

Practical J2EE
Application Architecture

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio 1

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Practical J2EE
Application Architecture

Nadir Gulzar

McGraw-Hill/Osborne

New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio iii

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-223044-4

The material in this eBook also appears in the print version of this title: 0-07-222711-7

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention
of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in cor-
porate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-
hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in
and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the
right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify,
create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it
without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use
of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-
RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors
shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any dam-
ages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, con-
sequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such
claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072230444

ebook_copyright 7x9.qxd 8/6/03 8:44 AM Page 1

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you d like

more information about this book, its author, or related books

and websites, please click here.

,

To Mother, Farrah, and Munira

The journey was hard but I had you

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio v

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author
Nadir Gulzar has over 16 years of IT industry experience. Over the last several years, he

held the positions of senior architect, chief architect, and director of technology. Nadir is also

a J2EE evangelist and mentor, and has created and delivered several training courses. He has

worked on projects for global brand names like Sprint, Sears Roebuck, McKesson, and Visa

International where he was responsible for architecting and designing medium to large-scale

software systems. Nadir leads cross-functional teams comprising of business, creative, and

technology personnel for delivering solutions based on object-oriented principles and concepts

with particular emphasis on use case driven process.

About the Contributors
Govy Munamala is a Sr. Systems Architect at Inovant, a subsidiary of Visa International.

Govy has been involved at Inovant with major re-architecture effort for creating next

generation eCommerce applications using J2EE platform and XML-based technologies.

Govy is involved in architecting high volume transaction validation system deployed globally

by leveraging the latest advances in Java and XML-based technologies.

Kartik Ganeshan is a Java Architect with the Sun Software Services consulting organization

focused on delivering application architecture services, Java technology expertise, best practices

and methodologies for software development and design. Over the years, Kartik has had

extensive involvement in leveraging J2SE and J2EE platforms including the Sun ONE

architecture for building mission-critical enterprise applications and web services. His core

interests include J2EE architecture, Web service technologies, XML, and security.

Mansour Kavianpour has extensive experience in systems integration, CORBA, J2EE and

Web Services technologies. He is a well-known expert in the EAI community. Mansour was

involved in the creation of several OMG specifications. He has developed many successful

large-scale component-based systems.

Terry Markou has many years of experience in designing and developing various interactive

Web applications, using J2EE and XML technologies. His clients encompass the

transportation, real estate, medical, non-profit, and manufacturing industries, among others.

He has unique understanding and proficiency in both the artistic as well as the technical

aspects of Web application development.

Sarah Stritter Murgel is a usability and visual design specialist. She has worked on

interactive projects for global brands such as BEA Systems, SBC, and Visa.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio vi

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio vii

Enterpulse is fortunate to have professionals on its team who continue to
pioneer the technology landscape—providing insight into the application
frameworks we leverage to continually bring business value to our clients.

Our team is committed to enhancing and evolving our capabilities
through dedicated research into emerging technologies.
This McGraw-Hill/Osborne Media publication, focusing

specifically on application architecture using the J2EE platform,
is a testament to that commitment.

Enterpulse (www.enterpulse.com) is the professional services
firm that applies Internet technologies to improve human
connections among customers, suppliers, and employees.
The company's unique framework, ACE (Apply, Connect,
ExtendSM), is a proven approach that creates business

value by helping companies proactively understand
customer expectations, better manage supplier
relationships, and drive employee productivity

while achieving the highest possible rates of return.
We have deep competencies in advanced programming

and system integration, business process analysis
and vendor evaluation, and best-in-class partner

platforms. Our content management, custom
application, and portal solutions bring value

to the entire enterprise.

Atlanta, GA | New York, NY | Chicago, IL | San Ramon, CA
800.442.5177 | www.enterpulse.com

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

Contents at a Glance

Part I Requirements and Architecture Definition

Chapter 1 Requirements Analysis with Use Cases 3

Chapter 2 Information Architecture for Use Case Elaboration 29

Chapter 3 Application Architecture, Security, and Caching 49

Part II Design and Construction

Chapter 4 Struts-Based Application Architecture . 89

Chapter 5 Presentation Tier Design and Implementation 135

Chapter 6 Domain Model Design and Implementation 207

Chapter 7 Business Tier Design and Implementation 231

Chapter 8 Web Services for Application Integration 273

Chapter 9 Application Assembly and Deployment . 317

Part III Appendixes

Chapter A Detailed Use Case Description Template 333

Chapter B GreaterCause Wire Frames . 335

Chapter C GreaterCause Site Flow . 351

Chapter D FeaturedNPOQueryService WSDL . 355

ix

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For more information about this title, click here.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Contents

Foreward . xvii
Acknowledgments . xix
Introduction . xxi

Part I Requirements and Architecture Definition

Chapter 1 Requirements Analysis with Use Cases 3
Use Case Driven Modeling . 4
Defining the Problem Domain . 6

GreaterCause System Definition . 6
Identifying System Context . 8

GreaterCause Context Diagrams and Actors . 10
Identifying Risk Factors and Dependencies . 11

GreaterCause Risk Factors . 11
GreaterCause Dependencies . 11

Identifying Use Case Packages . 12
GreaterCause Use Case Packages . 12

Documenting Use Cases . 13
Documenting Scenarios with Activity Diagrams 14
Factoring Common Behavior and Variant Behavior 14
Creating a Use Case Summary . 15

GreaterCause Use Case Summary . 16
Manage Donor and Donations . 16
Search NPO . 19
Perform GreaterCause.com Site Administration 20
Manage Campaigns . 22
NPO Caching . 23
Portal Pass-through . 25

xi

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:43:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

For more information about this title, click here.

Summary . 27
References . 27

Chapter 2 Information Architecture for Use Case Elaboration 29
Beginning of Information Architecture . 30
Organizing Content . 31
Navigating Content . 34
Creating Wire Frames . 35
Detailing Use Cases . 36

GreaterCause Detailed Use Case Description . 37
Summary . 48

Chapter 3 Application Architecture, Security, and Caching 49
Application Architecture . 50

The 4+1 View Model of Architecture . 51
Creating a J2EE Architecture Blueprint . 52
J2EE Components in an Architecture . 54

Planning Application Security . 54
Identifying Security Requirements . 55
Functional Classification of Application Security 57

Digital Signatures . 61
Public Key Cryptography in Digital Signatures . 62
XML Signatures . 63

Single Sign-On . 65
Credential Mapping in SSO . 67
Elements of Single Sign-On . 67
Preventing Replay Attacks . 68

Java Authentication and Authorization Service . 69
Federated Network Identity . 73

Liberty Architecture . 74
Caching Overview . 79

Application Data Caching . 80
Cache Architecture . 81

Cached Data Invalidation in a Distributed Cache 81
Summary . 84
References . 85

x i i P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part II Design and Construction

Chapter 4 Struts-Based Application Architecture . 89
Struts as a Presentation Framework . 91

MVC Implementation . 91
Internationalization and Localization Support . 98
Error Handling . 101
Exception Handling . 105
Once-Only Form Submission . 107
Capturing Form Data . 108
Custom Extensions with Plug-Ins . 117

Struts Configuration Semantics . 118
Parsing the Configuration File . 118
Creating Configuration Objects . 120

Struts MVC Semantics . 126
The Controller Object . 127
The Dispatcher Object . 128
The Request Handler . 130

Message Resources Semantics . 131
Summary . 133
References . 133

Chapter 5 Presentation Tier Design and Implementation 135
Implementing Presentation Tier Classes . 137

Implementing ActionForm Subclasses . 138
Implementing Request Handlers . 140
Implementing the Business Delegate Pattern . 143
Implementing the Service Locator Pattern . 145
Factoring Tags into Design Process . 147
Factoring Validator into the Design Process . 149
Identifying Package Dependencies . 152

Implementing Application Security . 153
Realization of Site Administration Use Cases . 161

Manage NPO Profile Use Case . 161
Pattern Discovery and Documentation . 161

C o n t e n t s x i i i

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Register Portal-Alliance Use Case . 169
Manage Portal-Alliance Profile Use Case . 176
Register NPO Use Case . 181

Realization of Search NPO Use Cases . 186
Search NPO Use Case . 186

Realization of Manage Campaigns Use Cases . 188
Create the Campaign Use Case . 188
Update Campaigns Use Case . 201

Summary . 205
References . 205

Chapter 6 Domain Model Design and Implementation 207
Discovering Domain Objects . 208

Relationships in the Domain Model . 209
Creating the Data Model . 211
Implementing the Domain Model . 213

Defining the Admin Interface . 214
Defining the PortalAlliance Interface . 223

Using EJB QL with Find and Select Methods . 225
Defining the Campaign Interface . 228

Summary . 229
References . 229

Chapter 7 Business Tier Design and Implementation 231
Applying Design Patterns . 232

Implementing the Session Façade Pattern . 233
Implementing the Business Interface Pattern . 236
Implementing the Data Transfer Object Pattern 238
Implementing EJB Home Factory Pattern . 242

Identifying Package Dependencies . 244
Realization of the Site Administration Use Case Package 245

Register NPO Use Case . 246
Realization of the Manage Campaigns Use Case Package 259

Create Campaigns Use Case . 259
Update Campaigns Use Case . 262

x i v P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Realization of the Search NPO Use Case Package . 267
Search NPO Use Case . 267

Summary . 271
References . 271

Chapter 8 Web Services for Application Integration 273
Introduction to Web Services . 274

What Is SOAP? . 276
What Is WSDL? . 278
What Is UDDI? . 278

Web Services Architecture . 279
Development Methodologies and Supporting Tools . 282
Introduction to Web Services Description Language . 284

Summary of the WSDL Formal Specification . 284
A Closer Look at a Sample WSDL File . 285

Introduction to Simple Object Access Protocol . 295
SOAP Envelope . 296
SOAP Header . 297
SOAP Body . 298
SOAPFault . 299

GreaterCause B2B Integration . 299
Web Service Implementation . 302

Workshop SOAP:style Semantics . 314
Summary . 316

Chapter 9 Application Assembly and Deployment . 317
Installing and Configuring Struts . 320

Configuring the Struts Validator . 321
Configuring the WebLogic Domain . 322

Configuring the JDBC Connection Pool . 324
Configuring GreaterCause Users . 325
Deploying the GreaterCause Application . 326

Priming the Database . 328
Deploying GreaterCause.ear . 328
Building the GreaterCause Application . 329

C o n t e n t s x v

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Part III Appendixes

Chapter A Detailed Use Case Description Template 333

Chapter B GreaterCause Wire Frames . 335

Chapter C GreaterCause Site Flow . 351

Chapter D FeaturedNPOQueryService WSDL . 355

Index . 359

x v i P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Foreword

Consumers know what they want. Nowadays, the Internet is accessible to everybody.

Our children start playing with it at a very early age, but there is no upper age limit

for its use. We learn to be able to find any information we want quickly and easily.

We have little patience for slow web sites, knowing that there’s always somewhere else you

can turn. Just think, what’s your patience level for getting the information you want? Generally,

people start becoming impatient after only four seconds! And now the same technology has

become common in our workplace and we carry over those same levels of expectation onto

our corporate web experience. We start complaining about the static content of our work

systems and how we wish they were personalized and could learn from our use of them.

Most of all we wish we didn’t have to remember so many passwords and enter the same

information repeatedly.

The technically high-level might say, “well that’s all very simple—all you need is a Portal

system with personalization capabilities, campaign management, a solid application server to

support your business logic, single-sign-on security and probably some integration technology;”

and in essence they are quite right. They are right in the same way that you only need a dam

to control the Yangtze River in China—they’re overlooking the implementation detail, which

is often unexpectedly complex.

In the aerospace industry, this is very well known and we should all be thankful every time

we step on a plane for the painstaking analysis and design phases that took place before the

implementation and test phases began (of course, we’re not thankful and hardly give a moments

thought to the physics involved in getting a large metal tube to fly and all the interacting systems

that have to work in order to keep it flying—perhaps it’s better that we don’t). Aerospace

engineers have to get it right; lives are at stake. Even though we might think that commercial

software does not require such stringent development, it shouldn’t be that far removed. After

all, there are plenty of implementations, especially in the financial sector where system

downtime can cost millions of dollars per day. Even on a smaller scale, if your competitors

have a system that is more flexible to change in customer demand than yours, your bottom

line is likely to suffer.

So we have a paradox. User expectations on the systems we build are at an all-time high

(and can only get greater) and the consequent system requirements are increasing rapidly. At

the same time, the focus these days is on Return on Investment (ROI), value for money, speed

to market and flexibility to change. So how do we resolve this paradox? Quite simply, you

need to design carefully. As we have already observed, such sweeping statements are misleading

xvii

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

and the design process can easily be a very involved undertaking. But at the end of the day,

your system should be all the better for it. In all likelihood you will have avoided scope creep

(adding new requirements part-way through development that derails the project planning)

and, best of all, you may even have delivered what the customer wanted when they wanted it.

Understanding what your customer wants and rendering those requirements in a J2EE

framework is what this book is all about. Enterprise application development can be a daunting

task, so it is good to know there’s now a contemporary source of relevant material to show

you the way. This book pulls off the hardest trick of all—explaining complex topics simply,

enabling you to see the relevance in your work. After all, chances are you are new to some or

all of this technology and need to get up to speed in the fastest possible time.

So next time you check your account balance online or phone a support desk, gauge your

expectations against the experience you receive. Do you think they designed their system well?

Simon Rowell

Director, Technical Management

Global Alliances, Western US

BEA Systems, Inc.

x v i i i P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Acknowledgements

This book has been made possible by contributions from several individuals who

provided text, insight, guidance, and support in shaping of the book’s content.

I am indebted to Govy Munamala for his significant contributions in the shaping of

Chapters 6 (Domain Model Design and Implementation) and Chapter 7 (Business Tier

Design and Implementation), and in the design and development of business tier components

and the creation of corresponding data model. Govy also provided the Ant build script

explained in Chapter 9. My deepest appreciation to Kartik Ganeshan for contributing to the

security-related content, and to Ali Siddiqui for helping shape the caching-related content

that appears in Chapter 3. Special thanks go to Mansour Kavianpour for helping me shape

Chapter 8 and for his significant contributions to this chapter. I am very grateful to Terry

Markou for his assistance in the production of Web pages and to Sarah Murgel for creating

the graphics for the site. Both Terry and Sarah provided assistance in validating the information

architecture. I am very appreciative of the help provided by Enterpulse staff—most importantly

the support provided by Geoff Faulkner, Jennifer Wilde, and Jacques Vigeant.

I am very grateful to the staff of McGraw-Hill/Osborne Media publication for their support

throughout this project. The content of this book has the benefit of technical editing from

Anne Horton and copy editing from Darren Meiss, and their efforts have greatly improved

the presentation. Many thanks go to Athena Honore and Julie Smith for helping me focus

on the delivery dates, and for providing the coordination, guidance, and encouragement

during the project. Julie Smith worked tirelessly with the production team to get this book

out on time. I am eternally grateful to Wendy Rinaldi for her encouragement and support,

for without her belief in me this book would not have been written.

My very special thanks to Denyse Kehoe for introducing me to Osborne/McGraw-Hill

publications.

I have benefited greatly from reading the works of other successful authors whose books

have been mentioned in several chapters. My sincerest thanks to these authors for broadening

my horizon in various disciplines of software development.

Last but most importantly, I would like to express my gratitude to my wonderful daughter

Farrah and my lovely wife Munira for their infinite patience, support, and sacrifice during the

course of this project.

Nadir Gulzar

xix

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

Developing large-scale enterprise applications involve several processes and

technologies for creating a truly extensible, maintainable, and resilient object-

oriented architecture. To be able to deliver an application that both completely

meets the business goals set forth, and is able to evolve over the years without requiring

significant redesign, warrants an open, flexible, and standards-friendly architecture. Careful

articulation of the problem domain, and the requirements of its consumers, is just one aspect

of ensuring that an architecture is created for supporting the current and future needs of the

business. The problem domain definition must also become a means of driving the design,

and development process. We should be able to trace the design and development artifacts to

the original requirements to ensure consistency between the stated requirements and what is

being delivered. This traceability between requirements and other project related artifacts

ensure that the design view of the system is consistent with its use-case view.

Creating a use case view of the system is a meticulous process in which Information

Architecture also plays a significant role. Translating the use case view into a corresponding

design view for a multi-tiered architecture entails using the incremental and iterative process

of domain modeling, business-tier process modeling, implementing presentation semantics—

all within the context of a design that will allow maximum reuse within all tiers of the

application. When you add to this compendium the need to understand the underlying

component technologies, and the need to follow development methodologies and processes

for managing project life-cycle, you can see that we are faced with a huge learning curve for

creating a prototypical application that validates our approach for a large-scale solution.

While the processes and technologies required to address all of the varied disciplines we just

discussed are well-documented in several books, it is not practical for all J2EE enthusiasts to

pour through each several-hundred page book before they’re able to create a real world

end-to-end solution. Serially learning each of the disciplines of software development is not

efficient either, since it takes a lot more time, and is further compounded by our inability to

retain unused information for long time. This book offers a “what you learn is what you use”

approach that provides a blueprint for establishing a base-line architecture for most Web-

based applications. This approach gives J2EE enthusiasts the opportunity for a fast ramp-up

by allowing them to immediately apply the concepts they’ve learned to solve a real-world

xxi

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

problem. It also provides both developers, and students aspiring to become architects, a

one-stop source for the following:

� Use case driven modeling and development

� Role of Information Architecture in use case elaboration

� Formulating the security strategy of the application

� Understanding the need for presentation framework in the context of

an MVC architecture

� Using the Struts framework

� Identifying implementation patterns for enabling Struts adoption in a consistent manner

� Capturing static aspects of the Design View of the system using class diagrams, and

dynamic aspects using sequence diagrams

� Modeling interactions between the presentation tier components, interactions between

the business tier components, and interactions between inter-tier components (between

presentation and business tiers) using best practice design patterns

� Implementing the Design View using J2EE component technologies

� Implementing Web services using J2EE component technologies

Who Should Read This Book
Part I of this book is helpful for architects, developers, project managers, quality assurance

teams, information architects, and anybody else who cares to understand the process of

requirements analysis. The rest of the book is for budding architects, corporate developers,

and students who are planning to build enterprise-class business applications for the J2EE

platform. For Part II of this book, it is expected that the readers are familiar with object-

oriented principles and concepts, and familiarity with UML is essential. This book assumes

that the readers have familiarity with basic J2EE concepts, and the development and

deployment of simple J2EE components.

Technology teams who will be creating a reference architecture or a prototypical

programming model for upcoming projects will be able to harvest design templates from

the accompanying material for their baseline architecture. Several best-practice J2EE design

patterns, and their interactions and dependencies, have been captured in the accompanying

sample application. The sample application provides a good place to start evolving the

programming model based on your unique project requirements. Technology teams wanting

to understand the architecture and adoption of presentation tier frameworks will benefit from

the discussion on Struts.

The book’s emphasis in on architecture and design and less on programming aspects, and

as such, this book is not a complete coverage of the J2EE platform or Struts framework.

Readers are provided with references to resources and books for completing their understanding

x x i i P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the material covered in this book. Also, this book is not exhaustive in its coverage of design

patterns, as the subject of design patterns is vast and covered by large number of books, and

there are several sites dedicated to discussing design patterns. The Web service implementation

in this book is based on BEA WebLogic Workshop, which provides an abstraction over

JAX-RPC API, as such programming with JAX-RPC API is not covered in this book.

How to Use This Book
Since this book employs a blueprint-like approach, it is best to read this book from beginning

to end. This book develops the use cases for the sample philanthropic application GreaterCause

in Chapter 1 and then discusses the impact of information architecture on evolving the use

cases in Chapter 2. Chapter 3 is an optional read, however we encourage the readers to skim

through the Application Architecture section as it sets the stage for the rest of the book. If

you are already familiar with Struts and the related architecture then you can skip Chapter 4.

Chapter 5 through 7 builds components for each of the application tiers and the associated

use cases are realized incrementally in each of these chapters. Chapter 8 implements a Web

service using the components developed in Chapters 6 and 7. Please note that the Web service

implementation in Chapter 8 is based on BEA WebLogic Workshop. Chapter 9 provides

information on installing and exercising the sample application. If your choice of application

server is WebLogic, then Chapter 9 provides step-by-step instructions on installing the WebLogic

Server 7.0, and deploying and exercising the sample application.

About Companion Website and Download
The sample application with accompanying binaries, source files, documentation, and errata

links is available at http://www.osborne.com. Please follow the instructions provided by

Osborne Media to locate the book specific links. References to source distribution in this

book refers to the source made available in the download package. Complete information on

the content of the download package is provided in Chapter 9.

Organization of this book
Part I, Requirements and Architecture Definition consists of Chapters 1 through 3.
Chapter 1, “Requirements Analysis with Use Cases” explains the process of defining the

problem domain in the form of a use case view of the system. The sample application is

decomposed into discrete functional units, with each such functional unit expressed as a

separate use case. Each use case is explained using a standardized template, which explains

the system behavior from the perspective of external entities interacting with the use case. A

use case view is essential for creating a common understanding of the system behavior between

I n t r o d u c t i o n x x i i i

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the business domain experts, the application architect, and developers, without specifying

how that behavior is implemented. The use case view developed for the sample application is

prerequisite for understanding other chapters of this book.

Chapter 2, “Information Architecture for Use Case Elaboration” explains the impact of

information architecture for comprehensively defining the use cases. In this chapter, we

elaborate the use cases of our sample application by being more explicit in expressing the

user interaction with the system, and the associated transactional semantics. Information

architecture is crucial for devising schemes for organizing, labeling, navigating, indexing,

and searching content. These aspects converge into a storyboard when creating a prototypical-

view of the system’s UI. The navigation semantics of the application are explained using a

site flow that clearly articulates the page transitions associated with user actions—this

information will be used when configuring the Struts framework.

Chapter 3, “Application Architecture, Security, and Caching” introduces important

aspects of application architecture as it pertains to the J2EE platform (although the actual

architecture of the sample application is gradually build throughout this book using a use

case driven approach). This chapter discusses security, and provides a high-level architectural

overview in the context of prominent technologies and specifications which should assist the

readers in determining their unique security infrastructure needs, and the eventual selection

of a best-of-breed solution. This chapter also covers federated network identity based on the

Project Liberty Architecture. Finally, the chapter ends with a discussion on caching that explains

common caching solutions and explores a basic caching architecture.

Part II, Design and Construction consists of Chapters 4 through 9.
Chapter 4, “Struts-Based Application Architecture” discusses the benefits and design

considerations for a presentation-tier framework based on Model-View-Controller

architecture. This chapter discusses key aspects of such a framework in the context of Struts.

We explore Struts architecture, its implementation and configuration semantics, and basic

usage for providing quick familiarity to our readers on varied aspects of Struts. The material

provides under-the-hood information on Struts, giving readers the necessary background to

evaluate its applicability in their problem domain. The information provided in this chapter

will be adequate to follow the use case realizations in Chapter 5.

Chapter 5, “Presentation Tier Design and Implementation” is focused on use-case

realization for the presentation tier functionality of the sample application. Emphasis in this

chapter is on creating the static and dynamic models of the system while utilizing the best

practice J2EE design patterns for realizing client-side semantics. This chapter also identifies

Struts implementation patterns that provide repeatable solutions for solving complex user

interactions. Templates can be derived from these patterns for assisting the development team

in establishing a consistent design vocabulary and implementation across all use cases,

thereby improving readability and maintainability of the code. These patterns will serve as a

starting point from which to evolve.

Chapter 6, “Domain Model Design and Implementation” is focused on creating a domain

model and the corresponding database schema for persisting the domain objects. In this

chapter we identify domain entities and their relationships. We use J2EE container services to

x x i v P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

both access and persist the domain entities and their relationships. This chapter also discusses

configuration aspects of container-managed fields and container-managed relationships for

entity beans with container-managed persistence. The domain model implemented in this

chapter forms the basis for implementing business tier components in Chapter 7.

Chapter 7, “Business Tier Design and Implementation” is focused on use-case realization

for the business tier functionality of the sample application. This chapter discusses and

implements several best-practice business tier design patterns. Emphasis in this chapter is on

identification of appropriate design patterns in the context of our problem domain and the

application of these patterns for solving common problems during the design and development

of the business tier. This chapter also discusses the configuration aspects of stateful and

stateless session beans and the transactional semantics associated with Enterprise JavaBeans.

Chapter 8, “Web Services for Application Integration” introduces the Web services

technology and its associated standards. It brings to light key aspects of the WSDL and

SOAP specification so that readers are able to discern the relationships between WSDL

constructs and the corresponding SOAP message constructs. The concepts learned in this

chapter are subsequently applied in the creation of a Web service in the context of our sample

application using BEA WebLogic Workshop.

Chapter 9, “Application Assembly and Deployment” focuses on installing and configuring

the WebLogic Platform 7.0, and deploying the sample GreaterCause application.

I n t r o d u c t i o n x x v

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Front Matter

P:\010Comp\ApDev\711-7\fm.vp
Wednesday, May 28, 2003 1:27:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio 1

PART

I
Requirements and

Architecture Definition

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

1
Requirements Analysis

with Use Cases

3

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Use Case Driven Modeling

Defining the Problem Domain

Identifying System Context

Identifying Risk Factors and Dependencies

Identifying Use Case Packages

Documenting Use Cases

GreaterCause Use Case Summary

Summary

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Developing large-scale software solutions reminds us of the many different perspectives

that different stakeholders have about the end product. At the outset, there is nothing

concrete to visually depict the semantics and mechanics of the end product. At this

juncture of the project, we have an abstract view of the software to be developed. As such, it

is imperative to find a common ground for all stakeholders to agree upon, without which we

run the risk of creating a product that tends to lend itself to the vision of only a certain interest

group. It is necessary to ensure creation of a product that is a representation of the organization’s

business needs and the needs of all its users and sponsors. Therefore, we must resort to providing

a requirements vocabulary that is easily understood by all stakeholders. This chapter’s focus

is to assist the readers in creating such a vocabulary using use cases, activity diagrams, and

flow of events.

However, before we begin, there has to be an expectation about the level of impact the artifacts

in this chapter will have on defining a project’s requirements. Use cases are at the center of this

effort. Use cases can be created at different levels of abstraction. A use case diagram can be used

to model the behavior of an entire system, subsystem, or a class. Getting too detailed in the first

iteration could result in a lot of rework if the requirements are not well understood. Therefore,

it is important to remain at a level of abstraction that clearly captures the requirements from the

point of view of business domain experts, project sponsors, end users, customers, and executive

management. We will call this group collectively stakeholders. For this group, we want to avoid

too much, too fast, too early in the project. You will experience that just getting to agree on high-

level requirements takes several iterations. This is not unusual since the process of requirements

definition is evolutionary, and with every iteration we have opportunity to discover and improve.

The requirements team is made up of stakeholders and one or more members of the technical

staff; use cases are a contract between these two groups, and therefore appropriate representation

from both sides is critical to the success of the project. Special needs of the project can be met by

augmenting the requirements team with appropriately skilled members; for example, if the system

is going to interface extensively with a CRM solution, it will be helpful to have assistance from a

person experienced in the CRM space and CRM software.

Another viewpoint that we would like to suggest is that all through the process think reuse

and think decomposition. This mode of thinking helps us factor common behavior into use

cases, and finally package a set of related use cases into subsystems. The next chapter is a

logical progression from this chapter and helps us map the requirements of this chapter in

terms of information architecture that provides a prototype of the end product to the stakeholders

and developers. Use cases will be elaborated during information architecture, therefore our

endeavor for completely capturing functional requirements will conclude in Chapter 2. Use

case realization is the focus of Chapters 5 through 8.

Use Case Driven Modeling
The Unified Modeling Language User Guide (UML) defines a use case as follows:

A use case specifies the behavior of a system or a part of the system and is a

description of a set of sequences of actions, including variants, that a system

performs to yield an observable result of value to an actor.

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A use case is an outside view of the system as seen by the entities interacting with the use

case. It is used for capturing the requirements of a system. A use case is not atomic; a use

case representing a complex system behavior can be further decomposed into more use cases.

A use case is essential for creating a common understanding of the system behavior between

the business domain experts, the application architect, and developers, without specifying

how that behavior is implemented. During design, a use case is realized by a set of related

objects working together to deliver the behavior prescribed by the use case. Models created

during design must be able to map back to the requirements by their ability to satisfy each

use case within the problem domain. The use cases therefore help validate the architecture.

In an iterative design and development process, use cases enable catching of deviation from

requirements early in the life cycle; all models and project artifacts are synchronized for

accurately reflecting the purpose of the system all throughout the project life cycle. As such,

risks are identified early in the process, therefore preventing major rework later.

Use cases document the system and form the bases of test cases for user acceptance,

integration, regression, and system tests. This approach has built-in traceability because all

design, development, and testing is performed based on use case scenarios. The use cases

become a contract between the business units and the IT organization. By employing incremental

and iterative approaches, this contract is enforced throughout the development life cycle by

verifying intermediate artifacts against the behavior prescribed by the use cases. The use case

model is central to all analysis and design artifacts, and for project planning.

NOTE
This book consistently strives to live by the word “practical” in its name. Therefore, every concept presented
in this book is explained using the fictitious GreaterCause application. The use cases discussed in this chapter
will lay the foundation for understanding the problem domain. The use cases will be subsequently realized
using architecture and design artifacts explained in the rest of the book.

Subsequent sections in this chapter explain what, why, when, and how to capture system

requirements for the sample application. In this chapter, the following sections denote the

artifacts created for the sample application:

� GreaterCause System Definition

� GreaterCause Context Diagrams and Actors

� GreaterCause Risk Factors

� GreaterCause Dependencies

� GreaterCause Use Case Packages

� GreaterCause Use Case Summary

Familiarity with the preceding structure will assist you in distinguishing the project artifacts

from the commentary that surrounds the artifacts.

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Defining the Problem Domain
To promote understanding of the problem domain, we ask ourselves several questions, some

of which can be stated as follows:

� What business needs will the software try to solve?

� Who are the users of the system?

� What functionality will be supported by the system?

� What are the interactions between different subsystems?

� What components in the problem domain can be provided by a third party as

off-the-shelf components?

� What components of the system can be isolated to form reusable, self-contained

subsystems?

The answers to these and myriad other questions help us understand the solution space.

We will be gradually answering these questions as we proceed through the book.

The first step in understanding the problem domain is to create a project description. A project

description should explain the purpose of the project. It must be concise, and it should quickly

demonstrate the business objective. You will be surprised how many different perspectives

evolve at this time from different stakeholders. At this stage of the project, most stakeholders

are concerned with return on investment. A project description is therefore the first consensus

point between stakeholders because it clearly states the objectives of the new system.

TIP
Before you begin to write the system description, you may find it helpful to define domain-specific terms for
your audience; this will establish a common vocabulary for communication. You may optionally provide an
operational model for added clarification, as shown in Figure 1-1.

GreaterCause System Definition
The following terminology is consistently used in defining the problem domain.

� GreaterCause is a philanthropic application that is hosted at a central location.

� GreaterCause.com is the domain name of the site where the GreaterCause application

is accessible as a hosted service. For brevity, the term “site” will refer to the

GreaterCause.com site.

� Portal is a personalized single point of access for business and consumer services.

� Portal-Domain is the domain that hosts a consumer portal or a corporate intranet.

� GreaterCause.com Portal-Alliance is formed as a result of portals providing a

pass-through or gateway component, also called a portlet, on the portal page for

redirecting portal users to the GreaterCause.com site.

6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� NPO is a non-profit organization that registers with GreaterCause.com site for

soliciting charitable contributions from prospective donors.

The GreaterCause.com domain is responsible for hosting the GreaterCause charitable-

giving application at a central location. The site is accessible to the donors via various

consumer portals and corporate intranets.

Portal-providers create an alliance (i.e. a service contract) with GreaterCause to procure

the GreaterCause services for their user base. An agreement between a portal-provider and

GreaterCause to serve the portal’s users is termed Portal-Alliance. Each portal-alliance has

an associated administrator ID and password using which the portal-alliance Administrator

(an employee of the portal provider, or its designate) can maintain the portal-related profile

information. The portal-provider interposes itself as a gatekeeper to the GreaterCause application

by using a portion of the portal’s real estate to provide an intelligent gateway or pass-through

to the GreaterCause site for their subscriber base. The GreaterCause pass-through is available

as a portlet. This portlet is aggregated into the portal view of the partnering portal-domains.

Non-profit organizations (NPOs) register with GreaterCause to list themselves in the

GreaterCause database for receiving charitable contributions (i.e. donations) from the visitors

of the GreaterCause.com site. Each registered NPO is provided with an administrator ID and

password using which the NPO administrator can maintain its related profile information.

Although, GreaterCause.com visitors can donate to any of the available charities (i.e.

NPOs), a portal-provider can influence the decision of a donor in the selection of a preferred

charity; this is done by campaigning for the preferred NPOs. Portal-alliance administrators

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Figure 1-1 GreaterCause operational model

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

have the ability to log in to the GreaterCause.com site with their administrator ID and create

campaigns for non-profit organizations at both the national and regional level. These portal-

alliance–specific campaigns for preferred NPOs are stored at the GreaterCause.com site and

subsequently featured by the portal-domains on their respective portal-page. The list of featured

non-profit organizations (featured-NPOs), created by the portal-alliance administrator in the

GreaterCause.com database, is provided via a web service to each portal-domain; this list is

subsequently displayed by the portlet hosted within the portal-page. Prospective donors

visiting the portals are provided with the option to donate to either the featured non-profit

organizations, or pass through directly to the GreaterCause.com site for searching and

donating to a non-profit organization of the donor’s choice.

Once a portal-user is redirected to the GreaterCause.com site by the portal-provider, the

GreaterCause service, as viewed by a portal-user, is customizable by portal-alliance administrators

for preserving the branding and navigation structure of their respective portal-domains. The

portal-domain, before redirecting the portal-user to GreaterCause.com, is responsible for

authenticating the portal-user (a.ka. the donor). The portal-domain and the GreaterCause.com

site mutually authenticate before redirecting the donors. Donor’s registration information is

provided by the portal-domain to GreaterCause.com during the redirection process.

All transaction history is logged using the donor’s registration ID and portal-domain

affiliation. Donors have the ability to view their history of donations for the current and

previous year.

TIP
The description of the system provides a vocabulary that consists of real-world objects. Use case names are
derived from this vocabulary and tend to express the behavior of the system in short, present-tense verb
phrases in active voice; the use case being named must represent a reasonably atomic behavior of the
system. In the use case context, a client is an external actor to the use case—which could be a human,
another software system, or an asynchronous message. Therefore, a use case name is most effective when
expressed from the perspective of the user.

Identifying System Context
The behavior and semantics of the system is best understood from the point of view provided

by who needs the system, how they intend to use it, and who the system interacts with to satisfy

the needs of its users. Each entity surrounding and interacting with the system constitutes the

system’s context, whether it be a consumer or a provider; this is illustrated in Figures 1-2 and

1-3 by the directed lines representing paths of communication.

Modeling the context of the system is useful in understanding how it interacts with other

systems in an ecosystem of interconnected systems. An external entity communicating with

the system is an instance of an actor; actors are not part of the system. An actor could be an

individual, another software system, an asynchronous message, or a piece of external hardware.

More specifically, an actor defines a particular role played by an entity within the context of

the system; this implies that an entity may be represented by one or more actors because the

entity takes different roles with regard to the system and, similarly, an actor represents one or

more entities that represent the same role within the context of the system.

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 9

Figure 1-2 Portal-domain context diagram

Figure 1-3 GreaterCause System Context Diagram

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GreaterCause Context Diagrams and Actors
It is apparent from the project description that we are dealing with two interacting systems,

the core GreaterCause service and the GreaterCause components residing on the servers of

the portal-domains. For brevity, we will not evolve the documentation for both systems separately

but show separate models where appropriate. You will see in the context diagrams for the two

systems that they appear as actors within the other’s context.

NOTE
Stereotyping is a UML extension mechanism, with which one can provide additional semantics to a model
element in the context of a specific problem domain. We have extended the actors, packages, and use cases
with two stereotypes, <<GreaterCause.com>> and <<Portal Domain>>, to
identify entities or elements on the GreaterCause.com domain and on the portal-domain, respectively.

The following is a list of all actors interacting with the GreaterCause application:

� Donor A donor is a user of the GreaterCause services. A donor has an affiliation with

a portal, with which the donor can access the GreaterCause application.

� Credit card processor A credit card processor is an external system that processes

the credit cards.

� GreaterCause.com site administrator The primary responsibility of a site administrator

is to create configuration information for registering portal-alliances and NPOs. Only

portals configured in the GreaterCause.com site can provide the GreaterCause services

to its user base. The site administrator can impersonate an NPO administrator or a

portal-alliance administrator; this allows a site administrator to function as a stand-in

for an NPO administrator or portal-alliance administrator.

� Portal-Alliance administrator Portal-alliance administrators are responsible for

creating global and regional campaigns for featuring non-profit organizations on their

respective portals, and for maintaining the profile information for their portal-domain.

Portal administrators are also responsible for providing the configuration information

required to customize the UI experience of GreaterCause.com site users. Login

credentials for portal-alliance administrators are created by the GreaterCause.com

site administrator.

� NPO administrator The NPO administrator is responsible for maintaining the

profile information for NPO. Login credentials for the NPO (non-profit organization)

administrators are created by the GreaterCause.com site administrator.

� Portal domain Portal domains rely on the GreaterCause.com site to provide the list

of featured-NPOs associated with active campaigns. The portal domains provide donors

with an option to donate to one of the featured-NPOs before redirecting donors to the

GreaterCause.com site.

The following is a list of all actors interacting with the portal-domain:

1 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Donor Explained in context with GreaterCause actors.

� GreaterCause.com GreaterCause.com provides charitable giving–related services to

the users of the portal-domains. Additionally, it provides a list of featured-NPOs to the

portal-domains.

Identifying Risk Factors and Dependencies
Once the project description is completed, the next step is to assess the risks and dependencies

associated with the project. Knowing this information up front mitigates the risks early in the

project life cycle. You must also document all assumptions. Once you obtain factual data,

some of the assumptions become assertions and can be removed from the list. Some of the

risk factors and dependencies for the GreaterCause application are listed in the following

sections to illustrate some possibilities.

GreaterCause Risk Factors
Following are some of the GreaterCause risk factors:

� Portals may be restrictive in how they exchange information with GreaterCause.com site.

� Will a generic composite view template with limited UI customization meet the needs

of the portal providers?

� Will the architecture support phase-2 functionality for funds disbursement?

� Will the portal provider agree to single sign-on semantics? It is expected that the

portal-domain will authenticate the user before forwarding the request to the

GreaterCause.com site.

GreaterCause Dependencies
Following are some of the GreaterCause dependencies:

� Project will use the Struts MVC framework. Engineers associated with this project will

need to be trained on Struts.

� Site functionality can only be finalized after obtaining buy-in of pilot portal-alliances.

� Pilot portal-alliances must agree on using Web services for receiving the featured-NPO list.

NOTE
Apart from documenting functional requirements of the system, one must also document the nonfunctional
requirements that address the need for performance, load balancing, failover, platform dependencies,
framework usage, adherence to standards, vendor preference, usability, etc. These are specific to
organizations, applications, and platforms; as such, they will not be discussed in any detail in this book.

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 1 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Identifying Use Case Packages
A use case diagram represents some behavioral aspect of a system, subsystem, or a class. It

consists of a set of conceptually and semantically related use cases. The aggregate of all the

use cases in all the use case diagrams represents the system functionality; this is also called

the static use case view of a system. However, each individual use case with its associated set

of sequences of actions constitutes the dynamic view of the system. The focus should be on

creating use cases that factor common behavior, and then grouping use cases that are relevant

to each other, both conceptually and semantically, in producing a desired system behavior.

Such groupings form independent, self-contained functional units that could be packaged as

subsystems during the analysis phase. Use cases in each package must have strong cohesion

to each other and exhibit loose coupling with other packages.

Decomposing the system into packages has the advantage of modularizing the system,

making it simpler to understand, manage, and document. The atomicity at the level of

subsystems enables concurrent analysis, design, and development effort of different subsystems.

The package hierarchy defined in the requirements phase can be used to model the structural

view of the system during the analysis phase, and each package could potentially result in a

subsystem. However, during the analysis phase you will also discover several supporting objects

interacting with multiple packages. For example, the authentication module, the error reporting

module, and the service locator module could be common to several packages; therefore, in

the analysis phase, the package structure will need to be modified for housing such components.

During the analysis phase, you may find the need to break down a package into subordinate

packages; make sure the nesting is not more than a couple of levels, otherwise the packages

get harder to manage.

Once the key abstractions are identified in the system context, we are able to distinguish

functionally related use cases and move these into packages. Let’s briefly define these groupings

and then assess whether each grouping cohesively expresses an independent functional unit.

Figure 1-4 depicts the system’s use case packages with dependency relationships between

several packages. This relationship is shown using a dashed line with an arrowhead pointing

in the direction of the package that the other depends on. The dependency implies that a

package is dependent on another package for some services or has structural knowledge

about the elements in the other package.

GreaterCause Use Case Packages
GreaterCause use cases are distributed among packages shown in Figure 1-4. Refer to the use

case diagrams corresponding to each package under the later section “GreaterCause Use Case

Summary” for package description and for the use cases allocated to each package. The use

case diagrams associated with each package in the section “GreaterCause Use Case Summary”

depicts package interactions or dependencies using actors as stand-ins for related packages.

Once the decomposition has been accomplished, the use case diagrams can show package

interactions or dependencies using actors as stand-ins for package-related functions. This

notation supports the definition of a system context where every subsystem boundary scopes

the behavior from the point of view of all the actors interacting with the subsystem.

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 1 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Documenting Use Cases
Use cases can be documented quite extensively. One can include activity diagrams to model

primary and alternate scenarios of the use cases, and sequence diagrams to model interaction

between various actors and the system. Although one could model sequence diagrams for use

cases, in most cases you will find that the activity diagrams are sufficient for documenting

the various use case scenarios. Again, you do not have to have an activity diagram for every

use case; use it to explain complex scenarios.

The use case documentation should be augmented by text that explains the main flow of

events (primary scenarios) and alternate flow of events (secondary scenarios). These flows of

events are documented in the language of the problem domain. Recall that a use case describes

a set of sequences, therefore other than the main flow we need alternate flows to document

those sequences that support exceptional behavior resulting from changes in system state,

application exceptions, or an actor exercising different options. Each sequence or scenario

is an instance of the use case the same way an object is an instance of a class. The flow of

events must state the event or action that starts a use case, and it must clearly state how the

use case ends. It must also include interactions with actors; this could include actions taken

by the actor for requesting a system service or actions taken by the system for requesting

service from the actors. The steps in a scenario are expressed as request-response interactions;

for example, an actor requests a service and the system responds with an action. Scenarios

are always written from an actor’s viewpoint. This flow of events could be numbered for

improved readability and may also contain preconditions and postconditions. We will see

numbered flows of events, preconditions, and postconditions in Chapter 2, dealing with

information architecture, where we will further elaborate a limited number of use cases

using wire frames.

Use case documentation must clearly explain the purpose of the system without being too

specific or too brief to cover essential system behavior. Focus should be on being complete

rather than detailed in requirements analysis. Use cases have this duality of capturing

Figure 1-4 Decomposing the system into packages

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

requirements and expressing these requirements as behavior from an actor’s viewpoint. Tailor

the documentation to your audience and ask yourself, “Will the documentation effectively

communicate the purpose of the system to the stakeholders, QA engineers, web production

engineers, designers, and developers?” It may also help to engage a technical writer for

documenting use cases. In this chapter, we are going to focus on a higher level of abstraction

and then elaborate the use cases in Chapter 2.

Documenting Scenarios with Activity Diagrams
Activity diagrams model the dynamic aspects of a system. During use casing, an activity

diagram helps a modeler to comprehensively depict a use case’s dynamic behavior and its

interaction with actors. Other than clearly articulating the flow of events for the stakeholders

and developers, the knowledge derived from creating activity diagrams can be applied for

adjusting the architecture such that conceptually and semantically related use cases with high

degrees of cohesion are allocated in the same package. The cohesion between use cases is

represented using the include or extend relationships, as explained in the next section, “Factoring

Common Behavior and Variant Behavior.” Should a readjustment in architecture lead to a use

case being reallocated to another package, then any previously existing “include” relationships

will become a “dependency” relationship.

Although the interaction diagram focuses on objects passing messages to each other, the

activity diagrams focus on messages passed between objects. The messages make up the

activity state in an activity diagram. The level of abstraction for depicting states in an activity

diagram depends on whether you are using an activity state or an action state. An activity

state is non-atomic and can be further decomposed in more activity states and/or action states.

An action state represents an executable atomic computation that cannot be decomposed any

further. A transition from a source state to target state is triggered by the completion of all

activities in the source state.

TIP
In an activity diagram, the transitions leaving a decision node (diamond-shaped node) can be labeled
with guard conditions. These guard conditions represent if-else scenarios. Also, you can label a transition
as an event.

Factoring Common Behavior and Variant Behavior
Use the “include” relationship to factor common behavior in use cases. Factoring common

behavior into separate use cases makes the system modular and promotes reuse. Later, in section

“Manage Donor and Donations” (Figure 1-5), you will observe that the Register Donor process

always includes Manage Donor Preferences; this is because donor preferences are always set

the first time the registration process is instantiated. Also, Checkout includes Update Donation

History because a successful checkout results in the creation of transaction history.

The include relationship is used when a use case is always going to be included in another

use case. Its execution is not conditional. For conditional includes, use the extend relationship.

The extend relationship differs from the include relationship in that the use case in an extend

1 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 1 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

relationship conditionally injects itself into a base use case, at predetermined extension

points. Factoring variants helps isolate exceptional behavior into separate use cases thereby

simplifying the base use case.

An include relationship is represented by a directed link from the including use case to the

included use case; an extend relationship is represented by a directed link from the extending

use case to the use case that it extends. In the use case model, the include and extend relationships

are rendered as stereotypes. In the flow of events, use the notation “include” (included use

case) to include the behavior of another use case, as shown in the Checkout and Register

Donor use cases in the package Manage Donor and Donations. Both include and extend must

instantiate within the system boundary of its base use case; in other words, include or extend

relationships cannot span between use case diagrams.

Creating a Use Case Summary
Consider a use case summary as an initial milestone in the requirements analysis effort.

A use case summary is critical for several reasons:

� For quickly and accurately identifying the behavior of the system to stakeholders

� For requesting appropriate project funding and staff for subsequent phases of the project

� For project managers to prepare project plans

� For communicating requirements to the next phase of the project

� For fast ramp-up of individuals coming onboard the project team in the middle of the project

Figure 1-5 Use case diagram—Manage Donor and Donations

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

In this section, we will explain all the packages of the GreaterCause application, and their

subordinate use cases and associated flow of events. Although explaining UML is beyond the

scope of this book, wherever essential, we will explain how to appropriately use certain key

notations accompanied with practical examples. The documentation style used in this book

is suggestive and not prescriptive. You may have a variation of this based on your unique

environment and team dynamics. For further information on applying use cases and associated

techniques please refer to “Applying Use Cases” by Geri Schnieder et. al. [Use Cases], “Use

Case Driven Modeling with UML” by Doug Rosenberg [Object Modeling], and “The Unified

Modeling Language User Guide” by Grady Booch et. al. [UML].

GreaterCause Use Case Summary
This section documents each use case package independently. The packages are explained using

use case diagrams and, where appropriate, activity diagrams are shown as well. The documentation

also consists of a high-level summary of main and alternate flows of events for each use case.

Manage Donor and Donations
This package pertains to donor-related services. These services primarily include donor

registration, making donations, managing the shopping cart, and providing donors with the

ability to view their donation history (a.k.a. tax record) for the current and previous year.

TIP
The activity diagram of Figure 1-6 is focused on communicating a single aspect of the system, and that is
“Making a Donation.” Use more activity diagrams to show other aspects of the system. Activity diagrams
can be used to explain systems, subsystems, class, operations, and use cases. You want to create activity
diagrams mostly for explaining complex processes.

NOTE
The activity diagram of Figure 1-6 depicts the flow of events when a donor selects an NPO to donate to. The
diagram clearly articulates the various processes involved in completing a donation process. The readers of
the documentation will find it helpful to have a high-level view of certain complex sequences of events,
especially the ones that illustrate a process flow.

Manage Donation Cart Use Case
This use case handles the process of displaying, adding, removing, and modifying donations

in the donation cart.

Main Flow of Events The use case is instantiated when a donor selects an NPO on the search

results page, or selects the donate function for a featured-NPO in a portal-page. The donor is

presented the donation cart with the selected NPO added to the cart. The donor enters the donation

amount for the new donation. At this time, the donor can also modify donation amounts for

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 1 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

existing donations and maybe decide to remove existing donations from the cart. The donor

confirms the changes by selecting the checkout or update function, thus ending the use case.

NOTE
In the preceding use case, notice that the emphasis is on behavior rather than the user interface. Wire
frames depicting user interactions are developed as part of information architecture in Chapter 2. Wire
frames, coupled with navigation semantics, will further augment the use cases.

Figure 1-6 Process Flow for “Making a Donation”

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Alternate Flow of Events If the donor is making a donation for the first time, the donor is

presented with a registration form. The donor verifies the registration information, some of

which could have been provided by the affiliated portal-domain, and submits the information

to the system. The system validates this information and presents the new donor with a form

that enables a donor to provide a set of preferences that personalizes a donor’s donation

experience. The donor provides this information to the system, which validates and stores the

information in the database for future use. The donor is then presented with the donation cart.

Checkout Use Case
This use case interfaces with the credit card processor and creates transaction history. At the

donor’s discretion, this use case can also update credit card information.

Main Flow of Events The use case is instantiated when the donor selects the checkout

function. The donor is presented with a checkout page. The donor has the option of changing

the credit card information on this page and saving the new credit card information as part of

the checkout process. When the donor confirms, the information is validated. If the validation

is successful, the credit card processor is contacted. If the credit card transaction is successful,

include (Update Donation History) for creating transaction history of all

donations in the donation cart and include (Manage Donation Cart) for clearing

the cart. A thank you page is presented to the donor, thus ending the use case.

Update Donation History Use Case
This use case records all transaction history.

Update History Main Flow of Events The use case is instantiated by the checkout function.

Completed donations from the checkout function are added to the data store, and the use

case ends.

Display Donation History Use Case
This use case also displays a cumulative history of a donor’s donations for the current year

and, optionally, the previous year. The current year’s history is shown by default; the previous

year’s history is displayed only when selected.

Display History Main Flow of Events The use case is instantiated when a donor selects the

reporting function. The system displays the transaction history for the current year, and the

use case ends.

Display History Alternate Flow of Events The donor can select to display the previous year’s

history.

Register Donor Use Case
This use case creates a new donor in the GreaterCause data store.

Main Flow of Events The use case is instantiated for an unregistered donor. The donor is

provided with a registration page. The registration page is initialized with a registration ID,

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and donor-related information provided by the portal-domain. The donor verifies or modifies

the information. If the information entered by the donor is validated successfully, then use

include (Manage Donor Preferences)and the use case ends.

Manage Donor Preferences Use Case
This use case enables a donor to input personal preferences for customizing his or her

donation process.

Main Flow of Events The use case is instantiated either by the donor registration process or

when the donor selects to modify his or her personal preferences. The donor makes the

required changes and confirms. If the information entered by the donor is validated successfully

by the system, the donor preferences are updated in the data store. The system acknowledges

the changes and the use case ends.

Search NPO
This package provides the search functionality to donors, the site administrator, and portal-

alliance administrators. NPO entries are analogous to items in a catalog. Searching a non-

profit organization is analogous to searching an item from the catalog; in this context, the

non-profit organization is itself an item in the supply-chain sense.

Search NPO Use Case
This use case provides search algorithms for searching the NPOs. A generic keyword-based

search is available along with an advanced search capability for location-based searches.

Keyword Search Main Flow of Events This use case is instantiated when the donor uses the

generic keyword search function. The system searches the database for matching NPOs and

displays a results page to the user, and the use case ends.

Advanced Search Main Flow of Events This use case begins when the donor, the site administrator,

or the portal-alliance administrator selects the advanced search function. The user is

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 1 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Figure 1-7 Use case diagram—Search NPO

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:35:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

presented with a query page. The user enters the search criteria. The system searches the

database for matching NPOs and displays a results page to the user, thus ending the use case.

Perform GreaterCause.com Site Administration
This package enables the maintenance of the configuration information for proper operation

of the site. Key facilities provided by this package are NPO registration, portal alliance

registration, profile maintenance, and portal-specific UI customizations.

TIP
Actors can be organized using the generalization relationship. The inheritance semantics are the same
as that in classes; the child inherits the behavior of the parent and can add to or override this behavior.
For example, in Figure 1-8 the site administrator inherits from the NPO and portal-alliance administrators.
Because Java does not support multiple inheritance, it is likely that during implementation the site administrator
will extend a base class that has implemented the interfaces for NPO and portal-alliance administrators;
this will allow the site administrator to be substituted wherever NPO and portal administrators can appear.

Register NPO Use Case
This use case is responsible for registering new NPOs for the site. Every NPO, prior to

registration, is verified for validity. The NPO verification is an offline process.

Main Flow of Events The use case begins when the site administrator selects the NPO

registration function. The site administrator enters all the necessary information pertaining

2 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Figure 1-8 Use case diagram—Perform GreaterCause.com Site Administration

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to a non-profit organization. The system validates the information. If the validation process

is successful, the system stores the registration information in the data store. The system

initializes an NPO profile record, acknowledges the actions, and the use case ends.

Manage NPO Profile Use Case
This use case enables the site administrator and NPO administrator to change the profile

information associated with an NPO.

Main Flow of Events The use case starts when an NPO or site administrator selects the update

profile function. The administrator is presented with a page with relevant profile information.

The administrator updates the information and confirms changes. If the validation process is

successful, the system commits those changes in the data store. The system acknowledges the

changes, and the use case ends.

Register Portal-Alliance Use Case
This use case is responsible for registering new portal-alliances for the site. Only registered

portal alliances can redirect their users to the GreaterCause.com site for making donations.

Main Flow of Events The use case begins when the site administrator selects the portal-

alliance registration function. The site administrator enters the necessary information

associated with the portal-domain. The system validates the information. If the validation

process is successful, the system stores the registration information in the data store. The

system acknowledges the actions, and the use case ends.

Manage Portal-Alliance Profile Use Case
This use case enables the site administrator and portal-alliance administrator to change the

profile information associated with a portal-domain.

Main Flow of Events The use case starts when a portal-alliance administrator or site administrator

selects the update profile function. The administrator is presented with a page with relevant

profile information. The administrator updates the information and confirms changes. If the

validation process is successful, the system commits those changes in the data store. The

system acknowledges the changes, and the use case ends.

Perform UI Customization Use Case
This use case empowers the portal administrator and GreaterCause.com site administrator

to provide portal-specific UI customizations. These customizations preserve the look and

feel of the portal-domain when the users affiliated with a portal-domain are accessing the

GreaterCause services.

Main Flow of Events The use case begins when the site administrator or portal administrator

selects the UI customization feature. The administrator provides the location of a portal-specific

custom navigation bar’s HTML for portal branding. The system acknowledges the changes,

and the use case ends.

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 2 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Manage Campaigns
This package enables the portal administrators and site administrators to create portal-specific

campaigns for featuring selected NPOs at both the global and regional levels. The campaign

creation service is available only at the GreaterCause.com site. A list of featured- NPOs

associated with active campaigns is made available as a Web service by GreaterCause for

consumption by portal-domains. The portal-domains extract this information via the Web

service and cache it locally. Subsequently, the portal-domains can exhibit the featured-NPOs in

their portlets from a local cache rather than fetching that information from the GreaterCause.com

site for every user signing on to the portal.

Create Campaign Use Case
This use case provides site and portal administrators with the ability to create campaigns for

selected NPOs. NPOs could be promoted at the global or regional level, but no more than five

NPOs can be displayed in the portlet (pass-through UI component) at any given time.

CAUTION
Be careful when using extend relationships. It is possible to end up with an extend relationship for simple
logic. For example, in Figure 1-9, for use case Manage Campaigns we could have factored two variants,
Manage National Campaigns and Manage Regional Campaigns, as two new use cases that extend the
behavior of Manage Campaigns. For now, it is best not to express these variants as separate use cases
because their behavior is only marginally different from each other.

Create Campaign Main Flow of Events The use case starts when the portal administrator or

the site administrator selects the new campaign function. The search facility is invoked for

finding the desired non-profit. The administrator selects a non-profit from the search result

page. The system displays a campaign detail page with the selected NPO. The administrator

enters the campaign dates and optionally a region code. The administrator then submits the

information. The system validates the information and, on successful validation, saves the

2 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Figure 1-9 Use case diagram—Manage Campaigns

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 2 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

campaign in the data store. The system acknowledges the changes, and the use case ends.

Figure 1-10 illustrates the Create Campaign main flow events.

Update Campaigns Use Case
This use case provides site and portal-alliance administrators the ability to modify existing

campaigns.

Update Campaigns Main Flow of Events The use case starts when a portal or site administrator

selects the function for modifying existing campaigns. The administrator either selects the

global campaigns or supplies a region code for selecting regional campaigns for a specific

region. The system displays the available active campaigns. The administrator modifies and

submits the campaign information. The system updates the data store, thus ending the use case.

Provide Featured-NPO List Use Case
This use case enables the extraction of featured-NPOs for a given portal-domain. The featured-

NPOs are made available to the portal-domain via a Web service.

Main Flow of Events This use case is instantiated as a result of Web service invocation. The

GreaterCause.com domain provides the featured-NPO list to the portal-domain via the Web

service, and the use case ends.

NPO Caching
This package enables the retrieval of a list of featured-NPOs from the GreaterCause.com

domain; after the NPOs are retrieved, they are stored in a local cache.

Figure 1-10 Activity diagram for Create Campaign

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Cache Featured-NPOs Use Case
This use case enables the caching of featured-NPOs. The portlet that represents a pass-through

to the GreaterCause.com site uses this cache to display featured-NPOs, associated with active

campaigns, to portal users.

2 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Figure 1-11 Activity diagram for Update Campaigns

Figure 1-12 Use case diagram—NPO Caching

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Main Flow of Events This use case is instantiated when the portal-domain invokes a Web

service. The Web service provides a list of featured-NPOs that are retrieved and cached

within the portal domain, thus ending the use case.

Portal Pass-through
This package enables the fetching and display of the cached featured-NPOs associated with

active campaigns. The featured-NPOs are displayed in the GreaterCause-specific portlet

provided within the portal page. The donor can choose to donate to one of the featured-NPOs.

A donate action will signal the system to redirect the user to the GreaterCause.com site.

TIP
An ambiguity in the activity diagram is caused when two outbound transitions are specified for an activity or
action state. For example, in Figure 1-13, we could put a self-recursion on Display National Campaign and
Display Regional Campaign to display a maximum of five featured-NPOs, and then an outbound transition
from these activity states to the next activity states; this will make the transitions ambiguous. Instead, you
should implement an iteration logic with action states to set and increment the value of an iterator, and
implement a decision node (branch node) to evaluate the completion of all iterations; only after the
iterations are completed will you transition to another activity or action state.

NOTE
The activity diagram of Figure 1-14 uses swimlanes to depict the activities across both the portal-domain and
GreaterCause domain. The purpose of this diagram is to clearly show the activities and transitions within and
across each domain. Swimlanes can be also be used for showing interactions between different subsystems
and business objects.

Display Featured-NPOs Use Case
This use case displays global and regional featured-NPOs in the GreaterCause portlet within

the portal.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 2 5

Figure 1-13 Use case diagram—Portal Pass-through

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

Figure 1-14 Workflow for making a donation to a featured-NPO

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Main Flow of Events The use case begins when the portal-page is displayed to the portal user.

The portlet’s logic will display the featured-NPOs available in the local cache. A maximum

of five NPOs are displayed, starting with NPOs associated with national campaigns. The

successful rendering of the portlet within the portal’s page terminates the use case.

Redirect to the GreaterCause.com Site Use Case
This use case is responsible for routing a portal user to the GreaterCause.com site.

Main Flow of Events The use case begins when the portal user selects the donate function for

a featured-NPO. The portal-domain mutually authenticates with the GreaterCause.com domain.

GreaterCause.com then generates an authentication token that will identify a valid redirection.

The portal-domain assembles donor-specific information required for registration, and

packages the token supplied by the GreaterCause.com domain. The system then redirects the

donation request to the GreaterCause.com site with donor-specific information, along with

the choice of NPO, thus ending the use case.

Alternate Flow of Events The portal user can select to pass-through to the GreaterCause.com

site without selecting the donate function for a featured-NPO. In this case, the portal user is

taken to the advanced search function of the GreaterCause application.

Summary
In a use case–driven approach, use cases are used as primary artifacts for understanding

system requirements, for documenting the system, for validating the system’s architecture,

for driving the analysis and design models, for assessing project risks, for project planning,

and for quality assurance. The next step in the process is to elaborate the use cases as part

of information architecture. The use case scenarios are augmented once the site navigation

semantics, wire frames, and field-level details are completed.

References
[UML] The Unified Modeling Language User Guide by Grady Booch et. al.

(Addison Wesley, 1999)

[Object Modeling] Use Case Driven Object Modeling with UML by Doug Rosenberg

(Addison Wesley, 1999)

[Use Cases] Applying Use Cases, A Practical Guide by Geri Schneider et. al.

(Addison Wesley, 1998)

C h a p t e r 1 : R e q u i r e m e n t s A n a l y s i s w i t h U s e C a s e s 2 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 1

P:\010Comp\ApDev\711-7\ch01.vp
Tuesday, May 27, 2003 4:36:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER

2
Information Architecture
for Use Case Elaboration

29

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Beginning of Information Architecture

Organizing Content

Navigating Content

Creating Wire Frames

Detailing Use Cases

Summary

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Success or failure of a project is dependent on several factors. At the outset, the single

overwhelming factor is the ability to comprehensively define the behavior of the system

as desired by its consumers. A large number of projects have seen their demise as a

result of unstructured approach toward defining requirements. Traceability is the key word

here. The use case model of Chapter 1 is a living document with built-in traceability. Any

evolution of the system will be based on those use cases. At all times, the use cases will

comprehensively reflect the behavior of the system. In this chapter, we will elaborate the use

cases and be more explicit in expressing the user interaction and associated transactional

semantics. We begin by answering the following questions:

� How do we articulate the user interaction semantics?

� How do we articulate the interactions between the use case and other parts of the

system or external systems?

� How do we visualize these interactions?

� What information is exchanged during these interactions? How is this information

affecting page transitions?

� How do we understand all possible flow of events?

To answer all of the preceding questions, we create an information architecture. Information

architecture constitutes schemes for organizing, labeling, navigating, indexing, and searching

content; these aspects converge into a storyboard that is the first mockup or prototypical view

of the UI. The navigation semantics of UI is explained using a site flow that clearly articulates

the page transitions associated with user actions. The information architecture is therefore

very significant in defining system behavior from a UI perspective; this behavior is incorporated

for comprehensively defining the detailed use cases of the system. The topic of information

architecture is discussed in several books; we will keep our discussion limited to evolving

the sample GreaterCause application and highlight a few important concepts of information

architecture.

Beginning of Information Architecture
An information architect is a specialist who has the following focus:

� Creating a persona of the site’s user base and tailoring the site to meet the needs of

its audience.

� Devising schemes for organizing and labeling content. This effort results in the creation

of a content taxonomy.

� Providing the access path to information from various touch points. This effort results

in the creation of a navigation taxonomy.

� Spearheading the creation of a mockup UI; working with stakeholders and focus

groups to refine the usability aspects of the site.

3 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� Creating an information architecture style guide that controls the evolution of the site

according to well-established guidelines.

For information architects to be successful in their efforts, they need the assistance of subject

matter experts, business analysts, technology teams, graphics designers, and content editors.

� Subject matter experts and business analysts provide the business knowledge with related

information to be made available in the site. They provide the context and significance

of the information, and its impact to the business and to the information consumers.

� A representative from the technology team, usually the application architect, validates

completeness of the information exchanged between the application and the user,

assesses consistency in accessing information from multiple touch points, validates the

transactional semantics, and generally comments on the technical complexity or risks

associated with the recommended information architecture.

� Graphic designers provide the site with a consistent look and feel that represents the

site’s purpose and its identity. They prepare a style guide for ensuring consistent

evolution of the site. With assistance from marketing, graphic designers also create

the branding of the site.

� Content editors create guidelines for ensuring a consistent voice and tone in the

creation of the site’s content. Content editors may also perform copy editing and

proofreading tasks, and be responsible for creating an editorial calendar.

In the entire information architecture process, two most significant aspects need to be

constantly monitored by the project manager. These are expressed as follows:

� The site’s functionality as expressed by the information architecture and its constituent

mockup UI must be in line with the use case summary. The use case summary scopes

the system, and any deviation from this could be considered as scope change. When

scope changes occur, the use cases should be retrofitted and redistributed to stakeholders

for consensus.

� The user interface is the most volatile component of the system; applications are

always architectured with this awareness. However, once the development process

begins, the information architecture cannot evolve radically to significantly change

the transactional semantics, the business logic, or the functional requirements; the

consequences of this are severe in terms of rework, cost escalation, and delivery schedule.

Information architecture plays a significant role, although not the only role, in nailing

down the behavior of the system; therefore, this process cannot be taken lightly.

Organizing Content
Site content must be organized from the perspective of its users; therefore, an information

architect must think like a critical consumer. A user accessing a site is analogous to a shopper

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 3 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

at a department store. A well-designed department store will clearly direct the shoppers to the

appropriate aisle. The labeling used in identifying various sections of the store lets the shopper

know what to expect when he or she gets there. For example, the Children’s Apparel section

will not be labeled as Children’s Accessories because the word “accessories” is ambiguous in

this context. A few visits to the store makes a shopper adapt to its organization, labeling, and

navigation scheme, and he or she is able to find items more quickly.

There are several techniques for organizing a site’s content. Some of these techniques are

explained in the context of the sample application as follows:

� Alphabetical An example of alphabetical organization is a directory service that

lists the entries by name. In the sample application, the non-profits resulting from a

search query are ordered alphabetically.

� Topical An example of topical organization is an educational site that lists the content

by subjects. Most sites use topical organization in conjunction with other organization

schemes. In the sample application, the grouping of administrator services resembles a

topical organization scheme, segregated from the grouping of donor services. In the

following illustration, the services are arranged under Registration, Portal Configuration,

and NPO Configuration.

� Geographical Examples of geographical organization are observed on sites dealing

with weather forecasts, distribution centers, and store locators. Content on such sites is

location specific. In the sample application, the featured non-profits are organized by

the region code.

� Hierarchical An example of hierarchical organization is a corporate site that is

structured according to divisions and departments. Hierarchical information is easily

understood and therefore easier to navigate. This organization scheme is encountered

very frequently in our day-to-day lives. Several simple hierarchies are present in the

sample application.

� Indexed Indexed organization schemes are powerful for dynamic content. The

content is usually indexed in a relational database, and the indexing mechanism drives

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 3 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

content selection. Templating mechanisms may use this organization scheme for serving

dynamic content. In the sample application, the campaigns are indexed by portal-domain

and the region code. Even though the campaigns are changing on a frequent basis, the

indexing mechanism reorganizes the content and helps in the retrieval of only those

campaigns that are relevant for a given portal-domain and region combination.

� Role-oriented For a given role, content can be organized statically according to a

predetermined taxonomy or created dynamically on role detection. A role-oriented

content organization scheme can be coupled with a goal- or task-oriented content

organization scheme. In the sample application, each type of administrator is provided

with an administrative page with a navigation bar based on the administrator’s type;

furthermore, the page sequence for a site administrator is different from the page

sequence for a portal or an NPO administrator. The following illustration shows the

navigation bar that is customized for different administrators.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

The following page only appears in the navigation scheme of a site administrator; this is

because the site administrator has to identify the Portal ID for which he or she desires to act

as a stand-in for the portal administrator.

Navigating Content
The navigation aspect of a site must be intuitive for a first-time visitor; there are no second

chances at making a good first impression. Navigation mechanisms that make it hard to find

relevant information are discouraging, and users will lack the motivation to visit the site

again. Although appropriately organized content is the first step toward creating a user-centric

information access taxonomy, this taxonomy is ambiguous unless associated with a context.

Navigation schemes complement the content taxonomies by providing the needed context,

and they are augmented by an appropriate labeling scheme.

There are several approaches for creating an appropriate navigation scheme. Some of

these approaches are explained in the context of the sample application as follows:

� Global The primary navigation bar of a site usually provides access to coarse-grained

functionality with the capability to navigate both laterally and vertically through the

site; this navigation bar is often referred to as the global navigation bar because the

navigation elements are accessible consistently across the entire site or across conceptually

and semantically related pages, also called subsites. Most sites are designed with global

navigation at the top or bottom of the page.

� Local When the page hierarchy is traversed, we encounter several pages that are

gateways to fine-grained content or functionality. A marketing page will have an

information hierarchy that is different from the customer service page. To accommodate

for functionally different subordinate information hierarchies, we use local navigation

bars to support the navigation semantics that are specific to each of the subordinate

information hierarchies. You can think of a local navigation bar as a form of nested

navigation. In the sample application, each administrator page differs in the navigation

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

elements available to the type of administrator interacting with the system; as shown

previously in the section “Organizing Content,” the applicable local navigation bar for

each type of administrator appears at center-left of the page. The selection of a navigation

element in a local navigation scheme is often accentuated, for contextualization, by

highlighting the selected element.

� Bread crumbs When shopping in Mall of America, we get our bearings by looking

at “You are Here” signs. In a complex navigation scheme, it is always good to let the

users know their locations within the overall site, and provide trails that they can take to

get to certain pages; hence the bread crumbs analogy. Usually, an additional navigation

bar is inserted at the top within the content portion of the page. This additional navigation

bar is of the form Element1 > Element2 > Element3; selecting Element3 in the previous

page results in the delivery of content for the current page.

� Site map A site map aggregates the navigational elements of a site. Representing a

complex site structure using a site map could quickly clutter the map and make it unwieldy.

Provide only the navigation elements essential to portraying the site’s purpose while

implementing a design that harmonizes form and function. The site map never provides

an entry point in the middle of a workflow because this will jeopardize the transactional

semantics of an application, which in turn could pose a serious security and data

integrity risk.

� TOC A table of contents is often used for content that is hierarchical in nature. Sites

offering user guides and documentation usually sport an ad hoc navigation scheme built

around a table of contents. A TOC can be implemented inline with page transitions or as

a separate window.

� Embedded links Often links are embedded within the content for creating an ad hoc

navigation scheme.

� Adaptive A navigation scheme can adapt to reflect a user’s preference and/or behavior.

An example of this is apparent at online retail stores where a shopper could have additional

navigation elements on a page added as a result of his or her shopping pattern.

Creating Wire Frames
In this section, we are going to apply the principles of information architecture in defining

the user interface of an application. The user interface, or UI for short, is very critical for an

eCommerce application. It synthesizes different aspects of information architecture into a

common view. The organization and navigation taxonomies are clearly articulated through

mockup user interfaces called wire frames. Creating a mockup or a prototypical UI early in

the process, for systems with significant UI, will clarify the interaction semantics that could

potentially change the behavior and scope of the system. Sharing a prototypical UI will assist

the users in identifying serious problems with navigating the workflow and processes that

they are so familiar with. Many times, new requirements are discovered at this stage, and its

impact could be significant. At this state, there is always a possibility that the end users will

ask for a lot more than scoped by the use case summary. A scope creep will jeopardize the

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 3 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

time and cost commitments made through a preliminary project plan created in conjunction

with the use case summary. The information architect and the application architect must

assess and document such changes, and involve the stakeholders and/or decision makers for

making the final call.

