

Sk,ew-Tolerant Circuit Design

Related Titles from Morgan Kaufmann Publishers

Self-Checking and Fault-Tolerant Digital Design
Parag Lala (ISBN 1-12434-370-8)

Readings in Computer Architecture
Mark D. Hill, Norman P. Jouppi, and Gurindar S. Sohi (ISBN 1-55860-539-8)

Logical Effort: Designing Fast CMOS Circuits
Ivan Sutherland, Robert Sproull, and David Harris (ISBN 1-55860-557-6)

The Student's Guide to VHDL
Peter J. Ashenden (ISBN 1-55860-520-7)

The Designer's Guide to VHDL
Peter J. Ashenden (ISBN 1-55860-270-4)

Computer Architecture: A Quantitative Approach, second edition
John L. Hennessy and David A. Patterson (ISBN 1-55860-329-8)

Forthcoming
The Designer's Guide to VHDL, second edition
Peter J. Ashenden (ISBN 1-55860-674-2)

Skew-Tolerant Circuit Design or any of the above titles can be purchased directly from
Morgan Kaufmann via the Web at www.mkp.com or by phone at 800-745-7323.

Circuit
David Harris
Harvey Mudd College

M O R G A N K A U F M A N N P U B L I S H E R S

A N I M P R I N T O F A C A D E M I C P R E S S

A Technology

I A N

L O N D O N SYDNEY T O K Y O

Senior Editor
Director of Production and Manufacturing
Senior Production Editor
Editorial Assistant
Cover Design
Text Design
Composition
Cover and Editorial Illustration
Technical Illustration
Copyeditor
Proofreader
Indexer
Printer

Denise E. M. Penrose
Yonie Overton
Edward Wade
Courtney Garnaas
Ross Carron Design
Side By Side Studios, Mark Ong
Nancy Logan
Duane Bibby
Windfall Software
Ken DellaPenta
Erin Milnes
Steve Rath
Courier Corporation

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances where Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

ACADEMIC PRESS
A Harcourt Science and Technology Company
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
h ttp ://www. academ icpress, corn

Academic Press
Harcourt Place, 32 Jamestown Road, London, NW1 7BY, United Kingdom
h ttp://www, academ icp ress. co m

Morgan Kaufmann Publishers
340 Pine Street, Sixth Floor, San Francisco, CA 94104-3205, USA
h ttp : //www. m kp. co m

�9 2001 by Academic Press
All rights reserved
Printed in the United States of America

05 04 03 02 01 5 4 3 2

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means--electronic, mechanical, photocopying, recording, or otherwise--without
the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Harris, David

Skew-tolerant circuit design / David Harris.
p.cm

Includes bibliographical references and index.
ISBN 1-55860-636-X
1. Timing circuits--Design and construction. 2. Integrated circuits--Very large scale

integration--Design and construction. 3. Synchronization. I. Title

TK7868.T5 .H37 2001
621.3815--dc21 00-036538

This book has been printed on acid-flee paper.

To my parents, Dan and Sally,

who have inspired me to teach

Contents

Chapter 1
1.1

1.2

1.3

1.4

1.5

1.6

1.7

Chapter 2
2.1

2.2

2.3

2.4

2.5

2.6

Preface xi

Introduction
Overhead in Flip-Flop Systems 3

Throughput and Latency Trends 5
1.2.1 Impact of Overhead on Throughput and Latency
1.2.2 Historical Trends 8
1.2.3 Future Predictions 10
1.2.4 Conclusions 11

Skew-Tolerant Static Circuits 12

Domino Circuits 14
1.4.1 Domino Gate Operation 15
1.4.2 Traditional Domino Clocking 18
1.4.3 Skew-Tolerant Domino 20

Case Studies 22
1.5.1 Sequencing Overhead in a Static ASIC 23
1.5.2 Sequencing Overhead in the Alpha 21164 24
1.5.3 Timing Analysis with Clock Skew 24

A Look Ahead 27

Exercises 29

Static Circuits
Preliminaries 36
2.1.1 Purpose of Memory Elements 36
2.1.2 Terminology 37

Static Memory Elements 38
2.2.1 Timing Diagrams 39
2.2.2 Sequencing Overhead 42
2.2.3 Time Borrowing 44
2.2.4 Min-Delay 46

Memory Element Design 51
2.3.1 Transparent Latches 52
2.3.2 Pulsed Latches 55
2.3.3 Flip-Flops 57

Historical Perspective 62

Summary 63

Exercises 64

35

v i i i Contents

Chapter 3
3.1

3.2

3.3

3.4

3.5

Chapter 4
4.1

4.2

4.3

4.4

4.5

4.6

Chapter 5

5.1

5.2

Domino Circuits
Skew-Tolerant Domino Timing
3.1.1 69
3.1.2
3.1.3 74
3.1.4
3.1.5
3.1.6

Domino
3.2.1
3.2.2
3.2.3
3.2.4

Historical Perspective 95

Summary 97

Exercises 98

Circuit Methodology
Static/Domino Interface 105
4.1.1 Latch Placement 105
4.1.2 Static-to-Domino Interface 110
4.1.3 Domino-to-Static Interface 111
4.1.4 Timing Types 113
4.1.5 Qualified Clocks 125
4.1.6 Min-Delay Checks 125

Clocked Element Design 128
4.2.1 Latch Design 129
4.2.2 Domino Gate Design 131
4.2.3 Special Structures 132

Testability 133
4.3.1 Static Logic 134
4.3.2 Domino Logic 135

Historical Perspective 138

Summary 139

Exercises 139

Clocking

Clock Waveforms 145
5.1.1 Physical Clock Definitions 145
5.1.2 Clock Skew 147
5.1.3 Clock Domains 149

Skew-Tolerant Domino Clock Generation
5.2.1 Delay Line Clock Generators
5.2.2 Feedback Clock Generators
5.2.3 Putting It All Together 15 7

68
General Timing Constraints
Clock Domains 72
Fifty-Percent Duty Cycle
Single Gate per Phase 75
Min-Delay Constraints 75
Recommendations and Design Issues

Gate Design 79
Monotonicity and Dual-Rail Domino
Footed and Unfooted Gates 8!
Keeper Design 84
Robustness Issues 85

150
151

155

77

79

67

103

143

Contents ix

5.3

5.4

Summary 159

Exercises 160

Chapter 6
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

Timing Analysis
Timing Analysis without Clock Skew 163

Timing Analysis with Clock Skew 166
6.2.1 Single Skew Formulation 167
6.2.2 Exact Skew Formulation 168
6.2.3 Clock Domain Formulation 170

6.2.4 Example 174

Extension to Flip-Flops and Domino Circuits
6.3.1 Flip-Flops 175
6.3.2 Domino Gates 176

Min-Delay 177

A Verification Algorithm 179

Case Study 182

Historical Perspective 184

Summary 185

Exercises 186

175

Chapter 7

Append ix A

Append ix B

Bibliography

Index

Conclusions

Timing Constraints

Solutions to Even-Numbered Exercises

161

193

199

203

211

219

About the Author 224

This Page Intentionally Left Blank

Preface

A s cycle times in high-performance digital systems shrink faster than
simple process improvement allows, sequencing overhead consumes

an increasing fraction of the dock period. Engineers allocate ever more
effort and chip routing resources to the clock network, yet clock skew is
becoming a more serious concern. Systems using static logic and edge-
triggered flip-flops must budget this dock skew in every clock cycle.
Worse yet, aggressive systems attempting to use domino circuits for
greater speed budget this dock skew in every half-cycle, or twice in every
clock cycle! Moreover, designers have difficulty completely utilizing
shrinking clock cycles. The fraction of a gate delay unused at the end of
each cycle or half-cycle represents a greater wasted portion of the cycle as
the number of gate delays per cycle decreases. All considered, the over-
head of traditional domino pipelines can exceed 25% of the cycle time in
aggressive systems.

Fortunately, the chip designer can hide much of this overhead through
good design techniques. The key to skew-tolerant design is avoiding hard
edges in which data must set up before a clock edge but will not continue
propagating until after the dock edge. Skew-tolerant static circuits use
transparent latches in place of edge-triggered flip-flops to avoid budget-
ing clock skew and to permit time borrow to balance logic between cycles.
Skew-tolerant domino circuits use multiple overlapping clocks to elimi-
nate latches, removing hard edges and hiding the sequencing overhead.

My goal in writing this book is to promote the understanding and
appropriate use of skew-tolerant circuit design techniques. Some good
designers are comfortable using transparent latches, but many others
have exclusively used edge-triggered flip-flops. This book attempts to
provide simple and practical explanations of designing with transparent
latches to help those who want to switch. Only a smaller cadre of design-
ers are at present skilled with domino circuits. This book seeks to increase
the number of domino designers and teach good skew-tolerant domino
design practices. The material may be of importance not only to circuit
designers, but also to high-speed logic designers who need a good under-

xi

X i i Preface

standing of how their logic will be implemented. It is also important to
CAD tool designers. Designers cannot build what their tools cannot ana-
lyze so improved CAD tools will be crucial for widespread adoption of
skew-tolerant circuit techniques. Of course, the book will also be of use to
advanced undergraduate and graduate students interested in chip design.

In contrast to many textbooks and survey articles that merely catalog
circuit techniques, this book attempts to evaluate such techniques in the
context of present and expected future circuit design environments. Most
circuit techniques presented in the literature are impractical or even
downright dangerous and are best left to wither in dusty old Ph.D. theses,
yet all too often authors do not try to compare the techniques and
emphasize the best while warning against the impractical. At the risk of
being proven wrong, either now or as technology shifts in the future and
changes design trade-offs, this book seeks to judge the value of techniques
for industrial designs. Of course, you should not take these judgments on
faith, but should continually evaluate the benefits and risks of each circuit
for your own applications.

The field of high-speed circuit design changes very rapidly. The histor-
ical perspectives section at the end of most chapters describes trends in
design, primarily through the 1990s. The perspectives are from my per-
sonal experience and literature search. Undoubtedly experienced engi-
neers will have their own points of view; I would welcome hearing about
additional information and "stories from the trenches" Send your print-
able stories to me via ckstories@mkp.com.

Every effort has been made to hunt down and destroy errors, but
undoubtedly some still remain. If you discover an error in this book,
please contact the publisher by email at ckbugs@mkp.com. The first per-
son to report a technical error will be awarded a $1.00 bounty upon its
implementation in future printings of the book. Please check the errata
page at www.mkp.com/clock_skew to see if a particular bug has already
been reported and corrected.

This book is an outgrowth of my Stanford Ph.D. thesis. While laying in
a bunk at the Gouter hut on Mont Blanc, I realized that many theses are
output-only devices doomed to sit untouched on library shelves. The the-
sis therefore expanded from a narrow focus on my research about skew-
tolerant domino circuits into a broader discussion of skew-tolerant cir-
cuit design that integrated best practices of successful designers with my
own research. As I have talked and worked with more expert circuit

Preface X i i i

designers, I have found that most of my research is not completely new,
but rather has been independently discovered and used by these designers
but kept as unpublished trade secrets. However, I hope this book contrib-
utes to the field by presenting the ideas of skew-tolerant circuit design in a
clear and systematic form.

About the Exercises

In my experience, it is very difficult to learn anything without practice. A
number of exercises are available at the end of each chapter for self-study
as well as for formal classes. The problems are rated in difficulty on a log-
arithmic scale, similar to that used by Knuth and Hennessy. A rough
guide is listed below. The times assume you have already carefully read
and digested the sections of the chapter relevant to the problem. Your
mileage may vary.

[10] 1 minute (read and understand)
[20] 15-20 minutes
[30] 2 hours or more (especially if the TV is on)
[50] research problem

Solutions to most even-numbered problems are presented in Appen-
dix B. Please use them wisely; do not turn to the answer until you have
made a genuine effort to solve the problems yourself.

Acknowledgments

Many people contributed to the work in this book. My advisor, Mark
Horowitz, gave me a framework to think about circuit design and has
been a superb critic. He taught me to never accept that a research solution
is "good enough" but rather to look for the best possible answer. Ivan
Sutherland has been a terrific mentor, giving me the key insight that I
needed to break out of writer's block: "A thesis is a document to which
three professors will sign their names saying it is. It is well to remember
that it is nothing more lest you take too long to finish?' Bruce Wooley, on
my reading committee, gave the thesis a careful reading and had many
useful suggestions. My officemate Ron Ho has been a great help, sounding
out technical ideas and saving me many times when I had computer cri-
ses. I have enjoyed collaborating with other members of Horowitz's

x i v Preface

research group and especially thank Jaeha Kim, Dean Liu, Jeff Solomon,
Gu Wei, and Evelina Yeung. Zeina Daoud supplied both technical assis-
tance and good conversation.

The book has benefited from the input of several reviewers, including
Lynn Conway at the University of Michigan, Tom Fletcher of Intel, Mark
Horowitz at Stanford University, Steve Kang at the University of Illinois,
Emily]. Shriver of Compaq, Stefano Sidiropoulos of RAMBUS, and Gin
Yee. The work has been supported through funding from NSF, Stanford,
and DARPA. I always learn more when trying to teach, so I would like to
thank my students at Stanford, Berkeley, and Harvey Mudd and in indus-
trial courses at Intel, HAL Computer, and Evans & Sutherland.

My first experience with Morgan Kaufmann Publishers [82] was excel-
lent and I have not been disappointed this second time around. Particular
recognition goes to Denise Penrose and Edward Wade. I would also like to
thank my high school teachers who taught me to write through extensive
practice, especially Mrs. Stephens, Mr. Roseth, and Mr. Phillips.

1
Introduction

2 1 Introduction

M ost digital systems today are constructed using static CMOS logic
and edge-triggered flip-flops. Although such techniques have been

adequate in the past and will remain adequate in the future for low-
performance designs, they will become increasingly inefficient for high-
performance components as the number of gates per cycle dwindles and
clock skew becomes a greater problem. Designers will therefore need to
adopt circuit techniques that can tolerate reasonable amounts of clock
skew without an impact on the cycle time. Transparent latches offer a
simple solution to the clock skew problem in static CMOS logic. Unfortu-
nately, static CMOS logic is inadequate to meet timing objectives of the
highest-performance systems. Therefore, designers turn to domino cir-
cuits, which offer greater speed. Unfortunately, traditional domino dock-
ing methodologies [92] lead to circuits that have even greater sensitivity
to clock skew and thus can defeat the raw speed advantage of the domino
gates. Expert designers of microprocessors and other high-performance
systems have long recognized the costs of edge-triggered flip-flops and
traditional domino circuits and have used transparent latches and devel-
oped a variety of mostly proprietary domino clocking approaches to
reduce the overhead. This book formalizes and analyzes skew-tolerant
domino circuits, a method of controlling domino gates with multiple
overlapping clock phases. Skew-tolerant domino circuits eliminate clock
skew from the critical path, hiding the overhead and offering significant
performance improvement.

In this chapter, we begin by examining conventional systems built
from flip-flops. We see how these systems have overhead that eats into the
time available for useful computation. We then examine the trends in
throughput and latency for high-performance systems and see that,
although the overhead has been modest in the past, flip-flop overhead
now consumes a large and increasing portion of the cycle. We turn to
transparent latches and show that they can tolerate reasonable amounts
of clock skew, reducing the overhead. Next, we examine domino circuits
and look at traditional clocking techniques. These techniques have over-
head even more severe than that paid by flip-flops. However, by using
overlapping clocks and eliminating latches, we find that skew-tolerant
domino circuits eliminate all of the overhead. Three case studies illustrate
the need for skew-tolerant circuit design.

In Chapter 2, we take a closer look at static CMOS latching techniques,
comparing the design and timing of flip-flops, transparent latches, and

1.1 Overhead in Flip-Flop Systems 3

pulsed latches. We discuss min-delay constraints necessary for correct
operation and time borrowing that can help balance logic when used
properly. There have been a host of proposed latch designs; we evaluate
many of the designs and conclude that the common, simple designs are
usually best. For high-performance systems, static CMOS circuits are often
too slow, so domino gates are employed. In Chapter 3, we look at skew-
tolerant domino design and timing issues. A practical methodology must
efficiently combine both static and domino components, so Chapter 4
discusses methodology issues including the static/domino interface, test-
ability, and timing types for high-level verification of proper connectivity.
Because we are discussing skew-tolerant circuit design, we are very con-
cerned about the clock waveforms. Chapter 5 explores methods of gener-
ating and distributing clocks suitable for skew-tolerant circuits, examines
the sources of clock skew in these methods, and describes ways to mini-
mize this skew. Conventional timing analysis tools either cannot handle
clock skew or budget it in conservative ways. Chapter 6 describes the
problem of timing analysis in skew-tolerant systems and presents simple
algorithms for analysis. Finally, Chapter 7 concludes the book by summa-
rizing the main results and greatest future challenges.

1.1 Overhead in Flip-Flop Systems

Most digital systems designed today use positive edge-triggered flip-flops
as the basic memory element. A positive edge-triggered flip-flop is often
referred to simply as an edge-triggered flip-flop, a D flip-flop, a master-
slave flip-flop, or colloquially, just a flop. It has three terminals: input D,
clock ~), and output Q. When the clock makes a low-to-high transition,
the input D is copied to the output Q. The clock-to-Q delay, ACQ, is the
delay from the rising edge of the clock until the output Q becomes valid.
The setup time, ADC, is how long the data input D must settle before the
clock rises for the correct value to be captured.

Figure 1.1 illustrates part of a static CMOS system using flip-flops. The
logic is drawn underneath the clock corresponding to when it operates.
Flip-flops straddle the clock edge because input data must set up before
the edge and the output becomes valid sometime after the edge. The
heavy dashed line at the clock edge represents the cycle boundary. After
the flip-flop, data propagates through combinational logic built from

4 1 Introduction

Figure 1.1

, Tc
i >
i <

_ 3 '-- clk X J
I

i#CQ L," Alogic .ADC

!

t~ t3

Cycle 1

Static CMOS system with positive edge-triggered flip-flops

static CMOS gates. Finally, the result is captured by a second flip-flop for
use in the next cycle.

How much time is available for useful work in the combinational
logic, Alogic? If the cycle time is T c, we see that the time available for logic is
the cycle time minus the clock-to-Q delay and setup time:

Alogic - r c - A C Q - A D C (1.1)

Unfortunately, real systems have imperfect clocks. On account of mis-
matches in the dock distribution network and other factors that we will
examine closely in Chapter 5, the clocks will arrive at different elements at
different times. This uncertainty is called clock skew and is represented in
Figure 1.2 by a hash of width tskew, indicating a range of possible clock
transition times. The bold clock lines indicate the latest possible clocks,
which define worst-case timing. Data must set up before the earliest the
clock might arrive, yet we cannot guarantee data will be valid until the
clock-to-Q delay after the latest clock.

Now we see that the clock skew appears as overhead, reducing the
amount of time available for useful work:

Alogic - Tc-ACQ- ADC--tskew (1.2)

Flip-flops suffer from yet another form of overhead: imbalanced logic.
In an ideal machine, logic would be divided into multiple cycles in such a
way that each cycle had exactly the same logic delay. In a real machine, the
logic delay is not precisely known at the time cycles are partitioned, so
some cycles have more logic and some have less logic. The clock frequency

1.2 Throughput and Latency Trends $

, r c ,
I I

clk / / / ~ g , \ \ \k / / / ?

i a c q Alogic ADC tskew II

I i
,

!
!

I i I

' Cycle 1 '

Figure 1.2 Flip-flops including clock skew

must be long enough for the longest cycles to work correctly, meaning
excess time in shorter cycles is wasted. The cost of imbalanced logic is diffi-
cult to quantify and can be minimized by careful design, but is neverthe-
less important.

In summary, systems constructed from flip-flops have overhead of the
flip-flop delay (ADc and ACQ), clock skew (tskew), and some amount of
imbalanced logic. We will call this total penalty the sequencing overhead. 1
In the next section, we will examine trends in system objectives that show
sequencing overhead makes up an increasing portion of each cycle.

1.2 Throughput and Latency Trends

Designers judge their circuit performance by two metrics: throughput
and latency. Throughput is the rate at which data can pass through a cir-
cuit; it is related to the clock frequency of the system, so we often discuss
cycle time instead. Latency is the amount of time for a computation to
finish. Simple systems complete the entire computation in one cycle, so
latency and throughput are inversely related. Pipelined systems break the
computation into multiple cycles called pipeline stages. Because each cycle
is shorter, new data can be fed to the system more often and the through-
put increases. However, because each cycle has some sequencing overhead
from flip-flops or other memory elements, the latency of the overall

1. We also use the term clocking overhead, but such overhead occurs even in asyn-
chronous, unclocked systems, so sequencing overhead is a more accurate name.

6 1 Introduction

computation gets longer. For many applications, throughput is the most
important metric. However, when one computation is dependent on the
result of the previous, the latency of the previous computation may limit
throughput because the system must wait until the computation is done.
In this section, we will review the relationships among throughput,
latency, computation length, cycle time, and overhead. We will then look
at the trends in cycle time and find that the impact of overhead is becom-
ing more severe.

When measuring delays, it is often beneficial to use a process-indepen-
dent unit of delay so that intuition about delay can be carried from one
process to another. For example, if I am told that the Hewlett-Packard
PA8000 64-bit adder has a delay of 840 ps, I have difficulty guessing how
fast an adder of similar architecture would work in my process. However,
if I am told that the adder delay is seven times the delay of a fanout-of-4
(FO4) inverter, where an FO4 inverter is an inverter driving four identical
copies, I can easily estimate how fast the adder will operate in my process
by measuring the delay of an FO4 inverter. Similarly, if I know that micro-
processor A runs at 50 MHz in a 1.0-micron process and that micropro-
cessor B runs at 200 MHz in a 0.6-micron process, it is not immediately
obvious whether the circuit design of B is more or less aggressive than A.
However, if I know that the cycle time of microprocessor A is 40 FO4
inverter delays in its process and that the cycle time of microprocessor B is
25 FO4 inverter delays in its process, I immediately see that B has signifi-
cantly fewer gate delays per cycle and thus required more careful engi-
neering. The fanout-of-4 inverter is particularly well suited to expressing
delays because it is easy to determine, because many designers have a
good idea of the FO4 delay of their process, and because the theory of log-
ical effort [82] predicts that cascaded inverters drive a large load fastest
when each inverter has a fanout of about 4.

1.2.1 I m p a c t o f O v e r h e a d on T h r o u g h p u t a n d L a t e n c y

Suppose a computation involves a total combinational logic delay X. If
the computation is pipelined into N stages, each stage has a logic delay
Alogic - X/N. As we have seen in the previous section, the cycle time is the
sum of the logic delay and the sequencing overhead:

X
T~ = ~ + overhead (1.3)

N

1.2 Throughput and Latency Trends 7

The latency of the computation is the sum of the logic delay and the total
overhead of all N stages:

latency - NT c - X + N , overhead (1.4)

Equations 1.3 and 1.4 show how the impact of a fixed overhead
increases as a computation is pipelined into more stages of shorter length.
The overhead becomes a greater portion of the cycle time T c, so less of the
cycle is used for useful computation. Moreover, the latency of the compu-
tation actually increases with the number of pipe stages N because of the
overhead. Because latency matters for some computations, system perfor-
mance can actually decrease as the number of pipe stages increases.

EXAMPLE 1.1 Consider a system built from static CMOS logic and flip-flops. Let the
setup (ADc) and clock-to-Q (AcQ) delays of the flip-flop be 1.5 FO4
inverter delays. Suppose the clock skew (tskew) is 2 FO4 inverter delays.
What percentage of the cycle is wasted by sequencing overhead if the
cycle time T c is 40 FO4 delays? 24 FO4 delays? 16 TFO4 delays? 12 FO4
delays?

SOLUTION The sequencing overhead is 1.5 + 1.5 + 2 - 5 FO4 delays. The
percentage of the cycle consumed by overhead is shown in Table 1.1.
This example shows that although the sequencing overhead was small
as a percentage of cycle time when cycles were long, it becomes very
severe as cycle times shrink. �9

Table 1.1

Cycle time

Sequencing overhead

Percentage overhead

40 13

24 21

16 31

12 42

The exponential increase in microprocessor performance, doubling
about every 18 months [36], has been caused by two factors: better
microarchitectures that increase the average number of instructions exe-
cuted per cycle (IPC), and shorter cycle times. The cycle time improve-
ment is a combination of steadily improving transistor performance and
better circuit design using fewer gate delays per cycle. To evaluate the

8 1 Introduction

importance of sequencing overhead, we must tease apart these elements
of performance increase to identify the trends in gates per cycle. Let us
look both at the historical trends of Intel microprocessors and at industry
predictions for the future.

1.2.2 His tor ica l T r e n d s

Figure 1.3 shows a plot of Intel microprocessor performance from the 16
MHz 80386 introduced in 1985 to the 800 MHz Pentium II processors
selling in 1999 [42, 57]. The performance has increased at an incredible
53% per year, thus doubling every 19.5 months. This exponential increase
in processor performance is often called "Moore's law" [59], although
technically Gordon Moore's original predictions only referred to the
exponential growth of transistors per integrated circuit, not the perfor-
mance growth.

Figure 1.4 shows a plot of the processor clock frequencies, increasing
at a rate of 30% per year. Some of this increase comes from faster transis-
tors, and some comes from using fewer gates per cycle.

100 -

10

1 _ I
~ J

= 80486
0.1 -" Pentium

Pentium II/III

0.01 I , I ~ I

1985 1988 1991 1994 1997 2000

F i g u r e 1 . 3 Intel microprocessor performance

Note: Performance is measured in Speclnt95. For processors before the

90 MHz Pentium, Speclnt95 is estimated from published MIPS data

with the conversion 1 MIPS = 0.0185 Speclnt95.

1.2 Throughput and Latency Trends 9

1 0 0 0 -

N

100 -

80386

-- 80486

�9 Pentium

.Pentium II/III

10
1985

Figure 1.4

I I I I I

1988 1991 1994 1997 2000

Intel microprocessor clock frequency

Because we are particularly interested in the number of F04 inverters
per cycle, we need to estimate how F04 delay improves as transistors
shrink. Figure 1.5 shows the F04 inverter delay of various MOSIS pro-
cesses over many years. The delays are linearly scaling with the feature size
and, averaging across voltages commonly used at each feature size, are
well fit by the equation

F04 delay- 475f (1.5)

where f is the minimum drawn channel length measured in microns and
delay is measured in picoseconds.

Using this delay model and data about the process used in each part,
we can determine the number of FO4 delays in each cycle, shown in
Figure 1.6. Notice that for a particular product, the number of gate delays
in a cycle is initially high and gradually decreases as engineers tune critical
paths in subsequent revisions on the same process and jumps as the chip
is compacted to a new process that requires retuning. Overall, the number
of FO4 delays per cycle has decreased at 12% per year.

Putting everything together, we find that the 1.53 times annual histor-
ical performance increase can be attributed to 1.17 times from micro-
architectural improvements, 1.17 times from process improvements, and
1.12 times from fewer gate delays per cycle.

1 0 1 Introduction

500 -
oo

200 - 4 .a

.,..~

O
100 -

50

F i g u r e 1.5

VDD=5 VDD = 3.3

I I

2.0g 1.2g
I

0.8g

Process

Fanout-of-4 inverter delay trends

I

0.6g

VDD = 2.5

I

0.35B
I

0.25g

100 -

~. 50-

o,,,~

�9 20-

10

80386

= 80486

�9 Pentium

Pentium II/III

] I I I]

1985 1988 1991 1994 1997 2000

Figure 1.6 Intel microprocessor cycle t imes (F04 delays)

1.2.3 Future Predictions

The Semiconductor Industry Association (SIA) issued a roadmap in 1997
[71] predicting the evolution of semiconductor technology over the next

1.2 Throughput and Latency Trends 11

Table 1.2 SIA roadmap of clock frequencies

Process (~tm) Y e a r Frequency (MHz) Cycle time (FO4)

0.25 1997 750(600) 13.3 (16.7)

0.18 1999 1250 (733) 11.1 (18.9)

0.15 2001 1500 11.1

0.13 2003 2100 9.2

0.10 2006 3500 7.1

0.07 2009 6000 6.0

0.05 2012 10,000 5.0

15 years. Although such predictions are always fraught with peril, let us
look at what the predictions imply for cycle times in the future.

Table 1.2 lists the year of introduction and estimated local clock fre-
quencies predicted by the SIA for high-end microprocessors in various
processes. The SIA assumes that future chips may have very fast local
clocks serving small regions, but will use slower clocks when communi-
cating across the die. The table also contains the predicted FO4 delays per
cycle using a formula that

F04 delay- 400f (1.6)

which better matches the delay of 0.25- and 0.18-micron processes than
does Equation 1.5; these current processes are a more appropriate operat-
ing point to linearize around when predicting the future. The predictions
proved somewhat optimistic in 1997 and 1999.

This roadmap shows a 7% annual reduction in cycle time. The pre-
dicted cycle time of only 5 FO4 inverter delays in a 0.05-micron process
seems at the very shortest end of feasibility because it is nearly impossible
for a loaded clock to swing rail to rail in such a short time. Nevertheless, it
is clear that sequencing overhead of flip-flops will become an unaccept-
able portion of the cycle time.

1.2.4 Conc lus ions

In summary, we have seen that sequencing overhead was negligible in the
1980s when cycle times were nearly 100 FO4 delays. As cycle times mea-
sured in gate delays continue to shrink, the overhead becomes more
important and is now a major and growing obstacle for the design of

12 1 Introduction

high-performance systems. We have not discussed clock skew in this sec-
tion, but we will see in Chapter 5 that clock skew, as measured in gate
delays, is likely to grow in future processes, making that component of
overhead even worse. Clearly, flip-flops are becoming unacceptable, and
we need to use better design methods that tolerate clock skew without
introducing overhead. In the next section, we will see how transparent
latches accomplish exactly that.

1.3 Skew-Tolerant Static Circuits

We can avoid the clock skew penalties of flip-flops by instead building
systems from two-phase transparent latches, as has been done since the
early days of CMOS [56]. Transparent latches have the same terminals as
flip-flops: data input D, clock #, and data output Q. When the clock is
high, the latch is transparent and the data at the input D propagates
through to the output Q. When the clock is low, the latch is opaque and
the output retains the value it last had when transparent. Transparent
latches have three important delays. The clock-to-Q delay, ACQ, is the
time from when the clock rises until data reaches the output. The D-to-Q
delay, ADQ, is the time from when new data arrives at the input while the
latch is transparent until the data reaches the output. AcQ is typically
somewhat longer than ADQ. The setup time, ADC, is how long the data
input D must settle before the clock falls for the correct value to be
captured.

Figure 1.7 illustrates part of a static CMOS system using a pair of trans-
parent latches in each cycle. One latch is controlled by dk, while the other
is controlled by its complement clk_b. In this example, we show the data
arriving at each latch midway through its half-cycle. Therefore, each latch
is transparent when its input arrives and incurs only a D-to-Q delay
rather than a dock-to-Q delay. Because data arrives well before the falling
edge of the clock, setup times are trivially satisfied.

How much time is available for useful work in the combinational
logic, Alogic .~ If the cycle time is T c, we see that

Alogic - T c - 2ADQ (1.7)

1.3 Skew-Tolerant Static Circuits 13

clk

clk_b

r~

AD0.

Half-cycle 1

! !

! f l
! !

,X ,E--

ADQ I

I
t ~

' Half-cycle 2

Figure 1.7 Static CMOS system with transparent latches

We will see in Chapter 2 that flip-flops are built from pairs of back-to-back
latches so that the time available for logic in systems with no skew is about
the same for flip-flops and transparent latches. However, transparent-latch
systems can tolerate clock skew without cycle time penalty, as seen in
Figure 1.8. Although the clock waveforms have some uncertainty from
skew, the clock is certain to be high when data arrives at the latch so the
data can propagate through the latch with no extra overhead. Data still
arrives well before the earliest possible skewed clock edge, so setup times
are still satisfied.

r~
i< i)

clk / / /
]
]

clk_b \ \ \ ~ / / / / A ' \ \ \ ,

t .2
"-G

Half-cycle 1 ' Half-cycle 2

Figure 1.8 Transparent latches including clock skew

1 4 1 Introduction

Finally, static latches avoid the problem of imbalanced logic through a
phenomenon called time borrowing, also known as cycle stealing by engi-
neers at Big Blue. We see from Figure 1.8 that each latch can be placed in
any of a wide range of locations in its half-cycle and still be transparent
when the data arrives. This means that not all half-cycles need to have the
same amount of static logic. Some can have more and some can have less,
meaning that data arrives at the latch later or earlier without wasting time
as long as the latch is transparent at the arrival time. Hence, if the pipeline
is not perfectly balanced, a longer cycle may borrow time from a shorter
cycle so that the required clock period is the average of the two rather
than the longer value. In Chapter 2 we will quantify how much time bor-
rowing is possible.

In summary, systems constructed from transparent latches still have
overhead from the latch propagation delay (ADQ) but eliminate the over-
head from reasonable amounts of clock skew and imbalanced logic. This
improvement is especially important as cycle times decrease, justifying a
switch to transparent latches for high-performance systems.

1.4 Domino Circuits

To construct systems with fewer gate delays per cycle, designers may
invent more efficient ways to implement particular functions or may use
faster gates. The increasing transistor budgets allow parallel structures
that are faster; for example, adders progressed from compact but slow
ripple carry architectures to larger carry look-ahead designs to very fast
but complex tree structures. However, there is a limit to the benefits from
using more transistors, so designers are increasingly interested in faster
circuit families, in particular domino circuits. Domino circuits are con-
structed from alternating dynamic and static gates. In this section, we will
examine how domino gates work and see why they are faster than static
gates. Gates do not exist in a vacuum; they must be organized into pipe-
line stages. When domino circuits are pipelined in the same way that two-
phase static circuits have traditionally been pipelined, they incur a great
deal of sequencing overhead from latch delay, clock skew, and imbalanced
logic. By using overlapping clocks and eliminating the latches, we will see
that skew-tolerant domino circuits can hide this overhead to achieve dra-
matic speedups.

1.4 Domino Circuits 15

1.4.1 D o m i n o Ga te O p e r a t i o n

To understand the benefits of domino gates, we will begin by analyzing
the delay of a gate. Remember that the time to charge a capacitor is

C
A t - 7 AV (1.8)

For now we will just consider gates that swing rail to rail, so AVis VDD. If a
gate drives an identical gate, the load capacitance and input capacitance
are equal (neglecting parasitics), so it is reasonable to consider the C/1
ratio of the gate's input capacitance to the current delivered by the gate as
a metric of the gate's speed. This ratio is called the logical effort [82] of the
gate and is normalized to one for a static CMOS inverter. It is higher for
more complex static CMOS gates because series transistors in complex
gates must be larger and thus have more input capacitance to deliver the
same output current as an inverter.

Static circuits are slow because inputs must drive both NMOS and PMOS

transistors. Only one of the two transistors is on, meaning that the capac-
itance of the other transistor loads the input without increasing the cur-
rent drive of the gate. Moreover, the PMOS transistor must be particularly
large because of its poor carrier mobility and thus adds much capacitance.

A dynamic gate replaces the large, slow PMOS transistors of a static
CMOS gate with a single clocked PMOS transistor that does not load the
input. Figure 1.9 compares static and dynamic NOR gates. The dynamic
gates operate in two phases: precharge and evaluation. During the pre-
charge phase, the clock is low, turning on the PMOS device and pulling the

_3-

1
I,,

I

"7"

Figure 1.9

Ca)

Static (a) and dynamic four-input (b) NOR gates

(b)

16 1 Introduction

output high. During the evaluation phase, the clock is high, turning off
the PMOS device. The output of the gate may evaluate low through the
NMOS transistor stack.

The dynamic gate is faster than the static gate for two reasons. One is
the greatly reduced input capacitance. Another is the fact that the
dynamic gate output begins switching when the input reaches the transis-
tor threshold voltage, V t. This is sooner than the static gate output, which
begins switching when the input passes roughly VDD/2. This improved
speed comes at a cost, however: dynamic gates must obey precharge and
monotonicity rules, are more sensitive to noise, and dissipate more power
because of their higher activity factors.

The precharge rule says that there must be no active path from the out-
put to ground of a dynamic gate during precharge. If this rule is violated,
there will be contention between the PMOS precharge transistor and the
NMOS transistors pulling to ground, consuming excess power and leaving
the output at an indeterminate value. Sometimes the precharge rule can
be satisfied by guaranteeing that some inputs are low. For example, in the
four-input NOR gate, all four inputs must be low during precharge. In a
four-input NAND gate, if any input is low during precharge, there will be
no contention. It is commonly not possible to guarantee inputs are low,
so often an extra clocked evaluation transistor is placed at the bottom of
the dynamic pulldown stack, as shown in Figure 1.10. Gates with and
without clocked evaluation transistors are sometimes called footed and
unfooted [62]. Unfooted gates are faster but require more complex clock-
ing to prevent both PMOS and NMOS paths from being simultaneously
active.

The monotonicity rule states that all inputs to dynamic gates must make
only low-to-high transitions during evaluation. Figure 1.11 shows a circuit
that violates the monotonicity rule and obtains incorrect results. The cir-
cuit consists of two cascaded dynamic NOR gates. The first computes

*-clE 1

,

(a) (b)

Figure 1.10 Footed (a) and unfooted four-input dynamic (b) NOR gates

1.4 Domino Circuits 17

I

I

olE j
1]

]

Figure 1.11

~__~S
hould be high

/
Actually falls low

Incorrect operation of cascaded dynamic gates

X = NOR(l, 0) = 0. The second computes Y = NOR(X, 0), which should be
1. Node X is initially high and falls as the first NOR gate evaluates. Unfortu-
nately, the second NOR gate sees that input X is high when ~) rises and thus
pulls down output Y incorrectly. Because the dynamic NOR gate has no
PMOS transistors connected to the input, it cannot pull Y back high when
the correct value of X arrives, so the circuit produces an incorrect result.
The problem occurred because X violated the monotonicity rule by mak-
ing a high-to-low transition while the second gate is in evaluation.

It is not possible to cascade dynamic gates directly with the same clock
without violating the monotonicity rule because each dynamic output
makes a high-to-low transition during evaluation while dynamic inputs
require low-to-high transitions during evaluation. An easy way to solve
the problem is to insert an inverting static gate between dynamic gates, as
shown in Figure 1.12. The dynamic/static gate pair is called a domino gate,
which is slightly misleading because it is actually two gates. A cascade of
domino gates precharge simultaneously like dominos being set up. Dur-
ing evaluation, the first dynamic gate falls, causing the static gate to rise,
the next dynamic gate to fall, and so on like a chain of dominos toppling.

Unfortunately, to satisfy monotonicity we have constructed a pair of
OR gates rather than a pair of NOR gates. In Chapter 3 we will return to the
monotonicity issue and see how to implement arbitrary functions with
domino gates.

18 1 Introduction

1 ~ ~ 0 ~E]
I

J

I

j

1
J

1

cL>D

A

B

c

\

/

\

\
Figure 1.12 Correct operation with domino gates

Mixing static gates with dynamic gates sacrifices some of the raw speed
offered by the dynamic gate. We can regain some of this performance by
using HI-skew 2 static gates with wider-than-usual PMOS transistors [82] to
speed the critical rising output during evaluation. Moreover, the static
gates may perform arbitrary functions rather than being just inverters
[87]. All considered, domino logic runs 1.5 to 2 times faster than static
CMOS logic [49] and is therefore attractive enough for high-speed designs
to justify its extra complexity.

1.4.2 Trad i t iona l D o m i n o Clocking

After domino gates evaluate, they must be precharged before they can be
used in the next cycle. If all domino gates were to precharge simulta-
neously, the circuit would waste time while only precharging, not useful
computation, takes place. Therefore, domino logic is conventionally
divided into two phases or half-cycles, ping-ponged such that the first

2. Don't confuse the word skew in "HI-skew" gates with "clock skew."

1.4 Domino Circuits 1 9

Tc
i
!
!

,X
!
!

I

!

ctk . . J ,
!
!

clk_b

�9 I'o I'o I
Half-cycle 1

.0 i. i. 0 i. I"
Half-cycle 2

Figure 1.13 Traditional domino clocking scheme

i
>t

!

/,
!
!

phase evaluates while the second precharges, and then the first phase pre-
charges while the second evaluates. In a traditional domino clocking
scheme [92], latches are used between phases to sample and hold the
result before it is lost to precharge, as illustrated in Figure 1.13. The
scheme appears very similar to the use of static logic and transparent
latches discussed in the previous section. Unfortunately, we will see that
such a scheme has enormous sequencing overhead.

With ideal clocks, the first dynamic gate begins evaluating as soon as
the clock rises. Its result ripples through subsequent gates and must arrive
at the latch a setup time before the clock falls. The result propagates
through the latch, so the overhead of each latch is the maximum of its
setup time and D-to-Q propagation delay. The latter time is generally
larger, so the total time available for computation in the cycle is

Alogic - T c -- 2ADQ (1.9)

Unfortunately, a real pipeline like that shown in Figure 1.14 experi-
ences clock skew. In the worst case, the dynamic gate and latch may have
greatly skewed clocks. Therefore, the dynamic gate may not begin evalua-
tion until the latest skewed clock, while the latch must set up before the
earliest skewed clock. Hence, clock skew must be subtracted not just from
each cycle, as it was in the case of a flip-flop, but from each half-cycle!
Assuming the sum of clock skew and setup time are greater than the latch
D-to-Q delay, the time available for useful computation becomes

Alogic = g c - 2 A D c - 2 tskew (1.10)

2 0 1 Introduction

I,C

clk / / / ~ \ \ \
I
I

clk_b \ \ \ ~ / / / i
,s:~ I

I

, s~ I a:~

r
Half-cycle 1 Half-cycle 2

Figure 1.14 Traditional domino including clock skew

i
> l

!

1

!

1
!
!
!
!
!

1
!
!
!
!
!

As with flip-flops, traditional domino pipelines also suffer from
imbalanced logic. In summary, traditional domino circuits are slow
because they pay overhead for latch delay, clock skew, and imbalanced
logic. In the case study of the Alpha 21164 microprocessor in
Section 1.5.2, we will see that this overhead can easily reach a quarter of
the cycle time.

1.4.3 Skew-To le r an t D o m i n o

Both flip-flops and traditional domino circuits launch data on one edge
and sample it on another. These edges are called hard edges or synchroni-
zation points because the arrival of the clock determines the exact timing
of data. Even if data is available early, the hard edges prevent subsequent
stages from beginning early. Static CMOS pipelines with transparent
latches avoided the hard edges and therefore could tolerate some clock
skew and use time borrowing to compensate for imbalanced logic. Some
domino designers have recognized that this fundamental idea of softening
the hard clock edges can be applied to domino circuits as well. Although a
variety of schemes were invented at most microprocessor companies in
the mid-1990s (e.g., [41]), the schemes have generally been held as trade
secrets. This section explains how such skew-tolerant domino circuits
operate. In Chapters 3 and 5 we will return to more subtle choices in the
design and clocking of such circuits.

The basic problem with traditional domino circuits is that data must
arrive by the end of one half-cycle but will not depart until the beginning

1.4 Domino Circuits 2 1

of the next half-cycle. Therefore, the circuits must budget skew between
the clocks and cannot borrow time. We can overcome this problem by
using overlapping clocks, as shown in Figure 1.15. This figure shows a
skew-tolerant domino clocking scheme with two overlapping clock
phases. Instead of using clk and its complement, we now use overlapping
clocks (~1 and (~2" We partition the logic into phases instead of half-cycles
because in general we will allow more than two overlapping phases. The
clocks overlap enough that even under worst-case clock skews providing
minimum overlap, the first gate B in the second phase has time to evalu-
ate before the last gate A in the first phase begins precharge. As with static
latches, the gates are guaranteed to be ready to operate when the data
arrives even if skews cause modest variation in the arrival time of the
clock. Therefore we do not need to budget clock skew in the cycle time.

Another advantage of skew-tolerant domino circuits is that latches are
not necessary within the domino pipeline. We ordinarily need latches to
hold the result of the first phase's computation for use by the second
phase when the first phase precharges. In skew-tolerant domino, the over-
lapping clocks insure that the first gate in the second phase has enough
time to evaluate before ~)1 falls and the first phase begins precharge. When
the first phase precharges, the dynamic gates will pull high and therefore
the static gates will fall low. This means that the input to the second phase
falls low, seemingly violating the monotonicity rule that inputs to
dynamic gates must make only low-to-high transitions while the gates are
in evaluation. What are the consequences of violating monotonicity? Gate
B will remain at whatever value it evaluated to based on the results of the

T~
I

(~1 / / / I

~2 \ \ \ \ / / /

@1 r r

�9 I'o I'o
A Phase 1

, 2 Overlap

*2 *2 *2

.o I'o I'o
B Phase 2

Figure 1.15 Two-phase skew-tolerant domino circuits

! >t !
I I I I

I to

G_CX_

2 2 1 Introduction

first half-cycle when its inputs fall low because both the pulldown transis-
tors and the precharge transistor will be off. This is exactly what we want:
gate B will keep its value even when Phase 1 precharges. Hence, there is no
need for a latch at the end of Phase 1 to remember the result during pre-
charge. The entire cycle is available for useful computation; there is no
sequencing overhead from latch delay or clock skew:

h l o g i c - T c (1.11)

Finally, skew-tolerant domino circuits can allow time borrowing if the
overlap between clock phases is larger than the clock skew. The guaran-
teed overlap is the nominal overlap minus uncertainty due to the clock
skew. Gates in either Phase 1 or Phase 2 may evaluate during the overlap
period, allowing time borrowing by letting gates that nominally evaluate
during Phase 1 to run late into the second phase. As usual, it is hard to
quantify the benefits of time borrowing, but it is clear that the designer
has greater flexibility.

In summary, skew-tolerant domino circuits use overlapping clocks to
eliminate latches and remove all three sources of overhead that plague
traditional domino circuits: clock skew, latch delay, and imbalanced logic.
We will see in Section 1.5.2 that this overhead can be about 25% of the
cycle time of a well-designed system today and will increase as cycles get
shorter. Therefore, skew-tolerant domino is significantly faster than tradi-
tional domino in aggressive systems.

Two-phase skew-tolerant domino circuits conveniently illustrate the
benefits of skew-tolerant domino design, but prove to suffer from hold
time problems and offer limited amounts of time borrowing and skew
tolerance. Chapter 3 generalizes the idea to multiple overlapping clock
phases and derives formulae describing the available time borrowing and
skew tolerance as a function of the number of phases and the duty cycle.
Chapter 5 addresses the challenges of producing the multiple overlapping
phases.

