peeking inside the FeaturedNPOQueryServiceEJB.jar
at the specified directory will show that there are two server-side stateless EJBs that provide
infrastructure support for interacting with the Web service; these EJBs have various environment
entries, specified in ejb-jar.xml deployment descriptor, that are Web service—specific. One of
the environment entries, ServiceURI, for the RemoteDispatcherBean provides the URI for the
test view; this URI is /GreaterCause WebService/FeaturedNPOQueryService.jws; this URI, as
discussed earlier, is automatically invoked by selecting Debug | Start (or Debug | Restart) in
the Workshop IDE.

At this stage, we can quickly test the Web service by using the test form in the test view, and
providing the Portal ID and Region Code. The resulting array, represented in XML, is depicted in
Figure 8-11. The WSDL associated with the FeaturedNPOQueryService is shown in Appendix D.
This array will be embedded in the SOAP response message when the Web service is accessed.

Optionally, one can use the “Test XML” tab to hand code the parameters sent as part
of the SOAP Body element. The resulting SOAP request message and response message
are shown in their entirety in Figure 8-12. Please note that to avoid naming conflict for
clients using the FeaturedNPODTO class, the Web service defines the namespace http://
www.GreaterCause.com as the namespace for the result set. All serializer classes use this
namespace as the package name for the FeaturedNPODTO class. More on serialization
classes in the following subsection.

Unhandled exceptions in the .jws class file will result in SOAP Fault to be sent back to
the client. You must add an appropriate #ry/catch block in the .jws file for exception handling.
One of the techniques used for propagating server-side errors is to convert the exception to a
meaningful code or a message and send it in the response. Recall that the SOAP:style="rpc"
declaration allows specification of out or in-out parameters for an operation; for synchronous
request-response message pattern using RPC-oriented style, an out parameter can hold the
application-level errors. Out and in-out parameters must implement the javax.xml.rpc.holders
.Holder interface as shown in the following code; for standard data type, use one of the
JAX-RPC Holder classes or the built-in Holder classes provided by the server vendor.

public String someMethod (String paraml, javax.xml.rpc.holders.IntHolder param2) {
param2.value = 100;
return param?2;

Optionally, a javax.xml.rpc.soap.SOAPFaultException (or a subclass) can be thrown to
ensure that the client application receives appropriate information of a server-side exception.

309

310 Practical J2EE Application Architecture

EA WebLogic Workshop: FeaturedMPOQueryService.jws Web Service - Microsoft Internet Explorer
File Edit View Favortes Tools Help

ws Web Service
Overview | | Console | | Test Form | | Test XML http:/inadirl:7001/Greater Cause\ebService FeaturedNPOQueryService. jws

Test operations

Message Log Refresh Service Request
+ =+ getCampaigns Submitted at Tue Apr 01 21:28:59 PST 2003
i
getCampaigns

regionCode = NORCAL portallD = ACME
Service Response
Submitted at Tue Apr 01 21:29:01 PST 2003

getCampaigns

<ArrayOfFeaturedMPODTO xmins="http:ffwww, GreaterCause, comf" =
<FeaturedPODTO >
<skartDate >2004-12-01 <|startDate>
<regionCode *NORCAL <regionCode >
<ein>94-0385620<fein>
<endDate >2004-12-26</endDate >
<npolame =California Historical Society </npofame =
<jFeaturediPODTO =
<FeaturedNPODTO >
<startDate>2004-01-01 </startDate>
<regionCode *NORCAL < regionCode >
<ein>94-3045430</ein>
<endDate >2004-04-30</endDate >
<npoiame >American Red Cross Bay Area</npoflame =
</FaaturedNPODTO>
<lArrayOfFeaturedNPODTO

&
€ [[B Cocalinmanet 4
Figure 8-11 XMLized FeaturedNPODTO array

Creating Serialization Classes When the data types of the parameters and return values in

a Web service are of built-in data types, the server automatically converts the data between
Java object and its XML representation. Built-in SOAP data types are defined by the namespace
http://schemas.xmlsoap.org/soap/encoding; additional details are available in Section 5 of the
SOAP specification. Serialization classes are required only for non-built-in data types. Creating
non-built-in data types involves several steps. However, we have let the tool do all the work
described in each of these steps.

1. Create the XML schema data type representation to describe the structure of the
non-built-in data type.
2. Create the Java data type representation to represent the XML in terms of a Java object.

3. Write the serialization class that performs conversion of Java objects to XML and
vice versa.

4. Create the data type mapping file that contains information about the non-built-in data
type’s Java class, serializer, deserializer, and so on.

The mapping file shown below in created as part of the Java Proxy generation
process (explained in the next section) and is available in the proxy jar file

Chapter 8: Web Services for Application Integration 311

FeaturedMPOQueryService. jws Web Service - Microsoft Internet Explorer

J File Edit ‘“iew Favorites Toolz Help

[Overview | [Console | [Test Form | [Test xmL |

http: #fhadir 1. 7001 /Greater CauseiebService/FeaturedNPOQueryService. jws =t

Test operations

Message Lo Refresh Service Request

—F getCampaigns Submitted at Tue Apr 01 21:33:21 PST 2003
i
getCampaigns

<getCampaigns xmins="http: {jww, GreaterCause, com) =
<portallD=ACME < portallD =
<regionCode >NORCAL < regionCode =
<fgetCampaigns =

Service Response
Submitted at Tue Apr 01 21:33:21 PST 2003

getCampaigns

<getCampaignsResponse xmins="http: /i, GreaterCause, comf™ =
<getCampaignsFesult =
<FeaturedNPODTO >
<skartDate =2004-12-01 </startDate >
<regionCode >NDORCAL < regionCode =
<Ein>94-0385620 </ein >
<endDate =2004-12-26 </endDate >
<npofame =California Historical Society </npolame=
<jFeaturedNPODTO >
<FeaturedNPODTO >
<skartDate =2004-01-01 </startDate >
<regionCode >NDORCAL < regionCode =
<ein=94-3045430</ein>
<endDate =2004-04-30 </endDate =
<npofame =American Red Cross Bay Area</npolame =
<jFeaturedNPODTO >
<jgetCampaignsResult =
<jgetCampaignsResponse =

5] l_l_l_ Local intranet
Figure 8-12 SOAP request and response

(FeaturedNPOQueryService.jar) under the name FeaturedNPOQueryService.xml.
Please note that this mapping is created only when @jws:protocol soap-style="document”
is specified in the FeaturedNPOQueryService.jws class file (this is the default).
A different mapping is generated when soap-style="rpc” is specified.
<type-mapping>
<type-mapping-entry
deserializer="com.GreaterCause.www.ArrayOfFeaturedNPODTOSequenceCodec"

class-name="com.GreaterCause.www.FeaturedNPODTO[]"

xmlns:pl="http://www.GreaterCause.com/" type="pl:ArrayOfFeaturedNPODTO"

312

Practical J2EE Application Architecture

serializer="com.GreaterCause.www.ArrayOfFeaturedNPODTOSequenceCodec">
</type-mapping-entry>
<type-mapping-entry
deserializer="com.GreaterCause.www.GetCampaignsResponseCodec"
class-name="com.GreaterCause.www.GetCampaignsResponse"
xmlns:p2="http://www.GreaterCause.com/" type="p2:getCampaignsResponse"
serializer="com.GreaterCause.www.GetCampaignsResponseCodec">
</type-mapping-entry>
<type-mapping-entry
deserializer="com.GreaterCause.www.FeaturedNPODTOCodec"
class-name="com.GreaterCause.www.FeaturedNPODTO"
xmlns:p3="http://www.GreaterCause.com/" type="p3:FeaturedNPODTO"
serializer="com.GreaterCause.www.FeaturedNPODTOCodec">
</type-mapping-entry>
<type-mapping-entry deserializer="com.GreaterCause.www.GetCampaignsCodec"
class-name="com.GreaterCause.www.GetCampaigns"
xmlns:pd="http://www.GreaterCause.com/" type="p4:getCampaigns"
serializer="com.GreaterCause.www.GetCampaignsCodec">
</type-mapping-entry>
</type-mapping>

The required components for handling non-built-in data types are provided as part of the
Java Proxy creation process, which is discussed in the following section.

Generating Client Runtime and Building a Test Client Before we can compile the client code, we
need to obtain the client runtime. In order to do this, use the menu option Debug | Start to launch
the Web service’s personalized page (the test view); as discussed earlier, this page provides
testing and other supporting functions. Select the Overview tab and click Java Proxy; this will
download the proxy classes required for making calls to the Web service; this client JAR file
is name FeaturedNPOQueryService.jar. The client jar file includes service-specific classes,
stubs, and interfaces required by the client to invoke the Web service. The classes, stubs, and
interfaces are based on the implementation of the JAX-RPC API.

If the GreaterCause application is deployed, you can use a simple JSP
FeaturedNPOQueryService.jsp to test our Web service; the FeaturedNPOQueryService.jar
is installed in the web module’s WEB-INF\lib directory. All of the WebLogic proxy classes
belong to the weblogic.jws.proxies package, therefore this package is referenced in the
import attribute of the page directive.

NOTE:

Once you have generated FeaturedNPOQueryService.jar (Java Proxy), add it to GreaterCause/build/archives
directory of the source distribution. The Ant build process explained in Chapter 9 will ensure that this jar file
is added to the WEB-INF\lib directory. Please follow the instructions in Chapter 9 for correctly setting the
domain directory in the GC.Properties file used by the Ant build script.

The view FeaturedNPOQueryService.jsp, shown here, generates the response shown in
Figure 8-13. All of the WebLogic proxy classes belong to the weblogic.jws.proxies package,
therefore this package is referenced in the import attribute of the page directive.

Chapter 8: Web Services for Application Integration

<%@ page contentType="text/html;charset=UTF-8" language="java"
import="weblogic.jws.proxies.FeaturedNPOQueryService_Impl,
weblogic.jws.proxies.FeaturedNPOQueryServiceSoap,
java.rmi.RemoteException,
com.GreaterCause.www.FeaturedNPODTO"

o0

>
<html><body>
<% try {
FeaturedNPOQueryService_Impl webservice = new FeaturedNPOQueryService_ Impl () ;
FeaturedNPOQueryServiceSoap webserviceProxy =
webservice.getFeaturedNPOQueryServiceSoap () ;
FeaturedNPODTO[] npoList =
(FeaturedNPODTO[]) webserviceProxy.getCampaigns ("ACME", "NORCAL") ;
for (int i=0; i < npoList.length; i++) {
FeaturedNPODTO dto = (FeaturedNPODTO) npoList[i]; %>
NPO Name: <%= dto.getNpoName () %$>

Region Code <%= dto.getRegionCode() %>

EIN: <%= dto.getEin() %>

Start Date: <%= dto.getStartDate() %$>

End Date: <%= dto.getEndDate() %$><p>
<% }
}
catch (RemoteException ex) {
rest of the code
} %>

</body></html>

For using the proxy jar outside of the WebLogic server, or for stand-alone Java clients,
you need another jar file containing supporting classes. This jar is downloadable by using
the Proxy Support Jar link on the Web service’s page.

Deploying to a Production Server To deploy the FeaturedNPOQueryService on the production
server, change the hostname element’s value from localhost to the production machine in the

4} http: //localhost: 7001 /GreaterCause/WebS ervic

J File Edit ‘“iew Favoritez Toolz Help

J Address IQ hitp:#localhost 7001 AGreaterCause AebSer

PO MName: Califorma Historical Society
Eegion Code WORCAL

EIN: 24-0385620

Start Date: 2004-12-01

End Diate: 2004-12-26

PO Mame: Amenican Eed Cross Bay Area
Eegion Code WORCAL

EIN: 24-3045430

Start Date: 2004-01-01

End Drate: 2004-04-30

Figure 8-13 FeaturedNPOQueryService response

313

314

Practical J2EE Application Architecture

weblogic-jws-config.xml file located in the WEB-INF directory. Compile the Web application
as an EAR file and deploy the EAR file on the production server.

<config>
<protocol>http</protocol>
<hostname>localhost</hostname>
<http-port>7001</http-port>
<https-port>7002</https-port>
<jws>
<class-name>FeaturedNPOQueryService</class-name>
<protocol>http</protocol>
</jws>
<jws>
<class-name>FeaturedNPOQueryServiceSecure</class-name>
<protocol>https</protocol>
</jws>
</config>

Note the use of https protocol in the protocol element for FeaturedNPOQueryServiceSecure.
For the Web service to use SSL, make sure that the WSDL specifies https instead of http.

Workshop SOAP:style Semantics

For FeaturedNPOQueryService, we employed SOAP:style="document"; this is illustrated
in the following WSDL fragment. The corresponding SOAP request and response messages
were shown in Figure 8-12.