Appendix B illustrates a storyboard for the sample application. It consists of a set of wire

frames that, in conjunction with the site flow, help the users understand the workflow associated

with accomplishing various tasks. Storyboards are void of graphics; their main purpose is to

illustrate the content and navigation taxonomies exposed to a user and to show the various site

traversal scenarios. Appendix C illustrates a site flow. The site flow is an important artifact

for articulating the navigation semantics and provides a bird’s-eye view of the site. Site flow

does not encompass each and every navigational aspect because doing so will make it less

readable. To avoid the clutter, a common technique used for creating site flows is to draw it

like a tree structure where most nodes have only one parent. The site flow will complete the

storyboarding effect by showing the transitions between various uniquely numbered wire

frames according to the navigation semantics established for the functional web site.

A wire frame can be further augmented with additional documentation as stated here:

� Relationships between navigation elements and corresponding pages or secondary

navigation elements can be explained using a side bar.

� Content mapping details can be added for identifying the content, the content’s source,

and the contributors.

� Callouts can be used to provide additional context for page elements.

Detailing Use Cases
The following sections illustrate the results of applying information architecture to use cases.

Among the available use cases, we have chosen to elaborate a cross-section of use cases for

illustrating how information architecture can be used to refine the use cases. The scenarios

depicted in the following detailed use cases contain more UI-specific information than found

in the use case summary. We now have the ability to predict the sequencing of pages (or

screens) and the associated navigation semantics, and specify this order in the use cases. In

detailed use cases, the system’s interactions with actors are more refined, and we are able to

discern, to some degree, the flow of information between interacting subsystems. We have

provided notes with the following use cases to annotate certain aspects for improved readability.

The format used in the upcoming section “GreaterCause Detailed Use Case Description”

for detailing use cases is specified in Appendix A. This format is suggestive, and you may

modify it according to the needs of your organization and project. Appendix B contains the

wire frames essential for expressing the information architecture for the GreaterCause system.

Appendix C contains the site flow and provides the navigation semantics for wire frames

in Appendix B. Refer to Figure 2-1 for an abridged version of the site flow. The figure is

distilled from Appendix C and is relevant for the discussion in the section.

3 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GreaterCause Detailed Use Case Description
The following sections present the detailed use cases for the GreaterCause system. The use

case description for each use case encompasses various aspects of information architecture,

workflow transaction semantics, and system interactions. Where appropriate, an activity

diagram is used for explaining a complex flow.

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 3 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Figure 2-1 GreaterCause abridged site flow

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Create Campaign Use Case
This use case provides portal administrators and site administrators the ability to create

campaigns for featuring selected non-profits on their respective portals.

Actors

� Search NPO

� Portal administrator

� Site administrator (as a stand-in for the portal administrator)

NOTE
Notice that in the preceding list of actors, the Search NPO package is an actor that represents an external
subsystem. In most cases, the package classification usually translates into a separate subsystem or part of
another subsystem implying that the functionality of the Create Campaigns use case will always be in a
different subsystem than that of the Search NPO.

Precondition(s)

� An administrator is logged in as a portal administrator or a site administrator.

Postcondition(s)

� A new campaign is created and saved by the system.

User Interface The following illustrates the user interface for Create Campaign use case.

Site administrators must
identify the portal ID that
they want to administer.
Portal ID is not required
for portal administrators
because this information
is part of the portal
administrators’ profile.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

NOTE
The granularity chosen for this use case is pretty coarse. This has resulted in a situation where several UI
interactions are being addressed by a single use case. The advantage of a coarse-grained use case in this
instance is that we are able to explain the flow of events as a related set of actions.

Create Campaign Main Flow of Events

1. The use case is instantiated when an administrator or site administrator selects Create

New Campaign on the Administrator Services page.

2. If the administrator is a site administrator,

a. The system displays the Enter Portal ID page.

b. The site administrator provides the portal ID for which he or she wants to perform

administration functions.

c. The system validates the portal ID; if the validation is successful, the system allows

further processing, else the site administrator is requested to re-enter the portal ID.

3. The Create Campaign use case invokes the services of the Search NPO use case for

searching and selecting an NPO. The Search NPO function delivers the selected NPO

to the Enter Campaign Details page.

4. The administrator furnishes the start date, the end date, and the region code.

5. The administrator requests the creation of a new campaign.

6. The system validates the campaign attributes supplied by the administrator and on

successful validation stores the campaign in the system.

7. The system acknowledges the creation of a new campaign, and the use case ends.

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 3 9

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

NOTE
Comparing the preceding flow of events with the flow of events in the use case summary, it is apparent that
the information architecture and the resulting wire frames have enabled us to visualize, to a much greater
degree, the interactions between the user and the system. The details added to the use case description as a
result of the information architecture will make it possible to use it as a contract between the stakeholders
and implementation team. This level of detail also serves as a starting point for generating test cases. We
can freeze requirements at this juncture and start design and development.

Activity Diagram The following illustrates the activity diagram for the Create Campaign use case.

NOTE
Activity diagrams, although at a coarser grain than the textual flow of events, provide a comprehensive view
into the use case by depicting all possible main and alternate flows.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 4 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Update Campaigns Use Case
This use case provides portal administrators and site administrators the ability to update

existing campaigns for a given portal-domain.

Actors

� Portal administrator

� Site administrator (as a stand-in for the portal administrator)

Precondition(s)

� An administrator is logged in as a portal administrator or a site administrator.

Postcondition(s)

� Changes to campaigns are saved by the system.

User Interface The following illustrates the user interface for the Update Campaigns use case.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Update Campaigns Main Flow of Events

1. The use case is instantiated when a portal administrator selects Update Campaigns on

the Administrator Services page.

2. If the administrator is a site administrator,

a. The system displays the Enter Region Code page, which requires the administrator

to provide a portal ID and the region code.

b. The site administrator provides the portal ID for which he or she wants to perform

administration functions. The administrator submits the region code for which

campaigns are to be updated or leaves the field blank for updating global campaigns.

c. The system validates the portal ID; if the validation is successful, the system allows

further processing, else the site administrator is requested to reenter the portal ID.

3. If the administrator is a portal administrator,

a. The system requests a region code.

b. The administrator submits the region code for which campaigns are to be updated

or leaves the field blank for updating global campaigns.

4. The system displays active campaigns in the Update Campaigns page. Active

campaigns are those whose end dates have not expired.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 4 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

5. The administrator modifies the campaigns and submits the changes to the system.

6. The system validates the campaign attributes supplied by the administrator, and on

successful validation stores the changes in the system.

7. The system acknowledges the changes, and the use case ends.

Activity Diagram The following illustrates the activity diagram for the Update Campaigns use case.

Manage Donation Cart Use Case
This use case handles the process of displaying, adding, removing, and modifying donations

in the donation envelope.

NOTE
This use case was selected for elaboration to depict the usage of nested “includes.” The Manage Donation Cart
use case is extended by the Register Donor use case, which in turn includes the Manage Donor Preferences use
case. The Manage Donation Cart use case interacts with an external subsystem Portal Pass-through.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Actors

� Donor

� Portal Pass-through

Precondition(s)

� Portal-domain of the donor is registered with GreaterCause.

Postcondition(s)

� Donation Cart is updated according to the action taken by the actor.

� Unregistered donors are registered by the system.

Include/Extend Use Cases

� Register Donor

� Manage Donor Preferences

User Interface The following illustrates the user interface for the Manage Donation Cart use case.

4 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

UnitedWay will be
accepting donations
for several causes.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 4 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Manage Donation Cart Main Flow of Events

1. The use case is instantiated when a donor either selects to donate to a non-profit from the

search results page, or donates to a featured-NPO from the portal-domain’s portlet. The

system adds the selected NPO to the Donation Cart.

2. (set unregistered).

3. The system displays the Donation Cart.

NOTE
(set unregistered) is a label used for the extension point where the use case Register Donor will conditionally
inject itself in the Manage Donation Cart use case if the donor is not a registered donor. The label
“unregistered” may appear in the flow of the Manage Donation Cart, which is the base use case.

4. The donor provides the donation amount and the preferred cause.

5. The donor requests Proceed To Checkout.

6. The use case ends.

NOTE
Exceptional flow of events infer most of the action-sequence from the main flow, therefore terseness is
acceptable.

Exceptional Flow of Events

� Donor selects Update Cart After editing the Donation Cart, the donor could select

Update Cart instead of Proceed To Checkout.

� Donor selects Continue Donating After editing the Donation Cart, the donor could

select Continue Donating instead of Proceed To Checkout.

� Donor removes NPOs from Donation Cart While editing the cart, the donor could

select certain non-profits for removal.

Register Donor Use Case
This use case creates a new donor identity in the system. The identity is provided by the

portal-domain with which the donor has affiliation. This is a one-time process for donors.

The donor need only log in once to the portal, and access to GreaterCause does not require

another login.

Actors

� Donor

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

Precondition(s)

� Prospective donor wants to make his or her first donation.

Postcondition(s)

� Donor is registered, and donor preferences are created in the system.

� Donor is taken to the Donation Cart page.

Include Use Cases

� Manage Donor Preferences

User Interface

The following illustrates the user interface for Register Donor use case.

Main Flow of Events

1. The use case is instantiated by the Manage Donation Cart use case, when an unregistered

user attempts to make a donation.

2. The system verifies the authentication token presented by the donor.

3. The donor is presented with a Registration page. The registration page is pre-populated

with attributes that were provided by the portal-domain.

4. The donor provides the missing information and submits the registration information.

Only the donors
will see this
portal-specific
navigation bar.

Most
information is
provided by the
portal-domain.

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

5. The system will validate and store the registration information. The system will also

create a Donor Preferences record and initialize it with a registration ID.

6. Include (Manage Donor Preferences).

7. The use case ends.

Manage Donor Preferences Use Case
This use case enables donors to create personal preferences for customizing their donation

process.

Actors

� Donor

Precondition(s)

� Donor is already registered into the system.

Postcondition(s)

� Modified preferences are stored in the system.

User Interface The following illustrates the user interface for the Manage Donor Preferences

use case.

C h a p t e r 2 : I n f o r m a t i o n A r c h i t e c t u r e f o r U s e C a s e E l a b o r a t i o n 4 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Main Flow of Events

1. This use case is instantiated either by the donor registration process or when the donors

select to modify their personal preferences.

2. The donor is presented with the Donor Preferences page.

3. The donor makes the required changes to the attributes and submits the information.

4. On successful validation, the system stores the donor preferences.

5. The system acknowledges the changes, and the use case ends.

NOTE
Now that we have elaborated selected use cases, compare it with summary-level use cases of Chapter 1. It is
apparent that with the help of the detailed use cases, we are able to discern the invocation order of each use
case for realizing a specific process flow, and the associated transaction semantics, from the point of view of
the system user.

Summary
During information architecture, we create schemes for organizing, labeling, and navigating

the content of a site. Storyboard and site flow are reflective of the taxonomies produced during

this process. For systems with significant UI, information architecture provides a much needed

reality check for users, stakeholders, and implementers of the system at the very outset. It is

used for flushing out the detailed requirements of workflows and processes, the implications

of which are immediately reflected in the detailed use case description of the system. The

consensus on detailed use case descriptions among stakeholders, users, information architects,

and the technical team ensures that the vision set forth by the extended team addresses both

the business needs and technical feasibility of the system within the specified time and budget.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

4 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 2

P:\010Comp\ApDev\711-7\ch02.vp
Tuesday, May 27, 2003 10:10:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

3
Application Architecture,

Security, and Caching

49

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Application Architecture

Planning Application Security

Digital Signatures

Single Sign-On

Java Authentication and Authorization Service

Federated Network Identity

Caching Overview

Cache Architecture

Summary

References

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This book progressively builds the application using a use case driven approach.

Chapters 4 through 8 explicitly discuss the design, J2EE component development,

and configuration aspects of the sample GreaterCause application. However, before

we start developing the application, we need to look at several other aspects of the design to

ensure a reliable, scalable, extensible, and robust operational environment for the application.

In addition to discussing the architecture elements, this chapter assists in putting a perspective

around the application security. The discussion on security will assist the readers in envisioning

ahead of time the specific needs of their application and plan toward a solution that adequately

secures the system from malicious use. Since vendor-specific security implementations and

the application requirements differ significantly from one application to another, the focus

in this chapter is to provide a high-level overview based on prominent technologies and

specifications. This should assist the readers in determining their unique design needs and

arriving at a solution that takes advantage of best of breed solutions. Please note that the

declarative security provided by the J2EE platform, and the J2EE platform security API

used for programmatic security, are discussed in Chapter 5. The final section in this chapter

focuses on the design aspects in the creation of an application-level cache. Since this chapter

is not a prerequisite for the rest of the book, you may decide to come back to it later.

We assume that J2EE is a platform of your choice, and hence we do not get into the details

of why it is a good choice. Several books do a good job at explaining this. We highly recommend

Designing Enterprise Applications with the J2EE Platform [J2EE] for getting a solid roundup

of all pertinent J2EE technologies. We also recommend Core J2EE Patterns [Core], which

covers several of the patterns implemented in this book. For the purpose of reading this book,

we expect that the readers have only a basic knowledge of JSP, servlet, and EJB technologies.

Some excellent tutorials are available at java.sun.com to quickly bring you up to speed with

these technologies.

Application Architecture
The subject of architecture is exhaustive as it refers to several design aspects and relevant

artifacts used for the construction of an application. Several of the design artifacts developed

during the course of this book contribute to the overall architecture but represent architecture

at different levels of granularity. For example, the MVC architecture discussed in Chapter 4

addresses tier-level responsibilities, whereas the design patterns used for implementing EJBs

(discussed in Chapter 7) address component-level responsibilities. A security architecture

that complements the application architecture will also be at different levels of granularity,

as explained in the section “Planning Application Security.” Some discernable artifacts and

processes of an architecture can therefore be summarized as follows:

� Functionality of the system as expressed by use cases and augmented by wire frames.

� Application layers, their interactions, responsibilities, and the elements they contain for

satisfying the use cases.

� Components identified for each layer and their interactions, dependencies, and their

roles. This will include both infrastructure and application components.

5 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� Composition of these components; expressing their interaction using appropriate design

patterns to form fundamental structural elements that provide repeatable, reusable, and

extensible solutions.

� Composition of fundamental structural elements into larger units called modules, or

subsystems.

� Composition of the software modules and corresponding configuration files into

deployable units.

The 4+1 View Model of Architecture
The overall architecture of a system can be modeled with the following interlocking view as

proposed by Philippe Kruchten in a paper “The 4+1 View Model of Architecture” [Kruchten].

� The Use Case View of a system constitutes the use cases that describe the behavior of

the system from the perspective of external entities interacting with the use case. The

use case view is a static view of the system. It captures requirements that are used in

the creation of the system’s architecture. This view ties all other views together.

� The Logical View (also called the Design View) of a system consists of classes,

interfaces, and their collaborations.

� The Implementation View describes the physical organization of the software and

includes the components, files, libraries, and so, on required to assemble the system.

� The Deployment View focuses on hardware topology consisting of physical nodes and

computing hardware on which the executables are deployed.

� The Process View is concerned with the concurrency and synchronization aspects of

the software—for example, the processes, tasks, and threads.

This book focuses explicitly on the Use Case View and the Logical View of the system.

The Use Case View of the sample application was created in Chapters 1 and 2. The static

aspects of the Logical View are captured using class diagrams of Chapter 5 where we model

interactions between the presentation tier components, and in Chapter 6 where we model

interactions between the domain entities, and in Chapter 7 where we model the interactions

between various EJBs and helper classes for realizing the business tier functionality. The dynamic

aspects of the Logical View are represented using sequence, collaboration, state-chart, and

activity diagrams. Sequence diagrams are used extensively in Chapters 5, 6, and 7 to show

the interactions between application objects. The Logical View helps create the vocabulary

of the problem and its solution. This vocabulary is complemented by the vocabulary of the

design patterns employed to solve recurring problems within the system. Design patterns help

us articulate commonly occurring interactions between objects in the problem domain and

are discussed in several chapters.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 5 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a J2EE Architecture Blueprint
Architecture is the software’s blueprint, which is derived from the use cases created in Chapters 1

and 2. However, we cannot expect to take the use cases and arrive at the final architecture

without going through a refinement process. The architecture of a system evolves as decisions

are made in terms of feasibility, technical challenges, trade-offs, cohesion between stated

requirements, fluctuating needs of the stakeholders, and so on. This is very much an iterative

process where use cases will provide a starting point but there will be a need to modify or

extend the use cases as the architect creates the Design View of the system.

The J2EE architectural style does not strictly recommend adherence to a layer-like architecture

in which layers have a hierarchical structure and each layer can only communicate with the

layer above or below. Instead, it encourages a tiered approach in which different tiers can

communicate based on the way the requirements are implemented. Several scenarios depict

this approach, as shown in Figure 3-1.

� Clients can interact directly with a Web tier; the Web tier accesses the database tier

(database tier is shown as EIS tier).

� Clients can interact directly with the EJB tier; the EJB tier accesses the database tier.

� Clients can interact directly with the Web tier; the Web tier interacts with the EJB tier,

and the EJB tier accesses the database tier.

5 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Figure 3-1 J2EE architecture

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

From Figure 3-1, it is apparent that the role of the container is central to the J2EE architecture.

The container interposes itself between the application components and the J2EE platform

services. This gives the container the ability to transparently inject the platform services

based on the configuration information declaratively specified in the deployment descriptors.

An EJB container, running on the J2EE server, manages the execution of all EJBs for one

J2EE application. It handles the life cycle of EJBs and provides all the system-level services

for the EJB. It provides transaction management, security, resource management, and naming

services for the EJBs. A web container, running on the J2EE server, manages the execution

of JSPs and Servlets for one J2EE application. The application client container, running on

the client machine, manages the execution of application client components for one J2EE

application.

The purpose of this book is to sufficiently demonstrate the architecture of a J2EE-based

solution for large-scale development. As such, we have used the multi-tiered approach identified

by the third item in the preceding list. We have employed container-managed persistence for

data access and manipulation, which is covered in Chapters 6 and 7. For accessing a large

volume of read-only data, we have favored using a session bean with Data Access Object

Pattern [Core] for accessing data directly from the data store when implementing the Value

List Handler Pattern [Core]. Please refer to Chapter 7 for design and implementation details.

Employing Frameworks
The architecture employed in this book is greatly simplified as a result of using the open

source Struts framework. Struts employs MVC (Model-View-Controller)–style semantics for

breaking up the application responsibilities between three distinct layers as suggested by the

name. Struts framework is discussed in detail in Chapter 4, with corresponding implementation

for the sample application in Chapter 5. Employing frameworks such as Struts provides an

architect with the ability to focus on creating elements that plug into the framework and/or

framework-related extensions. We therefore architect based on the extension points and

the framework’s ability to interact with other elements of the application for realizing the use

cases. The usage of framework therefore provides a standard way of implementing a specific

system functionality, which in this case is the mapping of user actions in the presentation tier

to the services offered by the business tier.

A presentation-layer framework will typically solve a recurring problem, namely, mapping

of user actions to an application service. This problem space is solved using best-practice

patterns such as Front Controller [Core], View Helper [Core], or a combination pattern such

as Service to Worker [Core] or Dispatcher View [Core]. Creating a custom application-specific

framework (a one-off solution) is not a trivial undertaking, as is obvious in the discussion of

Struts framework in Chapter 4. The class diagrams of Chapter 5 clearly show how simplistic

the approach is when designing with a framework like Struts. We simply focus on implementing

abstract methods or subclass Struts-provided request handler class. By employing a few

design patterns, such as Command [Gof], Business Delegate [Core], Service Locator [Core],

and Session Façade [Core], we are able to create a design vocabulary that is consistently

replicated across most use cases. This greatly promotes understanding between developers

who create implementations for realizing different use cases but with the semantics that

adhere to the common design vocabulary of the system.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 5 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

5 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Designing for a responsibility-driven tiered architecture enables construction of software

in a manner that addresses the objective of isolating infrastructure-specific functionality from

application-specific functionality (that is, custom functionality) for each tier. With the Struts

framework, the Model-View-Controller semantics provide for three different layers of

responsibilities.

Generally speaking, use of a framework could impose an architectural template for building

applications within a specific domain. However, frameworks provide reusable infrastructure

service that are used by many use cases in the system. Bypassing the framework approach

will entail that each use case with a common set of functionality will have to address its

needs by creating a one-off solution. Obviously such approaches are self-defeating in the

long run since they create inflexible and hard to maintain code.

J2EE Components in an Architecture
When developing business applications, a large amount of time could be spent building

core system services like transaction management, resource management, security, remote

connectivity, and object relational mapping services. These services are essential to all

enterprise applications and can be abstracted into a reusable and declaratively configurable

framework that could provide these essential services to all applications at runtime. Such a

framework enables architects and engineers to focus on solving the business problem, thus

simplifying the designing and coding effort and offering consistent implementation semantics

for all applications using the framework. The J2EE architecture offers a standard set of system

services to application components as part of the runtime environment referred to as containers.

J2EE provides component-based approach for the design, development, assembly, and

deployment of enterprise applications. There is clear separation of responsibility between the

different tiers, as shown in Figure 3-1. The tiered approach decomposes a problem domain

into fundamental units of application functionality that are appropriate for each tier. This makes

it possible to offer a highly reusable component-based architecture in which a Model-View-

Controller (MVC) architecture is a natural fit.

The services offered by the containers are configurable declaratively and interpreted at

deployment time, thus insulating code from any modification should there be a need to modify

the behavior of these system-level services. For example, transactional semantics are specified

declaratively for a set of interrelated components composing a service. The components from

one domain can be mixed with components from another domain to offer a new set of services

whose transactional semantics could be specified differently (and declaratively) using XML-

based deployment descriptors. Similar discussion is true for configuring security roles for

describing access privileges for a set of users in the newly composed application. The

deployment descriptors are explained in Chapters 5, 6, and 7 for components of the sample

GreaterCause application. The J2EE specification ensures that code written in accordance

with the specification will be portable across various vendors.

Planning Application Security
The Internet is an established vehicle for personal, communal, and commercial interactions.

All forms of information from personal e-mails to high-value financial transactions are

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 5 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

dispatched over the Internet. It is a known fact that information constitutes what is arguably

the most valuable asset of an individual or an organization. Protecting these assets is almost

as important as the tasks or business they are intended for.

System security is an extremely sought after “ingredient” in any mission-critical enterprise

application, almost at par with the coveted application feature-list. Security is also very unique

in that it is one of the most pervasive components in an application. This implies that security

isn’t necessarily limited to a particular part of a system, such as its presentation, business logic,

database, servers, or networks, but in fact applies to all aspects of the system. It is therefore

crucial that any design or analysis of a system take a holistic approach to addressing security

rather than that of a modular one. Though security may be realized differently in various

parts of the system, all security operations must seamlessly tie together in order to achieve a

manageable and secure system. Securing an enterprise application, a complex task in many

regards follows three basic tenets (outlined in this section and the next).

Tenet I: “It is a doctrine of war not to assume the enemy will not come, but rather to

rely on one’s readiness to meet him; not to presume that he will not attack, but rather

to make one’s self invincible.” (Sun Tzu, “The Art of War”)

Security in electronic commerce is vital for every business application. It is foolhardy to

assume that information sent and received over the Internet will not be listened to, intercepted,

or manipulated in any way, shape, or form. Instead it is always considered prudent when

security requirements and security limitations of the data and operations of an enterprise

application are thoroughly understood and communicated to the appropriate stakeholders.

Identifying Security Requirements
It is very important that all enterprise applications, internal or external, client-facing or back-

office enabling, must go through constant “security preparedness” analysis during their entire

project life cycle. These reviews and analyses allow stakeholders to become aware of the

capabilities and vulnerabilities of the system. These reviews are not necessarily meant to

build a “perfect” defense but rather to increase one’s preparedness by determining the following:

� Risk estimation A deterministic estimation of the system’s overall security scope

(intranet, extranet, Internet, protected back-end, and so on) and specific measures taken

to ensure against relevant attack scenarios provide an accurate picture of the system’s

risk exposure. An untainted declaration of known security limitations and vulnerabilities

provides stakeholders with information necessary for making an informed decision on

the acceptability of the system given the sensitivity of data and operations involved.

� Damage estimations Damage estimations provide the “silent” scenarios wherein

damage (financial, political, opportunity, and so on) caused by a breach in the system

is summarized and estimated. This information is critical to allow organizations to be

prepared for eventual fallouts (financial, legal, public, and so on) if and when their

systems are compromised.

� Security breach identification and recovery procedures Recovery procedures

provide organizations with guidelines on how to identify and recover from a security

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

breach quickly and effectively. These procedures must also provide a recovery process

detailing the manner in which to recover from the identified breach in the shortest

possible period of time. This may include creating a patch, and subsequently testing

and deploying it in the production environment. Severe, unexpected compromises in

system security may require that the system (or part of it) be taken offline.

� Evolutionary requirements From a security perspective, it is important to understand

the evolution of the enterprise application or system being built. Major security concerns

that may need to be addressed for an evolving application include the following:

� Communication scope (intranet, extranet, Internet) and encryption requirements

� Establishing partnerships, trust relationships, and identities

� Authorization requirements

� Resource protection and access control

It is essential that an application’s security design is adequately flexible and extensible in

order to incorporate demands made during “foreseeable” future evolutions of the application.

This will increase the trust level placed in the system, ensuring that it can effectively meet the

security demands made by an ever-changing environment of trusted relationships.

Tenet II: “There are no invincible countries, no foolproof defenses and no

impregnable fortifications. Those who passively wait to be attacked are vulnerable.”

(Sun Tzu, “The Art of War”)

The term “secure” is a relative concept and hence the notion of “perfect security” is

non-existent. Instead it is more practical to investigate what constitutes a “secure-enough”

environment for the enterprise system being built. The following aspects (among others) must

be taken into account when providing such an environment:

� Resources Building a secure-enough system has a lot to do with resources and often

comes with a price. In order to be secure enough, it is necessary to stay one step ahead

of the resources committed toward malicious acts. It requires a talented and seasoned

skill set, top-notch hardware (often required to overcome security-related performance

bottlenecks), and people knowledgable about existing security processes within an

organization. Such resources are either expensive and/or difficult to find.

� Risk exposure The scope or exposure (intranet, extranet, Internet, and so on) of the

system being built is an important factor in building a secure-enough environment.

Standard technologies (such as SSL, digital signatures, shared-key encryption, public

key infrastructure, and so on) can be selected once basic scope requirements have been

identified.

� Trust A notable limitation, but yet an ever-present component of anything related

to securing a system is trust. No matter what the nature of defense, or the amount of

resources committed to designing and installing secure technologies, there are certain

entities that must be trusted.

5 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 5 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Since trusted entities are critical links in determining the overall strength of a defense, it

is crucial that usage of such trusted technologies or relationships, their capabilities, and the

processes that manage them are clearly documented and communicated to the parties concerned.

For example, SSL, a technology that is often used for mission-critical Internet applications

forms the basis of trust for all secure communications.

Tenet III: “If you know your enemy and know yourself, you will not be defeated in a

hundred battles.” (Sun Tzu, “The Art of War”)

An important aspect of designing secure-enough systems involves a good understanding

of possible attack scenarios and how those malicious acts, if committed, may exploit the

system. This critical and strategic observation consists of two fundamental aspects :

� Internal and external system boundaries There are many interaction points in an

application. Some interactions points in the system are externally facing (that is, interact

with computing services or users outside the organization that owns the system) and

some are internal. Each such interaction point must clearly be documented from a

security standpoint, including its relevance to the system, its sensitivity, and most

importantly the processes put in place that manage them.

� Assailants and attacks A thorough profile of possible malicious acts that target

internal and external interaction points as well as the assailants that orchestrate them is

needed. Such profiles detail, among other things, an assailant’s capabilities, resources,

and their ability to inflict damage using information appropriated through unauthorized

means. As stated previously in Tenet II, securing “everything” from “everyone” is an

impossible task. Thus, such profiles, examined in the context of the sensitivity of

operations involved, help determine whether the measures taken to protect the system

are sufficient.

Functional Classification of Application Security
Security-related issues cover a wide range of subject matter from network hacking and

denial-of-service attacks to managing a user’s network identity. Covering all such aspects in

detail would require its own book and is not the goal of this chapter. This section provides a

perspective on how application security can be functionally classified under distinct areas

of responsibilities. Security at the application layer can be logically partitioned into three

primary areas of responsibility, or zones, each handling a specific set of tasks that contribute

to the overall security of the system. These three zones (shown in Figure 3-2) are as follows:

� Channel security

� Network identity management

� Authentication and authorization

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
These zones are logical partitions based on areas of responsibility and are not related to the physical
infrastructure in which they are deployed.

The rest of this section provides a high-level overview of each zone, following which we

discuss technologies applicable to these zones.

Channel Security
Channel security addresses how the communication between various entities on the Internet

takes place. The most commonly used technology is Secure Sockets Layer (or SSL), which

preserves confidentiality and integrity of data between communicating endpoints. Certificates

are also used as part of SSL communication to establish the identity of the communicating

endpoints on either end of a secure channel. Message security addresses the mechanisms that

may be applied to discrete pieces of information or documents that are passed between

communicating endpoints. In order to preserve data integrity, authenticity, and non-repudiation

of the information exchanged, digital signatures (discussed further in the section “Digital

Signatures”) are used.

The following table provides a summary of the various technologies employed in this zone

and their use.

5 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Figure 3-2 Application security zones

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Mechanism Channel Security Channel Message Security
Confidentiality SSL, TLS

Data integrity Message transformation algorithms

and message-digests

Authentication Client- and server-side certificates

for transport-level encryption

Data origin authentication Certificates used for digital

signature verification

Non-repudiation Digital signatures

Network Identity Management
As more and more people, communities, and businesses use the Internet as their primary

means of interaction, the notion of an identity (just as in real life) becomes a crucial part of

online communication. Simply put, an identity consists of a set of attributes that uniquely

defines who you are as a system user and how you are represented in various system

interactions. Albeit, the concept of a user identity may sound simple, however, defining and

establishing identities for sophisticated multiuser enterprise applications is a task much easier

said than done. Couple that with the possibility that identities may need to be “portable” in

order to be shared among various networked services and you have a complex problem at

hand. Today, a person’s Internet identity is strewn across various entities connected to the

Internet including portals, business services, organizations, and so on. This fragmentation of

information results in “closed,” inextensible and isolated relationships.

Federated network identity is the key to addressing the issue of identity fragmentation, and

in doing so, it enables businesses to realize new opportunities and explore revenue potential in

relatively new economies of scale. In this world of identity federation, a user’s online identity,

personal profile, interests, preferences, purchase history, and so on, can be administered

securely by the user and privately shared with trusted organizations of the user’s choosing.

The natural means to realizing this goal will first involve the establishment of a standardized

method to create, disseminate, and manage simple federated identities across multiple identity

management systems (a.k.a. identity providers) based on commonly deployed technologies.

Project Liberty (http://www.projectlibery.org), an alliance consisting of a broad spectrum of

industries, envisions such a world in which businesses and their users can engage in virtually

any type of interaction without compromising the privacy and security of their identity. An

overview of the Liberty 1.1 architecture, and the vendors implementing this specification, is

provided in section “Liberty Architecture.”

The network identity management zone is the basis for conducting most system transactions.

It is this zone that determines who you are and defines what you can do. The identity of a

user must therefore be established in this zone before any application services can be accessed,

and thus it is crucial that mechanisms used in this zone are protected, isolated, and managed

by clearly defined processes. The network identity zone is often a cornerstone for sophisticated

identity-related operations. For example, during user logon

� The user submits his/her credentials via a secure channel for authentication.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 5 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� User authentication is performed by retrieving the user credentials stored within the

identity zone and validating it against the one submitted by the user.

It is therefore obvious that a breach in the network identity zone may prove fatal in that

the system will be unable to distinguish a valid user from a malicious one.

Authentication and Authorization
The authentication and authorization zone have two main functions in the system—the first

being that of establishing the authenticity of user credentials (authentication) and the second,

“translating” a user’s identity into permissible actions (authorization). The authentication

and authorization zone is more a “gatekeeper” to system resources and data rather than an

“administrator” to the information used to access its protected assets. This zone consists of

polices, rules, and processes that protect resources and ensure that system operations are

executed securely in a manageable and consistent manner. Authentication and authorization

functionality are complex and nontrivial but are unarguably a crucial component in almost all

enterprise applications. They often are combined with network identity solutions and offered

as a centralized, integratable service to allow for improved manageability. It is thus recommended

that functions of this zone be designed and built based on established standards to increase

extensibility and preserve vendor neutrality. One such technology is Java Authentication

and Authorization Service (JAAS), which is discussed in the section “Java Authentication and

Authorization Service.”

Authentication is a relatively simple process since the tasks involved are few and bounded.

After all, only a finite set of credentials (for example, username and password) are validated

to establish user identity. Thus the authentication module need only be designed to handle

those specific types of credentials.

Authorization, in contrast, requires a completely different approach. This is because

authorization in general is involved in a significantly larger number of transactions whose

design is closely tied to business processes and regulations. This, however, does not imply that

the entire authorization process must be designed and built from scratch for each application.

The authorization process, though different in each application, does have a common set of

fundamental concepts such as roles, actions, permissions, rules, access control lists, and so on.

In fact, well-designed authorization frameworks contain both infrastructure- and application-

specific components. The main goal of such frameworks is to minimize tight coupling between

the authorization process and the application. For example, in order to grant access to a protected

resource to users of role “myRole,” one should ideally require simple modification to policy

files rather than a change to the application.

Introduction to Single Sign-On A popular and widely implemented extension to the authentication

process is single sign-on (SSO). A technical overview of the single sign-on process, its

motivations, and issues is provided in the “Single Sign-On” section. Single sign-on defines a

series of interactions that occur between trusted systems in order to sign on an authenticated

user without his/her direct involvement to one or more systems. The following steps detail

the SSO process:

6 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 6 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

1. Two systems, A and B, establish trust that allows them to share user identity

information. This implies (among other things) that any user identity information

originating from A or B and destined for B or A, respectively, is considered to be

trustworthy, valid, and secure.

2. User identity is first established at one trusted source (say A) using a standard

sign-on process involving a direct user challenge.

3. User then attempts to access a service hosted in system B from A.

4. System A forwards the user’s identity to system B on behalf of the user.

5. Since system B trusts system A (step 1), system B accepts user identity information

sent by system A.

6. System B validates and establishes the user’s identity in its system without explicitly

challenging the user and provides access to the requested service.

7. User has thus single signed-on to system B as the user was challenged only once to

provide his/her credentials (at system A in step 2).

The crux of the interactions that occur within this zone are defined by the metadata and

schemas (discussed in the “Single Sign-On” section) conveyed as part of these interactions.

Metadata and schemas generically refer to the identity information, and the formats in which

they are exchanged between the various systems participating in single sign-on operations.

The main classes of information exchanged include account/identity, authentication context,

and participant metadata, which are explained here:

� Account/identity This is simply the user’s account/identity information accessed

through a handle (refer to the section “Single Sign-On and Identity Federation”). The

comprehensive list of attributes in a user’s account/identity is application specific.

� Authentication context Many mechanisms and techniques are available to authenticate

users into a system. Different parties may choose different technologies and follow different

processes, and may be bound by myriad legal obligations regarding how they authenticate

their users. The choices made in this area will largely be driven by the requirements of

each party, the nature of the service, the sensitivity of information exchanged, financial

constraints, and risk tolerance. Additionally, if a service is to trust the user authentication

data it receives from an external source, the service may wish to know the technologies,

protocols, and processes that were employed by that source to obtain the data. The

authentication context provides a means for the exchange of such information.

� Provider metadata In order for identity sources and target services to communicate,

they must have obtained metadata about each other. Such metadata primarily aid in

establishing trust and operational agreements between the two communicating parties.

Digital Signatures
Security technologies deployed today in run-of-the-mill Internet environments are inadequate

for securing mission-critical business transactions. For example, the Secure Sockets Layer

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

(SSL) does guarantee the secure exchange of confidential data, but once the data has been

received, it is decrypted and often retained in its original form for processing. Thus, SSL only

protects the data while it is in “secure” transport, neither before nor after. This shortcoming

is further exacerbated when messages are routed through multiple nodes and unencrypted for

processing at each node. This may leave the data vulnerable to unauthorized alteration on

relatively insecure servers. In addition to protecting the sensitivity of the data transacted,

ensuring the data’s long-term integrity, authenticity, and origin is crucial. This allows for non-

repudiation—the ability to unequivocally assure both the sender and recipient of the data that

its origin is authentic, its contents unchanged and as the sender intended.

Digital signatures address the need of transacting and storing highly sensitive commercial

data both during and after the life of the transaction thus ensuring long-term non-repudiation.

As XML becomes the de facto standard for conducting electronic business transactions, a

trusted and secure XML-message exchange mechanism is essential. XML digital signature is

a key technology enabling both long-tem integrity and origin authenticity of the document.

The XML Signature specification is a promising standard that provides a means for signing

XML documents. Capturing resulting signatures using the very same XML syntax allows for

seamless integration into XML-based business applications.

Public Key Cryptography in Digital Signatures
Digital signatures use a prominent and well-known technology called public key cryptography.

Public key cryptography provides the transactions the confidence that data involved in the

transaction will not be modified or appropriated by anyone other than the intended recipient.

This is accomplished by generating a public and a private key combination known as asymmetric

keys. The asymmetric key set has the following unique characteristics:

� The relationship between the private and public key is such that any cryptographic

operation that is performed using one key can only be reversed by the other. Thus a

message encrypted using the public key component of the asymmetric key-pair can

only be decrypted by the private key of the very same key-pair.

� Unlike symmetric key cryptography, this technique does not require that the sender

or receiver exchange any secret information as part of the transaction.

The characteristics of public key cryptography just described make it an absolute

“must-have” to construct reliable digital signatures. The functionality offered by public key

cryptography include

� Integrity Ensuring that any changes to the original message can be unambiguously

identified (explained in the upcoming section “Ensuring Data Integrity”).

� Authenticity Ensuring that the origin of the message can be unambiguously identified.

This functionality, and through it, the realization of non-repudiation, give electronic transactions

qualities similar to that of signatures on standard paper transactions known and used by all.

6 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Certificate Authorities
A digital signature is created by providing a confidential private key as an input to a PKCS

(Public Key Cryptography Standard) transform (for example, multi-prime RSA algorithm)

that is applied to the data to be signed. Since only the public key of the asymmetric key-pair

can reverse that transform, the recipient of the “signed” data on successfully reversing the

applied transform with the public key, can be confident that the data is in fact from the sender.

It is also important to note that the validity of the digital signature stems from the confidence

that the public key does, in fact, belong to the sender. It is for these reasons that Certification

Authorities (for example Verisign Inc.) issue certificates that assert the validity of the relationship

between the public key and that of the certificate’s owner/subject.

Ensuring Data Integrity
Due to the computationally intensive nature of PKCS algorithms, only a small document/

message identifier is actually signed with the private key. This identifier is commonly known

as a hash or message-digest. The hash or digest for a given input data-stream is unique in that

it is highly unlikely that there exists a single computed hash value for two dissimilar data-streams.

Hence an alteration to the data content will fail to produce the same hash value indicating

that the content was changed in transit. The computed hash value is then transformed, in

other words signed, with the sender’s private key thus allowing the recipient to verify, using

the sender’s public key, that the content/document is in fact from the sender. Thus, the signed

hash/digest preserves both the integrity and the authenticity of the transacted data.

The received data is verified by first obtaining its hash value by applying a reverse PCKS

transform on the signature using the sender’s public key. The hash value is then recomputed

on the received data and compared with the data’s original hash value. If they are the same,

the recipient can then be confident that the data indeed came from the sender, unaltered.

XML Signatures
The same challenges associated with encryption, integrity, and non-repudiation also exist for

XML data. Two new XML specifications addressing the subject of securing, encrypting, and

non-repudiating XML data are XML Signature and XML Encryption.

A unique feature in XML Signature is the ability to allow only specific parts of an XML

document to be signed. This becomes extremely useful if an XML document is to be handled

by multiple parties, each with certain delegated responsibilities that are to be unequivocally

captured in the document. This ensures the integrity of all signed portions of the document.

An example in context is business process workflows. A business process workflow may

involve an XML document exchange between multiple participants where each participant

may wish to sign only specific parts of the document maintaining a certain level of commitment

for which they are liable. Prior digital signature standards did not provide the capability to

address signatures at such a high level of granularity, nor did they provide a means to specify

signed portions of a document by multiple parties. Figure 3-3 provides an overview of the

various components in an XML Signature.

XML-based interchange formats allow data to be easily understood between two or more

communicating parties. XML schema rules allow for flexible data representation. The very

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 6 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

same piece of data may be represented in different XML structures (or documents). Consider

the following XML document fragments:

<?xml version="1.0"?>

<books>

<book type="fiction" cost="15" binding="soft"/>

<book type="history" cost="29 binding="hard"/>

</books>

<?xml version="1.0"?>

<books>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

6 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Figure 3-3 Components of an XML Signature

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<book type="fiction" binding="soft" cost="15"/>

<book type="history" binding="hard" cost="29"/>

</books>

These XML document fragments though logically equivalent do not contain the same

sequence or ordering of characters. In this particular scenario, the fragments differ by the

order of attributes that appear in the “book” element.

In order to determine that two XML documents or fragments are logically equivalent, it

is necessary to arrive at a unified (or canonical) format. In order to address this issue there

exists canonicalization algorithms that transform XML documents into canonical forms that

can be compared octet by octet. XML canonicalization is essential to the process of signing

and verifying XML documents. Prior to signing an XML document, the document is first

canonicalized using accepted algorithms based on W3C rules for XML canonicalization. It is

the canonicalized form of the document that is digitally signed, not the document’s original

form.During verification, it is the digital signature of the canonicalized form of the XML

document that is verified. Thus the verification of the digital signatures of all logically

equivalent versions of the signed XML document should be successful.

An important aspect to consider is the performance characteristics of canonicalization.

As can be inferred from the description of the canonicalization operations in prior sections,

canonicalization operations may involve multiple traverses of the XML document. Furthermore,

conversion of an XML document to a uniform canonicalized format (such as octet sequences)

may be resource intensive. The performance characateristics are further exacerbated as the

XML document size increases.

Single Sign-On
As the number of enterprise applications increases in large organizations, coordinating

authentication and authorization operations for these applications becomes a complex task.

In addition to dealing with the security aspects of each application, a centralized and robust

policy management infrastructure is essential. This ensures that the organization’s information

and services are accessed in a consistent manner.

Usability considerations in a diverse environment consisting of multiple security domains

requires integration of user sign-on functions with that of identity management. This need is

addressed by a service or a set of services that coordinate user authentication and credential

forwarding between security domains. This is commonly known as single sign-on (SSO),

termed after the end user’s perception of this functionality. SSO provides operational and

cost benefits through the following:

� Increased simplicity of user sign-on function

� Improved user experience

� Reduced management overhead as administrators may easily add, remove, or limit a

user’s access to enterprise resources in a consistent manner as dictated by access policies

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 6 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The single sign-on process can be envisioned as a method of authenticating to multiple

resources or services, each in its own security domain, by only being challenged once to

submit authentication credentials. A high-level overview of the single sign-on process is

shown in Figure 3-4. Important elements of SSO include the following:

� Primary domain The domain that initially challenges the user for his/her credentials.

This domain is responsible for mapping sign-on credentials (example, userid and

password) to accounts in other security domains.

� Secondary domains All other security domains that authenticate the user based on

credentials provided by the primary domain.

Trust is a crucial factor in any secure operation and is no different in SSO. In SSO, the

secondary domains trust the primary domain to do the following:

� Accurately assert the authentication credentials submitted by the end user

� Prevent user credentials from unauthorized use

NOTE
The primary and secondary domains do not necessarily represent entities within the bounds of an enterprise
system or an organization. These domains may be systems belonging to external organizations and those
that share user identity information though well-established trust and operational agreements.

6 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Figure 3-4 Single sign-on architecture

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Credential Mapping in SSO
Usually, user-supplied credentials submitted to a primary domain are first forwarded to a

centralized identity management infrastructure where these credentials are used to obtain the

user’s identity profile. Through this profile a user is mapped to another set of independent

credentials, in the context of the secondary domain, which are then used for user sign-on to

the secondary domain. Credential mapping, though complex from a design standpoint, yields

many advantages with regard to security, manageability, and user experience.

For example, a user may wish to access divisional sales reports through a corporate portal.

The user is challenged only once when entering the corporate portal. Signing on to the

reporting service is automatically handled via the single sign-on process using the credential

mapping process as explained earlier.

One way to optimally map users between domains is through roles. Since the secondary

domain trusts the primary domain and its authenticated users, the secondary domain can control

access to its resources and services through roles. Role mapping is advantageous in that as users

are added and removed from the system, the application remains unaffected. Role mapping may

also be combined with other credentials to customize access control mechanisms as each

application’s authorization needs (which may be implemented using JAAS, please refer to

section “Java Authentication and Authorization Service” for details) are unique.

Elements of Single Sign-On
Single sign-on, as described earlier, is a means by which a primary domain conveys to a

secondary domain that the user is in fact authenticated. However, as simple as this operation

may sound, there are various elements related to designing, deploying, and managing this

operation in a mission-critical environment. The following sections discuss various elements

of the single sign-on process.

Profiles
As part of the single sign-on operation, user identity is exchanged securely between primary

and secondary domains using profiles. Profiles map messages exchanged between primary and

secondary domains to a specific protocol such as HTTP, SOAP, and so on. These profiles are

required to clearly define the sequence of interactions, format, message content, and trust

attributes established between participating domains. Profiles may be designed using a

proprietary approach or based on standardized profiles (for example, Project Liberty—see

http://www.projectliberty.org).

Credentials
Identity in a system is established by validating a set of credentials that corroborate a set of

one or more identity assertions. For example, in a role-based system, with a password-based

authentication model, a username and password would be considered as credentials that

prove a user’s assertion that he/she belongs to a specific role. Credentials are used in various

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 6 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

ways in a single sign-on operation and are often the basis for establishing trust with the

credential bearer. Examples of credentials include the following:

� Sensitive information such as private cryptographic keys, pin numbers, passwords, and

so on, that are required to be protected from unauthorized access. Such information

may also be protected from tampering or fabrication.

� Shared information such as public key certificates, pseudonyms, and so on.

Multi-Layered Authentication
It may be possible that credentials and the mechanisms used for authentication or authorization

are not of sufficient quality to complete an attempted operation. For example, after initial sign-on,

a user attempts to conduct a high-valued operation (such as an account withdrawal) that requires a

more secure form of authentication. In such a scenario, a user may be required to provide a

stronger assertion of identity, such as a digital signature or personal pin number. This action

is known as re-authentication, and the overall process as multi-layered authentication. Employing

multi-layered authentication can be a policy decision, a contractual agreement, or at the discretion

of the service. Such polices and agreements may include details about the following:

� User identification methods when enrolling (registering) credentials

� Credential renewal policies

� Credential storage, protection, and distribution (for example, encryption, access

controls, and so on)

Authentication assertions should provide an indication of the quality of credentials and the

mechanism in which they are exchanged between security domains. For example, authentication

assertion established between security domains may be deemed of type strong if the following

are true:

Preventing Replay Attacks
Often, system-generated URLs have some user identification information for authenticated

users. Such URLs maintain time-bound information and are required to have the property

of a nonce. A nonce is a random, non-repeating value incorporated as part of the data

exchanged by a protocol to protect against replay attacks. A replay attack occurs when

a message that has a definite validity period is replayed (that is, sent again) after its

validity has expired. Using a nonce ensures that a time-bound entity such as a URL that

is valid at a given point in time cannot be replayed or reused after it expires. Since the

contents of a replayed (expired) message may look authentic (formatting, credentials,

signatures, and so on), unsuspecting server processes may end up reprocessing the message

constituting a serious security breach. Thus time-based assurance of the freshness of the

message must be employed to protect against such an occurrence.

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 6 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

� Digital certificates and SSL are used to authenticate the user.

� Biometric identity verification in addition to digitally signed documentation are used

during user registration/enrollment.

Thus, if a security domain provides authentication assertions of type strong to a secondary

domain as part of single sign-on, the secondary domain may trust the assertions to a certain degree.

However, this degree of trust is unlikely to be placed on assertions that originate from other

security domains that do not use assertions of type strong. Thus, it is crucial that single sign-on

participants clearly define their authentication type and multi-layered authentication process.

Mutual Authentication
Another extension to the standard authentication mechanism is mutual authentication. Mutual

authentication implies that both the user and the service authenticate themselves with each

other in a reciprocal manner. For example, when establishing an SSL connection, the client

and server may mutually authenticate themselves using client-side and server-side certificates,

respectively. Though this feature may provide greater assurance, it does introduce a certain

degree of vulnerability in that a user/client may not be adequately prepared to discern or

evaluate bogus server certificates.

Validating Liveness
Liveness simply refers to whether a user attempting to perform an operation at time t

1
is the

same user who was authenticated into the system at time t
0
. For example, after logging in, the

user may conduct several operations and then attempt to conduct an operation that the service

deems high-value. The service may thus decide to initiate re-authentication to ensure that the user

attempting to conduct the high-valued operation is in fact the same authenticated user. Though

this approach does not protect against rogue users, it does augment the service’s audit trail.

Java Authentication and Authorization Service
Java and J2EE technology today is being used in large-scale, multi-user environments. This

requires the ability to deal with multiple users concurrently, as well as handle their credentials,

privileges, and identities in a consistent, manageable fashion. The Java Authentication and

Authorization Services (JAAS) provides a framework and a standard API for user authentication,

privilege management, and credential verification for the Java 2 and J2EE platforms. This

section provides an overview of JAAS and its importance in securing enterprise applications.

In the Java platform, security policies can place fine-grained access control upon protected

resources by verifying the identity of code source and who signed it. However, this model lacks

enforcing control based on the user who runs the code. The code-centric model is important

for executing code that is downloaded from other sources, as is common in browser-based

applications. However, most applications are used in a multi-user environment and serve the

needs of a wide audience with different levels of access privileges. JAAS complements the

code-centric model by providing user-based authentication and authorization on top of the

existing Java security model.

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Subjects, Principals, and Credentials
In JAAS, a user or a computing service that desires to access protected resources or other

protected computing services is represented as a subject. A subject interacts with a computing

service using an identifier and will typically have a unique identifier with each service it interacts

with. The JAAS specification calls this identifier a name. The term principal represents a name

associated with a subject. A subject therefore comprises a set of principals as shown here:

public interface Principal {

public String getName();

}

public final class Subject {

public Set getPrincipals() { }

}

During the authentication process, a user or a computing service (subject) presents some

form of evidence to another computing service (another subject) to prove its identity. The

credentials provided during authentication may be userid/password and/or digital certificates,

signed data, and so on. The JAAS security model takes into account that most services rely

on named principals to access protected resources. Principals are associated with a subject

once it successfully authenticates to a service.

Services that implement a conventional access control mechanism define a set of protected

resources that may be accessed by a named principal. Principals in large-scale enterprise

applications may use verifiable public key as identifier to ensure a unique, indisputable

identity. In addition to principals, services may also require the subject to present added

security-related attributes that may include password, PIN, public key certificates, and so on,

as part of the request to access the service. These attributes are known as credentials in the

JAAS framework and are typically used for SSO operations. JAAS credentials can be any

type of object. Therefore, existing and third-party implementation may be plugged into the

framework. Credential implementation may reference data that may physically reside on a

separate server or even in hardware devices like smart cards. A credential implementation

may also delegate to third parties using its own delegation protocol.

JAAS credentials are of two types: public and private. Public credentials include a subject’s

public identity attributes like PKCS certificates that are accessible without requiring any

permission. Private credentials include a subject’s private security-related attributes such as

PCKS private keys, password, and so on, that have access controls. Please refer to the JAAS

API for further details on the Subject class.

Authentication
Each service may have an authentication mechanism that is specific to it. Therefore the security-

related attributes required by each service may be different. The JAAS framework supports a

flexible architecture that allows the plugging in of different authentication services (called

LoginModules) to meet the security requirements of an application. This architecture creates

a loose coupling between the applications and the authentication services, thus enabling

modification or replacement of authentication services without affecting the existing

applications.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

7 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

JAAS authentication framework is based on pluggable authentication module (PAM)

framework and therefore supports the notion of stacked LoginModules. The JAAS LoginContext

class represents a Java implementation of the PAM framework as shown here:

public final class LoginContext {

public LoginContext(String name) { }

public void login() { }

public void logout() { }

public Subject getSubject() { }

}

public interface LoginModule {

boolean login();

boolean commit();

boolean abort();

boolean logout();

}

The LoginContext consults a configuration file to determine the list of configured

LoginModules. A sample configuration file that identifies the LoginModule(s) is shown here:

GreaterCauseModules {com.gc.security.donor.DonorLoginModule required;}

Note the use of the required flag in the configuration file. Other possible values are Requisite,

Sufficient, and Optional. These flags control the overall behavior of the authentication process.

More information about these flags is available at http://java.sun.com/j2se/1.4.1/docs/api/

javax/security/auth/login/Configuration.html.

The LoginContext is instantiated as follows:

LoginContext lc = new LoginContext ("GreaterCauseModules",

new myCallbackHandler());

Objects implementing the CallbackHandler interface are used for performing the user

interaction for obtaining the credentials required for successful authentication. This is

because there are various ways of communicating with a user, and we need to keep the

LoginModule(s) independent of the different types of user interactions.

JAAS performs the authentication steps in two phases:

� In the first phase, the LoginContext’s login method invokes the login method of each

LoginModule specified in the configuration file. The login method of each LoginModule

performs the authentication (for example, prompting/challenging the user for username

and password). The LoginModule’s login method will return true or false (indicating

success or failure, respectively), or it may throw a LoginException. In case of a failure,

if an application decides to retry the authentication, then phase 1 is repeated.

� In the second phase, if the LoginContext’s overall authentication succeeded, then the

commit method on each configured LoginModule is invoked. The commit method of the

LoginModule will check its internal state to ensure if its own authentication succeeded.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 7 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Once it is verified that both the overall LoginContext’s authentication and

the LoginModule’s authentication has succeeded, then the relevant principals

(authenticated identities) and credentials are associated with the subject.

Authorization
JAAS authorization is accomplished by enforcing the appropriate access controls on the

principals associated to the subject during the authentication process. Services based on the

JAAS access control model define a set of protected resources and the means through which

principals may access them. The JAAS policy is built on top of the Java 2 codesource-based

security policy, forming a complete authorization scheme for the Java 2 runtime system. The

following code snippet is a sample principal-based policy entry supported by JAAS:

grant Codebase "http://www.gc.com", Signedby "gcadmin",

Principal com.gc.Principal "pHolmes" {

Permission com.gc.siteAdmin.AccessPermission "administrator"

}

This example grants code loaded from the remote resource "http://www.gc.com", that has

been digitally signed by "gcadmin", and executed by "pHolmes" permissions to administer

the site. To be executed by "pHolmes", the subject associated with the current access control

context (explained later in this section), must contain a principal of class com.gc.Principal,

whose getName function returns "pHolmes".

Roles are treated as “named” principals by JAAS. Access controls can thus be applied to

roles just like to any other principal, as shown in the following code snippet:

grant Codebase "http://www.gc.com", Signedby "gcadmin",

Principal com.gc.Role "administrator" {

Permission com.gc.siteAdmin.AccessPermission "administrator"

}

The JAAS authorization framework also allows for the Principal class in a particular

policy entry to programmatically determine if the principal is “implied” by a given subject.

In this scenario, the Principal class (specified in the policy entry) “implements” the

PrincipalComparator, whose implies method is invoked when permissions are determined

for a subject.

Public interface PrincipalComparator {

boolean implies (Subject subject);

}

Role hierarchies may be realized in this manner where a specific role (such as com.gc.Role)

implements the PrincipalComparator interface and returns "true" if a specified subject contains

an "administrator" role principal.

Associating a Subject with an AccessControlContext The java.lang.SecurityManager is consulted

any time an untrusted code attempts to access protected resources. To determine whether the

7 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

subject has sufficient authority to access a protected resource, the SecurityManager delegates

to java.security.AccessController, which ensures that the AccessControlContext contains

sufficient permission to allow access to the resource. JAAS dynamically associates an

authenticated subject to AccessControlContext by providing a Subject.doAs method.

After a service performs user authentication, and before protected resources can be

accessed, the service can associate the subject with the current access control context. This

is done by preparing the operation to be performed as a java.security.PrivilegedAction and

then calling the static Subject.doAs method and passing it an authenticated subject and a

java.security.PrivilegedAction object. The doAs method associates the subject with the

current access control context and then invokes the run method from the PrivilegedAction

object. The action thus executes as the specified subject. When security checks occur during

this execution, the SecurityManager queries the JAAS policy and updates the current

AccessControlContext with the permissions granted to the subject and the executing codesource,

and then performs its regular permission checks. When the PrivilegedAction run method

finally completes, the doAs method removes the subject from the current AccessControlContext,

and returns the result back to the caller.

Federated Network Identity
Users accessing Internet-based services often use such services in ways that cater to their

personal tastes and preferences. Each user account associates the user with his/her information

that may include anything from personal preferences on web pages to more sensitive data

such as credit card and bank account numbers. The network identity of the user is the complete

set of all such information constituting the user’s different accounts. However, in today’s

world, user accounts are scattered all over the Internet and the concept of a portable and

flexible network identity is rare.

Project Liberty (http://www.projectliberty.org), a broad alliance of a wide spectrum of

industries, attempts to address this issue through a series of technical specifications that can

be used to realize a wide range of network-identity operations. Project Liberty implementations

may ultimately provide a convenient and secure framework in which organizations may

leverage new or existing relationships with customers and partners allowing for new business

opportunities and increased customer satisfaction. Project Liberty provides a standards-based

approach to network identity management. Several products supporting Liberty Alliance 1.1

specifications are now available—a complete list can be obtained at http://www.projectliberty.org.

The solution providers include RSA Security, Entrust, Sun Microsystems, Oblix, Novell, and

many others. This section primarily discusses key concepts of Project Liberty’s Federated

Network Identity architecture.

In a federated identity system, it is crucial that the following key objectives are realized:

� The privacy and security of personal information.

� Participating entities must be able to manage trusted relationships using a

standards-based approach rather than a one-off solution.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 7 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

7 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

� The realization of single sign-on standards that allow decentralized authentication and

authorization of users, that is, each service provider must be able to authenticate

and authorize users without having to forward user credentials to other non-essential

third parties.

These objectives are realized by establishing circles of trust, an agreement common to all

participants. It is based on such circles of trust that operational agreements and trust relationships

are formed between service providers and users. Users can choose to federate (share) their local

identities, and include them into circles of trust. A circle of trust thus becomes a federation of

trusted participants that provide a seamless environment in which to conduct secure transactions.

Figure 3-5 illustrates circles of trust within a federated network identity framework.

Liberty Architecture
This section provides a high-level overview of the Liberty architecture, its components,

and its processes.

Definitions
The provider definitions are as follows:

� Service provider Organizations providing Internet-based services. These may

include virtually anything with a web presence, including businesses, portals, banks,

media portals, government, and so on.

� Identity provider A type of service provider that offers identity-related services that

are the basis for forming trust circles between affiliated service providers. An example

of an identity provider may be a trusted system that manages employee identities

across an organization and its subsidiaries.

The Liberty-enabled implementations must support the following functional requirements:

� Identity federation Protocols and stipulations that ensure users, service providers,

and identity providers within a circle of trust are notified when identities are federated

and de-federated (that is, added and removed from circles of trust). These protocols

also mandate that all service and identity providers provide each of its users a list of the

user’s federated identities at that provider.

� Authentication The authentication processes in a networked identity federation

requires that the following minimal scenarios be supported:

� Navigating between identity and service providers (to exchange user-related

information.

� Preserving confidentiality, authenticity, and integrity of any information exchanged

between user agents and identity providers, or between identity and service providers.

� Presentating verifiable form(s) of identity by the Identity provider to the user

before the user provides credentials or personal information to that provider.

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� Enabling service providers to request the identity provider to re-authenticate a user

using the same or a different authentication class.

� Support for pseudonyms The ability to support pseudonyms (that is, aliases,

assumed names, and so on) that are unique to each identity federation, across all

identity and service providers.

� Global logout Support for “logout” notifications (on user logout) to related identity

and service providers with whom the user has established a federated identity.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 7 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Figure 3-5 Circles of trust

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 3-6 illustrates the overall Liberty architecture. The Liberty architecture is based on

three orthogonal components:

� Web redirection Enables Liberty entities such as service provider, identity providers,

and user agents to interact over today’s installed http-based environments. On attempting

to access a service hosted at a service provider, the user is first redirected to the identity

provider for sign-on, subsequent to which the user is redirected back to the service provider.

� Web services Liberty protocols detail various interactions that occur between two or

more Liberty-enabled providers. Each set of interactions is based on RPC-like call

semantics conveyed via Simple Object Access Protocol (refer to Chapter 8 for details

on RPC-oriented SOAP messages). SOAP is a well-recognized specification for

conducting RPC-like interactions using XML over HTTP and is thus useful for

realizing Liberty-specific protocols and orchestrations.

� Schemas and metadata A set of data formats employed by Liberty entities to exchange

provider-specific information and other identity artifacts among each other. Please refer

to section 5.3 of the Liberty Architecture Overview [Version 1.1] document for further

information.

Single Sign-On and Identity Federation
The first time that users use an identity provider to log in to a service provider, they must be

provided with an option to federate their existing local identity on that service provider with

the identity provider. This allows the identity provider to use the user’s federated identity in a

7 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Figure 3-6 Liberty architecture

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

confidential manner for single sign-on purposes with service providers within the same circle

of trust. This is explained further in this section in conjunction with Figure 3-7.

In a federated identity system it is essential that users must be uniquely identified and

asserted across all service and identity providers. A quick solution that comes to mind is the

use of a Global ID (global identifier). However, implementing global identifiers that are not

provider specific and are “portable” across services is a significant challenge. Furthermore

global identities pose risks—if they are compromised, malicious users can gain access into

virtually every provider in the federation.

As an alternative to global identifiers, Liberty employs explicit trust relationships that are

created when a user decides to federate his/her identity between an identity and service provider.

When federating a user’s identity, opaque handles (also know as name identifiers) instead of

actual account identifiers are used to uniquely resolve users. An explicit trust relationship is

created when the user chooses to federate his/her identity the first time a user logs in to a

service provider using an identity provider. Figure 3-7 illustrates the creation of handles.

As shown in Figure 3-7, upon identity federation, the user directories of the identity

provider and the service provider make use of opaque handles to reference the user account

on either provider. In this way, the real identity of the user is concealed and the usage of a

specific alias is restricted only to this link as other links may use different aliases. This

mechanism securely establishes a federated user identity without the use of a single global

identifier.

Federation Scenarios
Based on the federated identity mechanism discussed in the preceding, it is possible to realize

three useful scenarios.

Federating Single Identity Provider, Multiple Service Providers A user may use a single identity

provider to access multiple service providers. To allow the service providers to exchange

information about the user, the user must explicitly federate the two service provider

identities. The following hold true in this scenario:

� Service providers cannot directly exchange information about a user identity federated

through an identity provider. The service providers may only communicate with the

identity provider individually.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 7 7

Figure 3-7 Identity federation between an identity provider and a service provider

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

� The identity provider holds individual/isolated relationships with each service provider

(through separate user handles), thus ensuring privacy and confidentiality of user

information.

� User can sign on to multiple service providers using a single identity provider.

Federating Multiple Identity Providers, Single Service Provider A user may use multiple identity

providers to access a single service provider. A federated identity between multiple identity

providers and a service provider can be very useful if a user requires access to a designated

service from multiple locations. For example, when a user switches from a corporate intranet

to the Internet, or to a mobile device, the user may typically use different identity providers,

each within a different circle of trust in order to access the service.

Federating Multiple Identity Providers In order for the user to avoid having to “remember” to

federate a new service with multiple identity providers a user may federate identity providers

together allowing them to access each other’s information. Thus when a new service is made

accessible to a primary identity provider, all other identity providers privy to that information

may be used to access the service. When a user’s identity is federated across many identity

providers, an explicit link exists between each identity on different identity providers, forming

a trust chain. Providers cannot skip identities in a trust chain to access services or request

information because user identity must be checked at each step.

The following are issues and risks are associated with federating identity providers:

� Liberty protocols do not dictate the underlying semantics of federated relationships.

Reasons for not doing so could be due to the variable factors that often drive the design

and implementation of such semantics. Such factors may include organizational

agreements between providers, capabilities of the Liberty implementations deployed,

political influences, and legal liabilities.

� How trust relationships between identity providers are established, and how those

relationships are represented to service providers, are unspecified. Organizations that

host identity providers must define policies that govern such trust relationships and the

means for representing them.

� Agreements and policies that govern circles of trust must also address how federation

failures are communicated to users.

� Creating several local identities with many service providers and/or identity providers

and then federating them constitutes a security risk when identity providers possess

reusable user credentials such as a username and password. Such reusable credentials

can be used to impersonate the user at every service provider federated with that account.

The Liberty approach is more secure than a global identifier in the following ways:

� If an identity provider in a circle of trust is compromised, the rest of the members in

the trust circle need to just record the incident and “sever” links to that provider to

re-establish secure access. Since the identities compromised at that provider are only

7 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 7 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

useful to access other providers at adjacent links, only the adjacent providers need to

be cleansed of any reference to compromised identities. In contrast, if a global unique

identifier is compromised, every provider in the circle of trust is affected, and hence

recovery becomes a more arduous task.

� In the Liberty network identity architecture, information about a user may be

“spread-out” over multiple identity providers in a trust circle. Hence if a provider is

compromised, only the user information at that provider is exposed. In contrast, if a

global unique identifier is compromised potentially all personal information of a user

may be exposed, which constitutes a serious privacy violation.

Defederation
Users have the ability to terminate federations, or defederate identities. Defederation is the

process of terminating the validity of a federated identity at a service or identity provider. The

defederation process may be initiated at the identity or service provider. When defederation is

initiated at an identity provider, the identity provider is stating to the service provider that it

will no longer provide user identity information to the service provider, and it will no longer

respond to any requests by the service provider made on behalf of the user. When defederation

is initiated at a service provider, the service provider is stating to the identity provider that

that user has requested that the identity provider no longer provide the user identity information

to the service provider and that the service provider will no longer ask the identity provider to

do anything on behalf of the user.

Caching Overview
A typical enterprise application spans multiple tiers and may be distributed over several machines.

Data may be accessed from any of these tiers based on the application design. For example,

in a multi-tiered J2EE application, data from the persistent store will usually be accessed in

the EJB tier. An application with high transaction volume and with a need to provide short

response time to the clients may have multiple machines in the EJB tier accessing a single

data store. In such applications, access to the data store can become very expensive because

generally the backend data stores run on high-performance expensive hardware and software.

Even when expensive hardware and software is used, the system may not easily scale when

more users and information are added to the data store since the amount of information to be

retrieved could grow exponentially. In order to provide a scalable solution, a cache should be

incorporated in the enterprise applications. A cache provides the following benefits:

� Reduces the number of network calls by minimizing calls to the data store

� Reduces application latency

� Improves response time of the application

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Common solutions offered today include the following:

� A web-tier cache is generally used to cache HTML pages or JSP fragments and sits in

the web tier in front of the web server. More and more applications are moving toward

JSP fragment caching. Some vendors provide custom tags for caching JSP fragments,

which enables caching content produced within the body of the tag. The contents cached

can be the final view of the content, or simply the values calculated for variables. The

latter is useful when the presentation is independent of the computed data. The JSP Tag

Library for Edge Side Includes, or JESI (JSR 128 at www.jcp.org), is a specification

for a custom tag library that developers can use to automatically generate ESI code

(ESI is a markup language that enables partial page caching for HTML fragments)

using JSP syntax. For more on the ESI standard, refer to http://www.esi.org.

� An application-level cache is generally useful in applications that access data store directly

in servlets, JSPs, session beans, or entity beans with bean-managed persistence. The

cache then sits between the application and the data store. In this case, a JCACHE

specification (JSR 107 at www.jcp.org)–compliant cache can be used to provide caching

of Java objects once the objects are retrieved from the data store and transformed to its

appropriate Java type. JCACHE standardizes caching of Java objects and provides for

cache expiration, spooling, and cache consistency. For entity beans with container-

managed persistence, the containers employ appropriate caching strategies. Vendors

may provide some control over the caching strategy by using vendor-specific deployment

descriptors.

� Some container vendors offer EJBs classified as read-only entity beans. This allows

caching of entity beans that were marked as read-only. The configuration of caching

attributes are provided via the vendor-specific deployment descriptor. Vendors also

provide proprietary API for invalidating cached data. This solution is vendor specific

and therefore not portable. It is expected that read-only entity beans with container-

managed persistence will become part of the post-EJB 2.1 standard.

� Data stores also implement sophisticated caches. For example, an RDBMS will have

a database cache to speed up database access and minimize the expensive disk block

access and look ups. In this section, we discuss only application-level caches.

Application Data Caching
J2EE technology provides infrastructure support to enable developers to build multi-tiered,

distributed applications using EJBs. In most multi-tiered applications, the most expensive

resource from a price and access perspective is a data source such as an RDBMS. In such

applications, it is beneficial to architect and design an application-level data cache.

NOTE
It is most beneficial if an architect adheres to Java standards such as JCACHE when designing and
implementing a cache.

8 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Most application being built today have two types of data access needs:

� Transactional data In this case, the application reads and writes data to the data store.

� Read only data In this case, the application only reads data from the data store.

Transactional data does not lend itself well to caching. Generally, the frequency of

changes to data causes too many cache invalidations. The frequency of updates also does not

allow for a stable cache. This results in too many cache misses and defeats the purpose of

caching. Thus, it is not a good practice to have a cache of transactional data. This is also true

for any data where the frequency of updates can be measured in seconds and minutes rather

than hours and days. In this scenario, the services offered by a J2EE container and the

contracts specified for a container-managed persistence bean will be adequate. In cases where

data is read-only, or it is updated less frequently, caching application data can provide good

benefits. Resources permitting, read-only data is a prime candidate for caching in memory.

Cache Architecture
It is very important that the cache architecture clearly defines the objectives of a cache up

front. There are several important issues to consider:

� Distributed caching Is a distributed cache needed? Is a hierarchical/tiered cache required?

� Capacity planning What is the size of the cache?

� Caching algorithm Which algorithm to use in order to purge a cached object:

algorithm based on LRU (least recently used), frequency of usage, or LRU and

frequency combined?

� Cache population Define process for loading the cache. Is there a cache priming

process like populating the cache in a servlet’s init() method?

� Cached data invalidation Define process for invalidating a cache when data

changes in a data store and define process for propagating this change to other

JVMs in a distributed caching scheme.

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 8 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Cached Data Invalidation in a Distributed Cache
When an object is in memory, its corresponding image can be changed on disk, or it can

be changed by another thread in memory. In this scenario, the object needs to be purged

from the cache. The object can either be read back immediately into the memory or read

into memory the next time it is requested. In a distributed cache, invalidation is more

complicated. An object may be in several distributed JVMs, in which case, if an object

in the cache is made dirty then all the caches in a distributed caching topology need to

be notified. Similarly, if the object is changed on the disk then all the caches need to be

notified. JMS can be used to provide this notification and synchronization between

distributed caches. J2EE offers a mature network communications infrastructure and is

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

8 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

Desirable features for a cache will include the following:

� Distributed cache across JVMs

� JMS-based invalidation and refresh

� A CacheFactory to handle cache creation via specialized data-aware cache-creator

classes, such as Named cache

� Cache priming or bulk loading at a predefined time

� Built-in statistics via ValueObject (see Figure 3-8) objects to help in invalidation and

cache sizing based on the following:

� Frequency of use (accessed how many times?)