1.5 Case Studies

To illustrate the benefits of skew-tolerant circuit design, let us consider
three brief case studies. The first is an application-specific integrated cir-
cuit (ASIC) using static logic and edge-triggered flip-flops in which
sequencing overhead got out of hand. The second is the Alpha 21164, a

1.5 Case Studies 2 3

much more aggressive and heavily optimized design in which traditional
domino circuits still impose an overhead of about 25% of the cycle time.
The third is a study of timing analysis showing how better analysis leads
to less pessimistic results. The first two studies come from real industrial
projects, while the third is contrived to illustrate the idea in a simple way.

1.5.1 S e q u e n c i n g O v e r h e a d in a S t a t i c ASIC

A colleague spent the summer of 1998 designing an application-specific
integrated circuit targeting 200 MHz operation in the TSMC 0.25-micron
process. Names are withheld to protect the innocent. The process pro-
vided an estimated 120 ps fanout-of-4 inverter delay, so the 5 ns cycle
time was about 40 FO4 inverter delays. This is reasonably aggressive for a
static CMOS ASIC design, but is not unreasonable with careful attention to
pipeline partitioning and circuit implementation.

Unfortunately, as is often the case at the forefront of technology, the
process was new and untested. As a result, the clock skew budget was set
to be _+500 ps. In the notation of this book, tskew = 1000 ps because the
launching clock might be skewed late while the receiving clock is skewed
early. The cell library included an edge-triggered flip-flop with a total
delay of ADC + ACQ - 400 ps. With these figures, the sequencing overhead
consumed 1.4 ns, or 28% of the cycle time, neglecting the further over-
head of imbalanced logic. Only 3.6 ns, or 30 FO4 inverter delays, were left
for useful logic. Thus the design became much more challenging than it
should have been. The conservative estimate of clock skew led to higher
engineering costs as the engineer was forced to overdesign the critical
paths.

Several approaches could have eased the design. The most effective
would have been to use latches rather than flip-flops on the critical paths.
This would have removed clock skew from the cycle time budget, relin-
quishing about 8 FO4 inverter delays for useful computation. Unfortu-
nately, the ASIC house did not have experience with, or tools for, latch-
based design, so this was not an option at the time. However, latch-based
design has been practiced in the industry for decades and is supported by
many CAD packages, so an investment in such capability would provide
payoffs on many future high-speed designs.

Another approach would have been to understand the sources and
magnitude of the clock skew better. Indeed, late in the design, the skew

2 4 1 Introduction

budget was reduced to 720 ps through better analysis. This offered little
solace to the designer who had spent enormous amounts of effort opti-
mizing paths to operate under the original skew budget. Most paths com-
municate between nearby flip-flops that see much less skew than flip-
flops on opposite corners of the die. If such information were made
explicit to the analysis tools, the overhead could also be reduced on those
paths. We'll look at this idea more closely in Section 1.5.3 and Chapter 6.

1.5.2 Sequencing Overhead in the Alpha 21164

The Alpha 21164 was the fastest commercial microprocessor of its day,
achieving 500 MHz in 1996 using a 0.35-micron process years before
most of its competition caught up using 0.18-micron processes. It relied
on extensive use of domino circuits to achieve its speed. Traditional two-
phase domino was most widely used [26].

We can estimate the sequencing overhead of the domino given a
reported clock skew of 200 ps. If we assume the latch setup time is only 50
ps, we find a total of 250 ps of overhead must be budgeted in each half-
cycle and 500 ps must be budgeted per cycle. This accounts for 25% of the
2 ns cycle time, neglecting any overhead from imbalanced logic.

The Alpha designers were unwilling to sacrifice this much time to
overhead. They used two approaches to reduce the overhead. One was to
use overlapping clocks in the ALU self-bypass path to eliminate one of the
latches, effectively acting as two-phase skew-tolerant domino. A second
was to compute local skews between nearby clocked elements and use
these smaller skews wherever possible rather than budgeting global skew
everywhere. Data circulating in the ALU self-bypass loop sees only this
local skew. At the time of design, standard timing analyzers could not
handle different amounts of skew between different latches, so the design
team had to use an internal timing analyzer. Now this capability is
becoming available in major commercial tools such as Pathmill with the
Clock Skew Option.

1.5.3 Timing Analysis with Clock Skew

When docks experience different amounts of clock skew relative to one
another, a good timing analyzer will determine the clocks that launched
and terminated a path and allocate only the necessary skew rather than

1.5 Case Studies 2 5

!
i /
! I

I
i

!

I
!

!~1
!

'--'ill
' Half-cycle 1

1.5 ns
!

I
!
!

~2

�9 = .= ~ =~
,..a

Half-cycle 2

k..
!
! F-
!
!
!

!

�9 = .= .=

M

i

Half-cycle 3

Figure 1.16 Path with time borrowing for timing analysis

pessimistically budgeting the worst-case skew. To see the difference, con-

sider the path in Figure 1.16 targeting 1 GHz operation. In this path, let

us assume that ~)1 has only 10 ps of skew relative to other copies of itself,

but that ~)2 may experience 200 ps of skew relative to q~. Assume a setup
time of 60 ps and a D-to-Q delay of 50 ps for each latch.

Suppose the path from latch 1 to latch 2 is long and borrows 210 ps
into half-cycle 2, as shown in the figure. The path from latch 2 to latch 3 is
also long. We would like our timing analyzer to tell us if the path will vio-
late the setup time at latch 3. How much clock skew must be budgeted in

this path?
At first, we might assume that because there is 200 ps of skew between

~)2 and ~)1, the data must arrive at latch 3 at a setup time and clock skew
before the falling edge of ~)2, that is, no later than 1.5 ns - 0.2 ns - 0.06 ns
= 1.24 ns. Indeed, at least one commercial timing analyzer reports exactly
this.

Looking more closely, we realize that the data arrives at latch 2 while

latch 2 is transparent. Therefore, latch 2 does not retime the data depar-

ture. The path is launched from latch 1 and must budget only 10 ps of

skew at latch 3 because the launching and receiving clocks are both ~)1.

The true required time at latch 3 is 1.5 ns - 0.01 ns - 0.06 ns - 1.43 ns. By

considering the launching and receiving clocks, we determine that we

have 190 ps more time available than we might have pessimistically

assumed.
Figure 1.17 shows a sample of a report we would like to receive from

timing analysis. In this example, we assume the logic delay between latch

2 6 1 Introduction

Startpoint- latch2/reg (posi t ive leve l -sens i t i ve latch clocked by phi2)
Endpoint. latch3/reg (posi t ive leve l -sens i t i ve latch clocked by ph i l)

Point Incr Path

clock phi2 (r ise edge)
clock network delay (idea l)
time given to s ta r tpo in t (r e l a t i ve to ph i l)
I atch2/reg/D (LDIQCFP)
latch2/reg/Q (LDIQCFP)
�9 o e

latch3/reg/D (LDIQAFP)
data a r r i va l time
clock ph i l (r i se edge)
clock network delay (idea l)
l a tch l / reg /G (LDIQAFP)
time borrowed from endpoint
data required time

0.50 0.50
0.00 0.50
0.21 0.71
0.00 0.71 r
0.05 0.76

O. 60 1.36 r
1.36

1.00 1.00
0.00 1.00

1.00 r
0.36 1.36

1.36

data required time
data a r r i va l time

1.36
1.36

slack (MET)
Time Borrowing Information

0.00

phi l pulse width
l i b r a r y setup time
i n te r - c l ock uncer ta inty (ph i l , ph i l)

0.50
-0.06
-0.01

max time borrow
actual time borrow

0.43
0.36

Figure 1.17 Timing analysis report

2 and latch 3 is 0.6 ns. The report indicates that data departs latch 2 at
0.71 ns relative to @1. It has a 0.05 ns propagation delay through the latch
and 0.60 ns delay through the logic, arriving at latch 3 at 1.36 ns. This
requires borrowing 0.36 ns into half-cycle 3. Because the path was
launched by ~1 and received by ~1, only 0.01 ns of skew must be budgeted.
The maximum time available for borrowing is 0.43 ns, determined by the
half-cycle time less the setup and appropriate clock skew. Therefore the
path meets the setup time with an acceptable amount of time borrowing.
If 0.2 ns of skew were budgeted, the path would miss timing by 120 ps.

1.6 A Look Ahead 2 7

Timing analysis with different amounts of clock skew between differ-

ent clocks in systems supporting time borrowing is somewhat subtle, as
this example has illustrated. The concept of departure times relative to
various clocks is developed in Chapter 6, along with algorithms to per-
form the timing analysis. Be aware that your timing analyzer may not yet
support such analysis.

1.6 A Look Ahead

In this chapter we have examined the sources of sequencing overhead and
seen that it is a growing problem in high-speed digital circuits, as summa-
rized in Table 1.3. While flip-flops and traditional domino circuits have
severe overhead, transparent latches and skew-tolerant domino circuits
hide clock skew and allow time borrowing to balance logic between pipe-
line stages. In the subsequent chapters we will flush out these ideas to
present a complete methodology for skew-tolerant circuit design of static
and dynamic circuits.

Chapter 2 focuses on static circuit design. It examines the three com-
monly used memory elements: flip-flops, transparent latches, and pulsed
latches. While flip-flops clearly have the worst overhead, transparent
latches and pulsed latches each have pros and cons. Pulsed latches are
faster in an ideal environment, but transparent latches have less critical
race conditions and can tolerate more clock skew and time borrowing.
We take a closer look at time borrowing and latch placement, then con-
sider hold time violations, which we have ignored in this introduction.
Finally, we survey a variety of memory element implementations.

Chapter 3 moves on to domino circuit design. It addresses the ques-
tion of how to best clock skew-tolerant domino circuits and derives how
much skew and time borrowing can be handled as a function of the

Table 1.3 Sequencing overhead

Sequencing method Sequencing overhead

Flip-flops

Transparent latches

Traditional domino

Skew-tolerant domino

ACQ + Aoc + tskew + imbalanced logic

2ADQ

2Aoc + 2 tskew + imbalanced logic

0

2 8 1 Introduction

number of clock phases and their duty cycles. Given these formulae, hold
times, and practical clock generation issues, we conclude that four-phase
skew-tolerant domino circuits are a good way to build systems. We then
return to general domino design issues, including monotonicity, footed
and unfooted dynamic gates, and noise.

Chapter 4 puts together static and domino circuits into a coherent
skew-tolerant circuit design methodology. It looks at the interface
between the two circuit families and shows that the static-to-domino
interface must budget clock skew, motivating the designer to build critical
rings entirely in domino for maximum performance. It describes the use
of timing types to verify proper connectivity in static circuits, then
extends timing types to handle skew-tolerant domino. Finally, it
addresses issues of testability and shows that scan techniques can serve
both latches and skew-tolerant domino in a simple and elegant way.

None of these skew-tolerant circuit techniques would be practical if
providing the necessary clocks introduced more skew than the techniques
could handle. Chapter 5 addresses clock generation and distribution.
Many experienced designers reflexively cringe when they hear schemes
involving multiple clocks because it is virtually impossible to route more
than one high-speed clock around a chip with acceptable skew. Instead,
we distribute a single clock across the chip and locally produce the neces-
sary phases with the final-stage clock drivers. We analyze the skews from
these final drivers and conclude that although the delay variation is non-
negligible, skew-tolerant circuits are on the whole a benefit. In addition to
tolerating clock skew, good systems minimize the skew that impacts each
path. By considering the components of clock skew and dividing a large
die into multiple clock domains, we can budget smaller amounts of skew
in most paths than we must budget across the entire die.

By this point, we have developed all the ideas necessary to build fast
skew-tolerant circuits. With a little practice, skew-tolerant circuit design
is no harder than conventional techniques. However, it is impossible to
build multimillion transistor ICs unless we have tools that can analyze
and verify our circuits. In particular, we need to be able to check if our
circuits can meet timing objectives given the actual skews between clocks
in various domains. Chapter 6 addresses this problem of timing analysis,
extending previous formulations to handle multiple domains of clock
SkeW.

1.7 Exercises 2 9

By the end of this book, you should have a thorough understanding of
how to design skew-tolerant static and domino circuits. Although such
design is not difficult, it has been ignored by the bulk of engineers and
computer-aided design systems because flip-flops were adequate when
cycle times were long and thus sequencing overhead was small. High-end
microprocessors push circuit performance to the limit and will benefit
from skew-tolerant domino circuits to reduce overhead. Application-
specific integrated circuits will generally have less aggressive frequency
targets and are unlikely to employ domino circuits until signal integrity
tools improve. Nevertheless, many ASICs will be fast enough that flip-flop
overhead becomes significant, and a switch to skew-tolerant latches may
make design easier. Given these trends, skew-tolerant circuit design
should be an exciting area in the coming years.

1.7 Exercises

[151 1.1 You are building the AlphaNot microprocessor and plan to use flip-
flops as your state elements. Suppose the setup and clock-to-Q delays of the
flip-flops are 1.5 FO4 delays each. Assume there is no clock skew. You are
targeting a 0.18-micron process with a 60 ps FO4 inverter delay. If the oper-
ating frequency is to be 600 MHz, what fraction of the cycle time is wasted
for sequencing overhead? Repeat if the operating frequency is 1 GHz.

[151 1.2 Repeat Exercise 1.1 if the clock skew is 150 ps.

[151 1.3 Repeat Exercise 1.1 using transparent latches instead of flip-flops.
Your latches have setup and dock-to-Q delays of 1.5 FO4 delays each.
They have a D-to-Q delay of 1.3 FO4 delays.

[15] 1.4 Repeat Exercise 1.3 if the clock skew is 150 ps.

[15] 1.5 You are designing an IEEE single-precision floating-point multiplier
targeting 200 MHz operation in a 0.18-micron process using synthesized
static CMOS logic and conventional flip-flops. The flip-flops in your cell

3 0 1 Introduction

library have a setup time of 200 ps and a clock-to-Q delay of 300 ps for
the expected loading. You are budgeting clock skew of 400 ps. How much
time (in nanoseconds) is available for useful multiplier logic?

[15] 1.6 Repeat Exercise 1.5 if you are using IBM's 0.16-micron SA-27
process using synthesized static CMOS logic and conventional flip-flops.
An excerpt from IBM's cell library data book is shown in Figure 1.18.
Assume you will use the LDE0001 flip-flop (ignore the A, B, C, and 1
inputs used for level-sensitive scan) in the E performance level driving a
load of four standard loads. Extract the maximum setup time and clock-
to-Q (i.e., E-L2) delays from the data sheet assuming worst-case process
and environment.

[201 1.7 You are building the Motoroil 68W86 processor for embedded auto-
motive applications. Suppose your system is built using flip-flops with
ADC- 100 ps and ACQ - 120 ps and that there is no clock skew. Your com-
putation requires 3 ns to complete. You are considering various pipeline
organizations in which the computation is done in 1, 2, 3, or 4 clock
cycles in the hopes that breaking the computation into multiple cycles
would allow a faster clock rate. Make a table showing the maximum pos-
sible clock frequency for each option. Also show the total latency of the
computation (in picoseconds) for each option.

[15] 1.8 In Exercise 1.7 we assumed that logic could be divided into any
number of cycles without waste. In practice, you may have time remain-
ing at the end of a cycle for half a gate delay; this time goes unused
because it is impossible to build half a gate. Redo the exercise if on average
50 ps at the end of each cycle goes unused due to imbalanced logic.

[10] 1.9 Why is sequencing overhead a more important concern to designers
in the year 2000 than it was in 19907

[35] 1.10 Gather data to extend the plots in Figures 1.3 and 1.4 from 1995 to
the present. How fast is microprocessor performance increasing? How
about clock rate? How long does it take for performance to double? Clock

Standard Cell
304

SAl4-2214-02 SA14-2214-02
9/1/99 9/1/99

Standard Cell
303

Figure 1.18
(Reproduced by permission from http://www.chips.ibm.com/techlib/products/asics/databooks. html. Copyright 2001 by International Business Machines.)

Excerpt from IBM SA-27 0.16-micron cell library data book

3 2 1 Introduction

rate? Have these trends accelerated or decelerated relative to the perfor-
mance increases between 1985 and 19977 How do they compare with the
SIA roadmap in Table 1.27

[10] 1.11 Why are domino circuits faster than static CMOS circuits?

[15] 1.12 You are designing the Pentagram IV Processor. Consider using a
pipeline built with traditional domino circuits. The pipeline requires 1 ns
of logic in each cycle. Suppose the setup time of each latch is 90 ps and the
clock skew is 100 ps. What is the cycle time? What fraction of the cycle is
lost to sequencing overhead?

[15] 1.13 Repeat Exercise 1.12 if the system is built from two-phase skew-
tolerant domino circuits.

[20] 1.14 You are developing a circuit methodology for an ultra-high-speed
processor. You are weighing whether to recommend static CMOS circuits
or traditional domino circuits. You have determined that the setup time
and D-to-Q delay of your latches are approximately equal. You deter-
mined that the ALU self-bypass path is a key cycle-limiting path with a
logic delay of Alogic if you construct it with static CMOS circuits. If you use
domino circuits, you determine it will require only 0.7 Alogic but you must
also budget clock skew. Figure 1.19 shows a design space of logic delay
and clock skew. Divide the space into two regions based on whether static
CMOS or traditional domino circuits offer higher operating frequencies
for the given logic delay and skew. Assume there is no imbalanced logic.

4

2

0 I I I i

4 6 8 10 1 2
Alogic

Figure 1.19 Design space of logic delay and clock skew

1.7 Exercises 3 3

[15] 1.15 Repeat Exercise 1.14 assuming that there is 0.25 FO4 delays of time
wasted on average from imbalanced logic in the traditional domino
design.

[10] 1.16 Which of the circuits in Figure 1.20 produce outputs Q that can cor-
rectly drive a domino gate that evaluates on r Assume the inputs A and B
to each circuit are monotonically rising while r is high. The NAND and
NOT gates are built from static CMOS.

" E " E,
I I

I I I

*-IF *-IE
I I I

(a) (b) (c)

A A - -

B B

(d) (e) (f)

Figure 1.20 Which of these gates can properly drive a r domino gate?

[15] 1.17 Define "hard edges" as used in this chapter in your own words.
Which of the following pipeline design approaches introduce hard edges:
static CMOS with flip-flops, static CMOS with transparent latches, tra-
ditional domino circuits, skew-tolerant domino circuits? Why do hard
edges reduce performance?

This Page Intentionally Left Blank

2
Static Circuits

3 6 2 Static Circuits

T his chapter explores the design of systems with static CMOS logic and
memory elements: flip-flops, transparent latches, and pulsed latches.

Most students are taught that the purpose of memory elements is to
retain state. The chapter begins by arguing that memory elements can be
understood more easily if viewed as a way of enforcing sequencing. It
then defines some terminology regarding confusing meanings of the
words "static" and "dynamic" The emphasis of the chapter is on compar-
ing the operation of flip-flops, transparent latches, and pulsed latches. We
look at how sequencing overhead, time borrowing, and hold time
requirements affect each type of memory element. We then survey the lit-
erature about circuit implementations of the memory elements. The
chapter concludes with a historical perspective of memory elements used
in commercial processors and recommendations of what you should use
for your systems.

Clocking and memory elements are highly interdependent. In general,
we will assume that a single clock is distributed globally across the system
and that it may be locally complemented or otherwise modified as neces-
sary. We will look at clock generation and distribution more closely in
Chapter 5.

2.1 Preliminaries

Before examining specific static circuits, let's begin with a more philo-
sophical discussion of the purpose of memory elements and the often
contradictory terminology of static and dynamic elements.

2.1.1 P u r p o s e of M e m o r y E l e m e n t s

A static CMOS logic system consists of blocks of static CMOS combinational
logic interspersed with memory elements. The purpose of the memory
elements is not so much to remember anything as to enforce sequencing,
distinguishing this from previous and from next. If memory elements were
not used, fast signals might race ahead and catch up with slow signals
from a different operation, resulting in hopeless confusion. Thus, an ideal
memory element should slow down the early signals while adding no
delay to the signals that are already late. Real memory elements generally
delay even late elements; this wasted time is the sequencing overhead. We

2.1 Preliminaries 3 7

would like to build systems with the smallest possible sequencing over-
head.

This idea of using memory elements for sequencing at first might
seem to conflict with the idea that memory elements hold state, as under-
graduates learn when studying finite state machines (FSMs). This conflict
is illusory. Any static CMOS circuit can hold state: if the inputs do not
change, the output will not change. The real issue is controlling when a
system advances from one state to another. From this point of view, it is
clear that the role of memory elements in FSMs is also to enforce
sequence of state changes.

Another advantage of looking at memory elements as enforcing
sequencing rather than storing state is that we can more clearly under-
stand more unconventional circuit structures. Flip-flop systems can be
equally well understood from the state storage or sequencing perspec-
tives, partially explaining why they are so easy for designers to grasp.
However, transparent latch and pulsed latch systems use two and one
latch per cycle, respectively. If you attempt to point to a place in the cir-
cuit where state is stored, it is easy to become confused. Later in this chap-
ter, we will show how both methods are adequate to enforce sequencing,
which is all that really matters. Similarly, designers who believe latches are
necessary to store state will be very confused by skew-tolerant domino
circuits that eliminate the latches. On the other hand, it is easier to see
that skew-tolerant domino circuits properly enforce sequencing and thus
operate correctly.

Finally, this view of sequencing dispels some myths about asynchro-
nous systems. Some asynchronous proponents argue that asynchronous
design is good because it eliminates clocking overhead by avoiding the
distribution of high-speed clocks [66]. However, when we view memory
elements as sequencing devices, we see that all systems, synchronous or
asynchronous, must pay some sequencing overhead because it is impossi-
ble to slow the early signals without slightly delaying the late signals.
Asynchronous designs merely replace the problem of distributing high-
speed clocks with the problem of distributing high-speed sequencing
control signals.

2.1.2 T e r m i n o l o g y

We will frequently use the terms "static" and "dynamic" which unfortu-
nately have two orthogonal meanings. Most of the time we use the terms

3 8 2 Static Circuits

to describe the type of circuit family. Static circuits refer to circuits in
which the logic gates are unclocked: static CMOS, pseudo-NMOS, pass-
transistor logic, and so on. Dynamic circuits refer to circuits with clocked
logic gates: especially domino, but also Zipper logic and precharged
RAMs and programmable logic arrays (PLAs). A second meaning of the
words is whether a memory element will retain its value indefinitely.
Static storage employs some sort of feedback to retain the output indefi-
nitely even if the clock is stopped. Dynamic storage stores the output volt-
age as charge on a capacitor, which may leak away if not periodically
refreshed.

To make matters more confusing, a particular circuit may indepen-
dently be described as using static or dynamic logic and static or dynamic
storage. For example, most systems are built from static logic with static
storage. However, the Alpha 21164 uses blocks of static logic with
dynamic storage [26], meaning that the processor has a minimum oper-
ating frequency so that it does not lose data stored in the latches. The
Alpha 21164 also uses blocks of domino (i.e., dynamic logic) with
dynamic storage. Most other processors use domino with static storage so
that if they were placed in a notebook computer and the clock was
stopped during sleep mode, the processor could wake up and pick up
from where it left off without having lost information.

In this book, the terms "static" and "dynamic" will generally be used in
the first context of circuit families. This chapter describes the sequencing
of static circuits. The next chapter describes the sequencing of domino
(dynamic) circuits. In each chapter, we will explore the transistor imple-
mentations of storage elements, in which the second context of the words
is important. Generally we will present the dynamic form of each element
first, then discuss how feedback can be introduced to staticize the
element.

2.2 Static Memory Elements

Although there are a multitude of possible memory elements, including
S-R latches and J-K flip-flops, most CMOS systems are built with just three
types of memory elements: edge-triggered flip-flops, transparent latches,
and pulsed latches. Transparent and pulsed latch systems are sometimes

2.2 Static Memory Elements 3 9

called two- and one-phase latch systems, respectively. There is some con-
fusion about terminology in the industry, which this section seeks to clear
up; in particular, pulsed latches are commonly and confusingly referred
to as "edge-triggered flip-flops" All three elements have clock and data
inputs and an output. Depending on the design, the output may use true,
complementary, or both polarities.

The section begins with timing diagrams illustrating the three mem-
ory elements. It then analyzes the sequencing overhead of each element.
Latches are particularly interesting because they allow time borrowing,
which is described in more detail. Finally, the min-delay issues involving
hold time are described.

2.2.1 T i m i n g D i a g r a m s

Edge-triggered flip-flops are also known as master-slave or D flip-flops.
Their timing is shown in Figure 2.1. When the clock rises, the data input
is sampled and transferred to the output after a delay of Aco. At all other
times, the data input and output are unrelated. For the correct value to be
sampled, data inputs must stabilize a setup time ADC before the rising
edge of the clock and must remain stable for a hold time ACD after the ris-
ing edge.

' clk !
!

, I

D1 Q1 . / / Combinational "~ D2
> "~,._ logic ..,J

!
!

clk J

', •

' X t Q1 ,
I
I

D2 ~ !
!
!
!

Q2 ' !
!

I
I

\

'clk !

i , I

!
! ,F-
I
!
!
!

I
!
!

I
I
I
!

I
!

I
! ,
!

I

' Cycle 2 Cycle 1

Figure 2.1 Flip-flop timing

4 0 2 Static Circuits

We can check that memory elements properly sequence data by mak-
ing sure that data from th i s cycle does not mix with data from the p r e v i o u s

or n e x t cycles. This is clear for a flip-flop because all data advances on the
rising edge of the clock and at no other time.

Transparent latches are also known as half-latches, D-latches, or two-
phase latches. Their timing is shown in Figure 2.2. When the clock is high,
the output tracks the input with a lag of ADQ. When the clock is low, the
output holds its last value and ceases to track the input. For the correct
value to be sampled, the data must stabilize a setup time ADc before the
falling edge of the clock and must remain stable for a hold time AcD after
the falling edge. It is confusing to call a latch ON or OFF because it is not
clear whether ON means that the latch is passing data or ON means that
the latch is latching (i.e., holding old data). Instead, we will use the terms
"transparent" and "opaque." To build a sequential system, two half-
latches must be used in each cycle. One is transparent for the first part of
the cycle, while the other is transparent for the second part of the cycle
using a locally complemented version of the clock, clk_b.

clk_b I clk i

I
I I

clk ~
!

I ! ;t
! I

1 '
X ' D 1 i i

�9 I
! !

clk_b [

!
! ,F-
,,
,k_

I
!

I
I
!
!

QI~,

D3

Q3

:.00000000
----'+-- l ~ ACD

I
' : ,

. i !

I ' I
,
!

I
i I i .x xxxxx ' ', ,
I !
I I
i I I

Half-cycle 1
!

Half-cycle 2 , Half-cycle 3
I
I

Cycle 1 '~ Cycle 2

Figure 2.2 Transparent latch timing

2.2 Static Memory Elements 41

Latches may be placed at any point in the half-cycle; the only con-
straint is that there must be one latch in each half-cycle. Many designers
think of latches at the end of the half-cycle. In Section 1.3, we illustrated
latches in the middle of the half-cycle. We will discuss the relative advan-
tages of these choices in Section 4.1. In any event, sequencing is enforced
because there is always an opaque latch between data in one cycle and
data in another cycle.

Pulsed latches, also known as one-phase or glitch latches, behave
exactly as transparent latches, but are given a short pulse of width tpw pro-
duced by some local clock generator instead of the usual 50% duty cycle
clock. Therefore, only one pulsed latch is necessary in each cycle. Their
timing is shown in Figure 2.3. Data must set up and hold around the fall-
ing edge of the pulse, just as it does around the falling edge of a transpar-
ent latch clock.

Pulsed latches enforce sequencing in much the same way as flip-flops.
If the pulse is narrow enough, it begins to resemble an edge trigger. For
this reason, pulsed latches are sometimes misleadingly referred to as
"edge-triggered flip-flops?' We will be careful to avoid this because the
sequencing overhead differs in important ways. As long as the pulse is
shorter than the time for data to propagate through the logic between
pulsed latches, the pulse will end before new data arrives and data will be
safely sequenced.

i' 't'1 Ol Q1 (CombinationS)
" [~ ~" logic a~ [--

'] tpw [

F-X_
[ADCl ACDI !

',
I

I 1

' X ' ! QI , 1
! !
'
!

D 2 ,
!

I !
!

' :) (2_ Q2 ,
! !

' Cycle 1 ,' Cycle 2

Figure 2.3 Pulsed latch timing

4 2 2 Static Circuits

2.2.2 S e q u e n c i n g O v e r h e a d

Ideally, the cycle time of a system should equal the propagation delay
through the longest logic path. Unfortunately, real sequential systems
introduce overhead that increases the cycle time from three sources:
propagation delay, setup time, and clock skew. In this section, we will
look at the sequencing overhead of each type of memory element, obtain-
ing equations in the form

T c - Alogic + overhead (2.1)

In Section 1.1 we found that flip-flops pay all three sources of over-
head. Data is launched on the rising edge of one flip-flop. It must propa-
gate to the Q output, then pass through the logic, and then arrive at the
next flip-flop a setup time before the clock rises again. Any skew between
the clocks that could cause the first flip-flop to fire late or the second flip-
flop to sample early must be budgeted in the cycle time T~:

T c - Alogic -b ACQ q- ADC q- tskew (2.2)

In Section 1.3 we saw that transparent latches can be used such that
data arrives more than a setup time before the falling edge of the dock,
even in the event of clock skew. The data will promptly propagate through
the latch and subsequent logic may begin. Therefore, neither setup time
nor clock skew must be budgeted in the cycle time. However, there are
two latches in each cycle, so two latch propagation delays must be
included:

Z c - Alogic 4- 2ADQ (2.3)

There is widespread misunderstanding about the overhead in trans-
parent latch systems. Many designers and even textbooks [92] mistakenly
budget setup time or clock skew in the cycle time. Worse yet, some realize
their error but continue to budget setup time on the grounds that they are
"being conservative" In actuality, they are just forcing overdesign of the
sections of the chip that use transparent latches. This overdesign leads to
more area, higher power, and longer time to market. They may argue that
the chip will run faster if the margin was unnecessary, but if the chip con-
tains any critical paths involving domino or flip-flops, those paths will
limit cycle time and the margin in the transparent latch blocks will go

2.2 Static Memory Elements 4 3

unused. It is much better to add margin only for overhead that actually
exists.

Also, notice that our analysis of latches did not depend on the duty
cycles of the clocks. For example, the latches could be controlled by non-
overlapping clocks without increasing the cycle time. Nonoverlapping
clocks will be discussed further in Section 2.2.4 and in Chapter 6.

Pulsed latches are the most interesting to analyze because their over-
head depends on the width of the pulse. Data must set up before the fall-
ing edge of the pulse, even in the event of clock skew. This time required
may be before or after the actual rising edge of the pulse, depending on
pulse width and clock skew, as illustrated in Figure 2.4. If the pulse is
wider than the setup time plus clock skew, the data can arrive while the
pulsed latch is transparent and pass through with only a single latch prop-
agation delay. When the pulse is narrow, data must arrive by a setup time
and clock skew before the nominal falling edge. This required time can be
earlier than the actual rising edge of the pulse. Therefore, the data may sit
idle for some time until the latch becomes transparent, increasing the
overhead in the case of short pulse widths. Later, we will see that long
pulse widths cause hold time difficulties, so pulsed latches face an inher-
ent trade-off:

T c - Alogic --b ADQ + max(O, ADC + /skew -- tpw) (2.4)

In summary, flip-flops always have the greatest sequencing overhead
and are thus costly for systems with short cycle times in which sequenc-
ing overhead matters. Nevertheless, they remain popular for lower-
performance systems because they are well understood by designers,

/ / / , . / / /

~'ADc I
(a)

D C ~ Wasted time

(b)

Figure 2.4 Effect of pulse width on sequencing overhead: pulse width greater than
setup time (a) and pulse width less than setup time (b)

4 4 2 Static Circuits

require only a single clock wire, and are supported by even the least-
sophisticated timing analyzers. Transparent latches require two latch
propagation delays, but hide clock skew from the cycle time. Pulsed
latches are potentially the fastest because with a sufficiently wide pulse
they can hide clock skew and only introduce a single latch propagation
delay. This speed comes at the expense of strict min-delay constraints.

2.2.3 T i m e B o r r o w i n g

We have seen that a principal advantage of transparent latches over flip-
flops is the sorer edges that allow data to propagate through the latch as
soon as it arrives instead of waiting for a dock edge. Therefore, logic does
not have to be divided exactly into half-cycles. Some logic blocks can be
longer while others are shorter, and the latch-based system will tend to
operate at the average of the delays; a flip-flop-based system would oper-
ate at the longest delay. This ability of slow logic in one half-cycle to use
time nominally allocated to faster logic in another half-cycle is called time
borrowing or cycle stealing.

The exact use of time borrowing depends on the placement of latches.
If latches are nominally placed at the beginning of half-cycles, as was done
in Figure 2.2, we say that when data arrives late from one half-cycle, it can
borrow time forward into the next half-cycle. If latches are nominally
placed at the end of half-cycles, we say that if the data arrives early at the
latch, the next half-cycle can borrow time backward by starting as soon as
the data arrived instead of waiting for the early half-cycle to end. In sys-
tems constructed entirely of transparent latches, it does not matter
whether we think of time borrowing as forward or backward. In systems
interfacing transparent latches to flip-flops or domino gates that intro-
duce hard edges, the direction of time borrowing becomes more impor-
tant, as we shall see in Section 4.1.1.

Moreover, time borrowing may operate over multiple half-cycles. In
the case of forward borrowing, data may arrive late at a latch. If the logic
after the latch requires exactly half of a cycle, the result will arrive late at
the following latch. This borrowing may continue indefinitely so long as
the data never arrives so late at a latch that the setup time is violated.

Let us examine how much time borrowing is possible in any half-cycle
for transparent latches. For the purpose of illustration, assume that data
departs a latch in half-cycle 1 at the rising edge of the clock, as shown in

2.2 Static Memory Elements 4 5

Figure 2.5

i <

clk / / / ~
I
I
I

dk_b
!
!
!
!

I / I

I !

, rcl2
i / ~ l

i " I I i
, , AD C ts k i I I e w I
I I ~ ~ -~ I

I ! !

I
!

/"Combinational"x '~
\ logic y-+

!
!

Half-cycle 1 ' Half-cycle 2

Calculation of max imum time borrowing for transparent latches

Figure 2.5. The data nominally arrives at the next latch exactly T~/2 later.
However, the circuit will operate correctly so long as the data arrives
before the next latch becomes opaque. The difference between the actual
arrival and the nominal arrival is the amount of time borrowing. The lat-
est possible arrival time must permit the latch to set up before the earliest
skewed receiver clock. Therefore, the maximum amount of time that can
be borrowed is

re
tb~176 -- 2 tskew -- ADC (2.5)

In the limit of long cycle time T~, this approaches half a cycle. For shorter
cycles, the clock skew and setup time overhead reduce the amount of
available time borrowing.

If the latches are transparent for shorter amounts of time, the amount
of time available for borrowing is reduced correspondingly. For example,
in the next section we will discuss the possibility of using nonoverlapping
clocks to avoid min-delay problems. The nonoverlap is subtracted from
the amount of time available for borrowing. Similarly, pulsed latches can
be viewed as transparent latches with short transparency windows. The
amount of time borrowing supported by a transparent latch is therefore

tborrow -- tpw- tskew -- ADC (2.6)

4 6 2 Static Circuits

If this amount is negative, the pulse width is too narrow to allow time
borrowing. Of course, flip-flops permit no time borrowing because they
impose hard edges.

Equations 2.5 and 2.6 show that there is a direct trade-off between
time borrowing and clock skew. In effect, skew causes uncertainty in the
arrival time of data. Budgeting for this uncertainty is just like budgeting
for data intentionally being late on account of time borrowing. By more
tightly bounding the amount of clock skew in a system, more time bor-
rowing is possible.

Time borrowing may be used in several ways. Designers may inten-
tionally borrow time to balance logic between slower and faster pipeline
stages. The circuits will opportunistically borrow time after fabrication
when manufacturing and environmental variations and inaccuracies in
the analysis tools cause some delays to be faster and other delays to be
shorter than the designer had predicted. While in principle designers
could always repartition logic to balance delay as accurately as they can
predict in advance and avoid intentional time borrowing, such reparti-
tioning takes effort and increases time to market. Moreover, opportunis-
tic time borrowing is always a benefit because it averages out uncertain-
ties that are beyond the control of the designer and that would have
otherwise limited cycle time.

A practical problem with time borrowing is that engineers faced with
critical paths may assume they will be able to borrow time from an
adjacent pipeline stage. Unfortunately, the engineer responsible for the
adjacent stage may also have assumed that she could borrow time. When
the pieces are put together and submitted for timing analysis, the circuit
will be very far from meeting timing. This could be solved by good com-
munication between designers, but because of trends toward enormous
design teams and because of the poor documentation about such
assumptions and the turnover among engineers, mistakes are often made.
Design managers who have been burned by this problem in the past tend
to forbid the use of time borrowing until very late in the design when all
other solutions have failed. This is not to say that time borrowing is a bad
thing; it simply must be used wisely.

2.2.4 Min-Delay

So far, we have focused on the question of max-delay: how long the cycle
must be for each memory element to meet its setup time. The max-delay

2.2 Static Memory Elements 4 7

constraints set the performance of the system, but are relatively innocu-
ous because if they are violated, the circuit can still be made to function
correctly by reducing the clock frequency. In contrast, circuits also have
min-delay constraints that memory element inputs must not change until
a hold time after the sampling edge. If these constraints are violated, the
circuit may sample the output while it is changing, leading to incorrect
results. Min-delay violations are especially insidious because they cannot
be fixed by changing the clock frequency. Therefore, the designer is forced
to be conservative.

Figure 2.6 shows how min-delay problems can lead to incorrect opera-
tion of flip-flops. In the example, there are two back-to-back flip-flops
with no logic between them. This is common in pipelined circuits where
information such as an instruction opcode is carried from one pipeline
stage to the next without modification as the instruction is processed.
Suppose data input D 1 is valid for a setup and hold time around the rising
edge of clk, but that the propagation delay to Q1 is particularly short. Q1 is
the input to the second flip-flop and changes before the end of the hold
time for the second flip-flop. Therefore, the second flip-flop may incor-
rectly sample this new data and pass it on to Q2-In summary, the data
that was at input D 1 before the clock edge arrives at not only Q1 but also
Q2 after the clock edge. This is referred to as double-clocking, a hold time
or min-delay violation, or a race.

The term "min-delay" comes from the fact that the problem can be
avoided by guaranteeing a minimum amount of delay between consecu-
tive flip-flops. If there were more delay between the rising edge of the

�9 clk
I

, I

D1 !

!

clk j~

ql

\

. clk
!

, I

! J
!

!

D1X :
I

Q1
!

I 'X ! Q2
,' Cycle 1

Figure 2.6 Min-delay problems in flip-flops

4 8 2 Static Circuits

clock and the time data arrived at the second flip-flop, the hold time
would not have been violated and the circuit would have worked
correctly.

Min-delay problems are exacerbated by clock skew. If skew causes the
clock of the first flip-flop to rise early, its output will become valid early. If
skew then also causes the clock of the second flip-flop to rise late, its input
will have to hold until a later time. Therefore, more delay is necessary
between the flip-flops to ensure the hold time is not violated. Clock skew
can be viewed as increasing the effective hold time of the second memory
element.

We can guarantee that min-delay problems will never occur by check-
ing a simple delay constraint between each pair of consecutive memory
elements. Assume that data departs the first element as early as possible.
Add the shortest possible delay between this departure time and the
arrival at the second element; this is called the contamination delay. The
arrival must be at least a hold time after the sampling edge of the second
element, assuming maximum skew between the elements. To analyze our
prospective latching techniques, we need a few more definitions. Let us
define 8CQ as the contamination delay of the memory element, that is, the
minimum time from the clock switching until the output becoming valid.
This is like ACQ but represents the minimum instead of maximum delay.
Let 8logic be the contamination delay through the logic between the mem-
ory elements.

For flip-flops, data departs the first flip-flop on the rising edge of the
clock. The flop and logic contamination delays must be adequate for the
data to arrive at the second flip-flop after its hold time has elapsed, even
budgeting clock skew:

~iCQ + 8logic _> ACD + tskew (2.7)

Solving for the minimum logic contamination delay, we find

~logic ~ ACD + tskew -- ~CQ (2.8)

Notice that the constraint is independent of cycle time T c. As expected,
min-delay problems cannot be fixed by adjusting the cycle time.

For latches, data departs the first latch on the rising edge of one half-
cycle. The latch and logic contamination delays must be sufficient for the
data to arrive a hold time after the falling edge of the previous half-cycle.

2.2 Static Memory Elements 4 9

Let us define tnonoverlap as the time from the falling edge of one half-cycle
to the rising edge of the next. This time is typically 0 for complementary
clocks, but may be positive for nonoverlapping clocks. The minimum
logic contamination delay is

5logic ----- ACD + tskew -- 5 C Q - tnonoverlap (2.9)

Notice that this minimum delay is through each half-cycle of logic.
Therefore the full cycle requires minimum delay twice as great.

The following example may clarify the use of nonoverlapping clocks:

EXAMPLE 2.1 What is the logic contamination delay required in a system using
transparent latches if the hold time is 0, the latch contamination delay
is 0.5 FO4 inverter delays, the clock skew is 1 FO4 delay, and the
nonoverlap is 2 FO4 delays, as shown in Figure 2.7?

SOLUTION ~logic must be at least 0 + 1 -0 .5 - 2 - -1.5 FO4 delays. Because logic
delays are always nonnegative, it is impossible for this system to
experience min-delay problems. �9

Two-phase nonoverlapping docking was once popular because of
min-delay safety. It is still a good choice for student projects because it is
completely safe; by using external control of the clock waveforms, the stu-
dent can always provide enough nonoverlap and slow-enough clocks to
avoid problems with either min-delay or max-delay. However, commer-
cial high-speed designs seldom use nonoverlapping docks because it is
easier to distribute a single clock globally, and then locally invert it to
obtain the two latch phases. Instead, the commercial designs check min-
delay and insert buffers to increase delay in fast paths. Nonoverlapping
clocks also reduce the possible amount of time borrowing. Note that
there is a common fallacy that nonoverlapping clocks allow less time for
useful computation. As can be seen from Figure 2.7, this is not the case;
the full cycle less two latch delays is still available. The only penalty is the
reduced opportunity for time borrowing.

For pulsed latches, data departs the first latch on the rising edge of the
pulse. It must not arrive at the second pulsed latch until a hold time after
the falling edge of the pulse. As usual, the presence of clock skews between
the pulses increases the hold time. Therefore, the minimum contamina-
tion delay is

5logic ~ tpw 4" ACD + tskew -- 5CQ (2.10)

5 0 2 Static Circuits

I I I

' / / \,X ' /7- c] k i i
I I

I ', , :

clkb , i / /
,, ,, .~ ,

I ~.~ I ~ I
I I " " I

' I ' I '

,, I i ,, I r ,, , ~ , ~ ,

' ~ ' ~ '
I I I
I I I

' Half-cycle 1 ' Half-cycle 2 '

Figure 2.7 Transparent latches with nonoverlapping clocks

This is the largest required contamination delay of any latching scheme. It
shows the trade-off that although wider pulses can hide more clock skew
and even permit small amounts of time borrowing, the wide pulses
increase the minimum amount of delay between latches. Adding this
amount of delay between pulsed latches in cycles that perform no logic
can take a significant amount of area. Therefore, systems that use pulsed
latches for the critical paths that require low sequencing overhead some-
times also use flip-flops to reduce min-delay problems on paths that
merely stage data along without processing.

You may have noticed that flip-flops and pulsed latches have a mini-
mum delay per cycle, while transparent latches have a minimum delay per
half-cycle, and hence about twice as much minimum delay per cycle. This
may seem strange because flip-flops can be built from a pair of back-to-
back transparent latches. Why should flip-flops have half the min-delay
requirement as transparent latches if the systems have exactly the same
building blocks? The answer is that flip-flops are usually constructed with
zero skew between adjacent latches. By making the hold time ACD less
than the contamination delay 8DQ, the minimum logic delay between the
two latches in the flip-flop is negative. If this were not the case, flip-flops
would insidiously fail by sampling the input on the falling edge of the
clock as well as the rising edge! We will revisit this issue while discussing
flip-flop design in Section 2.3.3.

Min-delay can be enforced in many short paths by adding buffers.
Long channel lengths are often used to make slower buffers so that fewer
buffers are required. The hardest min-delay problems occur in paths that
could be either fast or slow in a data-dependent fashion. For example, a

2.3 Memory Element Design 5 1

path built from a series of NAND gates may be fast when both parallel
PMOS transistors turn on and slower when only one PMOS transistor turns
on. A path using wide domino OR gates is even more sensitive to input
patterns. Therefore, circuit designers occasionally encounter paths that
have both min- and max-delay problems. Because buffers cannot be
added without exacerbating the max-delay problem, the circuits may
have to be redesigned.

Min-delay requirements are easy to check because they only involve
delays between pairs of consecutive memory elements. They are also con-
servative for systems that permit time borrowing because they assume
data always departs the first latch at the earliest possible time. In a real
system, time borrowing may cause data to depart the first latch somewhat
later, making min-delay easier to satisfy. Unfortunately, if the real system
is operated at reduced frequency, or at higher voltage where transistors
are faster, data may again depart the first latch at the earliest possible
time. Therefore, it is unwise to depend on data departing late to guaran-
tee min-delay.

Because min-delay violations result in nonfunctional circuits at any
operating frequency, it is necessary to be conservative when checking and
guaranteeing hold times. Discovering min-delay problems after receiving
chips back from fabrication is extremely expensive because the violation
must be fixed and new chips must be built before the debugging of other
problems such as long paths or logic errors can begin. This may add two
to four months to the debug schedule in an industry with product cycles
of two years or less.

2.3 Memory Element Design

Now that we have discussed the performance of various memory ele-
ments, we will turn to the transistor-level implementations. Many trans-
parent latch implementations have been proposed, but in practice a very
old, simple design is generally best. Pulsed latches can be built from trans-
parent latches with a brief clock pulse or may integrate pulsing circuitry
into the latch. Flip-flops can be composed of back-to-back latches or of
various precharged structures. We will begin by showing dynamic ver-
sions of the memory elements, and then discuss how to staticize the
latches.