<operation name="getCampaigns">
<soap:operation style="document"
soapAction="http://www.GreaterCause.com/getCampaigns" />
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>

Recall that the request-response operation is an abstract notion; therefore the vendor
implementation will dictate whether messages are sent within a single HTTP request-response,
or as two independent HTTP requests. WebLogic Web service deployment descriptor allows
you to specify an operation:invocation-style attribute that can take the values "one-way"
or "request-response"; for FeaturedNPOQueryService, we use invocation-style="request-
response". Note that the XML document "getCampaignsResponse" in the SOAP body in

Figure 8-12 is converted to its Java equivalent by the deserialization mechanisms generated

Chapter 8: Web Services for Application Integration

by the vendor tool; please refer to section “Creating Serialization Classes” for the type-mapping
construct created by the tool. Document-oriented Web service operations use literal encoding,
which implies that the message elements described in WSDL reference a concrete schema
using the #ype attribute.

If we had employed SOAP:style="rpc", the resulting SOAP messages will follow the
representation stated in section 7.1 of the SOAP specification; the data types marshalled
across the wire follow a set of encoding rules described in Section 5 of the SOAP specification,
which has the namespace identifier "http://schemas.xmlsoap.org/soap/encoding/" (also called
SOAP encoding). Changing SOAP:style to "rpc” will yield the following response:

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<SOAP-ENV:Body
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:getCampaignsResponse xmlns:m="http://www.GreaterCause.com/"
xmlns:types="http://www.GreaterCause.com/encodedTypes">
<getCampaignsResult SOAP-ENC:arrayType="types:FeaturedNPODTO[2]"
xsi:type="SOAP-ENC:Array">
<item>
<startDate xsi:type="xsd:string">2004-12-01</startDate>
<regionCode xsi:type="xsd:string">NORCAL</regionCode>
<ein xsi:type="xsd:string">94-0385620</ein>
<endDate xsi:type="xsd:string">2004-12-26</endDate>
<npoName
xsi:type="xsd:string">California Historical Society</npoName>
</item>
<item>
<startDate xsi:type="xsd:string">2004-01-01l</startDate>
<regionCode xsi:type="xsd:string">NORCAL</regionCode>
<ein xsi:type="xsd:string">94-3045430</ein>
<endDate xsi:type="xsd:string">2004-04-30</endDate>
<npoName
xsi:type="xsd:string">American Red Cross Bay Area</npoName>
</item>
</getCampaignsResult>
</m:getCampaignsResponse>
</SOAP-ENV : Body>
</SOAP-ENV:Envelope>

Because other encoding schemes are possible for representing data types, the SOAP
‘encodingStyle’ attribute can be used to indicate the encoding style of the method call and
the response. Using SOAP for RPC is orthogonal to the SOAP protocol binding (please
refer to the Sample WSDL discussed previously for FeaturedNPOQueryService). When
using HTTP as the protocol binding, an RPC call maps to an HTTP request and an RPC
response maps to an HTTP response.

315

316

Practical J2EE Application Architecture

Summary

Web services open a new possibility for integration and development of next generation Web
applications. Web services do not suggest any development paradigm nor introduce a new
programming language. Web services leverage on top of highly scalable and industry proven
server-side technologies like J2EE, .NET, and CORBA. Web services provide the basis for
flexible and scalable service-oriented architecture. With Web services, building B2B and business
process automation solutions are easier and less expensive than traditional approaches. Web
services simplify the task of integration by leveraging on flexibility of XML and its maturing
stack of tools and technologies. Making XML as the standard format for messaging between
distributed components not only fills the gap left by the EAI technology, but it removes
interoperability and portability issues.

We believe that Web services will soon become the backbone for building small to very
complex distributed and transactional business systems. Currently there are large numbers
of vendors providing tools and technologies that automate Web services development and
deployment. Web service development and deployment processes are mainly influenced
by the existence of mature server-side technologies (J2EE, .NET, and CORBA). To adopt
Web services, organization-specific development methodology should be applied. Due to
service-centric nature of Web service, there is a need for Web service assembler tools using
which a total business solution can be packaged and deployed from existing services.

CHAPTER

Application Assembly
and Deployment

IN THIS CHAPTER:

Installing and Configuring Struts
Configuring the WebLogic Domain
Configuring GreaterCause Users

Deploying the GreaterCause Application

opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 317

318

Practical J2EE Application Architecture

he J2EE platform provides a high level of service standardization. As such, the

application developer can focus on core business functions, and the container tools

generate most of the services-specific code pertaining to transaction management,
security, remote connectivity, object-relational mapping, and so on. The application behavior
for these services is configured at deployment time using deployment descriptors. These
deployment descriptors were discussed in Chapters 4 through 7 for configuring platform
services for various components. Figure 9-1 shows how a J2EE application is composed,
and the various elements that make up the web, EJB, and application client modules. J2EE
modules either can be deployed as stand-alone units, or they can be combined to create a J2EE
application, as shown in the figure.

NOTE

The sample application GreaterCause was developed and tested on the WebLogic Server 7.0 (SP1). As such,
all discussion in this chapter refers to configuration actions that pertain to WebLogic Server 7.0. WebLogic 7.0
uses J2SE 1.3.1 SDK.

A J2EE module is a collection of one or more J2EE components of the same component
type (web, EJB, or application client). It is the basic unit of composition of a J2EE application.
A web application contains the application’s resources, such as servlets, JSPs, JSP tag libraries,
third-party libraries, and any other static resources such as HTML pages and image files. The
web applications deployed in a J2EE server use a standard deployment descriptor (web.xml
file) and a vendor-specific deployment descriptor (weblogic.xml) to define their resources
and operating parameters. These web resources and the deployment descriptors are bundled
together for deployment in a Java archive file called the web archive with the .war extension.
The EJB components viz. session, entity, and message-driven beans are bundled for deployment
in a Java archive file called the EJB archive with the .jar extension. The EJBs are configured
and deployed using the standard deployment descriptor (ejb-jar.xml file) and a vendor-specific
deployment descriptor (weblogic-ejb-jar.xml). The ejb-jar.xml deployment descriptor describes
the enterprise beans packaged in the EJB archive file. It defines the beans’ type, names of
their home and component interfaces, and implementation classes. It also defines the security
roles and transactional behavior for the beans’ methods. For beans with container-managed
persistence, there will be a vendor-specific deployment descriptor (weblogic-cmp-rdbms-jar.xml).
It is used for specifying the mapping between the container-managed fields (and also the
container-managed relationships) to the underlying RDBMS table schema.

The web archive (.war) and EJB archive (.jar) can be bundled into an enterprise archive with
the .ear extension. Each enterprise archive file is packaged with an XML-based application.xml
deployment descriptor that contains the application’s name and description, and a list of the
J2EE modules that comprise the application. The .ear file represents all the entities required
to deploy the application on the server side. Each application component (web archive and

Chapter 9: Application Assembly and Deployment

[EJB component]— application.xml |
[EJB component]_
[Dependent classes]—
[ejb-jar.xml]—
[vendor specific ejb-jar.xml]—
[vendor specific cmp-rdbms.xml]— J2EE application
(ear file)

[Web component]—

[Web component]_
[Dependent classes]——>
[web.xml]—
[vendor specific.xml]—

EJB
module

(jor file)

Web
module

(war file)

Figure 9-1 Elements of a J2EE application

EJB archive) is listed as a module in the application.xml deployment descriptor. Figure 9-2
depicts the steps involved in creating an application archive. We will apply these steps in the
configuration and deployment of the sample GreaterCause application.

319

320

Create components

Create deployment
descriptors

Create component
archives / a.k.a.
modules

Create application
deployment descriptors

Create Enterprise
archive with .war and
Jjar files

Practical J2EE Application Architecture

Servlet classes

EJBs JSPs
dependent classes Dependent classes
HTML pages
eib-]'(;r‘xn'\g . | web.xml
vendor specific ejb-jar.xm vendor specific DD

vendor specific cmp-rdbms-jar.xml

EJB archive with .jar extension

Web archive with .war
extension

!

application.xm

A 4

Enterprise archive with

.ear extension

Figure 9-2 Creating a J2EE application archive

Installing and Configuring Struts

Although all Struts binaries required by the sample GreaterCause application are made available
with the GreaterCause download, you can refer to http://jakarta.apache.org/struts/userGuide/
installation.html to find out more about Struts installation and configuration. The binaries
provided with the GreaterCause download pertain to Struts 1.1 beta release 2, which was
used to test the application.
If you want to install the most current binaries, you will need the following from the Struts
binary distribution for testing the sample GreaterCause application:

lib/commons-*.jar These JAR files contain packages from the Jakarta Commons

project that are used by the Struts framework. Copy these files into the WEB-INF/lib

directory of the GreaterCause application.

Chapter 9: Application Assembly and Deployment

» lib/struts.jar This JAR file contains all classes used by the framework. Copy these
files into the WEB-INF/lib directory of the GreaterCause application.

P lib/struts-*.tld Copy these tag library descriptor files into the WEB-INF directory
of your web application.

Chapters 4 and 5 explain the deployment descriptor (web.xml) configured for using the
Struts controller servlet. The following Struts-related tag library declarations are included
in the web.xml deployment descriptor:

<taglib>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>
<taglib>
<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>

These tag libraries are referenced in the GreaterCause JSPs using the following
declarations:

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

For modifying the characteristics of GreaterCause application, follow the instructions provided
in Chapter 4 and 5 for creating/modifying entries in the WEB-INF/struts-config.xml file.

When compiling request handlers, form beans, or any other class that makes use of Struts
components, include the struts.jar and commons-* jar files in the CLASSPATH.

Configuring the Struts Validator

The sample application makes use of the Validator plug-in. The Validator services are injected
into the Struts framework using the following declaration in the struts-config.xml file:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property property="pathnames"
value="/WEB-INF/validator-rules.xml, /WEB-INF/validation.xml" />
</plug-in>

321

322

Practical J2EE Application Architecture

The following two files are configured in the GreaterCause web application’s WEB-INF
directory:

» Validator-rules.xml This file contains the basic validators that are packaged with the
framework.

P Validation.xml In this configuration file, we specify the validations associated with
the form bean properties.

A detailed discussion of Validator is available at http://home.earthlink.net/~dwinterfeldt/
overview.html.

Configuring the WebLogic Domain

Installing the WebLogic server is very simple and intuitive. You can download the WebLogic
Platform 7.0 http://commerce.bea.com/index.jsp. Detailed instructions for installing the
WebLogic Server 7.0 are available at http://edocs.bea.com/wls/docs70/install/index.html.
For quick installation steps, please read on. For detailed information on configuring and
using BEA WebLogic Platform 7.0, please refer to documentation available at http://edocs.bea.com/
platform/docs70/index.html.

The following are fast-track instructions for creating a development environment:

1. During the product download, BEA Installer will be launched. After you accept the
BEA license agreement, provide the BEA home directory.

2. For Install Type, choose Custom Installation.

3. When on the Choose Components screen, at the minimum, choose WebLogic Server.
This will also install the WebLogic Workshop IDE that will be used for developing
Web services. The installer is now configured to download the required archives to
continue installation.

4. Specify the download directory and continue with the download.

5. After the download is completed, you will be prompted to provide a product installation
directory. If your home directory was c:\bea, the default product directory will be c:\bea\
weblogic700. Provide a suitable directory name and continue with the product install.

6. Completion of product install will launch a configuration wizard. Select Yes to run the
Domain Configuration Wizard. The wizard is used to set up WebLogic domains. The
WebLogic installation provides a preconfigured WLS Examples domain (for running
the Examples Server). You may choose the Examples Server to deploy the GreaterCause
application, or you can configure a separate domain.

NOTE

A domain is an interrelated set of WebLogic Server resources that are managed as a unit. A domain includes
one or more WebLogic servers and may also include WebLogic Server clusters. Detail information on domains is
available at http://edocs.bea.com/wls/docs70/admin_ domain/index.html.

Chapter 9: Application Assembly and Deployment 323

7. Select WLS Domain from the template list to create a WebLogic Server domain, or
select WebLogic Workshop for creating a Workshop domain that is used in Chapter 8
for creating Web services. Creating a WebLogic Workshop domain is recommended
because it can be used for developing and testing the GreaterCause application, as well
as the Web service. Name the domain appropriately. The discussions to follow will
refer to the domain name as mydomain.

8. When prompted to choose Server Type, select Single Server. This configuration is
suitable and adequate for development and testing. In this case, the domain contains
a single WebLogic Server instance that acts as both the Administration Server and
application host server.