� Last accessed (when was it last accessed?)

� Time bound expiration (how long in the memory?)

Figure 3-8 depicts important elements of a cache.

The possible interactions between different cache objects are as follows:

� The CacheFactory is used to create a named cache such as an instance of TokenCache.

The factory object creates a CacheManager object and associates it with the TokenCache.

� The TokenCache implementation may use a HashMap object in which case we can use

a key/value pair (that is, a concrete implementation of ValueObjectKey/ValueObject)

for storing and retrieving objects. TokenCache is implemented as a Singleton object.

Appropriate synchronization semantics should be associated with the cache.

� The ValueObject implementation maintains a reference to the cache that contains it.

This reference can be used to inform the cache when a ValueObject is invalidated or

updated. The ValueObject is an abstract class providing the base implementation for

certain methods. The TokenCache is populated with the ValueObject subclass

(TokenObject), as shown in Figure 3-8.

� The factory associates a CacheEventListener object (a concrete implementation of this

interface could be a JMS-based listener subscribing to a JMS topic associated with the

cache) with the CacheManager. This event listener responds to events such as

INVALIDATE and RELOAD.

� The factory associates a CacheItemCreator object (implemented by a concrete class

TokenCacheItemCreator) with the CacheManager.

� When the get method of TokenCache is called, and if there is a miss, the CacheManager

calls the create method of TokenCacheItemCreator object. This will load the data from

the data store.

designed from the ground up to support distributed computing, therefore it is well suited

for a distributed cache. Vendors such as spiritsoft offer caching frameworks based on

JCache, which allows users to implement multi-tiered caching solutions using JMS for

intercache communication. SpiritCache from spiritsoft offers such services as clustering,

fault-tolerance, and XA transactions.

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 8 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

� When a TokenCache object is updated by a client, or when an object is invalidated, the

CacheManager sends an invalidate notification to all the caches in a distributed caching

topology. This is done by posting an INVALIDATE event for that object to the JMS topic.

� An INVALIDATE event will invoke the event listener’s actionPerformed method,

which will instruct the CacheManager of the invalidation. The CacheManager will

in turn call the invalidate method of the TokenCache. An invalidation results in the

removal of the corresponding item from all the caches.

Cache Optimization
When designing an application-level cache, one needs to optimize cache hits. A cache hit

means that the data was found in the cache and hence the request can be serviced from the

cache. If there is cache miss, the client needs to be serviced from the data store. The bigger

the cache size, the better the chance of a cache hit. An architect needs to optimize the

application cache size such that the cache hit is at a ratio above the acceptable threshold.

Since applications have only finite resources available, the cache size is limited by the

Figure 3-8 Elements of a cache

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

amount of memory available to the application. It is advisable to build a prototype cache

and simulate the cache hits. With Java, it is best to fix a cache size and not let it grow above a

certain threshold. This works well with the Java memory model and garbage collection since

memory is not given back to the operating system even after the garbage collector frees it.

Fixing the cache size, instead of constant readjustment, will therefore prevent the operating

system process from growing out of bounds.

To put a limit on the cache size implies creating a purging algorithm for keeping the cache

optimally configured. The most common purging algorithms are LRU (least recently used)

and access-frequency-based (popularity-based). In the LRU case, an object is purged because

it was accessed the longest time ago. In the access-frequency case, an object is purged based

on the number of times the object was accessed. For example an object with three accesses is

purged before an object with five accesses. A more generalized algorithm is to use a combination

of LRU and access-frequency. The combination can give each parameter a different weight.

The weight is determined by the data access pattern of the particular application:

Weight = accessFrequency * exponent ((-decayConstant) * timeSinceLastAccess);

� accessFrequency Number of times the object was accessed since it has been in the cache.

� timeSinceLastAccess Time elapsed since the object has was last accessed.

� decayConstant This is normalized to be between 0 and 1. If accessFrequency is to

be given more weight, set decayConstant close to 0. If timeSinceLastAccess is to be

given more weight, set decayConstant close to 1. Adjust decayConstant for getting the

right value based on cache optimization needs.

Summary
Although this chapter introduced the significant aspects of architecture as it pertains to the

J2EE platform, the actual architecture of the sample application is gradually built throughout

this book using a use case–driven approach. In the chapters to come, we will incrementally

build out each use case in the presentation and business tier employing an MVC-based

architecture. Central to our discussion are the various design patterns that can be leveraged

to provide consistent implementation across all use cases.

Application security is another important aspect of the overall application design for

controlling access to protected resources. Security is pervasive in an application, at the same

time the security must be incorporated in a manner that offers a high degree of loose coupling

between the security components and the components that implement the business logic. A

change in the access control mechanism should have little or no effect on the business logic.

Classifying the security requirements in terms of channel security, network identity management,

and authentication and authorization offers us the opportunity to clearly discern the interaction

points between the application and the security infrastructure. This further assists in the creation

of guidelines that are helpful in the evaluation of third-party products that may provide either

part of the solution or the complete solution.

8 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

References
[RUP] The Rational Unified Process, An Introduction, Second Edition by Philippe

Kruchten (Addison-Wesley, 2000)

[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice-Hall, 2001)

[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

[Kruchten] The 4+1 View Model of Architecture by Phillippe Kruchten (IEEE Software

12 (6), November 1995)

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 3

C h a p t e r 3 : A p p l i c a t i o n A r c h i t e c t u r e , S e c u r i t y , a n d C a c h i n g 8 5

P:\010Comp\ApDev\711-7\ch03.vp
Tuesday, May 27, 2003 10:46:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

PART

II
Design and Construction

87

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

CHAPTER

4
Struts-Based

Application Architecture

89

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Struts as a Presentation Framework

Struts Configuration Semantics

Struts MVC Semantics

Message Resources Semantics

Summary

References

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 10:11:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

9 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

For enterprise software development, we constantly strive to use standards-based

platforms and software. Standards-based software offers the flexibility of developing

solutions that are interoperable, use industry best practices, and provide the option of

selecting the infrastructure from any vendor without the risk of breaking the architecture. JSP,

Servlet, and EJB specifications, among others, have enabled the programmers to declaratively

obtain system-level services from the implementations of these standards; the result is that

the developers have been able to experience large productivity gains by focusing on business

problems rather than trying to deal with system-level services such as transaction, security,

and resource management.

Standards-based development factors common system functionality into core platform services

that use proven design patterns and best practices; this creates a foundation framework on

which custom functionality can be built. However, one area where a standard was not prescribed,

for an infrastructure-level service, was the mapping of client-side actions (or events) to server-

side method invocation on business components using the HTTP protocol, the corresponding

navigation semantics, and HTML forms processing. The challenge of assimilating a request/

response-based HTTP protocol in an event-based MVC (Model-View-Controller) pattern has

resulted in another industry of solution providers. During the early years of J2EE, an enterprise

application architect who was dealing with large projects involving a large number of Web

pages was expected to roll his or her own version of a presentation framework that implemented

an MVC-like architectural style; as you will appreciate, this was no small feat to accomplish.

The more recent JavaServer Faces standard addresses issues such as representing UI components

and their state management, defining navigational semantics, event handling, forms validation,

internalization support, and so on. However, the Jarkarta open source project ‘Struts’ has already

achieved the mind share and acceptance from enterprise architects as a viable MVC-based

presentation framework that supports much of the functionality offered by JavaServer Faces.

At the time of this writing, the expectation is that Struts-based implementations will use

JavaServer Faces components for component-level functionality within a page, but continue

to use the their own application model for dealing with higher level functionality, such as

forms and actions. For more information on JavaServer Faces, refer to http://java.sun.com/j2ee/

javaserverfaces. The future direction of Struts is to transition over to JavaServer Pages

Standard Tag Library (JSTL) and JavaServer Faces tags.

Another framework that is worth mentioning is the XMLC-based Barracuda Presentation

Framework. XMLC is an XML compiler that converts document templates, including HTML,

cHTML, WML, XHTML, and XML, into Java objects that implement the DOM interface.

Java programs can manipulate the DOM representations of these documents on the server side

by merging the state information from the application’s model into the DOM representations.

Once the DOM is modified, it can be serialized into the source document type or other XML-

compliant format that represents the response; this enables a high degree of separation between

the presentation and the business logic. A web production engineer (a.k.a. form designer),

therefore, works completely independent of the application engineer, who depends only on

finding and replacing tags with certain ID and class attributes set by the production engineer;

XMLC generates access methods for these special tags, and these access methods serve as a

formal interface between production engineer and the application engineer. You can get more

information on Barracuda by visiting http://www.enhydra.org.

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 9 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

In this chapter, we define the requirements of a robust presentation framework and

simultaneously discuss how these requirements are implemented in the Struts framework.

We also explore the design patterns implemented by Struts and the semantics of the controller

and associated helper components, and we examine various Struts-related configuration

resources; this knowledge will be useful when designing components that will interact with

the framework, and when there is a need for extending the framework for accommodating

special needs of a project. Struts-based application architecture with practical examples will

be covered in Chapter 5 where we have identified several Struts-related patterns that can be

used as implementation templates in implementing complex behaviors. This chapter cites

several examples, where appropriate, from Chapter 5. We cover “under the hood” semantics

of Struts to gain a better understanding of how Struts is architectured, and what possibilities

exist should you decide to extend the framework; as such, only limited coverage of examples

have been provided in this chapter, with the rest of the discussion deferred to Chapter 5.

Struts as a Presentation Framework
This section discusses some of the most common requirements that are essential for a viable

presentation framework. Along with identifying the requirements, we map these to the features

offered by Struts and corresponding usage scenarios.

MVC Implementation
The MVC (Model-View-Controller) architecture is a way of decomposing an application into

three parts: the model, the view, and the controller. It was originally applied in the graphical

user interaction model of input, processing, and output.

Model A model represents an application’s data and contains the logic for accessing and

manipulating that data. Any data that is part of the persistent state of the application should

reside in the model objects. The services that a model exposes must be generic enough to

support a variety of clients. By glancing at the model’s public method list, it should be easy

to understand how to control the model’s behavior. A model groups related data and operations

for providing a specific service; these groups of operations wrap and abstract the functionality

of the business process being modeled. A model’s interface exposes methods for accessing

and updating the state of the model and for executing complex processes encapsulated inside

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

9 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

the model. Model services are accessed by the controller for either querying or effecting a change

in the model state. The model notifies the view when a state change occurs in the model.

View The view is responsible for rendering the state of the model. The presentation

semantics are encapsulated within the view, therefore model data can be adapted for several

different kinds of clients. The view modifies itself when a change in the model is communicated

to the view. A view forwards user input to the controller.

Controller The controller is responsible for intercepting and translating user actions into

command objects [Gof] that invoke methods on the model’s public API. The controller is

responsible for selecting the next view based on user actions and the outcome of model

operations.

In a J2EE-based application, MVC architecture is used for separating business layer

functionality represented by JavaBeans or EJBs (the model) from the presentation

layer functionality represented by JSPs (the view) using an intermediate servlet-based

controller. However, a controller design must accommodate input from various types of

clients, including HTTP requests from web clients, WML from wireless clients, and XML-based

documents from suppliers and business partners. For the HTTP Request/Response paradigm,

incoming HTTP requests are routed to a central controller, which in turn interprets and

delegates the request to the appropriate request handlers. This is also referred to as MVC

Type-II (Model 2) Architecture. Request handlers are hooks into the framework provided

to the developers for implementing request-specific logic that interacts with the model.

Depending on the outcome of this interaction, the controller can determine the next view

for generating the correct response.

NOTE
In this book, the term Request Handler is used interchangeably with Action class and its subclasses.

The following is an illustration of the MVC implementation in Struts. Struts implements

the MVC pattern using the Service to Worker pattern [Core]; we discuss this further in the

section “Struts MVC Semantics.”

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following discusses the interactions depicted in the preceding illustration.

Controller
In Struts, the Controller is implemented by the ActionServlet class. The ActionServlet is

declared in web.xml (the deployment descriptor) as follows:

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

</servlet>

All request URIs with the pattern *.do are mapped to this servlet in the deployment

descriptor as follows:

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

A request URI that matches this pattern will have the following form:

http://www.my_site_name.com/mycontext/action_Name.do.

The preceding mapping is called extension mapping, however, you can also specify path

mapping where a pattern ends with /*, as shown here:

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>/do/*</url-pattern>

</servlet-mapping>

A request URI that matches this pattern will have the following form: http://www.my_site_

name.com/mycontext/do/action_Name.

In Struts 1.1, the Struts required configurations are loaded in the ActionServlet.init()

method. The configurations control the behavior of the framework; this includes mapping of

URIs to request handlers (discussed in section “Model Interaction with Request Handlers”),

configuring message resources, providing access to external resources via plug-ins, and so

on. In fact, processing of incoming requests actually occur in the RequestProcessor to which

ActionServlet delegates all the input requests.

Dispatcher
All incoming requests are delegated by the controller to the dispatcher, which is the

org.apache.struts.action.RequestProcessor object.

NOTE
The behavior of the dispatcher, and the behavior of the request handlers that the dispatcher interacts with, is
controlled via a configuration file struts–config.xml. Various aspects of this configuration file are explained
throughout this chapter.

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 9 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The RequestProcessor examines the request URI for an action identifier, creates a request

handler instance using the information in the ActionMapping configuration object (explained in

the next section), and calls the requesthandler.execute method. The execute method of the

request handler is responsible for interacting with the application model. Depending on the

outcome, the request handler will return an ActionForward configuration object (ActionForward is

the runtime representation of the <forward> element and is explained in the section “Navigation

Using ActionForward”) to the RequestProcessor. The RequestProcessor will use the ActionForward

object for invoking the next view by calling either RequestDispatcher.forward or response

.sendRedirect, depending on the configuration.

Command Pattern Using ActionMapping
Struts provides a declarative way to specify the mapping between the servlet path in the

request URI and an appropriate request handler using XML syntax. This implementation is

very similar to the command pattern [Gof]. The following snippet is from the struts-config.xml

file; these declarations are used for creating an ActionMapping configuration object, which is

the runtime representation of the <action> element.

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

scope="session"

validate="false">

<forward name="ShowPage" path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

</action-mappings>

NOTE
All examples used in this chapter are from Chapter 5. Should you need to explore the examples in parallel
(not necessary), please refer to the accompanying source distribution for fully functional code.

The following briefly explains the attributes used in the preceding declaration:

path The context relative path in the HTTP request that is used for identifying this action

mapping.

type Class name that will be used for creating an instance of the request handler for

handling this request.

name The logical name of a JavaBean, also called a form-bean, that will be used to hold

form data. The form-bean will be saved in the specified scope using this name.

scope Request or session scope for saving the form-bean.

9 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

The path attribute shown in the preceding snippet maps to the action attribute of the

HTML <form> element. The declarative specifications prevent hard coding of mappings

in the code base and enable convenient visualization of how servlet path specifications in

HTML forms are mapped to instances of request handlers; in addition, application behavior

and navigation semantics can be changed by simply altering the action mappings. A request

handler is a subclass of the Struts-provided Action class.

Using the name attribute, an action mapping can declaratively specify a JavaBean whose

properties will hold the parameters from the HTTP request; this JavaBean is subclassed from

the ActionForm class. The name in the action mapping declaration is a unique identifier using

which the instances of ActionForm classes are stored in the specified scope. The ActionForm

subclass is declared in the struts-config.xml file using the <form-beans> tag as follows.

<form-bean name="PortalAllianceRegistrationForm "

type="packageName.PortalAllianceRegistrationForm "/>

Model Interaction with Request Handlers
A subclass of Action is used as an adaptor between incoming requests and the model. The

Action subclass, also called the request handler, is created specific to every request. The

base Action class provides common functions for accessing framework-related resources

and methods for saving errors detected by the execute(…) method of its subclass. The

errors are subsequently extracted and displayed in the HTML form using the custom

org.apache.struts.taglib.html.ErrorsTag as explained in the section “Displaying Errors with

ErrorsTag.” The execute(…) method of a request handler should contain control flow for

dealing with request parameters and the associated ActionForm, it should encapsulate model

interaction semantics, and it should provide the next view based on the outcome of model

operations. Request handlers are cached by the RequestProcessor when first created, and

subsequently made available to other incoming requests; as such, request handlers must not

contain user-specific state information; also, request handlers must synchronize access to

resources that require serialized access. More discussion on request handlers is available

in the section “Request Handler Semantics.”

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 9 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

Dynamic URL Generation
Dynamic URL generation for the action attribute using the custom org.apache.struts

.taglib.html.FormTag (explained further in Chapter 5) will protect the HTML documents

from being adversely impacted as a result of change of context path or <url-pattern>.

For a *.do URL pattern, the custom FormTag <html:form action="/
editCustomerProfile?customerType=preferred"> will dynamically

generate an HTML <form> tag with the action attribute containing the following

server-relative URL:

<form action="/contextPath/editCustomerProfile.do?customerType=preferred"/>

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

The following is a simple request handler PortalAllianceRegistrationAction. Refer to the

GreaterCause directory in the accompanying source distribution for complete code listing.

public class PortalAllianceRegistrationAction extends Action {

public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception {

PortalAllianceRegistrationForm regForm =

(PortalAllianceRegistrationForm)form;

String action = regForm.getAction();

if (action.equals("Create"))

{ return (createRegistration(mapping, form, req, res)); }

else if (action.equals("Update")) {

return (updateRegistration(mapping, form, req, res));

}

else if (action.equals("View"))

{ return (viewRegistration(mapping, form, req, res)); }

else { return null; }

}

public ActionForward createRegistration(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

..

..

//return an ActionForward object for displaying the next view

}

public ActionForward updateRegistration(ActionMapping mapping,

ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception {

..

..

//return an ActionForward object for displaying the next view

}

public ActionForward viewRegistration(ActionMapping mapping,

ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception {

..

..

//return an ActionForward object for displaying the next view

}

}

Navigation Using ActionForward
ActionForward objects are configuration objects. These configuration objects have a unique

identifier to enable their lookup based on meaningful names like “success,” “failure,” and so

on. ActionForward objects encapsulate the forwarding URL path and are used by request

handlers for identifying the target view. ActionForward objects are created from the <forward>
elements in struts-config.xml. The following is an example of a <forward> element in Struts

that is in the local scope of an <action> element:

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

scope="session"

validate="false">

<forward name="ShowPage" path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>

<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

</action-mappings>

Global <forward> elements are typically specified for common destinations within the

application as illustrated by the following example:

<global-forwards>

<forward name="success" path="/1_HomePage.jsp"/>

<forward name="failure"

path="/1_3_AdministratorLoginFailure.jsp"/>

</global-forwards>

Based on the outcome of processing in the request handler’s execute method, the next

view can be selected by a developer in the execute method by using the convenience

org.apache.struts.action.ActionMapping.findForward method while passing a value that

matches the value specified in the name attribute of the <forward> element. This is

illustrated by the following snippet.

return mapping.findForward("ShowPage");

The ActionMapping.findForward method will provide an ActionForward object either

from its local scope, or from the global scope, and the ActionForward object is returned to

the RequestProcessor for invoking the next view using the RequestDispatcher.forward(…)

method or response.sendRedirect.The RequestDispatcher.forward method is called when the

<forward> element has an attribute of redirect="false" or the redirect attribute is absent;

redirect="true" will invoke the sendRedirect method. The following snippet illustrates the

redirect attribute usage:

<forward name="success" path="/1_HomePage.jsp" redirect="true"/>

The <controller> element in the struts-config.xml file provides yet another feature

for controlling how the <forward> element’s name attribute is interpreted; the

<controller> element is used in conjunction with the input attribute on the <action>
element, as shown here:

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 9 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

9 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

scope="session"

input="ShowPage"

validate="false">

<forward name="ShowPage" path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>

<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

</action-mappings>

<controller>

<set-property property="inputForward" value="true"/>

</controller>

The preceding <action> element has an input attribute with a forward name; this

forward name is identical to the one used in the <forward> element. With the preceding

<controller> configuration, when the ActionForm.validate returns a non-empty or

non-null ActionErrors object, the RequestProcessor will select the <forward> element

whose name attribute has the same value as the input attribute of the <action> element;

unless overridden by a subclass of RequestProcessor, this behavior is standard when

validation errors are encountered. With the following <controller> element declaration,

when the ActionForm.validate returns a non-empty or non-null ActionErrors object, the input

attribute provides a forwarding URL instead of an ActionForward name to which the forward

occurs. In the absence of the inputForward property, this is the default behavior.

<controller>

<set-property property="inputForward" value="false"/>

</controller>

The forward is done to the specified path, with a / (slash) prepended if not already included

in the path specification. For forward or redirect, URLs in Struts are created internally by the

RequestProcessor with the following structure:

� If redirect=true, the URL is created as /contextPath/path because for

HttpServletResponse.sendRedirect the container interprets a URL with a leading /

(slash) as relative to the servlet container root.

� If redirect=false, the URI is created as /path because

ServletContext.getRequestDisptacher uses context-relative URL.

Internationalization and Localization Support
Internationalization, or I18N, is the process of engineering an application such that it can be

adapted to various languages and regions without requiring any change to the application

logic. For internationalization support, an application must consider the following:

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 9 9

� Textual content, error messages, exception messages, and labels on GUI components

must be externalized into resource files. These resource files will contain locale-

specific information as discussed shortly.

� Date, time, currency, numbers, measurements, and phone numbers must be formatted

based on local preferences and culture.

In today’s global marketplace, it is important to design the applications with internationalization;

doing this upfront takes relatively less time and effort than incorporating I18N after the

application has been developed. The JDK provides the Locale class that is used by internationalized

classes to behave in a locale-sensitive way. A Locale object represents a specific geographical,

political, or cultural region. The following is a discussion on how Struts implements I18N

and localization.

The Locale Object
Struts classes providing I18N support retrieve the locale-specific information from the

HttpSession using getAttribute(Action.LOCALE_KEY). The Locale object is saved in the

session in several different ways, as explained next.

Using HtmlTag The custom tag org.apache.struts.taglib.html.HtmlTag is inserted in a JSP

as <html:html locale="true">. This is a declarative way of populating Locale in

the session. When locale=true is specified, the tag logic will retrieve the Locale object using

the HttpServletRequest.getLocale() method. The getLocale() method returns the preferred

Locale that a client browser will accept content based on the Accept-Language header. A

default locale for the server is returned when the client does not provide an Accept-Language

header. A session object is created if it does not exist, and the Locale object is then stored in

the session object using Action.LOCALE_KEY. The HTML tag is subsequently written to the

output stream with the lang attribute set to the language specified in the locale. The Locale

object is stored only once in this manner; subsequent locale=true specification will not be

able to replace the Locale object in the session. This method of setting locale works best

when the users have their browsers set with the preferred locale list.

Using the Action Object For programmatically changing the Locale object, the Action class

provides the setLocale(…) method for saving the Locale object in the session using

Action.LOCALE_KEY. This method of setting locale works best when a user has the option of

choosing locale in the HTML form by clicking a UI component. However, using this method

can sometimes cause problems if locale-specific resources are preloaded and a user is allowed

to switch locale in the middle of a process flow. It is best to allow this functionality in a

controlled manner and reset all locale-specific resources when a locale change is requested.

Using <controller> Element Under this scheme, the <controller> tag from the struts-

config.xml file is used to flag the RequestProcessor to get the locale from the HttpServletRequest

object and put it in the session using Action.LOCALE_KEY. This is illustrated here:

<controller>

<set-property property="locale" value="true"/>

</controller>

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If value=true, then the Locale object obtained from request getLocale() is saved in the

session if not previously saved.

Internationalized Messaging and Labeling
For I18N support, all error messages, instructional messages, informational messages, titles,

labels for GUI components, and labels for input fields must be stored externally and accessed

in a locale-specific way. The Struts framework provides the MessageResources class that

mimics the ResourceBundle class provided by the JDK. Locale-specific resource bundles

provide a way of isolating locale-specific information. Resource bundles belong to families

whose members share a common base name, but whose names also have additional components

that identify their locales. The default resource bundle has the same name as the base name of

a family of resource bundles and is the bundle of last resort when locale-specific bundles are

not found. Locale-specific bundles extend the base bundle name with locale-specific identifiers

like the language, country, and variant of a locale. Consider the following example.

If base ResourceBundle name is MyApplicationResources, resource bundles belonging to

this family may be identified as follows:

� MyApplicationResources_en identifies the bundle for the English language.

� MyApplicationResources_fr identifies the bundle for the French language.

� MyApplicationResources_fr_FR identifies the bundle for the French language for France.

� MyApplicationResources_fr_CA identifies the bundle for the French language for Canada.

If the desired locale is fr_FR and the default locale is en_US, the search order for accessing

resource bundles can be summarized as follows. The search goes from being more specific

to less specific:

� MyApplicationResources_fr_FR The desired resource bundle

� MyApplicationResources_fr Less specific bundle if the desired bundle is not found

� MyApplicationResources_en_US The default bundle if no matching bundles are

found thus far

� MyApplicationResources_en Less specific bundle if the default bundle is not found

� MyApplicationResources The base bundle

Struts provides a facility for accomplishing the preceding mechanism using MessageResources

objects. MessageResources objects are initialized from the key/value pairs specified in

underlying properties files. You have to specify only the base name for a MessageResources

properties file in the struts-config.xml file to access all the locale-specific properties files

using search order that is similar to the one specified for the ResourceBundle(s). The following

depicts how message resources are declared in the struts-config.xml file:

<message-resources parameter="packageName.MyApplicationResources" key="MyResources"/>

1 0 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 0 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

The value of the parameter attribute declares the base non-locale-specific properties file. This

base resource file will have the name MyApplicationResources.properties, while locale-specific

files will have the name MyApplicationResoures_localeSpecificExtension.properties. For each

application, we can specify one or more base bundle names. MessageResources objects are

created by the controller, that is ActionServlet, and saved in the ServletContext using either

a generic key Globals.MESSAGES_KEY (same as Action.MESSAGES_KEY) or using the

key attribute provided in the <message-resources> element (in case of multiple

MessageResources).

For accessing message resources objects in request handlers, the Action class provides a

convenience method—Action.getResources—for retrieving a message resource from the

ServletContext using the key (i.e., unique identifier) associated with the MessageResources

object. Each MessageResources object will be responsible for getting locale-specific

messages by accessing the underlying set of locale-specific properties files; the properties

files are identified by the base MessageResources name specified by the parameter attribute

in the <message-resources> tag.

To retrieve a locale-specific message, use MessageResources.getMessage while passing

locale and message key as arguments as follows:

protected static MessageResources messages =

MessageResources.getMessageResources("packageName.MyApplicationResources ");

The locale can be retrieved from the session using Action.LOCALE_KEY. When an

Object[] is provided as an argument for MessageResources.getMessage, the message

retrieved is treated as a message format pattern and is converted to a MessageFormat object.

The MessageFormat object is subsequently used for calling the MessageFormat.format

method while passing the object[] to be appropriately formatted and inserted into the pattern

at appropriate places. The MessageFormat class is not locale specific, therefore the corresponding

message format pattern and the Object[] must take localization into account. MessageResources

API provides several convenience methods for retrieving messages; the corresponding Javadoc

is available at http://jakarta.apache.org/struts/api/index.html. On most occasions, the logic for

retrieving messages from a resource bundle is transparent to the Struts user; this is explained

in the next section. Refer to the section “Message Resources Semantics” in this chapter for

additional information on this topic.

Error Handling
Most form interactions require that the user be informed of the possible outcome of the

form submission. Displaying error and informational messages in a consistent manner is a

desirable feature of a framework. In the preceding section, we discussed locale-specific

messaging using the MessageResources objects. The set of properties files associated with

each MessageResources object has key/value pairs. A Struts-based application will accumulate,

for message lookup, the keys associated with validation and informational messages in an

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

1 0 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

ActionErrors object as a precursor to accessing resource bundles. The following static model

illustrates the classes involved in the error handling mechanism provided by Struts.

We will briefly discuss the interactions depicted in the preceding illustration. This

discussion will provide us with insight on how message keys are captured in Struts to get

locale-specific messages, and how the messages are rendered in a consistent manner in the

view. For this discussion the view component is a JSP.

Identifying Errors with ActionError
Implementations of Action.execute or ActionForm.validate form. validation (discussed in the

section “Storing Form Data Using ActionForm”) should capture validation and application-

specific errors in ActionErrors objects, which aggregates ActionError objects. An ActionError

object consists of a message key and optionally an object[] to be used for parametric replacement

in the retrieved message. Refer to earlier section “Internationalized Messaging and Labeling”

for relevant information. ActionError objects must be created without worrying about the

locale or the associated resource bundles. We will deal with I18N when the ActionError

objects are used for retrieving messages. Refer to the ActionError API for a complete list of

available convenience methods for creating ActionError objects. Once an ActionError object is

created, it should be added to the ActionErrors object using the ActionErrors.add method while

passing as arguments the ActionError and the property name for which a validation error was

detected. The following snippet from the ManagePortalAllianceAction class illustrates this.

Chapter 5 discusses the implementation of the sample application in detail.

public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception {

ManagePortalAllianceForm portalForm =

(ManagePortalAllianceForm)form;

ActionErrors errors = portalForm.validate(mapping, req);

String action = portalForm.getAction();

if (!errors.empty() && portalForm.getPage() == 1) {

saveErrors(req, errors);

return mapping.findForward("EnterPortalID");

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

if ((!errors.empty()) && (portalForm.getPage() == 2) &&

(action.equals("updateProfile"))) {

saveErrors(req, errors);

return mapping.findForward("ShowPortalProfile");

}

if ((!errors.empty()) && (portalForm.getPage() == 2) &&

(action.equals("navigationBarSetup"))) {

saveErrors(req, errors);

return mapping.findForward("ShowNavigationBarSetup");

}

// rest of the code

}

Within the associated ManagePortalAllianceForm, the validate() method will add error

messages to the errors object as follows:

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest req) {

ActionErrors errors = new ActionErrors();

if ((page == 1) && ((portalID == null) ||

(portalID.trim().length() < 1))) {

errors.add("portalID", new ActionError("error.portalID.required"));

}

else if ((page == 2) && (action.equals("updateProfile"))) {

errors = super.validate(mapping, req);

if (searchLimit.intValue() < 10) {

errors.add("searchLimit",

new ActionError("error.PortalAllianceProfile.SearchLimit"));

}

}

For saving error messages not related with a property, a convenience instance member

ActionErrors.GLOBAL_ERROR is available for use in place of a property argument in

ActionErrors.add(…). Usage of property name in creating an ActionErrors object is clarified

in the upcoming section “Compiling Errors ActionErrors.”

Compiling Errors with ActionErrors
ActionErrors objects hold all ActionError objects in a HashMap whose key is the name of the

property for which messages have been accumulated, and the value is an ActionMessageItem

object. ActionMessageItem is declared as an inner class of ActionMessages. Each

ActionMessageItem object consists of a unique sequence number and an ArrayList object

representing all possible validation errors for a given property. The sequence number is used

for sorting the ActionMessageItem collection such that validation errors are reported according

to the property that was first flagged as invalid. ActionErrors.get returns an Iterator on an

ArrayList containing ActionError objects. This Iterator object is referenced by the custom

tag ErrorsTag and will be discussed in the next section, “Displaying Errors with ErrorsTag.”

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 0 3

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

In request handlers, i.e., in the Action.execute method, ActionErrors should be saved in the

HttpServletRequest using the attribute name Action.ERROR_KEY; this is done by calling a

convenience saveErrors method on the base Action class while passing as arguments the request

object and the ActionErrors object The ActionErrors generated as a result of ActionForm.validate

are saved by RequestProcessor (the dispatcher) in the request object using Action.ERROR_KEY.

The next view can use the ErrorsTag for retrieving the ActionErrors object; the ErrorsTag

can be used in a JSP as follows:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:errors/>

The ActionErrors class extends the ActionMessages class. ActionErrors provides the static

member GLOBAL_ERROR and ActionMessages provides the static member GLOBAL_MESSAGE;

these static members can be used as keys when the messages are not property specific. For

saving the ActionMessages object in a request handler, the convenience Action.saveMessages

method can be used while passing the request object and the ActionMessages object; the

ActionMessages object is saved in the request using the Action.MESSAGE_KEY.

For simply capturing message keys, without the property name and the substitution

parameters, a convenience method org.apache.struts.util.RequestUtils.getActionErrors is

available for converting a String object, a String array, or an ErrorMessages object (a Vector

of message keys) into an ActionErrors object. For these implementations, the getActionErrors

method will use the ActionErrors.GLOBAL_ERROR in place of a property argument.

Displaying Errors with ErrorsTag
This custom tag renders the messages in an HTML document. It retrieves the ActionErrors

from the HttpServletRequest using Action.ERROR_KEY and then using the ActionErrors.get()

method retrieves an Iterator on an ArrayList containing ActionError objects. For each ActionError

object in the ArrayList, a locale-specific message is retrieved and sent to the response stream.

By default, the locale object in the session is used; but an alternate locale attribute can be

specified for the tag. By default, the resource bundle saved in the ServletContext with the key

Action.MESSAGES_KEY will be used unless overridden by the bundle attribute on the tag.

You will need to override the resource bundle if more than one base resource file is being used

for manageability. As of Struts 1.1 beta 2, an ErrorsTag can only use one resource bundle

family (i.e., the bundles have the same base name), therefore all errors in the ActionErrors

object must be available in this resource bundle family. Because all ActionError objects

within the ActionErrors object are logged by a property name, the messages displayed can be

restricted to a single property by specifying a property attribute specification on the ErrorsTag.

1 0 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 0 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

The sample application ‘GreaterCause’ uses a default resource bundle

‘ApplicationResources.properties’. Following is a snippet from this properties file.

error.portalID.required=Portal ID must be provided

error.invalidToken=Either this form has been submitted once already, or,

this form is not in proper submission sequence</l1>

error.ein.required=EIN must be provided

The ErrorsTag uses message keys ‘errors.header’ and ‘errors.footer’ for providing caption

and formatting around error messages, as shown here:

errors.header=<h3>Please review following message(s) before

proceeding:</h3>

errors.footer=

Exception Handling
In addition to an error handling mechanism, a presentation framework must provide a

mechanism for showing locale-specific exceptions of meaning and relevance to the user. A

recommended way to do this is to capture the actual exception and its context in a log file and

then send a meaningful informational message for assisting the user in determining a suitable

course of action. Uncaught exceptions in JSPs are handled by the errorPage mechanism as

specified in JSP 1.2 specification. Similarly, uncaught exceptions in servlets are handled

using the <error-page> specification in the web.xml deployment descriptor. Struts

provides a simple mechanism that is somewhat similar to the error page mechanism provided

by JSP and servlet containers. The following configuration can be specified in the struts-

config.xml file:

<action path="/editCustomerProfile"

type="packageName.EditCustomerProfileAction"
name="customerProfileForm"

scope="request"

input="profile">

<forward name="profile" path="/CustomerProfile.jsp"/>

<forward name="success" path="/MainMenu.jsp"/>

<exception

key="profile.inaccessible"

type=" packageName.ProfileAccessException"
path="/login.jsp"/>

</action>

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The exception handling mechanism builds on top of the error handling mechanism and

therefore uses the MessageResources for providing locale-specific messages. The following static

model illustrates the classes involved in the exception handling mechanism provided by Struts.

The discussion that follows explains the Exception mechanism provided with Struts.

Role of the Dispatcher
As discussed in the section “Dispatcher,” the dispatcher (a.k.a. the request processor)

calls the execute method of the request handler. Any exception thrown by the request

handler is caught by the RequestProcessor and interrogated for a possible match with

the <exception> elements in the struts-config.xml file. The RequestProcessor will

call the ActionMapping.findException method to find an ExceptionConfig configuration

object (ExceptionConfig objects are runtime representations of <exception> elements)

whose type attribute matches the type of the exception. If an attempt to find an <exception>
configuration for the original exception fails, the findException method will look up the

exception superclass chain for a suitable match until it reaches the top of the chain.

ActionMapping.findException will search for the <exception> element both in the

local scope of the ActionMapping object, and in the global scope.

Global <exception> elements are typically specified for common exceptions within

the application as illustrated by the following example:

<global-exceptions>

<exception

key="profile.inaccessible"

type=" packageName.ProfileAccessException"
path="/logon.jsp"/>

</global-exceptions>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

1 0 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If an ExceptionConfig object is found for a given exception type, the RequestProcessor

will create an exception handler and call its execute method; this is explained further in the

section “Converting an Exception into ActionErrors.” The RequestProcessor will forward to

the URL specified in the ActionForward object returned by the exception handler.

Exception Handling with AppException
This is a convenience base class for creating exceptions within the request handlers. It

encapsulates both, the attribute causing an exception (optional) and associated ActionError

object. A subclass of AppException will be responsible for providing the appropriate constructors

for correctly instantiating this object by using a message key, and optionally the attribute

name and an object[] for parametric substitution. The message key can be extracted from

the ExceptionConfig object that corresponds to this exception. Refer to the section “Struts

Configuration Semantics” for information on navigating the configuration objects. Refer to

the AppException API for an available list of constructors that can be called from the constructor

of its subclass. The AppException is passed as an argument in the ExceptionHandler.execute(…)

method.

Converting an Exception into ActionErrors
The RequestProcessor checks the ExceptionConfig for an exception handler specification. The

RequestProcessor creates the specified ExceptionHandler and calls its execute(…) method while

passing the AppException as one of the arguments. A default exception handler specification

of org.apache.struts.action.ExceptionHandler is preconfigured in the ExceptionConfig object.

The ExceptionHandler retrieves the ActionError from the AppException object and creates an

ActionErrors object for consumption by ErrorsTag. If the exception is not of type AppException

or one of its derived classes, then the ExceptionHandler will create the ActionErrors object

using the key specified in the <exception> element; this alleviates the request handler

developer from writing extra code for exception handling; however this limits the ability of

the framework to call only a single constructor of ActionError that only accepts a key value.

Use the handler attribute on the <exception> element to override the default exception

handler if desired. The ExceptionHandler or a subclass of ExceptionHandler will create an

ActionForward object using the path property of the ExceptionConfig; if this path is not specified,

it will use the path specified in the input attribute of the ActionMapping configuration object.

The ExceptionHandler will also save the original exception in the request object using

Action.EXCEPTION_KEY. A view is free to access this information in any way desired. The

Action.EXCEPTION_KEY can be also be used to retrieve and rethrow the original exception

for using the error-page mechanism provided by the servlet container.

Once-Only Form Submission
A problem always encountered in developing browser-based clients is the possibility of a

form getting submitted more than once. It is apparent that such submissions are undesirable

in any eCommerce application. Struts provides a mechanism to protect the model layer from

the adverse effect of multiple form submissions by using a token generated by the base

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 0 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

Action class generateToken method. To control transactional integrity and atomicity, simply

call the saveToken method in a request handler before selecting the next view with an

ActionForward. The saveToken method calls the generateToken method to create a unique

identifier and then saves it in the session with the key Action.TRANSACTION_ TOKEN_KEY.

The FormTag retrieves the token from the session and saves it as a hidden field with the name

Constants.TOKEN_KEY.

On a subsequent request, the request handler can check for token validity by calling the

convenience isTokenValid method on the base Action class. Should this method return false,

the request handler must implement suitable logic to account for the problem. An example

of this is illustrated here:

ActionErrors errors = new ActionErrors();

if (!isTokenValid(req)) {

errors.add(ActionErrors.GLOBAL_ERROR, new ActionError("error.invalidToken"));

saveErrors(req, errors);

return mapping.findForward(“ShowPage”);

}

resetToken(req);

The isTokenValid(…) method synchronizes the session object to prevent multiple requests

from accessing the token. In the request handlers, the method isTokenValid(…) must be

followed by a resetToken(…) to remove the token from the session; this will ensure that any

subsequent request will result in isTokenValid(…) returning false, thus preventing a form

from multiple submissions. The saveToken(…) should be called in the request handler to

recreate a new transaction token for the next request. A call to the resetToken is not required

when the isTokenValid method parameter list includes the reset flag.

Capturing Form Data
The JSP specification provides a standard way for extracting and storing form data at request

time in JavaBeans using <jsp:useBean> and <jsp:setProperty>. However, this

solution creates a strong coupling between the presentation layer and the JavaBeans; furthermore,

the HTML document creator has to be aware of such components and their correct usage in the

context of a page. Because the JavaBeans can be created and placed in a specified scope by

the <jsp:useBean> tag or by another server component, there could be problems with

bean life cycle management between different components sharing the JavaBean. Struts

provides a mechanism for extracting, storing, and validating form data; at the same time,

it overcomes the shortcomings of the <jsp:useBean> and <jsp:setProperty>.

The following is a recap of the <action> and <form-bean> elements:

<form-bean name="PortalAllianceRegistrationForm"

type="packageName.PortalAllianceRegistrationForm"/>

1 0 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

scope="session"

input="ShowPage"

validate="false">

<forward name="ShowPage"

path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID"

path="/2_3A_EnterPortalID.jsp"/>

<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

</action-mappings>

The preceding snippet maps a JavaBean of type=

packageName.PortalAllianceRegistrationForm with name= “PortalAllianceRegistrationForm”

(unique identifier) to an <action> element with name= “PortalAllianceRegistrationForm;”

the request handler is uniquely identified by the path / PortalAllianceRegistration in the

incoming request. The semantics of the form creation and usage are illustrated with the

following static model.

First, we will explore the semantics of forms processing while employing simple

JavaBeans objects. These objects are subclassed from as ActionForm and are also referred to

as form-beans. We will then discuss forms processing using the DynaActionForm object that

can support dynamic sets of properties at request time.

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 0 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following is an abbreviated version of the PortalAllianceRegistrationForm from the

sample application. Please note that the ValidatorForm extends the ActionForm. ValidatorForm

is discussed in detail in Chapter 5.

public class PortalAllianceRegistrationForm extends ValidatorForm implements

Serializable {

public PortalAllianceRegistrationForm() {

}

public String getPortalID() {

return portalID;

}

public void setPortalID(String portalID) {

this.portalID = portalID;

}

public String getPortalName() {

return portalName;

}

public void setPortalName(String portalName) {

this.portalName = portalName;

}

private String portalID;

private String portalName;

// rest of the code goes here

public void reset(ActionMapping mapping, HttpServletRequest req) {

portalName = null;

// rest of the code goes here

}

public ActionErrors validate(ActionMapping mapping, HttpServletRequest req) {

ActionErrors errors = super.validate(mapping, req); //Struts Validator

if (errors == null) {

errors = new ActionErrors();

// Additional validations to be placed here

}

return errors;

}

}

Initializing ActionForm Objects in FormTag
As mentioned earlier in this section, the action URL in the HTML form is mapped to an

<action> configuration, which in turn is mapped to a <form-bean> configuration.

The URL specified in the action property of the FormTag is translated by the FormTag

into a URL whose path structure conforms to the <url-pattern> specified in the

deployment descriptor. For extension mapping, this implies that the resource extension

is the same as that specified for the <url-pattern>. Therefore, a URL of the form

/editCustomerProfile?customerType=preferred, is translated into /contextName/

editCustomerProfile.do?customerType=preferred.

1 1 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 1 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

The FormTag calls the org.apache.struts.util.RequestUtils.createActionForm method,

which will search for an ActionFormBean configuration object (ActionFormBean is the

runtime representation of the <form-bean> element) with a name that matches the name

specified on the corresponding <action> element. A new instance of the ActionForm is

created using the type attribute of the <form-bean> element; a new instance is created

when the ActionForm instance is not found in the specified scope, otherwise the FormTag

calls the ActionForm.reset method on the existing form-bean to clear it in preparation

for the form data from the next request. The scope is specified by the scope attribute in the

<action> element; the new ActionForm instance or the existing reinitialized instance is

saved in the specified scope using the name attribute.

Storing Form Data Using ActionForm
The ActionForm-derived objects are used for storing the parameters from a request object,

and therefore they are tightly coupled to a user. An ActionForm subclass is a JavaBean with

accessor methods for properties corresponding to parameters in the HttpServletRequest object.

If an ActionForm object is created by the FormTag (discussed in the preceding section), then

in the request subsequent to form rendering by the FormTag, the RequestProcessor (that is,

the dispatcher) will access the form from the specified scope; the form to be retrieved is

identified by the related action mapping. The RequestProcessor will then reset the form

properties, populate the form with request time parameters, and then call the validate method

on the form object to perform server-side validation of user input. The validate method is

called only when the validate property in the ActionMapping object is set to true; this is the

default behavior. The result of validation could be an ActionErrors object, explained in the

section “Error Handling,” which is used by org.apache.struts.taglib.html.ErrorsTag to display

the validation errors to the user. The ActionForm can also be used for storing intermediate

model state, which is subsequently referenced by a view (a JSP) for presenting to the user.

An ActionForm class can also be created by the RequestProcessor. This happens when

a forward is done to a URL that maps to the controller servlet rather than a JSP and the

corresponding action mapping specifies the form property. In this case, an attempt by the

RequestProcessor to look up the form-bean may result in the creation of a new ActionForm

object if not found in the specified scope. The ActionForm objects are found in the specified

scope using the name attribute specified in the <action> element; when a form-bean is

found by the RequestProcessor, it is passed to the request handler’s execute method. You may

also decide to instantiate an action form in a request handler; you may find this need when

initializing instance variables based on application state. This is illustrated by the following

example.

public class CreateCampaignAction extends Action {

public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest req, HttpServletResponse res) throws Exception {

ManageCampaignsForm campaignForm = (ManageCampaignsForm)form;

// other code appears here

return (searchAndSelectNPO(mapping, form, req, res));

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

}

public ActionForward searchAndSelectNPO(ActionMapping mapping, ActionForm form,

HttpServletRequest req,

HttpServletResponse res) {

ManageCampaignsForm campaignForm = (ManageCampaignsForm)form;

SearchAndListNPOForm searchForm =

(SearchAndListNPOForm)req.getSession().getAttribute

("SearchAndListNPOForm");

if (searchForm == null) {

searchForm = new SearchAndListNPOForm();

req.getSession().setAttribute("SearchAndListNPOForm", searchForm);

}

/* Initialize state information with the objective of Search */

searchForm.setAction("createNewCampaign");

campaignForm.setAction("createNewCampaign");

return mapping.findForward("ShowSearch");

}

}

Form objects created for the purpose of providing intermediate model state to the JSP should

use request scope; this will ensure that the objects do not hang around after their usefulness

expires. By default, all forms are saved in the session scope. The existence of form objects in

the session beyond their usefulness could result in wasted memory, as such, the request handlers

must track the life cycle of form objects stored in the session. A good practice for capturing

form data is to use a single form-bean for related forms that span several user interactions. form-

beans can also be used to store intermediate model state, which can be adapted by custom

tags for use in a view at response time. Tag usage prevents incorporation of Java code (scriptlets)

in the view, thus achieving a good division of responsibility between a web production team that

primarily deals with markup, and an application development team that primarily deals with

writing Java code. The tags factor out logic for accessing intermediate model state; this logic

could be quite complex when accessing nested objects or when iterating through a collection.

Creating ActionForm with Dynamic Properties
A DynaActionForm object is an object with a dynamic set of properties. DynaActionForm

extends the ActionForm; its usage permits creation of a form object through declarations

made in the struts-config.xml as follows:

<form-bean name="logonForm"

type="org.apache.struts.action.DynaActionForm">

<form-property name="username" type="java.lang.String"/>

<form-property name="password" type="java.lang.String"/>

</form-bean>

The RequestProcessor creates, populates, and validates the DynaActionForm in the same

way it does ActionForm, i.e., the parameters in the request object are populated in the

DynaActionForm for the dynamic set of properties specified in the <form-bean> element;

other parameters are simply skipped.

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 1 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

Request Parameter Type-Conversion
This discussion focuses on how String[] type retrieved by Struts framework using request

.getParameterValues(parameterName) is converted to the target property type of the form-bean

object. The following is a list of supported target types:

java.lang.BigDecimal

java.lang.BigInteger

boolean and java.lang.Boolean

byte and java.lang.Byte

char and java.lang.Character

double and java.lang.Double

float and java.lang.Float

int and java.lang.Integer

long and java.lang.Long

short and java.lang.Short

java.lang.String

java.sql.Date

java.sql.Time

java.sql.Timestamp

The target types, i.e., the type associated with form-bean object properties, are found

using an introspection mechanism; a Struts-specific custom introspection mechanism is

used for DynaActionForm objects. Struts also supports indexed parameter names of the form

parameterName[n]; where the index n is zero based. The form-bean methods corresponding

to this naming convention are created according to the indexed property design patterns

prescribed by the JavaBeans specification, as shown next.

The following methods are used to access all array elements of an indexed property:

public <PropertyType>[] get<PropertyName>();

public void set<PropertyName>(<PropertyType>[] value);

The following methods are used to access individual array elements:

public <PropertyType> get<PropertyName>(int index)

public void set<PropertyName>(int index, <PropertyType> value)

The following describes the usage scenarios for indexed properties and simple properties:

1. When the bean property is an array, and the parameter name in the request does

not use the indexing notation parameterName[n], the String[] returned by

request.getParameterValues(parameterName) is converted to an array of target

component type. The ActionForm subclass should be defined with the following

method signatures:

public void set<PropertyName>(<PropertyType>[] value)
public <PropertyType>[] get<PropertyName>();

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 1 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

2. When the bean property is of type array, and the parameter name in the request

uses the indexing notation parameterName[n], the String[] returned by request

.getParameterValues(parameterName) is assumed to be containing only a single

value; as such, only String[0] is converted to the component type of the array.

The ActionForm subclass should be defined with the following method signatures

that accept an index argument:

public void set<PropertyName>(int index, <PropertyType> value)
public <PropertyType> get<PropertyName>(int index)

These method signatures follow the design patterns of indexed properties as stated in

the JavaBeans specification. In the absence of these methods, indexed access using the

indexing notation is also possible by implementing the following method:

public <PropertyType>[] get<PropertyName>();

In this scenario, the required array element to set is accessed by the Struts framework

by first getting the underlying array object, accessing the element for the given index,

and finally setting the accessed object. This pattern can also support a List-based

implementation for request parameters that use the indexing notation parameterName[n].

We discuss a List-based implementation next in the section “A Simple Example of

Nested Properties.”

3. For simple property types, the String[] returned by request

.getParameterValues(parameterName) is assumed to be containing only a single

value; as such only String[0] is converted to the target type. For simple properties,

the ActionForm subclass should be defined with the following method signatures.

public void set<PropertyName>(<PropertyType> value)
public <PropertyType> get<PropertyName>();

A Simple Example of Nested Properties
An example of List-based implementation with List update capability is illustrated in this section.

Following is a stripped-down version of the JSP code from 2_3_5_1_UpdateCampaigns.jsp that

can be found in the GreaterCause directory. In the following snippet, Collection "campaigns" is

extracted from the ActionForm "ManageCampaignsForm" using getCampaigns() and saved in the

session using the identifier "campaignDTO"; this identifier is subsequently used to retrieve the

elements of the collection in the <iterate> tag.

<logic:iterate id="campaignDTO" name="ManageCampaignsForm" property="campaigns">

<table>

<tr>

<%-- Each element of the Collection campaigns (identified in the session by

the identifier campaignDTO) is iterated and the corresponding nested property written

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

to the output stream. The property indexed="true" will create an index for

each form field where this property is specified; the index is zero based and

increments for each iteration --%>

<html:hidden name="campaignDTO" property="ein" indexed="true"/>

<td><bean:write name="campaignDTO" property="ein"/></td>

<td><bean:message key="prompt.StartDate"/></td>

<td><html:text name="campaignDTO" property="startDate" size="10"

maxlength="10" indexed="true"/></td>

</tr>

<tr>

<td class="txt">

<!-- other HTML appears here -->

</td>

<td><bean:message key="prompt.EndDate"/></td>

<td><html:text name="campaignDTO" property="endDate" size="10"

maxlength="10" indexed="true"/></td>

</tr>

</table>

</logic:iterate>

The preceding <iterate> tag will result in the following HTML that shows two iterations of

the <iterate> logic, and results in indexes [0] and [1]. The field name campaignDTO[0].ein

can be decomposed as follows: campaignDTO references the Collection "campaigns" in

the ActionForm "ManageCampaignsForm"; the index [0] references the first element of the

Collection "campaigns", which is made available using the method getCampaignDTO(int

index) in the ActionForm; the simple property ein is an instance variable of the first element

of the Collection "campaigns"; each element of the Collection is an object of the type

CampaignDTO. When the form is submitted, the Struts framework applies the updates

to the corresponding simple properties in the CampaignDTO by first calling the method

getCampaignDTO(int index); it then applies the form input to the corresponding instance

variable in the DTO. It is important to reiterate here that when the framework retrieves the

campaign DTO object, the framework takes the responsibility of updating the individual

instance variables of campaign DTO objects.

<table>

<tr>

<input type="hidden" name="campaignDTO[0].ein"value="EIN0">

<td>EIN0</td>

<td>Start Date</td>

<td><input type="text" name="campaignDTO[0].startDate" maxlength="10"

size="10" value="2003-12-12"></td>

</tr>

<tr>

<td>

<!-- other HTML appears here -->

</td>

<td>End Date</td>

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 1 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<td><input type="text" name="campaignDTO[0].endDate" maxlength="10"

size="10" value="2004-12-12"></td>

</tr>

</table>

<table>

<tr>

<input type="hidden" name="campaignDTO[1].ein"value="EIN1">

<td>EIN1</td>

<td>Start Date</td>

<td><input type="text" name="campaignDTO[1].startDate" maxlength="10"

size="10" value="2003-01-01"></td>

</tr>

<tr>

<td>

<!-- other HTML appears here -->

</td>

<td>End Date</td>

<td><input type="text" name="campaignDTO[1].endDate" maxlength="10"

size="10" value="2003-12-31"></td>

</tr>

</table>

For the preceding logic to work correctly, we need the following ActionForm definition.

public class ManageCampaignsForm extends ValidatorForm implements

Serializable {

public ManageCampaignsForm() {

}

public String getEin() {

return ein;

}

public void setEin(String ein) {

this.ein = ein;

}

public String getStartDate() {

return startDate;

}

public void setStartDate(String startDate) {

this.startDate = startDate;

}

public String getEndDate() {

return endDate;

}

public void setEndDate(String endDate) {

this.endDate = endDate;

}

1 1 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 1 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

/** Coarse grained DTO is provided by the service layer */

public void setCampaigns(List campaigns) {

this.campaigns = campaigns;

}

/** Coarse grained DTO is provided to the service layer */

public List getCampaigns() {

return campaigns;

}

private String ein;

private String startDate;

private String endDate;

private List campaigns;

/* The identifier CampaignDTO specified in the <iterate> tag is used to get

the appropriate element from the underlying Collection campaigns */

public CampaignDTO getCampaignDTO(int index) {

return (CampaignDTO)campaigns.get(index);

}

}

The nested property can nest to any number of levels, using both indexed and non-indexed

properties. Chapter 5 implements the use case Update Campaigns that employs simple and

indexed properties in a nested combination.

Custom Extensions with Plug-Ins
A framework must provide a facility for creating custom extensions by allowing a mechanism

for plugging external services seamlessly into the framework. This implies that the framework

must provide extension points, using which the life cycle management (i.e., init() and destroy())

of the pluggable component is possible. By providing such extension points, a developer can

write a service that conforms to the interface supported by the extension mechanism, in this

case the PlugIn interface, for controlling the creation, usage, and cleanup of the service and its

corresponding resources within the context of the framework.

The Struts Validator is an example of a plug-in that enables declarative form validation.

The corresponding entry in struts-config.xml is depicted here:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property property="pathnames"

value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>

The ValidatorPlugIn class, and all other plug-in classes, are instantiated by the controller

during its initialization. Each plug-in object is instantiated using the className attribute in

the <plug-in> element. This plug-in object adheres to the design patterns of JavaBeans

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

specification by providing the property accessor methods for each property specified in the

<plug-in> element. Once a plug-in is instantiated, its init method is called to enable the

developer to perform plug-in–specific initialization. For example, the ValidatorPlugIn.init

method will initialize its resources and save the resources in the ServletContext using

ValidatorPlugIn.VALIDATOR_KEY; these resources are subsequently used for creating an

instance of the class org.apache.commons.validator.Validator in the context of the framework.

The plug-in(s) instantiated by the controller are saved in the ServletContext as an array of

org.apache.struts.action.PlugIn objects using the key Action.PLUG_INS_KEY. This array is

subsequently used by the controller’s destroy() method to call the destroy method on each

plug-in for releasing acquired resources. Plug-in usage provides an elegant solution for

initializing and saving objects that provide a specific set of services and whose usage can

augment the functionality of the framework.

Struts Configuration Semantics
This section discusses the configuration objects that the controller creates, caches, and uses

for controlling the behavior of the framework. All configuration objects are available to a

developer in request handlers via the ModuleConfig object; this object can be accessed using

the Action.getModuleConfig() method; the configuration objects can be extended for

implementing custom functionality.

Parsing the Configuration File
The configuration file, struts-config.xml, is parsed in the controller’s init() method

using an instance of org.apache.commons.digester.Digester; the Digester extends

org.xml.sax.helpers.DefaultHandler. Internally, the Digester uses a SAX parser to parse the

configuration file. From the configuration file, the Digester constructs an object hierarchy

of configuration objects, rooted in the ModuleConfig object, using the rules specified in

org.apache.struts.config.ConfigRuleSet; these rules govern object creation and population.

More information about Digester is available at http://jakarta.apache.org/commons/digester.html.

The rule set provided by ConfigRuleSet can be augmented by specifying the rulesets

initialization parameter that provides a comma-delimited list of class names containing

additional rules. The configuration file location is provided in web.xml by the config

initialization parameter as follows:

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<init-param>

<param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

</servlet>

1 1 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The configuration object hierarchy is created in the init() method of the controller and

saved in the ServletContext using org.apache.struts.Globals.MODULE. At the root of the

configuration hierarchy is the ModuleConfig object. The ModuleConfig object contains

references to collections of all other configuration objects, with convenience methods for

saving and retrieving these objects. The semantics of creating a configuration object tree is

explained in the section “Creating Configuration Objects.” The following sections briefly

explain the purpose for each configuration object.

ActionMapping This object is created from the <action> element. It provides the mapping

between an incoming request and the corresponding request handler. It also embeds

ExceptionConfig and ActionForward objects; these subordinate objects are in the local scope

of the ActionMapping object.

ActionForward This object is created from the <forward> element. It provides the URI of

the next web component. ActionForward(s) are specified both in the local and global scope.

Global scope is used when a required ActionForward is not found in the scope of the current

ActionMapping object.

ActionFormBean This object is created from the <form-bean> element. It provides the

mapping between a form name in the ActionMapping to an ActionForm subclass.

FormPropertyConfig This object is created from the <form-property> element. It

provides the dynamic attribute names and types for creating a DynaActionForm object.

DataSourceConfig This object is created from the <data-source> element. It provides

information for configuring a data source in the framework.

MessageResourcesConfig This object is created from the <message-resources>
element. It provides the base name of a family of resource bundles.

ExceptionConfig This object is created from the <exception> element. It provides a

message key and a URI of the next web component when an exception of a given type is

thrown by the request handlers. ExceptionConfig(s) are specified both in the local and global

scope. Global scope is used when a required ExceptionConfig is not found in the scope of

the current ActionMapping object.

PlugInConfig This object is created from the <plug-in> element. It provides the class

name of an external resource that needs to be instantiated within the framework, and whose

init and destroy methods are to be called by the framework.

ControllerConfig This object is created from the <controller> element. It provides

information for configuring the framework.

For a complete list of all the attributes that can be specified for each configuration object,

refer to the API at http://jakarta.apache.org/struts/api/index.html.

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 1 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ModuleConfig The ModuleConfig object caches configuration information as follows:

1. ActionMapping objects are cached using a HashMap, keyed by the path attribute of the

<action> element. The default ActionMapping class

org.apache.struts.action.ActionMapping specified in the ModuleConfig class can be

overridden using the mapping initialization parameter in the <servlet> declaration.

Each ActionMapping object caches subordinate configuration information as follows:

� ActionForward objects are cached using a HashMap, keyed by the name attribute

in the <forward> element nested within the <action> tag.

� ExceptionConfig objects are cached using a HashMap, keyed by the type attribute

in the <exception> element nested in the <action> tag.

2. ActionForward objects are cached using a HashMap, keyed by the name attribute of the

<forward> element nested within the <global-forwards> tag.

3. ActionFormBean objects are cached using a HashMap, keyed by the name attribute of

the <form-bean> element.

Each ActionFormBean caches subordinate configuration information as follows:

� FormPropertyConfig objects are cached using a HashMap, keyed by name attribute

of the <form-property> element nested within the <form-bean> tag.

4. DataSourceConfig objects are cached using a HashMap, keyed by a default

Globals.DATA_SOURCE_KEY or the key attribute on the <data-source> element.

5. ExceptionConfig objects are cached using a HashMap, keyed by the type attribute of

the <exception> element nested in the <global-exceptions> tag.

6. MessageResourcesConfig objects are cached using a HashMap, keyed by a default

Globals.MESSAGES_KEY or key attribute of the <message-resources> element.

7. PlugInConfig objects are cached using an ArrayList.

8. A single ControllerConfig is placed in the ModuleConfig.

Creating Configuration Objects
Each rule in the ConfigRuleSet is associated with an element nesting pattern; an example

pattern appears as the first argument in the addObjectCreate (…) signature shown next.

The patterns and associated rules are first registered with the Digester using several

addRuleName(…) methods encapsulated in ConfigRuleSet class. During struts-config.xml

parsing, the rules are fired when an element nesting pattern in the struts-config.xml file

matches with a pattern for which a rule is registered. For a given pattern, there could be more

than one registered rule; in this case all matching rules are evaluated in the order they were

first registered. Refer to the API documentation at http://jakarta.apache.org/commons/

digester/api/index.html for additional information.

In this section, the ConfigRuleSet is annotated for clarifying the relationship between

different configuration objects and their creation sequence. The following convention is

used for adding rules to the digester’s rules cache.

1 2 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

digester.addObjectCreate("struts-config/data-sources/data-source",

"org.apache.struts.config.DataSourceConfig",

"className");

The preceding snippet is equivalent to the following code:

digester.addRule("struts-config/data-sources/data-source",

new ObjectCreateRule("org.apache.struts.config.DataSourceConfig", "className"));

Annotated ConfigRuleSet
It is not necessary to read this subsection if your intent is only to use the Struts framework;

however, if you wanted to extend the framework to suite the needs of your project, this “under

the hood” discussion can provide you with useful information on how you can declaratively

add additional properties to the various configuration objects used by Struts, and even add

new configuration objects.

Digester uses a stack to create the configuration object hierarchy. It pushes the most

recently created object on top of the stack, therefore, the object to which all rules apply is

the object that was most recently created and pushed on the stack by the Digester using the

ObjectCreateRule. The object on the top of the stack goes out of scope, and is subsequently

popped, when the corresponding tag in struts-config.xml goes out of scope. It is convenient

to equate the ModuleConfig object to document root, which is <struts-config>. The

runtime representation of rules are concrete objects that extend the Rule class. The order of

rules firing, as depicted next, is important for creating an appropriate object hierarchy.

The ObjectCreateRule instantiated as a result of the element nesting pattern

struts-config/data-sources/data-source shown here will create a DataSourceConfig object.

If the <data-source> element specifies a className attribute, the class specified by this

attribute will be used, instead of DataSourceConfig, for creating the configuration object. The

default DataSource object created by DataSourceConfig is of the type org.apache.struts.util

.GenericDataSource.

digester.addObjectCreate("struts-config/data-sources/data-source",

"org.apache.struts.config.DataSourceConfig",

"className");

The SetPropertiesRule shown next will set the properties of this object with attributes

specified in the <data-source> element of the configuration file.

digester.addSetProperties("struts-config/data-sources/data-source");

The SetNextRule shown next will call the addDataSourceConfig method of the root object

in the configuration hierarchy to add a reference to the DataSourceConfig object in the root

object; the configuration root object is ModuleConfig.

digester.addSetNext("struts-config/data-sources/data-source",

"addDataSourceConfig",

"org.apache.struts.config.DataSourceConfig");

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 2 1

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The AddDataSourcePropertyRule instantiated as a result of the element nesting pattern

struts-config/data-sources/data-source/set-property shown next will add dynamic properties

and their values to the DataSourceConfig object as specified in the <set-property>
element of the configuration file.

digester.addRule("struts-config/data-sources/data-source/set-property",

new AddDataSourcePropertyRule(digester));

The struts-config.xml file will have following declarations for the preceding rule:

<struts-config>

<data-sources>

<data-source>

<set-property property="autoCommit" value="false"/>

<set-property property="password" value="mypassword"/>

</data-source>

</data-sources>

</struts-config>

The SetActionMappingClassRule instantiated as a result of the element nesting pattern

struts-config/action-mappings, as shown next, will set the class name of the action mapping

class for instantiating ActionMapping objects. The action mapping class name is set in the

ModuleConfig object using the type attribute in the <action-mappings> element. A

default action mapping class org.apache.struts.action.ActionMapping is preconfigured in

ModuleConfig.

digester.addRule("struts-config/action-mappings",

new SetActionMappingClassRule(digester));

//As of Struts 1.1 beta 2, SetActionMappingClassRule class is in

ConfigRuleSet.java file

The FactoryCreateRule is instantiated as a result of the element nesting pattern

struts-config/action-mappings/action, as shown next. This rule will instantiate an

ActionMapping object via the ActionMappingFactory.createObject(…) method which uses

the class specified by the className attribute in the <action> element; if this element is

not specified, it will use the action mapping class specified in the ModuleConfig object.

digester.addFactoryCreate("struts-config/action-mappings/action",

new ActionMappingFactory());

//As of Struts 1.1, ActionMappingFactory class is in

ConfigRuleSet.java file

The SetPropertiesRule shown next will set the properties of the ActionMapping object

with attributes specified on the <action> element of the configuration file; the SetNextRule

shown next will call the addActionConfig method to add a reference to this ActionMapping object

in the parent object, which is ModuleConfig. As discussed in the earlier section “Parsing the

Configuration File,” all ActionMapping objects are cached inside the ModuleConfig in a

1 2 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

HashMap. Similar discussion holds good for all other configuration objects with the

exception of PlugInConfig, which is cached in an ArrayList.

digester.addSetProperties("struts-config/action-mappings/action");

digester.addSetNext("struts-config/action-mappings/action",

"addActionConfig",

"org.apache.struts.config.ActionConfig");

The SetPropertyRule shown next is instantiated as a result of the element nesting pattern

struts-config/action-mappings/action/set-property. This rule allows declaration of two attributes;

the first attribute will contain the name of the property, and the second attribute will contain the

property value. Incidentally, in the following example, the first attribute that will contain the

name of the property has a value “property”, and the second attribute that will contain the

property value is named “value”. The ActionMapping object accessor is called for setting the

value of the specified property for each <set-property> element. This is just another

way of setting properties of the configuration objects.

digester.addSetProperty("struts-config/action-mappings/action/set-property",

"property", "value");

The struts-config.xml file will have the following declarations for the preceding rule:

<struts-config>

<action-mappings>

<action path="/editCustomerProfile"

type="packageName.EditCustomerAction"
name="customerProfileForm"

scope="request">

<set-property property="scope" value="request"/>

</action>

</action-mappings>

</struts-config>

The following snippet creates the ExceptionConfig object, sets it properties as specified

in the <exception> element of the configuration file, and sets a reference in its parent

object, which is currently the ActionMapping object. The parent object is apparent from the

element nesting pattern /action/exception:

digester.addObjectCreate("struts-config/action-mappings/action/exception",

"org.apache.struts.config.ExceptionConfig",

"className");

digester.addSetProperties("struts-config/action-mappings/action/exception");

digester.addSetNext("struts-config/action-mappings/action/exception",

"addExceptionConfig",

"org.apache.struts.config.ExceptionConfig");

digester.addSetProperty("struts-config/action-mappings/action/exception/set-

property",

"property", "value");

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 2 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 2 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

The following snippet creates the ActionForward object, sets it properties as specified in

the <forward> element of the configuration file, and sets a reference in its parent object,

which is currently the ActionMapping object. The parent object is apparent from element

nesting pattern /action/forward:

digester.addObjectCreate("struts-config/action-mappings/action/forward",

"org.apache.struts.action.ActionForward",

"className");

digester.addSetProperties("struts-config/action-mappings/action/forward");

digester.addSetNext("struts-config/action-mappings/action/forward",

"addForwardConfig",

"org.apache.struts.config.ForwardConfig");

digester.addSetProperty("struts-config/action-mappings/action/forward/set-prop

erty",

"property", "value");

For the next rule, notice that the parent object is again the ModuleConfig object that is

associated with the document root <struts-config>. The following snippet creates the

ControllerConfig object, sets it properties as specified in the <controller> element of the

configuration file, and sets a reference in its parent object, which is currently the

ModuleConfig object:

digester.addObjectCreate("struts-config/controller",

"org.apache.struts.config.ControllerConfig",

"className");

digester.addSetProperties("struts-config/controller");

digester.addSetNext("struts-config/controller",

"setControllerConfig",

"org.apache.struts.config.ControllerConfig");

digester.addSetProperty("struts-config/controller/set-property",

"property", "value");

The following creates the ActionFormBean object, sets it properties as specified in the

<form-bean> element of the configuration file, and sets a reference in its parent object,

which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/form-beans/form-bean",

"org.apache.struts.action.ActionFormBean",

"className");

digester.addSetProperties("struts-config/form-beans/form-bean");

digester.addSetNext("struts-config/form-beans/form-bean",

"addFormBeanConfig",

"org.apache.struts.config.FormBeanConfig");

digester.addSetProperty("struts-config/form-beans/form-bean/set-property",

"property", "value");

The following snippet creates the FormPropertyConfig object, sets it properties as

specified in the <form-property> element of the configuration file, and sets a reference

in its parent object, which is currently the ActionFormBean object:

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

digester.addObjectCreate("struts-config/form-beans/form-bean/form-property",

"org.apache.struts.config.FormPropertyConfig",

"className");

digester.addSetProperties("struts-config/form-beans/form-bean/form-property");

digester.addSetNext("struts-config/form-beans/form-bean/form-property",

"addFormPropertyConfig",

"org.apache.struts.config.FormPropertyConfig");

digester.addSetProperty(

"struts-config/form-beans/form-bean/form-property/set-property",

"property", "value");

The following snippet creates the global ExceptionConfig object, sets it properties as

specified in the <exception> element of the configuration file, and sets a reference in

its parent object, which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/global-exceptions/exception",

"org.apache.struts.config.ExceptionConfig",

"className");

digester.addSetProperties("struts-config/global-exceptions/exception");

digester.addSetNext("struts-config/global-exceptions/exception",

"addExceptionConfig",

"org.apache.struts.config.ExceptionConfig");

digester.addSetProperty("struts-config/global-exceptions/exception/set-property",

"property", "value");

The following snippet creates the global ActionForward object, sets it properties as

specified in the <forward> element of the configuration file, and sets a reference in its

parent object, which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/global-forwards/forward",

"org.apache.struts.action.ActionForward",

"className");

digester.addSetProperties("struts-config/global-forwards/forward");

digester.addSetNext("struts-config/global-forwards/forward",

"addForwardConfig",

"org.apache.struts.config.ForwardConfig");

digester.addSetProperty("struts-config/global-forwards/forward/set-property",

"property", "value");

The following snippet creates the MessageResourcesConfig object, sets it properties as

specified in the <message-resources> element of the configuration file, and sets a

reference in its parent object, which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/message-resources",

"org.apache.struts.config.MessageResourcesConfig",

"className");

digester.addSetProperties("struts-config/message-resources");

digester.addSetNext("struts-config/message-resources",

"addMessageResourcesConfig",

"org.apache.struts.config.MessageResourcesConfig");

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 2 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

digester.addSetProperty("struts-config/message-resources/set-property",

"property", "value");

The following snippet creates the PlugInConfig object, sets it properties as specified in the

<plug-in> element of the configuration file, and sets a reference in its parent object,

which is currently the ModuleConfig object:

digester.addObjectCreate("struts-config/plug-in",

"org.apache.struts.config.PlugInConfig");

digester.addSetProperties("struts-config/plug-in");

digester.addSetNext("struts-config/plug-in",

"addPlugInConfig",

"org.apache.struts.config.PlugInConfig");

digester.addRule("struts-config/plug-in/set-property",

new PlugInSetPropertyRule(digester));

//As of Struts 1.1, PlugInSetProperty class is in ConfigRuleSet.java file

Struts MVC Semantics
Building upon the knowledge of how Struts offers various infrastructure services, this section

will discuss the design patterns and implementation details of the key components of the

framework. The semantics of key Struts components will assist in recapping this chapter,

and at the same time offer an “under the hood” view that will be helpful in extending the

framework, should such a need arise. The Struts framework uses the Service to Worker

design pattern [Core].