5 2 2 Static Circuits

2.3.1 Transparent Latches

The simplest dynamic latch dating back to the days of NMOS is just a pass
transistor, shown in Figure 2.8. Its output can only swing from 0 to
VDD-- V t, where V t is the threshold voltage of the transistor. To provide
rail-to-rail output swings, a full transmission gate is usually a better
choice.

Such latches have many drawbacks. The latch must drive only a capac-
itive load. If it drove the diffusion input of another pass transistor, when
the latch is opaque and the pass transistor turns on, charge stored on the
output node of the latch is shared between the capacitances on both sides
of the pass transistor, causing a voltage droop. This effect is called charge
sharing and can corrupt the result. Coupling onto the output node from
adjacent wires is also a problem because the output is a dynamic node.
Latch setup time depends on both the load and driving gate, just as the
delay through an ordinary transmission gate depends on the driver and
load. Therefore the latch is hard to use in a standard cell methodology
that defines gate delays without reference to surrounding gates.

The setup time issue can be solved by placing an inverter on the input.
Sometimes the inputs to the transmission gate are separated to create a
tristate inverter instead, as shown in Figure 2.9. The performance of both
designs is comparable; removing the shorting connection slightly reduces
drive capability, but also reduces internal diffusion parasitics. Note that it
is important for the clock input to be on the inside of the stack. If the data
input were on the inside, changes in the data value while the latch was off
could cause charge sharing and glitches on the output.

Placing an inverter on the output solves the charge-sharing problems
and reduces noise coupling because the dynamic node is not routed over
long distances.

To minimize clock skew, most chips distribute only a single clock sig-
nal across the entire chip. Locally, additional phases are derived as neces-

Figure 2.8

D.A L Q

(a)

I

Q

oo

(b)

Simple latches: pass-transistor latch (a) and transmission gate latch (b)

2.3 Memory Element Design 5 3

D I FQ

Figure 2.9

D - -

__T
C

C
q

_T

3

-1 7

(a) (b)

Latches built as inverter + transmission gate (a) versus tristate (b)

sary. For example, an inverter may be used to create clk_b from clk. Once
upon a time, some designers had only considered globally distributing the
multiple phase. They correctly argued that such global distribution would
lead to severe clock skew between the phases and high sequencing over-
head [96]. Therefore, they recommended using as few clock phases as
possible. This reasoning is faulty because local phase generators can pro-
vide many clock phases with relatively low skew. Nevertheless, it led to
great interest in latching with only a single clock phase. Such true single-
phase clocking (TSPC) latches are shown in Figure 2.10 as they compare
to traditional latches with local phase generators.

TSPC latches have a longer propagation delay because the data passes
through more gates. As designers realized that inverting the clock can be

Half-cycle 1 Half-cycle 2

�9 ~ D I
.- I q

qE
D

IE

-(2
~ - ~ Q

-1

9

qE
dE

D

IE

~ x>-q

~ - - ~ Q

Figure 2.10 TSPC versus traditional latches

5 4 2 Static Circuits

done relatively cheaply and that TSPC latches are slower and larger than
normal latches, TSPC latches fell from commercial favor. For example,
the DEC Alpha 21064 used TSPC latches. A careful study after the project
found that TSPC consumed 25% more area, presented 40% more clock
load, and was 20% slower than traditional latches. Therefore, the Alpha
21164 returned to traditional latch design [26, 28].

All latches that have been presented so far are dynamic; if left indefi-
nitely, subthreshold conduction through the nominally OFF transistors
may cause the gate to leak to an incorrect value. To allow a system to run
at low frequency or with a stopped clock, the dynamic node must be stati-
cized. This can be done with a weak feedback inverter or with a tristate
feedback inverter. Weak inverter "jamb" latches introduce a ratio prob-
lem: the transistors in the forward path must be strong enough to over-
power the feedback inverter over all values of PMOS-to-NMOS mobility
ratios. Tristate inverters are thus safer and avoid contention power, but
are larger. Feeding back from the output inverter is risky because noise on
the output can overwrite the contents of the latch via the feedback gate
while the latch is opaque. Thus, the output is often buffered with a sepa-
rate gate, as shown in Figure 2.11. Staticizing TSPC latches is more cum-
bersome because there are multiple dynamic nodes.

The setup time ADC of the latch is the time required for data to propa-
gate from the input to the dynamic node after the transmission gate so
that when the clock falls, the new data sits on the dynamic node. The
propagation delay ADQ is the time required for data to propagate from the
input all the way to the output. The hold time ACD is zero or even negative
in many latch implementations like those of Figure 2.11 because if data
arrives at the input at the same time the clock falls, the transmission gate
will be OFF by the time the data propagates through the input inverter.

In summary, for highest-performance custom design, a bare trans-
mission gate is very fast and was used by DEC in the Alpha 21164. Care
should be taken to compute the setup time as a function of the driver
as well as the load capacitance. For synthesized design, an inverter/
transmission gate/inverter combination latch is safer to guarantee setup
times and safety of the dynamic node. In any case, designs that must
support stop clock or low-frequency operation should staticize the
dynamic node with a feedback gate.

2.3 Memory Element Design $ $

2.3.2

(a)

(b)

Figure 2.11 Staticizing latches: noise on Q fed back to latch node (a) and harmless
noise on Q (b)

P u l s e d L a t c h e s

In principle, a pulsed latch is identical to a transparent latch, but receives
a narrow clock pulse instead of a 50% duty cycle clock [89]. The key chal-
lenge to pulsed latches is generating and distributing a pulse that is wide
enough for correct operation but not so wide that it causes terrible min-
delay problems. Unfortunately, pulse generators are subject to variation
in transistor parameters and operating conditions that may narrow or
widen the pulse. If you do not remember that setup times will also get
shorter as transistors become faster and pulses narrow, you may conclude
it is virtually impossible to design a reasonable pulse generator. Commer-
cial processors have proved that the concept can work, though we will see
in the historical perspective that these processors have had production
problems that might be attributed to risky circuit techniques. Because it is
extremely difficult to propagate narrow pulses cleanly across long lossy
wires, we will assume the pulses must be generated locally.

The conceptually simplest pulsed latch is shown in Figure 2.12. The
left portion is called a clock chopper, pulse generator, or one-shot; it pro-
duces a short pulse Op on the rising clock edge. The clock chopper can
serve a single latch or may locally produce clocks for a small bank of
latches. The latch is shown in dynamic form without an output inverter,
but can be modified to be static and have better noise immunity just like a

5 6 2 Static Circuits

Clock chopper
I
I I

i I P
! !
! i
! !

! '

7

-7

7

, / \ /

tpw

Figure 2.12 Simple pulsed latch

transparent latch. Indeed, any transparent latch, including unbuffered
transmission gates and TSPC latches, may be pulsed.

It is difficult to generate very narrow pulses with a clock chopper
because of the finite rise and fall times, so shorter pulses are often con-
structed from the intersection of two wider pulses. The Partovi pulsed
latch [64] of Figure 2.13 integrates the pulse generator into the latch to
achieve narrower pulses in just this way at the expense of greater ADQ
propagation delay. The latch was originally called a "hybrid latch-flip-
flop" (HLFF) because it was intended to replace a flip-flop. However, call-
ing it a flip-flop is misleading because it is not strictly edge-triggered.

When the clock is low, the delayed clock ~D is initially high and node X
is set high. The output Q floats at its old value. When the clock rises, both

m

and ~D are briefly high before ~)D falls. During this overlap, the latch is
m

transparent. The NAND gate acts as an inverter, passing X - D because the
other two inputs are high. The final gate also acts as an inverter because
transistors N 1 and N 3 are high. Therefore, the latch acts as a buffer while
transparent. When ~)D falls, the pulldown stacks of the NAND gate and the
final gate both turn off. This cuts output node Q off from the input D,
leaving the latch in an opaque mode. As usual, the latch can be made
static by placing cross-coupled inverters on the output.

We will return to pulsed latch variants in Section 4.1.2, when we study
the static-to-domino interface.

2.3 Memory Element Design $ 7

D

0 (\ /
m

~D

X

5
D

_3-
P1

3-Q
N1

2.3.3

Figure 2.13 Partovi pulsed latch

Flip-Flops

A flip-flop can be constructed from two back-to-back transparent latches,
as shown in Figure 2.14. When the clock is low, the first latch is transpar-
ent and the second latch is opaque. Therefore, data will advance to the
internal node X. When the clock rises, the first latch will become opaque,
blocking new inputs, and the second latch will become transparent. The
flip-flop setup time is the setup time of the first latch. The clock-to-Q
delay is the time from when data is at the dynamic node of the first latch
and the clock rises until the data reaches the output of the flip-flop. It is
therefore apparent that the sum of the setup and clock-to-Q delays of the
flip-flop is equal to the sum of the propagation delays through the latches
because in both cases the data must pass through two latches. Combining
this observation with Equations 2.2 and 2.3, we see that the overhead of a

Figure 2.14

I I

I I
! I
I I
I I
I I
I I

D ~ ~ %
i . a
i
i
i i I

i

Flip-flop built from transparent latches

5 8 2 Static Circuits

flip-flop system is worse than that of a transparent latch system by the
clock skew.

In practice, the latches used in flip-flops can be slightly simpler than
those used in stand-alone applications because the internal node X is pro-
tected and does not need all the buffering of two connected latches.
Figure 2.15 shows such optimized flip-flops built from transmission gate
latches and from TSPC latches.

Remember that the skew between back-to-back latches of a flip-flop
must be small or the flip-flop may have an internal rain-delay problem.
This problem is illustrated in Figure 2.16. Suppose that ~ is badly skewed
relative to ~, possibly because the local inverter is undersized and thus too
slow. When the clock falls, both transistors P1 and P2 of Figure 2.15 will
be simultaneously on for a brief period of time. This allows data to pass
from D to Q during this time, effectively sampling the input on the falling
edge of the clock. The problem can be avoided by ensuring that the q~
inverter is fast enough to turn off P2 before new data arrives. TSPC latches
are immune to this problem because they only use one clock, but are sus-
ceptible to internal races when the clock slope is very slow, causing both
NMOS and PMOS clocked transistors to be on simultaneously during the
transition. A modified traditional flip-flop design based on tristate latches
instead of transmission gate latches shown in Figure 2.17 [24] also avoids

IP1

(a)

I

N2

?

-T-

(b)

Figure 2.15 Optimized flip-flop implementations: traditional (a) and TSPC (b)

2.3 Memory Element Design 5 9

r
ON transistors N2 N1

P2 P1

Figure 2.16 Clock skew may cause internal race in flip-flops

Figure 2.17 No-race flip-flop design

2-
--<2

2

-1

J

2

--]

7

internal races because data will pass through the NMOS transistors of one
tristate and the PMOS transistors of the other tristate, never through the
PMOS transistors of both stages. Of course, while avoiding internal races is
necessary, it does not eliminate the problem of min-delay between flip-
flops.

The traditional flip-flop can be made static by adding feedback onto
the dynamic nodes after each of the two transmission gates. This would
be very costly in the TSPC flip-flop for three reasons: (1) the presence of
three dynamic nodes instead of just two, (2) the lack of an inverted ver-
sion of each node to feed back, and (3) the lack of a complementary clock
to operate a transmission gate.

The Klass semidynamic flip-flop (SDFF) [47, 48] of Figure 2.18 is
based on a different idea. Like the Partovi pulsed latch, it operates on the
principle of intersecting pulses. Compared to the Partovi latch, it may
have a slightly shorter propagation delay, but is edge-triggered and thus
loses the skew tolerance and time-borrowing capabilities of pulsed
latches. The Klass SDFF replaces the static NAND gate of the Partovi
pulsed latch of Figure 2.13 with a dynamic NAND. Because node X is guar-
anteed to be monotonically falling while the clock is high, the output
stage can also be simplified by removing N 3. Another modification is that

m

~D is gated by X. If D is low, (~D will fall three gate delays after the clock

6 0 2 Static Circuits

C
X

~ I

Figure 2.18 Klass semidynamic flip-flop

T
P1

N1

_'C"

rises, providing a very narrow pulse. If D is high, X will start to pull down
and #D will not fall. This allows more time for X to fall all the way and
purportedly permits a narrower pulse than would be possible if X had to
pull from high all the way low during the pulse. Another advantage is that
fast, relatively complex logic can be built into the first stage, which
behaves as a dynamic gate. The latch needs cross-coupled inverters on
both X and Q for fully static operation. A drawback relative to ordinary
flip-flops is that, like a pulsed latch, the hold time is increased by the pulse
width.

Yet another flip-flop design is the sense-amplifier flip-flop (SAFF) [28,
55, 58] of Figure 2.19, which has been used in the Alpha 21264 and in the
StrongARM. The flip-flop requires differential inputs and produces a dif-
ferential output. It can be understood as a dual-rail domino buffer with
regenerative feedback followed by an SR latch on the output to retain the
output state during precharge. Remarkably, a single transistor N 4 serves
to staticize the latch; this transistor can be omitted in dynamic implemen-
tations.

When the clock is low, evaluation transistor N 1 is off and precharge
transistors P3 and P4 pull the internal nodes X and X" high. When the
clock rises, one of the inputs will be at a higher voltage than another. This
will cause the corresponding node X or X to pull down. Transistors P1,
P2, Ns, and N 6 together form a cross-coupled inverter pair that performs
regenerative feedback to amplify the difference between X and X. Initially
both N s and N 6 are on, allowing either side to pull low. As one side pulls
down, the NMOS transistor on the other side begins to turn off and the
PMOS transistor begins to turn on, holding the other side high. Once one
side has fully pulled down, the flip-flop ceases to respond to input
changes so the hold time is quite short. If the input changes, the internal

2.3 Memory Element Design 61

1

m Q Q

Figure 2.19 Sense-amplifier flip-flop

nodes may be left floating unless weak staticizer N 4 is available to provide
a trickle of current. When the clock falls, the internal nodes precharge but
the cross-coupled NAND gates on the output serve as an SR latch to retain
the value.

As a general-purpose flip-flop, the SAFF is not very fast. One of the
internal nodes must first pull down, causing one of the outputs to rise,
then the other output to fall, leading to three gate delays through the
flop. However, the SAFF has other advantages. It is used in the Alpha
21264 to amplify 200 mV signal swings [22] from the register file and on
other heavily loaded internal busses, greatly reducing the delay of the
input swing. Because the core of the flop is just a dual-rail domino gate,
it is easy to build logic into the gate for greater speed. Care must be
taken, however, when incorporating logic to avoid charge-sharing noise
that incorrectly trips the sense amplifier. Finally, when the flip-flop inter-
faces to domino logic, the SR latch can be removed because the domino
logic does not need inputs to remain stable all cycle. In summary, the
SAFF is a good choice for certain applications where its unique features
are beneficial.

Stojanovic and Oklobdzija made a thorough study of flip-flop variants
[81]. The study focused on the power-delay product rather than the delay
given fixed input and output capacitance specifications. It found the Klass
SDFF to be the fastest, while the traditional flip-flop built from two trans-
parent latches offered the lowest power-delay product.

6 2 2 Static Circuits

2.4 Historical Perspective

The microprocessor industry has experienced a fascinating evolution of
latching strategies. Digital Equipment Corporation (now part of Com-
paq) took the microprocessor industry by surprise by developing the 200
MHz Alpha 21064 in 1992 [16], when most other microprocessors were
well below 100 MHz. At that time, designers strove to distribute the clock
on a single wire to nearly all latches and to avoid completely the need for
checking min-delay problems with inadequate tools. They therefore chal-
lenged the conventional wisdom by using TSPC latches instead of tradi-
tional latches or flip-flops. As we have seen, TSPC proved a poor choice,
requiring more area and clock power and being slower than regular trans-
parent latches. Therefore, the Alpha 21164 returned to static latches [26].
They gained speed by using a bare transmission gate as the basic latch and
choosing from a characterized library of simple gates at the input and
output of the transmission gate. This allowed designers to build logic into
the latch and minimize the sequencing overhead. At least one logic gate
was required between each latch to avoid min-delay problems. Curiously,
the Alpha 21264 began using a family of edge-triggered flip-flops [28];
overhead was tolerable because great effort went into the clock distribu-
tion system.

Interestingly, the 21064 and 21164 employed dynamic latches to avoid
the extra delay of staticizers. To retain dynamic state, the processors had a
minimum clocking frequency requirement as high as 1/10 of the maxi-
mum frequency [26]. This made testing and debug more challenging and
is not a viable option for processors targeting laptop computers and other
machines that need a low-power sleep mode. The 21264 used static mem-
ory elements because it required clock gating to keep power under control
by turning off unused elements.

Unger has done a thorough, though dense, analysis of the overhead
and clocking requirements of flip-flops, transparent latches, and pulsed
latches [89]. Transparent latches are used in many machines. For
example, IBM has been a longtime user, extensively employing a Level-
Sensitive Scan Design methodology (LSSD) with transparent latches [15,
75]. Motorola uses a similar methodology on PowerPC microprocessors
[2]. Silicon Graphics mixed transparent latches in speed-critical sections
with flip-flops in noncritical sections on the R1000. Pulsed latches were
once deemed too risky for commercial microprocessors, but have come

2.5 Summary 6 3

into favor recently among some aggressive designers. AMD used the
Partovi pulsed latch in the K6 microprocessor [64].

It will be interesting to watch how latches evolve in the future. As re-
cently as 1993, some authors predicted the exclusive use of single-phase
clocking [92]; that has not come true for high-performance systems. De-
spite the host of new latches proposed by academics [24, 96, 97], simple
transparent latches and pulsed latches are likely to vie for the lead on
high-speed designs, while flip-flops will be used extensively where se-
quencing overhead is less important.

2.5

Table 2.1

Element

S u m m a r y -

In this chapter we have explored the commonly used memory elements
for static circuits: flip-flops, transparent latches, and pulsed latches.
Transparent latches can be viewed as the basic element; a flip-flop is com-
posed of a pair of transparent latches receiving complementary clocks,
while a pulsed latch is a single transparent latch receiving a pulsed clock.
Table 2.1 summarizes the performance of each type of memory element.
Flip-flops are the slowest. Transparent latches are good for skew-tolerant
circuit design because they can hide nearly half a cycle of clock skew and
permit plenty of time borrowing. Pulsed latches have the lowest sequenc-
ing overhead of any latch type, but handle less skew and time borrowing
and require the most attention to min-delay problems.

Pulsed latches are a good option for high-performance designs when
skews are tightly controlled and min-delay tools are good. They are con-
ceptually simple and compatible with most design flows because they are
placed in the cycle in just the same way as flip-flops. Transparent latches

Static memory elements

Sequencing overhead Time borrowing Min-delay ~logic
Flip-flop

Transparent
latch

ACQ + ADC + tskew 0

2ADQ Tc 2 ADC -- tskew -- tn~176

ACD + tskew-- ~)CQ

ACD + tskew- 8CQ- tnonoverlap
(in each half-cyde)

Pulsed latch ADQ + max(O,
ADC + /;skew- tpw)

tpw- ADC- tskew tpw + ACD + tskew- 5CQ

64 2 Static Circuits

are another good option for high-performance design when clock skews
are more significant, time borrowing is necessary to balance logic, or the
min-delay checks are inadequate. Thus, the choice between pulsed latches
and transparent latches is more a matter of designer experience and judg-
ment than of compelling theoretical advantage. Flip-flops are the slowest
solution and should be reserved for systems where sequencing overhead is
a minor portion of the cycle time.

The traditional pass-gate latch implementations are fast and reason-
ably compact. TSPC latches only require a single clock phase, but this is
an illusory benefit: ultimately the designer cares about the performance,
area, and power of the complete system. The extra stages and transistors
in the TSPC design make it slower and more costly, so traditional designs
continue to be prevalent.

2.6 Exercises

[15] 2.1 In your own words, define static and dynamic circuit families and
static and dynamic memory elements. What is the difference in the usage
of the words "static" and "dynamic" as applied to circuit families versus
memory elements?

[20] 2.2 Consider a system with a target cycle time of 1 GHz. The clock skew
budget is 150 ps. You are considering using flip-flops, transparent latches,
or pulsed latches as the memory elements. How much time is available for
logic within the cycle for each of the following scenarios?

(a) Flip-flops: setup time - 90 ps; clock-to-Q delay - 90 ps; hold
time - 20 ps; contamination delay- 40 ps

(b) Transparent latches: setup time - 90 ps; clock-to-Q delay -
90 ps; D-to-Q delay - 70 ps; hold time - 20 ps; contamination delay
= 40 ps

(c) Pulsed latches: setup time - 90 ps; clock-to-Q delay - 90 ps; D-
to-Q delay - 70 ps; hold time - 20 ps; contamination delay - 40 ps.
Consider using pulse widths of 180 ps and 250 ps.

2.6 Exercises 6 5

[25] 2.3 Consider the paths in Figure 2.20. Using the data from Exercise 2.2,
compute the following minimum and maximum delays"

(a) Flip-flops: A 1, 81.

(b) Transparent latches: Assuming 50% duty cycle clocks, compute
maximum values of A 1, A 2, and A 1 + A2; and minimum values of 61,
62, and ~1 + ~2" Remember to allow for time borrowing.

(c) Pulsed latches: A 1, 61. Consider using pulse widths of 180 ps and
250 ps.

Figure 2.20

(a)

clk
I

_Y A1 -)
"- k,.. 61 j

(b)

(~1
I

(~2
I

t~p
I

(c)
Paths using flip-flops (a), transparent latches (b), and pulsed latches (c)

[20] 2.4 Repeat part (b) of Exercise 2.3 if the duty cycle of each latch clock is
d, where d is in the range of 0.3 to 0.7. Remember that the duty cycle of
the clock is the fraction of time it is high. Duty cycles less than 0.5 imply
nonoverlapping clocks, as shown in Figure 2.21, while duty cycles greater
than 50% imply overlapping clocks.

6 6 2 Static Circuits

Figure 2.21

I <
, Tc/2 ,
I I
i < >l
,' d • Tc i ',
I < >l I <

,1_2,
, , '
I I
, , ~

~2 i i
I I
I I I

dxT~

>l
I I
I I
I I
I I >,, ,,

! !
! !

I

! !

Two-phase nonoverlapping clocks with d = 0.375

[25] 2.5 Using the data from Exercise 2.2, compute the maximum values of

AI, A 2, A3,A 4, AI + A 2, A 2 + A 3, A1 + A 2 + A 3, and A 1 + A 2 + A 3 + A 4 for the
circuit in Figure 2.22. Assume 50% duty cycle clocks. Remember to allow
for time borrowing.

~1 (~2 ~1 (~2

[! I I

Figure 2.22 Two-cycle path using transparent latches

[10] 2.6 What are the advantages of using wide pulses for pulsed latches?
What are the disadvantages of wide pulses?

[3o] 2.7 Simulate the traditional static latch of Figure 2.10 in your process.
Use an identical latch as the load. Make a plot of the D-to-Q delay as a
function of the time from the changing data input to the falling edge of
the clock. From this plot, determine the D-to-Q and setup times of the
latch. Comment on how you define each of these delays.

[30] 2.8 Extend your simulation from Exercise 2.7 to determine the hold
time of the latch. How do you define and measure hold time?

3
Domino Circuits

6 8 3 Domino Circuits

S tatic circuits built from transparent latches remove the hard edges of
flip-flops, allowing the designer to hide clock skew from the critical

path and use time borrowing to balance logic across pipeline stages. Tra-
ditional domino circuits are penalized by clock skew even more than are
flip-flops, but by using overlapping clock phases it is possible to remove
latches and thus build domino pipelines with zero sequencing overhead.
This chapter describes the timing of such skew-tolerant domino pipelines
and the design of individual domino gates.

3.1 Skew-Tolerant Domino Timing

This section derives the timing constraints on domino circuits that
employ multiple overlapping clocks to eliminate latches and reduce
sequencing overhead. The framework for understanding such systems is
given the name skew-tolerant domino and is applicable to a variety of
implementations, including many proprietary schemes developed by
microprocessor designers. Once the general constraints are expressed, we
explore a number of special cases that are important in practical designs.
By taking advantage of the fact that clock skew tends to be less within a
small region of a chip than across the entire die, we can relax some timing
requirements to obtain a greater budget for global clock skew and for
time borrowing. In fact, the "optimal" clocking waveforms provide more
time borrowing than may be necessary, and a simplified clocking scheme
with 50% duty cycle clocks may be adequate and easier to employ.
Another interesting case is when the designer uses either many clock
phases or few gates per cycle such that each phase controls exactly one
level of logic. In this case, some of the constraints can be relaxed even fur-
ther.

In general, let us consider skew-tolerant domino systems that use N
overlapping clock phases. By symmetry, each phase nominally rises Tc/N
after the previous phase and all phases have the same duty cycle. Each
phase is high for an evaluation period t e and low for a precharge period tp.
Waveforms for a four-phase system are illustrated in Figure 3.1.

We will assume that logic in a phase nominally begins evaluating at
the latest possible rising edge of its clock and continues for Tc/N until the
next phase begins. When two consecutive clock phases overlap, the logic
of the first phase may run late into the time nominally dedicated to the

3.1 Skew-Tolerant Domino Timing 6 9

| J
i"
I
IIJ
i ~-.

~ 1 / / / /
!
!

,) \ \ \ \ !
!

*3

'4

Figure 3.1

/ /L

!

!
!

! - ~ J i !

I
! !
!
! i
! !

L____s :
[%verlap [

!
!
! \ \ \ \ ,

!

/ / /?

' A

' Phase 1

'2

r r

B
!

Phase 2 ,

~3 ~3
I I

Phase 3

Four-phase skew-tolerant domino circuits

tp
f

/ / / ,

\ \ \ \

'4

Ii
! I

Phase 4

/777-

second phase. For example, in Figure 3.1, the second ~)1 domino gate con-
sists of dynamic gate A and static gate B. Although ~)1 gates should nomi-
nally complete during Phase 1, this gate runs late and borrows time from
Phase 2. The maximum amount of time that can be borrowed depends on
the guaranteed overlap of the consecutive clock phases. This guaranteed
overlap in turn depends on the nominal overlap minus the dock skew
between the phases. Therefore, the nominal overlap of clock phases toverla p
dictates how much time borrowing and skew tolerance can be achieved in
a domino system.

3.1.1 General Timing Constraints

We will analyze the general timing constraints of skew-tolerant domino
by solving for this precharge period, then examining the use of the result-
ing overlap. Figure 3.2 illustrates the constraint on precharge time set by
two consecutive domino gates in the same phase, tp is set by the require-
ment that dynamic gate A must fully precharge, flip the subsequent static
gate A; and bring the static gate's output below V t by some noise margin
before domino gate B reenters evaluation so that the old result from A"
doesn't cause B to evaluate incorrectly. We call the time required tprec h and
enforce a design methodology that all domino gates can precharge in this

7 o 3 Domino Circuits

~Xa //H

Figure 3 . 2

(~lb / / / /

Precharge time constraint

i J

!

!

' A
i<

l~la
I

A'

tprech

! /

, / / /
l~lb

' B ! >l
!
!

time. The worst case occurs when ~)la is skewed late, yet ~)lb is skewed
early, reducing the effective precharge window width by tskew 1, which is
the skew between two gates in the same phase. Therefore, we have a lower
bound on tp to guarantee proper precharge:

tp -- tprec h + tskew 1 (3.1)

The precharge time tprec h depends on the capacitive loading of each
gate, so it is necessary to set an upper bound on the fanout each gate may
drive. Moreover, on-chip interconnect between domino gates introduces
RC delays that must not exceed the precharge time budget.

From Figure 3.1 it is clear that the nominal overlap between consecu-
tive phases toverla p is the evaluation period minus the delay between
phases, t e - T J N . Substituting t e - T c - tp, we find

Tc (3.2)
t~ -- T c - tprech- tskewl N

This overlap has three roles. Some minimum overlap is necessary to
ensure that the later phase consumes the results before the first phase pre-
charges. This time is called thola, though it is a slightly different kind of
hold time than we have seen with latches. Additional nominal overlap is
necessary so that the phases still overlap by thola even when there is clock
skew. The remaining overlap after accounting for hold time and clock
skew is available for time borrowing. If the clock skew between consecu-
tive phases ~)1 and ~2 is tskew2, w e therefore find

3.1 Skew-Tolerant Domino Timing 7 1

N - 1
t~ = N T c - - t p r e c h - - tskewl - th~ + tskew2 + tb~176 (3.3)

The hold time is generally a small negative number because the first
dynamic gate in the later phase evaluates immediately after its rising clock
edge while the precharge must ripple through both the last dynamic gate
and following static gate of the first phase. Moreover, the gates are gener-
ally sized to favor the rising edge at the expense of slowing the precharge.
The hold time does depend on the fanouts of each gate, so minimum and
maximum fanouts must be specified in a design methodology to ensure a
bound on hold time. For simplicity, we will sometimes conservatively

approximate t h o l d a s zero.
Mso, now that we are defining different amounts of clock skew

between different pairs of clocks, we can no longer clearly indicate the
amount of skew with hashed lines in the clock waveforms. Instead, we
must think about which clocks are launching and receiving signals and
allocate skew accordingly. We will revisit this topic in Chapter 5.

How much skew can a skew-tolerant domino pipeline tolerate?
Assuming no time borrowing is used and that all parts of the chip budget
the same skew, tskew_ma x, we can solve Equation 3.3 to find

N - 1
N Tc - th~ - tprech

- (3 . 4) tskew-max -- 2

For many phases N and a long cycle T c, this approaches Tc/2, which is the
same limit as we found for transparent latches in Equation 2.5. Small N
reduces the tolerable skew because phases are more widely separated and
thus overlap less. The budget for precharge and hold time further reduces
tolerable skew. The following example explores how much skew can be
tolerated in a fast system.

EXAMPLE 3.1 Consider a microprocessor built from skew-tolerant domino circuits
with a cycle time T c - 16 and precharge time tprec h - - 4 FO4 inverter
delays. How much clock skew can the processor withstand if 2, 3, 4, 6,

or 8 clock phases are used?

SOLUTION Let us assume the hold time is 0. The maximum tolerable skew is
computed from Equation 3.4, and the precharge period is then found
using Equation 3.1. Figure3.3 illustrates the clock waveforms,
precharge period, and maximum tolerable skew for each number of

7 2 3 Domino Circuits

N

Figure 3.3

~) 1 waveform

/ / / \ \ \ / / /

/ / / / \ \ \ \ / / / /

/ / / / / \ \ \ \ \ / / / / I
/ / / / \ \ \ \ \ \ # / / / /

/ / / / / / \ \ \ \ \ \ / / / / / /

Skew tolerance for various numbers of clock phases

tskew-max

7.33

8.66

3.33

4.66

clock phases. Notice that the precharge period must lengthen with N
to accommodate the larger clock skews while still providing a
minimum guaranteed precharge window. �9

In Section 5.2 we will consider various approaches for generating the
clock waveforms. Ideally, t e and the delay between phases would scale
automatically as the frequency changes to provide the maximum tolerable
skew at any frequency. In practice, it is often most convenient to generate
fixed delays between phases, optimizing for tskew_ma x at a target operating
frequency. In such a case, slowing the clock will not increase tskew_ma x.
Therefore, if the actual skew between any two dynamic gates exceeds
tskew_ma x, the circuit may fail completely, no matter how fast the gates
within the pipeline evaluate and how much the clock is slowed.

3.1.2 Clock Domains

In Equation 3.4 we assumed that clock skew was equally severe every-
where. In real systems, however, we know that the skew between nearby
elements, ,,local may be much less than the skew between arbitrary ele- %kew '
ments, ,global We take advantage of this tighter bound on local skew to skew "
increase the tolerable global skew. We therefore partition the chip into

flocal multiple regions, called local clock domains, which have at most ~skew
between clocks within the domain.

If we require that all connected blocks of logic in a phase are placed
local within local clock domains, we obtain tskew 1 = t skew" We still allow arbi-

trary communication across the chip at phase boundaries, so we must

3.1 Skew-Tolerant Domino Timing 7 3

EXAMPLE 3 .2

SOLUTION

budget tskew 2 -- /- skew gl~ Substituting into Equation 3.3, we can solve for
the maximum tolerable global skew assuming no time borrowing:

global N - 1 local
t skew-max -- N z c - th~ - tprech - t skew (3.5)

This equation shows that reducing the local skew increases the amount of
time available for global skew. In the event that local skew is tightly
bounded, a second constraint must be checked on precharge that the last
gate in a phase precharges before the first gate in the next phase begins
evaluation a second time extremely early because of huge global skew.
The analysis of this case is straightforward, but is omitted because typical
chips should not experience such large global skews.

Remember that overlap can be used to provide time borrowing as well
as skew tolerance; indeed, these two budgets trade off directly. Again
using Equation 3.3, we can calculate the budget for time borrowing
assuming fixed budgets of local and global skew:

N - 1 - local global
/borrow = N Tc -- /hold -- t p r e c h - tskew-- tskew (3.6)

Example 3.2 illustrates the amount of time available for borrowing in an
aggressive microprocessor.

Consider the microprocessor of Example 3.1 with a cycle time T c - 16
and precharge time of tprec h - 4 FO4 inverter delays. Further assume
the global skew budget is 2, the local skew budget is 1, and the hold
time is 0 FO4 delays. How much time can be borrowed as a function
of the number of clock phases?

Figure 3.4 illustrates the clock waveforms, precharge period, and
maximum time borrowing for various numbers of clock phases.
Notice that the best clock waveforms remain the same because the
clock skew is fixed, but that the amount of time borrowing available
increases with N. A two-phase system offers a small amount of time
borrowing, which makes balancing the pipeline somewhat easier. A
four-phase design offers more than a full phase of time borrowing,
granting the designer tremendous flexibility. More phases offer
diminishing returns. In Chapter 5, we will find that generating the
four domino clocks is relatively easy. Therefore, four-phase skew-
tolerant domino is a reasonable design choice, which we will use in the
circuit methodology of Chapter 4. �9

7 4 3 Domino Circuits

3.1.3

Figure 3.4 Time borrowing for various numbers of clock phases

F i f ty -Pe rcen t D u t y Cycle

Example 3.2 showed that skew-tolerant domino systems with four or
more phases and reasonable bounds on clock skew may be able to borrow
huge amounts of time using clock waveforms with greater than 50% duty
cycle. As we will see in Chapter 5, it is possible to generate such wave-
forms with clock choppers, but it would be simpler to employ standard
50% duty cycle clocks, with t e - t p - Tc/2.

We have seen that the key metric for skew-tolerant domino is the over-
lap between phases, t e - T c / N . We know that this overlap must exceed the
clock skew, hold time, and time borrowing. Substituting t e = T c / 2 , we find

tglobal
skew-max + tborrow ----

N - 2
2N Tc - th~ (3.7)

From Equation 3.7, we see that again the overlap approaches half a cycle
as the number of clocks N gets large. Of course we must use more than
two clock phases to obtain overlapping 50% duty cycle clocks.

Another advantage of the 50% duty cycle waveforms is that a full half-
cycle is available for precharge. This may allow more time for slow pre-
charge or may allow the designer to tolerate more skew between pre-
charging gates, eliminating the need to place all paths through gates of a
particular phase in the same local clock domain. Of course, in a system
with 50% duty cycle clocks, tighter bounds on local skew do not permit
greater global skew.

3.1 Skew-Tolerant Domino Timing 7 $

3.1.4 Single Ga te p e r P h a s e

In the limit of using very many clock phases or very few gates per cycle,
we may consider designing with exactly one gate per phase. The precharge
constraint of Equation 3.1 requires that a gate must complete precharge
before the next gate in the same phase begins evaluation so that old data
from the previous cycle does not interfere with operation. Skew between
the two gates in the same phase is subtracted from the time available for
precharge. Because there is no next gate in the same phase when we use
exactly one gate per phase, we can relax the constraint. The new con-
straints, shown in Figure 3.5, are that the domino gate must complete
precharge before the gate in the next phase reenters evaluation, and that
the dynamic gate A in the current phase must precharge adequately
before the current phase reenters evaluation. In a system with multiple
gates in a phase, both A and B must complete precharge by the earliest
skewed rising edge of ~1.

As a result of these relaxed constraints, a shorter precharge time tp may
be used, permitting more global skew tolerance or time borrowing. Alter-
natively, for a fixed duty cycle, more time is available for precharge.

3.1.5 Min-De lay C o n s t r a i n t s

Just as we saw in Section 2.2.4 that static circuits have hold time con-
straints to avoid min-delay failure, domino circuits also have constraints

//11
i / / /

!
!
i <
!

!
!
|

tp
>

//L

001
I

Iyc/N.i
i ~ f

I

I
I
I
I ,, / / /

'2
I

I I I

A must rise by n o w / ~
B must fall by now /

Figure 3.5 Relaxed precharge constraint assuming single gate per phase

7 6 3 Domino Circuits

~2

Figure 3.6

4/// I I I I

I

I l= I -

A B

Min-delay problem in skew-tolerant domino

that data must not race through too early. 1 These constraints are identical
in form to those of static logic: data departing one docked element as
early as possible must not arrive at the next clocked element until ACD
after the sampling~that is, falling--edge of the next element.

Figure 3.6 illustrates how min-delay failure could occur in skew-toler-
ant domino circuits by looking at the first two phases of an N-phase dom-
ino pipeline. Gate A evaluates on the rising edge of t~x, which in this figure
is skewed early. If the gate evaluates very quickly, data may arrive at gate B
before the falling edge of ~2, as indicated by the arrow. This can contami-
nate the previous cycle result of gate B, which should not have received
the new data until after the next rising edge of t~2.

The min-delay constraint determines a minimum, possibly negative,
delay 5logic through each phase of domino logic to prevent such race-
through. The data must not arrive at the next phase until a hold time after
the falling edge of the previous cycle of the next phase. This falling edge
nominally occurs Tc/N- tp after the rising edge of the current phase.
Moreover, skew must be budgeted because the current phase might begin
early relative to the next phase. In summary:

~logic -- ACD & tskew + " ~ - tp (3.8)

The hold time AcD is generally close to zero because data can safely arrive
as soon as the domino gate begins precharge.

1. Do not confuse the min-delay hold time ACD with thold , which is the time one
phase must overlap another for the first gate of the second phase to evaluate before the
last gate of the first phase precharges.

3.1 Skew-Tolerant Domino Timing 7 7

If the required ~logic is negative, the circuit is guaranteed to be safe
from min-delay problems. Two-phase skew-tolerant domino has severe
min-delay problems because tp < Tc/2, so the minimum logic contamina-
tion delay will certainly be positive. Four-phase skew-tolerant domino
with 50% duty cycle clocks, however, can withstand a quarter cycle of
clock skew before min-delay problems could possibly occur.

To get around the min-delay problems in two-phase skew-tolerant
domino, we can introduce additional 50% duty cycle clocks at phase
boundaries, as was done in Opportunistic Time-Borrowing Domino [41,
80] and shown in Figure 3.7. dlclk and dlclk_b play the roles of ~1 and ~2
in two-phase skew-tolerant domino, and 50% duty cycle clocks clk and
clk_b are used at the beginning of each half-cycle to alleviate min-delay
problems. However, this approach still requires four phases when the
extra clocks are counted and does not provide as much skew tolerance or
time borrowing as regular four-phase skew-tolerant domino, so it is not
recommended.

3.1.6 R e c o m m e n d a t i o n s a n d Des ign Issues

In this section, we have explored how skew tolerance, time borrowing,
and min-delay vary with the duty cycle and number of phases used in
skew-tolerant domino. We have found that four-phase skew-tolerant
domino with 50% duty cycle clocks is an especially attractive choice for

I i
I i

dlclk / / / ~
!
!

I

clk_b \ \ \ ~ / / / , 7
]

I i

dlclk_b \ \ \ \ / / / Y
i
I

i I

I

//A
I
I

~Ill
\\k'~

!

E.-] I
![~1~ ~ ~ ~ ~ ~ ~r~ ~1 I ~

!

L%%1

Figure 3.7
safety [41]

Two-phase skew-tolerant domino with additional phases for min-delay

7 8 3 Domino Circuits

current designs because it provides reasonably good skew tolerance and
time borrowing, is safer from min-delay problems than two-phase skew-
tolerant domino, and, as we shall see in Chapter 5, uses a modest number
of easy-to-generate clocks. Increasing the number of phases beyond four
provides diminishing returns and increases complexity of clock genera-
tion. Therefore, we will focus on four-phase systems in the next chapter as
we develop a methodology to mix static logic with four-phase skew-toler-
ant domino. Before moving on, however, it is worth mentioning a num-
ber of design issues faced when using skew-tolerant domino circuits.

The designer must properly balance logic among clock phases, just as
with transparent latches where logic must be balanced across half-cycles.
It is generally necessary to include at least one gate per phase because all
of the timing derivations in this chapter have worked under such an
assumption. When a large number of phases are employed, it is possible
to have no logic in certain phases at the expense of skew tolerance and
time borrowing; for example, an eight-phase system with no logic in
every other phase is indistinguishable from a four-phase system with logic
in every phase. The most common reason phases contain no logic is that
the paths are short. These noncritical paths can introduce domino buffers
to guarantee at least one gate per phase, or may be implemented with
static logic and latches because the speed of domino is unnecessary.

In Section 3.1.2, we showed that if we could build each phase of logic
in a local clock domain, we could shorten the precharge period tp because
less skew must be budgeted between gates in the same phase. Unfortu-
nately, in some cases critical paths and floorplanning constraints may
prevent a phase of logic from being entirely within a local domain. If we
do not handle such cases specially, we could not take advantage of local
skew to increase tolerable global skew. Two solutions are to require that
the gates at the clock domain boundary precharge more quickly or to
introduce an additional phase at the clock domain crossing delayed by an
amount less than Tc/N.

A final issue encountered while designing skew-tolerant domino is the
interface between static and domino logic. Because nonmonotonic static
logic must set up before the earliest the domino clock may rise, but the
domino gate may not actually begin evaluating until the latest that its
clock may rise, we have introduced a hard edge at the interface and must
budget clock skew. This encourages designers to build critical paths and
loops entirely in domino for maximum performance. The interface will
be considered in more detail in Chapter 4.

3.2 Domino Gate Design 7 9

3.2 Domino Gate Design

Now that we have analyzed skew-tolerant domino timing, let us return to
general issues in domino design applicable to both skew-tolerant and tra-
ditional domino circuits. In Section 1.4.1 we saw that the monotonicity
rule only allowed the use of noninverting gates in a domino pipeline. To
implement arbitrary logic functions, we can employ a more general logic
family, dual-rail domino. We also saw that the precharge rule required us
to avoid contention between pulldown and pullup transistors during pre-
charge. We will look at the use of footed and unfooted gates to satisfy this
rule. In systems that stop the clock to dynamic gates, it is necessary to use
keepers to avoid floating nodes. We will look at various issues in keeper
design. Once these basic issues of monotonicity, precharge, and static
operation are understood, we will address robustness issues necessary for
reliable operation.

3.2.1 M o n o t o n i c i t y a n d Dual-Rail D o m i n o

The monotonicity rule says that dynamic gates should have monotoni-
cally rising inputs during evaluation; that is, the inputs should start low
and stay low, start high and stay high, or start low and rise, but never start
high and fall because the dynamic gate will never be able to recover from
a false evaluation. Because the output of a dynamic gate is monotonically
falling, it must be followed by an inverting static gate to create a mono-
tonically rising input to the next dynamic gate. The domino gate, consist-
ing of the dynamic/static pair, therefore always performs two inversions
and thus can only implement noninverting functions. Such functions are
called monotonic; they include AND and OR, but not xop~

In traditional domino circuits, a common solution to the monotonic-
ity problem is to structure a block of logic into a first monotonic portion
followed by a second nonmonotonic portion. The first portion is imple-
mented with domino logic, while the second portion is built with static
CMOS gates. The result goes to a latch at the end of the half-cycle, and
domino logic may begin again at the start of the next half-cycle. For
example, a 64-bit tree adder consists of a carry generation tree followed
by a final add. The carry generation to compute the carry in to each bit is
monotonic, but the final add requires the nonmonotonic XOR function.
Therefore, some designs perform the add in a half-cycle by building the

80 3 Domino Circuits

carry logic with domino and the XOR with static CMOS at the end of the
half-cycle [49]. This approach has three drawbacks. One is that mixing
domino and static CMOS is not as fast as using domino everywhere.
Another is that it requires traditional domino clocking techniques and
thus has severe sequencing overhead. A third is that the adder is forced to
fit in half of a cycle so that the nonmonotonic output arrives at the first
half-cycle latch. This may limit the cycle time of the machine.

An alternative solution to monotonicity is to construct dual-rail dom-
ino circuits, also known as dynamic differential cascade voltage switch
logic (DCVS) [35]. Dual-rail domino circuits accept both true and com-
plementary versions of the inputs and produce true and complementary
outputs. For example, Figure 3.8 shows a dual-rail domino AND/NAND
gate, and Figure 3.9 shows an XOR/XNOR gate.

The true and complementary signals are labeled _h and _l, respec-
tively. When a dual-rail domino gate precharges, both _h and _l outputs

Figure 3.8

L
(AAND B)]b

]

1

Dual-rail domino AND/NAND

~ 1
L L

lk -, lk -,
F V-

(A NAND B)

L

(AXOR B)]~

1

qE'

I

]

1

(A XNOR B)

Figure 3.9 Dual-rail domino XOR]XNOR

3.2 Domino Gate Design 8 1

are low, representing a quiescent state. When the gate evaluates, either _h
or _l will rise, indicating that the function is TRUE or FALSE, respectively.
The gate should never assert both _h and _l outputs high simultaneously;
this state would indicate erroneous operation of the gate.

Dual-rail domino gate design is much like single-rail design, but
requires building pulldown stacks implementing both true and comple-
mentary versions of the function. For some functions, these stacks are
completely independents; for example, in Figure 3.8 the AND function is a
regular domino AND gate using true versions of the inputs, while the
NAND function is a domino OR gate operating on complementary inputs.
For other functions, the stacks may be partially shared as illustrated in
Figure 3.9. Sharing reduces the input capacitance and thus generally
improves speed as well as area. Sharing can be determined by inspection
or by Karnaugh maps or tabular methods [12].

Dual-rail domino gates require dual-rail inputs. The gates producing
these inputs must in turn receive dual-rail inputs. This means that entire
blocks of logic must be implemented in dual-rail fashion. For example,
the 64-bit tree adder discussed earlier can be built entirely from dual-rail
domino. This improves performance by hiding the sequencing overhead
and avoiding the use of a slow static XOR, leading to a speedup of 25% or
more in aggressive systems [30]. The improvement comes at the expense
of twice as many wires to carry the dual-rail signals and greater clock
loading serving the dual-rail gates.