9. When prompted for domain location, you can leave the default (for example, c:\bea\
user_projects\).

10. On the Configure Standalone / Administrative Server screen, provide the server name
(default is myserver). Leaving the Server Listen Address blank will assume localhost.
You may choose to leave the port setting as is. Review the section Listen Address
Considerations in the document Creating and Configuring WebLogic Server Domains
at http://edocs.bea.com/wls/docs70/admin_domain/index.html for further information
on Server Listen Address.

11. On the Create Administrative User screen, provide the User Name and Password. This
username and password will be required to start and manage the server. The default
security realm myrealm will contain this user. Accidental removal of this user from
the security realm will create an unusable domain.

12. When prompted to Create Start Menu Entry, provide a suitable selection.
13. Finally, review the Configuration Summary and create the new domain.
14. Ifa single domain is sufficient for your needs, select End Configuration Wizard. If at

a later time you choose to create more domains, run the Domain Configuration Wizard
from the Start menu.

The downloaded GreaterCause package has a GC.properties file that is referenced by the
Ant build script. You must update the WL_DOMAIN property in the GC.properties file to
reflect the location of the domain directory. For example, you may specify this property, along
with the WL__HOME property (WebLogic home directory), as shown here:

WL_HOME=C: \bea\weblogic700
WL_DOMAIN=C:\bea\user_projects\mydomain

NOTE

After WebLogic server is installed, you can start the server either from the Windows Start menu or using the
startWeblogic.cmd script provided in the S{WL_DOMAIN} directory. For testing the Web Service, ensure that
the domain name refers to a Workshop domain.

324

Practical J2EE Application Architecture

Configuring the JDBC Connection Pool

For development and testing, we used an Oracle database server. In this section, we discuss
the procedure for setting up a JDBC connection pool for the Oracle database server. We must
first start the WebLogic server according to the instructions provided in the preceding
section. The rest of the instructions are as follows:

Start the console using http://localhost:7001/console.

1. Select mydomain | Services | JDBC | Connection Pools in the left-hand frame.
2. Select the Configure A New JDBC Connection Pool link in the right-hand frame.

3. Provide the following information and select <Create> to complete:

Form Field Value

Name GCPool

URL jdbc:oracle:thin:@myhostname:1521:mySID, where SID is the service identifier
Driver Classname oracle.jdbc.driver.OracleDriver

Properties user=username

Password password

5. We must now assign GCPool to a target server. Select the Targets tab on the same page
that was used in the previous step. Select the Servers tab. Select myserver and move it
to the Chosen window. Apply the changes before exiting.

6. Once the connection pool is created, we proceed to creating a JDBC Tx Data Source.
Select mydomain | Services | JDBC | Tx Data Sources.

Select Configure A New JDBC Tx Data Source link in the right-hand frame.

8. Provide the following information and select <Create> to complete. The JNDI name
provided here is the JNDI name referred to in the deployment descriptor of the entity
beans. The two names should match for successfully deploying the application.

Form Field Value

Name GCTxDataSource
JNDI Name jdbc/geOracleTxPool
Pool Name GCPool

9. We must now assign GCTxDataSource to a target server. Select the Targets tab on the
same page that was used in the preceding step. Select the Servers tab. Select myserver
and move it to the Chosen window. Apply the changes before exiting.

Chapter 9: Application Assembly and Deployment

Configuring GreaterCause Users

At this point, we assume that you have installed the WebLogic server. If you have not done so,
you may want to do it now. The “Implementing Application Security” section of Chapter 5
identifies three administrator roles supported by the application for performing administrative-
related functions. The principals (users and groups) are defined in the default security realm
myrealm in the WebLogic Server Domain mydomain.

The principal-to-role mapping is declared in the WebLogic-specific deployment descriptor
weblogic.xml, as follows:

<security-role-assignment>
<role-name>NPOAdministrator</role-name>
<principal-name>NPOAdmin</principal -name>
</security-role-assignment>
<security-role-assignment>
<role-name>PortalAdministrator</role-name>
<principal-name>PortalAdmin</principal-name>
</security-role-assignment>
<security-role-assignment>
<role-name>SiteAdministrator</role-name>
<principal-name>SiteAdmin</principal-name>
</security-role-assignment>

The roles identified in the vendor-specific deployment descriptor are mapped to the roles
used by the web components in the web.xml deployment descriptor using the security-role-
ref elements, as follows:

<security-role-ref>
<role-name>SiteAdminRole</role-name>
<role-link>SiteAdministrator</role-link>

</security-role-ref>

<security-role-ref>
<role-name>PortalAdminRole</role-name>
<role-link>PortalAdministrator</role-link>

</security-role-ref>

<security-role-ref>
<role-name>NPOAdminRole</role-name>
<role-1ink>NPOAdministrator</role-link>

</security-role-ref>

325

326 Practical J2EE Application Architecture

The principals identified in the vendor-specific deployment descriptor are created in the
default security realm myrealm, as follows:

1. Bring up the WebLogic console using the URL http://localhost:7001/console.

2. Select mydomain | Security | Realms | myrealm | Groups in the left-hand frame. Configure
three new groups: SiteAdmin, PortalAdmin, and NPOAdmin. These groups are the
principals mapped to their respective role names in the weblogic.xml deployment
descriptors.

3. Select mydomain | Security | Realms | myrealm | Users in the left-hand frame. Configure
users and associate them with a group created in Step 2. These usernames can be used
for signing on to the GreaterCause application. Use the Groups tab for assigning a user
to a group.

A Portal-Alliance administrator (Group PortalAdmin) can only be associated with one
Portal-Alliance registration. Similarly, an NPO administrator (Group NPOAdmin) can only
be associated with one NPO registration. Therefore, for each new PortalAlliance or NPO
registration, create a user entry under the appropriate group. The preconfigured test data
accompanying the download requires the existence of certain Portal-Alliance and NPO
Administrators. The Portal-Alliance administrators that must be added to the group Portal Admin
can be located in the ADMIN table with a non-null value in the column Portal ID. The NPO
administrators that must be added to the group NPOAdmin can be located in the ADMIN
table with a non-null value in the column EIN.

When signing in as SiteAdmin (using the username created for this purpose), any attempt
to change Portal-Alliance or NPO information will be preceded with an Enter Portal ID or
Enter EIN page to identify the Portal-Alliance or NPO being modified, respectively. However,
signing in as Portal Admin (using the username created for this purpose), the system will
detect the associated Portal-Alliance profile based on the relationships stored in the system—
this is true for NPOAdmin as well. This facility allows the SiteAdmin to be a super-user by
being able to access and modify information for any other type of administrators.

Deploying the GreaterCause Application

In this section, we discuss the steps involved in installing the Greater Cause application.
The accompanying download contains the source code and the installation scripts.

NOTE

The configurations explained in this section are geared toward a Windows-based installation.

Chapter 9: Application Assembly and Deployment

The contents of the downloaded GreaterCause directory that will be used for installing the
GreaterCause application are described briefly here:

Directory Contents

GreaterCause Ant build script and the corresponding properties file for building
the application from source.

GreaterCause\bin Command script that uses Ant build script for building the jar, war,

and ear files.

GreaterCause\build\archives

Pre-built binaries for direct deployment of the GreaterCause
application; also binaries built by the Ant script provided in this
chapter.

GreaterCause\conf

See the following table for complete explanation.

GreaterCause\lib

Binaries used by Struts and Ant. (All binaries with the exception of
ant.jar, xercesImpl.jar, and xmlIParserAPIs.jar are required by Struts.)

GreaterCause\src\java

Complete source code of the application.

GreaterCause\src\sql

DDL script and script for loading sample data.

GreaterCause\src\web

GreaterCause JSPs.

GreaterCause\src\web\en US

en_US locale-specific JSPs.

GreaterCause\src\web\images

Default image files referenced by default
ApplicationResources.properties file (see the following table).

The following is a list of files in the configuration directory (GreaterCause\conf) together

with their usage:

Name

Usage

web.xml

Deployment descriptor for the web application

weblogic.xml

Vendor-specific deployment descriptor for the web application

weblogic-cmp-rdbms-jar.xml

Vendor-specific deployment descriptor for cmp- and cmr-fields
mapping to the database schema

ejb-jar.xml

Deployment descriptor for the enterprise beans

weblogic-ejb-jar.xml

Vendor-specific deployment descriptor for the enterprise beans

application.xml

Deployment descriptor for the J2EE application

struts-config.xml

Struts-specific configuration file

ApplicationResources.properties

Default resource bundle as specified by the message-resources
element in the struts-config.xml file

validation.xml

File containing basic validators packaged with Struts

validation-rules.xml

Configuration file for specifying validations associated with
form-bean properties

*.tld

Tag library descriptors files

327

328

Practical J2EE Application Architecture

Priming the Database

At this point, we assume that you have started an instance of the Oracle database server. This
section will help you create the necessary tables required for the application (explained in
Chapter 6), and load some test data. Before the tables can be created, update the GC.Properties
file provided in the GreaterCause directory. The GC.properties must have values specified for
the following properties:

DBSERVER=
DBPORT=
SID=

USER=
PASSWORD=

vVvYyyVvyy

For creating tables, provide the following at the command prompt:

GreaterCause\bin> build db create tables

For populating test data, provide the following at the command prompt:

GreaterCause\bin> build db load tables

Deploying GreaterCause.ear

The following steps are for deploying the GreaterCause application using the .ear file provided
in the GreaterCause/build/archives directory:

1. Bring up the WebLogic console using the URL http://localhost:7001/console.
2. Select mydomain | Deployments | Applications in the left-hand frame.

3. Select the Configure A New Application link in the right-hand frame. This will show
the Locate Application Or Component To Configure page.

4. Locate the GreaterCause.ear in the directory GreaterCause\build\archives and choose
[select] to proceed to the next step.

5. Select myserver from Available Servers and move it to the Target Servers window.
Select <Configure and Deploy>.

NOTE

You can access the home page of GreaterCause by using the URL http://localhost:7001/GreaterCause
or http://localhost:7001/GreaterCause/1_HomePage. sp.

Chapter 9: Application Assembly and Deployment

Building the GreaterCause Application

The following steps are for building and deploying the GreaterCause application using the
source files provided in the GreaterCause\src directory:

1. Set the WL Domain in the GC.properties file provided in the GreaterCause directory.
2. For creating and deploying the .ear file, provide the following at the command prompt:
GreaterCause\bin> build All
Bring up the WebLogic console using the URL http://localhost:7001/console.

4. Select mydomain | Deployments | Applications | appsdir GreaterCause in the
left-hand frame.

5. Select the Deploy tab in the right-hand frame. Ensure that the Deployed status is true
for GreaterCause.jar and GreaterCause.war.

NOTE

The ejb-client-jar element in the ejb-jar.xml deployment descriptor specifies the name of a jar file that will
contain the classes required for accessing the EJBs on the server. This jar file is automatically included by
the build script in the WEB-INF/lib directory of the web application.

329

This page intentionally left blank.

PART

Appendixes

>

PP
o
>

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

APPENDIX

Detailed Use Case
escription Template

A

7 éopyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 333

334

Practical J2EE Application Architecture

he following template is used for capturing detailed use case description as
explained in Chapter 2. You may tailor this according to the dynamics of your
team and project.

Use Case Name Provide a brief description and the purpose of the use case.

Adtors Specify all the entities that interact with this use case, including other packages
(or subsystems) of the application and other external systems.

Precondition(s) Preconditions are assertions that must be true at the beginning of the use case.
The use case is responsible for keeping its part of the contract only if these preconditions are
satisfied.

Postcondition(s) Assertions that must be true at the conclusion of a use case. The state of the
system is stable and consistent only if these assertions are satisfied.

Indude/Extend Use Cases Specify use cases that are subordinate to this use case. The subordinate
use cases factor common behavior and provide a means for creating atomic units that become
part of a whole.

User Interface Tllustrate the user interface being serviced by this use case. These are typically
wire frames that may be used to articulate the flow of events.

Main Flow of Events This flow of events is at a more granular level than the flow of events
in use case summary. We take advantage of the fact that we can illustrate the flow of events
in conjunction with user actions in the context of a user interface depicted by wire frames.

Exceptional Flow of Events This flow of events expresses exception or optional behavior of
the system that deviates from normal flow of events. The availability of wire frames helps in
identifying exceptional flows by examining the choices the users have in exercising various
options provided by the navigational schemes.

Activity Diagram Use activity diagrams to explain complex scenarios.

Sequence Diagram For use cases, sequence diagrams provide lesser value when compared to
activity diagrams. Use it only when there are several entities interacting with the use case.