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

1 2 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 2 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

NOTE
Struts is constantly evolving, as such, it is very likely that the semantics captured here may change to some
degree as the 1.1 beta undergoes bug fixes and optimizations.

The Controller Object
The controller semantics are realized by the ActionServlet class. It provides a central place

for handling all client requests. This promotes a cleaner division of labor for the controller

layer that typically deals with view and navigation management, leaving the model access

and manipulation to request handlers (Command objects [Gof]) that are typically request

specific. All incoming requests are mapped to the central controller in the deployment

descriptor as follows:

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

The logical mapping of resources depicted in the preceding permits modification of

resource mappings within the configuration file without the need to change any application

code; this mapping scheme is also referred to as Multiplexed Resource Mapping. The controller

provides a centralized access point for all presentation-tier requests. The controller delegates

each incoming request to the RequestProcessor, which in turn dispatches the request to the

associated form bean for form validation, and to a request handler for accessing the model.

The combination of controller and RequestProcessor forms the core controller process. The

abstraction provided by the controller alleviates a developer from creating common application

services such as managing views, sessions, and form data; a developer leverages standardized

mechanisms such as error and exception handling, navigation, internalization, data validation,

data conversion, and so on.

Controller Object Semantics
The controller servlet (ActionServlet) essentially initializes the resources required for

controlling the behavior of the framework; all request processing function is delegated by

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

the controller to the RequestProcessor. The following is a listing of the init() method–related

key controller operations in the order of execution sequence:

1. Get the initialization parameters declared in the deployment descriptor (refer to the

ActionServlet API for a complete list of available initialization parameters and their usage).

2. Parse the web.xml deployment descriptor to retrieve the <url-pattern> element’s

body; this will assist the RequestProcessor in understanding how to extract the path

information from the request URI and strip the .do extension. The URL mapping is

saved in the ServletContext using Action.SERVLET_KEY.

3. Parse the struts-config.xml using the Digester instance and the ConfigRuleSet

(discussed earlier in this section), and create the configuration object hierarchy

rooted in the ModuleConfig object. The ModuleConfig is saved in the context

using Globals.MODULE_KEY.

4. Create a MessageResources object for each MessageResourcesConfig object and

save it in the ServletContext using the key supplied for each message resource, or

the default key Action.MESSAGES_KEY (a.k.a. Globals.MESSAGES_KEY).

5. Create a DataSource object for each DataSourceConfig object and save it in the

ServletContext using the key supplied for each data source, or the default key

Action.DATA_SOURCE_KEY (a.k.a. Globals.DATA_SOURCE_KEY).

6. Create a PlugIn[] object for all PlugInConfig objects and save the array in the

ServletContext using the key Action.PLUG_INS_KEY. Initialize each PlugIn object

with the properties available in the corresponding PlugInConfig object. For each

PlugIn object created, call its init(…) method.

7. Freeze the configuration from further modification. This logic prevents changes to

the configuration objects once the servlet begins accepting client requests.

In the process(…) method, the ActionServlet will create a RequestProcessor if it has not

been created already, and delegate the request processing to the RequestProcessor by calling

the process(…) method of the RequestProcessor. In the following section, we will continue

the discussion on the RequestProcessor.process(…) method.

The Dispatcher Object
The RequestProcessor functions as a dispatcher and handles client requests by instantiating

(or reusing) a request handler, and a corresponding form bean. The errors created, or exceptions

thrown by the form beans and the request handlers, (and processed by the RequestProcessor)

which influences the view management function of the RequestProcessor. Form beans assist

RequestProcessor in storing the form data and/or staging intermediate model data required

by the view. The RequestProcessor uses the <action> declarations, as shown next, for

instantiating request specific request handlers.

<form-bean name="PortalAllianceRegistrationForm"

type="packageName.PortalAllianceRegistrationForm"/>

1 2 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 2 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

<action-mappings>

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

scope="session"

input="ShowPage"

validate="false">

<forward name="ShowPage" path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

</action-mappings>

The path specified in the request URI is used for locating the corresponding <action>
element (which is the corresponding ActionMapping object) whose type property specifies

the class for instantiating request handler objects.

Dispatcher Object Semantics
The following is a listing of process method–related key dispatcher operations in the order of

execution sequence:

1. From the servlet path, get the path information (after stripping the .do extension). This

path information will be used to find the matching ActionMapping object. (A client

request encapsulates the desired action in the request URI as servlet path.)

2. If ControllerConfig specifies locale="true", get the locale from the request and store

it in the user’s session using Action.LOCALE_KEY. If the locale is already existing,

no action is taken.

3. If ControllerConfig provides a content type, set the content type for responses.

4. If ControllerConfig specifies nocache="true”", set no-cache HTTP headers on each

response.

5. Call the processPreprocess method. This method is provided for doing any custom

processing prior to form processing. A return value of true indicates success, otherwise

the process method is terminated with a return.

6. Get the ActionMapping object from ModuleConfig for the given path; if a match is not

found, an ActionMapping object associated with the property unknown="true" is used.

The resulting ActionMapping is saved in the request scope using Action.MAPPING_KEY.

If no mapping is found, the response.sendError method is called for sending an error

message to the client, and the process method is terminated with a return.

7. Perform Java Authentication and Authorization Service (JAAS)–based authentication

using the request.isUserInRole method for verifying privilege to perform the current

action; the roles are specified as a comma-delimited string in the roles property of the

ActionMapping. If no roles are provided in the action mapping object, or the user is in

the appropriate role, then the processing will continue, otherwise the response.sendError

is called for sending an error message to the client, and the process method is terminated

with a return.

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

8. Try finding the ActionForm associated with ActionMapping in the specified scope. If

found, use this ActionForm, else, create a new ActionForm object or DynaActionForm

object using the type property of the corresponding ActionFormBean; save the form in

the specified scope using the name property from the ActionFormBean. Call the

reset(…) method of the ActionForm object or DynaActionForm object to initialize the

form; populate the form object with the parameters in the request object.

9. The form object’s validation method is called if the validate property of the

ActionMapping object is set to true. If the validation is successful, then we proceed

to the next step. If the validation returns a non-null or non-empty ActionErrors

object, an ActionForward object with the name property that is the same as the input

property of ActionMapping object is chosen as the candidate ActionForward object.

The ActionForward object provides the URL (path property of ActionForward) of the

next view. This is usually the same view whose processing generated the ActionErrors.

The ActionErrors object is saved in the request object using the key Action.ERROR_KEY.

10. Check for presence of the forward property in the ActionMapping object. This property

is mutually exclusive with the type and include property. If found, the URI specified by

the forward property is used for forwarding the current request instead of using a

request handler object to handle this request. After the forward is done, the process(…)

method is terminated with a return.

11. Check for presence of the include property in the ActionMapping object. This property

is mutually exclusive with the type and forward properties. If found, the URI specified

by the include property is used in RequestDispatcher.include() for processing the current

request instead of using a request handler object to process this request. After the include

is done, the process method is terminated with a return. If an include property was not

specified then we precede to the next step.

12. Find an instance of the request handler from the request handler cache using its fully

qualified class name specified by the type property of the ActionMapping object. If an

instance is found, use this instance for the next step, else create a new instance of the

class specified by the type property and save it in the cache.

13. Call the execute method of the request handler. The request handler will return an

ActionForward object depending on the outcome of its processing.

14. The path property in the ActionForward object is used for forwarding the current

request to the next view.

The Request Handler
A subclass of an Action class is used as an adaptor between incoming requests and the

model. A request is intercepted initially by the RequestProcessor, which in turn instantiates

a corresponding request handler. This Action class–derived object, also called the request

handler, is created specific to every request as explained in the preceding section. The request

handler implements the Command pattern [Gof]. A client request encapsulates the desired

action in the request URI as servlet path, the path information is subsequently extracted by

1 3 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

the dispatcher (RequestProcessor) for creating an instance of the corresponding request

handler. The command pattern decouples the UI from request handlers.

NOTE
User-specific state information must not be stored in request handlers because they are used for servicing
requests from all users.

Request Handler Semantics
For distributed applications, an action class houses the control logic required for interacting

with business logic in EJB components and will typically use a Business Delegate [Core]

object for this purpose. Business delegate shields the request handlers from having to deal

with the complexity of accessing distributed components. The business delegate design pattern

promotes loose coupling between the request handlers and the server-side components since

the logic for accessing server-side components is embedded in the business delegate. A request

handler is written by a developer working in the presentation tier; a business delegate is

usually written by a developer responsible for creating the business tier services. For smaller

nondistributed applications, the action class may contain business logic. When distributed

processing is not required, and business logic is embedded in request handlers, a Data Access

Object [Core] can be used to abstract the underlying data access implementation; this provides

a loose coupling between the request handlers and the data access layer, thus protecting the

presentation tier from implementation changes in the integration tier. The base Action class of

request handlers provides several convenience methods; please refer to the API documentation

at http://jakarta.apache.org/struts/api/index.html.

Message Resources Semantics
This section will briefly discuss the semantics of MessageResources and

PropertyMessageResources classes. Each message resource bundle has a base name, which

corresponds to the name of a properties file, as discussed in the section “Internationalized

Messaging and Labeling.” This base name is identified by the property attribute in the

<message-resources> element of the configuration file. The controller creates a

MessageResourcesConfig object for every <message-resources> element in the

configuration file. The controller then creates a MessageResources object for each

MessageResourcesConfig object and saves it in the context using the key supplied for each

message resource, or the default key Action.MESSAGES_KEY (a.k.a. Globals.MESSAGES_KEY).

The MessageResources objects are created using a MessageResourcesFactory. A factory

class can be specified using the factory attribute in the <message-resources>
element. However, for the accessing messages housed in a properties file, a default

factory org.apache.struts.util.PropertyMessageResourcesFactory is preconfigured in the

MessageResourcesConfig object; the ActionServlet uses this factory object for instantiating

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 3 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the PropertyMessageResources object. The following illustration depicts the static model

providing internationalized messaging and labeling facility.

A message from a specific resource bundle is retrieved by the framework by

first retrieving the PropertyMessageResources object from the context using the

appropriate key and then calling its getMessage(…) method while passing a locale

and a message key. PropertyMessageResources.getMessage(…) is used when the

retrieved message does not require parametric substitution; otherwise, for parametric

substitution the MessageResources.getMessage(…) method is used, which accepts a

locale, a message key, and an Object[] as arguments. When an Object[] is specified, the

MessageResources.getMessage(…) method retrieves the message format pattern by calling

the PropertyMessageResources.getMessage(…) method and uses this format pattern in the

MessageFormat.format(…) method to perform parametric substitution of Object[].

A cache of locale (converted to its String value) is maintained in the PropertyMessageResource

object to identify if messages for a particular locale have already been loaded in the message

cache. If a locale is not found in the locale cache, the entire properties file associated with

that locale is loaded into the message cache. Refer to the section “Internationalized Messaging

and Labeling” for naming conventions used for the properties files. The message cache is

keyed by 'locale.toString() + "." + key' and the value is the value in the properties file for the

corresponding key. When retrieving messages, it is possible that after loading the properties

file for a particular locale, the desired key may not exist. In such situations, an attempt is

made to find a key that is less restrictive for the specified locale; this is accomplished by

stripping the locale variant from the key, if present, and doing another search with the less

restrictive key; if this search is unsuccessful, then the locale’s country code is stripped from

the key and another search is performed. If the key is found using the less restrictive version

of the locale, then the corresponding message is added to the message cache using the

complete original key without country code or variant stripping; this increases the number

of messages in the cache but provides faster response time for finding messages. If the key

is not found even after locale stripping, the default locale is loaded in the message cache, if

it already hasn’t been loaded, and the key search is performed with the key modified for the

default locale; if this search is unsuccessful, the base resource bundle without any locale

specification is searched. If the key is found using the default locale or the base bundle, the

corresponding message is added to the message cache using the complete original key.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

1 3 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Summary
Before embarking on a major project, it is always beneficial to evaluate off-the-shelf or

out-of-box solutions that address a significant part of the requirements. Implementing MVC

semantics for a request/response-based HTTP protocol demands significant investment of

time and effort. Selecting a suitable framework for solving this problem provides a head start

for a project while allowing the architects and developers to focus on realizing the business

use cases rather than integration semantics. This chapter has provided insight into Struts

framework, its MVC semantics, its configuration semantics, and the core services it offers

out-of-box. The knowledge gained from this chapter is instrumental in designing and

implementing the presentation tier components of Chapter 5. Chapter 5 will also cover the

Struts Validator for declarative form validation. More information on Struts and the related

configuration and installation instructions can be found at http://jakarta.apache.org/struts/

userGuide/index.html. Because Struts development is an ongoing endeavor, it is likely that by

the time you read this chapter, some of the implementation may change, therefore it is best to

complement the information provided in this chapter with release notes and updates posted at

http:// jakarta.apache.org/struts.

References
[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice-Hall, 2001)

[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

C h a p t e r 4 : S t r u t s - B a s e d A p p l i c a t i o n A r c h i t e c t u r e 1 3 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 4

P:\010Comp\ApDev\711-7\ch04.vp
Tuesday, May 27, 2003 9:45:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER

5
Presentation Tier

Design and
Implementation

135

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Implementing Struts Request Handlers and

Form-Beans

Implementing Presentation Tier Design Patterns

Designing with Struts Tags and Validator

Implementing Application Security

Realization of the Sample Application Use Cases

Abstracting Patterns from the Sample Application

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Chapter 1 started out with a high-level use case view. Chapter 2 employed information

architecture to move toward a detailed use case view. Chapter 2 provided us a sense

of process flow, transactional semantics, and subsystem interactions. Chapter 4 was a

look at using Struts as a framework of choice for implementing the presentation tier. If you have

not reviewed Chapter 4, please do so before proceeding with this chapter. The use case view

developed in Chapters 1 and 2 is employed for creating a project plan; this use case view can

provide us with essential information for planning work allocation to development teams, while

identifying architecturally significant use cases for building our first thread of end-to-end

functionality. The development process in this chapter follows the use case-driven approach;

this will provide us with the traceability required for adhering to the functionality prescribed

by the use cases in Chapters 1 and 2.

While the focus of Chapter 4 was to explain the architecture employed in creating a

presentation framework, and to provide the essential base for working with Struts, this chapter

focuses mainly on implementing the use cases using the Struts framework. Emphasis in this

chapter is on creating the static and dynamic models of the system, and identifying patterns

that provide repeatable solutions for solving complex user interactions. Templates can be

derived from these patterns for assisting the development team in establishing consistent

design vocabulary and implementation across all use cases. In this chapter, we will develop

presentation-side tier functionality for all the use cases identified by the packages GreaterCause

Site Administration, Manage Campaigns, and Search NPO. We have endeavored to implement

these use cases using different design implementation patterns to provide readers with insight

into leveraging the Struts framework in different ways; these patterns will serve as a starting

point from which to evolve and create more repeatable solutions by leveraging several other

features of Struts not covered by this book. Since the focus of this book is architecture, a

large portion of this chapter is dedicated to discussing design implementation patterns that

can be used repeatedly in creating consistent solutions across the system.

To follow along with this chapter, you may want to install the GreaterCause application, as

explained in Chapter 9. The complete administration functionality of the GreaterCause application

is rooted in the Administrator Services button on the GreaterCause.com home page. Appendix C

provides a complete site flow for Administrator Services.

NOTE
Readers of this book should have a basic knowledge of servlet and JSP technologies. In order to provide an
optimum reading time, we have deliberately tried to avoid explaining these technologies. Should you desire
to learn about servlets and JSPs, excellent tutorials are available at java.sun.com and at the sites of J2EE
container vendors.

The class diagrams depicted in this chapter will cover the presentation tier components

and related vocabulary; the business tier (service layer) model and associated design patterns

are explained and developed in Chapter 6 and Chapter 7. So long as the business interfaces

are clearly defined for the business tier, construction of components in the presentation tier

can be done in parallel with the construction of components in the business tier. In large projects,

we tend to use the specialized skill of a web production team, presentation tier engineers, and

business tier engineers. Therefore, for each use case being developed, the artifacts created by

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 3 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

this cross-functional team must be available at the right time for integration testing to proceed.

Parallel development of different tiers has to be managed effectively in order to provide a

cohesive set of deliverables that can be tested end-to-end; the key learning from the integration

testing can be leveraged by the subsequent iterations in creating quality deliverables.

Implementing Presentation Tier Classes
Because the presentation tier leverages the Struts framework for providing the controller

component, the number of classes participating in realizing each GreaterCause use case are

minimal; the heavy duty work is performed by the Struts itself. Whether you have a preference

for Struts or not, one important aspect of this discussion is to understand how simple the

development process is when an MVC-based implementation is provided as a bundled

solution. Our focus is on creating request handlers, and supporting helper classes such as

business Delegates, ActionForm subclasses (form-beans), and DTOs (data transfer objects).

We endeavor to identify the relationships between request handlers and the rest of the helper

classes, and use sequence diagrams to model the interactions between these classes. For each

use case, we shall create a single class diagram, and subsequently identify design patterns

that will abstract key interactions between the Views (JSPs), the Struts Framework, and the

classes participating in the realization of each use case.

The detailed use case view provides us with a clear understanding of the work flow involved

in accomplishing various application tasks. These application tasks, or actions, can be represented

as methods in the request handlers, and subsequently mapped to the business interfaces provided

by the service layer via the business delegates. At this juncture, we may find the need to

evolve the coarse-grained tasks defined in the use case into its constituent parts, and identify

suitable operations for these tasks on the class diagrams.

DEFINITION
A DTO (Data Transfer Object) represents a coarse-grained object that aggregates server side data before it is
serialized and marshalled across the wire from the business tier to the presentation tier or vice versa. The
purpose of using DTO is to reduce network traffic since calls made to EJBs are expensive. The DTO pattern is
explained in Chapter 7, in the section “Data Transfer Object Pattern.”

DEFINITION
A Business Delegate is used to reduce the coupling between the presentation tier and the business tier; it
hides the implementation details of the business interfaces. Details are available in the section “Implementing
the Business Delegate Pattern.”

NOTE
The sequence diagrams depicted in this chapter have been distilled to make them easy to read while
maintaining focus on the key aspects of object interactions. As such, please refer to the code illustrations
or the accompanying source distribution for complete details.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 3 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Implementing ActionForm Subclasses
The properties defined in an ActionForm subclass follow the JavaBean patterns described

in Chapter 4. The Struts framework uses these patterns, that is the get and set accessor

methods, to manage the ActionForm (a.k.a. the form-bean, which is discussed in Chapter 4)

state. Struts uses the org.apache.commons.beanutils package to perform operations on

JavaBeans; this includes automatic type conversion (from request parameters to the form-

bean, and vice versa), handling simple and nested bean properties, and automatic field

initialization based on field type. The beanutils package provides increased productivity

and convenience of working with JavaBean-compliant classes.

Capturing Form Data
The primary function of an ActionForm subclass is to capture form data submitted by an HTML

document. The key/value pairs submitted as part of the HTTP request are used to populate the

properties specified in the ActionForm subclass. As such, you can implement an ActionForm

subclass for staging the data provided by the HTML form. The form-beans used by the

GreaterCause application are not limited to capturing information from a single form. In our

sample application, the site administrator has to typically go through two screens, one for

identifying the entity that it is going to impersonate (either the portal-alliance or a non-profit),

and the other for working with data pertaining to the entity. Multi-page interactions are explained

in the section “Multi-Page Pattern.” Another case of multi-page interaction is involved with

search semantics, where up to four screen interactions are possible; this is explained in the section

“Shared Request Handler Pattern.” As explained in Chapter 4, the data types used in form-beans

are transformed automatically from the String type of HTTP protocol to the target type used by

the bean properties. The initial value for blank fields is also set automatically by the framework

using helper classes from the beanutils package. Care should be taken to ensure that all form fields

are represented in the form-bean, otherwise the Struts framework simply ignores extra parameters

in the request. Also, you must try to prevent naming conflicts between the field names used in

the HTML form with the field names used within the form-bean for the purpose of managing

application state. In several cases, you can design a form that can handle input from multiple

pages; this technique reduces the number of forms used by the application, which in turn reduces

form clutter, increases manageability, and promotes modularity.

Validating Data
The ActionForm bean can optionally contain a validate method that is called either by the

framework or through the request handler classes. If the validate method is not to be invoked

by the framework, then you must set the validate attribute in the <action> element of the

struts-config.xml to "false"; otherwise the framework will automatically call the validate

method immediately after populating the form-bean. The semantics of the framework are

explained in Chapter 4. An alternate technique allowing declarative validation is provided

by the framework by extending the form-bean with the ValidatorForm class; this is discussed

in the section “Factoring Validator into the Design Process.”

For our sample application, we have deliberately set the validate attribute to "false". One

reason for doing this is the way the ValidatorForm behaves when used with the page property.

The validation.xml file (explained later) contains declarative validation, which could be tied

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 3 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

to a numeric page identifier. The page attribute in validation.xml controls which validations

must be evaluated based on the value of the page property in the form-bean. If the page

number associated with the page property of the form is n, then all validations with page value

n and less are evaluated. For the GreaterCause application, this behavior is not desired since

the sequence of pages shown to the user is based on the administrator type, and therefore the

set of validations associated with a site administrator will fail for other types of administrators

for whom a corresponding form was not processed and the data was not collected; the sample

application therefore explicitly calls the validate method from the request handlers. Another

reason for not letting the framework automatically call the validation is to have control over

which pages get shown when the validation fails. The automatic validate method by the

framework is inflexible when dealing with several <forward> possibilities. Should a validation

fail, the framework will automatically invoke the URL associated with the <forward>

element that has the same name attribute as the input attribute on the <action> element.

Using automatic validation implies that only one response view is possible no matter which

form gets submitted. The GreaterCause application has several <forward> elements

associated with an <action> element, therefore the validate method is explicitly called by the

request handlers, and the use of the input attribute on <action> elements is not entertained.

Managing Application State
The GreaterCause application uses form-beans to manage the application state. One reason for

doing this is because the state of the application is very much influenced by the form-bean’s

page and action properties; the second reason is that state information cannot be stored in

the request handlers since request handlers are not thread safe. The action property is used in

identifying an action associated with a link or a button that the system remembers and adapts

its behavior based on the value; one such case is when a single form is used to create, update,

and view the registration information associated with a Portal-Alliance or a non-profit (NPO).

The page property is useful in identifying the pages in a multi-page interaction; the ValidatorForm

(that extends ActionForm) contains the page property that can be used to number the forms

participating in a multi-form interaction. The page property is useful in creation of wizard-like

behavior. The action property combined with the page property makes the request handlers

highly modular in that a single request handler can be used to handle a variety of forms and

user actions. The multi-page pattern, multi-action pattern, and Shared Request Handler pattern

(all patterns are explained later in the chapter) rely on this mechanism in creating highly

flexible request handlers. Using state information, we are able to package related functionality

within a single request handler class rather than spreading out related functionality across

multiple action classes; this increases manageability and promotes modularity.

Transferring ActionForm Properties to DTO
Although form-beans can function as data transfer objects (DTOs), it is not advisable to do so

because form-beans are “presentation layer centric.” The UI is the most volatile part of the

system, therefore we want to shield the business tier from changes in the form-beans of the

presentation tier. For service layer calls, especially when using EJBs, it is desirable to make

fewer calls to increase throughput. The Value Object pattern recommended by Core J2EE

Patterns [Core] is used for transferring data between application tiers using objects (a.k.a. DTOs)

whose level of granularity is coarse; this is further explained in Chapter 7. The process of

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 3 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

transferring form data staged in the form-bean to data transfer objects, and vice versa, is greatly

simplified if data transfer object and form-beans use the same naming convention for property

accessors. The beanutils package provides helper classes for transferring the state from one

bean to another; the GreaterCause application uses the method PropertyUtils.copyProperties(

toBean, fromBean) from the beanutils package to accomplish this transfer in a single method

call. The DTOs are typically designed by the service layer developer and contain flags for

identifying whether a particular property was modified; these flags are used in optimizing

method calls in the domain layer (see Chapter 6 for details) when modifying entity bean

properties. The DTOs are packaged with both the web module (.war) and the EJB module

(.jar) because these objects are common to both the web tier (presentation tier) and the EJB

tier (business tier for GreaterCause).

Managing the Form-Bean Life Cycle
The scope attribute on the <action> element in the struts-config.xml file instructs the

Struts framework about placement of the form-bean, upon its creation, in either the request

object or the session object. When request scope is chosen, the form is placed in the

request object and made available to the next resource invoked by the framework using the

RequestDisptacher.forward method. The request objects are valid only within the scope of

a servlet’s service method, therefore the form-bean is not valid in the next invocation of the

service method. The GreaterCause application uses the session scope to store all forms because

all form-beans are designed to support multiple forms; employing this technique puts the

responsibility of removing the form-beans on the developer when such beans are no longer

useful. Keeping the form-beans in the session provides an added benefit of reuse when

existing form-beans need to be frequently recycled during a user session; for such forms the

reset method is implemented to prevent the annoyance of stale data being displayed to the

users. Recall from Chapter 4 that the reset method is automatically called by the Struts

framework just prior to form-bean population, so care must be taken in creating a reset method

for cases where form data is captured from multiple forms. For such cases, it is best to check

the page property and then conditionally initialize form-bean properties.

Implementing Request Handlers
Request handlers implement the Command pattern [Gof]. The controller servlet maps a request

to the execute method of a request handler. The request handler is a subclass of the Action

class, or any of the classes specified in the org.apache.struts.actions package; all classes in

this package extend the Action class. In our sample application, we use the Action class as

well as a variant of this class, the DispatchAction class from the actions package. The request

handlers are cached by the controller and used for servicing subsequent requests from any

user, as such, the request handlers are not thread safe; any state information pertaining to a

user must not be stored in request handlers. Consider request handlers as an extension of the

controller servlet; as discussed in Chapter 4, it is the controller servlet that instantiates the

dispatcher, which in turn instantiates a request handler. One can write directly to the response

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 4 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

stream from request handlers or pass control to another resource using the RequestDispatcher

.forward method; the common practice is that a request handler will service a request, and

when exiting its execute method, it will return an ActionForward object to the dispatcher

instructing the dispatcher which view should be displayed next. When the request handler uses

the RequestDispatcher.forward method, it can return a null as ActionForward to indicate to the

controller that a response has already been sent and that the controller should take no further

action. A typical request handler will have the following logic. This snippet has been taken from

the class PortalAllianceRegistrationAction (Register Portal-Alliance use case); the code has

been modified and made generic. Please refer to the accompanying source distribution for the

exact code.

public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest req,HttpServletResponse res) throws Exception {

PortalAllianceRegistrationForm regForm =

(PortalAllianceRegistrationForm)form;

ActionErrors errors = new ActionErrors();

/* Check transaction token to ensure that the page is not stale.

* This check will also invalidate the token. isTokenValid()

* method is synchronized on the session object */

if (!isTokenValid(req, true)) {

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("error.invalidToken"));

saveErrors(req, errors);

/* Redisplay the input form; this stale page does not

* need transaction token */

return mapping.findForward("ShowPage");

}

/* Validate the form fields */

errors = form.validate(mapping, req);

if (!errors.empty()) {

saveErrors(req, errors);

saveToken(req);

/* Redisplay the input form */

return mapping.findForward("ShowPage");

}

PortalAllianceRegistrationDTO dto = new PortalAllianceRegistrationDTO();

/* Transfer form properties to DTO */

try { PropertyUtils.copyProperties(dto, regForm); }

catch (InvocationTargetException e) {

Throwable rootCause = e.getTargetException();

if (rootCause == null) { rootCause = e; }

throw new ServletException(rootCause);

}

catch (Throwable e) { throw new ServletException(e); }

/* Access service layer using the delegate */

PortalAllianceRegistrationDelegate delegate =

PortalAllianceRegistrationDelegate.getInstance();

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 4 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

try { delegate.createPortalAllianceRegistration(req, dto); }

/* Catch service layer Exception */

catch (GCNestingException e) {

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError(e.getMessageToken()));

saveErrors(req, errors);

/* Create a new token before redisplaying the page */

saveToken(req);

return mapping.findForward("ShowPage");

}

/* Clean up the form-bean */

req.getSession().removeAttribute("PortalAllianceRegistrationForm");

/* Specify the next View */

return mapping.findForward("success");

}

The request handler can check the transaction token, perform form validations, and interact

with the model using the business delegate. Token usage is discussed in Chapter 4. The sample

application sets the transaction token for every transactional page; it then checks this token for

validity when the request handler gets the control, and rejects any request with a stale token.

Managing User-Specific State
An ActionMapping object, created from the <action> element of the struts-config.xml file,

is associated with a single request handler and a single form-bean. Other than the simplest

scenarios, one can seldom expect that a single request handler will process a single page with

a single operation. An example of such operations (which we subsequently refer to as “action”)

in the context of the sample application are the create/update/view actions on the registration

page. It is highly unlikely that one will create three different request handlers for accommodating

three different actions, because it will create manageability issues and defeat modularity.

Among the available solutions, we will discuss the multi-page pattern and the multi-action

pattern (using both the Action subclass strategy and DispatchAction subclass strategy) that

uses the form-bean to manage application state; this state is queried by the request handler

for deciding the process flow.

Although in most cases the Struts framework will instantiate and initialize the form-bean

associated with a request handler (as specified by the type attribute in the <form-bean>

element of struts-config.xml file), sometimes it becomes necessary for the request handlers

to instantiate the form-beans required by a subsequent view. The sample application uses this

technique when it invokes the search facility. The search facility is a common service available

to any request handler wanting to couple itself with the search facility. The search facility’s

request handler has to remember the calling request handler such that it can seamlessly transfer

control back to the calling request handler after the search request is satisfied. To enable this,

the calling request handler has to instantiate the form-bean associated with the search facility

and set the action property that will instruct the search facility which ActionForward it

should use when exiting; this is explained in the section “Shared Request Handler Pattern.”

1 4 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Implementing the Business Delegate Pattern
A business delegate [Core] provides an extra level of indirection in accessing business tier

services. A delegate essentially decouples the presentation tier from the business tier by

brokering all calls from the presentation tier to the business tier. This design protects the

presentation tier from changes in the business tier interfaces so long as the delegate is able

to adapt the new business tier interface to existing method calls from the presentation tier.

The business delegate also encapsulates the JNDI lookups, which reduces the complexity

of the request handlers. Following is an example of a business delegate that is implemented

to access the registration services of the EJB com.gc.services.admin.SiteAdminBean. The

complete code is available in the accompanying source distribution. If you want to learn

more about the package structure and naming conventions used by the sample application,

please refer to the section “Identifying Package Dependencies.”

package com.gc.prez.admin;

public class ManageNPODelegate {

private ManageNPODelegate() {

super();

}

/* Implement the Singleton pattern */

public static ManageNPODelegate delegate =

new ManageNPODelegate();

public static ManageNPODelegate getInstance() {

return delegate;

}

/* Get the remote reference of the EJB */

public NPOAdmin getBusinessInterface(HttpServletRequest req)

throws Exception {

/* Use the generic Service Locator */

ServiceLocator service = ServiceLocator.getInstance();

NPOAdmin businessInterface =

(NPOAdmin)service.getRemoteForStateless(NPOAdminHome.class);

return businessInterface;

}

/* Access the business tier service */

public NPOProfileDTO getNPOProfileDTO(HttpServletRequest req,

String ein, String adminID) throws Exception {

NPOAdmin businessInterface =

getBusinessInterface(req);

try {

return (NPOProfileDTO)businessInterface.getNPOProfile(

ein, adminID);

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 4 3

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

}

catch (RemoteException e) {

throw new ServletException

(Constants.Communication_Error, e);

}

}

... rest of the code ...

}

The sequence diagram of Figure 5-1 illustrates the business delegate interactions. The request

handler method ManageNPOAction.showNPOProfile() will access the delegate. The delegate in

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 4 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-1 Business delegate sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

turn will get the remote reference to the business layer EJB using the getBusinessInterface method,

and subsequently access the business tier service getNPOProfile().

Implementing the Service Locator Pattern
The Service Locator encapsulates the logic for creating the initial context, JNDI lookup, and

EJB remote reference creation. The service locator also optimizes access to EJBs by caching

home references and EJB objects. It reduces code complexity for the business delegates

whose only concern is to obtain the remote reference from the service locator and use it for

making calls to the business tier. The sample application provides a more generic approach

to implementing service locators using the reflection API; this has resulted in a single service

locator for the entire GreaterCause application. You may want to evolve this implementation

to suit your unique project requirements. The service locator implemented with the GreaterCause

application provides the following generic service locator methods.

NOTE
For the GreaterCause application, the JNDI names follow the naming convention ejb/homeInterfaceName.
This convention is used while implementing the methods of the service locator.

� getRemoteForStateless(Class homeClass,) This method will accept a stateless EJB

home interface name and return a remote reference for the EJB. Home reference

caching is used for optimization.

� getRemoteForStateless(Class homeClass, Object[] args,) This method will accept

a stateless EJB home interface name and return a remote reference for the EJB. This

method is called when the create method of the home interface accepts arguments; the

arguments are passed to the create method using Object[]. Home reference caching is used

for optimization.

� getRemoteForStateful(Class homeClass, HttpSession session) This method will

accept a stateful EJB home interface name and return a remote reference for the EJB.

This method caches an EJB handle in the HttpSession for subsequently getting the

remote reference. Because the bean is stateful in nature, the corresponding EJB handle

is saved in HttpSession as against a globally available cache that was used for caching

home references in getRemoteForStateless method implementations. An EJB handle

object is saved in the HttpSession instead of the remote reference because remote

references are not guaranteed to be serializable when the HttpSession is passivated

by the servlet engine.

The following demonstrates a simple service locator implementation that employs the

reflection API. Please note that this version is abridged for improved readability; only one

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 4 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

method from those listed is shown. The complete code is available in the accompanying

source distribution.

package com.gc.prez.common;

public class ServiceLocator {

/* Implement Singleton Pattern */

private static ServiceLocator service = new ServiceLocator();

private Class[] parmsGlobal = new Class[0];

private Object[] argsGlobal = new Object[0];

private HashMap ejbHomeCache

private ServiceLocator() {

super();

}

public static ServiceLocator getInstance() {

return service;

}

/* Get InitialContext for JNDI lookup() */

private InitialContext getInitialContext() throws ServletException {

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

/* Provide the appropriate URL based on your server configuration */

env.put(Context.PROVIDER_URL, "t3://localhost:7001");

try {

return new InitialContext(env);

}

catch (NamingException e) {

... rest of the code ...

}

}

public Object getRemoteForStateless(Class homeClass,

session) throws ServletException {

/* Get the cached home reference (EJBHome reference) */

Object ejbHomeInterface = ejbHomeCache.get(homeClass.getName());

try {

if (ejbHomeInterface == null) {

InitialContext ic = this.getInitialContext();

Object home = ic.lookup("ejb/" +

homeClass.getName());

/* Create home reference (EJBHome reference) */

ejbHomeInterface =

PortableRemoteObject.narrow(home, homeClass);

1 4 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 4 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

ejbHomeCache.put(homeClass.getName(),

ejbHomeInterface);

}

Method method = homeClass.getMethod("create", parmsGlobal);

/* Create remote reference (EJBObject reference) */

Object ejbRemoteInterface =

method.invoke(ejbHomeInterface, argsGlobal);

return ejbRemoteInterface;

}

catch (NamingException e) {

... rest of the code ...

}

Factoring Tags into Design Process
Custom tags bundled with Struts are organized into several tag libraries; the sample application

uses Struts-provided bean, html, and logic tag libraries along with an application-specific

GreaterCause tag library. Only some of the custom tags provided with Struts depend on the

Struts framework; most tags can be used without the Struts framework. The following brief

discussion has been included to demonstrate the impact of tags on the design process.

Tags are like any other Java classes and should be factored into your overall design process.

For additional details and a full list of custom tags and their functionality, please refer to

http://jakarta.apache.org/struts/userGuide/index.html, and http://jakarta.apache.org/struts/

resources/index.html; the resources section at this URL lists several good books for learning

about Struts in greater detail.

The main purpose of using custom tags is to avoid coding scriptlets in JSPs. Scriptlet

usage is highly discouraged because it embeds Java code within the JSP, which makes the

JSP less modular and maintainable. Factoring all logic from JSP into tags reduces the

complexity of the JSP, and provides flexibility for web production engineers who have to

only work with a defined set of tags without concern for coding any logic. Code reuse is yet

another reason why Java code must not be embedded in JSPs. The sample application uses

the custom bean tags to retrieve bean properties for dynamic HTML generation; it uses the

custom logic tags to test the values of form-bean properties for conditional processing; and it uses

the custom html tags for dynamically generating HTML page elements.

NOTE
Several tags designed to work with JavaBeans have three essential attributes. The name attribute provides
an identifier using which a JavaBean is saved and retrieved from the context specified by the scope attribute,
and the property attribute specifies the property of the named JavaBean.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

The following is a sampling of custom tags used in the JSP page 2_1_PortalAllianceRegistration

.jsp. The process of portal-alliance registration is explained in the use case “Register Portal

Alliance” in Chapter 1. Let’s examine how some of these custom tags factor into the design

decisions:

� <html:errors/> The request handlers and form-beans accumulate validation errors in

the ActionErrors object. The sample application uses the <html:errors/> tag for

subsequently displaying the accumulated errors. Chapter 4 discusses this tag in detail.

Struts 1.1 offers the <html:messages> tag, which has more capabilities than the

<html:errors/> tag.

� <html:form method="POST" action="/PortalAllianceRegistration.do"> This

tag makes use of the Struts framework in identifying the ActionMapping configuration

object associated with the path="/PortalAllianceRegistration". The mapping specification

assists the tag in identifying and creating (if not already existing in the specified scope)

the form-bean associated with the ActionMapping object, and pre-populating the HTML

form with the values specified in the form-bean. The action attribute of the HTML form

tag is dynamically generated using the context-relative path name. This is important

when changing the context path name because no corresponding change is required in

the JSP since it is not hard coded in the JSP.

� <html:hidden property="page" value="2"/> This tag is used to create an HTML

<input> element with an input type of hidden. The sample application uses hidden

fields for saving process flow–related state of the application in the form-beans. The

request handlers of the sample application use hidden properties in the HTML form for

tracking multi-page form interaction using the page property of the form beans, and

for tracking the actions embedded within the forms using the action property of the

form-beans.

� <bean:message key="PortalAdminServices.registration"/> The sample application

is an internationalized application. This tag plays a vital role in internationalizing the

application. It accepts a key and a set of optional arguments to generate a localized

label, prompt, error message, or a heading from the resource bundle specified by the

<message-resources> tag in the struts-xml.config file. Please refer to Chapter 4

for information on internalization and localization.

� <bean:write name="PortalAllianceRegistrationForm" property=

"activationDate"/> This tag is used to extract the specified property from the bean

PortalAllianceRegistrationForm that is stored in one of the contexts, and write it to

the output stream. The sample application uses the <bean:write> tag for fields

that are read-only, as is the case when viewing the registration data, or displaying

the Portal ID, or the EIN.

� <logic:equal name="PortalAllianceRegistrationForm" property="action"

scope="session" value="Create"> This tag is used in the sample application for

enabling a single JSP to create different views based on the action property of the

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 4 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

form- bean PortalAllianceRegistrationForm. The action property associated with

the form-bean PortalAllianceRegistrationForm stores the processing state of the

application, which could take the value Create, Update, or View. Conditionally

executing logic based on the value of the action property renders the same page

differently for each action property variation.

Several other tags are used in the sample application. You can learn more about these

tags at the URL suggested earlier in this section. The procedure for installing and using tag

libraries is explained in Chapter 9. It is apparent from the preceding discussion that a good

part of application functionality that pertains to rendering views can be factored into tags; as

such, the architect must be cognizant of its impact to the overall development process, and

define appropriated usage scenarios or patterns for the development team.

Factoring Validator into the Design Process
Use of the Jakarta Commons Validator influences the design direction by providing yet another

option for the creation of form-beans. The validate method of the ActionForm subclass, or

the validations embedded within the request handlers are only one way of doing server-side

validations. By extending the form-bean with the ValidatorForm class, the framework

provides the ability to perform both client-side and server-side validations using declarative

style of validations. This declarative style of specifying validations for form elements greatly

reduces the need to code common validations that are used with almost every form submission.

Common validations such as required fields, field formats (date, phone, zip, e-mail address,

and so on), numeric or not, field length checking, and so on, are repeatedly coded by developers,

therefore increasing the code volume and redundancy. Abstracting these common validations

into another layer promotes reuse.

The Validator services are injected into the Struts framework using the following declaration

in the struts-config.xml file:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property property="pathnames"

value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>

The Validator requires the following two configuration files:

� Validator-rules.xml This file contains the basic validators that are packaged with the

framework.

� Validation.xml In this configuration file, we specify the validations associated with

the form-bean properties. A condensed version of this file from the sample application

is shown next; it demonstrates several different kinds of validations.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 4 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 11:46:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

NOTE
A detailed discussion of Validator is available at http://home.earthlink.net/~dwinterfeldt/overview.html.
For installation instructions, please refer to Chapter 9.

<form-validation>
<formset>

<form name="PortalAllianceRegistrationForm">
<field property="portalID" page="1"

depends="required,minlength,maxlength">
<arg0 key="prompt.PortalID"/>
<arg1 key="${var:minlength}" name="minlength"

resource="false"/>
<arg2 key="${var:maxlength}" name="maxlength"

resource="false"/>
<var>

<var-name>maxlength</var-name>
<var-value>16</var-value>

</var>
<var>

<var-name>minlength</var-name>
<var-value>3</var-value>

</var>
</field>
... rest of the declarations ...
<field property="email" page="2" depends="required,email">

<arg0 key="prompt.email"/>
</field>
<field property="activationDate" page="2"

depends="required,date">
<arg0 key="prompt.ActivationDate"/>
<var>

<var-name>datePatternStrict</var-name>
<var-value>yyyy-MM-dd</var-value>

</var>
</field>
... rest of the declarations ...

</form>
<form name="ManagePortalAllianceForm">

<field property="firstName" depends="required">
<arg0 key="prompt.FirstName"/>

</field>
<field property="lastName" depends="required">

<arg0 key="prompt.LastName"/>
</field>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 5 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<field property="email" depends="required,email">
<arg0 key="prompt.email"/>

</field>
<field property="phone" depends="required">

<arg0 key="prompt.Phone"/>
</field>
<field property="searchLimit" depends="required,Integer">

<arg0 key="prompt.SearchLimitLabel"/>
</field>

</form>
... rest of the declarations ...

</formset>
</form-validation>

The Validator framework provides support for internationalization by using the same

resource bundle as the Struts framework. For the sample application, this resource file is

identified in the struts-config.xml file using the <message-resources> element. In the

validation.xml file, the page attribute has been used on several <field> elements. The

purpose of this attribute is to selectively fire away the validations depending on the value

of the page property in the form-bean. The page property is provided by the base class

ValidatorForm, and is populated from a hidden field specified within an HTML form. For a

given page with value n, all validations that pertain to the page numbered n and less will be

evaluated. When the page property is not specified in a JSP, it is initialized to 0 by the

form-bean (unless initialized previously to some other value).

NOTE
Since this book is focused on architecture and design, we have deliberately kept the examples light on
programming aspects such as writing comprehensive validations. Effort has been made to bring to light
those components of the application that are significant in understanding the architecture and design
aspects during the development life cycle.

When the basic validations provided by the Validator are inadequate, you may need to

override the validate method of the ValidationForm subclass. When additional validations

are desired in a form-bean, create a validate method in the ValidatorForm subclass that calls

super.validate method to perform Validator-based validations, and then perform additional

validations in the subclass’s validate method. The following sample application uses this

technique for the ManagePortalAllianceForm.validate method; refer to the section “Manage

Portal-Alliance Profile Use Case” for additional details. By employing the page attribute

property in the ManagePortalAllianceForm.validate method, we are able to process different

sets of validations for different process flows.

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest req) {

ActionErrors errors = new ActionErrors();

/* page 1 is for identifying a Portal ID */

if ((page == 1) && ((portalID == null) ||

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 5 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

(portalID.trim().length() < 1))) {

errors.add("portalID", new ActionError("error.portalID.required"));

}

/* page 2 is for updating the profile of a portal-alliance */

else if ((page == 2) && (action.equals("updateProfile"))) {

errors = super.validate(mapping, req);

if (searchLimit.intValue() < 10) {

errors.add("searchLimit",

new ActionError("error.PortalAllianceProfile.SearchLimit"));

}

}

return errors;

}

Identifying Package Dependencies
Let’s revisit the package diagram depicted in Chapter 1 (Figure 1-4); the package dependencies

depicted in this diagram were an approximation based on our requirements. After creating the

class diagrams for the use case packages GreaterCause Site Administration, Manage Campaigns,

and Search NPO, we are able to discern the true dependencies between these packages. Although

it is likely that the design time packages may deviate from the analysis model, the simple

nature of our system follows the same packaging convention, both at analysis and design

time. For the sake of manageability, the package naming conventions used by the sample

application in the presentation tier and the business tier follow the following convention.

Presentation Tier Business Tier
com.gc.prez.admin com.gc.services.admin

com.gc.prez.managecampaigns com.gc.services.managecampaigns

com.gc.prez.searchnpo com.gc.services.searchnpo

This naming convention makes the process of identifying related components fairly intuitive.

The package dependencies are illustrated in Figure 5-2.

Packaging is convenient for collocating related classes into self-contained units. When a large

number of classes are responsible for realizing use cases, then it is best to use an extra level

of package nesting; nesting more than a couple of levels will make the packaging structure

unwieldy. Packaging is very helpful in promoting parallel development since each package

and its constituent use cases expose an interface that provides the required services to the

dependent packages. It is not uncommon to call each package a subsystem. A subsystem is

a grouping of components whose behavior constitutes the behavior offered by the contained

elements. The dependencies between packages shows the impact the dependent classes can

have when package elements are modified. In Chapter 1, while modeling the system context

of a use case, package dependencies were articulated by showing use cases in other packages

as actors.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 5 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Implementing Application Security
The sample application uses a container-provided authentication and authorization

mechanism. The servlet specification prescribes declarative security, which is the means

of expressing an application’s security structure including roles, access control, and

authentication requirements in a form external to the application. For the sample application,

the security configuration is specified declaratively in the deployment descriptor (web.xml)

using the <security-constraint> element for protecting web resources as follows:

<security-constraint>

<display-name>Administration Gateway</display-name>

<web-resource-collection>

<web-resource-name/>

<description>Administration Menu</description>

<url-pattern>/AdministratorServices.do</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<description>Administrator Access</description>

<role-name>NPOAdministrator</role-name>

<role-name>PortalAdministrator</role-name>

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 5 3

Figure 5-2 Administration Services package diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 5 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

<role-name>SiteAdministrator</role-name>

</auth-constraint>

</security-constraint>

In this deployment descriptor specification, the resource identified by the <url-

pattern> element (/AdministatorServices.do) is protected by the container from unauthorized

access. The security constraints apply to the specified HTTP methods. Only users in the role

specified by the <role-name> (within <auth-constraint>) specification will be able

to access this resource. The security constraints are effective only when the client tries to

directly access the protected resources; resources are not protected when a servlet invokes

another resource using the RequestDispatcher.forward() or RequestDisptacher.include().

It is advisable to control resource access using container provided authentication and

authorization because the process of requesting user credentials, validating and maintaining

login credentials, and subsequently tracking access to requested resources is provided by the

container based on standards established for providing these services. This significantly reduces

custom code and leverages the security solutions provided by vendors. J2EE application

servers use the JAAS (Java Authentication and Authorization Service) framework for

providing user authentication, and for enforcing access control. The JAAS authentication

framework is based on Pluggable Authentication Module (PAM), and therefore supports an

architecture that allows system administrators to plug in the appropriate authentication services to

meet their security requirements. With the availability of new or updated authentication services,

system administrators can easily plug them in without having to change existing applications.

To write your own LoginModule for the JAAS framework, please refer to http://java.sun.com/j2se/

1.4/docs/guide/security/jaas/JAASLMDevGuide.html, and http://java.sun.com/security/jaas/

doc/api.html. Container vendors also provide useful templates as a starting point for writing

JAAS extensions. JAAS was also discussed in Chapter 3.

The sample application uses the default security realm provided by the container; this

security realm has limitations, but one could write custom JAAS LoginModules or procure

a vendor-provided extension that seamlessly plugs into the JAAS framework. This style of

managing security employs container-managed authentication and authorization, which

makes the code portable across different vendor implementations. Also, third-party vendors

provide support for JAAS framework, thus enabling wider choice of security solutions.

The sample application also employs programmatic security. Programmatic security is

provided using the following methods of the HttpServletRequest interface:

� getRemoteUser

� isUserInRole

� getUserPrincipal

The getRemoteUser method returns the username that was used in the login page. The

login page is shown to an unauthenticated remote user when the user tries to access a

protected resource. Form-based authentication is used when a developer wants to control

the look and feel of the login screen. The login form must contain fields with the name

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 5 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

j_username for entering a username, and j_password for entering the password; the action

of the login form must always be j_security_check. The login form used by the sample

application is shown here. Refer to AdministratorLogin.jsp for complete code.

<form method="POST" action="j_security_check" name="adminLogin">

<table border="0" cellspacing="0" cellpadding="5">

<tr>

<td class="txt"><bean:message key="Login.AdministratorID"/></td>

<td><input type="text" name="j_username" size="16", maxlength="16"></td>

</tr>

<tr>

<td class="txt"><bean:message key="Login.Password"/></td>

<td><input type="password" name="j_password" size="16" maxlength="16"></td>

</tr>

<tr>

<td> </td>

<td><html:submit><bean:message key="prompt.submit"/><html:submit></td>

</tr>

</table>

</form>

When the user tries to access a protected resource, the container will send the login form

to the user. Once the user posts the username and password to the server, the container will

attempt to authenticate the user. Upon successful authentication the container will redirect

the user, along with the original request parameters, to the resource originally requested; the

redirection to the requested resource will occur only if the user is in the role authorized for

accessing the resource. Form-based authentication is usually used with a secure transport

mechanism like SSL (using HTTPS protocol). In order to use HTTPS, specify <user-
data-constraint> in the deployment descriptor as follows.

<security-constraint>

<display-name>Administration Gateway</display-name>

<web-resource-collection>

... rest of the declarations ...

</web-resource-collection>

<auth-constraint>

... rest of the declarations ...

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

<user-date-constraint>

</security-constraint>

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

If the original request was over HTTP, and CONFIDENTIAL is specified, the container will

redirect the client to the HTTPS port. For further information on switching between the HTTP

and HTTPS protocols using the Struts framework, please refer to http://sslext.sourceforge.net.

The Ffollowing declarations are used in the web.xml file to specify a login page that uses

form-based authentication:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>myrealm</realm-name>

<form-login-config>

<form-login-page>/1_3_AdministratorLogin.jsp</form-login-page>

<form-error-page>/1_3_AdministratorLoginFailure.jsp</form-error-page>

</form-login-config>

</login-config>

Other forms of authentication include basic, digest, and client authentication. Please refer

to the URL http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Security.html for further information.

The use of isUserInRole determines if a remote user is in a specified security role. A

group is a collection of users; users within a group inherit the access privileges assigned to

the group. Roles are assigned either at the group level or user level. The container enforces

access to resources based on roles. We saw previously how this is accomplished using the

<auth-constraint> declarations in the deployment descriptor.

The System Administrator creates groups and users (called principals) in the security

realm. Please refer to Chapter 9 for complete details on setting up groups and users in the

security realm. The principal-to-role mapping is declared in the WebLogic-specific deployment

descriptor weblogic.xml as follows:

<security-role-assignment>

<role-name>NPOAdministrator</role-name>

<principal-name>NPOAdmin</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>PortalAdministrator</role-name>

<principal-name>PortalAdmin</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>SiteAdministrator</role-name>

<principal-name>SiteAdmin</principal-name>

</security-role-assignment>

During code construction, developers can freely choose role names for use in programs;

at deployment time, roles created by the system administrator are mapped to the ones defined

by the developer using the following mapping in web.xml.

1 5 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 5 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

System administrator–defined roles are listed below here:

<security-role>

<role-name>SiteAdministrator</role-name>

</security-role>

<security-role>

<role-name>PortalAdministrator</role-name>

</security-role>

<security-role>

<role-name>NPOAdministrator</role-name>

</security-role>

The following is the mapping of system administrator–defined roles and roles used in

the programs:

<servlet>

... rest of the declarations ...

<security-role-ref>

<role-name>SiteAdminRole</role-name>

<role-link>SiteAdministrator</role-link>

</security-role-ref>

<security-role-ref>

<role-name>PortalAdminRole</role-name>

<role-link>PortalAdministrator</role-link>

</security-role-ref>

<security-role-ref>

<role-name>NPOAdminRole</role-name>

<role-link>NPOAdministrator</role-link>

</security-role-ref>

</servlet>

The sample application uses three different roles, as illustrated in the preceding snippet.

These three roles influence the application logic in how the Views are selected and processed,

and how the resulting form data is handled. The sample application uses a special pattern to

handle programmatic security, as illustrated by the following code:.

public class AdminLoginAction extends Action {

public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

HttpSession session = req.getSession(true);

if (req.isUserInRole("SiteAdminRole")) {

session.setAttribute("GreaterCause.AdminRole",

"SiteAdminRole");

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 5 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

}

else if (req.isUserInRole("PortalAdminRole")) {

session.setAttribute("GreaterCause.AdminRole",

"PortalAdminRole");

}

else if (req.isUserInRole("NPOAdminRole")) {

session.setAttribute("GreaterCause.AdminRole",

"NPOAdminRole");

}

return mapping.findForward("success");

}

}

The AdminLoginAction class is invoked by the Struts controller when access to the protected

resource 2_SiteAdministratorServicesMainPage.jsp is attempted. The corresponding declaration

in the struts-config.xml file is shown here:

<action path="/AdministratorServices"

type="com.gc.prez.common.AdminLoginAction">

<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp" redirect="false"/>

</action>

At first glance, it may seem that AdminLoginAction is redundant because it simply provides

a mapping between the role names used in the web.xml file to the role names used in the

application. Although not demonstrated in the AdminLoginAction class, this class has been

designed based on the fact that many eCommerce applications have to rely on runtime

variables and user entitlements for dynamically configuring a user-centric process flow;

isUserInRole() is not adequate in such scenarios. AdminLoginAction provides a hook for

evaluating other runtime parameters in deciding the most appropriate system behavior

tailored to the user’s environment rather than just the role name. The sample application

leverages the information saved in the session to define a custom hasAccess tag to provide

dynamic behavior in views (JSPs); this tag is used for controlling the formatting and processing

of HTML forms, as shown here:

<gc:hasAccess role="SiteAdminRole">

<html:link page="/PortalAllianceRegistration.do?action=Create">

<bean:message key="SiteAdminServices.PortalRegistration"/>

</html:link>

<html:link page="/NPORegistration.do?method=ShowNPORegistrationForm">

<bean:message key="SiteAdminServices.NPORegistration"/>

</html:link>

</gc:hasAccess>

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This snippet is extracted from 2_AdministrativeServicesNavBar, which is a highly dynamic

navigation bar that is created based on a user’s role. The <gc:hasAccess> tag will test the

role, and if the role matches the one specified by the role attribute, then the body of the tag

will be evaluated. The GreaterCause tag library containing the hasAccess tag is specified in

the deployment descriptor as follows:

<taglib>

<taglib-uri>/WEB-INF/GreaterCause.tld</taglib-uri>

<taglib-location>/WEB-INF/GreaterCause.tld</taglib-location>

</taglib>

Using the <gc:has Access> tag, the 2_AdministrativeServicesNavBar produces three

different views for the three administrator roles, as illustrated in Figure 5-3, Figure 5-4, and

Figure 5-5.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 5 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-3 Site Administrator Services

Figure 5-4 Portal Administrator Services

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

In the sample application, the various administrator-related functions are grouped together

based on the <auth-constraint> specifications that list the authorized role names. To

prevent any attempts by assailants to defeat the access mechanism tailored by the navigation

bar, we specify the following constraints in the web.xml to prevent unauthorized access to

protected resources:

<security-constraint>

... declarations to protect /AdministratorServices.do ...

</security-constraint>

<!-- Declarations to protect PortalAdministrator functions -->

<security-constraint>

<display-name>Portal Alliance Administration</display-name>

<web-resource-collection>

<web-resource-name/>

<description>Portal Alliance Management Functions</description>

<url-pattern>/PortalAllianceRegistration.do</url-pattern>

<url-pattern>/ManagePortalAlliance.do</url-pattern>

<url-pattern>/CreateCampaignStep1.do</url-pattern>

<url-pattern>/CreateCampaignStep2.do</url-pattern>

<url-pattern>/UpdateCampaignsStep1.do</url-pattern>

<url-pattern>/UpdateCampaignsStep2.do</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>SiteAdministrator</role-name>

<role-name>PortalAdministrator</role-name>

</auth-constraint>

</security-constraint>

<security-constraint>

... declarations to protect NPOAdministrator functions ...

</security-constraint>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 6 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-5 NPO Administrator Services

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Java Servlet Specification Version 2.3, Chapter SRV.13 provides detailed information

on the various elements of the deployment descriptor.

Realization of Site Administration Use Cases
The following subsections will provide the use case realization for use cases in the Site

Administration package.

NOTE
The following subsections will provide readers with an opportunity to understand class interactions and
dependencies visualized through class and sequence diagrams. Please refer to Chapter 1 for use case
descriptions. Recurring solutions have been documented as patterns to enhance the readability and reuse
of the GreaterCause implementation.

Manage NPO Profile Use Case
The task of updating the NPO Profile information is preceded by the registration process.

However, since this is a much simpler implementation, it is being discussed before other use

cases. Several concepts exposed in this section will create the foundation for realizing other

use cases. Figure 5-6 illustrates a class diagram for realizing this use case; the semantics of

this class diagram is explained using the multi-page pattern.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 6 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Pattern Discovery and Documentation
Object-oriented architectures contain repeatable solutions, also called patterns. Recognizing

and documenting these patterns promotes reuse of solutions that otherwise may be

implemented by another developer in a different way, thus reducing manageability and

increasing complexity of the system. Patterns establish a vocabulary for the system,

and permit efficient reuse of this vocabulary in the design and implementation phases.

A problem solved by one developer can be reapplied in several other scenarios. Harvesting

such reusable design patterns, applied within a context, will provide leverage for other

parts of the solution because such patterns are proven to follow best practices and have

endured the test of time. The advantage of using patterns is that it will make the software

easier to understand by the development team, reduces the complexity of the system,

and builds upon the success of other developers.

In later sections, I have attempted to document certain recurring solutions discerned

in the course of developing the GreaterCause site administration services. The recurring

solutions are documented to assist the readers in understanding how certain complex

user interactions can be addressed using the Struts framework. Use of these proven

techniques enables faster assimilation of Struts functionality into applications.

Hopefully, these patterns will serve as templates for our readers, and a starting point

from which to evolve.

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Multi-Page Pattern
This pattern is applicable when user interaction constitutes a series of forms. Functionally,

it may be desirable to collect information from multiple pages into a single form-bean for

1 6 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-6 Manage NPO Profile class diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

accomplishing a unit of work. Using fewer form-beans keeps the number of form-beans to a

minimum, and keeps related data together. It is easier to manage changes when page semantics

are altered because the changes are localized to a single form-bean.

Structure The implementation of this pattern employs the page property of the form-bean.

If the form-bean extends ValidatorForm, then it will inherit the page property from the

ValidatorForm; if the form-bean extends the ActionForm, then this property will have to

be defined in the form-bean. Figure 5-7 and Figure 5-8 illustrates the static and dynamic

aspects of the multi-page pattern. Updating NPO profile is a two-step process when the

site administrator impersonates an NPO administrator. First, as illustrated in Figure 5-9,

the site administrator has to specify the EIN (for identifying a non-profit) it would like to

impersonate; in the next step, the system allows the site administrator to update the profile

information, as illustrated in Figure 5-10. The NPO administrator is taken directly to the

update page without the intervening Enter EIN page because the system can identify the

related EIN using the NPO administrator’s login username. Figure 5-8 shows the usage

of the page property in controlling the process flow within the request handler.

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 6 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-7 Multi-page pattern

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 6 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-8 Multi-page pattern sequence diagram

Figure 5-9 Enter EIN

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
All class diagrams using the stereotype <<View>>, do not show the intermediate Struts controller for the
sake of simplifying the diagram. The controller will intercept the request resulting from a view and invoke
the corresponding request handler. Also, note that with few exceptions, the view names used in pattern
diagrams are labeled using their <forward> names of struts-config.xml file.

In the sample application, we use the page field (as a hidden field) in most forms for

two reasons:

� The site administrator navigation scheme is different from the navigation scheme of

the NPO administrator. The site administrator can impersonate an NPO administrator,

and therefore has to specify the EIN as a precursor to most operations. The Enter EIN

page has the page field set to 1.

� The validations performed by the ValidatorForm.validate method have to be advised

which properties must be validated based on the navigation scheme chosen for different

administrators. For example, the ein property is not required to be validated when the

administrator is an NPO administrator. Please refer to the section “Factoring Validator

into the Design Process” for further details.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 6 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-10 Update Profile

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Configuration Semantics The struts-config.xml declarations are shown in the following code.

The site administrator is attached to an extra step "/ManageNPOStep1", which is invoked from

the navigation bar illustrated in the next subsection.

<form-bean name="ManageNPOForm" type="com.gc.prez.admin.ManageNPOForm"/>

<!-- Site Administration step invoked from navigation bar -->

<action path="/ManageNPOStep1" forward="/2_4B_EnterEIN.jsp"/>

<action path="/ManageNPOStep2"

type="com.gc.prez.admin.ManageNPOAction"

name="ManageNPOForm"

scope="session"

validate="false">

<forward name="EnterEIN" path="/2_4B_EnterEIN.jsp"/>

<forward name="ShowNPOProfile" path="/2_4_2_UpdateNPOProfile.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

Please note that the ActionMapping identified by the path "/ManageNPOStep2" will have

three possible ActionForward(s); the resulting views are discussed in the next section.

View Semantics The following snippet is from the dynamic navigation bar 2_Administration

ServicesNavBar that is included with all administrator JSPs. The navigation bar will invoke

the ActionMapping identified by the path/render "/ManageNPOStep1" which will invoke the

view 2_4B_EnterEIN.jsp shown next; in turn this view will use the ActionMapping identified

by the path "/ManageNPOStep2". The NPO administrator will use the ActionMapping

identified by the path "/ManageNPOStep2", which will invoke the view

2_4_2_UpdateNPOProfile.jsp shown later in this subsection.

<gc:hasAccess role="SiteAdminRole">
... rest of JSP ...
<html:link page="/ManageNPOStep1.do"> <!-- Invoke 2_4B_EnterEIN.jsp -->

<bean:message key="NPOAdminServices.UpdateProfile"/>
</html:link>

... rest of JSP ...

</gc:hasAccess>

<gc:hasAccess role="NPOAdminRole">
... rest of JSP ...

<html:link page="/ManageNPOStep2.do"> <!-- Invoke
2_4_2_UpdateNPOProfile.jsp -->

<bean:message key="NPOAdminServices.UpdateProfile"/>
</html:link>

... rest of JSP ...
</gc:hasAccess>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 6 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

The view 2_4B_EnterEIN.jsp will result in the invocation of the request handler

ManageNPOAction using the ActionMapping identified by the path "/ManageNPOStep2"

(refer to struts-config.xml shown earlier) with the page attribute property of the corresponding

form-bean set to 1. The view 2_4B_EnterEIN.jsp is shown here:.

<html:form method="POST" action="/ManageNPOStep2.do" focus="ein">

<table border="0" cellspacing="0" cellpadding="5">

<tr>

<td class="txt"><bean:message key="SiteAdminServices.EnterEIN"/></td>

<td><html:text property="ein" size="14" maxlength="14"/></td>

<html:hidden property="page" value="1"/>

</tr>

<tr>

<td> </td>

<td><html:submit><bean:message key="prompt.Submit"/>

</html:submit></td>

</tr>

</table>

</html:form>

ActionMapping identified by the path “/ManageNPOStep2” will be responsible for

invoking the request handler ManageNPOAction. This request handler will render the view

2_4_2_UpdateNPOProfile.jsp. This is discussed in the Request Handler section of this

pattern. The view 2_4_2_UpdateNPOProfile.jsp can also invoke the request handler using

the ActionMapping identified by the path “/ManageNPOStep2” (refer to struts-config.xml

shown earlier) with the page property of the corresponding form-bean set to 2. The view

2_4_2_UpdateNPOProfile.jsp is shown here:

<html:form method="POST" action="/ManageNPOStep2.do" focus="firstName">

<html:hidden property="page" value="2"/>

... rest of JSP ...

<p align="center"><html:submit><bean:message key="prompt.Update"/></html:submit></p>

</html:form>

ActionForm Bean The action form-bean corresponding to ActionMapping identified by the path

"/ManageNPOStep2" is shown here. A single form is used to store information gathered from

two views, namely, 2_4B_EnterEIN.jsp and 2_4_2_UpdateNPOProfile.jsp.

public class ManageNPOForm extends ValidatorForm implements Serializable {

public ManageNPOForm() {

}

/* EIN is collected from page 1 */

public String getEin() {

return ein;

}

public void setEin(String ein) {

this.ein = ein;

}

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 6 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

... rest of the accessors ...

//Form Data

private String ein;

private String adminID;

private String firstName;

private String lastName;

private String email;

private String phone;

private String url;

private String missionStatement;

public void reset(ActionMapping mapping, HttpServletRequest req) {

}

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest req) {

ActionErrors errors = new ActionErrors();

/* NPO Administrator does not have to specify an EIN */

if ((page == 1) && ((ein == null) ||

(ein.trim().length() < 1))) {

errors.add("ein", new ActionError("error.ein.required"));

}

/* Call the validate method of ValidatorForm */

else if (page == 2) {

errors = super.validate(mapping, req);

}

return errors;

}

}

Request Handler This request handler is created from the ActionMapping identified by the

path "/ManageNPOStep2". The page attribute property will identify the current page, which

will also decide the resulting ActionForward shown earlier. Note that for the NPO administrator,

the initial invocation of the request handler will have the page attribute property set to the

value 0 because no HTML form with a page parameter has been processed yet; the first view

displayed to the NPO administrator will be the profile page with the page attribute property

set to 2. The semantics of the corresponding request handler is illustrated using the following

code fragment. Please refer to Figure 5-8 for a high-level sequencing diagram.

public class ManageNPOAction extends Action {
public ActionForward execute(ActionMapping mapping,
ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {

ManageNPOForm npoForm = (ManageNPOForm)form;
ActionErrors errors = npoForm.validate(mapping, req);
/* Ensure EIN is present on EnterEIN page (First page for
* site administrator) */

if (npoForm.getPage() == 1) {
if (!errors.empty()) {

1 6 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

saveErrors(req, errors);
return mapping.findForward("EnterEIN");

}
/* Show profile information if EIN is provided
* (page 2 for updating profile information)*/

return showNPOProfile(mapping, form, req, res);
}
/* The Profile page is identified by page == 2 */
if (npoForm.getPage() == 2) {

if (!errors.empty()) {
saveErrors(req, errors);
return mapping.findForward("ShowNPOProfile");

}
return (updateProfile(mapping, form, req, res));

}
/* 'page' property is set to 0 for NPO Administrator,
* and this step is executed */

return showNPOProfile(mapping, form, req, res);
}
public ActionForward showNPOProfile(ActionMapping mapping,

ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
... rest of the code ...
return mapping.findForward("ShowNPOProfile");

}
public ActionForward updateProfile(ActionMapping mapping,

ActionForm form, HttpServletRequest req,
HttpServletResponse res) throws Exception {
... rest of the code ...
return mapping.findForward("success");

}
}

Register Portal-Alliance Use Case
A site administrator can create and update the registration information for a portal-alliance.

However, the portal-alliance administrator can only view this information. Figure 5-11 illustrates

the class diagram for realizing this use case; the semantics of this class diagram is explained

using the multi-action pattern.

Multi-Action Pattern Using the Action Class Strategy
A multi-action pattern can be used for enabling a request handler to process different actions

(a.k.a. commands) submitted by one or more forms. The sample application defines three

actions: create, update, and view. If different forms are utilized for each of these actions,

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 6 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

then related fields will be spread across, or duplicated across, multiple forms, which creates

redundancy and defeats modularity; in this scenario, a change in the form will require retrofitting

several forms. The multi-action pattern enables creation of multiple views from a single JSP

based on the action chosen by the user, while allowing the same request handler to service all

variations of the view (in this case, a JSP).

Structure Both, dynamic view creation and request processing are synergistic functions. The

participating view must indicate the initiated “action,” and the request handler must save this

knowledge in a JavaBean (which is usually the form-bean) for controlling conditional processing.

The intent projected by the state of the action property in the form-bean will subsequently

influence the view generated from a single JSP. The Portal-Alliance Registration use case is

realized using a multi-action pattern in conjunction with a multi-page pattern. Figures 5-12

and 5-13 illustrate the static and dynamic aspects of the multi-action pattern. Figure 5-13 shows

the usage of the action property in controlling the process flow within the request handler.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 7 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-11 Register portal-alliance class diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Configuration Semantics The struts-config.xml declarations are shown in the following code.

In this pattern, we will use a single Action class and a corresponding ActionForm. The

ActionForm extends ValidatorForm, which provides the page property for muti-page

interaction, as explained in the section “Multi-Page Pattern.”

<action path="/PortalAllianceRegistration"

type="com.gc.prez.admin.PortalAllianceRegistrationAction"

name="PortalAllianceRegistrationForm"

scope="session"

validate="false">

<forward name="ShowPage"

path="/2_1_PortalAllianceRegistration.jsp"/>

<forward name="EnterPortalID" path="/2_3A_EnterPortalID.jsp"/>

<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 7 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-12 Multi-action form pattern

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Please note that the ActionMapping identified by the path "/PortalAllianceRegistration"

will have three possible ActionForward(s); the resulting views are discussed in the next section.

View Semantics The following snippet is from the dynamic navigation bar 2_Administration

ServicesNavBar that is included with all administrator JSPs. Observe that all requests

are directed to same URL, "/PortalAllianceRegistration", which is the identifier for the

ActionMapping object that will be used by the framework for invoking the associated request

handler PortalAllianceRegistrationAction. Because the "Update" action by the site administrator

requires a Portal ID, the request handler will invoke the view 2_3A_EnterPortalID.jsp. For

the "View" action by the portal-alliance administrator, the request handler will use the login

username to identify the associated Portal ID. Observe that the request time action parameter

is used for setting the action property in the corresponding form-bean shown later.

