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Preface

This book is intended to present the fundamentals of room acoustics in a systematic and 
scienti�cally correct way and to give an overview of the present state-of-the-art techniques 
in room acoustics. I hope that it will contribute to a better understanding of the factors 
responsible for what is commonly called good or poor ‘acoustics of a room’.

One aspect of room acoustics concerns the physical laws of the generation, the propaga-
tion and absorption of sound in an enclosure. These laws are most effectively formulated 
in the language of mathematics. Therefore, to understand this book in its entirety, the 
reader should have a reasonable mathematical background and some elementary knowl-
edge of wave propagation. (Certain derivations may be omitted without detriment by 
readers with more limited mathematical training.) However, the image conveyed by a 
purely physical description of sound propagation would be incomplete, if not useless, 
without regarding the physiological and psychological factors involved in the human 
perception of sound since it is the person attending a concert or a lecture who is the ulti-
mate consumer of acoustics.

More than four decades have passed since the publication of the �rst edition of this 
book, and in the meantime many important insights and improvements in the techniques 
of room acoustical measurements and simulation have been introduced. The preceding 
editions of this book have tried to take regard of these progresses and thus in a way re�ect 
this development which was mainly made possible by the rapid progress in digital tech-
niques. This holds too for the present edition into which several matters of practical or 
fundamental interest have been included. One of them being the re�ection of a spherical 
wave from a plane, locally reacting boundary – in room acoustics a rather fundamental 
process. Another new section presents an elementary explanation of the �nite element 
method. In both cases, the theoretical fundamental has been laid long ago, but only the 
progresses in modern computer techniques have turned these methods into practical tools. 
A newly inserted component is, by the way, a section on ‘Virtual Reality’, the acoustical 
component of which is auralization.

To stay within the scope of this book, I have refrained from describing examples of 
completed rooms, apart from very few exceptions. As far as concert halls or opera theatres 
are concerned, the interested reader is referred to L.L. Beranek’s famous collection ‘Concert 
and Opera Halls’,1 which presents technical data, drawings and photos of as many as 67 
halls along with many interesting observations made by musicians, criticsand experts in 
acoustics and other areas.



xiv Preface

The literature on room acoustical subjects is so extensive that I have made no attempt 
to provide an exhaustive list of references. References have only been given in those cases 
where the work has been directly mentioned in the text, or in order to satisfy the possible 
demands for more detailed information.

Heinrich Kuttruff
Aachen, Germany

July 2016
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of America, 1996.
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Introduction

We all know that a concert hall, theatre, lecture room or a church may have good or poor 
‘acoustics’. As far as speech in these rooms is concerned, it is relatively simple to make some 
sort of judgement on their quality by rating the ease with which the spoken word is under-
stood. However, judging the acoustics of a concert hall or an opera house is generally more 
dif�cult, since it requires considerable experience, the opportunity for comparisons and a 
critical ear. Even so, the inexperienced cannot fail to learn about the acoustical reputation 
of a certain concert hall should they so desire, for instance, by listening to the comments of 
others or by reading the critical reviews of concerts in the press.

An everyday experience (although most people are not consciously aware of it) is that 
living rooms, of�ces, restaurants and all kinds of rooms for work can be acoustically satis-
factory or unsatisfactory. Even rooms which are generally considered insigni�cant or spaces 
such as staircases, factories, passenger concourses in railway stations and airports may 
exhibit different acoustical properties; they may be especially noisy or exceptionally quiet, 
or they may differ in the ease with which announcements over the public address system can 
be understood. That is to say, even these spaces have ‘acoustics’, which may be satisfactory 
or less than satisfactory.

Despite the fact that people are subconsciously aware of the acoustics to which they are 
daily subjected, there are only a few who can explain what they really mean by ‘good or 
poor acoustics’ and who understand factors which in�uence or give rise to certain acoustical 
properties. Even fewer people know that the acoustics of a room is governed by principles 
which are amenable to scienti�c treatment. It is frequently thought that the acoustical design 
of a room is a matter of chance, and that good acoustics cannot be designed in a room with 
the same precision as a nuclear reactor or space vehicle is designed. This idea is supported by 
the fact that opinions on the acoustics of a certain room or hall frequently differ as widely 
as the opinions on the literary qualities of a new book or on the architectural design of a 
new building. Furthermore, it is well known that sensational failures in this �eld do occur 
from time to time. These and similar anomalies add even more weight to the general belief 
that the acoustics of a room is beyond the scope of calculation or prediction, at least with 
any reliability, and hence the study of room acoustics is an art rather than an exact science.

In order to shed more light on the nature of room acoustics, let us �rst compare it to a 
related �eld: the design and construction of musical instruments. This comparison is not as 
senseless as it may appear at �rst sight, since a concert hall too may be regarded as a large 
musical instrument, the shape and material of which determine to a considerable extent 
what the listener will hear. Musical instruments – string instruments for instance – are, as is 
well known, not designed or built by scienti�cally trained acousticians but, fortunately, by 
people who have acquired the necessary experience through long and systematic practical 
training. Designing or building musical instruments is therefore not a technical or scienti�c 
discipline but a sort of craft or an ‘art’ in the classical meaning of this word.
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Nevertheless, there is no doubt that the way in which a musical instrument functions, that 
is, the mechanism of sound generation, the determining of the pitch of the tones generated 
and their timbre through certain resonances, as well as their radiation into the surround-
ing air, is all purely physical processes and can therefore be understood rationally, at least 
in principle. Similarly, there is no mystery in the choice of materials; their mechanical and 
acoustical properties can be de�ned by measurements to any required degree of accuracy. 
(How well these properties can be reproduced is another problem.) Thus, there is nothing 
intangible nor is there any magic in the construction of a musical instrument: many particu-
lar problems which are still unsolved will be understood in the near future. Then, one will 
doubtless be in a position to design a musical instrument according to scienti�c methods, 
that is, not only to predict its timbre but also to give, with scienti�c accuracy, details for its 
construction, all of which are necessary to obtain prescribed or desired acoustical qualities.

Room acoustics is different from musical instrument acoustics in that the end product 
is usually more costly by orders of magnitude. Furthermore, rooms are produced in much 
smaller numbers and have by no means geometrical shapes which remain unmodi�ed 
through the centuries. On the contrary, every architect, by the very nature of his profes-
sion, strives to create something which is entirely new and original. The materials used are 
also subject to the rapid development of building technology. Therefore, it is impossible to 
collect in a purely empirical manner suf�cient know-how from which reliable rules for the 
acoustical design of rooms or halls can be distilled. An acoustical consultant is confronted 
with quite a new situation with each task, each theatre, concert hall or lecture room to be 
designed, and it is of little value simply to transfer the experience of former cases to the new 
project if nothing is known about the conditions under which the transfer may be safely 
made.

This is in contrast to the making of a musical instrument where the use of unconventional 
materials as well as the application of new shapes is either �rmly rejected as an offence 
against sacred traditions or dismissed as a whim. As a consequence, time has been suf�cient 
to develop well-established empirical rules. And if their application happens to fail in one 
case or another, the faulty product is abandoned or withdrawn from service – which is not 
true for large rooms in an analogous situation.

For the above reasons, the acoustician has been compelled to study sound propagation in 
closed spaces with increasing thoroughness and to develop the knowledge in this �eld much 
further than in the case with musical instruments, even though the acoustical behaviour of 
a large hall is considerably more complex and involved. Thus, room acoustics has become 
a science during the past century and those who practise it on a purely empirical basis will 
fail sooner or later, like a bridge builder who waives calculations and relies on experience 
or empiricism.

On the other hand, the present level of reliable knowledge in room acoustics is not par-
ticularly advanced. Many important factors in�uencing the acoustical qualities of large 
rooms are understood only incompletely or even not at all. As will be explained below in 
more detail, this is due to the complexity of sound �elds in closed spaces – or, as may be 
said equally well – to the large number of ‘degrees of freedom’ which we have to deal with. 
Another dif�culty is that the acoustical quality of a room ultimately has to be proved by 
subjective judgements.

In order to gain more understanding about the sort of questions which can be answered 
eventually by scienti�c room acoustics, let us look over the procedures for designing the 
acoustics of a large room. If this room is to be newly built, some ideas will exist as to its 
intended use. It will have been established, for example, whether it is to be used for the 
showing of cine �lms, for sports events, for concerts or as an open-plan of�ce. One of the 
�rst tasks of the consultant is to translate these ideas concerning the practical use into 
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the language of objective sound �eld parameters and to �x values for them which he thinks 
will best meet the requirements. During this step, he has to keep in mind the limitations and 
peculiarities of our subjective listening abilities. (It does not make sense, for instance, to �x 
the duration of sound decay with an accuracy of 1% if no one can subjectively distinguish 
such small differences.) Ideally, the next step would be to determine the shape of the hall, to 
choose the materials to be used, to plan the arrangement of the audience, of the orchestra 
and of other sound sources, and to do all this in such a way that the sound �eld con�gura-
tion will develop, which has previously been found to be the optimum for the intended pur-
pose. In practice, however, the architect will have worked out already a preliminary design, 
certain features of which he considers imperative. In this case, the acoustical consultant has 
to examine the objective acoustical properties of the design by calculation, by geometric ray 
considerations, by model investigations or by computer simulation, and he will eventually 
have to submit proposals for suitable adjustments. As a general rule, there will have to be 
some compromise in order to obtain a reasonable result.

Frequently, the problem is refurbishment of an existing hall, either to remove architec-
tural, acoustical or other technical defects or to adapt it to a new purpose which was not 
intended when the hall was originally planned. In this case, an acoustical diagnosis has 
to be made �rst on the basis of appropriate measurement. A reliable measuring technique 
which yields objective quantities, which are subjectively meaningful at the same time, is an 
indispensable tool of the acoustician. The subsequent therapeutic step is essentially the same 
as described above: the acoustical consultant has to propose measures which would result in 
the intended objective changes in the sound �eld and consequently in the subjective impres-
sions of the listeners.

In any case, the acoustician is faced with a twofold problem: on the one hand, he has 
to �nd and apply the relations between the structural features of a room – such as shape, 
materials and so on – with the sound �eld which will occur in it, and on the other hand, he 
has to take into consideration as far as possible the interrelations between the objective and 
measurable sound �eld parameters and the speci�c subjective hearing impressions effected 
by them. Whereas the �rst problem lies completely in the realm of technical reasoning, it is 
the latter problem which makes room acoustics different from many other technical disci-
plines in that the success or failure of an acoustical design has �nally to be decided by the 
collective judgement of all ‘consumers’, that is, by some sort of average, taken over by the 
comments of individuals with widely varying intellectual, educational and aesthetic back-
grounds. The measurement of sound �eld parameters can replace to a certain extent system-
atic or sporadic questioning of listeners. But, in the �nal analysis, it is the average opinion of 
listeners which decides whether the acoustics of a room is favourable or poor. If the majority 
of the audience (or that part which is vocal) cannot understand what a speaker is saying, 
or thinks that the sound of an orchestra in a certain hall is too dry, too weak or indistinct, 
then even though the measured reverberation time is appropriate or the local or directional 
distribution of sound is uniform, the listener is always right; the hall does have acoustical 
de�ciencies.

Therefore, acoustical measuring techniques can only be a substitute for the investigation 
of public opinion on the acoustical qualities of a room and it will serve its purpose better the 
closer the measured sound �eld parameters are related to subjective listening categories. Not 
only must the measuring techniques take into account the hearing response of the listeners 
but the acoustical theory too will only provide meaningful information if it takes regard of 
the consumer’s particular listening abilities. It should be mentioned at this point that the 
sound �eld in a real room is so complicated that it is not open to exact mathematical treat-
ment. The reason for this is the large number of components which make up the sound �eld 
in a closed space regardless of whether we describe it in terms of vibrational modes or, if we 
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prefer, in terms of sound rays which have undergone one or more re�ections from boundar-
ies. Each of these components depends on the sound source, the shape of the room and on 
the materials from which it is made; accordingly, the exact computation of the sound �eld is 
usually quite involved. Supposing this procedure was possible with reasonable expenditure, 
the results would be so confusing that such a treatment would not provide a comprehensive 
survey and hence would not be of any practical use. For this reason, approximations and 
simpli�cations are inevitable; the totality of possible sound �eld data has to be reduced to 
averages or average functions which are more tractable and condensed to provide a clearer 
picture. Hence, we have to resort so frequently to statistical methods and models in room 
acoustics, whichever way we attempt to describe sound �elds. The problem is to perform 
these reductions and simpli�cations once again in accordance with the properties of human 
hearing, that is, in such a way that the remaining average parameters correspond as closely 
as possible to particular subjective sensations.

From this it follows that essential progress in room acoustics depends to a large extent on 
the advances in psychological acoustics. As long as the physiological and psychological pro-
cesses which are involved in hearing are not completely understood, the relevant relations 
between objective stimuli and subjective sensations must be investigated empirically – and 
should be taken into account when designing the acoustics of a room.

Many interesting relations of this kind have been detected and successfully investigated 
during the past few decades. But other questions which are no less important for room 
acoustics are unanswered so far, and much work remains to be carried out in this �eld.

It is, of course, the purpose of all efforts in room acoustics to avoid acoustical de�cien-
cies and mistakes. It should be mentioned, on the other hand, that it is neither desirable nor 
possible to create the ‘ideal acoustical environment’ for concerts and theatres. It is a fact 
that the enjoyment when listening to music is a matter not only of the measurable sound 
waves hitting the ear but also of the listener’s personal attitude and his individual taste, and 
these vary from one person to another. For this reason, there will always be varying shades 
of opinion concerning the acoustics of even the most marvellous concert hall. For the same 
reason, one can easily imagine a wide variety of concert halls with excellent, but neverthe-
less different, acoustics. It is this ‘lack of uniformity’ which is characteristic of the subject of 
room acoustics, and which is responsible for many of its dif�culties, but it also accounts for 
the continuous power of attraction it exerts on many acousticians.
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Chapter 1

Some facts on sound waves, 
sources and hearing

One of the purposes of this chapter is to introduce the physical quantities of sound and the 
laws by which they are related. The basic laws are illustrated by considering simple forms of 
sound wave, namely the plane wave and the spherical wave. These waves are easy to com-
prehend and do not require complicated mathematics. Moreover, they are important and 
interesting in their own right and can also serve as the basis of the more complicated sound 
�elds encountered in closed rooms. We can safely restrict our attention to sound propaga-
tion in gases because in room acoustics we are mostly concerned with air as a wave medium.

Other purpose of this chapter is to give a short description of the properties of human 
hearing and of the main sorts of sound and sound sources that we are concerned with in 
room acoustics.

First, we shall assume the sound propagation to be free of losses and ignore the effect of 
any obstacles such as walls, that is, we suppose the medium to be unbounded in all direc-
tions. Furthermore, we suppose that our medium is homogeneous and at rest. In this case, 
the velocity of sound is constant with reference to space and time. For air, its magnitude is

c = (331.4 + 0.6 · θ) m/s (1.1)

where θ is the temperature in degrees centigrade. We shall set c = 343 m/s.
In large halls, variations of temperature and hence of the sound velocity with time and 

position cannot be entirely avoided. Likewise, because of temperature differences and air 
conditioning, the air is not completely at rest, and so our assumptions are not fully ful-
�lled. But the effects that are caused by these inhomogeneities are so small that they can be 
neglected.

1.1 BASIC RELATIONS – THE WAVE EQUATION

In any sound wave, the particles of the medium undergo vibrations about their mean posi-
tions. Therefore, a wave can be described completely by indicating the instantaneous dis-
placements of those particles. It is more customary, however, to consider the velocity of 
particle displacement as a basic acoustical quantity rather than the displacement itself.

The vibrations in a sound wave do not take place at all points with the same phase. 
We can, in fact, �nd points in a sound �eld where the particles vibrate in opposite phase. 
This means that in certain regions, the particles are pushed together or compressed, and in 
other regions, they are pulled apart or rare�ed. Therefore, under the in�uence of a sound 
wave, variations of gas density and pressure occur, both of which are functions of time 
and  position. The difference between the instantaneous pressure and the static pressure is 
called the sound pressure.
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The changes in gas pressure caused by a sound wave in general occur so rapidly that 
heat cannot be exchanged between adjacent volume elements. Consequently, a sound wave 
causes adiabatic variations of the temperature, and so the temperature too can be considered 
as a quantity characterising a sound wave.

The various acoustical quantities are connected by some fundamental laws which enable 
us to set up a general differential equation governing sound propagation. The conservation 
of momentum is expressed by the relation

p
t
v

grad 0= −ρ ∂
∂

(1.2)

where p denotes the sound pressure, v a vector representing the particle velocity, t the time 
and ρ0 the static value of the gas density (about 1.2 kg/m3). The unit of sound pressure is 
Pascal: 1 Pascal (Pa) = 1 N/m2 = 1 kg/ms2. The one-dimensional version of this equation is

 
∂
∂

= −ρ ∂
∂

p
x

v
t
x

0  (1.3)

Furthermore, the requirement of mass conservation leads to

 vρ = − ∂ρ
∂t

div0 (1.4)

ρ being the variable part of the density. In these equations, it is assumed that the changes 
in the gas pressure and density, p and ρ, are small compared with the static values p0 and 
ρ0, respectively; furthermore, the absolute value of the particle velocity v is supposed to be 
much smaller than the sound velocity c.

Under the further assumption that we are dealing with an ideal gas, the following 
 relations hold among the sound pressure p, the density variation ρ and the temperature 
variation δθ:

 = κ ρ
ρ

= κ
κ −

⋅ δθ
θ +

p
p 1 2730 0

(1.5)

Here, κ is the adiabatic or isentropic exponent (κ = 1.4 for air) and θ is the temperature 
in degrees centigrade.

The particle velocity v and the variable part ρ of the density can be eliminated from 
Equations 1.2 through 1.5. This yields the differential equation

 ∆ = ∂
∂

c p
p

t
2

2

2 (1.6)

where

= κ
ρ

c
p2 0

0
 (1.7)

With this relation, the �rst part of Equation 1.5 becomes

p = c2 ρ (1.8)
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Δ (= ∇ 2 = div grad) is the Laplacian operator. In Cartesian coordinates x, y, z, this operator 
reads

 ∆ = ∂
∂

+ ∂
∂

+ ∂
∂

p
p

x
p

y
p

z

2

2

2

2

2

2

The differential equation (Equation 1.6) governs the propagation of sound waves in any 
lossless �uid and is therefore of central importance for almost all acoustical phenomena. 
We shall refer to it as the ‘wave equation’. It holds not only for sound pressure but also for 
density and temperature variations.

1.2 PLANE WAVES AND SPHERICAL WAVES

Now we assume that the acoustical quantities depend only on the time and on one single 
direction, which may be chosen as the x-direction of a Cartesian coordinate system. Then, 
Equation 1.6 reads

 
∂
∂

= ∂
∂

c
p

x
p

t
2

2

2

2

2 (1.9)

The general solution of this differential equation is

p(x,t) = F(ct − x) + G(ct + x)  (1.10)

where F and G are arbitrary functions, the second derivatives of which exist. The �rst term 
on the right represents a pressure wave travelling in the positive x-direction with a velocity c, 
because the value of F remains unaltered if a time increase δt is associated with an increase 
in the coordinate δx = cδt. For the same reason, the second term describes a pressure wave 
propagated in the negative x-direction. It follows that the constant c is the sound velocity.

Each term of Equation 1.10 represents a progressive ‘plane wave’. As shown in Figure 1.1a, 
the sound pressure p is constant in any plane perpendicular to the x-axis. These planes of 
constant sound pressure are called ‘wavefronts’, and any line perpendicular to them is a 
‘wave normal’.

According to Equation 1.2, the particle velocity has only one non-vanishing component, 
which is parallel to the gradient of the sound pressure, that is, to the x-axis. This means 

(a) (b)

Figure 1.1 Simple types of waves: (a) plane wave and (b) spherical wave.
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sound waves in �uids are longitudinal waves. The particle velocity may be obtained by 
applying Equation 1.2 in Equation 1.10:

[ ]=
ρ

− − +v x t
c

F ct x G ct x( , )
1

( ) ( )
0

(1.11)

As may be seen from Equations 1.10 and 1.11, the ratio of sound pressure to particle veloc-
ity in a plane wave propagated in the positive direction (G = 0) is frequency independent:

= ρp
v

c0 (1.12)

This ratio is called the ‘characteristic impedance’ of the medium. For air at 20°C, its 
value is

c 414
Pa
m s

414 kg/m s0
2ρ = =  (1.13)

If the wave is travelling in the negative x-direction, the ratio p/v is negative.
Of particular importance are harmonic waves in which the time and space dependence of 

the acoustical quantities, for instance, of the sound pressure follows a sine or cosine func-
tion. If we set G = 0 and specify F as a cosine function, we obtain an expression for a plane, 
progressive harmonic wave:

 ( , ) ˆ cos ( ) ˆ cosp x t p k ct x p t kx[ ] )(= − = ω −  (1.14)

with the arbitrary constants p̂ and k. Here the angular frequency

 ω = kc (1.15)

was introduced which is related to the temporal period

 = π
ω

T
2 (1.16)

of the harmonic vibration represented by Equation 1.14. At the same time, this equation 
describes a spatial harmonic vibration with the period

λ = π
k

2  (1.17)

This is the ‘wavelength’ of the harmonic wave. It denotes the distance in the x-direction 
where equal values of the sound pressure (or any other �eld quantity) occur. According to 
Equation 1.15, it is related to the angular frequency by

 λ = π
ω

=c c
f

2
(1.18)

where f = ω/2π = 1/T is the frequency of the vibration. It has the dimension second–1; its 
units are hertz (Hz), kilohertz (1 kHz = 103 Hz), megahertz (1 MHz = 106 Hz), and so on. 
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The quantity k = ω/c is the propagation constant or the (angular) wave number of the wave, 
and p̂ is the pressure amplitude.

A very powerful representation of harmonic oscillations and waves is obtained by apply-
ing the relation (with = −i 1 denoting the imaginary unit):

 

exp( ) cos sin

or

cos
1
2

exp( ) exp( ) and sin
1
2

exp( ) exp( )

ix x i x

x ix ix x
i

ix ix[ ] [ ]

= +

= + − = − −

(1.19)

This is the complex or symbolic notation of harmonic vibrations and will be employed 
quite frequently in this book. Accordingly, cos x can be considered as the real part Re{exp(ix)} 
and sin x as the imaginary part Im{exp(ix)} of the function exp(ix). Using this relation, 
Equation 1.14 can be written in the form

 { }[ ]= ⋅ ω −p x t p i t kx( , ) Re ˆ exp ( )

or, omitting the sign Re:

[ ]= ⋅ ω −p x t p i t kx( , ) ˆ exp ( )  (1.20)

The complex notation has several advantages over the real representation of Equation 1.14. 
Differentiation or integration with respect to time is equivalent to multiplication or division 
by iω, respectively. Furthermore, only the complex notation allows a clear-cut de�nition of 
impedances and admittances (see Section 2.1). It fails, however, in all cases where vibra-
tional quantities are to be multiplied or squared. If doubts arise concerning the physical 
meaning of an expression, it is advisable to recall the origin of this notation, that is, to take 
the real part of the expression.

As with any complex quantity, the complex sound pressure in a plane wave may be repre-
sented in a rectangular coordinate system with the horizontal and the vertical axis correspond-
ing to the real and the imaginary part of the pressure, respectively. The quantity is depicted as an 
arrow, often called ‘phasor’, pointing from the origin to the point that corresponds to the value 
of the pressure (see Figure 1.2). The length of this arrow corresponds to the magnitude of the 
complex quantity, while the angle it includes with the real axis is its phase angle or ‘argument’ 
(abbreviated as arg p). In the present case, the magnitude of the phasor represented by its length 
equals the amplitude p̂ of the oscillation, the phase angle depends on time t and position x:

 arg p = ωt − kx

This means that, for a �xed position, the arrow or 
phasor rotates around the origin with an angular veloc-
ity ω, which explains the expression ‘angular frequency’.

So far, it has been assumed that the wave medium is 
free of losses. If this is not the case, the pressure amplitude 
does not remain constant in the course of wave propaga-
tion but decreases according to an exponential law. Then 
Equation 1.20 is modi�ed in the following way:

 [ ]= − ⋅ ω −p x t p mx i t kx( , ) ˆ exp( / 2) exp ( ) (1.21)

Re(p)

|p|

Im(p)

arg(p)

Figure 1.2 Phasor representation of a 
complex quantity p.
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We can even use the representation of Equation 1.20 if we conceive the wave number k as a 
complex quantity with half the attenuation constant m as its imaginary part:

= ω −k
c

i
m
2

(1.22)

Now we need to �nd a representation of a plane wave propagating into an arbitrary direc-
tion indicated by a unit vector n with the components cos α, cos β and cos γ, where α, β 
and γ are the angles which n makes with the three coordinate axes (see Figure 1.3); they have 
to ful�l the condition cos2α + cos2β + cos2γ = 1. On the contrary,

 x · cos α + y · cos β + z · cos γ = const

is the equation of a plane with the normal n, the constant is the distance of the plane from 
the origin of the coordinate system. Hence the plane wave is represented by

 [ ] ( )= ω − α − β − γ = ω − p x y z t p i t kx ky kz p i t knr( , , , ) ˆ exp ( cos cos cos ) ˆ exp  (1.23) 

where nr is the scalar product of the vectors n and r = (x,y,z).
Another simple wave type is the spherical wave in which the surfaces of constant pres-

sure, that is, the wave fronts, are concentric spheres (see Figure 1.1b). In their common 
centre, we have to imagine some very small source which introduces or withdraws �uid. 
Such a source is called a ‘point source’. The appropriate coordinates for this geometry are 
polar coordinates (see Figure 2.13). Because of the spherical symmetry the sound pressure 
is independent of the angles θ and ϕ; the relevant space coordinate is the distance r from 
the  centre. Accordingly, the differential equation does not contain any angular deriva-
tions of the pressure. Thus, transformed into this coordinate system, the wave equation 
(Equation 1.6) reads:

 ∂
∂

+ ∂
∂

= ∂
∂

p
r r

p
r c

p
t

2 12

2 2

2

2
 (1.24)

A simple solution of this equation is

 = ρ
π

−



p r t

r
Q t

r
c

( , )
4

0 �  (1.25)

It represents a spherical wave produced by a point source at r = 0 with the ‘volume veloc-
ity’ Q, which is the rate (in m3/s) at which �uid is expelled by the source. The overdot means 
partial differentiation with respect to time. Again, the argument t − r/c indicates that any 
disturbance created by the sound source is propagated outward with velocity c, its strength 
decreasing as 1/r. Reversing the sign in the argument of Q�  would result in the unrealistic 
case of an in-going wave.

Now, the only non-vanishing component of the particle velocity is the radial one, which 
is calculated by applying Equation 1.2 to Equation 1.25:

 =
π

−



 + −











r

Q t
r
c

r
c

Q t
r
c

rv
1

4 2
�  (1.26)
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If the volume velocity of the source varies according to Q(t) = Q̂  exp(iωt), we obtain from 
Equation 1.25

 p r t
i

r
Q i t kr( , )

4
ˆ exp0 ( )= ωρ

π
⋅ ω −   (1.27)

This expression represents – with k = ω/c – the sound pressure in a harmonic spherical 
wave. The particle velocity after Equation 1.26 is

 v
p
c ikr

r 1
1

0
=

ρ
+



  (1.28)

This formula indicates that the ratio of sound pressure and particle velocity in a spherical 
sound wave depends on the distance r and the frequency ω = kc. Furthermore, it is complex, 
that is, between both quantities there is a phase difference. For kr >> 1, that is, for distances 
which are large compared with the wavelength, the ratio p/vr tends asymptotically to ρ0c, 
the characteristic impedance of the medium.

A plane wave is an idealisation which does not exist in the real world, at least not in its 
pure form. However, a sound wave travelling within a rigid-walled tube can come very close 
to a plane wave if the lateral dimensions of the tube are signi�cantly smaller than the acous-
tic wavelength. Furthermore, a limited region of a spherical wave may also be considered 
as a good approximation to a plane wave, provided the distance r from the centre is large 
compared with all wavelengths involved, that is, kr >> 1; see Equation 1.28.

An exactly spherical wave can be generated – at least in principle – by a pulsating sphere, 
that is, by a sound source with spherical symmetry, the diameter of which varies with time 
in a regular or irregular manner. Another way to produce spherical waves is to ‘simulate’ 
the function of a point source, namely just to expel or to suck in small amounts of the �uid. 
This can be achieved, for instance, by a small pulsating sphere or by a loudspeaker mounted 
into one side of a small airtight box. Most sound sources, however, do not behave as point 
sources. In these cases, the sound pressure depends not only on the distance r but also on 
the direction, which can be characterised by a polar angle θ and an azimuth angle ϕ (see 
Figure 2.10). For distances exceeding a characteristic range, which depends on the sort of 
sound source and the frequency, the sound pressure is given by

( )( ) ( )θ φ = Γ θ φ ⋅ ω − p r t
A
r

t kr, , , , exp i (1.29)

where the ‘directional factor’ Γ(θ,ϕ) is normalised so as to make Γ = 1 for its absolute 
maximum. A is a constant.

1.3 ENERGY DENSITY AND INTENSITY, RADIATION

As shown before, a sound wave is associated with variations in the pressure within a 
medium and with vibrations of the particles of which it consists. Both imply an increase in 
the mechanical energy, which the sound wave carries away from the source. The strength 
of this energy �ow is characterised by the ‘intensity’, sometimes also called the ‘energy �ux 
density’. Since the energy transport has a certain direction, we represent the intensity by a 
vector symbol, I. On the contrary, the energy content of the sound wave is characterised by 
the energy per unit volume, called the ‘energy density’, which will be denoted by w in the 
following.
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The sound intensity is de�ned as the sound energy passing per second through an imag-
ined window of unit area which is perpendicular to the incident sound wave. This picture 
leads us immediately to a �rst relation between the intensity and the energy density. In time 
dt the volume cdt is travelling through the window (c = sound velocity), carrying the energy 
wcdt = Idt, or

 I = cw (1.30)

where I denotes the magnitude of the intensity vector I.
Suppose a force F is acting on the matter contained in a volume element, enforcing a shift 

ds of its boundary. Then the work done by the force is given by the scalar product of both 
vectors, Fds, the rate of work is Fv. By replacing the force with the force per unit area, that is, 
with the pressure p (which, by the way, is omnidirectional), we arrive at the energy supplied 
to the �uid per unit time and area, that is, at the instantaneous intensity:

 I = pv (1.31)

A second relation between the energy density and the intensity is supplied by the principle 
of energy conservation, which in the present case states that

 Idiv
w
t

= − ∂
∂

(1.32)

This equation tells us that the out�ow of energy from a volume element must be compen-
sated for by a decrease in its energy content. According to the rules of vector analysis, we 
can write

div I = div(pv) = p div v + v grad p

The gradient and the divergence on the right can be expressed by the time derivatives of 
the particle velocity and of the pressure (see Section 1.1) with the result:

 = −
ρ

∂
∂

− ρ ∂
∂

I
v

div
1

2 20
2

2
0

2

c
p
t t

or, by using Equation 1.32, apart from an additive constant

v=
ρ

+ ρ =w
c

p v v
1

2 2
with

0
2

2 0 2 2 2 (1.33)

The �rst term on the right side represents the potential energy density, whereas the second 
one is the kinetic energy density.

For plane waves, we can safely replace the intensity vector I with its magnitude I. In this 
case, the sound pressure and the longitudinal component of the particle velocity are related by 
p = ρ0cv, and the same holds for a spherical wave at a large distance from the centre (kr >> 1, 
see Equation 1.28). Hence, we can express the particle velocity in terms of the sound pressure. 
Then the energy density and the intensity (according to Equation 1.30) are

 =
ρ

=
ρ

w
p
c

I
p

c
and

2

0
2

2

0
(1.34)
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Stationary signals which are not limited in time may be characterised by time averages 
over a suf�ciently long time ta. We introduce the root mean square of the sound pressure by

 ∫ ( )=












=p
t

p t p
a

ta

1
drms

2

0

1 2

2
1/2

(1.35)

where the overbar is a shorthand notation indicating time averaging. Then Equation 1.34 
yields

 =
ρ

=
ρ

w
p

c
I

p
c

andrms
2

0
2

rms
2

0
(1.36)

Finally, for a harmonic sound wave with the sound pressure amplitude p̂, prms equals 
p̂ 2, which leads to

 
� �

=
ρ

=
ρ2

and
2

2

0
2

2

0

w
p

c
I

p
c

 (1.37)

The intensity in a spherical wave is given by

 =
π

I
P
r4 2  (1.38)

again r is the distance from the sound source. By inserting p Q rˆ / 40
� = ρ ω π  from Equation 1.27 

into Equation 1.36, one obtains:

 I
r c

Q P
Q

c32
ˆ and

ˆ

8
0
2 2

2 2 0
2 2

= ρ
π

ω = ρ ω
π

(1.39)

If, on the other hand, the power output P of a point source is given, the root mean square 
of the sound pressure at distance r from the source is

 = ρ
π

p
r

cP1
4

rms
0 (1.40)

1.4 SIGNALS AND SYSTEMS

Any acoustical signal can be unambiguously described by its time function s(t), where s 
denotes the sound pressure, the density variations in a sound wave or a component of par-
ticle velocity, for instance. If this function is a sine or cosine function – or an exponential 
function with imaginary argument – we speak of a harmonic signal, which is closely related 
to the harmonic waves as introduced in Section 1.2. Harmonic signals and waves play a key 
role in acoustics although real sound signals are almost never harmonic but show a much 
more complicated time dependence. The reason for this apparent contradiction is the fact 
that virtually all signals can be considered as superposition of harmonic signals. This is the 
fundamental statement of the famous Fourier theorem.

The Fourier theorem can be formulated as follows: Let s(t) be a real, non-periodic time 
function describing, for example, the time variations of the sound pressure or of the volume 
velocity. We suppose that this function is suf�ciently steady (a requirement which is ful�lled 
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in all practical cases), and that the integral s t t( ) d
2[ ]∫−∞

∞  has a �nite value. Then the time 
function can be represented as a superposition of harmonic oscillations with continuously 
varying frequencies f, each of them being represented by an exponential with imaginary 
argument:

 ∫ ( ) ( )( ) = π
−∞

∞

exp 2 ds t S f ift f (1.41)

The amplitudes of these oscillations are given by a function S(f), called the ‘spectral func-
tion’ or the ‘amplitude spectrum’, or simply the ‘spectrum’ of the signal s(t). It is related to 
the function s(t) by

 ∫ ( )( )= − π
−∞

∞

( ) exp 2 dS f s t ift t (1.42)

In general, the spectral function is complex:

( ) ( ) ( )= ψ expS f S f i f  (1.43)

The absolute value |S(f)| and the function ψ(f) are called the amplitude spectrum and the 
phase spectrum of the signal s(t). A few examples of time functions and their amplitude 
spectra are shown in Figure 1.4.

Equation 1.41 is called the Fourier transform of a given function, while Equation 1.42 
represents the inverse Fourier transform. It can easily be shown that S(−f) = S*(f), where the 
asterisk denotes the transition to the complex conjugate function. S(f) and s(t) are different 
but equivalent representations of a signal.

The Fourier theorem assumes a somewhat different form if s(t) is a periodic function with 
the period T, that is, if s(t) = s(t + T), then the integral in Equation 1.41 has to be replaced 
by the ‘Fourier series’:

 ∑( ) = π





=−∞

∞

exp
2

s t S
int

T
n

n

(1.44)

with the coef�cients

∫ ( )= − π





1
exp

2
d

0

S
T

s t
int

T
tn

T

(1.45)

where n is an integer. The continuous spectral function S(f) has changed now into a set of 
discrete ‘Fourier coef�cients’, for which S Sn n

*=− . Hence a periodic signal consists of discrete 
harmonic vibrations, the frequencies of which are multiples of a fundamental frequency 1/T. 
These components are called ‘partial oscillations’ or ‘harmonics’, the �rst harmonic being 
identical with the fundamental oscillation (n = 0).

A very common task is to determine the spectrum of a signal s(t), that is, to perform a 
spectral analysis. If s(t) is given by a mathematical expression, one will try to compute the 
integrals in Equation 1.42 or Equation 1.45. If the signal s(t) is obtained by measurement, 
for instance, as the output voltage of a microphone a coarse form of spectral analysis can be 
carried out by passing the signal through a set of bandpass �lters with pass bands covering 
the whole frequency range of interest. Usually, such �lters have ratios of the upper and lower 
cut-off frequencies of 2:1 (octave �lters) or 5:4 (third octave �lters).
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For a more precise spectral analysis, the continuous function s(t) must be ‘sampled’, that 
is, it is replaced with a sequence of samples taken from s(t) at equidistant times tn = t0 + nΔt 
with n = 0, 1, …, N – 1:

 s0, s1, s2, …, sN–2, sN–1, s0, s1,…

The sequence is periodic, that is, after N elements it is repeated. Then the Fourier coef-
�cients are given by

 …∑ ( )= − π



 = −

=

−

exp
2

N
0, 1, 2 1

0

1

S s
inm

m Nm n

n

N

(1.46)

The sequence of these coef�cients, which is also periodic with the period N, is called the 
discrete Fourier transform (DFT) of sn. The inverse transformation reads

 …∑ ( )= π



 = −

=

−
1

exp
2

N
0, 1, 2 1

0

1

S
N

s
inm

m Nm n

n

N

(1.47)

Nowadays, all these operations are most conveniently performed by means of a digital 
computer. A particularly ef�cient procedure of computing spectral functions is the ‘fast 
Fourier transform’ (FFT) algorithm (see, e.g., work by Bracewell1).

Of course, all the formulae above can be written with the angular frequency ω = 2πf 
instead of the frequency f. A real notation of the formulae, using cosine and sine functions 
instead of exponentials, is also possible. For this purpose, one just has to separate the real 
parts from the imaginary parts in the above equations.

Stationary and aperiodic time functions cannot be analysed by Equation 1.42 because 
they are not limited in time and therefore the integral would not converge. Often such pro-
cesses have a more or less random character. What we can do is to consider a section of the 
signal with the duration T0. For this, the spectral function S fT ( )0  is well de�ned and can be 
evaluated in the described way. The ‘power spectrum’ of the whole signal is then given by

 W f
T

S f S f
S

TT
T T

T
lim

1
lim

0

*

0

2

0
0 0

0( ) ( ) ( )= =
→∞

(1.48)

(The asterisk denotes the conjugate complex quantity.) The power spectrum, which is an 
even function of the frequency, does not contain all the information of the original time 
function, because it is based on the absolute value of the spectral function only, whereas all 
phase information has been eliminated. Inserted into Equation 1.41, it does not restore the 
time function but instead yields another important time function, called the ‘autocorrelation 
function’ of it:

 ∫ ∫( ) ( ) ( ) ( )( )φ τ = ⋅ π τ = ⋅ π τ
−∞

∞ ∞

exp 2 d 2 cos 2 d
0

W f if f W f f fss (1.49)

The time variable has been denoted by τ in order to indicate that it is not identical with the 
real time. In the usual de�nition of the autocorrelation function, it appears as a time shift:

 ∫( ) ( ) ( )φ τ = ⋅ + τ = ⋅ + τ
→∞

−
T

s t s t t s t s tss
T

T

T

lim
1

d ( ) ( )
0

2

2

0

0

0

(1.50)



12 Room acoustics

(As before, the overbar means time averaging.) The autocorrelation function characterises 
the statistical similarity of a signal at time t and the same signal at a different time t + τ. For 
signals with �nite energy content time averaging would be meaningless; hence, a modi�ed 
expression of the autocorrelation function is used:

 ∫( ) ( ) ( )φ τ = ⋅ + τ
∞

s t s t tss d
0

(1.51)

Since ϕss is the Fourier transform of the power spectrum, the latter is also obtained by 
inverse Fourier transformation of the autocorrelation function:

 ∫ ∫( ) ( ) ( )( ) ( )= φ τ ⋅ − π τ τ = φ τ ⋅ π τ τ
−∞

∞ ∞

exp 2 d 2 cos 2 d
0

W f if fss ss (1.52)

Equations 1.49 and 1.52 are the mathematical expressions of the theorem of Wiener and 
Khintchine: power spectrum and autocorrelation function are Fourier transforms of each 
other.

If s(t + τ) in Equation 1.50 is replaced with s′(t + τ), where s′ denotes a time function 
 different from s, one obtains the ‘cross-correlation function’ of the two signals s(t) and s′(t):

 lim
1

d ( ) ( )ss
0

2

2

0

0

0

T
s t s t t s t s t

T
T

T

∫( ) ( ) ( )φ τ = ′ + τ = ′ + τ′
→∞

−

(1.53)

The cross-correlation function provides a measure of the statistical similarity of the two 
functions s and s′. It is closely related to the correlation coef�cient

 
( ) ( )
( ) ( )

Ψ =
⋅ ′

⋅ ′
ss'

2 2

s t s t

s t s t
 (1.54)

which may vary between +1 and −1. If Ψ = 0, the functions s(t) and s′(t) are said to be 
uncorrelated, the signals they represent are incoherent. It should be noted, however, that 
a vanishing correlation coef�cient is only a necessary condition for incoherence but not a 
suf�cient one.

In a certain sense, a sine or cosine signal can be considered as an elementary signal; it is 
unlimited in time and steady in all its derivatives, and its spectrum consists of a single line. 
The counterpart of it is Dirac’s delta function δ(t): it has one single line in the time domain, 
so to speak, whereas its amplitude spectrum is constant for all frequencies, that is, S(f) = 1 
for the delta function. This leads to the following representation:

 ∫ ( )( )δ = π
→∞

−

t
f

ft f
f

f

f

lim
1

exp 2 d
0

2

2

0

0

0

 (1.55)

The delta function has the following fundamental property:

 ∫( ) ( ) ( )= τ δ − τ τ
∞

∞

s t s t d  (1.56)
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where s(t) is any function of time. Accordingly, any signal can be considered as a close 
succession of very short pulses, as indicated in Figure 1.3. Especially, for s(t) ≡ 1 we obtain

∫ ( )δ τ τ =
−∞

∞

d 1 (1.57)

Since the delta function δ(t) is zero for all t ≠ 0 it follows from Equation 1.57 that its value 
at t = 0 must be in�nite.

Now consider a linear and time-independent but otherwise unspeci�ed transmission sys-
tem. Examples of acoustical transmission systems are all kinds of ducts (air ducts, muf�ers, 
wind instruments, etc.) and resonators. Likewise, any two points in an enclosure may be 
considered as the input and output terminal of an acoustic transmission system. Linearity 
means that multiplying the input signal with a constant factor results in an output signal 
which is augmented by the same factor. The properties of such a system are completely 
characterised by the ‘impulse response’ g(t), that is, the output signal which is the response 
to an impulsive input signal represented by the Dirac function δ(t) (see Figure 1.3). Since 
the response cannot precede the excitation, the impulse response of any causal system must 
vanish for t < 0. If g(t) is known, the output signal s′(t) with respect to any input signal s(t) 
can be obtained by replacing the Dirac function in Equation 1.56 with its response, that is, 
with g(t):

 ∫ ∫( ) ( ) ( ) ( ) ( )′ = τ − τ τ = τ − τ τ
−∞

∞

−∞

∞

s t s g t g s td d (1.58)

This operation is known as the convolution of the functions s and g. A common shorthand 
notation of it is

 s′(t) = s(t) ∗ g(t) = g(t) ∗ s(t) (1.59)

Equation 1.58 has its analogue in the frequency domain, which looks even simpler. Let 
S(f) be the complex spectrum of the input signal s(t) of our linear system, then the spectrum 
of the resulting output signal will be

 S ′(f) = G(f) · S(f) (1.60)

s(t)

t

Figure 1.3 Continuous function as the limiting case of a close succession of short impulses.
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The complex function G(f) is the ‘transmission function’ or ‘transfer function’ of the 
 system; it is related to the impulse response g(t) by the Fourier transformation:

 ∫( ) ( )( )= − π
−∞

∞

exp 2 dG f g t ift t (1.61)

 ∫ ( ) ( )( ) = π
−∞

∞

exp 2 dg t G f ift f (1.62)

with G(−f) = G*(f) since g(t) is a real function. The transfer function G(f) has also a direct 
meaning: if a harmonic signal with frequency f is applied to a transmission system, its ampli-
tude will be changed by the factor |G(f)| and its phase will be shifted by the phase angle of G(f).

1.5 SOUND PRESSURE LEVEL AND SOUND POWER LEVEL

In the frequency range in which our hearing is most sensitive (500–5000 Hz), the inten-
sity of the threshold of sensation and of the threshold of pain in hearing differ by about 
13 orders of magnitude. For this reason, it would be impractical to characterise the strength 
of a sound signal by its sound pressure or its intensity. Instead, a logarithmic quantity, the 
‘sound pressure level’ is generally used for this purpose, is de�ned by

 SPL 20log dB10
rmsp
p0

=






 (1.63)

In this de�nition, prms denotes the ‘root-mean-square’ pressure, as introduced in 
Section 1.3. The quantity p0 is an internationally standardised reference pressure; its value 
is 2  ×10−5 Pa, which corresponds roughly to the normal hearing threshold at 1000 Hz. 
The ‘decibel’ (abbreviated as dB) is not a unit in physical sense but is used rather to recall 
the above level de�nition. Strictly speaking, prms as well as the SPL (sound pressure level) are 
de�ned only for stationary sound signals since they both imply an averaging process.

Since there is a simple relation between the sound pressure and the intensity, SPL can also 
be expressed by the intensity using Equation 1.36 (second part):

 SPL 10log 10log
I
I

dB10
rms
2

0
2 10

0

p
p

=






≈ 



  (1.64)

with I0 = 10−12 watts/m2. According to Equation 1.63, the strength of two different sound 
�elds or signals can be compared by their level difference:

 SPL 20log dB10
rms

rms

1

2

p
p

∆ =






 (1.65)

t

δ (t) g (t)

t

Linear system OutputInput

Figure 1.4  Impulse response of a linear system.
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It is often convenient to express the sound power delivered by a sound source in terms of 
the ‘sound power level’, de�ned by

PL 10log dB10
0

P
P

= 





 (1.66)

where the reference power is P0 = 10–12 W. Using this quantity, the sound pressure level 
produced by a point source with power P in the free �eld can be expressed as follows 
(see Equation 1.40):

 = − 





− =SPL PL 20log 11 dB with 1 m10
0

0
r
r

r  (1.67)

1.6 SOME PROPERTIES OF HUMAN HEARING

Since the ultimate consumer of all room acoustics is the listener, it is important to consider 
at least a few facts relating to aural perception. More information may be found in the work 
by Zwicker and Fastl2 or by Blauert,3 for instance.

One of the most obvious facts of human hearing is that the ear is not equally sensitive 
to sounds of different frequencies. Generally, the loudness at which a sound is perceived 
depends, of course, on its objective strength, that is, on the SPL. Furthermore, it depends in 
a complicated manner on the spectral composition of the sound signal, on its duration and 
on several other factors. A widely used measure for the subjective impression of loudness 
is the ‘loudness level’, which is SPL of a 1000 Hz tone, which is heard equally loud as the 
sound to be characterised. The unit of the loudness level is the ‘phon’.

Figure 1.5 presents the contours of equal loudness level for sinusoidal sound signals 
which are presented to a listener in the form of frontally incident plane waves. The 
numbers next to the curves indicate the loudness level. The lowest, dashed curve which 
corresponds to a loudness level of 3 phons, marks the threshold of hearing. According 
to this diagram, a pure tone with an SPL of 40 dB and a frequency of 1000 Hz has by 
de�nition a loudness level of 40 phons. However, at 100 Hz its loudness level would be 
only 24 phons, whereas at 50 Hz it would be almost inaudible.

Using these curves, the loudness level of any pure tone can be determined from its fre-
quency and its SPL. In order to simplify this somewhat tedious procedure, electrical instru-
ments have been constructed which measure the sound pressure level. Basically, they consist 
of a calibrated microphone which converts the sound into an electrical signal, ampli�ers 
and, most important, a weighting network, the frequency-dependent attenuation of which 
approximates the contours of equal loudness. Several weighting functions are in use and 
have been internationally standardised; the most common of them is the A-weighting curve. 
Consequently, the result of such a measurement is not the loudness level in phon, but the 
‘A-weighted sound pressure level’ in dB(A).

When such an instrument is applied to a sound signal with more complex spectral struc-
ture, the result may deviate considerably from the true loudness level. The reason for such 
errors is the fact that, in our hearing, weak spectral components are partially or completely 
masked by stronger ones and that this effect is not modelled in the above-mentioned sound 
level meters. Apart from masking in the frequency domain, temporal masking may occur 
in non-stationary signals. In particular, a strong time-variable signal may mask a subse-
quent weaker signal. This property is very important in listening in closed spaces, as will be 
described in more detail in Chapter 7.
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One misleading property of the loudness level is its unsatisfactory relation to our subjec-
tive perception. In fact, doubling the subjective sensation of loudness does not correspond 
to twice the loudness level in phon as should be expected. Instead, it corresponds only to 
an increase of about 10 phons. This shortcoming is avoided by another loudness scale with 
‘sone’ as a unit. The sone scale is de�ned in such a way that 40 phons correspond to 1 sone, 
and every increase in the loudness level by 10 phons corresponds to doubling the number of 
sones. Nowadays, instruments as well as computer programs are available by which loud-
ness of almost any type of sound signal can by determined, taking into account the above-
mentioned masking effects.

Another important property of our hearing is its ability to detect the direction from which 
a sound wave is arriving, and thus to localise the direction of sound sources. For sound inci-
dence from a lateral direction, it is easy to understand how this effect is brought about: an 
originally plane or spherical wave is distorted by the human head, by the pinnae and – to a 
minor extent – by the shoulders and the trunk. This distortion depends on sound frequency 
and the direction of incidence. As a consequence, the sound signals at both ears show char-
acteristic differences in their amplitude and phase spectrum or, to put it more simply, at 
lateral sound incidence one ear is within the shadow of the head but the other is not. The 
interaural amplitude and phase differences caused by these effects enable our hearing to 
reconstruct the direction of sound incidence.

Quantitatively, the changes a sound signal undergoes on its way to the entrance of the 
ear canal can be described by the so-called head-related transfer functions (HRTFs), which 
characterise the transmission from a very remote point source to the ear canal, for instance, 
its entrance. Such transfer functions have been measured by many researchers.3 As an exam-
ple, Figure 1.6 shows HRTFs for 11 lateral angles of incidence φ relative to the sound pres-
sure at frontal sound incidence (φ = 0º); Figure 1.6a presents the magnitude expressed in dB, 
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while Figure 1.6b plots the group delays, that is, the functions (1/2π)(dψ/df) where ψ is the 
phase of the HRTF. By comparing the curves of φ = 90º and 270º, for instance, the shadow-
ing effect of the head becomes obvious. It should be noted that the HRTF may show indi-
vidual variations due to differences in the sizes and shapes of human heads, pinnae, and so 
on. Beyond these differences, they show common and characteristic features.

If the sound source is situated within the vertical symmetry plane, this explanation fails 
since then the source produces equal sound signals at both ear canals. But even then the ear 
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transfer functions show characteristic differences for various elevation angles of the source, 
and it is commonly believed that the way in which they modify a sound signal enables us to 
distinguish whether a sound source is behind, above or in front of our head.

These considerations are valid only for the localisation of sound sources in a free sound 
�eld. In a closed room, however, the sound �eld is made up of many sound waves propagat-
ing in different directions, and accordingly, matters are more complicated. We shall discuss 
the subjective effects of more complex sound �elds as they are encountered in room acous-
tics in Chapter 7.

1.7 SOUND SOURCES

In room acoustics, we are mainly concerned with three types of sound sources: the human 
voice, musical instruments and technical noise sources. (We do not consider loudspeakers 
here because they reproduce sound signals originating from other sources. More will be said 
about loudspeakers in Chapter 10.)

It is a common feature of all these sources that the sounds they produce have a more or 
less complicated spectral structure – apart from some rare exceptions. In fact, it is the spec-
tral content of speech signals (phonemes) which gives them their characteristics. Similarly, 
the timbre of musical sounds is determined by their spectra.

The signals emitted by most musical instruments, in particular, by string and wind instru-
ments, including the organ, are nearly periodic. Therefore, their spectra consist of many 
discrete Fourier coef�cients (see Section 1.4), which may be represented by equally spaced 
vertical lines. The time signals themselves are mixtures of harmonic vibrations with fre-
quencies which are integral multiples of the fundamental frequency 1/T (T = period of the 
signal). The component with the lowest frequency 1/T is the fundamental tone, and the 
higher order components are called overtones. It is the fundamental which determines what 
we perceive as the pitch of a tone. This means that our ear receives many harmonic compo-
nents of quite different frequencies even if we listen to a single musical tone. Likewise, the 
spectra of many speech sounds, in particular, vowels and voiced consonants, have a line 
structure. As an example, Figure 1.7 presents the time function and the amplitude spectrum 
of three vowels.4 There are some characteristic frequency ranges in which the overtones are 
especially strong. These are called the ‘formants’ of the vowel.

For normal speech, the fundamental frequency lies between 50 and 350 Hz and is identi-
cal to the frequency at which the vocal chords vibrate. The total frequency range of con-
versational speech may be seen from Figure 1.7, which plots the long-time power spectrum 
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of continuous speech, both for male and female speakers (Figure 1.8).5 The high-frequency 
energy is mainly due to the consonants, for instance, to fricatives such as /s/ or /f/, or to plo-
sives such as /p/ or /t/. Since consonants are of particular importance for the intelligibility of 
speech, a room or hall intended for speech, as well as a public address system, should trans-
mit the high frequencies with great �delity. The transmission of the fundamental vibration, 
on the other hand, is less important since our hearing is able to reconstruct it if the sound 
signal is rich in higher harmonics (virtual pitch).

Among musical instruments, large pipe organs have the widest frequency range, with 
the fundamental tone reaching from 16.5 Hz to more than 8 kHz. The piano follows with 
a tonal range corresponding to about 7¼ octaves. (One octave corresponds to a frequency 
ratio of 2:1.) The frequencies of most of the remaining instruments lie somewhere within 
this range. However, some instruments, especially percussion instruments, produce sound 
components with even higher frequencies. It should be noted that the given numbers refer to 
the fundamentals only. Since the spectra of almost all instruments contain higher harmonics 
which are responsible for the timbre of the sounds they produce, the bandwidth of any acous-
tical transmission system, whether it is a room or an electroacoustic system, should be able 
to transmit frequency components with up to 15 kHz at least. Fortunately, it is not the entire 
frequency range which is the responsibility of the acoustical engineer. At 10 kHz and above, 
the sound attenuation in air is so dominant that the in�uence of the boundaries on the propa-
gation of high-frequency sound components can safely be neglected. At frequencies lower 
than 50 Hz, geometrical considerations are almost useless because of the large wavelengths 
of the sounds; furthermore, at these frequencies it is almost impossible to assess correctly the 
sound absorption by vibrating panels or walls and hence to control the reverberation. This 
means that, in this frequency range too, room acoustical design possibilities are very limited. 
On the whole, it can be stated that the frequency range relevant to room acoustics reaches 
from 50 to 10 000 Hz, the most important part being between 100 and 5000 Hz.

The acoustical power output of the sound sources as considered here is relatively low by 
everyday standards. Table 1.1 lists a few typical data. The human voice generates a sound 
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power ranging from 0.001 μW (whispering) to 1000 μW (shouting), the power produced 
in conversational speech is of the order of 10 μW, corresponding to a sound power level 
of 70 dB. The power of a single musical instrument may lie in the range from 10 μW to 
100 mW. A full symphony orchestra can easily generate a sound power of 10 W in fortis-
simo passages. It may be added that the dynamic range of most musical instruments is about 
30 dB (woodwinds) to 50 dB (string instruments). A large orchestra can cover a dynamic 
range of 100 dB.

An important property of the human voice and musical instruments is their directionality, 
that is, the fact that they do not emit sound with equal intensity in all directions. In speech 
this is because of the ‘sound shadow’ cast by the head. The lower the sound frequency, the 
less pronounced is the reduction of sound intensity by the head, because with decreasing fre-
quencies the sound waves are increasingly diffracted around the head. In Figure 1.9a and b, 
the distribution of the relative SPL for different frequency bands is plotted on a horizon-
tal plane and a vertical plane, respectively. These curves are obtained by �ltering out the 
respective frequency bands from natural speech; the direction denoted by 0° is the frontal 
direction.

Musical instruments usually exhibit a pronounced directionality because of the dimensions 
of their sound-radiating surfaces or openings, which, in the interest of high ef�ciency, are 
often comparable to or even larger than the wavelengths of the sounds they are to generate. 
Unfortunately, general statements are almost impossible, since the directional  distribution 
of the radiated sound changes very rapidly, not just from one frequency  to  the  other; 
it can be quite different for instruments of the same sort but different manufactures. This is 
true especially for string instruments, the bodies of which exhibit complicated vibration pat-
terns, particularly at higher frequencies. The radiation from a violin takes place in a fairly 
uniform way only at frequencies lower than about 450 Hz; at higher frequencies, however, 
matters become quite involved. For wind instruments the directional distributions exhibit 
more common features, since here the sound is not radiated from a curved anisotropic plate 
with complicated vibration patterns but from a �xed opening which is very often the end of 
a horn. The ‘directional characteristics of an orchestra’ are highly involved, but space is too 
limited here to discuss this in any detail. For the room acoustician, however, it is important 
to know that strong components, particularly from the strings but likewise from the piano, 
the woodwinds and, of course, from the tuba, are radiated upwards. For further details, we 
refer to the exhaustive account of J. Meyer.6

In a certain sense, the sounds from natural sources can be considered as statistical or 
stochastic signals, and in this context their autocorrelation function is of interest as it gives 
some measure of a signal’s ‘tendency of conservation’. Autocorrelation measurements on 

Table 1.1  Sound power and power level of some sound 
sources (the data of musical instruments are 
for playing fortissimo)

Source or signal
Sound power 

(mW)
Sound power 

level (dB)

Whisper 10−6 30
Conversational speech 0.01 70
Human voice, maximum 1 90
Violin 1 90
Clarinet, French horn 50 107
Trumpet 100 110
Organ, large orchestra 104 130
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speech and music have been performed by several authors.7,8 Here, we are reporting results 
obtained by Ando, who passed various signals through an A-weighting �lter (see Section 1.6) 
and formed their autocorrelation function according to Equation 1.50 with a �nite integra-
tion time of T0 = 35 s. Two of his results are depicted in Figure 1.10. A characteristic measure 
of the effective duration of the autocorrelation function is the time delay τe, at which its 
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envelope has fallen to one-tenth of its maximum. These values are indicated in Table 1.2 for 
a few signals. They range from about 10 ms to more than 100 ms.

The variety of possible noise sources is too large to discuss in detail. A common kind 
of noise in a room is sound intruding from adjacent rooms or from outside through walls, 
doors and windows, due to insuf�cient sound insulation. A typical noise source in halls is 
the air-conditioning system; some of the noise produced by the machinery propagates in the 
air ducts and is radiated into the hall through the air outlets.
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Table 1.2 Effective duration of autocorrelation functions of various sound signals

Motif Name of piece Composer
Eff. duration 

τe, (ms)

A Royal Pavane Gibbons 127
B Sinfonietta opus 48, 4th movement (Allegro con brio) Arnold 43
C Symphony No. 102 in B-�at major, 2nd movement (Adagio) Haydn 65
D Siegfried Idyll; bar 322 Wagner 40
E Symphony KV 551 in C major (Jupiter), 4th movement (Molto allegro) Mozart 38
F Poem read by a female Kunikita 10

Source: Ando YJ. Acoust Soc Amer 1977; 62: 1436.
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Chapter 2

Reflection and scattering

Up to now, we have dealt with sound propagation in a medium which was unbounded in 
every direction. In contrast to this simple situation, room acoustics is concerned with sound 
propagating in enclosures where the sound-conducting medium is bounded on all sides by 
walls, ceiling and �oor. These boundaries usually re�ect a certain fraction of the sound 
energy impinging on them. Another fraction of the energy is ‘absorbed’, that is, it is extracted 
from the sound �eld inside the room, either by conversion into heat or by being transmitted 
to the outside by the walls. It is just this combination of the numerous re�ected components 
which is responsible for what is known as ‘the acoustics of a room’ and also for the complex-
ity of the sound �eld in a room.

Before we discuss the properties of such involved sound �elds, we shall consider in this 
chapter the process which is fundamental for their occurrence: the re�ection of a plane 
sound wave by a single wall or surface. In this context, we shall encounter the concepts of 
wall impedance and absorption coef�cient, which are of special importance in room acous-
tics. The sound absorption by a wall will be dealt with mainly from a formal point of view, 
whereas the discussion of the physical causes of sound absorption and of the functional 
principles of various absorbent arrangements will be discussed in Chapter 6.

Strictly speaking, the simple laws of sound re�ection to be explained in this chapter hold 
only for unbounded walls. Any free edge of a re�ecting wall or panel scatters some sound 
energy in all directions. The same happens when a sound wave hits any other obstacle of 
limited extent, such as a pillar or a listener’s head, or when it arrives at a basically plane 
wall which has an irregular surface. Since scattering is a common phenomenon in room 
acoustics, we shall brie�y deal with it in this chapter.

Throughout this chapter we shall assume that the incident, undisturbed wave is a plane 
wave. In reality, however, all waves originate from a sound source and are therefore spheri-
cal waves or superpositions of spherical waves. The re�ection of a spherical wave from a 
plane wall is highly complicated unless we assume that the wall is rigid. Section 2.4 discusses 
more on this. A comprehensive discussion of the exact theory and its various approximations 
may be found in the work by Sommerfeld.1 For our present discussion, it may be suf�cient 
to assume that the sound source is not too close to the re�ecting wall or to the scattering 
obstacle so that the curvature of the wave fronts can be neglected without too much error.

2.1  REFLECTION FACTOR, ABSORPTION COEFFICIENT 
AND WALL IMPEDANCE

If a plane wave strikes a plane and uniform wall of in�nite extent, in general, a part of the 
sound energy will be re�ected back in the form of a secondary wave with an amplitude and 
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phase which differ from those of the incident wave. Both waves interfere with each other 
and form a ‘standing wave’, at least partially.

The changes in amplitude and phase which take place during the re�ection of a wave are 
expressed by the complex re�ection factor

R = |R| exp (iχ)

of the wall. Its absolute value |R|, also called the ‘modulus’ or the ‘magnitude’ of the re�ection 
factor, and its phase angle χ depend on the frequency and the direction of the incident wave.

According to Equation 1.34, the intensity of a plane wave is proportional to the square of 
the pressure amplitude. Therefore, the intensity of the re�ected wave is smaller by a factor 
|R|2 than that of the incident wave; the fraction 1−|R|2 of the incident energy is lost during 
re�ection. This quantity is called the ‘absorption coef�cient’ of the wall:

 α = 1 − |R|2 (2.1)

For a wall with zero re�ectivity (R = 0), the absorption coef�cient has its maximum 
value 1. Then, the wall is said to be totally absorbent or ‘matched to the sound �eld’. If R = 1 
(in-phase re�ection, χ = 0), the wall is ‘rigid’ or ‘hard’; in the case of R = −1 (phase reversal, 
χ = π), the wall is ‘soft’. In both cases, there is no sound absorption (α = 0). Soft walls, how-
ever, are very rarely encountered in room acoustics and only in limited frequency ranges.

The acoustical properties of a wall surface – as far as they are of interest in room 
 acoustics – are completely described by the re�ection factor for all angles of incidence and 
for all frequencies. Another quantity which is even more closely related to the physical 
behaviour of the wall and to its construction is based on the motion of the medium par-
ticles next to the wall. It is called the wall impedance and is de�ned by

 Z
p
vn surface

= 





 (2.2)

where vn denotes the velocity component normal to the wall. For non-porous walls that are 
excited into vibration by the sound �eld, the normal component of the particle velocity is 
identical to the velocity of the wall vibration. Like the re�ection factor, the wall impedance 
is generally complex and a function of the angle of sound incidence. Frequently, the ‘speci�c 
acoustic impedance’ is used, which is the wall impedance divided by the characteristic imped-
ance of the air:

 
Z

c0
ζ =

ρ  (2.3)

The reciprocal of the wall impedance is the ‘wall admittance’, and the reciprocal of ζ is 
called the ‘speci�c acoustic admittance’ of the wall.

As explained in Section 1.2, any complex quantity can be represented in a rectangular 
coordinate system (see Figure 1.2). This holds also for the wall impedance. In this case, the 
length of the arrow corresponds to the magnitude of Z, while its inclination angle is the 
phase angle of the wall impedance:

 Z
Z
Z

arg arctan
Im
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arctan
Im
Re

( )µ = = 

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 = ζ

ζ






 (2.4)

If the frequency changes, the impedance will usually change as well and also the length 
and inclination of the arrow representing it. The curve connecting the tips of all arrows is 
called the ‘locus of the impedance in the complex plane’.
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2.2  REFLECTION OF PLANE WAVES

In this section, we consider a plane and smooth wall and a plane sound wave impinging on 
it at an angle θ, which may have any value between 0° and 90°. Without loss of generality, 
we can assume that the wall normal and the wave normal of the incident wave lie in the 
x–y plane of a rectangular coordinate system. The situation is depicted in Figure 2.1. The 
incident wave and the wave re�ected from the plane surface are indicated by bold arrows. 
The dashed path will be explained in the next section.

The sound pressure in the incident wave can be described by Equation 1.20 setting 
α = θ, β = π/2 − θ, γ = π/2:

 p x y p ik x yi , ˆ exp cos sin0( ) ( )= − θ + θ   (2.5)

(In this and the following expressions we omit, for the sake of simplicity, the factor exp(iωt), 
which is understood to be common to all sound pressures and particle velocities.)

In the incident wave, the medium particles oscillate in the direction of sound propagation, 
and their velocity is obtained by dividing the pressure by the characteristic impedance ρ0c. 
Hence, the component of their velocity normal to the wall is

 v
p

c
ik x yi x

ˆ
cos exp cos sin0

0
( )( ) =

ρ
θ ⋅ − θ + θ  (2.6)

To arrive at a corresponding representation of the re�ected wave, one has to note that the 
latter travels in the opposite direction with respect to the x-axis (not to the y-axis); therefore, 
the sign of x in Equations 2.5 and 2.6 must be reversed (see Section 1.2). Furthermore, the 
re�ection reduces the amplitude and changes the phase of the wave; both changes are described 
by the complex re�ection factor R. The sign of the particle velocity is also reversed since p/v
has opposite signs for positive and negative going waves. So, we obtain for the re�ected wave:

 p x y Rp ik x y( ) ( )= − − θ + θ , ˆ exp cos sinr 0 (2.7)

 v
Rp

c
ik x y

x ( )( ) = −
ρ

θ ⋅ − − θ + θ 
ˆ

cos exp cos sinr
0

0
(2.8)
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Figure 2.1 Sound re�ection from a plane wall. The dashed line marks the path of a wave intruding into the 
medium on the right of the boundary.
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Again, the wave normal of the re�ected wave includes the angle θ with the wall normal. 
This is the law of ‘specular’ re�ection well known from optical mirrors.

By setting x = 0 in Equations 2.6 through 2.8, and by dividing (pi + pr) by ((vi)x + (vr)x), 
we obtain

 Z
c R

Rcos
1
1

0= ρ
θ

⋅ +
−

(2.9)

or, after solving for R:

R
Z c
Z c

cos
cos

cos 1
cos 1

0

0
= θ − ρ

θ + ρ
= ζ θ −

ζ θ +
 (2.10)

According to Equation 2.1, the absorption coef�cient of the re�ecting surface is
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In Figure 2.2, this relation is represented graphically for normal sound incidence (θ = 0). 
The diagram presents the circles of constant absorption coef�cient in the complex ζ plane, 
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Figure 2.2  Circles of constant absorption coef�cient in the complex impedance plane, for normal sound 
incidence (θ = 0). The numbers next to the circles denote the absorption coef�cient.
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that is, abscissa and ordinate in Figure 2.2 are the real and imaginary parts of the speci�c 
wall impedance, respectively. As α increases, the circles contract towards the point ζ = 1, 
which corresponds to a perfect match of the wall to the medium. For grazing incidence, that 
is, for θ → 90°, the absorption of the wall vanishes as cos 90° is zero.