APPENDIX

GreaterCause
Wire Frames

%opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 335

336

Practical J2EE Application Architecture

his appendix contains the wire frames for the sample application. The wire frames

do not represent all the screens of the GreaterCause site but sufficient enough to get

a general feel of the user interface, associated fields, workflow, and navigation
semantics. It incorporates various aspects of the information architecture as explained in
Chapter 2. The navigation semantics associated with the wire frames are explained using the
site flow in Appendix C. For pages with complex navigation, a side bar can be helpful for
mapping the navigation elements of a page to the page numbers used in wire frames; you
may also add callouts to navigation elements for improved readability.

1 Home Page

Loco | GreaterCause Foce of Giving

For Site, Portal and

v o
Donor Y NPO administrators’
Sarvices and Administrator About Feedback use on|y
Search Services GreaterCauss
Displays donor services when
. — this page is accessed from the
Image/Branding Welcome message and mission statement . .
portal domain, otherwise the
donor will see a donor guide.
‘ 13 | Home = Administrator Login

LOGO | Administrator Login

Home

Image Branding

Administrator ID |
Password |

Administrator type,
and its portal or
NPO affiliation,

is automatically
detected based on
the security profile.

Appendix B: GreaterCause Wire Frames

‘ 2 | Home = Site Administrator Services
LOGO | Site Administrator Services
Registration Content for Site administrator
Portal Alliance

NPO Registration

Portal Configuration
Update Registration
Update Profile
Mavigation Bar Setup
Creata Mew Campaign
Update Campaigns

NPO Configuration
Update Registration
Update Profile

‘ 2 | Home > Portal Administrator Services
LOGO | Portal Administrator Services
Registration Content for portal administrator

Wiew Registration

Portal Configuration <
Update Profile
Mavigation Bar Setup
Create Mew Campaign

Update Active
Campaigns

These services are implemented
in a manner similar fo the site
administrator.

337

338 Practical J2EE Application Architecture

‘ 2 | Home = Non-Profit Administrator Services
LOGO | NPO Administrator Services
Registration Content for NPO Adrministrator

View Ragistration

NFO Configuration <€
Update Profile

These services are implemented
in a manner similar to the site
administrator.

‘ 241 ‘ Home > Site Administrator Services > Registration > Portal Alliance Registration
LOGO | Site Administrator Services
Registration Portal Alliance Registration

Portal Alliance

MNPO Registration Portal 1D |
Portal Configuration | Administrator ID |
Update Registration Fortal Name I—

Update Profile

MNavigation Bar Setup Contact Email I
Create New Campaign | Activation Date

Update Campaigns
MPO Configuration

Update Registration

Update Profile

Test Certification © In Progress ¢ Completed

Appendix B: GreaterCause Wire Frames

339

‘ 22 | Home > Site Administrator Services > Registration » NPO Registration ‘
LOGO | Site Administrator Services
Registration NPO Reaistrati
Portal Alliance gisiration Identification Number

NPO Registration
Portal Configuration
Update Registration

Update Profile
Mavigation Bar Setup
Create Mew Campaign | City
Update Campaigns
NPO Configuration
Update Registration Zip
Update Profile

EIN I —

NPO Administrator |

NPO Name |

Address |

l—
State |]'

—
—
—

Country

Activation Status

| provided by IRS

‘ 23 | Home = Site Administrator Services > Portal Configuration > Enter Portal ID
LOGO | Site Administrator Services
Registration Portal Configuration > Enter Portal ID

Portal Alliance
NPO Registration
Portal Configuration
Update Registration
Update Profile
Mavigation Bar Setup
Creata Mew Campaign
Update Campaigns
NPO Configuration
Update Registration
Update Profile

Site administrators must

Enter Portal ID |

Content for Site administrator

identify the portal ID that
they want to administer.
Portal ID is not required
for porta| administrators
because this information
is part of the portal
administrators’ profile.

340 Practical J2EE Application Architecture

‘ 21 | Home > Site Administrator Services > Portal Configuration > Update Registration
LOGO | Site Administrator Services
Registration Portal Alliance Registration
Portal Alliance
Portal 1D Acme

NPO Registration
Portal Configuration | Administrator 0~ AcmeAdminiD

Update Registration Portal Name l—

Update Profile

Mavigation Bar Setup Contact Email
Create Mew Campaign | Activation Date

Update Campaigns
NPO Configuration

Update Registration Update

Update Profile

Test Certification " In Progress ¢ Completed

‘ 232 | Home = Site Administrator Services > Portal Configuration > Update Profile

LOGO | Site Administrator Services
Registration Portal Configuration > Update Profile
Portal Alliance Portal ID ACME
NPO Registration Contact Info

Portal Configuration |—
First Name

Update Registration

Update Profile Last Name I—
Mavigation Bar Setup || o0 ——

Creata Mew Campaign

Update Campaigns Phone I

NPO Configuration Search Optimization
Update Registration Limit my searches to non-profits.

Update Profile

Appendix B: GreaterCause Wire Frames

‘ 233 | Home > Site Administrator Services > Portal Configuration > Navigation Bar Setup ‘
LOGO | Site Administrator Services
Registration Portal Configuration > Navigation Bar Setup

Portal Alliance
NPO Registration
Portal Configuration
Update Registration
Update Profile
Navigation Bar Setup
Creata Mew Campaign
Update Campaigns
NPO Configuration
Update Registration
Update Profile

Portal ID ACME

Location of Custom

Mavigation Bar HTML http 4¢ |

Provide the URL of the Custorm Navigation
Bar. The specified navigation bar must be
available atthis URL at alltimes.

Used for loading a
navigation bar provided

< by the portal-domain to

preserve the branding and
navigation of the portal.

234

| Home = Site Administrator Services > Portal Configuration > Create New Campaign

LOGO

Site Administrator Services

Home

Registration
Paortal Alliance
NPO Registration
Portal Configuration
Update Registration
Update Profile
Mavigation Bar Setup
Create New Campaign
Update Campaigns
NPO Configuration
Update Registration
Update Profile

Portal Configuration > Create New Campaign
Step 1 of 3 & Search NPO

Keywords I
City I San Francisco
State | bl

Zip I
—

Country

Reusable component

wherever search is
employed.

341

342 Practical J2EE Application Architecture

‘ 23441 | Home > Site Administrator Services > Portal Configuration > Create New Campaign

LOGO | Site Administrator Services
Registration Portal Configuration > Create New Campaign
Portal Alliance Step 2 of 3 2 Select NPO
NPO Registration ¢ Breast Cancer Aclion
Portal Configuration San Francisco, CA, USA
Update Registration
Update Profile ¢ City of Hope

Navigation Bar Setup San Francisco, CA, USA,

Create New Campaign
Update Campaigns © Manterey Peninsula United Vay

San Francisco, CA, USA,
NPO Configuration
Update Registration
Update Profile

Reusable component

wherever search is
r employed.

PREVY MNEXT

‘ 2342 | Home = Site Administrator Services > Portal Configuration > Create New Campaign

LOGO | Site Administrator Services
Registration Portal Configuration > Create New Campaign
Paortal Alliance Step 3 of 3 = Enter Campaign D etails
NPO Registration
Portal Configuration | Portal ID ACME
Update Registration EIN 123456789
Update Profile MPO Mame City of Hope

Mavigation Bar Setup Start Date
Create New Campaign End Date ,—

Update Campaigns q c
, . egion Code Leave blark for Mationsl Cam psi
NPO Configuration ! Feue e Brien Fn—E

Update Registration

Update Profile

Appendix B: GreaterCause Wire Frames

‘ 235 | Home > Site Administrator Services > Portal Configuration > Update Campaigns ‘

LOGO | Site Administrator Services

Registration
Portal Alliance
NPO Registration
Portal Configuration
Update Registration
Update Profile
Mavigation Bar Setup
Creata Mew Campaign
Update Campaigns
NPO Configuration
Update Registration
Update Profile

Portal Configuration > Update Campaigns
Step 1 of 2 & Enter Region Code

Enter Portal 1D |
Enter Region Code |

‘ 2351 | Home = Site Administrator Services > Portal Configuration > Update Campaigns

LOGO | Site Administrator Services

Registration
Paortal Alliance
NPO Registration
Portal Configuration
Update Registration
Update Profile

Portal Configuration > Update Campaigns
Step 2 of 2 & Update Campaigns

Portal ID ACME
Region Code PACIFIC

123456729 Start Date 01/01.2004

Mavigation Bar Set City of Hope
avigation Bar e u.p San Francisco, CA, USA. End Date 12312004
Creata Mew Campaign
Update Campaig)
NPO Configuration 123456739 Start Date 03/15/2004

Update Registration
Update Profile

Monterey Peninsula United YWay

San Francisco, CA, USA, End Date 04/07 2004

343

344 Practical J2EE Application Architecture

‘ 24 | Home > Site Administrator Services > NPO Configuration > Update Registration

LOGO | Site Administrator Services

Registration NPO Configuration > Enter EIN
Portal Alliance . ..
PO Reaistrat Site administrators must

sgistration identify the EIN that they

Portal Conflg:urafflon Enter EIN want fo administer. EIN
Update Registration is not required for NPO
Update Profile -Submit administrators because
Navigation Bar Setup - this information is part of
Creats New Campaign the NPO administrators’
Updste Campaigns profile.

NPO Configuration
Update Registration

Update Profile
Content for Site administrator

‘ 22 | Home = Site Administrator Services > NPO Configuration > Update Registration
LOGO | Site Administrator Services
Registration NPO Registration
Paortal Alliance e 123456789

NPO Registration
Portal Configuration | NPO Administrator

Update Registration NEO Name I
Update Profile
Mavigation Bar Setup Address I

Create Mew Campaign | City I
Update Campaigns
P paig State | v|

NPO Configuration

Update Registration | ZiP I
Update Profile Country | v|
Activation Status | v|

123456789AdminID

Appendix B: GreaterCause Wire Frames

‘ 24.2 ‘ Home > Site Administrator Services > NPO Configuration > Update Profile

LOGO | Site Administrator Services

Registration
Portal Alliance
NPO Registration
Portal Configuration
Update Registration
Update Profile
Mavigation Bar Setup
Create New Campaign

Update Campaigns

NPO Configuration > Update Profile

EIN

Administration D

123456739
123456789 AdminlD

Contact Info

First M

ame

Last Mame

Email
Phone

—
—
G
—

NPO Configuration [upg petail Page Info
Update Registration URL I—
Up date Profile
Mission Statement
P.1 ‘ Portlet (Gateway to GreaterCause)
Portlet Sample

Force of Giving

Save theWhales

W onterey Peninzula Uni
Ammerican Red Crass
Breast Cancer Action

City of Hoe

W

Poveered by GreaterCause

You can corveniently perform philanthropic
activities right here. Give to following featured
non-profits or search for more

This portlet is

—— aggregated into

the portal page.

345

346

Practical J2EE Application Architecture

P2

| Registration

Custom or Default Navigation Bar to Preserve Portal Branding

A

LOGO

Jane Doe, Making a Difference

Please take a moment to fill out the missing information. We are thrilled to have your support.

Only the donors will see this
portal-specific navigation bar.

Registration 1D Acrne_Portal_User Address I
First Mame | |
Last Mame I City I Most
. information
Email I State | vl is provided
Tip | b)’ the
portal-
Country Iﬁ domoin.
| P.21 | Donor Preferences
Custom or Default Mavigation Bar to Preserve Portal Branding
LOGO | Jane Doe, Making a Cifference | Search
Home Daonation Cart Proceed to Tax Record Bonay Advancad
Checkout Preferences Search

For best experience, customize following setiings. All information is optional.

Default Donation Amount ‘four Credit Card Information

Limit Szarch to non-profits Mame on Card I

Fri Email®

nmary Emai I Card Type I j
Disclose Mame and Address to Mon-Profits & yes No
Card Mumber |
Subrmit Praf) l__l l—_l
| vormit Preferences Esxpiry Day Il Expiry Year =

* Prirnary email will supersede registration email

Foallowing is your registration information. To change click here,

Jane Doe

555 Bay Drive

Framant, CA 94555

Usa

Email: jdoe amencaunited. com

Appendix B: GreaterCause Wire Frames 347

| P.3 | Donor Services and Search |

Custom or Default MNavigation Bar to Preserve Porta Branding

LOGO | Jane Doe, Making a Cifference Search

Proceed to Advanced
Checkout Tax Record Preferences Sy

Home Donation Cart

Please enter search criteria to find non-profit of your choice

Promotional Content for Donor.

Keywords |
Category I 'l .