<gc:hasAccess role="SiteAdminRole">

<html:link page="/PortalAllianceRegistration.do?action=Create">

<bean:message key="SiteAdminServices.PortalRegistration"/>

</html:link>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 7 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-13 Multi-action form pattern sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

</gc:hasAccess>

<gc:hasAccess role="SiteAdminRole">

<html:link page="/PortalAllianceRegistration.do?action=Update">

<bean:message key="SiteAdminServices.UpdatePortalRegistration"/>

</html:link>

</gc:hasAccess>

<gc:hasAccess role="PortalAdminRole">

<html:link page="/PortalAllianceRegistration.do?action=View">

<bean:message key="PortalAdminServices.ViewRegistration"/>

</gc:hasAccess>

The view 2_3A_EnterPortalID.jsp will invoke the request handler

PortalAllianceRegistrationAction using the ActionMapping identified by the path

"/PortalAllianceRegistration" (refer to struts-config.xml shown earlier) with the page

property of the corresponding form-bean set to 1. The view 2_3A_EnterPortalID.jsp

is shown here:

<html:form method="POST" action="/PortalAllianceRegistration.do" focus=portalID">

<html:hidden property="page" value="1"/>

<table border="0" cellspacing="0" cellpadding="5">

<tr>

<td class="txt"><bean:message

key="SiteAdminServices.EnterPortalID"/></td>

<td><html:text property="portalID" size="16" maxlength="16"/></td>

</tr>

<tr>

<td> </td>

<td><html:submit><bean:message key="prompt.Submit"/></html:submit>

</td>

</tr>

</table>

</html:form>

The view 2_1_PortalAllianceRegistration.jsp will invoke the request handler using the

ActionMapping identified by the path "/ PortalAllianceRegistration" (refer to struts-config.xml

shown earlier) with the page attribute property of the corresponding form-bean set to 2. The

action property of the form beanform-bean PortalAllianceRegistrationForm is checked for the

values Create/Update/View; the <logic:equal> custom tag will conditionally display parts

of the JSP based on the value of the action property. The view

2_1_PortalAllianceRegistration.jsp.jsp is shown here:

<html:form method="POST" action="/PortalAllianceRegistration.do"

focus="portalID">

<html:hidden property="page" value="2"/>

<logic:equal name="PortalAllianceRegistrationForm"

property="action" scope="session" value="Create">

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 7 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

... display the registration creation part ...

<html:submit>

<bean:message key="prompt.Register"/>

</html:submit></td>

</logic:equal>

<logic:equal name="PortalAllianceRegistrationForm"

property="action" scope="session" value="Update">

... display the registration update part ...

<html:submit>

<bean:message key="prompt.Update"/>

</html:submit>

</logic:equal>

<logic:equal name="PortalAllianceRegistrationForm"

property="action" scope="session" value="View">

... display the registration view part ...

<html:submit>

<bean:message key="prompt.Back"/>

</html:submit>

</logic:equal>

</html:form>

ActionForm Bean The action form-bean corresponding to ActionMapping identified by the path

"/PortalAllianceRegistration" is shown here. The form has the action and the page property

that is used for controlling the application flow. The page is inherited from ValidatorForm.

public class PortalAllianceRegistrationForm extends ValidatorForm

implements Serializable {

public PortalAllianceRegistrationForm() {

}

public String getAction() {

return action;

}

public void setAction(String action) {

this.action = action;

}

... rest of the accessors ...
private String action;

private String portalID;

private String adminID;

private String portalName;

private String email;

private String activationDate;

private String testCertification;

public void reset(ActionMapping mapping,

HttpServletRequest req) {

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 7 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

... rest of the code ...
}

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest req) {

... rest of the code ...
return errors;

}

}

Request Handler This request handler is created from the ActionMapping identified by the

path "/PortalAllianceRegistration". The page property is used to identify the HTML form

being currently processed. Please review the entire code in the accompanying source

distribution to see how the action property is used in conjunction with the page property.

The following code fragment demonstrates how the request handler

PortalAllianceRegistrationAction uses the same form to provide different views for different

user actions. In this example, the site administrator can create and update the Portal Alliance

Registration, whereas a portal-alliance administrator can only view the registration information.

Please refer to Figure 5-13 for a high-level sequence diagram.

public class PortalAllianceRegistrationAction extends Action {

public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

PortalAllianceRegistrationForm regForm =

(PortalAllianceRegistrationForm)form;

String action = regForm.getAction();

if (action.equals("Create"))

{ return (createRegistration(mapping, form, req, res)); }

else if (action.equals("Update")) {

return (updateRegistration(mapping, form, req, res));

}

else if (action.equals("View"))

{ return (viewRegistration(mapping, form, req, res)); }

else { return null; }

}

public ActionForward createRegistration(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

... rest of the code ...
return mapping.findForward("success");

}

public ActionForward updateRegistration(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

... rest of the code ...

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 7 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

return mapping.findForward("success");

}

public ActionForward viewRegistration(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

... rest of the code ...
return mapping.findForward("success");

}

}

Manage Portal-Alliance Profile Use Case
The development of this use case has been combined with the Perform UI Customization use

case by making use of the multi-action pattern discussed in the preceding section. Figure 5-14

illustrates the static model used in the realization of this use case.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 7 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-14 Manage portal-alliance class diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Multi-Action Pattern Using Action Class Strategy
The implementation here is only slightly different from the one used in the “Register

Portal-Alliance Use Case” section. Here we define two actions—updateProfile and

navigationBarSetup— to realize the use cases ‘Manage Portal-Alliance Profile’ and Perform

UI Customization, respectively. The only difference in this implementation is that the actions

are associated with different views, as depicted later in the upcoming “Configuration

Semantics” section.

Structure Figures 5-15 and 5-16 illustrates the static and dynamic aspects of the multi-action

pattern. Figure 5-16 shows the usage of page and action properties in controlling the process

flow within the request handler

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 7 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-15 Multi-action pattern

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Configuration Semantics The struts-config.xml declarations are shown here. In this pattern,

we will use a single Action class and a corresponding ActionForm. The ActionForm extends

ValidatorForm, which provides the page property for mutlti-page interaction:

<action path="/EnterPortalID"

name="ManagePortalAllianceForm"

scope="session"

validate="false"

forward="/2_3B_EnterPortalID.jsp"/>

<action path="/ManagePortalAlliance"

type="com.gc.prez.admin.ManagePortalAllianceAction"

name="ManagePortalAllianceForm"

scope="session"

validate="false">

<forward name="EnterPortalID" path="/2_3B_EnterPortalID.jsp"/>

<forward name="ShowPortalProfile" path="/2_3_2_UpdatePortalProfile.jsp"/>

<forward name="ShowNavigationBarSetup" path="/2_3_3_PortalNavBar.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 7 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-16 Multi-action pattern sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that the ActionMapping identified by the path "/ManagePortalAlliance" will have

four possible ActionForward(s). The ShowPortalProfile <forward> declaration is selected

for updateProfile action, which will result in the view illustrated in Figure 5-17; and the

ShowNavigationBarSetup <forward> declaration is selected for navigationBarSetup

action, which will result in the view illustrated in Figure 5-18 . The rest of the semantics are

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 7 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-17 Update portal-alliance profile

Figure 5-18 Update navigation bar URL

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 8 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

similar to the one demonstrated in the “Register Portal-Alliance Use Case” section. Readers

are encouraged to review the implementation provided in the accompanying CD-ROM.

Request Handler The request handler in this case has to track the page sequence, that

is the value of the page property of two different views, and the action property of these

views; this makes the request handler slightly complex to implement. The semantics of the

request handler is illustrated using the following code fragment. Please refer to Figure 5-16

for a high-level sequence diagram.

public class ManagePortalAllianceAction extends Action {

public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

ManagePortalAllianceForm portalForm =

(ManagePortalAllianceForm)form;

ActionErrors errors = portalForm.validate(mapping, req);

String action = portalForm.getAction();

/* First page for Site Administrator */

if (!errors.empty() && portalForm.getPage() == 1) {

saveErrors(req, errors);

return mapping.findForward("EnterPortalID");

}

/* Second page for updating profile */

if ((!errors.empty()) && (portalForm.getPage() == 2)

&& (action.equals("updateProfile"))) {

saveErrors(req, errors);

return mapping.findForward("ShowPortalProfile");

}

/* Second page for navigation bar setup */

if ((!errors.empty()) && (portalForm.getPage() == 2) &&

(action.equals("navigationBarSetup"))) {

saveErrors(req, errors);

return mapping.findForward("ShowNavigationBarSetup");

}

/* Page number is 0, i.e. request handler was invoked from

* navigation bar by portal-alliance administrator using the

"Update Profile" or the Navigation Bar Setup" link*/

if (action.equals("updateProfile")) {

return (updateProfile(mapping, form, req, res));

}

if (action.equals("navigationBarSetup")) {

return (navigationBarSetup(mapping, form, req, res));

}

return null;

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 8 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

}

public ActionForward updateProfile(ActionMapping mapping,

ActionForm form, HttpServletRequest req, HttpServletResponse res)

throws Exception {

... rest of the code ...
}

public ActionForward navigationBarSetup(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

... rest of the code ...
}

}

Register NPO Use Case
A site administrator can create and update the registration information for a non-profit, while

the NPO administrator can only view this information. Figure 5-19 illustrates the class

diagram for realizing this use case; the semantics of this class diagram are explained in the

following section.

Multi-Action Pattern Using DispatchAction Class Strategy
The multi-action pattern discussed in the section “Register Portal-Alliance Use Case” was

implemented using an Action subclass. The Struts framework invokes the execute method on

a request handler that extends the Action class. In this section, we will implement the

multi-action pattern using the DispatchAction subclass. When a request handler extends the

DispatchAction class, it must provide a parameter attribute in the <action> declaration of

the struts-config.xml file, whose value is the name of a request time parameter that will be

used to identify method names to be called in the DispatchAction subclass. This is depicted

shortly in the “Configuration Semantics” section. The advantage of being able to specify

method names other than the standard execute method is that the request handler methods can

be directly coupled to user actions, embedded within the HTML form, rather than having to

route all actions through the execute method. In the following subsections, we will look at an

implementation that is identical in terms of functionality to the Register Portal Alliance Use

Case but differs in implementation.

Structure Figures 5-20, 5-21, and 5-22 illustrates the static and dynamic aspects of the

multi-action pattern using the DispatchAction class strategy. Figure 5-21 shows the setting

of the action property as a result of the method call specified in the navigation bar using

the request time parameter method (refer to the subsection “View Semantics” for more

information); Figure 5-22 shows how the action property is used to control the process

flow within the request handler.

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 8 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Configuration Semantics The struts-config.xml declarations are shown here. Observe the

parameter attribute specification that identifies the request time parameter method to be used

for identifying the request handler method that will be called instead of the execute method.

<action path="/NPORegistration"

type="com.gc.prez.admin.NPORegistrationAction"

name="NPORegistrationForm"

scope="session"

parameter="method"

Figure 5-19 Register NPO class diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 8 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

validate="false">

<forward name="ShowPage" path="/2_2_NPORegistration.jsp"/>

<forward name="EnterEIN" path="/2_4A_EnterEIN.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

View Semantics Again, the following snippet is from the dynamic navigation bar

2_AdministrationServicesNavBar that is included with all administrator JSPs. Observe that

all requests are directed to same URL "/NPORegistration", which is the identifier for the

ActionMapping object that will be used by the framework for invoking the associated request

handler NPORegistrationAction. However, in this case the execute method of the request handler

is not invoked; instead, the method to be invoked is specified by the request time parameter

Figure 5-20 Multi-action pattern using dispatch action class strategy

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 8 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

method, as shown next. Each of the methods shown in the following snippet is responsible for

setting the corresponding action property; this was illustrated in Figure 5-21.

<gc:hasAccess role="SiteAdminRole">

<html:link page="/NPORegistration.do?method=ShowNPORegistrationForm">

<bean:message key="SiteAdminServices.NPORegistration"/>

</html:link>

</gc:hasAccess>

<gc:hasAccess role="NPOAdminRole">

<html:link page="/NPORegistration.do?method=viewRegistration">

Figure 5-21 Multi-action pattern sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<bean:message key="NPOAdminServices.ViewRegistration"/>

</html:link>

</gc:hasAccess>

<gc:hasAccess role="SiteAdminRole">

<html:link page="/NPORegistration.do?method=preUpdateRegistration">

<bean:message key="SiteAdminServices.UpdateNPORegistration"/>

</html:link>

</gc:hasAccess>

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 8 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-22 Multi-action pattern sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

In the preceding snippet, a selection on the navigation bar will first invoke a method that will

set the desired action and then exit with an ActionForward pertinent to that action. For example,

the ShowNPORegistration method will execute the following code:

public ActionForward ShowNPORegistrationForm(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) {

NPORegistrationForm regForm = (NPORegistrationForm)form;

regForm.setAction("Create");

saveToken(req);

return mapping.findForward("ShowPage");

}

Comparing the DispatchAction subclass strategy with the Action subclass strategy, it is

obvious that while this strategy reduces the complexity in the request handler, it introduces

extra methods for displaying the initial view (the process start-up view). Applications with

complex navigation schemes can benefit from this strategy at the cost of coupling the method

invocations to the request time method parameter specified in the HTML form; however, it does

take away the need to specify the action parameter at request time, as shown in the section View

Semantics for the Multi-Action Pattern Using the Action Class Strategy.

The views participating in this use case, namely, 2_4A_EnterEIN.jsp and 2_2_NPORegistration

.jsp, both invoke the method multiplexer of the request handler NPORegistrationAction

(again, using the request time method parameter); this method has similar functionality as

the execute method of the PortalAllianceRegistrationAction of the Register Portal Alliance

Use Case. All other semantics of the DispatchAction subclass strategy are similar to the

Action subclass strategy, readers are urged to review the implementation provided with the

accompanying source distribution for additional details.

Realization of Search NPO Use Cases
The following subsections will explain the use case realization for the use cases in the Search

NPO package. Please refer to Chapter 1 for use case descriptions.

Search NPO Use Case
The search facility is a generic facility that can seamlessly plug into the navigation scheme of any

functionality desiring to use the NPO search function. Plugging of a search function into the

navigation scheme of other functions is accomplished by using a combination of three techniques:

� The request handler calling the search function does so by rendering a search function-

related view that transfers control to the request handler of the search facility.

� The search facility’s request handler remembers the request handler that invoked the

search facility.

� After the search is completed, the search facility transfers the control back to the calling

request handler by rendering.

1 8 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This use case is realized using the class structure depicted in Figure 5-23. The complete

semantics will be are explained later in the section “Create the Campaign Use Case.” Observe

that the SearchAndListNPOAction is subclassed from DispatchAction.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 8 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Fig
ur

e
5-

23
Se

ar
ch

N
PO

cl
as

s
di

ag
ra

m

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 8 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

SearchAndListNPOForm uses a Collection object searchResult, which is a coarse-grained

object consisting of NPOViewDTO objects. The business tier uses the value list handler pattern

[Core] to provide this collection; this pattern is explained in Chapter 7.

Realization of Manage Campaigns Use Cases
The following subsections provide the use case realization for use cases in the Manage

Campaigns package. Please refer to Chapter 1 for use case descriptions.

Create the Campaign Use Case
The campaign management function requires the ability to search and select an NPO for which

a campaign has to be created. In order to accomplish this, the Create Campaign function will

chain itself to the Search function. The Shared Request Handler pattern discussed in this

section is used in demonstrating how we can accomplish this using the Struts framework.

Figure 5-24 illustrates a class diagram for realizing this use case.

Shared Request Handler Pattern
A use case may include or depend on other use cases. Often a common set of functionality is

shared between several use cases. A navigation scheme can be conditionally altered by injecting

new services in the process flow. In the sample application, the search-related functionality

(search parameter page and search result page) and the associated request handlers can be

invoked by both the NPO administrators as well as the donors. An NPO administrator (or

a Site admin as stand-in) will require search services for creating campaigns based on NPOs

selected using the search process. A donor will require the search service to find a desired NPO

prior to making a donation. In both cases, the same search functionality is invoked. Upon

invocation, the search facility will provide a search parameters page, whose submission will

provide a list of NPOs from which the administrators or donors can select the desired NPO.

Selection of an NPO during the campaign creation process will take the administrator to a page

for entering campaign details, whereas selection of an NPO during the donation process will

take a donor to the donation cart.

Structure Figure 5-25 illustrates the class diagram of the Shared Request Handler pattern.

There are several dynamic views to demonstrate the campaign creation function, as such,

the associated sequence diagrams are discussed progressively through the section.

NOTE
From Figure 5-25, we observe that the Multi-Page pattern will be a foundational for implementing the
Shared Request Handler pattern. We would have had significant difficultly implementing Shared Request
Handler pattern without this foundational pattern. This demonstrates that the process of harvesting and
documenting pattern is a continuous process. Over time, creating large-scale solutions implies looking at the
catalog of design patterns whose implementation is already proven and the vocabulary well understood,
and applying these pattern within the context of the problem domain to create a highly modular, scalable,
maintenable, and extensible solution.

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 8 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Fig
ur

e
5-

24
C

re
at

e
C

am
pa

ig
n

cl
as

s
di

ag
ra

m

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 9 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Configuration Semantics The struts-config.xml declarations are shown in this section. The

Create Campaign use case employs the multi-page pattern. The view associated with page 1 is

2_3C_EnterPortalID.jsp, and the view associated with page 2 is 2_3_4_2_CampaignDetails.jsp;

this is shown in the following struts-config.xml declaration. However, please note that the

views 2_3C_EnterPortalID.jsp and 2_3_4_2_CampaignDetails.jsp need intervening views

provided by the search function to search and select the NPO. Therefore, we should transfer

control to the search function from the Create Campaign function. CreateCampaignAction

request handler accomplishes this by creating an ActionForward with name="ShowSearch"

for displaying the view 2_3_4_NewCampaignSearch.jsp after successfully processing the

view 2_3C_EnterPortalID.jsp and before processing the view 2_3_4_2_CampaignDetails.jsp.

<!-- Use Case: Create Campaigns (Use Case Package: Manage Campaigns)-->

<action path="/CreateCampaignStep1" forward="/2_3C_EnterPortalID.jsp"/>

<action path="/CreateCampaignStep2"

type="com.gc.prez.managecampaigns.CreateCampaignAction"

name="ManageCampaignsForm"

scope="session"

validate="false">

<forward name="EnterPortalID" path="/2_3C_EnterPortalID.jsp"/>

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-25 Shared Request Handler Pattern

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 9 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

<forward name="ShowSearch" path="/2_3_4_NewCampaignSearch.jsp"/>

<forward name="CreateNewCampaign" path="/2_3_4_2_CampaignDetails.jsp"/>

<forward name="success" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

The view 2_3_4_NewCampaignSearch.jsp includes a generic search parameter view

G_AdvancedSearchForNPO.jsp whose HTML form’s action parameter attribute has the URL

"/SearchAndListNPO.do?method=advanceSearch". Submitting this form will cause the search

parameter page to invoke ActionMapping identified by the path "/SearchAndListNPO", which

in turn will be used for invoking the SearchAndListNPOAction.advanceSearch method of the

request handler, therefore accomplishing a transfer of control from the campaign function to

the SearchAndListNPOAction request handler. This transfer of control also includes transfer

of application state from the action property stored in the forms ManageCampaignsForm

to the action property of SearchAndListNPOForm. The action property informs the

SearchAndListNPOAction request handler, whose function must be returned control when

the search function exits after completing NPO selection. The action property provides a kind

of callback facility when the SearchAndListNPOAction request handler is ready to transfer

control back to the calling request handler. For example, in the sample application, when the

action property is set to createNewCampaign, the SearchAndListNPOAction request handler

will return control to the campaign function’s next view (page 2 of campaign process) using

the <forward> specification identified by the name="CreateNewCampaign"; the action

property can also be set to "Donate", in which case the SearchAndListNPOAction request handler

will return control to the donate function’s next view using the <forward> specification

identified by the name="Donate". This is shown here by the forward declarations “Create

New Campaign” and “Donate”. Note that the SearchAndListNPOAction is subclassed from

DispatchAction.

<!-- Use Case: Search NPO (Use Case Package: Search NPO) -->

<action path="/SearchAndListNPO"

type="com.gc.prez.searchnpo.SearchAndListNPOAction"

name="SearchAndListNPOForm"

scope="session"

parameter="method"

validate="false">

<forward name="ShowSearchForCampaign" path="/2_3_4_NewCampaignSearch.jsp"/>

<forward name="ShowSearchForDonation" path="P_3_DonorServicesAndSearch.jsp"/>

<forward name="SelectNPOForNewCampaign" path="/2_3_4_1_SelectNPO.jsp"/>

<forward name="SelectNPOForDonation" path="/P_3_1_SelectNPO.jsp"/>

<forward name="CreateNewCampaign" path="/2_3_4_2_CampaignDetails.jsp"/>

<forward name="Donate" path="/P_3_1_1_DonationCart.jsp"/>

<forward name="failure" path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

In the preceding struts-config.xml declaration, observe that the views selected by the

SearchAndListNPOAction are specific to the calling function (Create Campaign or Donor Search);

the "ShowSearchFor…" and "selectNPOFor …" <forward> specifications are associated

with caller-specific views that embed a generic search form G_AdvancedSearchForNPO.jsp,

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 9 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

and a generic select NPO form G_NPOSearchList.jsp, respectively. This embedding of search-

related forms inside of other views is necessary to maintain the look and feel of the calling

function and provide a consistent user experience.

View Semantics The following snippet is from the dynamic navigation bar

2_AdministrationServicesNavBar that is included with all administrator JSPs. This is

just another case of multi-page pattern where the site administrator has an extra step

"/CreateCampaignStep1"; this will invoke the view 2_4B_EnterEIN.jsp shown next:

<gc:hasAccess role="SiteAdminRole">

<html:link page="/CreateCampaignStep1.do">

<bean:message key="PortalAdminServices.CreateNewCampaign"/>

</html:link>

</gc:hasAccess>

<gc:hasAccess role="PortalAdminRole">

<html:link page="/CreateCampaignStep2.do">

<bean:message key="PortalAdminServices.CreateNewCampaign"/>

</html:link>

</gc:hasAccess>

The view 2_3C_EnterPortalID.jsp will invoke the request handler CreateCampaignAction

using the ActionMapping identified by the path "/CreateCampaignStep2" (refer to struts-config

.xml shown earlier) with the page attribute property of the corresponding form-bean set to 1.

The request handler CreateCampaignAction may also be directly invoked from the navigation

bar using the ActionMapping identified by the path "/CreateCampaignStep2" when the

user is a portal-alliance administrator. The view 2_3C_EnterPortalID.jsp is shown next; the

corresponding page is shown in Figure 5-26, and the multi-page pattern semantics are depicted

in Figure 5-27.

<html:form method="POST" action="/CreateCampaignStep2.do" focus="portalID">

<html:hidden property="page" value="1"/>

<table border="0" cellspacing="0" cellpadding="5">

<tr>

<td class="txt"><bean:message

key="SiteAdminServices.EnterPortalID"/></td>

<td><html:text property="portalID" size="16" maxlength="16"/></td>

</tr>

<tr>

<td> </td>

<td><html:submit><bean:message key="prompt.Submit"/></html:submit>

</td>

</tr>

</table>

</html:form>

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 9 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-26 Enter Portal ID page

Figure 5-27 Multi-page Pattern sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Once invoked, the CreateCampaignAction request handler will in turn invoke the search

facility–related view 2_3_4_NewCampaignSearch.jsp using the <forward> specification

identified by name="ShowSearch" in the method SearchandSelectNPO; the corresponding

page is shown in Figure 5-28. Figure 5-29 is a sequence diagram for the method

CreateCampaignAction.searchAndSelectNPO that depicts the flow of events for invoking

the search facility page 2_3_4_ NewCampaignSearch.jsp. Observe that this page has an

embedded view /G_AdvancedSearchForNPO.jsp that will invoke the SearchAndListNPOAction

request handler. This is how the Create New Campaign function manages to transfer control

to the search function.

As mentioned earlier, the view 2_3_4_NewCampaignSearch.jsp includes the

search function–related view G_AdvancedSearchForNPO.jsp. A condensed version

of G_AdvancedSearchForNPO.jsp is shown next. When this form is submitted, it

will result in the invocation of the SearchAndListNPOAction request handler. The

SearchAndListNPOAction request handler is subclassed from DispatchAction, therefore the

method invoked for this request handler is the one specified by the request time parameter

method specified in the query portion of HTML form’s action attribute URL.

<html:form method="POST"

action="/SearchAndListNPO.do?method=advanceSearch"

focus="keywords">

... rest of the JSP containing search parameters...

</html:form>

After successfully processing the parameters of the view 2_3_4_NewCampaignSearch.jsp, the

request handler will list the results of the search by invoking the view 2_3_4_1_SelectNPO.jsp;

the corresponding page is shown in Figure 5-29. The SearchAndListNPOAction request handler

SearchandListNPOAction invokes this view by creating the ActionForward object related to

the <forward> specification identified by name=“SelectNPOForNewCampaign” (refer to

1 9 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-28 Enter Search Parameters page

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

struts-config.xml declarations specified in the preceding discussion). This view is selected because

the state maintained in the SearchAndListForm form-bean identifies that the search is being

performed on behalf of the Create Campaign function and therefore the look-and-feel of this

function is desired.

The view 2_3_4_1_SelectNPO.jsp includes the generic view G_NPOSearchList.jsp for

selecting an NPO from the selection list; the corresponding page is shown in Figure 5-30.

The specification action="/SearchAndListNPO.do?method=selectNPO" in the following HTML

form (generated with view 2_3_4_1_Select.jsp) will use the ActionMapping object identified by

the path "/SearchAndListNPO" to invoke SearchAndListNPOAction. The selection is applied to

the corresponding form-bean, and the controller then calls the method SearchAndListNPOAction

.selectNPO() of the request handler; this method is identified by the request time parameter

method specified in the query portion of HTML form’s action attribute URL.

<html:form method="POST"

action="/SearchAndListNPO.do?method=selectNPO">

... rest of the JSP for displaying search results...

</html:form>

The SearchAndListNPOAction.selectNPO method will re-invoke the calling

CreateCampaignAction by exiting with an ActionForward that invokes the next view

2_3_4_2_CampaignDetails.jsp (with the page property set to 2) in the campaign creation

process using the <forward> declaration identified by name="CreateNewCampaign".

This is how the search function manages to transfer control back to the Create Campaign

function.This is shown in the Figure 5-31.

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 9 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-29 Invoke the search facility view using ActionForward

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 9 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-30 Select NPO from the selection list

Figure 5-31 Transfer control to the caller

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The SearchAndListNPOAction.selectNPO method, prior to exiting, will first transfer

the information on the selected NPO to the form-bean associated with the calling request

handler. This is illustrated in Figure 5-32. The resulting page (based on 2_3_4_2_

CampaignDetails.jsp) is shown in Figure 5-33. The rest of the process is similar to the multi-

page pattern.

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 9 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Fig
ur

e
5-

32
Se

tp
ro

pe
rti

es
in

th
e

fo
rm

-b
ea

n
of

th
e

ca
lli

ng
re

qu
es

th
an

dl
er

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

1 9 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Successful submission of the Campaign page will result in the creation of a campaign for

the corresponding Portal ID. This is illustrated in Figure 5-34, which shows the flow of events

for the final step in campaign creation.

Figure 5-33 Create New Campaign page

Figure 5-34 Final step in campaign creation

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 1 9 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Request Handler In the following abridged version of the CreateCampaignAction request

handler, when the searchAndSelectNPO method is called from the execute method, the request

handler initializes the action property of the search form-bean SearchAndListNPOForm with

a value that informs the SearchAndListNPOAction of the ActionForward that it will

have to create when the search function has completed selecting the desired NPO. The

CreateCampaignAction request handler transfers control to the search function by creating

an ActionForward relating to the <forward> specification identified by name="ShowSearch".

This is illustrated using the following code fragment:

public class CreateCampaignAction extends Action {

public ActionForward execute(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

/* The logic here is similar to multi-page pattern */

... rest of the code ...

}

public ActionForward searchAndSelectNPO(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) {

ManageCampaignsForm campaignForm = (ManageCampaignsForm)form;

/* Find or create a new search form-bean */

SearchAndListNPOForm searchForm =

(SearchAndListNPOForm)req.getSession().getAttribute(

"SearchAndListNPOForm");

if (searchForm == null) {

searchForm = new SearchAndListNPOForm();

req.getSession().setAttribute("SearchAndListNPOForm", searchForm);

}

/* Store information on the calling module in search form-bean */

searchForm.setAction("createNewCampaign");

campaignForm.setAction("createNewCampaign");

/* Display the search page for transferring control to the

* search function */

return mapping.findForward("ShowSearch");

}

/* Process page 2 after the NPO is selected by the search facility */

public ActionForward createNewCampaign(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

...rest of the code...

/* The logic here is similar to multi-page pattern */

return mapping.findForward("success");

}

}

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

In the following SearchAndListNPOAction request handler, the advanceSearch method will

set the searchResult property of the SearchAndListNPOForm; this property is a Collection

object consisting of NPOViewDTO objects the SearchAndListNPOAction.selectNPO method

will invoke the view of the calling function that was responsible for instantiating the search

service; before transferring control to the Create Campaign view, the request handler will

transfer information about the selected EIN from the search form-bean to the campaign

form-bean.

public class SearchAndListNPOAction extends DispatchAction {

public ActionForward advanceSearch(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) throws Exception {

SearchAndListNPOForm searchForm = (SearchAndListNPOForm)form;

...rest of the code...

int resultCount =

SearchAndListDelegate.getInstance().search(req, searchParameters);

/* Get a Collection object from the business tier */

if (resultCount > 0) {

searchForm.setSearchResult(

(SearchAndListDelegate.getInstance()).searchNext(

req, Constants.PageSize));

}

...rest of the code...

/* Show custom selection view related to the calling function */

if (action.equals("createNewCampaign")) {

return mapping.findForward("SelectNPOForNewCampaign");

}

else if (action.equals("donate"))

{ return mapping.findForward("SelectNPOForDonation"); }

else { return null; }

}

/* Based on action property value, transfer control to the caller */

public ActionForward selectNPO(ActionMapping mapping,

ActionForm form, HttpServletRequest req,

HttpServletResponse res) {

SearchAndListNPOForm searchForm = (SearchAndListNPOForm)form;

String action = searchForm.getAction();

...rest of the code...

/* Invoke post-search page of the calling function */

if (action.equals("createNewCampaign")) {

return createNewCampaign(mapping, form, req, res);

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 0 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

}

else if (action.equals("donate")) {

return donate(mapping, form, req, res); }

else { return null; }

}

/* Initialize calling function's form-bean with selected NPO */

public ActionForward createNewCampaign(ActionMapping mapping,

ActionForm form, HttpServletRequest req, HttpServletResponse res) {

SearchAndListNPOForm searchForm = (SearchAndListNPOForm)form;

String action = searchForm.getAction();

ManageCampaignsForm campaignsForm = (ManageCampaignsForm)

req.getSession().getAttribute("ManageCampaignsForm");

String selectedEIN = searchForm.getEin();

Iterator iterator =

((Collection)searchForm.getSearchResult()).iterator();

while (iterator.hasNext()) {

NPOViewDTO dto = (NPOViewDTO)iterator.next();

if (dto.getEin().equals(selectedEIN)) {

/* Transfer the information on selected NPO

* to campaign form-bean */

campaignsForm.setEin(selectedEIN);

campaignsForm.setNpoName(dto.getNpoName());

campaignsForm.setAction(action);

req.getSession().removeAttribute("SearchAndListNPOForm");

break;

}

}

saveToken(req);

return mapping.findForward("CreateNewCampaign");

}

public ActionForward donate(ActionMapping mapping,

ActionForm form, HttpServletRequest req, HttpServletResponse res) {

... donor search function related code ...

}

}

Update Campaigns Use Case
A site administrator or a portal-alliance administrator can modify existing campaigns by

altering the start and end dates of the campaigns. The implementation of this use case employs

the multi-page pattern. Figures 5-35 and 5-36 illustrate the static and dynamic aspects of the

Update Campaigns use case.

The use of nested indexed properties in realizing this use case is explained in Chapter 4,

which demonstrates the ability to map request time parameters to properties of JavaBean

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

2 0 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Fig
ur

e
5-

35
U

pd
at

e
C

am
pa

ig
ns

cl
as

s
di

ag
ra

m

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 0 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

objects contained in a Collection object. The declarations in the struts-config.xml file are

depicted here:

<action path="/UpdateCampaignsStep1" forward="/2_3_5_EnterRegionCode.jsp"/>

<action path="/UpdateCampaignsStep2"

Figure 5-36 Update Campaigns sequence diagram

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

2 0 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

type="com.gc.prez.managecampaigns.UpdateCampaignsAction"

name="ManageCampaignsForm"

scope="session"

validate="false">

<forward name="EnterRegionCode"

path="/2_3_5_EnterRegionCode.jsp"/>

<forward name="ShowUpdateCampaigns"

path="/2_3_5_1_UpdateCampaigns.jsp"/>

<forward name="success"

path="/2_SiteAdministratorServicesMainPage.jsp"/>

</action>

The ActionMapping identified by the path “/UpdateCampaignsStep1” will render the

view 2_3_5_EnterRegionCode.jsp; the corresponding page is shown in Figure 5-37. In turn,

this view will use the ActionMapping identified by the path “/UpdateCampaignsStep2”

to invoke the UpdateCampaignsAction request handler which in turn will render the view

2_3_5_1_UpdateCampaigns.jsp using the <forward> specification identified by name=

“ShowUpdateCampaigns”. The corresponding page is shown in Figure 5-38. Readers are

urged to review the implementation provided in the accompanying source distribution.

Figure 5-37 Enter region code page

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Summary
In this chapter, we followed the iterative approach for realizing use cases that is pervasive

in this book. The solution abstracted and documented several Struts-related implementation

patterns for creating a consistent implementation vocabulary; this allows the developers to

implement recurring problems in a consistent manner, therefore improving readability and

maintainability of the code. The Struts-related patterns employed form-beans and request

handlers, and utilized the standard J2EE design patterns for realizing client-side semantics.

Struts-related patterns made use of the ValidatorForm’s page property for providing wizard-

like behavior; when used in conjunction with other properties, we were able create a wide

range of process flows within a single request handler, and use a single JSP for providing

varying HTML forms.

References
[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice-Hall, 2001)

[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

C h a p t e r 5 : P r e s e n t a t i o n T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 0 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 5

Figure 5-38 Update Campaigns page

P:\010Comp\ApDev\711-7\ch05.vp
Wednesday, May 28, 2003 9:32:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER

6
Domain Model Design

and Implementation

207

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Discovering Domain Objects

Creating the Data Model

Implementing the Domain Model

Using EJB QL with Find and Select Methods

Summary

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In Chapter 5, the business tier interfaces exposed to the presentation tier enabled us

to create an implementation for realizing the use cases identified by the packages

GreaterCause Site Administration, Manage Campaigns, and Search NPO. The business

tier interfaces, explained in detail in Chapter 7, employ the session façade pattern that is

implemented using either stateless or stateful session beans. These session beans encapsulate

business logic, which in turn employs domain entities. Domain entities are real-world things

and concepts that are part of the problem domain. Domain modeling is the task of discovering

these entities and defining their relationships in the context of the problem domain. The

discovery of domain entities and their implementation is the focus of this chapter. Basic EJB

concepts like home, remote, and local interfaces are not covered in any detail in this chapter.

Readers are urged to review the basic material from excellent tutorials and examples available

at java.sun.com. The EJB 2.0 specification also has a wealth of material; rather than reproduce

this information, we suggest specific sections to read from the EJB 2.0 specification in the

context of the material being discussed.

Discovering Domain Objects
Domain modeling involves identifying objects that represent the persistent state of the system.

This does not imply that there exists a one-to-one mapping between domain objects and

entity beans (or any other object persistence technology). This is because domain objects may

represent a conceptual thing that may require services of other entities. The domain objects

encapsulate logic that acts upon the domain objects. This logic is aware of the relationships

between domain objects and the rules enforced for manipulating the state of the object.

Therefore, one must clearly distinguish between logic that resides in the domain objects and

the logic that resides in the business tier (business tier is the topic of Chapter 7).

From the Site Administration and Manage Campaigns use case packages described in

Chapters 1 and 2, we infer the following requirements for the persistence state of the application.

� The Site Administrator will create the registration information for portal-alliances and

NPOs, a portal-alliance administrator will modify the portal-alliance profile, and an NPO

administrator will modify the NPO profile. A PortalAlliance and NPO object can provide

the encapsulation for accessing and manipulating registration and profile information.

� Portal-alliance and NPO administrators are authorized to access and modify related

portal-alliance or NPO profiles. An Admin object can provide us with this association.

Although each administrator can be embedded in the PortalAlliance or the NPO domain

object, we have chosen to separate the Admin object with the anticipation that in the

future the Admin object may have many-to-one relationship with either the PortalAlliance

or the NPO domain object.

� Campaigns are created by the portal-alliance administrator. A portal-alliance administrator

creates portal-specific campaigns, i.e., each Portal-Alliance domain object is associated

with a Campaign domain object. Each campaign will also be associated with an NPO

object. A Portal-Alliance object can encapsulate the access mechanisms for portal-alliance–

specific campaigns.

2 0 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

From the preceding discussion, we define the domain model shown in Figure 6-1. We assume

that readers have the knowledge of UML and object-oriented analysis and design, therefore we

do not explain those concepts here. Normally, the practice adopted during domain modeling is

to first create an analysis-level class diagram, which we continue to refine as we walk through

our requirements expressed in the use cases, and consulting with domain experts to validate

the domain model. The problem domain of our sample application is limited in scope, as

such we have gone straight to the design-level domain model. We also assume that the domain

objects will be implemented as entity beans with container-managed persistence. We continue

our discussion on the domain model and its implementation in the section “Implementing

the Domain Model.” Please note that although the methods on each of the domain objects

are identified in Figure 6-1, in reality these methods are discovered incrementally during

analysis, design, and implementation of the domain objects, as well as during the design

and implementation of business objects that employ the services of these domain objects.

Generalization relationships, associations, and multiplicity are discovered in a similar fashion.

Relationships in the Domain Model
The following is a discussion of relationships, roles, and multiplicity identified on the domain

model in Figure 6-1.

TIP
When creating the domain model, we need to capture all the relationships, roles, and the multiplicity for
each side of the relationship. This information is essential for configuring the deployment descriptors.
Deployment descriptors are discussed later in the chapter.

� Admin-NPO The relationship between Admin and NPO objects is represented by an

association Admin-NPO. This relationship is unidirectional, implying that the Admin

interface can access NPO and not the other way around. This directionality is manifested

by the getNpo and setNpo accessor methods in the Admin interface. These accessors

are defined in the deployment descriptor using the cmr-field-name element whose value

is “npo”. The relationship is supported in the database using a foreign key field in the

ADMIN table to reference the NPO object. We observed in Chapter 5 that an NPO

administrator’s login username is used for determining the associated NPO object.

Using the Admin-NPO relationship, the corresponding getNpo accessor is used for

retrieving the associated NPO object. Domain objects will be accessed in the business

tier session beans described in Chapter 7.

� Admin-PortalAlliance The relationship between Admin and PortalAlliance objects

is represented by an association Admin-PortalAlliance. This relationship is unidirectional,

implying that the Admin interface can access PortalAlliance and not the other way

around. This directionality is manifested by the getAlliance and setAlliance accessor

methods in the Admin interface. These accessors are defined in the deployment

descriptor using the cmr-field-name element whose value is “alliance”. The relationship

is supported in the database using a foreign key field in the ADMIN table to reference

the PortalAlliance object. We observed in Chapter 5 that a Portal-Alliance administrator’s

login username is used for determining the associated PortalAlliance object. Using the

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 0 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

Admin-PortalAlliance relationship, the corresponding getAlliance accessor is used for

retrieving the associated PortalAlliance object.

� PortalAlliance-Campaign The relationship between PortalAlliance and Campaign

objects is represented by an aggregation relationship PortalAlliance-Campaign. This

relationship is unidirectional, implying that the PortalAlliance interface can access

Figure 6-1 Domain model for Site Administration and Manage Campaigns use case packages

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 1 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

Campaigns and not the other way around. This type of relationship represents a “has-a”

relationship, meaning that the PortalAlliance object has objects of the type Campaign.

This directionality is manifested by the getCampaigns and setCampaigns accessor methods

in the PortalAlliance interface. These accessors are defined in the deployment descriptor

using the cmr-field-name element (for container-managed relationship) whose value is

“campaigns”. The aggregation relationship is implemented as a Collection. This is apparent

from the getCampaigns accessor method that returns a Collection. The corresponding

cmr-field-type element in the ejb-jar.xml deployment descriptor also declares the Collection

type. The relationship is supported in the database using a foreign key field in the

CAMPAIGN table to reference the PortalAlliance object. This relationship is utilized for

retrieving a Collection of Campaigns associated with a given Portal-Alliance.

� Campaign-NPO The relationship between Campaign and NPO objects is represented

by an association Campaign-NPO. This relationship is unidirectional, implying that the

Campaign interface can access NPO and not the other way around. This directionality

is manifested by the getNpo and setNpo accessor methods in the Campaign interface.

These accessors are defined in the deployment descriptor using the cmr-field-name

element whose value is “npo”. The relationship is supported in the database using a

foreign key field in the CAMPAIGN table to reference the NPO object. This relationship

is utilized for retrieving the NPO associated with a given Campaign.

Creating the Data Model
More often than not, projects may be forced to use an existing data model, perhaps from a

legacy system. In this situation, there is no other option but to start with the existing data model

and build your domain model around it. A comprehensive analysis should be undertaken to map

domain objects to existing database schema and determine if the new application’s processes fit

into the model. It’s a challenging architectural feat—you must be careful not to bring over the

legacy tables wholesale because the tables may contain columns that may not belong in the

context of the domain model. However, in the context of our sample application, we can start

designing the data model from scratch. For the domain model of Figure 6-1, we define the data

model using the ER diagram of Figure 6-2. Please note that the data model of Figure 6-2 uses

IDEF1X notation. Using this notation, an optional non-identifying relationship is drawn as a

dashed line with a solid dot on the child end and a diamond on the parent end.

NOTE
In a non-defining relationship, the foreign key becomes a non-key attribute in the child entity.

The data model in Figure 6-2 contains the ADMIN table that maintains the relationship

between the portal-alliance administrators and NPO administrators with their corresponding

portal-alliance and NPO objects. Later we review the implementation that establishes these

relationships using container-managed persistence (CMP) and container-managed relationships

(CMR). The ADMIN table is related to the NPO table through an NPO_Admin relationship. The

ADMIN table is also related to the PORTAL_ALLIANCE table through a PortalAlliance_Admin

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

relationship. Please note that both the profile and registration information for portal-alliances

are kept in the PORTAL_ALLIANCE table; the same is true for the NPO table.

The PORTAL_ALLIANCE table is related to the CAMPAIGN table through PortalAlliance_

Campaign relationship. This is an optional relationship, which means that a Campaign may

or may not exist for a given Portal-Alliance. The CAMPAIGN table is related to the NPO

table through a NPO_Campaign relationship. This relationship mandates that each campaign

be associated with an NPO.

Once we have designed the data model and decided the table names and column names,

we can implement the domain objects as entity beans with container-managed persistence.

The table names and columns will be referred to in the deployment descriptors for the entity

beans. The container will provide the implementation for getting and setting the values of the

table columns using accessor methods for each column declared as container-managed. This

concludes the initial setup required for arriving at a suitable domain-model and the corresponding

persistence strategy. Note that for many-to-many relationships, you will probably want to use

an associative table, but no such cases were present for our sample use cases.

NOTE
The ID column in the CAMPAIGN table is populated using the sequence number generation facility of the database.
This usage is associated with vendor-specific deployment descriptors, which we address later in this chapter.

Figure 6-2 Data model for Site Administration and Manage Campaigns use case packages

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 1 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

Implementing the Domain Model
Before we begin our implementation of domain objects identified in Figure 6-1, we first

examine a design pattern for simplifying the implementation of the entity bean interfaces. At

this point, we suggest that you take a little detour to the section “Implementing the Business

Interface Pattern” of Chapter 7. Business interface is an inappropriate stereotype for domain

objects, as such, this same design pattern will be used with the stereotype <<Domain-Object

Interface>>. We found that this business tier pattern used for session beans serves equally

well for entity beans. A review of this pattern reveals several advantages:

� The Domain-Object interface (Admin, PortalAlliance, NPO, and Campaign interfaces

shown in Figure 6-1) shows only the interface methods relevant to the business tier.

The container callbacks defined in the javax.ejb.EntityBean interface and the javax.ejb.

EJBLocalHome interface (assuming that we are using local home interface) appear on

the bean implementation, for example, the AdminBean. The client can use only the

Domain-Object interface.

� The analysis-level domain model contains only the Domain Object interfaces with their

associated methods. We do not assume implementation aspects such as CMP at this

time. This model directly maps to the interfaces described using Domain-Object

interfaces. The analysis time artifacts can be used directly during development.

� The accessors for container-managed fields are declared as abstract methods on the

Bean class (for example, AdminBean). The corresponding implementation is provided

by container provider’s tools. When using the Domain-Object interface, we do not have

to declare these methods as abstract methods on the Bean class. When new properties

are added or old ones removed, only the Domain-Object interface will change.

The following discussion focuses on the CMP semantics defined in the EJB 2.0 specification.

For the most part, using CMP implies that the developer provides the accessors for container-

managed fields. If CMR is being used, the developer provides the accessors for the CMR

fields; other than that, all of the implementation is generated by the vendor tool using the

configuration options specified declaratively in the deployment descriptors.

EJB 2.0 specification introduced local interfaces for EJBs. Local interfaces are used when

the domain objects are collocated in the same JVM as the business objects utilizing them.

This improves the performance significantly by eliminating the overhead associated with

remote interfaces, while taking away location transparency. The objects that implement the

local home interface and local interface are local java objects, therefore the arguments and

results of the methods of the local home interface and local interface are passed by reference.

Because the local programming model is relatively less expensive in terms of making method

calls, it can support fine-grained access to components. For our sample application, we have

chosen to implement all entity beans using local interfaces. While designing applications

using local interfaces, one must be aware of the pass-by-reference semantics inherent in the

local programming model. The remote programming model uses pass-by-value semantics

and therefore offers a level of isolation from inadvertent modification to the data.

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

NOTE
According to the EJB 2.0 specification, in order to be the target of a container-managed relationship, an
entity bean with container-managed persistence must provide a local interface.

Defining the Admin Interface
In this section, we complete the Admin Domain-Object interface and define the CMP and

CMR fields for the AdminBean. Figure 6-3 shows the CMP- and CMR-related accessors

defined on the Admin interface that the container will implement. Once the primary key for

an entity bean has been set, no attempt should be made to change it using the set accessor

methods. Therefore, the set accessor method for the primary-key is not provided on the Domain-

Object interface, instead it is specified only on the AdminBean as an abstract method.

The following snippet shows the accessors defined in the Admin interface. It has accessors

for the CMP field adminID and the CMR fields alliance and npo. The adminID provided

by the presentation tier is used to identify the association between the remote user and the

associated NPO entity bean or the PortalAlliance entity bean. According to the Register NPO

use case and the Register Portal-Alliance use case, only NPO and Portal-Alliance administrators

can change their respective NPO and Portal-Alliance profiles. The implementation for the

accessor methods is supplied by the container. All accessors must be public and must be

structured according to the cmp-field and cmr-field element specification in the ejb-jar.xml

file. This is discussed later in this section.

package com.gc.persistence.admin;

public interface Admin {

/* CMP field adminID */

public String getAdminID();

/* Because adminID is primary-key, setAdminID is

* defined only in the bean class */

/* CMR field alliance */

public PortalAllianceLocal getAlliance();

public void setAlliance(PortalAllianceLocal alliance);

/* CMR field npo */

public NPOLocal getNpo();

public void setNpo(NPOLocal npo);

}

In order to create the AdminBean entity bean that implements the Admin interface, the

local home interface shown in the following snippet exposes two create methods: one method

is for creating an AdminBean object with a local reference to the corresponding NPO entity

bean, and the other create method is used for creating an AdminBean object with a local

reference to the corresponding PortalAlliance entity bean. The corresponding implementations

are shown in the AdminBean class. The local home interface also exposes a set of find methods.

The findByPrimaryKey method is implemented by the container based on the prim-key-class

element in the deployment descriptor. The rest of the find methods use EJB QL (Query Language)

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

queries and therefore these methods are implemented by the container based on the query

elements specified in the deployment descriptors. Please note that we have deferred

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 1 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

Fig
ur

e
6-

3
D

ef
in

in
g

th
e

A
dm

in
Be

an
an

d
th

e
A

dm
in

in
te

rf
ac

e

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

discussing deployment descriptors for the later part of this section. For a complete discussion

on EJB QL, please refer to Chapter 11 of the EJB 2.0 specification.

package com.gc.persistence.admin;

public interface AdminLocalHome extends javax.ejb.EJBLocalHome {

/* Create Methods */

public AdminLocal create(String adminId, NPOLocal npo)

throws CreateException;

public AdminLocal create(String adminId, PortalAllianceLocal alliance)

throws CreateException;

/* Finder Methods */

public AdminLocal findByPrimaryKey(String adminId)

throws FinderException, ObjectNotFoundException;

public AdminLocal findByEin(String ein)

throws FinderException, ObjectNotFoundException;

public AdminLocal findByPortalID(String portalID)

throws FinderException, ObjectNotFoundException;

}

Observe that the finder methods throw ObjectNotFoundException. The CMP implementation

raises this exception when the corresponding entity bean is not found in the persistent store.

The business tier (which is the client in this case) must catch this exception instead of trying

to catch FinderException. Chapter 7 explains the difference between these two exceptions in

the section “Handling Exceptions in Transactions.”

The create methods of the AdminLocalHome are delegated to the ejbCreate methods of the

EntityBean by the container. The ejbCreate methods shown in the following code will set the

appropriate CMP field. Observe that the CMR fields must be set only in the ejbPostCreate

methods. The parameter list for ejbCreate and ejbPostCreate is identical. As you will see later

in the discussion on deployment descriptor, the container persists the objects and relationships

based on the abstract persistence schemas of entity beans and their container-managed

relationships.

package com.gc.persistence.admin;

public abstract class AdminBean implements EntityBean, Admin {

private EntityContext ctx;

public String ejbCreate(String adminID, NPOLocal npo)

throws CreateException{

this.setAdminID(adminID);

return null;

}

public String ejbCreate(String adminID, PortalAllianceLocal alliance)

throws CreateException{

this.setAdminID(adminID);

return null;

}

public void ejbPostCreate(String adminID, NPOLocal npo)

throws CreateException{

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

this.setNpo(npo);

}

public void ejbPostCreate(String adminID, PortalAllianceLocal alliance)

throws CreateException{

this.setAlliance(alliance);

}

/* The set method for adminID appears only in the bean class definition because

* it is the primary-key */

public abstract void setAdminID(String adminID);

... other container callback methods ...

}

Instead of using the setNpo method (or the setAlliance method) in the ejbPostCreate method,

we could have easily done the set in the business tier session beans. However, this will break the

encapsulation. We must let the logic for CMR be part of the AdminBean creation process.

The bean developer must define the entity bean class as an abstract class. The container-

managed persistent fields and container-managed relationships are exposed to the client

through get and set accessor methods. These fields are not present in the bean class since

these are virtual fields. The bean implementation produced by the container is aware of these

fields through cmp-field and cmr-field element declarations in the ejb-jar.xml deployment

descriptor. One must therefore follow the JavaBean naming convention for specifying the

names for CMP and CMR fields in the deployment descriptor, that is, the name must begin

with a lowercase letter.

Specifying the Deployment Descriptors
In this section, we configure various deployment descriptors associated with setting up the

SiteAdmin bean with container-managed persistence and container-managed relationships.

This section discusses the specifics of configuring the ejb-jar.xml file, vendor-specific

weblogic-ejb-jar.xml, and weblogic-cmp-rdbms-jar.xml files. We first discuss the ejb-jar.xml

deployment descriptor file.

NOTE
The sample application GreaterCause was developed and tested on the WebLogic Server 7.0 (SP1); as such,
all vendor-specific deployment descriptors discussed in this chapter will confirm to WebLogic Server 7.0.

<enterprise-beans><entity>

<description>Admin Bean Description</description>

<!-- Logical name of the EJB within the ejb-jar file -->

<ejb-name>AdminEntityEJB</ejb-name>

<!-- Specify abstract schema type for use in EJB QL -->

<abstract-schema-name>Admin</abstract-schema-name>

<local-home>com.gc.persistence.admin.AdminLocalHome</local-home>

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 1 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<local>com.gc.persistence.admin.AdminLocal</local>

<ejb-class>com.gc.persistence.admin.AdminBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<!-- Describe the container-managed fields -->

<cmp-field><field-name>adminID</field-name></cmp-field>

<!-- Name of the primary key field; this field is mapped to the

database schema in weblogic-cmp-rdbms-jar.xml file -->

<primkey-field>adminID</primkey-field>

<!-- Query for findByEin method in home interface; note the use

of abstract schema type 'Admin' defined previously using

abstract-schema-name element -->

<query>

<query-method>

<method-name>findByEin</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

SELECT OBJECT(a)

FROM Admin AS a

WHERE (a.npo.ein = ?1)

</ejb-ql>

</query>

<!-- Query for findByPortalID method in home interface -->

<query>

<query-method>

<method-name>findByPortalID</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

SELECT OBJECT(a)

FROM Admin AS a

WHERE (a.alliance.portalID = ?1)

</ejb-ql>

</query>

</entity></enterprise-beans>

2 1 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The ejb-name element specifies an EJB’s logical name in the deployment descriptor. The

name AdminEntityEJB is assigned to AdminBean. This name is used to reference the bean in

several places within ejb-jar.xml, weblogic-ejb-jar.xml, and weblogic-cmp-rdbms-jar.xml.

The prim-key-class element contains the fully qualified name of an entity bean’s primary

key class. The definition of the primary key can be deferred to deployment time, in this case

use prim-key-class as java.lang.Object. The findByPrimaryKey method of the local home

interface uses this class name as method parameter type. Database-assisted key generation

can also be supported by providing the object type of the key that is generated by the database;

any primitives must be converted to the corresponding Java object types.

The primkey-field element specifies the cmp-field that contains the primary key. Once the

primary key for an entity bean has been set, no attempt should be made to change it using the

set accessor methods. Therefore set accessor methods are not provided on the Domain-Object

interface. When the primary key is made of more than one CMP field, the composite key can

be represented using a custom type. All fields in the primary key class must be declared

public. The primkey-field element is not used when the primary key is a compound key, that

is, it maps to multiple cmp-fields.

The container-managed persistent fields and container-managed relationship fields are

specified in the deployment descriptor using the cmp-field and cmr-field elements, respectively.

Java types assigned to cmp-field can be Java primitive types and Java serializable types.

The names assigned to cmp-fields and cmr-fields must begin with a lowercase letter. The

corresponding accessor methods defined in the bean class follow the JavaBean method

naming convention, that is, the first letter of the name of the cmp-field or cmr-field is uppercased

and prefixed by get or set. Note that all cmp-fields and cmr-fields are mapped to the database

schema using the vendor-specific weblogic-cmp-rdbms-jar.xml file. We discuss this deployment

descriptor later in this section.

The container-managed fields are virtual fields since they are not explicitly declared in the

bean class. Instead, the bean developer declares an abstract set of get and set accessor methods

for each container-managed field. These abstract methods are declared in the entity bean

class. The corresponding implementation is generated by the container provider’s tools at

deployment time. For the purpose of our example, we have a slight deviation in that the abstract

accessor methods are not made explicitly part of the entity bean class but rather these accessors

are defined in a separate Domain-Object interface. In the case of the AdminBean class, the

accessors are defined on the Admin interface, which is implemented by the AdminBean class

and extended by the AdminLocal interface as shown previously in Figure 6-3. The advantages

of doing this have been discussed in the section “Implementing the Domain Model.”

The query element is used to specify queries for both the finder and select methods. The

container will provide the implementation for methods declared in the query element. The

container uses the query specified by the ejb-ql element as part of the method implementation.

Queries are expressed using EJB QL (for a complete discussion on EJB QL, please refer to

Chapter 11 of the EJB 2.0 specification). Input parameters to queries are designated by the

question mark (?) prefix followed by an integer. This integer specifies the position of the

parameter in the method declared in the deployment descriptor by the query-method element.

For the findByEin method shown in the deployment descriptor in the preceding, there is only

one method parameter of type java.lang.String.

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 1 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

As part of our discussion on ejb-jar.xml deployment descriptor file, we examine the

relationships element declared in the descriptor file. The following snippet shows the descriptors

required for configuring the relationship between Admin and NPO entity beans. Please note

that the persistence mechanism is configured accordingly, and the mapping between the

persistence layer and the EJBs is provided by a vendor-specific weblogic-cmp-rdbms-jar.xml

deployment descriptor.

<!-- Define container-managed relationships -->

<relationships>

<ejb-relation>

<!-- Provide unique name for a relationship; this name is used in

weblogic-cmp-rdbms-jar.xml for mapping the relationship to the

database schema -->

<ejb-relation-name>Admin-NPO</ejb-relation-name>

<!-- Define the relationship in the context of role name 'admin' -->

<ejb-relationship-role>

<ejb-relationship-role-name>admin</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<!-- Identify the EJB previously described

using ejb-name element -->

<ejb-name>AdminEntityEJB</ejb-name>

</relationship-role-source>

<cmr-field>

<!-- get and set accessors are defined for this field;

this also indicates the direction of the relationship -->

<cmr-field-name>npo</cmr-field-name>

</cmr-field>

</ejb-relationship-role>

<!-- Define the relationship in the context of role name 'npo' -->

<ejb-relationship-role>

<ejb-relationship-role-name>npo</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>NPOEntityEJB</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

</relationships>

Figure 6-1 shows the association Admin-NPO between Admin and NPO entity beans. We

defined the accessors for this unidirectional relationship in the Admin interface using getNpo

and setNpo CMR-related methods. Note that we have chosen the role-name as the cmr-field

name. The following code fragment shows the accessors that form the Admin-NPO relationship.

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

public interface Admin {

public NPOLocal getNpo();

public void setNpo(NPOLocal npo);

}

To explain the associated deployment descriptors, we take a bottom-up approach. The

basic structure that establishes a relationship is a container-managed-relationship field that is

declared using the cmr-field element. In the preceding snippet for the Admin entity bean, we

have the Admin bean declaring a cmr-field element npo, the corresponding accessors are

declared in the Admin interface, and the weblogic-cmp-rdbms-jar.xml defines a weblogic-

rdbms-relation element that provides a concrete schema of how this relationship will be

physically persisted. For the Admin-NPO relationship, the corresponding weblogic-rdbms-

relation:column-map (subordinate to weblogic-rdbms-relations element) element indicates

that the ADMIN table column name EIN is a foreign key associated with the primary key

column EIN of the NPO table. We will see usage of the column-map element shortly.

The ejb-relationship-role element is defined in the context of the role name associated with

the relationship-role-source element. For our sample descriptor, the source is identified by the

logical name assigned to the AdminBean, which is AdminEntityEJB, and the corresponding role

name identified by the ejb-relationship-role-name is admin. The relationship-role-source

NPOEntityEJB does not have a cmr-field because the association between Admin and NPO

is undirected when traversing from NPO to Admin.

The multiplicity element describes the multiplicity of the role identified by the ejb-

relationship-role-name element—it can take the value One or Many. A little digression is in

order to explain this. The multiplicity of 0..* specified in Figure 6-1 for the Campaign entity

bean side of the PortalAlliance-Campaign relationship will be specified as <multiplicity>
Many</multiplicity>. This creates a collection-valued relationship. The getCampaigns

method on the PortalAlliance entity bean will return a Collection object containing objects

of the type CampaignLocal (which extends the Campaign domain-object interface. We discuss

this again in the section “Defining the PortalAlliance Interface.” You can refer to section 10.3.6

of the EJB 2.0 specification for a detailed discussion of collection-valued relationships, but

this knowledge is not required for understanding the rest of this chapter.

Recapping the preceding discussion, we have successfully defined the bean classes,

corresponding interfaces, and the ejb-jar-xml deployment descriptor that implements a

one-to-one unidirectional relationship from Admin to NPO entity bean. The following

discussion explains the vendor-specific deployment descriptor necessary for vendors to

generate the concrete classes for the abstract bean classes we defined earlier. We begin by

discussing the declarations in the weblogic-ejb-jar.xml file—a snippet of this file appears

here in the context of AdminBean class:

<!-- Admin Entity Bean Definition -->

<weblogic-enterprise-bean>

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 2 1

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

<ejb-name>AdminEntityEJB</ejb-name>

<entity-descriptor>

<entity-cache>

<max-beans-in-cache>1000</max-beans-in-cache>

</entity-cache>

<persistence>

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>7.0</type-version>

<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-use>

</persistence>

</entity-descriptor>

<local-jndi-name>ejb/local/com.gc.persistence.admin.AdminLocalHome

</local-jndi-name>

</weblogic-enterprise-bean>

The ejb-name element provides the logical name by which the bean declarations are

identified in the ejb-jar.xml deployment descriptor. The entity-descriptor:type-storage element

defines the location of the deployment descriptor weblogic-cmp-rdms-jar.xml for the RDBMS-

based persistence mechanism. The local-jndi-name element provides the JNDI name for the

entity bean. The EJB specification recommends prefixing JNDI names with “ejb/.”

Moving forward, we look at how the persistence mechanism ties into container-managed

entity beans using the weblogic-cmp-rdbms-jar.xml deployment descriptor. We use the

Admin entity bean example for this purpose.

<weblogic-rdbms-bean>

<ejb-name>AdminEntityEJB</ejb-name>

<data-source-name>jdbc/gcOracleTxPool</data-source-name>

<table-map>

<table-name>ADMIN</table-name>

<field-map>

<cmp-field>adminID</cmp-field>

<dbms-column>ADMIN_ID</dbms-column>

</field-map>

</table-map>

</weblogic-rdbms-bean>

The value of the ejb-name element is a logical name that refers to the bean configuration

defined in the ejb-jar.xml deployment descriptor. The value of the data-source-name element

specifies the JNDI name given to the connection pool while configuring the server. We discuss

this configuration in Chapter 9.

The table-map element defines the mapping between the entity bean and the database

table. The table-name element identifies the table name, and the field-map entries identify

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 2 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

the mapping between a cmp-field and the corresponding table column. This mapping must be

provided for all the cmp-fields defined for the entity bean. The AdminBean has only one cmp-field.

<weblogic-rdbms-relation>

<relation-name>Admin-NPO</relation-name>

<weblogic-relationship-role>

<!-- This role name was defined in the ejb-jar.xml file -->

<relationship-role-name>admin</relationship-role-name>

<relationship-role-map>

<column-map>

<foreign-key-column>EIN</foreign-key-column>

<key-column>EIN</key-column>

</column-map>

</relationship-role-map>

</weblogic-relationship-role>

</weblogic-rdbms-relation>

We can draw a parallel between the weblogic-rdbms-relation element of the weblogic-

cmp-rdbms-jar.xml and the ejb-relation element of the ejb-jar.xml file. While the ejb-relation

element specified the cmr-field names, the weblogic-rdbms-relation:column-map specifies

the column name of the ADMIN table that will be used to persist the relationship. The

foreign-key-column element provides the column name of the foreign key in the ADMIN

table, while the key-column element provides the column name of the primary key for the

NPO table that will map to the foreign key of the ADMIN table.

This concludes the implementation and configuration of the AdminBean class and its

corresponding interfaces and deployment descriptors. In the following section, we discuss

the semantics for implementing a one-to-many relationship that involves a collection-valued

cmr-field.

Defining the PortalAlliance Interface
In this section, we define the methods pertinent to the PortalAlliance domain-object interface.

This interface has the standard accessor methods for the cmr-field “campaigns” except that in

this case we are dealing with a collection-valued cmr-field. Also, a couple of convenience methods

have been declared to work in conjunction with EJB QL for returning Collection objects.

Figure 6-1 shows that a PortalAlliance object can be associated with zero or more Campaign

objects. The direction of relationship is from PortalAlliance to Campaign. The accessors

associated for this relationship are created for the PortalAlliance interface as getCampaigns

and setCampaigns. Observe that the getCampaigns accessor method returns a Collection

object, whereas the setCampaigns accessor method specifies a collection-valued parameter.

We strongly recommend that you refer to section 10.3.6 of the EJB 2.0 specification for details

on collection-valued relationships. However, this knowledge is not required for understanding

the rest of this chapter. A convenience method addCampaign is specified on the PortalAlliance

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

domain object interface for adding a single Campaign object to this collection-valued

relationship. Another convenience method getRegionalCampaigns is added for extracting

the qualifying campaigns based on a regionCode parameter. The PortalAlliance interface

is shown here:

public interface PortalAlliance {

/* CMP Field Accessors */

public String getPortalID();

public String getPortalName();

public void setPortalName(String portalName);

...other cmp-field accessor methods ...

/* CMR Field Accessors */

public Collection getCampaigns();

public void setCampaigns(Collection campaigns);

/* Other Convenience Methods */

public Collection getRegionalCampaigns(String regionCode)

throws FinderException;

public void addCampaign(Campaign campaign);

}

As discussed before, the cmp-field’s and cmr-field’s accessor method implementation is

provided by the container provider’s tools; however, the bean class must provide implementation

for the convenience methods getRegionalCampaigns and addCampaign that access the collection-

valued cmr-field. The convenience methods are shown in the following code fragment:

public abstract class PortalAllianceBean

implements EntityBean, PortalAlliance {

private EntityContext ctx;

/* Adding a new Campaign to a collection-valued relationship */

public void addCampaign(Campaign campaign){

Collection campaigns = getCampaigns();

campaigns.add(campaign);

}

public Collection getRegionalCampaigns(String regionCode)

throws FinderException{

return ejbSelectRegionalCampaigns(getPortalID(),regionCode);

}

public abstract Collection ejbSelectRegionalCampaigns(String portalID,

String regionCode) throws FinderException;

... other bean methods ...

}

There are two ways we can add a Campaign object for a given PortalAlliance, using either

the container-implemented setCampaigns method, or the bean class implemented addCampaign

2 2 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

method. When the setCampaigns method is used, the collection-valued parameter completely

replaces existing relationships. The setCampaigns method therefore has the semantics of the

java.util.Collection’s clear method, followed by java.util.Collection’s addAll method. For

adding a new Campaign to the existing relationship set, we use the addCampaign method.

This method first retrieves a container-managed collection on which the java.util.Collection’s

add method is called. This has the effect of adding the new PortalAlliance-Campaign

relationship in the CAMPAIGN table using the foreign-key PORTAL_ID specified for the

CAMPAIGN table. Readers are recommended to review section 10.3.7 of the EJB 2.0

specification for further details on manipulating container-managed collections.

To obtain a filtered collection of objects based on a specific regionCode, we use the

getRegionalCampaigns method on the local interface. This method delegates to

ejbSelectRegionalCampaigns of the PortalAllianceBean class. This indirection is provided

because the EJB specification does not permit exposing of the ejbSelect<method> method

(where <method> is any given suffix that uniquely identifies the method name) to the

client. The use of the ejbSelect<method> method is permitted only for an entity bean class.

The ejbSelect<method> method was preferred in this case over the ejbFind<method>

method because the ejbFind<method> method can only return an object (or collection)

of type PortalAllianceLocal (the type corresponding to the interface itself), whereas the

ejbSelect<method> method can return objects (or collection) of any cmp-field or cmr-field

type; for the ejbSelectRegionalCampaigns, the desired collection is of type Campaigns.

Observe that the ejbSelectRegionalCampaigns is declared as abstract as the actual implementation

of the ejbSelect<method> method is provided by the container provider’s tools. A corresponding

EJB QL is provided in the ejb-jar.xml deployment descriptor using the query element, which

is discussed in the following subsection.

Using EJB QL with Find and Select Methods
EJB QL is used for defining queries for accessing entity beans with container-managed

persistence in a portable way. The queries created using EJB QL are specified in the

ejb-jar.xml deployment descriptor using the entity:query element. The query element is

specified for all ejbFind<METHOD>(s) (with the exception of ejbFindByPrimaryKey) and

ejbSelect<METHOD>(s). The suffix <METHOD> is a stand-in for the name of the method.

Only the finder methods are exposed to the entity bean clients through the beans home

interface. ejbSelect<METHOD>(s) are used internally by the bean class, and declared as

abstract method on an entity bean class. For container-managed persistence, the implementation

for the finder and select methods are generated by the container provider’s tools at

deployment time.

One important distinction between finder and select methods is that the finder methods can

only return a type that represents the entity bean’s local or remote interface (depending on local

or remote usage), or a type representing a collection of objects that implement the entity bean’s

local or remote interface, whereas select methods can return objects of any cmp-field or cmr-field

type. Another important distinction is that the select methods execute in the transaction context

determined by the transaction attribute of the invoking business method. The container is

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 2 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

responsible for ensuring that changes to the states of all entity beans in the same transaction

context as the select method are visible in the results of the select method.

Single-object finder methods and select methods should always return a single entity

object, otherwise the container will throw the FinderException. Multi-object finder methods

specify a result type as a java.util.Collection type. For remote interface types, the client must

use the PortableRemoteObject.narrow method to convert the objects contained in a collection.

Multi-object select methods specify a result type as a java.util.Collection type or java.util.Set

type. For Collection type, the objects returned in the collection may contain duplicates if

DISTINCT is not specified in the SELECT clause of the query. For Set type, SELECT

DISTINCT is default when DISTINCT is not specified in the SELECT clause.

Specifying the Deployment Descriptors
We begin discussing deployment descriptors with an emphasis on collection-valued

cmr-fields because of the one-to-many relationship between PortalAlliance and Campaign

EJBs. Figure 6-1 shows the PortalAlliance-Campaign relationship, which is a one-to-many

unidirectional relationship. We represent this relationship using the following deployment

descriptor declarations. The ejb-relationship-role element is defined in the context of the role

name associated with the relationship-role-source element. For the deployment descriptor

shown in the following code, the source is identified by the logical name assigned to the

PortalAlliance entity bean, which is PortalAllianceEntityEJB, and the corresponding role

name identified by the ejb-relationship-role-name is alliance. The relationship-role-source

CampaignEntityEJB does not have a cmr-field indicating that association between PortalAlliance

and Campaign does not have directivity from Campaign to PortalAlliance.

<ejb-relation>

<ejb-relation-name>PortalAlliance-Campaign</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>alliance</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>PortalAllianceEntityEJB</ejb-name>

</relationship-role-source>

<cmr-field>

<cmr-field-name>campaigns</cmr-field-name>

<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>

<ejb-relationship-role-name>campaigns</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>

<relationship-role-source>

<ejb-name>CampaignEntityEJB</ejb-name>

</relationship-role-source>

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

</ejb-relationship-role>

</ejb-relation>

In this snippet, observe that the cmr-field-name has the value campaigns. This value

corresponds to the getCampaigns and setCampaigns accessor methods, and follows the JavaBean

convention for naming accessor methods. The cmr-field-type specifies that the get and set

methods will use a collection-valued object in their method signatures.

The following snippet from ejb-jar.xml depicts the ejbSelectRegionalCampaign method

and query configurations..