Dual-rail domino design is otherwise very similar to regular domino
design. In the next sections, discussions of footed and unfooted gates,
keepers, and noise margins apply equally to regular domino and dual-rail
domino logic.

3.2.2 Footed and Unfooted Gates

The precharge rule of domino gates states that there must be no active
path from the output to ground in a domino gate during precharge. Oth-
erwise, the gate would dissipate excess power and the output would not
precharge adequately. This rule can be enforced in two ways: an explicit
transistor can be used to cut off the path to ground, or the circuit can be
timed such that paths to ground are deactivated before precharge begins.
Footed gates use the extra transistor, while unfooted gates can be faster;
these styles were shown in Figure 1.10.

8 2 3 Domino Circuits

Footed gates are safe to use anywhere, but unfooted gates require that
all paths to ground be deactivated before the gate begins precharge. One
way to guarantee this is to use inputs coming from other domino gates
and to delay the precharge until the inputs have had time to precharge.
For example, Figure 3.10 illustrates proper use of footed and unfooted
gates. Dynamic gate A receives inputs from a static latch. The oval repre-
sents a pulldown stack of NMOS transistors implementing an arbitrary
function. Because that latch output might be high during precharge, the
gate needs a series evaluation transistor to avoid contention during pre-
charge. Dynamic gate B begins precharge on the falling edge of r and
receives inputs from a dynamic gate A that precharges on the falling edge
of r Hence, the input will be low by the time gate B begins precharge, so
no evaluation transistor is required. Gate C begins precharge at the same
time as B, so its inputs are not low until partway through the precharge
period. Therefore, gate C should use an evaluation transistor to avoid
contention. In summary, an unfooted gate may be used when its inputs
come from a domino gate that begins precharge earlier.

Note that only one transistor in each series stack must be off during
precharge to avoid contention. For example, an unfooted dynamic NAND

can receive some inputs from static latches so long as at least one input
came from a previous phase of dynamic logic. On the other hand, an
unfooted dynamic NOR gate must have all inputs low during precharge to
avoid contention.

,1 I \ I

I \ I

t~1 (~2 (~2

__]- stack l

7

A B

Application of footed and unfooted gates

I

Figure 3.10

3-

7

C

3.2 Domino Gate Design 8 3

To avoid contention in an unfooted gate completely, the gate must not
begin precharge until the previous gate has had enough time to fully pre-
charge. Guaranteeing this across process and environmental variations is
difficult and makes unfooted gates hard to use. However, if the gate
begins precharge while its inputs are falling but not completely low, con-
tention will only occur for a short time. This may be acceptable in some
design methodologies that sacrifice power to achieve maximum speed.

The method of logical effort [79] can be used to estimate the advan-
tage of unfooted gates. Recall that the logical effort of a gate is the ratio of
its input capacitance to that of a static CMOS inverter that can deliver the
same output current. The logical effort indicates how good the gate is at
driving a capacitive load; lower logical efforts correspond to faster gates.
Figure 3.11 compares three dynamic inverters sized for equal output cur-
rent as a static CMOS inverter. The static CMOS inverter (a) presents three
units of capacitance to the A input, as indicated by the bold transistor
widths. Footed dynamic inverter (b) has two units of input capacitance
on the data input, meaning the logical effort is 2/3. Unfooted dynamic
inverter (c) has one unit of input capacitance, meaning the logical effort
is only 1/3. Footed dynamic inverter (d) uses a larger clocked evaluation
transistor to allow a smaller data input transistor, achieving a logical
effort of 4/9. In summary, unfooted dynamic gates have the lowest logical
effort. Footed dynamic gates can approach the logical effort of unfooted
gates at the expense of larger clocked transistors. Although these transis-
tors do not load the critical path, they do increase clock loading, which
increases power consumption and, indirectly, clock skew.

2 2 Y y T
2 A 3

. . . .

(a) (b) (c) (d)

Figure 3.11 Logical effort of dynamic inverters: static CMOS (a), footed dynamic (b),
unfooted dynamic (c), and footed dynamic with big foot (d)

8 4 3 Domino Circuits

3.2.3 Keeper Design

The dynamic gates we have shown so far have a minimum operating fre-
quency because the output may float high while the gate is in evaluation.
If left floating too long, the charge may leak away. Just as latches can be
made static by placing a cross-coupled inverter pair on the storage node,
dynamic gates can use a keeper, also called a sustainer, to prevent the float-
ing node from drifting. We will see later that keepers also significantly
improve the noise margin of dynamic inputs.

Figure 3.12 shows a keeper on a domino gate. The keeper is a weak
PMOS transistor driven by the output inverter. When the dynamic output
X stays high during evaluation, the keeper supplies a trickle of current to
compensate for any leakage. When X pulls low during evaluation, the
keeper turns off to avoid contention.

The first dynamic gate in a phase of skew-tolerant domino may float
either high or low when the clock is stopped because the precharge tran-
sistor is turned off and the inputs fall low when the previous phase
precharges. Therefore, such gates may require a full keeper built from a
pair of cross-coupled inverters, as shown in Figure 3.13.

Figure 3.12

Weak keeper

It
--2-

Dynamic gate with keeper

0

I
Full keeper

Figure 3.13 Dynamic gate with full keeper

3.2 Domino Gate Design 8 5

Figure 3.14

~ ~ Long channel

t X ~ Minimum size

_

Dynamic gate with very weak keeper

Keepers should be small to minimize loading on the forward path and
to avoid fighting the dynamic gate while it switches. For small dynamic
gates, even minimum-sized keepers are too strong. In such a case, the
channel length may be increased. Unfortunately, simply increasing the
length increases the capacitive load on the critical path and thus slows the
circuit. An alternative implementation of a very weak keeper is shown in
Figure 3.14. The output feeds back to a minimum-size keeper. In series
with the keeper is an extra transistor of minimum width and longer than
minimum length that acts to reduce the current delivered by the keeper.

3.2.4 Robustness Issues

Static CMOS gates are very robust; given sufficient time, they always settle
to the correct result. Domino gates are more sensitive to noise and can be
irrecoverably corrupted if exposed to noise. Therefore, an essential part of
domino design is a good understanding and verification of noise prob-
lems. This section surveys the noise sensitivity of dynamic inputs and
outputs, then examines several sources of noise in domino circuits:
charge sharing, capacitive coupling, power supply noise, alpha particles,
and minority carrier injection.

Both the input and output of dynamic gates are sensitive to noise, but
the mechanisms differ. In Figure 3.15, node X is the output of a dynamic
gate and the input of a HI-skew static gate. It is precharged high, then may
float high during evaluation. Because it is floating rather than actively
driven, it is especially sensitive to noise that might cause it to fall. More-
over, the HI-skew inverter is sized to respond quickly to a falling transition
on x. Therefore, its switching threshold is likely closer to 2/3 VDD than 1/2
VDD, leaving a smaller noise margin. Node Y is the input to the next

8 6 3 Domino Circuits

Figure 3.15

X Y

Hnverter ~_~

_

Noise-sensitive parts of domino logic

dynamic gate and output of the HI-skew inverter. It is less prone to noise
because it is actively driven by the inverter. However, the noise margin of
the dynamic input is only a threshold voltage V t before the NMOS transis-
tor begins to conduct and improperly discharge the dynamic gate.

In summary, dynamic outputs are especially noise-prone, but go to
receivers with medium noise margins. Dynamic inputs are less noise-
prone, but go to receivers with tiny noise margins. In the remainder of
this section, we will explore the sources of noise that may impact the
dynamic inputs and outputs.

Charge Sharing

Charge sharing occurs on a dynamic output when a transistor turns on
and transfers charge between two floating capacitors. For example, con-
sider the dynamic NAND gate in Figure 3.16. The capacitor C r on the
internal node represents parasitic diffusion capacitance, while the capaci-
tor C x on the output represents both diffusion capacitance and the output
load. Initially, suppose the gate is in evaluation, the output X is pre-
charged to VDD, but that internal node Y was discharged to GND. When
the top NMOS transistor turns on, the output is not logically supposed to
change because the other NAND input is low. However, charge redistrib-
utes between C x and C r until the voltages equalize. 2 This charge sharing
causes the output to droop while the internal node rises. If the output
droops too far, an incorrect value is produced. The final voltage on the
output is set by the capacitive voltage divider equation:

Cx
V x = ~ V D D (3.9)

Cx+

2. Or at least until C r rises to within a threshold drop of VDD.

3.2 Domino Gate Design 8 7'

~=1

q
X

Y --
I -L-_

Cx

A /

X \

Figure 3.16 Charge-sharing example

Charge sharing is minimized by making the internal diffusion capaci-
tances small compared to the load capacitance. The diffusion capacitance
depends on layout, so it is important to carefully lay out dynamic gates.
Driving larger load capacitances also reduces charge sharing, but of
course increasing the load excessively slows the dynamic gate.

Even after careful layout, charge sharing is often unacceptably great in
complex domino gates with many internal nodes. In such a case, charge
sharing can be alleviated by precharging internal nodes with a secondary
precharge transistor, as shown for a complex AND-OR-INVERT (AOI) gate in
Figure 3.17. Each precharge device adds extra diffusion capacitance that
slightly slows the gate, so it is best to only precharge the smallest number
of internal nodes necessary to satisfy noise margins. A guideline is that

Figure 3.17

Secondary
~) q ~ q ~ p r e c h a r g e

transistor

~0 OUT q q

Secondary precharge transistor

8 8 3 Domino Circuits

precharging every other node is generally sufficient to keep charge-sharing
noise to about 10% of the supply voltage for most gates. Be careful of con-
tention if precharging internal nodes in unfooted dynamic gates.

A related form of charge sharing occurs when dynamic gates drive pass
transistors, as shown in Figure 3.18. When the pass transistor turns on,
charge is shared between the dynamic node X and the pass transistor out-
put Y. Therefore, dynamic gates should not drive the source/drain inputs
of pass transistors.

Capacitive Coupling

Capacitive coupling, also known as crosstalk, is a major component of
noise on both inputs and outputs of dynamic gates. Wires adjacent to a
domino gate may have capacitance to the dynamic gate input or output.
The adjacent wire is called the aggressor or perpetrator, while the dynamic
input or output is the victim. When the aggressor switches, it tends to
drag the victim along, injecting noise onto the victim. Floating dynamic
outputs are especially susceptible to coupling. Dynamic inputs must also
be checked because of their tiny noise margin, but receive less coupling
because they are actively driven and the driver fights against the coupling.

The coupling onto a dynamic output is modeled in Figure 3.19. The
victim has Ccouple coupling capacitance to the aggressor and Cvictim capac-
itance to other nodes such as the substrate that are not switching. When
the aggressor line falls, the victim line will tend to fall too. As with charge

r

x
I

-T-

A
I

I I
I

A /

X N

Y l
Figure 3.18 Charge sharing through a pass transistor

3.2 Domino Gate Design 8 9

Figure 3.19

AVaggress~

_

Aggressor

....

T
Ccouple

Dynamic output
(victim)] Cvicti m

Model of coupling onto dynamic output

AVvictim

sharing, we have a simple capacitive voltage divider, so the noise AWictim
on the victim is

AWictim = - Cc~ AV~ (3.10)
Ccouple + Cvictim "-ggress~

The coupling onto a dynamic input is modeled in Figure 3.20. The
victim is sensitive to a rising aggressor, which could drag the victim high
enough to turn on the dynamic gate. This time, the resistance of the
aggressor and victim drivers is important. This resistance can be com-
puted from the linear I-V characteristics of the driver transistor. If the vic-
tim has a very strong--that is, low-resistance~driver, it will be virtually
immune to coupling because its driver will keep the victim low. The time
constant ratio k of the aggressor to victim determines how fast the victim
can respond relative to the rate at which the aggressor injects noise [91]"

Ccouple 1
Wictim = (3.11)

Ccouple + Cvictim 1 + k VDD

where the time constant ratio is

k - ~aggress~ _- Raggressor(Caggressor 4" Ccouple)

'lS victim Rvictim(Cvictim + Ccouple)
(3.12)

Aggressor

eaggress~ [@
Caggressor

Ccouple - - - - r - - ' -

I VV x / Dynamic input
Rvicti m] (victim)

-]-- Cvicti m

Figure 3.20 Model of coupling onto dynamic output

9 0 3 Domino Circuits

Coupling is an increasing problem as the height-to-separation ratio of
wires increases in finer geometry processes, increasing the ratio of Ccouple
to other capacitances. For example, even in a 0.8-micron process, over
50% of the capacitance of a minimum pitch metal 2 wire is to adjacent
lines. It is important not to be overly pessimistic about coupling lest
design of domino logic become impossible. For example, we can take
advantage of the fact that a victim is only sensitive to noise while in evalu-
ation to avoid factoring in coupling noise from aggressors that switch in a
different phase.

Coupling problems can be reduced by increasing the spacing between
the aggressor and victim or by shielding the victim with narrow ground
lines. In dual-rail domino, proper routing can also reduce coupling
problems, as illustrated in Figure 3.21. If signals are routed as shown on
the left, a victim may be susceptible to aggressors on both sides. If the sig-
nals are interdigitated as shown on the right, the victim will never see
more than one aggressor switching at a time because either the _h or _l
rail, but not both, will switch. Other approaches to coupling noise reduc-
tion include recoding busses as one-hot for fewer transitions [34] and
inserting extra static inverters at the beginning and end of long lines to fil-
ter noise [62].

Power Supply Noise

Another source of noise in dynamic gates comes from power supply vari-
ation across the die. Suppose a static inverter drives a dynamic input and
that the ground potential of the inverter is higher than that at the
dynamic gate due to IR drops across the ground network, as shown in
Figure 3.22. If the ground difference exceeds V t, the dynamic gate will
turn on and incorrectly evaluate. Of course, power supply noise impacts
dynamic outputs as well, though the noise margins are greater.

Power supply noise is especially insidious because of the trends toward
lower voltage and higher power. Higher power increases the supply cur-

Figure 3.21

A_h A_I B_h B_I A_h B_h A_I
Bad coupling Less coupling

Reducing coupling in dual-rail domino

B_/

3.2 Domino Gate Design 9 1

Figure 3.22

l

,/v' 1
I

GND resistance

Power supply noise at a dynamic input

rent. Lower voltage also increases the supply current if power were held
constant. Hence, the current is increasing quadratically. For a fixed cur-
rent, the IR drop through a power supply wire increases as a fraction of
the supply voltage when voltages drop. Therefore, power supply noise as a
fraction of the supply voltage is getting worse cubically if supply resis-
tance does not change! To combat this, designers are dedicating increas-
ing amounts of metal to the power supply network to reduce the
resistance. Some chips place solder bumps carrying power and ground
approximately every millimeter over the surface of the die to minimize
the length and resistance of supply lines. The DEC Alpha 21264 lacked
such solder bump technology so instead dedicated entire planes of metal
to VDD and GND [22] in much the same way as multilayer printed circuit
boards use power and ground planes. The amount of supply noise is a
trade-off between cost and performance. Typically enough metal
resources are dedicated to the supply to keep IR drops down to 10%
across the chip [52].

Another source of power supply noise is di/dt noise from changing
supply current. Power supply pins have inductance and thus higher
impedance at high frequencies; they cannot supply all of the instanta-
neous current required by gates. Instead, this current is drawn from on-
chip bypass capacitance. Idle gates present substantial bypass capacitance,
but high-speed designs often must add extra explicit bypass capacitors in
empty parts of the chip, especially near large clock drivers. The greatest
supply noise occurs when the clock switches. Therefore, multiphase dom-
ino clocking reduces peak noise by spreading the current spikes across the
cycle.

9 2 3 Domino Circuits

Alpha Particles

Alpha particles are helium nuclei (two protons and two neutrons) emit-
ted from radioactive decay. They occasionally crash into chips and leave a
trail of electron-hole pairs in the silicon substrate [40]. These carriers
may be collected onto floating nodes, disturbing the voltage of dynamic
outputs. Such disturbances are called soft errors. To minimize this change,
the energy held on the capacitance of the floating node must be much
greater than the energy in the alpha particle. Typical design rules call for a
minimum of several femtofarads of capacitance on any dynamic node
[66]. Therefore, alpha particle hits are only a problem for very small
dynamic gates and SRAMs.

Interestingly, lead solder is a common source of alpha particles. Chips
that use C4 solder bump packing technology may have hundreds of lead
solder bumps covering the die. Placing memory arrays and sensitive
dynamic gates under these bumps may be hazardous! It is rumored that
some companies have cornered the market on Roman lead, which has
naturally decayed and thus has lower alpha particle emissions!

Minori ty Carrier Injection

Certain circuits such as I/O drivers powering inductive loads are prone to
ringing, which may send the output below GND. In such a case, the
drain-substrate junction becomes forward biased and injects charge into
the substrate. This charge may be collected on nearby dynamic nodes,
corrupting the value. To prevent this, circuits prone to charge injection
should be placed far away from dynamic logic. They should also be sur-
rounded by guard rings [26]. Charge injection is only a concern with spe-
cial-purpose circuits and therefore is not part of the noise budget of most
dynamic gates.

Noise Feedthrough

When the input of a gate is near its noise margin, the output voltage will
not be at the rail. Therefore, the input of the next gate will see some noise;
this is called noise feedthrough or residual noise. Indeed, the noise margin
of a gate is defined by this feedthrough: it is the point at which the noise
slope of the transfer function is -1 so that the marginal increase in noise
feedthrough to the next gate equals the marginal increase in noise margin
of the current gate.

3.2 Domino Gate Design 9 3

33

.

i i
i i
i i
i i
i i

G u t i i
i i
i i
i i
i i
i i
i i 1

[. V I
I I
I I
I I
I I
I I
I I
I I
I I

Noise feedthrough i [~ o i s e margin
0 - ~-~:';~-~ ~ -

,

I , , , , , ,

Figure 3.23

I
0 1 2 3 3.3

Inverter transfer function

F i n

Figure 3.23 shows the transfer function of a HI-skew inverter using a
PMOS transistor four times as large as the NMOS transistor. Because we are
using the inverter after a dynamic gate, we are concerned about the high
input noise margin, the amount the dynamic output can droop before the
HI-skew inverter no longer produces a valid 0. This is determined by the
unity-gain point marked on the transfer curve. Notice that at this point,
the output is not quite zero. The nonzero voltage shows up as noise at the
sensitive input of the next dynamic gate. In this case, the noise margin is
1.22 volts (37% of the supply) and the noise feedthrough is 0.23 volts (7%
of the supply).

S u m m a r y of the Noise Budget

We have seen that domino logic is subject to numerous sources of noise.
Dynamic outputs are especially noise-prone, but drive static gates with
reasonably good noise margins. Dynamic inputs experience less noise,
but have a noise margin of only about V t. Most noise sources scale with

9 4 3 Domino Circuits

the power supply voltage, so noise budgets expressed as a fraction of the
supply voltage tend not to change very much with feature size and supply
voltage. In this section, we will create some sample noise budgets and see
that each source of noise must be tightly bounded.

For the sake of concreteness, let us develop our budget using the
Hewlett-Packard CMOS14 0.6-micron 3.3v process. As we saw in Figure
3.23, the dynamic output drives a HI-skew static inverter with a noise
margin of 37% of the supply voltage, causing a noise feedthrough of 7%.
We assume the dynamic gate has a small keeper and thus achieves a noise
margin of 19% with a feedthrough of 5%. These noise margins are mea-
sured in the worst-case process corners: SF for the HI-skew inverter and FS
for the dynamic input.

Table 3.1 shows a sample noise budget for dynamic inputs and out-
puts. It assumes that dynamic inputs and outputs are kept within local
blocks and therefore see less power supply noise than is found across the
entire die.

The sample budget shows that very little coupling noise can be toler-
ated. This can make domino design costly because signals must be
shielded or widely spaced to avoid coupling. However, most circuits do
not experience the worst case of all noise sources simultaneously. For
example, dynamic NOR gates are not susceptible to charge sharing. There-
fore, a less pessimistic noise verification tool can check each circuit indi-
vidually to allow greater coupling noise on nodes that experience less of
other noise sources. Moreover, dynamic logic is sensitive to the duration
as well as the magnitude of noise; for example, larger peak coupling noise
could be permitted if the peak coupling occurred for only a fraction of a
gate delay [51].

Similarly, the minimum noise margins for dynamic outputs and
inputs are determined by different process corners. For example, when

Table 3.1 Sample noise budget (percentage of power
supply voltage)

Source Dynamic output Dynamic input

Charge sharing 10 n/a

Coupling 17 7

Supply noise 5 5

Feedthrough 5 7

Total 37 19

3.3 Historical Perspective 9 5

the dynamic input is at its minimum noise margin in its least favorable
process corner and produces the most feedthrough noise, the dynamic
output will be in its most favorable corner and will be able to tolerate
more noise, somewhat alleviating the feedthrough noise problem.

A common mistake is to ignore the other sources of noise when focus-
ing on a particular problem. For example, a designer may simulate charge
sharing and conclude that no secondary precharge transistor is necessary
because charge sharing that causes a 30% output voltage droop on a
dynamic gate does not trip the subsequent static inverter in simulation.
Of course, when other sources of noise such as coupling and supply noise
are introduced, the circuit will fail.

Domino logic allows a trade-off between noise margins and perfor-
mance. If the dynamic output has inadequate noise margin, it can be
improved by using a lower-skew static gate; however, the gate will not
respond as quickly to falling transitions, so the circuit will be slower. If the
dynamic input has inadequate noise margin, it can be improved by using
a bigger keeper. The keeper is especially effective because it is fully on
while the NMOS pulldown transistor is just barely on when the dynamic
input voltage is slightly above V t. For example, the keeper in the sample
noise budget was 1/5 the size of the input transistor. Doubling the keeper
size increases the dynamic input noise margin from 19% to 27% of the
supply voltage. The keeper also slightly improves the noise margin of the
dynamic output. However, increasing the keeper size slows the falling
transition of the dynamic output because of contention and increased
loading.

3.3 Historical Perspective

The motivation for using dynamic logic has changed strikingly over the
past two decades. In the NMOS days of the 1970s, dynamic logic was used
to reduce power consumption inherent in NMOS logic [60, 65] and to save
area on precharged busses [56]. Domino logic was proposed for CMOS as
"high-speed compact" logic [49]. The risks associated with the tight
domino noise margins deterred use in commercial products. Moreover,
critical paths could often be solved by using more parallel, area-intensive
circuits; for example, a designer could choose a static CMOS carry look-
ahead adder instead of using domino logic for a ripple carry adder.

9 6 3 Domino Circuits

The relative importance of area, power, and speed shifted by the early
1990s. Area, once the primary limitation of CMOS circuit design, becomes
cheaper with each generation of process. The trends toward shorter cycles
that we observed in Section 1.2 have pushed logic to use the fastest, most
parallel algorithms available because area is so inexpensive. To achieve
even shorter cycle times as measured in gate delays, processors had to
employ dynamic logic. For example, designers of the HP-PA8000 micro-
processor found that extensive use of dynamic logic (40% of the gates
were dynamic) was a key factor in achieving desired performance [20,
21]. Power consumption and area ceased to be motivations for using
dynamic gates. Indeed, the power consumption of domino logic is much
higher than static logic because power in logic circuits is dominated by
switching the clock capacitance [25]. Trends toward more dual-rail dom-
ino actually increase circuit area as well!

A key requirement for using domino logic is the thorough under-
standing and checking of noise budgets. DEC has a particularly well-
established and documented domino circuit methodology [26]. Remark-
ably, DEC did not use keepers on dynamic gates in the 21164, despite the
fact that threshold voltages were an aggressively low 0.35v! However,
keepers ultimately became necessary in the 21264 to offset NMOS leakage
current [3]. The use of domino has mostly been restricted to custom,
highly optimized chips such as microprocessors because guaranteeing sig-
nal integrity is beyond the capability of current turnkey synthesis and
place-and-route tools used by most ASIC designers. IBM's static noise
analysis tool [76] is an interesting approach to the problem of automatic
noise analysis.

As cycle times measured in gate delays have decreased, the sequencing
overhead of domino logic has become a greater problem. Williams
observed that latches were unnecessary between blocks of domino logic
so long as one block could evaluate before the next began precharge. He
used this observation to construct "zero-overhead" asynchronous circuits
[93, 94]. Synchronous designers began to adopt the ideas of skew-tolerant
domino by the mid-1990s. Hewlett-Packard used a "pipeline latch" in the
PA7100 floating-point multiply-accumulate (FMAC) path to soften the
clock edges and reduce the impact of clock skew [33]. Intel used "Oppor-
tunistic Time-Borrowing (OTB) Domino" on the Itanium Processor.
OTB is a variant of two-phase skew-tolerant domino coinvented by this
author [41, 80]. Another Intel team has made an extensive effort to

3.4 Summary 9 7

develop self-resetting domino [11], an interesting and important tech-
nique that is beyond the scope of this book. DEC used overlapping clocks
to eliminate latches between domino blocks in the ALU and select other
paths of the Alpha 21164 [6]. Sun also used a similar technique, which
they called "delayed reset domino,' in the UltraSparc [53]. Most micro-
processor companies, including Advanced Micro Devices, Silicon Graph-
ics, Motorola, Hewlett-Packard, Sun Microsystems, and IBM, have
developed the ideas of skew-tolerant domino, though have generally kept
their use as a trade secret.

3.4 Summary

Domino gates have become very popular because they are the only
proven and widely applicable circuit family that offers significant speedup
over static CMOS in commercial designs, providing a 1.5 to 2 times advan-
tage in raw gate delay. However, speed is determined not just by the raw
delay of gates, but by the overall performance of the system. For example,
traditional domino sacrificed much of the speed of gates to higher
sequencing overhead. As cycle times continue to shrink, the sequencing
overhead of traditional domino circuits increases and skew-tolerant dom-
ino techniques become more important. Skew-tolerant domino uses
overlapping clocks to eliminate latches and remove the three sources of
sequencing overhead that plague traditional domino: clock skew, latch
delay, and unbalanced logic. The overlap between clock phases deter-
mines the sum of the skew tolerance and time borrowing. Systems with
better bounds on clock skew can therefore perform more time borrowing
to balance logic between pipeline stages. Increasing the number of clock
phases increases the overlap, but also increases the complexity of local
clock generation and distribution. Four-phase skew-tolerant domino,
using four 50% duty cycle clocks in quadrature, is a particularly interest-
ing design point because it provides a quarter cycle of overlap while mini-
mizing the complexity of clock generation.

Domino gates are very susceptible to noise. Dynamic inputs have a
very low noise margin and are especially impacted by coupling and power
supply noise. Dynamic outputs have a larger noise margin, but are
impacted by charge sharing as well. Domino gates should be checked for
the following electrical rules:

9 8 3 Domino Circuits

�9 Neither inputs nor outputs of dynamic gates should connect to diffu-
sion terminals of pass transistors.

�9 Nodes that may float indefinitely must be held by keepers.

�9 Coupling onto dynamic inputs and outputs must be limited.

�9 Noise margins on dynamic inputs and outputs must be checked.

The next chapter will further explore the use of skew-tolerant domino
in the context of an entire system, describing a methodology compatible
with other circuit techniques but that still maintains low sequencing over-
head.

3.5 Exercises

[15] 3.1 Sketch a diagram like Figure 3.1 illustrating a six-phase domino
pipeline with 50% duty cycle clocks and one domino gate per clock phase.
Indicate clock skew of one-sixth of the cycle.

[151 3.2 A domino gate has an evaluation time of 100 ps and a precharge
time of 200 ps. If there is 50 ps of skew between the clock controlling the
gate and its successors in the same phase, what is the minimum time tp
that the clock must be low?

[20] 3.3 Repeat Example 3.1 if the cycle time is 12 FO4 delays and the pre-
charge time is 3 FO4 delays.

[20] 3.4 Repeat Example 3.2 if the cycle time is 12 FO4 delays and the pre-
charge time is 3 FO4 delays.

[15] 3.5 A four-phase skew-tolerant domino pipeline runs at 800 MHz in a
0.18-micron process with a 60 ps FO4 delay. You can adjust the duty cycle
of the clocks for best performance. If you allow a precharge time of 5 FO4
delays and a hold time of 1 FO4 delay, when there is 50 ps of local clock

3.5 Exercises 9 9

skew, how much global skew can you tolerate? If the actual global skew is
200 ps, how much time borrowing can you permit?

[301 3.6 Repeat Exercise 3.5 if you design to guarantee exactly one domino
gate per clock phase.

[20] 3.7 A four-phase skew-tolerant domino pipeline runs at 1.25 GHz using
50% duty cycle clocks. The required overlap between phases is thold ----15
ps. Each domino gate has a contamination delay of 35 ps and a hold time
ACD of-10 ps. How much clock skew can the pipeline withstand before
one gate might precharge before its successor could consume the result?
How much clock skew can the pipeline withstand before min-delay prob-
lems might occur? In summary, how much clock skew can the system
withstand?

[201 3.8 Sketch transistor-level implementations of the following footed
dual-rail dynamic gates:

(a) OR/NOR

(b) AND-OR-INVERT (AOI)

(c) three-input MAJORITY (output TRUE if at least two inputs are
TRUE)

(d) three-input XOR

[20] 3.9 Sketch transistor-level implementations of the following footed
dynamic gates. Label each NMOS transistor with the appropriate width to
provide the same output drive as a unit inverter (see Figure 3.11). Select
the PMOS transistor width for half the output drive as the pulldown stack.
Estimate the logical effort of each data input to the gate.

(a) NAND2

(b) NAND3

(c) NOR2

(d) NOR3

(e) aND-OR-INVERT (AOI)

1 0 O 3 Domino Circuits

[15] 3.10 Repeat Exercise 3.9 for unfooted dynamic gates.

[30] 3.11 Make plots of evaluation time and precharge time for the domino
buffer in Figure 3.24 as a function of the precharge transistor size P. The
transistor and load sizes have been selected to provide a stage effort of
about 4. Use step inputs. Measure evaluation time to 50% output of the
static inverter when ~ is already high and A rises. Measure precharge time
from the falling edge of ~ to the static inverter output Y dropping to 10%
of VDD. Use your favorite process, environment, and SPICE simulator. Let
the dimensions be in units of 10 microns of gate width. What value of P
would you select for general application?

F i g u r e 3 . 2 4

q 4.8

tl r m 28
- F 1 L 1

I

Domino buffer for simulation of precharge transistor size

[30] 3.12 Make plots of evaluation time and input noise margin for the dom-
ino buffer in Figure 3.25 as a function of the keeper transistor size k. Use
step inputs. Measure evaluation time to 50% output of the static inverter
when ~ is already high and A rises. Measure noise margin at the unity
gain point of the output Y. Use your favorite process, environment, and
SPICE simulator. Let the dimensions be in units of 10 microns of gate
width. What value of k would you select for general application?

-C

A_

1 tJ 48
i 12_

28
ImL

F]
I

F i g u r e 3 . 2 5 Domino buffer for simulation of keeper size

3.5 Exercises 1 0 1

[30] 3.13 Design a dynamic footed AOAOAOI gate to compute B(C + D(E +
F(G + H))). Choose the transistor sizes to have a maximum of 20 microns
of gate width on any input. The gate should drive an inverter with a total
of 20h microns of gate width. Simulate it in SPICE, being sure to include
AS, AD, PS, and PD parameters to specify diffusion parasitics. Find the
worst-case charge-sharing noise on the output for h = 0, 1, 2, 4, and 8.
How does the noise depend on h? Why? Add secondary precharge transis-
tors to precharge every other internal node. Repeat your charge-sharing
measurements. Explain your observations.

[30] 3.14 Simulate capacitive coupling between two metal lines. Each line has
a capacitance to ground of 0.1 fF/micron and a capacitance to the adja-
cent line of 0.2 fF/micron. The aggressor's driver is a falling voltage step
with an effective resistance of 100 f~. The victim is a dynamic node; the
keeper has an effective resistance of R. Plot the peak coupling noise versus
R for 100-micron and 1 mm line lengths. How do your results compare
with the predictions of Equation 3.11 ?

[25] 3.15 Simulate the DC transfer characteristics of an inverter in your pro-
cess, using a P/N ratio of 2. Find the unity gain points on the transfer
function. Measure Vin_ z and Vin_ h , the input voltages at the low and high
unity gain points; and Vout_ / and Vout_ h, the output voltages at these
points. What are the high and low noise margins for your inverter?

[25] 3.16 Repeat the simulation of Exercise 3.15 with a P/N ratio of 7. What
value of 3t gives equal high and low noise margins in your process?

[251 3.17 Identify potential noise problems in the circuit in Figure 3.26. Draw
an improved circuit with reduced noise risk.

10 2 3 Domino Circuits

From dynamic gate

Figure 3.26 Noise-prone circuit

I

I ' I

Long parallel lines

d

[151 3.18 An early stepping of a well-known microprocessor suffered unreli-
able operation due to noise. The problem was traced to a path between
two widely separated units. The receiving unit used a transmission-gate
latch, as shown in Figure 3.27(a). The problem could be fixed by substi-
tuting a different transparent latch, shown in Figure 3.27(b). Explain why
the noise problem might occur and how the input noise margins of each
latch compare.

(a) (b)

Figure 3.27 Path between units with noise problem: inverter after transmission gate (a)
and inverter before transmission gate (b)

4
Circuit Methodology

1 0 4 4 Circuit Me thodo logy

I
n this chapter, we will develop a skew-tolerant circuit design method-
ology. There are many aspects to skew-tolerant circuit design, includ-

ing the interface of static and domino logic, clocking, and testability.
Unless you consider all aspects simultaneously, it is easy to optimize one
aspect at the expense of the others, resulting in a system that is slower
overall or more difficult to build. Our objective is a coherent approach to
combine domino gates, transparent latches, and pulsed latches, while
providing simple clocking, easy testability, and robust operation. The
guidelines presented are self-consistent and support the design and verifi-
cation of fast systems, but are not the only reasonable choices.

Our design methodology contains definitions and guidelines. Defini-
tions provide a common set of terms that enable tools to parse the design.
Guidelines should be followed for easy, robust design. They should only
be violated after being fully understood. During a design review, guide-
line violations should be discussed.

We will emphasize circuit design in this chapter while deferring dis-
cussion of the clock network until the next chapter. Of course, circuit
design and clocking are intimately related, so this methodology must
make assumptions about the clocking. In particular, we assume that we
are provided four overlapping clock phases with 50% duty cycles. These
clocks will be used for both skew-tolerant domino and static latches.

D E F I N I T I O N 1 The clocks are named (~1' ~)2' (~3' and (~4" Their nominal waveforms are
shown in Figure 4.1.

The clocks are locally generated from a single global clock gclk. ~)1 and
~3 are logically true and complementary versions of gclk. ~2 and ~4 are

I I r]- ' I I I
I I - (" I I I
i (i i i) i

I i I i l

l i a
I

I I I I I
I I I I I

2 a a
I I
I I I I I

I
~ ' ,

3 I ' I I I I
I I I I I

! I I
I I I I

II I I I I
, Phase 1 , Phase 2 , Phase 3 , Phase 4 ,

F-

k__

F i g u r e 4.1 F o u r - p h a s e c lock w a v e f o r m s

4.1 Static/Domino Interface 10 5

versions of ~1 and ~3 nominally delayed by a quarter cycle. The clocks
may be operated at reduced frequency or may even be stopped while gclk
is low for testability or to save power.

The methodology primarily supports four-phase skew-tolerant dom-
ino, pulsed latches, and ~ and ~3 transparent latches. Other latch phases
are occasionally used when interfacing static and domino logic. It is rec-
ommended, but not required, that you choose either transparent latches
or pulsed latches as the primary static latch to simplify design.

4.1 Static/Domino Interface

In the previous chapters, we have analyzed systems built from static CMOS
latches and logic and systems built from skew-tolerant domino. In this sec-
tion, we discuss how to interface static logic into domino paths and dom-
ino results back into static logic. We focus on static logic using transparent
latches and pulsed latches because flip-flops are not tolerant of skew. We
develop a set of "timing types" that determine when signals are valid and
allow checking that circuits are correctly connected. The guidelines
emphasize performance at the cost of checking min-delay conditions.

4.1.1 Latch Placement

Before discussing the static/domino interface, we must decide where
static latches belong in the cycle. Of course, pulsed latches are placed at
the beginning of a cycle when the pulse occurs and domino gates are
assigned to nominally evaluate during one of the four phases. Transparent
latches pose a dilemma, however: should they be placed at the beginning,
middle, or end of their half-cycle? We will look at each option, then con-
clude that placement scarcely matters in latch-based loops because the
latches adjust themselves as early as possible in the cycle depending on
data arrival times. Therefore, we might as well nominally place the latch
at the beginning of the cycle.

In Section 1.3, we argued that latches could tolerate clock skew if they
were placed in the middle of their half-cycle such that skew disturbing the
latch transparency at the beginning or end of the half-cycle has no effect.
Placing latches in the middle of the half-cycle presents two difficulties.

1 0 {i 4 Circuit Methodology

One is that the designer must determine where the "middle" is in a half-
cycle of logic. Another is that designers often construct logic with a mini-
mum number of signals crossing cycle boundaries because the cycle
boundaries also represent partitions of a large system between modules
and designers. Within the cycle, a larger number of intermediate results
may be generated. If latches were placed in the middle of a half-cycle,
more latches might be required.

The alternatives are to place latches at the beginning or end of each
half-cycle. Designers who are accustomed to thinking about latches as
memory elements often like to place the latch at the end of the half-cycle
[66] to "remember" the result of the computation in the half-cycle. Recall,
however, from Section 2.1.1 that the purpose of a latch is not to remem-
ber information but rather to retard fast signals from racing ahead and
corrupting information in the next cycle. Fast signals arrive early, so the
function of a latch is to remain opaque until the signals are allowed to
enter the half-cycle. From this point of view, it makes sense for latches to
be placed at the beginning of the half-cycle. Data that is not critical
arrives at the latch before it becomes transparent. Time borrowing occurs
when data arrives late and propagates through the latch while it is trans-
parent. This is exactly the behavior observed when using a functional
simulator that assumes zero delay through gates. Thinking of latches as
belonging at the beginning of half-cycles is also convenient because it
emphasizes the similarities of transparent latches and pulsed latches,
works well with scan (Section 4.3), and matches the results of timing
analysis (Chapter 6).

At first glance, it appears wasteful for data to nominally arrive at a
latch while the latch is still opaque. The data will be delayed waiting for
the latch to become transparent. Does this introduce sequencing over-
head? Interestingly, the answer is no. Noncritical signals do arrive before
the latch is transparent and are slowed to stay synchronized. Critical sig-
nals, however, are late and thus arrive while the latch is transparent. For
example, Figure 4.2 shows the arrival times of noncritical and critical sig-
nals. We assume paths starting from the t~ latch depart at the latest the
latch might become transparent in the event of clock skew. The top path
is less than a half-cycle, so it must wait for the ~3 latch to become trans-
parent. This introduces sequencing overhead but is unimportant because
the path was faster than necessary. The middle path is exactly a half-cycle,
so it arrives at the ~3 latch just as the latch has become transparent. There-

4.1 Static/Domino Interface 10 7

I I I

I I I
I I I

,~ \ \ \ \ / / / (\ \ \~,
I I
I I
I I
I I

Amount ' '
I I

i (~ 3 i of logic (~1 , ,

1 ' !
!

! < 1/2 cycle "~ .~ Wasted time~ ,'
!
!
!

'1 I '
! !

!
!
! ~, .~ .~ .~ ~ ~-~ ~ ~ ~ "~ / Time borrowing ,"

,
• i 3 i

I
I

i- i ' ~ .~ ~ .~ .~ .~ .~ ~ ,
~i ~ ~ ~ ~ ~ ~ ~a '

I
I

i I
{ Half-cycle 1 , Half-cycle 2 ,

= 1/2 cycle

> 1/2 cycle

Figure 4.2 Latch placement and sequencing overhead

fore, no time is wasted. The bottom path is more than a half-cycle, so it
borrows time into the second half-cycle. This time borrowing effectively
pushes the ~)3 latch later into the second half-cycle. The maximum
amount of time borrowing is set by the fact that data must arrive at the
latch by a setup time before the earliest skewed falling edge of the clock.
In summary, we can think of latches being nominally placed at the begin-
ning of each half-cycle. Critical paths incur no overhead from clock skew
or setup time. Time borrowing can push the actual location of the latch
further into the half-cycle.

Even if latches were placed somewhere other than the beginning of a
half-cycle, during operation they adjust themselves so that data arrives
before the latch becomes transparent unless the logic is slow enough that
time borrowing is necessary. For example, Figure 4.3 illustrates a path
consisting of a loop through two latches L 2 and L 3. The loop also receives
an external input from a flip-flop F 1. The propagation delays through the
combinational logic (CL) are A1, A2, and A3. The departure times from
each element, that is, the time at which data begins propagating through
the latch, are D 1, D 2, and D 3. The latches are nominally placed at the end

10 8 4 Circuit Methodology

clk

I
I ,
I I

I
I

I ,..~1

I ', I I

' D 1 [" ~ D2 D3
, ,,
! !

!

I
I
I

f--
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,,
!
!

1
!

,,

Figure 4.3 Path illustrating time borrowing and hard edges

of the half-cycles in the pipeline diagram, but we will see that if the com-
binational logic delays are short compared to the cycle time, data will
arrive at latches before they become transparent, so the latches will effec-
tively operate at the beginning of the half-cycles.

Figure 4.4 illustrates the circuit timing assuming A1 = 0.2 ns, A2 = 0.6
ns, and A3 - 0.15 ns. The three diagrams correspond to cycle times T c of
1.5 ns, 1.0 ns, and 0.75 ns. The vertical tic marks delineate half-cycle
boundaries. The loop formed by the two latches is rolled into a circle; the
circumference of the circle represents the cycle time. The external input
from the flip-flop is represented by the horizontal line. The heavy lines
correspond to times when blocks of combinational logic are operating
and the departure times from each latch are indicated on the diagram. In
each case, data departs the flip-flop on the rising edge of the clock. When
the cycle time is 1.5 ns, data arrives at the input of each latch before the
latch becomes transparent. Therefore, the data departs the latch at the
beginning of the half-cycle when the latch becomes transparent, even
though the pipeline diagram had planned latches at the end of the half-
cycle. When the cycle time drops to 1.0 ns, A2 exceeds half of the cycle
time, so data departs L 3 after the clock edge. This indicates that time bor-
rowing is taking place. When the cycle time drops to 0.75 ns, even more
time borrowing is required. The arcs formed by A2 and A3 sum to the
entire circumference of the circle, indicating that the system is operating
at the minimum possible cycle time.

Figure 4.5 is a similar diagram showing how operation changes when
A1 increases to 0.8 ns. Even when the cycle time is 1.5 ns, A1 is so long

D1

I

Figure 4.4

D2

-l~ns)I

D3

A1 = 0.2 ns

. . . . A2 = 0.6 ns

. A3 = 0.15 ns

D 1 D2
t '- I - ' ~ \ D1

/
/ ~-,.0ns)I

D3

D2

< q , ,
~ ~ o7~ns))

\ \~ / /

Timing diagrams with fast A1 for various cycle times

D1 D2

/ ~cl~ns /l

D3

A1 = 0.8 ns

. . . . A2 = 0.6 ns

. A3 = 0.15 ns

D1
~ ~ 1 7 6 ~ |

D3 f""

i 1
'& / / D2

D1
i i

Setup time
violation

Figure 4.5 Timing diagrams with slow A1 for various cycle times

1 1 0 4 Circuit Methodology

that data does not depart L 2 until after the clock edge. The hard edge
imposed by the flip-flop determines the departure time from the latch. A2
is short enough, however, that no time borrowing is required through L 3.
When the cycle time drops to 1.0 ns, time borrowing is required through
both latches. At a cycle time of 0.75 ns, A1 is longer than a cycle and the
setup time at L 2 is violated. Therefore, the circuit will not operate, even
though the delay around the loop A2 + A3 exactly fits in the cycle time.

In summary, loops of logic and transparent latches automatically
adjust themselves so that data departs the latches at the beginning of each
half-cycle unless time borrowing is necessary. Long paths from other
latches or from elements like flip-flops or domino gates that impose hard
edges may require time borrowing and thus dictate departure times. For
the purpose of design, it suffices to nominally position latches at the
beginning of the half-cycle; in the event of clock skew, data will automati-
cally adjust using time borrowing to allow the system to operate at its
minimum cycle time.

4.1.2 Static-to-Domino Interface

When nonmonotonic static signals are inputs to domino gates, they must
be latched so that they will not change while the domino gate is in evalua-
tion. The interface also imposes a hard edge because the data must set up
at the domino input before the earliest the domino gate might begin eval-
uation, but may not propagate through the domino gate until the latest
the gate could begin evaluation. Therefore, clock skew must be budgeted
at the static-to-domino interface. This skew budget can be minimized by
keeping the path in a local clock domain; Section 6.3 computes how
much skew must be budgeted. Note that, strictly speaking, only falling
inputs to domino gates must set up before evaluation. If your timing ana-
lyzer separately tracks arrival times for rising and falling edges, you can
relax the constraints on the rising edge.

The latching technique at the interface depends on whether transpar-
ent or pulsed latches are used. In systems using transparent latches, static
logic from one half-cycle can directly interface to dynamic logic at the
start of the next half-cycle. The static outputs will not change while the
domino is in evaluation. In systems with pulsed latches, however, the
pulsed latch output may change while ~)1 domino gates are evaluating.
Therefore, a modified pulsed latch must be used at the interface to pro-

4.1 Static/Domino Interface 111

Figure 4.6

q

D IE I

 94> I
_

External pulse generator

Q

�9 IEj

*' E 1

Built-in pulse generator I

Pulsed domino latches with external and built-in pulse generators

duce monotonic outputs. This is called a "pulsed domino latch" [43] and
is shown in Figure 4.6.

The pulsed domino latch essentially consists of a domino gate with a
pulsed evaluation clock. The pulse may either be generated externally or
produced by two series evaluation transistors as shown in the figure. The
former scheme yields a faster latch because fewer series transistors are
necessary, but requires longer pulses, as was discussed for ordinary pulsed
latches in Section 2.3.2. Logic functions may be built into the pulsed
domino latch.

The output of a static pulsed latch may be connected through static
logic to r or r domino gates, so long as the static result settles before the
domino enters evaluation. Master-slave flip-flops can be interfaced the
same way. Neither static pulsed latches nor flip-flops directly interlace to
r domino gates because the output is not monotonic during r

4.1.3 Domino-to-Static Interface

While a signal propagates through a skew-tolerant domino path, latches
are unnecessary. However, before a domino output is sent into a block of
static logic, it must be latched so that the result is not lost when the dom-
ino gate precharges. We will use a special latch at this interface that takes

1 1 2 4 Circuit Methodology

advantage of the monotonic nature of the domino outputs to improve
performance.