_ For unregistered
City I San Francisco users, on|y Home
State [| and Advanced

Search is available.
Zip I
Country I—;I

‘ P31 | Advanced Search = Select Non-Profit

Custom or Default Navigation Bar to Preserve Porta Branding

LOGO | Jane Doe, Making a Difference I Search

Proceed to Donor Advanced
Checkout TaxRecord Preferences Search

Home Donation Cart

Please select your favorite non-profit

¢ Breast Cancer Action
San Francisco, CA, USA

& City of Hope For unregistered
San Francisca, CA, USA, users, only Home

and Advanced
¢ Monterey Peninsula United Way Search is available.
San Francisco, CA, LUSA,

Add to Donation Cart

Page12345

348

Practical J2EE Application Architecture

| P3.1.1 | Donation Cart

Custarn or Default Mavigation Bar to Presarve Portal Branding
LOGO | Jane Doe, Making a Difference Search
. Proceed to Danar Advanced
Home nation Tax Record
Lonation Cart |y cyout Preferences Search
Please enter donation amount and optionally the preferred cause
NPO Name Amount Preferred Cause Remove
& . Miszizzippi F lood
r
Breast Cancer Action § I a0 |
San Francisco, CA USA
1500 Oakland Fi < o
Monterey Peninsula United WWay $I) | axland Fres <«
San Francisco, CA USA
r
Citv of Hope $ I 2.0 |
San Francizco, CA, USA
Total § =000
| Proceed to Checkout | | Update Cart | | Continue Donating

United Way will
be accepting
donations for
several causes.

| P3.12 | Checkout

Custom or Default Mavigation Bar to Preserve Porta Branding

LOGO | Jane Doe, Making a Difference

Search

. Proceed to Donor Advanced
m i I Tax Recon
Home Dongtion Cart Checkout @ ecord Prefarences Search
You have chosen to support the following non. profits
Breast Cancer Action
San Francisco, CA, USA $ 200
Montarey Paninsula United Wyay
San Francizco, CA, USA § 1500 Oskland Fires
City of Hope
San Francisco, CA, USA, $ 2500
Total § 6000

Please verify your credit card information or select another

Mame on Card

|
Card Type |
|

Card Mumber

Espiry Day | :I' Espiry ‘r’earl j'

Save changes for future use? © Yes O Mo

Confirm Your
Donations

Appendix B: GreaterCause Wire Frames

| P32 | Tax Record

Custom or Default MNavigation Bar to Preserve Porta Branding

LOGO | Jane Doe, Making a Difference

Search

City of Hope

San Francisco, CA, LUSA,

San Francisco, CA, USA.

Total

2500

60,00

Prirter Friend ly Report

124252003

Home Donation Cart Frocesd i Tax Record . Ativenced
Checkout Freferences Search
Donation Summary for 2003, For 2002, click here.
Breast Cancer Action 20,00 124252003
San Francizco, CA, USA.
Monterey Peninsula United Way 15.00 127250003 Oskland Fires

349

This page intentionally left blank.

APPENDIX

GreaterCause Site Flow

%opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 351

352

Practical J2EE Application Architecture

he navigation semantics of the Ul illustrated in Appendix B is explained using a

site flow that clearly articulates the page transitions associated with user actions. The

site flow is an important artifact for articulating the navigation semantics and provides
a bird’s-eye view of the site. Site flow does not encompass each and every navigational aspect
because doing so will make it less readable. To avoid the clutter, a common technique used
for creating site flows is to draw it like a tree structure where every node has only one parent.
The site flow will complete the story boarding effect by showing the transitions between various
uniquely numbered wire frames according to the navigation semantics established for the
functional web site.

Flow is top-down and left-right. 1
1.1 1.2
GreaterCause)
About Feedback
Home Page GreaterCause
13 One time login for
A.dministrctor administrators when 14
Login Adm'lnlsh"atml' d Direct access to GreaterCause.com is D.onor Services
Services is selecte not permitted to donors. and Search
(ShowDonor
2 Guide)
Administrator
Services
Site Admin Site Admin Site Admin Portal Alliance Admin | Site Admin NPO Admin
2.1 2.2 2.1 View Portal 22
Portal Alliance NPO Registration] Alliance [| View NPO
Registration Registration Registration
2.3A 2.1 Update 2.4A 22
M Enter Portal ID HH Portal Alliance 1 Enter EIN Update NPO
Registration Registration
232 2.4B L |242
| Update Portal —1 Enter EIN Update Profile
2.3B LI | Alliance Profile
[Enter Portal ID
233
| Navigation Bar
Setup
23C 2.3.4 Create New 2.3.4.1 2.3.4.2
L Ener Portal D | 1 Campaign || Step 2: Select |—— Step 3: Enter
nier Foria L | | Step 1: Search NPO Campaign
NPO Details
2.3.5 Update 3352] Und
H Campaigns — Ciep : Up ate
Step 1: Enter ampaigns
Region Code

353

GreaterCause Site Flow

Appendix (

€led

noj supy) ||

._DOv_Uwr_U S

¢led

D7D uoybuoq

L'1'€d

wvucm‘_mu_m._n_

L'¢d

- Jouoq ||

uolyp.ysiBay
asnpIB0a.I0)

¢d

syiyoid-uou painypay o} Buypuop Joy yipd touop-paisysiBaiun

NoA yupy|
€1ed

¢'L'ed

- inoxypay) ||

107D uoypUoQ
a5nD)I9DaI0)
L'Led

mEQQ.coc painypay o} Buypuop 1oy ;,__oa L0co_u._omBEmm~_

piooay x0| |
ying Jouoq-paisisibaiun ced
sadUaIeIy 1opod
nop yupyy [noxpayd | oD uoypuoqg || Jouoq || uonp.ysiBay uo yul| YoDag
g1ed ¢'Led L'1°€d L'¢d Zd Buisn pesseddy
U>108G PadUPAPY
noj yuoy) || inoxyayD || 1P uoyouog 1yoid-uoN peeg | L] esnopusipain
€1ed (AR L'Led L'ed €d
ying louog-paisisibay
abogawop
Jojog uo yury | @SNPDIRIORIS
asnp)uaypalg) Buisn passeddy L
ETICY
ld

This page intentionally left blank.

APPENDIX

FeaturedNPOQueryService
WSDL

%opyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use. 355

356 Practical J2EE Application Architecture

he following XML document was generated by the BEA WebLogic WorkShop

tool for describing the FeaturedNPOQueryService Web service to the clients.

Complete discussion on WSDL and the creation of FeaturedNPOQueryService
is covered in Chapter 8.

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:jms="http://www.openuri.org/2002/04/wsdl/jms/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:cw="http://www.openuri.org/2002/04/wsdl/conversation/"
xmlns:xm="http://www.bea.com/2002/04/xmlmap/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:conv="http://www.openuri.org/2002/04/soap/conversation/"
xmlns:sO0="http://www.GreaterCause.com/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:s="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.GreaterCause.com/">
<types>
<s:schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http: //www.GreaterCause.com/">
<s:element name="getCampaigns">
<s:complexType>
<s:sequence>
<g:element name="portalID"
maxOccurs="1" type="s:string" minOccurs="0"/>
<g:element name="regionCode"
maxOccurs="1" type="s:string" minOccurs="0"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="getCampaignsResponse">
<s:complexType>
<s:sequence>
<s:element name="getCampaignsResult"
maxOccurs="1" type="s0:ArrayOfFeaturedNPODTO" minOccurs="0"/>
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="ArrayOfFeaturedNPODTO">
<s:sequence>
<s:element name="FeaturedNPODTO"
maxOccurs="unbounded" type="s0:FeaturedNPODTO"
minOccurs="0" nillable="true"/>
</s:sequence>
</s:complexType>
<s:complexType name="FeaturedNPODTO">
<s:sequence>
<s:element name="startDate"
maxOccurs="1" type="s:string" minOccurs="0"/>
<s:element name="regionCode"
maxOccurs="1" type="s:string" minOccurs="0"/>

Appendix D: FeaturedNPOQueryService WSDL

<s:element name="ein"
maxOccurs="1" type="s:string" minOccurs="0"/>
<s:element name="endDate"
maxOccurs="1" type="s:string" minOccurs="0"/>
<s:element name="npoName"
maxOccurs="1" type="s:string" minOccurs="0"/>
</s:sequence>
</s:complexType>
<s:element name="ArrayOfFeaturedNPODTO"
type="s0:ArrayOfFeaturedNPODTO" nillable="true"/>
</s:schema>
</types>
<message name="getCampaignsSoapIn">
<part name="parameters" element="s0:getCampaigns"/>
</message>
<message name="getCampaignsSoapOut ">
<part name="parameters" element="s0:getCampaignsResponse"/>
</message>
<message name="getCampaignsHttpGetIn">
<part name="portalID" type="s:string"/>
<part name="regionCode" type="s:string"/>
</message>
<message name="getCampaignsHttpGetOut">
<part name="Body" element="s0:ArrayOfFeaturedNPODTO" />
</message>
<message name="getCampaignsHttpPostIn">
<part name="portalID" type="s:string"/>
<part name="regionCode" type="s:string"/>
</message>
<message name="getCampaignsHttpPostOut">
<part name="Body" element="s0:ArrayOfFeaturedNPODTO" />
</message>
<portType name="FeaturedNPOQueryServiceSoap">
<operation name="getCampaigns">
<input message="s0:getCampaignsSoapIn"/>
<output message="s0:getCampaignsSoapOut"/>
</operation>
</portType>
<portType name="FeaturedNPOQueryServiceHttpGet">
<operation name="getCampaigns">
<input message="s0:getCampaignsHttpGetIn"/>
<output message="s0:getCampaignsHttpGetOut" />
</operation>
</portType>
<portType name="FeaturedNPOQueryServiceHttpPost">
<operation name="getCampaigns">
<input message="s0:getCampaignsHttpPostIn"/>
<output message="s0:getCampaignsHttpPostOut" />
</operation>
</portType>
<binding name="FeaturedNPOQueryServiceSoap" type="s0:FeaturedNPOQueryServiceSoap">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getCampaigns">
<soap:operation style="document"
soapAction="http://www.GreaterCause.com/getCampaigns" />
<input>

357

358 Practical J2EE Application Architecture

<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<binding name="FeaturedNPOQueryServiceHttpGet" type="s0:FeaturedNPOQueryServiceHttpGet">
<http:binding verb="GET"/>
<operation name="getCampaigns">
<http:operation location="/getCampaigns"/>
<input>
<http:urlEncoded/>
</input>
<output>
<mime:mimeXml part="Body"/>
</output>
</operation>
</binding>
<binding name="FeaturedNPOQueryServiceHttpPost" type="s0:FeaturedNPOQueryServiceHttpPost">
<http:binding verb="POST"/>
<operation name="getCampaigns">
<http:operation location="/getCampaigns"/>
<input>
<mime:content type="application/x-www-form-urlencoded" />
</input>
<output>
<mime:mimeXml part="Body"/>
</output>
</operation>
</binding>
<service name="FeaturedNPOQueryService">
<port name="FeaturedNPOQueryServiceSoap" binding="s0:FeaturedNPOQueryServiceSoap">
<soap:address
location="http://nadirl:7001/GreaterCauseWebService/FeaturedNPOQueryService.jws" />
</port>
<port name="FeaturedNPOQueryServiceHttpGet" binding="s0:FeaturedNPOQueryServiceHttpGet ">
<http:address
location="http://nadirl:7001/GreaterCausellebService/FeaturedNPOQueryService.jws" />
</port>
<port name="FeaturedNPOQueryServiceHttpPost" binding="s0:FeaturedNPOQueryServiceHttpPost">
<http:address
location="http://nadirl:7001/GreaterCausellebService/FeaturedNPOQueryService.jws" />
</port>
</service>

</definitions>

Symhbols and Numbers

/ (slash), using with Struts, 98

/* (slash-asterisk), using with Struts, 93

2 1 PortalAllianceRegistration.jsp.jsp view,
displaying, 173-174

2 3 4 2 CampaignDetails.jsp view, displaying,
190-191

2 3A_EnerPortalID.jsp view, displaying, 173

2 3C_EnterPortalID.jsp view, displaying, 192

2 4 2 UpdateNPOProfile.jsp view,
displaying, 167

2 4B EnterEIN.jsp view, displaying, 167

2 AdministrationServicesNavBar, example
taken from, 159, 166-167, 172—173

"4+1 View Model of Architecture," overview
of, 51

A

AccessControlContexts, associating with subjects
in JAAS, 72-73
Action objects. See request handlers
Action subclass. See request handlers
<action> element in Struts, example of, 96-98,
108-109
ActionError objects in Struts
compiling errors with, 103—-104
converting exceptions into, 107
identifying errors with, 102—103
ActionForm beans, validating data with, 138—139
ActionForm objects in Struts
creating with dynamic properties, 112
example of, 116-117
initializing with FormTags, 110-111
storing form data with, 111-112