<entity>

... other declarations appear here ...
<abstract-schema-name>PortalAlliance</abstract-schema-name>

<cmp-field><field-name>portalID</field-name></cmp-field>

<cmp-field><field-name>portalName</field-name></cmp-field>

... rest of cmp-fields ...

<primkey-field>portalID</primkey-field>

<query>

<query-method>

<method-name>ejbSelectRegionalCampaigns</method-name>

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

SELECT OBJECT(c)FROM PortalAlliance AS p,

IN (p.campaigns) c

WHERE (p.portalID = ?1 AND c.regionCode = ?2)

</ejb-ql>

</query>

</entity>

The getCampaigns method on the PortalAlliance returns a collection as a result of one-

to-many relationships existing between the PortalAlliance entity bean and Campaign entity

beans. This is shown in Figure 6-2. The EJB 2.0 specification mandates that the iterator

obtained over a collection in a container-managed relationship must be used within the

transaction context in which the iterator was obtained. Therefore the getCampaigns method

of the PortalAlliance entity bean is associated with the transaction attribute value of Mandatory.

This constraint automatically enforces a requirement on the client to call the getCampaigns

method of the PortalAlliance entity bean with a transaction attribute Required; this is because

the client is going to iterate over the collection. Transactions are discussed in Chapter 7 in

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 2 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 2 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

the section “Transaction Semantics for Enterprise Beans.” The following snippet shows the

transaction attribute declaration for the getCampaigns method in the ejb-jar.xml file.

<container-transaction>

<method>

<ejb-name>PortalAllianceEntityEJB</ejb-name>

<method-name>getCampaigns</method-name>

</method>

<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

The deployment descriptor files are included in their entirety in the accompanying source

distribution. This concludes the discussion for implementing and configuring the PortalAlliance

entity bean.

Defining the Campaign Interface
Figure 6-1 depicts the Campaign-NPO relationship between Campaign entity bean and the

NPO domain-object interfaces entity bean. The relationship is unidirectional implying that

only the Campaign bean has cmr-field accessor methods defined. The following code

segment represents the methods required on the campaign interface:

public interface Campaign {

public Integer getCampaignID();

/* setCampaignID is specified only in the bean class */

... Other cmp-fields accessors ...
/* Accessors for cmr-field npo */

public NPOLocal getNpo();

public void setNpo(NPOLocal npo);

}

Observe that the getCampaignID method returns an integer. This is because the

CAMPAIGN_ID of the CAMPAIGN table, as shown in Figure 6-2, uses a database-

generated key. For developing the sample application, we have used the Oracle database

server, which provides a sequence generation facility. The vendor-specific implementation

wraps the sequence number in an Integer object; this is discussed in the following section.

Specifying the Deployment Descriptors
The following declarations in the vendor-specific weblogic-ejb-jar.xml deployment descriptor

are for configuring a primary key that employs automatic key generation:

<weblogic-rdbms-bean>

<ejb-name>CampaignEntityEJB</ejb-name>

<data-source-name>jdbc/gcOracleTxPool</data-source-name>

<table-map>

<table-name>CAMPAIGN</table-name>

<field-map>

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

C h a p t e r 6 : D o m a i n M o d e l D e s i g n a n d I m p l e m e n t a t i o n 2 2 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 6

<cmp-field>campaignID</cmp-field>

<dbms-column>CAMPAIGN_ID</dbms-column>

</field-map>

... Other field-map declarations ...

</table-map>

<automatic-key-generation>

<generator-type>ORACLE</generator-type>

<generator-name>CAMPAIGN_ID_SEQUENCE</generator-name>

<key-cache-size>10</key-cache-size>

</automatic-key-generation>

</weblogic-rdbms-bean>

The sequence CAMPAIGN_ID_SEQUENCE specified for the generator-name element

is created using the following DDL:

CREATE SEQUENCE CAMPAIGN_ID_SEQUENCE

START WITH 10 INCREMENT BY 10 CACHE 20;

Providing key-cache-size optimizes access to the database because the container caches

the sequence number and increments the sequence without requesting the next value from

database for each entity creation. When using WebLogic with Oracle’s sequence generator,

the WebLogic document recommends using the same value for the key-cache-size element and

INCREMENT; if these values differ, you will most likely experience duplicate key problems.

Summary
During domain modeling, we essentially discover classes from use cases. Most likely, the

nouns and noun phrases provide an indication of entities that would be considered objects

and attributes, and verbs and verb phrases will likely become operations and associations. The

key abstractions from the problem domain must be identified at the outset, which forms the

basis of the static model of the system. Business requirements are implemented on top of the

domain model, therefore the domain model is a foundational artifact on which the business

and presentation components are dependent. During domain modeling, we also identify the

relationships between the domain objects. The type of relationship between entities and the

multiplicity associated with roles on either side of the relationship will provide guidance for

the creation of the database schema required to persist the corresponding entities. To arrive

at an optimum design, we iterate and refine the model through the analysis phase. This

optimization process can also continue through the design phase. To understand the object

modeling process, we suggest that you read Use Case Driven Object Modeling with UML

by Doug Rosenberg [Object Modeling], which further elaborates on this subject.

References
[Object Modeling] Use Case Driven Modeling with UML by Doug Rosenberg

(Addison Wesley, 1999)

P:\010Comp\ApDev\711-7\ch06.vp
Tuesday, May 27, 2003 3:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER

7
Business Tier Design
and Implementation

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

231

IN THIS CHAPTER:

Implementing Business Tier Design Patterns

Realization of the Sample Application Use Cases

Enterprise JavaBean’s Transaction Semantics

Enterprise JavaBean’s Configuration Semantics

Summary

References

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In Chapter 5, we looked at various design patterns applicable for the presentation tier

along with implementation of the use case packages GreaterCause Site Administration,

Manage Campaigns, and Search NPO. In this chapter, we discuss and implement

several design patterns that are appropriate for the business tier. Emphasis in this chapter is

on identification of appropriate design patterns in the context of our problem domain and

applying these patterns for solving common problems during the design and development

of the business tier. The patterns discussed in this chapter cover only those patterns that are

relevant to realizing the above-mentioned use cases; for a comprehensive patterns list and

related discussion, please refer to the references provided at the end of the chapter. A good

understanding of this chapter will assist the readers in quickly assimilating other design

patterns covered in the reference books and be able to discern their use in the context of

different problem domains.

NOTE
It is assumed that the reader of this chapter has a basic understanding of EJBs and related technologies
identified under J2EE framework. This chapter does not explain these technologies in great detail; instead
it applies these technologies in the context of realizing the use cases identified in the preceding. We do
discuss EJB usage and associated development and configuration semantics to provide the complete rationale
behind our design decisions. For additional information on developing distributed systems using EJBs, please
refer to tutorials available at java.sun.com.

Applying Design Patterns
In this section, we examine selected patterns that have been effectively used across most

GreaterCause use cases. The Value List Handler pattern [Core] will be discussed in the

section “Search NPO Use Case.”

When designing distributed applications, appropriate partitioning of application logic

across application tiers, coupled with efficient data transfer between tiers, is required to

satisfy such concerns as scalability, performance, extensibility, and maintainability. A brief

description of patterns follows; this is followed by a detailed discussion of the pattern usage

in the context of the GreaterCause implementation.

� Session Façade This design pattern is used where there is a requirement to loosely

couple the interactions between the client and the business logic residing on a server.

This pattern minimizes the dependencies between the client tier and the business tier

by providing a stable and simple interface to the business logic accessible by the client

tier; it hides the complexities of the business processes within the methods of a session

bean. This enables simpler client design and protects the client from the effects of

business process changes in the business tier of the application.

� Business Interface This design pattern is used to provide a compile-time checking of

method signatures for remote/local interface implementation in the EJB bean classes.

2 3 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

� Data Transfer Object Pattern This design pattern is used to transfer coarse-grained

objects to and from the business tier and presentation tier, thus reducing overall network

traffic and transferring more data in fewer remote call invocations.

� EJB Home Factory Pattern This design pattern is used to encapsulate the vendor-

specific details required for looking up home interfaces; it also provides caching of

home references for reuse.

Implementing the Session Façade Pattern
We first examine a scenario in which the presentation tier will try to implement the Register

NPO Use Case by directly accessing the entity beans without the intervening business-tier

objects, which are usually implemented using session beans. Register NPO Use Case is

described in Chapter 1. The objective of this use case is to register an NPO, which includes

creating the associated domain objects Admin and NPO (both are container-managed entity

beans) for storing the administrator-related information and the NPO registration information,

respectively. At the analysis level, the steps involved in implementing the Register NPO Use

Case are depicted in the sequence diagram of Figure 7-1.

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 3 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Figure 7-1 Directly accessing domain objects from the presentation tier

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 3 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

NOTE
Please note that the sequence diagrams illustrated in this chapter are analysis-level diagrams. They are used
to provide a high-level understanding of the underlying interaction semantics.

In this scenario, the presentation tier will make several calls over the network (assuming

remote reference usage) to achieve the objective of registering the NPO in the data store. The

number of calls for registering the NPO creates network chatter that does not effectively use the

network bandwidth. Also, in this scenario the presentation tier has embedded logic for accessing

and manipulating the domain objects, which will increase the complexity of the presentation tier

logic. As discussed in Chapter 4, the presentation tier must follow the MVC semantics. This

implies that it must not concern itself with manipulating the model; the logic for manipulating

the model must be abstracted into a different tier, which we call the business tier.

A best practice approach to addressing these inefficiencies uses a session bean for

implementing the model portion of the problem domain. The business semantics are expressed

in a session bean that also encapsulates access to domain objects, thus effectively hiding the

complexity of accessing and manipulating domain objects implemented as entity beans. This

implementation of the session bean is referred to as a Session Façade [Core]. When a session

façade pattern is used, the presentation tier effectively makes a single network call to a method

on the session bean with relevant arguments, which could potentially be a data transfer object

(this is further explained in the section “Implementing the Data Transfer Object Pattern”); the

façade method in turn deals with the complexities of business processes and data manipulation.

The session façade isolates the presentation tier from the implementation aspects of the domain

tier and the related business processes, thus providing a loosely coupled interaction semantics.

Should the business tier logic change, or there is a change in the domain model, the

presentation tier will usually remain unaffected. Figure 7-2 depicts the interaction between the

presentation tier and the session façade.

The sequence diagram depicts that fewer calls are made by the presentation tier over the

network instead of several calls as compared to Figure 7-1. In this scenario, the session

façade is implemented by the SiteAdmin session bean.

From the preceding discussion, you will observe that the presentation tier is now limited

in its responsibility while delegating most of the application logic to the session façade. By

applying the session façade pattern, we have moved the business logic from the presentation

tier to the business tier and introduced the MVC semantics for isolating the presentation tier

from the intricacies of the domain model and the logic that manipulates the model. The

session façade pattern is also extensively used when there is need to prevent the client from

making fine-grained method calls to domain objects. Roughly speaking, the pattern could be

used to wrap all the method calls required to get relevant data from entity beans in a single

network call to the business tier. This pattern is usually used in conjunction with the Data

Transfer Object pattern. The session bean implementing the session façade does not have to

restrict itself to accessing domain objects; a session façade could in fact interact with other

session beans for servicing the client request. This architecture is useful for solving complex

business problems as well as promoting reuse and modularity.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 3 5

Fig
ur

e
7-

2
A

cc
es

sin
g

bu
sin

es
s

lo
gi

c
us

in
g

Se
ss

io
n

Fa
ça

de

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Implementing the Business Interface Pattern
A session bean class or an entity bean class must implement all the methods defined on the

remote interface. However, according to the EJB specification, the bean class is only required

to implement the javax.ejb.SessionBean interface; therefore, at compile time, there is no

checking to ensure that the methods of remote interface have been implemented by the bean

class. It is only during the post-compilation process that the proprietary compliance checkers

provided by EJB vendors will check that the bean class methods conform to the remote

interface definition. The post-compilation checkers usually are very slow and are outside

of the regular development environment.

An elegant solution for this problem is to define a special interface, called Business

Interface [EJB Patterns], which the remote interface extends; this business interface is

implemented by the bean class. Observe that by extending the remote interface with the

business interface, the remote interface does not have to specify any business methods.

As illustrated in Figure 7-3, SiteAdminRemote extends the required EJBObject, and it also

extends the SiteAdmin business interface. The SiteAdminBean class implements the required

javax.ejb.SessionBean interface (in the case of entity beans it is the javax.ejb.EntityBean

interface) and it also implements the SiteAdmin business interface. During compilation, the

SiteAdminBean class must have the implementation for methods defined by the SiteAdmin

business interface, otherwise the compiler will flag this as an error; this makes it possible

2 3 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Optimization Note
For the reasons of scalability, you may want to consider using stateless session beans

instead of stateful session beans. A stateful session bean requires that you maintain the

conversational state for a client across method invocations; therefore a stateful bean

cannot be assigned to another client. A stateless session bean does not maintain the

conversational state and hence any free instance of the session bean from the bean pool

may service any client. This provides better opportunities for the EJB container to scale

the number of available instances of session beans for servicing the clients. However,

using a stateless session bean may not be practical in certain situations; for example, the

implementation of Search NPO use case (discussed in section “Search NPO Use Case”)

employed a stateful session bean to support the paging mechanism required by the

presentation tier.

For small- to medium-sized applications, it may be tempting to implement all the use

cases using a single session façade bean. This is not a recommended approach because

this leads to unnecessary concentration of unrelated services into a single session bean.

Instead, break up the business logic into manageable chunks based on application

functionality and implement the use cases across multiple session beans as described in

the following sections. This approach makes the application scalable, manageable, and

modular. However, the architects must endeavor to keep the number of session façade

beans to a manageable number.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 3 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

to detect any mismatch between the method signatures on the business interface and the bean

class. Using this solution, the EJB client can conveniently use the business interface instead

of remote or local interface to interact with a session bean as shown by the SiteAdmin business

interface in Figure 7-3.

The business interface differs slightly if it has to expose a remote interface or a local

interface to the client. The EJB 2.0 specification specifies that all methods in a remote

interface should throw a RemoteException, whereas the methods in a local interface must

not throw a RemoteException. So if the remote interface extends a business interface, each

method in the business interface must throw a RemoteException; as a result, this business

interface cannot be used to extend the local interface.

This pattern provides a powerful mechanism for compile-time checking of method signatures

defined in the remote/local interfaces that are being implemented by the EJB bean class.

This pattern is sometimes called a double-interface pattern.

Figure 7-3 Using the Business Interface for accessing an EJB

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Implementing the Data Transfer Object Pattern
In a typical distributed application like GreaterCause, the presentation tier needs to interact

with the business tier for getting information pertaining to the view being processed. For

example, the Register NPO use case requires the view to show the registration information

to the administrator; some of this information includes EIN, NPO Name, Address, and so on.

One solution for requesting this data from the business tier is to have a session façade expose

the methods getEin(), getNpoName(), getAddress(), and so on. The presentation tier will then

call the appropriate method on the session bean to get the information for display purpose.

This form of access is commonly referred to as fine-grained access in that the information

required by the presentation tier is obtained incrementally using several calls to the business

tier. This interaction is captured in Figure 7-4.

It is obvious from the sequence diagram in Figure 7-4 that there is a lot of traffic between

the presentation tier and business tier. Each remote method call on the session bean is going

across the wire, which in turn results in marshalling and unmarshalling of the objects EIN,

NPO Name, Address, and so on. This level of object granularity is expensive when

communicating over the network.

An elegant solution will be to make a single call to the session bean, which returns a

serialized object that aggregates the fields required by the view, as shown in Figure 7-5. In this

scenario, the presentation tier requests the session bean for registration data, and the session

bean in turn makes all the necessary calls to the domain objects for assembling a serializable

object; this object is called a Data Transfer Object (DTO) [EJB Patterns]. Further discussion

on DTO is available at http://c2.com/cgi-bin/wiki?UseDataTransferObjects. This serializable

object is used for exchanging data between the presentation and the business tiers. The use

of DTO minimizes the traffic between the presentation tier and the business tier (EJB tier) in

a distributed environment, and it reduces the complexity of the logic in the presentation tier.

The DTO can be used to assemble data from several views (as in multipage interaction) when

2 3 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Figure 7-4 Fine-grained access of business functionality

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 3 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

transporting data from the presentation tier to the business tier, or the DTO can be used to

assemble data to be shown across several views when transporting data from the business tier

to the presentation tier. Under certain circumstance one may require exchanging more than

one DTO between different tiers; in such cases one can use a collection of DTO objects.

The data transfer objects are usually simple serializable JavaBean classes, as shown in

the following code segment:

package com.gc.services.admin;

import java.io.Serializable;

public class NPORegistrationDTO implements Serializable{

private String ein = null;

private String npoName = null;

private String adminID = null;

private String address = null;

private String city = null;

private String state = null;

private String zip = null;

private String country = null;

private String activationStatus = null;

... property accessors appear here ...
}

Figure 7-5 Coarse-grained access using a DTO

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 4 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Depending on your implementation need, the DTOs can be mutable or immutable.

Immutable DTOs are employed when the presentation tier should not update data values of

the object, and therefore the DTO can only be used for display purposes. However, if the

presentation tier requires the data to be updated, then mutable DTOs are employed, which

allows the instance variables of the DTO to be changed. The changed DTO is sent back to

the business layer for applying the changes to domain objects.

When the business tier receives an updated DTO, it needs a mechanism to identify the

instance variables that have been changed. In the absence of this mechanism, the business

layer may have to blindly update the domain objects with values from DTO, potentially

updating unchanged attributes; avoiding such updates optimizes the database access

performed by container-managed persistence EJB (CMP). A simple solution to recognize

the changed value for an instance variable is to set a flag corresponding to the variable, as

shown in the following code snippet:

package com.gc.services.admin;

import java.io.Serializable;

public class NPORegistrationDTO implements Serializable{

private String _ein = null;

private String _npoName = null;

... rest of the code ...
/* Following members provide the index for the flags[] array */

public static final int EIN = 0;

public static final int NPO_NAME = 1;

... rest of the code ...
private boolean[] flags = new boolean[9];

public NPORegistrationDTO(){

this.resetModifiers();

}

... accessors are listed here ...
public void setEin(String ein) {

_ein = ein;

flags[EIN] = true;

}

public void setNpoName(String npoName) {

_npoName = npoName;

flags[NPO_NAME] = true;

}

public boolean isFieldModified(int fieldIndex){

/* Returns true if the corresponding setter method was called */

return flags[fieldIndex] == true;

}

public void resetModifiers(){

for (int index = 0; index <= flags.length-1; index++){

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

flags[index] = false;

}

}

}

In the business tier, the session bean simply needs to call the isFieldModified method

to determine if the field has been updated by the presentation tier; this is illustrated in the

following code segment. Please note that the variable npo corresponds to a domain object.

Domain objects are discussed in Chapter 6.

public void updateNPORegistration(NPORegistrationDTO details){

if (details.isFieldModified(NPORegistrationDTO.NPO_NAME)) {

npo.setNpoName(details.getNpoName());

}

... check other attributes for modification ...
}

Proliferation of Data Transfer Objects
For a small-sized application like Greater Cause, only a handful of data transfer objects

were needed to satisfy the requirements of the presentation tier. For large applications, the

requirements of the presentation tier may require a large number of data transfer objects.

To keep the number of DTOs manageable, one solution would be to create DTOs that have

several common data elements; the flip side of this approach is that the data transfer object

will contain more data than required for satisfying a presentation tier request; populating

additional data also implies making unnecessary calls to the domain layer. Optionally, a data

transfer object based on HashMapmay be appropriate in situations where an arbitrary amount

of data needs to be transferred across tiers in a generic manner.

When Not to Use Data Transfer Objects
From the outset, the DTO pattern may be used between different tiers of the application—

between the presentation and business tiers, and between the business and domain tiers.

However, it is considered a bad practice to apply a data transfer object pattern for interactions

with the domain tier.

Back in the days of EJB 1.x–based implementations, the DTO pattern surfaced due to

the mandatory requirement that the calls to entity beans be remote even when the session or

entity beans accessing them were co-located. To reduce the network overhead of these remote

calls, the data transfer object pattern was applied in a fashion similar to the discussion in this

section. Under this circumstance, if the same DTOs were used by both the presentation tier

and the domain tier, then if the domain tier changed, the associated DTO changed and

therefore the presentation tier was required to change, and vice versa. This tight coupling

between the view and the domain objects will result in unnecessary dependency between

tiers, which also undermines MVC semantics. Note that with the introduction of local

interfaces in EJB 2.0, the method calls to entity beans are no longer required to be remote.

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 4 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 4 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Implementing EJB Home Factory Pattern
The EJB specification standardizes the access mechanisms for locating the EJBs. A client

locates a session or entity bean’s home interface using JNDI. For example, the home interface

for the SiteAdmin session bean (from the Register NPO Use Case) can be located using the

following segment of code:

//Vendor specific code

Hashtable props = new Hashtable();

props.put(InitialContext.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

props.put(InitialContext.PROVIDER_URL,

"t3://localhost:7001");

InitialContext ctx = new InitialContext(props);

SiteAdminHome siteAdminHome = (SiteAdminHome)

javax.rmi.PortalRemoteObject.narrow(

ctx.lookup("ejb/com.gc.services.admin.SiteAdminHome"),SiteAdmin.class);

This code first packages the necessary vendor-specific values into a Hashtable and calls

PortalRemoteObject.narrow with the corresponding JNDI name that was declared in the

deployment descriptors. The preceding snippet has the following disadvantages:

� Each client accessing the EJB is providing vendor-specific code, and therefore the code

is repeated in multiple places where access to EJBs is required.

� Getting the initial context and subsequently the home interface is a resource-intensive

process, which will impact performance.

To overcome these limitations, the EJB Home Factory pattern [EJB Patterns] should be

introduced as follows:

� Develop a helper class that hides all the vendor-specific details. In the sample

application, this helper class is called EJBHomeFactory.

� Using a combination of Factory and Singleton [Gof] patterns, create a single instance

of EJBHomeFactory that creates the InitialContext only once, and provides a suitable

caching mechanism for home references.

The following code fragment shows the implementation for EJBHomeFactory:

public class EJBHomeFactory {

private HashMap _ejbHomes;

/* Singleton pattern */

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 4 3

private static EJBHomeFactory _factory = new EJBHomeFactory();

private static InitialContext _ctx = null;

private EJBHomeFactory(){

_ejbHomes = new HashMap();

}

public static EJBHomeFactory getFactory(){

return _factory;

}

public static InitialContext getContext() throws NamingException{

/* Check if initial context already exists */

if (_ctx == null){

/* Vendor specific parameters */

Hashtable props = new Hashtable();

props.put(

InitialContext.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

props.put(InitialContext.PROVIDER_URL, "t3://127.0.0.1:7001");

_ctx = new InitialContext(props);

}

return _ctx;

}

public EJBHome lookUpHome(Class homeClass) throws NamingException{

EJBHome home = null;

/* Check whether the reference for the EJB already exists in the

* cache _ejbHomes */

if ((home = (EJBHome)_ejbHomes.get(homeClass)) == null){

home = (EJBHome)PortableRemoteObject.narrow(

getContext().lookup("ejb/"+homeClass.getName()),homeClass);

// Cache the reference for future use

_ejbHomes.put(homeClass,home);

}

return home;

}

}

The EJBHomeFactory has the getFactory method, which returns an instance of

EJBHomeFactory. The convenience method lookUpHome creates the InitialContext only

once using vendor-specific details in the getContext method. The InitialContext is used in

the PortableRemoteObject.narrow method for looking up the home reference for the given

JNDI name.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following snippet illustrates usage of the EJB Home Factory class for accessing the

home reference of the desired EJB. Note that the developers do not have to concern themselves

with vendor-specific details. The home factory pattern provides a mechanism for caching

home references while hiding vendor-specific details.

SiteAdminHome adminHome = (SiteAdminHome)EJBHomeFactory.getFactory().

lookUpHome(SiteAdminHome.class);

The JNDI name for the home interface is described in the weblogic-ejb-jar.xml file, as

shown here:

<weblogic-enterprise-bean>

<ejb-name>SiteAdminEJB</ejb-name>

<jndi-name>ejb/com.gc.services.admin.SiteAdminHome</jndi-name>

</weblogic-enterprise-bean>

Identifying Package Dependencies
The package structures shown in Figure 7-6 depict the dependencies between packages in the

business tier. The package naming conventions used by the GreaterCause application in the

business tier and the domain tier follow the following conventions:

Business Tier Domain Tier
com.gc.services.admin com.gc.persistence.admin

com.gc.services.managecampaigns com.gc.persistence.managecampaigns

com.gc.services.searchnpo

The basic premise of this book is use of object-oriented paradigm and a use case–driven

approach. As such, we now examine how we have used the different patterns discussed in

the preceding sections for realizing the use cases discussed in Chapter 1. In this chapter, we

develop the use cases identified by the packages Site Administration, Manage Campaigns,

and Search NPO. The intent of this endeavor is to assist the readers in understanding how

to implement an architecture based on the patterns we just discussed; at the same time, we

create static and dynamic models for representing our problem domain.

2 4 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Moving Forward
The basic premise of this book is use of object-oriented paradigm and use case–driven

approach. As such, we now examine how we have used the different patterns discussed

in the preceding sections for realizing the use cases discussed in Chapter 1. In this

chapter, we develop the use cases identified by the packages Site Administration, Manage

Campaigns, and Search NPO. The intent of this endeavor is to assist the readers in

understanding how to implement an architecture based on the patterns we just discussed,

at the same time, we create static and dynamic models for representing our problem domain.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 4 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Realization of the Site Administration
Use Case Package
The following subsections provide the use case realization for use cases in the Site Administration

package. To avoid repetition, we cover only essential use cases that introduce new concepts;

for the rest of the use cases, please refer to the implementation on the accompanying CD-ROM.

In this section we apply all the business patterns we discussed earlier in this chapter. We also

discuss the deployment descriptors required to configure the EJBs that will be created for

realizing the Register NPO use case, along with the declarations that specify the transaction

semantics for the various EJB methods. We conclude this section with a brief discussion on

exceptions in the context of transactions.

NOTE
The following subsections provide readers with an opportunity to understand class interactions and
dependencies visualized through class and analysis-level sequence diagrams. Please refer to Chapter 1
for use case descriptions.

Figure 7-6 Business Tier Package Diagram

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 4 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Register NPO Use Case
This section covers the implementation of Register NPO use case. The implementation

details described here provide the necessary foundation for other use cases; and the same

concepts are reapplied for implementing other use cases.

Discovering Business Interface Methods
The first step in realizing the use case is to identify the methods of the business interface

necessary for realizing the use case. We identify the business interface methods by following

the flow of events described for the use case. Since the Register NPO is an administration

service, applying the business interface pattern described earlier in the section “Implementing

the Business Interface Pattern,” we define a business interface called SiteAdmin. This interface

must provide a method called registerNPO for allowing the presentation tier to register NPO

data. Using the data transfer object pattern, the presentation tier provides the required data in

an object called NPORegistrationDTO. We can identify the attributes of this DTO from the

wire frames identified during the use case elaboration process. The following code fragment

shows the required attributes for the NPORegistrationDTO class that represent registration

information:

public class NPORegistrationDTO implements Serializable {

//Instance variables

private String ein = null;

private String npoName = null;

private String adminID = null;

private String address = null;

private String city = null;

private String state = null;

private String zip = null;

private String country = null;

private String activationStatus = null;

... rest of the code ...
}

Since this DTO will go across the wire using RMI, ensure that it implements the

Serializable interface. Once the registration information is created in the GreaterCause

data store, the Register NPO use case will also need to maintain this information using the

updateNPORegistration and getNPORegistration methods; these additional methods are

added to the business interface as well. The following code fragment shows the business

methods identified thus far in the business interface SiteAdmin:

public interface SiteAdmin {

void registerNPO(NPORegistrationDTO detail) throws RemoteException,

RegistrationException;

void updateNPORegistration(NPORegistrationDTO details)

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 4 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

throws RemoteException,NPONotFoundException, GCAppException;

NPORegistrationDTO getNPORegistration(String ein, String adminID)

throws RemoteException, NPONotFoundException,

AdminNotFoundException, GCAppException;

}

The method signatures identified for the business interface shown were selected based

on the design decision that we will be employing the services of a stateless session bean.

Because the stateless session bean does not maintain any state information, the client must

provide all the details necessary for the session bean to service the request; this design may

complicate the client logic because the onus is on the client to maintain the application state.

In the business interface of SiteAdmin, note two methods are used by the client for getting

and updating the registration information; these methods are getNPORegistration and

updateNPORegistration. The design of the client has accounted for the fact that both of these

methods will be serviced by different session bean instances, therefore the client design will

ensure that when updateNPORegistration is invoked, the corresponding parameters (that is,

NPORegistrationDTO) will include the ein (EIN is the primary key for the NPO entity bean

and is not updatable by the client) in addition to all the other information required by the

session bean to service this request. Had we decided to use a stateful session bean instead

of a stateless session bean, the update method would not require the ein because the session

bean would be aware of the parameters that were supplied when getNPORegistration was

invoked for constructing the NPORegistrationDTO. This is further clarified by the sequence

diagrams shown in Figure 7-8, 7-9, and 7-10.

Please observe that the business methods declared in the business interface also declare

the possible exceptions the business methods may throw to the presentation tier. In addition

to the application exceptions, the business methods must also throw RemoteException; this

is because the remote interface for the session bean will be extended from this business

interface. Recall from the discussion in the section “Implementing the Business Interface

Pattern” that the business methods must throw RemoteException if they are to be exposed

through a remote interface as required by the EJB 2.0 specification.

Implementing Business Interface
In this section, we discuss the implementation aspects of the business interface SiteAdmin

defined in the preceding section. Figure 7-7 shows the class diagram for realizing the Register

NPO use case. You will find additional methods on the SiteAdminBean class pertaining to other

use cases, which you should ignore for now. Figure 7-7 shows the interactions between various

business tier components. The SiteAdmin interface employs the Business Interface pattern; the

SiteAdminBean class employs the Session Façade pattern; and the NPORegistrationDTO class

employs the Data Transfer Object pattern. The SiteAdminBean class employs the services of

the EJBHomeFactory class for getting references to domain tier entities such as Admin and

NPO entity beans. For brevity, Figure 7-7 does not show application-specific exceptions and

the usage of EJBHomeFactory.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:20:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 7-8 depicts the creation of domain objects Admin and NPO using the DTO supplied

by the presentation tier, whereas Figure 7-9 depicts the creation of DTO using the information

from the domain objects Admin and NPO. From the sequence diagram, it is apparent that

the session façade SiteAdmin is responsible for handling all the complexities of creating and

managing domain objects while the presentation tier need only make a single call to the session

façade. For brevity, certain steps are removed from the sequence diagrams and the reader is

requested to check the accompanying CD-ROM for the complete source code.

SiteAdmin Session Bean Deployment Descriptors
The session bean SiteAdminBean defined in the preceding section needs to be configured for

deployment in an EJB container. We use deployment descriptors for providing the configuration

information.

There is essentially more than one deployment descriptor associated with the deployment

of a session bean. The ejb-jar.xml file contains standard declarations as dictated by the EJB

specification. Additionally, the vendor will provide other deployment descriptors that are

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

2 4 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Figure 7-7 Register NPO class diagram

P:\010Comp\ApDev\711-7\ch07.vp
Wednesday, May 28, 2003 12:17:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 4 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Fig
ur

e
7-

8
Se

qu
en

ce
di

ag
ra

m
fo

r
re

gi
ste

rN
PO

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Fig
ur

e
7-

9
Se

qu
en

ce
di

ag
ra

m
fo

r
ge

tN
PO

Re
gi

str
at

io
n

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 5 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Fig
ur

e
7-

10
Se

qu
en

ce
di

ag
ra

m
fo

r
up

da
te

N
PO

Re
gi

str
at

io
n

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

proprietary in nature. We first discuss the ejb-jar.xml deployment descriptor and the

associated semantics. Following snippet provides configuration information for the

SiteAdmin session bean.

<session >

<description>Site Admin Definitions</description>

<ejb-name>SiteAdminEJB</ejb-name>

<home>com.gc.services.admin.SiteAdminHome</home>

<remote>com.gc.services.admin.SiteAdminRemote</remote>

<ejb-class>com.gc.services.admin.SiteAdminBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<!-- Referencing NPO Entity Bean -->

<ejb-local-ref>

<ejb-ref-name>com.gc.persistence.admin.NPOLocalHome</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<local-home>com.gc.persistence.admin.NPOLocalHome</local-home>

<local>com.gc.persistence.admin.NPOLocal</local>

<ejb-link>NPOEntityEJB</ejb-link>

</ejb-local-ref>

<!-- Referencing Admin Entity Bean -->

<ejb-local-ref>

<ejb-ref-name>com.gc.persistence.admin.AdminLocalHome</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<local-home>com.gc.persistence.admin.AdminLocalHome</local-home>

<local>com.gc.persistence.admin.AdminLocal</local>

<ejb-link>AdminEntityEJB</ejb-link>

</ejb-local-ref>

</session>

Using the ejb-name element, we assign a logical name to the session bean. This logical name

must be unique within the ejb-jar.xml file. This name is referenced in other constructs such as

the subelements of the container-transaction element and ejb-relation element (refer to the

element ejb-name in these constructs). The session EJB is further described using the home,

remote, and ejb-class elements that provide the fully qualified class names for the home

interface, remote interface, and the bean class, respectively. The session-type element is used

for specifying whether the bean is stateful or stateless. Changing the session-type element’s

values without properly analyzing the impact of the current implementation could produce

unpredictable results. The transaction-type element specifies the bean’s transaction type, which

could be either Bean, implying that the bean is providing transaction demarcation, or Container,

implying that the container is providing the transaction demarcation based on the transaction

attributes specified as part of the container-transaction element in the ejb-jar.xml file. The

transaction-type element must not be specified for entity beans because all entity beans must

use container-managed transaction demarcation.

Recall that when a client accesses an EJB in a container, it uses the following code that

employs vendor-specific properties for correctly creating an InitialContext. Note that this

vendor-specific code is required only when you are accessing EJBs from outside the container.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

//Vendor specific code

Hashtable props = new Hashtable();

props.put(InitialContext.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

props.put(InitialContext.PROVIDER_URL,

"t3://localhost:7001");

InitialContext ctx = new InitialContext(props);

SiteAdminHome siteAdminHome = (SiteAdminHome)

javax.rmi.PortalRemoteObject.narrow(

ctx.lookup("ejb/com.gc.services.admin.SiteAdminHome"),SiteAdmin.class);

The access mechanism shown here is not required when an EJB is accessing another EJB.

The session bean SiteAdminBean references NPO and Admin entity beans as part of the

implementation of Register NPO use case. The EJB 2.0 specification simplified the access

mechanisms when an EJB in a container is accessing another EJB within the same or a

different container. To reference an EJB from another EJB, you do not need to specify any

JNDI initialization parameters; instead you acquire default JNDI InitialContext as follows:

Context initialContext = new InitialContext();

When default JNDI InitialContext is used, the lookup mechanism will take the following

form. In this form, the java:comp/env/ string specifies the default environment naming context.

NPOHome npoHome = (NPOHome)

initialContext.lookup("java:comp/env/"+NPOHome.class);

The NPOHome.class is mapped by the container to the value of the ejb-ref-name element

within the deployment descriptors; the value of the ejb-ref-name element is subsequently

used by the container to get the descriptors of the corresponding EJB. The ejb-ref-name

element has a sibling ejb-link element (defined under the parent ejb-local-ref element); this

ejb-link element provides the link to the original definition of the entity bean; the value of

this element is the logical name given in the ejb-name element of the corresponding entity

bean where it was originally defined. Since the NPO entity bean is described in the same

ejb-jar.xml file for our sample application, we can simply provide the value NPOEntityEJB

for the ejb-link element.
For the session bean deployment descriptors being discussed in this section, notice that

the ejb-ref-name element occurs under the ejb-local-ref element; these constructs assist the

container in accessing the NPO and Admin entity beans. This concludes the discussion on

the deployment descriptors for the SiteAdmin session bean. The JNDI name for the session

bean is defined in a vendor-specific deployment descriptor; since we have used the WebLogic

Server, the corresponding deployment descriptor is the weblogic-ejb-jar.xml file.

<!-- SiteAdmin Definition -->

<weblogic-enterprise-bean>

<ejb-name>SiteAdminEJB</ejb-name>

<jndi-name>ejb/com.gc.services.admin.SiteAdminHome</jndi-name>

</weblogic-enterprise-bean>

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 5 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

The ejb-name element refers to the ejb-name defined in the ejb-jar.xml file. The jndi-name

element represents the JNDI name to be used for accessing the session bean. The EJB 2.0

specification recommends prefixing the JNDI names with “ejb/.”

Transaction Semantics for Enterprise Beans
The EJB Specification greatly simplified declarative transaction management. Without this,

the developer had to explicitly manage the transactions with fairly complex Java Transaction

Service (JTS), which is based on OMG’s Object Transaction Service (OTS) API. Explicit

transaction management is prone to errors, especially for those who are new to transactional

application development. Including transaction semantics in business applications increases

the code complexity, which results in high maintenance cost; a change in the transactional

behavior will force a change to business logic. The EJB specification allows declarative

transaction management through deployment descriptors. The transaction semantics are

introduced at the time of deployment, which introduces flexibility in manipulation of

transactional behavior of the application without resorting to code changes. For this chapter,

we use container-managed transaction demarcation where the container demarcates the

transactions based on the instructions provided through the deployment descriptor.

The bean provider may also choose to use programmatic transaction demarcation; this is

called bean-managed transaction demarcation. With bean-managed transaction demarcation,

the enterprise bean demarcates transactions using the javax.transaction.UserTransaction

interface. Accesses to container-managed resources, between UserTransaction.begin() and

UserTransaction.commit(), are part of this transaction. Please refer to the EJB specifications

or Mastering Enterprise JavaBeans [JavaBeans] for detail information on using programmatic

bean-managed transaction demarcation.

NOTE
The EJB architecture supports flat transactions, implying that a transaction cannot have other nested (child)
transactions. We assume that the reader has prior knowledge of what a transaction is and the associated
ACID properties.

Scope of a Transaction When using container-managed transaction demarcation, the scope

of a transaction is controlled by the transaction attribute specified for the EJB’s methods.

Following briefly discusses these transaction attributes so that we can understand its impact

in the context of our implementation.

Transaction Attributes A transaction attribute is a value associated with a method of a

session or entity bean’s home or component interface that specifies how the Container must

manage transactions for a method when a client invokes the method via the enterprise bean’s

home or component interface (i.e., local or remote interfaces). EJB specification supports the

following values for the transaction attribute when using container-managed transaction

demarcation for EJBs:

� NotSupported When the transaction attribute is set to NotSupported, the container

invokes the related enterprise bean method with an unspecified transaction context.

When a client is associated with a transaction context, the container suspends the

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 5 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

client’s transaction context until the enterprise bean’s business method returns. This means

that the transaction context is not propagated to the bean method. After completion of

the bean method’s execution, the client’s transaction context is resumed. This attribute

value is specified when the bean method needs to access a resource that cannot or should

not participate in a transaction.

� Required When the transaction attribute is set to Required, the container must invoke

the related enterprise bean method with a valid transaction context. If the client invokes

the enterprise bean’s method with a transaction context, the same transaction context is

propagated to the bean’s method. If the client is not associated with a transaction context,

the container automatically starts a new transaction before calling the business method.

This option is selected when the bean method is changing the state of the application;

for example, creating one or more entity beans or updating the value of entity beans,

and so on. This option is not necessary if the bean method is just reading the contents

from the data store, and the application is not concerned with holding stale data. The

Required attribute value is the most widely used option in EJB declarations for injecting

transactional semantics into method calls. The registerNPO method of the SiteAdminBean

session bean is declared with the Required transaction attribute because the use case

requires the creation of a new Admin entity bean and NPO entity bean. Both beans

must be successfully created and their relationship established in the same transaction

for the transaction to succeed.

� Supports When the transaction attribute is set to Supports, the container invokes the

related enterprise bean method as follows:

� If the client call is associated with a transaction context, the semantics applicable

are similar to the Required case.

� If the client call is not associated with a transaction context, the semantics

applicable are similar to the NotSupported case.

� RequiresNew When the transaction attribute is set to RequiresNew, the container

invokes the related enterprise bean method with a new transaction context. This transaction

context is propagated to methods of other enterprise beans. When the client invokes the

enterprise bean while the client is already associated with a transaction context, then

that transaction is suspended. The bean method starts a new transaction and completes

its execution under this new transaction. When the bean method returns, the Container

resumes the client’s transaction. This option is usually selected if the bean’s method

cannot participate in the callers transaction context.

� Mandatory When the transaction attribute is set to Mandatory, the container must

invoke the related enterprise bean method in a client’s transaction context. If the client

calls with a transaction context, the container performs the same steps as described

in the Required case; if the client calls without a transaction context, the container

throws the javax.transaction.TransactionRequiredException for a remote client, or

javax.ejb.TransactionRequiredLocalException for a local client.

� Never When the transaction attribute is set to Never, the container invokes the

related enterprise bean method without a transaction context. If the client calls with a

transaction context, the container throws java.rmi.RemoteException for a remote client,

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

or javax.ejb.EJBException for a local client. If the client calls without a transaction

context, the container performs the same steps as described in the NotSupported case.

Transaction Attributes for SiteAdmin Session Bean Methods
The transaction attributes for each EJB are defined in deployment descriptors. The descriptors

have the flexibility for providing a single transaction attribute for all the methods using the *

notation, as shown here:

<container-transaction>

<method>

<ejb-name>SiteAdminEJB</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

This representation specifies that all methods of SiteAdminEJB will have the transaction

attribute of Required. This implies that all the SiteAdminEJB method invocations are always

under a transaction context even if the bean method is simply reading the data from data

store. The transaction attribute must be set to Required for those methods that affect the

persistent state of the application. For example, the transaction attribute is set to Required for

the registerNPO and updateNPORegistration methods of the SiteAdmin session bean because

these methods change the persistent state of the application. Transaction attributes for individual

methods of the SiteAdminBean can be specified as follows.

<container-transaction>

<method>

<ejb-name>SiteAdminEJB</ejb-name>

<method-name>registerNPO</method-name>

</method>

<method>

<ejb-name>SiteAdminEJB</ejb-name>

<method-name>updateNPORegistration</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

Handling Exceptions in Transactions
The EJB 2.0 specification introduces conceptual difference between application exceptions

and system exceptions. The EJB developer must understand this difference in addition to the

relationship between exceptions and transaction semantics.

An application exception is an exception defined in the throws clause of a method of

the enterprise bean’s home and component interfaces (remote and local interfaces), other

than java.rmi.RemoteException or javax.ejb.EJBException. An application exception is a

direct or indirect subclass of java.lang.Exception; it must not be defined as a subclass of

java.lang.RuntimeException or java.rmi.RemoteException. Application exceptions are used

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 5 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

to inform the client about abnormal conditions in the business logic; clients catching such

exceptions are expected to recover from the exception and to provide alternative business

logic to deal with the situation, provide information to the user about corrective action, or

fail gracefully with appropriate logging of the exception and instructions for the client. In

our sample application, all the exceptions subclassed from GCAppException are application

exceptions. The container also throws application exceptions such as

javax.ebj.CreateException, javax.ejb.RemoveException, javax.ejb.FinderException, and so on.

On the other hand, system-level exceptions are created as a result of situations that prevent

EJB methods from completing successfully; for example, failure to obtain a database

connection, JNDI exceptions, unexpected RemoteException from invocation of other enterprise

beans, RuntimeException, JVM errors, and so on. The bean methods must not try to catch these

RuntimeExceptions but let them propagate to the container. When a bean method is processing

a checked exception and discovers that it cannot recover from the exception, the bean method

should throw the javax.ejb.EJBException; EJBException is a subclass of RuntimeException,

and therefore it does not have to be listed in the throws clause of business methods. The

Container catches all non-application exceptions, logs the exception, marks the transaction for

rollback, and subsequently throws a RemoteException (for clients using remote interfaces) or

EJBException (for clients using local interfaces). The following code fragment has been

excerpted from the getNPORegistration method of the SiteAdmin session bean:

try {

NPOLocalHome npoHome =

(NPOLocalHome) EJBHomeFactory.getFactory().lookUpLocalHome(

NPOLocalHome.class);

... Rest of the code ...
} catch (NamingException ne) {

throw new EJBException(

"Unable to locate local reference to NPO:", ne);

}

NamingException is thrown by the container during JNDI lookup; since this signifies

a configuration issue, the application will throw an EJBException and not an application

exception because the client is not expected to recover from this exception.

According to the EJB 2.0 specification, when a system exception is encountered in the

business method of an EJB, the container must either mark the transaction for rollback (this

is true when the method runs in the context of the caller’s transaction), or roll back the transaction

started by the container (this is true when the method runs in the context of a transaction that

the container started immediately before dispatching the business method). When the container

discards an instance of a bean because of a system exception, the container releases all the

connections to the resource managers that the instance acquired through resource factories

declared in the enterprise bean environment such as JDBC DataSource references, JMS

connection factories, JavaMail connection factories, URL connection factories, and so on; the

container cannot release “unmanaged” resources that the instance may have acquired directly.

When the business method encounters an application exception, and if the exception

is deemed unrecoverable, it is the EJB developer’s responsibility to identify and mark the

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 5 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

transaction for rollback using setRollbackOnly() on EJBContext; this marks the transaction

for rollback. The setRollbackOnly method can be invoked only when bean methods are

participating in a transaction context. Observe from the following code fragment that the

setRollbackOnly method is invoked prior to throwing the RegistrationException, which is an

application exception; the intent here is to mark the transaction for rollback because the NPO

entity bean has already been created. Please note that the code shown is slightly modified for

explaining the concepts; the actual code can be found in SiteAdminBean implementation.

try {

AdminLocalHome adminHome =

(AdminLocalHome) EJBHomeFactory.getFactory().lookUpLocalHome(

AdminLocalHome.class);

admin = adminHome.create(adminID, (NPOLocal) npo);

} catch (CreateException ce) {

ctx.setRollbackOnly();

throw new RegistrationException("error.CannotCreateAdmin",

"Unable to Register Admin with AdminID:" + adminID, ce);

} catch (NamingException ne) {

/* setRollbackOnly() not required because the EJBException is a system exception */

throw new EJBException("Unable to locate local reference to Admin:", ne);

}

The following is a brief discussion of standard application exceptions for entity beans.

We discuss this in the context of marking transaction for rollbacks.

� CreateException This exception is thrown by the container when using container-

managed persistence, or this exception can be thrown by the bean developer in the

ejbCreate or ejbPostCreate method. The transaction may or may not be marked for

rollback, although it is advisable that the bean developer should mark the transaction for

rollback to leave the database in a consistent state. When bean-managed transaction is

in effect, the session bean method can determine the status of the transaction using the

getStatus method on the javax.transaction.UserTransaction interface; when container-

managed transaction is in effect, the session bean method can determine the status of

the transaction using the getRollbackOnly method of the javax.ejb.EJBContext.

� DuplicateKeyException This exception is a subclass of CreateException. It is thrown

by the ejbCreate method to indicate to the client that the requested entity bean could not

be created because an entity bean with the same key already exists. Normally, the

ejbCreate method will not mark the client’s transaction for rollback; it is left to the client

to take corrective measures.

� FinderException This exception indicates an application-level error occurring in the

find methods on the home interface of an entity bean. The bean provider throws this

exception to flag an error in the ejbFind method; this exception is not used to indicate

entity not found conditions; for entity not found conditions, the bean provider uses the

ObjectNotFoundException, which is discussed next. Typically, the bean provider will not

mark the client’s transaction for rollback; it is left to the client to take corrective measures.

� ObjectNotFoundException This exception indicates that the requested entity was not

found by the ejbFind method. This exception can be thrown only by a finder method that

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 5 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

returns a single object. Finder methods that return a collection object do not use this

exception; such methods return an empty collection to indicate that no matching objects

were found. The EJB container typically does not mark the transaction for rollback. The

container or the bean provider does not mark the client’s transaction for rollback when

ObjectNotFoundException is encountered; it is left to the client to take corrective measures.

� RemoveException This exception is thrown by the container when using container-

managed persistence, or this exception can be thrown by the bean developer in ejbRemove.

The client receiving this exception does not generally know if the entity bean was

removed or not. The transaction may or may not be marked for rollback, although it

is advisable that the bean developer should mark the transaction for rollback to leave

the database in a consistent state. When bean-managed transaction is in effect, the bean

method can determine the status of the transaction using the getStatus method on the

javax.transaction.UserTransaction interface; when container-managed transaction is in

effect, the bean method can determine the status of the transaction using the getRollbackOnly

method of javax.ejb.EJBContext.

Realization of the Manage Campaigns
Use Case Package
The following subsections describe use case realization for use cases in the Manage Campaigns

package. Please refer to Chapter 1 and Chapter 2 for use case descriptions of this package.

Create Campaigns Use Case
In this section, we define and implement the components necessary for the implementation of

the Create Campaigns use case. In this section we will implement a one-to-many relationship

existing between a PortalAlliance entity bean and Campaign entity beans (refer to Figure 7-10)

using a collected-valued container-managed relationship PortalAlliance-Campaign. This

discussion is continuation of the material discussed in Chapter 6.

Discovering Business Interface Methods
In this use case, we define the Campaign business interface. We pick up the development of

this use case from where Chapter 5 left off. There are numerous calls from the presentation

tier for satisfying this use case because the process of creating a campaign involves several user

interactions; these user interactions include checking existence of a Portal-Alliance (provided

by the site administrator) for which campaigns are to be created, followed by search and

selection of the desired NPO for which a campaign needs to be created; finally the campaign

information is stored in the data store for the given Portal-Alliance. Please refer to Chapters 1

and 2 for complete details of this use case; Chapter 5 exhaustively explains the various user

interaction within the context of the Struts framework and the associated Shared Request

Handler Pattern. Although we have been progressively building this use case from use case

analysis and implementing the presentation tier, nothing precludes us from developing the

Create Campaign business-tier functionality in parallel with presentation-tier development;

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

you will recall that the business delegate pattern used in the presentation tier offers the point

of integration between the presentation tier and the business tier. Once the development of

the presentation tier and business tier is accomplished, the integration between the two tiers is

achieved using the business delegate (presentation tier side) and session façade (business tier

side) with the intervening service locator for getting the references to business-services in the

business tier.

We begin by identifying the methods required on the new Campaign business interface.

The presentation tier will need the method addNewCampaign on the new business interface

to add campaign details. The following code segment shows the method in the business

interface.

public interface Campaign {

void addNewCampaign(CampaignDTO campaign)

throws RemoteException ,NPONotFoundException,

AdminNotFoundException,PortalAllianceNotFoundException,

GCAppException;

}

Observe that this method will require CampaignDTO to carry the campaign information

across tiers. CampaignDTO has complete information on the campaign being created, as well

as the Portal ID with which the campaign is to be associated. Refer to the accompanying CD-

ROM for CampaignDTO implementation. However, before the campaign creation process

can proceed, the site administrator has to ensure that the corresponding portal ID is valid and

active in the system (from the use cases you will recall that only site administrator has to

specify the portal ID; for portal-alliance administrator the portal ID is detected by AdminID

association). We must add a method to support checking of the portal ID in support of site

administrator process flow.

public interface SiteAdmin {

... rest of the methods ...
boolean isPortalIDValid(String portalID)

throws GCAppException, RemoteException;

}

Implementing Business Interface
In Chapter 5, we took the approach of developing each package as a separate subsystem.

Building upon this approach, we create all campaign-related components with their own

package. Figure 7-11 illustrates a class diagram for realizing this use case.

For realizing the Create Campaign use case, we have several interacting classes and patterns

that work harmoniously to provide a cohesive solution. The CampaignBean class implements

the Session Façade pattern, whose Campaign business interface is exposed to the clients. The

DTO pattern is implemented using the CampaignDTO JavaBean. The Campaign domain object

(this is different from the Campaign session façade and is discussed in Chapter 6) is used for

persisting campaign data.

The addNewCampaign method on the CampaignBean will first retrieve references to

the PortalAlliance entity bean and NPO entity bean; it then creates a new instance of the

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 6 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Campaign entity bean with the information provided by the CampaignDTO; subsequent to

this, the convenience method addCampaign on the PortalAlliance domain-object interface

is invoked to add the newly created campaign entity bean to the collection-valued container-

managed relationship PortalAlliance-Campaign as shown in Figure 7-11. The PortalAlliance

entity bean and related methods are explained in detail in Chapter 6.

The domain model of Figure 6-1 shows the relationship between the Campaign entity

bean and the PortalAlliance entity bean. Although a campaign can only be related to a single

PortalAlliance, a PortalAlliance can have 0 or more (0.*) campaign(s). With the same token,

a campaign can only be associated with a single NPO, while for a given NPO there may be 0

or more campaign(s).

In order to persist these relationships, we must first establish a relationship between the

campaign and the NPO entities. Because there should always be an NPO for each campaign

(multiplicity of ‘1’ for the npo role provides this constraint), the Campaign entity bean ensures

this linkage by accepting a reference to the NPO bean in its create method, as shown here:

try{

... Rest of the Code ...

Figure 7-11 Create Campaign class diagram

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Campaign newCampaign =

campaignHome.create(startDate, endDate,

campaign.getRegionCode(), (NPOLocal)npo);

... Rest of the Code ...
}

This code segment creates the newCampaign object. Observe that during campaign

creation, the primary key value CampaignID is not being provided since the CampaignID

is system generated. Once the campaign entity bean is created, it has to be related to the

PortalAlliance entity bean. This is accomplished by calling the addCampaign convenience

method available on the PortalAlliance domain-object interface of the PortalAlliance entity

bean, as shown in the following code. Please refer to Chapter 6 for additional details.

portalAlliance.addCampaign(newCampaign);

Update Campaigns Use Case
In this section, we identify and implement the components needed for the realization of the

Update Campaigns use case. A large part of this use case was developed in Chapter 5 to address

the needs of the presentation tier. The presentation tier expects a collection of CampaignDTO

object, which it uses for creating a dynamic view; subsequently the user updates various

campaigns, and the presentation tier repackages the updated CampaignDTO(s) and sends it

back to the business tier.

Discovering Business Interface Methods
We continue to add to the Campaign business interface discussed in the preceding section; this

is to ensure that logically related functionality is encapsulated within the same interface and

to avoid unnecessary proliferation of business interfaces. We also use the same CampaignDTO

that was used as part of the Create Campaign use case. Therefore, we have most of the essential

classes and interfaces already available to us for realizing this use case.

The following interface methods are added to the Campaign interface for realizing the

Update Campaigns use case.

public interface Campaign {

... Other Methods ...

/* Method takes a Collection of type CampaignDTO from the Presentation Tier*/

void updateCampaigns(Collection campaigns)

throws RemoteException , CampaignNotFoundException, GCAppException;

/* Method provides a Collection of type CampaignDTO to the Presentation Tier*/

Collection getCampaigns(String portalID, String adminID, String regionCode)

throws RemoteException , PortalAllianceNotFoundException,

CampaignNotFoundException, AdminNotFoundException, GCAppException;

}

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 6 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Implementing the Business Interface
Since we are reusing the same business interface and associated components that were used in

the realization of the Create Campaigns use case, the class diagram represented by Figure 7-11

is still relevant for the following discussion.

We now examine some interesting aspects of the getCampaigns business method of the

Campaign session bean.

public Collection getCampaigns(String portalID,String adminID,

String regionCode)

... Rest of the Code ...

if (adminID != null) {

/* This branch applicable only for Portal-Alliance Administrator

* because the Portal ID association is derived from adminID */

Admin admin = getAdmin(adminID); //Get Admin Entity bean

portalAlliance = admin.getAlliance(); //Get PortalAlliance Entity bean

} else if (portalID != null) {

/* This branch applicable only for Site Administrator

* because the portalID is explicitly provided by administrator */

/* Get PortalAlliance Entity bean */

portalAlliance = getPortalAlliance(portalID);

}

/*Collection of Campaign Entity bean references */

Collection campaigns = null;

try {

if (regionCode == null)

campaigns = portalAlliance.getCampaigns();

else

campaigns = portalAlliance.getRegionalCampaigns(regionCode);

} catch (FinderException fe) {

... rest of the code ...

}

... code for verification appear here ...

/* Finally create a Collection of DTOs */

ArrayList results = new ArrayList();

Iterator itr = campaigns.iterator();

while (itr.hasNext()) {

Campaign campaign = (Campaign) itr.next();

// Get the cmr-field npo (i.e. the NPO Entity bean related to the Campaign)

NPO npo = campaign.getNpo();

CampaignDTO theCampaignDTO =

new CampaignDTO(npo.getEin(), portalAlliance.getPortalID());

theCampaignDTO.setCity(npo.getCity());

theCampaignDTO.setCampaignID(campaign.getCampaignID());

theCampaignDTO.setCountry(npo.getCountry());

theCampaignDTO.setEndDate(campaign.getEndDate().toString());

theCampaignDTO.setNpoName(npo.getNpoName());

theCampaignDTO.setRegionCode(campaign.getRegionCode());

theCampaignDTO.setStartDate(campaign.getStartDate().toString());

theCampaignDTO.setState(npo.getState());

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

results.add(theCampaignDTO); //Add to the Collection of DTOs

}

return results;

}

In this snippet, observe that the portalID is provided by the presentation tier when the

user is a site administrator, whereas an adminID is provided by the presentation tier when

the use is a portal-alliance administrator. The code also demonstrates retrieval of the Campaign

entity bean collection for the cmr-field campaigns (the campaigns cmr-field is specified in

the deployment descriptor subordinate to the ejb-relation element) and subsequent packaging

of DTOs in a Collection object for use by the presentation tier.

In Chapter 6, we observed that the PortalAlliance entity bean has a helper

getRegionalCampaigns method; this convenience method has been specially designed to

accommodate the filtering of campaign entities based on a given region code; please refer to

Chapter 6 for a complete discussion on how EJB QL is being used to accomplish this filtering.

In the preceding code snippet, we observed the packaging of DTOs for the presentation

tier; the following code snippet for the updateCampaigns method of the campaign session

bean illustrates the use of collection of updated DTOs received from the presentation tier,

and its effect on the current transaction.

public void updateCampaigns(Collection campaigns)

throws CampaignNotFoundException, GCAppException {

... Other Code for checking pre-conditions ...

Iterator itr = campaigns.iterator();

while (itr.hasNext()) {

CampaignDTO campaignDTO = (CampaignDTO) itr.next();

/* Stateless bean expects that the client remember and

* resend the Campaign ID */

if (!campaignDTO.isFieldModified(CampaignDTO.CAMPAIGN_ID)){

ctx.setRollbackOnly();

throw new GCAppException("error.MustProvideCampaignID",

"Campaign ID must be provide to update campaign");

}

// Get reference to the Campaign entity bean

Campaign campaign =

getCampaign((Integer) campaignDTO.getCampaignID());

// Set all cmp-fields that need to be changed in the Campaign entity bean

if (campaignDTO.isFieldModified(CampaignDTO.START_DATE))

campaign.setStartDate(Date.valueOf(campaignDTO.getStartDate()));

if (campaignDTO.isFieldModified(CampaignDTO.END_DATE))

campaign.setEndDate(Date.valueOf(campaignDTO.getEndDate()));

if (campaignDTO.isFieldModified(CampaignDTO.REGION_CODE))

campaign.setRegionCode(campaignDTO.getRegionCode()); }

}

}

From this snippet, it is apparent that the stateless nature of the session bean expects that

DTOs sent to the client, using the getCampaigns method, must be cached by the client.

Once the DTOs are updated by the client, the client must send the complete DTOs back to

the campaign session bean’s updateCampaigns method and ensure that the primary key

2 6 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

campaignID is present in all DTOs for the updates to be successful. Please observe that failure

to get a campaignID on any of the DTOs will result in marking of the transaction for rollback.

The campaign updates are expected to be low volume, therefore we did not hesitate using

collection-valued portalAlliance.getCampaigns() or

portalAlliance.getRegionalCampaigns(regionCode) methods within the getCampaigns method

of the CampaignBean. Normally, high-volume read only data must be extracted using patterns

like DAO (Data Access Object) [Core] that directly queries the database rather than obtaining

a collection of references to the entity bean. EJBs are heavy-weight objects requiring system

resources for their creation, life-cycle management, and network overhead involved in their

access. However, for updating high volume data, one should not circumvent entity beans since

the business logic for ensuring data integrity and consistency resides in the entity bean methods;

directly manipulating data would be breaking away from the object-oriented encapsulation

technique, which will lead to manageability and modularity issues.

Figure 7-12 depicts the implementation of the updateCampaigns business method defined

in the campaign bean’s business interface.

NOTE
For marshalling tabular data from a JDBC ResultSet to the client without the hassle of converting it to DTOs
and then back to tabular list on the client side, a special technique is demonstrated in the book EJB Design
Patterns [EJB Patterns]; the design pattern employed is called Data Transfer Rowset.

Campaign Session Bean Deployment Descriptors
The declarations in the deployment descriptors for the campaign session bean are similar to

descriptors we discussed in the section “SiteAdmin Session Bean Deployment Descriptors.”

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 6 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Figure 7-12 Sequence diagram for updateCampaigns

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This section discusses the transaction-related deployment descriptors for the campaign

session bean.

The addNewCampaign and updateCampaigns methods modify the application state by

adding or changing the Campaign entity beans, therefore these methods are specified with

the transaction attribute value of Required. The getCampaigns method on the PortalAlliance

entity bean returns a collection as a result of a one-to-many relationship existing between the

PortalAlliance entity bean and Campaign entity beans. The EJB 2.0 specification mandates

that the iterator obtained over a collection in a container-managed relationship must be used

within the transaction context in which the iterator was obtained; therefore the getCampaigns

method of the PortalAlliance entity bean (discussed in Chapter 6) is associated with the

transaction attribute value of Mandatory; this constraint automatically enforces a requirement

on the getCampaigns method of the campaign session bean to call the getCampaigns method

of the PortalAlliance entity bean with a transaction attribute Required. The following

segment shows the appropriate configuration semantics for the Campaign session bean and

PortalAlliance entity bean.

<container-transaction>

<method>

<ejb-name>CampaignEJB</ejb-name>

<method-name>addNewCampaign</method-name>

</method>

<method>

<ejb-name>CampaignEJB</ejb-name>

<method-name>updateCampaigns</method-name>

</method>

<method>

<ejb-name>CampaignEJB</ejb-name>

<method-name>getCampaigns</method-name>

</method>

<method>

<ejb-name>CampaignEJB</ejb-name>

<method-name>getFeaturedNPOs</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>

<method>

<ejb-name>PortalAllianceEntityEJB</ejb-name>

<method-name>getCampaigns</method-name>

</method>

<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

2 6 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Realization of the Search NPO Use Case Package
The following subsections describe realization of use cases in the Search NPO package.

Please refer to Chapter 1 and Chapter 2 for description of this package.

Search NPO Use Case
In this section, we look into the design and implementation of the Search NPO use case.

The search function uses a stateful session bean for incrementally providing the result of

the search to the presentation tier. The NPO data is retrieved using the Value List Handler

pattern; the rationale for using this pattern is explained in the following discussion.

Discovering Business Interface Methods
From the use case, it is apparent that the presentation tier will be providing a search criteria

to the business tier. If we were to use the collection-valued approach for retrieving entity

beans, we would get references to a large number of entity beans; entity beans are heavy-

weight objects demanding system resources for their construction and access. Since we are

doing a read-only operation on the NPO data, it is convenient to access them directly using a

DAO pattern [Core] that may use JDBC to access the NPO table data. Most often, the users

will prefer some form of paging mechanism to browse through the result; this is convenient

from the user perspective and from the perspective of keeping network traffic to a minimum

by reducing the amount of data that goes across the network. One approach is to provision

the result set with a single call to the database tier and then incrementally supply the results

to the client. A design pattern that readily meets our requirement is the Value List Handler

pattern [Core]; in this section, we discuss how this pattern is implemented for realizing the

Search NPO use case.

We begin by creating a business interface that contains a search function that accepts the

search criteria provided by the presentation tier and returns an integer to signal the presentation

tier if it found any corresponding data. The following code segment shows the definition of

the business method executeSearch on the business interface SearchNPO:

public interface SearchNPO {

int executeSearch(SearchParameters searchDetails)

throws RemoteException, GCAppException;

}

The ValueListHandler class implements the following ValueListIterator interface. The

ValueListIterator defines the methods required for navigating the result set.

public interface ValueListIterator {

/* Returns the number of items in the collection */

public int getSize()

throws IteratorException, RemoteException;

/* Returns the current element based on the current index of iterator */

public NPOViewDTO getCurrentElement()

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 6 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 6 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

throws IteratorException, RemoteException;

/* Returns the requested number of elements occurring before the current position

* of the iterator */

public List getPreviousElements(int count)

throws IteratorException, RemoteException;

/* Returns the requested number elements occurring after the current position

* of the iterator */

public List getNextElements(int count)

throws IteratorException, RemoteException;

/* Repositions the iterator position to the beginning of the result list */

public void resetIndex()

throws IteratorException, RemoteException;

}

The methods described in this interface satisfy the navigational semantics necessary

to implement the Search NPO use case. The ValueListHandler class provides a default

implementation of ValueListIterator. Please check the accompanying CD-ROM for the

complete source code of this class. Figure 7-13 illustrates the usage of the Value List

Handler pattern in the context of the client requests.

Implementing the Business Interface
The presentation tier imposes upon the SearchNPO session bean the need to maintain state

information; therefore the SearchNPO bean is implemented as a stateful session bean. The

SearchNPOBean implements the SearchNPO business interface, which in turn extends the

ValueListIterator; the existence of all required methods in the SearchNPOBean will therefore

be guaranteed at compile time. For servicing client requests, the SearchNPO session bean

instantiates the NPOListHandler class, which is a subclass of ValueListHandler, and

delegates navigation-related operations, such as getNextElements and getPreviousElements to

NPOListHandler. The implementation of NPOListHandler is specific to accessing the NPO

table using the NPODAO object. The NPODAO object uses JDBC for accessing the data.

Please check the accompanying CD-ROM for complete source code.

Figure 7-14 shows the class diagram for realizing the Search NPO use case.

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 6 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Figure 7-13 Value List Handler Pattern Usage

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Figure 7-14 Search NPO class diagram

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 7 : B u s i n e s s T i e r D e s i g n a n d I m p l e m e n t a t i o n 2 7 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 7

Summary
In this chapter, we looked at the implementation of various design patterns and their appropriate

usage in the context of the GreaterCause application. Design patterns implemented in this

chapter make the application modular, scalable, and extensible. The implementation of design

patterns discussed in this book provide reusable solutions for interaction between components

in various application tiers; the patterns provide a consistent design vocabulary, making

it easier to develop software that is implemented based on best practices; this increases

understandability and maintainability of the design artifacts and the corresponding code.

This chapter also covered the transactional semantics and attributes associated with EJBs,

and the responsibilities of the bean developer to ensure transactional integrity. The emphasis

on use cases is even more evident in this chapter; we developed our solutions based on the

use cases identified in Chapters 1 and 2; this was done in a manner similar to Chapter 5, where

presentation-tier objects were developed based on a use case–driven approach.

The knowledge gained from this chapter can be complemented by referring to the EJB

specification for getting a thorough understanding of bean lifecycle management, container-

managed relationships, EJB QL, transaction support, message-driven beans, and declarative

and programmatic security. We also recommend reading Mastering Enterprise JavaBeans

(2nd Edition) by Ed Roman et al., and EJB Design Patterns: Advanced Patterns, Processes,

and Idioms by Floyd Marinescu.

References
[Core] Core J2EE Patterns by Deepak Alur et al. (Prentice Hall, 2001)

[Gof] Design Patterns by Erich Gamma et al. (Addison-Wesley, 1995)

[EJB Patterns] EJB Design Patterns by Floyd Marinescu (Wiley, 2002)

[JavaBeans] Mastering Enterprise JavaBeans, Second Edition by Ed Roman et al.

(Wiley, 2002)

P:\010Comp\ApDev\711-7\ch07.vp
Tuesday, May 27, 2003 3:21:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

CHAPTER

8
Web Services for

Application Integration

273

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Introduction to Web Services

Web Services Architecture

Development Methodologies and Supporting Tools

Introduction to Web Services Description Language

Introduction to Simple Object Access Protocol

GreaterCause B2B Integration

Workshop SOAP:style Semantics

Summary

P:\010Comp\ApDev\711-7\ch08.vp
Wednesday, May 28, 2003 12:17:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In this chapter, we introduce the Web services technology and the associated standards.

We bring to light key aspects of the WSDL and SOAP specification such that readers

are able to discern the relationships between WSDL constructs and the corresponding

SOAP message constructs. The evolution of systems integration and emergence of Web

services as a new way of integrating disparate applications and systems are discussed. The

chapter’s emphasis is on WSDL, SOAP, and other aspects of Web services technology.

The concepts learned in this chapter are subsequently applied in the creation of a Web

service, in the context of our sample application using BEA-provided IDE called WebLogic

Workshop. This is covered in the section “GreaterCause B2B Integration,” which discusses

the integration requirements, the rationale for selecting an appropriate architecture, followed

by complete Web service implementation. Web services are built on a stack of technologies

in which XML plays an important role in the overall architecture. This chapter does not talk

about XML technologies nor the pertinent APIs. To learn more about XML, a good place to

begin is http://java.sun.com/xml, http://www.xml.org (hosted by OASIS) and http://www.w3.org/

TR/REC-xml (XML specification).

Introduction to Web Services
Software technology emerged from linkage of programming statements into object code and

linkage of object code into monolithic programs (applications). Monolithic programs were

developed using many different programming languages and operating systems–specific

system linkers. Early requirements for process and data integration gave birth to a new

business: the systems integration. Systems integration, after years of evolution, arrived at

Enterprise Application Integration (EAI). EAI space created a host of new technologies,

tools, and processes, and in some cases development methodologies. EAI competitions also

created confusing terminologies such as data-centric EAI, process-centric EAI, message-

centric EAI, and object broker EAI. Each EAI segment tried to address part of the old “systems

integration” problem, but in nonintegrated and broken ways, such as data, process, objects,

and messages. Although, traditional EAI made a great improvement in building “integrated

solutions,” the artificial marketing-driven separation of integration as a whole failed to converge

the EAI technology into a uniform eBusiness application construction platform.

On the other hand, the necessity of conducting business on the World Wide Web created

an extremely complex set of requirements for building eBusiness applications. Constructing

eBusiness applications requires the integration of business functions that are embedded in

thousands of applications, each implemented in different programming languages, object

models, messaging systems, databases, and operating system platforms. The integration

itself is dynamically driven by the business rules and requirements, that is, it is the business

rules that decide what business function, and therefore application, should be executed next.

Traditional EAI failed because it did not allow for the diversity of things to be integrated in

a standard manner and did not deal with business functions at all.

Taking a low-level tour of a single execution thread in an eBusiness application, that is,

performing a business function, one may discover that a specific application interface (legacy,

CORBA, J2EE, .NET, or just pure Java) has to be invoked within the required application context.

2 7 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 7 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

The application context (with or without transaction) may include the application adapter, the

messages/parameters that need to be sent to the application, and the application execution engine.

The execution engine may be a proprietary application server, a CORBA server, a J2EE server,

a .NET server, or it may just be a stand-alone JVM. The execution context may include a

Web server (Apache, Tomcat, IIS, and so on). The execution itself may result in generating

some new information that needs to be fetched into the next thread of execution in order to

perform the next business function. With traditional EAI, extensive development had to take

place to develop the adapters and the required messages. The business rules have to be coded

either in the applications, adapters, or messages, or all of these entities. Changes to the

business rules require changes in execution order, applications, adapters, messages, and other

contextual information.