A special case is a surface the impedance of which is independent of the direction of sound 
incidence. This applies if the normal component of the particle velocity at any wall element 
depends only on the sound pressure at that element and not on the pressure at neighbouring 
elements. Walls or surfaces with this property are referred to as ‘locally reacting’. For such 
boundaries, the only angle dependence of the absorption coef�cient is that of the cosine 
function in Equation 2.11. Figure 2.3 plots the absorption coef�cient of locally reacting 
surfaces with different characteristic impedances.

In practice, surfaces with local reaction are rather the exception than the rule. They are 
encountered whenever the material behind the insoni�ed surface is unable to propagate 
waves or vibrations in a direction parallel to the surface. The reason for this behaviour may 
be some anisotropy as, for instance, that of the Rayleigh model, which will be described 
in Section  6.5. Examples of surfaces with extended reaction are panels that can vibrate 
under the in�uence of an impinging sound wave; the vibrations of neighbouring elements 
are coupled to each other by the bending stiffness.

Another example of a boundary with extended reaction is the surface of a homogeneous 
and isotropic medium, which completely �lls the right half-space in Figure  2.1 (x > 0). 
In this case, there will not be just one secondary wave but two of them: one of them will 
intrude into the medium at the right; its direction differs from that of the incident wave. In 
Figure 2.1, it is indicated by the dashed line. The acoustic properties of the medium at the 
right are  characterized by its characteristic impedance Z and by the complex wave number k′. 
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Figure 2.3 Absorption coef�cient of a locally reacting surface, as a function of the angle of incidence. The 
speci�c impedance is (a) ζ = 3, (b) ζ = 1.5 + 1.323i and (c) ζ = 1/3.
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We suppose that the material is of the porous type such as glass wool or rock wool. Under 
certain conditions (see Section 6.5), both quantities are related by

′
ρ

= ′ = ωZ
c

k
k

k
c

with
0

(2.12)

For a quantitative treatment, we complete Equations 2.5 through 2.8 by two  expressions 
representing the sound pressure and the particle velocity (x-component) of the wave 
 transmitted into the right half-space:

 p x y Tp ik x yt , ˆ exp cos sin0( ) ( )= − ′ ′θ + ′θ  (2.13)

 ( )( ) =
′

′θ ⋅ − ′ − ′θ + ′θ v
Tp
Z

ik x yt x

ˆ
cos exp cos sin0 (2.14)

In these equations, T denotes the complex transmission factor which is to express the 
changes the amplitude and the phase undergoes when the wave enters the half-space x > 0. 
Its de�nition is analogous to that of the re�ection factor, namely as the complex factor by 
which the amplitude and the phase of the wave are changed when it enters the new medium.

The re�ection factor R and the transmission factor T can be evaluated from Equations 2.5 
through 2.8 and Equations 2.13 and 2.14. At �rst, we require that the expressions for the 
incident, the re�ected and the transmitted wave must show the same periodicity with respect 
to the y-direction. This leads immediately to

 k sin θ = k′sin θ′

or

 k
k

sin
sin

′θ
θ

=
′
 (2.15)

For lossless media, that is, if k′ is real, this is the Snell’s law of refraction known from 
optics. In the present case, however, it should be noted that both k′ and θ′ are complex 
quantities.

Next we observe that the mentioned wave expressions must ful�l two boundary condi-
tions, namely that the total sound pressure and the total normal component of the particle 
velocity have the same value at both sides of the boundary x = 0, or

 pi + pr = pt and (vi)x + (vr)x = (vt)x

This yields the relations

R T
c

R
Z

T1 and
cos

1
cos

0
( )+ = θ

ρ
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′

from which we obtain

 R
Z c
Z c

cos cos
cos cos

0

0
= ′ θ − ρ ′θ

′ θ + ρ ′θ
 (2.16)

This result agrees with Equation 2.10, apart from the factors cos θ′ in the nominator 
and the denominator. Thus, we expect that the absorption coef�cient calculated with 
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Equation 2.16 does not dramatically differ from that calculated under the assumption of 
local reaction. Therefore, in most cases, it is suf�cient to use the simpler Equation 2.11 
with constant (speci�c) wall impedance ζ. This has the additional advantage that it allows 
a simple formulation of the boundary conditions at the walls of a room (see Section 3.1).

We conclude this section with a short description of the sound �eld in front of a re�ect-
ing wall. The superposition of the incident and the re�ected wave results in what is called a 
standing wave. The total pressure amplitude is obtained by adding Equations 2.5 and 2.7 
and forming the absolute value of the sum:

p x p R R kx( ) ˆ 1 2 cos 2 cos0
2 ( )= + + θ + χ  (2.17)

Similarly, the amplitude of the particle velocity is found from Equations 2.6 and 2.8

 v x
p

c
R R kx( )=

ρ
+ − θ + χ( )

ˆ
1 2 cos 2 cos0

0

2 (2.18)

The time dependence of the pressure and the velocity is taken into account simply by a 
factor exp(iωt), which was omitted in the earlier expressions.

According to these equations, the pressure amplitude and the velocity amplitude in the 
standing wave vary periodically between the maximum values

 p p R v
p

c
Rˆ 1 and

ˆ
1max 0 max

0

0
( ) ( )= + =

ρ
+  (2.19)

and the minimum values

 p p R v
p

c
Rˆ 1 and

ˆ
1min 0 min

0

0
( ) ( )= − =

ρ
−  (2.20)

but in such a way that each maximum of the 
pressure amplitude coincides with a  minimum 
of the velocity amplitude and vice versa. The 
distance between two maxima is (λ/2)/cos θ, in 
particular at normal incidence, half the acous-
tic wavelength. Figure 2.4 shows the situation 
for normal sound incidence (θ = 0). So, by mea-
suring the pressure amplitude as a function 
of x, we can evaluate the wavelength. More 
importantly, the magnitude and the phase 
angle of the re�ection factor can be evaluated. 
This is the basis of a standard method for mea-
suring the impedance and the absorption coef-
�cient of wall materials (see Section 8.6).

The common factor exp(−iky · sin  θ) in 
Equations 2.5 through 2.8 tells us that the 
‘standing’ wave �eld is traveling parallel to 
the re�ecting surface with a velocity

 c
k k

c
y

y sin sin
= ω = ω

θ
=

θ
 (2.21)
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Pressure amplitude
Velocity amplitude

Figure 2.4 Standing wave in front of a plane surface 
with the real re�ection factor R = 0.7, 
normal sound incidence.
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2.3 A FEW EXAMPLES

The purpose of this section is to 
make the reader familiar with the 
concepts developed in the preceding 
section and – at the same time – to 
describe some arrangements which 
are the basis of frequently used 
sound absorbers. If not stated oth-
erwise, normal incidence of the pri-
mary plane wave is assumed in this 
section.

First, we consider a layer of some 
homogeneous material of thickness 
d′ (see Figure  2.5). We character-
ize it acoustically by its character-
istic impedance ′Z0 and the angular 
wave number k′, both quantities may 
be  complex. At its right boundary, 
the layer is loaded with the imped-
ance Zr. A plane sound wave arriving from the left will excite two plane waves within the 
layer travelling in opposite directions. Hence, the sound pressure and the particle velocity 
within the layer are given by

 p(x) = Aexp(−ik′x) + Bexp(ik′x)

and

 Z′v(x) = Aexp(−ik′x) − Bexp(ik′x)

with the two unknown constants A and B. Dividing both expressions by each other 
leads to

 = +
−

⋅ ′ =Z
A B
A B

Z xl at 0  (2.22)

and
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⋅ ′ = ′  (2.23)

The fraction B/A can be eliminated from both expressions. Finally, we express the 
exponentials by trigonometric functions using Equation 1.19 and arrive after some 
simple  operations at the wall impedance, which acts on the incident wave at the left 
boundary:

 Z
Z iZ k d

Z iZ k d
Zl

r

r

tan
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( )
( )=

+ ′ ′ ′
′ + ′ ′

⋅ ′  (2.24)

This relation tells us that the impedance Zr with which the layer is loaded at its rear side 
is transformed into another impedance Zl appearing at its front side. It is very useful since it 
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Figure 2.5  Sound transmission through a layer ( thickness d′) 
of a homogeneous material speci�ed by its char-
acteristic impedance Z′ and its propagation con-
stant k′.
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can be modi�ed and combined in many ways. If, for instance, the layer is backed by a rigid 
plane (Zr → ∞), its wall impedance at the front side (x = 0) is

 Z
Z

i k d
iZ k dl ( ) ( )= ′

′ ′
= − ′ ⋅ ′ ′

tan
cot  (2.25)

This formula describes the wall impedance of the simplest type of a sound absorber: a 
porous layer �xed immediately in front of a hard wall. We shall discuss it at greater length 
in Section 6.6. If the values for air are inserted into this expression (Z′ = ρ0c and k′ = k), the 
result is the ‘wall impedance’ of an air layer of thickness d′:

 Za = − iρ0c ∙ cot(kd′) (2.26)

Of course, the ‘wall’ is only �ctive in this case; from Equation 2.11 (with θ = 0), it follows 
immediately that its absorption coef�cient is zero. Nevertheless, this formula is quite use-
ful. For kd′ < π/2 (i.e., for d′ < λ/4), the impedance Za of the air cushion is that of an elastic 
spring.

As a second example we consider an example of a thin porous layer – some curtain or 
blanket – which is stretched or hung in front of a rigid wall at distance d. The x-axis is nor-
mal to the layer and the wall; accordingly, the former has the coordinate x = 0, while the 
solid wall is located at x = d (see Figure 2.6).

First, we assume that the porous layer is �xed or so heavy that it will not vibrate 
under  the in�uence of a sound wave incident from the left. Any pressure differ-
ence between  the  two sides of the layer forces an air stream through the pores with 
the �ow velocity vs. The latter is related to the pressures p and p′ in front and behind 
the layer by

 r
p p

v
s

s
= − ′

(2.27)

where rs is the �ow resistance of the porous layer. We assume that this relation is valid for a 
steady �ow of air as well as for an alternating �ow. The unit of �ow resistance is 1 Pa · s · m–1 = 
1 kg · m−2 · s−1. Another commonly used unit is the Rayl (1 Rayl = 10 kg m−2 s−1).

Because of the conservation of matter, the particle velocities at both sides of the layer must 
be equal to each other and equal to the mean �ow velocity through the layer:

 v(0) = v′(0) = vs (2.28)
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Figure 2.6 Standing wave in front of a thin porous layer (dashed vertical line), situated at a distance d from a 
rigid wall. The plotted curve is the pressure amplitude for rs = ρ0c and d/λ = 5/16.
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Then, it follows from Equation 2.27 that the wall impedance of the arrangement in 
Figure 2.6 is

Z
p
v

r
p
v

= = + ′
s

s
s

(2.29)

The last term on the right-hand side of this equation represents the impedance Za of the 
air cushion between the fabric and the rigid wall (see Equation 2.26, with d′ = d). Thus, 
Equation 2.29 reads

 Z = rs − iρ0c ∙ cot(kd) (2.30)

Hence, the wall impedance of the complete arrangement is just the �ow resistance of the 
porous layer plus the impedance of the air space behind it.

In the complex plane of Figure 2.2, this wall impedance can be represented as a verti-
cal line at a distance rs/ρ0c from the imaginary axis. Increasing the wave number or the 
frequency is equivalent to going repeatedly from −i∞ to +i∞ on that line. As can be seen 
from the circles of constant absorption coef�cient, the latter has a maximum whenever Z is 
real, that is, whenever the depth d of the air space is an odd multiple of λ/4. Introducing 
ζ = Z/ρ0c from Equation 2.30 into Equation 2.11 (with θ = 0) yields the absorption coef-
�cient of a porous layer in front of a rigid wall:

 f
r

r fd c

4

1 cot 2 /
s

s
2 2

( ) ( )( )
α = ′

′+ + π
 (2.31)

with r r c/s s 0′ = ρ . In the left part of Figure 2.7, the content of this formula is plotted as a func-
tion of the frequency parameter d/λ = fd/c for three different values of the �ow resistance. 
The curves show the expected periodicity.

In reality, a porous membrane will not remain at rest in a sound �eld as was assumed 
before but will vibrate as a whole since its mass is �nite. Then the total particle velocity 
in the plane x = 0 of Figure 2.6 consists of two components. One of them, vm, is the  velocity 
of the layer which is set into motion by the pressure difference between its faces:

 p p M
v
t

i M vp
m

p m− ′ = ′ ∂
∂

= ω ′ ⋅  (2.32)

where Mp′ is the speci�c mass of the membrane, that is, its mass per unit area. The other 
contribution to the total velocity, named vs, is due to the air �ow forced through its pores 
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Figure 2.7 Absorption coef�cient of a porous layer backed with an air cushion of thickness d (see Figure 2.6). 
(a) rs = 0.25ρ0c, (b) rs = ρ0c and (c) rs = 4ρ0c. A: ′ =/ 0r d M cs p  (i.e.,  the layer is kept at rest); 
B: ′ =/ 4r d M cs p .
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according to Equation 2.27. Hence, the quantity rs in Equation 2.27 must be replaced by Zr, 
which is de�ned as the ratio of the pressure difference between both sides of the layer, p − p′, 
and the total velocity vm + vs, which is

 Z
r i M

r
i

= +
ω ′


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with the characteristic frequency r Mω = ′/s s p . Accordingly, rs in Equation 2.30 – but not in 
Equation 2.31 – must be replaced by Zr. It is left for the readers to work out a modi�ed 
formula corresponding to Equation 2.31. The right diagram in Figure 2.7 demonstrates the 
in�uence of the �nite mass on the absorption coef�cient of the arrangement. It is negligible 
for ω >> ωs.

In practical applications, it may be advisable to provide for a varying distance between the 
porous fabric and the rigid wall in order to smooth out the irregularities of the absorption 
coef�cient. This can be achieved by hanging or stretching the fabric in pleats as is usually 
done with draperies.

In the next example, we consider an arrangement similar to that shown in Figure 2.6, 
however, with an additional thin layer of some impervious material. This layer has the spe-
ci�c mass M′ and is placed immediately at the left side of the porous one without touching it. 
For the sake of simplicity, we assume that the porous layer cannot vibrate as a whole, that 
is, rω ′ >>Mp s in Equation 2.33, thus we have Zr ≈ rs. Clearly, the velocity vm of the impervi-
ous membrane must be equal to the velocity vs of the air �owing through the porous layer, 
vm = vs. However, the pressure differences δp generating these motions are different. For the 
porous layer, we have (δp)s = rsvs after Equation 2.27. The motion of the impervious layer is 
controlled by its mass according to Equation 2.32; hence, the pressure difference between its 
faces is (δp)m = iωM′vs. The total pressure difference, divided by the velocity vs, is

 s m

s
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p p

v
r i M

) )( (δ + δ
= + ω ′

Finally, the impedance Za = − iρ0c cot(kd) of the air cushion must be added to this expres-
sion, as in Equation 2.30. In many practical applications, the product kd will be much 
smaller than unity; hence, we can use the approximation cot(kd) ≈ 1/kd = c/ωd. Thus, the 
wall impedance of the whole arrangement is
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In the complex plane, this impedance is represented as a vertical line with the distance 
rs from the imaginary axis (see Figure 2.8a). But, in contrast to the preceding example, the 
locus moves only once from −i∞ to +i∞ if the frequency is varied from zero to in�nity. When 
it crosses the real axis, the absolute value of the wall impedance reaches its minimum. Since 
Z = p/vs, a given sound pressure will then cause a particularly high velocity of the impervi-
ous sheet. This effect is known as resonance. According to Equation 2.34, this will occur at 
the angular frequency:
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and f0 = ω0/2π is the ‘resonance frequency’ of the system.
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In Figure 2.8b, a typical resonance curve is depicted, that is, the ratio of the velocity amplitude 
and the pressure amplitude as a function of the sound frequency. This ratio is equal to the mag-
nitude of the wall admittance, 1/|Z|:
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where the ‘damping constant’
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has been introduced. The resonance maximum is |p|/2M′δ.
Here we assume that the damping constant δ is small compared with ω0. Then

 ω1 = ω0 + δ  and  ω2 = ω0 − δ

are the angular frequencies for which the phase angle of the wall impedance becomes ±45°. 
Furthermore, at these frequencies the velocity amplitude has dropped by a factor 2 below 
its maximum. The difference Δω = ω1 − ω2 is the ‘half power bandwidth’ or, divided by the 
resonance angular frequency ω0, the ‘relative half-width’ of the resonance. The ‘quality fac-
tor’ or ‘Q’-factor of the system is de�ned as the reciprocal of the latter:
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Each of these quantities may be used as a measure for the width of a resonance curve. 
Practical resonance absorbers as used in rooms, for instance, for the control of reverberation 
time will be described in Section 6.3.

In our last example, we return to the absorptivity of a cloth or fabric with a thin layer of 
porous material. However, in contrast to the arrangement considered above, we now imagine 
that the material is not placed in front of a rigid wall but is hanging freely in a sound �eld. 
As before, we characterize the acoustical behaviour of the fabric by its complex �ow resis-
tance Zr according to Equation 2.33, which comprises the friction of air moving within the 
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Figure 2.8  Resonance system: (a) locus of the wall impedance in the complex plane and (b) magnitude of the 
ratio of velocity/pressure as a function of the driving frequency.
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pores as well as the mass inertia of the material. The sound pressure and the normal com-
ponent of the particle velocity of an incident plane wave are given by Equations 2.5 and 2.6, 
with θ denoting the angle of sound incidence (Figure 2.1). Similarly, the wave re�ected from 
the blanket is represented by Equations 2.7 and 2.8. Additionally, a third plane wave will 
be transmitted into the space behind the fabric. Since the medium at both sides is the same, 
the transmitted wave will continue its travel in the same direction as the incident wave without 
being refracted, and also the characteristic impedance remains unaltered. Hence, Equations 
2.13 and 2.14 describing the transmitted wave must be modi�ed:

 ( ) ( )= − θ + θ p x y Tp ik x xt , ˆ exp cos sin0 (2.39)

 ( ) ( )=
ρ

⋅ θ ⋅ − θ + θ v
Tp

c
ik x xt x

ˆ
cos exp cos sin0

0
(2.40)

At the plane x = 0, the sound pressures and particle velocities have to ful�l the following 
boundary condition:

(vi)x + (vr)x = (vt)x

that is, the normal component of the particle velocity is the same on both sides. And, accord-
ing to the de�nition of Zr as the pressure difference between both sides of the curtain divided 
by the normal component of the �ow velocity, we have
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From both conditions, the unknown quantities R and T are obtained by inserting 
Equations 2.5 to 2.8 and Equations 2.39 and 2.40 (with x = y = 0) into these conditions 
with the result:
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(2.42)

with ζr = Zr/ρ0c.
In contrast to the situation considered in Section 6.3, the curtain is not a boundary of the room. 

Therefore, the sound energy transmitted through it is not converted into heat but remains still in 
the sound �eld. Hence, the energy dissipated within the porous material is obtained by subtract-
ing both the re�ected and the transmitted sound energy from the incident one. Accordingly, we 
replace Equation 2.1 by a slightly different de�nition of the absorption coef�cient:

 α = 1 − |R|2 − |T |2 (2.43)

Inserting Equations 2.41 and 2.42 yields
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Of particular interest is the absorption of a curtain hanging freely in a closed room with 
a diffuse sound �eld so that it is exposed to sound waves arriving from all directions. This 
question is discussed in Section 2.5.
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2.4 REFLECTION OF SPHERICAL WAVES

Up to now we dealt exclusively with the re�ection of plane waves, although this wave type 
is highly idealized as has been discussed in Section 1.2. A much more realistic wave type is 
the spherical wave as usually produced by a point source. At large distances from the source, 
the curvature of its wave fronts will become so small that it can be treated as a plane wave 
without too much error. According to Equation 1.24, this will be the case when kr >> 1 (r = 
distance, k = ω/c). In general, the re�ection of a spherical wave from a plane wave of arbi-
trary impedance is much more complicated than that of a plane wave. The only exception 
is re�ection from a rigid plane; in this case, the re�ected wave is also spherical and seems to 
originate from the mirror image of the original source with respect to the plane.

To illustrate the situation, we consider in Figure 2.9 a point source S which emits a harmonic 
spherical wave. We are interested in the amplitude and the phase of the sound signal received in 
a point R, which is located at some distance from it. Both points are situated over a horizontal, 
plane boundary which is assumed to be of the locally reacting type, that is, its impedance does 
not depend on the direction of the sound incidence. Their heights above that boundary are h 
and h′, respectively. Moreover, Figure 2.9 shows the re�ection of a few sound rays. (The ‘sound 
ray’ is a useful notion employed in geometric acoustics which will be dealt with in greater 
detail in Chapter 4.) Exactly one of these rays will reach the receiver R. It is evident that all rays 
emerging from S hit the re�ecting surface under different angles in contrast to those of a plane 
wave which would be parallel making everywhere the same angle with the boundary plane.

According to Figure 2.9, all re�ected rays appear to originate from one point S′, which is 
symmetric to the real sound source S with respect to the boundary. S′ is usually referred to as 
the image source or virtual source of S with respect to the re�ecting plane. Sources of this kind 
play a major role in room acoustics (see Sections 4.1 and 9.8). In fact, they facilitate the con-
struction of the ray path connecting a real sound source with a given receiving point via one 
re�ection. Figure 2.9 shows such a path. Its length is denoted by r2, while r1 denotes the length 
of the direct, that is, the unre�ected component. The total sound pressure in R is composed of 
the contributions p0 and pr of the incident and the re�ected ray, respectively:

 p = p0 + pr

h

h
h´

S

R

S´

r1

r

r2

Figure 2.9 Re�ection of a spherical wave from a plane surface. S′ is the mirror image of S with respect to 
the plane, and r is the horizontal distance of S and S′.
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According to Equation 1.27, the direct component is given by
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(As usual we have omitted the time factor exp(iωt).) The most obvious way to calculate the 
sound pressure of the re�ected component by the ‘geometric approximation’ is
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where R(θ0) is the re�ection factor of the boundary for the incidence angle θ0. Equation 
2.45 is not the exact solution of the problem because the re�ection factor R(θ) is de�ned 
for plane waves only but not for spherical waves. Nevertheless, it is a useful and simple 
approximation.

Without performing any calculations, we can draw a few useful conclusions from 
Equation 2.10, that is, the relationship between the impedance of the re�ecting surface and 
its re�ection factor. If the wall impedance of the re�ecting surface is relatively high, the 
angle dependence of its re�ection factor is not very pronounced; in the limit of |Z| → ∞ it 
can be neglected. Furthermore, Equation 2.10 tells us that the re�ection factor R does not 
show much variation in the vicinity of θ0 = 0 (see also Figure 2.3); hence, it will be nearly 
constant if both points S and R are situated one above the other. The situation is different 
if both points are close to the re�ecting surface. Accordingly, we expect that at grazing 
incidence, the geometric approximation fails because of the strong angle dependence of the 
re�ection factor.

An exact expression of the sound pressure pr of the re�ected wave can be obtained by 
employing the ‘Sommerfeld identity’,1 which represents a spherical wave exp(−ikr)/r as the 
superposition of in�nitely many cylindrical waves with different wavelengths, each of them 
being described by a zero-order Bessel function J0. On the basis of this identity, the follow-
ing expression can be derived:
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4
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It should be noted that the angle θ in this expression may be complex. This is accounted 
for by choosing an integration path C running �rst from 0 to π/2 along the real θ-axis, and 
then from this point parallel to the imaginary axis to π/2 + i∞.

A comprehensive discussion of this integral and its numerical solution has been presented 
by F.P. Mechel in his book on sound absorbers.2 At present, we shall not dive deeper into this 
complicated matter. Instead, we report on a more recent publication by Suh and Nelson,3

who calculated the correct pressure pr of the re�ected wave by numerical integration of 
Equation 2.46 and compared this with the pressure (pr)geo according to Equation 2.45, again 
assuming local reaction of the re�ecting boundary. For this purpose, these authors calcu-
lated the relative difference between both the results

 
p p

p

( )
∆ =

−
⋅100%

r r geo

r
(2.47)



38 Room acoustics

Generally, this quantity shows a monotonic increase with the angle of incidence θ0. As 
a ‘�gure of merit’, we can consider the angle θmax, which is the upper limit of the range in 
which the relative difference according to Equation 2.47 remains below 1%. This limit 
is shown in the last column of Table 2.13 for three different surfaces, the characteristic 
impedances of which are listed in the second column. The third column contains the dis-
tance r measured in wavelengths. Generally, the accuracy of the approximation (2.45) 
seems to be suf�cient for practical purposes as long as the angle of incidence is below 45°. 
However, its use may become problematic for larger incidence angles, in particular, for 
grazing sound incidence.

2.5 RANDOM SOUND INCIDENCE

In a closed room, the typical sound �eld does not consist of a single plane wave but is 
composed of many such waves, each with its own particular amplitude, phase and direc-
tion. To �nd the effect of a wall on such a complicated sound �eld we ought, of course, to 
consider the re�ection of each wave separately and then to add all sound pressures, taking 
regard of their phases.

With certain assumptions, we can resort to some simpli�cations that allow general state-
ments on the effect of a re�ecting wall. If there are numerous waves incident on the wall the 
phases of which are randomly distributed, one can neglect all phase relations and the inter-
ference effects caused by them. Then, the components are called incoherent. In this case, the 
total energy at some point can be calculated just by adding the energies of the components, 
which are proportional to the squares of the sound pressures:

 p p I I
n

n

n

n
∑ ∑( )= =or2

rms rms
2

(2.48)

which means, the total intensity is the sum of all component intensities.
Here we make the additional assumption that the intensities of the incident sound waves are 

uniformly distributed over all possible directions; hence, each solid angle element carries the 
same energy per second. In this case, we speak of ‘random sound incidence’, and the sound 
�eld associated with it is said to be isotropic or ‘diffuse’. In room acoustics, the diffuse sound 
�eld plays the role of a standard �eld, and the reader will frequently encounter it in this book.

Table 2.1  Maximum angles of incidence θmax for Δ < 1% 

Material Speci�c impedance, ζ r(λ) θmax

1 5.00 + 11.00i 2 30°
5 45°

10 53°
2 1.00 – 2.83i 2 11°

5 31°
10 37°

3 0.59 + 0.57i 2 5°
5 12°

10 26°

Source: Adapted from Suh JS, Nelson PA. Acoust Soc Amer 
1999; 105: 230.
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For a quantitative treatment, it is convenient to use 
a spherical polar coordinate system as depicted in 
Figure 2.10. Its origin is the centre of a wall element 
dS; the wall normal is its polar axis. We consider an 
element of solid angle dΩ around a direction which 
is determined by the polar angle θ and the azimuth 
angle ϕ. Expressed in these angular coordinates, the 
solid angle element is dΩ = sinθ dθ dϕ.

First, we calculate how the square of the sound 
pressure amplitude depends on the distance from the 
wall which, for the moment, is assumed to be  perfectly 
rigid (R = 1). A wave hitting this wall under an angle θ 
gives rise to a standing wave with the squared pressure 
amplitude, according to Equation 2.17:

 ( )= + θ p p kx2 ˆ 1 cos 2 cos
2 2

0  (2.49)

By averaging this expression over all directions of incidence, that is, over the solid angle 
2π, we obtain
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This quantity, divided by =∞p p2 ˆ ,
2 2

0  is plotted in Figure 2.11 (solid curve) as a function 
of the distance x from the wall. Next to the wall, the square pressure �uctuates, as it does 
in every standing wave. With increasing distance, however, these �uctuations fade out and 
the square pressure approaches a constant limiting value which is half of that immediately 
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Figure 2.10  Spherical polar coordinates.
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Figure 2.11 Squared and normalized sound pressure amplitude in front of a rigid wall at random sound incidence: 
solid line represents sine tone and dashed line represents random noise of octave bandwidth.
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on the wall. Accordingly, the sound pressure level close to the wall would surpass that mea-
sured far away by 3 dB. For the same reason, the sound absorption of an absorbent surface 
adjacent and perpendicular to a rigid wall is higher near the edge than at a distance of sev-
eral wavelengths from the wall.

When the sinusoidal excitation signal is replaced with random noise of limited bandwidth, 
the pressure distribution is obtained by applying a second averaging process to Equation 
2.50, namely over the frequency band. As an example, the dashed curve of Figure 2.11 plots 
the result of averaging p

av

2
 over an octave band, that is, a frequency band with f2 = 2f1, where 

f1 and f2 denote the lower and the upper limiting frequencies of the band. Here, the typi-
cal wavelength λ corresponds to the frequency =f f f 21 2 1 . Now, the standing wave has 
levelled out for all distances exceeding x > 0.5λ, but there is still a pronounced increase in 
sound pressure if the wall is approached. This increase of p

av

2
 to twice its far distance value 

is obviously caused by the fact that the re�ecting surface enforces certain phase relations 
between all impinging and re�ected waves. In any case, we can conclude that in a diffuse 
sound �eld phase effects are limited to a relatively small range next to the walls, which is of 
the order of half a wavelength.

Next, we derive an important rule according to which absorption coef�cients are  averaged 
over all directions, assuming random sound incidence as before. If we consider a wall ele-
ment with area dS and its projection in the direction ϕ, then θ is dS cos θ (see Figure 2.10). 
If I denotes the intensity of the sound arriving from that direction, I ∙ cos θ ∙ dS dΩ is the 
sound energy falling per second on dS from the solid angle dΩ. By integrating this over all 
solid angle elements, assuming I independent of ϕ and θ (diffuse sound �eld), we obtain the 
total energy in�ux per second at dS:

 E I S I Sd d cos sin d di
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From the energy I cos θ dS dΩ, the fraction α(θ) is absorbed; thus the totally absorbed 
energy per second is
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By dividing both expressions, we get the absorption coef�cient for random or uniformly 
distributed incidence:
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This expression is often referred to as the ‘Paris formula’ in the literature.
We apply this integral to Equation 2.11, which expresses the angle dependence of a locally 

reacting surface with the speci�c wall impedance ζ = ξ + iη. The integration can readily be 
carried out with the result:
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The content of this expression is depicted in Figure 2.12 in the form of curves of constant 
absorption coef�cient αuni in a coordinate system; the abscissa and the ordinate of which are the 
phase angle μ = arctan(η/ξ) and the absolute value |ζ| of the speci�c impedance, respectively. The 
absorption coef�cient has its absolute maximum 0.951 for the real impedance ζ = 1.567. Thus, 
in a diffuse sound �eld, a locally reacting boundary can never be totally absorbent.

In the last example of Section 2.3, we discussed the absorption of a freely hanging curtain 
and derived the following expression for its absorption coef�cient:
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Here, θ is the angle under which an incident plane wave arrives at the porous sheet; the 
acoustic properties of which are given by its complex �ow resistance after Equation 2.33:
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ξr and ηr are the real and the imaginary parts of the speci�c impedance ζr. Obviously, 
Equation 2.55 is very similar to Equation 2.11, which describes the angle dependence of a 
locally reacting surface. Hence, we can calculate the Paris average of the absorption coef-
�cient (2.55) by using Equation 2.54 after a few replacements ξ with ξr/2, ζ with ζr/2 and 
η with ηr/2.

In Figure 2.13a, αuni of the curtain is plotted as a function of the frequency ratio f/fs = ω/ωs

for various values of the �ow resistance rs. Far below the characteristic frequency fs the absorp-
tion coef�cient is very small, as at these frequencies the fabric nearly completely follows the 
vibrations imposed by the sound �eld. With increasing frequency, the inertia of the curtain 
becomes more and more relevant, leading to an increasing motion of the air inside the pores of 
the fabric. For high frequencies, the porous layer stays practically at rest, and the absorption 
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Figure 2.12  Contours of constant absorption coef�cient αuni of locally reacting surfaces at random sound  incidence. 
The abscissa is the magnitude, and the ordinate is the phase angle μ of the speci�c impedance ζ.
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coef�cient becomes frequency independent. This limiting value is plotted in Figure 2.13b as 
a function of the �ow resistance rs. It has a maximum αuni = 0.951 at rs = 3.135ρ0c. This dis-
cussion shows that freely hanging curtains, large �ags and so on may considerably add to the 
absorption in a room and may well be used to control its reverberation.

2.6 REFLECTION FROM FINITE-SIZED PLANE SURFACES

So far we have considered sound re�ection from plane walls of in�nite extension. If a re�ect-
ing wall has �nite dimensions with a free boundary, the latter will become the origin of an 
additional sound wave when it is irradiated with sound. This additional wave is brought 
about by diffraction and hence may be referred 
to as a ‘diffraction wave’. It spreads more or less 
in all directions.

The simplest example is diffraction by a semi-
in�nite wall, that is, a rigid plane with one 
straight edge as depicted in Figure 2.14. If this 
wall is exposed to a plane sound wave at normal 
incidence, one might expect that it re�ects some 
sound into a region A, while another region B, 
the ‘shadow zone’, remains completely free of 
sound. This would indeed be true if the acousti-
cal wavelength were vanishingly small. In real-
ity, however, a diffraction wave originating 
from the edge of the wall modi�es this picture. 
Behind the wall, that is, in region B, there is still 
some sound intruding into the shadow zone. 
And in region C, the plane wave is disturbed by 
interferences with the diffraction wave. On the 
whole, there is a steady transition from the 
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Figure 2.13  Absorption coef�cient of a freely hanging curtain, random sound incidence: (a) as a function 
of frequency, parameter is rs/ρ0c and (b) high-frequency limit of the absorption coef�cient as a 
function of rs/ρ0c.
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Figure 2.14 Diffraction of a plane wave from a 
rigid half-plane. The diagram shows 
the squared sound pressure ampli-
tude across the boundary B–C 
(kd = 100). (Based on Morse and 
Ingard.4)
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undisturbed, that is, the primary sound wave, to the �eld in the shadow zone. This is shown 
in Figure 2.14 where the squared sound pressure in a plane parallel to the diffracting half-
plane is depicted. Of course, the extension of this transition depends on the angular wave 
number k and the distance d. A similar effect occurs at the upper boundary of region A with 
the re�ected wave.

If the ‘wall’ is a re�ector of limited extension, for example, a freely suspended panel, the 
line source from which the diffraction wave originates is wound around the edge of the 
re�ector, so to speak. As an example, Figure 2.15a shows a rigid circular disc with radius a, 
irradiated from a point source S. We consider the sound pressure at point P. Both P and S are 
situated on the middle axis of the disc at distances R1 and R2 from its centre, respectively. In 
Figure 2.15b, the squared sound pressure of the re�ected wave in P is plotted as a function 
of the disc radius as calculated from the approximation
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which is valid for distances that are large compared to the disc radius a. For very small 
discs – or for very low frequencies – the re�ected sound is negligibly weak since the primary 
sound wave is nearly completely diffracted around the disc, and the obstacle is virtually not 
present. With increasing disc radius or frequency, the pressure in P grows rapidly; for higher 

values of the dimensionless frequency parameter ( )= /2 ˆ 1/2
x a k R , it shows strong �uctuations. 

The latter are caused by interferences between the sound re�ected specularly from the disc 
and the diffraction wave originating from its rim.

A simple way to explain these �uctuations is by drawing a set of concentric circles on the 
disc which have the same centre as the disc itself. The radii ρn of these circles are chosen in 
such a way that the length of the path connecting S with P (see Figure 2.15a) via a point on 
the circle with radius ρn point exceeds R1 + R2 by an integral multiple of half the wavelength. 
Expressed in formulae:
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Figure 2.15 Sound re�ection from a circular disc: (a) arrangement (S = point source, P = observation point) 
and (b) squared sound pressure amplitude of re�ected wave.
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Each of these circles separates two zones on the plane called ‘Fresnel zones’ (Figure 2.16), 
which contribute to opposite signs to the sound pressure in P. As long as the disc radius a 
is smaller than the radius of the �rst zone, that is, 

�
≤ λ /2a R , the contributions of all disc 

points have the same sign. With increasing disc radius (or decreasing wavelength), addi-
tional Fresnel zones will enter the disc from its rim, each of them lessening the effect of the 
preceding one.

We consider the re�ection from the disc as signi�cant if |p|2 for the �rst time equals its 
average value, which is half its maximum value. This is the case if the argument of the sine 
in Equation 2.56 is π/4. This condition de�nes a minimum frequency fmin above which the 
disc can be considered as an ef�cient re�ector:

 f
cR
a

R
a

= ≈
� �

4
85 Hzmin 2 2 (2.58)

(In the second version, 
�
R and a are expressed in metres.) A circular panel with a diameter 

of 1 m, for instance, viewed from a distance of 5 m (R1 = R2 = 5 m) re�ects an incident sound 
wave at frequencies above 1700 Hz. For lower frequencies, its effect is much smaller.

Similar considerations applied to a rigid strip with the width h yield for the minimum 
frequency of geometrical re�ections
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Figure 2.16 The �rst four Fresnel zones on a disc with the radius a = ρ4 (after Equation 2.57).
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(
�
R and h in meters) with the same meaning of 

�
R as in Equation 2.56. If the re�ector is 

tilted by an angle θ against the primary sound wave, a in Equation 2.56 and h in Equation 
2.59 must be multiplied with a factor cos θ.

Generally, any obstacle or surface of limited extension distorts a primary sound wave by 
diffraction unless its dimensions are very small compared to the wavelength. One part of 
the diffracted sound is scattered more or less in all directions. For this reason, this process 
is also referred to as ‘sound scattering’. (The role of sound scattering by the human head in 
hearing has already been mentioned in Section 1.6.)

The scattering ef�ciency of a body is often characterized by its ‘scattering cross-
section’, de�ned as the ratio of the total power scattered Ps and the intensity I0 of the inci-
dent wave:

 =Q
P
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s
s
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If the dimensions of the scattering body are small compared to the wavelength, Ps, and 
hence Qs is very small. In the opposite case of short wavelengths, the scattering cross-section 
of the obstacle approaches twice its visual cross section, that is, 2πa2 for a sphere or a circu-
lar disc with radius a. Then, one half of the scattered power is concentrated into a narrow 
beam behind the obstacle and forms its shadow by interference with the primary wave while 
the other half is de�ected from its original direction.

2.7 SCATTERING BY BOUNDARY IRREGULARITIES

Very often a wall is not completely smooth but contains irregularities in the form of coffers, 
bumps, plastic decorations or other projections. The way these irregularities in�uence the 
re�ected sounds depends mainly on their dimensions measured in acoustic wavelengths. 
If they are small compared with the wavelength, they do not disturb the wall’s ‘specular’ 
re�ection at all (see Figure 2.17a). In the opposite case, that is, if they are large compared 
with the wavelength, they may be treated as plane or curved wall sections, re�ecting the 
incident sound specularly as shown in Figure 2.17c. There is an intermediate range of wave-
lengths, however, in which each projection adds a scattered component wave to the re�ected 
sound �eld (see Figure 2.17b). If the wall structure is irregular, a noticeable fraction of the 
incident sound energy will be scattered in many non-specular directions. This fraction is 
characterized by the product s(1 − α), where s denotes the so-called scattering coef�cient. 
If  s = 1 we speak of a ‘diffusely re�ecting surface’, otherwise the re�ection is partially 
diffuse – or specular (for s = 0). In Section 8.8, methods for measuring the scattering ef�-
ciency of acoustically rough surfaces will be described.

d
(a) (b) (c)

Figure 2.17 Scattering by wall irregularities: (a) d << λ, (b) d ≈ λ and (c) d >> λ (d = typical dimension of 
irregularities).
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As an example of a sound scattering boundary, we consider the ceiling of a particular 
concert hall.5 It is covered with many bodies made of gypsum such as pyramids and spheri-
cal segments; their depth is about 30 cm on the average. Figure 2.18 shows the directional 
distribution of the sound re�ected from that 
ceiling, measured at a  frequency of 1000 Hz 
with normally incident sound waves; the 
plotted quantity is the sound pressure ampli-
tude. (This  measurement has been carried 
out on a scale model of the ceiling.) The pro-
nounced maximum at 0° corresponds to the 
specular  component which is still of consid-
erable strength.

The occurrence of diffuse or partially 
diffuse re�ections is not restricted to walls 
with a geometrically structured surface; 
they may also be produced by walls with 
non-uniform impedance. To understand 
this, we return to Figure  2.14 and imag-
ine that the dotted vertical line marks a 
totally absorbing wall. This would not 
change the structure of the sound �eld at 
the left side of the wall, that is, the distur-
bance caused by the diffraction wave in 
region A. Therefore, we can conclude that 
any change in wall impedance creates a dif-
fraction wave.

A practical example of this kind is walls 
lined with relatively thin panels which 
are mounted on a rigid framework. At the 
points where the lining is �xed, the panel is 
very stiff and cannot react to the incident 
sound �eld. Between these points, however, 
the lining is more compliant because it can 
perform bending vibrations, particularly if 
the frequency of the exciting sound is close 
to the resonance frequency of the lining 
(see Equation 2.35). Scattering will be even 
stronger if adjacent partitions are tuned to 
different resonance frequencies by variations 
in the panel masses or the depths of the air 
space behind them.

Now, we consider a plane wall subdi-
vided into parallel strips with equal width 
d and with different re�ection factors Rn = 
|Rn| exp(iχn) as shown in Figure  2.19. We 
assume that d is noticeably smaller than the 
wavelength. A plane wave hitting the wall at 
normal incidence will excite all strips with 
about equal amplitude and phase, and each 

90°
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0°0.2 0.4 0.6 0.8

Figure 2.18  Polar diagram of a highly irregular 
ceiling (Meyer and Kuttruff.5) The 
 plotted quantity is the sound pressure 
amplitude.

ϑ

d d

Figure 2.19 Sound re�ection from strips with 
equal widths but with different re�ec-
tion factors, arranged in a plane.
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of them will react to it by emitting a secondary wave or wavelet. The sound pressure far 
from the wall is obtained by summation of all these contributions:

∑ ( )( )ϑ ∝ χ − ϑ p R i nkdn

n

nexp sin  (2.61)

By varying |Rn| and χn in a suitable way, the specular re�ection can more or less be 
destroyed and its energy will be scattered into non-specular directions instead.

Next, our goal is to optimize the diffusion of the re�ected sound with simple means. For 
this purpose, it is assumed that the magnitude of all re�ection factors in Equation 2.61 is 1. 
In principle, randomness of the angular distribution of the re�ected sound could be effected 
by arranging for phase angles χn distributed randomly within the interval from 0 to 2π. To 
achieve complete randomness of the scattered sound in this way, however, would require a 
very large number of elements.

A similar effect can be reached with ‘pseudorandom sequences’ of phase angles. If these 
sequences are periodic, arrangements of this kind act as phase gratings, with the grating 
constant Nd if N denotes the number of elements within one period. As with optical grat-
ings, constructive interference of the wavelets re�ected from corresponding elements will 
occur if the condition

 ϑ = π = λ <
λ







m
Nkd

m
Nd

m
Nd

msin
2

 (2.62)

is ful�lled. (The limitation of m accounts for the fact that the value of the sine function can-
not exceed unity.) Inserting sin ϑm from Equation 2.62 into Equation 2.61 yields the far-�eld 
sound pressure in the mth diffraction order:
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pm is the discrete Fourier transform of the sequence exp(iχn) as may be seen by comparing 
this expression with Equation 1.46. Hence, a uniform distribution of the re�ected energy 
over all diffraction orders can be achieved by �nding phase shifts χn for which the power 
spectrum of exp(iχn) is �at.

It was M. R. Schroeder’s idea6 to select the phase angles according to certain periodic 
number sequences which are known to have the required spectral properties, and to realize 
them in the form of properly corrugated surfaces. They are believed to improve the acoustics 
of concert halls and recording studios by creating ‘lateral sound waves’, which are known to 
be relevant for good music acoustics (see Section 9.3).

Probably, the best-known kind of ‘pseudostochastic diffusers’ as they are also called is 
based on a number theoretical scheme named ‘quadratic residues’. Suppose that the period 
N is a prime number. Then, one sequence with the desired properties is the so-called Gauss 
sequence exp(−i2πn2/N). Since phases are insensitive for added multiples of 2π, n2 can be 
reduced to n2 mod N:

 …( ) ( )χ = π = −2
mod 0,1, , 12

N
n N n Nn (2.64)
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(The modulo operation A mod N yields the remainder after division of a number A by an 
integer N.) Other useful sequences exploit the properties of primitive roots of prime numbers 
or the index function. Diffusers of the latter kind suppress the specular re�ection completely.7

The phase shifts χn according to Equation 2.64 are generated by a periodic series of equally 
spaced wells which have different depths hn and are separated by thin and rigid partitions. 
A sound wave hitting such an arrangement will excite secondary waves in the wells. Each of 
these waves travels towards the rigid bottom of the well. When the re�ected wave reappears at 
the opening, it will have gained a phase shift χn = 2khn = 4π(hn/λ; hence, the required depths are

 = χ = λ
π

χ
2 4

h
k

n
n d

n (2.65)

λd is a free design parameter of the diffuser, the ‘design wavelength’. The diffuser works 
optimally for the ‘design frequency’ fd = c/λd and integral multiples of it. On the other hand, 
there are critical frequencies at which no scattering takes place at all. This occurs when all 
depths are integral multiples of the acoustical wavelength.

A second design parameter is the width d of the wells. If it is too small, the number of allowed 
diffraction orders after Equation 2.62 may become very small or – at low frequencies – even 
zero, that is, there will be no or no effective scattering of the re�ected sound. Furthermore, nar-
row wells show increased losses due to the viscous and thermal boundary layer on their walls. 
If, on the other hand, the wells are too wide, not only the fundamental wave mode but also 
higher order wave modes may be excited inside the wells, resulting in a more involved sound 
�eld. Practical diffusers have well widths of a few centimetres. Figure 2.20 shows a section of a 
quadratic residue diffuser (QRD) with N = 7. It goes without saying that such a diffuser works 
not only for normal incident sound but also for waves arriving from oblique directions.

Real diffusers have a �nite extension, of course. As a consequence, the scattered sound 
energy is not concentrated in discrete directions but in lobes of �nite widths around the 
angles ϑm of Equation 2.62. Figure  2.21 presents a polar diagram showing the angular 
distribution of the scattered sound pressure amplitude for a QRD consisting of two periods 
with N = 7; its design frequency is 285 Hz.

The concept of Schroeder diffusers is easily applied to two-dimensional structures which 
scatter the incident sound into all diffraction orders within the half-space. They consist of 
periodic arrays of parallel and rigid-walled channels. For instance, a two-dimensional QRD 
can be constructed by choosing the phase angles of the re�ection factors according to
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The array is periodic in both direc-
tions with the prime number N.

The explanation of pseudoran-
dom diffusers as presented here is 
only qualitative since it neglects all 
losses and assumes all wells behave 
independently. In reality, the ori�ces 
of the wells or channels are coupled 
to each other by local air �ows that 
tend to equalize local pressure dif-
ferences. A more rigorous treatment 
of pseudorandom diffusers starts 

Two periods

Figure 2.20 Quadratic residue diffuser with N = 7.
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from the spatial Fourier expansion of the scattered sound �eld. For a more detailed 
description of this method, the reader is referred to the works by Mechel9 and Cox and 
D’Antonio.10

In 1991, Fujiwara and Miyajima11 observed that pseudostochastic diffusers show unex-
pectedly high absorptivity. This effect is probably caused by the above-mentioned equalizing 
air �ows. Depending on the sound frequency, these �ows may assume relatively high veloci-
ties which are not associated with radiation into the far �eld but are con�ned to the surface 
of the diffuser and to the interior of the wells. However, they lead to high viscous and ther-
mal losses inside the channels.12 As pointed out by Mechel,9 additional losses are probably 
caused by the fact that the local �ows are forced to go around the sharp edges of adjacent 
troughs. In Figure 2.22, the absorption coef�cient of a QRD with a design frequency of 
285 Hz is plotted as a function of the frequency. It is negligible at low frequencies but shows 
a marked rise well below the design frequency and remains at a relatively high level, showing 
several distinct maxima and minima.

As was shown by Fujiwara and Miyajima11 and by Mechel,9 relatively high absorptivities 
are not a peculiarity of pseudostochastic structures, as discussed above, but occur for any 
collection of wells or tubes with different lengths, the openings of which are close to each 
other. An example is a pipe organ, which shows remarkable sound absorption, although 
no porous materials whatsoever are used in its construction. According to J. Meyer,13 the 
absorption coef�cient of an organ, related to the area of its prospect, is as high as about 
0.55–0.60 in the frequency range from 125 to 4000 Hz and has at least some in�uence on 
the reverberation time of a concert hall or a church.

The phase grating diffusers as invented by M. R. Schroeder are certainly based on an inge-
nious concept. Nevertheless, they suffer from the fact that the scattered energy is concen-
trated in a number of grating lobes which are separated by large minima. This is caused by 
the periodic repetition of a base element. One way to overcome this disadvantage is to use 
aperiodic number sequences. Another method is to combine two different base schemes – for 
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Figure 2.21  Scattering diagram of a quadratic residue diffuser according to Figure 2.20: for two periods, the 
spacing d is λ/2. (Based on Schroeder.8)
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instance, QR diffusers of different lengths or different ‘polarities’ – according to an  aperiodic 
binary sequence, for instance, a Barker code. These and other possibilities are discussed in the 
work by Cox and D’Antonio.10
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Figure 2.22  Absorption coef�cient of a quadratic residue diffuser with N = 7 (see Figure 2.20), made of 
aluminium. (Based on Fujiwara and Miyajima.11)
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Chapter 3

Sound waves in a room

In Chapter 2, we saw the laws which a plane sound wave obeys upon re�ection from a single 
plane wall and how this re�ected wave is superimposed on the incident one. Now, we shall 
try to obtain some insight into the complicated distribution of sound pressure or sound 
energy in a room which is enclosed on all sides by walls.

We could try to describe the resulting sound �eld by means of a detailed calculation 
of all the re�ected sound components and by �nally adding them together; that is to 
say, by a manifold application of the re�ection laws which we dealt with in Chapter 2. 
Since each wave which has been re�ected from wall A will be re�ected from walls B, C, 
D and so on, and will arrive eventually once more at wall A, this procedure leads only 
asymptotically to a �nal result, not to mention the avalanche-like growth of required 
calculations. Nevertheless, this method is highly descriptive and therefore it is frequently 
applied in a much simpli�ed form in geometrical room acoustics. We shall return to it 
in Chapter 5.

In this chapter, we shall choose a different way of tackling our problem which will 
lead to a solution in closed form – at least a formal one. This advantage is paid for by 
a higher degree of abstraction, however. Characteristics of this approach are certain 
boundary conditions which have to be set up along the room boundaries and which 
describe mathematically the acoustical properties of the walls, the ceiling and the other 
surfaces. Then, solutions to the wave equations are sought which satisfy these bound-
ary conditions. This method is the basis of what is frequently called ‘the wave theory of 
room acoustics’.

It will turn out that this method in its exact form too can only be applied to highly ideal-
ized cases with reasonable effort. The rooms with which we are concerned in our daily life, 
however, are more or less irregular in shape, partly because of the furniture, which forms 
part of the room boundary. Rooms such as concert halls, theatres or churches deviate from 
their basic shape because there are balconies, galleries, pillars, columns and many other 
sorts of wall irregularities, not to mention the persons attending an event in the room. Then 
even the formulation of boundary conditions may turn out to be quite involved, and the 
solution of a given problem requires extensive numerical calculations. Therefore, the imme-
diate application of the wave theory to practical problems in room acoustics is very limited. 
Nevertheless, the wave theory offers the most reliable and appropriate description from a 
physical point of view, and therefore it is essential for a more than super�cial understanding 
of sound propagation in enclosures. For the same reason, we should keep in mind the results 
of the wave theory when we are applying more simpli�ed methods, in order to keep our 
ideas in perspective. Finally, the wave theoretical description is the basis of the very power-
ful ‘�nite element method’ of calculating the sound �eld in an enclosure.



52 Room acoustics

3.1 FORMAL SOLUTION OF THE WAVE EQUATION

The starting point for an exact description of the sound �eld in a room is again the wave 
equation 1.6, which will be used here in a time-independent form. That is to say, we assume, 
as earlier, a harmonic time law for the pressure, the particle velocity and so on, with an 
angular frequency ω. Then the equation, known as the Helmholtz equation, reads

 p k p k
c

0 with2∆ + = = ω
(3.1)

Furthermore, we assume that the room under consideration has locally reacting walls and 
ceiling, the acoustical properties of which are completely characterized by a wall imped-
ance Z which depends on the coordinates and the frequency but not on the angle of sound 
incidence.

According to Equation 1.2, the velocity component normal to any wall or boundary is
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The symbol ∂/∂n denotes partial differentiation in the direction of the outward normal to 
the wall. We replace vn by p/Z (see Equation 2.2) and obtain
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or, using the speci�c impedance ζ = Z/ρ0c,
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Now, it can be shown that the wave equation has non-zero solutions ful�lling the bound-
ary condition (3.3) or (3.4) only for particular discrete values of k, called ‘eigenvalues’.1,2

In the following text, we shall frequently distinguish these quantities from each other by a 
single index number n or m, though it would be more adequate, in principle, to use a trio 
of subscripts because of the three-dimensional nature of the problem. Each eigenvalue kn

is associated with a solution pn(r) named ‘eigenfunction’ or ‘characteristic function’. Here, 
r is used as an abbreviation for the three spatial coordinates, for instance, x, y, z. It rep-
resents a three-dimensional standing wave, a ‘normal mode’ of the room. Whenever the 
boundary or a part of it has non-zero absorption, both the eigenfunctions and the eigen-
values are complex. Sometimes, it may happen that two or more eigenfunctions belong to 
the same eigenvalue – an example for this is the cubical room. In this case, we speak of 
degenerate eigenvalues.

At this point, we need to comment on the wave number k in the boundary condition (3.3) 
or (3.4). Implicitly, it is also contained in ζ, since the speci�c wall impedance depends in 
general on the frequency ω = kc except in the limiting case of a rigid boundary, that is, of 
ζ → ∞. Hence, both the eigenfunctions pn and the eigenvalues kn are frequency-dependent. 
The eigenfunctions are mutually orthogonal which means that
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where the integration has to be extended over the whole volume V enclosed by the walls. 
Here, Kn is a constant with the dimension Pa2 m3 = N2 m−1.
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If all the eigenvalues and eigenfunctions were known, we could – at least in principle – 
evaluate any desired acoustical property of the room, for instance, its response to arbitrary 
sound sources, either constant or time-variable ones, its reverberation, the spatial distribu-
tion of the energy density, and so forth. Suppose the sound sources are distributed continu-
ously over the room according to a density function q(r), where q(r)dV is the volume velocity 
of a volume element dV at r. Furthermore, we assume that all source elements are operating 
at the same driving frequency ω. By adding ρ0q(r) to the right-hand side of Equation 1.4, it is 
easily seen that the Helmholtz equation 3.1 has to be modi�ed into

 Δp + k2p = −iωρ0q(r) (3.6)

Since the eigenfunctions form a complete and orthogonal set of functions, we can expand 
the source function in a series of pn:
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where the summation is extended over all possible combinations of subscripts. In the same 
way, the solution pω(r), which we are looking for, can be expanded in eigenfunctions:
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Our problem is solved if the unknown coef�cients Dn are expressed by the known coef-
�cients Cn. For this purpose, we insert both series into Equation 3.6:
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equation above, we obtain
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The �nal solution assumes a particularly simple form if the sound source is a point source 
with the volume velocity Q, located at the arbitrary point r0. Then, the source function is 
represented mathematically by a delta function

 q(r) = Qδ(r − r0)

or, in Cartesian coordinates:

 q(x,y,z) = Qδ(x − x0) ∙ δ(y − y0) ∙ δ(z − z0)

Because of Equation 1.56, the coef�cient Cn in Equation 3.7 is then given by
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Using this relation and Equations 3.9 and 3.8, we �nally �nd the sound pressure in a 
room, which is excited by a point source emitting a sine signal with the angular frequency ω:
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This function is also called the ‘Green’s function’ of the room. It is interesting to note 
that it is symmetric in the coordinates of the sound source and of the point of observation. 
Hence, if we put the sound source at r instead of r0, we observe the same sound pressure at 
point r0 as we did before at r, when the sound source was at r0. Thus, Equation 3.10 is the 
mathematical expression of the famous reciprocity theorem, which can be applied some-
times with advantage to measurements in room acoustics.

As mentioned before, the eigenvalues are in general complex quantities. Putting
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and assuming that δn << ωn, we obtain from Equation 3.10
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This expression is the transfer function of the room between the two points r and r0. Each 
term of this sum represents a ‘resonance’ of the room, since the sound pressure amplitude 
assumes a maximum when the driving frequency ω comes close to ωn. Therefore, the cor-
responding frequencies fn = ωn/2π are often called the ‘resonance frequencies’ of the room. 
Another commonly used name is ‘eigenfrequencies’. The δn will turn out to be ‘damping 
constants’ (see Equation 2.37).

If the sound source is not emitting a sinusoidal signal but instead a signal, which is com-
posed of several spectral components, then Q = Q(ω) can be considered as its spectral func-
tion and we can represent the source signal as a Fourier integral (see Section 1.4):

 

1
2

exp d∫( ) ( ) ( )=
π

ω ω ω
−∞

+∞

s t Q i t

Since the response to the spectral component with angular frequency ω is just given by 
Equations 3.10 or 3.12, the sound pressure at the point r as a function of time is
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where the constant volume �ow Q in the formula for pω has to be replaced by Q(ω).

3.2  NORMAL MODES IN A RECTANGULAR ROOM 
WITH RIGID BOUNDARIES

In order to put some life into the abstract formalism outlined in the preceding section, we con-
sider a room with parallel pairs of walls, the pairs being perpendicular to each other. It will be 
referred to in the following as a ‘rectangular room’. In practice, rooms with exactly this shape 
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do not exist. On the other hand, many concert halls or other halls, churches,  lecture rooms 
and so on are much closer in shape to the rectangular room than to any other of simple geom-
etry, and so the results obtained for strictly rectangular rooms can be at least qualitatively 
applied to many rooms encountered in practice. Therefore, our example is not only intended 
for the elucidation of the theory discussed above but also has some practical bearing as well.

Our room is assumed to extend from x = 0 to x = Lx in the x-direction, and similarly from 
y = 0 to y = Ly in the y-direction and from z = 0 to z = Lz in the z-direction (see Figure 3.1). 
As far as the properties of the wall are concerned, we start with the simplest case, namely 
that of all the walls being rigid. That is to say that, at the surface of the walls, the normal 
components of the particle velocity must vanish.

In Cartesian coordinates, the Helmholtz equation 3.1 may be written as
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The variables can be separated, which means that we can compose the solution of three 
factors:

 p(x,y,z) = px(x) · py(y) · pz(z)

each of them depending only on one of the space variables. If this product is inserted into the 
Helmholtz equation, the latter splits up into three ordinary differential equations. The same 
is true for the boundary conditions. For instance, px must satisfy the equation
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together with the boundary condition
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Similar equations hold for py(y) and pz(z); the newly introduced constants kx, ky and kz

are related by

 2 2 2 2+ + =k k k kx y z (3.16)
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Figure 3.1 Rectangular room.
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The general solution of Equation 3.14 can be written as

px(x) = A1 cos(kx x) + B1 sin(kx x) (3.17)

The constants A1 and B1 are used for adapting this solution to the boundary conditions 
(3.15). So, it is seen immediately that we must put B1 = 0, since only the cosine function 
possesses the horizontal tangent at x = 0 required by Equation 3.15. For the occurrence of a 
horizontal tangent too at x = Lx, we must have cos (kxLx) = ±1; thus, kxLx must be an inte-
gral multiple of π. The constant kx must therefore assume one of the values
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nx being a non-negative integer. Similarly, we obtain for the allowed values of ky and kz
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By inserting these values into Equation 3.16, one arrives at the eigenvalues of the wave 
equation:
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The eigenfunctions associated with these eigenvalues are simply obtained by multiplying 
the three cosines, each of which describes the dependence of the pressure on one coordinate:
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where C is an arbitrary constant. This formula represents a ‘normal mode’ of the room, which 
can be conceived as a three-dimensional standing wave. The pressure amplitude is zero at all 
points at which at least one of the cosines becomes zero. This occurs for all values of x which 
are odd integers of Lx/2nx, and for the analogous values of y and z. So these points of vanishing 
sound pressure form three sets of equidistant planes, called ‘nodal planes’, which are perpen-
dicular to one another. The numbers nx, ny and nz indicate the numbers of nodal planes perpen-
dicular to the x-axis, the y-axis and the z-axis, respectively. On both sides of a nodal plane, the 
instantaneous sound pressures have opposite signs. (For non-rectangular rooms, the surfaces 
of vanishing sound pressure are curved. They are referred to as ‘nodal surfaces’.)

In Figure 3.2, the sound pressure distribution in the plane z = 0 is depicted for nx = 3 and 
ny = 2. The loops are curves of constant pressure amplitude, namely for |p/pmax| = 0.25, 0.5 and 
0.75. The intersections of vertical nodal planes with the plane z = 0 are indicated by dotted lines.

The eigenfrequencies corresponding to the eigenvalues of Equation 3.21, which are real 
because of the particular boundary condition (3.15), are given by
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In Table 3.1, the lowest 20 eigenfrequencies (in Hz) of a rectangular room with dimen-
sions Lx = 4.7 m, Ly = 4.1 m and Lz = 3.1 m are listed for c = 340 m/s, together with the 
corresponding combinations of subscripts, which indicate the structure of the mode.
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By employing the relation cos x = (eix + e−ix)/2 (see Equation 1.19), Equation 3.22 can be 
rewritten in the following form:
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wherein the summation has to be extended over the eight possible combinations of signs in the 
exponent. Each of these eight terms – multiplied by the usual time factor exp(iωt) – represents 
a plane travelling wave (see Equation 1.23), whose direction of propagation is de�ned by the 
angles βx, βy and βz, which the wave normal makes with the coordinate axes, where
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with

cos2 βx + cos2 βy + cos2 βz = 1

Table 3.1  Eigenfrequencies of a rectangular room with 
dimensions 4.7 × 4.1 × 3.1 m3 (in Hz)

fn nx ny nz fn nx ny nz

36.17 1 0 0 90.47 1 2 0
41.46 0 1 0 90.78 2 0 1
54.84 0 0 1 99.42 0 2 1
55.02 1 1 0 99.80 2 1 1
65.69 1 0 1 105.79 1 2 1
68.75 0 1 1 108.51 3 0 0
72.34 2 0 0 109.68 0 0 2
77.68 1 1 1 110.05 2 2 0
82.93 0 2 0 115.49 1 0 2
83.38 2 1 0 116.16 3 1 0

+–

–+

–

–

+

+

+

–

– +

Figure 3.2  Sound pressure distribution in the plane z = 0 of a rectangular room for nx = 3 and ny = 2. 
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If one of the three characteristic integers ni, for instance nz, equals zero, then the cor-
responding angle (βz in this example) is 90°; the propagation takes place perpendicularly to 
the respective axis, that is, parallel to all planes which are perpendicular to that axis. The 
corresponding vibration pattern is frequently referred to as a ‘tangential mode’. If there is 
only one non-zero integer n, the propagation is parallel to one of the coordinate axes, that 
is, parallel to one of the room edges. Then, we are speaking of an ‘axial mode’. Modes 
with all integers different from zero are called ‘oblique modes’. In Figure 3.3, two com-
binations of two-dimensional plane waves are shown which  correspond to two different 
eigenfunctions.

3.3 NUMBER AND DENSITY OF EIGENFREQUENCIES

We can get an illustrative survey on the number and type of normal modes as well as the 
directions of the plane waves producing them by the following geometrical representa-
tion: We interpret kx, ky and kz as Cartesian coordinates in a three-dimensional k-space. 
Each of the allowed values of these coordinates as given by Equations 3.18 to 3.20 cor-
responds to a point in this space. These points form a rectangular point lattice in the �rst 
octant of our k-space (see Figure 3.4). (Negative values obviously do not yield additional 
eigenvalues, since Equation 3.21 is not sensitive to the signs of the characteristic inte-
gers nx.) The lattice points corresponding to tangential and axial modes are situated on 
the coordinate planes and on the axes, respectively. The vector pointing from the origin 
of the coordinate system to a certain lattice point has – according to Equation 3.25 – the 
same direction as one of the plane waves of which the associated mode is made up (see 
Equation 3.24).

This representation allows a simple estimate of the number of eigenfrequencies to be 
expected between the frequency 0 and some other given frequency f. Regarded geometri-
cally, Equation 3.16 represents a spherical surface in the k-space with radius k, enclosing 
a ‘volume’ 4πk3/3. Of this volume, however, only the portion situated in the �rst octant is 
of interest, that is, the volume πk3/6. On the other hand, the distances between one certain 
 lattice point and its nearest neighbours in the three coordinate directions are π/Lx, π/Ly and 
π/Lz. The k-‘volume’ per lattice point is therefore π3/Lx  Ly  Lz = π3/V, where V is the geometri-
cal volume of the room under consideration. Now, we are ready to write down the number 

(a) (b)

Figure 3.3  Plane wavefronts creating standing waves in a rectangular room: (a) nx:ny = 1:1 and (b) nx:ny = 3:2.
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of lattice points inside the �rst octant up to radius k, which is equivalent to the number of 
eigenfrequencies from 0 to an upper limit f = kc/2π:
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The average density of eigenfrequencies on the frequency axis, that is, the number of 
eigenfrequencies per Hz at the frequency f, is
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hence, the average spacing of adjacent eigenfrequencies is

 
d
d 4

f
1 3

2f
N
f

c
Vf

nδ =






=
π

−

(3.28)

A more rigorous derivation of Nf must account for the fact that the lattice points situated 
on one of the coordinate planes, representing tangential modes, are shared by two adja-
cent octants. Hence, only half of them have been accounted for so far. Similarly, all lattice 
points on the coordinate axes related to axial modes are common to four octants; therefore, 
only one-fourth of them are contained in Equation 3.26 and their contribution to the total 
number of modes is too small by a factor 4.

The number of all lattice points corresponding to tangential modes can be calculated in 
about the same way which led us to Equation 3.26. The result is
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Figure 3.4  Eigenvalue lattice in the k-space for a rectangular room. The arrow pointing from the origin 
to an eigenvalue point indicates the direction of one of the eight wave planes which the cor-
responding mode consists of (see Figure 3.3); its length is proportional to the eigenvalue.
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where we introduced the total area of all walls, S = 2(LxLy + LyLz + LzLx). Thus, one correc-
tion term to Equation 3.26 reads (πS/4) (f/c)2. Likewise, the total number of lattice points 
situated on one of the coordinate axes within the �rst octant is kL/4π = Lf/2c, with L = 
4(Lx + Ly + Lz) denoting the sum of all edge lengths of the room. However, we should keep 
in mind that half of these points are already contained in the expression above while another 
quarter of them have been, as mentioned, counted in Equation 3.26. Hence, the correction 
term due to the axial modes is Lf/8c and the corrected expression of the number of modes 
with eigenfrequencies up to a frequency f is

 
4
3 4 8

f

3 2

= π ⋅





+ π ⋅ 





+ ⋅N V
f
c

S
f
c

L f
c

 (3.29)

It can be shown that in the limiting case f → ∞, Equation 3.26 is valid not only for rect-
angular rooms but also for rooms of arbitrary shape. This is not too surprising since any 
enclosure can be conceived as being composed of many (or even in�nitely many) rectangular 
rooms. For each of them, Equation 3.26 yields the number Ni of eigenfrequencies. Since this 
equation is linear in V, the total number of eigenfrequencies is just the sum of all Ni.

We bring this section to a close by applying Equations 3.26 and 3.27 to two simple 
examples. The rectangular room the eigenfrequencies of which are listed in Table 3.1 has 
a volume of 59.7 m3. For an upper frequency limit of 116 Hz, Equation 3.26 indicates 10 
eigenfrequencies as compared with the 20 listed in Table 3.1. Using the more accurate 
formula (3.29), we obtain 21 eigenfrequencies. That means we must not neglect the cor-
rections due to tangential and axial modes when dealing with such small rooms at low 
frequencies.

As a second example, we consider a rectangular room with dimensions 50 m × 24 m × 
14 m whose volume is 16 800 m3. (This might be a large concert hall, for instance.) In the 
frequency range from 0 to 10 000 Hz there are, according to Equation 3.26, about 1.7 × 109 
eigenfrequencies. At 1000 Hz, the number of eigenfrequencies per hertz is about 5200; thus, 
the average distance of two eigenfrequencies on the frequency axis is less than 0.0002 Hz. 
These �gures underline the practical impossibility of evaluating the sound �eld even in a 
moderately sized room by calculating normal modes.