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Index

ActionForm properties, transferring to DTOs,
139-140
ActionForm subclasses, implementing in
presentation tier, 137-140
ActionFormBean objects
creating, 124
purpose of, 119
ActionForward objects in Struts
creating, 124, 125
navigating with, 96-98
purpose of, 119
using with request handlers, 141
ActionMapping objects in Struts
purpose of, 119
using with request handlers, 142
using with Struts, 94-95
ActionServlet class, implementing Struts
controller with, 93
activity diagrams
for Create Campaign use case, 23, 40
documenting scenarios with, 14
for featured-NPO, 27
for making a donation, 17
for Portal Pass-through use case, 25
purpose of, 334
for Update Campaigns use case, 24, 42—43
actors
in Create Campaign use case, 38
for GreaterCause application, 10—11
in Manage Donation Cart use case, 44
in Manage Donor Preferences use case, 47
organization of, 20
purpose of, 9, 334
in Register Donor use case, 45
in Update Campaigns use case, 40—41

359

360

Practical J2EE Application Architecture

adaptive navigation scheme, explanation of, 35
AddDataSourcePropertyRule, example of, 122
Admin interface
defining for domain model, 214-223
specifying deployment descriptors for,
217-223
Admin-NPO relationship in domain model,
overview of, 209
Admin-PortalAlliance relationship in domain
model, overview of, 209-210
AdminBean, defining CMP and CMR fields for,
214-223
administration services package, diagram of, 153
administrator roles
associating, 326
examples of, 159
AdminLoginAction class, using, 158
alphabetical site organization, example of, 32
AppException class in Struts, exception handling
with, 107
application architectures
J2EE components in, 54
overview of, 50-54
application client containers, role in J2EE
architecture blueprints, 53
application data caching, overview of, 80-81
application security
functional classification of, 57-61
implementing in presentation tier, 153—-161
planning, 54-61
application state, managing for GreaterCause
system, 139
asymmetric key sets, characteristics of, 62
attack scenarios, anticipating, 57
authentication. See also multi-layered
authentication in SSO; mutual authentication
and authorization, 60
in JAAS, 70-72
types of, 156
authenticity, role in Public Key Cryptography, 62
authorization
and authentication, 60
in JAAS, 72

B2B integration of GreaterCause application,
overview of, 299-314
back-end components, deciding, 302303

BEA WebLogic Workshop tool. See WebLogic
Workshop tool
bean classes, role in business interface
pattern, 236
beanutils package, using with Struts, 138
behavior, factoring into use cases, 14—15
binaries, installing for Struts, 320-321
bindings in WSDL documents
overview of, 292-294
purpose of, 285, 290
bread-crumbs navigation scheme, explanation
of, 35
Business Delegate objects, use of, 131
business delegate pattern
explanation of, 137
implementing, 143144
business functionality, fine- and coarse-grained
access of, 238-239
business interface
implementing for Create Campaigns use
case, 260-262
implementing for Update Campaigns use
case, 263-265
implementing in Register NPO use case,
247-248
business interface methods
discovering for Create Campaigns use
case in business tier, 259260
discovering in Register NPO use case,
246247
discovering in Update Campaigns use
case, 262
business interface pattern
applying to business tier, 232233
implementing in business tier, 236-237
business tier
identifying package dependencies in, 244
implementing business interface pattern in,
236-237
implementing data transfer object pattern in,
238-241
implementing EJB home factory pattern in,
242-244
implementing session facade pattern in,
233-235
versus presentation tier, 238
and presentation tier patterns, 233-235
and realization of Site Administration use
case package, 245-259

realizing Search NPO use case in, 267-270
Register NPO use case in, 246259
role in J2EE architecture blueprints, 52
business tier package, diagram of, 245
business tier pattern, advantages of, 213

C

cache architecture, overview of, 81-83
Cache Featured-NPO use case, overview of,
24-25
cache hits versus cache misses, 83
cache objects, interactions between, 82
cache sizes, limiting, 84
CacheEventListener objects, purpose of, 82
CacheFactory, purpose of, 82
CacheltemCreater objects, purpose of, 82
caches
benefits of, 79-80
desirable features for, 82
elements of, 83
overview of, 83—84
role in Struts message resource
semantics, 132
caching, overview of, 79-81
Campaign business interface, defining in
business tier, 259-260
campaign interface, defining in domain model,
228-229
Campaign-NPO relationship in domain model,
overview of, 211
Campaign objects, adding for PortalAlliance
interface, 224-225
Campaign page, submitting, 198
Campaign session bean and PortalAlliance entity
bean, configuration semantics for, 266
Campaign use case
configuration semantics of, 188—192
creating, 188-201
request handler used with, 199-201
shared request handler pattern used with,
188-201
structure of, 188
view semantics of, 192198
CampaignDTO, example of, 260
campaigns and NPO entities, establishing
relationship between, 261-262
case-driven modeling, using, 4-5
certificate authorities, role in Public Key
Cryptography and digital signatures, 63

361

Index

channel security, overview of, 57-59. See also
security entries
Checkout use case, overview of, 14, 18
circles of trust in federated network identity
frameworks, diagram of, 75. See also trust
class diagrams
of Create Campaign use case, 189
for Create Campaign use case in business
tier, 261
of Manage NPO profile use case, 162
of Register NPO use case for business
tier, 248
of Register NPO use case for presentation
tier, 182
of Register Portal-Alliance use case, 170
for Search NPO use case in business
tier, 270
for Search NPO use cases, 187
client tier, role in J2EE architecture blueprints, 52
clients, role in J2EE architecture blueprints, 52
cm-fields, role in deployment descriptors, 219
CMP and CMR semantics, role in domain
models, 213-223
cmr-fields, role in deployment descriptors,
226227
command pattern, using, 140142
components, role in application architecture,
50-51
conditional includes, use of, 14—15
ConfigRuleSet, annotating, 120—126
container-managed fields in ejb-jar.xml,
purpose of, 219
containers, role in J2EE architecture blueprints,
53,54
content
navigating, 34-35
organizing, 31-34
content editors, importance to information
architects, 31
context diagram for portal-domain, 24
controller in MVC implementation of Struts,
overview of, 92-93
controller objects, implementing in Struts,
127-128
<controller> element in Struts, example of, 97-99
ControllerConfig configuration objects, purpose
of, 119
CORBA versus SOAP, 277

362

Practical J2EE Application Architecture

credit card processor, role in GreaterCause
application, 10
Create Campaign use case
activity diagram for, 40
actors in, 38
overview of, 22-23
postcondition of, 38
precondition of, 38
purpose of, 38
UI (user interface) for, 38—40
Create Campaigns use case
defining and implementing in business tier,
259-262
implementing business interface for,
260-262
CreateCampaignAction request handler, example
of, 199
CreateException for entity beans, explanation
of, 258
credential mapping in SSO, overview of, 67
credentials
in JAAS, 70
in SSO, 67
custom tags, using with Struts, 147-149

damage estimation, determining, 55
data access needs, types of, 81
data model, creating, 211-212
data transfer object pattern, applying to business
tier, 233
data types, deciding on, 303
data, validating with ActionForm beans, 138—139
DataSourceConfig configuration objects, purpose
of, 119
defederation in Liberty architecture, overview
of, 79
dependencies, identifying for GreaterCause, 11
deployment descriptors
for SiteAdmin business interface, 248254
specifying for Admin interface, 217-223
specifying for campaign interface of domain
model, 228-229
specifying with EJB QL, 226228
for Update Campaigns use case, 265-266
design patterns applied to business tier
business interface pattern, 232-233
data transfer object pattern, 233

EJB home factory pattern, 233
session facade pattern, 232, 235
development environment, creating with
WebLogic Server 7.0, 322-323
digester, adding rules to rule cache of, 120-121
digital signatures, overview of, 61-65
dispatcher objects, implementing in Struts,
128-130
Dispatchers in Struts, using, 93-94, 106107
Display Donation History use case, overview
of, 18
Display Featured-NPOs use case, overview of,
25-26
distributed caches, invalidation in, 81
domain model
defining Admin interface for, 214-223
defining campaign interface for, 228-229
defining PortalAlliance interface for,
223-225
implementing, 213-223
relationships in, 209-211
domain objects, discovering, 208-211
domains, explanation of, 322. domains. See also
problem domains
Donation Cart use case, managing, 16—18
donations, workflow for, 17
donors, role in GreaterCause application, 10-11
double-interface pattern. See business interface
pattern
DTO (data transfer object) pattern, implementing
in business tier, 238241
DTOs (Data Transfer Objects)
explanation of, 137
guidelines for use of, 241
proliferation of, 241
transferring ActionForm properties to,
139-140
using with getCampaigns method, 264-265
DuplicateKeyException for entity beans,
explanation of, 258
DynaActionForm objects in Struts, purpose
of, 112

EAI (Enterprise Application Integration), role
in Web services, 274-275
.ear extension, meaning of, 318

EIN, entering in Manage NPO Profile use case,
163-164
EIS tier, role in J2EE architecture blueprints, 52
EJB containers, role in J2EE architecture
blueprints, 53
EJB home factory pattern
applying to business tier, 233
implementing in business tier, 242-244
ejb-jar.xml deployment descriptor file,
explanation of, 217-219
EJB QL, using with finder and select methods,
225-229
ejbCreate methods for domain model, displaying,
216217
EJBHomeFactory helper class, implementing,
242-243
EJBs
accessing with business interface
patterns, 237
caching home references for, 244
local interfaces for, 213
transaction semantics for when used with
Register NPO use case, 254-256
ejbSelectRegionalCampaign method, example
of, 227
embedded-links navigation scheme, explanation
of, 35
enterprise applications, securing, 55
entity beans
accessing with EJB QL, 225-229
exceptions for, 258-259
error handling in Struts, overview of, 101-105
ErrorsTag objects in Struts, displaying errors
with, 104-105
evolutionary requirements, determining for
security, 56
exception handling
in Register NPO use case business-tier
transactions, 256259
in Struts, 105-107
ExceptionConfig objects
creating, 123, 125
purpose of, 119
executeSearch business method, defining, 267
extend relationships
advisory about, 22
use of, 14-15
extension mapping, example of, 93

363

Index

F

FactoryCreateRule, example of, 122
featured-NPOs list, creation of, 8
FeaturedNPODTO array, XML version of,
309-310
FeaturedNPOQueryService Web service
creating, 304-310
creating serialization classes for, 310
creating stateless EJB for, 304
deploying to production server, 313-314
functionality of, 301-302
generating client runtime and building test
client for, 312-313
generating response with, 312-313
implementing with WebLogic Workshop,
303-314
setting up developmental environment for,
303-305
WSDL for, 356-358
federated network identity
explanation of, 59
objectives of, 73-74
overview of, 73-79
federation scenarios, overview of, 77-79
finder and select methods, using EJB QL with,
225-229
FinderException for entity beans, explanation
of, 258
flow of events
for Cache Featured-NPO use case, 25
for Checkout use case, 18
for Create Campaign use case, 22-23
for Display Donation History use case, 18
for Display Featured-NPOs use case, 26
for Manage Donation Cart use case, 16—18
for Manage Donor Preferences use case,
19, 48
for Manage NPO Profile use case, 21
for Manage Portal Alliance Profile use
case, 21
for Perform UI Customization use case, 21
for Provide Featured-NPO use case, 23
purpose of, 334
for Redirect to the GreaterCause.com Site
use case, 26
for Register Donor use case, 18-19, 46-47
for Register NPO use case, 20-21

364

Practical J2EE Application Architecture

for Register Portal Alliance use case, 21
for Search and Donate use case, 45
for Search NPO use case, 19-20
for Update Campaigns use case, 23, 42
for Update Donation History use case, 18
foo method in WSDL file, purpose of, 285
form-based authentication, using, 155-156
form-bean life cycle, managing, 140
<form-bean> element in Struts, example of,
108-109
form-bean, setting properties in, 197
form data
capturing with ActionForm subclass, 138
capturing with Struts, 108—117
storing with ActionForms, 111-112
form submission, managing with Struts, 107-108
FormPropertyConfig objects
creating, 124-125
purpose of, 119
FormTags in Struts, initializing ActionForm
objects with, 110-111
<forward> element in Struts, example of, 96-98
frameworks, role in J2EE architecture blueprints,
53-54
functionality, role in application architecture, 50

G

GC.properties file, advisory about, 322
geographical site organization, example of, 32
getCampaignNPOs method, accessing, 309
getCampaigns method

of Campaign session bean, 263264

transaction attribute declaration for, 228
getNPORegistration sequence diagram, 250
getRemoteUser method of HttpServletRequest

interface, use of, 154-155
global navigation scheme, explanation of, 34
graphic designers, importance to information
architects, 31