One of the complex spaces that never standardized in the traditional EAI approach was the

messaging mechanism. In fact, the proliferation of messaging models resulted in creation of

several messaging systems by many EAI vendors. Each messaging system suggests its own

way of adapter development, communication models, and protocols. The emergence of XML

not only unified the application-messaging paradigm, but it has created significant opportunities

for infrastructure vendors to simplify, in a cost-effective manner, the construction of eBusiness

applications. Although XML can be used in many different ways, in the context of Web

services it can be thought as the “language of the Internet.” By “language of the Internet”

we mean the XML representation of the information or messages exchanged between the

applications. Web services are computer programs that are accessible through the Web. In a

typical Web services scenario, a business application sends a request, represented as XML,

to a Web service at a given URI. The remote service receives the request, processes it, and

returns a response. The XML-based request and response messages are based on a standard

format called Simple Object Access Protocol (SOAP). The SOAP specification defines bindings

for using SOAP in combination with HTTP and HTTP extension framework; however, SOAP

can be potentially used with a variety of other protocols.

Web services cover the RPC model that is epitomized by the EJB or CORBA models and

hold the promise of knocking down barriers among operating systems, programming languages,

and geography, all in a secure, standards-based manner. Web services and consumers of Web

services are typically businesses, making Web services predominantly business-to-business

transactions. An enterprise can be the provider of Web services and also the consumer of

other Web services. For example, an automobile parts distributor could be in the consumer

role when it uses a Web service to check the availability of specific automobile parts, and in

the provider role when it supplies prospective customers with different vendors’ prices for the

automobile parts.

Web services combine the best aspects of component-based development and the Web—

delivering true distributed “peer-to-peer” computing. Web services can vary in function from

simple operations, like the retrieval of a stock quote, to complex business systems that access

and combine information from multiple sources. Web services also can be thought of as the

building blocks in the move to distributed computing on the Internet. Enterprise class Web

services are usually loosely coupled, asynchronous, and coarse-grained. Loose coupling allows

Web service providers to change an implementation without disrupting users. Asynchronous Web

services tend to be more scalable than Web services based on Remote Procedure Call (RPC).

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

There are probably as many definitions of Web service as there are companies building

them, but almost all definitions have the following in common:

� Web services expose useful functionality to Web users through a standard Web protocol.

In most cases, the protocol used is SOAP.

� Web services provide a way to describe their interfaces in enough detail to allow a user

to build a client application to talk to them. This description is usually provided in an

XML document called a Web Services Description Language (WSDL) document.

� Web services are registered in directories so that potential users can find them easily.

This is done with Universal Discovery, Description, and Integration (UDDI).

A Web service is a software system identified by a URI, whose public interfaces and bindings

are defined and described using XML. Its definition can be discovered by other software systems.

These systems may then interact with the Web service in a manner prescribed by its definition,

using XML-based messages conveyed by Internet protocols.

Once a Web service is defined and implemented, it needs to be described with a WSDL

file and registered in UDDI. By exposing existing applications such as XML, Web services

will allow users to build new, more powerful applications. For example, a user might develop

a purchasing application to automatically obtain price information from a variety of vendors,

and allow the user to select a vendor, submit the order, and then track the shipment until it is

received. The vendor application, in addition to exposing its services on the Web, might in

turn use Web services of other businesses to check the customer’s credit, charge the customer’s

account, and set up the shipment with a shipping company. In the next sections, we discuss

the three essential Web services building blocks: SOAP, WSDL, and UDDI. SOAP and

WSDL are also covered in detail in later sections. The SOAP specification is available at

http://www.w3.org/ TR/SOAP, the WSDL specification is available at http://www.w3.org/

TR/wsdl, and the UDDI specification is available at www.uddi.org.

What Is SOAP?
SOAP is a lightweight protocol for exchange of information in a decentralized, distributed

environment. It is an XML-based protocol that consists of three parts: an envelope that defines

a framework for describing what is in a message and how to process it, a set of encoding rules

for expressing instances of application-defined data types, and a convention for representing

remote procedure calls and responses.

NOTE
From an architectural perspective, making encoding an integral part of the message makes SOAP
language neutral.

SOAP is defined as a communications protocol, but unlike DCOM or CORBA, it does

not support object activation and does not rely on any naming service. The XML schema

for SOAP messages (http://schemas.xmlsoap.org/soap/envelope) specifies a standard structure

that needs to be supported by any compliant SOAP implementation.

2 7 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When using CORBA, the IDL had to be compiled to client- and server-side implementation

language in order to produce proper stubs and skeletons. When using SOAP, developers will

not have to concern themselves with encoding rules because the vendor-provided tools handle

serialization (analogous to parameter marshalling in CORBA) and deserialization (analogous

to parameter demarshalling in CORBA) of application-defined datatypes.

SOAP defines two separate styles of messages—the RPC-oriented (messages containing

parameters and return values) and document-oriented (messages containing documents). The

SOAP RPC defines a convention that can be used to represent remote procedure calls and

responses. In an RPC-oriented style, a SOAP request containing a callable function (an operation

exposed by a Web service) with associated function parameters is sent from the client to the

server. The server returns a response with the results of the executed function. Most current

implementations of SOAP are based on RPC-style Web service because programmers who

are used to developing COM or CORBA applications easily understand the RPC style.

RPC and document-style Web services are discussed in the section “Introduction to Web

Services Description Language.”

The SOAP specification defines HTTP bindings that describe how a SOAP message can

be carried in HTTP messages, with or without the HTTP extension framework. The HTTP

binding is optional, but almost all SOAP implementations support it because it’s the only

standardized protocol for SOAP. For this reason, there’s a common misconception that SOAP

requires HTTP. Implementation may support SMTP, FTP, RMI/IIOP, or a proprietary messaging

protocol, but most current Web services use HTTP because it is ubiquitous. Since HTTP is

a core protocol of the Web, most organizations have a network infrastructure that supports

HTTP and people who understand how to manage it. Security, monitoring, and load-balancing

infrastructure for HTTP are also readily available.

Generally, Developers who use SOAP don’t write SOAP messages directly—instead they

use a SOAP toolkit to automate their development. For example, vendor tools like CapeClear,

PolarLake, Apache Toolkit, and BEA WebLogic Workshop provide facility for automatically

generating SOAP interfaces, for existing EJB, Java, CORBA, and .NET components. These

server-side interfaces are exposed to the SOAP client as Web services. A practical example of

this scenario using the BEA WebLogic Workshop is discussed in the section “GreaterCause

B2B Integration,” where the vendor tool handles the Web service protocols, allowing the

developers to focus on the business logic embedded in the EJB. By the same token, the

Microsoft SOAP Toolkit 2.0 translates COM function calls to SOAP.

SOAP Security
Early in its development, SOAP was seen as an HTTP-based protocol, so the assumption was

made that HTTP security would be adequate for SOAP. After all, there are thousands of Web

applications running today using HTTP security. When SOAP expanded to become a more

general-purpose protocol running on top of a number of transports, security became a bigger

issue. For example, HTTP provides means for authenticating which user is making a SOAP

call, but how does that identity get propagated when the message is routed from HTTP to an

SMTP transport? SOAP was designed as a building-block protocol, so fortunately there are

already new specifications in the works. The idea is to build on SOAP so it can provide additional

security features for Web services. The WS-Security specification describes enhancements

to SOAP messaging to provide quality of protection through message integrity, message

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 7 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 7 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

confidentiality, and single message authentication. It’s a mechanism for accommodating a

wide variety of security models and encryption technologies—this and related specifications

are available at http://xml.coverpages.org/ws-security.html. The section “Introduction to Simple

Object Access Protocol” presents additional discussion on SOAP.

What Is WSDL?
WSDL stands for Web Services Description Language. A WSDL document contains XML

constructs for describing network services as collections of communication endpoints capable

of exchanging messages. It also provides a recipe for automating the details involved in

application communication. A WSDL file describes SOAP messages and how the messages

are exchanged. In other words, WSDL is to SOAP what IDL is to CORBA. Since WSDL is

XML, it is readable and editable; however, in most cases, it is generated and consumed by

software tools. WSDL specifies, in XML notation, what a request message must contain and

what the response message will look like. The notation that a WSDL file uses to describe

messages is based on the XML schema standard, which makes the Web services both

programming-language neutral and accessible from a wide variety of platforms.

In addition to describing request and response messages, WSDL defines the location

of the Web service and the communication protocol used for accessing the service. This

means that the WSDL file defines everything required to communicate with a Web service.

Fortunately, there are several tools available to read a WSDL file and generate the code required

to communicate with a Web service. The existing SOAP toolkits include tools to generate WSDL

files from existing program interfaces (such as CORBA IDL, EJB, and .NET components).

Like CORBA IDL tools, these tools can generate proxies and stubs used by Web services clients.

The WSDL specification can be found at http://www.w3.org/TR/wsdl. The section “Introduction

to Web Services Description Language” discusses the details of the WSDL.

What Is UDDI?
Universal Discovery, Description, and Integration can be seen as the yellow pages of Web

services. As with traditional yellow pages, one can search for a company that offers the

required services, read about the service offered, and contact someone for more information.

If the Web service is designed and planned to be accessible by many clients, it should be

registered with the UDDI. A UDDI directory entry is an XML document that describes a

business and the services it offers. There are three parts to an entry in the UDDI directory.

The “white pages” describe the company offering the service—name, address, contacts, and

so on. The “yellow pages” include industrial categories based on standard taxonomies such as

the North American Industry Classification System and the Standard Industrial Classification.

The “green pages” describe the interface to the service in enough detail for someone to write

an application to use the Web service. Services are defined through a UDDI document called

a Type Model, or tModel. In many cases, the tModel contains a WSDL document that

describes a SOAP-based Web service, but the tModel is flexible enough to describe almost

any kind of service.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

One of the primary potential uses of Web services is for business-to-business integration.

For example, a company might expose a movie ticket purchasing Web service that allows its

consumers to send requests over the Internet. If a travel agency wanted to purchase movie

tickets over the Internet, it would need to search for all vendors who sell movie tickets. To

do this, the travel agency will require a directory of all businesses that expose Web services.

This directory is called Universal Description, Discovery, and Integration, or UDDI.

Like a typical yellow-pages directory, UDDI provides a database of businesses searchable

by the type of business. You typically search using business taxonomy such as the North

American Industry Classification System (NAICS) or the Standard Industrial Classification

(SIC). You could also search by business name or geographical location. Going back to our

example, the travel agency could search UDDI for NAICS and some identifier, perhaps

“entertainment.” This search would return a list of companies registered with UDDI that sell

movie tickets.

Web services exposing functionality for use by other businesses are registered with UDDI.

Services are grouped by a type. The service type has a unique identifier and comes from

a pool of well-known service types that are registered with UDDI. These service types are

called tModels in UDDI terminology. Each tModel has a name, description, and a unique

identifier. This unique identifier is a Universal Unique Identifier (UUID) and is called the

tModelKey. By having a pool of well-known service types, UDDI makes it possible to find

out how to do electronic business with a company. The UDDI directory may be searched in

several ways. For example, one can search for providers of a service in a specified geographic

location or for business of a specified type. The search may result in information such as

contacts, links, and technical data that can be used to evaluate against service requirements.

Web Services Architecture
Let’s observe the Web services architecture in the context of a distributed computing

environment. The basic requirements for a network node to play the role of requestor or

provider in XML messaging–based distributed computing are the ability to build and/or parse

a SOAP message and the ability to communicate over a network. There are two important

actors in the SOAP model. One actor is the network node that plays the role of requestor,

which might be a Web service executing on a network computer (node) requesting the service

of another Web service. The other actor is another network node that plays the role of a

provider: this is a Web service executing on a network computer (node) providing the service.

Note that a provider of a service may in turn make several requests to other providers to

complete a request; by the same token the requestor of a Web service could be a Web service

trying to satisfy other requests. So a Web service may play the role of both the provider and

the requester. Since SOAP messages are represented in XML, there has to be some mechanism

on both the client and the server side to build and/or parse a SOAP message. These functions

in most cases can be provided by a SOAP server running in an HTTP server. The SOAP server

implements the functionality expressed by the SOAP specification. Given this summary,

a service-oriented architecture of Web services environment is illustrated in Figure 8-1.

Figure 8-1 illustrates Web-service1 hosted in a SOAP server and running in an HTTP server

at http://www.business1.com. Web-service2 is hosted in a SOAP server running in an HTTP

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 7 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

server at http://www.business2.com. The UDDI services are also exposed as Web services

according to the UDDI standards, but for simplicity’s sake we do not show this in the diagram.

The following discussion summarizes this architecture by tracing a request-response

transmission between the requestor (assuming Web-service1 is in the role of the requestor)

and the provider (assuming Web-service2 is in the role of the provider) of Figure 8-1. The

service requestor could very well be a requestor that may not be a Web service, however, to

demonstrate a service-centric architecture we assume that several Web services may need

to interact for fulfilling the original service request.

1. Web-service1 (the requestor) creates a SOAP message that invokes the operation exposed

by Web-service2 (the provider). The XML payload in the body of the message can be a

RPC-style or a document-style message. We discuss these two styles of messaging when

discussing WSDL in the section “Introduction to Web Services Description Language.”

The Web-service1 presents this message together with the network address of the Web-

service2 to the SOAP infrastructure (SOAP client runtime). The SOAP client runtime

interacts with an underlying network protocol (such as HTTP) to send the SOAP message

over the network. The network infrastructure delivers the message to Web-service2’s

SOAP runtime which is the SOAP server.

2. The SOAP server routes the request message to Web-service2. The SOAP runtime is

responsible for converting the XML message into programming language–specific

objects if required by the Web-service2 implementation. This conversion is governed

by the encoding schemes specified within the message. Web-service2 is responsible for

processing the request message and formulating a response. The response is also a

SOAP message. The response SOAP message is presented to the SOAP runtime with

Web-service1 as the destination.

2 8 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-1 Service-oriented architecture: peer-to-peer pattern

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3. The response message is received by the networking infrastructure on the Web-service1’s

node. The message is routed through the SOAP infrastructure; the SOAP runtime will

potentially convert the XML message into objects corresponding to the target programming

language, that is the implementation language of Web-service1.

4. The response message is then presented to the Web-service1.

In this architecture, the granularity is at the service level and not the object or component

level; component in this context means EJB, .NET, CORBA, or Java bean components and

objects that are not executable entities unless they are packaged, according to their component

model, into a coarser-grained entity known as a container; the containers ultimately execute

in their respective application servers (J2EE, .NET, CORBA). From granularity perspective, a

Web service is analogous to a container. Services are the entities known at the network level

(distribution) that expose their public interfaces as contracts to the outside world. Interacting

services can be hosted on any operating system platform and can be implemented in any

programming language.

SOAP provides semantic constructs like the SOAP Header element, which adds more

flexibility to this service-oriented architecture. For example, using the flexibility and

extensibility of XML, a Header element can be modified by an intermediary service along

the message path and passed to the next service. The semantics of header entries are only

known between the sender and the receiver, a receiver cannot forward the Header element to

the next application in the SOAP message path; however, the recipient may insert a similar

Header element but in that case, the contract is between that application and the recipient of

the Header element. The header entries assist in adding extra semantics to the message being

delivered. For example, a Header element may provide a transaction ID that is not part of the

application code but instead part of an infrastructure component; by adding a header entry

with a transaction ID, the transaction manager on the receiving side can extract the ID and

use it without affecting the SOAP construct that represents a remote procedure call. Therefore,

the header part of a message can include information pertinent to extended Web services

functionality, such as transaction context, security, orchestration information, or message

routing information.

Figure 8-1 showed the software agents participating in the basic architecture. The Web

Services Architecture document specifies an extended architecture that describes Web services

support for message exchange patterns (MEPs) that group basic messages into higher-level

interactions, details how support for features such as security, transactions, orchestration,

privacy, and others may be represented in SOAP messages, and describes how additional

features can be added to support business-level interactions.

In a service-oriented architecture, many different kinds of interactions between service

requester and service provider are possible. One-way interaction is comprised of a message

sent from a requestor to a provider, Conversational interaction comprises several messages

exchanged between a requestor and a provider, and Many-to-Many interaction comprises a

message sent from a requestor to many providers, or a service provider responds to many

requestors. These interactions can be defined by a choreography language. More information

is available at www.w3.org/TR/ws-arch.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 8 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Development Methodologies and Supporting Tools
At the time of writing this book, Web services–related technologies are still growing. It is

predictable that several related specifications will be added to the existing specifications.

For example, Microsoft is working on some of these supporting Web services–related

specifications. These specifications will extend the Web services environment by including

infrastructure services that will define operational management functions such as ability to

route messages among many servers and dynamic configuration of servers. These services

are specified in the WS-Routing specification and the WS-Referral specification. More

information about these specifications is available at http://msdn.microsoft.com/library/

en-us/dnglobspec/html/ws-routing.asp and http://msdn.microsoft.com/library/en-us/

dnglobspec/html/ws-referral.asp.

Dealing with protocol-specific constructs and programming models makes it difficult to

develop Web services. Fortunately numerous vendors offer Web service development tools;

companies like CapeClear, Polarlake, BEA, IBM, IONA, and others provide visual tools for

editing XML, and automatic creation of Web service interface from existing legacy components

like Java classes, EJBs, CORBA, and .NET components. Most of these tools allow development,

deployment, and maintenance of Web services–based applications.

Web services are good candidates for widely used legacy systems. Message-oriented

middleware (MOM) and transaction managers like IBM MQSeries, Microsoft MSMQ, Tibco

Rendezvous, BEA MessageQ, and BEA Tuxedo offer out-of-the-box Web services interfaces,

ready for plugging into a larger business solutions.

Web services can

� Create new business opportunities and value-add for customers, by exposing services

over the Internet.

� Revitalize and/or reuse existing applications with new, powerful, and integrated

business solutions.

� Increase developer productivity by simplifying the task of distributed systems

development.

� Provide a standards-based solution, which in turn provides a portable and extensible

solution, therefore “future proofing” the investment in integration technologies.

Although it is outside the scope of this book to discuss specific development paradigms

for Web services, we briefly discuss a development methodology recommended by Object

Management Group (OMG). OMG proposes a model-driven architecture (MDA), which tries

to simplify the challenging problem of dealing with multiple industry standards and competing

middleware architectures and information models/vocabularies. MDA tries to simplify this

problem by unifying these diverse technologies using information models/designs and mapping

these models to one or more implementation technologies (middleware, databases, languages,

and so on). MDA also raises the level of abstraction at which these applications and integration

scenarios can be designed and implemented, which is a key requirement to managing software

integration complexity. MDA defines a software architecture that complements existing

middleware, and modeling tools, and allows integration and interoperability to be addressed

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

across the application life cycle and not just between individual objects or components. MDA

provides an open, vendor-neutral approach to the challenge of interoperability, building upon

and leveraging the UML, Meta-Object Facility (MOF), and Common Warehouse Meta-Model

(CWM) standards. MDA allows a developer to design a model of an application or a component

only once, and automatically map this model to several technologies. Additional information

about MDA is available at http://www.omg.org/mda.

Other methodologies may be used by some mainstream tool vendors. For example, Polarlake’s

“Transactional XML.” Transactional XML suggests a programming model where XML is at

the center of the architecture. Transactional XML has the following modes:

� Web services Exposing existing IT assets, and providing mechanisms for discovering

and interacting with those assets. Typically, a Web service exposes the assets as a series

of remote procedure calls. These services fit into the larger eCommerce context using

XML integrations .

� XML services Similar to Web services, without the notion of request-response model

implicit in Web services.

� XML integrations Creating process flows from combinations of Web services and

XML services.

� XML applications Creating new applications from a combination of XML integrations

and services.

This methodology is useful in composing coarse-grained solutions by aggregating

fine-grained solutions. It promotes modularity and reuse. Further information is available

at www.polarlake.com.

From an application and component architecture perspective, Web service adds a new way of

integrating the existing legacy applications, components, and systems into larger solutions. Note

that applications and components themselves will still be designed, developed, and deployed

using their respective mainstream object models, specifically J2EE, .NET, and CORBA. For

example, one may use a tool to generate Web service interface from an exiting CORBA

application, or one can implement a new Web service, by first implementing its business

logic using any mainstream object model and then generating the required WSDL.

The Web services standard can be broken into three parts:

� SOAP The communication protocol

� WSDL The service description

� UDDI A directory through which one can query for an existing Web service

The following sections visit WSDL and SOAP standards. The method used to describe

these standards is broken into two steps. The first step introduces the standard using its

formal definition. In this step we provide an abstract summary of the formal specification

developed by W3C. In the second step, we provide an example of how the standard applies

to a real-world problem.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 8 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 8 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Introduction to Web Services Description Language
WSDL was originally designed by IBM, Microsoft, and Ariba to provide a standard mechanism

for describing Web services. This work was then submitted to the W3C for standardization

and has grown to encompass a large number of vendors. Similar to CORBA IDL, WSDL was

designed to meet the needs of distributed systems. WSDL is a standard format for describing

Web service interfaces. Using WSDL, tools can automate the generation of proxies for Web

services in a language-independent and platform-independent way. Like CORBA IDL, a WSDL

file is a contract between client and server.

Note that WSDL has been designed such that it can express bindings to protocols other

than SOAP. In this chapter, we examine WSDL as it relates to SOAP over HTTP.

Summary of the WSDL Formal Specification
The elements within a WSDL document can be divided into two groups: the service interface

definition and service implementation definition. A service interface definition is an abstract

or reusable service definition that may be referenced by multiple service implementation

definitions. This is analogous to defining an abstract interface in a programming language

and having multiple concrete implementations. The service interface contains three elements

that comprise the reusable portion of the service description, including <types>, <message>,

<portType>, and <binding> elements. The service implementation definition describes

how a particular service interface is implemented by a given service provider, and it also describes

its location so that a requestor can interact with it. In WSDL, a Web service is modeled as a

<service> element. It contains a collection of <port> elements—the <port> element

associates a URL (endpoint) with a <binding> element from the service interface definition.

This discussed in more detail below.

WSDL documents use the following elements for defining network services:

� Types Machine- and language-independent type definitions are specified by the

<types> element. This element provides data type definitions used in messages

using some type system. For maximum interoperability and platform neutrality,

WSDL prefers the use of XSD as the canonical type system.

� Message Abstract, typed definition of the data being transmitted. A message consists of

logical parts, each of which is associated with a type-definition within some type system

or encoding scheme. A message can be thought of as an operation/method parameter.

� Operation Abstract description of an action supported by the service. An operation

element, including its sub-elements, collectively define a signature (operation name,

input parameters, and output parameters). There are four forms of primitive operations

based on the nature of the interaction: one-way, request-response, notification, and

solicit-response.

� PortType Abstract interface (set of operations) supported by one or more endpoints.

An interface refers to one or more operations, input messages, and output messages.

Like the CORBA IDL interface, a <portType> element including its sub-elements

collectively define a group of operations.

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Recapping this discussion, the <portType> is an abstract interface that consists of abstract
<operation>(s). <operation> has parameters defined by abstract <message>(s).
Each <message> parameter is defined within the <types> element.

� Binding Specifies concrete protocol and data format specifications for the

<operation>(s) and <message>(s) defined by a particular <portType>. A

<portType> is abstract and not realizable unless associated with a <binding>.

Similar to a Java class that implements an Interface, a <binding> provides the

implementation details for the <portType>.

� Port Specifies an address for a binding, thus defining a single communication endpoint.

It is actually defining the network address (IP) of the machine that is hosting the service.

� Service Specifies a collection of related ports that make up the service. This has the

effect of packaging all the previously discussed elements into a single service offering.

We recap these definitions with a WSDL document in the next subsection. One way of

looking at a WSDL file is that it determines what gets sent over the wire. WSDL, in addition

to defining the “interface contract,” also specifies the transport protocol for interacting with

the service interface. WSDL also specifies whether SOAP messages employ RPC- or document-

style semantics. An RPC-style message looks like a function call with zero or more parameters,

and employs the request-response semantics, whereas a document-style message is used for

exchanging an XML document. We elaborate further on this in later sections.

A Closer Look at a Sample WSDL File
WSDL is very verbose. To understand each element of a WSDL construct, we use a very simple

example. We take a bottom-up approach starting with a Java class with a single method. We

examine the automatically generated WSDL representation of our simple Java class. As noted

earlier, developers will usually use a tool for generating the WSDL; in our case we have employed

the BEA WebLogic Workshop for building this simple Web service example. Think of WSDL

as our contract on the Internet to the outside world—in this section we generate WSDL for

the simple service MyService shown here:

public class MyService {

public int foo(int arg) {

return arg;

}

}

This Java class contains a method foo(), which accepts an integer parameter and returns

the same value. A WSDL document needs to be created for describing foo() within the context

of a Web service. The following WSDL has been generated using the BEA WebLogic Workshop

tool; as such, some of the URIs used in this document are BEA specific. The WSDL document

shown can be used by any SOAP client to access MyService’s (the Web service) foo() method.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 8 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

2 8 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Observe the complexity of representing a simple service using WSDL. We discuss each

element of the following WSDL document later in this section.

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:conv="http://www.openuri.org/2002/04/soap/conversation/"

xmlns:cw="http://www.openuri.org/2002/04/wsdl/conversation/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:jms="http://www.openuri.org/2002/04/wsdl/jms/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:s0="http://www.openuri.org/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xm="http://www.bea.com/2002/04/xmlmap/"

targetNamespace="http://www.openuri.org/">

<types>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="http://www.openuri.org/">

<s:element name="foo">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="arg" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="fooResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="fooResult" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="int" type="s:int"/>

</s:schema>

</types>

<message name="fooSoapIn">

<part name="parameters" element="s0:foo"/>

</message>

<message name="fooSoapOut">

<part name="parameters" element="s0:fooResponse"/>

</message>

<message name="fooHttpGetIn">

<part name="arg" type="s:string"/>

</message>

<message name="fooHttpGetOut">

<part name="Body" element="s0:int"/>

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

</message>

<message name="fooHttpPostIn">

<part name="arg" type="s:string"/>

</message>

<message name="fooHttpPostOut">

<part name="Body" element="s0:int"/>

</message>

<portType name="MyServiceSoap">

<operation name="foo">

<input message="s0:fooSoapIn"/>

<output message="s0:fooSoapOut"/>

</operation>

</portType>

<portType name="MyServiceHttpGet">

<operation name="foo">

<input message="s0:fooHttpGetIn"/>

<output message="s0:fooHttpGetOut"/>

</operation>

</portType>

<portType name="MyServiceHttpPost">

<operation name="foo">

<input message="s0:fooHttpPostIn"/>

<output message="s0:fooHttpPostOut"/>

</operation>

</portType>

<binding name="MyServiceSoap" type="s0:MyServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

<operation name="foo">

<soap:operation soapAction="http://www.openuri.org/foo"

style="document"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<binding name="MyServiceHttpGet" type="s0:MyServiceHttpGet">

<http:binding verb="GET"/>

<operation name="foo">

<http:operation location="/foo"/>

<input>

<http:urlEncoded/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 8 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

</operation>

</binding>

<binding name="MyServiceHttpPost" type="s0:MyServiceHttpPost">

<http:binding verb="POST"/>

<operation name="foo">

<http:operation location="/foo"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

</binding>

<service name="MyService">

<port name="MyServiceSoap" binding="s0:MyServiceSoap">

<soap:address

location="http://server1:7001/WS_MyService/MyService.jws"/>

</port>

<port name="MyServiceHttpGet" binding="s0:MyServiceHttpGet">

<http:address

location="http://server1:7001/WS_MyService/MyService.jws"/>

</port>

<port name="MyServiceHttpPost" binding="s0:MyServiceHttpPost">

<http:address

location="http://server1:7001/WS_MyService/MyService.jws"/>

</port>

</service>

</definitions>

You will probably agree that for the simple service depicted by class MyService, one will

not want to manually define WSDL. Developing Web services without the use of advanced

tools is not recommended. Once the WSDL is created, the vendor tool can help create stubs

and proxies, and the Web service can be subsequently used by a SOAP client written in any

programming language. The wide availability of tools to automate development of Web

services from existing server-side components allows the developer to focus on developing

business services rather than develop any infrastructure components. Developing a Web

service requires two steps:

1. Implement the business logic in a server-side component. This is discussed in Chapter 7.

2. Expose the business component interface as a Web service using WSDL. This is the

subject of this section.

WSDL data typing is based on “XML Schema: Datatypes” (XSD), which is now a W3C

recommendation. There are different versions of this document (1999, 2000, and 2001), and

declaring it as one of the namespace attributes in the <definitions> element specifies

which version is used in our WSDL file. For instance the declaration, xmlns:s="http://www.w3

2 8 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

.org/2001/XMLSchema", makes all the predefined types, specified in the XMLSchema 2001

version, available to the MyService WSDL definition. This namespace is referred by other

constructs using the s prefix, as in s:int, which makes a reference to the predefined type int

defined in the XMLSchema.

WSDL Namespaces
Several namespaces have been declared in the root element <definitions>. These namespace

declarations provide a shorthand for each namespace used in the document. For instance xmlns:xsd

defines a shorthand xsd for the namespace http://www.w3.org/ 2001/XMLSchema. This enables

references to this namespace later in the document simply by prefixing (or “qualifying”) a name

with xsd: as in xsd:int, which is a qualified type name. Normal scoping rules apply for the

shorthand prefixes. For example, a prefix defined in an element only holds within that element.

The purpose of namespaces is to avoid naming conflicts. It is similar to namespace in

C++ or in the Java programming language. Two separate Java packages may define the same

variable or method names. An importer of these packages can refer to a name, unambiguously,

if package qualification is used. In our example, all types in the conv namespace can be

referenced by using conv:typename. conv: is a shorthand for http://www.openuri.org/2002/

04/soap/conversation/.

Note that URIs are used as namespaces because they guarantee uniqueness. The location

pointed to by the URI does not have to correspond to a real Web location. The targetNamespace

attribute declares a namespace to which all element names declared within the MyService WSDL

will belong. In the sample WSDL file, the targetNamespace specified in <definitions> is

http://www.openuri.org/.

In the sample GreaterCause example discussed later, you will observe that the

targetNamespace is www.GreaterCause.com, and the corresponding datatypes as seen

by the clients of the Web service will use com.GreaterCause.www as package prefix.

Types
The <types> element may be omitted if there are no data types that need to be declared.

For those who programmed CORBA IDL, this section resembles IDL type definitions that

are used by the IDL operation definitions. For maximum interoperability and platform neutrality,

WSDL prefers the use of XSD as the canonical type system, and treats it as an intrinsic type

system. This is apparent from the use of the namespace xmlns:s="http://www.w3.org/2001/

XMLSchema" in our sample WSDL.

<types>

<s:schema ...>

<s:element name="foo">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="arg" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="fooResponse">

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 8 9

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="fooResult" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="int" type="s:int"/>

</s:schema>

</types>

The type names "arg" and "fooResponse" are defined within the body of the <types>
element using the <s:element> element. These definitions are subsequently used within

the <message> element to define the parameters—this is done using the name and element

attributes of its subordinate <part> element.

Messages
A <message> element defines the parameters for an operation/method. Each <part>
child element in the <message> element corresponds to a parameter that is passed to the

operation. Input parameters are defined in a single <message> element, separate from

output parameters, which have their own <message> elements. Parameters that are both

input and output have their corresponding <part> elements in both input and output

<message> elements. By convention, the name of a return <message> element ends in

Response, as in fooResponse to correspond to the method foo. Each <part> element has a

name and type attribute, just as a method parameter has both a name and a type, where the

attribute element refers to the element we described using the <element> construct in

the <types> section. When used for document exchange (in contrast to RPC operations),

WSDL allows the use of <message> elements to describe the document to be exchanged.

The message-typing attribute element refers to an XSD element using a QName (prefixed by

s0:). The message-typing attribute type refers to an XSD simpleType or complexType using

a QName (prefixed by s:). Prefix s0: refers to targetNamespace="http://www.openuri.org/,

which is the namespace associated with this WSDL, and therefore references the elements

with name foo and fooResponse from the <types> section. Prefix s: refers to xmlns:s=

"http://www.w3.org/2001/XMLSchema and the related XSD type system. A message binding

describes how the abstract content is mapped into a concrete format. We cover a more

complex scenario when discussing the sample application’s (GreaterCause) Web service

implementation in the section “Web Service Implementation.”

<message name="fooSoapIn">

<part name="parameters" element="s0:foo"/>

</message>

<message name="fooSoapOut">

<part name="parameters" element="s0:fooResponse"/>

</message>

<message name="fooHttpGetIn">

2 9 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<part name="arg" type="s:string"/>

</message>

<message name="fooHttpGetOut">

<part name="Body" element="s0:int"/>

</message>

<message name="fooHttpPostIn">

<part name="arg" type="s:string"/>

</message>

<message name="fooHttpPostOut">

<part name="Body" element="s0:int"/>

</message>

The WSDL tool generated <message> elements for three separate bindings—fixed

XML, HTTP Get, and HTTP Post as follows:

� For XML binding fooSoapIn, fooSoapOut

� For HTTP Get binding fooHttpGetIn, fooHttpGetOut

� For HTTP Post binding foorHttpPostIn, fooHttpPostOut

The message names provide a unique name for messages defined within the enclosing

WSDL document, while the part name provides a unique name among all parts within the

enclosing message.

Port Types
A <portType> element defines one or more abstract operations using <operation>
elements. For our simple service, MyService the tool produces three separate contracts as

follows. Notice that the messages bound to the various operations have been defined in the

current namespace (prefixed by s0:) using the <message> elements discussed in the

preceding subsection.

<portType name="MyServiceSoap">

<operation name="foo">

<input message="s0:fooSoapIn"/>

<output message="s0:fooSoapOut"/>

</operation>

</portType>

<portType name="MyServiceHttpGet">

<operation name="foo">

<input message="s0:fooHttpGetIn"/>

<output message="s0:fooHttpGetOut"/>

</operation>

</portType>

<portType name="MyServiceHttpPost">

<operation name="foo">

<input message="s0:fooHttpPostIn"/>

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 9 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<output message="s0:fooHttpPostOut"/>

</operation>

</portType>

The port type name attribute provides a unique name among all port types defined within

the enclosing WSDL document. MyServiceSoap allows access to MyService using standard

fixed XML format (document-style messages). MyServiceHttpGet allows access to MyService

using a standard HTTP Get call, and MyServiceHttpPost allows access to MyService using a

standard HTTP Post call. These abstract operations (contracts) will “bind” to their corresponding

concrete protocols and associated data formats using the <binding> element discussed in

the next section. The <operation> element can have one, two, or three child elements,

namely, the <input>, <output>, and <fault> elements. These constructs specify how

SOAP messages are constructed; this is discussed further in the section “Introduction to

Simple Object Access Protocol.” WSDL has four transmission primitives or message

exchange patterns that an endpoint can support.

� One-way The endpoint receives a message. Only the <input> element is specified

for the corresponding WSDL construct. This is used for creating asynchronous services.

In this scenario, the client application that invokes the Web service never receives

a response, including any exceptions.

� Request-response The endpoint receives a message, and sends a correlated message.

This model is used in the GreaterCause example. In this scenario, the <input>,

<output>, and an optional <fault> element specify the abstract message format.

� Solicit-response The endpoint sends a message, and receives a correlated message.

In this scenario, the <input>, <output> and an optional <fault> element specify

the abstract message format. Specification precedes <input> and <fault>
specifications.

� Notification The endpoint sends a message. Only the <output> element is

specified for the corresponding WSDL construct.

WSDL refers to these primitives as operations. Although request-response or solicit-response

can be modeled abstractly using two one-way messages, it is useful to model these as primitive

operation types. These primitives represent message exchange patterns. Although the request-

response or the solicit-response operations are semantically related, they may be implemented

as part of one or two actual network communications. The primitives are merely an abstract

representation. It is the binding that will specify how the messages are actually sent. WSDL

only defines bindings for one-way and request-response primitives.

Bindings
The purpose of the <binding> element is to specify how each <operation>, with

corresponding parameters, and the correlated response is sent over the wire using the SOAP

message format. The immediate child elements of the <binding> element are used to

specify the concrete grammar for the input, output, and fault messages. In MyService WSDL

snippet shown below, the <soap:binding> element specifies the protocol (using the

2 9 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

transport attribute) and data format (using style attribute) for each <operation> scoped

within the parent <binding> element. Each binding must specify exactly one protocol.

SOAP allows each operation to be realized using a different invocation style. Let’s examine

the binding MyServiceSoap, which specifies document-style message exchange; this is the

first <binding> element in the following snippet. The binding MyServiceSoap references

the corresponding portType that it binds using the type attribute.

<binding name="MyServiceSoap" type="s0:MyServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>

<operation name="foo">

<soap:operation soapAction="http://www.openuri.org/foo"

style="document"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<binding name="MyServiceHttpGet" type="s0:MyServiceHttpGet">

<http:binding verb="GET"/>

<operation name="foo">

<http:operation location="/foo"/>

<input>

<http:urlEncoded/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

</binding>

<binding name="MyServiceHttpPost" type="s0:MyServiceHttpPost">

<http:binding verb="POST"/>

<operation name="foo">

<http:operation location="/foo"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

</binding>

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 9 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

For binding MyServiceSoap, the transport attribute in the WSDL fragment instructs the

SOAP runtime to use HTTP as the transport because it is set to http://schemas.xmlsoap.org/

soap/ http. The transport attribute also instructs it to use document-oriented messages, because

the style attribute of the <soap:binding> element is set to "document"; the value of the

style attribute is the default attribute for each contained <soap:operation> element. The

<operation> element with name="foo" specifies binding information for the operation

foo defined in the portType element. The following snippet is a mapping of the MyServiceSOAP

binding construct to its corresponding SOAP message (wire format):

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:foo xmlns:m="http://www.openuri.org/">

<arg>2222</arg>

</m:foo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The <soap:body> element specifies how the message parts appear inside the SOAP

Body element. When the operation ‘style’ attribute is ‘rpc’, each part is a parameter or a

return value and appears inside a wrapper element within the body (refer to section 7.1 of the

SOAP specification). This wrapper element in named identically to the operation name. Each

message part appears under the wrapper, represented by an accessor named identically to the

corresponding parameter of the call. If the operation ‘style’ attribute is ‘document’, there are

no additional wrappers, and the message parts appear directly under the SOAP Body element.

A comparison between ‘rpc’ and ‘document’ style messages is discussed in the section

“Workshop SOAP:style Semantics.”

The mandatory ‘use’ attribute indicates whether the message parts (the parameters of foo)

are encoded using some encoding rules, or whether the parts define the concrete schema of

the message. If the ‘use’ attribute is set to ‘encoded’, each message part references an abstract

type using the ‘type’attribute. In our example, the use is set to "literal" meaning that each part

of the message (that is, foo’s parameters) references a concrete definition using the ‘element’

or ‘type’ attribute specified in the message elements. Note that WSDL includes a binding for

HTTP 1.1’s GET and POST verbs in order to describe the interaction between an HTTP

client and an HTTP server. For details on serialization rules for message parts, please refer

to the SOAP specification at http://www.w3.org/TR/SOAP/.

Observe the use of <http:urlEncoded/> in the binding MyServiceHttpGet. The

urlEncoded element indicates that all message parts are encoded into the HTTP request URI

using the standard URI-encoding rules.

Services
The services element contains <port> elements, each of which refers to a <binding>
element discussed previously. A port defines an endpoint; it specifies the location of the Web

service and the associated binding. In our sample MyService WSDL, the following construct

is created for identifying the MyService Web service:

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<service name="MyService">

<port name="MyServiceSoap" binding="s0:MyServiceSoap">

<soap:address

location="http://server1:7001/WS_MyService/MyService.jws"/>

</port>

<port name="MyServiceHttpGet" binding="s0:MyServiceHttpGet">

<http:address

location="http://server1:7001/WS_MyService/MyService.jws"/>

</port>

<port name="MyServiceHttpPost" binding="s0:MyServiceHttpPost">

<http:address

location="http://server1:7001/WS_MyService/MyService.jws"/>

</port>

</service>

MyServiceSoap defines the endpoint for MyService. The tool generated three separate

bindings (XML, HTTP GET, and HTTP POST), and defined a corresponding port for each

binding. Note that all locations point to MyService, implying that the same service can be

called by three different clients, each associated with a different binding. Each port provides

semantically equivalent behavior. The SOAPAction attribute of the HTTP header specifies

the URI of the end point servicing the SOAP request.

Introduction to Simple Object Access Protocol
Similar to the WSDL definition, we visit the SOAP constructs, which are important in context

of service-centric architecture. Especially, we discuss the constructs that add flexibility to

a service-centric architecture and provide mechanisms for better B2B implementation.

NOTE
A SOAP message is an XML document that consists of a mandatory SOAP envelope, an optional SOAP
header, and a mandatory SOAP body. This XML document is referred to as a SOAP message as per the
SOAP specification.

A SOAP message contains the following:

� Envelope The envelope is the root element of the XML document representing the

message. The element must be present in a SOAP message and may contain namespace

declarations and additional attributes. The envelope contains an optional SOAP header,

and a mandatory SOAP body.

� Header The header is a generic mechanism for adding features to a SOAP message

in a decentralized manner without prior agreement between the communicating parties.

SOAP defines certain header attributes that can be used to indicate who should deal

with a given feature and whether it is optional or mandatory. The Header element is

optional in a SOAP message. If present, the element must be the first immediate child

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 9 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 9 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

element of a SOAP Envelope element. It may contain a set of header entries, each

being an immediate child element of the SOAP Header element. The child elements

must be namespace-qualified. The header entries are an extensibility feature that are

leveraged to provide semantic information to nodes along a message path; it may also

carry information necessary for infrastructure components that provide transactional

and security semantics.

� Body The body is a container for mandatory information intended for the ultimate

recipient of the message. The Fault element is subordinate to the Body element, and is

used for reporting errors. The Body element must be present in a SOAP message. When

the Header element is present, the Body element must directly follow the Header element;

otherwise the Body element must be the first immediate child element of the Envelope

element. This element may contain a set of body entries, each being an immediate

child element of the Body element.

For the MyService example, a SOAP request message that accesses the operation foo(2222)

exposed by MyService will take the following form:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:foo xmlns:m="http://www.openuri.org/">

<arg>2222</arg>

</m:foo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The correlated SOAP response received back from the service will take the following form:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:fooResponse xmlns:m="http://www.openuri.org/">

<fooResult>2222</fooResult>

</m:fooResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In the following subsection, we examine SOAP message constructs that are architecturally

significant in designing a Web service.

SOAP Envelope
The SOAP envelope defines the overall framework for expressing what is in a message, who

should deal with the message, and whether parts of the message are optional or mandatory.

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The SOAP encodingStyle global attribute (specified using the namespace declaration

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/") can be used to

indicate the serialization rules used in a SOAP message. This attribute may appear on any

element, and is scoped to that element’s contents and all child elements not themselves

containing such an attribute. There is no default encoding defined for a SOAP message. The

attribute value is an ordered list of one or more URIs; these URIs identify the serialization

rules that can be used to deserialize the SOAP message indicated in the order of most specific

to least specific.

SOAP Header
The SOAP header provides an extension mechanism for adding additional semantics to a

SOAP message when such information cannot be ordinarily added to the SOAP body, or it

is inappropriate to add such information to the SOAP body. When a SOAP message follows

a message path—that is, it travels from the originator to its final destination—it can potentially

pass through a set of SOAP intermediaries that fall along the message path. A SOAP intermediary

is an application that is capable of both receiving and forwarding SOAP messages. The role

of a recipient of a Header element is similar to that of accepting a contract in that it cannot be

extended beyond the recipient; this is because the meaning of the header is understood only

between the sender and the recipient. This does not preclude the recipient from adding a Header

element when it forwards the message to another node; in this case the contract is between

the sender application and the recipient of that Header element. Examples of extensions that

can be implemented as header entries are security context, transaction context, and so on.

For example, an originating service constructs a Header element targeted for an authentication

service along the message path; the authentication service performs authentication, and if

the authentication is successful, it forwards the SOAP message to the next destination in the

message path. The SOAP global attribute ‘actor’ can be used to indicate the recipient of

a Header element. The value of the SOAP ‘actor’ attribute is a URI. Omitting the ‘actor’

attribute implies that the recipient is the ultimate destination of the SOAP message. When

the SOAP ‘actor’ attribute is set to the special URI http://schemas.xmlsoap.org/soap/actor/

next, it indicates that the Header element is intended for the very first SOAP application that

Connection header field in HTTP. The SOAP Header element has a significant architectural

feature. It can be used to build a complex B2B system where numerous Web services are

collaborating to realize a set of complex business functions. The SOAP mustUnderstand

global attribute indicates whether a header entry is mandatory or optional for the recipient to

process. If the mustUnderstand attribute has the value "1", the recipient of the header entry

must either obey the semantics and process the header entry correctly or must fail processing

the message. In the following representation of a SOAP message, the Header element contains

a header entry Transaction; this header entry’s meaning is known only to the receiving application

that may be capable of dealing with the transactional context of the caller.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 9 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

<t:Transaction

xmlns:t="some-URI"

SOAP-ENV:mustUnderstand="1">

1234

</t:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

... body entries ...
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP Body
According to the SOAP specification, the SOAP Body element provides a simple mechanism

for exchanging mandatory information intended for the ultimate recipient of the message.

Typical uses of the Body element include marshalling RPC calls and error reporting. All

immediate child elements of the Body element are called body entries and each body entry is

encoded as an independent element within the SOAP Body element. SOAP defines one body

entry called the fault entry used for reporting errors. The encoding rules for body entries are

as follows:

� A body entry is identified by its fully qualified element name, which consists of the

namespace URI and the local name. Immediate child elements of the SOAP Body

element may be namespace-qualified.

� The SOAP encodingStyle attribute may be used to indicate the encoding style used for

the body entries.

The following example illustrates a SOAP message in which the function foo exposed by

the Web service is being accessed; the function takes an integer value as parameter. You

will recall from our WSDL discussion how WSDL will be used in the creation of stubs and

proxies that will understand the semantics embedded in this SOAP message.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>

... header entries ...

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:foo xmlns:m="http://www.openuri.org/">

<arg>2222</arg>

</m:foo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2 9 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SOAPFault
The SOAP Fault element defines the following four sub-elements:

� faultcode Intended for use by software to provide an algorithmic mechanism for

identifying the fault.

� faultstring Intended to provide a human readable explanation of the fault and is not

intended for algorithmic processing.

� faultactor Intended to provide information about who caused the fault to happen

within the message path.

� detail Intended for carrying the application-specific error information related to

the Body element. It must be present if the contents of the Body element could not be

successfully processed. The absence of the detail element in the Fault element indicates

that the fault is not related to processing of the Body element. This can be used to

distinguish whether the Body element was processed or not in case of a fault situation

where the problem could be with the server process and not the Body element itself.

The following demonstrates the use of the Fault element. If we call the MyService Web

service, whose foo operation expects an integer value, with a bad string like "garbageString",

we receive the following SOAP response:

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>

<SOAP-ENV:Fault>

<faultcode>SOAP-ENV:ServiceError</faultcode>

<faultstring>Invalid request</faultstring>

<detail>Error deserializing arguments. 'garbageString' is not

a valid encoding for type java.lang.Integer</detail>

</SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

GreaterCause B2B Integration
To understand the B2B requirement for the Web service required by the GreaterCause application,

let’s recap the use cases. Once the portal provider is registered in the GreaterCause.com

site by the site administrator, a portal-alliance is formed between GreaterCause.com and

the portal provider. This relationship allows the portal provider to provide a pass-through

or gateway component, also called a portlet, on the portal page for redirecting portal users

to the GreaterCause.com site. This portlet is responsible for displaying the list of available

campaigns, such as NPOs featured by the portal provider.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 2 9 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
A portlet can be implemented as part of the portal infrastructure provided by vendors, or as part of a JSP
using a custom tag. It is left to the readers to decide how a portlet is integrated into a portal page. In the
following discussion, we assume that the portlet is housed in a JSP page using a custom tag.

The campaigns for featuring selected NPOs are created by the portal administrator using

the Create Campaign functionality offered by the GreaterCause.com site. This Create Campaign

Use Case was discussed in Chapters 1 and 2, and developed in Chapters 1, 2, 5, and 7. Note

that the campaigns are created and stored in the GreaterCause data store; these portal-domain–

specific featured NPOs must be extracted by the respective portal domains and displayed in

the portlet. The campaign list is obtained only once and cached locally by the portal domain;

the portlet is subsequently populated from the local cache. The solution discussed in the

chapter is part of the realization of the Cache Featured-NPOs use case discussed in Chapter 1.

To access the list of featured-NPOs from the GreaterCause data store, the portlet can make a

call to the FeaturedNPOQueryService Web service for retrieving the list of campaigns related

to the portal domain, which it can subsequently caches in the ServletContext (the Application

Scope). This is an oversimplification of the caching strategy; there are several caching strategies

possible for handling caching of campaigns. FeaturedNPOQueryService is a Web service that

exposes a method called getFeaturedNPOs. This method returns an array of FeaturedNPODTO

objects; we have used an array because the SOAP encoding does not support the Collection

API. The B2B scenario uses the request-response message interaction. The corresponding

interaction semantics are depicted in Figure 8-2.

WebLogic Web services implement the Java API for XML-based RPC (JAX-RPC) as part

of a client JAR that client applications can use to invoke both WebLogic and non-WebLogic

Web services. Although the knowledge of JAX-RPC is not essential for implementing Web

services when using vendor-provided tools, you can refer to http://java.sun.com/xml/jaxrpc/

index.html to read more on this subject. The generated client includes a proxy for invoking

the operations of a Web service. Because the GreaterCause Web service is called

FeaturedNPOQueryService, the client JAR created for accessing the Web service uses the

3 0 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-2 Request-response–based interaction

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

a factory class FeaturedNPOQueryService_Impl to get the related stub implementation

FeaturedNPOQueryServiceSoap_Stub using this stub which the Web service method is called.

Before proceeding with implementation details, let’s review the architecture provided by

WebLogic for servicing client requests. The request-response message exchange pattern of

Figure 8-2 is explained here.

1. The client application sends a SOAP message by invoking the Web service method

on FeaturedNPOQueryServiceSoap interface. This interface is implemented by the

FeaturedNPOQueryServiceSoap_Stub. Based on the URI in the request, the server

identifies the Web service and passes the XML payload to the Web service.

2. The FeaturedNPOQueryService Web service identifies the operation to be performed.

For FeaturedNPOQueryService, the server-side components generated for the Web

service embed a reference to the stateless session bean Campaign on which the identified

operation must be called. The implementation of the Campaign bean and pertinent use

case is explained in Chapter 7.

3. The FeaturedNPOQueryService Web service transforms the parameters in the SOAP

Body using the appropriate encoding scheme to Java objects; this may require using

appropriate deserializer class. For non-built-in data types, a deserializer class is created

as part of Web service creation process. For our sample application, the FeaturedNPODTO

deserializer class is automatically created by the vendor tool. This is discussed in the

implementation section to follow.

4. The FeaturedNPOQueryService Web service invokes the appropriate method that

accesses the Campaign bean. The Campaign bean’s method processes the request

and creates a response.

5. The FeaturedNPOQueryService Web service converts the response object from Java to

XML using the appropriated serializer class for the array of FeaturedNPODTO objects; this

serialized array of FeaturedNPODTO objects is packaged into a SOAP message response.

6. The FeaturedNPOQueryService Web service sends the SOAP message response back

to the client application that invoked the Web service.

7. The client SOAP runtime transforms the response value in the SOAP Body using the

appropriate encoding scheme to Java objects; this may require using an appropriate

deserializer class. For non-built-in data types, a deserializer class is created as part of

Web service creation process. For our sample application, the FeaturedNPODTO array

deserializer class is automatically created by the vendor tool. This is discussed in the

implementation section to follow.

The view (JSP) containing the portlet uses FeaturedNPOQueryService’s client-side jar

file, generated automatically by the vendor tool; which employs a WSDL document for

defining the correct SOAP message semantics between the client and the server. Now that we

have an understanding of the overall architecture and the interaction semantics between the

client view and the GreaterCause.com domain, let’s explore the FeaturedNPOQueryService

Web service’s implementation.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 0 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:26:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 0 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Web Service Implementation
Without using a tool like BEA WebLogic Workshop, developing a Web service in Java

implies writing a large amount of code to interface with a SOAP library and possibly with

WSDL or UDDI. Tools like BEA WebLogic Workshop automate the creation of Web services,

handle all the SOAP protocol coding, and allow the developers to focus on implementing the

business logic. For example, in the case of the FeaturedNPOQueryService Web service, we

have implemented only the necessary EJB and left the generation of WSDL, the Web service

client-side proxies, and server-side components to the Workshop. Therefore our implementation

responsibility is reduced to proper use of EJB programming model.

This section of the document describes step-by-step the design and implementation of

FeaturedNPOQueryService using BEA WebLogic Workshop. We test this service using a simple

JSP. Readers who would like to create FeaturedNPOQueryService should follow the instructions

for installing WebLogic platform provided in Chapter 9. The focus of our discussion is creation

and consumption of a Web service, as such we spend very little time explaining the tool itself;

information regarding Workshop is available at www.bea.com; a user manual also accompanies

the download, and is accessible from the Workshop’s Help menu option.

Design Considerations
In this section, we briefly discuss some design aspects for implementing server-side components.

Let’s recap our requirement: the FeaturedNPOQueryService must expose a single

getFeaturedNPOs method (contract) to the outside world. The method getFeaturedNPOs

accepts two parameters, a PortalID and a RegionCode, both of String type; the Web service

returns an array of type FeaturedNPODTO; this array consists of all the global campaigns,

and regional campaigns for the region specified in the method signature.

� Deciding between synchronous or asynchronous operation The synchronous

interaction employ the RPC-oriented semantics; in this scenario a SOAP message sent

to a Web service is paired with a response from the Web service. Using the asynchronous

interaction semantics the client does not expect a response from the Web service; the

back-end components return void, also in-out parameters cannot be specified in the

operation signature. The web-services.xml deployment descriptor uses the invocation-

style attribute for the operation element for specifying this behavior; you can specify

either "one-way" or "request-response"; the default value is "request-response". From

the requirements, it is apparent that we will be using the default “request-response”

style for a synchronous Web service.

� Deciding the type of back-end component The FeaturedNPOQueryService uses the

stateless session bean for providing the core implementation. The Campaign EJB was

developed as part of the GreaterCause application in Chapter 7. This EJB employs the

Session Façade pattern whose operation getFeaturedNPOs implements the required

business logic and implements the necessary semantics for interacting with pertinent

CMP Entity beans; the return value is implemented using the Data Transfer Object

pattern. The J2EE component architecture used for creating the Campaign bean

provides a solid foundation on which we can build the FeaturedNPOQueryService

Web service; the use of EJB automatically provides several features such as security

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

management, resource pooling, container managed transactions, and persistence

services. Alternately, one can use Java classes, or a JMS message consumer or

producer, such as a message-driven bean; for these alternate implementations and

associated design rationale, please consult vendor documentation.

Although the Web services cannot use stateful session beans, one can mimic a

conversational Web service by creating a persistent unique ID and associate it with

the conversational state stored in a data store using JDBC or Entity beans.

� Deciding between RPC-oriented or document-oriented Document-oriented Web

service operation can support only one parameter of any supported data type; this style uses

literal encoding. RPC-oriented Web service operation has no restrictions on the number of

parameters. The FeaturedNPOQueryService employs document-oriented semantics.

� Data types Built-in data types are specified by the JAX-RPC specification. Using

these data types offers automatic conversion between XML and the corresponding

Java representation. For Web service operations that employ non-built-in data types as

parameters and return values, one must create the serialization class that converts the

data between its XML and Java representation. For our FeaturedNPOQueryService,

the data type mapping and accompanying serializer classes are automatically generated

by the vendor tool. For manually assembling serializer classes, please refer to the vendor

documentation.

FeaturedNPOQueryService Implementation Using BEA WebLogic Workshop
Constructing and deploying Web services using the BEA WebLogic Workshop involves

several steps. These are summarized here, followed by additional details on how the vendor

tool assists in accomplishing these steps.

1. Set up the development environment.

2. Create the stateless EJB that will expose its method through the Web service.

Deploy the EJB.

3. Create the Web service that exposes the stateless EJB business method.

4. Create serialization classes that convert Java objects to its XML representation

and vice versa.

5. Generate client proxies for accessing the Web service. Build a test client and verify

the working of the Web service.

6. Deploy the Web service to a production server.

Setting Up the Development Environment BEA WebLogic Server 7.0 provides templates for

creating server domains that are preconfigured for offering different test and development

environments. Using the Domain Configuration Wizard we must first create the WebLogic

Workshop domain (for detailed insructions please refer to Chapter 9). This domain has support

for the Workshop IDE that creates JAX-RPC– compliant client and server runtime components.

The runtime components created by the Workshop IDE interpose between the client call on

the Web service and the server-side component servicing the request.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 0 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Workshop IDE is installed with the WebLogic server installation. Workshop requires

that a Workshop domain server be up and running for creating Web services. You can configure

Workshop to use a specific server as shown in Figure 8-3. After starting the workshop IDE,

choose Tools/Preferences, select the paths tab and provide the werver-related information.

Observe that the domain directory selected is the workshopDomain directory created by the

Domain Configuration Wizard. The startWebLogic.cmd script in $(workshopDomain) directory

configures the environment for use with the Workshop IDE. If a server pertaining to the domain

identified in Figure 8-3 is already running, Workshop will indicate this by a green light at the

bottom of the screen; the server can be started using the Tools option in the menu bar.

Creating the Stateless EJB In Chapter 6 and 7, we created the Campaign entity bean and the

Campaign stateless session bean. We simply add an additional getFeaturedNPOs method on

the stateless session bean. This method returns an array of FeaturedNPODTO objects. We

have used an array because the SOAP encoding does not support the Collection API. In the

.jws class file (to be discussed shortly), we associate this method and associated Home and

Remote interfaces with the method exposed by the Web service. For assisting the tool in

identifying the Home and Remote interfaces, copy the client jar for the EJB to the

${workshopDomain}\applications\ GreaterCauseWebService\WEB-INF\lib directory.

Please refer to Chapter 9 for additional information on creating GreaterCauseEJBClient.jar

file and setting up of Data Source for accessing the database server. Please ensure that the

GreaterCause application is deployed before attempting to access the Web service. The

GreaterCauseEJBClient.jar is supplied with the download and can also be generated using

the Ant build script explained in Chapter 9.

Creating the Web Service Web services are organized by projects in Workshop; therefore,

create a new project under any name; say GreaterCauseWebService. This name is subsequently

used by Workshop for hot deploying a web application _appsdir_GreaterCauseWebService_

dir that is accessible by HTTP clients for testing the Web Service.

3 0 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-3 Selecting the WebLogic server

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

We are now ready to create Web services under this project. From the menu, select File |

New | New Web Service; provide a name for the Web service, as shown in Figure 8-4; call

this service FeaturedNPOQueryService.

Workshop creates a .jws file under the ${workshopDomain}\applications\

GreaterCauseWebService. This is the main class file that will create a link between the Web

service seen by the outside world to the server component actually providing the service; a

control interface CampaignControl.ctrl (an EJB Control for this example) is used within this

.jws class file to provide additional information about the server-side component interfaces

and the corresponding JNDI names. Workshop uses a set of custom tags based on Javadoc

technology to inject specialized behavior and information, in classes and interfaces, required

by Workshop in the generation of a Web service. These tags begin with @jws: and are not

explained in the following discussion because they are fairly intuitive in what they represent;

for complete details please refer to the vendor documentation. Figure 8-5 illustrates the directory

structure once the project directory for GreaterCauseWebService is created.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 0 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-4 Setting up FeaturedNPOQueryService

Figure 8-5 Project directories used by Workshop

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Workshop hot deploys a web module in the WebLogic server; this module is named

_appsdir_GreaterCauseWebService_dir, it has the context GreaterCauseWebService, and its

path is defined as ${workshopDomain}\applications\GreaterCauseWebService; this

is illustrated in Figure 8-6. This can be verified by accessing the WebLogic console using

http://localhost:7001/console; in the left hand frame select workshopDomain | Deployments |

Web Applications | _appdir_GreaterCauseWebServe_dir.

This testing module is used by Workshop to provide a console and test environment for the

Web service before it is deployed; this is shown in Figure 8-7. The test page, also called the

test view, is launched using the menu option Debug | Start, or Debug | Restart. The test page

should be launched only after a Web service is successfully configured as explained in the

subsequent steps.

Workshop provides the design view for enabling creation of the EJB control and the

corresponding .jws class file, as shown in Figure 8-8. The getCampaigns method was created

selecting the Add Method option available on the Add Operation drop-down. The Web service

is going to expose this method to the outside world. The variable “campaign” represents the

CampaignControl; this control interface was created using the Add EJB Control option

(Figure 8-9) available on the Add Control drop-down; the control shows all the business

methods exposed by the Campaign session bean.

The Add EJB Control provides the dialog box shown in Figure 8-9.

Once the EJB control is configured, the CampaignControl.ctrl file defines the following

interface. We use CampaignControl in the FeaturedNPOQueryService.jws class file, as

shown in Figure 8-10.

import weblogic.jws.*;

import weblogic.jws.control.*;

/**

* @jws:ejb home-jndi-name="ejb/com.gc.services.managecampaigns.CampaignHome"

* @editor-info:ejb home="GreaterCauseClient.jar" bean="GreaterCauseClient.jar"

*/

public interface CampaignControl

extends com.gc.services.managecampaigns.CampaignHome, // home interface

com.gc.services.managecampaigns.CampaignRemote, // bean interface

weblogic.jws.control.SessionEJBControl // control interface

{ }

3 0 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-6 Testing module deployed by Workshop

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 0 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-7 Launching the test environment

Figure 8-8 Design view

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 0 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-9 Configure CampaignControl.ctrl file

Figure 8-10 Source view for FeatureNPOService.jws

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-10 shows the source view of the .jws file that ties the various components of the

FeaturedNPOQueryService Web service. The .jws file and the control file are used for creating

the client runtime and the server runtime classes and interfaces.

With the .jws completed, we are now ready to generate the client-side proxies and the

server-side components that will provide access to the getCampaignNPOs method on the

Campaign session bean. Use the menu option Debug | Build (or Debug | Start).At this time

access the WebLogic console using http://localhost:7001/console; in the left hand frame

select workshopDomain | Deployments | EJB. Note that Workshop has hot deployed a new

ejb module GreaterCauseWebService.FeaturedNPOQueryService_EJB whose ejb-jar file

path is ${workshopDomain}\mySever\.jwscompile_jwsdir_GreaterCauseWebService\

EJB\FeaturedNPOQueryServiceEJB.jar. Peeking inside the FeaturedNPOQueryServiceEJB.jar

at the specified directory will show that there are two server-side stateless EJBs that provide

infrastructure support for interacting with the Web service; these EJBs have various environment

entries, specified in ejb-jar.xml deployment descriptor, that are Web service–specific. One of

the environment entries, ServiceURI, for the RemoteDispatcherBean provides the URI for the

test view; this URI is /GreaterCauseWebService/FeaturedNPOQueryService.jws; this URI, as

discussed earlier, is automatically invoked by selecting Debug | Start (or Debug | Restart) in

the Workshop IDE.

At this stage, we can quickly test the Web service by using the test form in the test view, and

providing the Portal ID and Region Code. The resulting array, represented in XML, is depicted in

Figure 8-11. The WSDL associated with the FeaturedNPOQueryService is shown in Appendix D.

This array will be embedded in the SOAP response message when the Web service is accessed.

Optionally, one can use the “Test XML” tab to hand code the parameters sent as part

of the SOAP Body element. The resulting SOAP request message and response message

are shown in their entirety in Figure 8-12. Please note that to avoid naming conflict for

clients using the FeaturedNPODTO class, the Web service defines the namespace http://

www.GreaterCause.com as the namespace for the result set. All serializer classes use this

namespace as the package name for the FeaturedNPODTO class. More on serialization

classes in the following subsection.

Unhandled exceptions in the .jws class file will result in SOAP Fault to be sent back to

the client. You must add an appropriate try/catch block in the .jws file for exception handling.

One of the techniques used for propagating server-side errors is to convert the exception to a

meaningful code or a message and send it in the response. Recall that the SOAP:style="rpc"

declaration allows specification of out or in-out parameters for an operation; for synchronous

request-response message pattern using RPC-oriented style, an out parameter can hold the

application-level errors. Out and in-out parameters must implement the javax.xml.rpc.holders

.Holder interface as shown in the following code; for standard data type, use one of the

JAX-RPC Holder classes or the built-in Holder classes provided by the server vendor.

public String someMethod(String param1, javax.xml.rpc.holders.IntHolder param2) {

param2.value = 100;

return param2;

}

Optionally, a javax.xml.rpc.soap.SOAPFaultException (or a subclass) can be thrown to

ensure that the client application receives appropriate information of a server-side exception.

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 0 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 1 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Creating Serialization Classes When the data types of the parameters and return values in

a Web service are of built-in data types, the server automatically converts the data between

Java object and its XML representation. Built-in SOAP data types are defined by the namespace

http://schemas.xmlsoap.org/soap/encoding; additional details are available in Section 5 of the

SOAP specification. Serialization classes are required only for non-built-in data types. Creating

non-built-in data types involves several steps. However, we have let the tool do all the work

described in each of these steps.

1. Create the XML schema data type representation to describe the structure of the

non-built-in data type.

2. Create the Java data type representation to represent the XML in terms of a Java object.

3. Write the serialization class that performs conversion of Java objects to XML and

vice versa.

4. Create the data type mapping file that contains information about the non-built-in data

type’s Java class, serializer, deserializer, and so on.

The mapping file shown below in created as part of the Java Proxy generation

process (explained in the next section) and is available in the proxy jar file

Figure 8-11 XMLized FeaturedNPODTO array

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 1 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

(FeaturedNPOQueryService.jar) under the name FeaturedNPOQueryService.xml.

Please note that this mapping is created only when @jws:protocol soap-style=“document”

is specified in the FeaturedNPOQueryService.jws class file (this is the default).

A different mapping is generated when soap-style=“rpc” is specified.

<type-mapping>

<type-mapping-entry

deserializer="com.GreaterCause.www.ArrayOfFeaturedNPODTOSequenceCodec"

class-name="com.GreaterCause.www.FeaturedNPODTO[]"

xmlns:p1="http://www.GreaterCause.com/" type="p1:ArrayOfFeaturedNPODTO"

Figure 8-12 SOAP request and response

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:02 AM

Color profile: Generic CMYK printer profile
Composite Default screen

serializer="com.GreaterCause.www.ArrayOfFeaturedNPODTOSequenceCodec">

</type-mapping-entry>

<type-mapping-entry

deserializer="com.GreaterCause.www.GetCampaignsResponseCodec"

class-name="com.GreaterCause.www.GetCampaignsResponse"

xmlns:p2="http://www.GreaterCause.com/" type="p2:getCampaignsResponse"

serializer="com.GreaterCause.www.GetCampaignsResponseCodec">

</type-mapping-entry>

<type-mapping-entry

deserializer="com.GreaterCause.www.FeaturedNPODTOCodec"

class-name="com.GreaterCause.www.FeaturedNPODTO"

xmlns:p3="http://www.GreaterCause.com/" type="p3:FeaturedNPODTO"

serializer="com.GreaterCause.www.FeaturedNPODTOCodec">

</type-mapping-entry>

<type-mapping-entry deserializer="com.GreaterCause.www.GetCampaignsCodec"

class-name="com.GreaterCause.www.GetCampaigns"

xmlns:p4="http://www.GreaterCause.com/" type="p4:getCampaigns"

serializer="com.GreaterCause.www.GetCampaignsCodec">

</type-mapping-entry>

</type-mapping>

The required components for handling non-built-in data types are provided as part of the

Java Proxy creation process, which is discussed in the following section.

Generating Client Runtime and Building a Test Client Before we can compile the client code, we

need to obtain the client runtime. In order to do this, use the menu option Debug | Start to launch

the Web service’s personalized page (the test view); as discussed earlier, this page provides

testing and other supporting functions. Select the Overview tab and click Java Proxy; this will

download the proxy classes required for making calls to the Web service; this client JAR file

is name FeaturedNPOQueryService.jar. The client jar file includes service-specific classes,

stubs, and interfaces required by the client to invoke the Web service. The classes, stubs, and

interfaces are based on the implementation of the JAX-RPC API.

If the GreaterCause application is deployed, you can use a simple JSP

FeaturedNPOQueryService.jsp to test our Web service; the FeaturedNPOQueryService.jar

is installed in the web module’s WEB-INF\lib directory. All of the WebLogic proxy classes

belong to the weblogic.jws.proxies package, therefore this package is referenced in the

import attribute of the page directive.

NOTE:
Once you have generated FeaturedNPOQueryService.jar (Java Proxy), add it to GreaterCause/build/archives
directory of the source distribution. The Ant build process explained in Chapter 9 will ensure that this jar file
is added to the WEB-INF\lib directory. Please follow the instructions in Chapter 9 for correctly setting the
domain directory in the GC.Properties file used by the Ant build script.

The view FeaturedNPOQueryService.jsp, shown here, generates the response shown in

Figure 8-13. All of the WebLogic proxy classes belong to the weblogic.jws.proxies package,

therefore this package is referenced in the import attribute of the page directive.

3 1 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<%@ page contentType="text/html;charset=UTF-8" language="java"

import="weblogic.jws.proxies.FeaturedNPOQueryService_Impl,

weblogic.jws.proxies.FeaturedNPOQueryServiceSoap,

java.rmi.RemoteException,

com.GreaterCause.www.FeaturedNPODTO"

%>

<html><body>

<% try {

FeaturedNPOQueryService_Impl webservice = new FeaturedNPOQueryService_Impl();

FeaturedNPOQueryServiceSoap webserviceProxy =

webservice.getFeaturedNPOQueryServiceSoap();

FeaturedNPODTO[] npoList =

(FeaturedNPODTO[])webserviceProxy.getCampaigns("ACME","NORCAL");

for (int i=0; i < npoList.length; i++) {

FeaturedNPODTO dto = (FeaturedNPODTO) npoList[i]; %>

NPO Name: <%= dto.getNpoName() %>

Region Code <%= dto.getRegionCode() %>

EIN: <%= dto.getEin() %>

Start Date: <%= dto.getStartDate() %>

End Date: <%= dto.getEndDate() %><p>

<% }

}

catch (RemoteException ex) {

... rest of the code ...

} %>

</body></html>

For using the proxy jar outside of the WebLogic server, or for stand-alone Java clients,

you need another jar file containing supporting classes. This jar is downloadable by using

the Proxy Support Jar link on the Web service’s page.

Deploying to a Production Server To deploy the FeaturedNPOQueryService on the production

server, change the hostname element’s value from localhost to the production machine in the

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 1 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

Figure 8-13 FeaturedNPOQueryService response

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

weblogic-jws-config.xml file located in the WEB-INF directory. Compile the Web application

as an EAR file and deploy the EAR file on the production server.

<config>

<protocol>http</protocol>

<hostname>localhost</hostname>

<http-port>7001</http-port>

<https-port>7002</https-port>

<jws>

<class-name>FeaturedNPOQueryService</class-name>

<protocol>http</protocol>

</jws>

<jws>

<class-name>FeaturedNPOQueryServiceSecure</class-name>

<protocol>https</protocol>

</jws>

</config>

Note the use of https protocol in the protocol element for FeaturedNPOQueryServiceSecure.

For the Web service to use SSL, make sure that the WSDL specifies https instead of http.

Workshop SOAP:style Semantics
For FeaturedNPOQueryService, we employed SOAP:style="document"; this is illustrated

in the following WSDL fragment. The corresponding SOAP request and response messages

were shown in Figure 8-12.