3.4 NON-RIGID WALLS

In this section, we are still dealing with rectangular rooms. But now, we consider a room the 
walls of which are not completely rigid. This means that the normal components of particle 
velocity may have non-vanishing values along the boundary. Accordingly, we have to replace 
the boundary condition we applied before by the more general condition of Equation 3.3 
or 3.4. As in the preceding section, the solution of the wave equation consists of three fac-
tors px, py and pz, each of which depends on one spatial coordinate only. If the speci�c wall 
impedance is constant over each wall pair, the boundary condition for px reads, under the 
assumption of locally reacting boundaries:
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Analogous conditions can be set up for the walls perpendicular to the y-axis and the 
z-axis.

Again, the general solution for px is given by Equation 3.17. However, for the pres-
ent  purpose it is more useful to write this solution in its complex version, according to 
Equations 1.19, with arbitrary constants C1 and D1:

 px(x) = C1 exp(−ikx x) + D1 exp(ikx x) (3.31)

By inserting it into the boundary conditions, we obtain two linear and homogeneous 
equations for C1 and D1. These equations have a non-vanishing solution only if the determi-
nant of their coef�cients is zero. This leads to the following transcendental equation:

 exp( ) = ± ζ −
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ik L
k k
k k

x x
x x
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(3.32)

In general, this equation must be solved numerically. Once the allowed values of kx have 
been determined, the ratio of the two constants C1 and D1 can be calculated and we are 
ready to write down the x-component of the solution, apart from a common constant.

At this point, the reader should remember that the exponential function with imaginary 
argument is a periodic function with the period 2π, that is,

 exp(iz) = exp(iz + i2π) = exp(iz + inxπ)

where nx is any even number. Furthermore, the plus or minus sign in Equation 3.32 can be 
accounted for by admitting not only even numbers nx in the last exponential but any integer 
number since exp(iπ) = −1. Thus, to obtain the complete solution of Equation 3.32, a factor 
exp(iπnx) must be inserted somewhere:
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From now on, we restrict the discussion to enclosures with nearly rigid boundaries, that 
is, to the limiting case |ζ| >> 1. Then, we expect that the eigenvalues and eigenfunctions are 
not very different from those of the rigid-walled room. By taking the logarithm of Equation 
3.33, we obtain:
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The logarithm can be approximated by expanding it into a power series for k/kxζx and 
truncating this series after its �rst term:
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Since the second term in this equation is small compared to the �rst one, we can replace 
kx in the second term with nxπ/Lx:
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Comparing this result with Equation 3.18 con�rms our expectation that the allowed val-
ues of kx are not much different from those of the hard-walled room. With increasing ‘order’ 
nx of the mode, the difference becomes even smaller.

Suppose that the wall is reactive, that is, it is free of absorption. Then, its speci�c imped-
ance is purely imaginary and the correction term is real. If Im ζ is positive, which indicates 
that the motion of the wall is mass-controlled, then the allowed value is higher than in the 
rigid-walled room. Conversely, a compliant wall, that is, a wall with the impedance of a 
spring (Im ζ < 0), will lower the allowed value kx.

Whenever the speci�c impedance has a non-vanishing real part which indicates wall 
losses, kx is complex. If the allowed values of kx are denoted by kxnx, the eigenvalues of the 
original differential equation are given as earlier by (see Equation 3.16)

 2 2 2 1 2( )= + +k k k kn n n xn yn znx y z x y z (3.35)

In Figure 3.5, the absolute value of the x-dependent factor of a certain eigenfunction is 
represented for three cases: for rigid walls (ζx = ∞), for mass-loaded walls with no energy loss 
(ζx = i) and for walls with real impedance. In the second case, the standing wave is simply 
shifted together, but its shape remains unaltered. On the contrary, in the third case of lossy 
walls, there are no longer exact nodes and the pressure amplitude is different from zero at 
all points. This can easily be understood by keeping in mind that the walls dissipate energy, 
which must be supplied by waves travelling towards the walls; thus, a pure standing wave is 
not possible. This situation is comparable to a standing wave in front of a single plane with 
a re�ection factor less than unity as shown in Figure 2.4.

(a)

(b)

(c)
LX

Figure 3.5 One-dimensional normal mode: pressure distribution for nx = 4: (a) ζ = ∞, (b) ζ = i and (c) ζ = 2.
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3.5  NUMERICAL SOLUTION OF THE WAVE EQUATION: 
THE FINITE ELEMENT METHOD

The preceding sections should have shown that it is pointless to search after a comprehen-
sive picture of the sound �eld in a room – well-suited for practical calculations – by solving 
the wave equation. One reason for this is the tremendous number of eigenvalues and eigen-
frequencies which must be computed for this purpose. Another one is the fact that these 
quantities and functions are usually complex because of the losses which are present in 
every real room. And �nally, the shapes of most real rooms are so complicated that a simple 
formulation of boundary conditions is nearly impossible, let alone the great diversity of wall 
materials. Therefore, when it comes to compute the sound �eld in practical situations, we 
have to resort to numerical methods from which we can obtain approximate solutions, the 
accuracy of which depend on the computational expenditure we are ready to spend.

A particularly ef�cient and �exible numerical procedure is the �nite element method 
(FEM). It has proved very useful in many disciplines of physics and engineering, for instance, 
in elasticity, heat conduction, electrical and magnetic �elds, and so on. In room acoustics, 
it can be used to determine the eigenfunctions, or to calculate the steady-state or the tran-
sient sound �eld in a room. The basic idea is to desist from the original goal, namely to 
compute the complex sound pressure amplitudes in all room points and instead to search an 
approximate solution which is exact in N previously assigned points, so-called nodes, while 
the sound pressure at all other room points is obtained by interpolation. This is achieved by 
transforming the partial differential equation into a set of linear algebraic equations from 
which the correct nodal sound pressure amplitudes pn (n = 1, 2, …, N) can be determined.

The �rst step to arrive at such a set of equations is to subdivide the interior of the room 
into a large number of small, however, �nite volume elements, for instance, into tetrahe-
drons or parallelepipeds. This procedure is often called ‘creating a mesh’. Each of these 
elements which may vary in shape, size and orientation is de�ned by a certain number of 
‘nodes’. For tetrahedral elements, for instance, the simplest choice of node positions would 
be their four vertices. In this case, linear interpolation is suf�cient to determine the sound 
pressure at any point of an element.

There are several ways to derive the aforementioned set of linear equations. For the fol-
lowing, the ‘Method of Weighted Residuals’ has been chosen for calculating the steady-
state response of a room. We follow here the very clear description of this method given 
by Astley.3 The boundaries of the room are assumed to be of the locally reacting type and 
hence can be characterized by their speci�c impedance ζ, which may vary from one location 
to another. Furthermore, we use the simplest possible shape of elements, namely that of tet-
rahedrons which carry one node at each of its vertices. So, each element carries four nodes, 
and each node connects four elements.

We start with the Helmholtz equation (3.6), that is, we assume excitation of the room 
with a harmonic sound signal the angular frequency of which is ω = kc. Multiplying this 
equation with some continuous and differentiable function v(r), called ‘test function’, and 
integrating the result over the room volume V leads us to:

 ( ) ( )d 02
0∫∫∫ ∆ + + ωρ  =p k p i q v V

V
r r  (3.36)

If this equation is required to be valid for any test function v, we can conclude that the 
expression within the bracket is zero which leads us back to Equation 3.6. Any approximate 
solution �p, inserted into Equation 3.36, would yield a non-vanishing value of the bracket, 
the so-called ‘residuum’. Thus, the test function acts as a weighting function, which is to 
distribute this residuum in a suitable way over the whole domain V.
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Before searching for a suitable approximation �p, we apply Green’s integral theorem
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to Equation 3.36. S denotes the area of the room boundary and the point in the second 
integral indicates scalar multiplication of both gradient functions. At the same time, the 
derivative in the integral over S is expressed by the speci�c wall impedance according to the 
boundary condition (3.4). The result of this transformation is

 grad grad d
d

d2
0∫∫∫∫∫ ∫∫∫( )⋅ − +

ζ
= ωρv p vpk V ik vp

S
i vq V

SV V
(3.38)

This formula contains not only the Helmholtz equation (3.6) but also the boundary con-
dition (3.4).

The next step is the discretization of Equation 3.38. For this purpose, we approximate the 
complex sound pressure amplitude by the following series:
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The functions Λn(r) called shape functions are de�ned by the requirement to be unity at 
the nth node and to vanish at all other nodes:

 

(r )
1 for

0 for
Λ =

=

≠







m n

m n
n m

where rm indicates the position on the nth node. For all other points within the nth element, 
the shape function Λn is obtained by linear interpolation.

To illustrate the shape functions, let us have a look at the analogous one-dimensional 
problem (Figure 3.6). In this case, the elements are straight-line segments separated by 
nodes which are aligned along the coordinate axis. The shape functions resemble the 
Greek character Λ; they all have the height 1 and each of them connects two elements 
with each other. The approximation (3.39) is obtained by ‘modulating’ the peaks of the 

1

x

Figure 3.6 Shape functions (dashed lines) for one-dimensional elements of equal size. The approximate 
solution is a piecewise linear function shown as the thick line at the top obtained by adding the 
modi�ed shape functions (solid lines).
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triangles according to the nodal values pn and to add them. The result is a piecewise 
 linear function (dashed line, see Figure 3.6b). For two-dimensional problems, the process 
is analogous, the simplest elements are triangles in a plane, each of which is de�ned by 
three nodes (the vertices of the triangle). Accordingly, each shape function looks like a 
tent. The three-dimensional case is a bit more dif�cult to imagine, but the principle of 
discretisation is the same.

Now we substitute Equation 3.39 into Equation 3.38; at the same time we identify the test 
function v successively with the shape functions Λ1, Λ2, …, ΛN. The results of both opera-
tions are N linear equations
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which can be solved with standard methods to determine the nodal pressures pn.
The coef�cients Kmn may be conceived as the components of a quadratic and symmetric 

matrix K, usually called the stiffness matrix. Similarly, the Mmn and Cmn can be represented 
in a symmetric ‘mass matrix’ M and a ‘damping matrix’ C, while pn and Qn can be con-
sidered as components of single-column matrices (i.e., as vectors) p and Q. Then, Equation 
3.40 can be rewritten as a matrix equation:

 (K – k2M + ikC) · p = ikρ0cQ (3.41)

The matrix components Kmn, Mmn and so on are calculated element by element, that is, 
the integrations are �rst performed over the element volumes Ve instead of the total volume 
V (respectively, over the boundary areas Se of the considered element). Afterwards, these 
element matrices are assembled into the global matrices K, M and C. For this process, a 
global numbering scheme of all elements and nodes is de�ned, and all matrix components 
are renumbered according to this scheme. Next, all N element matrices will be ‘expanded’, 
that is, their components are inserted at the proper positions of a N × N matrix which origi-
nally contains only zeros. Finally, all N expanded element matrices are added. The same 
procedure is applied to the calculation of the vector components Qm in Equation 3.41. The 
interested reader will �nd an illustrative description of the assembly process in the book by 
Huebner and Thornton.4

In practical problems, the total number of elements (N) may amount to hundreds of thou-
sands. For the solution of the linear equations (3.41), it is a great advantage that most matrix 
components are zero and that the non-zero components are concentrated about the main 
diagonal of the matrices. This is a consequence of the limited ‘reach’ of the shape functions 
which connect just a few elements within each node.

It is obvious that the accuracy of the �nal result depends on the spatial density of nodes. 
In  the literature, the use of at least three to ten nodes per wavelength is recommended. 
Suppose we want to calculate the sound pressure in a room with a volume of 100 m3 at 
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a frequency of 100 Hz, using �ve nodes per wavelength. Then, the total number of nodes 
would be about 320. Increasing the volume or the frequency by a factor of 10 would raise 
this number to about 320 000. This example shows the limits of FEM when it comes to the 
calculation of sound pressures in large room and/or at elevated frequencies. One way to cir-
cumvent the dif�culties to store large amounts of data and to handle them within acceptable 
times is to introduce additional nodes per element, which may be placed on the edges and 
the faces of the elements. Then, however, linear interpolation within the elements must be 
replaced with a more complicated interpolation scheme. Another possibility is to use more 
complicated element shapes (e.g., hexahedral ones), which also require higher order polyno-
mials as interpolation functions.

What has been outlined here is just one example from the numerous applications of FEM, 
which have been developed and are still being re�ned. For standard applications, complete 
computer codes are commercially available, for instance, for the meshing process. It should 
be mentioned that there are other useful numerical methods for evaluating sound �elds 
based on �nite elements, for instance, the FDM (�nite difference method). The latter, how-
ever, are based on a regular pattern of nodes in contrast to the FEM, where the shapes and 
the sizes of the elements may be adapted to the geometry of the problem to be studied, for 
instance, to increase the accuracy of the approximation in critical regions of an enclosure. 
Another important application of �nite elements is the boundary element method (BEM). 
It can be used to determine the acoustical quantities on the boundary of a domain, for 
instance, on the interior surface of a loudspeaker horn, from which the acoustic �eld in the 
inside can be calculated by well-known integral statements.

3.6 STEADY-STATE SOUND FIELD

As derived in Section 3.1, the steady-state acoustical behaviour of a room, when it is excited 
by a sinusoidal signal with angular frequency ω, is described by a series of the form
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where we are assuming δn << ωn according to Section 3.1. By comparing this with Equation 
3.12, we see that the coef�cients An are functions of the source position r0, of the receiv-
ing position r and of the angular frequency ω. If both positions are considered as �xed, 
Equation 3.42 represents the transfer function of the room for this situation.

Since we have supposed that the damping constants δn are small compared with the 
eigenfrequencies ωn, the predominant frequency dependence is that of the denominator. 
Whenever the frequency is close to one of the eigenfrequencies ωn, the corresponding series 
term will become very large, or, in other words, the system will behave as a resonator. Since 
the term ω2 − ω2

n is responsible for the strong frequency dependence, ωn can be replaced by 
ω in the last term of the denominator without any serious error. Then, the absolute value of 
the nth series term becomes
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and thus agrees with the frequency characteristics of a resonance system, according to 
Equation 2.36. Therefore, the stationary sound pressure in a room and at one single exciting 
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frequency proves to be the combined effect of numerous resonances. The relative half-power 
bandwidths of the resonance curves according to Equation 2.38 are
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In most full-size rooms, the damping constants lie between 1 and 20 s−1. Therefore, our 
earlier assumption concerning the relative magnitude of the damping constants seems to be 
justi�ed. Furthermore, the half-power bandwidths of the resonances turn out to be of the 
order 1 Hz, according to Equation 3.43. This �gure is to be compared with the average spac-
ing of eigenfrequencies on the frequency axis after Equation 3.28. If the latter is substan-
tially larger than the average half-width 〈δn 〉/π, we expect that most of the room resonances 
are well separated, and that each of them can be individually excited and detected. In a 
tiled bathroom, for example, the resonances are usually weakly damped, and thus one can 
often detect one or several of them by singing or humming. If, on the contrary, the average 
half-width of the resonances is much larger than the average spacing of the eigenfrequen-
cies, there will be strong overlap of resonances and the latter cannot be experimentally 
separated. Instead, at any frequency several or many terms of the sum in Equation 3.41 will 
have signi�cant values; hence, several or many normal modes will simultaneously contribute 
to the total sound pressure. According to Schroeder5 and Schroeder and Kuttruff,6 a limit-
ing frequency separating both cases can be de�ned by the requirement that on average three 
eigenfrequencies fall into one resonance half-width

 〈Δfn 〉 = 3 · 〈δfn 〉

or, with Equation 3.28:
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Solving for f and introducing c = 343 m/s yield the limiting frequency, the ‘Schroeder 
frequency fs’:
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(3.44)

In this expression, we introduced the ‘reverberation time’ T = 6.91/〈δ〉 (see Section 3.8). 
The room volume V has to be expressed in cubic metres.

In large halls, the Schroeder frequency is typically below 50 Hz; hence, there is strong 
modal overlap in the whole frequency range of interest, and there is no point in evaluating 
single eigenfrequencies. It is only in small rooms that a part of the important frequency 
range lies below fs, and in this range the acoustic properties are determined largely by the 
values and half-widths of individual eigenfrequencies. To calculate the expected number, 
Nfs, of eigenfrequencies in the range from 0 Hz to fs, Equation 3.44 is inserted into Equation 
3.26 with the result:

 800 3
s ≈N T Vf (3.45)
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Thus, in a classroom with a volume of 200 m3 
and a reverberation time of 1 s, some 60–70 eigen-
frequencies dominate the acoustical behaviour 
below the Schroeder frequency which is about 
140 Hz. This example illustrates the somewhat 
surprising fact that the acoustics of small rooms 
are in a way more complicated than those of large 
ones, where the transfer function is governed by 
statistics.

It should be noted that Equation 3.44 can also 
be read as a criterion for the acoustical size of a 
room, again on the grounds of its modal struc-
ture. A given room can be considered as ‘acousti-
cally large’ if
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(f in Hz, T in seconds and V in m3). After the preceding discussion, it is not surprising that 
this limit depends on the frequency.

Here, we restrict the discussion to the frequency range above the Schroeder limit, f > fs. 
Moreover, the observation point is supposed to be far enough from the sound source to 
make the direct sound component negligibly small. Hence, if the room under consideration 
is excited with a pure tone, its steady-state response is made up by contributions of several or 
even many normal modes with randomly distributed phases. The situation may be elucidated 
by the vector diagram in Figure 3.7. Each vector or ‘phasor’ represents the contribution of 
one term in Equation 3.42 (nine signi�cant terms in this example). The resulting sound 
pressure is obtained as the vector sum of all components. For a different frequency or at a 
different point in the room, this diagram has the same general character, but it looks quite 
different in detail, provided that the change in frequency or location is suf�ciently great.

Since the different components can be considered as mutually independent, the central 
limit theorem of probability theory can be applied to the real part as well as to the imagi-
nary part of the resulting sound pressure pω. According to this theorem, both quantities are 
random variables obeying a Gaussian distribution. This statement implies that the squared 

absolute value of the sound pressure p, divided by the mean of this quantity, 
2 2=y p p , 

which is proportional to the energy density, is distributed according to an exponential law 
or, more precisely: The probability of �nding this quantity between y and y + dy is given by

 P(y)dy = exp(−y)dy (3.47)

The mean value 〈 y〉 and also the variance 〈 y2〉 − 〈 y〉2 of this distribution is 1, as is easily 
checked. The probability that a particular value of y exceeds a given limit y0 is

 exp d exp0 0
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P y y y y y
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(3.48)

It is very remarkable that the distribution of the energy density is completely independent 
of the type of the room, that is, on its volume, its shape or the treatment of its walls.
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Figure 3.7  Phasor diagram showing the 
components of the steady-state 
sound pressure in a room and 
their resultant.
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Figure 3.8a presents a typical ‘space curve’, that is, the sound pressure level recorded with a 
microphone along a straight line in a room while the driving frequency is kept constant. Such 
curves express the space dependence of pω in Equation 3.42 or, more explicitly, in Equation 
3.12. Their counterparts are the ‘frequency curves’, that is, representations of the sound pres-
sure level observed at a �xed microphone position when the excitation frequency is slowly 
varied. They are based on the frequency dependence of Equation 3.42. A section of such a 
frequency curve is shown in Figure 3.8b. It would look quite different in detail if recorded at 
another microphone position or in another room; its general character, however, would be 
similar to the one shown. The same statement holds for space curves.

Both curves in Figure 3.8 look quite similar: they are highly irregular and show �at peaks 
and deep valleys. A maximum of the pressure level occurs if in Figure 3.7 many or all arrows 
happen to point in about the same direction, indicating similar phases of most contribu-
tions. Similarly, a minimum appears if these contributions more or less cancel each other. 
Therefore, the maxima of frequency curves are not related to particular room resonances or 
eigenfrequencies but are the result of accidental phase coincidences. The general similarity 
of space and frequency curves is not too surprising: both curves sample the same distribu-
tion of squared sound pressure amplitudes, namely that given by Equation 3.42, but they do 
it in a different way. 

We may ask how much acoustic energy is delivered by a point source operating in a room. 
The �nal fate of this energy is its absorption at the boundary of the room (we neglect here the 
losses occurring in the air). One might suppose that the wall losses depend not only on the 
physical properties of the boundaries but also on the structure of the wave �eld, the spa-
tial distribution of maxima and minima of the acoustic pressure and so on. It was G. C. 
Maling Jr.7 who studied this problem starting from the Green’s function of rectangular rooms 
after Equation 3.10. He found that the sound power emitted by a point source in a room is 
the same as that radiated in the free space, provided there is signi�cant overlapping of room 
resonances, that is, the frequency is well above the Schroeder limit fs after Equation 3.44. 
This result, which can easily be generalized to a room of arbitrary shape, is easy to under-
stand: Primarily, the point source produces a spherical wave in which the sound pressure is 
inversely proportional to the distance from the source. Suppose we approach the source from 
some remote position where the sound pressure of the primary wave is negligibly small; with 
decreasing distance the primary sound pressure will grow monotonically. Eventually, it will 
become dominant so that the ‘distortions’ of the sound �eld caused by the room boundaries 
can be neglected. Accordingly, the power the source emits into the room is the same as it 
would produce in the free space, see Equation 1.39, second part.

10 dB

Distance
(a)

10 dB

Frequency
(b)

Figure 3.8  Steady-state sound pressure amplitude (logarithmic representation): (a) along a straight line at 
constant frequency (‘space curve’) and (b) at a �xed position with slowly varying driving fre-
quency (‘frequency curve’).
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3.7 SOME PROPERTIES OF ROOM TRANSFER FUNCTIONS

In this section, some properties of ‘frequency curves’ are presented without giving their deri-
vations which the interested reader may look up in the cited references. All these properties 
are valid for the frequency range of overlapping modes, that is, for f > fs. Furthermore, it is 
assumed that the distance of the receiving point and the exciting point source is so large that 
the primary spherical wave mentioned at the end of the preceding section can be neglected.

As explained in Section 1.4, the degree of causality within a time function can be quanti�ed 
by its autocorrelation function. In the present case, we can apply this concept to the energetic 
transfer function, either considered in dependence of a space coordinate y(x) or to its fre-

quency dependence y(f). In both cases, we consider the normalized quantity 
2

2
y

p

p
=  as the 

signi�cant variable; its distribution function is given by Equation 3.47. For the space depen-
dence in rooms with an isotropic (diffuse) sound �eld, the autocorrelation function reads8
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with x denoting the coordinate along the straight line where the pressure level is recorded. 
The acute brackets are to indicate ensemble averages.

The autocorrelation function of frequency curves is given by9
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The numeral 1 in Equations 3.49 and 3.50 is due to the constant component of the func-
tion y(x,f), that is, to the mean value 〈 y〉. Both autocorrelation functions are plotted in 
Figure 3.9. As long as the autocorrelation function ϕyy(Δx) is noticeably different from unity, 
it indicates that there is still some causal relationship between any two samples of y taken at 
two points Δx apart. A similar consideration applies to ϕyy(Δf).

φyy

kΔx, TΔf/2.2
0

1

2

2.5 5

Figure 3.9 Autocorrelation functions ϕyy of room responses: solid line represents ϕyy(Δx) after 
Equation 3.49 (the abscissa is kΔx); dashed line represents ϕyy(Δf ) after Equation 3.50 (the 
abscissa is πΔf/〈δ〉 = TΔf/2.2).
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The average distance of adjacent maxima of space curves in a diffuse sound �eld is

〈Δxmax〉 ≈ 0.79λ (3.51)

for the corresponding quantity of frequency curves, the mean spacing of maxima is6

3
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n (3.52)

Again, T = 6.91/〈δ〉 denotes the reverberation time, as in Equation 3.44.
A quantity which is especially important with regard to the performance of sound rein-

forcement systems in rooms is the absolute maximum ymax of a frequency curve to be 
expected within a given frequency bandwidth B. In order to estimate it, we assume that the 
frequency curve can be represented by N equidistant and statistically independent samples. 
We de�ne the absolute maximum ymax by requiring that there is just one sample which 
equals or exceeds ymax, while the remaining N − 1 samples are smaller. The probability of 
this condition to happen is
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where we have used Equation 3.47. C is some normalization constant. To �nd the maxi-
mum of PN(ymax) derivative, this function with respect to ymax is set equal to zero which 
yields ymax = ln N. The level difference ΔLmax = 10 · log10(ymax) between ymax and the mean 
value of y is

 ΔLmax = 10 ∙ log10(ln N) = 4.34 ln(ln N) dB

To estimate the number N of samples, one should make sure that their density is high 
enough to represent the frequency curve. On the other hand, their distance to the frequency 
axis should be wide enough to assure their independence. A fair compromise between these 
con�icting requirements is achieved if we take four samples per average spacing 〈Δfmax〉. With 
Equation 3.52, this leads to N ≈ BT and �nally to

 ΔLmax = 10 ∙ log10[log10(BT)] + 3.6 dB = 4.34 ln[ln(BT)] dB (3.53)

This interesting formula is based on the formula by M.R. Schroeder,10 who derived it in 
a somewhat different manner. It is certainly not free of some arbitrariness. On the other 
hand, the number N is not very critical since the double logarithm depends only slightly 
on its argument. Later, the same author has given a more accurate formula11 for ΔLmax

which, however, does not signi�cantly differ from Equation 3.53. In most practical situa-
tions, ΔLmax is about 10 dB.

If the driving frequency of a sound source is slowly varied, both the amplitude of the 
sound pressure in any room and its phase �uctuate in an irregular manner. Apart from these 
quasi-statistical �uctuations, there is a monotonic variation of the phase angle. The average 
phase shift per hertz is given by12
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Figure 3.10 shows in its upper part an amplitude–frequency curve. In contrast to 
Figure 3.8b, the plotted quantity is not the sound pressure level but the squared absolute 
value of the sound pressure, |pω|2. The lower part plots the corresponding phase variation 
obtained after subtracting the monotonic increase according to Equation 3.56. It con-
sists of quasi-stochastic phase �uctuations. Accordingly, the phase spectrum of any signal 
transmitted in the room will be randomized by these �uctuations.

This can be demonstrated in the following way: A loudspeaker placed in a reverberant room 
is alternatively fed with two signals which have equal amplitude spectra, but different phase 
spectra. The �rst signal, for instance, may be a periodic sequence of rectangular impulses 
(see Figure 3.11a), whereas the second one is a maximum length sequence (see Section 8.2) 
made up of rectangular impulses with quasi-randomly changing signs (see Figure 3.11b). 
If the listener is close to the loudspeaker, he can clearly hear that both signals sound quite 
different, provided the repetition rate 1/T is not too high. However, when the listener slowly 
steps away from the loudspeaker, the room �eld will prevail over the direct sound signal; 
the perceived difference of both signals becomes smaller and smaller and �nally disappears.

When a room is acoustically excited not by just one harmonic sound signal but by a 
mixture of several or many sine signals with different frequencies, there will occur some fre-
quency averaging by which the frequency response is smoothed. A similar effect is brought 
about by spatial averaging the response of a room to a sinusoidal excitation signal.

The simplest case is that of a room simultaneously excited with M discrete sine signals 
of different frequencies but of equal strengths. As in the preceding section, we denote the 

 energetic room response to monofrequent excitation with 
2

2
y

p

p
= . Then, the result of 

 applying M sine signals is z = y1 + y2 + … + yM, provided the samples yn are uncorrelated. 
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Figure 3.10  (a) Magnitude and (b) phase of a typical room transfer function above the Schroeder limit fs.
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This is the case when the excitation frequencies are suf�ciently well separated – a conclu-
sion which can be drawn from the shape of the autocorrelation function Φyy (see Figure 3.9, 
broken line). Under this condition the average of z is M, according to probability theory. 
Furthermore, the variance of the sum, Var(z) = 〈z2〉 − 〈z〉2 is M times the variance of y, which 
is 1 as can be concluded from Equation 3.47. Hence, the relative variance of the sum z is
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The same result is obtained for the sum of M samples yn taken at well-separated points of 
the sound �eld, while the source is emitting a monofrequent signal.

Matters are more complicated if the enclosure is excited with a signal having a constant 
frequency spectrum within the bandwidth B = f2 − f1. This is because then we do not average 
uncorrelated samples.13 Then, we consider the average
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Again, we have 〈 y〉 = 1 and 〈z〉 = 1 because of the exponential distribution (3.47). The 
average of z2 is
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Figure 3.11  Two periodic signals with equal amplitude spectrum but different phase spectra. (a) Periodically 
repeated rectangular pulses and (b) periodic maximum length sequence of rectangular impulses. 
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Evaluation of this double integral leads to the following expression for the ‘relative 
variance’ of z:
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where δn has been replaced with the mean damping constant 〈δ〉.
This quantity is plotted in Figure 3.12 (dashed line) as a function of the variable

 2.2
π
δ

=B BT

If the power spectrum w(f) of the exciting signal is not constant within the exciting fre-
quency band, the bandwidth B is replaced by an ‘equivalent bandwidth’:
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Basically, the same procedure as was used in deriving Equation 3.57 can be applied to 
calculate the space average over a straight path of length L. In this case, we consider the 
average
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Figure 3.12 Relative variance of space and frequency averaged room responses (squared magnitude of sound 
pressure), solid line represents space averaging over a distance L (the abscissa is kL); dashed 
line represents frequency averaging over a frequency interval B (the abscissa is πB/〈δ〉 = BT/2.2).
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The result is a somewhat lengthy formula the content of which is plotted in Figure 3.12 
as a function of kL. Both curves in this diagram are quite similar. Therefore, we can use 
Equation 3.56 too as an approximate expression for the relative variance of the average 
(3.58) by replacing the variable πB/〈δ〉 with kL:
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3.8 DECAYING MODES, REVERBERATION

If a room is excited not by a stationary signal as in the preceding sections but instead 
by a very short sound impulse emitted at time t = 0, we obtain, in the limit of vanishing 
pulse duration, the impulse response g(t) valid for a particular receiving point of the room. 
According to the discussion in Section 1.4, this is the Fourier transform of the transfer 
function:

 

exp d∫( ) ( )= ω ωω

−∞

∞

g t p i t

Generally, the evaluation of this Fourier integral with pω after Equation 3.42 is rather 
complicated. At any rate, the solution has the form
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(3.60)

It is composed of sinusoidal oscillations with different frequencies, each dying out with its 
individual damping constant. This is plausible since each term of Equation 3.42 corresponds 
to a resonator whose reaction to an excitation impulse is a damped oscillation. If the wall 
losses in the room are not too large, the frequencies ′ωn and damping constants ′δn differ 
only slightly from ωn and δn as occur in Equation 3.42. As is seen from the more explicit 
representation (3.12), the coef�cients ′An depend on the location of both the source and the 
receiving point.

By squaring the expression (3.60), we obtain a quantity which is proportional to the 
energy density of the decaying sound �eld:
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This expression can be considerably simpli�ed by short-time averaging, that is, averag-
ing only the product of cosines but not the slowly varying exponential. Hence, the products 
with n ≠ m will cancel, whereas each term n = m yields a value 1/2. Thus, we obtain for the 
energy density

 ave ( ) exp 2 for 0
2 2∑{ }[ ]( ) ( )= = ′ − ′δ ≥w t g t A t tn

n

n (3.62)

where all irrelevant constants have been omitted.
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If the energy support to the room is effected not by a very short impulse but by a station-
ary signal which is switched off at t = 0, the energetic room response is given as the sum of 
all previously generated decays according to Equation 3.62:
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This version of the decay process is called the ‘reverberation’ of the room. It is one of 
the most important and striking acoustical phenomena of a room, familiar also to every 
layman.

Now, we imagine that this sum in Equation 3.63 is rearranged in order of increasing 
damping constants ′δn. We suppose the number of signi�cant terms in Equation 3.63 as very 
large. Then, we can replace the summation by an integration. This is done by collecting the 
contributions of all terms with damping constants between δ and δ + dδ in a continuous 
function called the ‘damping density’ H(δ)dδ, which is normalized by requiring
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Just as the coef�cients An or ′An, the distribution of damping constants H(δ) depends on 
the sound signal and on the locations of the sound source and of the observation point.

From this representation, we can derive some interesting general properties of reverbera-
tion. Usually, measurements of the reverberation are based rather on the sound pressure 
level of the decaying sound �eld than on the sound pressure itself or, since the energy density 
w is proportional to the square of the sound pressure (see Equation 1.64):
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In Figure 3.13, some examples of damping densities are presented, along with the cor-
responding logarithmic reverberation curves according to Equation 3.64. The distribu-
tions are normalized such that they have the same mean value. Only when all the damping 
 constants are equal (Case d), the decay curves are straight.

The decay rate of the sound pressure level is
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while the second derivative of the decay level is
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(Each overdot in these formulae means one differentiation with respect to time.) It can be 
shown that this derivative – along with Equation 3.64 – cannot be negative which means 
that the decay curves are curved upwards or are straight lines. For t = 0, a logarithmic decay 
curve has its maximum steepness; the initial slope, as obtained from Equation 3.66, is pro-
portional to the mean value of the distribution H(δ):

 8.69 d 8.69r
0

0

� ∫( ) ( )= − ⋅ δ δ δ = − ⋅ δ
=

∞

L H
t

(3.68)

Furthermore, Equation 3.67 leads to

( ) 17.37r 0
�� ( )= − ⋅ δ − δ=

2 2
L t (3.69)

This means that the second derivative of the level at t = 0, which is roughly the 
 initial  curvature of the decay curve, is proportional to the variance of the damping 
 density H(δ).

Measured reverberation curves are often straight or nearly straight, apart from some ran-
dom or quasi-random �uctuations, as shown in Figure 3.14. (The latter are caused by beats 
between the decaying modes, that is, by incomplete cancellation of the terms with n ≠ m 
in Equation 3.61). Then, all decay constants can be replaced without much error by their 
average 〈δ〉.
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Figure 3.13  Various distributions of damping constants and corresponding decay curves. 
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It is usual in room acoustics to characterize the duration of sound decay the ‘reverberation 
time’ or ‘decay time’ T, introduced by Sabine. It is de�ned as the time interval in which the 
decay level drops down by 60 dB. From

−60 = 10 ∙ log10[exp(−2〈δ〉)T]

it follows that the reverberation time

 
3 ln 10 6.91( )

=
⋅

δ
≈

δ
T  (3.70)

a relation which has already been used in preceding sections. Typical values of reverberation 
times run from about 0.3 s (living rooms) up to 10 s (large churches, empty reverberation 
chambers). Most large halls have reverberation times between 0.7 and 2 s. Thus, the average 
damping constants encountered in practice are in the range 1 to 20 s−1.
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Chapter 4

Geometrical room acoustics

In Section  3.5, we described one possible way to overcome the dif�culties in computing 
sound �elds in a realistic room: the application of numerical procedures, in particular the 
method of �nite elements. In this chapter, quite a different approach will be chosen, namely a 
substantial simpli�cation of the propagation laws. This is achieved by considering the limit-
ing case of vanishingly small wavelengths, that is, of very high frequencies. This approach is 
the basis of what is called geometrical room acoustics; it is justi�ed whenever the dimensions 
of the room and its boundary including all its details are large compared with the acoustical 
wavelength. This condition is not unrealistic in room acoustics; at a medium frequency of 
1000 Hz corresponding to a wavelength of 34 cm, the linear dimensions of the walls and the 
ceiling, and also the distances travelled by the sound waves, are usually much larger than the 
wavelength. Even if we regard the re�ection of sound from a balcony face, for instance, a geo-
metrical description is applicable, at least qualitatively, keeping possible diffraction effects 
(see Section 2.7) in the back of the mind.

In geometrical room acoustics, the concept of sound waves is replaced by the concept of 
sound rays. The latter is an idealization just as much as the plane wave. As in geometrical 
optics, we mean by a sound ray a small sector of a spherical wave with vanishingly small 
aperture which originates from a certain point. Provided the medium is homogeneous, the 
sound in a ray travels along a straight line, and its energy remains constant during propaga-
tion as long the medium itself does not cause any energy losses. Another fundamental fact is 
the manner in which a sound ray is re�ected from a wall. Much has been said about this in 
Chapter 2. However, the �nite velocity of propagation must be taken into consideration since 
it is responsible for many typical effects such as reverberation, echoes and so on.

Any typical wave effects such as diffraction are neglected in geometrical room acoustics, 
since propagation in straight lines is its main postulate. Likewise, interference is usually not 
considered, that is, if several sound �eld components are superimposed their mutual phase 
relations are not taken into account; instead, simply their energy densities or their intensities 
are added. As explained in Section 2.5, this is permissible if the different components of the 
sound �eld are mutually incoherent.

It is self-evident that geometrical room acoustics can re�ect only a partial aspect of the 
acoustical phenomena occurring in a room. This aspect is, however, of great importance 
because of its conceptual simplicity and the ease of practical sound �eld computations.

4.1 ENCLOSURES WITH PLANE WALLS, IMAGE SOURCES

If a sound ray strikes a solid surface, it is usually re�ected from it. If the surface is suf�ciently 
smooth, this process follows the same re�ection law as known from in optics. It states that 
the ray during re�ection remains in the plane de�ned by the incident ray and normal to the 



82 Room acoustics

surface, and that the angle between the incident ray and re�ected ray is halved by normal to 
the wall. In vector notation, this law, which is illustrated in Figure 4.1, reads

u′ = u − 2(un) · n (4.1)

Here u and u′ are unit vectors pointing in the direction of the incident and the re�ected 
sound ray, respectively, and n is the normal unit vector at the point where the arriving ray 
intersects the surface. The bracket is to indicate the scalar product of the vectors u and n.

One simple consequence of this law is that any sound ray which undergoes a dou-
ble re�ection in an edge formed by two perpendicular surfaces will travel back in the 
same direction, as shown in Figure  4.2a, no matter from which direction the incident 
ray arrives. If the angle of the edge deviates from a right angle by δ, the direction of the 
re�ected ray will differ by 2δ from that of the incident ray (Figure 4.2b). A similar effect 
occurs in the three-dimensional case of a ray running into the corner formed of three 
perpendicular planes.

In this section and in the next two sections, the law of specular re�ection will be applied 
to enclosures, the boundaries of which are composed of plane and smooth walls. In this case, 
one can bene�t from the notion of image sources, which greatly facilitates the construction 
of sound paths within the enclosure. This is explained in Figure 4.3. Suppose that there is 
a point source A in front of a plane wall or wall section. Then, each ray re�ected from this 
wall can be thought of as originating from a virtual sound source A′ which is located behind 
the wall, on the line perpendicular to the wall and at the same 
distance from it as the original source A. Without the image 
source, the re�ection path connecting the sound source A with 
a given point B could only be found by trial and error.

Once we have constructed the image source A′ associated 
with a given original source A, we can disregard the wall alto-
gether, the effect of which is now replaced by that of the image 
source. Of course, the image emits exactly the same sound sig-
nal as the original source and its directional characteristics are 
symmetrical to those of A. If the extension of the re�ecting 
wall is �nite, then we must restrict the directions of emission 
of A′ accordingly or, put in a different way, for certain posi-
tions of the observation point B the image source may become 
‘ invisible’. This is the case if the line connecting B with the 
image source does not intersect the actual wall.

n
u´

u

Figure 4.1 The law of specu-
lar sound re�ection 
from a plane.

(a) (b)

δ
2δ

Figure 4.2 Re�ection of a sound ray from a corner (two-dimensional). (a) Rectangular corner, (b) non-
rectangular corner.
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Usually, not all the energy striking a 
wall is re�ected from it; part of the energy 
is absorbed by the wall (or it is transmitted 
to the other side, which has the same effect 
as far as the re�ected fraction is concerned). 
The  fraction of sound energy (or intensity) 
which is not re�ected is characterized by the 
absorption coef�cient α of the wall which 
has been de�ned in Section 2.1 as the ratio 
of the non-re�ected to the incident intensity. 
It  depends generally, as we have seen, on 
the angle of incidence and, of course, on the 
frequency spectrum of the incident sound. 
Thus, the re�ected ray has generally a dif-
ferent power spectrum and a lower intensity 
than the incident one. Using the picture of 
image sources, these circumstances can be 
taken into account by modifying the spec-
trum and the directional distribution of the 
sound emitted by A′. With such re�nements, 
however, the usefulness of the concept of 
image sources is degraded considerably. It is 
more convenient to employ some mean value 
α of the absorption coef�cient, for instance 
αuni of Equation 2.53, valid for  random 
sound incidence, and accordingly to reduce 
the intensity of the re�ected ray by a factor 
1 − α. As an alternative, the image source can 
be thought to emit a sound power reduced 
by this factor.

If a re�ected sound ray strikes a second 
wall, the continuation of the sound path can 
be found by repeating the mirroring process, 
as shown in Figure 4.4. Accordingly, a sec-
ond-order image A′′ is constructed which is 

the mirror image of A′ with respect to that wall. Continuing in this way, more and more image 
sources of increasing order are created. The double re�ection reduces the intensity of the con-
tribution of A′′ by a factor (1 − α1) · (1 − α2).

Strictly speaking, the concept of image sources is only exact if the re�ecting boundary has the 
speci�c impedance +1 or −1. In all other cases, the results obtained with it are not quite correct 
since quantities such as the re�ection factor or the absorption coef�cient are de�ned for plane 
waves only while the waves originating from the real sound source and its images are spherical. 
This problem has been discussed in detail in Section 2.4. We expect that the errors are tolerable 
as long as the distance of the source from the re�ecting surface is at least a few wavelengths.

For a given enclosure and sound source position, the image sources can be constructed 
without referring to a particular sound path. Suppose the enclosure is made up of N plane 
walls. Each of them is associated with one �rst-order image of the original sound source. 
Now each of these image sources is mirrored by all walls except one, hence there are 
N(N − 1) images of second order. By repeating this procedure again and again, a rapidly 
growing number of images is generated with increasing distance from the original source. 

A

B

A´

Figure 4.3  Construction of an image source.

Á
A

A̋

Figure 4.4  Image sources of �rst and second order.
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The number of images of order i is N(N − 1)i − 1 for i ≥ 1; the total number of images of order 
up to i0 is obtained by adding all these expressions:
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For enclosures with high symmetry (see Figure 4.6, for instance), many of the higher order 
images coincide. It should be noted, however, that each image source has its own directivity since 
it ‘illuminates’ only a limited solid angle, determined by the limited extension of the walls. Hence, 
it may well happen that a particular image source is ‘invisible’ (or rather ‘inaudible’) from a given 
receiving location. Moreover, only those image sources are valid which have been generated by 
mirroring at the inside of a wall (i.e., at the side facing the enclosure). These problems have been 
carefully discussed by Borish.1 More will be discussed about this subject in Section 9.8.

These complications are not encountered with enclosures of high regularity, the image 
sources of which form regular patterns. As a simple example, which may also illustrate 
the usefulness of the image model, let us consider a very �at room, the height of which is 
small compared with its lateral dimensions. For locations far from the side walls, the effect 
of the latter may be totally neglected. Then, we arrive at a space which is bounded by two 
parallel, in�nite planes. For the sake of simplicity, we assume that both the sound source A 
and the observation point B are located in the middle between both planes, that the source 
radiates the power P uniformly in all directions and, furthermore, that to for both planes 
the same angle-independent absorption coef�cient α is assigned. The corresponding image 
sources (and image spaces) are depicted in Figure 4.5. The source images form a simple pat-
tern of equidistant points situated on a straight line, and each of them is a valid one, that 
is, it is ‘visible’ from any observation point B. According to Equation 1.38, the contribution 

of an image source of nth order to the total energy density in B is )( − α ⋅ π1 / 4
| | 2P r c
n

n  with 
rn = (r2 + n2h2)1/2 if r is the horizontal distance of B from the original source A and h is the 
‘height’ of the room. The resulting energy density
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Figure 4.5  System of image sources of an in�nite �at room: A is the original sound source; A′, A′′ and so on 
are image sources; and B is the receiving point.
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which can be evaluated with a pocket calculator. The content of this formula is shown in 
Figure  9.1a. If desired, one can easily extend this model to angle-dependent absorption 
coef�cients.

Another example is a rectangular room, as depicted in Figure 3.1. For this room shape, 
certain image sources of the same order coincide but are complementary with respect to 
their directivity. The result is the regular pattern of image rooms, as shown in Figure 4.6, 
each of them containing exactly one image source. So, the four image rooms adjacent to the 
sides of the original rectangle contain one �rst-order image each, whereas those adjacent to 
its corners contain second-order images and so on. The lattice depicted in Figure 4.6 has to 
be completed in the third dimension, that is, we must imagine an in�nite number of such 
patterns one upon the other at equal distances, one of them containing the original room.

In both examples, all image sources are visible. This is because the totality of image 
rooms, each of them containing one source image, �lls the whole space without leaving 
uncovered regions and without any overlap. Enclosures of less regular shape would produce 
much more irregular patterns of image sources, and their image spaces would overlap each 
other in a complicated way. In these cases, the validity or invalidity of each image source 
with respect to a given receiving point must be carefully examined. A more realistic example 
is shown in Figure 4.7, along with a few image sources.

When all image sources of a given enclosure have been constructed, we can proceed as 
before: The total energy density at a given point R is obtained by adding the contributions 
of all signi�cant image sources under the assumption that all sources including the original 
one emit the same sound signal. Because of the different travelling distances, the waves (or 
rays) originating from these sources arrive at the receiving point with different delays and 
strengths. As mentioned before, the strength of a particular contribution must include the 
absorptivities αn of all walls, which are crossed by the straight line connecting the image 
source with the receiving point.

dΩR = ct 

dR 

Figure 4.6 Image sources (marked with dots) in a rectangular room. Each rectangle indicates a mirror image 
of the original room in the centre and contains an image of the original sound source. The pattern 
continues in an analogous manner in the direction perpendicular to the drawing plane.
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4.2 THE TEMPORAL DISTRIBUTION OF REFLECTIONS

In the discussions of Section 4.1, it was tacitly assumed that the output power of the sound 
source and all its images is constant in time, and that it is correct just to add their intensi-
ties in the receiving point. However, if the sound source emits a signal s(t), which con-
tains information as for instance speech, this procedure is no longer permissible since it 
neglects all time delays caused by the �nite sound velocity. If the absorption coef�cients of 
all walls were frequency independent, the received signal s′(t) would be the superposition of 
in�nitely many replicas of the original signal, each of them with its particular strength An

and delayed by its particular travelling time tn:

 ∑( ) ( )′ = −s t A s t tn n

n

(4.4)

Accordingly, the impulse response of the room would be

 ∑( ) ( )= δ −g t A t tn n

n

(4.5)

In reality, a Dirac impulse is deformed each time it is re�ected from a wall, that is, the 
re�ected signal is not the exact replica of the original impulse but is changed into a different 
signal r(t), which we name the ‘re�ection response’ of the surface. Its Fourier transform is 
the frequency-dependent and complex re�ection factor R, as introduced in Section 2.1.

In the following term, ‘re�ection’ will be used with two different meanings: �rst, it 
denotes the process which a sound signal undergoes when it hits a wall, and secondly, 
it means the result of this process. Accordingly, we can say that the impulse response of 
a room is composed of in�nitely many re�ections as shown schematically in Figure 4.8. 
Each of them is represented by a vertical dash over a horizontal time axis; its arrival time 
and its relative energy can be seen from its position and length. Such a diagram which is a 
highly idealized form of a room impulse response is also called an ‘echogram’ or ‘re�ection 
 diagram’. The third important property of re�ections, the direction from which it arrives at 

A1

A1

A1

A R

A2

A2

A3

Figure 4.7  Longitudinal section of an auditorium showing some image sources: A = sound source; A1 = �rst-
order image sources; A2 = second-order image sources and so on.
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the observation point, is not shown in the diagram. The �rst dash marks the primary sound 
or the direct sound, arriving at t = 0. The subsequent re�ections appear at �rst rather spo-
radically, later at ever increasing density; at the same time, they carry less and less energy. 
As we shall see later in more detail, the role of the �rst isolated re�ections with respect to 
our subjective hearing impression is quite different from that of the very numerous weak 
re�ections arriving at later times, which merge into what we perceive subjectively as rever-
beration. Thus, we can consider the reverberation of a room not only as the common effect 
of decaying vibrational modes, as we did in Chapter 3, but also as the sum total of all re�ec-
tions – except the very �rst ones.

The average rate of re�ections received in a point of a real rectangular room can be found 
by using the system of image rooms and image sound sources as shown in Figure 4.6. Suppose 
that at some time t = 0, each mirror source emits an impulse of energy E0 in the form of a 
spherical wave. In the time interval from t to t + dt, all those waves will arrive in the cen-
tre of the original room which originate from image sources whose distances to the centre 
are between ct and c(t + dt). These sources are located in a spherical shell with radius ct. 
The thickness of this shell (which is supposed to be very small as compared with ct) is cdt and 
its volume is Vs = 4πc3t2 dt. Hence, the average number of mirror sources contained in the 
shell is Vs/V = 4πc3t2 dt/V. This �gure is also the average rate of received re�ections at time t:
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It is interesting to note, by the way, that the above approach is the same as that used 
to estimate the mean density of eigenfrequencies in a rectangular room (Equation 3.26) 
with formally the same result. In fact, the pattern of mirror sources and the eigenfrequency 
 lattice are in the same relation to each other as are the point lattice and the reciprocal lat-
tice in crystallography: they are spatial Fourier transforms of each other. Moreover, it can 
be shown that Equation 4.6 applies not only to rectangular rooms but also to rooms with 
arbitrary shape.

Each re�ection corresponds to a bundle of rays originating from the respective image 
source. In this bundle, the sound intensity decreases proportionally as (ct)−2, that is, inversely 

Delay (ms)

Reverberation

0 50 100 150 200 250 300

Direct sound
‘Early’ reflections

Figure 4.8  Schematic impulse response of a room.
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proportional to the squared distance covered by the rays. Furthermore, the rays are attenu-
ated by absorption in the medium. According to Equation 1.21, this effect can be taken into 
account by including a factor exp(−mx/2), which describes the decrement of the pressure 
amplitude when a plane wave travels a distance x in a lossy medium. Hence, the intensity 
of a re�ection is reduced by the factor exp(−mx) = exp(−mct). And �nally, the intensity of a 
ray bundle is reduced by a factor 1 − a whenever it crosses a wall of an image room. If this 
happens n-times per second on the average, the intensity reduction due to wall absorption 
after t seconds will be [ ]− α = − αntnt(1 ) exp ln(1 ) . Therefore, a re�ection received at time t 
has the average intensity

 { }( )
( )

π
− + − α 

E

ct
mc n t

4
exp ln 10

2

Dividing this expression by the sound velocity and combining it with Equation 4.6 yields 
the time-dependent energy density for t ≥ 0:

w t w mc n t w E Vexp ln 1 with0 0 0{ }( ) ( )= − + − α  = (4.7)

To complete this formula, we use the average number n of wall re�ections or wall cross-
ings per second. For this purpose, we refer to Figure 4.9 and consider a sound ray whose 
angle with respect to the x-axis (i.e., to the horizontal axis) is βx. It will cross a vertical mir-
ror wall every Lx/(c cos βx) seconds. (Lx, Ly and Lz are the room dimensions as in Figure 3.1.)

Therefore, the number of such wall crossings per second is

 ( )β = βn
c

L
x x

x
xcos  (4.8)

Similar expressions hold for the crossings of walls perpendicular to the y-axis and the 
z-axis. Accordingly, the total number of wall crossings, that is, of re�ections which a ray 
with given direction undergoes per second is

 n(βx, βy, βz) = nx + ny + nz

with cos2 βx + cos2 βy + cos2 βz = 1. This means that each sound ray decays at its own rate 
resulting in a bent decay curve according to the discussion in Section 3.8.

To arrive at a value of n which is representa-
tive for all sound rays, one has to require that 
the sound rays change the energy they trans-
port and/or their direction once in a while.2 
Such changes will never happen in a rectan-
gular room with smooth walls. But enclosures 
with more irregular shape or with diffusely 
re�ecting walls or obstacles which provide 
for some sound scattering have the tendency 
to mix the directions of sound propagation. In 
the ideal case, such randomizing effects will 
eventually result in what is called a ‘diffuse 
sound �eld’ in which the propagation of sound 
is completely isotropic.

βx

Lx

Figure 4.9  Wall crossings of a sound ray in a 
rectangular room and its images.
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Under this condition, Equation 4.8 may be averaged over all directions:
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The same average is found for ny and nz. Hence, the total average of re�ections per second is
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Here S is the total area of the room’s boundary. By inserting this result into Equation 4.7, 
we arrive at a fairly general law of sound decay:
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The reverberation time, that is, the time in which the total energy falls to one millionth 
of its initial value, is thus
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or, if we insert 343 m/s for the sound velocity c

 ( )=
− − α
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4 ln 1
 (4.12)

In the preceding text, we have derived by rather simple geometrical considerations the 
most important formula of room acoustics, which relates the reverberation time of a room 
to some of its geometrical data and to the absorption coef�cient of its walls. We have tacitly 
assumed that the latter is the same for all wall portions and that it does not depend on the 
angle at which a wall is struck by the sound rays. In Chapter 5, we shall look more closely 
into the laws of reverberation using a different approach, but the result will be essentially 
the same as in Equation 4.12.

The exponential law of Equation 4.10 provides an approximate description of the decay-
ing sound energy in a rectangular room with a diffuse sound �eld. One must not forget, 
however, that this formula is the result of two averaging processes. In reality, the  re�ections 
arrive at quite irregular times tn, at the observation point – for instance, at a  listener’s 
ear – and also their energies vary in quite an irregular way, even if the sound �eld is diffuse. 
Accordingly, in exceptional cases, certain details of the decay process may show  considerable 
deviations from Equation 4.10, which may well be relevant for the acoustics of the room. 
So it may happen, for instance, that one particular re�ection with long delay time is much 
stronger than the majority of its surrounding neighbours and stands out of the general decay 
process. This can occur when many sound rays are directed to a remote concave wall por-
tion, which concentrates the re�ected sound energy in some point or region. Such an isolated 
component of the echogram is perceived as a distinct echo. Another unfavourable condition 
is that of many re�ections clustered together in a narrow time interval. Since our hearing has 
a limited time resolution and therefore performs some sort of short-time integration, this 
lack of uniformity may be audible and may give rise to undesirable effects which are similar 
to that of a single re�ection of exceptional strength.
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Particularly disturbing are periodic components hidden in numerous irregularly distributed 
re�ections, since our hearing is very sensitive to periodic repetitions of sound signals. For 
short periods, that is, for repetition times of a few milliseconds, such periodic components are 
perceived as a ‘colouration’ of the sound signal. If the periods are longer and amount to 30, 
50 or even 100 ms, distinct repetitions of the original sound signal will be audible. This case, 
which is frequently referred to as ‘�utter echo’, is observed if sound is re�ected repeatedly to 
and fro between parallel walls. Flutter echoes are often observed in corridors or other long-
ish rooms where the end walls are rigid while the ceiling, �oor and side walls are absorbent.

4.3  THE DIRECTIONAL DISTRIBUTION OF REFLECTIONS, 
DIFFUSE SOUND FIELD

We shall now consider the third characteristic property of a re�ection, namely the direction 
from which it reaches an observer. As before, we shall prefer a statistical description. This 
procedure commends itself not only because of the great number of re�ections to be con-
sidered but also because no human listener is able to distinguish subjectively the directions 
of individual re�ections. Nevertheless, whether the re�ected components arrive uniformly 
from all directions or whether they all come from one single direction has considerable 
bearing on what and how we hear in a room, especially in a concert hall. The directional 
distribution of sound is also important for certain measuring procedures.

First, we assume that the sound source produces a stationary sound signal, and that the same 
holds for all image sources. Each of them, provided it is visible from the receiving point R, con-
tributes to the received sound energy. Let us consider a narrow cone with the small solid angle 
dΩ around a direction characterized by the polar angle ϑ and the azimuth angle φ (θ and ϕ in 
Figure 2.10). Its tip is located at the receiving point R. The contribution of all sources within 
the ‘directional cone’ is I(φ, ϑ). This quantity, conceived as a function of the angles φ and ϑ, 
is called the directional distribution of sound. In general, it depends on the receiver’s location. 
For a rectangular room, the situation is illustrated in Figure 4.6. Obviously, I(φ, ϑ) will only 
remain �nite if there are some losses caused either by air attenuation or by non-vanishing wall 
absorption. Experimentally, I(φ, ϑ) can be determined by the use of a directional microphone 
with suf�ciently high resolution, at least approximately (see Section 8.5).

If the sound source and its images emit a transient signal, the directional distribution will 
become time-dependent. Again, the limiting case is that of an impulsive excitation signal 
with very short duration, idealized as a Dirac impulse. Then the intensity at time t, denoted 
by It(φ, ϑ), is due to those image sources that are lying within the directional cone and, at 
the same time, within a spherical shell with the radius ct and the thickness cdt. For the rect-
angular room in Figure 4.6, this region corresponds to the cross-hatched area in the upper 
part. Evidently, the relation between the time-dependent and the steady-state directional 
distribution is

 I I t, , dt

0
∫( ) ( )ϕ ϑ = ϕ ϑ
∞

 (4.13)

If the directional distribution I(φ, ϑ) does not depend on the angles φ and ϑ, the stationary 
sound �eld is called ‘diffuse’ or isotropic. We have already discussed this important condi-
tion in Section 2.5. If, in addition to this condition, It(φ, ϑ) does not depend on the angles φ 
and ϑ for all t, even the decaying sound �eld is diffuse.

In a certain sense, the diffuse sound �eld is the counterpart of a plane wave. Just as certain 
properties can be attributed to plane waves, so relationships describing the properties of 
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diffuse sound can be established. Some of these have already been discussed in Chapter 2. 
They are of particular interest to the whole of room acoustics, since, although the sound 
�eld in a concert hall or theatre is not perfectly diffuse, its directional structure resembles 
more that of a diffuse �eld than that of a plane wave. Or, put another way, the sound �eld 
in a real room, which always contains some shape irregularities, can be approximated fairly 
well by a sound �eld with uniform directional distribution. By contrast, a single plane wave 
is hardly ever encountered in a real situation.

It should be noted that the directional structure of a sound �eld depends not only on 
the shape of the room but also on the distribution of absorption over its boundary. As an 
extreme example, we consider a rectangular room with perfectly rigid walls except for one 
which absorbs the incident sound energy completely. Its behaviour with respect to the for-
mation and distribution of re�ections is elucidated by the image room system depicted in 
Figure 4.10, consisting of only two ‘stores’ of height L since the absorbing wall generates no 
images of the room and the sound source. The elevation angle ε varies in the range ±ε0 with

 ( )ε = 



 ≥t

L
ct

t
L
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It is obvious that the sound �eld is anything but isotropic in this room. This holds for the 
steady-state �eld as well as for the sound decay. With the present meaning of the angle ε, the 
element of solid angle becomes cos εdεdφ; hence, the integration over all relevant directions 
yields the following expression for the decaying energy density:
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2
d , cos const
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2
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0

0

∫ ∫ ( )( ) = ϕ ϕ ε ⋅ ε ε = ⋅ π ≥
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(4.16)

As a consequence of the non-uniform distribution of the wall absorption, the decay of the 
reverberant energy does not follow an exponential law but is inversely proportional to the 
time.

c t
ε

L

Figure 4.10 Image rooms of a rectangular room, one side of which is perfectly sound absorbing. The original 
room is indicated by solid lines.
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4.4 ENCLOSURES WITH CURVED WALLS

In this section, we deal with enclosures the boundaries of which are concavely curved, 
either completely or partially. Practical examples are rooms with a domed ceiling, as are 
encountered in many theatres or other performance halls, or the curved rear walls of many 
lecture theatres. Concavely curved surfaces in rooms are generally considered as critical or 
even harmful in that they concentrate the sound energy in certain areas and thus impede its 
uniform distribution throughout the room.

Formally, the law of specular re�ection as expressed by Equation 4.1 is valid for curved 
surfaces as well as for plane ones, since each curved surface can be approximated by 
many small plane sections. Keeping in mind the wave nature of sound, however, one 
should not apply this law to a surface the radius of curvature of which is not very large 
compared to the acoustical wavelength. When the radius of curvature is comparable or 
even smaller than the wavelength the surface will scatter an impinging sound wave rather 
than re�ecting it specularly.

Very often, curved walls in rooms or halls are spherical or cylindrical, or parts of them 
can be approximated by sections of this kind. Then, we can apply the simple laws for re�ec-
tion of rays at concave or convex mirrors, known from optics. Strictly speaking, those laws 
are valid only for small segments of curved boundaries but nevertheless they are useful for 
an estimate of the effects to be expected. Figure 4.11a depicts a section of a concave, spheri-
cal mirror; its radius of curvature is R. We consider a bundle of rays originating from a point 
S situated on the symmetry axis of the mirror. The mirror collects all re�ected rays at some 
point S′, thereafter they will diverge. This happens when the distance between the source 
and the mirror is larger than R/2. Generally, the source distance a, the distance b of the 
recollection point S′ from the mirror and the radius R are related by

 + =
a b R
1 1 2  (4.17)

If the source is closer to the mirror than R/2 (see Figure 4.11b), the re�ected ray bundle is 
divergent (although less divergent than the incident one) and seems to originate from a point 
behind the mirror. Equation 4.17 is still valid and leads to a negative value of b.

Finally, we consider the re�ection at a convex mirror as depicted in Figure  4.11c. In 
this case, the divergence of any incident ray bundle is increased by the mirror. Again, 
Equation 4.17 can be applied to �nd the position of the ‘virtual’ focus after replacing R 
with −R. As before, the distance b is negative.

In the following, we calculate for a spherical mirror the intensity Ir in the re�ected bundle 
and comparing it with the intensity I0, we would observe at the same position if the curved 

(a)

S

(b)

SS´

(c)

SS´

Figure 4.11 Re�ection of a ray bundle from a concave (a and b) and a convex mirror (c).
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re�ector would be replaced with a plane one. For this purpose, one should note that the 
intensity in a divergent ray bundle is generally

=
Ω ⋅

I
P

r
0

2 (4.18)

where P0 is the power transported by a ray bundle with the aperture Ω (i.e., the solid angle 
which de�nes the width of the bundle). r is the observer’s distance from the origin of the 
bundle, and observer’s distance from the surface of the mirror is denoted by x. What the 
re�ector does is to change the aperture of the bundle while the total power remains unal-
tered. Application of Equation 4.18 to the incident and the re�ected bundle yields

 and0
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Finally, we invoke the obvious relation Ωr/Ω0 = (a/b)2 and obtain for the ratio of both 
expressions:

 
I
I

x a
x b

1
1

r

0

2

= +
−







 (4.19)

Figure 4.13 plots the level Lr = 10∙log10 (Ir/I0) derived from this ratio for the three cases 
depicted in Figure 4.12. The pole in curve a (for a > R/2) is due to the concentration of all 
rays in one point S′. Generally, there is a range of increased intensity, that is, of positive Lr. 
From Equations 4.17 and 4.19, it can be concluded that

 < −



 = −



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− −

x
b a R a

2
1 1 1 11 1

(4.20)

Outside that range, the level Lr is negative, indicating that the re�ected bundle is more 
divergent than it would be when re�ected from a plane mirror. If a < R/2 (curve b), the inten-
sity is increased at all distances x. Finally, the convex mirror (curve c) reduces the intensity 
of the bundle everywhere.

(b)

(a)

(a)

(c)
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–10
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20

dB

2 3 4

x/R

Figure 4.12 Level difference in ray bundles re�ected from a spherical and a plane re�ector at distance x: 
(a) concave mirror, a = 2R; (b) concave mirror, a = R/3; and (c) convex mirror, a = 2R.
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According to Equation 4.19, the limit of Lr for very large distances x is

 L
b
a

xr 20 log for10→ ⋅ → ∞ (4.21)

Some practical conclusions can be drawn from these �ndings. A concave mirror may 
concentrate the impinging sound energy in certain regions, but it may also be an effective 
scatterer which distributes the re�ected energy over a wide angular range. Which of these 
effects dominates depends on the positions of the source and the observer. Generally, 
the following rule2 can be derived from Equation 4.20: Suppose the mirror in Figure 4.11a 
is completed to a full circle with radius R. Then, if both the sound source and the receiver 
are outside this volume, the undesirable effects mentioned at the beginning of this section 
are not to be expected.

Up to now, we discussed the behaviour of spherical re�ectors. Cylindrical re�ectors can 
be treated in an analogous way. We just need to replace Equation 4.18 with

 =
α ⋅

I
P

r
0  (4.22)

Here α is the angle which characterizes the width of a plane ray bundle, r has the same 
meaning as before. Then, we obtain
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 (4.23)

As mentioned before, the applied simple laws are valid only for narrow ray bundles, 
that is, as long as the inclination of the rays against the axis is suf�ciently small, or, what 
amounts to the same thing, as long as the aperture of the mirror is not too large. Whenever 
this condition is not met, the construction of re�ected rays becomes more dif�cult. Either the 
surface has to be approximated piecewise by circular or spherical sections, or the re�ected 
bundle must be constructed ray by ray. As an example, the re�ection of a parallel bundle 
of rays from a concave mirror of large aperture is shown in Figure 4.13. Obviously,  the 

Figure 4.13 Re�ection of a parallel ray bundle from a spherical mirror of large aperture.
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re�ected rays are not collected just in one 
point; instead, they form an envelope which is 
known as a caustic. Next to the central ray, the 
caustic reaches the focal point in the distance 
b = R/2 in accordance with Equation  4.17 
with a → ∞. Another interesting shape is that 
of the ellipse or the ellipsoid. Both have two 
foci F1 and F2, as shown in Figure 4.14. If a 
sound source S is situated in one of them, all 
the rays it emits are collected in the other one. 
For this reason, enclosures with elliptical �oor 
plan are plagued by quite unequal sound dis-
tribution even if neither the sound source nor 
the listener is in a geometrical focus. The same 
holds, of course, for halls with a circular �oor 
plan since the circle is a limiting case of the 
ellipse.

A striking experience can be made in such 
halls if a speaker is close to its wall. A listener, 
who is also next to the wall, although distant 
from the sound source (see Figure 4.15), can 
hear the speaker quite clearly even if the lat-
ter speaks in a very low voice or whispers. 
An  enclosure of this kind is said to form a 
‘whispering gallery’. The explanation of this 
phenomenon is simple: many of the sound rays 
leaving the speaker’s mouth hit the wall at 
grazing incidence and are repeatedly re�ected 
from it. If the wall is smooth and not inter-
rupted by pillars, niches and so on, the rays 

remain con�ned within a narrow band: in other words, the wall conducts the sound along 
its perimeter. Probably, the best known example is in St. Paul’s Cathedral in London, which 
has a gallery at the circular base of the dome. A whispering gallery is an interesting curios-
ity, but if the hall is used for performances, the acoustical effects encountered in it are rather 
disturbing.

4.5 RADIOSITY INTEGRAL

In Section 2.7, we discussed diffuse sound re�ections from acoustically ‘rough’ boundary 
portions caused by scattering the incident sound. They occur when the re�ecting bound-
ary exhibits irregularities either in geometrical structure or in wall impedance, provided 
the dimensions of these irregularities are comparable with the acoustical wavelengths 
(see Figure 2.17). Obviously, diffraction plays the dominant role in the scattering process. 
Nevertheless, we can treat diffuse wall re�ections and their effects within the realm of 
geometric acoustics. This is achieved by describing just the result of the scattering process 
leaving aside the physical details. It is clear that scattering from a rough boundary has a con-
siderable in�uence on the sound �eld in the room. Generally, diffuse wall re�ections provide 
for mixing different sound components and thus result in a more uniform distribution of the 
sound energy throughout the room.

F1 F2

Figure 4.14  Collection of sound rays in an elliptical 
enclosure.