Figure 4.7 shows the interface from domino to static logic. The
dynamic gate drives a special latch using a single clocked NMOS transistor.
This latch is called an N-C2MOS stage by Yuan and Svensson [96]; we will
sometimes abbreviate it as an N-latch. When the dynamic gate evaluates,
its falling transition propagates very quickly through the single PMOS

transistor in the N-C2MOS latch. When the dynamic gate precharges and
its output rises, the latch turns opaque, holding the value until the next
time the clock rises. A weak keeper improves noise immunity when the
clock is high. It is important to minimize the skew between the dynamic
gate and N-C2MOS latch so that precharge cannot ripple through the latch.
This is easy to do by locating the two cells adjacent to one another sharing
the same dock wire. In Section 4.1.4, we will avoid this race entirely by
using a latch clock that falls before the dynamic gate begins precharge.
The only overhead at the interface from dynamic to static logic is the latch
propagation delay.

The output Q of the circuit will always fall when the clock rises, then
may rise depending on the input D. This results in glitches propagating
through the static logic when D is held at a logic for multiple cycles; the
glitches lead to excess power dissipation. When dual-rail domino signals
are available, an SR latch can be used at the domino-to-static interface, as
shown in Figure 4.8. The SR latch avoids glitches when the domino inputs
do not change, but is slower because results must propagate through two
NAND gates.

D

From domino logic

m

I)
m

m

Dynamic gate

Figure 4.7 Domino-to-static interface

Weak keeper

q
To static logic

N-C2MOS latch

4.1 Static/Domino Interface 11

~) q

From domino logic To static logic

D_h Q_b

]

1
_

Dual-rail dynamic gate

Figure 4.8 Glitch-free but slower domino-to-static interface

A regular transparent latch also can be used at the domino-to-static
interface, but is slower than the N-C2MOS latch and has the same glitch
problems.

4.1.4 T iming Types

The rules for connecting domino and static gates are complex enough
that it is worthwhile systematically defining and checking the legal con-
nectivity. To do this, we can generalize the two-phase clocking discipline
rules of Noice [61] to handle four-phase skew-tolerant domino. Each sig-
nal name is assigned a suffix describing its timing. Proper connections
can be verified by examining the suffixes. We first review the classical def-
inition of timing types in the context of two-phase nonoverlapping
clocks. Most systems use 50% duty cycle clocks, so we describe how tim-
ing types apply to such systems at the expense of checking min-delay. We
then generalize timing types to four-phase skew-tolerant domino, includ-
ing systems that mix domino, transparent latches, and pulsed latches.
Timing types also include information about monotonicity and polarity
to describe domino and dual-rail domino logic.

Two-Phase Nonoverlapping Clocks

Systems constructed from two-phase nonoverlapping clocks (~1 and ~2'
like the one we examined in Figure 2.7, have the pleasant property that as
long as simple topological rules are obeyed, the system will have no setup
or hold time problems if run slowly enough with sufficient nonoverlap,

1 1 4 4 Circuit Methodology

regardless of clock skew [29]. They are particularly popular in student
projects because no timing analysis is necessary. Timing types are used to
specify the topological rules required for correct operation and allow
automatic checking of legal connectivity. In later sections, we will extend
timing types to work with practical systems that do not have nonoverlap-
ping clocks. The extension comes at the expense of checking min-delay
violations.

Each signal is given a suffix indicating the timing type and phase. The
suffixes are _s l, _s2, _vl, _v2, _q l, and _q2. _s indicates that a signal is
stable during a particular phase; that is, that the signal settles before the
rising edge of the phase and does not change until after the falling edge.
_v means that the signal is valid for sampling during a phase; it is stable
for some setup and hold time around the falling edge of the phase. _q
indicates a qualified clock, a glitch-free clock signal that may only rise on
certain cycles. These timing types denote which clock edge controls the
stability regions of the signals, that is, when the circuit is operated at slow
speed, after which edge does the signal settle. Figure 4.9 shows examples
of stable and valid signals. Stable is a stronger condition than valid; any
stable signal can be used where a valid signal is required.

From the previous definitions, we see that clocks are neither valid nor
stable. They establish the time and sequence references for data signals
and are never latched by other clocks. However, it is sometimes useful to
provide a clock that only pulses on certain cycles. _q indicates that the sig-
nal is such a qualified clock, a clock gated by some control so that it may

I I ' ' I I

j ' 1, ' ' / I
l I l l
, ,

,2 ~ " "
1 1 , ,
I I l l

Setup ', ',Hold ', ',

- - I I V v l v v v v v v v v l v v \
I I I I
I I I I

I I I I
I I I I

C_vl
I l I I
l I I l

l I l I
l I I l

Figure 4.9 Examples of stable and valid signals

4.1 Static/Domino Interface 115

not rise during certain cycles. Clock qualification is discussed further in
Section 4.1.5. Qualified clocks are interchangeable with normal clocks for
the purpose of analysis.

The inputs to latches must be valid for a setup and hold time around
the sampling edge of the latch clock. For the purpose of verifying correct
operation with timing types, it is helpful to imagine operating the system
at low frequency so all latch inputs arrive before the rising edge of the
clock and no time borrowing is necessary. Thus, a latch output will settle
sometime after the rising edge of the latch clock and will not change again
until the following rising edge of the latch clock; hence it is stable
throughout the other phase. If the system operates correctly at low speed,
we can then increase the clock frequency, borrowing time until setup
times no longer are met.

In summary, a ~1 latch requires a _vl or _sl input and produces a _s2
output. A ~2 latch requires a _v2 or _s2 input and produces a _sl output.
Combinational logic does not change timing types because the system
can be operated slowly enough that data is still valid or stable in the spec-
ified phase. Figure 4.10 illustrates a general two-phase system.

Valid signals are produced by domino gates, as shown in Figure 4.11.
The outputs settle sometime after the rising edge of the clock and do not

I

I

!
I

* 1 * 2 * 1

Ql_S2

D2_s2

Q2_sl

D3_sl

i Ql_S 2 D2_s 2 Q2_sl D3_sl --[-

! !

: 12C
I I
I I

! !
! ! I
! !
! !
~ ~ '
! !
I I
I I I
' , , ~ '
! I
! ! !

i I !
I ! !
I ! !

Figure 4.10 General two-phase system

116 4 Circuit Methodology

/ \

/

~)2 _~ IT A _ v l f - ~2 _~ ? C _ v l f - C vlf

~ ~ ~ ~ _ ~ _ v l r
B_vlr ~.J

(~1 L ~1 I~

A_vlf \ /

 __vlr / \

C_vlf \ /

 vlr / \

Figure 4.11 Domino gates produce valid outputs

precharge until the rising edge of the next clock, so they are valid for sam-
piing around the falling edge of the clock. Using different precharge and
evaluation clocks avoids any races between precharge and sampling. We
also tag domino signals as monotonically rising (r) or falling (f). Domino
inputs must be either stable or valid and monotonically rising during the
phase the gate evaluates. The output of the dynamic gate is monotonically
falling, and the output of the inverting static gate is monotonically rising.
In such a traditional domino clocking scheme, the nonoverlap also
appears as sequencing overhead.

As long as systems using two-phase nonoverlapping clocks have inputs
to domino and latches using the proper timing types summarized in
Table 4.1, the systems will always function at some speed. Setup time vio-
lations caused by long paths or excessive skew are solved by increasing the
clock period. Hold time violations caused by short paths or excessive
skew are solved by increasing the nonoverlap between phases.

Most two-phase systems use 50% duty cycle clocks rather than non-
overlapping clocks. Timing types are still useful to describe legal
connectivity, but clock skew can lead to hold time failures that cannot be

4.1 Static/Domino Interface 117

T a b l e 4.1 Two-phase clocked element timing rules

Element type Clock Input Output

Dynamic ~1, _ql _sl, _vlr _vlf

~)2' _q2 _s2, _v2r _v2f

Transparent latch (~1' _ql s l , _vl _s2

~2, _q2 _s2, _v2 _sl

fixed by slowing the clock. Therefore, such systems must be checked for
min-delay. In essence, the definitions of _v and _s must change to reflect
the fact that the user can no longer control how long a signal will remain
constant after the falling edge of a sampling clock. Also, since the two
clocks are now complementary, domino gates use the same clock for eval-
uation and precharge. This leads to another hold time race as domino
gates precharge at the same time as the latch samples. Timing types are
still useful to indicate legal inputs to dynamic gates and transparent
latches, but no longer guarantee immunity to min-delay problems.

Four-Phase Skew-Tolerant Domino

We can generalize the idea of timing types to four-phase skew-tolerant
domino. Again, we will construct timing rules assuming that duty cycles
can be adjusted to eliminate min-delay problems. Specifically, to avoid
rain-delay problems, each phase overlaps the next, but nonadjacent
phases must not overlap, as shown in Figure 4.12. For example, ~1 and 03
are nonoverlapping. In Section 4.1.6 we will consider the min-delay races
that must be checked when the nonadjacent phases may overlap. We also
use timing types to describe the interface of four-phase skew-tolerant
domino with transparent latches, pulsed latches, and N-C2MOS latches.

~2

~3

~4

l I 7~ l l I
l l - (" l I l
i < , , , ::>i

I ' i

, I

I , , ~ ~ ,

l i l I l
' I k l l ~ ,
i ~ k i l ~ I l
II i i l %

l l l l
l l l l I ,Phase 1 ,Phase 2 ,Phase 3 , Phase 4,

\

F i g u r e 4.12 Ideal nonoverlapping clock waveforms

1 1 8 4 Circuit Methodology

GUIDELINE 1 Each signal name must have a suffix that describes the timing, phase,
monotonicity, and polarity.

The timing is s, v, or q and the phase is 1, 2, 3, 4, 12, 23, 34, or 41. This
is similar to two-phase timing types, but extends the definitions to
describe signals that are stable through more than one phase. The mono-
tonicity may be r for monotonically rising, f for monotonically falling, or
omitted if the signal is not monotonic during the phase. These suffixes are
primarily applicable to domino circuits and skewed gates. Polarity may be
any one of (blank), b, h, or lb indicates a complementary signal, h and 1
are used for dual-rail domino signals; when h is asserted, the result is a 1,
while when 1 is asserted, the result is a 0. When neither is asserted, the
result is not yet known, and when both are asserted, your circuit is in
trouble. The signal is asserted when it is 1 for monotonically rising signals
(r) and 0 for monotonically falling signals (f). Therefore, dual-rail
dynamic gates produce fh and fl signals, while the subsequent dual-rail
inverting static gates produce rh and rl signals. The suffix is written in the
form

signalname_TP [M] [Pol]

where T is the timing type, P is the phase, M is the monotonicity (if appli-
cable), and Pol is the polarity (if applicable). For example, a sample path
following these conventions is shown in Figure 4.13.

In addition to checking for correct timing and phase, we use timing
types to verify monotonicity for domino gates.

Note that, unlike Figure 4.11, we now use the same clock for precharge
and evaluation of dynamic gates. Therefore, the definition of a valid sig-
nal changes: a valid signal settles before the falling edge of the clock and
does not change until shortly after the falling edge of the clock. This is
exactly the same timing rule as a qualified clock, so _v and _q signals are
now in principle interchangeable. Nevertheless, we are much more con-

(~3 (~1

V_s23 1 _ [~
/

Ws41b X_ lfl

(~2

Y_vlrh Z_v2fh

Y vlrl Z v2fl

Figure 4.13 Path illustrating timing types and static-to-domino interface

4.1 Static/Domino Interface 1 1 9

cerned about controlling skew on clocks, so we reserve the _q timing type
for clock signals and continue to use _v for dynamic outputs with the
understanding that the length of the validity period is not as great as it
was in a classical two-phase system. In particular, a _vl signal is not a safe
input to a ~)1 static latch because the dynamic gate may precharge at the
same time the latch samples. For example, Figure 4.14 illustrates how
latch B's output might incorrectly fall when dynamic gate A precharges if
there is skew between the clocks of the two elements.

DEFINITION 2 The _v inputs to a dynamic gate must be monotonically rising (r). The
output of a dynamic gate is monotonically falling (f).

This definition formalizes the requirement of monotonicity. _s inputs
to a dynamic gate stabilize before the gate begins evaluation, so they do
not have to be monotonic. As an example, a ~)1 dynamic gate may take
input X_v4r or Y_sl or even Z_slfbut not W_v4f.

DEFINITION 3 Inverting static gates that accept exclusively monotonically rising
inputs (r) produce monotonically falling outputs (f) and vice versa.

GUIDELINE 2 Static gates should be skewed HI for monotonically falling (f) inputs
and LO for monotonically rising (r) inputs.

Skewed gates may use different P/N ratios to favor the critical transi-
tions and improve speed. HI-skew gates with large P/N ratios should follow
monotonically falling dynamic outputs. When a path built with static logic

(~la / / / / k~kkkk / / / /

B \

t~la ~)lb

A B

Inverting latch B should
remain high but might
capture precharge and fall

Figure 4.14 Potential race at interface of_vl signal to ~)1 static latch

12 0 4 Circuit Methodology

is monoton ic , al ternating HI- and LO-skew gates can be used for speed. A

normal inverter has a P/N ratio of about 2/1. A HI-skew inverter may have
a P/N ratio of 4/1, while a LO-skew inverter has a P/N ratio of 1/1 to favor
the critical transitions.

GUIDELINE 3 _s and _v signals are the only legal data inputs to gates and latches. _q
and ~ are the only legal clock inputs.

This is identical to traditional two-phase conventions. Clocks and
gates should not mix except at clock qualifiers (see Guideline 7).

GUIDELINE 4 The output timing type of a static gate is the intersection of the input
types. If the intersection is empty, the gate is receiving an illegal set of
inputs.

Remember that a _v signal can be sampled for a subset of the time that
a _s signal of the same phase is stable. For example, a gate receiving _s12
and _v2 inputs produces a _v2 output. A gate receiving _s12 and _s34
inputs has no legal output timing type, so the inputs are incompatible. 1

GUIDELINE 5 Table 4.2 summarizes timing rules for the most common elements in a

system mixing skew-tolerant d o m i n o and t ransparen t latches.

Table 4.2 Simplified clocked element timing guidelines

Element type Clock Input Output

Dynamic ~1, _ql _sl, _v4r (first), _vlr (others) _vlf
~2, _q2 _s2, _vlr (first), _v2r (others) _v2f
q~3, _q3 _s3, _v2r (first), _v3r (others) _v3f
~4, _q4 _s4, _v3r (first), _v4r (others) _v4f

Transparent latch ~1, _ql _sl _s23
~3, _q3 _s3 _s41

N-C2MOS latch ~x, _ql _v2f _s3r

~3, _q3 _v4f _sir

1. This guideline has an obscure exception. A static gate may receive both _s2 and
_vlf inputs. Its output is a special type (let us say_vlrs2) only suitable as an input to a ~2
dynamic gate. This would occur when an inverting static gate receives inputs from a r
static latch and a ~1 dynamic gate in order to drive a r dynamic gate. Similar combina-
tions are legal inputs to other phases of domino gates.

4.1 Static/Domino Interface 1 2 1

Clocked elements set the output timing type and require inputs which
are valid when they may be sampled. The types depend on the clock phase
used by the clocked element. See Table 4.3 (Guideline 6) for a complete
list of timing rules covering more special cases.

The output of a dynamic gate is valid and monotonically falling dur-
ing the phase the gate operates, just as we have seen for two-phase sys-
tems. The input can come from static or domino logic. Static inputs must
be stable _s while the gate is in evaluation to avoid glitches. Inputs from
domino logic are monotonic rising and thus only must be valid _v. The
key difference between conventional timing types and skew-tolerant tim-
ing types is that valid inputs to the first dynamic gate in each phase come
from the previous phase, while inputs to later dynamic gates come from
the current phase. Technically, different series stacks may receive _v
inputs from different phases.

N-latches are used at the interface of domino to static logic. Although
transparent latches could also be used, they are slower and present more
clock load, so they are not recommended in this methodology. Notice
that N-latches use a clock from one phase earlier than the dynamic gate
they are latching to avoid race conditions by which that dynamic gate may
precharge before the latch becomes opaque. Because of the single PMOS
pullup in the N-latch, dynamic gate output A evaluating late can borrow
time through the N-latch even after the latch clock falls, as shown in
Figure 4.15.

The N-latch output B settles after the rising clock edge evaluating the
preceding dynamic gate and remains stable until the next rising edge of
the latch clock, so it is stable for one phase (Phase 3, in this example).
Because the interface between dynamic and static logic normally occurs at
half-cycle boundaries, the ~)2 and ~)4 N-latches are rarely used.

The output of a transparent latch stabilizes after the latch becomes
transparent and remains stable until the latch becomes transparent again;
for example, the output of a ~)1 transparent latch is _s23. Signals stable for
multiple phases are legal as inputs to elements requiring stability in either
phase. For example, a _s23 signal is a legal input to a ~)3 transparent latch
that requires _s3. While transparent latches technically can accept certain
_v inputs as we saw with two-phase timing types, N-latches are preferred
at this interface of domino to static so only the _s inputs are shown in the
table for transparent latches.

1 2 2 4 Circuit Methodology

I

I

~bl (~1

�9 o I'o
!

!

~2

|

!
I
I
I
I

t

\

\

/

(~2 (~1 ~)3

�9 I'~ I
' A B

Phase 1 Phase 2

i
I
I
I
,,

t9 t9

Phase 3 Phase 4

Figure 4.15 Domino-to-static interface using N-latch

Figure 4.16 illustrates legal connections between static and domino
gates. The top row of gates is a pipeline of static logic, while the bottom
row is domino. Dynamic outputs must pass through N-C2MOS latches
before driving static logic. Static signals can directly drive appropriate
domino gates.

Figure 4.17 illustrates illegal connections between static and domino
gates. Connection A is bad because the dynamic output will precharge
while the 03 latch is transparent, allowing incorrect data to propagate into
the static logic. An N-latch should have been used at the interface. Con-
nection B is bad because the static path skips over a latch. Connection C is
bad because the (~4 domino gate receives both _v3 and _v4 inputs. By the
time the _v4 input arrives, the _v3 result may have precharged. Each of
these illegal connections violates the possible inputs of Table 4.2, so an
automatic tool could flag these errors.

Now that we have seen how timing types work, we can expand them to
handle pulsed latches and uncommon phases of latches. The complete
guidelines are summarized in Table 4.3.

GUIDELINE 6 Inputs and outputs of clocked elements should match the timing types
defined in Table 4.3.

4.1 Static/Domino Interface 12, 3

I I I

!
!

I ! !

i I I , ~ ~)21 I
I I I

!

I
!

! ! !

41 t
I !
I !
! I

"1 ','3
!

I

r
J

i

t
I
I
I

!

I

,X
I

1
!
!

,,
I

~ Q G ~ ~ ' s~3D ~ Ds~~ ._..__~.~1 s23 i.~1s23 i.~1 ~1_~1 s3 s41 s41 s41 s41 s23

I I I

]] (~11 [l ~)3 l

', ', r t sx

' , i t ' ' ', ! i i ',
Figure 4.16 Examples of legal static and domino connections

Table 4.3 Complete clocked element timing guidelines

Element type Clock Input O u t p u t

Domino ~1' mql
~2' _q2
r _q3
(~4' _q4

Transparent latch (~1, _ql

~)2, _q2
~3, _q3
(~4, _q4

Pulsed latch q~l, -ql
Pulsed domino latch q~l, _ql
N-C2MOS latch q~l, _ql

~2, _q2
~3, _q3
~)4' _q4

(rare)

(rare)

(rare)

(rare)

_sl, _v4r (first), _vlr (others) _vlf
_s2, _vlr (first), _v2r (others) _v2f
_s3, _v2r (first), _v3r (others) _v3f
_s4, _v3r (first), _v4r (others) _v4f
_s i _s23
_s2 _s34
_s 3 _s41
_s4 _s 12
_s 1, (_s 2, _s 3,) _s4, _v4 _s23
_sl, (_s2, _s3,) _s4, _v4 _vlr

v2f s3r m n

_v3f _s4r
v4f slr D

vlf s2r m

1 2 4 4 Circuit Methodology

i

I

I

(~4

!

!

!

I

[

!

I
I
!

i
I
I ,x

t _ ~ _ l i �9
!

i

I
I
I
I

i i

I I

I

I I

I
I

I

I
I

I

I I
I

I I
I

I I
I

~3

s41 ~ s41

�9 o

B
A

(~2 (~2

o,,,~

!

!

(~3 (~3 '~)4 (~4 !(~1

N U!F_
�9 ~

I
I C i
I I

Figure 4.17 Examples of illegal static and domino connections

~)2 and ~)4 transparent latches are not normally used. They occasionally
are useful, however, in short paths to avoid min-delay problems as we
shall see in Section 4.1.6. ~)2 and ~)4 N-latches are also rare, but may be
used to interface from the middle of a half-cycle of domino logic back to
static logic. These rare latches have timing analogous to their more com-
mon counterparts.

Pulsed latches are controlled by a brief pulse derived from the rising
edge of ~1. They accept any signal that will not change on or immediately
after this edge (i.e., _sl, _s4, and _v4). The output has the same stable
time as the output of a @1 transparent latch because it stabilizes after the
rising edge of ~)1 and does not change until after the next rising edge of @1.
Unfortunately, we see that the output of a pulsed latch is _s23, but neither
_s2 nor _s3 signals are safe inputs to pulsed latches, so it is unsafe for one
pulsed latch to drive another. This matches our understanding that
pulsed latches cannot be cascaded directly without logic between them
because of hold time problems. In order to build systems with pulsed

4.1 Static/Domino Interface 12 5

latches, we relax the timing rules to permit _s2 and _s3 inputs to pulsed
latches, then check for min-delay on such inputs. Such checks are dis-
cussed further in Section 4.1.6.

Pulsed domino latches have the same input restrictions as pulsed
latches, but produce a _vlr output suitable for domino logic because their
outputs become valid after the rising edge of ~)a and remain valid until the
falling edge of ~)1 when the gate precharges.

4.1.5 Qual i f ied Clocks

Qualified clocks are used to save power by disabling units or to build
combination multiplexer-latches in which only one of several parallel
latches is activated each cycle. Qualification must be done properly to
avoid glitches.

GUIDELINE 7 Qualified clocks are produced by ANDing ~i with a _s(i) signal in the
clock buffer.

To avoid problems with clock skew, it is best to qualify the clock with a
signal that will remain stable long after the falling edge of the clock. For
example, Figure 4.18 shows two ways to generate a _ql clock. The _s
qualification signal must set up before ~a rises and should not change
until after ~1 falls. In the left circuit, we AND 01 with a _s41 signal. If there
is clock skew, the _s41 signal may change before ~1 falls, allowing the _ql
clock to glitch. Glitching clocks are very bad, so the right circuit, in which
we AND ~)1 with a _s12 signal, is much preferred. This problem is analo-
gous to min-delay. Like min-delay, it could also be solved by delaying the
_s41 signal so that it would not arrive at the AND gate before the falling
edge of ~1. However, clock qualification signals are often critical, so it is
unwise to delay them unnecessarily. The race could also be solved by
making the skew between the 01 and ~3 clocks in the left circuit small.

4.1.6 Min-Delay Checks

We have noted that two-phase systems usually use complementary docks
rather than nonoverlapping clocks and thus lose their strict safety proper-
ties, requiring explicit checks for min-delay violations. Similarly, the four-
phase timing types of Section 4.1.4 use nonoverlapping ~)1 and ~)3 to
achieve safety, but real systems typically would use 50% duty cycle clocks.

12 6 4 Circuit Methodology

/ / / / \ \ \ \ /77T

/4 / / \ \ \ \

(~3 ~1 N~ ~ @4 (~1
X_ql [xs41

- ~ -

Y_ql

1 may ght Good Y ql won't ghtch

X_s41

X_ql

Y_sl2

Y_ql

Figure 4.18 Good and bad methods of qualifying a clock

In this section, we describe where min-delay risks arise with 50% duty
cycle clocks. We also examine the min-delay problems caused by pulsed
latches.

Min-delay is a serious problem because unlike setup time violations,
hold time violations cannot be fixed by adjusting the clock frequency.
Instead, the designer must conservatively guarantee adequate delay
through logic between clocked elements. Min-delay problems should be
checked at the interfaces listed in Table 4.4. The top half of the table lists
common cases encountered in typical designs. The bottom half of the
table lists combinations, which while technically legal according to
Table 4.2, would not occur in normal use because (~2 and ~4 transparent
latches and N-latches are seldom used.

Min-delay problems can be solved in two ways. One approach is to
add explicit delay to the data. For example, a buffer made from two long-
channel inverters is a popular delay element. Another is to add a latch be-
tween the elements controlled by an intervening phase. Both approaches
prevent races by slowing the data until the hold time of the second ele-

4.1 Static/Domino Interface 12 7

Table 4.4 Interfaces prone to min-delay problems

Source element Source phase Destination element Destination phase

Transparent latch or ~1 Transparent latch or ~3
N-latch or pulsed latch dynamic gate
Transparent latch q)3 Transparent latch or (~1
or N-latch dynamic gate
Transparent latch or (~1 Pulsed latch or pulsed t~l
N-latch or pulsed latch domino latch
Transparent latch q)2 Transparent latch *4
or N-latch or dynamic gate
Transparent latch (~4 Transparent latch q)2
or N-latch or dynamic gate

ment is satisfied. Examples of these solutions are shown in Figure 4.19. In
path (a) there is no logic between latches. If ~1 and q)3 are skewed as
shown, data may depart the (~1 latch when it becomes transparent, then
race through the ~3 latch before it becomes opaque. Path (b) solves this
problem by adding logic delay 8logic, as was discussed in Section 2.2.4.
Path (c) solves the problem by adding a t~2 latch. If the minimum required
delay is large, the latch may occupy less area than a string of delay ele-
ments.

Min-delay problems can actually occur at any interface, not just those
listed in Table 4.4. For example, if clock skew were greater than a quarter
cycle, min-delay problems could occur between ~)1 and q)2 transparent
latches. Because it is very difficult to design systems when the clock skew
exceeds a quarter cycle, we will avoid such problems by requiring that the
clock have less than a quarter cycle of skew between communicating
elements.

Depending on the clock generation method, a few other connections
may incur races. It is possible to construct clock generators with adjust-
able delays so that as the frequency reduces, the delay between each phase
remains Tc/N. However, as we will see in Section 5.2.1, it may be more

convenient to produce (~2 and 04 by delaying *1 and ~)3' respectively, by a
fixed amount. Such clock generators introduce the possibility of races
that are frequency independent because the delay between phases is fixed.

One such risky connection is a ~)1 pulsed latch feeding a ~)2 domino
gate. There is a max-delay condition that data must set up at the input of
the domino gate before the gate enters evaluation. Clock skew between ~1
and ~)2 reduces the nominally available quarter cycle. Since the delay from

12 8 4 Circuit Methodology

~2

~3

(b)

i ///,X
!

(a)

I

(c)

i
I
I
I
I

!
!

I
!

I
!
!
!

I
I

1
!
!
!
I
I
I
I
I
!

~ogic ~

02
I

I

I
!

I
!
!

i

J

; i

: / , ~ - . ~ Overlap:
i i /min_delay

," \ \ \ , /
: ,
! !

I , 1
! !

! ', ,
! !
!

, 1
I !
! !
! !
! !

I

! !
!

, 1
! !

! 1 ,
! I

! : ,
! I

!

! I
! : ,

I !
! 1 ,

! !
! , ',
! !

I I

risk

Figure 4.19 Solution to min-delay problem between ~)1 and ~3 transparent latches: min-delay risk (a),
extra gates (b), and extra latch (c)

1~1 to ~)2 is constant, if domino input does not set up in time, the circuit
will fail at any clock frequency. The same problem occurs at the interface
of a ~)1 transparent latch to ~2 domino and of a ~3 transparent latch to ~4
domino.

Another min-delay problem occurs between ~2 transparent latches
and ~)1 pulsed latches or pulsed domino latches. Again, if the delay
between phases is independent of frequency, hold time violations cannot
be fixed by adjusting the clock frequency.

4.2 Clocked Element Design

This section offers guidelines on the design of fast clocked elements.
Remember that static CMOS logic uses either transparent latches or pulsed
latches. Domino logic uses no latches at all, except at the interface back to

4.2 Clocked Element Design 12 9

static logic, where N-latches should be used. We postpone discussion of
supporting scan in clocked elements until Section 4.3.

Critical paths should be entirely domino wherever possible because we
must budget skew and latch propagation delay when making a transition
from static back into domino logic; moreover, time borrowing is not pos-
sible through the interface. Because most functions are nonmonotonic,
this frequently dictates using dual-rail domino. In certain cases, dual-rail
domino costs too much area, routing, or power. For high-speed systems,
going entirely static may be faster than mixing domino and static and
paying the interface overhead. If the overhead is acceptable because skew
is tightly controlled, try combining as much of the nonmonotonic logic
into static gates at the end of the block, as discussed in Section 3.2.1.

4.2.1 La tch Design

The fastest latches are simply transmission gates. To avoid the noise prob-
lems described in Section 2.3, the gates should be preceded and followed
by static CMOS gates. These gates may perform logic rather than merely
being buffers, so the latch presents very little timing overhead. Pulsed
latches can be produced by simply pulsing the transmission gate control.

GUIDELINE 8 Use a transmission gate as a latch receiving input from a static logic
block. Use a full keeper on the output for static operation.

The transmission gate latch is very fast and compact and is used in the
DEC Alpha 21164 methodology. The output is a dynamic node and must
obey dynamic node noise rules. Therefore, it should drive a static gate not
far from the output. A 01 static latch is shown in Figure 4.20.

GUIDELINE 9 Use a static gate before and after each static latch.

This gate is conventionally an inverter, but may be changed to any
other static gate. The static gate after the latch should have no more than
two inputs to avoid charge-sharing problems when the channel is not
conducting. There should be little routing between the input gate, trans-
mission gate, and output gate to minimize power supply noise problems
and coupling onto the dynamic node. For synthesized blocks, it may be
best to create versions of the latches incorporating gates into the input

1 ~ O 4 Circuit Methodology

~)1

D_sl

Figure 4.20 ~1 static latch

Q_s23

and output as a single cell because synthesis tools have difficulty estimat-
ing the delay of an unbuffered transmission gate and because place-and-
route tools may produce unpredictable routing.

GUIDELINE 10 Generally use only pulsed latches or (~1 and 03 transparent latches.

We select two phases to be the primary static latch clocks to resemble
traditional two-phase design. The ~2 and @4 clocks would be confusing if
generally used, so they are restricted to use to solve min-delay problems
in short paths.

GUIDELINE 11 Use an N-C2MOS latch on the output of domino logic driving static
gates as shown in Figure 4.7. Use a full keeper on the output for static
operation.

Again, the output is a dynamic node and must obey dynamic node
noise rules. The N-latch is selected because it is faster and smaller than a
tristate latch and doesn't have the charge-sharing problems seen if a dom-
ino gate drove a transmission gate latch.

GUIDELINE 12 The domino gate driving an N-latch should be located adjacent to the
latch and should share the same clock wire and VDD as the latch.

The N-latch has very little noise margin for noise on the positive sup-
ply. This noise can be minimized by keeping the latch adjacent to the
domino output, thereby preventing significant noise coupling or VDD
drop. The latch is also sensitive to clock skew because if it dosed too late,
it could capture the precharge edge of the domino gate. Therefore, the
same clock wire should be used to minimize skew.

4.2 Clocked Element Design 13 1

4.2.2 D o m i n o Gate Des ign

The guidelines in this section cover keepers, charge-sharing noise, and
unfooted domino gates.

GUIDELINE 13 All dynamic gates must include a keeper.

In Section 4.3 we will see that the clock is stopped low during test, so a
keeper is necessary to fight leakage on ~3 and ~4 dynamic gates. It is also
necessary on all gates to achieve reasonable noise immunity. Breaking this
guideline requires extremely careful attention to dynamic gate input noise
margins.

GUIDELINE 14 The first dynamic gate of Phase 3 must include a full keeper.

As discussed in Section 3.2.3, this is necessary to prevent the outputs
of the first Phase 3 gates from floating when the clock is stopped low and
the Phase 2 gates precharge. Note that because the first dynamic gate of
Phase 1 does not include a full keeper, the clock should not be stopped
high long enough for the output to be corrupted by subthreshold leakage.
Of course, this guideline is an artifact of the methodology; an alternative
methodology that stopped the clock high or allowed clock stopping both
high and low would require the full keeper on Phase 1. In Section 4.3.2 we
will see that the last dynamic gate of Phase 4 may also need a full keeper to
support scan.

GUIDELINE 15 Use secondary precharge devices on internal nodes to control charge-
sharing noise.

The exact number of secondary precharge devices required depends
on the noise budget. A reasonable rule of thumb is to precharge every
other internal node (starting from the top), plus any internal node with a
large amount of diffusion, as discussed in Section 3.2.4.

GUIDELINE 16 The output of a dynamic gate must drive the gate, not source/drain
input of the subsequent gate.

The result of a dynamic gate is stored on the capacitance of the output
node, so this guideline prevents charge-sharing problems. An important

1 ~ 2 4 Circuit Methodology

implication is that dynamic gates cannot drive transmission gate multi-
plexer data inputs, although they could drive tristate-based multiplexers.

GUIDELINE 17 Use footed dynamic gates exclusively.

This guideline is in place to avoid excess power consumption, which
may occur when the pulldown transistors are all on while the gate is still
precharging. It may be waived on the first 02 and ~4 gates of each cycle so
long as the inputs of the gates come from ~1 or ~3 domino logic that does
not produce a rising output until the (~2 or ~)4 gates have entered evalua-
tion. Aggressive designers may waive the guideline on other dynamic
gates if power consumption is tolerable.

4.2.3 Special S t r u c t u r e s

In a real system, skew-tolerant domino circuits must interface to special
structures such as memories, register files, and programmable logic arrays
(PLAs). Precharged structures like register files are indistinguishable in
timing from ordinary domino gates. Indeed, standard six-transistor regis-
ter cells can produce dual-rail outputs suitable for immediate consump-
tion by dual-rail domino gates.

Certain very useful dynamic structures such as wide comparators and
dynamic PLAs are inherently nonmonotonic and are conventionally built
for high performance using self-timed clocks to signal completion. The
problem is that these structures are most efficiently implemented with
cascaded wide dynamic gates because the delay of a dynamic NOR struc-
ture is only a weak function of the number of inputs. Generally, dynamic
gates cannot be directly cascaded. However, if the second dynamic gate
waits to evaluate until the first gate has completed evaluation, the inputs
to the second gate will be stable and the circuit will compute correctly.
The challenge is creating a suitable delay between gates. If the delay is too
long, time is wasted. If the delay is too short, the second gate may obtain
the wrong result.

A common solution is to locally create a self-timed clock by sensing
the completion of a model of the first dynamic gate. For example,
Figure 4.21 shows a dynamic NOR-NOR PLA integrated into a skew-
tolerant pipeline. The AND plane is illustrated evaluating during ~2, and
adjacent logic can evaluate in the same or nearby phases, andclk is nomi-
nally in phase with ~2, but has a delayed falling edge to avoid a precharge

4.3 Testability 13 3

~)1 or f~2

(~2 AND plane OR plane

Matched delay _ ~ ~) ~ E 1
_-s-

orclk
~2 [PLA

~2 or ~3

r

orclk

andclk

Figure 4.21 Domino/PLA interface

race with the OR plane. The latest input X to the AND plane is used by a
dummy row to produce a self-timed clock orclk for the OR plane that rises
after AND plane output Yhas settled. Notice how the falling edge of orclk is
not delayed so that when Y precharges high the OR plane will not be cor-
rupted. The output Z of the OR plane is then indistinguishable from any
other dynamic output and can be used in subsequent skew-tolerant dom-
ino logic.

4.3 Testability

As integrated circuits use ever more transistors and overlay the transistors
with an increasing number of metal layers, debug and functional test
become more difficult. Packaging advances such as flip-chip technology
make physical access to circuit nodes harder. Hence, engineers employ
design for testability methods, trading area and even some amount of

1 ~ 4 4 Circuit Methodology

performance to facilitate test. The most important testability technique is
scan, in which memory elements are made externally observable and con-
trollable through a scan chain [66]. Scan generally involves modifying
flip-flops or latches to add scan signals.

Because scan provides no direct value to most customers, it should
impact a design as little as possible. A good scan technique has

�9 minimal performance impact

�9 minimal area increase

�9 minimal design time increase

�9 no timing-critical scan signals

�9 little or no clock gating

�9 minimal tester time

The area criterion implies that scan should add little extra cell area and
also few extra wires. The timing-critical scan signal criterion is important
because scan should not introduce critical paths or require analysis and
timing verification of the scan logic. Clock gating is costly because it
increases clock skew and may increase the setup on already critical clock
enable signals such as global stall requests.

We will assume that scan is performed by stopping the global clock
low (i.e., ~)1 and ~)2 low and ~3 and ~)4 high), then toggling scan control sig-
nals to read out the current contents of memory elements and write in
new contents. We will first review scan of transparent and pulsed latches,
then extend the method to scan skew-tolerant domino gates in a very
similar fashion.

4.3.1 Static Logic

Systems built from transparent latches or pulsed latches can be made
observable and controllable by adding scan circuitry to every cycle of
logic. Figure 4.22 shows a scannable latch. Normal latch operation
involves input D, output Q, and clock ~. When the clock is stopped low,
the latch is opaque. The circuits shown in the dashed boxes are added to
the basic latch for scan. The contents of latch can be scanned out to SDO

(scan data out) and loaded from SD1 (scan data in) by toggling the scan
clocks SCA and SCB. While it is possible to use a single scan dock, the

4.3 Testability 1 3 5

SCB
J

SDI -] [

r
I

t
I

: SCA ~ SDO

I _ , Slave latch

F igure 4.22 Scannable latch

two-phase nonoverlapping scan clocks shown are more robust and sim-
plify clock routing. The small inverters represent weak feedback devices;
they must be ratioed to allow proper writing of the cell. Note that this
means the gate driving the data input D must be strong enough to over-
power the feedback inverter. Although a tristate feedback gate may be
used instead, it must still be weak enough to be overpowered by SD! dur-
ing scan.

We assume that scan takes place while the clock is stopped low. There-
fore, transparent latch systems make the first half-cycle latch scannable,
and pulsed latch systems make the pulsed latch scannable. The procedure
for scan is

1 Stop gclk low.

2 Toggle SCA and SCB to march data through the scan chain.

3 Restart gclk.

GUIDELINE 18 Make all pulsed latches and ~)1 transparent latches scannable.

4.3.2 D o m i n o Logic

Because skew-tolerant domino does not use latches, some other method
must be used to observe and control one node in each cycle. Controlling a
node requires cutting off the normal driver of the node and activating an
access transistor. For example, latches are controlled during scan by being
made opaque, then activating the SCB access transistor in Figure 4.22. A
dynamic gate with a full keeper can be controlled in an analogous way by
turning off both the evaluation and precharge transistors and turning on
an access transistor, as shown in Figure 4.23. Notice that separate evalua-
tion and precharge signals are necessary to turn off both devices so a

1 3 6 4 Circuit Methodology

SCB
I

SDI __1 I

Pulldown
network

*sqL
1

Figure 4.23 Scannable dynamic gate

Slave latch

gated clock ~)s is introduced. A slave latch connected to the full keeper
provides observability without loading the critical path, just as it does on
a static latch. Note that this is a ratioed circuit and the usual care must be
taken that feedback inverters are sufficiently weak in all process corners to
be overpowered. Also, note that only a PMOS keeper is required on the
dynamic output node if SCA and SCB are toggled quickly enough that
leakage is not a problem.

Which dynamic gate in a cycle should be scannable? The gate should
be chosen so that during scan, the subsequent domino gate is precharging
so that glitches will not contaminate later circuits. The gate should also be
chosen so that when normal operation resumes, the output will hold the
value loaded by scan until it is consumed.

Let us assume that scan is done while the global clock is stopped low,
thus with the ~)1 and ~)2 domino gates in the first half-cycle precharging
and the ~)3 and 11)4 gates in the second half-cycle evaluating. Then a conve-
nient choice is to scan the last ~)4 domino gate in the cycle. This means
that the last ~)4 domino gate must include a full keeper. Scan is done with
the following procedure:

1 Stop gclk low.

2 Stop ~)s low.

3 Toggle SCA and SCB to march data through the scan chain.

4 Restart gclk.

5 Release ~)s once scannable gate begins precharge.

4.3 Testability 13 7

When gclk is stopped, the scannable gate will have evaluated to produce a
result. Stopping @~ low will turn off the evaluation transistor to the scan-
nable gate, leaving the output on the dynamic node held only by the full
keeper. Toggling SCA and SCB will advance the result down the scan
chain and load a new value into the dynamic gate. When gclk restarts, it
rises, allowing the gates in the first half-cycle to evaluate with the data
stored on the scan node. Once the scannable gate begins precharging, (~
can be released because the gate no longer needs to be cut off from its
inputs.

Unfortunately, this scheme requires releasing @~ in a fraction of a clock
cycle. It would be undesirable to do this with a global control signal
because it is difficult to get a global signal to all parts of the chip in a
tightly controlled amount of time. It is better to use a small amount of
logic in the local clock generator to automatically perform Steps 2 and 5.
We will examine such a clock generator supporting four-phase skew-tol-
erant domino with clock enabling and scan in Section 5.2.3.

A potential difficulty with scanning dynamic gates is that it could dou-
ble the size of a dynamic cell library if both scannable and normal
dynamic gates are provided. A solution to this problem is to provide a
special scan cell that "bolts on" to an ordinary dynamic gate. The scan cell
adds a full keeper and scan circuitry to the ordinary gate's PMOS keeper, as
shown in Figure 4.24. In ordinary usage, the two clock inputs of the
dynamic gate are shorted to (~4, while in a scannable gate ~)4 and O4s are
connected.

GUIDELINE 19 Make the last domino gate of each cycle scannable with bolt-on scan
logic.

~] out_b._
o~

Pulldown
network

Dynamic gate with PMOS keeper

Figure 4.24 Dynamic gate and scan cell

out b

SDO

out

SCB
I

I L SDI]
I[

1
_

Scan cell

13 8 4 Circuit Methodology

A cycle may combine static and domino logic. As long as all first half-
cycle latches and the last domino gate in each second half-cycle are
scanned, the cycle is fully testable. Static and domino scan nodes are com-
patible and may be mixed in the same scan chain. Note that pulsed dom-
ino latches are treated as first half-cycle domino gates and are not
scanned.

4.4 Historical Perspective

Circuit methodologies are seldom published, although employee turnover
in Silicon Valley tends to carry the best techniques from one company to
another in a clandestine fashion. The best-documented methodologies
have been from IBM and DEC. DEC (now Compaq) has led the pack in
circuit performance since the introduction of the Alpha 21064, so we will
follow the evolution of their circuit methodology. In the next historical
perspective, we will follow the DEC docking methodology.

The Alpha 21064 [16, 17] arrived in 1993 at a blazing 200 MHz while
other microprocessors were running 40-100 MHz. This speed corre-
sponds to approximately 20 fanout-of-4 inverter delays per cycle in the
0.75-micron process. Earlier DEC chips had used a four-phase nonover-
lapping clock system distributed on multiple clock wires to avoid risk of
min-delay. To achieve acceptable skew at 200 MHz, the Alpha used a sin-
gle global clock wire. The processor used true single-phase clock (TSPC)
transparent latches and avoided min-delay problems through clock distri-
bution and latch design. Logic could be built into the first stage of the
TSPC latches.

The Alpha 21164 [5, 6, 27] arrived two years later at 300 MHz, using
fewer than 18 FO4 inverter delays per cycle in the 0.5-micron process
[30]. The designers found that an ordinary transparent latch was faster
than the TSPC latch [26], especially because logic could be integrated into
both the gate before and after the latch. Min-delay was avoided by requir-
ing at least one minimum logic delay element between all latches and was
verified by a simple CAD tool. The 21164 was also the first published pro-
cessor to eliminate a latch from the middle of a cycle of domino logic by
overlapping clocks.

Curiously, the Alpha 21264 [28] broke away from the skew-tolerant
techniques advocated in this book. It shipped at 575 MHz in late 1998 in a

4.5 Summary 13 9

0.35-micron process. The processor uses an unusual edge-triggered flip-
flop [28] instead of transparent latches. This apparently sacrifices skew
tolerance and increases the latching overhead as a fraction of cycle time,
although it does provide a sense amplifier for special low-swing differen-
tial signals. Min-delay risks are increased due to the more complex clock-
ing scheme and are avoided by careful checking with a CAD tool.

4.5 Summary

This chapter has described a method for designing systems with transpar-
ent and pulsed latches and skew-tolerant domino. It uses a single globally
distributed clock from which four local overlapping clock phases are
derived. The methodology supports stopping the clock low for power sav-
ings and testability and describes a low-overhead scan technique compat-
ible with both domino and static circuits. Timing types are used to verify
proper connectivity among the clocked elements.

The methodology hides sequencing overhead everywhere except at the
interface between static and domino logic. At the interface of domino-to-
static logic, a latch is necessary to hold the result, adding propagation
delay to the critical path. More importantly, at the interface of static-to-
domino logic, clock skew must be budgeted so that inputs settle before
the earliest the evaluation clock might rise, yet the domino gate may not
begin evaluation until the latest time the clock might rise. This overhead
makes it expensive to switch between static and domino logic. Designers
who need domino logic to meet cycle time targets should therefore con-
sider implementing their entire path in domino. Because single-rail dom-
ino cannot implement nonmonotonic functions, dual-rail domino is
usually necessary. Therefore, we should expect to see more critical paths
built entirely from dual-rail domino as sequencing overhead becomes a
greater portion of the cycle time.

4.6 Exercises

[15] 4.1 Define time borrowing. Which of the following circuits permit time
borrowing: transparent latches, pulsed latches, flip-flops, traditional
domino circuits, skew-tolerant domino circuits?

14 o 4 Circuit Methodology

[25] 4.2 Draw timing loop diagrams like those of Figure 4.4 for the path in
Figure 4.25 assuming cycle times of 1.5, 1, and 0.8 units using the follow-
ing combinational logic delays. Note which latches borrow time and if
setup time violations occur.