<operation name="getCampaigns">

<soap:operation style="document"

soapAction="http://www.GreaterCause.com/getCampaigns"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

Recall that the request-response operation is an abstract notion; therefore the vendor

implementation will dictate whether messages are sent within a single HTTP request-response,

or as two independent HTTP requests. WebLogic Web service deployment descriptor allows

you to specify an operation:invocation-style attribute that can take the values "one-way"

or "request-response"; for FeaturedNPOQueryService, we use invocation-style="request-

response". Note that the XML document "getCampaignsResponse" in the SOAP body in

Figure 8-12 is converted to its Java equivalent by the deserialization mechanisms generated

3 1 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Wednesday, May 28, 2003 12:17:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 8 : W e b S e r v i c e s f o r A p p l i c a t i o n I n t e g r a t i o n 3 1 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

by the vendor tool; please refer to section “Creating Serialization Classes” for the type-mapping

construct created by the tool. Document-oriented Web service operations use literal encoding,

which implies that the message elements described in WSDL reference a concrete schema

using the type attribute.

If we had employed SOAP:style="rpc", the resulting SOAP messages will follow the

representation stated in section 7.1 of the SOAP specification; the data types marshalled

across the wire follow a set of encoding rules described in Section 5 of the SOAP specification,

which has the namespace identifier "http://schemas.xmlsoap.org/soap/encoding/" (also called

SOAP encoding). Changing SOAP:style to "rpc" will yield the following response:

<SOAP-ENV:Envelope xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<m:getCampaignsResponse xmlns:m="http://www.GreaterCause.com/"

xmlns:types="http://www.GreaterCause.com/encodedTypes">

<getCampaignsResult SOAP-ENC:arrayType="types:FeaturedNPODTO[2]"

xsi:type="SOAP-ENC:Array">

<item>

<startDate xsi:type="xsd:string">2004-12-01</startDate>

<regionCode xsi:type="xsd:string">NORCAL</regionCode>

<ein xsi:type="xsd:string">94-0385620</ein>

<endDate xsi:type="xsd:string">2004-12-26</endDate>

<npoName

xsi:type="xsd:string">California Historical Society</npoName>

</item>

<item>

<startDate xsi:type="xsd:string">2004-01-01</startDate>

<regionCode xsi:type="xsd:string">NORCAL</regionCode>

<ein xsi:type="xsd:string">94-3045430</ein>

<endDate xsi:type="xsd:string">2004-04-30</endDate>

<npoName

xsi:type="xsd:string">American Red Cross Bay Area</npoName>

</item>

</getCampaignsResult>

</m:getCampaignsResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Because other encoding schemes are possible for representing data types, the SOAP

‘encodingStyle’ attribute can be used to indicate the encoding style of the method call and

the response. Using SOAP for RPC is orthogonal to the SOAP protocol binding (please

refer to the Sample WSDL discussed previously for FeaturedNPOQueryService). When

using HTTP as the protocol binding, an RPC call maps to an HTTP request and an RPC

response maps to an HTTP response.

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Summary
Web services open a new possibility for integration and development of next generation Web

applications. Web services do not suggest any development paradigm nor introduce a new

programming language. Web services leverage on top of highly scalable and industry proven

server-side technologies like J2EE, .NET, and CORBA. Web services provide the basis for

flexible and scalable service-oriented architecture. With Web services, building B2B and business

process automation solutions are easier and less expensive than traditional approaches. Web

services simplify the task of integration by leveraging on flexibility of XML and its maturing

stack of tools and technologies. Making XML as the standard format for messaging between

distributed components not only fills the gap left by the EAI technology, but it removes

interoperability and portability issues.

We believe that Web services will soon become the backbone for building small to very

complex distributed and transactional business systems. Currently there are large numbers

of vendors providing tools and technologies that automate Web services development and

deployment. Web service development and deployment processes are mainly influenced

by the existence of mature server-side technologies (J2EE, .NET, and CORBA). To adopt

Web services, organization-specific development methodology should be applied. Due to

service-centric nature of Web service, there is a need for Web service assembler tools using

which a total business solution can be packaged and deployed from existing services.

3 1 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 8

P:\010Comp\ApDev\711-7\ch08.vp
Tuesday, May 27, 2003 10:27:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER

9
Application Assembly

and Deployment

317

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

IN THIS CHAPTER:

Installing and Configuring Struts

Configuring the WebLogic Domain

Configuring GreaterCause Users

Deploying the GreaterCause Application

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

3 1 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

The J2EE platform provides a high level of service standardization. As such, the

application developer can focus on core business functions, and the container tools

generate most of the services-specific code pertaining to transaction management,

security, remote connectivity, object-relational mapping, and so on. The application behavior

for these services is configured at deployment time using deployment descriptors. These

deployment descriptors were discussed in Chapters 4 through 7 for configuring platform

services for various components. Figure 9-1 shows how a J2EE application is composed,

and the various elements that make up the web, EJB, and application client modules. J2EE

modules either can be deployed as stand-alone units, or they can be combined to create a J2EE

application, as shown in the figure.

NOTE
The sample application GreaterCause was developed and tested on the WebLogic Server 7.0 (SP1). As such,
all discussion in this chapter refers to configuration actions that pertain to WebLogic Server 7.0. WebLogic 7.0
uses J2SE 1.3.1 SDK.

A J2EE module is a collection of one or more J2EE components of the same component

type (web, EJB, or application client). It is the basic unit of composition of a J2EE application.

A web application contains the application’s resources, such as servlets, JSPs, JSP tag libraries,

third-party libraries, and any other static resources such as HTML pages and image files. The

web applications deployed in a J2EE server use a standard deployment descriptor (web.xml

file) and a vendor-specific deployment descriptor (weblogic.xml) to define their resources

and operating parameters. These web resources and the deployment descriptors are bundled

together for deployment in a Java archive file called the web archive with the .war extension.

The EJB components viz. session, entity, and message-driven beans are bundled for deployment

in a Java archive file called the EJB archive with the .jar extension. The EJBs are configured

and deployed using the standard deployment descriptor (ejb-jar.xml file) and a vendor-specific

deployment descriptor (weblogic-ejb-jar.xml). The ejb-jar.xml deployment descriptor describes

the enterprise beans packaged in the EJB archive file. It defines the beans’ type, names of

their home and component interfaces, and implementation classes. It also defines the security

roles and transactional behavior for the beans’ methods. For beans with container-managed

persistence, there will be a vendor-specific deployment descriptor (weblogic-cmp-rdbms-jar.xml).

It is used for specifying the mapping between the container-managed fields (and also the

container-managed relationships) to the underlying RDBMS table schema.

The web archive (.war) and EJB archive (.jar) can be bundled into an enterprise archive with

the .ear extension. Each enterprise archive file is packaged with an XML-based application.xml

deployment descriptor that contains the application’s name and description, and a list of the

J2EE modules that comprise the application. The .ear file represents all the entities required

to deploy the application on the server side. Each application component (web archive and

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A p p l i c a t i o n A s s e m b l y a n d D e p l o y m e n t 3 1 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

EJB archive) is listed as a module in the application.xml deployment descriptor. Figure 9-2

depicts the steps involved in creating an application archive. We will apply these steps in the

configuration and deployment of the sample GreaterCause application.

Figure 9-1 Elements of a J2EE application

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Installing and Configuring Struts
Although all Struts binaries required by the sample GreaterCause application are made available

with the GreaterCause download, you can refer to http://jakarta.apache.org/struts/userGuide/

installation.html to find out more about Struts installation and configuration. The binaries

provided with the GreaterCause download pertain to Struts 1.1 beta release 2, which was

used to test the application.

If you want to install the most current binaries, you will need the following from the Struts

binary distribution for testing the sample GreaterCause application:

� lib/commons-*.jar These JAR files contain packages from the Jakarta Commons

project that are used by the Struts framework. Copy these files into the WEB-INF/lib

directory of the GreaterCause application.

3 2 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

Figure 9-2 Creating a J2EE application archive

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A p p l i c a t i o n A s s e m b l y a n d D e p l o y m e n t 3 2 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

� lib/struts.jar This JAR file contains all classes used by the framework. Copy these

files into the WEB-INF/lib directory of the GreaterCause application.

� lib/struts-*.tld Copy these tag library descriptor files into the WEB-INF directory

of your web application.

Chapters 4 and 5 explain the deployment descriptor (web.xml) configured for using the

Struts controller servlet. The following Struts-related tag library declarations are included

in the web.xml deployment descriptor:

<taglib>

<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

<taglib>

<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>

<taglib>

<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

</taglib>

These tag libraries are referenced in the GreaterCause JSPs using the following

declarations:

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

For modifying the characteristics of GreaterCause application, follow the instructions provided

in Chapter 4 and 5 for creating/modifying entries in the WEB-INF/struts-config.xml file.

When compiling request handlers, form beans, or any other class that makes use of Struts

components, include the struts.jar and commons-*.jar files in the CLASSPATH.

Configuring the Struts Validator
The sample application makes use of the Validator plug-in. The Validator services are injected

into the Struts framework using the following declaration in the struts-config.xml file:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

<set-property property="pathnames"

value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

The following two files are configured in the GreaterCause web application’s WEB-INF

directory:

� Validator-rules.xml This file contains the basic validators that are packaged with the

framework.

� Validation.xml In this configuration file, we specify the validations associated with

the form bean properties.

A detailed discussion of Validator is available at http://home.earthlink.net/~dwinterfeldt/

overview.html.

Configuring the WebLogic Domain
Installing the WebLogic server is very simple and intuitive. You can download the WebLogic

Platform 7.0 http://commerce.bea.com/index.jsp. Detailed instructions for installing the

WebLogic Server 7.0 are available at http://edocs.bea.com/wls/docs70/install/index.html.

For quick installation steps, please read on. For detailed information on configuring and

using BEA WebLogic Platform 7.0, please refer to documentation available at http://edocs.bea.com/

platform/docs70/index.html.

The following are fast-track instructions for creating a development environment:

1. During the product download, BEA Installer will be launched. After you accept the

BEA license agreement, provide the BEA home directory.

2. For Install Type, choose Custom Installation.

3. When on the Choose Components screen, at the minimum, choose WebLogic Server.

This will also install the WebLogic Workshop IDE that will be used for developing

Web services. The installer is now configured to download the required archives to

continue installation.

4. Specify the download directory and continue with the download.

5. After the download is completed, you will be prompted to provide a product installation

directory. If your home directory was c:\bea, the default product directory will be c:\bea\

weblogic700. Provide a suitable directory name and continue with the product install.

6. Completion of product install will launch a configuration wizard. Select Yes to run the

Domain Configuration Wizard. The wizard is used to set up WebLogic domains. The

WebLogic installation provides a preconfigured WLS Examples domain (for running

the Examples Server). You may choose the Examples Server to deploy the GreaterCause

application, or you can configure a separate domain.

NOTE
A domain is an interrelated set of WebLogic Server resources that are managed as a unit. A domain includes
one or more WebLogic servers and may also include WebLogic Server clusters. Detail information on domains is
available at http://edocs.bea.com/wls/docs70/admin_ domain/index.html.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7. Select WLS Domain from the template list to create a WebLogic Server domain, or

select WebLogic Workshop for creating a Workshop domain that is used in Chapter 8

for creating Web services. Creating a WebLogic Workshop domain is recommended

because it can be used for developing and testing the GreaterCause application, as well

as the Web service. Name the domain appropriately. The discussions to follow will

refer to the domain name as mydomain.

8. When prompted to choose Server Type, select Single Server. This configuration is

suitable and adequate for development and testing. In this case, the domain contains

a single WebLogic Server instance that acts as both the Administration Server and

application host server.

9. When prompted for domain location, you can leave the default (for example, c:\bea\

user_projects\).

10. On the Configure Standalone / Administrative Server screen, provide the server name

(default is myserver). Leaving the Server Listen Address blank will assume localhost.

You may choose to leave the port setting as is. Review the section Listen Address

Considerations in the document Creating and Configuring WebLogic Server Domains

at http://edocs.bea.com/wls/docs70/admin_domain/index.html for further information

on Server Listen Address.

11. On the Create Administrative User screen, provide the User Name and Password. This

username and password will be required to start and manage the server. The default

security realm myrealm will contain this user. Accidental removal of this user from

the security realm will create an unusable domain.

12. When prompted to Create Start Menu Entry, provide a suitable selection.

13. Finally, review the Configuration Summary and create the new domain.

14. If a single domain is sufficient for your needs, select End Configuration Wizard. If at

a later time you choose to create more domains, run the Domain Configuration Wizard

from the Start menu.

The downloaded GreaterCause package has a GC.properties file that is referenced by the

Ant build script. You must update the WL_DOMAIN property in the GC.properties file to

reflect the location of the domain directory. For example, you may specify this property, along

with the WL_HOME property (WebLogic home directory), as shown here:

WL_HOME=C:\bea\weblogic700

WL_DOMAIN=C:\bea\user_projects\mydomain

NOTE
After WebLogic server is installed, you can start the server either from the Windows Start menu or using the
startWeblogic.cmd script provided in the ${WL_DOMAIN} directory. For testing the Web Service, ensure that
the domain name refers to a Workshop domain.

C h a p t e r 9 : A p p l i c a t i o n A s s e m b l y a n d D e p l o y m e n t 3 2 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Configuring the JDBC Connection Pool
For development and testing, we used an Oracle database server. In this section, we discuss

the procedure for setting up a JDBC connection pool for the Oracle database server. We must

first start the WebLogic server according to the instructions provided in the preceding

section. The rest of the instructions are as follows:

Start the console using http://localhost:7001/console.

1. Select mydomain | Services | JDBC | Connection Pools in the left-hand frame.

2. Select the Configure A New JDBC Connection Pool link in the right-hand frame.

3. Provide the following information and select <Create> to complete:

Form Field Value
Name GCPool

URL jdbc:oracle:thin:@myhostname:1521:mySID, where SID is the service identifier

Driver Classname oracle.jdbc.driver.OracleDriver

Properties user=username

Password password

5. We must now assign GCPool to a target server. Select the Targets tab on the same page

that was used in the previous step. Select the Servers tab. Select myserver and move it

to the Chosen window. Apply the changes before exiting.

6. Once the connection pool is created, we proceed to creating a JDBC Tx Data Source.

Select mydomain | Services | JDBC | Tx Data Sources.

7. Select Configure A New JDBC Tx Data Source link in the right-hand frame.

8. Provide the following information and select <Create> to complete. The JNDI name

provided here is the JNDI name referred to in the deployment descriptor of the entity

beans. The two names should match for successfully deploying the application.

Form Field Value
Name GCTxDataSource

JNDI Name jdbc/gcOracleTxPool

Pool Name GCPool

9. We must now assign GCTxDataSource to a target server. Select the Targets tab on the

same page that was used in the preceding step. Select the Servers tab. Select myserver

and move it to the Chosen window. Apply the changes before exiting.

3 2 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A p p l i c a t i o n A s s e m b l y a n d D e p l o y m e n t 3 2 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

Configuring GreaterCause Users
At this point, we assume that you have installed the WebLogic server. If you have not done so,

you may want to do it now. The “Implementing Application Security” section of Chapter 5

identifies three administrator roles supported by the application for performing administrative-

related functions. The principals (users and groups) are defined in the default security realm

myrealm in the WebLogic Server Domain mydomain.

The principal-to-role mapping is declared in the WebLogic-specific deployment descriptor

weblogic.xml, as follows:

<security-role-assignment>

<role-name>NPOAdministrator</role-name>

<principal-name>NPOAdmin</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>PortalAdministrator</role-name>

<principal-name>PortalAdmin</principal-name>

</security-role-assignment>

<security-role-assignment>

<role-name>SiteAdministrator</role-name>

<principal-name>SiteAdmin</principal-name>

</security-role-assignment>

The roles identified in the vendor-specific deployment descriptor are mapped to the roles

used by the web components in the web.xml deployment descriptor using the security-role-

ref elements, as follows:

<security-role-ref>

<role-name>SiteAdminRole</role-name>

<role-link>SiteAdministrator</role-link>

</security-role-ref>

<security-role-ref>

<role-name>PortalAdminRole</role-name>

<role-link>PortalAdministrator</role-link>

</security-role-ref>

<security-role-ref>

<role-name>NPOAdminRole</role-name>

<role-link>NPOAdministrator</role-link>

</security-role-ref>

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

3 2 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

The principals identified in the vendor-specific deployment descriptor are created in the

default security realm myrealm, as follows:

1. Bring up the WebLogic console using the URL http://localhost:7001/console.

2. Select mydomain | Security | Realms | myrealm | Groups in the left-hand frame. Configure

three new groups: SiteAdmin, PortalAdmin, and NPOAdmin. These groups are the

principals mapped to their respective role names in the weblogic.xml deployment

descriptors.

3. Select mydomain | Security | Realms | myrealm | Users in the left-hand frame. Configure

users and associate them with a group created in Step 2. These usernames can be used

for signing on to the GreaterCause application. Use the Groups tab for assigning a user

to a group.

A Portal-Alliance administrator (Group PortalAdmin) can only be associated with one

Portal-Alliance registration. Similarly, an NPO administrator (Group NPOAdmin) can only

be associated with one NPO registration. Therefore, for each new PortalAlliance or NPO

registration, create a user entry under the appropriate group. The preconfigured test data

accompanying the download requires the existence of certain Portal-Alliance and NPO

Administrators. The Portal-Alliance administrators that must be added to the group PortalAdmin

can be located in the ADMIN table with a non-null value in the column Portal_ID. The NPO

administrators that must be added to the group NPOAdmin can be located in the ADMIN

table with a non-null value in the column EIN.

When signing in as SiteAdmin (using the username created for this purpose), any attempt

to change Portal-Alliance or NPO information will be preceded with an Enter Portal ID or

Enter EIN page to identify the Portal-Alliance or NPO being modified, respectively. However,

signing in as PortalAdmin (using the username created for this purpose), the system will

detect the associated Portal-Alliance profile based on the relationships stored in the system—

this is true for NPOAdmin as well. This facility allows the SiteAdmin to be a super-user by

being able to access and modify information for any other type of administrators.

Deploying the GreaterCause Application
In this section, we discuss the steps involved in installing the Greater Cause application.

The accompanying download contains the source code and the installation scripts.

NOTE
The configurations explained in this section are geared toward a Windows-based installation.

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : A p p l i c a t i o n A s s e m b l y a n d D e p l o y m e n t 3 2 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

The contents of the downloaded GreaterCause directory that will be used for installing the

GreaterCause application are described briefly here:

Directory Contents
GreaterCause Ant build script and the corresponding properties file for building

the application from source.

GreaterCause\bin Command script that uses Ant build script for building the jar, war,

and ear files.

GreaterCause\build\archives Pre-built binaries for direct deployment of the GreaterCause

application; also binaries built by the Ant script provided in this

chapter.

GreaterCause\conf See the following table for complete explanation.

GreaterCause\lib Binaries used by Struts and Ant. (All binaries with the exception of

ant.jar, xercesImpl.jar, and xmlParserAPIs.jar are required by Struts.)

GreaterCause\src\java Complete source code of the application.

GreaterCause\src\sql DDL script and script for loading sample data.

GreaterCause\src\web GreaterCause JSPs.

GreaterCause\src\web\en_US en_US locale-specific JSPs.

GreaterCause\src\web\images Default image files referenced by default

ApplicationResources.properties file (see the following table).

The following is a list of files in the configuration directory (GreaterCause\conf) together

with their usage:

Name Usage
web.xml Deployment descriptor for the web application

weblogic.xml Vendor-specific deployment descriptor for the web application

weblogic-cmp-rdbms-jar.xml Vendor-specific deployment descriptor for cmp- and cmr-fields

mapping to the database schema

ejb-jar.xml Deployment descriptor for the enterprise beans

weblogic-ejb-jar.xml Vendor-specific deployment descriptor for the enterprise beans

application.xml Deployment descriptor for the J2EE application

struts-config.xml Struts-specific configuration file

ApplicationResources.properties Default resource bundle as specified by the message-resources

element in the struts-config.xml file

validation.xml File containing basic validators packaged with Struts

validation-rules.xml Configuration file for specifying validations associated with

form-bean properties

*.tld Tag library descriptors files

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Priming the Database
At this point, we assume that you have started an instance of the Oracle database server. This

section will help you create the necessary tables required for the application (explained in

Chapter 6), and load some test data. Before the tables can be created, update the GC.Properties

file provided in the GreaterCause directory. The GC.properties must have values specified for

the following properties:

� DBSERVER=

� DBPORT=

� SID=

� USER=

� PASSWORD=

For creating tables, provide the following at the command prompt:

GreaterCause\bin> build db_create_tables

For populating test data, provide the following at the command prompt:

GreaterCause\bin> build db_load_tables

Deploying GreaterCause.ear
The following steps are for deploying the GreaterCause application using the .ear file provided

in the GreaterCause/build/archives directory:

1. Bring up the WebLogic console using the URL http://localhost:7001/console.

2. Select mydomain | Deployments | Applications in the left-hand frame.

3. Select the Configure A New Application link in the right-hand frame. This will show

the Locate Application Or Component To Configure page.

4. Locate the GreaterCause.ear in the directory GreaterCause\build\archives and choose

[select] to proceed to the next step.

5. Select myserver from Available Servers and move it to the Target Servers window.

Select <Configure and Deploy>.

NOTE
You can access the home page of GreaterCause by using the URL http://localhost:7001/GreaterCause
or http://localhost:7001/GreaterCause/1_HomePage.jsp.

3 2 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Building the GreaterCause Application
The following steps are for building and deploying the GreaterCause application using the

source files provided in the GreaterCause\src directory:

1. Set the WL_Domain in the GC.properties file provided in the GreaterCause directory.

2. For creating and deploying the .ear file, provide the following at the command prompt:

GreaterCause\bin> build All

3. Bring up the WebLogic console using the URL http://localhost:7001/console.

4. Select mydomain | Deployments | Applications | _appsdir_GreaterCause in the

left-hand frame.

5. Select the Deploy tab in the right-hand frame. Ensure that the Deployed status is true

for GreaterCause.jar and GreaterCause.war.

NOTE
The ejb-client-jar element in the ejb-jar.xml deployment descriptor specifies the name of a jar file that will
contain the classes required for accessing the EJBs on the server. This jar file is automatically included by
the build script in the WEB-INF/lib directory of the web application.

C h a p t e r 9 : A p p l i c a t i o n A s s e m b l y a n d D e p l o y m e n t 3 2 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Chapter 9

P:\010Comp\ApDev\711-7\ch09.vp
Tuesday, May 27, 2003 3:22:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio 331

PART

III
Appendixes

P:\010Comp\ApDev\711-7\AppA.vp
Tuesday, May 27, 2003 3:23:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

APPENDIX

A
Detailed Use Case

Description Template

333

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

P:\010Comp\ApDev\711-7\AppA.vp
Tuesday, May 27, 2003 3:23:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

3 3 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix A

T
he following template is used for capturing detailed use case description as

explained in Chapter 2. You may tailor this according to the dynamics of your

team and project.

Use Case Name Provide a brief description and the purpose of the use case.

Actors Specify all the entities that interact with this use case, including other packages

(or subsystems) of the application and other external systems.

Precondition(s) Preconditions are assertions that must be true at the beginning of the use case.

The use case is responsible for keeping its part of the contract only if these preconditions are

satisfied.

Postcondition(s) Assertions that must be true at the conclusion of a use case. The state of the

system is stable and consistent only if these assertions are satisfied.

Include/Extend Use Cases Specify use cases that are subordinate to this use case. The subordinate

use cases factor common behavior and provide a means for creating atomic units that become

part of a whole.

User Interface Illustrate the user interface being serviced by this use case. These are typically

wire frames that may be used to articulate the flow of events.

Main Flow of Events This flow of events is at a more granular level than the flow of events

in use case summary. We take advantage of the fact that we can illustrate the flow of events

in conjunction with user actions in the context of a user interface depicted by wire frames.

Exceptional Flow of Events This flow of events expresses exception or optional behavior of

the system that deviates from normal flow of events. The availability of wire frames helps in

identifying exceptional flows by examining the choices the users have in exercising various

options provided by the navigational schemes.

Activity Diagram Use activity diagrams to explain complex scenarios.

Sequence Diagram For use cases, sequence diagrams provide lesser value when compared to

activity diagrams. Use it only when there are several entities interacting with the use case.

P:\010Comp\ApDev\711-7\AppA.vp
Tuesday, May 27, 2003 3:23:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

APPENDIX

B
GreaterCause
Wire Frames

335

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

T
his appendix contains the wire frames for the sample application. The wire frames

do not represent all the screens of the GreaterCause site but sufficient enough to get

a general feel of the user interface, associated fields, workflow, and navigation

semantics. It incorporates various aspects of the information architecture as explained in

Chapter 2. The navigation semantics associated with the wire frames are explained using the

site flow in Appendix C. For pages with complex navigation, a side bar can be helpful for

mapping the navigation elements of a page to the page numbers used in wire frames; you

may also add callouts to navigation elements for improved readability.

3 3 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

For Site, Portal and
NPO administrators’
use only

Displays donor services when
this page is accessed from the
portal domain, otherwise the
donor will see a donor guide.

Administrator type,
and its portal or
NPO affiliation,
is automatically
detected based on
the security profile.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 3 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

These services are implemented
in a manner similar to the site
administrator.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 3 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

These services are implemented
in a manner similar to the site
administrator.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 3 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

Site administrators must
identify the portal ID that
they want to administer.
Portal ID is not required
for portal administrators
because this information
is part of the portal
administrators’ profile.

Identification Number
provided by IRS

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 4 1

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

Used for loading a
navigation bar provided
by the portal-domain to
preserve the branding and
navigation of the portal.

Reusable component
wherever search is
employed.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

Reusable component
wherever search is
employed.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 4 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

Site administrators must
identify the EIN that they
want to administer. EIN
is not required for NPO
administrators because
this information is part of
the NPO administrators’
profile.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 4 5

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

This portlet is
aggregated into
the portal page.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

Only the donors will see this
portal-specific navigation bar.

Most
information
is provided
by the
portal-
domain.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 4 7

For unregistered
users, only Home
and Advanced
Search is available.

For unregistered
users, only Home
and Advanced
Search is available.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3 4 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

United Way will
be accepting
donations for
several causes.

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x B : G r e a t e r C a u s e W i r e F r a m e s 3 4 9

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix B

P:\010Comp\ApDev\711-7\AppB.vp
Tuesday, May 27, 2003 10:29:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

APPENDIX

C
GreaterCause Site Flow

351

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

P:\010Comp\ApDev\711-7\AppC.vp
Tuesday, May 27, 2003 10:28:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

T
he navigation semantics of the UI illustrated in Appendix B is explained using a

site flow that clearly articulates the page transitions associated with user actions. The

site flow is an important artifact for articulating the navigation semantics and provides

a bird’s-eye view of the site. Site flow does not encompass each and every navigational aspect

because doing so will make it less readable. To avoid the clutter, a common technique used

for creating site flows is to draw it like a tree structure where every node has only one parent.

The site flow will complete the story boarding effect by showing the transitions between various

uniquely numbered wire frames according to the navigation semantics established for the

functional web site.

3 5 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix C

P:\010Comp\ApDev\711-7\AppC.vp
Tuesday, May 27, 2003 10:28:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A p p e n d i x C : G r e a t e r C a u s e S i t e F l o w 3 5 3

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix C

P:\010Comp\ApDev\711-7\AppC.vp
Tuesday, May 27, 2003 10:28:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank.

APPENDIX

D
FeaturedNPOQueryService

WSDL

355

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /

P:\010Comp\ApDev\711-7\AppD.vp
Tuesday, May 27, 2003 10:27:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

T
he following XML document was generated by the BEA WebLogic WorkShop

tool for describing the FeaturedNPOQueryService Web service to the clients.

Complete discussion on WSDL and the creation of FeaturedNPOQueryService

is covered in Chapter 8.

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:jms="http://www.openuri.org/2002/04/wsdl/jms/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:cw="http://www.openuri.org/2002/04/wsdl/conversation/"

xmlns:xm="http://www.bea.com/2002/04/xmlmap/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:conv="http://www.openuri.org/2002/04/soap/conversation/"

xmlns:s0="http://www.GreaterCause.com/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.GreaterCause.com/">

<types>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="http://www.GreaterCause.com/">

<s:element name="getCampaigns">

<s:complexType>

<s:sequence>

<s:element name="portalID"

maxOccurs="1" type="s:string" minOccurs="0"/>

<s:element name="regionCode"

maxOccurs="1" type="s:string" minOccurs="0"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="getCampaignsResponse">

<s:complexType>

<s:sequence>

<s:element name="getCampaignsResult"

maxOccurs="1" type="s0:ArrayOfFeaturedNPODTO" minOccurs="0"/>

</s:sequence>

</s:complexType>

</s:element>

<s:complexType name="ArrayOfFeaturedNPODTO">

<s:sequence>

<s:element name="FeaturedNPODTO"

maxOccurs="unbounded" type="s0:FeaturedNPODTO"

minOccurs="0" nillable="true"/>

</s:sequence>

</s:complexType>

<s:complexType name="FeaturedNPODTO">

<s:sequence>

<s:element name="startDate"

maxOccurs="1" type="s:string" minOccurs="0"/>

<s:element name="regionCode"

maxOccurs="1" type="s:string" minOccurs="0"/>

3 5 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix D

P:\010Comp\ApDev\711-7\AppD.vp
Tuesday, May 27, 2003 10:27:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<s:element name="ein"

maxOccurs="1" type="s:string" minOccurs="0"/>

<s:element name="endDate"

maxOccurs="1" type="s:string" minOccurs="0"/>

<s:element name="npoName"

maxOccurs="1" type="s:string" minOccurs="0"/>

</s:sequence>

</s:complexType>

<s:element name="ArrayOfFeaturedNPODTO"

type="s0:ArrayOfFeaturedNPODTO" nillable="true"/>

</s:schema>

</types>

<message name="getCampaignsSoapIn">

<part name="parameters" element="s0:getCampaigns"/>

</message>

<message name="getCampaignsSoapOut">

<part name="parameters" element="s0:getCampaignsResponse"/>

</message>

<message name="getCampaignsHttpGetIn">

<part name="portalID" type="s:string"/>

<part name="regionCode" type="s:string"/>

</message>

<message name="getCampaignsHttpGetOut">

<part name="Body" element="s0:ArrayOfFeaturedNPODTO"/>

</message>

<message name="getCampaignsHttpPostIn">

<part name="portalID" type="s:string"/>

<part name="regionCode" type="s:string"/>

</message>

<message name="getCampaignsHttpPostOut">

<part name="Body" element="s0:ArrayOfFeaturedNPODTO"/>

</message>

<portType name="FeaturedNPOQueryServiceSoap">

<operation name="getCampaigns">

<input message="s0:getCampaignsSoapIn"/>

<output message="s0:getCampaignsSoapOut"/>

</operation>

</portType>

<portType name="FeaturedNPOQueryServiceHttpGet">

<operation name="getCampaigns">

<input message="s0:getCampaignsHttpGetIn"/>

<output message="s0:getCampaignsHttpGetOut"/>

</operation>

</portType>

<portType name="FeaturedNPOQueryServiceHttpPost">

<operation name="getCampaigns">

<input message="s0:getCampaignsHttpPostIn"/>

<output message="s0:getCampaignsHttpPostOut"/>

</operation>

</portType>

<binding name="FeaturedNPOQueryServiceSoap" type="s0:FeaturedNPOQueryServiceSoap">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getCampaigns">

<soap:operation style="document"

soapAction="http://www.GreaterCause.com/getCampaigns"/>

<input>

A p p e n d i x D : F e a t u r e d N P O Q u e r y S e r v i c e W S D L 3 5 7

AppDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix D

P:\010Comp\ApDev\711-7\AppD.vp
Tuesday, May 27, 2003 10:27:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<binding name="FeaturedNPOQueryServiceHttpGet" type="s0:FeaturedNPOQueryServiceHttpGet">

<http:binding verb="GET"/>

<operation name="getCampaigns">

<http:operation location="/getCampaigns"/>

<input>

<http:urlEncoded/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

</binding>

<binding name="FeaturedNPOQueryServiceHttpPost" type="s0:FeaturedNPOQueryServiceHttpPost">

<http:binding verb="POST"/>

<operation name="getCampaigns">

<http:operation location="/getCampaigns"/>

<input>

<mime:content type="application/x-www-form-urlencoded"/>

</input>

<output>

<mime:mimeXml part="Body"/>

</output>

</operation>

</binding>

<service name="FeaturedNPOQueryService">

<port name="FeaturedNPOQueryServiceSoap" binding="s0:FeaturedNPOQueryServiceSoap">

<soap:address

location="http://nadir1:7001/GreaterCauseWebService/FeaturedNPOQueryService.jws"/>

</port>

<port name="FeaturedNPOQueryServiceHttpGet" binding="s0:FeaturedNPOQueryServiceHttpGet">

<http:address

location="http://nadir1:7001/GreaterCauseWebService/FeaturedNPOQueryService.jws"/>

</port>

<port name="FeaturedNPOQueryServiceHttpPost" binding="s0:FeaturedNPOQueryServiceHttpPost">

<http:address

location="http://nadir1:7001/GreaterCauseWebService/FeaturedNPOQueryService.jws"/>

</port>

</service>

</definitions>

3 5 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Appendix D

P:\010Comp\ApDev\711-7\AppD.vp
Tuesday, May 27, 2003 10:27:28 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Index

Symbols and Numbers
/ (slash), using with Struts, 98

/* (slash-asterisk), using with Struts, 93

2_1_PortalAllianceRegistration.jsp.jsp view,

displaying, 173–174

2_3_4_2_CampaignDetails.jsp view, displaying,

190–191

2_3A_EnerPortalID.jsp view, displaying, 173

2_3C_EnterPortalID.jsp view, displaying, 192

2_4_2_UpdateNPOProfile.jsp view,

displaying, 167

2_4B_EnterEIN.jsp view, displaying, 167

2_AdministrationServicesNavBar, example

taken from, 159, 166–167, 172–173

"4+1 View Model of Architecture," overview

of, 51

A
AccessControlContexts, associating with subjects

in JAAS, 72–73

Action objects. See request handlers

Action subclass. See request handlers

<action> element in Struts, example of, 96–98,

108–109

ActionError objects in Struts

compiling errors with, 103–104

converting exceptions into, 107

identifying errors with, 102–103

ActionForm beans, validating data with, 138–139

ActionForm objects in Struts

creating with dynamic properties, 112

example of, 116–117

initializing with FormTags, 110–111

storing form data with, 111–112

ActionForm properties, transferring to DTOs,

139–140

ActionForm subclasses, implementing in

presentation tier, 137–140

ActionFormBean objects

creating, 124

purpose of, 119

ActionForward objects in Struts

creating, 124, 125

navigating with, 96–98

purpose of, 119

using with request handlers, 141

ActionMapping objects in Struts

purpose of, 119

using with request handlers, 142

using with Struts, 94–95

ActionServlet class, implementing Struts

controller with, 93

activity diagrams

for Create Campaign use case, 23, 40

documenting scenarios with, 14

for featured-NPO, 27

for making a donation, 17

for Portal Pass-through use case, 25

purpose of, 334

for Update Campaigns use case, 24, 42–43

actors

in Create Campaign use case, 38

for GreaterCause application, 10–11

in Manage Donation Cart use case, 44

in Manage Donor Preferences use case, 47

organization of, 20

purpose of, 9, 334

in Register Donor use case, 45

in Update Campaigns use case, 40–41

359

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

adaptive navigation scheme, explanation of, 35

AddDataSourcePropertyRule, example of, 122

Admin interface

defining for domain model, 214–223

specifying deployment descriptors for,

217–223

Admin-NPO relationship in domain model,

overview of, 209

Admin-PortalAlliance relationship in domain

model, overview of, 209–210

AdminBean, defining CMP and CMR fields for,

214–223

administration services package, diagram of, 153

administrator roles

associating, 326

examples of, 159

AdminLoginAction class, using, 158

alphabetical site organization, example of, 32

AppException class in Struts, exception handling

with, 107

application architectures

J2EE components in, 54

overview of, 50–54

application client containers, role in J2EE

architecture blueprints, 53

application data caching, overview of, 80–81

application security

functional classification of, 57–61

implementing in presentation tier, 153–161

planning, 54–61

application state, managing for GreaterCause

system, 139

asymmetric key sets, characteristics of, 62

attack scenarios, anticipating, 57

authentication. See also multi-layered

authentication in SSO; mutual authentication

and authorization, 60

in JAAS, 70–72

types of, 156

authenticity, role in Public Key Cryptography, 62

authorization

and authentication, 60

in JAAS, 72

B
B2B integration of GreaterCause application,

overview of, 299–314

back-end components, deciding, 302–303

BEA WebLogic Workshop tool. See WebLogic

Workshop tool

bean classes, role in business interface

pattern, 236

beanutils package, using with Struts, 138

behavior, factoring into use cases, 14–15

binaries, installing for Struts, 320–321

bindings in WSDL documents

overview of, 292–294

purpose of, 285, 290

bread-crumbs navigation scheme, explanation

of, 35

Business Delegate objects, use of, 131

business delegate pattern

explanation of, 137

implementing, 143–144

business functionality, fine- and coarse-grained

access of, 238–239

business interface

implementing for Create Campaigns use

case, 260–262

implementing for Update Campaigns use

case, 263–265

implementing in Register NPO use case,

247–248

business interface methods

discovering for Create Campaigns use

case in business tier, 259–260

discovering in Register NPO use case,

246–247

discovering in Update Campaigns use

case, 262

business interface pattern

applying to business tier, 232–233

implementing in business tier, 236–237

business tier

identifying package dependencies in, 244

implementing business interface pattern in,

236–237

implementing data transfer object pattern in,

238–241

implementing EJB home factory pattern in,

242–244

implementing session façade pattern in,

233–235

versus presentation tier, 238

and presentation tier patterns, 233–235

and realization of Site Administration use

case package, 245–259

3 6 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

realizing Search NPO use case in, 267–270

Register NPO use case in, 246–259

role in J2EE architecture blueprints, 52

business tier package, diagram of, 245

business tier pattern, advantages of, 213

C
cache architecture, overview of, 81–83

Cache Featured-NPO use case, overview of,

24–25

cache hits versus cache misses, 83

cache objects, interactions between, 82

cache sizes, limiting, 84

CacheEventListener objects, purpose of, 82

CacheFactory, purpose of, 82

CacheItemCreater objects, purpose of, 82

caches

benefits of, 79–80

desirable features for, 82

elements of, 83

overview of, 83–84

role in Struts message resource

semantics, 132

caching, overview of, 79–81

Campaign business interface, defining in

business tier, 259–260

campaign interface, defining in domain model,

228–229

Campaign-NPO relationship in domain model,

overview of, 211

Campaign objects, adding for PortalAlliance

interface, 224–225

Campaign page, submitting, 198

Campaign session bean and PortalAlliance entity

bean, configuration semantics for, 266

Campaign use case

configuration semantics of, 188–192

creating, 188–201

request handler used with, 199–201

shared request handler pattern used with,

188–201

structure of, 188

view semantics of, 192–198

CampaignDTO, example of, 260

campaigns and NPO entities, establishing

relationship between, 261–262

case-driven modeling, using, 4–5

certificate authorities, role in Public Key

Cryptography and digital signatures, 63

channel security, overview of, 57–59. See also

security entries

Checkout use case, overview of, 14, 18

circles of trust in federated network identity

frameworks, diagram of, 75. See also trust

class diagrams

of Create Campaign use case, 189

for Create Campaign use case in business

tier, 261

of Manage NPO profile use case, 162

of Register NPO use case for business

tier, 248

of Register NPO use case for presentation

tier, 182

of Register Portal-Alliance use case, 170

for Search NPO use case in business

tier, 270

for Search NPO use cases, 187

client tier, role in J2EE architecture blueprints, 52

clients, role in J2EE architecture blueprints, 52

cm-fields, role in deployment descriptors, 219

CMP and CMR semantics, role in domain

models, 213–223

cmr-fields, role in deployment descriptors,

226–227

command pattern, using, 140–142

components, role in application architecture,

50–51

conditional includes, use of, 14–15

ConfigRuleSet, annotating, 120–126

container-managed fields in ejb-jar.xml,

purpose of, 219

containers, role in J2EE architecture blueprints,

53, 54

content

navigating, 34–35

organizing, 31–34

content editors, importance to information

architects, 31

context diagram for portal-domain, 24

controller in MVC implementation of Struts,

overview of, 92–93

controller objects, implementing in Struts,

127–128

<controller> element in Struts, example of, 97–99

ControllerConfig configuration objects, purpose

of, 119

CORBA versus SOAP, 277

I n d e x 3 6 1

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

credit card processor, role in GreaterCause

application, 10

Create Campaign use case

activity diagram for, 40

actors in, 38

overview of, 22–23

postcondition of, 38

precondition of, 38

purpose of, 38

UI (user interface) for, 38–40

Create Campaigns use case

defining and implementing in business tier,

259–262

implementing business interface for,

260–262

CreateCampaignAction request handler, example

of, 199

CreateException for entity beans, explanation

of, 258

credential mapping in SSO, overview of, 67

credentials

in JAAS, 70

in SSO, 67

custom tags, using with Struts, 147–149

D
damage estimation, determining, 55

data access needs, types of, 81

data model, creating, 211–212

data transfer object pattern, applying to business

tier, 233

data types, deciding on, 303

data, validating with ActionForm beans, 138–139

DataSourceConfig configuration objects, purpose

of, 119

defederation in Liberty architecture, overview

of, 79

dependencies, identifying for GreaterCause, 11

deployment descriptors

for SiteAdmin business interface, 248–254

specifying for Admin interface, 217–223

specifying for campaign interface of domain

model, 228–229

specifying with EJB QL, 226–228

for Update Campaigns use case, 265–266

design patterns applied to business tier

business interface pattern, 232–233

data transfer object pattern, 233

EJB home factory pattern, 233

session façade pattern, 232, 235

development environment, creating with

WebLogic Server 7.0, 322–323

digester, adding rules to rule cache of, 120–121

digital signatures, overview of, 61–65

dispatcher objects, implementing in Struts,

128–130

Dispatchers in Struts, using, 93–94, 106–107

Display Donation History use case, overview

of, 18

Display Featured-NPOs use case, overview of,

25–26

distributed caches, invalidation in, 81

domain model

defining Admin interface for, 214–223

defining campaign interface for, 228–229

defining PortalAlliance interface for,

223–225

implementing, 213–223

relationships in, 209–211

domain objects, discovering, 208–211

domains, explanation of, 322. domains. See also

problem domains

Donation Cart use case, managing, 16–18

donations, workflow for, 17

donors, role in GreaterCause application, 10–11

double-interface pattern. See business interface

pattern

DTO (data transfer object) pattern, implementing

in business tier, 238–241

DTOs (Data Transfer Objects)

explanation of, 137

guidelines for use of, 241

proliferation of, 241

transferring ActionForm properties to,

139–140

using with getCampaigns method, 264–265

DuplicateKeyException for entity beans,

explanation of, 258

DynaActionForm objects in Struts, purpose

of, 112

E
EAI (Enterprise Application Integration), role

in Web services, 274–275

.ear extension, meaning of, 318

3 6 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EIN, entering in Manage NPO Profile use case,

163–164

EIS tier, role in J2EE architecture blueprints, 52

EJB containers, role in J2EE architecture

blueprints, 53

EJB home factory pattern

applying to business tier, 233

implementing in business tier, 242–244

ejb-jar.xml deployment descriptor file,

explanation of, 217–219

EJB QL, using with finder and select methods,

225–229

ejbCreate methods for domain model, displaying,

216–217

EJBHomeFactory helper class, implementing,

242–243

EJBs

accessing with business interface

patterns, 237

caching home references for, 244

local interfaces for, 213

transaction semantics for when used with

Register NPO use case, 254–256

ejbSelectRegionalCampaign method, example

of, 227

embedded-links navigation scheme, explanation

of, 35

enterprise applications, securing, 55

entity beans

accessing with EJB QL, 225–229

exceptions for, 258–259

error handling in Struts, overview of, 101–105

ErrorsTag objects in Struts, displaying errors

with, 104–105

evolutionary requirements, determining for

security, 56

exception handling

in Register NPO use case business-tier

transactions, 256–259

in Struts, 105–107

ExceptionConfig objects

creating, 123, 125

purpose of, 119

executeSearch business method, defining, 267

extend relationships

advisory about, 22

use of, 14–15

extension mapping, example of, 93

F
FactoryCreateRule, example of, 122

featured-NPOs list, creation of, 8

FeaturedNPODTO array, XML version of,

309–310

FeaturedNPOQueryService Web service

creating, 304–310

creating serialization classes for, 310

creating stateless EJB for, 304

deploying to production server, 313–314

functionality of, 301–302

generating client runtime and building test

client for, 312–313

generating response with, 312–313

implementing with WebLogic Workshop,

303–314

setting up developmental environment for,

303–305

WSDL for, 356–358

federated network identity

explanation of, 59

objectives of, 73–74

overview of, 73–79

federation scenarios, overview of, 77–79

finder and select methods, using EJB QL with,

225–229

FinderException for entity beans, explanation

of, 258

flow of events

for Cache Featured-NPO use case, 25

for Checkout use case, 18

for Create Campaign use case, 22–23

for Display Donation History use case, 18

for Display Featured-NPOs use case, 26

for Manage Donation Cart use case, 16–18

for Manage Donor Preferences use case,

19, 48

for Manage NPO Profile use case, 21

for Manage Portal Alliance Profile use

case, 21

for Perform UI Customization use case, 21

for Provide Featured-NPO use case, 23

purpose of, 334

for Redirect to the GreaterCause.com Site

use case, 26

for Register Donor use case, 18–19, 46–47

for Register NPO use case, 20–21

I n d e x 3 6 3

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for Register Portal Alliance use case, 21

for Search and Donate use case, 45

for Search NPO use case, 19–20

for Update Campaigns use case, 23, 42

for Update Donation History use case, 18

foo method in WSDL file, purpose of, 285

form-based authentication, using, 155–156

form-bean life cycle, managing, 140

<form-bean> element in Struts, example of,

108–109

form-bean, setting properties in, 197

form data

capturing with ActionForm subclass, 138

capturing with Struts, 108–117

storing with ActionForms, 111–112

form submission, managing with Struts, 107–108

FormPropertyConfig objects

creating, 124–125

purpose of, 119

FormTags in Struts, initializing ActionForm

objects with, 110–111

<forward> element in Struts, example of, 96–98

frameworks, role in J2EE architecture blueprints,

53–54

functionality, role in application architecture, 50

G
GC.properties file, advisory about, 322

geographical site organization, example of, 32

getCampaignNPOs method, accessing, 309

getCampaigns method

of Campaign session bean, 263–264

transaction attribute declaration for, 228

getNPORegistration sequence diagram, 250

getRemoteUser method of HttpServletRequest

interface, use of, 154–155

global navigation scheme, explanation of, 34

graphic designers, importance to information

architects, 31

GreaterCause application

abridged site flow for, 37

accessing home page of, 328

architecture of, 50–54

B2B integration of, 299–314

building, 329

configuring users for, 325–326

context diagrams and actors for, 10–11

creating database tables for, 328

defining, 6–9

deploying, 326–329

detailed use case description for, 37–48

documenting use cases for, 13–15

identifying risk factors and dependencies

for, 11

identifying use case packages for, 12–13

managing state of, 139

security configuration of, 153–154

service locator methods of, 145

site flow for, 352–353

use case summary for, 15–26

use cases for, 299–301

wire frames for, 336–349

GreaterCause\conf directory, files in, 327

GreaterCause directories, contents of, 327

GreaterCause.com site administrator, role in

GreaterCause application, 10

GreaterCause.domain, responsibilities of, 7

GreaterCause.ear file, deploying, 328

H
has-a relationship, example of, 211

hasAccess tag, example of, 158–159

hashes, role in Public Key Cryptography and

digital signatures, 63

Header elements, role in Web services, 281

hierarchical site organization, example of, 32

home references, caching for EJBs, 244

HtmlTag, using with Struts, 99

HTTP messages, carrying SOAP messages

in, 277

HTTPS, using, 155–156

I
I18N, explanation of, 98–101

ID column in CAMPAIGN table, population

of, 212

identity, explanation of, 59

identity federation, example of, 77

identity providers, federating, 77–79

immutable DTOs, explanation of, 240

Implementation View, explanation of, 51

include/extend use cases

in Manage Donation Cart use case, 44

purpose of, 334

include relationships, use of, 14–15

3 6 4 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

include use cases for Register Donor use case,

explanation of, 46

indexed site organization, example of, 32–33

information architecture

applying principles of, 35–36

beginning of, 30–31

init methods, role in Struts MVC semantics, 128

InitialContext, configuring for use with

SiteAdmin session bean, 252–253

instance variables, identifying with DTOs,

240–241

integrity, role in Public Key Cryptography, 62

internationalization

and localization support for Struts, 98–101

Validator support for, 151

INVALIDATE events, using with caches, 83

<iterate> tag, using with Struts and forms,

114–115

J
@jws tags:, meaning of, 305

J2EE application archives, creating, 320

J2EE applications, elements of, 319

J2EE architecture blueprints, creating, 52–54

J2EE components, role in application

architectures, 54

J2EE modules, components of, 318

JAAS (Java Authentication and Authorization

Service)

authentication in, 70–72

authorization in, 72

overview of, 69–73

JAAS LoginContext class, example of, 71–72

JAAS LoginModule class, example of, 71–72

Jakarta Commons Validator. See Validator plug-in

JavaBean classes, DTOs as, 239

JavaBeans, tags used with, 148

JavaServer Faces standard, purpose of, 90

JDBC connection pool, configuring for WebLogic

domains, 324

JNDI names

describing for home interfaces, 244

location in GreaterCause application, 145

JSP page 2_1_PortalAllianceRegistration.jsp,

custom tags used in, 148

.jws file, creating, 305

K
key-cache-size, providing for domain model, 229

Krutchen, Philippe and "4+1 View Model of

Architecture", 51

L
layers, role in application architecture, 50

lib/commons-*.jar files, contents of, 320

lib/struts-*.tld files, contents of, 321

lib/struts.jar files, contents of, 321

Liberty approach versus global identifiers, 78–79

Liberty architecture. See also Project Liberty

defederation in, 79

diagram of, 76

overview of, 74–79

provider definitions for, 74

SSO and identity federation in, 76–77

List-based implementations in Struts, example of,

114–117

liveness validation in SSO, overview of, 69

local navigation scheme, explanation of, 34–35

Local objects in Struts, purpose of, 99–100

localization and internationalization support for

Struts, overview of, 98–101

Logical View, explanation of, 51

LoginContext class in JAAS, example of, 71–72

LoginModule class in JAAS, example of, 71–72

LRU (least recently used) purging algorithm,

using with caches, 84

M
Manage Campaigns package, overview of, 22–23

Manage Campaigns use cases

data model for, 212

domain model for, 210

realizing in business tier, 259–266

realizing in presentation tier, 188–205

Manage Donation Cart use case

actors in, 44

include/extend use case for, 44

overview of, 16–17

postcondition of, 44

precondition of, 44

purpose of, 43

I n d e x 3 6 5

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Manage Donor and Donations package, overview

of, 15–19

Manage Donor Preference use case

actors in, 47

overview of, 19

postcondition of, 47

precondition of, 47

purpose of, 47

UI (user interface) for, 47

Manage NPO Profile use case

ActionForm bean used with, 167–168

class diagram of, 162

configuration semantics of, 166

multi-page pattern in, 162–164

overview of, 21, 161–169

request handler used with, 168–169

structure of, 163–165

view semantics of, 166–167

Manage Portal-Alliance Profile use case

class diagram of, 176

configuration semantics of, 178–180

overview of, 21, 176–181

request handler used with, 180–181

structure of, 177

ManagePortalAllianceAction class, example of,

102–103

Manager Donor Preferences, use of, 14

Mandatory value for transaction attributes,

explanation of, 255

MDA (model-driven architecture), purpose

of, 282

message-digests, role in Public Key Cryptography

and digital signatures, 63

MessageResources class in Struts, purpose of,

100–101, 131–132

MessageResourcesConfig objects

creating, 125–126

purpose of, 119

messages in WSDL documents

overview of, 290–291

purpose of, 284

metadata, role in SSO, 61

model in MVC implementation of Struts,

overview of, 91–92

model interaction with request handlers in Struts,

overview of, 95–96

ModuleConfig configuration objects, purpose

of, 120

modules, role in application architecture, 51

multi-action pattern

for Manage Portal-Alliance Profile use

case, 177

for Register NPO use case, 183

for Register Portal-Alliance use case,

169–176

multi-layered authentication in SSO, overview

of, 68–69. See also authentication; mutual

authentication

multi-page pattern sequence diagrams, examples

of, 164, 193

Multiplexed Resource Mapping, role in Struts

MVC semantics, 127

mutable DTOs, explanation of, 240

mutual authentication in SSO, overview of, 69.

See also authentication; multi-layered

authentication in SSO

MVC implementation in Struts, overview of,

91–98

MVC (Model-View-Controller) architecture,

explanation of, 91

MVC semantics of Struts, overview of, 126–131

MyService, generating WSDL for, 285–295

MyServiceSoap binding, example of, 293–294

N
name attribute, using with ActionMapping

configuration objects, 94–95

names in JAAS, explanation of, 70

NamingException, throwing in transactions, 257

navigation schemes, creating, 34–35

nested properties, using with forms and Struts,

114–117

network identity management, overview of,

59–60

network services, defining with WSDL, 284–285

Never value for transaction attributes, explanation

of, 255–256

non-defining relationship in data model,

explanation of, 211

nonces, role in SSO credentials, 68

NotSupported value for transaction attributes,

explanation of, 254–255

NPO administrator, role in GreaterCause

application, 10

NPO Caching package, overview of, 23–25

NPO entities and campaigns, establishing

relationships between, 261–262

3 6 6 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NPOs (non-profit organizations)

registering in business tier, 233–235

role in GreaterCause application, 7–8

O
ObjectNotFoundException for entity beans,

explanation of, 258–259

OMB (Object Management Group), model-driven

architecture of, 282

one-to-many unidirectional relationship, example

of, 210, 226, 259–262

operations in WSDL documents, purpose of, 284

Oracle database server, setting up JDBC

connection pool for, 324

P
package dependencies

identifying in business tier, 244

identifying in presentation tier, 152–153

page property, using with Manage NPO Profile

use case, 165

parameter type-conversion for forms, requesting

with Struts, 113–114

path attribute, using with ActionMapping

configuration objects, 94–95

pattern discovery and documentation, overview

of, 161

Perform GreaterCause.com Site Administration

package, overview of, 20–23

Perform UI Customization use case, overview

of, 21

plug-ins, using with Struts, 117–118

PlugInConfig configuration objects, purpose

of, 119

PlugInConfig object, creating, 126

portal-alliance

location of profile and registration

information for, 212

meaning of, 7

portal-alliance administrator, role in GreaterCause

application, 10

portal-domain

context diagram of, 6

meaning of, 6

role in GreaterCause application, 10

portal, meaning of, 6

Portal Pass-through package, overview of, 25–26

portal-providers, purpose of, 7

PortalAlliance-Campaign relationship in domain

model, overview of, 210–211

PortalAlliance interface, defining for domain

model, 223–225

PortalAllianceRegistrationAction request handler,

example of, 96, 141–142

PortalAllianceRegistrationForm, example of, 110

portlets, purpose of, 299–300

ports in WSDL documents, purpose of, 285

portTypes in WSDL documents

overview of, 291–292

purpose of, 284–285

postcondition(s)

in Create Campaign use case, 38

in Manage Donation Cart use case, 44

in Manage Donor Preferences use case, 47

purpose of, 334

in Register Donor use case, 46

in Update Campaigns use case, 41

precondition(s)

in Create Campaign use case, 38

in Manage Donation Cart use case, 44

in Manage Donor Preferences use case, 47

purpose of, 334

in Register Donor use case, 46

in Update Campaigns use case, 41

presentation-layer framework, explanation of, 53

presentation tier

accessing domain objects from, 233

versus business tier, 238

and business tier patterns, 233–235

and Campaigns use cases, 188–205

implementing security in, 153–161

and Manage NPO Profile use case, 161–169

and Manage Portal-Alliance Profile use

case, 176–181

realizing Site Administration use cases in,

161–186

and Register NPO use case, 181–186

and Register Portal-Alliance use case,

169–176

and Update Campaigns use case, 201–205

presentation-tier classes

factoring tags into design process of,

147–149

factoring Validator into design process of,

149–152

I n d e x 3 6 7

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

identifying package dependencies in,

152–153

implementing, 137–153

implementing request handlers in, 140–142

implementing request handlers with,

140–142

using business delegate pattern with,

143–144

using service locator pattern with, 145–147

primary domains in SSO, explanation of, 66

principal-to-role mapping, declaring, 156,

325–326

principals in JAAS, functionality of, 70

problem domains, defining, 6–9. See also

domains

process methods, role in Struts MVC semantics,

129–130

Process View, explanation of, 51

profiles in SSO, overview of, 67

project descriptions, creating for problem

domains, 6–9

Project Liberty, Web address for, 73. See also

Liberty architecture

PropertyMessageResources class in Struts,

purpose of, 131–132

PropertyUtils.copyProperties(toBean, fromBean)

method, using, 140

protected resources, preventing access to,

160–161

Provide Featured-NPO use case, overview of, 23

providers, federating, 77–78

Public Key Cryptography in digital signatures,

overview of, 62–63

Q
queries for accessing entity beans, defining with

EJB QL, 225–229

R
re-authentication, explanation of, 68

read only data, caching, 81

Redirect to the GreaterCause.com Site use case,

overview of, 26

references

for business tier design and

implementation, 271

for presentation tier design and

implementation, 205

for struts-based application

architecture, 133

Register Donor process, use of, 14

Register Donor use case

actors in, 45

flow of events for, 46–47

include use case for, 46

overview of, 18–19

postconditions in, 46

preconditions in, 46

purpose of, 45

UI (user interface) for, 46

Register NPO use case

in business tier package, 246–259

class diagram of, 182

configuration semantics of, 182–183

and handling exceptions in business-tier

transactions, 256–259

multi-action pattern sequence diagram

for, 185

multi-action pattern used with, 181–186

overview of, 20–21, 181–186

structure of, 181

and transaction semantics for EJBs,

254–256

view semantics of, 183–186

Register Portal-Alliance use case

ActionForm bean used with, 174–175

class diagram of, 170

configuration semantics of, 171–172

multi-action pattern used with, 169–176

overview of, 21, 169–176

request handler used with, 175–176

structure of, 170

view semantics of, 172–174

registerNPO sequence diagram, 249

remote interface, extending for use with business

interface patterns, 236

RemoteExceptions, throwing in remote

interfaces, 237

RemoveException for entity beans,

explanation of, 259

replay attacks, occurrence of, 68

request handlers

implementing in presentation tier, 140–142

managing user-specific state with, 142

model interaction with, 95–96

role in MVC semantics, 130–131

use of, 92

3 6 8 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using with Campaign use case, 199–201

using with Manage NPO Profile use case,

168–169

using with Manage Portal-Alliance Profile

use case, 180–181

using with Register Portal-Alliance use

case, 175–176

request processors. See Dispatchers in Struts

request-response operation in SOAP, advisory

about, 314

RequestProcessor object in Struts

creating URLs with, 98

functionality of, 93–94

role dispatcher objects, 128–129

role in creating ActionForms with

dynamic properties, 112

role in MVC semantics, 127–128

role in request handlers, 130–131

role in storing form data with

ActionForms, 111

Required value for transaction attributes,

explanation of, 255

RequiresNew value for transaction attributes,

explanation of, 255

ResourceBundle class in Struts, purpose of, 100

resources, role in developing secure

environments, 56

risk estimation, determining, 55

risk exposure, role in developing secure

environments, 56

risk factors, identifying for GreaterCause, 11

role-oriented site organization, example of, 33

roles

defining, 157

examples of, 159–160

RPC-oriented versus document-oriented Web

service operation, 303

RPC (Remote Procedure Calls), using SOAP for,

315

S
scenarios, documenting with activity diagrams, 14

schemas, role in SSO, 61

scope attribute, using with ActionMapping

configuration objects, 94

scope function of <action> element, purpose of, 140

search facility, invoking for Campaign use

case, 195

Search NPO package, overview of, 19–20

Search NPO use case

discovering business interface methods in,

267–268

implementing business interface for, 268

realizing in business tier, 267–270

realizing in presentation tier, 186–188

SearchAndListNPOAction request handler,

example of, 200–201

secondary domains in SSO, explanation of, 66

secure environments, factors involved in

provision of, 56

security breach identification and recovery

procedures, determining, 55–56

security design for applications, guidelines for, 56

security, planning for applications, 54–61. See

also channel security

security requirements, identifying, 55–57

select and finder methods, using EJB QL with,

225–229

sequence diagrams

for business delegate, 144

of business delegate, 144

for getNPORegistration, 250

of multi-action form pattern, 172

for multi-action pattern of Manage NPO

Profile use case, 164

for multi-action pattern of Manage

Portal-Alliance Profile use case, 178

for multi-action pattern of Register NPO

use case, 184, 185

for multi-page patterns, 164, 193

purpose of, 334

for registerNPO, 249

for Update Campaigns use case, 203

for updateCampaigns method, 265

for updateNOPRegistration, 251

serialization classes, creating for

FeaturedNPOQueryService, 310–312

service locator pattern, implementing, 145–147

service requesters and providers, interactions

between, 281

service-side components, design aspects for

implementation of, 302–303

service to worker pattern

example of, 92

use of, 126

services in WSDL documents

overview of, 294–295

purpose of, 285

I n d e x 3 6 9

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

session beans. See also stateless session beans

deployment descriptors for SiteAdmin,

248–254

using with presentation and business tier

patterns, 234

session façade pattern

accessing business logic by means of, 235

applying to business tier, 232

implementing in business tier, 233–235

SetActionMappingClassRule, example of, 122

SetNextRule, example of, 121

SetPropertiesRule, example of, 121, 122–123

SetPropertyRule, example of, 123

setRollbackOnly method, invoking, 258

signed hash values and XML documents,

explanation of, 63

Site Administration use cases

data model for, 212

domain model for, 210

realizing, 161–186

realizing in business tier, 245–259

site content

navigating, 34–35

organizing, 31–34

site-map navigation scheme, explanation of, 35

SiteAdmin business interface

business methods identified in, 246–247

implementing, 247–248

session bean deployment descriptors for,

248–254

SiteAdmin session bean

configuration information for, 252

configuring for deployment in EJB

container, 248–254

locating home interface for, 242

transaction attributes for methods of, 256

slash (/), using with Struts, 98

slash-asterisk (/*), using with Struts, 93

SOAP body

explanation of, 296

overview of, 298

SOAP data types, defining, 310

SOAP envelope

explanation of, 295

overview of, 296–297

SOAP fault

generating, 309

overview of, 299

SOAP header, 281

explanation of, 295–296

overview of, 297–298

SOAP messages, components of, 295–296

SOAP request and response, displaying, 311

SOAP security, overview of, 277–278

SOAP (Simple Object Access Protocol)

versus CORBA, 277

explanation of, 275

introduction to, 295–299

message styles defined by, 277

overview of, 276–278

role in Web services, 283

using for RPC, 315

SOAP:style semantics, overview of, 314–315

SSL (Secure Sockets Layer)

advantages and disadvantages of, 61–62

purpose of, 58

SSO (single sign-on)

architecture of, 66

benefits of, 65

credential mapping in, 67

elements of, 66, 67–69

in Liberty architecture, 76–77

overview of, 60–61

stateful session beans, dynamics of, 236

stateless EJB, creating for

FeaturedNPOQueryService, 304

stateless session beans, benefits of, 236. See also

session beans

stereotyping, use of, 10

storyboards, purpose of, 36

strong authentication, explanation of, 68–69

struts-config.xml file

example from, 94

location of, 118

parsing, 118–120

purpose of, 93

Struts framework, 93–94

capturing form data with, 108–117

configuration semantics of, 118–126

creating configuration objects in, 120–126

custom extensions with plug-ins used with,

117–118

custom tags used with, 147–149

deploying and configuring, 320–322

Dispatchers used in, 106–107

error handling in, 101–105

3 7 0 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

exception handling in, 105–107

explanation of, 53

extending with ConfigRuleSet, 121–126

internationalization and localization support

for, 98–101

installing and configuring, 320-321

message resources semantics in, 131–132

MVC implementation in, 91–98

MVC semantics of, 126–131

once-only form submission in, 107–108

tag library declarations for, 321

Struts Validator plug-in. See Validator plug-in

subject matter experts, importance to information

architects, 31

subjects in JAAS

associating with AccessControlContexts,

72–73

functionality of, 70

Supports value for transaction attributes,

explanation of, 255

synchronous versus asynchronous operation, 302

system context, identifying, 9–11

system security, planning, 54–61

T
tags, factoring into design process, 147–149

technology teams, importance to information

architects, 31

tenets of application security, 55–57

TOC (table of contents) navigation scheme,

explanation of, 35

TokenCache, purpose of, 82–83

topical site organization, example of, 32

transaction semantics for EJBs, role in Register

NPO use case in business tier, 254–259

transactional data, advisory about caching of, 81

Transactional XML, modes of, 283. See also XML

trust. See also circles of trust in federated network

identify framework

establishing in SSO, 61

role in developing secure environments,

56–57

type attribute, using with ActionMapping

configuration objects, 94

types in WSDL documents

overview of, 289–290

purpose of, 284

U
UDDI (Universal Discovery, Description,

and Integration)

overview of, 278–279

role in Web services, 283

UI (user interface)

for Create Campaign use case, 38–40

importance of, 35

for Manage Donor Preferences use case, 47

for Register Donor use case, 46

in Update Campaigns use case, 41

Update Campaigns use case

activity diagram for, 42–43

actors in, 40–41

campaign session bean deployment

descriptors for, 265–266

discovering business interface methods

in, 262

implementing business interface for,

263–265

overview of, 23, 201–205

postcondition in, 41

precondition in, 41

purpose of, 40

UI (user interface) for, 41

Update Donation History use case

overview of, 18

use of, 14

updateCampaigns method, example of, 264

updateNOPRegistration sequence diagram, 251

URLs (uniform resource locators), creating in

Struts, 98

use case diagrams

for Manage Campaigns, 22

for Manage Donor and Donations, 16

for NPO Caching, 24

for Perform GreaterCause.com Site

Administration, 20

purpose of, 12

for Search NPO package, 19

use case packages, identifying for GreaterCausea,

12–13

use case summaries, creating, 15

Use Case View, explanation of, 51

use cases

applying information architecture to, 36–48

Cache Featured-NPO, 24–25

I n d e x 3 7 1

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Campaign, 188–205

Checkout, 18

Create Campaign, 22–23

description template for, 334

detailed version for GreaterCause

application, 37–48

detailing, 36–48

Display Donation History, 18

Display Featured-NPOs, 25–26

documenting for GreaterCause application,

13–15

explanation of, 4–5

factoring behavior into, 14–15

Manage Campaigns, 188–205

Manage Donation Cart, 16–17

Manage NPO Profile, 21, 161–169

Manage Portal Alliance Profile, 21

Manage Portal-Alliance Profile, 176–181

Perform UI Customization use case, 21

Provide Featured-NPO, 23

Redirect to the GreaterCause.com Site, 26

Register Donor, 18–19

Register NPO, 20–21, 181–186

Register Portal Alliance, 21

Register Portal-Alliance, 169–176

Search NPO, 19

Update Campaigns, 23

Update Donation History, 18

user interfaces, purpose of, 334

user-specific state, managing with request

handlers, 142

users, configuring for GreaterCause application,

325–326

V
validate attribute of <action> element, setting,

138–139

Validator plug-in

configuring, 321–322

example of, 117–118

using, 148–152

ValidatorPlugIn class in Struts, example of,

117–118

value object pattern, using, 139–140

ValueListIterator interface, implementing,

267–269

ValueObject, purpose of, 82

view in MVC implementation of Struts, overview

of, 92

<<View>> stereotype, advisory about, 165

W
Web containers, role in J2EE architecture

blueprints, 53

Web services

architecture of, 279–281

components of, 283

creating, 305–314

definition of, 276

developing, 288

features of, 282

implementing, 302–314

introduction to, 274–279

request-response interaction in, 300–301

testing with WebLogic Workshop tool, 309

WebLogic, 300

Web sites

authentication, 156

development methodologies and supporting

tools for, 282–283

Project Liberty, 73

service requester and provider

interactions, 281

Validator, 150

WebLogic Server domains, 322

WS-Routing and Referral

specifications, 282

XML schema for SOAP messages, 276

Web tier, role in J2EE architecture blueprints, 52

weblogic-cmp-rdbms-jar.xml deployment

descriptor, displaying, 220

WebLogic console, accessing, 309

WebLogic domain, configuring, 322–324

WebLogic server

selecting for FeaturedNPO

QueryService, 304

starting after installation, 322

WebLogic Server 7.0, obtaining installation

instructions for, 322

WebLogic Web services, features of, 300

WebLogic Workshop tool

benefits of, 302

configuring CampaignControl.ctrl file

with, 306, 308

3 7 2 P r a c t i c a l J 2 E E A p p l i c a t i o n A r c h i t e c t u r e

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

design view provided by, 306–307

displaying source view for

FeaturedNPOService.jws with, 306,

308–309

example of, 285–288

launching test environment with, 306–307

project directories used by, 305

testing module deployed by, 306

wire frames for GreaterCause application

Advanced Search > Select Non-Profit, 347

Checkout, 348

creating, 35–36

Donation Cart, 348

Donor Preferences, 346

Donor Services and Search, 347

Home Non-Profit Administrator

Services, 338

Home > Administrator Login, 336

Home > Portal Administrator Services, 337

Home > Site Administrator Services, 337

Home > Site Administrator Services > NPO

Configuration > Update Profile, 345

Home > Site Administrator Services > NPO

Configuration > Update Registration, 344

Home > Site Administrator Services >

Portal Configuration > Create New

Campaign, 341–342

Home > Site Administrator Services >

Portal Configuration > Enter Portal

ID, 339

Home > Site Administrator Services >

Portal Configuration > Navigation

Bar Setup, 341

Home > Site Administrator Services >

Portal Configuration > Update

Campaigns, 343

Home > Site Administrator Services >

Portal Configuration > Update

Profile, 340

Home > Site Administrator Services >

Portal Configuration > Update

Registration, 340

Home > Site Administrator Services >

Registration > NPO Registration, 339

Home > Site Administrator Services >

Registration > Portal Alliance

Registration, 338

Home Page, 336

Portlet (Gateway to GreaterCause), 345

Registration, 346

Tax Record, 349

WS-Routing and Referral specifications, Web

address for, 282

WSDL data typing, basis of, 288–289

WSDL documents, elements of, 284–285

WSDL files, example of, 285–295

WSDL namespaces, overview of, 289

WSDL (Web Services Description Language)

for FeaturedNPOQueryService, 356–358

overview of, 278

role in Web services, 283

specification summary for, 284–285

transmission primitives and exchange

patterns for, 292

X
XML (eXtensible Markup Language), emergence

of, 275. See also Transactional XML

XML signatures, overview of, 63–65

XMLC compiler, purpose of, 90

I n d e x 3 7 3

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 / Index

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-6863-1580

FAX +65-6862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

McGraw-Hill/Osborne

TEL +1-510-420-7700

FAX +1-510-420-7703

http://www.osborne.com

omg_international@mcgraw-hill.com

ApDev TIGHT / Practical J2EE Application Architecture / Gulzar / 222711-7 /
Blind Folio 374

P:\010Comp\ApDev\711-7\index.vp
Wednesday, May 28, 2003 1:31:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