S

P

Figure 4.15  Whispering gallery.
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In most cases, the sounds re�ected from a rough surface contain a specular component 
as shown in the example of Figure 2.18. Completely diffuse re�ection is characterized by 
Lambert’s cosine law: Suppose a bundle of parallel or nearly parallel rays with the intensity 
I0 hits an area element dS under an angle ϑ0. Then, the intensity of the sound which is scat-
tered in a direction characterized by a radiation angle ϑ, measured at some distance r from 
dS, is given by

 ( )ϑ = ρ ϑ ⋅ ϑ
π

= ρ ϑ Ω
π

I r I S
r

B
d

, d
cos cos

cos0
0

2 0  (4.24)

The situation is depicted in Figure 4.16. dΩ = dS ⋅ cos ϑ/r2 is the solid angle under which 
the element dS appears from a point in distance r and the emission angle ϑ. The circle rep-
resents the directional distribution of the scattered sound; the length of the arrow pointing 
to its periphery is proportional to cos ϑ. The quantity B0 = I0 cos ϑ0 is the incident energy 
per second and per unit area. It is called the ‘irradiation density’ or ‘irradiance’; its unit 
is watts/m2. The factor ρ in Equation 4.24, named as ‘re�ection coef�cient’, accounts for 
the energy loss taking place at dS. Obviously, it is related to the absorption coef�cient by 
ρ = 1 − α.

In fact, it does not matter whether the irradiance B0 is brought about by one, two or 
hundred incident rays hitting the element dS at different angles. We can say that a sound ray 
forgets its history when it is diffusely re�ected.

In optics, surfaces with Lambertian scattering are encountered quite frequently. In con-
trast, in acoustics and particularly in room acoustics, only partially diffuse re�ections 
can be achieved. Nevertheless, the assumption of totally diffuse re�ections comes often 
closer to the properties of real walls than that of specular re�ection, particularly if we 
are  concerned not only with one but instead with many successive re�ections of sound 
from different walls or portions of walls. This is exactly what happens in reverberant 
enclosures.

According to Equation 4.24, the surface element should be considered as a secondary 
sound source. Consequently, the distance r which determines the intensity reduction due to 
the spreading of sound beams must be measured from the re�ecting area element dS. This 
is not so with specular re�ection: here, the distance r in the 1/r2 law would be the total path 
length between the sound source and the point of observation with no regard as to whether 
this path is straight or contains bents caused by 
specular re�ections.

In the following, we consider an enclosure of 
arbitrary shape the whole boundary of which 
is assumed to re�ect the impinging sound in a 
completely diffuse manner, that is, according to 
Lambert’s law. This assumption enables us to 
describe the sound �eld within the room in a closed 
form, namely by an integral equation. To derive it, 
consider two wall elements, dS and dS′, of a room 
(see Figure 4.17). Their locations are given by the 
vectors r and r′, respectively, each of them stand-
ing for three suitable coordinates. The straight line 
connecting them has the length R = |r′ − r|, and the 
angles between this line and the wall normals in 
dS and dS’ are denoted by ϑ and ϑ′.

dS
ϑ

ϑo

Figure 4.16  Ideally diffuse sound re�ection 
from an acoustically rough surface.
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Suppose the element dS ′ is irradiated with the energy B(r′)dS ′ per second. The fraction it 
re-radiates into the space is given by the ‘re�ection coef�cient’ ρ(r′). To avoid unnecessary 
complications, we assume that ρ(r′) is independent of the angles ϑ and ϑ′. According to 
Equation 4.24 (second version), the contribution of the element dS ′ to the intensity received 
at r is

 I B
R

Sr r )
r

( , ) (
( ) cos

d2ϑ = ′ ρ ′
π

′ϑ ′  (4.25)

The total energy per second and per unit area arriving at the element dS is obtained by 
multiplying this equation with cos ϑ and integrating it over all wall elements dS ′:
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r r r r( ) ( ) ( )
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π

′ +  (4.26)

Bd is the direct contribution of some sound source. If this source is a point source located 
at rs producing the acoustical power P, the direct component of the irradiance B is

 B
P

d
4 r r

cosd
s

2=
π −

ϑ  (4.27)

ϑd denotes the angle between the boundary normal at r and the vector rd − r.
The integral equation 4.26 with the irradiance B as the unknown function is known as 

the radiosity integral. In this form, it applies to steady-state sound �elds only. However, 
when the power output of the sound source varies with the time the sound �eld in the enclo-
sure will also be time-dependent. Then, we have to include the �nite time which the sound 

P

R´

R
ϑ

ϑ´
ϑ˝

dS´

dS

Figure 4.17  Illustration of Equation 4.26.



98 Room acoustics

needs for its propagation, for instance, to travel from dS ′ to dS,3,4 or from the location of 
the sound source to the boundary element dS:
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with dΩ′ = dS′ ⋅ cos ϑ′ / R2 and 0 ≤ ϑ′ ≤ π/2.
Another propagation effect is attenuation by the air. Based on Equation 1.21, the sound 

pressure amplitude of a wave travelling a distance x in air will be reduced by a factor 
exp(−mx/2), and m is the intensity-related attenuation constant of the air. Since the sound 
intensity is proportional to the square of the sound pressure amplitude, this corresponds to 
an intensity reduction by exp(−mx). Accordingly, a factor exp(−mR) should be inserted in 
the integrals of Equations 4.26 to 4.28 if attenuation effects are expected. The same holds 
for all subsequent versions of the radiosity integral and also for Equation 4.29 (with x = R′).

The integral equation 4.28 is fairly general in that it comprehends both the steady-state 
case (for Bd and B independent of time t) and that of a decaying sound �eld (if Bd = 0 for 
t ≥ 0). Once it is solved, the energy density at a point P inside the room can be obtained from 
the irradiance B:

 w t B t R c
cR

S w t R c
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d ,2 dr r r∫∫( ) ( ) ( )( )= ρ ′ ′ − ′ ′′ϑ
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R′ is the distance of the point P from the element dS ′, while ϑ″ denotes the angle between 
the wall normal in dS ′ and the line connecting dS ′ with P (see Figure 4.17).

Closed solutions of Equation 4.28 are available only for a few simple room shapes. One 
of them is the spherical enclosure for which

 ϑ ′ϑ
π
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R S

cos cos 1
2

(4.30)

with S denoting the surface of the sphere. With this relation, the time-independent integral 
equation 4.26 simply reads

 B = 〈 ρB〉 + Bd

where the brackets indicate averaging over the whole surface. By repeatedly replacing the 
B in the brackets with 〈 ρB〉 + Bd, one obtains the solution

 B
B
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d
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− ρ

+ (4.31)

Another soluble problem is sound propagation between two parallel planes of in�nite 
extent already mentioned in Section 4.1 (see Figure 4.5). We shall come back to this model 
in Section 9.1.

In general, however, the radiosity integral equation must be numerically solved. According 
to Miles,5 this can be achieved by discretization of the boundary, that is, the latter is 
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subdivided into a number of N small patches of �nite size and the integral is approximated 
by sums. The irradiance B on the ith patch is represented by its average Bi. For the steady-
state condition, one arrives at a system of N linear equations for the unknown Bi, which 
can be solved by standard methods. For time-dependent problems, for instance, for study-
ing sound decay in a room the time must be discretized too, and the same holds for the 
distances R. Then the equations read

 ∑= ρ + =
=

− ′B K B B i Ni n ik
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k k n n d i n( ) ( 1,2,..., ),
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, , (4.32)

The �rst index of the irradiance B denotes the number of the wall element, while the sec-
ond one is the time index, n = Int(t/Δt), and n′ = Int(Rik/cΔt). Rik is the distance between the 
ith and the kth wall element. The coef�cients Kik are given by
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The solution is obtained by a simple recursion, starting with N initial irradiances Bi,0. 
Since the distances R have an upper limit, only a limited number of Bi,n must be stored in 
the computer.

4.6  MODIFICATIONS AND GENERALIZATIONS, 
DIFFUSION EQUATION

Equation 4.26 could be called the ‘irradiance-based’ version of the radiosity integral because 
the unknown variable is the irradiance B. However, many authors prefer a ‘�ux-based’ for-
mulation (see, for instance, works by Joyce6 and Gilbert7). In the introduction of this chapter, 
a sound ray was de�ned as a narrow sector cut out of a spherical wave; its aperture is given 
by an in�nitesimal solid angle dΩ (see also Figure 5.1). We call the energy transported per 
second within this ‘cone’ as the energy �ux j = I · dΩ, it depends on the location r, on the 
time t and on the direction of propagation, indicated by a unit vector u. In contrast to the 
intensity I, the energy �ux remains constant during propagation provided dissipation by 
the air is neglected.

We go back to Equation 4.24 and express B0 by the energy �uxes j(r, t, u) arriving from all 
directions at dS and thus ‘illuminating’ it (u stands for a unit vector pointing in the direction 
given by angles φ and ϑ). As in the derivation of Equation 4.27, the time which the energy 
needs to traverse the room along one of its chords has to be taken into account. This is done 
by replacing t with t − R/c, where R is the length of the chord; it is determined by backtrack-
ing the rays from dS to the boundary (see Figure 4.17). Then the irradiance at dS is

 ∫∫= − ′ ′ϑ ′Ω
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Inserting this expression into the second version of Equation 4.24 yields
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This is the alternative we were looking for. Both forms of the radiosity integral as given 
by Equations 4.28 and 4.34 are equivalent; each of them has its speci�c advantages. One 
advantage of irradiance-based version is that the unknown quantity B depends only on the 
time and the spatial coordinates.

The radiosity integral has been extended in various ways. So, Joyce6 has applied it to 
surfaces with mixed specular-diffuse re�ection. For this purpose, he introduced a ‘re�ection 
matrix’ or ‘re�ectivity coef�cient’ Rj(u′, u). It characterizes the fraction of the energy which 
arrives at some boundary element from the direction u′ and is scattered by it into the direc-
tion u. With this, the radiosity integral (4.34) reads

 ∫∫= ′ − ′ ′ϑ ′Ω
Ω

r u u u r u( , , ) ( , ) ( , / , )cos dj t R j t R cj  (4.35)

Obviously, for a diffusely re�ecting boundary the function Rj is just ρ/π.
An important case is that of a boundary consisting of one or several portions with specu-

lar re�ection, while the remaining ones re�ect the received energy according to some other 
law, for example, Lambert’s law. E. N. Gilbert7 solved this problem in the following way: 
Suppose a ray has left the boundary after a non-specular re�ection at P. In its further course, 
it undergoes N specular re�ections until it hits another spot Q of non-specular re�ection. 
Then, the delay R/c is given by the total path length R from P to Q including N bents, 
whereas the intensity of the ray is only reduced according to the re�ection coef�cients of the 
N intermediate elements with specular re�ection. Quite a different method has been pro-
posed by Fujiwara.8 It can be applied when the specularly re�ecting portion of the boundary 
is plane. Then, the given room can be mirrored at this portion resulting in an enclosure with 
twice its original volume; the sound re�ected from the plane portion may be substituted by 
the sound coming from the mirror image of the original boundary. Fujiwara has applied this 
method to a two-dimensional room testing various con�gurations of absorption and sound 
source location. A rather general approach to combining the radiosity integral with the 
image source concept is due to Koutsouris et al.9 It can be applied for predicting the energy 
response of general polyhedral enclosures having boundaries with any given absorption and 
scattering characteristics.

Still, a higher degree of generalization has been achieved by Picaut, Simon and Polack.10 
These authors considered the distribution function f(r,v,t), which measures the density of 
particles in a six-dimensional phase space, comprising three spatial dimensions and three 
dimensions for the speed vector v of particles. Thus, f(r,v,t)dVr dVv is the number of particles 
which are in the element dVr dVv of the phase space at time t. Since all sound particles move 
with the constant sound velocity c, the number of dimensions is reduced by 1, the remaining 
ones are the local coordinates and the two angles φ and ϑ characterizing the direction of 
particle motion.

Temporal variations of the distribution function may be (1) due to the motion of the 
particles, (2) due to losses in the medium (air absorption), (3) due to collisions with obsta-
cles embedded in the medium (if there are any, see Section 5.2), (4) due to the action of 
some sound source, and �nally (5) due to particles scattered from different elements dVv 
of the velocity space elements into the considered one. This happens, for instance, when 
a particle hits a boundary and is re�ected by it – specularly or diffusely. Combining these 
effects leads to an integro-differential equation from which all interesting parameters 
(energy density, decay rate, etc.) can be evaluated, at least in principle. Following the pro-
cedure which is known from the theory of diffusion (see, for instance, the book of Morse 
and Feshbach11), Valeau, Picaut and Hodgson12 converted the mentioned equation which is 
sometimes referred to as the ‘radiative transfer equation’ into a more tractable form by the 
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simplifying assumption that the angle dependence of the distribution form is very small or, 
expressed in acoustical terms, that the sound �eld is nearly diffuse:

≈
π

+
π

φj t
c

w t I tr u r r( , , )
4

( , )
3

4
( , )cos  (4.36)

As before, I denotes the intensity, while ϕ is the angle between the direction of the energy 
�ux j and that of the intensity. The second term is assumed to be very small compared to the 
�rst one. The resulting differential equation for the energy density w(r,t)

 D w
w
t

P r rs( )∆ − ∂
∂

= − δ −  (4.37)

is known as the diffusion equation (it describes heat conduction too, by the way). In this 
expression, P is the power output of a point source located at rs and δ is Dirac’s delta func-
tion. D is the so-called diffusion constant:

 =D c
1
3
�  (4.38)

Here � is the mean free path length, that is, the average length of the path which a particle 
travels between two successive wall re�ections. In Section 5.3, it will be shown that this 
quantity is 4V/S with V denoting the volume of the room and S the area of its boundary, 
provided the sound �eld in the considered room is diffuse. Finally, the absorptivity of the 
boundary must be taken into account. Several authors13,14 have derived the following bound-
ary condition for the diffusion equation on the basis of Equation 4.36:

 
∂
∂

+ ⋅ α
− α

=D
w
n

c
w

4 1 ( / 2)
0   on the boundary (4.39)

The diffusion approach has �rst been proposed by F. Ollendorff,15 who justi�ed it by con-
sidering the sound �eld as a gas of sound particles which perform some kind of Brownian 
motion, due to the numerous irregularities in the shape of real rooms. (Ollendorff neglected 
the term α/2 in the denominator of Equation 4.39. This led him to reverberation times 
which are longer than the classical Sabine value.)

Solving Equation 4.37 is by no means easier than searching for solutions of the wave equa-
tion 3.1; in both cases, we have to determine eigenvalues and eigenfunctions. However, since 
the diffusion equation deals with the energy neglecting any phase relations, the required 
number of eigenfunctions is much smaller than that needed for calculating the sound pres-
sure distribution on the basis of Equations 3.1 and 3.2. This holds in particular for eval-
uating the energy decay. In this case, we can usually content ourselves with the lowest 
eigenvalue since the higher ones are associated with components which fade out very rapidly 
in the decay. Another advantage of the diffusion method is that it requires only moderate 
computational effort to gain at least some information about the energy distribution and the 
energy �ux within the enclosure. On the other hand, it should be noted that the diffusion 
equation 4.37 is itself an approximation which is only valid if the sound �eld in the enclo-
sure can be expected to be nearly diffuse. The same holds for the boundary condition (4.39). 
Up to now, no clear-cut rules are available to decide whether this assumption is justi�ed or 
not in a given case.
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Chapter 5

Reverberation and steady-state 
energy density

Probably the most characteristic acoustical phenomenon in a closed room is reverberation: 
that is, the fact that sound produced in the room will not disappear immediately after the 
sound source is shut off but remains audible for a certain period of time afterwards, although 
with steadily decreasing loudness. For this reason, reverberation – or sound decay as it is 
also called – as yet yields the least controversial objective criterion for assessing the acousti-
cal qualities of a room. It is this fact which justi�es devoting the major part of a chapter to 
reverberation and to the laws which govern it.

The physical process of sound decay in a room depends critically on the structure of the 
sound �eld. Simple laws describing this process can be formulated only when the sound 
�eld is isotropic at any point which means that the sound propagation is uniform in all 
directions. In this case, we speak of a diffuse sound �eld (see Section 4.3). Likewise, simple 
relationships for the steady-state energy density in a room, as will be derived in Section 5.1, 
are also based on the assumption of a diffuse �eld. This is the reason why sound-�eld dif-
fuseness plays a key role in this chapter although this condition is never perfectly ful�lled 
in practical situations. Even in certain measuring rooms such as reverberation chambers, 
where designers take pain to achieve a sound �eld as diffuse as possible (see Section 8.7), 
there is always some lack of diffusion. Nevertheless, the assumption of perfect sound �eld 
diffuseness is a useful and important approximation of the actual sound �eld structure. 
In most instances in this chapter, we shall therefore assume complete uniformity of sound 
�eld as far as its directional distribution is concerned.

In Chapter  3, we regarded reverberation as the common decaying of free vibrational 
modes. In Chapter 4, reverberation was understood to be the sum total of all sound re�ec-
tions arriving at a certain point in the room after the room was excited by an impulsive 
sound signal. This chapter deals with reverberation from a more elementary point of view 
in that we consider the energy balance between the energy supplied by the sound source 
and that absorbed by the boundary. Furthermore, some extensions and generalizations 
are described, including sound decay in enclosures with imperfect sound �eld diffuseness. 
As in Chapter 4, we shall consider the case of relatively high frequencies, that is, we shall 
neglect interference and diffraction effects which are typical wave phenomena and which 
only appear in the immediate vicinity of re�ecting walls or when the size of obstacles 
is comparable with the wavelength. We therefore suppose that the applied sound signals 
are of such a kind that the direct sound and all re�ections from the walls are mutually 
incoherent, that is, they cannot interfere with each other (see Section 2.5). Consequently, 
their energies or intensities can simply be added together regardless of mutual phase rela-
tions. Under these assumptions, sound behaves in much the same way as white light. We 
shall, however, not consider sound rays so much but instead we shall stress the notion of 
‘sound particles’: that is, of small energy packets which travel with constant velocity c 
along straight lines – except for wall re�ections – and are supposed to be present in very 
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large numbers. They cannot interact, in particular, they will never collide with each other. 
If they strike a wall with absorption coef�cient α, only the fraction 1 − α of their energy 
is re�ected from the wall. One way to account for absorption is to assign properly reduced 
energy to the re�ected particle. Alternatively, the absorption coef�cient can be interpreted 
as ‘absorption probability’.

Of course, the sound particles considered in room acoustics are purely hypothetical and 
have nothing to do with the sound quanta or phonons known from solid-state physics. To 
bestow some physical reality upon them, we can consider the sound particles to be short 
sound pulses with a broad spectrum propagating along sound ray paths. Their exact shape 
is not important, but they all must have the same power spectrum.

5.1  DIFFUSE SOUND FIELDS, ELEMENTARY 
THEORY OF SOUND DECAY

As mentioned above, the uniform and isotropic distribution of sound energy in a room is 
the crucial condition for the validity of some common and simple formulae which govern 
the sound decay or the steady-state energy in rooms. Therefore, it is appropriate to deal �rst 
with some properties of diffuse sound �elds.

Suppose that we select from all sound rays crossing an arbitrary room point P a bundle 
within a vanishingly small solid angle dΩ. Since the rays of the bundle are nearly parallel, 
an intensity I(φ, ϑ)dΩ can be attributed to it with φ and ϑ characterizing their direction 
(see Figure 5.1). (The quantity I(φ, ϑ)dΩ has been called the ‘�ux density’ in Section 4.6.)

Furthermore, we can apply Equation 1.30 to this bundle, according to which the energy 
density

 w
I

c
d

,
d

( )
=

ϕ ϑ
Ω  (5.1)

is associated with it. To obtain the total energy density, we have to integrate this expression 
over all directions. Since the quantity I is independent of the angles φ and ϑ, the integration 
is achieved just by multiplying Equation 5.1 with 4π. Hence, the total energy density is

 = π
w

I
c

4
 (5.2)

So far, nothing has been said about spatial variations of the energy density. In fact, it 
is easy to see that it is constant throughout the room, provided the sound �eld is diffuse. 
Consider the three circles in Figure 5.2 representing the directional distribution at the points 
P, Q and R. Each pair of points has exactly one sound ray in common. Since the energy 
propagated along a sound ray does not change with distance (see Chapter 4), it follows that 
they contribute the same amount of energy at both points. Therefore, the three circles must 
have equal diameters. This argument applies to all points of the space. Thus, we can con-
clude that in a diffuse sound �eld the energy density is everywhere the same, at least under 

dΩ

Figure 5.1 Bundle of nearly parallel sound rays.
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stationary conditions. However, the reverse is 
generally not true; we can easily imagine sound 
�elds with constant energy density and non-
uniform directional distribution.

Another important property of a dif-
fuse sound �eld has already been derived in 
Section 2.5. According to Equation 2.51, the 
energy incident per second on a wall element 
dS is πIdS Hence, the ‘irradiance’ B, already 
introduced in Section 4.5 as the energy inci-
dent per unit time and unit area, is B = πI, 
and with Equation 5.2:

 =B
c

w
4

(5.3)

This relation is to be compared with w = I/c valid for a plane progressive wave (see 
Equation 1.30).

We are now ready to set up an energy balance from which a simple law for the sound 
decay in a room can be derived. Suppose a sound source feeds the acoustical power P(t) into 
a room. It is balanced by a temporal increase in the energy content Vw of the room and by 
the losses due to the absorptivity of its boundary which has the absorption coef�cient α:

 ( ) = + αd
d

P t V
w
t

B S

or, by using Equation 5.3 and replacing αS with A, the ‘equivalent absorption area’ of the 
room:

 ( ) = +d
d 4

P t V
w
t

cA
w  (5.4)

When P is constant, the differential quotient is zero and we obtain the steady-state energy 
density:

 =w
P

cA
4

(5.5)

If, on the other hand, the sound source is switched off at t = 0, that is, if P(t) = 0 for t > 0, 
the differential equation 5.4 becomes homogeneous and has the solution

 w(t) = w0 exp(−2δt) for t ≥ 0 (5.6)

with the initial value w0 = w(0). The damping constant or decay constant turns out to be

 δ = cA
V8

(5.7)

and is related to the reverberation time T by Equation 3.70. This gives, after inserting the 
numerical value of the sound speed in air, the following:

 =T
V
A

0.161 (5.8)

P

R

Q

Figure 5.2  Constancy of energy density in a dif-
fuse sound �eld.
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(all lengths expressed in metres). This is probably the best-known formula in room acous-
tics. It is due to W.C. Sabine,1 who derived it �rst from the results of numerous ingenious 
experiments, and later on from considerations similar to the present one. Nowadays, it is 
still the standard formula for predicting the reverberation time of a room, although it is 
obvious that it fails for high absorption. In fact, for α = 1 it predicts a �nite reverberation 
time although an enclosure without any re�ecting walls cannot reverberate. The reason for 
the limited validity of Equation 5.9 is that the room is not – as assumed – in steady-state 
conditions during sound decay and is less so the faster the sound energy decays. In the fol-
lowing sections, more exact decay formulae will be derived which can also be applied to 
relatively ‘dead’ enclosures.

5.2 FACTORS INFLUENCING SOUND FIELD DIFFUSENESS

In this section, the circumstances will be discussed on which the diffuseness of a sound �eld 
depends. Strictly speaking, a real sound �eld cannot be completely diffuse, otherwise there 
would be no net energy �ow within the enclosure. In a real room, however, the inevitable wall 
losses ‘attract’ a continuous energy �ow originating from the sound source. So, what we are 
discussing here is how and to which extent the ideal condition can be approximated.

It is obvious that a diffuse sound �eld will not be observed in enclosures whose walls 
have the tendency to concentrate the re�ected sound energy in certain regions. In con-
trast, highly irregular room shapes help to establish a diffuse sound �eld by continuously 
redistributing the energy in many different directions. Particularly ef�cient in this respect 
are rooms with acoustically rough walls, the irregularities of which scatter the incident 
sound energy in a wide range of directions, as has already been described in Section 2.7. 
Such walls are referred to as ‘diffusely re�ecting’, either partially or completely. The 
latter case is characterized by Lambert’s law, as expressed in Equation 4.24. Although 
this ideal behaviour is frequently assumed as a model of diffuse re�ection, it will hardly 
ever be encountered in reality. Any wall or ceiling will, although it may be structured by 
numerous columns, niches, cofferings and other ‘irregular’ decorations, diffuse only a 
certain fraction of the incident sound, whereas the remaining part of it is re�ected into 
specular directions. The reader will be reminded of Figure 2.18, which shows the scat-
tering characteristics of a particular, irregularly shaped ceiling. On the other hand, in 
virtually every real hall, a certain part of the sound energy is scattered in non-specular 
directions as has been shown by Hodgson,2 even if the walls and the ceiling are appar-
ently smooth.

Despite the fact that real surfaces produce only partially diffuse re�ections, there is a 
natural tendency towards increasing sound �eld diffusion. This is due to the fact that the 
conversion of ‘specular sound energy’ into non-specular or random energy is an irreversible 
process; in other words, it will never happen that ‘diffuse sound’ is re-converted into a sound 
ray traveling in a well-de�ned direction. The consequence of this can be demonstrated by 
splitting up the re�ected sound energy into two parts: the portion s(1−α), which is  scattered 
into non-specular directions and the portion (1−s)(1−α), which is re�ected specularly. (The 
remaining energy fraction α is absorbed.) The parameter s is the ‘scattering coef�cient’. 
Then, after n re�ections, the specular component will be reduced by a factor [(1−s)(1−α)]n, 
while the fraction of non-specular energy is [1− (1−s)n]·(1−α)n. Both components are shown 
in Figure 5.3 for a particular set of parameters. It is shown that the relative amount of dif-
fuse energy increases monotonically with the order of the re�ections; after a few re�ections, 
nearly all energy has been converted into diffuse energy.
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This tendency is counteracted by the absorptivity of the boundary and particularly 
by a non-uniform spatial distribution of the absorption. A typical situation is that of 
an occupied hall, for example, of a concert hall, since most of the absorption is effected 
by the audience which is usually placed on the �oor of the hall. It is evident that highly 
absorptive portions of the boundary extinguish potential ray paths and hence impede 
the formation of a diffuse sound �eld. According to Equation 4.25, the product of the 
irradiance B and the re�ection coef�cient ρ determines the energy which the given wall 
element contributes to the sound �eld. Suppose that the re�ectivity ρ of a particular wall 
element is very small. Then, it is not very likely that its irradiance B will completely make 
up for this de�ciency in re�ected energy since B shows – due to the smoothing effect of 
wall scattering – only small variations along the boundary. On the other hand, even a 
small diffusely re�ecting wall portion is capable of producing a diffuse �eld provided the 
absorption is suf�ciently small.

There is still another method of increasing sound �eld diffuseness namely by dis-
turbing the free propagation of sound rays. This is achieved by suitable objects – rigid 
bodies or shells – which are suspended freely in the room at random positions and ori-
entations, and which scatter the arriving sound waves or sound particles more or less 
in all directions. This method is quite ef�cient even when it is applied only to parts of 
the room, or in enclosures with partially absorbing walls. Of course, for the acoustical 
design of performance hall, this measure is of limited use because most architects would 
not be keen to have a substantial part of a halls free space �lled with such ‘volume dif-
fusers’. For certain measuring rooms, however, the so-called reverberation chambers 
(see Section 8.7), they are a well-proved way to provide for the necessary sound �eld 
diffuseness.

To estimate the ef�ciency of volume scatterers, we assume N of them to be randomly dis-
tributed in a room with volume V, but with constant mean density 〈ns〉 = N/V. The scatter-
ing ef�ciency of a single obstacle or diffuser is characterized by its ‘scattering cross-section’ 

0 1 2 3

Number of reflections

4 5 6 7 8

Figure 5.3  Conversion of specularly re�ected energy into diffuse energy by subsequent re�ections (α = 0.15, 
s = 0.4). The total height of the bars corresponds to the totally re�ected sound energy; the 
height of the white bars shows the diffusely re�ected energy.
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Qs, de�ned by Equation 2.60. If we again stress the notion of sound particles, the prob-
ability that a particle will travel at least a distance r without being scattered by a  diffuser is 
exp n Q r r ror exp /s s s( ) ( )− −  where

r
n Q

1
s

s s
=  (5.9)

is the mean free path length of a sound particle between successive collisions with diffus-
ers. In the next section, we shall introduce the mean free path of sound particles between 
successive wall re�ections = V S� 4 / , with S denoting the wall surface of a room. Obviously, 
the ef�ciency of volume diffusers depends on the ratio �r /s s. If an obstacle is not small 
compared with the acoustical wavelength, its scattering cross-section Qs is roughly twice 
its visual cross-section. One half of this value represents scattering of energy in different 
directions; the other half corresponds to the energy needed to form the ‘shadow’ behind the 
obstacle by interfering with the incident sound wave. For non-spherical diffusers, the cross-
section must be averaged over all directions of incidence.

The preceding discussion may be summarized in the following way: Diffusely re�ecting 
room walls help to establish isotropy of sound propagation in a room but they alone do not 
guarantee high diffuseness of the sound �eld. At least of equal importance is the amount 
and distribution of wall absorption. Perfect or nearly perfect sound �eld diffuseness is only 
possible if the total absorption in the room is very small no matter whether it is caused by 
imperfect wall re�ections or by losses within the medium.

5.3  MEAN FREE PATH LENGTH AND AVERAGE 
RATE OF REFLECTIONS

In the following we imagine that the sound �eld is composed of numerous sound particles. Our 
goal is to derive more general laws for the sound decay in a room than that of Equation 5.8. 
For this purpose, we have at �rst to follow the ‘fate’ of one sound particle and subsequently to 
average over many of these fates.

In this connection, the notion of the ‘mean free path’ of a sound particle is frequently 
encountered in literature on room acoustics. The notion itself appears at �rst glance to 
be quite clear, but its use is sometimes misleading, partly because it is not always evident 
whether it refers to the time average or the particle (‘ensemble’) average.

We shall start here from the simplest concept: A sound particle is observed during a 
very long time interval t; the total path length ct covered by it during this time is divided 
by N, the number of wall collisions which have occurred in the time t. Then, the mean 
free path length is

 = =ct
N

c
n

�  (5.10)

where =n N t/  is the average re�ection frequency, that is, the average number of wall re�ec-
tions per second.

Here, the quantities � and n are clearly de�ned as time averages for a single sound particle; 
they may differ from one particle to another. In order to obtain averages which are represen-
tative of all sound particles, we should average � and n once more, namely over all possible 
particle fates. In general, the result of such a procedure would depend on the shape of the 
room as well as on the directional distribution of sound paths.
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Fortunately, we can avoid these complications by assuming the sound �eld to be diffuse. 
Then, no additional speci�cation of the directional distribution is required. Furthermore, no 
other averaging is needed. This is so because – according to the discussion in Section 5.2 – 
a diffuse sound �eld is established by nearly non-predictable changes in the particle direc-
tions, caused either by a highly complex room shape, by diffuse wall re�ections or by 
volume scatterers as described in the preceding section. In any case, the sound particles 
change their roles and their directions again and again, and during this process they com-
pletely lose their individuality. Thus, the distinction between time averages and particle or 
ensemble averages is no longer meaningful; it does not matter whether the quantities we 
are looking for are evaluated by averaging over many free paths traversed by one particle 
or by averaging for one instant over a great number of different particles. Or, in short

time average = ensemble average

Under these conditions, the calculation of the mean free path length of sound particles is 
quite easy. Let us suppose that a single sound particle carries the energy e0. Its contribution 
to the energy density of the room is

 =w
e
V

0

On the other hand, if the sound particle strikes the wall n times per second, the average 
energy it transports per second and unit area toward the wall is

 =B n
e
S
0

By inserting these formulae into Equation 5.3, one arrives at the important relation

=n
cS
V4

 (5.11)

This expression, which is the time average as well as the particle average, has already been 
derived in Section 4.2 for the rectangular room. It is evident that the present derivation is 
more general and, in a way, more satisfying than the previous one. Inserting its result into 
Equation 5.10 again leads to the mean free path length:

 = V
S

�
4

 (5.12)

The actual free path lengths are distributed around their mean � in some way, of course. 
This distribution depends on the shape of the room, and the same is true for other char-
acteristic values such as its variance ( ) ( )2 2 2� � � �− = − . As an illustration, Figure 5.4 shows 
the distributions of free path lengths for three different shapes of rectangular rooms with 
diffusely re�ecting walls; the abscissa is the path length divided by its mean value �. These 
distributions have been obtained by ray tracing, a method, which will be described to some 
more detail in Section 9.8.

Typical parameters of path length distributions, evaluated in the same way for different 
rectangular rooms, are listed in Table 5.1. The �rst column shows the relative dimensions 
of the various rooms, and the second column lists the mean free path length divided by the 
‘classical’ value of Equation 5.12. These numbers are very close to unity and can be looked 
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Figure 5.4  Distribution of free path lengths for rectangular rooms with diffusely re�ecting walls. The num-
bers indicate the relative dimensions of the rooms.3

Table 5.1  Average and the relative variance of the path length 
distribution in some rectangular rooms with diffusely 
re�ecting walls3 (ray-tracing results)

Relative dimensions Mean value � �( )/MC Relative variance (γ2)

1:1:1 1.0090 0.342
1:1:2 1.0050 0.356
1:1:5 1.0066 0.412
1:1:10 1.0042 0.415
1:2:2 1.0020 0.363
1:2:5 1.0085 0.403
1:2:10 0.9928 0.465
1:5:5 1.0035 0.464
1:5:10 0.99930 0.510
1:10:10 1.0024 0.613
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upon as an ‘experimental’ con�rmation of Equation 5.12. The remaining deviations from 1 
are insigni�cant and are due to the random errors inherent in the method. It may be added 
that a similar investigation of rooms with specularly re�ecting walls, which are equipped 
with scattering elements in the interior, yields essentially the same result. Finally, the third 
column of Table 5.1 contains the ‘relative variance’ of the path length distributions:

� �

�
2

2 2

2

( )
( )

γ =
−

(5.13)

The signi�cance of this quantity will be discussed in Section 5.5.

5.4 NON-UNIFORM BOUNDARY ABSORPTION

As far back as Chapter 4, formulae have been derived for the time dependence of decaying 
sound energy and for the reverberation time of rectangular rooms (Equations 4.10 to 4.12). 
In the preceding section, it has been shown that the value cS/4V of the mean re�ection fre-
quency, which we have used in Chapter 4, is valid not only for rectangular rooms but also 
for rooms of arbitrary shape, provided that the sound �eld in their interior is diffuse. Thus, 
the general validity of those reverberation formulae has been proven. It may be added that 
for m → 0 and for small absorption coef�cients, Equation 4.12 will become identical with 
Equation 5.8 since

 − ln(1 − α) → α for α → 0 (5.14)

If the sound absorption coef�cient of the walls depends on the direction of sound inci-
dence, which will usually be the case, one should replace α with the average value αuni

according to Equation 2.53.
Further consideration is necessary if the absorption coef�cient is not constant along the 

boundary which is usually the case in real rooms. For the sake of simplicity, we assume that 
there are only two types of walls in a room with different absorption coef�cients α1 and α2; 
the areas of these wall portions are S1 and S2 with S1 + S2 = S (see Figure 5.5). The subsequent 

generalization of the results to the case of more than 
two different sorts of wall will be obvious.

Now, we follow the path of a particular sound par-
ticle over N wall re�ections, among which there are N1 
re�ections from S1 and N2 = N − N1 re�ections from 
S2. These numbers can be assumed to be distributed in 
some way about their mean values

 = =and1
1

2
2N N

S
S

N N
S
S

 (5.15)

S1/S and S2/S are the ‘a priori probabilities’ of a sound 
particle hitting the wall portion S1 or S2, respectively.

In a diffuse sound �eld, subsequent wall re�ections 
are stochastically independent from each other, that is, 
the probability of hitting one or other portion of the 
wall does not depend on the past history of the particle. 

S1

S2

Figure 5.5 Enclosure with two different 
types of boundary.
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In this case, the probability of N1 collisions with wall portion S1 among a total number of 
re�ections N is given by the binomial distribution4
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N N N

1
1

1 2
1 1
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(5.16)

with the binomial coef�cient
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≡
−

After N1 collisions with S1 and N − N1 collisions with S2, the remaining energy of a sound 
particle is

 ( ) ( ) ( )= − α − α −
E N EN

N N N
1 11 0 1 2

1 1 (5.17)

when E0 is its initial energy. The expectation value of this expression with respect to the 
distribution (5.16) is
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where we have used the binomial theorem. Since S1 + S2 = S, this result can be written as

 = − α + α
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and with

 ( )α = α + α
S

S S
1

1 1 2 2 : (5.20)

 [ ]( )= − α = ⋅ − αE E E NN
N

1 exp ln(1 )0 0  (5.21)

This latter formula tells us that in case of non-uniform boundary absorption, the sound 
decay is governed by the arithmetic mean α of the absorption coef�cients α1 and α2 with the 
respective areas as weighting factors. Finally, we replace the total number N of wall re�ec-
tions in time t by its expectation value or mean value nt with n cS V= /4  and obtain for the 
energy of the ‘average’ sound particle and hence for the total energy in the room

 ( ) ( )= ⋅ − α





exp
4

ln 10E t E
cS
V

t  for t ≥ 0 (5.22)

From this, we can easily evaluate the reverberation time, that is, the time interval T in 
which the reverberating sound energy reaches one millionth of its initial value:

 ( )= − ⋅
⋅ − α

24 ln 10
ln 1

T
V

cS
 (5.23)
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or, after inserting c = 343 m/s and accounting for the air attenuation by an additional term 
4mV in the denominator as in Equations 4.7 to 4.12:

 T
V

mV S
=

− ⋅ − α
0.161

4 ln(1 )
(5.24)

with
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i i

i

1∑α = α =  (5.25)

The latter is the generalization of Equation 5.20 for any number of different wall 
 portions Si. In all these formulae, all lengths have to be expressed in meters.

Equation 5.23 or 5.24 together with 5.25 is known as Eyring’s reverberation formula, 
although there are independent derivations due to Norris as well as to Schuster and 
Waetzmann. Neglecting air attenuation and approximating the logarithm by −α as before 
leads us again to Sabine’s famous decay formula

 =T
V
A

0.161 (5.26)

In deriving Equation 5.24 together with Equation 5.25, the quantities N1 and N2 = N − N1

have been treated as statistical variables based on the probability distribution (5.16). 
One could be tempted to shorten the treatment above by replacing these quantities in 
Equation 5.18 with their mean values or expectation values NS1/S and NS2/S. Then, one 
would arrive at
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using the relation ( )= =N nt cS V t4 . In this case, it is not the absorption coef�cient α 
which is averaged but the quantity ln(1 − α), which is often referred to as the ‘absorption 
exponent’:

 ∑ ( )′ = − − α1
ln 1a

S
Si

i

i (5.27)

Formally, the decay law would be the same as before:

=
′

T
V
Sa

0.161 (5.28)

and again it could be completed by adding a term 4mV to the denominator in order 
to  account for the air attenuation. This expression is known as Millington–Sette’s 
formula.

Equation 5.27 has a strange consequence: Suppose one portion Si of the boundary has the 
absorption coef�cient αi = 1. This would make the average (5.27) in�nitely large, and thus 
the reverberation time evaluated with Equation 5.28 would be zero no matter how small Si

is. This is obviously an unreasonable result.
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5.5 THE INFLUENCE OF UNEQUAL PATH LENGTHS

The averaging rule of Equation 5.27 was the result of replacing a probability distri-
bution by its mean value. However, throughout the preceding section we have tacitly 
practiced a similar simpli�cation in that we replaced the actual number of re�ections 
in a given time t by its average nt. For a more correct treatment, one should introduce 
the  probability Pt(N) of exactly N wall re�ections occurring in a time t and to cal-
culate E(t) as the expectation value of Equation 5.21 with respect to this probability 
distribution:

 E t E P N E P N NaN

N N
∑ ∑( ) ( )= ⋅ − α = ⋅ −

=

∞

=

∞

( ) (1 ) ( ) exp0 t

0

0 t

0

(5.29)

In the latter expression, the absorption exponent a = −ln(1 − α) has been introduced.
If, for the moment, N is considered as a continuous variable, the function exp (−Na) in 

Equation 5.29 can be expanded in a series for ascending powers of ( )−N nt a by setting 
( )= + −N nt N nt . Truncating this series after its third term yields
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Before inserting this expression into Equation 5.29, it should be kept in mind that
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is the variance of the distribution Pt(N). Hence,
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The latter approximation is permissible if /22 2σ aN  is small compared with unity.
Obviously, the probability Pt(N) of N re�ections occurring during the time t corre-

sponds to the probability PN(x) of having travelled the total distance x after N re�ections. 
To illustrate this, Figure 5.6 plots the individual ‘fates’ of three particles, that is, the num-
ber N of their wall collisions as a function of the distance x they travelled. Now suppose 
a particle travels N successive and independent free paths ℓ1, ℓ2, …, ℓN. According to the 
central limit theorem of probability, the variance of the sum x is

 N Nx ( )( )σ = − = γ2 2 2 2 2� � �
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The difference in the bracket is the variance of the path length distribution, and γ2 is its 
relative variance as de�ned in Equation 5.13. As may be seen from Figure 5.6, the variance 
σN is proportional to σx, or more precisely:

 
σ
σ

≈ =nt
ct

N

x �
1

From both relations, we conclude that

σ ≈ γntN
2 2 (5.31)

With this result, we obtain from Equation 5.30:
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Accordingly, the reverberation time is

 =
′′

T
V

Sa
0.161 (5.33)

with the modi�ed absorption exponent

 ( ) ( )′′ = − − α ⋅ + γ − α
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2
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In Figure 5.7, the corrected absorption exponent a′′ is compared with the absorption coef�-
cient α as is used in Sabine’s formula (Equation 5.26). It plots the relative difference between 
both quantities for various parameters γ2. The curve γ2 = 0 corresponds to Eyring’s formula 
(5.24) with m = 0. Accordingly, the latter is strictly valid for one- dimensional enclosures only 
where all paths have exactly the same length. For γ2 > 0, a′′ is smaller than ( )− − αln 1 . Hence, 
the reverberation time is generally longer than that obtained from the Eyring formula.
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Figure 5.6  Time histories of three sound particles – relation between σx and σN.



116 Room acoustics

As long as the mean absorption coef�cient is smaller than about 0.3, which is true for 
most rooms, the Eyring absorption exponent may be approximated by

( )− − α ≈ α + α
ln 1

2

2

which, after omitting all terms of higher than second order, yields

( )′′ ≈ α + α − γa
2

1
2

2 (5.35)

With Equations 5.33 and 5.34, we have arrived at a reverberation formula in which the 
shape of the room is accounted for by the quantity γ2. Unfortunately, the latter can only be 
calculated for a limited number of room shapes. For a sphere, for instance, it turns out to 
be 1/8. For other shapes, the relative variance γ2 can be determined by computer simulation. 
Results obtained in this way for rectangular rooms have already been presented in Table 5.1. 
It is seen that for most shapes γ2 is close to 0.4, and it is likely that this value can also be 
applied to other enclosures, provided that their shapes do not deviate too much from that of 
a cube. It should be noted that for higher values of the relative variance γ2, Equation 5.34 is 
not very accurate because of the approximations made in its derivation.

For rooms with suspended ‘volume diffusors’ (see Section 5.1), the distribution of free 
path lengths is greatly modi�ed by the scattering obstacles. The same applies to the relative 
variance γ2 but not to the mean free path length.3

5.6 ENCLOSURE DRIVEN BY A SOUND SOURCE

In Section 5.1, a differential equation 5.4 was derived for the energy density w in a room in 
which a sound source with time-dependent power output P(t) is operated. In the preceding 
sections, we used this equation to discuss the sound decay in a room which can be observed 
after the sound source has been abruptly switched off at some instant. The present sec-
tion deals with the acoustic reaction of the room when the sound source produces a time- 
dependent output power P(t) including the case of a constant power.
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Figure 5.7  Relative difference between a′′ and α after Equation 5.34 (in per cent).
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The general solution of Equation 5.4 reads
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exp 2 d
1

exp 2 d
0

(5.36)

with δ = cA/8V = 6.91/T. This means the energy density is calculated by convolving the 
power output P(t) with the ‘energetic impulse response’ of the enclosure:

 ( ) ( ) ( )= − δw t P t
V

t*
1

exp 2  (5.37)

As an application of this formula we consider, as shown in Figure 5.8, a sound source 
the power output of which varies sinusoidally with the angular frequency Ω. Using complex 
notation, we write

 P(t) = P0[1 + exp(iΩt)] (5.38)

In this case, the power delivered by the sound source varies periodically between 2P0 and 
zero. The reaction of the room is obtained by inserting this expression into Equation 5.37 
and performing the integration. The result reads
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and
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Figure 5.8 Flattening of the modulation of the energy density affected by transmission in a room: (a) power 
of the emitted sound signal and (b) energy density in a room point.
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Since the magnitude of m(Ω) is always smaller than unity, the reverberation of the room 
has the effect of smoothing the �uctuations of the energy density imposed by the variable 
input power; at the same time, it causes a time delay of the �uctuations. For this reason, 
the function m(Ω) is called the ‘modulation transfer function’ (MTF). Of course, the above 
formulae for the MTF are only valid for enclosures the sound decay of which follow the 
idealized exponential law of Equation 5.6. In real rooms, the decay constant δ depends on 
the sound frequency ω. Hence, the MTF is a function of both the modulation frequency 
Ω of the sound source and the frequency or more generally: on the frequency spectrum of 
the exciting sound.

A much simpler case is that of a source with constant power output P. Here, Equation 5.36 
yields immediately:

 w
P
V

P
cA2
4

r =
δ

=  (5.42)

with δ = cA/8V (see Equation 5.7). This formula agrees with Equation 5.5, which was obtained 
directly from Equation 5.4 by setting the time derivative zero. The subscript ‘r’ is to used indi-
cate that wr is the energy density of the ‘reverberant �eld’ excluding the contribution of the 
direct sound. A is the ‘equivalent absorption area’ or shorter: the ‘absorption area’ which for the 
case of n wall portions with areas Si and absorption coef�cients αi is given by Equation 5.25. 

For a point source with omnidirectional sound radiation, the direct sound intensity in 
distance r is Id = cwd = P/4πr2; hence, the energy density of the direct component is

 w
P
cr4

d 2=
π

(5.43)

In Figure 5.9, wr and wd according to Equations 5.42 and 5.43 are presented as functions of 
distance r from the sound source. For a certain distance r = rc, both energy densities are equal. 
This distance rc is called the ‘critical distance’ or ‘diffuse-�eld distance’ and is given by
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Figure 5.9 Direct and reverberant energy density wd and wr as a function of distance r.
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In the latter expression, we have introduced the reverberation time T from Sabine’s 
 formula (5.26); V is to be expressed in m3.

Using the critical distance, the total energy density can be expressed as

 w w w
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1d r
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2

2= + = +
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
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 (5.45)

Many sound sources have a certain directivity, which can be characterized by their ‘gain’ 
or ‘directivity’ g. This is de�ned as the ratio of the maximum intensity and the average inten-
sity, both at the same distance r:
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(In the latter expression, Imax has been replaced with wmax = Imax/c.) Then, Equation 5.44 
must be replaced with
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and the critical distance is
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In both equations, it is assumed that the observation point lies in the direction of maxi-
mum radiation.

The practical application of Equation 5.43 and the related equations becomes question-
able if the average absorption coef�cient α = /A S of the room’s boundary is not small com-
pared with unity. In this case, the contribution of the very �rst re�ections, which are not 
randomly distributed, of course, is predominant in the total energy density. Therefore, the 
scope of the above formulae with respect to α is much smaller than that of the reverberation 
formulae developed in the preceding sections. This is one of the reasons why the absorption 
of a room and its reverberation time are usually determined by decay measurements and not 
by measuring the steady-state energy density and application of Equation 5.42 although this 
would be possible in principle.

On the other hand, Equation 5.43 can be used to determine the total power P of 
a sound source from the steady-state energy density wr in the room. The equivalent 
absorption area A is obtained from a decay measurement. This procedure is carried out 
in a ‘reverberation chamber’ with a long reverberation time and hence with low absorp-
tion. To obtain reliable results, it is necessary to measure the stationary sound pressure 
at several positions in the room and to carry out some space averaging as described in 
Section 3.7. We should realize that in the measurement of sound power, a relative error 
of 10% (corresponding to 0.4 dB) can usually be tolerated. However, when it comes 
to the  determination of wall absorption or reverberation time, a higher precision would 
be required.
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5.7  APPLICATIONS OF THE RADIOSITY INTEGRAL: 
THE INFLUENCE OF IMPERFECT DIFFUSENESS

In a way, the theory of reverberation as outlined in the preceding sections is inconsistent in 
that it is based upon the condition of perfect sound �eld diffuseness. As has been discussed 
in Section 5.2, such a sound �eld would require the absence of any boundary absorption and 
hence cannot decay, strictly speaking. It is noteworthy that – despite the practical impos-
sibility of creating a diffuse �eld – the decay formulae derived on this basis have proved to 
be suf�ciently precise for most practical purposes.

Nevertheless, we try now to avoid this contradiction by replacing the condition of perfect 
sound diffusion by a much less stringent one: namely, that the boundary re�ects the imping-
ing sound energy in a diffuse manner according to Lambert’s cosine law. This condition is 
also an ideal one, but it is not too far from reality since it can be ful�lled in several successive 
steps as discussed in Section 5.2.

Under this premise, the propagation of sound energy within the enclosure can be stud-
ied with the integral equation 4.28 as derived in Section 4.5. Since we are interested in the 
decaying sound �eld, we can omit the term due to direct irradiation by a sound source. 
Then, the integral equation reads

B t K B t R c S, ( , ) , d
s

r r r r r∫∫( ) ( )( )= ′ ρ ′ − ′  (5.49)

with
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Usually, this equation must be solved numerically. For this purpose, it is discretized in 
space and in time; that is, the boundary area is subdivided into a number of equal elements. 
Within each of them, the irradiation density B and the re�ection coef�cient ρ = 1 − α are 
assumed as constant. At the same time, the continuous time variable is replaced with an 
index marking the number of a �nite time interval Δt. In this way, the integral equation is 
converted into a system of linear equations
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The subscript of �rst B denotes the position of an element, and the second one is the time 
index. Furthermore,
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1
( , )d d  (5.52)

and m = Int(R/cΔt). This system can be solved by a simple recursion. It was R. N. Miles5 who 
developed this method and applied it to rectangular rooms.

Figure 5.10 presents three decay curves obtained in this way for a rectangular room with 
relative dimensions 1:2:3. For discretizing the integral equation, the boundary of the room 
has been divided up into 88 quadratic area elements. The patches on the ‘�oor’ (i.e., on 
one of the walls with dimensions 2:3) are assumed as totally absorbent (ρ = 0), whereas 
the remaining walls are free of absorption (ρ = 1). It is evident that this distribution of wall 
absorption must cause severe deviations from diffuse �eld conditions.
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The curves represent the decay of the irradiance B at three different locations of the 
enclosure. The unit of the abscissa is the mean free path length �. The quantity plotted on 
the ordinate is the relative sound pressure level 10∙log10(B/B0), with B0 denoting an arbi-
trary normalization constant. All curves show some irregularities at their beginning which 
fade out very soon leaving straight lines with equal steepness. (Generally, the independence 
of the �nal slope on the receiver position has been proven by Miles.5) This demonstrates 
that imperfect diffuseness does not necessarily lead to non-exponential sound decay nor 
is it indicated by different decay rates within a room. However, the decay constant itself, 
that is, the reverberation time of the room may signi�cantly deviate from that predicted by 
Eyring’s formula. In the example of Figure 5.10, the slope of the straight portions is about 
−1.57 dB MFP, whereas Eyring’s formula (5.24) (with m = 0) would predict a slope of only 
10·log10(1 − 3/11) = −1.38 dB/MFP.

The essentially straight decay curves in Figure 5.10 show that the underlying law can be 
written as

 E t E
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a t E a ctexp
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exp /0 0 �( )( ) = − ∗



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Figure 5.10  Logarithmic decay curves in a rectangular room with diffusely re�ecting boundary, calculated 
for three different receiver positions by solving Equation 5.49. The relative room dimensions are 
1:2:3; the ‘�oor’ with dimensions 2:3 has the absorption coef�cient 1 while the remaining walls 
are free of absorption. The abscissa is /ct �, and the number of mean free path lengths � which a 
sound ray travels within a given time t.
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This expression is equal to Equation 5.22 after replacing the Eyring absorption exponent 
− − αln(1 ) with an ‘effective absorption exponent’ α*. The latter is related to the reverbera-
tion time of the room by

T
V

Sa
0.161= ⋅

∗

In the following text, we discuss the possibility of calculating the effective absorption 
exponent α* and hence the reverberation time on the basis of the integral equation 5.49 
without really solving it. Several numerical iteration schemes have been developed6,7 for this 
purpose. Although such methods may be too complicated for the everyday use, one of them 
will be brie�y described in the following.

From Equation 5.53, it follows that

 B t R c B t a R, / ) ( , exp( / )r r �( )− = ⋅ ∗ (5.54)

Furthermore, it is useful to symmetrize the kernel of the integral equation 5.49 for the 
iteration process by substituting

( ) ( ) ( )β = ρ κ ′ = ρ ′ ρ ′( ) ( ) ( ) and , ( ) ,B Kr r r r r r r r r

With these steps, the integral equation reads

a R ds
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( ) , exp * /r r r r �∫∫ ( )( ) ( )β = κ ′ β ′ ′
′

(5.55) 

Because of its homogeneity, we may suppose without loss of generality that the function β 

is normalized, that is, ∫β = 12 ds . The unknown constant a* can be considered as a sort of 

eigenvalue.
Suppose the iteration process has already supplied an (n − 1)th approximation βn−1 and the 

eigenvalue an* 1− . Then, both these quantities are inserted into the right-hand side of Equation 
5.55 from which a new function ′βn can be obtained which, however, will usually not be nor-

malized, instead ∫ ′β = µ ≠Sn d 12 2 . Suppose from Equation 5.55 we obtain μ < 1. This means 

that the eigenvalue an* 1−  is too small and thus must be augmented by a factor 1/μ, which is 
of the form exp(Δa*R/ℓ) ≈ exp(Δa*). Then, we obtain immediately a corrected eigenvalue

 a a a an n n* * * ln1 1≈ +∆ ∗ = − µ− −  (5.56)

At the same time, the nth approximation must be corrected according to β = ′β µ/n n . Now, 
the next iteration step is carried out with the function βn and the eigenvalue an*.

The iteration is started by inserting β = S10  into the integral at the right-hand side 
of Equation 5.55. As an initial value of a*, we could use the Eyring absorption coef�cient 
a* ln0 ( )= − ρ  or even a* 00 = . The process converges relatively fast and a suf�ciently accurate result 
is arrived at after a few iterations. The irradiance B is obtained as a by-product, so-to-speak.

In Table 5.2, the reverberation times of a few rectangular rooms with different distribu-
tions of absorption are listed, calculated with the described iteration method (last column). 
For comparison, the results obtained with the Eyring absorption exponent –ln(1 − α) and 
with the Sabine value α are also shown.
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Evidently, the results obtained from iteration deviate more or less from the Eyring rever-
beration time. The difference is least for relatively ‘proportionate’ rooms with uniform 
distribution of boundary absorption (case 1). This behaviour is not very surprising since 
a symmetric room shape and absorption distribution favour the formation of a diffuse 
sound �eld. Of particular interest are the differences between the reverberation times 
and their opposite signs as observed for the rectangular room 10 × 20 × 30 m3. If the 
absorption is concentrated on one of the largest walls with the area 20 × 30 m2 (case 4), 
the iteration method yields a signi�cantly smaller reverberation time than the Eyring for-
mula. If the absorbing wall is one of the smallest walls (10 × 20 m2, case 4), the result is 
reversed: the Eyring reverberation time is the longer one. Similar results have been obtained 
for many con�gurations with quite a different method, namely by ray-tracing described in 
Section 9.8.

How can we understand such deviations? To �nd an explanation let us have a look 
at Figure 5.11 which shows a section through a relatively �at or long rectangular room. 
In Figure 5.11a, it is assumed that the ‘�oor’ is highly absorbing while the remaining walls 
are rigid or nearly rigid. This corresponds to the con�guration of case 4 in Table 5.2. As indi-
cated, a �oor point P is ‘irradiated’ from all directions of the half-space, while a point Q at 
the ceiling does not receive energy re�ected from the �oor – neither directly nor  indirectly – 
since the latter absorbs all the arriving energy. Hence, the �oor receives and absorbs more 
energy than it would under diffuse �eld conditions.

Table 5.2  Comparison of reverberation times, obtained for several arrangements of surface absorption 
in enclosures with diffusely re�ecting walls

Case no.
Shape and size of the 

enclosure Distribution of absorption

Reverberation time 
(in seconds) after

Sabine Eyring Iteration 

1 Cube: 10 × 10 × 10 m3 Uniform, α = 1/6 1.61 1.47 1.55
2 Cube: 10 × 10 × 10 m3 Floor: α = 1 1.61 1.47 1.35
3 Rectangular: 10 × 20 × 30 m3 Uniform, α = 3/11 1.61 1.38 1.52
4 Rectangular: 10 × 20 × 30 m3 Floor (20 × 30 m2): α = 1 1.61 1.38 1.21
5 Rectangular: 10 × 20 × 30 m3 Long side wall (10 × 30 m2): α = 1 3.22 2.99 3.06
6 Rectangular: 10 × 20 × 30 m3 Short side wall (10 × 20 m2): α = 1 4.83 4.61 5.93

Note: If some wall has α = 1, the remaining ones of the enclosure have α = 0.

Absorbing area

Q

P
(a) (b)

Figure 5.11 Sound absorption in a �at room: (a) with absorbing ‘�oor’ and (b) with one absorbing side 
wall.
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In Figure 5.11b, the absorbing surface is a short side wall, as assumed in case 6 of the 
table. In this case, sound particles in the left part of the enclosure are not strongly affected 
by the absorbing wall. Therefore, we expect that the right half of the enclosure contains 
less energy than the left one, and hence the absorbing wall is hit by less sound particles per 
second than in a diffuse �eld. Obviously, this effect predominates the one responsible for the 
increased absorption in the case of Figure 5.11a. The relatively good agreement of reverbera-
tion times observed for the case 5 – one long side wall 10 × 30 m2 absorbing – is probably 
due to two opposite effects which compensate each other, at least partially.

From a practical point of view, the most important con�guration is probably that of 
case 4, because this can be conceived as a crude model of most auditoria. This holds in 
particular when these are occupied with the highly absorbing audience which represents a 
lopsided distribution of boundary absorption. For a real hall, the in�uence of incomplete 
diffuseness is less dramatic since a certain fraction of the ground area will always remain 
unoccupied, and since the absorption coef�cient of the audience is less than unity as was 
assumed in Table 5.2. Nevertheless, the tendency of the non-uniform absorption to reduce 
the reverberation time below the Eyring value is certainly present in almost every auditorium 
and should be taken into consideration. Maybe it is the reason why the reverberation time of 
a completed hall often turns out to be shorter than originally intended.
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Chapter 6

Sound absorption and sound absorbers

Of considerable importance to the acoustics of a room are the loss mechanisms that reduce 
the energy of sound waves when they are re�ected from its boundary as well as during 
their free propagation in the air. They in�uence the strengths of the direct sound and of all 
re�ected components and therefore all acoustical properties of the room.

The attenuation of sound waves in the free medium becomes signi�cant only in large 
rooms and at relatively high frequencies; for scale model experiments, however, it causes 
serious limitations. We have to consider it inevitable and something which cannot be in�u-
enced by the efforts of the acoustician. Nevertheless, in reverberation calculations it has to 
be taken into account. Therefore, it may be suf�cient to give here a brief description of the 
causes of air attenuation and to present the relevant experimental data.

The situation is different in the case of the absorption to which sound waves are subjected 
when they are re�ected from the boundary of a room. The magnitude of wall absorption 
and its frequency dependence vary considerably from one material to another. There is also 
an unavoidable contribution to the wall absorption which depends on certain physical prop-
erties of the medium, but it is so small that in most cases it can be neglected.

Since the boundary absorption is of decisive in�uence on the sound �eld in a room, 
the acoustical designer should understand the various absorption mechanisms and know 
the various types of sound absorbers. In fact, the well-considered use of sound absorbers is 
one of his most important design tools. In particular, sound absorbers are usually employed 
to meet one of the following objectives:

• To adapt the reverberation of the room, for instance, a performance hall, to the 
intended use of it.

• To suppress undesired sound re�ections from remote walls which might be heard as 
echoes.

• To reduce the acoustical energy density and hence the sound pressure level in noisy 
rooms such as factories, large bureaus and so on.

This chapter discusses the principles and mechanisms of the most important types of sound 
absorbers.

6.1 ENERGY LOSSES IN THE MEDIUM

In the derivation of the wave equation 1.5, it was tacitly assumed that the changes in the 
state of the air, caused by the sound waves, occurred without any losses. This is not quite 
true, however. We shall refrain here from a proper modi�cation of the basic equations and 
from a quantitative treatment of attenuation. Instead, the most prominent loss mechanisms 
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are brie�y described in the following text. As in Section 1.2 and Chapter 4, the propagation 
losses will be formally characterized by the attenuation constant m as de�ned in Equation 
1.21. The decrease in the sound intensity I, which is proportional to the square of the sound 
pressure in a plane sound wave, is expressed by

 I(x) = I0 · exp (−mx) (6.1)

The attenuation in air is mainly caused by the following effects:

 1. Equation 1.5 is based on the assumption that the changes in the state of a volume of 
gas take place adiabatically, that is, there is no heat exchange between neighbouring 
volume elements. The equation states that a compressed volume element has a slightly 
higher temperature than an element which is rare�ed by the action of the sound wave. 
Although the temperature differences occurring at normal sound intensities amount 
to small fractions of a degree centigrade only, they cause a heat �ow because of the 
thermal conductivity of the air. This �ow is directed from the warmer to the cooler 
volume elements. The changes of state are therefore not taking place entirely adiabati-
cally. According to basic principles of physics, the energy transported by these thermal 
currents cannot be reconverted completely into mechanical, that is, into acoustical 
energy; some energy is lost forever. And this happens in every sound period. The cor-
responding portion of the attenuation constant m increases with the square of the 
frequency.

 2. In a plane sound wave, the length of each volume element undergoes periodical changes 
in the direction of sound propagation. This deformation of the original element can 
be considered as a superposition of an omnidirectional compression or rarefaction and 
of a shear deformation, that is, of a pure change of shape. The former one is counter-
acted by the elastic reaction of the medium which is proportional to the amount of 
compression, whereas the shear is controlled by viscous forces which are proportional 
to the shear velocity. Hence – as with every frictional process – mechanical energy is 
irreversibly converted into heat. This ‘viscous portion’ of the attenuation constant m 
also increases proportionally with the square of the frequency.

 3. Under normal conditions, the above-mentioned causes of attenuation in air are negligi-
bly small compared with the attenuation caused by what is called ‘thermal relaxation’. 
It can be brie�y described as follows. As long as the system is in thermal equilibrium, 
the total energy contained in a polyatomic gas is distributed among several energy 
stores (degrees of freedom) of the gas molecules, namely in the form of translational, 
vibrational and rotational energy. If the gas is suddenly compressed, that is, if its energy 
is suddenly increased, the whole additional energy will be stored at �rst in the form 
of translational energy. Afterwards, a gradual redistribution among the other stores 
will take place. Or, in other words, the establishment of a new equilibrium requires a 
�nite time. If compressions and rarefactions change periodically as in a sound wave, a 
thermal equilibrium can be maintained – if at all – only at very low frequencies; with 
increasing frequency, the instantaneous contents of the molecular energy stores will lag 
behind the external changes and will accept or deliver energy at the wrong moments.

The latter process is a sort of ‘internal heat conduction’, which weakens the sound wave just 
like the normal heat conduction with which we are more familiar. The characteristic quantity is 
the energy loss per wavelength, also known as the ‘‘wavelength-related attenuation constant’’. 
It has a maximum when the duration of one sound period is comparable with a speci�c time 
interval, called ‘relaxation time’ being characteristic of the time lag in internal energy distribution.
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Figure 6.1 shows, for a single relaxation process, the attenuation constant m multiplied by 
the wavelength λ as a function of the product of frequency and relaxation time. The broad 
frequency range in which it appears is characteristic of a relaxation process. Moreover, the 
relaxation of a medium causes not only a substantial increase in absorption but also a slight 
change in sound velocity, which, however, is not of importance in this connection.

For mixtures of polyatomic gases such as air, which consists mainly of nitrogen and 
oxygen, matters are more complicated because there are many more possibilities of internal 
energy exchange which we shall not discuss here.

Because of their importance in room acoustics, particularly for the calculation of rever-
beration times, a few numerical values of the intensity-related absorption constant m are 
listed in Table 6.1.1

Even if the walls, the ceiling and the �oor of a room were completely rigid and smooth, 
they would cause some sound absorption which, however, is quite small. It becomes notice-
able only when there are no other absorbents or absorbing wall portions in the room. This 
is the case for measuring rooms which are specially built to obtain a high reverberation time 
(reverberation chambers; see Section 8.7).

Physically, this kind of absorption is again caused by the heat conductivity and viscos-
ity of the air. According to Equation 1.4, the periodic temperature changes caused by a 
sound wave are in phase with the corresponding pressure changes – apart from the slight 
deviations discussed before. Therefore, the maximum sound pressure amplitude which is 
observed immediately in front of a rigid wall should be associated with a maximum of 
‘temperature amplitude’. In reality, this is impossible: because of its high thermal capacity 
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Figure 6.1  Wavelength-related attenuation constant mλ as typical for a relaxation process. The abscissa is 
the product of angular frequency ω and the relaxation time τ.

Table 6.1  Attenuation constant m of air at 20°C and normal 
atmospheric pressure, in 10−3 m−1

Relative 
humidity (%)

Frequency (kHz)

0.5 1 2 3 4 6 8

40 0.60 1.07 2.58 5.03 8.40 17.71 30.00
50 0.63 1.08 2.28 4.20 6.84 14.26 24.29
60 0.64 1.11 2.14 3.72 5.91 12.08 20.52
70 0.64 1.15 2.08 3.45 5.32 10.62 17.91

Source: Adapted from Bass et al. J Acoust Soc Am 1995; 97: 680.
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the wall surface remains virtually at a constant temperature. Therefore, there exists some 
boundary layer next to the wall in which strong temperature gradients will develop and 
hence a periodically alternating heat �ow will be directed to and from the wall. This energy 
transport occurs at the expense of the sound energy, since the heat which was produced by 
the wave in a compression phase can only be partly reconverted into mechanical energy dur-
ing the rarefaction phase.

A related effect becomes evident when we consider a sound wave impinging obliquely 
onto a rigid plane. In this case, the normal component of the particle velocity vanishes at 
the boundary, but the parallel component does not, at least if calculated without accounting 
for the viscosity of air. This, however, cannot be true, since in a real medium the molecular 
layer immediately on the wall is �xed to the latter, which means that the parallel velocity 
component vanishes as well. For this reason, our assumption of a perfectly re�ecting wall 
is not correct, in spite of its rigidity. In reality, another boundary layer is formed between 
the region of unhindered parallel motion in the air and the wall; at oblique incidence, high 
viscous forces and hence a substantial conversion of mechanical energy into heat takes place 
in this layer.

The effect of both loss processes can be accounted for by ascribing an absorption coef�-
cient to the wall. It can be shown that the thickness of both boundary layers is inversely pro-
portional to the square root of the frequency. Since, on the other hand, the gradients of the 
temperature and of the parallel velocity component increase proportionally with frequency, 
both contributions to the absorption coef�cient are proportional to the square root of the 
frequency. Their dependence on the angle of incidence, however, is different. The viscous 
portion is zero for normal sound incidence, whereas the heat �ow to and from the wall does 
not vanish at normal incidence.

Both effects are very small even at the highest frequencies relevant in room acoustics. 
Those can be safely neglected for practical design purposes.

6.2  SOUND ABSORPTION BY MEMBRANES 
AND PERFORATED SHEETS

For the acoustics of a room, it makes no difference whether the apparent absorption of a 
wall is brought about by dissipative processes, that is, by conversion of sound energy into 
heat, or by parts of the energy penetrating through the wall into the outer space. In this 
respect, an open window is a very effective absorber, since it acts as a sink for all the arriv-
ing sound energy.