(a) A1 - 0.5; A2 - 0.95; A3 - 1.45; A4 - 0.3; A5 - 0.2

(b) A1 - 0.3; A2 - 0.4; A3 - 0.81;A4 - 0.8; A5 - 0.8

!

_A',

I

A1

iD1

.~,,
i ,.~

I"

2 Ii ' D4 ' D5
I I

, ,,

Figure 4.25 Path for Exercises 4.2 and 4.3

[15] 4.3 Label the timing types of each connection in the circuit in
Figure 4.25 using the two-phase timing types defined in this chapter.
Assume the flop is built from two back-to-back transparent latches, the
first controlled by clk_b and the second controlled by clk.

[20] 4.4 Label the timing types of each connection in the circuit in
Figure 4.26 using the two-phase timing types defined in this chapter.

[20] 4.5 Label the timing types of each connection in the circuit in
Figure 4.27 using the four-phase domino timing types defined in this
chapter.

[40] 4.6 CAD project: Construct a time_check tool. The tool should accept a
netlist of four types of elements: S (static), D (dynamic), L (transparent
latch), and N (N-C2MOS latch). Each element has an output and one or
more inputs. Nonstatic elements also have a clock input. The tool should
identify the timing type of each net and report elements with illegal input
timing types.

r r

I01 101 101 I 01
I I

~2
I

q~2
I

~2 ~)2

Figure 4.26 Path for Exercise 4.4

i i
I
I

I I
I I

2u
I
! !

'
!
!
!

1 ' !

,4',, ~,
!

I r I
I
I

!
!
!

!
!
!

! !
! !

i i ~) 1
I I
I I
I I
I I

I ', ,
! !

I !
! !

! I

101 01 ',~)2
]

I !

i

I
I
I
I
I
I

!

I
!
I

i

|
I ,k

r

J

i /
I
!
I
I
I
I

I
!
!

I
!

1

'r

I

Figure 4.27 Path for Exercise 4.5

14 2 4 Circuit Methodology

[15] 4.7 Determine the min imum delay ~logic between the circuits in
Table 4.5 in terms of 8cQ, 8c/), t~kew, and the pulsed latch pulse width tpw.

Table 4.5 Paths for Exercise 4.7

Source element Source phase Destination element Destination phase

(a) Transparent latch @1 Transparent latch ~)3
(b) Pulsed latch q~l Transparent latch (~3

(c) Transparent latch ~)1 Pulsed latch (~1

5
Clocking

14 4 5 Clocking

C locking is a key challenge for high-speed circuit designers. Circuit
designers specify a modest number of logical clocks that ideally arrive

at all points on the chip at the same time. For example, flip-flop-based
systems use a single logical clock, while skew-tolerant domino might use
four logical clocks. Unfortunately, mismatched clock network paths and
processing and environmental variations make it impossible for all clocks
to arrive at exactly the same time, so the designer must settle for actually
receiving a multitude of skewed physical docks. To achieve low clock
skew, it is important to carefully match all of the paths in the clock net-
work and to minimize the delay through the network because random
variations lead to skews that are a fraction of the mismatched delays. Pre-
viously, we have focused on hiding skew where possible and budgeting
where necessary. We must be careful, however, that our skew-tolerant cir-
cuit techniques do not complicate the clock network so much that they
introduce more skew than they tolerate.

This chapter begins by defining the nominal waveforms of physical
clocks. The interarrival time of two clock edges is the delay between the
edges. Clock skew is the absolute difference between the nominal and
actual interarrival times of a pair of physical clock edges. Clock skew dis-
plays both spatial and temporal locality; by considering such locality, we
must budget or hide only the actual skew experienced between launching
and receiving clocks of a particular path. Skew budgets for min-delay
checks must be more conservative than for max-delay because of the dire
consequences of hold time violations; fortunately, min-delay races are set
by pairs of clocks sharing a common edge in time, so min-delay budgets
need not include jitter or duty cycle variation. Because it may be
impractical to tabulate the skew between every pair of physical clocks on a
chip, we lump clocks into domains for simplified, though conservative,
analysis.

Having defined clock skew, we turn to skew-tolerant domino clock
generation schemes for two, four, and more phases. We see that the clock
generators introduce additional delays into the clock network and hence
increase clock skew. Nevertheless, the extra clock skew is small compared
to the skew tolerance, so such generators are acceptable. Four-phase
skew-tolerant domino proves to be a reasonable design point combining
good skew tolerance and simple clock generation, so we present a com-
plete four-phase clock generation network supporting clock enabling and
scan.

5.1 Clock Waveforms 14 5

5.1 Clock Waveforms

We have relied upon an intuitive definition of clock skew while discussing
skew-tolerant circuit techniques. In this chapter, we will develop a more
precise definition of clock skew that takes advantage of the myriad corre-
lations between physical docks. Physical clocks may have certain system-
atic timing offsets caused by different numbers of clock buffers, clock
gating, and so on. We can plan for these systematic offsets by placing
more logic in some phases and less in others than we would have if all
physical clocks exactly matched the logical clocks; the nominal offsets
between physical clocks do not appear in our skew budget. The only term
that must be budgeted as skew is the variability, the difference between
nominal and actual interarrival times of physical clocks.

5.1.1 P h y s i c a l Clock D e f i n i t i o n s

A system has a small number of logical clocks. For example, flip-flops or
pulsed latches use a single logical dock, transparent latches use two logi-
cal clocks, and skew-tolerant domino uses N, often four, logical clocks. A
logical clock arrives at all parts of the chip at exactly the same time. Of
course logical clocks do not exist, but they are a useful fiction to simplify
design.

Conceptually, we envision a unique physical clock for each latch, but
we can quickly group physical clocks that represent the same logical clock
and have very small skew relative to each other into one clock to reduce
the number of physical clocks. For example, a single physical clock might
serve a bank of 64 latches in a datapath. By defining waveforms for physi-
cal clocks rather than logical clocks, we set ourselves up to budget only
the skew actually possible between a pair of physical clocks rather than
the worst-case skew experienced across the chip.

We define the set of physical clocks to be C = {(~1, (~2 , ~ ~)k} ~ We
assume that all clocks have the same cycle time T~. 1 Variables describing

1. In extremely fast systems, clocks may operate at very high frequency in local areas,
but at lower frequency when communicating between remote units. We presently see this
in systems where the CPU operates at high speed but the motherboard operates at a frac-
tion of the frequency. This clocking analysis may be generalized to clocks with different
cycle times.

14 6 5 Clocking

the clock waveforms are defined below and illustrated in Figure 5.1 for a
two-phase system with four 50% duty cycle physical clocks.

�9 T~: the clock cycle time, or period

�9 7'," the duration for which Oi is high

�9 sr �9 the start time, relative to the beginning of the common clock cycle,
i

of r being high

Sr a phase shift operator describing the difference in start time from
r to the next occurrence of ~)j. Sr162 - sr (s% + WT c), where W is a
wraparound variable indicating the number of cycle crossings between
the sending and receiving clocks. W is 0 or 1 except in systems with
multicycle paths. Note that Sr162 - - T c because it is the shift between
consecutive rising edges of clock phase r

Note that Figure 5.1 labels the clocks C = {(~la, (~lb, 02a, ~)2b} rather than
C - {~1, ~2, ~3, ~4} to emphasize that the four physical clocks correspond
to only two logical clocks. The former labeling will be used for examples,
while the latter notation is more convenient for expressing constraints in
timing analysis in Chapter 6. The phase shifts between these clocks seen at
consecutive transparent latches are shown in Table 5.1. Notice that the
systematic offsets between docks appear as different phase shifts rather
than clock skew. It is possible to design around such systematic offsets,
intentionally placing more logic in one half-cycle than another. Indeed,

0 1.0 ns
I I

, r , I la - 0.5 I
!

<)--
*~8 ._&,~ S, la = 0

I I

I r~ l b = 0.5 I
I I ',/-

~ lb "J I i , ~ . $r = 0.05
I l
I !
, Tr a = 0.5 l

--'~I S(~2a = 0.48 "~"~" > ' L
r < ~l

! !

' Tr ' I 2b = 0.5 I
!

"gt St~2b = 0.55 . . ~ ',>

(1)2b I"~ "~ i M
I t

Figure 5.1 Two-phase clock waveforms

5.1 Clock Waveforms 1 4 7

Table 5.1 Phase shift between clocks of Figure 5.1

"e" ~)la

0 ~lb

I~2 a
,w,,l

"~ *2b

Receiving clock ~)i

l~la *lb (~2a *2b
-0.48 -0.55

-0.43 -0.50

-0.52 -0.57

-0.45 -0.50

designers sometimes intentionally delay clocks to extend critical cycles of
logic in flip-flop-based systems where time borrowing is not possible. We
save the term "skew" for uncertainties in the clock arrival times.

5.1.2 C l o c k S k e w

If the actual delay between two phases ~)i and ~)j equalled the nominal
delay SO&, the phases would have zero skew. Of course, delays are seldom
nominal, so we must define clock skew. There are many sources of clock
skew. When a single physical clock serves multiple clocked elements, delay
between the clock arrivals at the various elements appears as skew. Cross-
die variations in processing, temperature, and voltage also lead to skew.
Electromagnetic coupling and load capacitance variations [18] lead to
further skew in a data-dependent fashion. If all clock paths sped up or
slowed down uniformly, the interarrival times would be unaffected and
no skew would be introduced. Therefore, we are only concerned with dif-
ferences between delays in the clock network.

In previous chapters, we have used a single skew budget tskew that is the
worst-case skew across the chip, in other words, the largest absolute value
of the difference between the nominal and actual interarrival times of a
pair of clocks anywhere on the chip. When tsk~w can be held to about 10%
of the cycle time, it is simple and not overly limiting to budget this worst-
case skew everywhere. As skews are increasing relative to cycle time, we
would prefer to only budget the actual skew encountered on a path, so we
define skews between specific pairs of physical clocks. For example, ~skew
is the skew between ~)i and (~j, the absolute value of the difference between
the nominal and actual interarrival times of these edges measured at any
pair of elements receiving these clocks. For a given pair of clocks, certain

14 8 5 Clocking

transitions may have different skews than others. Therefore, we also
define skews between particular edges of pairs of physical docks. For
example, .,~(r), ,j(f) is the skew between the rising edge of ~i and the fall- skew

,*i, *~ is the maximum of the skews between any edges of ing edge of ~j. ~skew
the clocks.

Notice that skew is a positive difference between the actual and nomi-
nal interarrival times, rather than being plus or minus from a reference
point. When using this information in a design, we assume the worst: for
maximum-delay (setup time) checks, that the receiving clock is skewed
early relative to the launching clock; and for minimum-delay (hold time)
checks, that the receiving clock is skewed late relative to the launching
clock. If skews are asymmetric around the reference point, we may define
separate values of skew for min- and max-delay analysis.

Also, note that the cycle count between edges is important in defining
skew. For example, the skew between the rising edge of a clock and the
same rising edge a cycle later is called the cycle-to-cycle jitter. The skew
between the rising edge and the same rising edge many cycles later may be
larger and is called the peak jitter. Generally, we will only consider edges
separated by at most one cycle when defining clock skew because includ-
ing peak jitter is overly pessimistic. This occasionally leads to slightly
optimistic results in latch-based paths in which a signal is launched on the
rising edge of one latch clock and passes through more than one cycle of
transparent latches before being sampled. The jitter between the launch-
ing and sampling clocks is greater than cycle-to-cycle jitter in such a case,
but the error is unlikely to be significant.

Since clock skew depends on mismatches between nominally equal
delays through the clock network, skews budgets tend to be proportional
to the absolute delay through the network. Skews between clocks that
share a common portion of the clock network are smaller than skews
between widely separated clocks because the former clocks experience no
environmental or processing mismatches through the common section.
However, even two latches sharing a single physical clock experience
cycle-to-cycle skew from jitter and duty cycle variation, which depend on
the total delay through the clock network.

The designer may use different skew budgets for minimum- and max-
imum-delay analysis purposes. Circuits with hold time problems will not
operate correctly at any clock frequency, so designers must be very con-
servative. Fortunately, min-delay races occur between clocks in a single

5.1 Clock Waveforms 1 4 9

cycle, so jitter and duty cycle variation are not part of the skew budget.
Circuits with setup time problems operate properly at reduced frequency.
Therefore, the designer may budget an expected skew, rather than a
worst-case skew, for max-delay analysis, just as designers may target TT
processing instead of SS processing. This avoids overdesign while achiev-
ing acceptable yield at the target frequency. Unfortunately, calculating the
expected skew requires extensive statistical knowledge of the components
of clock skew and their correlations.

On account of larger chips, greater clock loads, and wire delays that
are not scaling as well as gate delays, it is very difficult to hold clock skew
across the die constant in terms of gate delays. Indeed, Horowitz pre-
dicted that keeping global skews under 200 ps is hard [39]. Moreover, as
cycle times measured in gate delays continue to shrink, even if clock skew
were held constant in gate delays, it would tend to become a larger frac-
tion of the cycle time. Therefore, it will be very important to take advan-
tage of skew-tolerant circuit techniques and to exploit locality of clock
skew when building fast systems.

5.1.3 Clock Domains

Although you may conceptually specify an array of clock skews between
each pair of physical clocks in a large system, such a table may be huge
and mostly redundant. In practice, designers usually lump clocks into a
hierarchy of clock domains. For example, we have intuitively discussed
local and global clock domains; pairs of clocks in a particular local
domain experience local skew, which is smaller than the global skew seen
by clocks in different domains. We can extend this notion to finer granu-
larity by defining a skew hierarchy with more levels of clock domains, as
shown in Figure 5.2 for a system based on an H-tree.

In Figure 5.2, level 1 clock domains contain a single physical clock.
Therefore, two elements in the level 1 domain will only see skew from RC
delays along the clock wire and from jitter of the physical clock. Level 2
clock domains contain a clock and its complement and see additional
skew caused by differences between the nominal and actual clock genera-
tor delays. Remember that systematic delay differences that are predict-
able at design time can be captured in the physical clock waveforms; only
delay differences from process variations or environmental differences
between the clock generators appear as skew. Higher-level clock domains

1 5 0 5 C lock ing

I I I I
I I I I i ,, I I
I I I] V " ~ - - 7] I I From PLL
I \ / _

I I , " ,, ,. ? , l l . - , -- <~ - " , l "

IL I : ' , , Ij I ', ', : ', I

~~'ZONIIN " Z ~ ~ ~ ' Z l i l ~

'" " " - - ~ ()
() - �9 () t _ _ .

Level 1 Level 2 Level 3 Level 4 Level 5
clock domain clock domain clock domain clock domain clock domain

Figure 5.2 H-tree clock distribution network illustrating multiple levels of clock domains

see progressively more skew as delay variations in the global clock distri-
bution network appear as skew.

5.2 Skew-Tolerant Domino Clock Generation

In most high-frequency systems, a single clock gclk is distributed globally
using a modified H-tree or grid to minimize skew. Skew-tolerant domino
can use this same clock distribution scheme with a single global clock.
Within each unit or functional block, local clock generators produce the
multiple phases required for latches and skew-tolerant domino. These
local generators inevitably increase the delay of the distribution network
and hence increase clock skew. This section describes several local clock
generation schemes and analyzes the skews introduced by the generators.
The simplest schemes involve simple delay lines and are adequate for
many applications. Lower skews can be achieved using feedback systems
with delays that track with process and environmental changes. We con-
clude with a full-featured local clock generator supporting transparent
latches and four-phase skew-tolerant domino, clock enabling, and scan.

5.2 Skew-Tolerant Domino Clock Generation 151

5.2.1 Delay Line Clock G e n e r a t o r s

Overlapping docks for skew-tolerant domino can be easily generated by
delaying one or both edges of the global clock with chains of inverters.
Figure 5.3 shows a simple two-phase skew-tolerant domino local genera-
tor, while Figure 5.4 extends the design to support four phases. The two-
phase design uses a low-skew complement generator to produce comple-
mentary signals from the global clock. For example, Shoji showed how to
match the delay of two and three inverters independently of relative
PMOS/NMOS mobilities [78]. The falling clock edges are stretched with
clock choppers to produce waveforms with greater than 50% duty cycle.
Using a fanout of 3-4 on each inverter delay element sets reasonable delay

gclk

Low-skew
complement
generator

Figure 5.3 Two-phase clock generator
q~l ~)2

gclk

Low-skew
complement
generator

1/4-cycle delay

~3
I

~2
Figure 5.4 Four-phase clock generator

I

~4

I j 2 5 Clocking

and minimizes the area of the clock buffer while preserving sharp clock
edges.

The four-phase design is very similar, but uses an additional chain of
inverters to produce a nominal quarter-cycle delay. At first it would seem
such a clock generator would suffer from terrible clock skews because
between best- and worst-case processing and environment, its delay may
vary by a factor of two! Fortunately, we are concerned not with the abso-
lute delay of the inverter chain, but rather with its tracking relative to crit-
ical paths on the chip. In the slow corner, the delay chain will have a
greater delay, but the critical paths will also be slower and the operating
frequency will be correspondingly reduced. Hence, to first order, the delay
chain tracks the speed of the logic on the chip; we are now concerned
about skew introduced by second-order mismatches.

Loca l -Genera to r - Induced Clock Skew

Since the local generators are not replicas of the circuits they are tracking,
and indeed are static gates tracking the speed of dynamic paths, their rela-
tive delays may vary over process corners as well as due to local variation
in voltage, temperature, and processing. Simulation finds that when most
of the chip is operating under nominal processing and worst-case envi-
ronment but a local clock generator sees a temperature 30~ lower and
supply voltage 300 mV higher, the local generator will run 13% faster
than nominal (6% from temperature, 7% from voltage). The relative
delay of simple domino gates with respect to FO4 inverters varies up to
about 6% across process corners. Finally, process tilt (i.e., fluctuation in
L e, tox, etc., across the die) may speed the local clock generator more than
nearby logic. Little data is available on process tilt, but if we guess it
causes a similar 13% variation, we conclude that nearly a third of the total
local clock generator delay appears as clock skew.

Four-phase clock generators have a quarter-cycle more delay than two-
phase generators, so are subject to more skew. However, they can also tol-
erate a quarter-cycle more skew than their two-phase counterparts, which
is significantly more than the extra skew of the generators. For example,
consider two- and four-phase systems like those described in
Section 3.1.2 with cycle times of 16 FO4 delays and precharge times of 4
FO4 delays. If the local skew is 1 FO4 delay, the nominal overlap between
phases is 3 FO4 delays for the two-phase system and 7 FO4 delays for the
four-phase system. These overlaps can be used to tolerate clock skew and

5.2 Skew-Tolerant Domino Clock Generation 15 3

allow time borrowing. From the overlap we must subtract the skews
introduced by the local clock generators. If the complement generator,
dock chopper, and quarter-cycle delay lines have nominal delays of 2, 3,
and 4 FO4 delays, respectively, we must budget 32% of these delays as
additional skew. Figure 5.5 compares the remaining overlaps of each sys-
tem, showing that although the four-phase system pays a larger skew pen-
alty, the remaining overlap is proportionally much greater than that of the
two-phase system. The four-phase clock generator can be simplified to
use 50% duty cycle clocks as shown in Figure 5.6, eliminating the clock
choppers at the expense of smaller overlaps. The four-phase system with
50% duty cycle waveforms still provides more overlap than the two-phase
system and avoids the rain-delay problems associated with overlapping
two-phase docks. Therefore, it is a reasonable design choice, especially

Figure 5.5 Overlap between phases for two- and four-phase systems after clock
generator skews

Figure 5.6 Simplified four-phase clock generator

1 $ 4 5 Clocking

considering the drawbacks of clock choppers that we will shortly note. In
Section 5.2.3 we will look at a complete four-phase clock generator
including clock gating and scan capability.

The four-phase clock generator with clock choppers appears to offer
substantial benefits over the design with no choppers. A closer look
reveals several liabilities in the design with choppers. Variations in the
clock chopper delay cause duty cycle errors that cut into the precharge
time, necessitating smaller overlaps than our first-order analysis pre-
dicted. The extended duty cycle also increases the susceptibility to min-
delay problems, especially when coupled with the large skews introduced
by the clock generator. Finally, the designer may still desire to use 50%
duty cycle clocks for transparent latches. Therefore, the chopperless four-
phase scheme is preferred when it offers enough overlap to handle the
expected skews and time-borrowing requirements.

In addition to having adequate overlap for time borrowing and hiding
clock skew, domino clocks must have sufficiently long precharge times in
all process corners. The local clock generators are subject to duty cycle
variation, which might change the amount of time available for precharg-
ing. Fortunately, if we design the system to have adequate precharge time
in the worst-case environment under TT processing, environmental
changes will only lead to more precharge time and faster precharge opera-
tion. In the SS corner, the clock must be slowed to accommodate pre-
charge, but it is slowed anyway because of the longer critical paths.

N-Phase Local Clock Genera tors

Another popular skew-tolerant domino docking scheme is to provide
one phase for each gate. This offers maximum skew tolerance and more
precharge time, as discussed in Section 3.1.4, at the expense of generating
and distributing more clocks and roughly matching gate and clock delays.
Figures 5.7 and 5.8 show such clock generation schemes. Figure 5.7 uses
both edges of the clock and is the simplest scheme. The exact delay of the
buffers is not particularly important so long as the clocks arrive at each
gate before the data. Figure 5.8 delays a single clock edge, as used on the
IBM guTS experimental GHz processor [62, 86], its successor [38], and
on the Sun UltraSparc III [32]. To make sure the last phase overlaps the
first phase of the next cycle, a pulse stretcher, such as an SR latch, must be
used. The stretcher is especially important at low frequency; the first guTS
test chip accidentally omitted a stretcher, making the chip only run at a

5.2 Skew-Tolerant Domino Clock Generation 15 $

�9

~2

~3

~4

~)6 ~1

!
I

I
I I
I I

I

I I
I I
I I
I I

�9 (,
I I
I , \ " ~ '

5 i I
! I
i i

' \ " y ,
6 i

,, 1

\

\

Figure 5.7 N-phase clock generator delaying both edges

narrow range of frequencies. Another disadvantage of delaying a single
edge is that the precharge time of the last phase becomes independent of
clock frequency, creating another timing constraint that cannot be fixed
by slowing the dock. Finally, the longer delays of the single-edge design
lead to greater clock skew. Therefore, the design delaying both edges is
simpler and more robust.

5.2.2 Feedback Clock Generators

To reduce the skew and duty cycle uncertainty of the local clock
generators, we may also use local delay-locked loops [14] to produce
skew-tolerant domino docks. Such a system is shown in Figure 5.9. The
local loop receives the global dock and delays it by exactly one quarter-
cycle by adjusting a delay line to have a half-cycle delay and tapping off
the middle of the delay line. The feedback controller compensates for
process and low-frequency environmental variations and even for a mod-
est range of different dock frequencies. The art of DLL design is beyond

Pulse stretcher
gclk

~~> ~> ~>~ ~7
I

' :

I
! q~3
I
I

~5 i !
!
!

~6

Figure 5.8

tp independent of T c

N-phase clock generator delaying a single edge

'1

gclk

Figure 5.9

15 6 5 Clocking

*3

~2

'4

r

trol[

Delay-locked loop

Low-skew complement
generator

Four-phase clock generator using feedback control

5.2 Skew-Tolerant Domino Clock Generation 1 $ 7

the scope of this work; the illustration should be considered conceptual
only.

Unfortunately, the DLL itself introduces skew. In particular, power
supply noise in the delay line at frequencies above the controller band-
width appears as jitter o n (~2 and ~4-In a system without feedback, power
supply variation from V + AVto V- AV causes delay variation from t + At
to t - At. In the DLL, a supply step from V + AVto V- AV after the system
had initially stabilized at V + AV causes delay variation from t to t - 2At.
Similarly, a rising step causes delay variation from t to t + 2At. Therefore,
the DLL has twice the voltage sensitivity of the system without feedback.
PLLs are even more sensitive to voltage noise because they accumulate jit-
ter over multiple cycles; therefore, they are not a good choice for local
clock generators.

Fortunately, the local high-frequency voltage noise causing jitter is a
fraction of the total voltage noise. If we assume the high-frequency noise
in each DLL is half as large as the total voltage noise, the jitter of the DLL
will equal the skew introduced by voltage errors on a regular delay line
system. Using the numbers from the example in Section 5.2.1, this corre-
sponds to 7% of the quarter-cycle delay to the line tap. The local clock
generator also is subject to variations in the complement generator. If the
DLL is designed to achieve negligible static phase offset, the skew
improvement of the feedback system over the delay line system is pre-
dicted to be the difference in delay sensitivity, 32%- 7%, times the quar-
ter cycle delay, or about 6% of the cycle time. This comes at the expense of
building a small DLL in every local clock generator. The DLL may use an
improved delay element with reduced supply sensitivity, but the same
delay elements may be used in ordinary delay lines. The designer must
weigh the potential skew improvement of DLL-based clock generators
against the area, power, and design complexity they introduce. In today's
systems, simple delay lines are probably good enough, but in future sys-
tems with even tighter timing margins, DLLs may offer enough advan-
tages to justify their costs.

5.2.3 P u t t i n g It All T o g e t h e r

So far we have only considered generating periodic clock waveforms.
Most systems also require the ability to stop the dock and to scan data in
and out of each cycle. We saw in Section 4.3.2 that scan required precise

15 8 5 Clocking

release of the scan enable signal. By building the release circuitry into the
clock generator, we avoid the need to route timing-critical global scan sig-
nals. In this section we integrate such scan circuitry and clock enabling
with four-phase skew-tolerant domino to illustrate a complete local clock
generator.

Local clocks are often gated with an enable signal to produce a quali-
fied clock. Qualified clocks can be used to save power by disabling inac-
tive units, to prevent latching new data during a pipeline stall, or to build
combined multiplexer-latches. Clock enable signals are often critical
because they come from far away or are data dependent. Therefore, it is
useful to minimize the setup time of the clock enable before the clock
edge.

Figure 5.10 illustrates a complete local clock generator for a four-
phase skew-tolerant domino system. It receives gclk from global clock
distribution network and an enable signal for the local logic block. It gen-
erates the four regular clock phases along with a variant of ~4 used for
scan. Different clock enables can be used for different gates or banks of
gates as appropriate. Using a two-input NAND gate in all local clock gener-
ators provides best matching between phases to minimize clock skew; the
enable may be tied high on some clocks that never stop. The last domino
gate in each cycle uses ~4 for precharge and O4s for evaluation. Two-phase
static latches use ~1 and ~3 as clk and clk_b. The clock generator uses
delay chains to produce domino phases ~2 and ~4 delayed by one quarter
of the nominal clock period. Scan is built into static latches and domino
gates as described in Section 4.3. Notice that when SCA is asserted, an SR
latch forces ~4s low to disable the dynamic gate being scanned. When ~4
falls to begin precharge, the SR latch releases O4s to resume normal opera-
tion. Therefore, we avoid distributing any high-speed global scan enable
signals and can use exactly the same scan procedure as we used with static
latches:

1 Stop gclk low.

2 Toggle SCA and SCB to march data through the scan chain. The first
pulse of SCA will force ~4s low.

3 Restart gclk. The falling edge of ~4 will release ~4s to track #4.

5.3 Summary 15; 9

clken gclk

Figure 5.10

. . . .

~ ~ 4
I ,,,

sc_A R
(~ 4 , S [final stages

~4s

Local four-phase clock generators supporting scan and clock enabling

5.3 Summary

Circuit designers wish to receive a small number of logical clocks simulta-
neously at all points of the die. They must instead accept a huge number
of physical clocks arriving at slightly different times to different receivers.
Clock skew is the difference between the nominal and actual interarrival
times of two clocks. It depends on numerous sources that are difficult or
impossible to model accurately, so it is typically budgeted using conserva-
tive engineering estimates. Because clock skew is an increasing problem, it
is important to understand the sources and avoid unnecessary conserva-
tism. Skew budgets therefore may depend on the phases of and distance
between the physical clocks, the particular edges of the clocks, and the
number of cycles between the edges. Clocks may be grouped into a hier-
archy of clock domains according to their relative skews; communication
within a domain experiences less skew than communication across
domains.

The designer has three tactics to deal with skew: budget, hide, and
minimize. Taking advantage of the smaller amounts of skew between
nearby elements is a powerful way to minimize skew, but requires
improved timing analysis algorithms, which are the subject of Chapter 6.

1 6 0 5 Clocking

Skew-tolerant circuit techniques hide clock skew, but the local clock gen-
erators necessary to produce multiple overlapping clock phases for skew-
tolerant domino introduce skew of their own. Fortunately, the skews
introduced are less than the tolerance provided, so skew-tolerant domino
is an overall improvement.

5.4 Exercises

[15] 5.1 What is the distinction between physical and logical clocks? How
many logical clocks exist in Figure 5.2? How many physical clocks?

[15] 5.2 Why is it useful to distinguish between systematic and random vari-
ations in the start time of two physical clocks corresponding to the same
logical clock? How can the designer use this information to avoid being
overly pessimistic in design?

[15] 5.3 What are some advantages of separately defining skews between
pairs of clocks rather than providing a single global skew number? What
are some disadvantages?

[15] 5.4 Why is the pulse stretcher in Figure 5.8 required? Draw a timing
diagram to explain how the circuit might fail if the pulse stretcher were
omitted.

[15] 5.5 What is the function of the SR latch in Figure 5.107 Why is it prefer-
able to use the SR latch rather than providing a special scan enable signal
to the second NAND gate in the ~4s generator?

[15] 5.6 Many CAD papers describe algorithms for generating "zero-skew"
clock trees (e.g., [88]). What is misleading about the term "zero-skew"
from the designer's point of view? What term would you use instead?

6
Timing Analysis

16 2 6 Timing Analysis

I t is impractical to build complex digital systems without CAD tools to
analyze and verify the designs. Therefore, novel circuit techniques are

of little use without corresponding CAD tools. Although most standard
circuit tools such as simulators, layout-versus-schematic checkers, ERC
and signal integrity verifiers, and so on, work equally well for skew-toler-
ant and non-skew-tolerant circuits, timing analyzers must be enhanced
to understand and take advantage of different amounts of clock skew
between different clocks.

Timing analysis addresses the question of whether a particular circuit
will meet a timing specification. The analysis must check maximum
delays to verify that a circuit will meet setup times at the desired fre-
quency, and minimum delays to verify that hold times are satisfied. This
chapter describes how to extend a traditional formulation of timing anal-
ysis to handle clock skew, including different budgets for skew between
different regions of a system.

Our formulation of timing analysis is built on an elegant framework
from Sakallah, Mudge, and Olukotun [70] for systems with transparent
latches. Although the framework assumes zero clock skew, we can easily
support systems with a single clock domain by adding worst-case skew to
the setup time of each latch. We then develop an exact set of constraints
for analyzing systems with different amounts of skew between different
elements. This exact analysis leads to an explosion of the number of tim-
ing constraints. By introducing a hierarchy of clock domains with tighter
bounds on skews within smaller domains, we offer an approximate analy-
sis that is conservative, but less pessimistic than the single skew scenario
and with many fewer constraints than the exact analysis. Once we under-
stand how to analyze latches in a system with multiple dock domains, we
find analyzing flip-flops is even easier. Domino gates also fit nicely into
the framework, sometimes behaving as latches and sometimes as flip-
flops. Having solved the problem of max-delay, we show that min-delay is
much easier to check because it does not involve time borrowing. We con-
clude by presenting algorithms for verifying the timing constraints and
showing that, for a large test case, the exact analysis is only slightly more
expensive than the skewless analysis.

6.1 Timing Analysis without Clock Skew 16 3

6.1 Timing Analysis without Clock Skew

We will begin by describing a formulation of timing analysis for latch-
based systems from Sakallah et al. [70]. The simplicity of the formulation
stems from a careful choice of time variables describing data inputs and
outputs of the latches. In this section, we consider only D-type latches
with data in, data out, and clock terminals. Section 6.3 extends the model
to include other clocked elements such as flip-flops and domino gates.

A system contains a set of physical clocks C = {~1, r ~k} with a
common cycle time T c, and a set of latches L = {L 1, L2, . . . , Ll}. As defined
in Section 5.1.1, the clocks have a duration T,~, start time s,~, and phase
shift operator S~ ~. For each of the/latches in the system, we define the

"r i T j

following variables and parameters that describe which clock is used to
control each latch, when data arrives and departs each latch, and the
setup time and propagation delay of each latch:

�9 Pi: the clock phase used to control latch i

�9 Ai: the arrival time, relative to the start time of Pi, of a valid data signal
at the input to latch i

�9 Di: the departure time, relative to the start time of Pi, at which the sig-
nal available at the data input of latch i starts to propagate through the
latch

�9 Qi: the output time, relative to the start time of Pi, at which the signal
at the data output of latch i starts to propagate through the succeeding
stages of combinational logic

�9 ADCi: the setup time for latch i required between the data input and
the trailing edge of the clock input

�9 ADQ i �9 the maximum propagation delay of latch i from the data input
to the data output while the clock input is high

Finally, define the propagation delays between pairs of latches:

�9 Aij" the maximum propagation delay through combinational logic
between latch i and latch j. If there are no combinational paths from
latch i to latch j, Aij - -oo effectively eliminates the path from consider-
ation.

16 4 6 Timing Analysis

Using these definitions we can express constraints on the propagation
of signals between latches and the setup of signals before the sampling
edges of the latches. Setup time constraints require that a signal arrive at a
latch some setup time before the sampling clock edge. Thus:

V i ~ L A i + ADC i <_ Tpi (6.1)

The propagation constraints relate the departure, output, and arrival
times of latches. Data departs a latch input when the data arrives and the
latch is transparent:

Vi ~ L D i - max(0, A i) (6.2)

The latch output becomes valid some latch propagation delay after data
departs the input.

V i ~ L Qi - Di + ADQi (6.3)

Finally, the arrival time at a latch is the latest of the possible arrival times
from data leaving other latches and propagating through combinational
logic to the latch of interest. Notice that the phase shift operator S must be
added to translate between relative times of the launching and receiving
latch clocks.

Vi, j ~ L A i - max(Qj + Aji + SpjPi) (6.4)

Observe that both D i and Qi will always be nonnegative quantities
because a signal may not begin propagating through a latch until the
clock has risen. A i is unrestricted in sign because the input data may
arrive before or after the latch clock. By assuming that clock pulse widths
T i are always greater than latch setup times ADC i and eliminating the Q
and A variables, we can rewrite these constraints as L1 and L2 exclusively
in terms of signal departure times and the clock parameters.

L1. Setup Constraints:

Vi ~ L D i + A D C i <_ rpi (6.5)

L2. Propaga t ion Constraints:

Vi, j ~ L D i - max(0, max (Dj + ADQ j + Aji + SpjPi)) (6.6)

6.1 Timing Analysis without Clock Skew 1 6

From these constraints, one can either verify that a design will operate
at a target frequency or compute the maximum possible frequency at
which the design functions. Szymanski and Shenoy present a relaxation
algorithm for the timing verification problem [85], while Sakallah et al.
reformulate the constraints as a linear program for cycle time optimiza-
tion [70]. We will return to these algorithms in Section 6.5. In the mean-
time, let us consider an example to get accustomed to the notation.

EXAMPLE 6.1 Consider the microprocessor core shown in Figure 6.1. The circuit

consists of two clocks {r r and five latches {L 3, L4, . . . , L7} with
logic blocks with propagation delays A4 through A7. Latches L 4 and L s
comprise the ALU, while L 6 and L 7 comprise the data cache. The ALU
results may be bypassed back for use on a subsequent ALU operation
or may be sent as an input to the data cache. The data cache output
may be returned as an input to the ALU. Assume that the latch setup

time ADC i and propagation delay ADQ i a r e 0, and that the external
input to L 3 arrives early enough so that it can depart the latch at

D 3 = 0. The clocks have a target cycle time T c - 10 units and 50% duty
cycle, giving phase length Tp - Tq~ 1 - T02 - T c / 2 . Write all of the setup
and propagation constraints. What are the latch departure times if the
logic delays are A4 = 5; A5 = 5; A6 - 5; A7 = 5? If the logic delays are
A4 = 7; A5 = 3; A6 = 5; A7 = 4?

o2- L3 1o3

(

(

A4)

L4 D4

o2-t IDs
ALU

(

(

L6

L7

I
Data cache

D6

D7

Figure 6.1 Example circuit for timing analysis

16 6 6 Timing Analysis

SOLUTION The complete set of timing constraints are listed as the skewless
formulation in Appendix A.

In the first case, the departure times are D 4 = 0; D s = 0; D 6 = 0;
D 7 = 0. This case illustrates perfectly balanced logic. Each com-
binational block contains exactly half a cycle of logic. Data arrives at
each latch just as it becomes transparent. Therefore, all the departure
times are 0.

In the second case, the departure times a r e D 4 = 2; D 5 = 0; D 6 = 0;

D 7 = 0. This case illustrates time borrowing between half-cycles.
Combinational block 4 contains more than half a cycle of logic, but it
can borrow time from combinational block 5 to complete the entire
ALU operation in one cycle. Combinational block 7 finishes early, but
cannot depart latch 7 until the latch becomes transparent; this is
known as clock blocking. The positive departure time indicates the
time borrowing through L 4. m

6.2 Timing Analysis with Clock Skew

Recall from Section 5.1.1 that a system has a small number of logical
clocks, but possibly a much greater number of skewed physical docks.
Sakallah's formulation, discussed in the previous section, does not
account for clock skew; in other words, it assumes that all docked ele-
ments receive their ideal logical dock. Because clock skews are becoming
increasingly important, we now examine how to include skew in timing
analysis. We first describe a simple modification to the setup constraints
that accounts for a single clock skew budget across the chip. Unfortu-
nately, this is very pessimistic because most docked elements see much
less than worst-case skew. Next we develop an exact analysis allowing for
different skews between each pair of clocks. This leads to an explosion in
the number of timing constraints for large circuits. By making a simple
approximation of clock domains, we finally formulate the problem with
fewer constraints in a way that is conservative, yet less pessimistic than the
single-skew approach.

To illustrate systems with clock skew, we use a more elaborate model
of the ALU from Figure 6.1. Our new model, shown in Figure 6.2, con-

tains docks C = {(~la, (~lb, (~2a, (~2b}, where physical clocks (~la and (~lb are
nominally identical to logical dock ~1, but are located in different parts of

6.2 Timing Analysis with Clock Skew 1 6 7

I
I , q
i t~2a !
I
i
|
|
i
!
!
I
!
]
I
I
!
!
i I

L3 D3

(A4)

'001a,, ---1
I
I
I

' (I
I
I
I
I
I
I
i ~) 2 a
i
[
i
i
]
i
]
]
i
t

L5 D5

L4

I
!

(

*xb
(

L6

L7

I i
I

ALU Data cache
I

(clock domain a) ' (clock domain b)

I
I
I
I
I
I
I
I
I
I
I
I
I
!
I

06' !
I
!
I
I
I
!
!
!
!
I
!
I

D 7 ,
I

,,
!
!
!
!
!
!

.a

Figure 6.2 Example circuit with clock domains

the chip and subject to skew. Only a small ,local exists between clocks in skew
global may occur between clocks in dif- the same domain, but the larger t skew

ferent domains.

6.2.1 Single S k e w F o r m u l a t i o n

The simplest and most conservative way to accommodate clock skew in
timing analysis is to use a single upper bound on clock skew. Suppose that

global may exist between we assume a worst-case amount of clock skew, t skew,
any two clocked elements on an integrated circuit. Shenoy [73] shows
that such skew can be accommodated in the analysis by modifying the
setup time constraint. Data must set up before the falling edge of the
clock, yet there may be skew between launching and receiving elements
such that the data was launched off a late clock edge and is sampled on an
early edge. Therefore, we must add clock skew to the effective setup time:

L1S. Setup Constraints w i t h Single Skew:

global
Vi ~ L D i + ADC i + tskew _ Tp~

The propagation constraints are unchanged.

(6.7)

16 8 6 Timing Analysis

6.2.2 Exact Skew F o r m u l a t i o n

In a real clock distribution system, clock skews between adjacent elements
are typically much less than skews between widely separated elements. We
can avoid budgeting global skew in all paths by considering the actual
launching and receiving elements and only budgeting the possible skew
that exists between the elements.

Unfortunately, the transparency of latches makes this a complex prob-
lem. Consider the setup time on a signal arriving at latch L 4 in Figure 6.2.
How much skew must be budgeted in the setup time? The answer
depends on the skew between the clock that originally launched the signal
and the falling edge of (~aa' the clock that is receiving the signal. For exam-
ple, the signal might have been launched from L 7 on the rising edge of

�9 " " " - (~ 2 b (r) , ~)1 (~2b' in wnlcn case r sk~w aft) must be budgeted. On the other hand, the
signal might have been launched from L s on the rising edge of ~)2a' then
propagated through L 6 and L 7 while both latches were transparent. In

~2a(r), ~)la(f) such a case, only the smaller skew t skew must be budgeted because
the launching and receiving docks are in the same local domain despite
the fact that the signal propagated through transparent elements in a dif-
ferent domain. We see that exact timing analysis with varying amounts of
skew between elements must track not only the accumulated delay to
each element, but also the clock of the launching element.

To track both accumulated delay and launching clock, we can define a
vector of arrival and departure times at each latch, with one dimension
per physical clock in the system. These times are still nominal, not includ-
ing skew.

C
�9 A i �9 the arrival time, relative to the beginning of P i , of a valid data sig-

nal launched by clock c and now at the input to latch i
C

�9 D i �9 the departure time, relative to the beginning of Pi , at which the sig-
nal launched by clock c and available at the data input of latch i starts
to propagate through the latch

c(r), pi(f)
The setup constraints must budget the skew tskew between the ris-

ing edge of the launching dock c and the falling edge of the clock Pi c o n -

trolling the sampling element:

c c(r), Pi(f)
V i ~ L, c ~ C D i + ADC i + tskew < Tpi (6.8)

6.2 Timing Analysis with Clock Skew 16 9

The arrival time at latch i for a path launched by clock c depends on
the propagation delay and departure times from other latches for signals
also launched by clock c:

V i, j ~ L, c ~ C A~ - max(D~ + ADQ j + Aji + SpjPi) (6.9)

If a latch is transparent when its input arrives, data should depart the
latch at the same time it arrives and with respect to the same launching
clock. If a latch is opaque when its input arrives, the path from the
launching clock will never constrain timing and a new path should be
started departing at time 0, launched by the latch's clock. Because of skew
between the launching and receiving clocks, the receiving latch may be
transparent even if the input arrives at a slightly negative time. To model
this effect, we allow departure times with respect to a clock other than
that which controls the latch to be negative, equal to the arrival times.
Departure times with respect to the latch's own clock are strictly nonneg-
ative. To achieve this, we define an identity operator 1,1 , % on a pair of
clocks ~)1 and ~2 that is the minimum departure time for a signal launched
by one dock and received by the other: 0 if ~)a = ~2 and _oo if the docks
are different.

These setup and propagation constraints are summarized below.
Notice that the number of constraints is proportional to the number of
distinct clocks in the system. Also, notice that the constraints are orthogo-
nal; there is no mixing of constraints from different launching clocks.

L1E. Setup Cons t ra in t s w i t h Exact Skew Analysis:

c c(r), pi(f)
V i ~ L, c ~ C D i + ADC i + tskew < Tpi (6.10)

L2E. P ropaga t i on Cons t ra in t s w i t h Exact Skew Analysis:

c
Vi, j ~ L , c~ CD~-max(Ic , pi, max(Dj+ADqj+Aji+Sp~pi)) (6.11)

A brief example may help explain negative departure times. Consider
a path launched from L 6 in Figure 6.2 on the rising edge of ~lb: D~ lb - 0.

q~lb, ~)2b
Let the cycle time T c be 10 units, and tskew be 1. Therefore, (~2b may
transition up to one unit of time earlier or later than nominal, relative to
~)lb, as shown in Figure 6.3. Also, suppose the latch propagation delay is 0,
so A7 *lb = A 7 - 5. If A7 is less than 4, the signal arrives at L 7 before the
latch becomes transparent, even under worst-case clock skew. If A7 is

1 7 O 6 Timing Analysis

0 10
i 5 i

! !
i 5 i
' I< >,

~)2b

' 1 1

Figure 6.3 Clock waveforms including local skew

between 4 and 6 units, corresponding to A v in the range of -1 to l, the
signal arrives at L 7 when the latch might be transparent, depending on
the actual skew between ~lb and ~2b" If A7 is between 6 and 9 units, the
signal arrives at L 7 when the latch is definitely transparent. Because the
signal may depart the latch at the same time as it arrives when the latch is
transparent, the departure time D~ ~b may physically be as early as-1. We
allow the departure time to be arbitrarily negative; if it is more negative
than -1, it will always be less critical than the path departing L 7 on the ris-
ing edge of O2b. In Section 6.5, we will consider pruning departure times
that are negative enough to always be noncritical for the sake of computa-
tional efficiency. Departure times must be nonnegative with respect to the
clock controlling the latch; for example, D~ 2b ~_ O.

6.2.3 Clock D o m a i n F o r m u l a t i o n

The exact timing analysis formulation leads to an explosion in the num-
ber of constraints required for a system with many clocks; a system with k
clocks has k times as many constraints as the single skew formulation. We
would like to develop an approximate analysis that gives more accurate
results than the single skew formulation, yet has fewer constraints than
the exact formulation. To do this, we will formalize the concepts of skew
hierarchies and clock domains.

A skew hierarchy is a collection of sets of clocks in the system. The sets
are called clock domains. Each clock domain d c C of the hierarchy has
an associated number h called the level of the clock domain. A skew hier-
archy has n levels, where level 1 clock domains are the smallest domains
and the level n domain contains all the clocks C of the system. Define H =
{ 1 , . . . , n} to be the set of levels. To be a strict hierarchy, clock domains
must not partially overlap; in other words, for any pair of clock domains,

6.2 Timing Analysis with Clock Skew 1 7 1

either one is a subset of the other or the domains are disjoint. If one
domain contains another, the larger domain has the higher level. The case
of n = 1 corresponds to assuming worst-case skew everywhere. The case
of n - 2 is also interesting, corresponding to a system with local and glo-
bal skews. We define the following skew hierarchy variables:

t h "the upper bound on skew between two clocks in a level h clock skew

domain. This quantity monotonically increases with h. The top level
n _ global domain experiences global skew: t skew t skew

�9 hq: the level of the smallest clock domain containing clocks/and j, that
h > i,j

is, the minimum h such that t skew- tskew

We can also refer to skew between individual edges of clocks within a
l(r, r) is the skew between rising edges of clock domain. For example, t sg~w

two clocks within a local clock domain. Because duty cycle variation
occurs independently of clock domains, such skew between the same pair
of edges is likely to be much smaller than the skew between different
edges, such as t~(r~).