GreaterCause application

abridged site flow for, 37

accessing home page of, 328

architecture of, 50-54

B2B integration of, 299-314

building, 329

configuring users for, 325-326

context diagrams and actors for, 10—11

creating database tables for, 328

defining, 6-9

deploying, 326-329

detailed use case description for, 37-48

documenting use cases for, 13—15

identifying risk factors and dependencies

for, 11

identifying use case packages for, 12—13

managing state of, 139

security configuration of, 153—154

service locator methods of, 145

site flow for, 352353

use case summary for, 15-26

use cases for, 299-301

wire frames for, 336349
GreaterCause\conf directory, files in, 327
GreaterCause directories, contents of, 327
GreaterCause.com site administrator, role in

GreaterCause application, 10

GreaterCause.domain, responsibilities of, 7
GreaterCause.ear file, deploying, 328

has-a relationship, example of, 211

hasAccess tag, example of, 158-159

hashes, role in Public Key Cryptography and
digital signatures, 63

Header elements, role in Web services, 281

hierarchical site organization, example of, 32

home references, caching for EJBs, 244

HtmlTag, using with Struts, 99

HTTP messages, carrying SOAP messages
in, 277

HTTPS, using, 155-156

118N, explanation of, 98—101
ID column in CAMPAIGN table, population
of, 212
identity, explanation of, 59
identity federation, example of, 77
identity providers, federating, 77-79
immutable DTOs, explanation of, 240
Implementation View, explanation of, 51
include/extend use cases
in Manage Donation Cart use case, 44
purpose of, 334
include relationships, use of, 14-15

include use cases for Register Donor use case,
explanation of, 46
indexed site organization, example of, 3233
information architecture
applying principles of, 35-36
beginning of, 30-31
init methods, role in Struts MVC semantics, 128
InitialContext, configuring for use with
SiteAdmin session bean, 252-253
instance variables, identifying with DTOs,
240-241
integrity, role in Public Key Cryptography, 62
internationalization
and localization support for Struts, 98—101
Validator support for, 151
INVALIDATE events, using with caches, 83
<iterate> tag, using with Struts and forms,
114-115

J

@jws tags:, meaning of, 305
J2EE application archives, creating, 320
J2EE applications, elements of, 319
J2EE architecture blueprints, creating, 52-54
J2EE components, role in application
architectures, 54
J2EE modules, components of, 318
JAAS (Java Authentication and Authorization
Service)
authentication in, 70-72
authorization in, 72
overview of, 69-73
JAAS LoginContext class, example of, 71-72
JAAS LoginModule class, example of, 71-72
Jakarta Commons Validator. See Validator plug-in
JavaBean classes, DTOs as, 239
JavaBeans, tags used with, 148
JavaServer Faces standard, purpose of, 90
JDBC connection pool, configuring for WebLogic
domains, 324
JNDI names
describing for home interfaces, 244
location in GreaterCause application, 145
JSP page 2 1 PortalAllianceRegistration.jsp,
custom tags used in, 148
jws file, creating, 305

365

Index

K

key-cache-size, providing for domain model, 229
Krutchen, Philippe and "4+1 View Model of
Architecture", 51

L

layers, role in application architecture, 50
lib/commons-* jar files, contents of, 320
lib/struts-*.tld files, contents of, 321
lib/struts.jar files, contents of, 321
Liberty approach versus global identifiers, 78—79
Liberty architecture. See also Project Liberty
defederation in, 79
diagram of, 76
overview of, 74-79
provider definitions for, 74
SSO and identity federation in, 7677
List-based implementations in Struts, example of,
114-117
liveness validation in SSO, overview of, 69
local navigation scheme, explanation of, 34-35
Local objects in Struts, purpose of, 99-100
localization and internationalization support for
Struts, overview of, 98—101
Logical View, explanation of, 51
LoginContext class in JAAS, example of, 71-72
LoginModule class in JAAS, example of, 71-72
LRU (least recently used) purging algorithm,
using with caches, 84

Manage Campaigns package, overview of, 22-23
Manage Campaigns use cases

data model for, 212

domain model for, 210

realizing in business tier, 259-266

realizing in presentation tier, 188-205
Manage Donation Cart use case

actors in, 44

include/extend use case for, 44

overview of, 16-17

postcondition of, 44

precondition of, 44

purpose of, 43

366

Practical J2EE Application Architecture

Manage Donor and Donations package, overview
of, 15-19
Manage Donor Preference use case
actors in, 47
overview of, 19
postcondition of, 47
precondition of, 47
purpose of, 47
UI (user interface) for, 47
Manage NPO Profile use case
ActionForm bean used with, 167—168
class diagram of, 162
configuration semantics of, 166
multi-page pattern in, 162—-164
overview of, 21, 161-169
request handler used with, 168—169
structure of, 163—165
view semantics of, 166—167
Manage Portal-Alliance Profile use case
class diagram of, 176
configuration semantics of, 178—180
overview of, 21, 176-181
request handler used with, 180-181
structure of, 177
ManagePortal AllianceAction class, example of,
102-103
Manager Donor Preferences, use of, 14
Mandatory value for transaction attributes,
explanation of, 255
MDA (model-driven architecture), purpose
of, 282
message-digests, role in Public Key Cryptography
and digital signatures, 63
MessageResources class in Struts, purpose of,
100-101, 131-132
MessageResourcesConfig objects
creating, 125-126
purpose of, 119
messages in WSDL documents
overview of, 290-291
purpose of, 284
metadata, role in SSO, 61
model in MVC implementation of Struts,
overview of, 91-92
model interaction with request handlers in Struts,
overview of, 95-96
ModuleContfig configuration objects, purpose
of, 120
modules, role in application architecture, 51

multi-action pattern
for Manage Portal-Alliance Profile use
case, 177
for Register NPO use case, 183
for Register Portal-Alliance use case,
169-176
multi-layered authentication in SSO, overview
of, 68—69. See also authentication; mutual
authentication
multi-page pattern sequence diagrams, examples
of, 164, 193
Multiplexed Resource Mapping, role in Struts
MVC semantics, 127
mutable DTOs, explanation of, 240
mutual authentication in SSO, overview of, 69.
See also authentication; multi-layered
authentication in SSO
MVC implementation in Struts, overview of,
91-98
MVC (Model-View-Controller) architecture,
explanation of, 91
MVC semantics of Struts, overview of, 126—131
MyService, generating WSDL for, 285-295
MyServiceSoap binding, example of, 293-294

name attribute, using with ActionMapping
configuration objects, 94-95

names in JAAS, explanation of, 70

NamingException, throwing in transactions, 257

navigation schemes, creating, 34—35

nested properties, using with forms and Struts,
114-117

network identity management, overview of,
59-60

network services, defining with WSDL, 284-285

Never value for transaction attributes, explanation
of, 255-256

non-defining relationship in data model,
explanation of, 211

nonces, role in SSO credentials, 68

NotSupported value for transaction attributes,
explanation of, 254-255

NPO administrator, role in GreaterCause
application, 10

NPO Caching package, overview of, 23-25

NPO entities and campaigns, establishing
relationships between, 261-262

NPOs (non-profit organizations)
registering in business tier, 233-235
role in GreaterCause application, 7—8

0

ObjectNotFoundException for entity beans,
explanation of, 258-259

OMB (Object Management Group), model-driven
architecture of, 282

one-to-many unidirectional relationship, example
of, 210, 226, 259-262

operations in WSDL documents, purpose of, 284

Oracle database server, setting up JDBC
connection pool for, 324

P

package dependencies
identifying in business tier, 244
identifying in presentation tier, 152—153
page property, using with Manage NPO Profile
use case, 165
parameter type-conversion for forms, requesting
with Struts, 113-114
path attribute, using with ActionMapping
configuration objects, 94-95
pattern discovery and documentation, overview
of, 161
Perform GreaterCause.com Site Administration
package, overview of, 20-23
Perform UI Customization use case, overview
of, 21
plug-ins, using with Struts, 117-118
PlugInConfig configuration objects, purpose
of, 119
PlugInConfig object, creating, 126
portal-alliance
location of profile and registration
information for, 212
meaning of, 7
portal-alliance administrator, role in GreaterCause
application, 10
portal-domain
context diagram of, 6
meaning of, 6
role in GreaterCause application, 10
portal, meaning of, 6
Portal Pass-through package, overview of, 25-26

Index

portal-providers, purpose of, 7
PortalAlliance-Campaign relationship in domain
model, overview of, 210-211
PortalAlliance interface, defining for domain
model, 223-225
PortalAllianceRegistrationAction request handler,
example of, 96, 141-142
PortalAllianceRegistrationForm, example of, 110
portlets, purpose of, 299-300
ports in WSDL documents, purpose of, 285
portTypes in WSDL documents
overview of, 291-292
purpose of, 284-285
postcondition(s)
in Create Campaign use case, 38
in Manage Donation Cart use case, 44
in Manage Donor Preferences use case, 47
purpose of, 334
in Register Donor use case, 46
in Update Campaigns use case, 41
precondition(s)
in Create Campaign use case, 38
in Manage Donation Cart use case, 44
in Manage Donor Preferences use case, 47
purpose of, 334
in Register Donor use case, 46
in Update Campaigns use case, 41
presentation-layer framework, explanation of, 53
presentation tier
accessing domain objects from, 233
versus business tier, 238
and business tier patterns, 233-235
and Campaigns use cases, 188-205
implementing security in, 153-161
and Manage NPO Profile use case, 161-169
and Manage Portal-Alliance Profile use
case, 176—-181
realizing Site Administration use cases in,
161-186
and Register NPO use case, 181-186
and Register Portal-Alliance use case,
169-176
and Update Campaigns use case, 201-205
presentation-tier classes
factoring tags into design process of,
147-149
factoring Validator into design process of,
149-152

Practical J2EE Application Architecture

identifying package dependencies in,
152-153
implementing, 137-153
implementing request handlers in, 140-142
implementing request handlers with,
140-142
using business delegate pattern with,
143-144
using service locator pattern with, 145-147
primary domains in SSO, explanation of, 66
principal-to-role mapping, declaring, 156,
325-326
principals in JAAS, functionality of, 70
problem domains, defining, 6-9. See also
domains
process methods, role in Struts MVC semantics,
129-130
Process View, explanation of, 51
profiles in SSO, overview of, 67
project descriptions, creating for problem
domains, 6-9
Project Liberty, Web address for, 73. See also
Liberty architecture
PropertyMessageResources class in Struts,
purpose of, 131-132

PropertyUtils.copyProperties(toBean, fromBean)

method, using, 140

protected resources, preventing access to,
160-161

Provide Featured-NPO use case, overview of, 23

providers, federating, 77-78

Public Key Cryptography in digital signatures,
overview of, 62-63

Q

queries for accessing entity beans, defining with
EJB QL, 225-229

re-authentication, explanation of, 68
read only data, caching, 81
Redirect to the GreaterCause.com Site use case,
overview of, 26
references
for business tier design and
implementation, 271
for presentation tier design and
implementation, 205

for struts-based application
architecture, 133
Register Donor process, use of, 14
Register Donor use case
actors in, 45
flow of events for, 4647
include use case for, 46
overview of, 18-19
postconditions in, 46
preconditions in, 46
purpose of, 45
UI (user interface) for, 46
Register NPO use case
in business tier package, 246-259
class diagram of, 182
configuration semantics of, 182—183
and handling exceptions in business-tier
transactions, 256-259
multi-action pattern sequence diagram
for, 185
multi-action pattern used with, 181-186
overview of, 20-21, 181-186
structure of, 181
and transaction semantics for EJBs,
254-256
view semantics of, 183—-186
Register Portal-Alliance use case
ActionForm bean used with, 174175
class diagram of, 170
configuration semantics of, 171-172
multi-action pattern used with, 169—176
overview of, 21, 169-176
request handler used with, 175-176
structure of, 170
view semantics of, 172—174
registerNPO sequence diagram, 249
remote interface, extending for use with business
interface patterns, 236
RemoteExceptions, throwing in remote
interfaces, 237
RemoveException for entity beans,
explanation of, 259
replay attacks, occurrence of, 68
request handlers
implementing in presentation tier, 140—142
managing user-specific state with, 142
model interaction with, 95-96
role in MVC semantics, 130-131
use of, 92

using with Campaign use case, 199-201
using with Manage NPO Profile use case,
168-169
using with Manage Portal-Alliance Profile
use case, 180-181
using with Register Portal-Alliance use
case, 175176
request processors. See Dispatchers in Struts
request-response operation in SOAP, advisory
about, 314
RequestProcessor object in Struts
creating URLs with, 98
functionality of, 93-94
role dispatcher objects, 128—129
role in creating ActionForms with
dynamic properties, 112
role in MVC semantics, 127-128
role in request handlers, 130—131
role in storing form data with
ActionForms, 111
Required value for transaction attributes,
explanation of, 255
RequiresNew value for transaction attributes,
explanation of, 255
ResourceBundle class in Struts, purpose of, 100
resources, role in developing secure
environments, 56
risk estimation, determining, 55
risk exposure, role in developing secure
environments, 56
risk factors, identifying for GreaterCause, 11
role-oriented site organization, example of, 33
roles
defining, 157
examples of, 159-160
RPC-oriented versus document-oriented Web
service operation, 303
RPC (Remote Procedure Calls), using SOAP for,
315