A less trivial case is that of a wall or some part of a wall forced by a sound �eld into vibra-
tion. (Strictly speaking, this happens more or less with any wall, since completely rigid walls 
do not exist in the real world.) Then, a part of the wall’s vibrational energy is re-radiated into 
the outer space. This part is withdrawn from the incident sound energy, viewed from the 
interior of the room. Thus, the effect is the same as if it were really absorbed. It can there-
fore also be described by an absorption coef�cient. In practice, this sort of ‘absorption’ 
occurs with doors, windows, light partition walls, suspended ceilings, circus tents and simi-
lar ‘walls’.

This process, which may be quite involved especially for oblique sound incidence, is very 
important in all problems of sound insulation. From the viewpoint of room acoustics, it is 
suf�cient, however, to restrict discussions to the simplest case of a plane sound wave imping-
ing perpendicularly onto the wall, whose dynamic properties are completely characterized 
by its mass inertia. Then, the propagation of bending waves on the wall can be left without 
consideration.



Sound absorption and sound absorbers 129

Let us denote the sound pressures of the incident and of the re�ected waves on the surface 
of a wall (see Figure 6.2a) by p1 and p2, and the sound pressure of the transmitted wave by 
p3. The total pressure acting on the wall is then p1 + p2 − p3. It is balanced by the inertial 
force iωM′v, where M′ denotes the mass per unit area of the wall and v is the velocity of its 
motion. This velocity is equal to the particle velocity of the wave radiated from the rear side 
for which p3 = ρ0cv. Therefore, we have p1 + p2 − ρ0cv = iωM′v, from which we obtain the 
wall impedance:

 1 2
0Z

p p
v

i M c= + = ω ′ + ρ  (6.2)

Inserting ζ = Z/ρ0c into Equation 2.11 (with θ = 0) yields
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The latter approximation is permissible if the mass reactance of the wall is large compared 
with the characteristic impedance of air. In any case, the ‘absorption’ of a light wall or parti-
tion becomes noticeable only at low frequencies.

At a frequency of 100 Hz, the absorption coef�cient of a glass pane with 4 mm thick-
ness is – according to Equation 6.3 – as low as 0.02 approximately. For oblique or random 
incidence, this value is a bit higher due to the better matching between the air and the glass 
pane, but it is still very low. The increase in absorption with decreasing frequency has the 
effect that rooms with many windows sometimes sound ‘crisp’, as the reverberation at low 
frequency is not as long as it would be in the same room without windows.

The absorption caused by vibrations of single-leaf walls and ceilings is thus very low. 
Matters are different for double-leaf or more complex walls, provided that the partition on 
the side of the room under consideration is mounted in such a way that vibrations are not 
hindered and provided that it is not too heavy. Because of the interaction between the leaves 
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Figure 6.2  (a) Pressures acting on a layer with mass M′ per unit area and (b) perforated panel. 
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and the enclosed volume of air, such a system behaves as a resonance system. This will be 
discussed in the next section.

It is a fact of great practical interest that a rigid perforated plate or panel has essentially 
the same acoustical properties as a membrane or a foil. This is explained in Figure 6.2b. 
Each hole in a plate may be considered as a short tube or channel with length b; the 
mass of air contained in it, divided by the cross-section, is ρ0b. Obviously, the air stream 
directed towards the panel must contract to pass a hole, the factor of contraction is 
S2/S1, where S1 is the area of the hole and S2 is the panel area per hole. After the passage 
of the hole, the air stream expands to its former cross-section. This holds not only for a 
constant air �ow but also for the alternating �ow as occurring in sound waves. By the 
same factor S2/S1, the �ow velocity in the holes will be increased and also the inertial 
reaction of the included air. Hence, the ‘equivalent mass’ of the perforated panel per unit 
area is

 0M
b′ = ρ ′

σ
(6.4)

with

1

2

S
S

σ =  (6.5)

σ is the perforation ratio of the plate.
In Equation 6.4, the geometrical length of the hole has been replaced with an ‘effective 

length’

 b′ = b + 2Δb (6.6)

The correction 2Δb, called ‘end correction’, accounts for the fact that the streamlines (see 
Figure 6.2b) cannot contract or expand abruptly but only gradually before entering or after 
leaving an aperture. For a circular aperture with radius a, the end correction is

 
4

b a∆ = π
(6.7)

Finally, the absorption coef�cient of a perforated panel is obtained from Equation 6.3 by 
substituting M′ from Equation 6.4.

In deriving Equation 6.4, it has been assumed that the panel itself remains at rest when a 
sound wave strikes it. However, often the perforated plate is so light that it will vibrate as a 
whole. In this case, M′ in Equation 6.5 must be replaced by the ‘effective mass’
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where M′ is the equivalent mass per square metre of the ‘clamped’ panel after Equation 6.4, 
and 0M′ is the speci�c mass of the solid part of the panel.

If frictional forces within the holes and other loss processes are neglected, the absorp-
tion coef�cient in Equation 6.3 represents the fraction of incident sound energy, which is 
transmitted by a wall or a perforated panel. It characterizes the sound transparency of the 
wall – or its insulation against sound waves. Therefore, this equation plays an important 
role in sound insulation where it is known as the ‘mass law’.
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Let us illustrate this by an example: To yield 90% energy transparency (α = 0.1), the quan-
tity ωM′/2ρ0c in Equation 6.3 must be 1/3. At 1000 Hz, this is the case with a mass layer 
with an (equivalent) mass per unit area of about 45 g/m2. If realized by a perforated panel, 
this can be achieved, for instance, by a 1-mm thick sheet with 7.5% perforation and with 
holes having a diameter of 2 mm.

6.3 RESONANCE ABSORBERS

In this section, we come back to the idealized resonator discussed in Section 2.3. It consists 
basically of a membrane, which is arranged in front of a rigid wall and parallel to it. A sound 
wave impinging onto the membrane will excite vibrations of it, which are controlled by its 
speci�c mass M′ and by the reaction of the air cushion behind. Furthermore, there are vibra-
tional losses that can be represented by some loss resistance rs.

The absorption coef�cient of this con�guration can be calculated by using Equation 2.34 
along with Equation 2.11. The result is plotted in Figure 6.3 for various ratios rs/ρ0c and 
under the additional assumption that M′ω0 = 10ρ0c; the abscissa is the angular frequency 
divided by the resonance frequency. The maximum absorption coef�cient 1 is only reached 
with exact matching, that is, for rs = ρ0c.

For rs > ρ0c, the maximum absorption is less than unity and the curves are broadening. 
This behaviour is similar to that of a thin porous layer, which is arranged at some distance 
in front of a rigid wall (compare Figure 2.7). The frequency-dependent absorption charac-
teristics make this device a useful tool for the control of reverberation, mainly in the low- 
and mid-frequency range. In practical applications, the ‘membrane’ consists usually of a 
panel of wood, chipboard or gypsum (see Figure 6.4a). The vibrational losses occurring in 
this system may have several physical reasons. One of them has to do with the fact that any 
kind of panel must be �xed at certain points or along certain lines to a supporting construc-
tion, which forces the panel to be bent when it vibrates. Now every elastic deformation of 
a solid, including those by bending, is associated with internal losses that depend on the 
material and other circumstances. In metals, for instance, the intrinsic losses of the mate-
rial are  relatively small, but they may be substantial for plates made of wood or of plastic. 
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Figure 6.3 Absorption coef�cient (calculated) of resonance absorbers as a function of frequency at normal 
sound incidence, for M′ω = 10ρ0c. Parameter is the ratio rs/ρ0c.
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If  desired,  the losses may be increased by certain surface layers or by porous materials 
placed in the space between the panel and the rigid rear wall.

According to the discussion of the preceding section, the mass layer can also be realized 
as a perforated or slotted sheet (see Figure 6.4b). This device is often called a Helmholtz 
resonator, although the original Helmholtz resonator consists of a single, rigid-walled cavity 
with a narrow opening, as described in the next section. If the apertures in the sheet are very 
narrow, the frictional losses occurring in them may be suf�cient to ensure the low Q-factors 
that are needed for high ef�ciency of the absorber. Such devices are known as microperfo-
rated absorbers and have found considerable attention,2 prompted by the technical progress 
in drilling numerous tiny holes into a panel. When applied to transparent materials such as 
acrylic glass, they offer the possibility of manufacturing transparent resonance absorbers, 
although it may prove dif�cult in practice to keep apertures with diameters in the sub-
millimetre range free of dust particles and other obstructions.

For wider holes, it is usually necessary to provide for additional losses. This can be 
achieved, for instance, by covering the holes with a porous fabric. Another method of adapt-
ing the magnitude of rs to a desired value is to �ll the air space behind the panel partially or 
completely with porous material.

For normal sound incidence, the (angular) resonance frequency of this absorber is given 
by Equation 2.35, provided the space behind the membrane or perforated panel is empty. 
For its practical application, the following form may be more useful:
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where M′ is in kg m−2 and d in cm. If the air space behind the panel is �lled with porous 
material, the changes of state of the air will be rather isothermal than adiabatic. This means 
that Equation 1.5 is no longer valid and has to be replaced with p/p0 = δρ/ρ0; the sound 
velocity becomes iso 0 0c p= ρ . Accordingly, the numerical value in Equation 6.9 is reduced 
by a factor κ , that is, by about 20%, and is 500.
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Figure 6.4  Resonance absorbers: (a) with vibrating panel and (b) with perforated panel.
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This formula is relatively reliable if the mass layer consists of a perforated panel, as in 
Figure 6.4b, or of a �exible membrane. Then, the way in which the mass layer is �xed has no 
in�uence on its acoustical effect, at least as long as the sound waves arrive frontally. Matters 
are different for non-perforated wall linings made of panels with noticeable bending stiff-
ness. Since such panels must be �xed in some way, for instance, on battens that are mounted 
on the wall (Figure 6.4a), their vibrations are controlled not only by the air cushion behind 
but also by their bending stiffness. Accordingly, the resonance frequency will be higher than 
that given by Equation 6.9, namely

0 0
2

1
2f f f′ = + (6.10)

with f1 denoting the lowest bending resonance frequency of a panel supported (not clamped) 
at two opposite sides. The typical range of f1 is 10–30 Hz, whereas f0 is typically 50–100 Hz. 
This shows that the in�uence of the bending stiffness on the resonance frequency can be 
neglected in most practical cases, and Equation 6.9 may be applied to give at least a clue to 
the actual resonance frequency.

Another consequence of the strong lateral coupling between adjacent elements of an 
unperforated panel is that the angle dependence of sound absorption is more complicated 
than that in Equation 2.11 (with frequency-independent ζ). In fact, a sound wave with 
oblique incidence excites a forced bending wave in the panel. The propagation of this wave 
is strongly affected by the way the panel is �xed and by the air layer behind it. Since general 
statements on its in�uence on the absorption coef�cient and its dependence on the incidence 
angle are not possible, we shall not discuss this point in detail.

For resonators with perforated panels, lateral coupling of surface elements is affected 
by lateral sound propagation in the air space behind the panels. It can be hindered by 
lateral partitions made of rigid material, or by �lling the air space with porous and hence 
sound-absorbent materials like glass or mineral wool. Neighbouring elements of the panel 
can then be regarded as independent; the wall impedance and similarly the resonance 
frequency are independent of the direction of sound incidence. In any case, it is dif�cult 
to assess correctly the losses of a resonance absorber which determine its absorption 
coef�cient. Therefore, the acoustical consultant must rely on his experience or on a good 
collection of typical absorption data. In cases of doubt, it may be advisable to measure 
the absorption coef�cient of a suf�ciently large sample in a reverberation chamber (see 
Section 8.7).

Resonance absorbers of the described type are typically mid-frequency or low-frequency 
absorbers. Their practical importance stems from the possibility of choosing their signi�cant 
data (dimensions, materials) from a wide range so as to give them the desired absorption 
characteristics. By a suitable combination of several types of resonance absorbers in a room, 
the acoustical designer is able to achieve a prescribed frequency dependence of the rever-
beration time. The most common application of vibrating panels is to compensate for the 
high absorption of the audience at medium and high frequencies, and thus to equalize the 
reverberation time to some extent. This is the reason for the generally favourable acousti-
cal conditions which are frequently met in halls whose walls are lined with wooden panels 
or are equipped with a suspended decoration ceiling made of thin plaster, for instance. 
Thus, it is not, as is sometimes believed by laymen, some sort of ‘ampli�cation’ caused by 
‘resonance’, which is responsible for the good acoustics of concert halls lined with wooden 
panels. Likewise, audible decay processes of the wall linings, which are sometimes also 
believed to be responsible for good acoustics of such halls, do not occur in practical situa-
tions although they might be possible in principle. If a resonance system with the relative 
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half power bandwidth (reciprocal of the Q-factor) Δω/ω0 is excited by an impulsive signal, 
its amplitude will decay with a damping constant δ = Δω/2 according to Equation 2.38; 
thus, the ‘reverberation time’ of the resonator is

 
13.8 2.2

T
f

′ =
∆ω

=
∆

 (6.11)

To be comparable with the reverberation time of a room, the frequency half-width Δf must 
be about 2 Hz at most. However, the half-width of a resonating wall lining is larger than 
this by several orders of magnitude.

In Figure 6.5, the absorption coef�cients of a wooden wall lining and of a resonance 
absorber with perforated panels are plotted as functions of the frequency, measured at 
omnidirectional sound incidence.

6.4 HELMHOLTZ RESONATORS

Sometimes sound-absorbent elements are not distributed so as to cover uniformly the wall 
or the ceiling of a room but instead they are single or separate objects arranged either on 
a wall or in free space. Examples of this are separately standing or seating persons, empty 
chairs, small wall openings or lamps; musical instruments too can absorb sound. To sound 
absorbers of this sort, we cannot attribute an absorption coef�cient, since the latter refers 
to a uniform surface. Instead, their absorbing power is characterized by their ‘absorption 
cross-section’ or their ‘equivalent absorption area’, which is de�ned as the ratio of sound 
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Figure 6.5  Absorption coef�cient of resonance absorbers at random sound incidence (measured in a rever-
beration chamber, see Section 8.7): (a) wooden panel, 8 mm thick, M′ = 5 kg/m2, 30 mm away 
from rigid wall, with 20 mm rock wool in the air gap; (b) panels, 9.5 mm thick, perforated at 1.6% 
(diameter of holes 6 mm), 50 mm distant from rigid wall, air space �lled with glass wool.
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energy Pabs they absorb per second and the intensity I0, which the incident sound wave would 
have at the place of the absorbent object if it were not present:

 =a
abs

0
A

P
I

(6.12)

This de�nition is similar to that of the scattering cross-section in Equation 2.60.
When calculating the reverberation time of a room, the absorption of these types of 

absorbers is taken into account by adding their absorption areas Ai to the sum A = ΣαiSi (see 
Equation 5.25). The same holds for all other formulae and calculations in which the total 
absorption or the mean absorption coef�cient α of a room appears, as for instance, for the 
calculation of the steady-state energy density as described in Equation 5.5.

In this section, we discuss discrete sound absorbers with pronounced resonant behaviour. 
Their characteristic feature is an air volume which is enclosed in a rigidly walled cavity and 
is coupled to the surrounding space by an aperture as shown in Figure 6.6a. The latter may 
also be a channel or a ‘neck’. The whole structure is assumed to be small compared with the 
wavelength of sound and thus it has one single resonance in the interesting frequency range. 
It is brought about by interaction of two elements: the air contained in the neck or in the 
aperture which acts as a mass load, and the air within the cavity which can be regarded as a 
spring counteracting the motion of the air in the neck. Arrangements of this type are called 
‘Helmholtz resonators’; examples of these are all kinds of bottles, vases and similar vessels. 
In ancient times, such resonators known as Vitruvius sounding vessels’ played an unknown, 
possibly only a surmised, acoustical role in antique theatres and other spaces.

Figure 6.6 depicts a Helmholtz resonator along with its schematic presentation. The basic 
parameters of the resonator are the length l and the cross-sectional area S of the neck, which 
determine the mass M = ρ0lS of the air enclosed in the neck. A further characteristic para-
meter is the volume V of the attached cavity. The air contained in it reacts to small changes 
pi of the pressure like a spring with the stiffness s (see Figure 6.6b) and thus determines the 
resonance frequency of the resonator:

 0 s Mω =  (6.13)

The stiffness of the air cushion is given by

 0
2 2

s
c S
V

= ρ
 (6.14)

I

V

(a) (b)

S

v

Figure 6.6 Helmholtz resonator: (a) realization and (b) schematic.
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Now we have to discuss the losses occurring in the resonator. There are two types of 
losses: those which are due to the internal friction of the air oscillating in the aperture, rep-
resented by some resistance R0. If desired, R0 can be increased, for instance, by introducing 
some porous material in the aperture. The second sort of loss is caused by the re-radiation of 
sound into the free space. It is characterized by the radiation resistance Rr of the aperture. We 
imagine this aperture as an oscillating piston as in Figure 6.6b, mounted �ush in a rigid wall 
of in�nite extension. The lateral dimensions of the aperture are assumed as small compared 
with the wavelength. Then, the radiation impedance of the aperture is given by

 R
S
c

c
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2
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0
2 2

0
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≈ ρ ω
π
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λ


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Now, suppose the resonator is excited at its resonance frequency ω0. In this case, the mass 
reactance iωM and the reactance 1/iωs of the stiffness cancel each other. Hence, the ratio of 
the total force acting on the ‘piston’ and its velocity v is real:
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The energy converted into heat per second by viscous losses is
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For given radiation resistance Rr, Pabs assumes its maximum if R0 = Rr. This is the condition 
of complete matching to the surrounding medium.

The external force F which acts upon the piston is F = 2pS with p denoting the sound 
pressure in an arriving sound wave; the factor 2 accounts for its re�ection from the rigid 
wall surrounding the piston. By application of the second equation 1.36, we can express the 
sound pressure p and hence the force F in terms of the intensity I of the incident sound wave:

 4 42 2 2
0

2F S p cS I= = ρ  (6.17)

Now we are ready to evaluate Equations 6.16 and 6.12 with R0 = Rr by substituting from 
Equations 6.14 and 6.17, and we obtain as a �nal result

 andabs maxP I A= λ
2π

= λ
2π

0
2

0
2

 (6.18)

where λ0 is the wavelength corresponding to the resonance frequency. According to Equation 
2.38, the Q-factor of the resonator is

 Q
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Now, we can insert 0
2

0
2 2

0
2M s c S= ω = ρ ω V into Equation 6.19 and express Rr by Equation 

6.15 with the result:
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We notice that the maximum absorption area Amax of a resonator matched to the sound 
�eld is much larger than one might expect. On the other hand, the Q-factor is very large 
too, which means that the relative half power bandwidth, which is the reciprocal of the 
Q-factor, is very small, that is, large absorption will occur only in a very narrow fre-
quency range. This is clearly illustrated by the following example: Suppose a resonator 
is tuned to a frequency of 100 Hz corresponding to a wavelength of 3.43 m. This can be 
achieved conveniently by a resonator volume of 1 l. If it is matched (R0 = Rr), the resona-
tor’s absorption area is at maximum and is as large as 1.87 m2. Its Q-factor is – according 
to Equation 6.20 – about 500; the relative half-width is thus 0.002. This means, it is only 
in the range from 99.9 to 100.1 Hz that the absorption area of the resonator exceeds half 
its maximum value. Therefore, the very high absorption area in the resonance is paid 
for by the exceedingly narrow frequency bandwidth. This is why the application of such 
weakly damped resonators does not seem very useful. It is more promising to increase 
the losses and hence the bandwidth at the expense of maximum absorption (see also 
Figure 6.3).

Finally, we investigate the problem of audible decay processes, which we have already 
touched on in the preceding section. The ‘reverberation time’ of the resonator can again be 
calculated by the relation (6.11)
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In many cases, this time cannot be ignored when considering the reverberation time of a 
room. What about the audibility of this decay process?

It is evident from the derivation of the Equation 6.18 that the same amount of energy per 
second which is converted into heat inside the resonator is re-emitted since we have assumed 

R0 = Rr. Its maximum radiation power is thus P I2s 0
2( )= λ π ⋅ , where I denotes the intensity of 

the incident sound wave. Thus, the intensity of the re-radiated spherical wave at distance r is
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Both intensities I and Is are equal at a distance
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 (6.22)

The decay process of the resonator is therefore only audible in its immediate vicinity. In the 
example mentioned earlier, this critical distance would be 0.55 m; at substantially larger 
distances, the decay cannot be perceived.

6.5  SOUND PROPAGATION IN POROUS MATERIALS, 
THE RAYLEIGH MODEL

Nearly all practically used sound absorbers contain some porous material which is exposed 
in one or another way to the arriving sound wave. The present section contains a more 
detailed discussion of the dissipation processes taking place in such materials.
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In Section 6.1, inevitable re�ection losses of sound waves impinging on smooth surfaces 
were brie�y described. These are caused by viscous and thermal processes and occur within 
a boundary layer next to the surface, produced by the sound �eld. The thickness of this layer 
is typically in the range of 0.01 to 0.2 mm, depending on the sound frequency.

The absorption due to these effects is negligibly small if the surface is smooth (see 
Figure 6.7a). It is larger, however, at rough surfaces since the roughness increases the zone 
in which the losses occur (Figure 6.7b). And it is even more pronounced if the material 
contains pores, channels and voids connected with the air outside. A material of this kind 
is drawn schematically in Figure 6.7c. Then, the pressure �uctuations associated with the 
external sound �eld give rise to alternating air �ows in the pores and channels which will 
be �lled more or less by the lossy boundary layer, so to speak. The consequence is that a 
signi�cant amount of mechanical energy is withdrawn from the external sound �eld and is 
converted into heat.

This latter mechanism of sound absorption concerns all porous materials with pores 
accessible from the outside. Examples are the ‘porous layers’ which the reader encoun-
tered in Section 2.3 and which can be thought of as woven fabrics or thin carpets. The 
standard materials for practical application in rooms acoustics are mineral wool – also 
named  rockwool – and glass wool. They are manufactured from anorganic �bres by press-
ing them together, often with the addition of suitable binding agents. Materials of this 
kind are  commercially available in the form of plates or loose blankets and found also 
wide  application in sound insulation as well as in heat insulation. Other common materials 
are porous plaster or foams of certain polymers. The latter should have open cells, otherwise 
their absorption is rather low. It should be mentioned that a brick wall may show noticeable 
absorption as well.

The most important characteristic parameters of a porous material are their  porosity 
σ and their speci�c �ow resistance Ξ. The porosity is the fraction of volume which is 
not occupied by the solid structure. It can be determined by immersing a sample in 

(a) (b) (c)

Figure 6.7  Lossy boundary layer: (a) in front of a smooth surface; (b) in front of a rough surface; and 
(c) in ront of and within a porous material.



Sound absorption and sound absorbers 139

a  suitable liquid. A more reliable way is by comparing the isothermal compressibility 
of air contained in a solid chamber before and after inserting a sample of the material 
into it. For most materials of practical interest, the porosity exceeds 0.5 and may come 
close to unity.

The de�nition of the speci�c �ow resistance is similar to that of the �ow resistance of a 
porous layer in Equation 2.27. Suppose a constant air �ow with velocity vs is forced through 
a porous sample with the thickness d; the pressure difference between both sides of the 
sample required to maintain this �ow is p − p′. Then, the speci�c �ow resistance is

 
p p
v ds

Ξ = − ′
(6.23)

that is, it is the �ow resistance per metre. Its unit is 1 kg·m−3·s−1 = Pa·s·m−2. A somewhat 
obsolete unit is 1 Rayl/cm = 103 Pa·s·m−2

This is certainly not the place to present a comprehensive and exact description of sound 
absorption in porous materials which covers the full variety of materials and effects. In order 
to understand the basic processes, it is suf�cient to restrict the discussion to an idealized 
model of a porous material, the so-called Rayleigh model, which qualitatively exhibits the 
essential features. Furthermore, we shall see the viscous processes in the foreground, that is, 
we neglect the less prominent effects which are due to heat conduction.

We consider now a solid body which is traversed by equal and equidistant thin, parallel 
channels (see Figure 6.8). It is supposed that the surface of that system, being located at 
x = 0, is perpendicular to the axes of the channels; in the positive x-direction, the model is 
assumed unbounded. (A practical realization of the Rayleigh model is the microperforated 
absorber mentioned in Section 6.3.)

For discussing the sound propagation in a single channel, we suppose that it is so narrow 
that the pro�le of the air stream is determined mainly by the viscosity of the air and not by 
inertial forces, that is, that the �ow is laminar. This is always the case at suf�ciently low 
frequencies; a more precise criterion will be presented in Equation 6.26. Then, the lateral 
distribution of �ow velocities inside the channel is nearly the same as that with a stationary 
air �ow; and likewise the speci�c �ow resistance of the channel has nearly the same value 
as for constant �ow velocity.

To adapt Equation 6.23 to a single channel, we 
replace the average �ow velocity vs with the aver-
age velocity v within one channel. It exceeds vs by 
a factor 1/σ since the �ow is con�ned to the inside 
of the channels. Furthermore, (p – p′)/d is replaced 
with the negative gradient of the pressure. Then, 
Equation 6.23 reads

 
p
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∂

= σ Ξ  (6.24)

To pass from a stationary air �ow to sound, 
we must include the inertial forces according to 
Equation 1.2a. This is done by adding the term 

0 v t( )ρ ∂ ∂  to the right-hand side of Equation 6.24:
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= ρ ∂
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+ σΞ  (6.25)

x
0

Figure 6.8 Rayleigh model.
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It can be shown that the assumptions of the present treatment are ful�lled as long as

40ρ ω
σΞ

≤  (6.26)

The second relation we need is the equation of continuity (1.3), which is not affected by the 
internal friction of the air; its one-dimensional formulation is
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Now, the following plane-wave expressions with the unknown propagation constant k′

 
ˆ exp , ˆ expp p i t k x v v i t k x( ) ( )= ω − ′  = ω − ′ 

are inserted into Equations 6.25 and 6.27. This yields two homogeneous equations for p 
and v:
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They have a non-zero solution if the determinant, formed of the coef�cients p and v, is zero. 
From this condition, one obtains the complex propagation constant
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ρ ω
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with the phase constant β′ = ω/c′ and the attenuation constant γ′ = m′/2 (compare Equation 1.17).
Using this result, we obtain from one of both parts of Equation 6.28 the ratio of sound 

pressure to velocity, that is, the characteristic impedance in the channel:
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For very high frequencies – or for very wide channels – these expressions approach the val-
ues ω/c and ρ0c, valid for free sound propagation, because then the viscous boundary layer 
occupies only a very small fraction of the cross-section. In contrast, at very low frequencies 
Equation 6.29 yields
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since 1 2i i( )− = − . The attenuation in this range is considerable: the reduction of the 
amplitude per wavelength is as high as 20·log10 [exp(2π)] = 54.6 dB.
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Since the ‘outer’ �ow velocity vs in Equation 6.23 is vσ , we obtain from Equation 6.30 the 
characteristic impedance of the material (channels plus walls):
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It should be noted that the Rayleigh model, even at normal sound incidence, is only useful for a 
qualitative understanding of the effects in a porous material but not for a quantitative descrip-
tion of real absorbent materials. This has several reasons. At �rst, the skeleton of the material is 
not entirely rigid as was assumed so far. Furthermore, the heat exchange between the air con-
tained in the channels and the solid skeleton causes an additional absorption, which has been 
neglected. It is due to the fact that the compressions and rarefactions of the air occur neither 
adiabatically nor according to an isothermal law but somehow in between these limiting cases 
(see Section 2.1). And �nally, the pores within the materials are usually not well-separated and 
smooth channels but consist of irregularly shaped cavities with many interconnections. For this 
reason, the surface of a porous layer is not locally reacting to the sound �eld except at very low 
frequencies where the attenuation within the material is high enough to prevent lateral coupling 
(see Equation 6.31). Several authors have tried to account for this fact by introducing a ‘struc-
ture factor’ which, however, is dif�cult to determine. From a practical point of view, it there-
fore seems more advantageous to do without a more rigorous treatment and to determine the 
absorption coef�cient by measurement. This procedure is recommended all the more because 
the performance of porous absorbers depends only partially on the properties of the material 
and to a greater extent on its arrangement, on the covering and on other constructional details, 
which vary substantially from one situation to another.

6.6 POROUS ABSORBERS

Now, we apply the above relations to a sound absorbing wall lining consisting of a 
homogeneous layer of porous material. The simplest way to achieve this is to attach 
this layer directly on a rigid wall (see Figure 6.9). A sound wave arriving at the surface 

of the layer will be partially re�ected from it; 
the remaining part of the sound energy will 
penetrate into the material and again reach the 
surface after its re�ection from the rigid rear 
wall. Then, it will again split up into one por-
tion penetrating the surface and another one 
returning to the rear wall and so on. This qual-
itative consideration shows that the re�ected 
sound wave can be thought of as being made 
up of an in�nite number of successive contri-
butions, each of them weaker than the pre-
ceding one because of the attenuation of the 
interior wave. Furthermore, it shows that the 
total re�ection factor and hence the absorption 
coef�cient may show maxima and minima, 
depending on whether the various components 
interfere constructively or destructively at a 
given frequency.

d

Figure 6.9  Porous layer in front of a rigid wall.
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For a quantitative treatment at normal sound incidence, we refer to Equation 2.25

cot1 0Z i Z k d( )= − ′ ′ (6.33)

As in the preceding section, k′ and 0Z′ are the propagation constant and the character-
istic impedance of the material, respectively, while d is the thickness of the layer. From 
this expression, the re�ection factor and the absorption coef�cient can be calculated using 
Equations 2.10 and 2.11 with Z = Z1 and θ = 0. For the following discussion, it is useful to 
separate the real and the imaginary part of the cotangent:

 cot
sin 2 sinh 2

cosh 2 cos 2
k d

d i d

d d
( ) ( ) ( )

( ) ( )′ =
′β + ⋅ ′γ

′γ − ′β
 (6.34)

Then, the following qualitative conclusions can be drawn:

 1. For a layer which is thin compared with the sound wavelength, that is, for k′d << 1, cot 
(k′d) can be replaced with 1/k′d. Hence, the surface of the layer has a very large imped-
ance and accordingly low absorption. In other words, substantial sound absorption 
cannot be achieved by just applying some kind of paint or wallpaper to a wall.

 2. If the sound wave inside the porous material is strongly attenuated during just one 
round trip, that is, if γ′d >> 1, the cotangent in Equation 6.34 becomes i and the wall 
impedance is the same as that of an in�nitely thick layer (see Equation 6.32):
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  Figure 6.10a shows the absorption coef�cient calculated from Equation 6.35. For 
high frequencies, it approaches asymptotically the value
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Figure 6.10  Absorption coef�cient of a porous layer (Rayleigh model) in front of a rigid wall, normal sound 
incidence: (a) in�nite thickness and (b) �nite thickness, σ = 0.95. The abscissa is fd in Hz·m; the 
parameter is Ξd/ρ0c (Ξ in Pa·s∙m–2). (For Ξd/ρ0c = 0.25, the condition (6.26) is only partially 
ful�lled.)
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3. If, on the contrary, γ′d << 1, that is, if the attenuation inside the material is small, 
the periodicity of the trigonometric functions in Equation 6.34 will dominate in the 
frequency dependence of the cotangent, and the same holds for that of the absorption 
coef�cient represented in Figure 6.10b. The latter has a maximum whenever β′d equals 
π/2 or an odd multiple of it, that is, at all frequencies for which the thickness d of the 
layer is an odd multiple of λ′/4, with λ′ = 2π/β′ denoting the acoustic wavelength inside 
the material. For higher values of Ξd, the �uctuations fade out. As a �gure of merit, 
we can consider (fd)0.5, the value of the product fd for which the absorption coef�cient 
equals 0.5. Its minimum value is (fd)0.5 = 23, which is achieved for Ξd/ρ0c = 6.

As is evident from Figure 6.10, a porous layer is basically a high-frequency absorber. This 
holds not only for an absorber based on the Rayleigh model but more or less for all sorts 
of absorbers employing porous materials arranged as in Figure 6.9, and is a consequence 
of the very mechanism of sound dissipation. A rather trivial way to increase the absorption 
in the low-frequency range is to increase the thickness d of the layer. Another way is to 
abandon the concept of a homogeneous absorber or, more speci�cally, to provide for some 
air space between the rear side of the absorber and the rigid backing (see Figure 6.11). For 
frontal sound incidence, the absorption coef�cient of this con�guration can be calculated 
with Equations 2.22 and 2.23 by including the impedance of the air gap, that is, by setting 
Zr = −iρ0c · cot(kd) (according to Equation 2.25):

 Z iZ
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l 0

0 0
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A typical result obtained in this way is shown in Figure  6.11, calculated for d = 2d′ 
and σΞ/ρ0c = 1.5. The effect of the air gap is obvious; it is remarkable that the increase 
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Figure 6.11 Absorption coef�cient of a porous layer in front of a rigid wall, normal sound incidence (Ξd′/ρ0c = 
1.5, d′ = thickness of the layer): (a) without air gap and (b) with an air gap behind the porous layer. 
The depth d of the gap is 2d′, and the porosity σ is 0.95.
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of low-frequency absorption is achieved without any additional porous material. The 
pronounced �uctuations of the absorption coef�cient are caused by resonances of the air 
gap. Qualitatively, the effect of the air space can easily be understood by having a look at 
Figure 6.12. When the porous layer is �xed immediately on the wall (Figure 6.12a), it is 
close to the point of vanishing particle velocity (dashed line), hence almost no air is forced 
through the pores. The air backing (Figure 6.12b) shifts the active layer to a position where 
the particle velocity is larger, causing higher �ow velocity within the pores. (In the limiting 
case of a very thin porous sheet, we arrive at the stretched fabric, which we have already 
dealt with in Section 2.3.) With regard to oblique or random sound incidence, it may be 
advantageous to partition the back space and thus to hinder wave transmission parallel to 
the surface of the layer.

A third possibility to increase the low-frequency absorption of an absorber after Figure 6.9 
is to cover its front side with some membrane or perforated panel. This acts as a mass layer of 
the kind we have discussed in Section 6.2. Accordingly, its acoustic effect is accounted for by 
an additional term iωM′ in the expression for the wall impedance, for instance in Equation 
6.33 or 6.37, with M′ denoting the speci�c mass of the covering. Usually, the wall impedance 
of the uncovered arrangement has a large negative imaginary part at low frequencies. The 
added mass of the covering reduces this imaginary part and thus increases the absorption 
coef�cient according to Figure 2.2. In other words, the mass layer has the tendency to change 
the original arrangement into sort of a resonance absorber, as discussed in Section 6.4.

In addition, the increase of low-frequency absorptivity by such a covering offers an impor-
tant practical advantage. Usually, porous materials as rockwool or glass wool, for instance, 
are not very hard wearing nor do their surfaces look very pleasant. Many of them will in 
the course of time shed small particles which must be prevented from polluting the air in the 
room. If the absorbent portions of the wall are within the reach of people, a suitable cover-
ing is desirable too, as a protection against unintentional or thoughtless damage of their 
surface. And �nally, the architect usually wishes to hide the rockwool layer behind a surface 
which can be painted and cleaned from time to time.

To prevent purling (or to keep water away from the pores, as for instance in swim-
ming baths), it is often suf�cient to bag the absorbent materials in very thin plastic foils. 
Furthermore, purling can be avoided by a somewhat denser porous front layer on the bulk 
of the material.

(a) (b)

Figure 6.12  Porous layer in front of a rigid wall: (a) without air backing and (b) with air backing. (Dashed line: 
particle velocity in the absence of the porous layer.)
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Coverings for mechanical protection are usually made of wood, metal or plastic panels, 
impervious or perforated, as described in Section 6.2. In the latter case, the apertures may be 
so small that the holes or slots are only visible at short distances. When such a lining is cleaned 
or provided with a new paint, care must be taken that the holes are not obstructed which 
would make the absorber useless. Often a combination of perforated panels and a limp porous 
�eece behind is employed as a protective layer. Thus, the covering of a porous lining, origi-
nally introduced for acoustical reasons, has an additional function of practical importance.

We close this section by presenting a few typical results as measured in the reverberation 
chamber, that is, at random sound incidence. It is a standard procedure since long, although 
it has the peculiarity that for highly absorptive test samples it occasionally yields absorp-
tion coef�cients in excess of unity – a result which is physically impossible. Reasons for this 
strange behaviour will be discussed in Section 8.7 where this method is described in detail.

In Figure  6.13, the absorption coef�cient of two homogeneous rock wool layers with 
different densities and �ow resistances is shown as a function of the frequency. Both test 
samples are 50 mm thick. Obviously, the denser material shows an absorption coef�cient 
close to 1 even at somewhat lower frequencies.

Figure 6.14 shows in�uence of an air gap on the absorption coef�cient. The porous sheet is 
30 mm thick and has a density of 46.5 kg m−3. In one case, it is mounted directly in front of 
a rigid wall (solid curve); in the other case, there is an air space of 50 mm between the sheet 
and the wall (dotted curve). The air gap is partitioned off by wooden lattices with a pattern of 
50 cm × 50 cm. As expected, the second method of mounting leads to a considerable increase 
of absorption especially at low frequencies. The strong �uctuations which appeared in the 
curves of Figures 6.10 and 6.11 have been smoothed out – a consequence of the random sound 
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Figure 6.13 Absorption coef�cient (reverberation chamber) of rock wool layers, 50 mm thick, immediately 
on concrete: (a) density 40 kg · m–3, Ξ = 12.7 × 103 Pa · s · m–2 and (b) density 100 kg · m–3, Ξ = 22 × 103

Pa · s · m–2. 
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incidence. It is evident that an air space behind the absorbent  material considerably improves 
its effectiveness (or helps to save material and costs). As mentioned before, the partitioning is 
to prevent lateral sound propagation within the air space at oblique sound incidence.

The in�uence of a perforated covering is demonstrated in Figure 6.15. In both cases, the 
porous layer has a thickness of 50 mm and is mounted directly onto the wall. The fraction of 
hole areas, that is, the perforation, is 14%. The mass load corresponding to it is responsible 
for an absorption maximum at 800 Hz, which is not present with the bare material. This 
resonance absorption can sometimes be very desirable. At a higher degree of perforation, 
this in�uence is much less pronounced, and with a perforation of 25% or more, the effect of 
the covering plate can virtually be neglected.

6.7 AUDIENCE AND SEAT ABSORPTION

The purpose of most medium- to large-size halls is to accommodate a large number of spec-
tators or listeners and thus enable them to watch events or functions of common interest. 
This is true for concert halls and lecture rooms, for theatres and opera houses, for churches 
and sports halls, cinemas, council chambers and entertainment halls of every kind. The 
important acoustical properties are therefore those which are present when the rooms are 
occupied or at least partially occupied. These properties are largely determined by the audi-
ence itself, especially by the sound absorption effected by it. The only exceptions are broad-
casting and television studios, which are not intended to be used with an audience present.

The sound absorption caused by audience is mainly due to people’s clothing and its poros-
ity. Since clothing is not usually very thick, the absorption is considerable only at medium and 
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Figure 6.14  Absorption coef�cient (reverberation chamber) of a rock wool layer 30 mm thick, density 
46.5 kg∙m–3, Ξ = 12 × 103 Pa∙s∙m–2; (a) mounted immediately on concrete and (b) mounted with 
50 mm air backing, laterally partitioned.



Sound absorption and sound absorbers 147

high frequencies; in the range of low frequencies, it is relatively small. Since people’s clothing 
differs from individual to individual, only average values of the audience absorption are avail-
able, and it is quite possible that these values are changing with the passage of time according 
to changing fashion or season. Furthermore, audience absorption depends on the kind of seats 
and their arrangement, on the occupancy density, on the way in which the audience is exposed 
to the incident sound, on the interruption of ‘blocks’ by aisles, stairs and so on, and not least 
on the structure of the sound �eld. It is quite evident that a person seated at the rear of a nar-
row box with a small opening, as was typical in 18th- to 19th-century theatres, absorbs much 
less sound energy than a person sitting among steeply raked rows of seats and who is thus well 
exposed to the sound. Therefore, it is not surprising that there are considerable differences in 
the data on audience absorption which have been given by different authors.

There are two ways to determine experimentally the sound absorption of audience and seats. 
One is to place seats and/or persons into a ‘reverberation chamber’ (see Section 8.7) and evalu-
ate their absorption from the change in reverberation time they cause. This has the advantage 
that sound �eld diffusion, which is a prerequisite for the applicability of the common rever-
beration formulae, can be established by adequate means. On the other hand, it may be doubt-
ful whether a ‘block’ consisting 20 or 25 seats is representative for an extended area covered 
with occupied or unoccupied seats. In the second method, completed concert halls are used as 
reverberation chambers, so to speak: the absorption data are derived from reverberation times 
measured in them. The structure of the sound �eld is unknown in the second method, but – 
provided the shape of the hall is not too exotic – it can at least be considered as typical for such 
halls. The same holds for the absorption coef�cients of the walls and the ceiling.

The absorption of persons standing or seated singly is characterized most appropri-
ately by their absorption cross-section or equivalent absorption area A, already de�ned 
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Figure 6.15  Absorption coef�cient (reverberation chamber) of 50 mm glass wool, mounted immediately on 
concrete: (a) uncovered and (b) covered with a protective panel, 5 mm thick, 14% perforation.
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in  Equation 6.12. For calculating the reverberation time, the absorption area of each 
person is added to the sum of Equation 5.25, which in this case reads

S
S N Ai i

i

1
p∑α = α +









  (6.38)

Np being the number of persons. Table 6.2 lists a few of these absorption areas as a function 
of the frequency measured by Kath and Kuhl3 in a reverberation chamber.

When listeners are seated close together as in a fully occupied room, it seems that the 
absorption effected by the audience is proportional rather to the �oor area it occupies than 
to the number of occupied seats (Beranek4). With other words: The absorptivity of a closed 
audience should be characterized by an apparent ‘absorption coef�cient’ since this �gure 
seems to be almost independent of the density of chairs. (However, according to a more 
recent publication,5 this is not always true, see Table 6.6.) The same holds for unoccupied 
seats. In Table 6.3, absorption coef�cients of seated audience and of unoccupied seats, as 
measured in a reverberation chamber, are listed. Although the absorption of an audience in 
a particular hall may differ from the data shown, the latter at least demonstrates the gen-
eral features of audience absorption: at increasing frequencies the absorption coef�cients 
increase at �rst. For frequencies higher than 2000 Hz, however, there is a slight falloff. This 
decrease is presumably due to mutual shadowing of absorbent surface areas by the backrests 
or listeners’ bodies. At high frequencies, this effect becomes more prominent, whereas at 
lower frequencies the sound waves are diffracted around the listeners’ heads and shoulders.

These results are interesting in that they show general trends, but it is not clear how repre-
sentative they are for any type of chairs. The effect of upholstered chairs essentially consists 
of an increase in absorption at low frequencies, whereas at frequencies of about 1000 Hz 
and above, there is no signi�cant difference between the absorption of audiences seated on 
upholstered or on unupholstered chairs.

Table 6.3  Absorption coef�cients of audience and chairs (reverberation chamber)

Type of seats

Frequency (Hz)

125 250 500 1000 2000 4000 6000

Audience seated on wooden chairs, two persons per m2 0.24 0.40 0.78 0.98 0.96 0.87 0.80
Audience seated on wooden chairs, one person per m2 0.16 0.24 0.56 0.69 0.81 0.78 0.75
Audience seated on moderately upholstered chairs, 
0.85 m × 0.63 m

0.72 0.82 0.91 0.93 0.94 0.87 0.77

Audience seated on moderately upholstered chairs, 
0.90 m × 0.55 m

0.55 0.86 0.83 0.87 0.90 0.87 0.80

Moderately upholstered chairs, unoccupied, 
0.90 m × 0.55 m

0.44 0.56 0.67 0.74 0.83 0.87 0.80

Table 6.2  Equivalent absorption area of persons, in m2

Kind of person

Frequency (Hz)

125 250 500 1000 2000 4000

Male standing in heavy coat 0.17 0.41 0.91 1.30 1.43 1.47
Male standing without coat 0.12 0.24 0.59 0.98 1.13 1.12
Musician seated, with instrument 0.60 0.95 1.06 1.08 1.08 1.08

Source: Adapted from Kath U, Kuhl W. Measurements on sound absorption of upholstered chairs with and without per-
sons (in German). Acustica 1965; 15: 127.
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Large collections of data on seat and audience absorption have been published by Beranek6

and by Beranek and Hidaka.7 These authors determined absorption coef�cients from the 
reverberation times of completed concert halls using the Sabine formula, Equation 5.26 with 
5.25. It should be noted that their calculations are based upon the ‘effective seating area’ Sa, 
which includes not only the �oor area covered by chairs but also a strip of 0.5 m around the 
actual area of a block of seating except for the edge of a block when it is adjacent to a wall 
or a balcony face. This correction is to account for the ‘edge effect’, that is, diffraction of 
sound which generally occurs at the edges of an absorbent area (see Section 8.7). Absorption 
 coef�cients for closed blocks of seats – unoccupied as well as  occupied – are listed in Table 6.4. 
The data shown are averages over three groups of halls with different types of seat uphol-
stery. They show the same general frequency dependency as the absorption coef�cients listed 
in Table 6.3, apart from the slight decrease towards very high frequencies for occupied seats 
which is missing in Table 6.4.7 Evidently, the in�uence of seat upholstery is particularly pro-
nounced in the low-frequency range. Beranek and Hidaka had the opportunity of assembling 
reverberation data from several halls before and after the chairs were installed. From these 
values, they evaluated what they called the ‘residual absorption coef�cients’, αr, that is, the 
total absorption of all walls, the ceiling, balcony faces etc. except the �oor, divided by their 
total area Sr. Since these data are interesting in their own right, we present their averages in 
Table 6.5.7 The residual absorption coef�cients include the absorption of chandeliers, ventila-
tion openings and other typical installations, and they show remarkably small variances.

First group: 7.5 cm upholstery on front side of seat back, 10 cm on top of seat bottom, arm 
rest upholstered. Second group: 2.5 cm upholstery on front side of seat back, 2.5 cm on top 
of seat bottom, solid arm rests. Third group: 1.5 cm upholstery on front side of seat back, 
2.5 cm on top of seat bottom, solid arm rests.

Table 6.4  Absorption coef�cients of unoccupied and occupied seating areas in concert halls (averages) 

Type of upholstery

Frequency (Hz)

125 250 500 1000 2000 4000

Heavy Unoccupied (seven halls) 0.70 0.76 0.81 0.84 0.84 0.81
Occupied (seven halls) 0.72 0.80 0.86 0.89 0.90 0.90

Medium Unoccupied (eight halls) 0.54 0.62 0.68 0.70 0.68 0.66
Occupied (eight halls) 0.62 0.72 0.80 0.83 0.84 0.85

Light Unoccupied (four halls) 0.36 0.47 0.57 0.62 0.62 0.60
Occupied (six halls) 0.51 0.64 0.75 0.80 0.82 0.83

Source: Adapted from Beranek LL, Hidaka T. Sound absorption in concert halls by seats, occupied and unoccupied, and by 
the hall’s interior surfaces. J Acoust Soc Am 1998; 104: 3169.

Table 6.5  Residual absorption coef�cients from concert halls (averagers)

Type of hall

Frequency (Hz)

125 250 500 1000 2000 4000

Group A: halls lined with wood, less than 3 cm thick 
or with other thin materials (six halls)

0.16 0.13 0.10 0.09 0.08 0.08

Group B: halls lined with heavy materials, that is, with 
concrete, plaster more than 2.5 cm thick, etc. 
(three halls)

0.12 0.10 0.08 0.08 0.08 0.08

Source: Adapted from Beranek LL, Hidaka T. Sound absorption in concert halls by seats, occupied and unoccupied, and by 
the hall’s interior surfaces. J Acoust Soc Am 1998; 104: 3169.
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More systematic measurements of the absorption of occupied or unoccupied blocks of 
chairs have been carried out by Choi, Bradley and Jeong.5 Concerning the dependence of 
the absorption on the size of blocks, these authors found the following relation:

 
P
S

α = β + α∞ (6.39)

with P denoting the perimeter of a block and S its area. α∞ is the absorption coef�cient of 
an in�nitely large block of chairs, it corresponds to what was denoted by α in Tables 6.3 
and 6.4. The factor β as well α∞ depends on several parameters: on the type of chairs, on 
row spacing, on the presence of occupants and of a carpet underneath the seats. Table 6.65

presents some of the results. The upper entry in each cell shows α∞ while the lower one (in 
brackets) is the coef�cient β in Equation 6.39. All these data have been obtained with scale 
models of theatre chairs, of the listeners and of a carpet, using a model reverberation cham-
ber; the scaling factor was 1:10. Two types of model chairs were developed, namely with 
low or with high absorption, and care has been taken to achieve a close agreement of their 
acoustical properties with those of typical full-scale chairs.

It has been known for a long time that the absorption of the impinging sound waves and, as 
a consequence, the reduction of the reverberation time are not the only acoustical effect brought 
about by audience. Another one is additional attenuation of sound waves travelling parallel or 
nearly parallel to the audience. It seems that two different causes are responsible for this effect. 
Attenuation in excess of the 1/r law of Equation 1.27 is actually observed whenever a wave 
propagates over an absorbent surface. If the sound velocity in the material behind (or rather 
below) the surface is smaller than that in air – which is the case for porous materials – a sound 
wave with grazing incidence will be partially refracted according to Equation 2.15 and enter 
the absorbent material. If this surface is not plane but shows a comb-like structure as with rows 
of occupied or upholstered seats, the regular arrangement gives rise to additional, frequency-
dependent attenuation.

Table 6.6  Absorption coef�cients of audience and chairs (reverberation chamber) 

Type of chairs

Frequency (Hz)

125 250 500 1000 2000 4000

High absorption chairs, with carpet,
row distance 1.2 m, unoccupied 

0.37
(0.10)

0.55
(0.25)

0.78
(0.29)

0.83
(0.34)

0.88
(0.33)

0.88
(0.34)

High absorption chairs, with carpet,
row distance 1.2 m, occupied 

0.48
(0.14)

0.77
(0.19)

0.87
(0.26)

0.80
(0.37)

0.90
(0.34)

0.96
(0.33)

High absorption chairs, with carpet,
row distance 0.76 m, unoccupied 

0.79
(0.02)

0.69
(0.40)

0.97
(0.39)

1.06
(0.40)

0.99
(0.46)

1.00
(0.51)

High absorption chairs, with carpet,
row distance 0.76 m, occupied 

1.21
(0.0)

0.90
(0.31)

1.05
(0.37)

1.00
(0.45)

1.03
(0.43)

1.04
(0.46)

Low absorption chairs, no carpet,
row distance 1.2 m, unoccupied

0.23
(0.0)

0.47
(0.0)

0.46
(0.03)

0.47
(0.06)

0.50
(0.06)

0.45
(0.15)

Low absorption chairs, no carpet,
row distance 1.2 m, occupied

0.29
(0.04)

0.48
(0.08)

0.44
(0.11)

0.50
(0.11)

0.50
(0.13)

0.48
(0.17)

Low absorption chairs, no carpet,
row distance 0.76 m, unoccupied

0.32
(0.04)

0.75
(0.0)

0.45
(0.18)

0.46
(0.21)

0.49
(0.24)

0.39
(0.35)

Low absorption chairs, no carpet,
row distance 0.76 m, occupied 

0.66
(0.0)

0.86
(0.03)

0.60
(0.16)

0.63
(0.19)

0.64
0.23

0.69
0.23

Source: Adapted from Choi YJ, Bradley JS, Yeong DU. Acoust Soc Amer 2015; 137:105.

Note: Upper entry: α∞. Lower entry (in brackets): β in metre (see Equation 6.39).
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Even sound waves travelling over the empty seating rows of a large hall are subject to a 
characteristic attenuation, which is known as the ‘seat dip effect’ and has been observed 
by many researchers.8,9 The excess attenuation has typically a maximum in the range of 
80–250 Hz, depending on the angle of sound incidence and other parameters. An example 
is shown in Figure 6.16. The minimum in these curves is usually attributed to a vertical λ/4 
resonance of the space between seating rows. Some authors have found this ‘seat dip’ with 
occupied seats too, others have not. The missing energy is probably not always absorbed 
but some of it may be redistributed in the hall. Figure 6.17 presents the level of reduction 
(shaded areas) caused by the audience, as measured by Mommertz11 in a large hall with a 
horizontal �oor, by employing maximum length sequence techniques (see Section 8.2). The 
numbers 2, 4, 6 … characterize the seating row in which the measuring microphone was 
located. An evaluation of these data shows that there is a linear level decrease from front to 
rear seats, indicating an excess attenuation of the audience of roughly 1 dB per metre in the 
range 500–2000 Hz. It should be noted that not only the direct sound but also re�ections 
from vertical side walls may be subject to this kind of attenuation.

The selective attenuation of sound propagating over the audience cannot be considered 
as an acoustical fault because it occurs in concert halls, which are renowned for their 
good acoustics as well as in poorer ones. Since it is highly dependent on the arrangement 
of seats, there is no reliable method to predict this kind of attenuation. However, it can be 
avoided by sloping the audience area upwardly. This has the effect of exposing the listen-
ers freely to the direct sounds without running the risk of grazing sound incidence (see 
Section 9.2).

6.8 ANECHOIC ROOMS

Certain types of acoustic measurements require an environment which is free of re�ected 
sound waves. This is true for the free �eld calibration of microphones, or for the deter-
mination of directional patterns of sound sources and so on. The same holds for psycho-
acoustic experiments. In all these cases, the accuracy and the reliability of results would be 
impaired by the interference of the direct sound with sound components re�ected from the 
boundaries.
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Figure 6.16  Transmission characteristics of direct sound, measured at unoccupied seats of the main �oor 
in Boston Symphony Hall.8 The numbers in the �gure indicate the distance from the stage. 
(The level reduction due to spherical divergence has been subtracted from the data.)
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One way to avoid re�ections – except those from the ground – would be to perform such 
measurements or experiments in the open air. This has the disadvantage, however, that the 
experimenter depends on favourable weather conditions, which implies the absence of not 
only rain but also of wind. Furthermore, acoustic measurements in the open air can be badly 
affected by ambient noise.

A more convenient way is to use a so-called anechoic room or chamber, all the boundar-
ies of which are treated in such a way that virtually no sound re�ections are produced by 
them, at least in the frequency range of interest. How stringent the conditions are which 
have to be met by the acoustical treatment may be illustrated by a simple example. If all the 
boundaries of an enclosure have an absorption coef�cient of 0.90, everybody would agree 
that the acoustics of this room is extremely ‘dry’ on account of its very low reverberation 
time. Nevertheless, the sound pressure level of a wave re�ected from a wall would be only 
10 dB lower than that of the incident wave! Therefore, the usual requirement for the walls of 
an anechoic room is that the absorption coef�cient is at least 0.99 for all angles of incidence. 
This condition cannot be met with plane homogeneous layers of some absorbent materials; 
it can only be satis�ed with a wall covering which achieves a stepwise or continuous transi-
tion from the air to a material with high internal energy losses.

In principle, this transition can be accomplished by a porous wall coating whose �ow 
resistance increases in a well-de�ned way from the surface to the wall. It must be expected, 
however, that, at grazing sound incidence, the absorption of such a plane layer would be 
zero on account of total re�ection: According to Equation 2.10 or 2.16, the re�ection fac-
tor becomes −1 when the incidence angle θ approaches 90°. Therefore, it is more useful to 
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Figure 6.17  Sound pressure level over audience, relative to the level at free propagation (horizontal lines). 
The �gures indicate the number of the seating row. The source is 2.5 m before the �rst row and 
1.4 m high. (After Mommertz.11)
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achieve the desired transition by choosing a proper geometrical structure of the acoustical 
treatment than by varying the properties of the material. Accordingly, the absorbent mate-
rial is applied in the form of pyramids or wedges which are �xed on the walls, the ceiling 
and the �oor of the test room. Hence, an incident sound wave will run into channels with 
absorbent walls whose cross-sections steadily decrease in size, that is, into reversed horns. 
The apertures at the front of these channels are well matched to the characteristic imped-
ance of the air and thus no signi�cant re�ection will occur.

This is only true, however, as long as the length of the channels, that is, the thickness 
of the lining, is at least about one-third of the acoustical wavelength. This condition can 
easily be ful�lled at high frequencies, but only with great expense at frequencies of 100 Hz 
or below. For this reason, every anechoic room has a certain lower limiting frequency, usu-
ally de�ned as the frequency at which the absorption coef�cient of its walls becomes less 
than 0.99.

As to the production of such a lining, it is easier to utilize wedges instead of pyramids. The 
wedges must be made of a material with suitable �ow resistance and suf�cient mechanical 
solidity, and the front edges of neighbouring wedges or packets of wedges must be arranged 
at right angles to each other (see Figures 6.18 and 6.19).

Since the �oor, as well as the other walls, must be treated in the same way, a net of steel 
cables or plastic wires must be installed in order to give access to the space above the �oor. 
The re�ections from this net can be safely neglected at audio frequencies.

The lower limiting frequency of an anechoic room can be further reduced by combining 
the pyramids or wedges with cavity resonators which are located between the latter and 
the rigid wall. By choosing the apertures, that is, the lengths and widths and the depths of 
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Figure 6.18  Absorbing wall lining of an anechoic room (dimensions in cm).
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the resonators carefully, the re�ection can be suppressed at frequencies at which noticeable 
re�ection would occur without the resonators.

In this way, for a particular anechoic room,10 a lower limiting frequency of 80 Hz was 
achieved by a lining with a total depth of 1 m. The absorber material has a density of 150 kg m−3

and a speci�c �ow resistance Ξ of about 105 kg m−3s−1 (= 105 Pa s m−2). It is fabricated in wedges 
of 13 cm × 40 cm base area and 80 cm length, which terminate in rectangular blocks of the 
same base area and 10 cm length. Between these blocks, there are narrow gaps of 1 cm width 
which run into an air cushion of 10 cm depth between the absorber material and the concrete 
wall (see Figure 6.18). The latter acts as the volume of a large resonance absorber with many 
necks which are the gaps between the wedges. Three wedges with parallel edge are joined 
together in a packet; neighbouring packets are rotated by 90° with respect to each other. 
A view of the interior of this anechoic room is presented in Figure 6.19.

Anechoic rooms are usually tested by observing the way in which the sound amplitude 
decreases when the distance from a sound source is increased. This decrease should take 
place according to a 1/r law to simulate perfect outdoor conditions. In practice, with increas-
ing distance, deviations from this simple law become more and more apparent in the form 
of random �uctuations. Since these �uctuations are caused by wall re�ections, they can be 
used to evaluate the average absorption coef�cient of the walls. Several methods have been 
worked out to perform these measurements and to determine the wall absorption from their 
results.12,13
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Chapter 7

Subjective room acoustics

Previous chapters were devoted exclusively to the physical side of room acoustics, that is, 
the objectively measurable properties of sound �elds in a room and the circumstances which 
are responsible for their origin. We could be satis�ed with this aspect if the only problems 
at stake were those of noise abatement by reverberation reduction and hence by reduction of 
the energy density, or if we only had to deal with problems of measuring techniques.

In most cases, however, the ‘�nal consumer’ of room acoustics is the listener, for example, 
who wants to enjoy a concert or who attends a lecture or a theatre performance. This lis-
tener does not by any means require the reverberation time, at the various frequencies, to 
have certain values; neither does he insist that the sound energy at his seat should exhibit a 
certain directional distribution. Instead, he expects the room with its ‘acoustics’ to support 
the music being performed or to render speech easily intelligible (as far as this depends on 
acoustic properties).

The acoustical designer �nds himself in a different situation. He must �nd ways to meet 
the expectations of the average or typical listener (whoever this is). To do this, he needs 
knowledge of the relationship between properties of the physical sound �eld on the one 
hand and the listener’s subjective impression on the other (see Figure 7.1). For this purpose, 
several physical parameters have been isolated in the course of time, which are related more 
or less with certain aspects of the subjective listening impression. A second task is to �nd out 
in which way the physical sound �eld is determined by the architect’s design, that is, by the 
size and shape of a hall and the material of its boundary. This was the subject of the initial 
chapters of this book. In this chapter, we deal with the subjective aspects, that is, with the 
left side of Figure 7.1. With these considerations, we clearly leave the region of purely physi-
cal fact and enter the realm of psychoacoustics.

The isolation of meaningful physical sound �eld parameters and the examination of 
their  relevance have in the past been and still are the subject of numerous investigations – 
experimental investigations – since answers to these problems, which are not affected by the 
stigma of pure speculation, can only be obtained by systematic listening tests. Unfortunately, 
the results of this research do not form an unequivocal picture, in contrast to what we are 
accustomed to in the purely physical branch of acoustics. This is ascribed to the lack of a 
generally agreed vocabulary to describe subjective impressions and to the very involved physi-
ological properties of our hearing organ, including the manner in which hearing sensations 
are processed by our brain. It can also be attributed to listeners’ hearing habits and, last but 
not least, to their personal aesthetic sensitivity – at least as far as musical productions are 
concerned. Another reason for our incomplete knowledge in this �eld is the vast number of 
sound �eld components, which may in�uence the subjective hearing impression. The experi-
mental results which are available to date must therefore be considered in spite of the fact that 
many are unrelated or sometimes even inconsistent, and that every day new and surprising 
insights into psychoacoustic effects and their signi�cance in room acoustics may be found.
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7.1 SOUND PRESSURE LEVEL, STRENGTH FACTOR

The �rst of parameters we introduce is the stationary sound pressure level (SPL) or energy 
density that a sound source of given output power produces in a room. For a long time, this 
was not regarded as an acoustical quality criterion because it was believed that this level just 
depends on the absorption area (or the reverberation time) of the room. More recently, how-
ever, the general attitude towards the overall level has changed since high de�nition or clar-
ity is of little use if the sound is too weak to be heard at a comfortable loudness. Moreover, 
the simple equation (5.5), which relates the energy density to the absorption area and the 
source power P, is valid for diffuse sound �elds only, while the �eld within a real hall may 
show considerable deviations from this ideal condition.

If the stationary SPL in an enclosure is to re�ect merely the properties of the enclosure and 
not of the source, it must be measured by using a non-directional sound source. Furthermore, 
the in�uence of the source is eliminated by subtracting a reference level SPLA. This is the 
level which the same sound source would produce in the free �eld (anechoic room) at a dis-
tance of 10 m. The result is the so-called ‘strength factor’:

 G = SPL – SPLA = 10 log10 (w/wA) (7.1)

where w and wA denote the corresponding energy densities. For the reference measurement, 
we have wA = P/4πcrA

2 according to Equation 5.43 with rA = 10 m. If the sound �eld in the 
considered hall were exactly diffuse, the energy density in the reverberant sound �eld of 
the room would be w = 4P/cA with A = 0.16 V/T (see Section 5.1), and we could calculate 
the strength factor from the formula

 G
T
V

10log 45dBexp 10= 



 +  (7.2)

(T in s and V in m3). In contrast, Gade and Rindel1 found from measurements in 21 Danish 
concert halls that the strength factor in any hall shows a linear decrease from the front to 
the rear. This decrease corresponds to 1.2–3.3 dB per distance doubling, and the average 
of the strength factor G falls short of the value of Equation 7.2 by 2–3 dB. Furthermore, 
the steady-state level does not depend in a simple way on the reverberation time or on the 
geometrical data of the hall. From these results, it may be concluded that the sound �elds 
in real concert halls are not diffuse, and that the strength factor is indeed a useful �gure of 
merit.

An alternative de�nition of the strength factor is based on the impulse response g(t) of the 
room at a given point:
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Figure 7.1  Relationship between subjective, physical and architectural aspects of room acoustics.
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gA(t) is the impulse response measured with the same sound source at 10 m distance in the free 
sound �eld. The upper integration limit td must be chosen in such a way that the second integral 
includes the direct sound but not any re�ected components. Both de�nitions are equivalent.

7.2 SOME GENERAL REMARKS ON REFLECTIONS AND ECHOES

In the following discussion, we shall regard the sound transmission between two points of a 
room as formally represented by the impulse response of the transmission path. According 
to Equations 4.4 and 4.5, this impulse response is composed of the direct sound and numer-
ous repetitions of the primary sound impulse which are caused by its re�ections from the 
boundary of the room (see also Figure 4.8). Each of these re�ections is speci�ed by its level 
and its time delay, both with respect to the direct sound. Since our hearing is sensitive to 
the direction of sound incidence as well, this description must be completed by indicating 
the direction from which each re�ection arrives at the receiving point. And �nally, there 
may be differences in spectrum since, as already mentioned in Section 4.1, the various com-
ponents of the impulse response are not exact replicas of the original sound signal, strictly 
speaking, because of frequency-dependent wall re�ectivities and attenuation by audience.

What has been presented here is the physical description of a room impulse response and 
its components. From the subjective standpoint, however, there are great differences between 
re�ections, depending on their strengths and their delays with respect of the direct sound. 
In particular, we have to distinguish slightly delayed re�ections, so-called early re�ections, 
from those with signi�cantly longer delay. To illustrate this, the reader may be reminded of 
two common experiences: Sometimes a re�ected sound can be perceived as an ‘echo’, that 
is, as a distinct repetition of the original sound signal. This is frequently observed outdoors, 
for instance, by hand-clapping in front of an extended building, provided there is no noise 
which would mask the echo. Fortunately, in closed rooms such echoes are less familiar, 
since they are usually masked by the general reverberation of the room. Whether a re�ection 
will be heard as an echo or not depends on several factors, most critically on the delay with 
respect to the original sound. In our hand-clapping experiments, there is no audible echo 
if the observer is too close to the re�ecting wall, say less than about 10 m because then the 
delay time which is the time the sound signal needs for its round trip from the hands to the 
building front and back to the observer’s ear is too short.

The second common experience concerns our ability to localize sound sources in closed 
rooms. Although in a room which is not too heavily damped, the sum of all re�ected sound 
energies exceeds by far the directly received energy, our hearing can usually localize the 
direction of the sound source without any dif�culty. Obviously, it is the sound signal to 
reach the listener �rst which subjectively determines the direction from which the sound 
comes. This effect is called the precedence effect or – according to L. Cremer – the ‘law of 
the �rst wave front’. In Section 7.4, we shall discuss the conditions under which it is valid.

In the following sections, the subjective effects of sound �elds with increasing complex-
ity will be discussed. It is quite natural that the criteria of judgement become less and less 
detailed: in a sound �eld consisting of hundreds or thousands of re�ections, we cannot 
 investigate the effects of each re�ection separately.

Many of the experimental results to be reported on have been obtained with the use of 
synthetic sound �elds, as mentioned earlier: in an anechoic chamber, the re�ections and 
the direct sound are ‘simulated’ by loudspeakers which have certain positions vis-à-vis the 
test subject; these positions correspond to the directional distribution of the re�ections. 
Of course, all loudspeaker signals must be derived from the same signal source. The differ-
ences in strength are achieved by attenuators in the electrical lines feeding the loudspeakers, 
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whereas their mutual delay differences are produced by electrical delay units. When nec-
essary or desired, reverberation with prescribed properties can be added to the signals. 
For this purpose, signals are passed through a so-called reverberator, which is also most 
conveniently realized with digital circuits nowadays. (Other methods of ‘adding’ reverbera-
tion to a given signal will be described in Section 10.5.) A typical setup for psychoacoustic 
experiments related to room acoustics is depicted in Figure 7.2; it allows simulation of the 
direct sound, two side-wall re�ections and one ceiling re�ection. The reverberated signal 
is reproduced by four additional loudspeakers. A more �exible loudspeaker arrangement 
employed for investigations of this kind is shown in Figure 6.19.

7.3 THE PERCEPTION OF REFLECTIONS AND ECHOES

We begin with sound �elds consisting of the direct sound and one or a few repetitions of it, 
that is, re�ections. There are two questions to be raised, namely:

1. Under what condition is a re�ection perceivable at all, without regard to the way in 
which its presence is manifested, and under what condition is it masked by the direct 
sound?

2. Under what condition does the presence of a re�ection rate as a disturbance of the 
listening impression, for instance, an echo or a change of timbre (‘colouration’)?

In this section, we deal with the �rst question, the second one is discussed in the next sec-
tion. Most of the reported results are due to a research group of the University of Göttingen 
(W. Burgtorf4, H. K. Oehlschlägel5 and H. P. Seraphim6) and are  published in Acustica, 
Vol. 11–14.