Skew hierarchies apply especially well to systems constructed in a hier-
archical fashion. For example, Figure 5.2 illustrates an H-tree clock distri-
bution network. It attempts to provide a logical two-phase clock
consisting of ~ and ~)2 to the entire chip with zero skew. Although there
are only two phases, the system actually contains 16 physical docks for
the purpose of modeling skew. All of the wire lengths in principle can be
perfectly matched, so it is ideally possible to achieve zero systematic clock
skew in the global distribution network. Even so, there is some RC delay
along the final clock wires. Also, process and environmental variation in
the delays of wires and buffers in the distribution network cause random
clock skew. The clock skews between various phases depend on the level
of their common node in the H-tree. For example, ~)llt/and (~2l t /only see a
small amount of skew, caused by the final stage buffers and local routing.

On the other hand, ~)llt/and (~lrbr o n opposite corners of the chip may
experience much more skew. The boxes show how the clocks could be
collected into a five-level skew hierarchy.

The concept of skew hierarchies also applies to other distribution sys-
tems. For example, in a grid-based clock system, as used on the DEC
Alpha 21164 [27], local skew is defined to be the RC skew between ele-
ments in a 500-micron radius, while global skew is defined to be the RC
skew between any clocked elements on the die. Global skew is quoted at

17 2 6 Timing Analysis

90 ps, while local skew is only 25 ps. 1 Therefore, the chip could be parti-
tioned into distinct 500-micron blocks so that elements communicating
within blocks only see local skew, while elements communicating across
blocks experience global skew.

The huge vector of timing constraints in the exact analysis is intro-
duced because we track the launching clock of each path so that when the
path crosses to another clock domain, and then returns to the original
domain, only local skew must be budgeted at the latches in the original
domain. An alternative is to only track whether a signal is still in the same
domain as the launching clock or if it has ever crossed out of the local
domain. In the first case, we budget only local clock skew. In the second
case, we always budget global clock skew, even if the path returns to the
original domain. This is conservative; for example, in Figure 6.2, a path
that starts in the ALU, and then passes through the data cache while the
cache latches are transparent and returns to the ALU, would unnecessarily
budget global skew upon return to the ALU. However, it greatly reduces
the number of constraints because we must only track whether the path
should budget global or local skew, leading to only twice as many con-
straints as the single skew formulation. In general, we can extend this
approach to handle n levels of hierarchical clock domains.

Again, we define multiple departure times, now referenced to the
clock domain level of the signal rather than to the launching dock.

�9 A~" the arrival time, relative to the beginning of Pi, of a valid data sig-
nal on a path that has crossed clock domains at level h of the clock
domain hierarchy and is now at the input to latch i

�9 D~" the departure time, relative to the beginning of Pi, at which the
signal that has crossed clock domains at level h of the clock domain
hierarchy and is now available at the data input of latch i starts to prop-
agate through the latch

1. These skews sound very low, suggesting that clock skew is not a major problem
for circuit designers. Unfortunately, published papers tend to quote only the systematic
components of clock skew caused by RC delays and mismatched loads, not skew from
process variations across the clock network or the time-varying components such as jit-
ter from the generator and clock buffers. It is difficult to quantify and measure these
time-varying components, but they do belong in a timing budget. Caveat emptor.

6.2 Timing Analysis with Clock Skew 1 7

When a path crosses clock domains, it is bumped up to budget the
greater skew; in other words, the skew level at the receiver is the maxi-
mum of the skew level of the launched signal and the actual skew level
between the docks of the departing and receiving latches. As usual, depar-
ture times with respect to the latch's own clock are strictly nonnegative,
while departure times with respect to other clocks may be negative.
Because we do not track the actual launching clock, but treat all clocks
within a level 1 clock domain the same, we require that departure times
from level 1 domains be nonnegative. To achieve this, we define an iden-
tity operator I h on a level of the skew hierarchy that is the minimum
departure time for a departure time at that level of the hierarchy: 0 for
departures with respect to level 1, and _oo for departures with respect to
higher levels.

The setup and propagation constraints are listed below. Notice that
the number of constraints is now proportional only to the number of lev-
els of the clock domain hierarchy, not the number of clocks or even the
number of domains. For a system with two levels of clock domains (i.e.,
local and global) this requires only twice as many constraints as the single
skew formulation.

L1D. Setup Const ra in ts wi th Clock Domain Analysis:

_h(r, f) < T (6.12) V i ~ L, h ~ H D~ + ADC i 4" tskew _ Pi

L2D. Propaga t ion Const ra in ts wi th Clock Domain Analysis:

Vi, j ~ L, h 1 ~ H, h 2 - max(h l, hp,p~)

h2 hi (6.13)
D i - max(Ih2, max(Dj + ADQ j + Aji + Spjpi))

Yet another option is to lump clocks into a modest number of local
clock domains, and then perform an exact analysis on paths that cross
clock domains. The number of constraints in such an analysis is propor-
tional to the number of local clock domains, which is smaller than the
number of physical clocks required for exact analysis, but larger than the
number of levels of clock domains. Paths within a local domain always
budget local skew. This hybrid approach avoids unnecessarily budgeting
global skew for paths that leave a local domain but return a receiver in the
local domain.

1 7 4 6 Timing Analysis

6.2.4 Example

Let us return to the microprocessor example of Figure 6.2 to illustrate
applying timing analysis to systems with four clocks and a two-level skew
hierarchy. We will enumerate the timing constraints for each formulation,
and then solve them to obtain minimum cycle time. This example will
illustrate time borrowing, the impact of global and local skews, and the
conservative approximations made by the inexact algorithms.

Suppose the nominal clock and latch parameters are identical to those
in the example of Section 6.1, but that the system experiences ,*l~ -- 1

global_ 3 of skew of skew between clocks in a particular domain and t skew
between clocks in different domains.

The timing constraints are tabulated in Appendix A for each formula-
tion and were entered into a linear programming system. Various values
of A4 to A7 were selected to test the analysis. The values were all selected
so that a cycle time of 10 could be achieved in the case of no skew. The
examples illustrate well-balanced logic, time borrowing between phases
and across cycles, cycles limited by local and global skews, and a case in
which the clock domain analysis yields conservative results.

Table 6.1 shows the values of combinational logic delay and cycle
times achieved in each example. Bold data indicates conservative results
caused by inexact analysis throwing away information. The clock domain
results match the exact results in all cases but one, in which a path started
in the ALU, passed through the cache while the latches were transparent,
and returned to the ALU. Only local skew must be budgeted on return,
but the clock domain analysis method conservatively budgeted global
skew, leading to a pessimistic cycle time. The single skew formulation is
conservative in three cases that used large amounts of time borrowing

Table 6.1 Examples of timing analysis results

A4 A5 A6 A7

5 5 5 5
6 3 6 5
0.5 9.5 2.5 5
2 8 5 5
8 2 5 5

7 2 6 5

T~ T~ T~
exact clock domains single skew

10 10 10
10 10 10
10.5 10.5 12.5
10.67 10.67 11
11 11 11
10 10.5 10.5

Notes

balanced logic
time borrowing
local skew limit
global skew limit
global skew limit
conservative result

6.3 Extension to Flip-Flops and Domino Circuits 1 7 5

where only local skew actually applied but global skew was unnecessarily
budgeted.

6.3 Extension to Flip-Flops and Domino Circuits

So far, we have addressed the question of timing analysis for transparent
latches. Pulsed latches have identical cycle time constraints as transparent
latches and therefore are also handled. We can easily extend the frame-
work to mix latches and edge-triggered flip-flops. Flip-flops are simpler
because they do not allow time borrowing. We can also extend the frame-
work to handle domino circuits, which may have the timing requirements
of latches or flip-flops, depending on usage. The main change introduced
in this section is to track both arrival and departure times because inputs
to edge-triggered devices must arrive some setup time before the edge
and do not depart until after the edge. We present only the exact analysis;
the simplified formulation assuming clock domains is very similar.

6.3.1 Flip-Flops

For flip-flops, data must arrive before the rising edge of the dock phase,
rather than the falling edge. Let F - {F 1, F2, . . . , Ff} be the set of flip-flops.
Data always departs the flop at the rising edge. We must therefore sepa-
rately track arrival and departure times and introduce a set of departure
constraints that relate arrival and departure times and nonnegativity. The
setup and departure constraints are written differently for flip-flops and
latches.

Setup Constra ints for Flip-Flops:

c c(r), pi(r)
Vi ~ F, c ~ C A i + ADC i + tskew < 0 (6.14)

Note that the sampling edge for a flip-flop is the rising edge, so the skew is
between two rising edges, rather than between the rising edge of the
launching clock and the falling edge of the sampling dock as is the case
for latches.

17 6 6 Timing Analysis

Setup Constraints for Latches:

V i ~ L , c ~ C
c c(r),

A i + ADC i + tskew pi(f) rpi (6.15)

Departure Constraints for Flip-Flops:

V i ~ F Di pi - 0 (6.16)

Note that there is no departure constraint from clocks other than the
flop's launching clock because flip-flops are not transparent.

Departure Constraints for Latches:

c _ ,A~) (6.17) V i ~ L, c ~ C D i maX(Ic, Pi

These departure constraints now capture the nonnegativity constraint of
the latch.

Propagation Constraints for All Elements:

V i ~ L u F, j ~ L u F, c~ C Ai c > Dj c + ADQ j 4" Aji + Spjpi (6.18)

Note that the propagation constraint uses ADQ for flip-flops, which we
will define to be equal to ACQ for notational convenience.

Mthough this formulation has more variables than the formulations
including only latches, it actually involves less computation: the arrival
times of latches are just intermediate variables requiring no more compu-
tation, and flip-flop analysis is simpler than latch analysis because time
borrowing never occurs. Also note that we can use the same setup con-
straints for flip-flops as for latches if we substitute Tpi - 0 for flip-flop
clocks.

6.3.2 Domino Gates

Domino gates can easily be extended to this framework. When inputs to a
domino gate are monotonically rising, they may arrive after the gate has
entered evaluation and the domino gate may be modeled exactly as a
latch. When the inputs to the domino gate are not monotonically rising,
they must arrive before the gate has entered evaluation and the gate may
be modeled as a flip-flop for cycle time calculations, with the additional

6.4 Min-Delay 17 7

caveat that the inputs must not change while the gate is evaluating; that is,
the hold time is quite long. Hold times only appear in min-delay calcula-
tions and are discussed in the next section. Additional constraints can be
added to ensure precharge finishes in time. The amount of skew budgeted
at the interface of nonmonotonic to domino logic depends on the skew
between launching and receiving clocks. In the case of a path that starts at
a domino gate, passes through some nonmonotonic logic, and loops back
to the same domino gate, the skew may be only the cycle-to-cycle jitter of
the domino clock. In summary, we can determine the monotonicity of
inputs from the timing type labels described in Section 4.1.4 and model
domino gates as latches or flip-flops, accordingly, with additional con-
straints to ensure precharge is fast enough.

6.4 Min-Delay

Timing analyzers must compute not only long paths, but also short paths.
Indeed, short paths are more serious because a chip can operate at
reduced clock frequency if paths are longer than predicted, but will not
operate at any frequency if min-delay constraints are not met. Such min-
delay analysis checks that data launched from one latch or flip-flop will
not propagate through logic so quickly as to violate the hold time of the
next clocked element. Therefore, min-delay analysis must check only
from one element to its successor; this is much easier than cycle time
analysis in which a path may borrow time through many transparent
latches.

To avoid min-delay failure, data departing one element must pass
through enough delay that it does not violate the hold time of the next
element. The earliest that data could possibly depart an element is at time
0 with respect to the element's local clock; this earliest time is guaranteed
to occur if the chip is run at reduced frequency where no time borrowing
occurs. We define minimum propagation delays through the clocked ele-
ment and combinational logic:

�9 A C D i �9 the hold time for latch i required between the trailing edge of the
clock input and the time data changes again

~)DQi" the minimum propagation delay of latch i from the data input to
the data output while the clock input is high

17 8 6 Timing Analysis

�9 8 0" the minimum propagation delay through combinational logic
between latch i and latch j. If there are no combinational paths from
latch i to latch j, 8ij =- oo.

Equation 6.19 describes this min-delay constraint between adjacent
latches and flip-flops. A circuit is safe from race-through if, for every con-
secutive pair of clocked elements, data from the earlier element cannot
arrive at the later element until some hold time after the previous sam-
pling edge of the later element. In the worst case, data departs one ele-
ment on the rising edge of its clock at time 0 and arrives at the next after
the minimum propagation delay through the element and combinational
logic: ~)DQj + ~)ji" Time is adjusted by the phase shift operator to be rela-
tive to the receiver's clock: Spjp. Data must not arrive at the receiver until
a hold time ACDi after its sampling edge T. of the previous cycle - T~; Fi
clock skew t Ps~)' p~Cr/f)between the launching and receiving clocks effec-

tively increases the hold time. Note that the sampling edge is the falling
edge for latches, but the rising edge for flip-flops. As in Section 6.3, we
substitute T i = 0 for edge-triggered flip-flops.

pj(r), Pi(r/ f)
'qi, j ~ L w F ~DQj + ~)ji + Spjpi ~ Tpi + ACDi + tskew -- T c (6.19)

Better estimates of the skew between launching and receiving docks
makes guaranteeing min-delay constraints easier. A conservative design
may assume a single worst-case skew between all elements on the chip;
this leads to excessive minimum propagation delay requirements between
elements. By using a skew hierarchy or computing actual skews between
each clock, smaller skews can be budgeted between nearby elements.

As discussed in Section 5.1.2, excess skew causes complete failure in
the case of hold time violations, but only reduced operating frequency in
setup time violations. Therefore, the designer may use a more conserva-
tive skew budget for min-delay than for max-delay analysis. Fortunately,
min-delay races occur between clocks launched from the same global
clock edge on the same cycle, so the skew budget does not include cycle-
to-cycle jitter or duty cycle variation.

6.5 A Verification Algorithm 17 9

6.5 A Verification Algorithm

Szymanski and Shenoy present a relaxation algorithm for verifying that
timing constraints are met at a given cycle time assuming no clock skew
[85]. We extend the algorithm to handle arbitrary skews between ele-
ments and prune unnecessary constraints, as shown in the pseudocode of

Figure 6.4. This section is rather detailed and of primary interest to those
building efficient static timing analyzers, so you may skip it if you like. A
key aspect of the algorithm is the introduction of extra variables for each
latch, _,/)max and cimax, which track the latest departure from a latch with

respect to any launching clock so that other paths through the latch can
be pruned if they cannot be critical.

Let us first see how this algorithm handles latches, and then return to
the simpler case of flip-flops. The algorithm initializes the departure
times from each latch with respect to its own clock to be zero. It also ini-
tializes a variable D max to track the latest departure time from the latch

_ m a x with respect to any clock and a variable c i to track the clock that
launched that latest departure (Step 3). The algorithm then follows paths
from each latch to its successors and computes the arrival time at the suc-
cessors with respect to the launching clock (Step 11).

A key idea of the algorithm is to prune paths that arrive early enough
that they could not possibly be more critical than existing paths. To be
potentially more critical and hence avoid pruning, an arrival time must
satisfy two conditions (Step 12). One is that the arrival time must be later
than all other departure times with respect to the same clock. The other is
that the arrival time must potentially be as critical as the latest previously
discovered departure time. If there were no clock skew or a single global
skew budget everywhere, an arrival would only be more critical than the
latest existing departure time if it actually were later" A > D max . However,

we allow different amounts of skew between different clocks. Figure 6.5
shows how this complicates our pruning.

h (~la (~lc " ~)lb (~lc Suppose t at tskew = 3, while tskew = 1. Suppose that the depar-
ture time from L 3 D~ b on a path launched from L 2 is 2 units and that we
find a path arrives at L 3 from L 1 at time 1 unit. Can we prune this path? If
the clock skews were the same, we could because the path from L 1 arrives
earlier than the path from L 2. Because the clock skews are different, how-
ever, data launched from L 1 must arrive at L 4 earlier than data launched

18 0 6 Timing Analysis

1 For each latch i
2 D p i i :=0

max max
3 D i --- O ; C i -- Pi

4 Enqueue D~ i

5 For each f l i p - f l o p i
Pi

6 D i - - 0

7 Enqueue D p i i

8 While queue is not empty
c 9 Dequeue Dj

10

11

12

13

14

15

16

17

18

19

20

21

22

23

; I n i t i a l i z a t i o n

; I t e r a t i o n

For each latch i in fanout of j
c A = Dj + AOQ j -.!- A j i -I- Spjpi

(max'r) c(r)) ~ci s , max I f (A>De) AND A+~diff >Di
(c(r), P i (f))

I f A + Aoc i + tskew > Tp i

Report setup time v i o l a t i on

Else
c

D i = A
c Enqueue Di

m a x I f (A> D i)
max max

D i = A ; c i = c

For each f l i p - f l o p i in fanout of j
c A = Dj + ADO j 4;- a j i Jr S PjPi

c(r), p i(r)
I f (A+ADC i + t skew > O)

Report setup time v i o l a t i on

Figure 6.4 Pseudocode for timing verification

from L 2. Therefore, the path from L 1 may also be critical even though its
departure time is earlier.

Clearly, if one path arrives at a latch more than the worst-case global
clock skew before another, the early path cannot possibly be critical and
may be trimmed. We can prune more aggressively by computing the dif-

6.5 A Verification Algorithm 181

Figure 6.5

(~la
I

L1

~lb
1

L2

~)2 (~lc
I I

L3 L4

Pruning of paths with different clock skews

ference in clock skews between a pair of launching clocks ~i and ~j and
any possible receiving clock, ~difffOOi' ~j.

t~i, ~j ~i, (~r (~j, (~r.
V~) r ~E C diff -- m a x (tskew - tskew) (6.20)

~i, (~j ~i, (~j
From this definition, we can show that tdiff < tskew. Moreover, in a
system budgeting a single global skew between all docks, tdiff - 0 and
negative departure times never occur, agreeing with the single skew for-
mulation.

We check this criteria (Step 12), pruning all paths with arrival times
before the latest departure by more than the clock skew between the
launching clock c of the path under consideration and the launching
clock c max of the path causing the latest departure time. If the path is not
pruned, it is checked for setup time violations and added to the queue so
that paths to subsequent latches can be checked. Also, if it is later than the
latest previously discovered departure time, it replaces the previous time
(Step 19).

Flip-flops are handled in a similar fashion, but are much simpler
because no time borrowing takes place. As discussed in Section 6.3.2,
domino gates are analyzed either as latches or flip-flops, depending on the
monotonicity of the inputs.

The algorithm performs a depth-first path search if elements are
enqueued at the head of the queue and a breadth-first search if elements
are enqueued at the tail. Breadth-first is likely to be faster because it can
prune paths earlier.

18 2 6 Timing Analysis

The algorithm is very similar to one that assumes no clock skew, but
may take longer because it may trace multiple paths through the same
latch. This occurs when paths originating at different latches with skew
between them all arrive at a common latch at nearly the same time. Fortu-
nately real systems tend to have a relatively small number of critical paths
passing through any given latch so the runtime is likely to increase by
much less than the number of constraints. Timing analysis with clock
domains is similar to analysis with exact skew. The runtime may be some-
what improved because a hierarchy of h levels of clock domains must
trace at most h paths through any given latch. Of course, the results are
more conservative.

So far, we have addressed the question of verifying that a design meets
a cycle time goal because this is the primary question asked by designers.
It is also straightforward to compute the minimum cycle time of a design
using Sakallah's linear programming approach [70]. The constraints as
presented are not quite linear because they involve the max function. The
max function can be replaced by multiple inequalities, transforming the
constraints into linear inequalities while preserving the minimum cycle
time. These inequalities can be solved by linear programming techniques.
Mthough conventional linear programming is much slower than the
relaxation algorithm for verifying cycle time, new interior point methods
[95] may be quite efficient.

6.6 Case Study

To evaluate the costs and benefits of the exact formulation, we analyzed a
timing model of MAGIC, the Memory and General Interconnect Con-
troller of the FLASH supercomputer [50], implemented in a 0.6-micron
CMOS process. MAGIC includes a two-way superscalar RISC processing
engine and several large data buffers. We extracted a timing model from
the Standard Delay Format (SDF) data produced by LSI Logic tools, then
trimmed long paths such as those involving reset or scan. After trimming,
we found 1819 latches and 10,559 flip-flops connected by 593,153 combi-
national paths (Model A). To obtain an entirely latch-based design, we
replaced each flip-flop with a pair of latches and divided the path delay
between the two latches, obtaining a system with 22,937 latches (Model

6.6 Case Study 18 3

B). The chip was partitioned into 10 units, each a local clock domain. We
assumed 500 ps of global skew between domains and 250 ps of local skew
within domains.

We applied the timing analysis algorithm of Section 6.5 to the timing
model. Table 6.2 shows the minimum cycle times achievable and number
of latch departures enqueued in each run, a measure of the analysis cost.
Model B is uniformly faster than Model A because latches allow the sys-
tem to borrow time across cycles, solving some critical paths. The exact
analysis shows that the system can run 50-90 ps faster than a single skew
analysis conservatively predicts. Each latch departure is enqueued at least
once when its departure time is initialized to 0. Paths borrowing time
enqueue later departure times. The exact analysis also enqueues more
latch departures because potentially critical paths from multiple launch-
ing clocks may pass through a single latch. The exact analysis enqueues
143 more than the single skew analysis in Model A and 333 more in
Model B. These differences are less than 4% of the total number of depar-
tures, indicating that pruning makes the exact analysis only slightly more
expensive than the single skew approximation. In all cases, the CPU time
for analysis is under a second, much shorter than the time required to
read the timing model from disk.

These results indicate that the exact skew formulation works well in
practice because only a small fraction of paths require time borrowing, as
noted by Szymanski and Shenoy [85], and because an even smaller frac-
tion of paths involve negative departure times. In this particular problem,
no critical paths depart a clock domain and return to it, so the clock
domain formulation would have found equally good cycle times. How-
ever, the cost of the exact skew formulation is low enough that no approx-
imations are necessary.

Table 6.2 Timing analysis results

Model A Model B

Single skew 9.43 ns 8.05 ns
3866 departures 24,995 departures

Exact skew 9.38 ns 7.96 ns
4009 departures 25,328 departures

18 4 6 Timing Analysis

6.7 Historical Perspective

Early efforts in timing analysis, surveyed in [37], only considered edge-
triggered flip-flops. Thus they had to analyze just the combinational logic
blocks between registers because the cycle time is set by the longest com-
binational path between registers. Netlist-level timing analyzers, such as
CRYSTAL [63] and TV [45], used switch-level RC models [69] to com-
pute delay through the combinational blocks.

Many circuits use level-sensitive latches instead of flip-flops. Latches
complicate the analysis because they allow time borrowing: a signal that
reaches the latch input while the latch is transparent does not have to wait
for a clock edge, but rather can immediately propagate through the latch
and be used in the next phase of logic. Analysis of systems with latches
was long considered a difficult problem [63], and various netlist-level
timing analyzers applied heuristics for latch timing, but eventually Unger
[89] developed a complete set of timing constraints for two-phase clock-
ing with level-sensitive latches. LEADOUT [83], by Szymanski, checked
timing equations to properly handle multiphase clocking and level-
sensitive latches. Champernowne et al. [8] developed a set of latch-to-
latch timing rules that allow a hierarchy of clock skews but do not permit
time borrowing.

Sakallah et al. [70] provide a very elegant formulation of the timing
constraints for latch-based systems. They show that maximum-delay con-
straints can be expressed with a system of inequalities. They then use a
linear programming algorithm to minimize the cycle time and to deter-
mine an optimal clock schedule. Because the clock schedule is usually
fixed and the user is interested in verifying that the circuits can operate at
a target frequency, more efficient algorithms can be used to process the
constraints, such as the relaxation approach suggested by Szymanski and
Shenoy [85]. Moreover, many of the constraints in the formulation may
be redundant, so graph-based techniques proposed by Szymanski [84]
can determine the relevant constraints. Ishii et al. [44] offer yet another
efficient algorithm for verifying the cycle time of two-phase latched sys-
tems. Burks et al. [7] express timing analysis in terms of critical paths and
support clock skew in limited ways.

Little published research has taken place in timing analysis since the
early 1990s. Instead, commercial static timing analyzers have reached

6.8 Summary 1 8 $

maturity. Tools such as Pathmill and Pearl are powerful and efficient
enough to handle multimillion transistor designs using aggressive circuit
techniques. Indeed, at the time of this writing, Pathmill is adding a "Clock
Skew Option" that supports different amounts of clock skew between dif-
ferent clocks as described in this chapter. PrimeTime, also from Synopsys,
allows the user to enter different amounts of clock skew between different
clocks. Unfortunately the tool is pessimistic because it budgets the skew
between the latches at each end of each half-cycle rather than the skew
between the launching and receiving clocks. For example, in Figure 6.2,
on a path starting at L s, passing through L 6 and L 7 while they are trans-
parent, and finally arriving at L 4, the tool budgets the global skew between
L 7 and L 4 rather than the local skew from L s to L 4. The moral is to scruti-
nize carefully claims from CAD marketing departments about how clock
skew is handled.

6.8 Summary

In this chapter, we have extended the latch-based timing analysis formu-
lation of Sakallah et al. to handle clock skew, especially different amounts
of clock skew between different elements. Mlowing a single amount of
clock skew everywhere effectively increases the setup time of each latch.
An exact analysis allowing different amounts of skew between different
elements involves tracking the clock that launched each path so that paths
that leave a local skew domain and then return only budget the local skew.
This leads to a multiplication of constraints proportional to the number
of clocks, but most constraints are not tight. Most practical systems use
clocked elements besides just transparent or pulsed latches, so we also
incorporate edge-triggered flip-flops and domino gates into the timing
analysis formulation by separately tracking arrival and departure times at
each clocked element. In addition to verifying cycle time, we check for
min-delay violations, effectively increasing the hold time of each element
by the potential clock skew between launching and receiving elements.
Finally, we presented a relaxation algorithm for verifying the timing con-
straints. The uncertainty from the clock skew may increase the number of
paths that must be searched, but the case study of the MAGIC chip shows
that this increase is very modest because most paths do not borrow time.

18 6 6 Timing Analysis

6.9 Exercises

[15] 6.1 Consider the path in Figure 6.6 using flip-flops F 1 and F 2. The flip-
flops have a setup time of 0.2 ns and a clock-to-Q delay of 0.3 ns. There is
no skew between the clocks I~1 a and t~1 b that share the same start time. The
departure time from each flop is D 1 - D 2 - 0 by" definition.

(a) What are the arrival times A 1 and A27

(b) What is the minimum cycle time at which the system operates
correctly?

~ A1

F1]D1

(l Ons)
{a2

(l Sns)
I

Figure 6.6 Path for Exercise 6.1

[15] 6.2 Suppose you were free to choose the start time of ~)lb independent of
~)Xa in Exercise 6.1. What start time would you choose to minimize the
cycle time? What cycle time could be achieved?

[15] 6.3 Repeat Exercise 6.1 if a skew of 100 ps is budgeted between ~)la

and ~lb.

[15] 6.4 Repeat Exercise 6.2 if a skew of 100 ps is budgeted between (~la

and Olb.

[15]
6.5 Consider the path in Figure 6.7 using flip-flops F 1, F 2, and F 3. The
flip-flops have a setup time of 0.1 ns and a clock-to-Q delay of 0.15 ns.

6.9 Exercises 18 7

There is no skew between the clocks ~)la' ~)lb' and ~)lc that all share the

same start time. The departure time from each flop is D 1 = D 2 = D 3 = 0 by

definition.

(a) What are the arrival times A 1, A 2, and A37

(b) What is the m i n i m u m cycle time at which the system operates

correctly?

Figure 6.7

~ A1
Ola---~ F1]D1

~ 0.8ns) (0.6ns)

Path for Exercise 6.5

(0.7 ns)

D3

[20] 6.6 Referring to the information in Exercise 6.5, suppose ~)la and (~lb are
in a c o m m o n local clock domain, but (~lc is in a different clock domain.

What is the m i n i m u m cycle time of the system if

(a) the local skew is 50 ps and the global skew is 140 ps?

(b) the local skew is 25 ps and the global skew is 300 ps?

[25] 6.7 Consider the microprocessor core from Example 6.1. For each of the

following sets of logic delays, determine if the system will function at 100

MHz with 50% duty cycle clocks, assuming no clock skew. If so, calculate

the arrival and departure times A 4, A 5, A 6, A 7, D 4, D 5, D 6, and D 7, and

determine which latches experience t ime borrowing, if any.

(a) A4 - 3 ns; A5 - 4 ns; A6 - 2 ns; A7 - 5 ns; ADQ -- 0; ADC - 0

(b) A4 - 3 ns; A5 - 6 ns; A6 - 7 ns; A7 - 1 ns; ADQ - 0; ADC - 0

(c) A4 - 4 ns; A5 - 7 ns; A6 - 3 ns; A7 - 2 ns; ADQ - 0; ADC - 0

18 8 6 Timing Analysis

(d) A 4 - 3 ns; A5 - 5 ns; A6 - 2 ns; A 7 - 3 ns; ADQ- 1 ns;

ADC- 1 ns

(e) A 4 - 1 ns; A 5 - 8 ns; A 6 - 2 ns; A 7 - 3 ns; ADQ- 0.1 ns;

ADC- 3 ns

[25] 6.8 Consider the microprocessor core from Example 6.1. For each of the

following sets of logic delays, determine if the system will funct ion at 1

GHz with 50% duty cycle clocks, assuming 200 ps of clock skew between

any pair of clocks. If so, calculate the arrival and depar ture times A 4, A s,

A 6, A 7, D 4, D 5, D 6, and D 7, and determine which latches experience t ime

borrowing, if any.

(a) A4 - 500 ps; A5 - 500 ps; A6 - 400 ps; A7 - 600 ps; ADO - 0;

ADC = 0

(b) A4 - 850 ps; A5 - 100 ps; A6 - 400 ps; A7 - 400 ps; ADO - 0;

ADC ---- 50 pS

(c) A4 = 200 ps; A5 = 500 ps; A6 = 500 ps; A7 = 200 ps;

ADQ -- 100 ps; ADC - 150 ps

(d) A4 = 400 ps; A5 = 300 ps; A6 = 500 ps; A7 = 350 ps;

ADQ = 100 ps; ADC = 150 ps

[35] 6.9 Repeat the example from Section 6.2.4, comput ing the m i n i m u m T c

under the exact, clock domain, and single skew formulat ions for each of

the following combinat ional logic delays. When T~ is greater for the clock

domain or single skew formulat ion than the exact formulat ion, explain

why the simpler formulat ion is pessimistic.

(a) A4 = 6; A5 = 6; A6 = 6; A7 = 6

(b) A4 = 7; A5 = 5; A6 = 3; A7 = 5

(c) A4 = 7; A5 = 3; A6 = 5; A7 = 4

(d) A4 = 0.5; A5 = 11.5; A6 = 5; A7 = 6

(e) A4 = 1.5; A5 = 10.5; A6 = 6; A7 = 6

(f) A4 = 10; A5 = 2; A6 = 6; A7 = 6

(g) A4 = 10; A5 = 2; A6 = 5; A7 = 7

(h) A4 = 8; A5 = 3; A6 = 7; A7 = 6

(i) A 4 - 8; A5 - 2; A 6 - 7; A 7 - 7

6.9 Exercises 1 8 9

[351 6.10 Use the Solver in the Excel spreadsheet or another linear program-
ming package to calculate the minimum T~ for each of the cases in Exer-
cise 6.9.

[201 6.11 Consider the path in Figure 6.8 using flip-flops F 1 and F 2. Clocks (~la
and ~)lb nominally share the same start time if there is no skew.

(a) If each flip-flop has a hold time of 100 ps and a contamination
delay of 50 ps, what is the minimum value of ;51 for correct
operation if there is no clock skew?

(b) Repeat part (a) if the clock skew is budgeted at 75 ps.

(c) Suppose there is no logic to perform between F 1 and F 2. How
could the designer ensure the hold time is still met at F 2 in the
scenario from part (b)?

~ A1

~la - @ F1

()

*lb@

D1

~ A2

F2]D2

I
Figure 6.8 Path for Exercise 6.11

[15] 6.12 Consider the path in Figure 6.9 using flip-flops F 1, F 2, and F 3. Sup-
pose the hold times of F 1 and F 3 are 60 ps and of F 2 is 30 ps. Let the con-
tamination delay of each flop be 90 ps. If 0aa and 01b are in a local clock
domain experiencing 50 ps of skew and ~)1c is in a separate clock domain
experiencing up to 150 ps of skew relative to the other clocks, what are
the minimum contamination delays 81, 82, and 83 to ensure correct
operation?

19 O 6 Timing Analysis

!
!
!

l~la
!

!
!

!
!

,!! r

~ A1

F1

!

!
! D1 !
!

1

, (, ~i3
!
!

D2 I ~)lc F3

: I

~2)

A2

F2

()
Figure 6.9 Path for Exercise 6.12

)

D3

[15] 6.13 Consider the microprocessor core from Example 6.1. Let each latch
have a hold time of 50 ps and a contamination delay of 60 ps.

(a) If there is no skew, what is the minimum contamination delay
through each block of logic for correct operation?

(b) If there is 150 ps of skew between clocks, what is the minimum
contamination delay through each block of logic for correct
operation?

[20] 6.14 Consider the microprocessor core from Figure 6.2. Let each latch
have a hold time of 40 ps and a contamination delay of 30 ps. If the skew
between clock domains is 1 O0 ps and the skew within dock domains is 60
ps, what are the minimum contamination delays, 54, 85, 56, and 57, to
ensure correct operation?

This Page Intentionally Left Blank

7
Conclusions

19 4 7 Conclusions

Prediction is very difficult, especially if it's about the future.
~Nils Bohr

A s cycle times in high-performance digital systems shrink faster than
mere process improvement allows, sequencing overhead consumes

an increasing fraction of the clock period. Flip-flops and traditional dom-
ino circuits, in particular, suffer from clock skew, latch delay, and the
inability to balance logic between cycles through time borrowing. The
overhead of traditional domino circuits can waste 25% or more of the
cycle time in aggressive systems! Fortunately, the designer can hide much
of this overhead through better design techniques. Static pipelines built
from transparent latches can tolerate nearly half a cycle of clock skew and
help the designer balance logic with time borrowing. Pulsed latches offer
similar advantages, trading some skew tolerance and time borrowing for a
faster latch. Skew-tolerant domino circuits are particularly fast, com-
pletely eliminating latch delay and tolerating modest amounts of clock
skew and time borrowing. Smaller amounts of skew can be budgeted in
local dock domains than across a large die, reducing the burden of clock
skew.

Chapter 2 explored the design of static circuits using flip-flops, trans-
parent latches, and pulsed latches. We found that the purpose of such
elements is not so much to remember information as to sequence infor-
mation along a pipeline or through a state machine, preventing data in
one stage from interfering with data in another. The elements must slow
down fast paths to prevent interference while minimizing extra delay on
paths that are already critical. Because it is impossible to slow some paths
without at least slightly impeding all others, these elements inevitably
introduce sequencing overhead. The sequencing overhead imposed by the
hard edges of flip-flops is worst, including two latch delays and clock
skew. Transparent latches are faster, hiding the clock skew. Pulsed latches
can be even faster, introducing only one latch delay while still possibly
hiding the clock skew. The speed of pulsed latches comes at the expense of
longer hold times. Transparent latches and pulsed latches are also good
because they provide a window during which data may arrive without
extra delay. In addition to hiding clock skew, this window allows logic to
borrow time across cycles to balance logic. Pulsed latches and flip-flops
have frequently been mixed up in the literature because they both are

7 Conclusions 19 5

used once per cycle; pulsed latches can be distinguished by their window
of transparency.

Chapter 3 moved on to the design of domino circuits. Domino circuits
offer raw gate delays 1.5 to 2 times faster than static circuits, making them
very popular for high-speed designs. Unfortunately, traditional domino
design techniques also impose hard edges at every half-cycle boundary,
leading to enormous overhead of two latch delays and twice the clock
skew in every cycle! Skew-tolerant domino circuits use multiple overlap-
ping clock phases and eliminate latches to soften these hard edges, remov-
ing the sequencing overhead entirely.

Chapter 4 united skew-tolerant domino with transparent latches and
pulsed latches in a systematic four-phase skew-tolerant circuit design
methodology. The interface from static to domino logic inherently must
budget clock skew, motivating the designer to build entire critical loops
from dual-rail domino circuits to avoid this penalty. Skew-tolerant dom-
ino also integrates seamlessly with RAMs, PLAs, and other dynamic
structures. With four clock phases and many different types of clocked
elements, it is easy to become confused about legal connections. By tag-
ging each signal with a timing type, it is simple to verify connectivity. The
methodology also includes scanning data in and out of both static and
domino pipeline stages to help testability.

None of these skew-tolerant circuit techniques would be useful if the
clock generators were too complex or introduced more skew than they
tolerated. Chapter 5 examined clocking, beginning with the often used
but seldom defined term clock skew. The designer wishes to receive a small
number of logical clocks with precisely defined phase relationships arriv-
ing at all parts of the chip simultaneously. Variations in the global and
local clock generation and distribution circuits cause the designer to actu-
ally receive slightly different physical clocks at each point. These varia-
tions can be categorized as predictable or unpredictable and as DC, slowly
varying, or rapidly varying; different techniques can be used to handle
different components. Ultimately, it is very difficult to reduce worst-case
clock skew below 200 ps across a complex chip. When such skews become
a significant problem, the designer can introduce clock domains to bud-
get smaller amounts of skew between local elements than across the entire
chip. Unfortunately, clock domains do not reduce duty cycle variation,
which is an increasingly important component of skew.

19 6 7 Conclusions

Design techniques are of little value unless accompanied by suitable
verification tools. In particular, most static timing analyzers from the
mid1990s are unable to take advantage of reduced clock skews in local
clock domains. Chapter 6 addressed timing analysis, showing that arrival
times cease to have absolute meaning in systems with different skews
between different elements. Instead, arrival times must be specified with
reference to a particular launching clock that determines the skew relative
to the receiver. Therefore, timing analysis introduces a vector of arrival
times at each latch with respect to different launching clocks. Fortunately,
this vector is relatively sparse because most paths do not borrow time in a
real system.

In summary, conventional designs with flip-flops and traditional
domino clocking are becoming inadequate for high-speed designs. Sys-
tems operating above 1 GHz will be unlikely to achieve acceptably low
global skew across the entire die at reasonable cost. Instead of abandon-
ing the synchronous paradigm entirely for an asynchronous design,
designers will divide the die into local clock domains offering smaller
amounts of skew within each domain and will use skew-tolerant circuit
design techniques to hide this modest amount of skew. Transparent
latches have a long history of successful use; pulsed latches bring larger
min-delay constraints, but are even faster and have been successfully
used on large microprocessors. Skew-tolerant domino can achieve zero
overhead, offering the full speedup of domino gates. With such
approaches, we expect clocked systems will remain viable to extremely
high operating frequencies.

As systems grow to include hundreds of millions of transistors operat-
ing at many gigahertz, circuit designers will encounter even more chal-
lenges. Although skew-tolerant techniques can potentially hide up to half
a cycle of clock skew, design becomes very difficult at such extremes. If
global skew does not fall well below 200 ps, standard approaches to global
communication will not work above 2.5 GHz. Communication between
different clock domains may have to occur at reduced frequency or via an
asynchronous interface [10, 23]. Even within a local clock domain, duty
cycle variation will cut into the amount of time available for borrowing
and may eventually require local correction. Moreover, domino circuits
face an impending power crunch. Chip performance will become power
limited because only a finite amount of heat can be removed from a die
with a reasonably priced cooling system. Although dual-rail domino gates

7 Conclusions 19 7

are extremely fast, they are much more power hungry than static circuits
because their activity factors are usually far greater. Improvements in
clock gating will disable some inactive domino gates, but domino will
continue to pay a large power premium. Will domino gates become too
expensive from a power perspective, or will designers find it better to
build simpler machines with fewer transistors running at extreme dom-
ino speeds than very complex machines churning along at the speed of
static logic? Domino presents other challenges as well. The aspect ratios
of wires continue to grow, making coupling problems greater. Scaling
device thresholds increase leakage currents and reduce noise margins.
The design time of domino also can be high, possibly increasing time to
market. Will static circuits become a better choice for teams with finite
resources, or will advances in CAD tools improve domino productivity?
Circuit design should remain an exciting field as these issues are explored
in the coming decade.

This Page Intentionally Left Blank

A
Timing Constraints

To i l lustrate the f o r m u l a t i o n s descr ibed in Sect ions 6.1 and 6.2, we

p resen t a comple t e set of the t i m i n g cons t ra in t s of each f o r m u l a t i o n

app l ied to the s imple mic rop roces so r example f r o m Figures 6.1 and 6.2.

Skewless Formulation

The t i m i n g cons t ra in t s wi th no skew are the fol lowing:

Setup Constraints

9 4 m- Z~l 9 5 --< Zt~ z 9 6 _< To, V 7 ~ To2

Propagation Constraints

D 4 = max of D 5 = max of D 6 = max of D 7 = max of

0

D 3 + A4- Tp

D 5 + A4- Tp

D 7 + A4- Tp

0

D 4 + A5- Tp

0

D 5 + A6- Tp

0

D 6 + A7- Tp

1 9 9

2 0 0 Appendix A Timing Constraints

Single Skew Formulation

The timing constraints budgeting global skew everywhere are very similar
to those with no skew:

Se tup Cons tra in t s

,r, global
D4 + ~skew < TOl a

_global
D5 + /skew -< T(~2 a

,T, global Tglobal
D6 + "skew -< T~)lb D7 + --skew -~ T,2 b

P r o p a g a t i o n Cons tra in t s

D 4 = max of D 5 = max of D 6 = max of D 7 = max of

0

D 3 + A 4 - T p

D 5 + A 4 - T p

D 7 + A 4 - T p

0 0 0

D 4 + A 5 - Tp D 5 + A 6 - Tp D 6 + a 7 - Tp

Exact Formulation

Because there are four clocks, there are four times as many setup and
propagation constraints for the exact analysis:

Se tup Cons tra in t s

Dqha _local ~)la _local ~la Tglobal --~)la Tglobal
4 + "l'skew -- Tr /-')5 + "l'skew J Tr D "~" Jt skew ~ T r b /-')7 + t skew ~ T r b

Dr _local ~-r _local ~2a ,/.,global ~)2a _global
4 + / skew <-Tt~la 1-)5 +'/'skew ~Tt~2a D + ~skew <-T,1 b 1")7 +' /skew <-T,2 b

Dt~lb Tglobal ~ l b ,./.,global --~)lb _local (~lb _local
4 "~" skew --T~)la Z)5 + Jt skew - T ~ 2 a /")6 4" / skew ~ T~l b 07 + "]'skew - T(~2b

D
t~Eb Tglobal ~)2b Tglobal --~2b _local ---(~2b _local
4 +'~skew -<Tt~l a 1")5 +Jtskew -<T,2 a 1-)6 + l ' skew -< T , lb V7 + / " skew -< T, 2 b

E x a c t F o r m u l a t i o n 2 0 1

P r o p a g a t i o n C o n s t r a i n t s

D ~ TM "" maxof ~la
D 5 = max of Dt~la

6 = max of D~ in m a x o f

0

D
~la
3 + A 4 - Tp

D
~la
5 + A 4 - Tp

D
r
7 + A 4 - Tp

D
t~la
4 + A 5 - T p

(~la
D 5 + A 6 - Tp

Dt~la
6 + A 7 - Tp

D
t~2a

4 = m a x o f D~ 2a "- m a x o f D
(~2a
6 -- m a x of D

(~2a
7 = m a x o f

D
t~2a
3 + A 4 - T p

D
O2a
5 + A 4 - Tp

D
t~2a
7 + A 4 - Tp

0

Dq
)2a

4 " k A S - 5 D
q~2a
5 + A 6 - Tp D~2a 6 + A 7 - Tp

D] TM "- max of D
q~lb
5 = max of

(~lb
D 6 = max of D

r
7 = max of

D
~lb
3 + A 4 - T p

D
q~lb
5 + A 4 - Tp

D
q~lb
7 + A 4 - Tp

D q~lb
4 + A N - T p

0

D
t~lb
5 + A 6 - Tp D ~lb

6 + A 7 - T p

D
~Zb
4 = max of D

t~2b
5 = max of D~ 2b = m a x o f D

*la
7 = m a x o f

D
t~2b
3 + A 4 - T p

D
t~2b
5 + A 4 - Tp

D
(~2b
7 + A 4 - Tp

D
q)2b
4 + A 5 - T p o

~2b
5 + A6 - Tp

0

~la
D 6 + A 7 - Tp

2 0 2, Appendix A Timing Constraints

Clock Domain Formulation

Finally, we write the constraints with the approximation of clock
domains. Because there are two levels of the clock domain hierarchy, this
requires only twice as many constraints as the single skew formulation.
The timing constraints are the following:

Setup Constra ints

1 ._local
D4 + /skew -< T~I a

2 .-global
D4 + /skew <- Tr a

1 .-local
D5 + /skew -< T(~2 a

2 .-global
D5 + /skew <- T~2 a

I ._local + 1 <
u 6 skew l~lb

2 ,r, global
D6 + ~" skew <- T~I b

I ..,local
D7 + /skew < T~2 b

2 ,rglobal
D7 + ~skew -< T~)2b

P r o p a g a t i o n Constra ints

1
D 4 = m a x of

1
D 5 = max of

1
D 6 = m a x of

1
D 7 = m a x of

0

1
D 3 + A 4 - Tp

1
D 5 + A 4 - Tp

2
D 4 = m a x of

0

1
D 4 + A 5 - Tp

2
D 5 = m a x of

2
D 6 = m a x of

0

1
D 6 + A 7 - T p

2
D 7 = m a x o f

I
D 7 + A 4 - T p

2
D 3 + A 4 - Tp

2
D 5 + A 4 - Tp

2
D 7 + A 4 - T p

2
D 4 + A 5 - Tp

1
D 5 + A 6 - Tp

2
D 5 + A 6 - Tp

2
D 6 + A 7 - Tp

B
Solutions to Even-Numbered
Exercises

1.2 Overhead - ACQ + ADC + tskew - 330 ps. This is 20% of a 600 MHz
cycle and 33% of a 1 GHz cycle.

1.4 O v e r h e a d - 2 A c Q - 2.6 FO4 delays - 156 ps. This is 9% of a 600

MHz cycle and 16% of a 1 GHz cycle. Note that clock skew does not

impact the cycle t ime in a system built from transparent latches.