)

scenarios, documenting with activity diagrams, 14
schemas, role in SSO, 61
scope attribute, using with ActionMapping
configuration objects, 94
scope function of <action> element, purpose of, 140
search facility, invoking for Campaign use
case, 195
Search NPO package, overview of, 19-20

369

Index

Search NPO use case
discovering business interface methods in,
267268
implementing business interface for, 268
realizing in business tier, 267-270
realizing in presentation tier, 186—188
SearchAndListNPOAction request handler,
example of, 200-201
secondary domains in SSO, explanation of, 66
secure environments, factors involved in
provision of, 56
security breach identification and recovery
procedures, determining, 55-56
security design for applications, guidelines for, 56
security, planning for applications, 54—61. See
also channel security
security requirements, identifying, 55-57
select and finder methods, using EJB QL with,
225-229
sequence diagrams
for business delegate, 144
of business delegate, 144
for getNPORegistration, 250
of multi-action form pattern, 172
for multi-action pattern of Manage NPO
Profile use case, 164
for multi-action pattern of Manage
Portal-Alliance Profile use case, 178
for multi-action pattern of Register NPO
use case, 184, 185
for multi-page patterns, 164, 193
purpose of, 334
for registerNPO, 249
for Update Campaigns use case, 203
for updateCampaigns method, 265
for updateNOPRegistration, 251
serialization classes, creating for
FeaturedNPOQueryService, 310-312
service locator pattern, implementing, 145-147
service requesters and providers, interactions
between, 281
service-side components, design aspects for
implementation of, 302-303
service to worker pattern
example of, 92
use of, 126
services in WSDL documents
overview of, 294-295
purpose of, 285

370

Practical J2EE Application Architecture

session beans. See also stateless session beans
deployment descriptors for SiteAdmin,
248-254
using with presentation and business tier
patterns, 234
session facade pattern
accessing business logic by means of, 235
applying to business tier, 232
implementing in business tier, 233-235
SetActionMappingClassRule, example of, 122
SetNextRule, example of, 121
SetPropertiesRule, example of, 121, 122-123
SetPropertyRule, example of, 123
setRollbackOnly method, invoking, 258
signed hash values and XML documents,
explanation of, 63
Site Administration use cases
data model for, 212
domain model for, 210
realizing, 161-186
realizing in business tier, 245-259
site content
navigating, 34-35
organizing, 31-34
site-map navigation scheme, explanation of, 35
SiteAdmin business interface
business methods identified in, 246247
implementing, 247-248
session bean deployment descriptors for,
248-254
SiteAdmin session bean
configuration information for, 252
configuring for deployment in EJB
container, 248-254
locating home interface for, 242
transaction attributes for methods of, 256
slash (/), using with Struts, 98
slash-asterisk (/*), using with Struts, 93
SOAP body
explanation of, 296
overview of, 298
SOAP data types, defining, 310
SOAP envelope
explanation of, 295
overview of, 296297
SOAP fault
generating, 309
overview of, 299

SOAP header, 281
explanation of, 295-296
overview of, 297-298
SOAP messages, components of, 295-296
SOAP request and response, displaying, 311
SOAP security, overview of, 277-278
SOAP (Simple Object Access Protocol)
versus CORBA, 277
explanation of, 275
introduction to, 295-299
message styles defined by, 277
overview of, 276278
role in Web services, 283
using for RPC, 315
SOAP:style semantics, overview of, 314-315
SSL (Secure Sockets Layer)
advantages and disadvantages of, 61-62
purpose of, 58
SSO (single sign-on)
architecture of, 66
benefits of, 65
credential mapping in, 67
elements of, 66, 67—69
in Liberty architecture, 7677
overview of, 60-61
stateful session beans, dynamics of, 236
stateless EJB, creating for
FeaturedNPOQueryService, 304
stateless session beans, benefits of, 236. See also
session beans
stereotyping, use of, 10
storyboards, purpose of, 36
strong authentication, explanation of, 68—69
struts-config.xml file
example from, 94
location of, 118
parsing, 118-120
purpose of, 93
Struts framework, 93-94
capturing form data with, 108—117
configuration semantics of, 118-126
creating configuration objects in, 120—126
custom extensions with plug-ins used with,
117-118
custom tags used with, 147-149
deploying and configuring, 320-322
Dispatchers used in, 106—-107
error handling in, 101-105

exception handling in, 105-107
explanation of, 53
extending with ConfigRuleSet, 121-126
internationalization and localization support
for, 98101
installing and configuring, 320-321
message resources semantics in, 131-132
MVC implementation in, 91-98
MVC semantics of, 126131
once-only form submission in, 107-108
tag library declarations for, 321
Struts Validator plug-in. See Validator plug-in
subject matter experts, importance to information
architects, 31
subjects in JAAS
associating with AccessControlContexts,
72-73
functionality of, 70
Supports value for transaction attributes,
explanation of, 255
synchronous versus asynchronous operation, 302
system context, identifying, 9-11
system security, planning, 54-61

T

tags, factoring into design process, 147149
technology teams, importance to information
architects, 31
tenets of application security, 55-57
TOC (table of contents) navigation scheme,
explanation of, 35
TokenCache, purpose of, 82—83
topical site organization, example of, 32
transaction semantics for EJBs, role in Register
NPO use case in business tier, 254-259
transactional data, advisory about caching of, 81
Transactional XML, modes of, 283. See also XML
trust. See also circles of trust in federated network
identify framework
establishing in SSO, 61
role in developing secure environments,
56-57
type attribute, using with ActionMapping
configuration objects, 94
types in WSDL documents
overview of, 289-290
purpose of, 284

Index

UDDI (Universal Discovery, Description,
and Integration)
overview of, 278279
role in Web services, 283
UI (user interface)
for Create Campaign use case, 38—40
importance of, 35
for Manage Donor Preferences use case, 47
for Register Donor use case, 46
in Update Campaigns use case, 41
Update Campaigns use case
activity diagram for, 4243
actors in, 4041
campaign session bean deployment
descriptors for, 265-266
discovering business interface methods
in, 262
implementing business interface for,
263-265
overview of, 23, 201-205
postcondition in, 41
precondition in, 41
purpose of, 40
UI (user interface) for, 41
Update Donation History use case
overview of, 18
use of, 14
updateCampaigns method, example of, 264
updateNOPRegistration sequence diagram, 251
URLSs (uniform resource locators), creating in
Struts, 98
use case diagrams
for Manage Campaigns, 22
for Manage Donor and Donations, 16
for NPO Caching, 24
for Perform GreaterCause.com Site
Administration, 20
purpose of, 12
for Search NPO package, 19
use case packages, identifying for GreaterCausea,
12-13
use case summaries, creating, 15
Use Case View, explanation of, 51
use cases
applying information architecture to, 36-48
Cache Featured-NPO, 24-25

371

Practical J2EE Application Architecture

Campaign, 188-205
Checkout, 18
Create Campaign, 22-23
description template for, 334
detailed version for GreaterCause
application, 3748
detailing, 3648
Display Donation History, 18
Display Featured-NPOs, 25-26
documenting for GreaterCause application,
13-15
explanation of, 4-5
factoring behavior into, 14—15
Manage Campaigns, 188205
Manage Donation Cart, 1617
Manage NPO Profile, 21, 161-169
Manage Portal Alliance Profile, 21
Manage Portal-Alliance Profile, 176—181
Perform UI Customization use case, 21
Provide Featured-NPO, 23
Redirect to the GreaterCause.com Site, 26
Register Donor, 18-19
Register NPO, 20-21, 181-186
Register Portal Alliance, 21
Register Portal-Alliance, 169-176
Search NPO, 19
Update Campaigns, 23
Update Donation History, 18
user interfaces, purpose of, 334
user-specific state, managing with request
handlers, 142
users, configuring for GreaterCause application,
325-326

v

validate attribute of <action> element, setting,
138-139
Validator plug-in
configuring, 321-322
example of, 117-118
using, 148-152
ValidatorPlugln class in Struts, example of,
117-118
value object pattern, using, 139-140
ValueListlterator interface, implementing,
267-269
ValueObject, purpose of, 82

view in MVC implementation of Struts, overview
of, 92
<<View>> stereotype, advisory about, 165

w

Web containers, role in J2EE architecture
blueprints, 53
Web services
architecture of, 279-281
components of, 283
creating, 305-314
definition of, 276
developing, 288
features of, 282
implementing, 302-314
introduction to, 274-279
request-response interaction in, 300-301
testing with WebLogic Workshop tool, 309
WebLogic, 300
Web sites
authentication, 156
development methodologies and supporting
tools for, 282-283
Project Liberty, 73
service requester and provider
interactions, 281
Validator, 150
WebLogic Server domains, 322
WS-Routing and Referral
specifications, 282
XML schema for SOAP messages, 276
Web tier, role in J2EE architecture blueprints, 52
weblogic-cmp-rdbms-jar.xml deployment
descriptor, displaying, 220
WebLogic console, accessing, 309
WebLogic domain, configuring, 322-324
WebLogic server
selecting for FeaturedNPO
QueryService, 304
starting after installation, 322
WebLogic Server 7.0, obtaining installation
instructions for, 322
WebLogic Web services, features of, 300
WebLogic Workshop tool
benefits of, 302
configuring CampaignControl.ctrl file
with, 306, 308

design view provided by, 306-307

displaying source view for
FeaturedNPOService.jws with, 306,
308-309

example of, 285-288

launching test environment with, 306-307

project directories used by, 305

testing module deployed by, 306

wire frames for GreaterCause application

Advanced Search > Select Non-Profit, 347

Checkout, 348

creating, 35-36

Donation Cart, 348

Donor Preferences, 346

Donor Services and Search, 347

Home Non-Profit Administrator
Services, 338

Home > Administrator Login, 336

Home > Portal Administrator Services, 337

Home > Site Administrator Services, 337

Home > Site Administrator Services > NPO
Configuration > Update Profile, 345

Home > Site Administrator Services > NPO
Configuration > Update Registration, 344

Home > Site Administrator Services >
Portal Configuration > Create New
Campaign, 341-342

Home > Site Administrator Services >
Portal Configuration > Enter Portal
1D, 339

Home > Site Administrator Services >
Portal Configuration > Navigation
Bar Setup, 341

Home > Site Administrator Services >
Portal Configuration > Update
Campaigns, 343

Index

Home > Site Administrator Services >
Portal Configuration > Update
Profile, 340

Home > Site Administrator Services >
Portal Configuration > Update
Registration, 340

Home > Site Administrator Services >
Registration > NPO Registration, 339

Home > Site Administrator Services >
Registration > Portal Alliance
Registration, 338

Home Page, 336

Portlet (Gateway to GreaterCause), 345

Registration, 346

Tax Record, 349

WS-Routing and Referral specifications, Web

address for, 282

WSDL data typing, basis of, 288-289

WSDL documents, elements of, 284-285
WSDL files, example of, 285-295

WSDL namespaces, overview of, 289

WSDL (Web Services Description Language)

X

XML (eXtensible Markup Language), emergence
of, 275. See also Transactional XML

for FeaturedNPOQueryService, 356-358

overview of, 278

role in Web services, 283

specification summary for, 284-285

transmission primitives and exchange
patterns for, 292

XML signatures, overview of, 63—65
XMLC compiler, purpose of, 90

373

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9900-1800

FAX +61-2-9878-8881
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.
TEL +905-430-5000

FAX +905-430-5020
http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA
(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583

FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-6863-1580

FAX +65-6862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de Espaiia, S.A.U.
TEL +34-91-180-3000

FAX +34-91-372-8513
http://www.mcgraw-hill.es
professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,
EASTERN, & CENTRAL EUROPE
McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
McGraw-Hill/Osborne

TEL +1-510-420-7700

FAX +1-510-420-7703
http://www.osborne.com
omg_international@mcgraw-hill.com