We postulate that there is a critical level separating the levels at which a re�ection is 
audible from those at which it is completely masked. This ‘absolute threshold of perception’ 
or simply ‘audibility threshold’ is a function not only of the time delay with respect to the 
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Figure 7.2  Simulation of sound �elds in an anechoic room. The loudspeakers are denoted by D = direct 
sound (S = side wall re�ections, C = ceiling re�ection (elevated), R = reverberation). (Based on 
Reichardt and Schmidt.2,3)
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direct sound but also of the direction of its incidence and of the kind of test signal. Through 
all the further discussions, we assume the listener is facing the source of the direct sound.

To �nd this threshold, a subject is presented with two alternate sound �eld con�gura-
tions that differ in the presence or absence of a speci�ed re�ection. The test subject is asked 
to indicate solely whether he or she notices a difference or not. (One has to make sure, of 
course, that the test subjects do not know beforehand to which con�guration they are listen-
ing at a given moment.) The answers of the subjects are evaluated statistically; the level at 
which 50% of the answers are positive is regarded as the threshold of absolute perceptibility.

The �rst situation we consider is an impulse response consisting of just two components: 
the direct sound and one re�ection. For a speech level of 70 dB, and for frontal incidence 
of the direct sound as well as of the re�ected component, the audibility threshold turns 
out to be Burgtorf4

 ΔL = −0.575t0 − 6 dB (7.4)

where ΔL is the pressure level of the re�ected sound signal relative to the sound pressure 
of the direct sound and t0 is its time delay in milliseconds. Take, for example, a re�ection 
delayed by 60 ms with respect to the direct sound. According to Equation 7.1, it is audible 
even when its level is 40 dB below that of the direct signal.

The picture is different when the re�ection arrives from a lateral direction. Figure 7.3 
plots for three different signals (continuous speech, a short syllable and a white noise pulse 
with a duration of 50 ms), the angle dependence of the audibility thresholds when the re�ec-
tion is delayed by 50 ms. It is remarkable to what extent the thresholds depend on the type 
of sound signal. In any case, however, the masking effect of the direct sound is most effec-
tive for both components arriving from the same direction or, in other words, our hearing 
is more sensitive to re�ections arriving from lateral directions than to those arriving from 
the front or the rear. It should be added that re�ections arriving from above are also masked 
more effectively by the direct sound than are lateral re�ections.

If the sound signal is a music sample, our hearing is generally much less sensitive to re�ec-
tions. This is the general result of investigations carried out by Schubert,7 who measured 
the audibility threshold with various music motifs. One of his typical results is presented 
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Figure 7.3 Threshold of perception of a re�ection with 50 ms delay, obtained with (a) continuous speech, 
(b)  a short syllable, and (c) noise pulses of 50 ms duration. Abscissa is the horizontal angle 
at which the re�ection arrives. The sound pressure level of the direct signal is 75 dB. (After 
Burgtorf and Oehlschlägel.5)
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in  Figure  7.4, which plots the average threshold taken over six different music samples. 
With  increasing delay time, it falls much less rapidly than according to Equation 7.4; its 
maximum slope is about −0.13 dB/ms. As with speech, the threshold is noticeably lower for 
re�ections arriving from lateral directions than with frontal incidence. Furthermore, added 
reverberation renders the detection of a re�ection more dif�cult. Obviously, reverberated 
sound components cause additional masking, at least with continuous sound signals.

If there is more than one re�ection, the number of parameters to be varied increases rap-
idly. Fortunately, each additional re�ection does not create a completely new situation for 
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Figure 7.4  Threshold of perception of a re�ection as a function of its delay (frontal incidence of re�ection). The 
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our hearing. This is demonstrated in Figure 7.5, which shows the audibility threshold for 
a variable re�ection which is added to a masking sound �eld consisting of the direct sound 
plus one, two, three or four re�ections at �xed delay times and levels. The �xed re�ections 
are indicated as vertical lines, and their length is a measure of the strength of the re�ections. 
In this study, it was assumed that all the re�ections arrive from the same direction as the 
direct sound. If all the re�ections and the direct sound arrive from different directions, the 
thresholds are different from those of Figure 7.5 in that they immediately begin to fall and 
then jump back to the initial value whenever one of the �xed re�ections is arriving.

Apart from the absolute thresholds of perception, the subjective difference limen for 
re�ections are also of interest. According to Reichardt and Schmidt,2,3 variations of the 
re�ection level as small as about ±1.5 dB can be detected by our hearing if music is used as 
a test signal. In contrast, the auditive detection of differences in delay times is af�icted with 
great uncertainty.

7.4 ECHOES AND COLOURATION

A re�ection which is perceived at all does not necessarily reach the consciousness of a lis-
tener. At low levels, it manifests itself only by an increase in loudness of the total sound 
signal, by a change in timbre, or by an increase in the apparent size of the sound source. But 
at higher levels, a re�ection can be heard as a separate event, that is, as a repetition of the 
original sound signal. This effect is commonly known as an ‘echo’, as already mentioned 
in Section  7.2. But what outdoors usually appears as a funny experience may be rather 
unpleasant in a concert hall or in a lecture room, in that it distracts the listeners’ attention. 
In severe cases, an echo may signi�cantly reduce our enjoyment of music or impair the intel-
ligibility of speech, since subsequent speech sounds or syllables are mixed up and the text 
is confused.

In the following text, the term ‘echo’ will be used for any sound re�ection which is sub-
jectively noticeable as a distinct repetition of the original sound signal, and we are discuss-
ing the conditions under which a re�ection will become an echo. Thus, we are taking up 
again the second question raised at the outset of the foregoing section.

From his outdoor experience, the reader may know that the echo produced by sound 
re�ection from a house front disappears when he approaches the re�ecting wall and when 
his distance from it becomes less than about 10 m, although the wall still re�ects the sound. 
Obviously, it is the reduction of the delay time between the primary sound and its repetition 
which makes the echo vanish. This shows that our hearing has only a restricted ability to 
resolve subsequent acoustical events, a fact which is sometimes attributed to some kind of 
‘inertia’ of hearing. Like the absolute threshold of perception, however, the echo disturbance 
depends not only on the delay of the repetition but also on its relative strength, its direc-
tion, on the type of sound signal, on the presence of additional components in the impulse 
response and on other circumstances.

Systematic experiments to �nd the critical echo level of re�ections are performed in much 
the same way as those investigating the threshold of absolute perception, but with a differ-
ent instruction given to the test subjects. It is clear that there is more ambiguity in �xing 
the critical echo levels than in establishing the absolute perception threshold since an event 
which is considered as disturbing by one person may be found tolerable by others.

Results of such experiments were published as early as in 1950 by Haas,8 who used con-
tinuous speech as a primary sound signal. This signal was presented to the test subjects with 
two loudspeakers: the input signal of one of them could be attenuated (or ampli�ed) and 
delayed with respect to the other.



164 Room acoustics

Figure 7.6 shows one of Haas’s typical results. It plots the percentage of subjects who felt 
disturbed by an echo as a function of the time delay between the undelayed signal (primary 
sound) and the delayed one (re�ection). The numbers next to the curves indicate the level of 
the arti�cial re�ection in decibels relative to that of the primary sound. The rate of speech 
was 5.3 syllables per second; the listening room had a reverberation time of 0.8 s. At a delay 
time of 80 ms, for instance, only about 20% of the observers felt irritated by the presence of 
a re�ection with a relative level of −3 dB, but the percentage was more than 80% when the 
level was +10 dB. Further investigations concerned the dependence of critical delay times on 
the speech rate and the reverberation of the listening room. A critical delay of about 70 ms 
can be regarded typical for most situations.

Figure 7.6 shows a striking feature: if the relative level of the re�ection is raised from 0 
to +10 dB, there is only a small increase in the percentage of observers feeling disturbed 
by the re�ected sound signal. Hence, no disturbance is expected to occur for a re�ec-
tion with time delay of, say, 20 ms even if its energy is 10 times the energy of the direct 
sound. This �nding is frequently referred to as the ‘Haas effect’. In a slightly modi�ed set 
of experiments, Meyer and Schodder9 applied a different criterion for the annoyance by 
a re�ection: To restrict the range of possible judgements, the test subjects were not asked 
to indicate the level at which they felt disturbed by an echo, instead they were to indicate 
the level at which they heard both the delayed signal and the undelayed one equally loud. 
Since in these tests the undelayed signal reached the test subject from the front, whereas 
the delayed one came from a lateral angle of 90°; the test subjects could also be asked to 
indicate the re�ection level that made the total sound signal seemingly arrive from half-
way between both directions. Both criteria of judgement led to the same results. One of 
them is shown in Figure 7.7, where the critical level difference between primary sound 
and re�ection is plotted as a function of the delay time. It con�rms the results obtained 
by Haas and renders them somewhat more precise. For our hearing, the primary sound 
determines the perception of direction even when the re�ection – provided it has a suit-
able delay time – is stronger by up to 10 dB. If the re�ection is split up into several small 
re�ections of equal strengths and with successive mutual delay times of 2.5 ms, leaving 
constant the total re�ection energy, the curve shown in Figure 7.7 is shifted upwards by 
another 2.5 dB. This result shows that many small re�ections separated by short time 
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intervals of the order of milliseconds cause about the same disturbance as one single 
re�ection, provided the total re�ected, energy and the (centre) delay time are the same for 
both con�gurations. These �ndings have important applications in the design of public 
address systems.

Muncey et al.10 have performed similar experiments for speech as well as for various kinds 
of music. Their investigations clearly showed that our hearing is less sensitive to echoes 
in music than in speech. The annoyance of echoes in very slow music, for example organ 
music, is particularly low. In Figure 7.8, the critical echo level (50% level) for fast string and 
organ music is plotted as a function of time delay.

From these results, we can draw the following practical conclusions: In general, the law 
of the �rst wave front can be considered valid; exceptions, that is, erroneous localizations 
and disturbing echoes, will occur only in special situations, for example, when most of the 
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Figure 7.7  Critical re�ection level (relative to the direct sound level) as a function of delay time. At this 
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room boundaries, except for a few remote portions of wall, are lined with an absorbent 
material or when certain portions of wall are concavely curved and hence produce excep-
tionally strong re�ections by focusing the sound. Often, this situation is encountered in halls 
equipped with an electroacoustic system for sound ampli�cation (see Chapter 10).

So far, our discussion has been restricted to the somewhat arti�cial case that the sound 
�eld consists of the primary or direct sound followed by just one single repetition. However, 
the impulse responses of virtually all real rooms have a more complicated structure, and it 
is clear that the presence of numerous re�ections must in�uence the way we perceive one 
of them in particular. Hence, from a practical point of view, it would be desirable to have 
a criterion to indicate whether a certain peak in a measured impulse response or ‘re�ecto-
gram’ hints at an audible echo and should be removed by suitable constructive measures. 
Such a criterion was proposed by Dietsch and Kraak in 1986.11 Its description is provided 
in Section 8.3.

We come back now to the effects of a single strong re�ection. If its delay is small, say, 
smaller than about 30 ms, its superposition onto the direct sound can cause a characteristic 
change of timbre, called ‘colouration’ which may be quite disturbing no matter whether we 
are listening to music or speech. This is easy to understand: the impulse response of a trans-
mission system which produces this kind of signal reads

 g1(t) = δ(t) + qδ(t − t0) (7.5)

with q < 1. The squared absolute value of its Fourier transform after Equation 1.61 is

 |G1(f)|2 = |1 + q exp(2πift0)|2 = 1 + q2 + 2q cos(2πft0) (7.6)

This is the squared absolute transfer function of a comb �lter, that is, a frequency �lter with 
a regular succession of maxima and minima; the spacing of maxima is 1/t0 (see Figure 7.9). 
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Figure 7.9 Impulse responses (a) and absolute values of transfer function (b) of various comb �lters (q = 0.7).
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The ratio of maximum to minimum values is (1 + q)2/(1 − q)2. A similar effect has an in�nite 
and regular succession of re�ections; its impulse response is

 2

0

0g t q t ntn

n
∑( ) ( )= δ −

=

∞

(7.7)

and its squared absolute spectrum is

( ) 1 2 cos 22
2 2

0
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G f q q ft( )= + − π 
−

(7.8)

It has the same spacing of maxima as that in Equation 7.6, the same holds for the relative 
height of the peaks. However, the peaks are much sharper here than with a single re�ection, 
except for q << 1.

Whether such a comb �lter will produce audible colourations or not depends again on 
the delay time t0 and on the relative heights of the maxima.12 Beginning from very low val-
ues of the delay time or distance t0, the absolute threshold for audible colourations grows 
with increasing delay time t0, that is, with decreasing distance 1/t0 between subsequent 
maxima on the frequency axis (see Figure 7.10). When t0 exceeds a certain value, say 25 ms 
or so, the regularity of impulse responses does not subjectively appear as colouration, that 
is, as a change of the timbre of sound, but rather the sounds have a rattling or buzzing 
character, that is, the listener becomes aware of the regular repetitions of the signal as a 
phenomenon occurring in the time domain (echo or �utter echo). This is because our ear 
is not just a sort of frequency analyser but also sensitive to the temporal structure of the 
sound signals.

In Section 8.3, we shall discuss an objective criterion for the perceptibility of sound colou-
ration or of a �utter echo which is based on thresholds of the kind shown in Figure 7.10.
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Figure 7.10 Critical values of the factor q resulting in just audible colouration of white noise passed through 
comb �lter based on (a) Equation 7.6 and (b) Equation 7.8. (Based on Atal et al.12)
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7.5 PARAMETERS CHARACTERIZING THE “EARLY ENERGY”

From the somewhat arti�cial impulse responses we have considered in the past section, we now 
turn to the impulse responses of real rooms which consist of countless components exposing a 
broad spectrum of strengths and delays. As may be seen from Figure 4.8, they show the gen-
eral tendency of decreasing strength with growing delay. This is easy to  understand because 
‘later’ re�ections have undergone more wall re�ections each of which causing some energy 
loss. Furthermore, the average rate of re�ections grows in proportion to the square of the 
delay time. Regarding the subjective effects of the re�ections one has to realize that all of them 
are strongly interwoven because of complicated masking effects. Therefore, instead of study-
ing the contributions of single re�ections to the acoustical overall impression of a room, one 
has tried to condense the huge amount of information into certain parameters which summa-
rize the situation in a more compact but nevertheless subjectively meaningful way. The result 
is a number of parameters which are generally believed to be related to particular acoustical 
aspects of a room.

In the preceding sections, it was shown that a re�ection is not perceived subjectively as a 
separate event as long as its delay and its relative strength do not exceed certain limits. Its 
only effect is to make the sound source appear somewhat more extended and to increase 
the apparent loudness of the direct sound. Thus, these ‘early re�ections’ give support to the 
sound source and improve the intelligibility of speech presented in that room. Re�ections 
which reach the listener with longer delays are noticed as echoes in unfavourable cases; in 
favourable cases, they contribute to the reverberation of the room. In principle, any rever-
beration has the tendency to smooth the time structure of a signal and to mix up the spectral 
characteristics of successive sounds. This may be highly desirable for the presentation of 
music; at the same time, it impairs the intelligibility of speech.

Most of the following criteria characterize in some way the relative energy contained in 
the early part of the impulse response.

7.5.1 Definition

The �rst attempt to assess a proper value of the amount of ‘early energy’ is due to Meyer 
and Thiele,13 who introduced a parameter named de�nition (originally Deutlichkeit). It is 
directly derived from the impulse response g(t):
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Both integrals must include the direct sound, the arrival of which at the observer determines 
the time t = 0. Obviously, D will be 100% if the impulse response does not contain any 
components with delays in excess of 50 ms.

To validate D as a descriptor of speech intelligibility, one has to correlate its values with 
the result of articulation tests, carried out in the same room with the same arrangement of 
the sender and the receiver. Such tests can be performed in the following way: A sequence 
of meaningless syllables (‘logatoms’) is read aloud in the environment under test. To obtain 
representative results, it is advisable to use phonetically balanced material (from so-called 
‘PB lists’) for this purpose, that is, sets of syllables with properly distributed initial con-
sonants, vowels and �nal consonants. Listeners placed at various positions are asked to 
write down what they have heard. The percentage of syllables which have been correctly 
understood is considered to be a relatively reliable measure of speech intelligibility, called 
‘syllable intelligibility’.
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The relationship between de�nition and the syllable intelligibility is shown in Figure 7.11. 
The plotted values of D have been obtained by averaging over the frequency range 340–
3500  Hz. Obviously, the objective measure de�nition D is highly correlated with the 
 intelligibility and hence is a useful descriptor of the latter.

7.5.2 Clarity index

A quantity which is formally similar to de�nition but intended to characterize the transpar-
ency of music in a concert hall is the clarity index C (originally Klarheitsmaß) as introduced 
by Reichardt et al.14 It is de�ned by
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The higher limit of delay time (80 ms compared with 50 ms in Equation 7.9) makes allow-
ance for the fact that with music a re�ection from a room wall is less perceptible than it 
is with speech signals. By subjective tests with synthetic sound �elds, these authors have 
determined the values of C preferred for the presentation of various styles of orchestral 
music. They found that C = 0 dB indicates that the subjective clarity is quite good even for 
fast musical passages, whereas a value of C = −3 dB seems to be still tolerable. Nowadays, C 
(often referred to as C80 or C80) is widely accepted as a useful criterion for the clarity and 
transparency of musical sounds in concert halls. According to an investigation of concert 
halls in Europe and the USA carried out by Gade,15 its typical range is from about −5 to 
+3 dB. Bradley16 found that C80 is too a reliable descriptor of speech intelligibility.

The assumption of a sharp delay limit separating useful from non-useful re�ections is cer-
tainly a crude approximation to the way in which repetitions of sound signals are processed 
by our hearing. From a practical point of view, it has the unfavourable effect that in criti-
cal cases a small change in the arrival time of a strong re�ection may result in a signi�cant 
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Figure 7.11  Relationship between syllable intelligibility and de�nition.
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change in D or C. Therefore, several authors have proposed a gradual transition from ‘early’ 
to ‘late’ re�ections by calculating the useful energy with a continuous weighting function a(t):
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For a linear transition, a(t) is given by
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A reasonable choice of t1 and t2 would be about 35 and 100 ms, for example.

7.5.3 Centre time

No delay limit whatsoever is involved in the ‘centre time’, which was proposed by Kürer,17

and is de�ned as the �rst moment of the squared impulse response:
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Obviously, a re�ection contributes more to ts the longer it is delayed with respect to the 
direct sound. High transparency or speech intelligibility is indicated by low values of the 
centre time ts and vice versa. The high (negative) correlation between measured values of ts

and intelligibility scores is demonstrated in Figure 7.12.
For speech, the centre time should not exceed about 80 ms, while for music, values of 

about 150 ms are still tolerable.
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Figure 7.12 Relationship between speech intelligibility and centre time ts. (Based on Kürer.17)
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7.5.4 Speech transmission index

Quite a different approach to quantifying the speech intelligibility from objective sound �eld 
data is based on the modulation transfer function (MTF) already introduced in Section 5.6. 
It describes the smoothing effect of reverberation on the envelope of speech signals as well as 
that on their spectral components. For strictly exponential sound decay with a reverberation 
time T = 6.91/δ, the complex MTF reads (see Equation 5.40)

 m
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1 i 2
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 (7.14)

where Ω is the angular modulation frequency. The absolute value of m(Ω)
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is plotted in Figure 7.13. It shows that very slow variations in a signal’s envelope are not 
levelled out to any noticeable extent, but very rapid �uctuations are almost completely 
eliminated by the reverberant tail. However, real sound decay usually does not follow a 
simple exponential law; hence, the MTFs differ more or less from that shown in Figure 7.13. 
Furthermore, the MTF depends on the frequency, or more generally, on the spectral compo-
sition of the sound signal.

Houtgast and Steeneken18,19 have developed a practical procedure to convert numerous 
MTF data measured in 7 octave bands and at 14 modulation frequencies into one single 
�gure of merit, which they called the ‘speech transmission index’ (STI). For collecting these 
data, random noise is used as a test signal which is �ltered with octave �lters; the mid-
frequencies of which are ranging from 125 to 8000 Hz; the �ltered noise is modulated with 
14 different modulation frequencies. From the modulation indices measured in this way, 
the �nal quantity is obtained by forming a weighted average. Houtgast and Steeneken have 
shown in numerous experiments that STI is very closely related to the results of articulation 
tests carried out with various types of speech signals (see Figure 7.14). Obviously, to guaran-
tee suf�cient speech intelligibility, STI must be at least 0.5.

A simpler and less time-consuming version of this criterion is the ‘rapid speech transmis-
sion index’ (RASTI).20 It is obtained by applying only four modulation frequencies in the 

0.5

0 25 50 75 100

1

ΩT

Figure 7.13 Modulation transfer function (absolute value) of a room with exponential sound decay 
(T = reverberation time, Ω = angular modulation frequency).
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octave band centred at 500 Hz and �ve modulation frequencies in the 2000 Hz octave band. 
The 13 modulation frequencies range from 0.7 to 11.2 Hz. Each of the nine values of the 
modulation index m is converted into an ‘apparent signal-to-noise ratio’:

S N
m

m
10 log

1app 10( ) =
−





  (7.16)

These �gures are averaged after eliminating those exceeding the range of ±15. The �nal 
parameter is obtained by forming the average (S/N)app and normalizing it in such a way that 
the result is a �gure between 0 and 1:

S/NRASTI
1

30
( ) 15app= +   (7.17)

For practical RASTI measurements, both octave bands are emitted simultaneously, each with 
a complex power envelope containing �ve modulation frequencies. The automated analysis of 
the received sound signal is performed in parallel. With these provisions, it is possible to keep 
the duration of one measurement as low as about 12 s. Table 7.1 shows the relationship between 
�ve classes of speech quality and corresponding intervals of RASTI values.

We conclude this subsection with two remarks which more or less apply to all the above 
criteria. First, it is evident that they are highly correlated among each other. If, for example, 
a particular impulse response is associated with a short centre time ts, its evaluation accord-
ing to Equation 7.9 will yield a high value of de�nition D and vice versa. Therefore, there is 
no need to measure more than one or two of them.

Secondly, if the sound decay in the room under consideration would strictly obey an 
exponential law all the parameters de�ned above could be directly expressed by the rever-
beration time, as has already been done in Equation 7.15. Hence, they would not yield any 
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obtained with (a) numbers and spell alphabet, (b) short sentences, (c) diagnostic rhyme test and 
(d) logatoms. (After Houtgast and Steeneken.18,19)
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information beyond the reverberation time. In real situations, however, the exponential law 
is a useful but nevertheless crude approximation to a much more complicated decay process. 
Especially in its early portions, the impulse response of a room is anything but a smooth 
time function (see, e.g., the upper part of Figure 8.7). Furthermore, the pattern of re�ections 
usually varies from one observation point to another; accordingly, these parameters too may 
vary over a wide range within one hall and are quite sensitive to geometrical and acoustical 
details of a room. Therefore, they are well suited to describe differences of listening condi-
tions at different seats in a hall, whereas the reverberation time does not signi�cantly depend 
on the place where it has been measured.

7.5.5 Support

For musicians performing in a concert hall, the demands on the acoustical conditions are 
different from those of the listeners in the audience. In the �rst place, musicians want to get 
some acoustic response of the hall, which is a matter of reverberance as will be discussed in 
the next section. Furthermore, they need acoustical contact with their co-players and acous-
tical support by their environment, that is, by the stage, its ceiling and walls. Both factors 
are indispensable for good ensemble playing which in turn is needed for correct synchro-
nism and helps to achieve correct intonation and balance.

According to Gade,21 an objective parameter for this condition is what he calls the ‘early 
support’ de�ned by
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As earlier, g(t) is the impulse response of the room measured at several places on the stage 
with a distance of 1 m between the sound source and the receiver. The time interval Δt must 
be chosen so that the second integral comprises the direct sound but no re�ections what-
soever. Apart from this, Gade de�ned also a quantity named ‘late support’, the de�nition 
of which is similar to Equation 7.18 with the difference, that the limits of the �rst integral 
are 100 and 1000 ms. Both support parameters are measured in the four octaves: 150, 500, 
1000 and 2000 Hz. From this de�nition, it follows immediately that the boundaries sur-
rounding the stage and also the ceiling should be made of re�ecting material, which means 
the surface of these boundaries must not be porous and their weight should be suf�ciently 
high so that even low-frequency sound components will be re�ected (see Equation 6.3). This 
is particularly important for temporarily used orchestra shells. Typical values of STe in exist-
ing concert halls are in the range of –15 to –10 dB.

Table 7.1  Relationship between speech 
transmission quality and the 
RASTI values

Quality score RASTI

Bad <0.32
Poor 0.32–0.45
Fair 0.45–0.60
Good 0.60–0.75
Excellent >0.75
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7.6 REVERBERATION AND REVERBERANCE

If we disregard all details of the impulse response of a room, we �nally arrive at the general 
decay the sound energy undergoes after an impulsive excitation or after a sound source 
has abruptly been stopped. As discussed in Chapters 4 and 5, the duration of this decay 
is characterized by the reverberation time or decay time, at least if the energy decay obeys 
an exponential law in its gross appearance. A more general notion which is rather to char-
acterize the subjective aspect of reverberation is ‘subjective reverberation time’ or ‘rever-
berance’. However, there is no sharp distinction between both these concepts. Clearly, the 
reverberance of an environment depends not only on its reverberation time but also on other 
features. This can be illustrated by Figure 7.15: It shows two schematic decay processes. 
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Figure 7.15 Two re�ection diagrams (schematic) indicating low reverberance: (a) short decay time and (b) 
low level of re�ections.
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Both  of them indicate low reverberance, although for different reasons. In Figure 7.15a, 
the reason is the short decay time. In case of Figure 7.15b, the cause of low reverberance 
is the low level at which the decay onsets, or in other words: the decay process is masked 
by the strong direct sound.

Historically, the outstanding role of reverberation was �rst recognized by Sabine22

whose famous investigations, carried out during the last years of the 19th century, mark 
the origin of modern room acoustics. Sabine de�ned the reverberation time and developed 
several methods to measure it, and he was the �rst to formulate the laws of reverberation. 
Furthermore, he investigated the sound-absorbing power of numerous materials.

Nowadays, the reverberation time (or decay time) is still considered as the most impor-
tant objective quantity in room acoustics, although it has been evident for some time that 
it characterizes only one particular aspect of the sound �eld and needs to be supplemented 
by additional data if a full description of the listening conditions is to be obtained. This 
predominance of reverberation time as an acoustical quality criterion has at least three 
reasons. First, it can be measured and predicted with reasonable accuracy and moderate 
expenditure. Secondly, the reverberation time of a room does not depend signi�cantly on 
the observer’s position in a room, a fact which is also underlined by the simple structure of 
the formulae by which it can be calculated from room data (see Section 5.1). Hence, it is well 
suited to characterize the overall acoustic properties of a hall, neglecting details which may 
vary from one place to another. And, �nally, abundant data on the reverberation time of 
existing halls are available nowadays, including their frequency dependence. They can serve 
as a yardstick to tell us which values are generally accepted and which are not.

Before discussing the important question which reverberation times are desirable or opti-
mal for the various types of rooms and halls, a remark on the just audible differences in 
reverberation time, that is, on the difference limen of reverberation time, may be in order. 
By presenting exponentially decaying noise impulses with variable decay times, bandwidths 
and centre frequencies to numerous test subjects, Seraphim23 found that the relative differ-
ence limen for decay time is about 4%, at least in the most important range of decay times. 
Although these results were obtained under somewhat arti�cial conditions, they show at 
least that there is no point in giving reverberation times with a greater accuracy than about 
0.05 or 0.1 s.

In principle, preferred ranges of the reverberation time can be determined by systematic 
listening tests, that is, by presenting speech or music samples to a test audience. To lead to 
meaningful results such tests should be performed, strictly speaking, in environments (real 
enclosures or synthetic sound �elds) which allow variations of the reverberation time under 
otherwise unchanged conditions. Just comparing sound recordings from different halls may 
lead to interesting results which, however, are not very reproducible.

A more empirical approach consists of collecting the reverberation times of halls, which 
are generally considered as acoustically satisfactory or even excellent for the purpose they 
have to serve (lectures, drama theatre, operatic performances, orchestra or chamber music, 
etc.). It should be noticed, however, that subjective opinions on acoustical qualities and 
hence the conclusions drawn from them are af�icted with several factors of uncertainty, 
such as the question of who is eligible for constructive criticism in this �eld. Certainly, 
musicians have the best opportunity of comparison, since they often perform in different 
concert halls. However, musicians have a very special standpoint (meant literally as well 
as metaphorically), which does not necessarily agree with that of a typical listener. On the 
other hand, acousticians and sound recording engineers usually have a professional atti-
tude towards acoustical matters and may frequently concentrate their attention on special 
properties which are insigni�cant to the ‘average’ concert listeners. The latter, however, 
for example the concert subscribers, often lack the opportunity to compare different concert 
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halls or else they are not very critically minded in acoustical matters, or their opinion is 
in�uenced from the point of view of local patriotism. Furthermore, there are – and again 
this applies particularly to musical events and their appropriate surroundings – individual 
differences in taste which cannot be discussed in scienti�c terms. And, �nally, it is quite 
possible that there are certain trends of ‘fashion’ towards longer or shorter reverberation 
times. All these uncertainties make it understandable that it is impossible to specify one 
single optimum value of reverberation time for each room type or type of presentation; 
instead, only ranges of favourable values can be set up.

We begin with rooms mainly used for speech, such as lecture rooms, congress halls, 
parliaments, theatres for dramatic performances and so on. As mentioned earlier, no 
reverberation at all is required for such rooms in principle, since any noticeable sound 
decay has the tendency to blur the syllables and thus to reduce speech intelligibility. On 
the other hand, a highly absorbing treatment of all walls and of the ceiling of a room 
would not only remove virtually all the reverberation, but at the same time it would 
prevent the formation of useful re�ections which increase the loudness of the perceived 
sounds and which are responsible for the relative ease with which communication is pos-
sible in enclosures as compared to outdoor communication. Furthermore, the lack of any 
audible reverberation in a closed space creates an unnatural and uncomfortable feeling, 
as can be observed when entering an anechoic room, for instance. Obviously, one sub-
consciously expects to encounter some reverberation which bears a certain relation to the 
size of the room. For this reason, the reverberation time in rooms of this kind should not 
fall short of say 0.5 s, except for very small rooms such as living rooms or small broad-
casting or television studios. For larger rooms such as drama theatres, values of about 
1.2 s are still tolerable.

As is well known, low-frequency signal components contribute very little to speech intel-
ligibility. Therefore, it is advisable to provide for suf�cient low-frequency absorption by 
applying suitably designed absorbers – typically resonance absorbers, see Section 6.3 – to 
the boundary of such rooms in order to reduce the reverberation time and also the station-
ary sound level at low frequencies.

Now, we shall turn to the reverberation times which are considered favourable for con-
cert halls. In order to discover these values, we depend completely on subjective opinions 
concerning existing halls, at least as long as there are no results available of systematic 
investigations with synthetic or simulated sound �elds. As has been pointed out before, 
there is always some divergence in the opinions about a certain concert hall; furthermore, 
they are not always constant in time. Old concert halls particularly are often commented 
on enthusiastically, probably more than is justi�ed by their real acoustical merits. (This is 
true especially for those halls which were destroyed by war or other catastrophes.) In spite 
of all these reservations, it is a matter of fact that certain concert halls enjoy a high reputa-
tion for acoustical reasons. This means, among other things, that at least their reverberation 
time does not give cause for complaint. On the whole, it seems that the optimum values for 
occupied concert halls are in the range from about 1.6 to 2.1 s at mid-frequencies. Table 7.2 
lists the reverberation times of several old and new concert halls, both for low frequencies 
(125 Hz) and for the medium-frequency range (500–1000 Hz).

At �rst glance, it may seem curious that which is good for speech–namely a relatively 
short reverberation time–should be bad for music. This discrepancy can be resolved by 
bearing in mind that, when listening to speech, we are interested in perceiving each ele-
ment of the sound signal, since this increases the ease with which we can understand 
what the speaker is saying. When listening to music, it would be rather disturbing to hear 
every detail, including the bowing noise of the string instruments or the air �ow noise of 
�utes. Furthermore, it is impossible to achieve perfect synchronism among the various 
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players of an orchestra, let alone differences in intonation. It is these inevitable imper-
fections, which are hidden or masked by reverberation, at least up to a certain degree. 
What is even more important, reverberation of suf�cient duration improves the blending 
of musical sounds and increases their loudness and richness as well as the continuity of 
musical line. The importance of all these effects for musical enjoyment becomes obvious 
if one listens to music in an environment virtually free of reverberation, for example, to 
a military band or a light orchestra playing outdoors: the sounds are brittle and harsh, 
and it is obvious that it is of no advantage to be able to hear every detail. Furthermore, 
the loudness of music heard outdoors is reduced rapidly as the distance increases from 
the sound source.

But perhaps the most important reason why relatively long reverberation times are ade-
quate for music is simply the fact that listeners are accustomed to hearing music in environ-
ments which happen to have reverberation times of the order of magnitude mentioned. This 
applies equally well to composers who unconsciously take into account the blending of 
sounds which is produced in concert halls.

As regards the frequency dependence of the reverberation time, it is generally considered 
tolerable, if not as favourable, to have an increase in the reverberation time towards lower 
frequencies, beginning at about 500 Hz. (This can also be seen from Table 7.2.) From the 
physical point of view, such an increase is quite natural since the sound absorption by the 
audience is generally lower at low frequencies than it is at medium and high frequencies 
(see, e.g., Tables 6.3 and 6.4). Concerning the subjective sensation, it is often believed that a 
slightly increased reverberation time at low frequencies is responsible for what is called the 
‘warmth’ of musical sounds. On the other hand, there are quite a number of concert halls 
without this increase or even with a slightly lower reverberation time and which are never-
theless considered to be excellent acoustically.

The optimum range of reverberation time as indicated above refers to the performance 
of orchestral and choral music. Smaller ensembles perform often in halls having seating 
capacities of 400–700 and reverberation times ranging from 1.5 to 1.7 s.24 These shorter 
decay times are not only dictated by the smaller size of a chamber music hall but are more 
adequate to the character of the kind of music performed in it.

Table 7.2  Reverberation time of some concert halls, fully occupied

Name and location Volume (m3)
Seating 
capacity

Year of completion 
(reconstruction) T125 T500–1000

Großer 
Musikvereinssaal, 
Vienna

14 600 2000 1870 2.3 2.05

St. Andrew’s Hall, 
Glasgow

16 100 2130 1877 2.1 2.2

Chiang Kai Shek 
Memorial Hall, Taipei

16 700 2077 1987 1.95 2.0

Symphony Hall, Boston 18 800 2630 1900 2.2 1.8
Concertgebouw, 
Amsterdam

19 000 2200 1887 2.3 2.2

Neues Gewandhaus, 
Leipzig

21 000 1900 1884 (1981) 2.0 2.0

Neue Philharmonie, 
Berlin

24 500 2230 1963 2.4 1.95

Concert Hall 
De Doelen, Rotterdam

27 000 2220 1979 2.3 2.2
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The dependence of optimum reverberation time on the style of music has been investi-
gated by Kuhl25 in a remarkable round robin experiment. In this experiment, three different 
pieces of music were recorded in many concert and broadcasting studios with widely vary-
ing reverberation times. These recordings were later replayed to a great number of listeners – 
musicians as well as acousticians, music lovers and music historians, recording and other, 
engineers, all in all, individuals who were regarded as competent in that �eld in one way or 
another. They were asked to indicate whether the reverberation times in the different record-
ings, whose origin they did not know, appeared too short or too long. The pieces of music 
played back were the �rst movement of Mozart’s Jupiter Symphony, the fourth movement of 
Brahms’ 4th Symphony and the Danse Sacrale from Stravinsky’s Le Sacre du Printemps. The 
�nal result was that a reverberation time of 1.5 s was considered to be most appropriate for 
the Mozart Symphony as well as for the Stravinsky piece, whereas 2.1 s was felt to be most 
suitable for the Brahms Symphony. In the �rst two pieces, there was almost complete agree-
ment in the listeners’ opinions; in the Brahms Symphony, however, there was considerable 
divergence of opinion.

These results should certainly not be overemphasized since the conditions under which 
they have been obtained were far from ideal in that they were based on monophonic record-
ings, replayed in rooms with some reverberation. But they show clearly that no hall can 
offer optimum conditions for all types of music, and they may explain the large range of 
‘optimum’ reverberation times for concert halls.

In opera houses, the listener should be able to enjoy the full sound of music as well as to 
understand the text, at least partially. Therefore, one would expect that these somewhat 
contradictory requirements can be reconciled by a compromise as far as the reverberation 
time is concerned, and that consequently the optimum of the latter would be somewhere 
about 1.5 s. As a matter of fact, however, the reverberation times of well-renowned opera 
theatres scatter over a wide range (see Table 7.3). Traditional theatres have reverberation 
times close to 1 s only, whereas more modern ones show a de�nite trend towards longer 
values. One is tempted to explain these differences by a changed attitude of the listeners, 
who nowadays seem to give more preference to a full and smooth sound of music than 
to the intelligibility of the text, whereas earlier opera goers presumably just wanted to be 
entertained by the plot. This trend is supported by the tendency to perform operas in the 
original language and to display the translated text on a projection board. There is still 

Table 7.3  Reverberation time of some opera theatres, fully occupied

Name and location Volume (m3)
Seating 
capacity

Year of completion 
(reconstruction) T125 T500–1000

La Scala, Milano 10 000 2290 1778 (1946) 1.2 2.05
Covent Garden, 
London

10 100 2180 (60) 1858 1.2 1.1

Festspielhaus, 
Bayreuth

11 700 1800 1876 1.7 1.5

National Theater, 
Taipei

11 200 1522 1987 1.6 1.4

Staatsoper, Wien 11 600 1658 (560) 1869 (1955) 1.5 1.3
Staatsoper, Dresden 12 500 1290 1878 (1985) 2.3 1.7
Neues Festspielhaus, 
Salzburg

14 000 2158 1960 1.7 1.5

Metropolitan Opera 
House, New York

30 500 3800 1966 2.25a 1.8a

a With 80% occupancy. 
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another possible reason for the tendency towards longer reverberation times: Old theatres 
were designed in such a way as to seat as many spectators as possible, whereas the architects 
of more modern ones (including the famous Festspielhaus in Bayreuth, which was specially 
designed to stage Richard Wagner’s operas) tried to follow more or less elaborate acoustical 
concepts.

The rehearsal room of an orchestra cannot be expected to offer the same acoustical condi-
tions as the hall where the orchestra performs. It has typically a volume of 1500–2500 m3, 
and its reverberation time should not exceed about 1.2 s in order to ensure transparency of 
the produced sounds and to keep the sound level within tolerable limits. By providing for 
variable sound absorption in the form of curtains, absorbing or re�ecting screens and so on, 
musicians should be given the opportunity to do some experimentation in order to �nd the 
optimum conditions themselves.

The question of optimum reverberation times is even more dif�cult to answer if we turn 
to churches and other places of worship which cannot be considered merely under the head-
ing of acoustics. It depends on the character of the service whether more emphasis is given 
to organ music and liturgical chants or to the sermon. In the �rst case, longer reverbera-
tion times are to be preferred, but in the latter the reverberation time should certainly not 
exceed 2 s. Churches with still shorter reverberation times are often not well accepted by 
the congregation for reasons which have nothing to do with acoustics. This shows that the 
churchgoers’ acoustical expectations are not only in�uenced by rational arguments such as 
that of speech intelligibility but also by tradition.

As mentioned above, the reverberation time is a meaningful measure for the duration of 
the decay process if the latter is exponential, that is, if the decay level decreases linearly with 
time. If, on the contrary, a logarithmic decay curve is bent and consequently each section of 
it has its own decay rate, the question arises as to which of these sections is most signi�cant 
for the ‘reverberance’ of a room.

To answer this question, Atal et al.26 passed speech and music samples through an arti-
�cial reverberator consisting of a combination of computer-simulated comb �lters (see 
Section 10.5) with adjustable, non-exponential decay characteristics. The signals modi�ed 
in this way were presented with earphones to test subjects, who were asked to compare them 
with exponentially reverberated signals in order to �nd the subjectively relevant decay rate, 
that is, the reverberance of the non-exponential decays. It turned out that the reverberance 
of a sound �eld is highly correlated with the ‘initial reverberation time’, which corresponds 
to the slope of a decay curve during the �rst 160 ms.

These �ndings can be explained by the fact that the smoothing effect of reverberation 
on the irregular level �uctuations of continuous speech or music is mainly achieved by the 
initial portion of the decay process, while its later portions add up to some general ‘back-
ground’, which is not felt subjectively as carrying much information on the signal. Only 
�nal or other isolated chords present the listener with the opportunity of hearing the com-
plete decay  process; but, these chords occur too rarely for them to in�uence to any great 
degree the overall impression which a listener gains of the hall’s reverberance.

Nowadays, it has become common to characterize the rate of initial sound decay by the 
‘early decay time’ (EDT). This is the time in which the �rst 10 dB fall of a decay process 
occurs, multiplied by a factor 6. It is mostly shorter than the Sabine reverberation time. 
Listening tests based on binaural impulse responses recorded in different concert halls con-
�rmed that the perceived reverberance is closely related to EDT.15

The overall reverberation time does not show substantial variations with room shape. 
This is so because the decay process as a whole is made up of numerous re�ections with dif-
ferent delays, strengths and wall portions where they originated. On the contrary, the ‘early 
decay time’ is strongly in�uenced by early re�ections and therefore depends noticeably on 
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a listener’s position; furthermore, it is sensitive to details of the room’s geometry. In this 
respect, it resembles to some extent the parameters discussed in the preceding sections.

7.7 SPACIOUSNESS OF SOUND FIELDS

The preceding discussions of this chapter predominantly referred to the temporal structure 
of the impulse response of a room and to the auditive sensations associated with them. 
A subjective effect not mentioned so far, which is nevertheless very important, at least for 
concert halls, is the acoustical ‘sensation of space’ which a listener usually experiences in a 
room. It is caused by the fact that the sound in a closed room reaches the listener from quite 
different directions and that our hearing, although not able to distinguish these directions, 
processes them into an overall impression, namely the sensation or feeling of space.

It is evident that this sensation is not brought about just by reverberation. If music 
recorded in a reverberant room is replayed through a single loudspeaker in a non- reverberant 
environment, it never suggests acoustically the illusion of being in a room of some size, no 
matter if the reverberation time is long or short. Likewise, if the music is replayed through 
several loudspeakers which are placed at equal distance but in different directions seen 
from the listener, and which are fed by identical signals, the listener will not feel more 
enveloped by the sound. Instead, all the sound seems to arrive from a single imaginary 
sound source, a so-called ‘phantom source’, which can easily be located and which seems, 
at best, somewhat more extended than a single loudspeaker. The same effect occurs if the 
sound �eld is produced by a great number of loudspeakers arranged in an anechoic room 
over a hemisphere (see Figure 6.19) which are fed with the same electrical signal. A listener 
at the centre of the hemisphere does not perceive a ‘spacious’ or ‘subjectively diffuse’ sound 
�eld but instead he perceives a phantom sound source immediately overhead. Even the 
usual two-channel stereophony employing two similar loudspeaker signals, which differ in 
a certain way from each other, cannot provide a full acoustical impression of space since 
the apparent directions of sound incidence remain restricted to the region between both 
loudspeakers.

The ‘sensation of space’ has attracted the interest of acoustic researchers for many 
years, but only since the late 1960s real progress has been made in �nding the cause of 
this subjective property of sound �elds. The different authors used expressions like ‘spatial 
responsiveness’, ‘spatial impression’, ‘ambience’, ‘apparent source width’, ‘subjective diffu-
sion’, ‘Räumlichkeit’, ‘spaciousness’, ‘listener envelopment’ and others to circumscribe this 
sensation. Assuming that all these verbal descriptions signify about the same sensation, we 
prefer the term ‘spaciousness’ or ‘spatial impression’ in the following.

For a long time, it was common belief among acousticians that spaciousness was a direct 
function of the uniformity of the directional distribution (see Section 4.3) in a sound �eld: 
the more uniform this distribution, the higher the degree of spaciousness. This belief was 
supported by the fact that the ceiling and walls of many famous concert halls are highly 
structured by cofferings, niches, pillars, statuettes and other projections which supposedly 
re�ect the sound in a diffuse manner rather than specularly.

It was the introduction of synthetic sound �elds as a research tool which led to the insight 
that the uniformity of the stationary directional distribution is not the primary cause of 
spaciousness. According to Damaske,27 spatial impression can be created with quite a few 
synthetic re�ections, provided they reach the listener’s head from lateral directions, and that 
the signals they carry are mutually incoherent (as is usually the case in a large hall).

That only the lateral re�ections (i.e., not re�ections from the front, from overhead or from 
the rear) contribute to spaciousness has been observed by several earlier authors, and many 
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subsequent publications have con�rmed this �nding. A very extensive investigation into 
spaciousness has been carried out by Barron.28 He found that only a re�ection with a delay 
time in the range from 5 to 80 ms contributes to spaciousness and that its contribution is 
proportional to its energy and to cos θ, where θ is the angle between the direction of sound 
incidence and an imagined axis through the ears of a listener who is facing the sound source. 
Furthermore, its effect is independent of other re�ections and of the presence or absence of 
reverberation. Based on these results, the ‘lateral energy fraction’ (LEF)29 was proposed as 
an objective measure for the spatial impression:

 LEF cos d d
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2
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80 ms
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(In the original de�nition of LEF, the numerator contains the factor cos θ in the �rst 
power only. This modi�cation is a concession to the ease of practical measurements; its 
in�uence on the result is insigni�cant.) The LEF is usually averaged over four octave 
bands with mid-frequencies 125, 250, 500 and 1000 Hz. This accounts for the fact that 
the low- and  mid-frequency components contribute most to the sensation of spaciousness. 
Theoretically, the LEF may vary from 0 (only frontal sound incidence, θ = 0) to 1 (sound 
incidence exactly from the side θ = ± 90°). In most halls, the LEF lies in the range of 0.1 
to 0.3.

Another method of characterizing the laterality of re�ected sounds makes use of the fact 
that sound impinging on a listener’s head from its vertical symmetry plane will produce 
equal sound pressures at both his ears, whereas a sound wave from outside the symmetry 
plane will produce different ear signals. Generally, the similarity or dissimilarity of two 
signals is measured by their cross-correlation function or by the correlation coef�cient as 
de�ned in Equation 1.54. In the following we apply that expression to the impulse responses 
gr and gl measured at the right and the left ear, respectively. Since these signals are transient, 
time averaging would be meaningless and is therefore replaced by integration over the time. 
Then, the correlation coef�cient reads
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Usually, the limits t1 and t2 are set 0 and 100 ms in order to restrict the integration over 
the arrival times of the ‘early re�ections’; hence, Ψrl is a ‘short time’ correlation factor. The 
maximum of its absolute value within the range |τ| < 1 ms is called the ‘interaural cross 
 correlation’ (IACC)30:

 IACC = max {|Ψrl|} within −1 ms < τ < 1 ms (7.21)

Of course, this quantity is negatively correlated with the spatial impression: and high 
values of the IACC mark a low degree of spaciousness and vice versa.

It should be mentioned that several versions of the IACC are in use which differ in the 
integration limits in Equation 7.20, or in the way the impulse responses are frequency-
�ltered before processing them according to Equation 7.20. Beranek31 prefers the use of an 
IACC version which comprises three octave bands with mid-frequencies, 0.5, 1 and 2 kHz. 
This limitation accounts for the fact that at low frequencies the difference between gr and 
gl is negligibly small. Beranek reports that the values of this quantity are as low as 0.3 in 
excellent concert halls.

Laterality of the early re�ections is certainly the most decisive factor on which the impres-
sion of spaciousness depends but it is not the only one. Several researchers have observed that 



182 Room acoustics

the spatial impression increases monotonically with the listening level. Furthermore, there 
seems to be some agreement nowadays that spatial impression is not a ‘one-dimensional’ 
sensation but consists of at least two different components which are more or less inde-
pendent. The most prominent of these are the ‘apparent source width’ (ASW) and ‘ listener 
envelopment’ (LEV).32 If this view is adopted, it is reasonable to attribute Damaske’s and 
Barron’s results to the ASW and hence to consider the objective quantities LEF and IACC as 
predictors of this particular aspect of spaciousness.

This leaves us with the question of which objective parameters of the sound �eld are respon-
sible for the remaining component, namely the sense of ‘listener envelopment’. This ques-
tion was the subject of careful listening experiments performed by Bradley and Soulodre32

using a synthetic sound �eld similar to that shown in Figure  7.2. With this  system, the 
reverberation time, the early-to-late energy ratio expressed by the clarity index C80 = C (see 
Equation 7.10), the A-weighted SPL and the angular distribution of the reverberated signals 
could be independently varied, while the IACC and the LEF were kept constant through all 
combinations.

It turned out that the angular distribution had the largest effect on spaciousness. The 
wider it was, the higher is the LEV. Another strong in�uence on the perceived ‘listener envel-
opment’ was that of the overall sound level, while the relative amount of early energy (C80) 
and the reverberation time was found to be less signi�cant. A correlation analysis of the col-
lected data revealed that the best objective predictor for LEV is the strength (see Equation 
7.3) of the late lateral re�ections
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averaged over four octave bands with mid-frequencies 125, 250, 500 and 1000 Hz, thus 
accounting for the fact that high-frequency components do not contribute much to the sense 
of LEV. gA(t) is the impulse response received in the free �eld in 10 m distance, td is chosen 
such that the integral contains the direct sound. The range from missing to maximum envel-
opment corresponds to a range in LG80

∞  from −20 to 2 dB.
We return to the measures of ASW: namely the LEF and the IACC. Surprisingly, both 

quantities are not very highly correlated to each other, which may be a consequence of the 
different frequency ranges in which they are usually determined. Another puzzling �nding 
is that these parameters show considerable �uctuations with the position of the receiver 
(microphones or dummy head), as has been revealed by careful experiments carried out by 
de Vries et al.33 These �uctuations are caused by interfering components of the wave �eld 
and are not accompanied with corresponding variations in the subjectively perceived ASW. 
Even within one seat width, the �uctuations of the measured parameter are quite strong 
although it is inconceivable that a listener in a concert hall will perceive any change in 
spatial impression when he moves his head by 10 or 20 cm. This shows us that still more 
research on signi�cant spaciousness parameters is needed.

7.8 ASSESSMENT OF CONCERT HALL ACOUSTICS

Although nowadays quite a number of parameters are at the acoustician’s disposal to 
quantify the listening conditions in a concert hall or particular aspects of them, the situ-
ation is unsatisfactory in that important questions are still open: Do these parameters 
yield a complete description of the acoustics of a hall? To what extent are they correlated 
with each other? Which relative weight is to be given to each of them? Is it possible, 
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for instance, to compensate insuf�cient reverberation by a large amount of early lateral 
energy? And �nally, is it possible to condense the values of these parameters into one 
single �gure of merit?

Conventional attempts to correlate the acoustical quality of a concert hall with an 
objective measure or a set of such measures have not been very satisfactory because they 
have concentrated on one particular aspect only, or were based on plausible but unproven 
assumptions. Furthermore, they relied on the listeners’ memory since the immediate com-
parison of  different halls or positions in a hall was not possible at that time.

For assessing the acoustical quality of concert halls, the following steps should be 
carried out:

 1. The hall under test is ‘excited’ either by real artists (an orchestra, a choir or a cham-
ber music ensemble) or by loudspeakers positioned on the stage. The second method 
is to be preferred since it is more �exible and allows testing the hall with de�ned and 
reproducible music samples. A still more re�ned method has been developed by 
J.  Pätynen and his co-workers.34 To excite all halls to be tested with exactly the 
same music samples, these authors employed a ‘loudspeaker orchestra’ consisting of 
34 calibrated loudspeakers placed at de�ned positions on the stage. These are fed 
with samples of orchestra music, the parts of which had been recorded separately 
one player at a time in an anechoic chamber. The sounds produced by the instru-
ments are picked up with 22 microphones positioned evenly around the player. 
Since these recordings must be combined to the complete music sample afterwards, 
particular care must be taken to achieve correct synchronism and intonation. Quite 
a different way to prepare the test samples was chosen by Soulodre and Bradley,35

who convolved anechoic music motifs with the measured impulse responses of the 
halls to be examined.

 2. The opinions of quali�ed listeners about the acoustics of a hall or various perceptual 
aspects of it can be elicited in situ, for instance, by interviewing them after the perfor-
mance or by handing formal questionnaires over to them. Alternatively (and prefer-
ably), the sounds at typical positions in the hall are picked up with microphones and 
digitally stored for later analysis.

 3. In the latter case, the recorded signals are presented to listeners in an anechoic room. 
It is important that the test persons are carefully selected and have a certain familiar-
ity with the sort of music which is usually performed in concert halls. The listeners 
are asked to quantify in some way the differences between successive presentations. 
This can be done by assigning scores to the replayed sound signals using a number 
of bipolar rating scales with verbally labelled extremes such as ‘dull–brilliant’, ‘cold–
warm’ and so on. Another possibility is having the subjects indicate which of two 
 presentations they prefer, and thus to set up a preference scale on the basis of these 
judgements.

 4. Finally, the results are analysed using modern psychometric methods. The aim of this 
procedure is to isolate from this material the relevant perceptual aspects and their rela-
tive signi�cance.

It goes without saying that all electro-acoustic components such as microphones, record-
ers and loudspeakers which are used for the above-mentioned operations must be of excel-
lent quality. Equally important is that the system is capable of transmitting and reproducing 
all subjective effects brought about by the complex structure of the original sound �eld. 
One way to achieve this is to use a binaural system which transplants the signals which a 
listener’s ears would receive in the original sound �eld to the ears of a remote listener as 
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correctly as possible. Very often, a ‘dummy head’ is used for recording the original sounds. 
This is an arti�cial head with microphones built into the ear channels. The purpose of 
this device, which usually includes the shoulders and part of the trunk, is to diffract the 
arriving sound waves in a way which is representative for the majority of human listeners. 
Nowadays, several types of dummy heads are available which meet this requirement. An 
example is shown in Figure 7.16. The signals recorded in this way are stored using a digital 
storage medium.

In principle, binaural signals could be replayed and presented to the test listeners by means 
of high-quality headphones. Unfortunately, this kind of reproduction is often plagued by 
‘in-head-localization’, that is, for some reason the listener has the impression that the sound 
source is located within the rear part of his head. On the other hand, replacing the ear-
phones by two loudspeakers as in the usual stereophony creates another problem namely 
that the right-hand loudspeaker will inevitably send a cross-talk signal to the left ear and 
vice versa. This can be avoided by a �lter which ‘foresees’ this effect and adds proper 
cancellation signals to the input signals. This technique, nowadays referred to as ‘cross-
talk cancellation’ (CTC), was invented and �rst demonstrated by Schroeder and Atal.36

Figure 7.17 depicts the principle of CTC. A more detailed description of this reproduction 
technique may be found in the work by Neu et al.37,38 It should be mentioned that the can-
cellation effect only occurs if the listener keeps his head at a �xed position and orientation. 
This limitation can be avoided by ‘dynamical cross-talk cancellation’39 – a method which 

Figure 7.16 Dummy head. (Courtesy of Institute of Technical Acoustics, Aachen University, Germany.)
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employs four regularly arranged loudspeakers which 
can be combined into six different CTC con�gurations. 
At a time, only one of these con�gurations is in opera-
tion; their control is effected by a head-tracking device.

In a �nal step, the judgements elicited from the test 
listeners are subjected to a mathematical procedure 
called factor analysis. The objective of this process is to 
extract the most prominent aspects of judgement from 
the experimental material, the so-called factors. In the 
following, an attempt is made to give at least an idea 
of this technique. A more detailed explanation of these 
techniques and their application to room- acoustical 
problems may be found in the book by Cremer and 
Müller.40

At �rst, the data are arranged in a matrix C consist-
ing of n columns, which refer to the objects (hall, seats), 
and m rows containing the attributes (e.g., ‘brilliance of 
sounds’, or ‘intimacy’):
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From this matrix, the ‘correlation matrix’ C is derived:
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where Z′ denotes the transposed matrix, that is, the matrix obtained from Z by interchang-
ing lines and columns, and n is the number of ‘objects’ (e.g., of halls or different locations 
within a hall). The matrix C is quadratic with m × m elements, where m denotes the num-
ber of attributes. Next, the matrix C is orthogonalized, that is, one must �nd a coordinate 
transformation W – the principal axis transformation – by which the matrix C can be con-
verted into an equivalent matrix D, the only non-zero elements of which appear on its main 
 diagonal. According to the rules of matrix algebra, this transformation reads
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The matrix W−1 is the inverse of W, the numbers λ1,…, λm are the so-called eigenvalues 
of matrix C. By this operation, the space of the original attributes (or preferences) is trans-
formed into a perceptual space, the Cartesian coordinate axes of which are the ‘ factors’ 
F1, F2,…, Fm, that is, independent or “orthogonal” aspects of perception. Their relative 
 signi�cance is determined from the eigenvalues λ1,…, λm. Usually, the number of signi�cant 
factors is 3 or 4. The meaning of these factors or scales is principally unknown beforehand, 

Channel

Loudspeaker (2)(1)

(2)(1)

F FF́

Figure 7.17  Principle of cross-talk can-
cellation in loudspeaker 
reproduction of binaural 
signals. F and F′ are digital 
�lters.
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but sometimes they can be circumscribed vaguely by verbal labels such as ‘resonance’ or 
‘proximity’.

As a simple example, let us consider a perceptual space which consists of just two 
signi�cant factors. This space is a plane with rectangular coordinates F1 and F2, as shown 
in Figure 7.18. If the preceding factor analysis was based on preference tests, the individual 
preference scale of each listener can be represented as a vector in this plane. The �gure 
shows just one of them. The projections of the ‘object points’ A, B, C, etc. on this vector 
indicate this listener’s personal preference rating of these halls. According to the angle α 
which it includes with the axis F1, this particular listener gives in his preference judgement a 
weight of cos α to the factor F1 and of sin α to the factor F2. Similarly, if bipolar rating scales 
have been used, these scales can be presented as vectors in such a diagram.

Investigations of concert halls using bipolar rating scales have been carried out by sev-
eral authors. Wilkens and Plenge41,42 collected 30 test samples by accompanying the Berlin 
Philharmonic Orchestra on a concert tour where it presented the same programme (Mozart, 
Bartok, Brahms) in six different halls. For the reproduction of the samples recorded with a 
dummy head, Wilkens and Plenge used headphones and found three factors to be relevant, 
which they labelled as follows:

F1: strength and extension of the source (47%)
F2: clearness or distinctness (28%)
F3: timbre (14%)

The numbers in parentheses denote the relative signi�cance of the three factors. They add 
up to 89% only, which means that there are still more although less signi�cant factors. It is 
interesting to note that there seem to be two groups of listeners: one group which prefers loud 
sounds (high values of F1) and another one giving more preference to clearness and distinctness 
of sounds (high values of F2). (A similar division of the subjects into two groups with different 
preferences has also been found in an investigation conducted by Barron.43 The members of 
the �rst group preferred ‘reverberance’ while the other group gave preference to ‘intimacy’.)

In the course of Wilkens’ research project, physical sound �eld parameters have been mea-
sured at the same positions in which the sound recordings have been made. A subsequent 

(A)

(B)

α

(C)

(D)

F 1

F 2

Figure 7.18 Two-dimensional perceptual space with factors F1 and F2. The vector represents the prefer-
ence scale of one particular listener. The points (A), (B), (C) and so on. indicate different 
concert halls or seats.
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correlation analysis revealed that F1 is highly correlated with the strength factor G from 
Equation 7.1, whereas F2 shows high (negative) correlation with Kürer’s ‘centre time’ ts

de�ned in Equation 7.13. Finally, the factor F3 seems to be related to the frequency depen-
dence of the ‘early decay time’.

At about the same time, another group of researchers, namely M. R. Schroeder, D. Gottlob 
and K. F. Siebrasse,44 studied the acoustics of 22 European concert halls, using a different 
method to collect the test samples. They replayed a ‘dry’, that is, reverberation-free motif of 
Mozart’s Jupiter Symphony with two loudspeakers located on stage of the tested concert hall 
and re-recorded them with a dummy head placed at various listener positions. Afterwards, 
the samples prepared in this way were presented to the test subjects in an anechoic room 
at constant level employing a CTC system described above in this section. The subjects 
were asked to judge preference between pairs of presentations. They were allowed to switch 
back and forth between both recordings. Application of factor analysis indicated four fac-
tors F1–F4 with relative signi�cance of 45%, 16%, 12% and 7%, respectively. In Figure 7.19, 
which is analogous to Figure 7.18, part of Siebrasse’s45 results are plotted in the plane of 
factors F1 and F2. The vectors representing the individual preference scales have different 
lengths since they have non-vanishing components also in F3 and F4 directions. The fact that 
they all are directed towards the right side suggests the conclusion that F1 is a ‘consensus 
 factor’, whereas the components in the F2 direction re�ect differences in the listener’s per-
sonal taste. This holds even more with regard to the factors F3 and F4.

In order to �nd the objective sound �eld parameter with the highest correlation to the con-
sensus factor F1, D. Gottlob46 analysed the impulse responses observed at the same places 
where the music samples had been recorded. The reverberation time proved to be important 
only when it deviated substantially from an optimum range centred on 2 s. If halls with 
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Figure 7.19 Individual preference scales of 12 test subjects (arrows) and 22 concert halls (points A, B, …,Y) 
represented in the F1−F2 plane of a four-dimensional perceptual space. (Based on Siebrasse.45)
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inadequate reverberation times are excluded, F1 shows high correlation with several param-
eters, of which the IACC (see Section 7.7) seems to be of particular interest, since it is virtu-
ally independent of the reverberation time. Another highly correlated quantity is the width 
of the concert hall. Both the IACC and the width of the hall are negatively correlated with 
F1, that is, narrow concert halls are generally preferred. This again proves the importance 
of early lateral re�ections, which are particularly strong in narrow halls leading to a low 
value of the IACC.

There may be several possible reasons for the differences between the results of both 
studies as, for instance, the different ways of collecting the test samples and of presenting 
them to the subjects, furthermore the different concert halls tested and the use of different 
assessment schemes. And it is not surprising, after all, that in the second study the strength 
or loudness of the sound signal does not show up as a relevant attribute since care had been 
taken to present all test samples at equal level to the listeners.

More recent investigations of this kind have been carried out by T. Lokki, J. Pätynen, 
A. Kuusinen, H. Vertanen and S. Tervo et al.47,48 It differed from the previous studies in 
four major points:

 1. To excite all halls to be tested in exactly the same way, these authors employed Pätynen’s 
‘loudspeaker orchestra’ as described above (see page 183), arranged on the stage of the 
hall.

 2. Instead of directly judging the sound �eld in the hall, the impulse responses of each 
transmission path connecting a loudspeaker with a selected listener position was mea-
sured, using a six-channel intensity probe (see Section 8.1). In this way, it was possible 
to estimate the direction of sound incidence at each instant.

 3. From the output signals of this probe, 24 spatial impulse responses were derived. Each 
of them was convolved with the anechoic instrument recordings prepared as described 
above and fed to one of 24 loudspeakers distributed in a listening room which formed 
constituting the �nal 3D sound reproducing system. By this somewhat involved pro-
cedure which is described in a condensed form in a publication by Lokki,49 the test 
 listeners – the ‘assessors’ – were enabled to switch between different halls or different 
seats and thus to compare directly their auditory impressions.

 4. Each assessor was encouraged to develop his individual set of perceptual attributes 
for the sensory evaluation of the tested halls. A subsequent clustering process led to 
 certain consensus groups of attributes such as the ‘reverberance’ or ‘loudness’ group, 
or the ‘clarity’ group. By further analysis of the data, the so-called ‘sensory pro�les’ 
could be established, that is, rankings of the examined halls according to each of 
those attribute groups. Additionally, assessors were asked to arrange the concert halls 
according to the results of preference rating.

The evaluation of the assessors’ responses to the processed musical excerpts led to many 
interesting insights which cannot be reported on here in detail. One remarkable result is the 
fact that the test listeners can be divided into two groups on account of their preferences. 
The �rst one preferred more clear and intimate sounds with high de�nition, whereas the 
members of the other one favoured halls producing loud and more reverberant, envelop-
ing sounds with strong bass. These results agree to some extent with those obtained by the 
Wilkens and the Schroeder group. Furthermore, they underline the importance of early 
lateral sound re�ections for good concert hall acoustics.50 Concerning global preference rat-
ings, the highest correlation was found with the ‘perceived proximity’.

The discussions of this section would be incomplete without mentioning the work 
of Y. Ando,51,52 who developed an acoustic rating system for concert halls or for seats 
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within a concert hall. His system is based on numerous listening experiments carried out 
with  synthetic sound �elds similar to that described in the beginning of this chapter (see 
Figure 7.2) – in contrast to the above-mentioned researchers who collected their material 
in real concert halls. Ando and his collaborators isolated four ‘orthogonal’, that is, inde-
pendent sound �eld parameters which they believed to contain all the necessary informa-
tion on the sound �eld. Two of them were temporal parameters namely the reverberation 
time and the ‘initial time delay gap’ Δt1. (The latter is the delay of the �rst re�ection in a 
room with respect to the direct sound and was �rst introduced by Beranek53). It is remark-
able that both of them depend on the effective duration τe of the autocorrelation func-
tion of the presented sound signal, that is, on the character of the performed music (see 
Section 1.7). The other parameters are the sound pressure level L and the IACC. For each 
of these parameters, Ando determined the ‘most preferred value’ by paired comparison 
tests. His results are listed in Table 7.4.

In this table, Ar is the total pressure amplitude of all re�ections given by

 A g t t g t td dr
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The character ε signi�es a time interval which is just small enough to exclude the direct 
sound from the �rst integration. The most preferred IACC is zero in which case both ear 
signals are completely uncorrelated.

From numerous preference tests, Ando derived a (negative) �gure of merit which he called 
the ‘total subjective preference’:
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The quantities X1, X2 and X3 are to characterize the deviations of the actual parameters 
from their ‘most preferred values’ pp, (Δt1)p and Tp. They are given by the following expres-
sions along with the weighting coef�cients αi:
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Table 7.4  Most preferred values of the sound pressure level, 
the initial time delay gap, the reverberation time 
and the interaural autocorrelation coef�cient

Parameter Symbol
Most preferred 

value

Initial time delay gap (Δt1)p (1 − log10 Ar)·τe

Reverberation time Tp 23·(Δt1)p

Sound pressure level Lp 79 dB (A)
IACC (IACC)p 0
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X4 = IACC, α4 = 1.45 (7.31)

Ando’s ‘total subjective preference’ Sa vanishes if all the parameters assume their most 
preferred values; negative values of Sa indicate certain acoustical de�ciencies.

Beranek31 has modi�ed this rating scheme by adding two further components – ‘warmth’ 
(equal to low-frequency divided by mid-frequency reverberation time) and an index charac-
terizing the surface diffusivity of a concert hall, determined by visual inspection. He applied 
it to his collection of data on concert halls and opera theatres. On the other hand, Beranek 
attributed each of these concert halls to one of six categories of acoustical quality, ranging 
from ‘fair’ (category C) to ‘superior’ (category A+), by evaluating numerous interviews with 
musicians and music critics and found satisfactory agreement between these subjective cat-
egories and the rating numbers derived from the objective data.

In a way, Ando’s approach seems to answer the questions raised at the beginning of this 
section. However, his results show only partial agreement with those of previous investiga-
tions from which the initial time delay gap did not emerge as a signi�cant acoustical crite-
rion. Even more important, Ando’s investigations did not show evidence that there are two 
groups of listeners with clearly different preferences. For this reason, it may be very dif�cult 
if not impossible to arrange concert halls in an order according to their acoustical quality. 
We should not be too sorry about this consequence. In fact, if all designers of concert halls 
decided to follow the guidelines of this system, they would arrive at auditoria with similar 
acoustics. One may doubt whether this is a desirable goal of room acoustical efforts, since 
differences in listening environments are just as enjoyable as different architectural solutions 
to a building or different interpretations of a musical work.