1.6 Alogic - T c - (AcQ + ADC+ tskew) - 5 n s - (0.427 ns + 0.018 ns + 0.4
ns) - 4.155 ns.

1.8 See Table B.1 T c - 3 / N + (0.1 + 0.12 + 0.05). F r e q u e n c y - 1/T c.

L a t e n c y - N" T~.

Table B.I Clock frequency and computation latency

Cycles (N) Max frequency (MHz) Total latency (ns)

1 305 3.27

2 564 3.54

3 787 3.81

4 980 4.08

1.12 T c - Alogic + 2 A D c + 2tskew - 1380 ps. 27% of this t ime is overhead.

2 0 3

2 o 4 Appendix B Solutions to Even-Numbered Exercises

1.14 For static CMOS, T c - Alogic + 2ADQ. For traditional domino, T c - 0.7

Alogic + 2ADC + 2tskew. Therefore, domino is faster when tskew < 0.15

Alogio as shown in Figure B. 1.

Figure B.I

Domino better

I I I I I I

0 2 4 6 8 10 12

Alogic

Design space of logic delay and clock skew (solution)

1.16 Only b and e. The others produce Q signals that may fall while q~ is

high.

2.2 (a) From Equation 2.2, Alogic - 1000 ps - 150 ps - 90 ps - 90 ps
= 670 ps.

(b) From Equation 2.3, Alogic - 1000 p s - 2" 70 ps - 860 ps.

(c) From Equation 2.4, Alogic - 1000 ps - 70 ps - max(0, 150 ps +

90 p s - tpw). For tpw - 180 ps, Alogic - 870 ps. For tpw =

250 ps , A l o g i c - 930 ps.

2.4 tnonoverlap -- Zc(0.5 - d). A 1 - A 2 - Z c - (ADQ + ADC +/skew +

tnonoverlap) -- 690 ps + Tc(d- 0.5). A 1 + A 2 - T c- 2ADQ- 860 ps.

~1 -- ~2 -- ACD + tskew - ~CQ- tnonoverlap = 130 ps + Tc(d- 0.5).
~1 + ~ 2 - 260 ps + Tc(2d- 1).

2.6 Wide pulses hide the overhead of setup time and clock skew and

may permit some time borrowing. However, wide pulses also

increase min-delay constraints, making hold times more difficult to

satisfy.

Appendix B Solutions to Even-Numbered Exercises 2 0 5

3.2 From Equation 3.1, t p - 200 ps + 50 ps - 250 ps.

3.4 See Figure B.2.

Figure B.2 Time borrowing for various numbers of dock phases

3.6 tskew_ma x = 475 with tp - 462.5 ps and t e - 787.5 ps. When the global
skew is 200 ps, tp - 187.5 ps and t e - 1062.5 ps, allowing 862.5 ps of
time borrowing.

3.8 See Figure B.3.

3.10 See Figure B.4. The estimated logical efforts are (a) 2/3; (b) 1; (c) 1/3,
(d) 1/3; (e) 2/3. The actual logical efforts are probably lower because
of the lower switching threshold of a dynamic gate.

3.18 The noise margin on the D input of circuit (a) is only a threshold
voltage when the input and dock are both low. If D falls a threshold
voltage below the low voltage on the clock, on account of ground
noise or coupling on the long connections between units, the pass
gate will turn on and discharge the dynamic node. Circuit (b) has
the full noise margin of the inverter and is thus much more robust.

4.2 (a) See Figure B.5. At a cycle of 1.5, time is borrowed through L 3, L 4,
and L s. At a cycle of 1, time is borrowed through L 3 and the
setup time at L 4 is missed. At a cycle time of 0.8, the setup time
at L 3 is missed.

~a~E j ~a~Ej
F A_I

o~~_
(a) (b)

,, F- 1

~_,, q ~ ~_,, q E j
1

J

,qE
1

L

ELF"-' ~F ~-'

(c)

_ c ,

A_hq -A_l

1 ,q[
!

(d)

Figure B.3 Dual-rail domino gates

t-~h

k~h

Appendix B Solutions to Even-Numbered Exercises 2 0 7

~ ~ 1 ~--(~ 1

A [A [

(a)

(b)

I

(c)

A~~I B~ C~~I A~

(d)]

Figure B.4 Unfooted dynamic gates with transistor sizes

(e)

4.4

5.2

(b) See Figure B.6. At a cycle time of 1.5, time is borrowed through
L 4, L s, and L 2. At a cycle time of 1, time is borrowed through L 4
and the setup time at L s is missed. At a cycle time of 0.8, the
setup time at L 4 is missed.

See Figure B.7.

The designer can predict and take advantage of systematic variations
in the start time of two physical clocks by adjusting the amount of
logic in each cycle to fit the actual time available. The designer must
pessimistically assume random variations reduce the amount of
time available for logic.

2 0 8 Appendix B Solutions to Even-Numbered Exercises

Figure B.5 Time borrowing diagram for latch-based system

5.4

5.6

6.2

6.4

6.6

The pulse stretcher ensures (~6 overlaps the next cycle of ~)1 SO that
data is not lost. If it were omitted and the clock were run slowly or
the delay chain was faster than nominal, gate X might precharge
before gate Y consumes the result, as shown in Figure B.8. Thus, the

hold time would be violated and the circuit would produce the

wrong result.

Clock networks such as H-trees may have zero systematic skew if

perfectly balanced, but inevitably have some random skew and jitter

because of process, voltage, and temperature differences across the

die. Therefore, the designer must still budget some skew.

T c - 1.75 ns using Tol b - - - 0 . 2 5 ns modulo T c - 1.5 ns.

T c - 1.85 ns using T~I b - - 0 . 2 5 ns modulo T c - 1.6 ns.

(a) T c - 1.10 ns; (b) T c - 1.25 ns.

Appendix B Solutions to Even-Numbered Exercises 2 0 9

Figure B.6 Time borrowing diagram for latch-based system

Figure B.7 Timing types for Exercise 4.4

2,10 Appendix B Solutions to Even-Numbered Exercises

~)6

X

/ \

\

X
l

/

\ /
Precharges too soon

\

Figure B.8

Should fall low but does not

~)6

X X'

~)1

Y

Circuit failure without pulse stretcher

6.8 See Table B.2.

Table B.2 Latch arrival and departure times (ps)

Operates A 4 A 5 A 6 A 7 D 4 D 5 D 6 D 7

Yes 100 100 0 100 100 100 0 100

Yes 350 -50 -100 -100 350 0 0 0

Yes -100 100 200 0 0 100 200 0

Yes 50 -50 100 50 50 0 100 50

6.12 81 - 120 ps; 82 - 0; 83 - 120 ps.

6.14 84 - 110 ps; 85 - 70 ps; 86 - 110 ps; 87 - 70 ps.

Borrowing

L4, L5, L7

None

Ls, L6

L4, L6, L7

Bibliography
[1] D. Bailey and B. Benschneider, "Clocking Design and Analysis for a 600-

MHz Alpha Microprocessor,' IEEE J. Solid-State Circuits, vol. 33, no. 11,
pp. 1627-1633, Nov. 1998.

[2] D. Bearden et al., "A 133 MHz 64b Four-Issue CMOS Microprocessor"
ISSCC Dig. Tech. Papers, pp. 174-175, Feb. 1995.

[3] B. Benschneider et al., "A 1GHz Mpha Microprocessor,' ISSCC Dig. Tech.
Papers, pp. 86-87, Feb. 2000.

[4] L. Boonstra, C. Lambrechtse, and R. Salters, "A 4096-b One-Transistor per
Bit Random-Access Memory with Internal Timing and Low Dissipation"
IEEE J. Solid-State Circuits, vol. SC-8, no. 5, pp. 305-310, Oct. 1973.

[5] W. Bowhill et al., "A 300 MHz 64 b Quad-Issue CMOS Microprocessor"
ISSCC Dig. Tech. Papers, pp. 182-183, Feb. 1995.

[6] W. Bowhill et al., "Circuit Implementation of a 300-MHz 64-Bit Second-
Generation CMOS Mpha CPU," Digital Technology Journal, vol. 7, no. 1,
pp. 100-119, 1995.

[7] T. Burks, K. Sakallah, and T. Mudge, "Critical Paths in Circuits with
Level-Sensitive Latches" IEEE Trans. VLSI Sys., vol. 3, no. 2, pp. 273-291,
June 1995.

[8] A. Champernowne, L. Bushard, J. Rusterholtz, and J. Schomburg, "Latch-
to-Latch Timing Rules" IEEE Trans. Comput., vol. 39, no. 6, pp. 798-808,
June 1990.

[9] T. Chao, Y. Hsu, J. Ho, and A. Kahng, "Zero Skew Clock Routing with
Minimum Wirelength" IEEE Trans. Circuits Syst.-II, vol. 39, no. 11, pp.
799-814, Nov. 1992.

[10] D. Chapiro, Globally-Asynchronous Locally Synchronous Systems, Ph.D. dis-
sertation, CS Department, Stanford University, Stanford, CA, May 1984.

2 1 1

212 Bibliography

[11] T. Chappell, B. Chappell et al., "A 2-ns Cycle, 3.8-ns Access 512-kb CMOS
ECL SRAM with a Fully Pipelined Architecture" IEEE J. Solid-State
Circuits, vol. 26, no. 11, pp.1577-1585, Nov. 1991.

[12] K. Chu and D. Pulfrey,"Design Procedures for Differential Cascode
Voltage Switch Circuits;' IEEE J. Solid-State Circuits, vol. SC-21, no. 6,
pp. 1082-1087, Dec. 1986.

[13] R. Colwell and R. Steck, "A 0.6~tm BiCMOS Processor with Dynamic
Execution,' ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 1995.

[14] W. Dally and J. Poulton, Digital Systems Engineering, New York: Cambridge
University Press, 1998.

[15] S. DasGupta, E. Eichelberger, and T. Williams, "LSI Chip Design for
Testability,' ISSCC Dig. Tech. Papers, pp. 216-217, Feb. 1978.

[16] D. Dobberpuhl et al., "A 200 MHz 64 b Dual-Issue CMOS Microproces-
sor,' IEEE J. Solid-State Circuits, vol. 27, no. 11, pp. 1555-1567, Nov. 1992.

[17] D. Dobberpuhl et al., "A 200-MHz 64-Bit Dual-issue CMOS Micro-
processor,' Digital Technology Journal, vol. 4, no. 4, pp. 35-50, 1992.

[18] H. Fair and D. Bailey, "Clocking Design and Analysis for a 600 MHz Alpha
Microprocessor" ISSCC Dig. Tech. Papers, pp. 398-399, Feb. 1998.

[19] E. Friedman, ed., Clock Distribution Networks in VLSI Circuits and Systems,
New York: IEEE Press, 1995.

[20] N. Gaddis and J. Lotz, "A Quad-Issue Out-of-Order RISC CPU" ISSCC
Dig. Tech. Papers, pp. 210-211, Feb. 1996.

[21] N. Gaddis and J. Lotz, "A 64-b Quad-Issue CMOS RISC Microprocessor,"
IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1697-1702, Nov. 1996.

[22] B. Gieseke et al., "A 600 MHz Superscalar RISC Microprocessor with Out-
of-Order Execution," ISSCC Dig. Tech. Papers, pp. 176-177, Feb. 1997.

[23] R. Ginosar and R. Kol, "Adaptive Synchronization," Proc. Intl. Conf. Comp.
Design, pp. 188-189, Oct. 1998.

[24] N. Gonclaves and H. De Man, "NORA: A Racefree Dynamic CMOS
Technique for Pipelined Logic Structures,' IEEE]. Solid-State Circuits, vol.
SC- 18, no. 3, pp. 261-266, June 1983.

[25] R. Gonzalez and M. Horowitz, "Energy Dissipation in General
Purpose Microprocessors,' IEEE]. Solid-State Circuits, vol. 31, no. 9,
pp. 1277-1284, Sept. 1996.

Bibliography 213

[26] E Gronowski and B. Bowhill, "Dynamic Logic and Latches--Part II,' Proc.
VLSI Circuits Workshop, VLSI Circuits Symp., June 1996.

[27] E Gronowski et al.,"A 433-MHz 64-b Quad-Issue RISC Microprocessor,'
1EEL]. Solid-State Circuits, vol. 31, no. 11, pp. 1687-1696, Nov. 1996.

[28] E Gronowski et al., "High-Performance Microprocessor Design" IEEE].
Solid-State Circuits, vol. 33, no. 5, pp. 676-686, May 1998.

[29] A. Hall, Synthesis of Double Rank Sequential Circuits, Tech. Report #53, EE
Digital Systems Lab, Princeton University, Dec. 1966.

[30] D. Harris and M. Horowitz, "Skew-Tolerant Domino Circuits" IEEE L
Solid-State Circuits, vol. 32, no. 11, pp. 1702-1711, Nov. 1997.

[31] D. Harris, S. Oberman, and M. Horowitz, "SRT Division Architectures and
Implementations,' Proc. 13th 1EEL Symposium on Computer Arithmetic,
July 1997.

[32] R. Heald et al., "Implementation of a 3rd-Generation SPARC V9 64b
Microprocessor," ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2000.

[33] C. Heikes, "A 4.5 mm 2 Multiplier Array for a 200MFLOP Pipelined
Coprocessor" ISSCC Dig. Tech. Papers, pp. 290-291, Feb. 1994.

[34] C. Heikes and G. Colon-Bonet, "A Dual Floating Point Coprocessor with
an FMAC Architecture,' ISSCC Dig. Tech. Papers, pp. 354-355, Feb. 1996.

[35] L. Heller, W. Griffin, J. Davis, and N. Thoma,"Cascode Voltage Switch
Logic: A Differential CMOS Logic Family" 1SSCC Dig. Tech. Papers, pp.
16-17, Feb. 1984.

[36] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, San Francisco: Morgan Kaufmann, Chapter 1, 1999.

[37] R. Hitchcock,"Timing Verification and Timing Analysis Program,' 25
Years of Electronic Design Automation, New York: IEEE/ACM, 1988.

[38] E Hofstee et al., "A 1 GHz Single-Issue 64b PowerPC Processor,' ISSCC
Dig. Tech. Papers, pp. 92-93, Feb. 2000.

[39] M. Horowitz, "High Frequency Clock Distribution" Proc. VLSI Circuits
Workshop, VLSI Circuits Symp., June 1996.

[40] IBM]. Research & Dev., special issue on soft errors, vol. 40, no. 1, Jan. 1996.

9,1 4 Bibliography

[41] Intel Corporation, Opportunistic Time-Borrowing Domino Logic, U.S.
Patent #5,517,136, May 14, 1996.

[42] Intel Corporation, "Intel Microprocessor Quick Reference Guide,'
courtesy of Intel Museum, Santa Clara, CA, 1997.

[43] Intel Corporation, Pulsed Domino Latches, U.S. Patent #5,880,608, March
9, 1999.

[44] A. Ishii, C. Leiserson, and M. Papaefthymiou, "Optimizing Two-Phase,
Level-Clocked Circuitry" J. ACM, vol. 44, no. 1, pp. 148-199, Jan. 1997.

[45] N. Jouppi, Timing Verification and Performance Improvement of MOS VLSI
Designs, Ph.D. thesis, Stanford University, 1984.

[46] V. von Kaenel et al., "A 600 MHz CMOS PLL Microprocessor Clock Gener-
ator with a 1.2 GHz VCO,' ISSCC Dig. Tech. Papers, pp. 396-397, Feb.
1998.

[47] F. Klass, "Semi-Dynamic and Dynamic Flip-Flops with Embedded Logic,'
Symposium on VLSI Circuits Dig. Tech. Papers, pp. 108-109, June 1998.

[48] F. Klass et al.,"A New Family of Semidynamic and Dynamic Flip-Flops
with Embedded Logic for High-Performance Processors" IEEE J. Solid-
State Circuits, vol. 34, no. 5, pp. 712-716, May 1999.

[49] R. Krambeck, C. Lee, and H. Law, "High-Speed Compact Circuits with
CMOS,' IEEE J. Solid-State Circuits, vol. SC-17, no. 3, pp. 614-619, 1982.

[50] J. Kuskin et al., "The Stanford FLASH Multiprocessor,' Proc. Intl. Symp.
Comp. Arch., pp. 302-313, Apr. 1994.

[51] P. Larsson and C. Svensson, "Noise in Digital Dynamic CMOS Circuits,'
IEEE]. Solid-State Circuits, vol. 29, no. 6, June 1994.

[52] L. Lev,"Signal and Power Network Integrity,' Proc. VLSI Circuits Workshop,
VLSI Circuits Symp., June 1996.

[53] L. Lev et al.,"A 64-b Microprocessor with Multimedia Support,' IEEE J.
Solid-State Circuits, vol. 30, no. 11, Nov. 1995.

[54] J. Lotz et al., "A Quad-Issue Out-of-Order RISC CPU,' ISSCC Dig. Tech.
Papers, pp. 210-211, Feb. 1996.

[55] M. Matsui et al., "A 200-MHz 13 mm 2 2-D DCT Macrocell Using Sense-
Amplifier Pipeline Flip-Flop scheme,' IEEE 1. Solid-State Circuits, vol. 29,
no. 12, pp. 1482-1491, Dec. 1994.

Bibliography 215

[56] C. Mead and L. Conway, Introduction to VLSI Systems, Reading, MA: Addi-
son-Wesley, 1980.

[57] Microprocessor Report, Sebastopol, CA: MicroDesign Resources,
1995-1998.

[58]]. Montanaro et al.,"A 160-MHz, 32-b, 0.5-W CMOS RISC Microproces-
sor,' IEEE]. Solid-State Circuits, vol. 31, no. 11, pp. 1703-1714, Nov. 1996.

[59] G. Moore, "Cramming More Components onto Integrated Circuits,"
Electronics, pp. 114-117, Apr. 1965.

[60] A. Mukherjee, Introduction to nMOS and CMOS VLSI Systems Design,
Englewood Cliffs, NJ: Prentice-Hall, 1986.

[61] D. Noice, A Clocking Discipline for Two-Phase Digital Integrated Circuits,
Stanford University Technical Report, Jan. 1983.

[62] K. Nowka and T. Galambos, "Circuit Design Techniques for a Gigahertz
Integer Microprocessor,' Proc. Intl. Conf. Comp. Design, pp. 11-16,
Oct. 1998.

[63]]. Ousterhout, "A Switch-Level Timing Verifier for Digital MOS VLSI,'
IEEE Trans. Computer-Aided Design, vol. CAD-4, no. 3, pp. 336-349,
July 1985.

[64] H. Partovi et al., "Flow-Through Latch and Edge-Triggered Flip-Flop
Hybrid Elements,' ISSCC Dig. Tech. Papers, pp. 138-139, Feb. 1996.

[65] W. Penny and L. Lau, MOS Integrated Circuits: Theory, Fabrication, Design
and Systems Applications of MOS LSI, New York: Van Nostrand, Reinhold,
Chapter 5, 1973.

[66] J. Rabaey, Digital Integrated Circuits, Upper Saddle River, NJ: Prentice-Hall,
1996.

[67] B. Razavi, ed., Monolithic Phase-Locked Loops and Clock Recovery Circuits,
New York: IEEE Press, 1996.

[68] E Restle and A. Deutsch, "Designing the Best Clock Distribution Net-
work,' Proc. VLSI Symp., pp. 2-5, June 1998.

[69] J. Rubinstein, E Penfield, and M. Horowitz, "Signal Delay in RC Tree
Networks" 1EEE Trans. Computer-Aided Design, vol. CAD-2, no. 3,
pp. 202-211, July 1983.

2 1 6 Bibliography

[70] K. Sakallah, T. Mudge, and O. Olukotun, "Analysis and Design of Latch-
Controlled Synchronous Digital Circuits,' IEEE Trans. Computer-Aided
Design, vol. 11, no. 3, pp. 322-333, Mar. 1992.

[71] Semiconductor Industry Association, The National Technology Roadmap
for Semiconductors, Austin, TX: SEMATECH, 1997.
(notes.sematech.org/97melec.htm)

[72] Semiconductor Industry Association, International Technology Roadmap
for Semiconductors, 1999. (www.itrs.net/199 SIA Roadmap/Home.htm)

[73] N. Shenoy, Timing Issues in Sequential Circuits, Ph.D. dissertation, Univer-
sity of California, Berkeley, 1993.

[74] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli, "A Pseudo-
Polynomial Algorithm for Verification of Clocking Schemes,' Tau, 92,
1992.

[75] K. Shepard et al., "Design Methodology for the S/390 Parallel Enterprise
Server G4 Microprocessors,' IBM]. Research and Development, vol. 41,
no. 4-5, pp. 515-547, July-Sept. 1997.

[76] K. Shepard, V. Narayanan, and R. Rose, "Harmony: Static Noise Analysis of
Deep Submicron Digital Integrated Circuits,' IEEE Trans. Computer-Aided
Design, vol. 18, no. 8, pp. 1136-1150, Aug. 1999.

[77] M. Shoji, "Electrical Design of BELLMAC-32A Microprocessor,' Proc.
IEEE Int'l Conf. Circuits and Computers, pp. 112-115, Sept. 1982.

[78] M. Shoji, "Elimination of Process-Dependent Clock Skew in CMOS VLSI,'
IEEE]. Solid-State Circuits, vol. SC-21, no. 5, pp. 875-880, Oct. 1986.

[79] M. Shoji, High-Performance CMOS Circuits, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[80] G. Singer and S. Rusu, "The First 1A-64 Microprocessor: A Design for
Highly Parallel Execution,' ISSCC Dig. Tech. Papers, pp. 422-423, Feb.
2000.

[81] V. Stojanovic and V. Oklobdzija, "Comparative Analysis of Master-Slave
Latches and Flip-Flops for High-Performance and Low-Power Systems"
IEEE]. Solid-State Circuits, vol. 34, no. 4, pp. 536-548, Apr. 1999.

[82] I. Sutherland, R. Sproull, and D. Harris, Logical Effort, San Francisco, CA:
Morgan Kaufmann, 1999.

[83] T. Szymanski, "LEADOUT: A Static Timing Analyzer for MOS Circuits,' in
ICCAD-86 Dig. Tech. Papers, pp. 130-133, 1986.

Bibliography 217

[84] T. Szymanski, "Computing Optimal Clock Schedules" Proc. 29th Design
Automation Conf., pp. 399-404, 1992.

[85] T. Szymanski and N. Shenoy, "Verifying clock schedules,' ICCAD Dig.
Tech. Papers, pp. 124-131, Nov. 1992.

[86] O. Takahashi, N. Aoki, J. Silberman, and S. Dhong, "A 1-GHz Logic Circuit
Family with Sense Amplifiers,' IEEE]. Solid-State Circuits, vol. 34, no. 5,
pp. 616-622, May 1999.

[87] T. Thorp, G. Yee, and C. Sechen, "Domino Logic Synthesis Using Complex
Gates" Proc. Intl. Conf. Computer-Aided Design, Nov. 1998.

[88] R. Tsay, "An Exact Zero-Skew Clock Routing Algorithm,' IEEE Trans.
Computer-Aided Design, vol. 12, no. 2, pp. 242-249, Feb. 1993.

[89] S. Unger and C. Tan, "Clocking Schemes for High-Speed Digital Systems,'
IEEE Trans. Cornput., vol. C-35, no. 10, pp. 880-895, Oct. 1986.

[90] N. Vasseghi et al., "200 MHz Superscalar RISC Processor," IEEE J. Solid-
State Circuits, vol. 31, no. 11, pp. 1675-1686, Nov. 1996.

[91] A. Vittal and M. Marek-Sadowska, "Crosstalk Reduction for VLSI,' IEEE
Transactions on CAD, vol. 16, no. 3, pp. 290-298, March 1997.

[92] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Reading,
MA: Addison-Wesley, p. 351, 1993.

[93] T. Williams, Self-Timed Rings and Their Application to Division, Ph.D. dis-
sertation, EE Department, Stanford University, Stanford, CA, May 1991.

[94] T. Williams and M. Horowitz, "A Zero-Overhead Self-Timed 160-ns 54-b
CMOS Divider" IEEE]. Solid-State Circuits, vol. 26, no. 11, pp. 1651-1661,
Nov. 1991.

[95] Y. Ye, Interior Point Algorithms: Theory and Analysis, New York: Wiley,
1997.

[96] J. Yuan and C. Svensson, "High Speed CMOS Circuit Technique,' IEEE J.
Solid-State Circuits, vol. 24, no. 1, pp. 62-69, Feb. 1989.

[97] J. Yuan and C. Svensson, "New Single-Clock SMOS Latches and Flipflops
with Improved Speed and Power Savings,' IEEE]. Solid-State Circuits,
vol. 32, no. 1, pp. 62-69, Jan. 1997.

[98] J. Yuan, C. Svensson, and P. Larsson, "New Domino Logic Precharged by
Clock and Data" Electronics Letters, vol. 29, no. 25, pp. 2188-2189,
Dec. 1993.

This Page Intentionally Left Blank

Index

aggressor, 88, 89
defined, 88
spacing between victim, 90
See also capacitive coupling

Alpha 21064, 62
dynamic latches, 62
TSPC latches, 138

Alpha 21164
blocks of domino, 38
blocks of static logic, 38
defined, 24
dynamic latches, 62
latch elimination, 138
overlapping clocks, 97
sequencing overhead in, 24
static latches, 62
transmission gate latch, 54, 129

Alpha 21264
keepers, 96
min-delay risks, 139
static memory elements, 62

alpha particles, 92
arrival times, 168, 169, 172, 210
asynchronous design, 37

clocking overhead and, 37
"zero-overhead" 96

capacitive coupling, 88-90
capacitive voltage divider equation, 86
charge injection, 92
charge sharing, 52, 86-88, 131
circuit methodology, 103-139
clock chopper, 55, 56
clock domain analysis, 170-173

exact skew analysis vs., 182
propagation constraints, 173, 202
setup constraints, 173,202
timing constraints, 170-173,202
See also timing analysis

clock domains, 72-74, 149-150
for analysis, 144
boundary, 78
communication between, 196
defined, 170
example circuit with, 167

formulation, 170-173
higher-level, 149-150
levels of, 149, 150, 171
local, 72, 173
physical clock, 149

clock generation, 28, 36, 137, 144,
150-159

clock phases
delay between, 72
logic balance with, 78
no logic in, 78
single gate per, 75
skew tolerance for, 72
time borrowing for, 74, 205

clock skew, 42, 147-149, 195
between consecutive phases, 70-71
cycle time and, 147, 149
defined, 4, 144
design space, 32, 204
display, 144
domino clocking, 24-27
exact, 168-170
flip-flops including, 4, 5
global, 171-172, 175
between individual clock edges,

171
local, 171,172, 174
local generator-induced, 152
min-delay and, 48
pruning of paths with, 181
single, 167
sources, 147
static/domino interface budget,

110
time borrowing and, 46
timing analysis with, 24-27,

166-175
timing analysis without, 163-166
transparent latches including, 13
upper bound, 167, 171

clock waveforms, 145-150
four-phase, 104
with local skew, 170
nonoverlapping, 117
physical clock, 145-147
two-phase, 146

clocked element design, 128-133
See also circuit methodology

clocking, 143-160
domino, 18-20
memory element

interdependency, 36
clocks

complementary, 125
fifty-percent duty cycle, 116
frequency, 9, 11
glitching, 125
launching, 172, 181
local, 158
logical, 144, 166
nominal, 174
nonoverlapping, 49, 113-117
overlapping, 21, 22, 68
phase shift between, 146-147
physical, 144, 145, 163
qualified, 125, 126
schedule, 184
See also cycle time

clock-to-Q delay
flip-flop, 3, 57
transparent latch, 12

combinational logic delay, 174
constraints. See timing constraints
contamination delay

defined, 48
largest required, 50
minimum logic, 48, 49, 77
pulsed latch, 49
skew-tolerant domino, 77

crosstalk. See capacitive coupling
CRYSTAL, 184
cycle stealing. See time borrowing
cycle time, 146, 174

common, 163
defined, 6
Intel microprocessor, 10
sequencing overhead and, 7
shrinking, 194

D flip-flop. See edge-triggered flip-flop
delay line clock generation, 151-155

2, 2, 0 Index

delays
accumulated, 168
adder, 6
clock generation and, 144
between clock phases, 72
clock-to-Q, 3, 12, 57
combinational logic, 174
contamination, 48, 49, 50, 77
domino gate, 15, 195
F04, 6, 9, 10, 11
four-phase clock generator, 152
gate, 7, 11, 12
logic, 6, 32, 204
measurement, 6
mismatched, 144
propagation, 14, 42, 44, 54, 107,

163-164, 177-178
RC, 70
See also max-delay; min-delay

departure time, 27, 108, 110, 168, 169,
170, 172, 210

differential cascade voltage switch
(DCVS). See dual-rail domino

diffusion capacitance, 87
D-latch. See transparent latch
domino buffer

for simulation of keeper size, 100
for simulation of precharge

transistor size, 100
domino circuits, 2, 14-22, 67-98

challenges, 197
defined, 14
dual-rail, 80-81, 90, 196-197, 206
gate delays, 195
noise margins, 95
sequencing overhead, 14, 27
skew-tolerant, 2, 14, 20-22, 68-78,

97, 195
testability, 135-138
timing analysis, 176-177

domino clocking, 18-20
domino gates, 3, 15-18

alpha particles, 92
capacitive coupling, 88-90
cascade, 17
charge sharing, 86-88
correct operation with, 18
defined, 17, 79
delay, 15, 195
design, 79-95, 131-132
design guidelines, 131-132
dual-rail, 81
electrical rules, checking for, 97-98
footed, 81-83
full keeper, 136
illegal connections, 124
inactive, 197
keeper design, 84-85
legal connections, 123
minority carrier injection, 92
monotonicity, 79-81
noise budget, 93-95

noise feedthrough, 92-93
noise sensitivity, 85-86, 97
on-chip interconnect between, 70
operation, 15-18
popularity, 97
power expense, 197
power supply noise, 90-91
precharge rule, 81
precharging, 18, 69-70
robustness issues, 85-95
timing analysis, 176-177
timing guidelines, 123
unfooted, 81-83

domino pipelines
imbalanced logic, 20
noninverting gates in, 79

domino/PLA interface, 133
domino-to-static interface, 111-113

glitch-free, 113
illustrated, 112
N-C2MOS latch, 112, 121-122,

130
See also static/domino interface

dual-rail domino, 196-197
coupling reduction in, 90
defined, 80
design, 81
gate inputs, 81
gate precharge, 80-81
illustrated, 206
routing, 90
XOR/XNOR, 80
See also domino circuits

dynamic circuits, 38
dynamic gates, 14, 15, 82

capacitive coupling, 88-90
cascaded, incorrect operation of,

17
defined, 15
footed, 132
illustrated, 15
keeper, 131
monotonicity rule, 79
output, 85, 86, 121,131
phases, 15-16
scan cell and, 137
scannable, 136
speed, 16
unfooted, 82, 207
See also gates; static gates

dynamic inverters, 83

edge-triggered flip-flop. See flip-flop
electromagnetic coupling, 147
exact skew analysis, 168-170, 182,

200-201
See also timing analysis

fanout-of-4 (FO4) inverter
delay, 6, 9
delay trends, 10

delays per cycle, 11
feedback clock generators, 155-157
fifty-percent duty cycle, 74, 77

clocks, 116
four-phase clock generator, 153
physical clocks, 146
two-phase systems use of, 116

flip-flop, 36
cell library, 23
with clock skew, 4, 5
clock-to-Q delay, 57
departure constraints, 176
design, 51, 57-61
edge-triggered, 2, 3
imbalanced logic, 4-5
implementations, optimized, 58
internal race, 59
J-K, 38
Klass semidynamic, 59-60
latch simplicity, 58
latch skew, 58
master-slave, 111
min-delay, 47, 50
no-race, 59
overhead, 2, 3-5
paths using, 65
performance, 63
propagation constraints, 176
sense-amplifier (SAFF), 60-6 1
sequencing overhead, 5, 27, 43, 194
setup constraints, 175
setup time, 57
static CMOS system with, 3-4
terminals, 3
timing analysis, 175-176
timing diagram, 39
from transparent latches, 57
TSPC, 59
variants study, 61
verification algorithm and, 181
See also latches; memory elements

footed gates, 16, 81-83, 132
See also gates

four-phase clock generator, 153, 154
with clock choppers, 154
defined, 153
delay, 152
fifty-percent duty cycle, 153
skew penalty, 153
supporting scan and clock

enabling, 159
four-phase skew-tolerant domino, 28,

69, 117-125
timing guidelines, 120, 123
timing types, 117-125
See also skew-tolerant domino

circuits

gate delays, 7, 11, 12
gates

AOI, 87

Index 2 2 1

dual-rail domino, 80-81,206
dynamic, 14-16, 81-83, 88-90,

131-132, 136-137
footed, 16, 81-83, 132
HI-skew, 18, 85-86, 119
NAND, 51,158
noninverting, 79
NOR, 15, 16, 132
P/N ratios, 119
static, 14, 15, 18, 119, 123-124, 129
tristate feedback, 135
unfooted, 16, 81-83,207
See also domino gates

glitch latches. See pulsed latch
glitching clocks, 125
global skew, 171-172, 175

half-latches. See transparent latch
hard edges, 20
HI-skew gates, 18, 119

input of, 85
inverter, 85, 86
output of, 86

hold time, 76
budget, 71
defined, 54
min-delay, 76
static circuit, constraints, 75
two-phase nonoverlapping clocks

and, 113-114
hybrid latch-flip-flop (HLFF), 56

IBM
SA-27 0.16-micron cell library data

book, 31
static noise analysis tool, 96

imbalanced logic
domino pipelines, 20
flip-flop, 4-5
static latches and, 14

instructions executed per cycle
(IPC), 7

Intel microprocessors
clock frequency, 9
cycle times, 10
performance, 8

inverter transfer function, 93

keeper, 84-85, 95
in Alpha 21264, 96
defined, 84
dynamic gate, 131
full, 84, 131, 136
illustrated, 84-85
minimum-sized, 85
size increase, 95
weak, 84-85

Klass semidynamic flip-flop (SDFF),
59-60

latch placement, 105-110
See also static/domino interface

latches
arrival time at, 168, 169, 172, 210
departure constraints, 176
departure times from, 168, 169,

170, 172,210
design, 129-130
fastest, 129
level-sensitive, 184
minimum propagation delays,

177-178
multiplexer, 158
N-C2MOS, 112, 121-123, 130
propagation constraints, 176
propagation delay, 163, 164
propagation delay between, 163
scannable, 135
setup constraints, 176
setup time, 163, 164
slave, 136
SR, 38, 112
static, 129-130, 158
transmission gate, 52, 54, 129
TSPC, 53-54, 58, 62, 138
See also flip-flop; pulsed latch;

transparent latch
latency, 5-12, 203
LEADOUT, 184
Level Sensitive Scan Design (LSSD)

methodology, 62
load capacitance variations, 147
local clock generation, 152-155, 157

See also clock generation
local skew, 171,172, 174
logic delay, 6

in cycle time, 6
design space, 32, 204

logical clocks, 144
ideal, 166
specification, 144
See also clocks

logical effort, 83

MAGIC case study, 182-183, 185
master-slave flip-flop. See flip-flop
max-delay, 46-47, 51, 184

See also min-delay
memory elements

clocking interdependency, 36
design, 51-61
min-delay, 46-51
non-use of, 36
purpose of, 36-37
for sequencing, 37
sequencing overhead, 42-44
static, 38-51
time borrowing, 44--46
timing diagrams, 39-41
types of, 36, 38

min-delay, 46-51
Alpha 21264 risks, 139
checks, 125-128, 162
clock skew and, 48
constraints, 3, 47, 177, 178
constraints, guaranteeing, 178
defined, 47
failure, 76, 177
flip-flop, 47, 50
hold time, 76
max-delay problems with, 51
problems, 47, 126, 128
problem-solving, 126-127
pulsed latch, 196
races, 148-149
requirements, 51
skew-tolerant domino, 75-77
timing analysis, 177-178
violations, 47

monotonicity
defined, 79
requirement of, 119
rising/falling, 118
rule, 16, 79
solutions, 79-80
verifying with timing, 118

Mooreis law, 8
multiplexer-latch, 158

N-C2MOS latch, 112, 121
clock use, 121
domino-to-static interface

illustration, 122
noise margin, 130
output, 121
timing guidelines, 123

neflist-level timing analyzers, 184
noise

budget, 92-94
domino gate sensitivity, 85, 97
dynamic inputs and, 93
dynamic outputs and, 93
feedthrough, 92-93
high-frequency voltage, 157
power supply, 90-91
residual, 92-93
source scaling, 93-94

noise-prone circuits, 102
noninverting gates, 79
nonoverlapping clocks, 49

time borrowing and, 49
transparent latches with, 50
two-phase, 49, 66, 113-117

N-phase clock generation, 154-156
See also clock generation

one-phase latches. See pulsed latch
Opportunistic Time-Borrowing

(OTB) Domino, 96
overhead. See sequencing overhead

2 2 2 Index

overlapping clocks, 21, 22
Alpha 21164, 97
skew-tolerant domino, 68

P/N ratio, 119, 120
Partovi pulsed latch, 57, 59
pass transistors, 88
pass-transistor latch

drawbacks, 52
illustrated, 52
implementations, 64
performance, 52

Pathmill, 185
Pearl, 185
phase shift operator, 146
physical clocks

clock domain, 149
clock waveforms, 145-147
with common cycle time, 163
definition, 145-147
fifty-percent duty cycle, 146
grouping, 145
skewed, 144
systematic timing offsets, 145
See also docks

pipelines
domino, 20, 79
stages, 5
static, 194

power supply noise, 90-91
See also noise

precharge rule, 16
defined, 16
domino gates, 81

precharge time, 70, 71
PrimeTime, 185
programmable logic arrays (PLAs),

132-133
propagation constraints

clock domain analysis, 173, 202
exact skew analysis, 169, 201
flip-flop, 176
single skew analysis, 167, 200
skewless analysis, 164, 199
See also timing constraints

propagation delays, 14, 42
with combinational logic, 107
defined, 54
latch, 163, 164
minimum, 177-178
between pairs of latches, 163
transparent latch, 44
TSPC latches, 53

pulsed evaluation clock, 111
pulsed latch, 36, 55-57, 194

behavior, 41
clock chopper, 55, 56
design, 51, 55-57
domino, 123, 125
with external and built-in pulsed

generators, 111

illustrated, 56
min-delay constraints, 196
minimum contamination delay, 49
minimum delay per cycle, 50
Partovi, 57, 59
paths using, 65
performance, 63
pulse width, 43
scan, 135
sequencing enforcement, 41
sequencing overhead, 43
speed, 194
static, 111
at static-to-domino interface,

110-111
timing diagram, 41
timing guidelines, 123
See also latches; memory elements

qualified clocks, 125-126

register file, 132
residual noise. See noise

scan, 134-137
See also testability

Semiconductor Industry Association
(SIA), 10-11

sense-amplifier flip-flop (SAFF),
60-61

sequencing overhead, 36
in Alpha 21164, 24
circuit methodology and, 139
comparison chart, 27
cycle times and, 7
defined, 5
domino circuits, 14, 27
flip-flop, 5, 27, 43, 194
impact on throughput and latency,

6-8
latch placement and, 107
memory elements, 42-44
pulsed latch, 43
skew-tolerant domino circuits, 27
smallest possible, 37
in static ASIC, 23-24
transparent latches, 27, 42-43

setup constraints
clock domain analysis, 173,202
exact skew analysis, 169, 200
flip-flop, 175
single skew analysis, 167, 200
skewless analysis, 164, 199
See also timing constraints

setup time, 54
flip-flop, 3, 57
latch, 163, 164
problems, 149
pulse width greater than/less

than, 43

two-phase nonoverlapping clocks
and, 113-114

single skew analysis, 167, 200
propagation constraints, 167, 200
setup constraints, 167, 200
See also timing analysis

skew budgets, 159
cycle-to-cycle jitter and, 178
global skew, 172
local skew, 172
See also clock skew

skew hierarchy, 149, 170-171
See also clock skew

skew tolerance
example, 71
global, maximum, 73
for various numbers of clock

phases, 72
See also clock skew

skewless analysis, 163-166, 199
See also timing analysis

skew-tolerant domino circuits, 2, 14,
20-22, 68-78, 97, 194

advantages, 21
clock domains, 72-74
clock generation, 150-159
defined, 20
design issues, 78
fifty-percent duty cycle, 74, 77
four-phase, 28, 69, 117-125
general timing constraints, 69-72
illustrated, 69
integration, 195
min-delay constraints, 75-77
minimum logic contamination

delay, 77
overlapping clocks, 21, 22, 68
phase overlap, 70
recommendations, 77-78
sequencing overhead, 27, 196
single gate per phase, 75
skew tolerance limit, 71
time borrowing, 22
timing, 68-78
two-phase, 21, 77

skew-tolerant static circuits, 12-14
fast, 28
transparent latch, 12-14

slave latch, 136
soft errors, 92
SR latch, 38, 112
stable signals, 114
static circuits, 35-64, 197

circuit design and, 197
defined, 38
domino and, 80
with edge-triggered flip-flop, 3--4
hold time constraints, 75
memory element design, 51-61
skew-tolerant, 12-14
static memory elements, 38-51

Index 2 2 3

static gates, 14, 15
CMOS, 129
HI-skew, 18, 119
illegal connections, 124
inverting, 119
legal connections, 123
use of, 129
See also dynamic gates; gates

static latch, 129-130, 158
static logic

Alpha 21164 blocks of, 38
testability, 134-135

static/domino interface, 105-128
See also circuit methodology

sustainers. See keeper
systematic timing offsets, 145

testability, 133-138
See also circuit methodology

throughput, 5-12
time borrowing

acceptable amount of, 26
available time for, 73
budget calculation, 73
clock skew and, 46
defined, 14, 44
diagram for latch-based system,

208, 209
intentional, 46
latch location and, 107
maximum amount of, 107
memory elements, 44-46
nonoverlapping clocks and, 49
opportunistic, 46
over multiple half-cycles, 44
problem, 46
for timing analysis, 25
for transparent latches, 44-45
use of, 44, 46
for various numbers of clock

phases, 74, 205
timing

for monotonicity verification, 118
skew-tolerant domino, 68-78
systematic offsets, 145
verification, 180

timing analysis, 24-27, 161-185, 196
timing constraints, 162, 199-202

clock domain analysis, 173
without clock skew, 165
departure, 176
exact skew analysis, 169
flip-flop, 175-176
propagation, 164, 167, 169, 173,

176
setup, 164, 167, 169, 173, 175
single skew analysis, 167
tabulations, 174

timing diagrams, 39-41, 109
timing types, 113-125
transmission gate latch

in Alpha 21164, 54
drawbacks, 52
illustrated, 52
performance, 52
speed, 129

transparent latch, 12-14, 36,
52-55, 194

clock-to-Q delays, 12
design, 51, 52-55
flip-flop from, 57
implementations, 51
including clock skew, 13
latch propagation delays, 44
with nonoverlapping docks, 50
output, 121
overdesign, 42
pass-transistor, 52
paths using, 65
performance, 63
propagation delay, 14
scan, 135
sequencing overhead, 27, 42-43
static CMOS system with, 13
static pipelines built from, 194
terminals, 12
time borrowing for, 44-45
timing diagram, 40
timing guidelines, 123
transmission gate, 52, 54
TSPC, 53-54
two-cycle path using, 66
use history, 196
See also latches; memory elements

tristate feedback gates, 135
true single-phase clocking (TSPC)

latches, 53-54, 58, 62, 138
TV, 184
two-phase clock generator, 153, 154
two-phase latches. See transparent

latch
two-phase nonoverlapping clocks, 49,

66, 113-117

unfooted gates, 16, 81-83, 207
See also gates

valid signals, 114, 116
verification algorithm, 179-182

See also timing analysis
victim, 88, 89

defined, 88
spacing between aggressor, 90
See also capacitive coupling

zero-overhead asynchronous circuits,
96

About the Author

David Harris is currently an Assistant Professor of Engineering at Harvey
Mudd College. He received his Ph.D. in 1999 from Stanford University on
skew-tolerant circuit design. Since receiving his M. Eng. from MIT in
1994, he has consulted and taught in the field of high-speed CMOS circuit
design at Sun Microsystems, Intel Corporation, HAL Computer, and
Evans & Sutherland. In addition, he has taught circuit design at the U.C.
Berkeley Extension and Stanford University. When David is not building
chips or teaching VLSI to freshmen, he can often be found mountaineer-
ing or flying a Cessna.

	Front Cover
	Skew-Tolerant Circuit Design
	Copyright Page
	Contents
	Preface
	Chapter 1. Introduction
	1.1 Overhead in Flip-Flop Systems
	1.2 Throughput and Latency Trends
	1.3 Skew-Tolerant Static Circuits
	1.4 Domino Circuits
	1.5 Case Studies
	1.6 A Look Ahead
	1.7 Exercises

	Chapter 2. Static Circuits
	2.1 Preliminaries
	2.2 Static Memory Elements
	2.3 Memory Element Design
	2.4 Historical Perspective
	2.5 Summary
	2.6 Exercises

	Chapter 3. Domino Circuits
	3.1 Skew-Tolerant Domino Timing
	3.2 Domino Gate Design
	3.3 Historical Perspective
	3.4 Summary
	3.5 Exercises

	Chapter 4. Circuit Methodology
	4.1 Static/Domino Interface
	4.2 Clocked Element Design
	4.3 Testability
	4.4 Historical Perspective
	4.5 Summary
	4.6 Exercises

	Chapter 5. Clocking
	5.1 Clock Waveforms
	5.2 Skew-Tolerant Domino Clock Generation
	5.3 Summary
	5.4 Exercises

	Chapter 6. Timing Analysis
	6.1 Timing Analysis without Clock Skew
	6.2 Timing Analysis with Clock Skew
	6.3 Extension to Flip-Flops and Domino Circuits
	6.4 Min-Delay
	6.5 A Verification Algorithm
	6.6 Case Study
	6.7 Historical Perspective
	6.8 Summary
	6.9 Exercises

	Chapter 7. Conclusions
	Appendix A: Timing Constraints
	Appendix B: Solutions to Even-Numbered Exercises
	Bibliography
	Index
	About the Author