We have to admit that the investigations which have been reported in the preceding sec-
tions do not combine to form a well-rounded picture of subjective concert hall acoustics; 
their results are not free of inconsistencies and even contradictions, and hence are to be 
considered as preliminary only. Nevertheless, it is obvious that important insights have been 
gained in what is relevant for good concert hall acoustics. These insights along with the 
auralization techniques to be described in Section 9.7 will certainly help acoustical designers 
to create concert halls with satisfactory or even excellent listening conditions and to avoid 
serious mistakes.
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Chapter 8

Measuring techniques in room acoustics

The starting point of modern room acoustics is marked by attempts to de�ne physical sound 
�eld parameters suited to quantify the subjective acoustic impression of a listener sitting in 
a hall and attending a presentation. As shown in Figure 7.1, these parameters or a set of 
them can be thought of as a link between the world of subjective perceptions on the one 
hand and the realm of architecture responsible for the geometrical and other room data on 
the other. As we have seen in Chapter 7, several useful parameters of this kind have evolved 
in the course of time. It is the object of this chapter to describe how such quantities can be 
measured and which kind of equipment is used for this purpose.

Room acoustic measurements are necessary for research and design purposes and are 
also used as a diagnostic tool for existing rooms. Suppose there are frequent and persistent 
complaints about the acoustics of a particular hall. If the problem cannot be solved on the 
basis of a simple inspection, acoustical measurements are needed to reveal and to character-
ize the de�ciencies and to �nd their cause. This holds not only if the complaining people are 
concert or operagoers but also at least to the same extent for performers, in particular, for 
musicians. Although it is sometimes dif�cult to translate the comments of musicians into 
the language of acousticians, their opinions must be taken seriously; a concert hall is not 
very likely to get a good reputation if the performing artists are continuously dissatis�ed. 
Another typical situation is that the performance of an electroacoustic reinforcement system 
is not satisfactory. Then, the examination of the sound �eld can indicate whether the loca-
tion or the directivities of the loudspeakers should be improved, or whether it is rather a 
matter of readjusting the signal equalizer (if there is any). And �nally, it may be wise to take 
at least some measurements in a new or refurbished hall prior to its opening or reopening 
when minor corrections are still possible.

Some measuring procedures are not directly related to subjective impressions but concern 
the acoustic properties of materials, especially the absorption of wall and ceiling materials, 
of seats and so on. Knowledge of such data is essential for any planning in room acoustics. 
Many of them can be found in published collections, but often the acoustical consultant is 
faced with new products or with specially designed wall linings for which no absorption 
data are available. This holds even more with regard to the scattering ef�ciency of acousti-
cally ‘rough’ surfaces (see Section 8.8).

8.1 GENERAL REMARKS ON INSTRUMENTATION

Viewed from our present state of the art, the equipment which Sabine1 had at his disposal 
for his famous investigation of reverberation appears quite modest: he excited the room 
under test with a few organ pipes and used his ear as a measuring instrument together 
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with a simple stop watch. With the development and introduction of the electrical ampli-
�er in the 1920s, almost all measuring techniques became electrical. In acoustics, the ear 
was replaced with a microphone and the fall in sound level was observed with an elec-
tromechanical level recorder. Nowadays, the room under test is usually excited with an 
electric loudspeaker which is fed from an electronic signal generator. More recently, the 
introduction of the digital computer has triggered off a second revolution in measuring 
techniques: all kinds of signal processing (�ltering, storing and processing the measured 
signals as well as the presentation of results) can now be done with digital  equipment, 
which is generally more powerful, precise and �exible and less expensive than the more 
traditional equipment.

For �eld measurement of the reverberation time, the requirements concerning the 
uniformity of the sound �eld are not very stringent since the various sound compo-
nents will anyway be mixed during the decay process. Therefore, it is often suf�cient 
to excite the room with a pistol shot which produces suf�cient sound power even if 
there is some background noise. The same holds for wooden hand clappers or bursting 
balloons which yield strong excitation of a room, especially at low frequencies. The 
frequency dependence of the decay process can be examined by using bandpass �lters 
in the receiver side with variable passband. Frequently applied are octave (f2/f1 = 2) and 
third-octave �lters (f2/f1 = 5/4), where f2 and f1 are the upper and the lower frequency 
limits of a passband.

Matters are different when it comes to measuring the correct impulse response of a room. 
Then, the excitation signals must be exactly reproducible. This is achieved by use of an elec-
trical loudspeaker, driven by a power ampli�er. Any directionality of the sound source must 
be avoided, otherwise the result of the measurement would depend not only on the position 
of the source but also on its orientation. The frequency characteristics of the loudspeaker 
should be as �at as possible, and also the phase distortions must be small. The same holds 
of course for any non-linear distortions. One way to achieve omnidirectional sound radia-
tion, at least at lower frequencies, is to employ a combination of 12 or 20 equal and equally 
fed loudspeaker systems mounted on the faces of a regular polyhedron (dodecahedron or 
icosahedron). A dodecahedron loudspeaker is shown in Figure 8.1. It should be noted that 
even this kind of source shows some directionality at elevated frequencies. For this reason, 
two polyhedral loudspeaker systems of different size are sometimes employed when a wide 
frequency range is to be covered.

Another useful device is the driver of a powerful horn loudspeaker with the horn 
replaced by a metal tube. Its open end radiates the sound uniformly, provided its diame-
ter is small compared with the wavelength. The resonances of the tube can be suppressed 
by inserting some damping material into it. Nearly omnidirectional radiation of power-
ful acoustical wide-band impulses can also be achieved by specially designed electrical 
spark gaps.

To pick up the sound in the enclosure, pressure-sensitive high-quality microphones with 
omnidirectional characteristics are most commonly used. For certain measurements, how-
ever, a gradient receiver, that is, �gure-of-eight microphones, or a dummy head must be 
employed. Receivers with still higher directivity are needed to determine the directional 
distribution of sound energy at a certain position. Examples of directional microphones 
are arrays of equal microphones, or a pressure microphone placed in the focus of a concave 
mirror, or the ‘line microphone’, which is the combination of a usual pressure microphone 
with a slotted tube.2 Although the experimenter should have a certain idea of the sensitiv-
ity of his microphones, absolute calibration is usually not required since virtually all sound 
measurements in room acoustics are relative.
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To measure the sound intensity in a wave �eld, both the sound pressure and the particle 
velocity must be determined, according to Equation 1.31. For the latter, miniaturized hot-
wire anemometers can be used. Such a device consists essentially of two thin, parallel plati-
num wires, which are heated to 200–400°C. When it is exposed to a local air �ow directed 
from one wire to the other, the thermal balance in the vicinity of both wires is disturbed 
causing a difference between the resistance of both wires which is proportional to the veloc-
ity of the �ow (= particle velocity). The combination of a velocity sensor with a pressure 
microphone is known as a p–u probe (since many authors use the symbol u for the particle 
velocity). Although originally developed for measuring the intensity in a sound �eld, it can 
be used as well as a device for the measurement of wall impedances (see Section 8.6). A more 
indirect method of measuring the particle velocity employs a so-called p-p probe consisting 
of two pressure microphones with equal sensitivity and phase characteristics in some �xed 

Figure 8.1  Dodecahedron loudspeaker for room acoustical measurements. (Courtesy of Institute of Technical 
Acoustics, Aachen University, Germany.)
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distance d. If d is very small compared to the acoustical wavelength, the sound pressure at 
both microphones differs by

 p
p
x

d i vx0∆ ≈ ∂
∂







⋅ = − ωρ  (8.1)

(The latter expression has been obtained by applying Equation 1.2 and replacing the time 
derivative with the factor iω.) In this formula, the x-axis is parallel to the line connecting 
both microphones. The distance d is usually controlled by solid spacers, the dimensions of 
which can be adapted to the desired frequency range. To determine the complete intensity 
vector, each of its components must be measured, either by changing the orientation of the 
velocity probe or by using a combination of three separate velocity probes.3

After proper pre-ampli�cation, the output signal of the microphone may be stored until 
further evaluation in the laboratory. This can be achieved with a magnetic tape recorder, for 
instance. The most convenient method, however, is to apply the microphone signal immedi-
ately to a portable digital computer where it is stored in the computer’s hard disk or directly 
processed to yield the parameters which one is looking for. This requires, of course, that the 
computer is �tted out with an analog-to-digital converter which covers a suf�ciently wide 
range of amplitudes.

8.2 MEASUREMENT OF THE IMPULSE RESPONSE

According to system theory, all properties of a linear transmission system are contained in 
its impulse response or, alternatively, in its transfer function, which is the Fourier transform 
of the impulse response. Since a room can be considered as an acoustical transmission sys-
tem, the impulse response yields a complete description of the changes a sound signal under-
goes when it travels from one point in a room to another, and almost all of the para-meters 
we discussed in Chapter 7 can be derived from it, at least in principle. Parameters related to 
spatial or directional effects can be based upon the ‘binaural impulse response’ picked up at 
both ears of a listener or with a dummy head. From these remarks, it is clear that the deter-
mination of impulse responses is one of the most fundamental tasks in experimental room 
acoustics. It requires high-quality standards for all measuring components, which must be 
free of linear or non-linear distortions including phase shifts. By its very de�nition, the 
impulse response of a system is the signal obtained at the system’s output after its excitation 
by a vanishingly short impulse (yet with non-vanishing energy), that is, by a Dirac or delta 
impulse (see Section 1.4). Since we are interested only in frequencies below, say, 10 kHz, this 
signal can be approximated by a short rectangular impulse, the duration of which is smaller 
than about 20 μs. However, it should be kept in mind that there exist no loudspeakers which 
are completely free of linear distortions. This means the loudspeaker transforms a Dirac 
impulse δ(t) applied to its input terminal into a different sound signal gLS(t). The response 
g′(t) of the room to this latter signal is the room impulse response g(t) convolved with gLS(t) 
according to Equation 1.58 or 1.59:

 g t g g t g t g td *LS LS∫( ) ( ) ( ) ( ) ( )′ = τ − τ τ =
−∞

∞

 (8.2)

The linear distortion caused by the loudspeaker can be eliminated by ‘deconvolution’, that 
is, by undoing the convolution of Equation 8.2, which is most easily performed in the 
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frequency domain: Let G(f) and GLS(f) denote the Fourier transforms of g(t) and gLS(t), 
respectively. Then, the Fourier transform of Equation 8.2 reads

 G′(f) = G(f) · GLS(f) (8.3)

Dividing G′(f) by GLS yields G(f), the transfer function of the room, from which the cor-
rected room impulse response g(t) can be recovered by inverse Fourier transformation (see 
Equation 1.41). It may be practical to avoid the in�uence of the loudspeaker by pre- emphasis, 
that is, by passing the test signal through a �lter with the transfer function [GLS(f)]−1 prior 
to feeding it to the loudspeaker.

In practice, however, results obtained in this way are more or less impaired by the omni-
present background noise, for instance, by traf�c noise intruding into the room from the 
outside, or by noise from technical equipment, and so on. One way to overcome this dif-
�culty is repeating the measurement several or many times and adding the results. If N is 
the number of measurements, the total energy of the collected impulse responses grows 
in proportion to N2, while the energy of the resulting noise grows only proportionally to 
N, provided the noise is random. Hence, the signal-to-noise ratio, expressed in decibels, is 
increased by 10 · log10 N decibels.

A less time-consuming method employs test signals which are stretched in time and hence 
can carry more energy than a short impulse. Suppose the system to be tested, that is, the 
room, is excited by an arbitrary signal s(t). Its response is given by

 s t s g t g s td d∫ ∫( ) ( ) ( ) ( ) ( )′ = τ − τ τ = τ − τ τ
−∞

∞

−∞

∞

 (8.4)

or expressed in the frequency domain

 S ′(f) = S(f) · G(f) (8.5)

The impule response g(t) can be recovered from the output signal s′(t) by applying the same 
recipe as described above, namely by ‘deconvolution’. Accordingly its Fourier transform 
G(f) is obtained as S ′/S provided S is non-zero within the whole frequency range of interest. 
Figure 8.2 shows the principle of this method, which is known as dual-channel analysis. 
If s(t) is a random signal, for instance, white noise, averaging over several or many single 
measurements is required to arrive at a reliable result. The execution of several Fourier 
transformations offers no dif�culties using current computer technology. If the signal s(t) is 
known beforehand, its spectrum S(f) must be calculated only once for all and can be used 
in all subsequent measurements.

g (t)

FFT

FFT

s(t) IFFT

Figure 8.2 Principle of dual-channel analysis (FFT = fast fourier transform, IFFT = inverse FFT).
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Particularly well-suited for this technique are excitation signals with ‘�at’, that is, 
frequency-independent power spectra. The frequency spectrum of such a signal has the 
form (see Equation 1.43):

S(f) = exp[iψ (f)].

with ψ(f) denoting the phase spectrum. Accordingly, S(f)−1 = exp[−iψ(f)] = S*(f), where the 
asterisk indicates the conjugate complex quantity. Hence, we obtain from Equation 8.5

 G(f) = S ′(f) · S*(f) (8.6)

which corresponds to

 g(t) = s′(t) * s(−t) (8.7)

in the time domain since s(−t) is the inverse Fourier transform of S*(f). This means that the 
measured signal must be passed through a �lter, the impulse response of which is the time-
inversed excitation signal. This technique is also known as ‘matched �ltering’.

One signal of this kind is the Dirac impulse, as already discussed. Other test signals 
with the required property are trains of equally spaced Dirac impulses, the signs of which 
alternate according to a particular pattern. The best-known kind of such binary signals are 
‘maximum length sequences’ (MLS). Their application to room acoustics was �rst described 
by Alrutz and Schroeder.4

Maximum length sequences are periodic pseudorandom signals, consisting of the ele-
ments +1 and −1. The number of elements per period is

 L = 2m − 1 (8.8)

where m, the order of the sequence, is a positive integer. An MLS can be generated by a 
digital m-step shift register with the outputs of certain stages fed back to the input.5 An 
example with L = 7 (m = 3) is

 {sk} = ∙ ∙ ∙ +1, −1, +1, −1, −1, −1, +1 ∙ ∙ ∙ (8.9)

Of particular interest are the correlation properties of an MLS. Generally, the circular 
 autocorrelation function of a discrete signal sk is de�ned, in analogy to Equation 1.51, by

 s sss n k

k

L

k n

0

1

∑( )φ =
=

−

+  (8.10)

where the subscript k + n has to be taken modulo L, the periodicity of the sequence. (As in 
Section 2.7, the modulo operation yields the remainder after dividing a given number by an 
 integer.) Applied to the sequence (8.9), this yields
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 (8.11)

Figure 8.3 shows the MLS for m = 3 (L = 7) along with its (circular) autocorrelation func-
tion. From the latter, we can conclude that the power spectrum of an MLS is nearly �at. 
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(The power spectrum of (Φss)n + 1 is exactly constant). In contrast, the phase angle is ran-
domly distributed in the interval from 0 to 2π.

What about the choice of Δt, the time interval between two impulses? In accordance with 
the sampling theorem, it should be shorter than half the period of the highest frequency fm

encountered in g(t), that is, Δt < 1/2fm. In order to avoid time-aliasing, that is, overlap of 
different portions of the room impulse response, the period of the sequence must exceed 
the duration of the impulse response to be measured. (In practice, the impulse response 
ends when it drops below the level of the background noise.) Suppose the sampling fre-
quency 1/Δt has the usual value of 44.1 kHz and we choose n = 18, then the period of the 
sequence L has the duration of about 6 s. Hence, for most purposes in room acoustics, 
m = 17 or 18 would be suf�cient.

The main advantage of maximum length sequences is the possibility of recovering the 
impulse response from the measured sequence without leaving the time domain. This is 
because these sequences are closely related to Hadamard matrices6, which have particular 
symmetry and recursive properties and thus permit carrying out the required calculations 
in a very time-ef�cient way since the only operations needed are additions and subtractions.

Another class of widely used excitation signals are sine sweep signals, that is, sinusoidal 
signals with continuously varying frequency.7 The simplest example of such signals is the 
linear sine sweep:

 s(t) = A sin (bt2) (8.12)

(see Figure 8.4) with the instantaneous frequency

 f t
bt

t
bt

1
2

d

d
1

2( )( ) =
π

=
π

 (8.13)

It is easy to show that the frequency spectrum of this signal s(t) has constant magnitude. 
Hence, the impulse response of the room can be retrieved immediately by ‘matched �ltering’ 
according to Equation 8.7, that is, by applying the output signal of the measuring microphone 
to a �lter, the impulse response of which is the time-reversed excitation signal, s(−t). In this 
case, it is particularly easy to see how matched �ltering works: the spectral  components 
received last are processed �rst and vice versa. However, due to modern  computer technol-
ogy, it is more practical to perform this operation in the frequency domain (see Equation 8.6). 

(a)

(b)

Figure 8.3  Maximum length sequence with n = 3. (a) The sequence, (b) its autocorrelation function.
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The duration of the sine sweep must be limited; hence, start and end frequencies, f1 and f2, 
must be de�ned. Then, the constant b can be determined from these frequencies and the 
duration ts of the sweep:

 b
f f

t
2 1

s
= π −

 (8.14)

Truncating the sine sweep at �nite frequencies introduces some ripple at the extremities of 
the amplitude spectrum which can be minimalized by providing for a soft switch-on and 
switch-off at the frequencies f1 and f2. The constant b must be chosen small enough to make 
the duration ts of the sweep suf�ciently long. In any case, ts must be longer than the duration 
of the impulse response to be measured.

It is noteworthy that a very fast sweep corresponds in the limit b → ∞ to a Dirac  function; 
hence, the response to the sweep is the impulse response of the enclosure. If, on the contrary, 
b becomes vanishingly small the response is, by its very de�nition, the frequency transfer 
function.

Apart from the linear sine sweep after Equation 8.12, the logarithmic (or rather exponen-
tial) sweep is also in use:

 s(t) = A sin [exp(bt)] (8.15)

with the instantaneous frequency

 f (t) = b · exp(bt) (8.16)

Its power spectrum is not constant but drops proportionally to 1/f with increasing frequency 
corresponding to 3 dB per octave. One of the assets of this signal is that it gives more empha-
sis to the low-frequency range and therefore has a closer correspondence with the human 
perception of pitch. To get the exact impulse response, the 1/f – dependence of the spectrum 
must be eliminated, for instance, by pre-emphasis.

Comparisons of the various methods of measuring the impulse response of a room have 
been published by Müller and Massarani8 and by Stan et al.9 It seems that sine sweeps as 
excitation signals are more advantageous because of a higher signal-to-noise ratio and the 
possibility of eliminating any distortion products. The longer processing times are no longer 

Time

Figure 8.4  Sine sweep signal.
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of concern because of today’s powerful digital processors. However, when it comes to mea-
surements in occupied rooms or in other noisy environments, maximum length sequences 
may still be superior to sweep techniques.

8.3 EXAMINATION OF THE IMPULSE RESPONSE

As mentioned before, the impulse response of a room or, more precisely, of a particular 
transmission path within a room is the most characteristic objective feature of its ‘acoustics’. 
Some of the information it contains can be found by direct inspection of a ‘re�ectogram’, by 
which term we mean the graphical representation of the impulse response. For a more quan-
titative evaluation, the parameters discussed in Chapter 7 may immediately be extracted 
from the impulse response. (The measurement of reverberation time will be postponed to 
the next section.)

From the visual inspection of a re�ectogram, the experienced acoustician may learn quite 
a bit about the acoustical merits and faults of the place for which it has been measured. 
One important question is, for instance, to what extent the direct sound will be supported 
by shortly delayed re�ections, and how these are distributed in time. Furthermore, strong 
and isolated peaks with long delays which hint at the danger of echoes are often detected 
in this way.

The examination of a re�ectogram can be facilitated – especially that of a band-limited 
re�ectogram – by removing insigni�cant details beforehand. In principle, this can be effected 
by rectifying and smoothing the impulse response. This process, however, introduces some 
arbitrariness into the obtained re�ectogram with regard to the applied time constant: if it is 
too short, the smoothing effect may be insuf�cient; if it is too long, important details of the 
re�ectogram will be suppressed. One way to avoid this uncertainty is to apply a mathemati-
cally well-de�ned procedure to the impulse response, namely to form its ‘envelope’. Let s(t) 
denote any signal, then its envelope is de�ned as

 e t s t s t( ) [ ( )] [ ( )]2 2( )= + �  (8.17)

Here s t( )
�

 denotes the Hilbert transform of s(t):
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Probably, the most convenient way to calculate the Hilbert transform is by exploiting its 
spectral properties. Let S(f) denote the Fourier transform of s(t), then the Fourier transform 
of s t( )
�
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Hence, a function s(t) may be Hilbert-transformed by computing its spectral function S, 
modifying the latter according to Equation 8.19 and transforming the result back into the 
time domain. There are also ef�cient methods to compute the Hilbert transform directly in 
the time domain.
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Figure 8.5 shows the original impulse response (upper trace) along with its squared envelope 
(lower trace). It is obvious that the latter shows the signi�cant features much more clearly.

A re�ectogram may be further modi�ed by smoothing its envelope in order to simulate 
the integrating properties of our hearing. For this purpose, the envelope e(t) (or the recti�ed 
impulse response |g(t)|) is convolved with exp(−t/τ). This corresponds to applying an electri-
cal signal |g(t)| or e(t) to a simple RC network with the time constant τ = RC. A reasonable 
choice of the time constant is 25 ms.

Figure 8.6 shows three examples of measured ‘re�ectograms’, obtained at several posi-
tions in a lecture room, which was excited by short tone bursts with a centre frequency of 
3000 Hz and a duration of about 1 ms. The lower trace of each recording shows the result of 
the smoothing described above. The total length of each trace corresponds to a time interval 
of 190 ms. The upmost re�ectogram was taken at a position close to the sound source; con-
sequently, the direct sound is relatively strong. The most outstanding feature in the lowest 
recording is the strong re�ection delayed by about 40 ms with regard to the direct sound. It 
is not heard as an echo as it still lies within the integration time of our ear (see Section 7.3).

Just looking at a re�ectogram or its modi�cation may be very suggestive, nevertheless 
it does not permit a safe decision as to whether a particular peak indicates the risk of an 
audible echo or not. This can only be achieved by applying an objective echo criterion, for 
instance, that proposed by Dietsch and Kraak10 in 1986. It is based on the function

 t g t t t g t t
n n

d ds

0 0
∫ ∫( ) ( ) ( )τ =
τ τ

 (8.20)

with g(t) denoting as before the impulse response of the room. ts(τ) is a monotonous function 
of τ approaching a limiting value ts(∞) as τ → ∞. The latter is the �rst moment of |g(t)|n, and 

CH2 CH2

CH1 CH1

200 mV/DIV 1.00 ms/DIV 1.00 V/DIV 1.00 ms/DIV

Figure 8.5  Room impulse response (upper trace) and its squared envelope (lower trace). The total range 
of abscissa is 400 ms.
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the function ts(τ) indicates its temporal build-up (Figure 8.7). The quantity used for rating 
the strength of an echo – the ‘echo criterion’ (EC) – is the difference quotient of ts(τ):

 
( )=

∆ τ
∆τ

EC maximum of st  (8.21)

where Δτ can be adapted to the character of the sound signal. The dependence of the EC 
on the directional distribution of the various re�ections is accounted for by recording the 
impulse responses with both microphones of a dummy head and adding their energies. By 
numerous subjective tests, carried out both with synthetic sound �elds and in real halls, the 
mentioned authors determined not only suitable values for the exponent n and for Δτ but 
also the critical values ECcrit, which must not be exceeded to ensure that not more than 50% 
of the listeners will hear an echo (Table 8.1). It should be noted that echo disturbances are 
mainly due to somewhat elevated spectral components. For practical purposes, however, it 
seems suf�cient to employ test signals with a bandwidth of 1 or 2 octaves.

Another source of undesirable subjective effects is regular trains of re�ections. They cannot be 
detected just by visual inspection of a re�ectogram because they may be hidden by many other, 
non-periodic re�ections. Usually, periodic components in room impulse responses are caused by 
repeated re�ections of the sound between parallel walls, or generally in rooms with a very regu-
lar shape, for instance, in rooms with a circular or regularly polygonal ground plan. At relatively 
short repetition times, they are perceived as colouration, at least under certain conditions. Even 
a one single dominating re�ection may cause audible colouration, especially of music, since the 
corresponding transmission function has a regular structure or substructure (see Section 7.4).

Figure 8.6  Re�ectograms measured at different positions in a lecture room (centre frequency 3000 Hz, 
impulse duration about 1 ms). The total length of all recordings is 190 ms. Upper traces: original 
response of the room to the excitation signal. Lower traces: same, after rectifying and smoothing 
with time constant τ = 25 ms.
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Table 8.1  Echo criterion of Dietsch and Kraak10: 
characteristic data

Type of signal n
Δτ 

(ms) ECcrit

Bandwidth of 
test signal (Hz)

Speech 2/3 9 1.0 700–1400
Music 1 14 1.8 700–2800

0

1

2

25

50

t s(τ
) (

m
s)

τ (ms)

∆ 
t s

∆τ

120 240

(b)

(a)

(c)

360

0 120 240 360

Figure 8.7  First 400 ms (a) of a room impulse response, (b) of the associated build-up function ts(τ) and 
(c) of the difference quotient Δts(τ)/Δτ (with Δτ = 5 ms). EC is 2.75 in this example.
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The standard technique for testing the randomness of a signal is autocorrelation analysis. 
In this procedure, all the irregularly distributed components are swept together into a single 
central peak, whereas the remaining re�ections will form side components or even satellite 
maxima in the autocorrelogram. Since the impulse response g(t) is a non-stationary signal, 
we use the autocorrelation function according to Equation 1.51:

 g t g t t g t g t tgg d d∫ ∫( ) ( ) ( ) ( ) ( )φ τ = + τ = − τ −
−∞

∞

−∞

∞

 (8.22)

The second expression is just the convolution of the impulse response with its time-reversed 
replica. It tells us that the autocorrelation function can be obtained in real time by exciting 
the room with its time-reversed impulse response, which has been measured beforehand. 
The autocorrelation functions shown in Figure  8.8 have been obtained with this simple 

(a)

(b)

Figure 8.8 Autocorrelation function of a re�ectogram, measured in a reverberation chamber with the 
playback techniques. The room was excited with a �ltered impulse of about 1 ms duration and a 
centre frequency of 2000 Hz. Abscissa unit is (a) 20 ms and (b) 5 ms.
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‘playback’ techniques. If Equation 8.22 is applied to two different impulse responses, g(t) 
and g′(t), the result is their cross-correlation function, g ggg ( ) ( ) ( )φ τ = τ ∗ ′ −τ′ .

In order to decide whether or not a certain side maximum of the autocorrelation function 
indicates audible colouration, we form a weighted autocorrelation function:

 bgg gg( ) ( ) ( )′φ τ = τ ⋅φ τ  (8.23)

Now let us denote by τ0 the value of the argument at which a prominent side maximum 
appears. According to F. A. Bilsen11, we have to expect audible colouration if

 gg gg( ) 0.06 (0)0′φ τ = ⋅ ′φ  (8.24)

no matter if this side maximum is caused by an isolated re�ection or by a periodic succession 
of re�ections. The weighting function b(τ) has been calculated from the thresholds repre-
sented in Figure 7.10. It is shown in Figure 8.9.

The temporal structure of a room’s impulse response determines not only the shape of its 
autocorrelation function but also its modulation transfer function (MTF), which was intro-
duced in Section 5.6. Indeed, M. Schroeder12 has shown that for white noise as a primary 
sound signal, the complex MTF is related to the impulse response by

 m g t i t t g t t( ) exp d d
2

0

2

0
∫ ∫( ) ( ) ( )Ω =   − Ω  

∞ ∞

 (8.25)

This formula is readily obtained from Equations 5.36 and 5.38 by replacing exp(−2δτ) with 
[g(τ)]2. It means that the complex modulation transfer is the inverse Fourier transform of 
the squared room impulse response divided by the integral over the squared response. Of 
course, this relation applies as well to an impulse response which has been con�ned to a 
suitable frequency band by bandpass �ltering.

Most of the parameters introduced in Chapter  7 can be evaluated from impulse 
responses by relatively simple operations using a digital computer. Table 8.2 lists some 
of them along with the equations by which they are de�ned. (Only the evaluation of 
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Figure 8.9 Detecting colouration: weighting function for autocorrelation functions. (Based on Bilsen.11)
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the speech transmission index (STI) is somewhat more involved.) The experimental deter-
mination of the ‘lateral energy fraction’ (LEF) and the ‘late lateral energy’ LG80

∞  requires 
the use of an additional microphone with gradient characteristics (�gure-of-eight micro-
phone) oriented in such a way that the sound source lies in its plane of zero sensitiv-
ity. Both microphones are placed at the same position. The ‘interaural cross correlation’ 
(IACC) is obtained by cross-correlating the impulse responses describing the sound trans-
mission from the sound source to both ears of a human head. If such measurements are 
carried out only occasionally, the responses can be obtained with two small microphones 
�xed at the entrance of both ear channels of a real person whose only function is to scat-
ter the sound waves in a realistic way. For routine work, it is certainly more convenient to 
replace the human head by a dummy head with built-in microphones.

8.4 MEASUREMENT OF REVERBERATION

Although both the reverberation time of a room as well as the early decay time (EDT) can be 
derived from its impulse response, we start by describing the more traditional method, the 
principle of which agrees with Sabine’s measuring procedure, apart from his experimental 
equipment. Since the reverberation time is usually determined by the evaluation of decay 
curves, the �rst step is recording decay curves over a suf�ciently wide range of sound levels.

The standard set-up for this measurement which can be modi�ed in many ways is sche-
matically depicted in Figure 8.10. A loudspeaker LS driven by a signal generator, excites the 
room to steady-state conditions. The output voltage of the microphone M is fed to an ampli-
�er (not shown in Figure 8.10) and �lter F, and then to a logarithmic recorder LR, whose 
readout corresponds to the sound pressure level in decibels. At a given moment, the excita-
tion is switched off, and at the same time, the recorder starts to record the decay process.

The signal produced by the generator is either a frequency-modulated sinusoidal signal 
whose momentary frequency covers a narrow range, or it is random noise �ltered by an 
octave or third octave �lter. The range of mid-frequencies, for which such measurements 
are usually carried out, extends from about 50 to 10 000 Hz; most frequently, however, 
the range from 100 to 5000 Hz is considered. As mentioned in Section 8.1, excitation 
by a pistol shot is often a practical alternative. Pure sinusoidal tones are used only occa-
sionally, for example, to excite individual modes in the range well below the Schroeder 
frequency.

The loudspeaker, or more generally the sound source, is placed at the location of the 
original source when the room is in its normal use. This applies not only to reverberation 

Table 8.2 Some objective sound �eld parameters

Name of parameter Symbol De�ned by equation

De�nition/(‘Deutlichkeit’) D 7.8
Clarity index (‘Klarheitsmaß’) C, C80 7.9
Centre time ts 7.12
Support STe 7.17
Echo criterion (Dietsch and Kraak) EC 8.20, 8.21
Speech transmission index STI 7.17, 7.18
Lateral energy fraction LEF 7.19
Late lateral energy LG80

∞ 7.20

Interaural cross correlation IACC 7.20, 7.21
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measurements but also to other measurements. However, because of the reciprocity prin-
ciple (see Section 3.1), the location of the sound source and the microphone can be inter-
changed without altering the results, provided the sound source and the microphone have 
no directionality. In any case, it is important that the distance between the sound source 
and the microphone is much larger than the critical distance given by Equation 5.44 or 
5.48, otherwise the direct sound would have an undue in�uence on the shape of the decay 
curve.

If the sound �eld were completely diffuse, the decay should be the same throughout the 
room. Since this ideal condition is hardly ever met in normal rooms, it is advisable to carry 
out several measurements for each frequency band at different microphone positions. This 
does not hold even more if the quantity to be evaluated is the EDT because this varies 
considerably from one place to another within the same hall.

In Figure 8.10, the microphone signal is passed through a band �lter – usually an octave 
or third octave �lter – mainly to improve the signal-to-noise ratio, that is, to reduce the dis-
turbing in�uence of noise produced in the hall itself or in the microphone and the electrical 
ampli�er. If the room is excited by a pistol shot or another wide-band signal, it is this �lter 
which de�nes the frequency band for which the reverberation time is measured and thus 
yields a rough measure of its frequency dependence.

For recording the decay curves, the conventional electromechanical level recorder has 
been superseded nowadays by the digital computer, which converts the sound pressure 
amplitude of the received signal into the instantaneous level. Usually, the level L(t) in the 
experimental decay curves does not fall in a strictly linear way but contains random �uc-
tuations which are due, as explained in Section 3.8, to complicated interferences between 
decaying normal modes. If these �uctuations are not too strong, the decay curve can be 
approximated by a straight line. This can be done manually, that is, by ruler and pencil. If 
high precision is required it may be advantageous to carry out a ‘least square �t’: Let t1 and 
t2 denote the interval in which the decay curve is to be approximated (see Figure 8.11). Then, 
the following integrations must be performed:
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This procedure is particularly useful when applied to EDT.

LS M
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Figure 8.10  Measurement of sound decay and reverberation time.
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In any case, the slope of the decay curve is related to the reverberation time T by

T
t
L

60= ⋅ ∆
∆

 (8.28)

If random noise is used as an excitation signal, each member of a series of repeated decay 
measurements is slightly different from all others and none of them is representative for 
all decay processes. This is an immediate consequence of the random character of the 
input signal. This uncertainty can be avoided, in principle, by averaging over a great 
number of individual reverberation curves, taken under otherwise unchanged conditions. 
Fortunately, this tedious procedure can be circumvented by applying an elegant method, 
called ‘backward integration’, which was proposed and �rst applied by M. R. Schroeder.13

It is based on the following relationship between the impulse response g(t) and the aver-
age h t2 ( )  over all individual decay curves (for a given measurement con�guration and 
noise band):

 h t g x x g x x g x x
t
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d d d2 2 2
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0
∫ ∫ ∫( ) ( ) ( ) ( )=   =   −  
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(8.29)

To prove this relationship, let us suppose that the room is excited by white noise n(t) switched 
off at the time t = 0. According to Equation 1.58, the decaying sound pressure is given by

 h t g x n t x x t
t

d for 0∫( ) ( ) ( )= ⋅ − ≥
∞

Squaring this latter expression yields a double integral, which after averaging reads

h t g x x g y n t x n t y yd d2 ∫∫ ( ) ( )( ) ( ) ( )= − ⋅ −
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Figure 8.11  Logarithmic decay curve and its approximation within the limits t1 and t2 by a straight line.
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The acute brackets indicate ensemble averaging, strictly speaking, which, however, is 
equivalent to temporal averaging. Hence,

n t x n t y x ynn( ) ( )( )− ⋅ − = φ −

is a Dirac function, namely the autocorrelation function of white noise. Thus, the double inte-
gral is reduced to the single integral of Equation 8.29. This derivation is valid no matter whether 
the impulse response is that measured for the full frequency range or for only of a part of it.

The merits of this method are demonstrated by the examples shown in Figure 8.12. The 
upper decay curves have been measured with the traditional method, that is, with inter-
rupted random noise excitation, according to Figure 8.10. The decaying level shows strong 
�uctuations, which do not re�ect any acoustical properties of the transmission path and 
hence of the room, but are mainly due to the random character of the exciting signal; if 
these measurements were repeated, each new result would differ from the preceding one in 
many details. In contrast, the lower curves, obtained by backward integration according to 
Equation 8.29, are free of such confusing �uctuations and hence contain only signi�cant 
information. Repeated measurements for one situation yield identical results, which is not 
surprising since these decay curves are unique functions of impulse responses. It is clear that 
from such registrations the reverberation time can be determined with much greater accu-
racy than from decay curves recorded in the traditional way. This holds even more for EDT. 
Furthermore, any characteristic deviations of the sound decay from exponential behaviour 
are much more obvious.

For the practical execution, the second version of Equation 8.29 is more useful in that it 
yields the decaying quantity in real time. This means that the integral of the squared impulse 
response must be measured and stored beforehand. Of course, the upper limit ∞ must be 

(a)

(b)

5 dB

5 dB

Figure 8.12 Experimental reverberation curves: (a) conventional procedure according to Figure 8.10 and 
(b) recorded with backward integration according to Equation 8.29.
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replaced with a �nite value, named t∞, which is not uncritical because there is always some 
acoustical or electrical background noise. Its effect on exponential decay curves correspond-
ing to a reverberation time T = 2 s is demonstrated by Figure 8.13. If the limit t∞ is too long, 
the microphone will pick up too much noise, which causes the characteristic tail at the lower 
end of the decay curve. Too short an integration time will lead to an early downward bend 
of the curve, which is also awkward. Obviously, there exists an optimum (about 1.25 s in 
Figure 8.13) for t∞ which depends on the relative noise level and the decay time.

To determine the reverberation time after Equation 8.28, the slope of the decay curve 
is often evaluated in the level range from −5 to −35 dB relative to the initial level.14 This 
procedure is to improve the comparability and reproducibility of results in such cases where 
the fall in level is not linear. It is doubtful, however, whether the evaluation of an average 
slope from curves which are noticeably bent is very meaningful, or whether the evaluation 
should rather be restricted to their initial parts, that is, to EDT, which is anyway a more 
reliable indicator of the subjective impression of reverberance. The same argument applies 
if the reverberation measurements are carried out with the goal to determine the absorption 
coef�cient of a test material (Section 8.7) since the average damping constant of all excited 
normal modes is related to the initial slope of a decay curve and not to some average slope 
(see Equation 3.68).

It should be mentioned that the absorption of a room and hence its reverberation time 
could be determined, at least in principle, from the steady-state sound level or energy density, 
according to Equation 5.42. Likewise, the modulation transfer function could be used to 
obtain the reverberation time. In practice, however, these methods do not offer any advan-
tages over those described above, since they are more time-consuming and less accurate.

8.5  DIRECTIONAL DISTRIBUTION, DIFFUSENESS OF A SOUND FIELD

To this day, it is not clear whether the diffuseness of a sound �eld is an acoustical quality 
parameter in its own right, or whether it is just the condition which ensures the validity 
of the simple reverberation formulae which are in common use. This is because the direct 
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Figure 8.13  Effect of background noise on decay curves processed with backward integration according to 
Equation 8.29. The noise level is −41.4 dB. Parameter: upper integration limit t∞, replacing ∞ 
(in seconds).
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measurement of diffuseness is dif�cult and time consuming. Accordingly, not many data on 
this sound �eld property, collected measured in concert or other large halls, are available. 
Since sound �eld ‘diffusion’ or ‘diffusivity’ is a kind of magic word in room acoustics, this 
book would remain incomplete without a section on the measurement of diffuseness.

The straightforward way to determine sound �eld diffuseness is certainly to measure the 
directional distribution of sound energy �ow. As mentioned in Section 4.3, this distribu-
tion is characterized by a function I(φ,ϑ). It can be measured by scanning all directions 
with a directional microphone with suf�ciently high angular resolution. Let Γ(φ,ϑ) be the 
directional factor, that is, the relative sensitivity of the microphone as a function of angles 
φ and ϑ in a suitably chosen polar coordinate system, then the squared output voltage of the 
microphone is proportional to

 I I, , , d
4

2∫∫( ) ( ) ( )′ ϕ ϑ = ′ϕ ′ϑ ⋅ Γ ϕ − ′ϕ ϑ − ′ϑ ′Ω
π

 (8.30)

This expression is the two-dimensional convolution of the true directional distribution 
I(φ,ϑ) with ( , ) 2Γ φ ϑ , dΩ′ = sinϑ′dϑ′dφ′ is the solid angle element. Obviously, the agreement 
of I′ with I is the better the closer the directivity factor Γ comes to a Dirac function.

A measure of the isotropy or diffuseness of the sound �eld is the ‘directional diffusivity’ 
introduced by Meyer and Thiele.15 It is based on Equation 8.30, however with the integra-
tion extended over the upper hemisphere only. We denote with I ′  the measured intensity 
averaged over all directions and with

 m
I

I I
1

4
d∫∫=

π ′
′ − ′ Ω (8.31)

the relative mean absolute deviation from it. Let m0 be the same quantity obtained in an 
anechoic chamber. Then, the directional diffusivity is de�ned as

 d
m
m

1 100%
0

= −



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⋅  (8.32)

Dividing m by m0 produces a certain normalization and, consequently, d = 100% in a per-
fectly diffuse sound �eld, whereas in the sound �eld consisting of one single plane wave the 
directional diffusion becomes zero. This simple procedure, however, does not completely 
eliminate the in�uence of the microphone characteristics. Therefore, experimental d values 
are only comparable when they have been determined with similar microphones. (The correct 
way to ‘clean’ the experimental data would be to perform a two-dimensional deconvolution.)

Many distributions measured in this way can be found in the cited publication by Meyer and 
Thiele. As a directional microphone, these authors used a concave metal mirror (see Figure 8.21) 
with a microphone capsule arranged in its focus. The diameter of the mirror is 1.20 m, which 
leads to a half-power width of its directional characteristics (angular distance between 3 dB 
points) of about 8.6° at 2000 Hz. The directional diffusivity d, as determined from the direc-
tional distribution, varied between 35% and 75% without showing a clear tendency.

A more manageable device has been employed by Tachibana et al.16 in the course of a 
survey of 20 large halls auditoriums in Europe and Japan. To detect the directional distri-
bution of low-order (i.e., of early re�ections), they applied a method which was developed 
by Yamasaki and Itow.17 The sensor used by these authors consists of four 1/4-inch pres-
sure microphones which de�ne a Cartesian coordinate system, with one of them situated 
at the origin of the imagined coordinate system while the remaining ones are placed on 
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its three axes at a distance of 50 or 33 mm. The room is excited by an impulse with 5 μs 
duration. To improve the signal-to-noise ratio, the impulse responses picked up simultane-
ously by the microphones are averaged over up to 256 shots. Suppose the impulse responses 
contain just the direct sound and one re�ection. The arrival times of both components are 
slightly different in the four �nal responses, and from these differences, the direction of 
the incident re�ections can be determined. Together with the delay common to the four 
microphones, this leads to the location of the image source which caused this re�ection. 
The arrival times are obtained from the peaks of the six short-time correlation coef�cients:

∫ ∫∫( ) ( ) ( ) ( ) ( )ψ τ = + τ    
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with gi, gk denoting the averaged impulse responses (i, k = 0, 1, 2, 3 and i ≠ k). Δ is a suitably 
chosen time interval. A few of their results, measured in a living room, in the Boston Symphony 
Hall and in a cathedral (the Münster in Freiburg, Germany), are presented in Figure 8.14. The 
�rst line shows the three impulse responses obtained in these rooms, the second line contains the 
spatial distributions of image sources indicated by small circles (second line) and in the third line 
there are the corresponding directional distributions of the sound. The lengths of the ‘rays’ in 
the latter are proportional to the level of the received sound. (Both the pattern of image sources 
and the directional distributions are projected into the ‘�oor’ plane.)
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Figure 8.14 Impulse response (a), image sources (b) and directional distribution of re�ected sound 
(c)  for three different enclosures: living room [A], Boston Symphony Hall [B] and Münster 
in Freiburg/Germany [C]. The pattern of image sources and the directional distributions are 
projected into the ground plane. (Based on Yamasaki and Itow.17 Courtesy of J Acoust Soc 
Japan.)
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As an alternative, Yamasaki and Itow used the aforementioned four-microphone probe 
for measuring the three components of the particle velocity and the intensity sensor, accord-
ing to Equation 8.1, with the goal of identifying image sources. To this end, they �ltered 
the impulse responses with a suitable band-pass �lter and applied a variable time window 
with a width of 10 ms to them. From the output of each microphone pair, the correspond-
ing component of the short-time intensity was obtained. These components determine the 
magnitude and the direction of the intensity vector.

A procedure similar to that of Yamasaki and Itow was developed by Sekiguchi et al.18

These authors employed a probe consisting of four 1/4-inch microphones placed at the cor-
ners of a regular tetrahedron with a side length of 17 cm. For room excitation, they used 
2 kHz tone bursts with a duration of 80 μs; to improve the signal-to-noise ratio, 32 or, 
alternatively, 64 impulse responses were averaged. Because of the relatively large dimensions 
of the probe, the authors achieved suf�ciently high accuracy without performing the time-
consuming correlation operations described above.

It should be noted that the application of both methods is restricted to the early part of a 
room impulse response, which consists of a few well-separated re�ections. In the reverber-
ant part of the response, the density of re�ections is so high that no individual image sources 
can be identi�ed.

If one is not interested in the details of the directional distribution but only in a measure 
for its uniformity, more indirect methods can be applied, that is, one can measure a quantity 
whose value depends on the degree of diffuseness. One of these quantities is the spatial cor-
relation coef�cient of the steady-state sound pressure at two different points which assumes 
characteristic values in a diffuse �eld. Or more precisely, we consider the correlation coef-
�cient Ψ de�ned in Equation 1.54:
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⋅
 (8.33)

To calculate the correlation coef�cient in a diffuse sound �eld, we assume that the room 
is excited by random noise with a very small bandwidth. The sound �eld can be considered 
as being composed of plane waves with random amplitudes and phase angles ψn. Then, the 
sound pressure due to one such wave at two points 1 and 2 at distance x (see Figure 8.15) is

 p1(t) = A cos(ωt − φn) and p2(t) = A cos(ωt − φn − kx cos ϑn)

ω = kc is the centre frequency of the exciting 
frequency band. The angle ϑn characterizes 
the direction of the incident sound wave. Time 
averaging of the squared sound pressures yields
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Inserting these expressions into Equation 8.33 
leads to Ψ(x,ϑn) = cos(kx∙cosϑn). Finally, this 
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Figure 8.15 Derivation of Equations 8.34–8.36. 
1 and 2: microphone positions.
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expression is averaged over all possible directions of incidence with equal weight which 
means that the sound �eld is assumed as diffuse. The result is

x
kx

kx
sin( )Ψ =  (8.34)

If, however, the directions of incident sound waves are not uniformly distributed over the 
entire solid angle but only in a plane containing both points 1 and 2, we obtain, instead of 
Equation 8.34,

 Ψ(x) = J0(kx) (8.35)

where J0 is the Bessel function of order zero. If the line connecting both points is perpendicu-
lar to the plane of two-dimensional sound propagation, the result is

 Ψ(x) = 1 (8.36)

The functions presented in Equations 8.34–8.36 are plotted in Figure 8.16. The most 
interesting one is curve a; it is expected that any lack of diffuseness manifests itself in poor 
agreement between the measured and the theoretical correlation curve.

A relatively simple way to observe the correlation coef�cient is the playback method 
described in Section 8.3. Its basis is an obvious generalization of Equation 8.22, which is 
now applied to two different impulse responses, g(t) and g′(t), and yields the cross-correlation 
function of both responses:

 g t g t t g t g t tgg d d∫ ∫( ) ( ) ( ) ( ) ( )φ τ = ′ + τ = − ′ τ −′
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Figure 8.16 Correlation coef�cient Ψ as a function of the distance x between two observation points: 
(a) in a three-dimensional diffuse �eld, (b) in a two-dimensional diffuse �eld with the measuring 
axis 1–2 (in Figure 8.15) lying within its plane and (c) same as (b), but with the measuring axis 
perpendicular to the plane of sound propagation.
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The recipe contained in this expression reads as follows: First, the room is excited with a 
short impulse; its response, g(t), received at point 1, is stored on a magnetic tape or a computer. 
In a second step, the time-reversed function g(−t) is used as an input signal, the response to it is 
observed at point 2 for which the impulse response would be g′(t). The signal received during 
the second step is the cross-correlation function ϕgg′(τ), here τ appears as the real time. The cor-
relation coef�cient Ψ is proportional to ϕgg′(τmax) with τmax denoting the time where ϕgg′ assumes 
its absolute maximum. Figure 8.17 presents as an example the correlation coef�cient measured 
in the reverberation chamber. The �oor of this room was completely covered with 5 cm rock-
wool, while the other walls are virtually free of absorption. The correlation  coef�cient has 
been measured as a function of the distance x; the line 1–2 connecting both microphones in 
Figure 8.15 was vertical. As a sound signal, a short impulse has been used �ltered by a third-
octave �lter with a centre frequency of 1000 Hz. The three series of measurement refer to dif-
ferent con�gurations of scatterers, namely 0, 16 and 25 diffusers irregularly suspended in the 
room. The effect of the diffusers is obvious.

The derivation leading to Equations 8.34 to 8.36 is strictly valid only for signals with very 
small frequency bandwidth. If the bandwidth Δω is �nite but still small compared with the 
central frequency ω, Equation 8.37 can be averaged with the approximate result18
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The correlation coef�cient is not quite unambiguous, although it is hard to imagine a 
non-diffuse sound �eld leading to Equation 8.34 or 8.38. Nevertheless, it is sometimes rec-
ommended to amend it by an additional criterion for the diffuseness of a sound �eld. One 
possibility is to observe the spatial constancy of the energy density in the room (except in 
areas next to re�ecting walls, see Figure 2.11).

However, we know from Section 3.6 that the energy density in a room, produced by a mono-
frequent source signal, shows pronounced spatial �uctuations irrespective of whether the sound 
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Figure 8.17 Correlation coef�cient measured in a reverberation chamber for various con�gurations of 
 suspended scattering bodies.19 (▪ ▪ ▪, 25 scatterers; + + +, 16 scatterers; × × ×, no scatterers.)
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frequency is below or above the Schroeder limit (3.41). In the �rst case, the sound �eld consists 
of isolated modes, whereas in the latter one the sound source excites several or many modes 
simultaneously which interfere with each other in a complicated way (see Figure 3.8a). From 
this fact, we conclude that a sound �eld excited with a pure tone cannot be diffused. However, 
if the sound source emits �ltered random noise with restricted bandwidth some smoothing of 
the �uctuations will take place, depending on the bandwidth B and the reverberation time T 
as described in Section 3.7. As earlier, we denote with z(f) the result of this averaging process
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The relative variance of this quantity is given by Equation 3.57 which for large values of the 
product BT can be approximated by
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This variance corresponds to a certain �uctuation of the level L = 10 log10 z = 4.34 ln(z):
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From this relation, we conclude that the level of �uctuation will remain below 1 dB as long 
as BT > 11.42 or roughly

 BT > 100 (8.42)

Of course, this rule can only be applied if all frequencies contained in B are lying above the 
Schroeder frequency.

An alternative method of testing the diffuseness is to measure the squared sound pressure 
amplitude in front of a suf�ciently rigid wall as a function of the distance as discussed in 
Section 2.5. In fact, Equation 8.34 agrees – apart from a factor 2 in the argument – with the 
second term of Equation 2.50. This similarity is not accidental, since the �uctuations shown in 
Figure 2.11 are caused by interference of the incident and the re�ected waves which becomes 
less pronounced with increasing distance from the wall according to the decreasing coherence 
of those waves. The additional factor of 2 in the argument of Equation 2.41 accounts for the 
fact that the distance of some point from its mirror image, the rigid wall being considered as a 
mirror, is equivalent to the distance of both observation points in Figure 8.15.

Finally, the degree of sound �eld diffuseness can be checked by measuring the sound 
intensity which should be zero in a perfectly diffuse �eld. This method is not restricted to 
a particular kind of room excitation. A useful measure of the diffusioness is the quantity

 q
c

w
1d

I
= −  (8.43)

It varies between 0 (plane wave) and 1 (diffuse �eld). The magnitude of the intensity vector 
I is calculated from its three Cartesian components:

 I I Ix y z| |2 2 2 2I = + +

which are determined by using a three-component intensity probe (see Section 8.1).
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It should be emphasized that the conditions on which all the described indicators of 
diffuseness are based are necessary but not suf�cient. The only exception is the direct mea-
surement of the directional distribution.

8.6 SOUND ABSORPTION – TUBE METHODS

The knowledge of sound absorption of typical building materials is indispensable for all 
tasks related to room acoustical design: for the prediction and control of reverberation times 
of auditoria and other rooms, for the acoustical computer simulation of environment, for 
model experiments and for several other purposes.

Usually, the absorption of a surface is characterized by its absorption coef�cient, which is a 
function of the angle of sound incidence and, of course, of the frequency. It is closely related 
to the re�ection factor and the wall impedance of the material, described in Section 2.1. So, 
all methods to determine the latter quantities can be used to obtain the absorption coef�cient 
(but not vice versa). However, the direct determination of the re�ection factor in the free �eld 
is laborious and requires large test samples and an anechoic environment. Hence, it is not in 
common use nowadays. An exception is the measurement of the wall impedance according 
to its de�nition in Equation 2.2 since small sensors for both the sound pressure and the par-
ticle velocity are available today, the latter in form of small hot-wire anemometers as already 
mentioned in Section 8.1. Since there is usually a small distance d between the location of the 
probe and the surface, a correction may be in place. If it is assumed that the probe and the 
test surface are separated by an air layer with the thickness d, the impedance transformation 
effected by the latter is, according to Equation 2.24:

 Z c
Z i c kd
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ρ − ′
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0
0

0
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In this expression, Z′ is the impedance observed at the position of the probe, while Z denotes 
the true impedance of the surface.

Basically, there are two standard methods of measuring the acoustic absorption. They 
will be described in this and the next section. In the �rst of them, the test specimen and 
the probing sound �eld – a plane wave – are enclosed in a rigid tube. The measurement is 
restricted to the examination of small samples of locally reacting materials with a plane or 
nearly plane surface, and also to normal wave incidence onto the test specimen.

A typical set-up, known as ‘Kundt’s tube’ or ‘impedance tube’, is shown in Figure 8.18. It 
has smooth and rigid walls and a rectangular or circular cross-section. At one of its ends, 
there is a loudspeaker which generates a sinusoidal plane sound wave travelling toward the 
test specimen. This specimen terminates the other end of the tube and must be mounted in 
the same way as it is used in practice (for instance, with or without an air gap between the 
material and the hard backing). To suppress tube resonances, it may be useful, although 
not essential for the principle of the method, to place a wedge-like absorber in front of the 
loudspeaker as shown in the �gure. The test sample re�ects the incident wave more or less, 
the result is a partially standing wave in front of the sample, as described in Section 2.2. Its 
pressure maxima and minima are measured by a movable microphone probe that must be 
small enough not to distort the sound �eld to any great extent. As an alternative, a miniature 
microphone mounted on the tip of a thin movable rod may be employed as well.

The tube must be long enough to permit the formation of at least one maximum and 
one minimum of the pressure distribution at the lowest frequency of interest. Its lateral 
dimensions should be chosen in such a way that at the highest measuring frequency they are 
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still smaller than a certain fraction of the wavelength λmin. Or, more exactly, the following 
requirements must be met:

 
< λ

< λ

Rectangular tubes: Dimension of the wider side 0.5

Circular tubes: Diameter 0.586

min

min

(8.45)

Otherwise, higher-order wave types may occur with non-constant lateral pressure distri-
bution and with different and frequency-dependent wave velocities. On the other hand, to 
avoid unduly high wall losses, the cross-section of the tube must not be too small. Generally, 
at least two tubes of different dimensions are needed in order to cover the frequency range 
from about 100 to 5000 Hz.

For the determination of the absorption coef�cient, it is suf�cient to measure the maxi-
mum and the minimum values of the sound pressure amplitudes, that is, the pressures in 
the nodes and the antinodes of the standing wave. According to Equation 2.17 (with θ = 0), 
their ratio is

p
p

R

R

ˆ
ˆ

1
1

max

min
=

+
−

from which both the magnitude of the re�ection factor and the absorption coef�cient are 
easily obtained:

 R
p p
p p

ˆ ˆ
ˆ ˆ

max min

max min
= −

+
 (8.46)
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+
 (8.47)

If possible, the maxima and minima closest to the test specimen should be used for the 
evaluation of |R| and α since these values are least affected by the attenuation of the waves. 

BP

Sine generator

M

Absorbing termination Test specimen
LS

Figure 8.18  Conventional impedance tube, schematic (LS = loudspeaker, M = microphone, BP = bandpass 
�lter).
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It is possible, however, to eliminate this in�uence by interpolation or by calculation, but in 
most cases it is hardly worthwhile doing this.

If the test sample is of the locally reacting type, its absorption coef�cient αuni for random 
sound incidence can be calculated from its complex wall impedance, using Equation 2.54 or 
Figure 2.12. The wall impedance can be obtained in turn from the complex re�ection factor 
after Equation 2.9 (with θ = 0). To determine the phase angle χ, of the latter, we observe 
the location xmin of the pressure minimum (pressure node) next to the test specimen. This is 
related to the phase angle (see Equation 2.17) by

 
x

1
4 minχ = π −

λ




  (8.48)

Several attempts have been made to replace the somewhat involved and time-consuming 
standing wave method by faster and more modern procedures. A typical arrangement is 
sketched in Figure 8.19. The movable probe is replaced with two �xed microphones which 
are mounted �ush into the wall of the tube. Let S(f) denote the spectrum of the stationary 
sound signal emitted by the loudspeaker. If we choose the position of microphone 2 as a 
reference for the phases, the spectra of the sound signals received at both microphones are

 S1(f) = S(f) exp(−ikΔ) ∙ [1+ R(f) · exp(−i2kd)] (8.49)

and

 S2(f) = S(f)[1 + R(f) exp(−i2kd′)] with d′ = d + Δ (8.50)

As shown in Figure 8.19, d is the distance of microphone M1 from the surface of the 
sample under test and Δ denotes the distance between both microphones. From these equa-
tions, the complex re�ection factor is easily isolated:

 R f kd
k H

H k
H S f S fexp 2i

exp i

exp i
with ( ) / ( )12

12
12 2 1( ) ( ) ( )

( )=
∆ −

− − ∆
=  (8.51)

Critical are those frequencies for which exp(ikΔ) is close to +1 or −1, that is, when the dis-
tance Δ is about an integer multiple of half the wavelength. In such regions, the accuracy of 
measurement is not satisfactory. This problem can be circumvented by providing for a third 
microphone position. Of course, the relative sensitivities of all microphones must be taken 
into account, or the same microphone is used to measure S1 and S2 in succession.

Absorbing termination Test specimen
LS

∆ d

Signal generator

M2 M1

Recorder,
computer

Figure 8.19 Impedance tube with two �xed microphones.



Measuring techniques in room acoustics 221

If a short impulse, idealized as a Dirac impulse δ(t), is used as a test signal, the measure-
ment can be carried out with one microphone since the signals due to the incident and 
the re�ected wave can be separated by applying proper time windows. The sound signal 
received by the microphone M1

s′(t) = δ(t) + r(t) * δ(t − 2d/c) = δ(t) + r(t − 2d/c) (8.52)

where r(t) is the ‘re�ection response’ of the test material de�ned as the inverse Fourier trans-
form of the re�ection factor R (see Section 4.2). If necessary, the signal-to-noise ratio can be 
improved by replacing the test impulse by a time-stretched test signal with constant ampli-
tude spectrum, for example, by a sine sweep, as described in Section 8.2.

In order to separate safely the re�ected signal from the primary one, the latter must be suf-
�ciently short, and the distance d of the microphone from the sample must be large enough. 
The same holds for any spurious re�ections, for instance, from the loudspeaker or some 
other re�ecting object. This may lead to impractically long tubes. An alternative is to omit 
the tube, as depicted in Figure 8.20. In this form, the one-microphone techniques can be 
used for in situ measurement of acoustical wall and ceiling properties in existing enclosures. 
In this case, however, the waves are not plane but spherical. For this reason, the results may 
be not too exact because the re�ection of spherical waves is somewhat different from that 
of plane waves (see Section 2.4). Of course, the 1/r law of spherical wave propagation must 
be accounted for by proper correction terms in Equation 8.52. Further re�nements of this 
useful method are described in a paper published by Nélisse and Nicolas.21

8.7 SOUND ABSORPTION – REVERBERATION CHAMBER

The reverberation method of absorption measurement is superior to the impedance tube 
method in several respects. First of all, the measurement is performed with a diffuse sound 
�eld, that is, under conditions which are much more realistic than those encountered in a 
one-dimensional waveguide. Secondly, there are no limitations concerning the type and 
construction of the absorber, and the test specimen can be set up in much the same way in 
which the material is to be used in the particular practical application. Hence, the reverbera-
tion method is well suited for measuring the absorption coef�cient of almost any type of 
wall linings and of ceilings. And �nally, the absorption of discrete objects which cannot be 

Loudspeaker

Wall surface

Omnidirectional
microphone

(1)

(3)

(2)

(1)

(1) Incident impulse
(2) Reflection
(3) Parasitic reflections

(3)

(2)

Time

(a) (b)

Figure 8.20  In situ measurement of acoustical wall properties: (a) experimental set-up and (b) sequence 
of received signals. Re�ection 2 is isolated by applying a suitable time window. (Based on 
Mommertz.20)
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characterized by an absorption coef�cient can be determined in a reverberation chamber. 
This concerns, for instance, any kind of chairs, empty or with persons seated on them.

A reverberation chamber is a small room with a volume of at least 100 m3, better still 
200–300 m3, whose walls are as smooth and rigid as possible. The absorption coef�cient 
a0 of the bare walls, which should be uniform in construction and �nish, is determined by 
measuring the reverberation time of the empty chamber:

 T
V

S
=

α
0.1610

0

 (8.53)

(V = volume in m3, S = wall area in m2). For the actual measurement, a certain amount of the 
material under investigation (or a certain number of absorbers) is brought into the chamber; 
the arrangement of these materials should correspond to the arrangement in the intended 
application. The test specimen with the area Ss reduces the reverberation time from T0 to T 
with

 ( )=
α + − α

0.161
s s 0

T
V

S S S
 (8.54)

From this equation, the absorption coef�cient a of the test sample is easily calculated. In 
the case of discrete objects, the product Ssα in the denominator of Equation 8.54 is replaced 
by the total absorption area of the objects.

The air attenuation term 4mV introduced in Section 5.4 can be neglected, since it is con-
tained in the absorption of the empty chamber as well as in that of the chamber containing 
the test material and therefore will almost cancel. Its effect is small anyway because of the 
small chamber volume.

The measurement of reverberation has been described in detail in Section 8.4, and there-
fore no further discussion on this point is necessary. To increase the accuracy of the decay 
measurement, it is recommended to repeat the measurement with different source and 
microphone positions and to average the results. Usually, these measurements are performed 
with frequency bands of third octave bandwidth.

As mentioned earlier, the application of the Sabine equation produces systematic errors in 
that it overrates the absorption coef�cient; sometimes the value determined with Equation 
8.43 is larger than unity in contrast to the de�nition of the absorption coef�cient. An exam-
ple is shown in Figure 6.13 (dashed line). Such inconsistencies could be avoided by using 
other, more exact decay formulae, for instance, Eyring’s formula (5.24) (without the attenu-
ation term 4mV). Another possible reason for unrealistically high absorption coef�cients 
exceeding unity is edge diffraction, as will be discussed below. Nevertheless, the interna-
tional standardization of this measuring procedure recommends the use of Equation 8.43.22

The coef�cient determined in this way is sometimes given the name ‘Sabine absorption coef-
�cient’ in order to distinguish it from the ‘statistical absorption coef�cient’ or the random 
incidence absorption coef�cient auni after Equation 2.54.

The advantages of the reverberation method as mentioned at the beginning of this sec-
tion are offset by considerable uncertainty as regards its reliability and the accuracy of 
the results obtained with it. In fact, several round robin tests, in which the same speci-
men of an absorbing material has been tested in different laboratories, have revealed a 
remarkable disagreement in the results especially in the low frequency range. Obviously, 
these discrepancies must be attributed to different degrees of sound �eld diffuseness 
established in the reverberation chambers. Therefore, much attention must be given to 
this issue.
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A �rst step towards a high degree of sound �eld diffuseness is to avoid pairs of parallel 
walls in the design of a reverberation chamber. Otherwise sound waves would be re�ected 
to and fro between such wall pairs without being signi�cantly in�uenced by other walls. 
Further improvement is achieved by means of providing for sound scattering either during 
re�ections from the boundary or during the propagation of the sound waves in the free 
volume. In the former case, the increase in diffuseness is brought about by corrugations of 
the boundary, for example, by spherical or cylindrical segments or other rigid bodies that 
are attached to the boundary. It is important, that the dimensions of these ‘boundary dif-
fusers’ are comparable to the acoustic wavelength. A useful alternative to this kind of scat-
tering bodies are ‘volume diffusers’ as described in Section 5.2. Practically, these scatterers 
can be realized in form of bent shells of wood, plastics or metal of variable size which are 
hanging from the ceiling in an irregular arrangement (see Figure 8.21). If necessary, bending 

Figure 8.21 Reverberation chamber �tted out with 25 diffusers of Perspex (volume 324 m3; dimensions of 
one shell 1.54 m × 1.28 m).
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resonances of such shells can be damped by applying thin layers of some lossy material onto 
them. Up to now, no clear decision has been arrived at about which kind of diffusers is more 
ef�cient.23 However, from a more practical standpoint, it seems that hanging diffusers are 
preferable since a given arrangement of scatterers can easily be changed if it does not prove 
satisfactory. The increase in diffuseness due to the number of diffusers has already been 
demonstrated in Figure 8.17.

It should be noted that too many volume diffusers may also affect the validity of the 
usual reverberation formulae and therefore the density of scatterers has a certain optimum 
characterized by

 < <n Q h0.5 2s (8.55)

with n  and Qs denoting the average density and scattering cross-section of the diffusers, 
respectively; h is the distance of the test specimen from the opposite wall. This condition has 
also been proven experimentally. For somewhat elevated frequencies, the scattering cross-
section Qs of a bent shell is roughly half the geometrical area of one of its sides.

Another source of systematic errors is ‘edge effect’. If an absorbing area has free edges, 
that is, edges not adjacent to a perpendicular rigid wall, it will usually absorb more sound 
energy per second than in proportion to its geometrical area, the difference being caused by 
diffraction of sound into the absorbing area. This effect can be reduced (but not completely 
eliminated) by covering the free edges of a test specimen with a frame made of re�ective 
panels. Such a frame is mandatory for measuring the absorption of chairs or of a seated 
audience. Formally, the edge effect can be accounted for by introducing an ‘effective absorp-
tion coef�cient’24:

 αeff = βL′ + α∞ (8.56)

In this formula, which agrees with Equation 6.39, α∞ denotes the absorption coef�cient of 
the unbounded test material and L′ is the total length of free edges divided by the area of the 
actual sample. The factor β depends on the frequency and the type of material. It may be as 
high as 0.2 m or more and can be determined experimentally by using test pieces of different 
sizes and shapes. In rare cases, β may even turn out slightly negative.

The edge effect is completely absent if one wall of the chamber is entirely covered with 
the material under test since then there will be no free edges. However, this arrangement 
introduces some asymmetry into the sound �eld and hence requires particular efforts to 
maintain a diffuse sound �eld. Furthermore, Equation 2.50 and Figure 2.11 tell us that the 
sound pressure amplitude in front of and near a perpendicularly adjacent rigid wall is dif-
ferent from that at some distance from all re�ecting walls. Exactly at the edge, the pressure 
level is increased by 3 dB, and hence, more sound energy is dissipated per unit area near 
the edge than at more distant parts of the specimen. This effect, sometimes referred to as 
‘Waterhouse effect’,25 can be corrected by replacing the geometrical area Ss of the test speci-
men with

 = + ′′λS S L
1
8

eff s  (8.57)

where λ is the wavelength corresponding to the centre frequency of the selected frequency 
band and L′′ is the perimeter of the sample.

Finally, a remark may be appropriate on the frequency range in which a given rever-
beration chamber can be used. If the linear chamber dimensions are in the range of a few 
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acoustical wavelengths, then statistical reverberation theories are no longer applicable to 
the decay process. Likewise, a diffuse sound �eld cannot be expected when the number and 
density of eigenfrequencies is small. Suppose we require that at least ten normal modes be 
excited by a sound signal of third-octave bandwidth. This is the case if the mid-frequency of 
the band exceeds a limiting frequency f l which can be found from Equation 3.26:

 f
V

l
500
3

≈  (8.58)

Here the room volume V is expressed in m3 and the frequency in Hz. This may be considered 
as the lower frequency limit of a given reverberation chamber.

8.8 SCATTERING COEFFICIENT

As discussed in Section 2.7, a sound wave re�ected from some surface will continue its way 
either according to the re�ection law of geometrical acoustics (specular re�ection) or will 
be diffused more or less in all directions (diffuse re�ection), depending on the structure of 
the wall. Most real walls will produce a mixture of both components. Complete informa-
tion on the re�ecting properties of a given wall can be obtained by direct measurement of 
the scattering characteristics. For this purpose, a test specimen of the surface is irradiated 
with a sound wave, at the same time the sound re�ected (or scattered) from the specimen is 
recorded by swivelling the microphone at �xed distance around the specimen. Usually, this 
measurement is carried out in the model scale. Its results can be represented as a scattering 
diagram as the one shown in Figure 2.18 or a collection of such diagrams.

The measurement described above is a cumbersome procedure which often yields much 
more information as is really needed. Usually, one is interested just in a single �gure which 
characterizes the diffuse re�ectivity of a wall. Such a parameter is the scattering coef�cient 
already introduced in Section 5.2: Let I0 denote the intensity of the incident wave, then 
(1 − α)I0 is the energy per second re�ected from the surface. The scattering coef�cient s is 
de�ned as that fraction of this energy which travels into non-specular directions while Ispec

is the intensity of the specularly re�ected component. Hence,

 s
I

I
1

1
spec

0 ( )= −
− α

 (8.59)

Sometimes, it may prove to be dif�cult, however, to 
separate the specular component Ispec from the scat-
tered ones in an unambiguously manner. Therefore, 
more indirect procedures have been developed which 
have the additional advantage of circumventing the 
time-consuming measurement of scattering dia-
grams. We describe here two of them which are due 
to Vorländer and Mommertz.26,27 They have in com-
mon that the measurement is carried out with the 
circular sample placed on a turntable; thus, it may be 
practical to perform the examination with a scaled-
down model of the test object.

One of these methods is carried out in the free-
�eld with a source–microphone arrangement as 
shown in Figure  8.22. Suppose the loudspeaker 

Loudspeaker Axis of
rotation

Sample on turntable

ϑ

Figure 8.22 Experimental set-up for mea-
suring the angle-dependent 
scattering coef�cient.
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emits n band-limited impulses, all of them reaching the sample at different positions. Each 
of the re�ection responses contains a specular part and a diffuse part, and the same holds 
for their complex Fourier transforms, the re�ection factors Ri(ω):

 Ri(ω) = Rspec(ω) + Si(ω) (i = 1, 2, …, n)

Si(ω) is the spectrum of the ith scattered signal. To separate both components, we form the 
average

 R
n

R Ri i

i

n
1

0

spec∑= ≈
=

 (8.60)

This is because each of the n takes yields the same specular component Rspec, while the scat-
tered components Si are different. Under the assumption that the latter are independent, they 
will cancel each other in the sum of the Si, which can be neglected if n is suf�ciently large. 
Inserting Ispec/I0 = |Rspec|2 into Equation 8.59, we �nally obtain the angle-dependent scatter-
ing coef�cient of the test specimen:

 s
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= −
− α

 (8.61)

The absorption coef�cient of the test sample is given by
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 (8.62)

The second method is based essentially on the same idea. However, the experimental 
set-up is placed in an otherwise empty reverberation chamber. Accordingly, we expect as a 
�nal result the scattering coef�cient for random sound incidence. Again, the test signals are 
n short band-limited impulses, emitted at slightly different positions of the sample. Each of 
them produces an impulse response g1(t), g2(t), ..., gn(t) of the reverberation room, and each 
of the latter consists of two parts gi(t) = g0(t) + gi′(t) with i = 1, 2, …, n. The �rst part is the 
specular re�ection from the test specimen and does not depend on the position of the turn-
table. The second part represents the scattered signal and varies from one take to the other. 
To separate both parts, we add all these impulse responses:
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The square of this sum has the expectation value

 h n g n g2 2
spec
2 2= + ⋅ ′  (8.63)

where the acute brackets indicate ensemble averages. This formula describes the sound decay 
in the room. Both terms decay with different decay rates: the �rst term decays faster than 
the second one since its energy is not only diminished by absorption but also by continuous 
conversion into ‘diffuse energy’ by the test sample. Hence, Equation 8.63 can be written as

 h C n t n texp( 2 ) exp( 2 )2 2
1 2( )〈 〉 = ⋅ ⋅ − δ + ⋅ − δ  (8.64)
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with the arbitrary constant C. The damping constant δ2 is determined by the sound absorp-
tion of the reverberation chamber:

 ( )δ = = − α + α 
cA
V

c
V

S S S
8 8

2 s 0 s  (8.65)

(V is the volume of the chamber; S is the area of its boundary with the absorption coef�cient 
α0; Ss is the area of the sample). On the other hand, the additional scattering ‘losses’ to be 
regarded in the �rst term of Equation 8.64 lead to an increase in the decay constant:

 ( )δ = δ + − αs
cS
V

1
8

1 2
s  (8.66)

Figure 8.23 shows several logarithmic decay curves measured with this method. They are 
double sloped as was to be expected. The parameter is n, the number of individual decays 
from which the averaged decay has been formed. With increasing n, the initial slope cor-
responding to the average decay constant (see Equation 3.68)

 �
n

n
n

1
if 11 2

1δ = δ + δ
+

≈ δ (8.67)

becomes more prominent. If the number n of 
decays is high enough, both decay constants 
δ1 and δ2 can be evaluated with suf�cient 
accuracy, particularly if Schroeder’s back-
ward integration technique (see Section 8.4) 
is applied. From their difference, the scatter-
ing coef�cient for random sound incidence 
s is readily obtained, using Equations 8.65 
and 8.66.

Figure 8.24 represents the ‘random inci-
dence scattering coef�cient’ of two surfaces 
obtained with the direct method (averaged 
over all directions of incidence) and with 
the reverberation method. The test objects 
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Figure 8.23  Average decay curves (model measure-
ments). Here n is the number of indi-
vidual decays from which the average 
has been formed. (Based on Vorländer 
and Mommertz.26,27)
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Figure 8.24 Random incidence scattering coef�cients s of irregular arrangements of battens on a plane 
panel as a function of frequency: ♦   ♦ free �eld method; ▪   ▪ reverberation method. 
(a)  battens with quadratic cross-section, side length = 2 cm. (b) battens with semicircular cross-
section, diameter = 2 cm. (Based on Mommertz and Vorländer.27)
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were battens with quadratic or semicylindrical cross-section (side length or diameter 2 cm) 
irregularly mounted on a plane panel. The agreement of both results is obvious. The small 
differences at high frequencies are probably caused by the quadratic shape of the sample.

More data on scattering surfaces can be found in the books of Vorländer28 and of Cox 
and D’Antonio.29
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Chapter 9

Design considerations and 
design procedures

The purpose of this chapter is to discuss some practical aspects of room acoustics, namely 
the acoustical design of auditoria in which some kind of performance (lectures, music, the-
atre, etc.) is to be presented to an audience, or of spaces in which the reduction of noise 
levels is the main interest. Its contents are not just an extension of fundamental laws and 
scienti�c insights towards the practical world, nor are they a collection of guidelines and 
rules deduced from them. In fact, the reader should be aware that the art of room acousti-
cal design is only partially based on theoretical considerations and that it cannot be learned 
from this or any other book, but that successful work in this �eld requires considerable 
practical experience. On the other hand, mere experience without at least some insight into 
the physics of sound and without some knowledge of psychoacoustic facts is of little worth, 
or is even dangerous in that it may lead to unacceptable generalizations.

Usually, the practical work of an acoustic consultant starts with drawings being presented 
to him which show details of a hall or some other room which is at the planning stage or 
under construction, or even one which is already in existence and in full use. First of all, he 
must ascertain the purpose for which the hall is to be used, that is, which type of perfor-
mances or presentations are to take place in it. This is more dif�cult than appears at �rst 
sight, as the economic necessities sometimes clash with the ambitious ideas of the owner 
or the architects. Secondly, he or she must gain some idea of the objective structure of the 
sound �eld to be expected, for instance, the values of the parameters characterizing the 
acoustical behaviour of the room. Thirdly, he must decide whether or not the result of his 
investigations favours the intended use of the room; and �nally, if necessary, he must work 
out proposals for changes or measures which are aimed at improving the acoustics, keeping 
in mind that these may be very costly or may substantially modify the architect’s original 
ideas and therefore have to be given very careful consideration.

In order to solve these tasks, there is so far no generally accepted procedure which would 
lead with absolute certainty to a good result. Perhaps it is too much to expect there ever to 
be the possibility of such a ‘recipe’, since one project is usually different from the next due 
to the efforts of architects and owners to create something quite new and original in each 
theatre or concert hall.

Nevertheless, a few standard methods of acoustical design have evolved which have 
proved useful and which can be applied in virtually every case. The importance which the 
acoustic consultant will attribute to one or the other, the practical consequences which he 
will draw from his examination, whether he favours reverberation calculations more than 
geometrical considerations or vice versa – all this is left to him, to his skill and to his expe-
rience. It is a fact, however, that an excellent result requires close and trustful cooperation 
with the architect – and a certain amount of luck too.
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As we have seen in preceding chapters, there are a few objective sound �eld properties 
which are beyond question regarding their importance for what we call good or poor acous-
tics of a hall. One of them is the strength of the direct sound which is responsible for the 
loudness and for a natural impression of sounds. Another one is the temporal and direc-
tional distribution of the ‘early’ re�ected sound energy which supports the direct sound, 
and �nally, we quest for an appropriate reverberance of a hall. These properties depend on 
constructional data, in particular on the

1. Shape of the room
2. Volume of the room
3. Number of seats and their arrangement
4. Materials of walls, ceiling, �oor, seats and so on

While the reverberation time is determined by factors (b)–(d) and not signi�cantly by (a), 
the room shape in�uences strongly the number, directions, delays and strengths of the early 
re�ections received at a given position or seat. The strength of the direct sound depends on 
the distances to be covered and also on the arrangement of the audience.

Before going into some more detail of these items, we shall deal with an ever-important 
matter, namely with predicting the noise level to be expected in a room and some methods 
of reducing it.

9.1 PREDICTION OF NOISE LEVEL

There are many spaces that are not intended for any acoustical presentations but where 
some acoustical treatment is nevertheless desirable or necessary. Although they show 
wide variations in character and structural details, they all fall into the category of 
rooms in which people are present and in which noise is produced, for example, by noisy 
machinery or by the people themselves. Examples of this are staircases, concourses of 
railway stations and airports, and entrance halls and foyers of concert halls and theatres. 
Most important, however, are working spaces such as open-plan of�ces, workshops and 
factories. Here room acoustics has the relatively prosaic (however, important) task of 
reducing the noise level.

Traditionally, acoustics does not play any important role in the design of a factory or an 
open-plan of�ce, to say the least; usually quite different aspects, as for instance those of ef�-
cient organization, of the economical use of space or of safety, are predominant. Therefore, 
the term ‘acoustics’ applied to such spaces does not have the meaning it has with respect to 
a lecture room or a theatre. Nevertheless, the way in which noise propagates in such a room 
and hence the noise level in it depends highly on its acoustical properties.

A �rst idea of the steady-state sound pressure level that a non-directional sound source 
with power output P produces in a room with the equivalent absorption area A is obtained 
from Equation 5.42. Converting it into a logarithmic scale, with PL denoting the sound 
power level (see Equation 1.66), yields for the sound pressure level

 = − 





+ =∞SPL PL 10 log 6 dB with A 1 m10
0

0
2A

A
 (9.1)

This relation is valid if the distance from the sound source is signi�cantly larger than the 
‘diffuse-�eld distance’ rc as given by Equations 5.44 or 5.48, that is, it describes the sound 
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pressure level in the reverberant �eld. For observation points at distances r comparable to or 
smaller than rc, the sound pressure level is, according to the more general equation (5.45),

 = + +






∞SPL SPL 10 log 110
c
2

2

r
r

 (9.2)

Both equations are valid under the assumption that the reverberant sound �eld is diffuse.
Numerous measurements in real spaces have shown, however, that the reverberant sound 

pressure level SPL∞ decreases more or less with increasing distance, in contrast to what 
Equation 9.1 says. Obviously, sound �elds in such spaces are not completely diffuse. As dis-
cussed in Section 5.2, this lack of diffusion may have several reasons. Often one dimension 
of a working space is much larger (very long rooms) or smaller (very �at rooms) than the 
remaining ones. Another possible reason is non-uniform spatial distribution of absorption. 
In all these cases, a different approach is needed to calculate the sound pressure level.

For calculating the distribution of sound energy in enclosures bounded by plane walls, 
the concept of image sources can be employed, which has been discussed at some length in 
Section 4.1. It must be noted, however, that real working spaces are not empty but contain 
machines, piles of material, furniture, benches and so on; in short, numerous obstacles 
 scatter the sound and may also partially absorb it.

One way to simulate the scattering of sound in �tted working spaces is to replace sound 
propagation in the free space by that in an ‘opaque’ medium containing many randomly 
arranged scattering objects, as explained at the end of Section 5.2. Here we restrict the 
discussion to the steady state. (The transient sound propagation in enclosures containing 
sound-scattering obstacles is much more complicated than the steady-state case. It has been 
treated successfully by several authors, for instance, by Hodgson.1) Then, the energy density 
of the unscattered component, that is, of the direct sound is

 ( ) ( )=
π

−
4

exp /0 2 sw r
P
cr

r r (9.3)

which is to be compared with Equation 5.43; rs is the ‘scattering mean free path length’ 
n Q 

−
s s

1
. The reach of the direct sound characterized by the diffuse-�eld distance rc is 

smaller than it is in an empty room.
To calculate it, we imagine the sound �eld as being composed of numerous sound par-

ticles (with the same meaning as dicussed in the introduction to Chapter 5). Furthermore, it 
is assumed that rs is so small that virtually all sound particles will be scattered at least once 
before reaching a wall of the enclosure. Then, we need not consider any re�ections of the direct 
sound. Instead, the scattered sound particles will uniformly �ll the whole enclosure due to the 
equalizing effect of multiple scattering. Since the scattered sound particles propagate in all 
directions, they constitute a diffuse sound �eld with its well-known properties. In particular, 
its energy density is constant and given by ws = 4P/cA. Hence, the steady-state level can be 
calculated from Equations 9.1 and 9.2. In the latter case, however, the ‘diffuse-�eld distance’ 
rc = (A/16π)1/2 from Equation 5.44 has to be replaced with a modi�ed value rc′ which is smaller 
than rc. In fact, equating ws with w0 from Equation 9.3 leads to a transcendental equation:

 r r r r( )′ = − ′/ exp /2c c c s  (9.4)

Solving it yields r r′/c c = 0.7035 if rc equals the scattering mean free path length rs, while this 
fraction becomes as small as 0.2653 for r r/s c = 0.1, that is, when a sound particle undergoes 
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10 collisions per distance rc on average. With such a high density of scatterers, the applica-
tion of the diffusion equation may be justi�ed (see Section 4.6). In this case, in Equation 4.36 
the length � must be replaced with the scattering mean free path length rs. However, there 
remains some uncertainty on the scattering cross-sections Qs of machinery or other pieces 
of equipment because there is no practical way to calculate them exactly from geometrical 
data. Several authors (see, e.g., work by Ondet and Barbry2) identify Qs with one-quarter of 
the scatterer’s surface. This procedure agrees with the rule given by the end of Section 5.2.

In a different approach, the scatterers are imagined as being projected onto the walls, so to 
speak: that is, the walls are assumed to produce diffuse sound re�ections rather than purely 
specular ones. Then the problem can be treated by application of the radiosity  integral 
(4.26). This holds in particular for the calculation of the steady-state sound propagation in 
certain ‘disproportionate’ rooms for which the diffuse-�eld theory is not applicable. One of 
them is the in�nite �at room, that is, the space con�ned by two parallel planes. As already 
mentioned in Section 4.5, Equation 4.26 has a closed solution in this case. This is of consid-
erable practical interest since this kind of ‘enclosure’ may serve as a model for many work-
ing spaces in which the ceiling height h is very small compared with the lateral dimensions 
( factories, or open-plan bureaus). Therefore, sound re�ections from the ceiling are abso-
lutely predominant over those from the side walls, and hence, the latter can be neglected 
unless the source and the observation point are located next to them.

The exact solution is not well suited for the practical application. Therefore, we present 
here the following approximation3,4 for both planes having the same constant absorption 
coef�cient α or ‘re�ection coef�cient’ ρ = 1 − α, and for both the sound source and the 
observation point being located in the middle between both planes:
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The constant b depends on the absorption coef�cient of the �oor and the ceiling. Some of its 
values are listed in Table 9.1. Equation 9.5 may also be used if both boundaries have different 
absorption coef�cients; in this case, for α the average of both absorption coef�cients is inserted.

Figure 9.1b shows how the sound pressure level, calculated with this formula, depends 
on the distance from an omnidirectional sound source for various values of the (average) 
absorption coef�cient α = 1 − ρ of the walls. For comparison, the corresponding curves for 
specularly re�ecting planes, computed using Equation 4.3, are presented in Figure 9.1a. 
The plotted quantity is 10 times the logarithm of the energy density divided by P/4πch2. 
Both diagrams show characteristic differences: smooth boundaries direct all the re�ected 

Table 9.1 Values of the constant b 
in Equation 9.5

Absorption 
coef�cient, α

Re�ection 
coef�cient, ρ b

0.7 0.3 1.806
0.6 0.4 1.840
0.5 0.5 1.903
0.4 0.6 2.002
0.3 0.7 2.154
0.2 0.8 2.425
0.1 0.9 3.052
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energy away from the source, and this results in an increased level with the increment 
approaching a constant value at large distances. In contrast, diffusely re�ecting boundar-
ies re�ect some energy back towards the source; accordingly, the level increment caused 
by the  boundary – compared to that of free �eld propagation (α = 1) – reaches a maximum 
at a certain distance and vanishes at large distances from the source. This behaviour is 
typical for enclosures containing scattering objects and was experimentally con�rmed by 
numerous measurements carried out by Hodgson1,5, in model spaces as well as in full-scale 
factories.

Both aforementioned methods are well suited for predicting noise levels in working spaces 
and estimating the reduction which can be achieved by absorbing treatment of the ceiling, 
for instance. Other possible methods are measurements in a scale model of the space under 
investigation or computer simulation as described in Section 9.8.

Another disproportionate room is the long room, that is, a tube with cross-sectional 
dimensions that are large compared with the acoustical wavelength. Again, we simplify the 
problem by supposing that the tube is in�nitely long. If it has smooth and rigid walls, and 
if its cross section is rectangular, the sound propagation can be calculated by an obvious 
extension of Equation 4.3 in two dimensions, leading to a double sum over the full pattern 
of image sources. If the wall of the tube scatters the impinging sounds, a closed solution 
of Equation 4.26 is also available, provided the tube is cylindrical, which is not a severe 
 restriction.3,4 The results of these calculations, both for smooth and scattering walls, are 
similar to those shown in Figure 9.1b; the deviations of the sound level from the 1/r2 law are 
even somewhat more pronounced than that in Figure 9.1b.

Generally, some moderate absorbing treatment of the walls or the ceiling has a bene�-
cial effect on the noise level as long as the ‘diffuse-�eld distance’ rc is well below the linear 
dimensions of the room. This is true not only for working spaces such as factories or large 
of�ces but also for many other rooms where many people gather together, for example, in 
staircases or in theatre foyers. A noise level reduction by just a few decibels can increase 
the acoustical comfort to an amazing degree. If the sound level is too high due to insuf-
�cient absorption, people will talk more loudly than in a quieter environment. This in turn 
increases the general noise level and so on and so forth until �nally people must shout and 
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Figure 9.1  Sound pressure level in an in�nite �at room as a function of distance r (h = room height). The 
absorption coef�cient of both walls is (from bottom to top) 1, 0.7, 0.5, 0.3 and 0.1: (a) smooth 
walls, calculated with Equation 4.3 and (b) diffusely re�ecting walls, calculated with Equation 9.5.
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still do not achieve satisfactory intelligibility. In contrast, an acoustically damped environ-
ment usually makes people behave in a ‘damped’ manner too – for reasons which are not 
primarily acoustical – and it makes them talk not louder than necessary.

There is still another psychologically favourable effect of an acoustically damped theatre 
or concert hall foyer: when a visitor leaves the foyer and enters the performance hall, he will 
suddenly �nd himself in a more reverberant environment, which gives him the impression of 
solemnity and raises his expectations.

The extensive use of absorbing materials in a room, however, causes an oppressive atmo-
sphere, an effect which can be observed quite clearly when entering an anechoic room. 
Furthermore, since the level of the background noise is reduced too by the absorbing areas, 
a conversation held in a low voice can be understood at relatively large distances and can 
be irritating to unintentional listeners. Since this is more or less the opposite of what should 
be achieved in an open-plan of�ce, the masking effect by background noise is sometimes 
increased in a controlled way by feeding loudspeakers with random white or ‘coloured’ 
noise, that is, with a ‘signal’ without any temporal or spectral structure. The level of this 
noise should not exceed 50 dB(A). Even so it is still disputed whether the advantages of such 
measures surpass their disadvantages.

9.2 DIRECT SOUND

In a closed room, the direct sound travelling from the sound source to a listener is just one 
component of the sound �eld although the most important one if the room is used as a per-
formance or assembly hall. It is not in�uenced at all by the walls or the ceiling of a room 
since it propagates along straight lines. Nevertheless, its strength depends on the geometry 
of the hall: on the (average) length of paths which it has to travel and on the height at which it 
propagates over the audience or other strongly absorbing surfaces until it reaches a listener.

Of course, the direct sound intensity under otherwise constant conditions is higher the 
closer the listener is seated to the sound source. Different plans of halls can be compared in 
this respect by a dimensionless �gure of merit, which is the average distance of all listeners 
from the sound source divided by the square root of the area occupied by audience. For illus-
tration, Figure 9.2 presents a few types of �oor plans; the numbers indicate this normalized 
average distance. The audience areas are shaded and the sound source is marked by a point.

It is seen that a long rectangular room with the sound source on its short side seats many 
listeners relatively far from the source, whereas a room with a semicircular (or circular) 
�oor plan provides particularly short direct sound paths. For this reason, many large  lecture 

0.784 0.594 0.647 0.550

Figure 9.2 Normalized average distance from listeners to source for various room shapes.
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halls, theatres and session halls of parliaments are of this type. Likewise, most ancient 
amphitheatres have been given this shape by their builders. However, for a closed room, 
this shape has severe acoustical risks in that it concentrates the sound re�ected from the rear 
wall toward certain regions. Generally, considerations of this sort should not be given too 
much weight since they are only concerned with one aspect of acoustics which may con�ict 
with other ones.

Attenuation of the direct sound due to grazing propagation over the heads of the audience 
(see Section 6.7) can be reduced or avoided by sloping the audience area upwardly instead 
of arranging the seats on a horizontal �oor. This holds also for the attenuation of side or 
front wall re�ections. As is easily seen by comparing Figure 9.3a and b, a constant slope is 
less favourable than an increasing ascent of the audience area because in the former case the 
angle of incidence and hence the attenuation shows a stronger dependence on the distance 
from the source. The optimum slope (which is optimal as well with respect to the listener’s 
visual contact with the stage) would be reached if all sound rays originating from the sound 
source S strike the audience area at the same incidence angle. The mathematical expression 
for this condition is

 r(φ) = r0 exp(φ · cot γ) (9.6)

In this formula, which describes what is called a logarithmic spiral, r(φ) is the length of 
the sound ray leaving the source under an elevation angle φ, and the constant r0 is the length 
of the sound ray at φ = 0 (see Figure 9.4). The angle γ is named the ‘grazing’ angle, it is the 
angle the arriving ray makes with the tangent of the shown curve. For design purposes, 
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Figure 9.3  Reducing the attenuation of direct sound by sloping the seating area: (a) constant slope and 
(b) slope increasing with distance.
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Figure 9.4 Sloped seating area, schematically. Notations in Equations 9.6, 9.7 and 9.8 (S = sound source, 
h = clearance of sight lines).
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Equation 9.6 is not well suited; however, it can be simpli�ed by setting cot γ ≈ 1/γ and r ≈ x. 
With these approximations, the height y of a point can be expressed as a function of its 
horizontal distance x:

 ( ) ≈ γ 



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ln
0

y x x
x
r

 (9.7)

Another important �gure is the clearance h, that is, the vertical distance between a ray 
arriving at a particular seating row (a ‘line-of-sight’) and the corresponding point of the 
preceding row. Let d denote the distance between the rows, then the clearance for a seating 
arrangement after Equation 9.7 is

 ≈ γ −
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h d
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According to this formula, h does not strongly vary with the distance x, except in the 
region next to the sound source. For very distant seats, it approaches the constant value γd. 
Thus, for d = 1 m and γ = 5º, this limiting value is 8.7 cm. To achieve a signi�cant effect, the 
clearance should not be smaller. Of course, higher values are more favourable. Generally, a 
clearance of 12 cm is considered satisfactory. However, a gradually increasing slope of the 
seating area has the consequence that the steps in the upward-going aisles must be of vary-
ing height which the user is not accustomed to. This can be circumvented by approximating 
the sloping function of Equation 9.6 by a few straight lines and thus subdividing the audi-
ence area in a few sections with uniform seating rake within each of them.

Front seats on galleries or balconies are generally well supplied with direct sound since 
they do not suffer at all from sound attenuation due to listeners sitting immediately in front. 
This is one of the reasons why seats on balconies or in elevated boxes are often appreciated 
because of the excellent listening conditions met at this places.

9.3 EXAMINATION OF ROOM SHAPE

The acoustical power produced by a human speaker or a mechanical musical instrument is 
rather limited (see Section 1.7). Therefore, a common problem in the acoustical design of 
any kind of assembly room is the economic use of sound energy in order to provide for suf�-
cient loudness at a listener’s ears. Of course, this can be achieved by electroacoustical sound 
systems as will be described in some more detail in Chapter 10. However, such systems work 
better, the more the natural properties of the room favour its intended use. Therefore, we 
should look �rst for some ‘natural’ sound reinforcement. This holds for conference rooms 
and moderately sized class rooms as well as for large lecture room or theatres. This kind 
of sound reinforcement can be effected by re�ections of the original sound signal from the 
enclosing boundaries, that is, from the walls and the ceiling of the room. Another important 
precondition of good intelligibility is that a large fraction of the sound energy transported 
by re�ections arrives at a listener’s ears shortly after the arrival of the direct sound, say 
within the �rst 50 ms. For then, the re�ections subjectively merge with the direct sound, 
thus increasing the perceived loudness of the latter. The de�nition of all parameters charac-
terizing the speech intelligibility accounts more or less for this fact (see Section 7.5). Thus, 
good speech intelligibility requires a high amount of ‘early re�ected energy’.

The directions, the strengths and the delays of re�ections are determined by the position 
and the orientation of re�ecting areas, that is, by the shape of a room. Thus, it is indispens-
able to carefully examine the shape of a room in order to get a survey on the re�ections 
produced by the enclosure.
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If a room exists just on the paper, that is, if nothing more is known about it other than a 
plan and a section, one can gain a qualitative picture of the relevant re�ection paths by the 
construction of sound rays with pencil and ruler assuming that the re�ections occur more 
or less in a specular manner. This picture is certainly not comprehensive but nevertheless 
very valuable. If the enclosure is made up of plane boundaries, one can take advantage of 
the concept of image sound sources described at some length in Chapter  4. This proce-
dure, however, is feasible for �rst-order or at best for second-order re�ections only. For the 
examination of sound re�ections from curved walls, the method of image sources cannot 
be applied. In this case, we have to determine the wall normal in each boundary point of 
interest and to apply the law of specular re�ection as shown in Figure 4.1. The construction 
of some re�ected sound rays in a hypothetical hall is depicted in Figure 9.5. If a suf�ciently 
large portion of the wall or the ceiling appears circular in the sectional drawing or can be 
approximated by a circle, the location of the focus associated with it may be found from 
Equation 4.17.

At any event the construction of sound paths gives us some idea on the distribution of the 
strongest re�ections and on the wall portions which produce them. It tells us whether the 
re�ected sound will be concentrated in a limited region, and where a focal point or a caustic 
will appear which might cause quite annoying acoustical effects including non-uniformity 
of the sound �eld. Furthermore, the directions of sound incidence at various seats can be 
seen immediately, whereas the delay time between a re�ection with respect to the direct 
sound is easily determined from the difference in path lengths after dividing the latter by 
the sound velocity.

To �nd the relative strength of a re�ection, the 1/r law of spherical wave propagation can 
usually be applied. In doubt, the re�ecting ef�ciency of a particular wall portion, a balcony 
face or a suspended re�ector can be checked by application of Equations 2.58 or 2.59. Let 
r0 and ri be the path lengths of the direct sound ray and of a particular re�ection, measured 
from the sound source to the listener via the re�ecting wall point, then the level difference 
between the direct sound and the re�ected sound is

 L0 − Li = 20 ∙ log10(ri/r0) decibel (9.9)

If the re�ecting boundary has an absorption coef�cient α, the level of the re�ected 
sound portion is reduced by another −10·log10(1−α) decibels. Irregularities on walls 
and ceiling can be neglected as long as their dimensions are small compared to the 
wavelength. The intensities or pressure levels of re�ections from a curved wall sec-
tion can be estimated by comparing the density of the re�ected rays in the observation 
point with the ray density which would be observed if that wall section were plane. 

S΄

S

Figure 9.5 Construction of sound rays paths in the longitudinal section of a hypothetical hall (S = sound 
source, S′ = image source).
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For  spherical or cylindrical wall portions, the ratio of the re�ected and the incident 
energy can be  calculated from Equation 4.19, which is equivalent to

L
x a
x a

n

∆ = ⋅ +
−

10 log
1 /
1 /

10 (9.10)

As in Equation 4.19, a and x are the distances of the source and the observation point 
from the re�ecting wall portion, respectively; n is unity if the curved boundary is cylindrical 
and is 2 for a spherical wall portion.

The method of ray tracing with pencil and ruler applies only to sound paths, which are 
situated in the plane of the drawing to hand. Sound paths in different planes can be con-
structed by applying the methods of constructive geometry. This, of course, involves con-
siderably more time and labour, and it is questionable whether this effort is worthwhile 
considering the rather qualitative character of the information gained by it. For rooms of 
more complicated geometry, it is much more practical to apply computerized ray tracing 
techniques (see Section 9.8).

So far, we have described simple methods to investigate the effects of a given enclosure 
upon sound re�ections. Beyond that, there are some general conclusions which can be 
drawn from geometrical considerations and also from experiences with existing halls. They 
are brie�y summarized in the following.

If a room is to be used for speech (conference rooms, school classrooms, lecture halls, 
etc.), it is an advantage to support the direct sound by as many strong re�ections as possible. 
As mentioned above, their delays should not exceed about 50 ms. Re�ecting areas (wall por-
tions, screens) placed close to the sound source are especially favourable since they collect 
a great deal of the emitted sound energy and project it towards the audience, provided they 
are properly orientated and are free of absorption. Any porous curtains as are often used 
for decorative purposes are harmful in acoustical respect if applied in the vicinity of the 
sound source. The ceiling of the room plays an important role since it is usually low enough 
to produce re�ections which support the direct sound. Thus, absorbent materials as may 
be needed for the reduction of the reverberation time can only be mounted on more remote 
ceiling portions (and on the rear wall, of course). If the ceiling is plane, the construction of 
just one image source allows the designer to decide which part of the ceiling can be used for 
the supply of a given audience area with re�ected sound energy and thus must remain free 
of absorbent treatment. Sometimes it turns out that the ceiling is so high that the re�ections 
from it are delayed by more than 50 ms. Then reshaping the ceiling or the installation of 
suspended and suitably tilted re�ectors should be taken into consideration (see Figure 9.5). 
Likewise an unfavourable situation on the stage can be greatly improved by putting up a few 
portable screens made of re�ecting material, for instance, of relatively heavy panels.

Unfortunately, these principles can only be applied to a limited extent to theatres, where 
such measures could in fact be particularly useful. This is because the stage is the realm of 
the stage designer, of the stage manager and of the actors; in short, of people who some-
times complain bitterly about the acoustics but who are not ready to sacri�ce one iota of 
their artistic intentions in favour of acoustical requirements. It is all the more important to 
shape the wall and ceiling portions, which are close to the stage in such a way as to direct 
the incident sound immediately onto the audience.

When it comes to the design of concert halls, the economic use of sound energy is not of 
foremost interest as it is in a lecture hall or a drama theatre except for very large halls. Here 
it is advisable to make only moderate use of areas projecting the sound energy immediately 
towards the audience. This would result in a high fraction of early energy and – in severe 
cases – to subjective masking of the sound decay in the hall. The effect would be a weak 
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sense of reverberance even if the objective reverberation time is adequate. In a concert hall, 
a different aspect of early sound re�ections is more important, namely their potential for 
creating the highly desirable ‘spatial impression’, which they give to the listener provided 
they arrive from lateral directions (see Section 7.7). Whether the boundary of a concert hall 
produces strong early lateral re�ections or not depends critically on the shape of the room, 
in particular on the position and orientation of its side walls.

This may be illustrated by Figure 9.6, which shows the spatial distribution of the ‘lateral 
energy fraction’ in some two-dimensional enclosures,6 computed using Equation 7.19; the area 
of every hall was assumed to be 600 m2. The position of the sound source is marked by a cross; 
the densities of shading of the various areas correspond to the following intervals of the early 

(a) (b)

Figure 9.6 Distribution of early re�ected sound energy in two-dimensional enclosures with area 
600  m2: (a)  rectangular enclosure, various source positions and (b) various fan-shaped 
enclosures. (Based on Vorlander and Kuttruff.6)



242 Room acoustics

lateral energy fraction (LEF): 0–0.06, 0.06–0.12, 0.12–0.25, 0.25–0.5 and >0.5 (black). In 
all examples, the LEF is very low at locations next to the sound source, but it is highest in the 
vicinity of the side walls. Accordingly, in rectangular hall the largest areas with high LEF and 
hence with satisfactory ‘spaciousness’ are to be expected if the plan of the hall is long and nar-
row. Particularly large areas with low early LEF appear in fan-shaped halls opening towards 
the rear (right side, bottom), a fact which is due to the fact that the sound re�ected from the 
side walls travels almost parallel to the direct sound. If the hall becomes narrower towards the 
rear (right side, top), the opposite is true. (However, it is not very likely that a hall will ever be 
used in the latter con�guration.) The rectangular shape seems to be a reasonable compromise.

These �ndings explain – at least partially – why so many concert halls with excellent 
acoustics have rectangular �oor plans with relatively narrow side walls and high ceilings 
(Vienna Musikvereinssaal, or Boston Symphony Hall, for example). It may be noted, by 
the way, that the requirement of strong lateral sound re�ections favours room shapes which 
are different from those leading to short distances of the listeners from the sound source 
(see Section 9.2).

In real, that is, in three-dimensional halls, additional lateral energy is re�ected towards 
the stalls from the edges formed by a side wall and horizontal surfaces such as the ceiling 
or the sof�ts of side balconies (Figure 9.7). These contributions are especially useful since 
they are less attenuated by the audience than re�ections just from the side walls. If no balco-
nies are planned, the bene�cial effect of sof�ts can be achieved as well by properly arranged 
surfaces or bodies protruding from the side walls.

With regard to the performance of orchestral music, one should remember that most 
instruments have pronounced directionalities of sound radiation depending on the fre-
quency range. Accordingly, sounds from certain instruments or groups of instruments are 
predominantly re�ected by particular wall or ceiling portions. Since every concert hall is 
expected to house orchestras of varying composition and arrangement, only some general 
conclusions can be drawn from this fact. Thus, the high-frequency components, especially 
from string instruments, which are responsible for the brilliance of the sound, are mainly 
re�ected from the ceiling portion next to the stage whereas the side walls are very important 
for the re�ection of components in the range of about 1000 Hz and hence for the volume 
and sonority of the orchestral sounds.7 Another consequence of the directionality of instru-
ments and the human voice is that listeners seated behind the orchestra will receive the 
musical sounds from the ‘wrong’ direction which leads to an impaired sense of timbre and 
ensemble balance.

The examination of room geometry can lead to the result that some wall areas, particu-
larly if they are curved, will give rise to very delayed re�ections with relatively high energy, 
which will neither support the direct sound nor be masked by other re�ections, but may be 

S

Figure 9.7  Origin of lateral or partly lateral re�ections (S = sound source).
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heard as echoes. Especially critical in this respect are high ceilings or concavely curved rear 
walls. The simplest way to avoid echo effects is to line these wall portions with some highly 
absorbent material. If this measure would cause an intolerable drop in reverberation time or 
is unfeasible for some other reason, a reorientation of those surfaces could be considered. 
For example, a curved ceiling of a hall can be split up into plane or convexly curved trans-
versal strips each of them tilted in a favourable way, a method which still maintains the con-
cave overall shape. Still another possibility is to provide the curved surface with some sound 
scattering structure (see Section 2.7). If desired, any treatment of these walls – scattering 
or absorbing – can be concealed behind an acoustically transparent screen, consisting of 
a grid, a net or highly perforated panels, whose transmission properties were discussed in 
Section 6.2.

Another undesirable effect is �utter echo, as already described in Section 4.2. It is caused 
by repeated sound re�ections between parallel walls with smooth surface. Whether such a 
periodic or nearly periodic train of re�ections is audible at all depends on its strength relative 
to that of the of non-periodic components in the impulse response (see also Section 8.3). The 
methods of controlling a �utter echo are similar to those avoiding the detrimental effects of 
a curved surface, namely an absorbing or diffusing treatment of the critical boundary. If the 
�utter echo is caused by sound re�ections from opposite parallel walls, it can be removed by 
slightly changing the angle between these walls by about 5 degrees if this is possible. This 
can also be done section wise, resulting in a sawtooth-like structure of the wall.

9.4 REVERBERATION TIME

Among all signi�cant room acoustical parameters and indices, the reverberation time is the 
only one which is related to room data by relatively reliable and tractable formulae, despite 
certain limitations which have been discussed in Chapter 5. Their application helps us to 
decide whether a given room concept has the potential for good acoustics or whether it 
should be altered or outright discarded.

The room data needed for the application of these formulae are the volume of the room, 
the materials and the surface treatment of the walls and of the ceiling, and the number, 
arrangement and type of seats. Many of these details are not yet �xed in the early phases of 
planning. For this reason, it makes no sense to carry out a detailed calculation of the rever-
beration time at this stage; instead, a rough estimate may be suf�cient.

An upper limit of the attainable reverberation time can be obtained from Sabine’s formula 
(5.26) by attributing an absorption coef�cient of 1 to the areas covered by audience, and 
an absorption coef�cient of 0.05–0.1 to the remaining areas, which need not be known too 
exactly at this stage.

For halls with a full audience and without any additional sound absorbing materials, that 
is, in particular for concert halls, a few rules of thumb for estimating the reverberation time 
are in use. The simplest one is

=
4

T
V
N

(9.11)

with N denoting the number of occupied seats. Another estimate is based on the ‘effective 
seating area’ Sa,
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Here Sa is the area occupied by the audience, the orchestra and the chorus; furthermore, it 
includes a strip of 0.5 m around each block of seats. Aisles are added into Sa if they are nar-
rower than 1 m. In order to give an idea of how reliable these formula are, the mid-frequency 
reverberation times (500–1000 Hz) of many concert halls are plotted in Figure 9.8 as a 
function of the ‘speci�c volume’ V/N (Figure 9.8a) and of volume per square metre of audi-
ence V/Sa (Figure 9.8b). Both diagrams are based on data from Choi YJ et al.8; each point 
corresponds to one hall. In both cases, the points show considerable scatter. Furthermore, it 
seems that Equations 9.11 and 9.12 overestimate the reverberation time.

More reliable is an estimate which involves two sorts of areas, the audience area Sa, as 
before, and the remaining area Sr of the boundary:

 ≈
α + α

T
V

S Sa a r r

0.161  (9.13)

The absorption coef�cients αa and αr of both types of areas can be looked up in Tables 6.4 
and 6.5.

In any case, a more detailed reverberation calculation should de�nitely be carried out at 
a more advanced phase of planning when it is still possible to make changes in the interior 
�nish of the hall without incurring extra expense. The most critical aspect is the absorption 
of the audience. The factors on which it depends have already been discussed in Section 6.7. 
Regarding the uncertainties caused by audience absorption, it is almost meaningless to debate 
whether Sabine’s formula (5.26) is suf�cient or whether the more accurate Eyring equation 
(5.24) would be more adequate. Therefore, the simpler Sabine formula is preferable, if needed 
with an additional term 4mV in the denominator accounting for the sound attenuation in air.

As regards the absorption coef�cients of the various materials and wall linings, com-
pilations which have been published by several authors can be used.9 The absorption 
coef�cients of some typical materials are listed In Table 9.2; they should be considered as 
averages. It should be emphasized that the actual absorption, especially of highly absorp-
tive materials, may vary considerably from one sample to the other and that it depends 
strongly on the particular way in which they are mounted. In case of doubt, it is recom-
mended to test actual materials and the in�uence of their mounting by measuring the 
absorption coef�cient, either in the impedance tube or, more reliably, in a occupied state 
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Figure 9.8 Mid-frequency reverberation times of occupied concert halls: (a) as a function of the volume per 
seat and (b) as a function of the volume divided by the effective audience area. The straight lines 
represent Equations 9.11 and 9.12. (data from Choi YJ et al.8)
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reverberation chamber (see Section 8.7). This applies particularly to chairs whose acousti-
cal properties can vary considerably depending on the quantity and quality of the materi-
als used for the upholstery. If possible the empty chairs should be given about the same 
absorption as the occupied ones. This has the favourable effect that the reverberation time 
of the hall will not depend too strongly on the degree of occupation. With tip-up chairs 
this can be accomplished by perforating the underside of the plywood or hardboard seats 
and backing them with rock wool. Likewise, an absorbent treatment of the rear of the 
backrests can be advantageous.

According to Table 9.2, light partitions such as suspended ceilings or wall linings have 
their maximum absorption at low frequencies. Therefore, such constructions can make up 
for the low absorptivity of an audience and thus reduce the frequency dependence of the 
reverberation time.

If the auditorium is to be equipped with pseudorandom diffusers, their absorption should 
be taken into account. The same holds for the absorption of an organ (see Section 2.7).

In practice, it is not uncommon to �nd that a room actually consists of several subspaces 
which are acoustically coupled to each other by some opening. Examples of coupled rooms 
are theatres with boxes which communicate with the main room through relatively small 
openings, or the stage (including the stage house which may by quite voluminous) of a the-
atre or opera house which is coupled to the auditorium by the proscenium, or churches with 
several naves or chapels. L. Cremer10 was probably the �rst author to point out the necessity 
of considering coupling effects when calculating the reverberation time of such a room. This 
necessity arises if the area of the coupling aperture is substantially smaller than the equiva-
lent absorption area of the partial rooms involved.

The following discussion is restricted to a qualitative description of a system consisting 
of two coupled subspaces called Room 1 and Room 2. They are coupled to each other by 
an aperture with the area S ′ (see Figure 9.9a), which is small compared to both A1 and A2. 
Their damping constants and reverberation times are
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Ai is the equivalent absorption area in room i. It is assumed that the reverberation time of 
Room 1 is longer than that of Room 2 (δ1 < δ2).

Table 9.2  Typical absorption coef�cients of various types of wall materials

Material

Centre frequency of octave band (Hz)

125 250 500 1000 2000 4000

Hard surfaces (brick walls, plaster, hard 
�oors, etc.)

0.02 0.02 0.03 0.03 0.04 0.05

Slightly vibrating walls (suspended 
ceilings, etc.)

0.10 0.07 0.05 0.04 0.04 0.05

Strongly vibrating surfaces (wooden 
panelling over air space, etc.)

0.40 0.20 0.12 0.07 0.05 0.05

Carpet, 5 mm thick, on hard �oor 0.02 0.03 0.05 0.10 0.30 0.50
Plush curtain, �ow resistance 450 Ns/m3, 
deeply folded, in front of a solid wall

0.15 0.45 0.90 0.92 0.95 0.95

Polyurethane foam, 27 kg/m3, 15 mm 
thick on solid wall

0.08 0.22 0.55 0.70 0.85 0. 75

Acoustic plaster, 10 mm thick, sprayed 
on solid wall

0.08 0.15 0.30 0.50 0.60 0.70
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If the listener �nds himself in the more reverberant room, the only effect of the coupling to 
another space is a slight increase of the total absorption, that is, a slight reduction of rever-
beration since the coupling area acts merely as an ‘open window’. The listener will hardly 
notice any difference, even if there is a substantial difference between reverberation times 
T1 and T2. This situation is typical for an auditorium (Room 1) with large seating areas under 
balconies (Rooms 2) when the listener is located in the main room. Nevertheless, whenever 
an auditorium has deep balcony overhangs, it is advisable to carry out an alternative calcu-
lation of its decay time by treating the ‘mouths’ of the overhangs as completely absorbing 
boundaries. Likewise, instead of including the whole stage of a concert hall with  all its 
uncertainties in the calculation, its opening can be treated as an area having an absorption 
coef�cient rising from about 0.4 at 125 Hz to about 0.8 at 4 kHz.

Matters are different if the listener is in the less reverberant partial room (Room 2). 
Whether he will become aware of the longer reverberation in Room 1 or not depends mainly 
on the way the system is excited and on the size of the coupling aperture. If the sound source 
excites mainly Room 2, the (logarithmic) sound decay in that room will be composed of two 
straight parts with a bend in between as depicted in Figure 9.9b. It has been calculated from 
a simple energy balance like that of Equation 5.4, however adapted to the present problem. 
For Figure 9.9b it was assumed that δ1 = δ2/3. This shape of decay curve appears holds for 
the impulse response of the system as well as for the decay process subsequent to interrupted 
steady-state excitation. In the former case, the bent lies
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Figure 9.9  Coupled rooms: (a) geometric situation and (b) bent decay curve made up of two components. 
ΔLC characterizes the position of the bent (see Equation 9.15).
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If the level at which the bent occurs is high enough – or C small enough – the listener will 
hear the reverberant ‘tail’, at least when the exciting signal contains impulsive components 
(loud cries, isolated musical chords, drumming, etc.). In no case will he or she experience 
this tail as natural because it is not a property of the listener’s room but originates from the 
coupling aperture. However, if the location of the sound source is such that it excites both 
rooms, as may be the case with actors performing on the stage of a theatre, then the longer 
reverberation from Room 1 will be heard continually or it may even be the only reverbera-
tion to appear. In any event, it is useful to calculate the reverberation times of both sub-
spaces separately using Equation 9.14.

Coupling phenomena can also occur in enclosures lacking sound �eld diffusion. This 
is sometimes observed in rooms with regular geometry, with smooth wall surfaces and 
non-uniform distribution of the boundary absorption. Thus, a fully occupied hall with 
a relatively high ceiling and smooth and re�ecting side walls will often build up a two- 
dimensional, highly reverberant sound �eld in its upper part. It is caused by horizontal or 
nearly horizontal sound paths and is in�uenced only slightly by the absorption of the audi-
ence. Whether a listener will perceive this particular kind of reverberation depends again on 
the strength of its excitation and other factors.

For lecture halls, theatre foyers and so on, such an extra reverberation is of course unde-
sirable. In a concert hall, however, this particular lack of diffusion can sometimes lead to a 
badly needed increase in reverberation time, namely when the volume per seat is too small 
to yield a suf�ciently long decay time under diffuse conditions. An example of this is the 
City Hall at Göttingen, a multi-purpose hall with a �at �oor which has a hexagonal ground 
plan and in fact has a reverberation time of about 2 s, although calculations had predicted 
a value of 1.6–1.7 s only (both for medium frequencies and for the fully occupied hall). 
Model experiments carried out afterwards demonstrated very clearly that a sound �eld of 
the described type was responsible for this unexpected increase in reverberation time.

9.5 MORE ON CONCERT HALLS

So far, much has been said about the acoustical design of concert halls and the under-
lying principles: According to Table 7.4, typical reverberation times of halls which are 
known for their excellent concert acoustics are in the range of 1.7–2.2 s. Furthermore, in 
Section 9.3 the eminent role of early re�ections has been discussed. These re�ections are 
important for two reasons: �rstly they support the direct sound and hence contribute to 
the loudness of the received sound. And secondly, if they are incident from lateral direc-
tions, they create the subjective impression of space.

Many traditional concert halls are of the ‘shoebox’ type, originally for non-acoustic 
reasons. Famous examples are the ‘New’ Gewandhaus in Leipzig (opened in 1886, recon-
structed in 1981), the Grosser Musikvereinssaal in Vienna (1870) and the Boston Symphony 
Hall (1895). The plan of these and many similar concert halls has basically the shape of a 
relatively long and narrow rectangle with the orchestra platform at one end (see Figure 9.10), 
both their �oor and relatively high ceiling are basically �at apart from plastic decorations 
of the latter. It is kind of a lucky coincidence that this design including many subsequent 
copies turned out to lead to acoustically great concert halls, not to the least because of the 
numerous and strong lateral re�ections originating from the close the side walls of the room. 
As we learned in the preceding section, these re�ections not only increase the intimacy and 
clarity of the sounds but also create what we called the spatial impression the sound �eld 
conveys. The high ceiling has the potential of producing the long reverberation time which 
is favourable for concerts of large ensembles (Figure 9.11).
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Figure 9.10  Plan and longitudinal section of a typical ‘shoebox’ hall. (Reproduced with permission from 
L.  L.  Beranek. Concert and Opera Halls: How They Sound. Copyright [1996], Woodbury, NY: 
Acoustical Society of America.)

Figure 9.11  Plan and longitudinal section of a typical ‘vineyard’ hall. (Reproduced with permission from 
L.  L.  Beranek. Concert and Opera Halls: How They Sound. Copyright [1996], Woodbury, NY: 
Acoustical Society of America.)



Design considerations and design procedures 249

In the course of time, the demand for larger halls emerged in order to increase the seating 
capacity. Furthermore, the listeners should be allotted more space than in the 19th-century 
halls. This demand cannot be satis�ed just by blowing up the proven concept of a shoebox 
hall since this would increase the number of listeners which are seated too far from the 
stage. And also some of the ‘early’ lateral re�ections would lose their ability to contribute 
signi�cantly to the spatial impression and also to the intimacy and clarity of the sounds 
because of their increased delay times. Therefore, many architects gave up the concept of the 
shoebox hall in favour of shapes which are closer to a fan or even to an arena which means 
that the stage is shifted towards the centre of the hall thus bringing the audience closer to 
the stage. In principle, such shapes are af�icted with the lack of early lateral re�ections since 
nearly all seats are quite distant from the next side wall, so we cannot expect much spa-
ciousness in them. This problem has been solved by L. Cremer,11 who invented the concept 
of the ‘vineyard’ hall, which was �rst applied in the Berlin Philharmony (opened in 1963). 
Here the audience area is subdivided into terraces called ‘vineyards’ which are located at 
different heights. They are designed in such a way that the fronts and sides of each terrace 
re�ect early sound energy laterally to the audiences seated in adjacent terraces. The listeners 
in the �rst row of each vineyard receive strong and unimpeded direct sound. According to its 
tent-like shape, the ceiling is too high in the stage region to produce early re�ections, there-
fore large suspended sound re�ectors are arranged over the stage. As mentioned before (see 
Section 9.3), the listeners seated to the rear of the orchestra hear the music with an incorrect 
timbre and balance since nearly all instruments have the ‘wrong’ for these listeners, directiv-
ity especially at elevated frequencies. The same holds for singers. Despite this disadvantage, 
the hall was and still is highly appreciated, not to the least because of its brilliant acoustics.

It is a widespread opinion in room acoustics that the diffuseness of the sound �eld is an 
indispensable ingredient of �ne concert hall acoustics. This belief stems probably from the 
observation that many of the famous 19th-century halls have walls which are not smooth 
surfaces but show – according to the taste of that epoch – many decorative ‘irregularities’ 
such as columns, niches, statues and so on, at the side walls and coffers or deep beams 
at the ceiling. It is evident that these irregularities disperse the impinging sound waves 
more or less, depending on their shapes and sizes and, of course, on the sound frequency 
(see Section 2.7), and it is believed that this effect is responsible for the smooth and pleasant 
character of the sounds. Although acoustical measurements have been taken in many halls, 
no quantitative guidelines or recommendations concerning the necessary or desirable degree 
of diffuseness in a concert hall have emerged so far.

It should be noted that there are also voices which question this general opinion on dif-
fuseness. As early as in 1967 Damaske12 found by experimenting with synthetic sound �elds 
that a high degree of diffuseness is not necessarily a prerequisite of the spatial impression 
but that the latter can be created with just a few distinct lateral re�ections (see Section 7.7). 
More recently, T. Lokki and his co-workers13 concluded from listening tests in synthetic 
‘concert halls’, large and smooth side wall portions contribute to clear and open acoustics 
of a hall because they produce replica of the direct sound which means they preserve the 
temporal envelope of the original sound signal. In contrast, diffusing wall areas disperse the 
sound in space and time and thus distort the envelope of the sound which will be rendered 
weak and muddy. This is in clear contradiction to the opinion that the side walls and ceilings 
of a �ne concert hall should be more or less structured, for instance, by applying Schroeder 
diffusers to them. It is quite possible that the desirable amount of surface scattering and 
hence of sound �eld diffuseness is – a least within certain limits – a matter of listeners’ per-
sonal taste and hearing habits, that is, that some listeners prefer clearly de�ned re�ections 
while others are more in favour of a smooth sound which is usually ascribed to diffusely 
re�ecting boundaries.14
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Some further comments may be appropriate on the acoustical design of the stage or the 
orchestra’s platform of concert halls. From the acoustical point of view, the stage enclosure 
of a concert hall has the purpose of collecting sounds produced by the musicians, to blend 
them and �nally to project them towards the auditorium, but also to re�ect part of the sound 
energy back to the performers. This latter effect is necessary to establish the mutual auditory 
contact they need to maintain ensemble playing, that is, proper intonation and synchronism.

At �rst glance, a separate stage house arranged at one end of the hall seems to serve these 
purposes better in that the design of its walls optimized in acoustical respect. As a matter 
of fact, however, several famous concert halls have more exposed stages without a separate 
enclosure. It is clear that in such halls re�ections from the ceiling play an important role. 
This holds in particular if the hall is arena-shaped as the Berlin Philharmony.

Concerning the size of the stage it should be noted that one musician occupies about 
1.5 m2 on the average. This means, a large orchestra with 100 musicians needs a stage area 
of about 150 m2 or more. Stages with an area in excess of, say, 200 m2 bear the risk of 
impaired ensemble due to the �nite sound velocity which causes noticeable delays between 
the contributions of different musicians.

J. Meyer15 has collected stage data of in several concert halls, along with the experience 
and the outcome of systematic investigations. According to his publication, the ceiling 
of the stage area should be at least 6 m over the stage �oor and should not exceed about 
10 m. This holds also for the height of suspended re�ectors over the stage of an arena-
like hall. However, in many well-known concert halls the ceiling in the performing area 
is noticeably higher than that. With regard to the side walls, no clear guideline is avail-
able, a large orchestra will usually occupy the whole stage. If symphonic music is to be 
performed in an opera theatre, it may be useful to install a demountable orchestra shell 
to provide for the necessary re�ections. It goes without saying that the elements of this 
shell must consist of suf�ciently heavy elements with non-porous surface and that their 
orientation is critical.

Another important aspect of stage design is raking of the platform,16 which is often 
achieved with adjustable or movable risers. It has, of course, the effect of improving the 
sightlines between listeners and performers. From the acoustical standpoint, it increases the 
strength of the direct sound and reduces the obstruction of sound propagation by interven-
ing players. This is absolutely necessary if the audience is seated on a horizontal �oor as is 
the case in halls which are also used for social events. It seems, however, that this kind of 
exposure can be carried too far; probably, the optimum rake has to be determined by some 
experimentation.

9.6 MULTIPURPOSE HALLS

Very often a hall has to serve various types of purposes, including not only the performance 
of music of different styles or the presentation of theatre plays but also conferences, fashion 
shows and many other events.

First of all, the stage should offer some possibility to adapt its size and its surrounding to 
the various uses of the hall. The simplest way to achieve this is to provide for some portable 
screens as already mentioned above. Of course, their proper use requires some experience. 
If, for instance, the room is basically a theatre which is to be used occasionally for orchestra 
concerts, a carefully designed demountable orchestra shell which takes account of the prin-
ciples outlined in Section 9.3 would be useful, including a stage machinery to install or to 
remove it. About the same holds for the orchestra pit (if there is any) which should offer the 
option to be raised to the stage level for orchestra concerts.



Design considerations and design procedures 251

Of equal importance as the stage is the auditorium itself and its acoustical proper-
ties. This concerns in the �rst place its reverberation time. Since optimum values of the 
reverberation time for speech and for classical orchestra music are quite different, one 
can try to arrive at some compromise which would be in the range of 1.3–1.5 s in the 
mid-frequency range. This value would be all right for recitals and presentations of cham-
ber music. The achieved speech intelligibility would be still suf�cient especially if the 
reverberation time at low frequencies does not exceed that at medium frequencies, and 
if the voice of a speaker is supported by a carefully designed public address system. For 
orchestra music or for performances with a choir, the acoustics of the hall would be per-
ceived as somewhat too ‘dry’.

However, if both orchestral music and speech are to be presented under optimum 
acoustical conditions, some variability of the room is indispensable by which the con-
�icting requirements can be reconciled. Variations of the reverberation time can be 
achieved by installing variable wall or ceiling elements. Very often these elements are 
panels which can be turned back to front and exhibit re�ecting surfaces in one position 
and absorbent ones in the other. Another way is to cover certain re�ecting wall por-
tions with an absorbing curtain or, conversely, to cover absorbing wall portions with a 
re�ecting one, that is, with a suf�ciently heavy and non-porous curtain. These methods 
have in common that the hall volume must be high enough to reach the long reverbera-
tion required for orchestral presentations. The achieved variation in reverberation time 
depends on the fraction of boundary area treated in this way. Installations of this type 
are usually quite costly and require regular maintenance, and they are subject to the risk 
of inappropriate operation.

As an example, Figure 9.12 shows the effect of variable wall absorption in a broadcasting 
studio with a volume of 726 m3. Its walls are �tted with strips of glass wool tissue which 
can be electrically rolled up and unrolled. Behind the porous curtain, there is an air space 
with an average depth of 20 cm, subdivided laterally in ‘boxes’ of 0.5 m × 0.6 m. The rever-
beration time of the studio measured for the two extreme situations (curtain rolled up and 
curtain completely unrolled) can be changed between 0.6 and 1.25 s.

There are also multipurpose halls with variable volume. In this case, the change of rever-
beration time is rather a side effect while the main goal is to adapt the seating capacity to 
different uses. One example of this kind is the Stadthalle in Braunschweig which has a maxi-
mum volume of 18 000 m3 and accommodates nearly 2200 persons. Basically, its ground 
plan has the shape of a regular triangle with truncated corners. In one of these corners, the 
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Figure 9.12 Maximum and minimum reverberation time of a broadcasting studio with variable absorption.
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stage is situated while the other ones form elevated parts of the seating area. These latter 
parts can be separated from the main auditorium by folding walls. This measure reduces the 
volume and the seating capacity of the auditorium by 1800 m3 and 650 seats, respectively. 
At the same time, the reverberation time is increased from 1.3 to 1.6 s. Thus, the reduced 
con�guration is more suited for symphonic concerts while for more popular events or for 
large meetings the full capacity of the hall can be employed (Figure 9.13).

Quite a different way to vary the acoustics of a hall is by using special electroacoustic 
systems by which the reverberation time can be increased. Such methods will be described 
in Chapter 10.

9.7 ACOUSTICAL SCALE MODELS

For the acoustical designer, it would often be very helpful to get an idea of the acoustics of a 
room which is still in its planning phase, that is, in a state where details still can be altered 
in order to avoid possible risks or even mistakes.

A well-tried method of gaining information on the acoustics of a non-existing enclosure 
is to study the propagation of waves in a smaller model that is similar to the original room, 
at least geometrically. This method has the advantage that, once the model is at hand, many 
variations can be tried out with relatively little expenditure: from the choice of various wall 
materials to changes in the shape of the room or the arrangement of seats.

Since some basic laws are common to the propagation of all sorts of waves, it is not abso-
lutely necessary to use sound waves for such model tests. This was an important point in 
earlier times when acoustical measuring techniques were not yet at the advanced stage they 
have reached nowadays. So, the propagation of waves on water surfaces were sometimes 
studied in ‘ripple tanks’. However, the use of this method is restricted to two dimensions, 
that is, to the examination of plane sections of the hall. More pro�table is to use light as a 
substitute of sound. In this case, the energy distribution can be measured with photocells or 
by photography. Absorbent areas are painted black or covered with black paper or fabric, 
whereas re�ecting areas are made of polished sheet metal. Likewise, diffusely re�ecting 
areas can be quite well simulated by white matt paper. However, because of the high speed 
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Figure 9.13  Stadthalle, Braunschweig, plan.
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of light, this method is restricted to the steady-state energy distribution. Another limitation 
is the absence of realistic diffraction phenomena since the optical wavelengths are very small 
compared to the dimensions of all those objects which would diffract the sound waves in a 
real hall.

Nowadays, the techniques of electroacoustical transducers have reached a suf�ciently 
high state of the art to generate and to receive sound waves under the condition of a model 
and hence to use sound waves for examining sound propagation in the model scale. For 
this purpose, a few geometrical and acoustical modelling rules have to be observed. They 
are based on the fact that for the propagation of sound – including diffraction effects – the 
physically signi�cant length unit is not the meter but the acoustical wavelength. Hence, the 
most important modelling rule is

� �′
′λ

=
λ

(9.17)

where λ and λ′ are the sound wavelengths in the original room and its model, respectively, 
and ℓ and ℓ′ are corresponding lengths in both rooms. Their ratio σ = ℓ/ℓ′ is the scale fac-
tor of the model. Inserting λ = c/f and λ′ = c′/f ′ with c′ denoting the sound velocity of the 
medium within the model leads us to the scale factor of frequencies:

 f
c
c

f′ = σ ′ ⋅  (9.18)

According to this relationship, the sound frequencies applied in a scale model may well 
reach into the ultrasonic range. Suppose the model is �lled with air (c′ = c) and the model is 
scaled down by 1:10 (σ = 10), then a frequency range from 100 to 5000 Hz in the original 
room would correspond to 1–50 kHz in its model.

If a model is to yield realistic impulse responses, it must be more than a geometrical 
replica of the original hall because the wall absorption including its frequency dependence 
must be modelled as well. This means that any surface in the model should have the 
same absorption coef�cient at frequency f ′ as the corresponding surface in the original at 
 frequency f:

 ( ) ( )′α ′ = αf fii i (9.19)

Even more problematic is the modelling of the attenuation which the sound waves undergo 
in the medium. According to Equation 1.21, the pressure amplitude of a plane sound wave 
travelling a distance x = 2/m within a lossy medium is attenuated by a factor e = 2.718. From 
this we conclude for the attenuation constant m′ of the medium in the model

 m′(f ′) = σ · m(f) (9.20)

The accuracy with which these requirements must be met depends on the kind of informa-
tion we wish to obtain from the model experiments. If only the initial part of the impulse 
response or ‘re�ectogram’ is of interest (over, say, the �rst 100 or 200 ms in the original), the 
air absorption can be neglected at all or its effect can be numerically compensated, at least 
if the test signal is nearly monofrequent. It may even be suf�cient in this case to provide for 
only two different kinds of surfaces in the model, namely re�ecting ones (made of metal, 
glass, gypsum, etc.) and absorbing ones (e.g., felt or plastic foam).

Matters are much more dif�cult if longer re�ectograms are desired, for instance, for 
creating realistic listening impressions from the model auditorium as was �rst proposed 
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by Spandöck.17 With this method, tape-recorded music or speech signals are replayed in 
the model at a tape speed elevated by a factor of σ. At some point within the model, the 
sound signal is picked up with a small microphone. After transforming the re-recorded 
signals back into the original time and frequency scale, it can be presented by earphones 
to a listener who can judge subjectively the ‘acoustics’ of the hall and the effects of any 
modi�cations. Nowadays, this technique is known as ‘auralization’. More will be said 
about it in Section 9.9.

Concerning the instrumentation for measuring the impulse response in scale models, 
omnidirectional excitation of the model is more dif�cult to achieve the higher the scale 
factor and hence the frequency range to be covered. Small spark gaps can be used as sound 
sources, but in any case it is advisable to check their directivity and frequency spectrum 
beforehand. Furthermore, electrostatic or piezoelectric transducers have been developed 
for this purpose; they have the advantage that they can be fed with any desired electrical 
signal and therefore allow the application of the more sophisticated methods described in 
Section 8.2. The microphone should also be omnidirectional. Suf�ciently small condensor 
microphones are commercially available. Any further processing, including the evaluation 
of the various sound �eld parameters, as discussed in Chapters 7 and 8, is carried out, as 
with full-scale measurements, by means of a digital computer.

Nowadays, the use of a physical scale model as a tool for the acoustical design has 
lost a good deal of its original appeal. The main reason for this is that this method has 
to compete with the mathematical methods of sound �eld simulation as described in the 
next section. One should realize that the construction of a scale model is relatively costly 
and requires special skills. It is nearly impossible, to ful�l the conditions (9.19) and (9.20) 
correctly in the model despite the great efforts to solve this problem. On the other hand, 
the sound �eld produced in a physical room model includes all diffraction effects which 
will take place in the original room. For this reason, the acoustical model techniques are 
still employed sometimes provided the project under design is suf�ciently expansive and 
prestigious.

9.8 COMPUTER SIMULATION

As in other scienti�c and technical disciplines, the rapid development of digital technology, 
the tremendous increase in processor speed and memory size, has opened new possibilities 
of research in acoustics and also in room acoustic modelling.

The introduction of the digital computer into room acoustics is due to Schroeder18 and his 
co-workers. Since then the computer has become an indispensable research tool for every-
body who is active in simulating the propagation of sound in rooms. The �rst authors who 
applied digital simulation to concert hall acoustics were Krokstad et al.,19 who evaluated 
a variety of acoustical room parameters from impulse responses obtained by a technique 
nowadays known as ray tracing. Meanwhile, digital computer simulation has been applied 
not only to all kinds of auditoria but also to factories and other working spaces.

In this section, only a brief description of the principles underlying computer simulation 
of sound �elds in rooms can be given. A more detailed account is found in Vorländer’s book 
on auralization.20

Basically, there are two methods of sound �eld simulation in use nowadays: ray tracing 
and the method of image sources. Both are based on geometrical acoustics, that is, they 
rely on the validity and application of the laws of specular or diffuse re�ection. So far, no 
practical way has been found to include typical wave phenomena such as diffraction into 
these algorithms.
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The principle of digital ray tracing is illustrated in 
Figure  9.14. We imagine that at some instant t = 0, 
a sound source releases numerous sound particles of 
equal energy in all directions. Each of them travels on 
a straight path until it hits a wall which is assumed as 
plane. At the intersection PI of the initial path with the 
boundary, the particle will be re�ected, either specu-
larly or diffusely. In the �rst case, its new direction is 
calculated by applying the law of geometrical re�ec-
tion: Let φ and ϑ denote the azimuth angle and the 
polar angle of a local spherical coordinates system 
(see Figure 2.10 with θ = ϑ and ϕ = φ). The direction of 
the incoming particle is given by the angles φi and ϑi, while φr and ϑr  indicate the direction 
in which the particle travels after its re�ection. The latter angles are given by

 ϑr = ϑi and φr = φi + π

In the second case, the stochastic character of diffuse re�ection is accounted for by gen-
erating two uniformly distributed random numbers z1 and z2 with the computer. These are 
used to determine the polar angle ϑr and the azimuth angle φr of the new direction, both in 
accordance with Lambert’s cosine law as expressed in Equation 4.24:

 ϑ = ≤ <z zarccos with 0 1r 1 1 (9.21)

φr = 2π z2 with 0 ≤ z2 < 1 (9.22)

If partially diffuse re�ection is to occur, we can assign a scattering coef�cient s to the 
re�ection surface. It is de�ned as the fraction of the re�ected sound which will be scattered 
according to Lambert’s law (see Section 8.8). We apply it by generating a third random 
number z3 with 0 ≤ z3 ≤ 1. If z3 ≤ s the considered particle will be scattered, otherwise its 
re�ection will be specular. The absorption of the re�ecting wall can be accounted for in two 
ways: either by reducing the energy of the particle by a factor of 1 − αi after each re�ection 
(αi = absorption coef�cient) or by interpreting αi as an ‘absorption probability’. In the lat-
ter case, we again generate another random number z4 between 0 and 1; if it exceeds αi the 
particle will proceed carrying the same energy as before, otherwise it has been annihilated.

After its re�ection, the particle will continue on its way through the enclosure until it hits 
the next wall, where the same procedure takes place, and so on. The air attenuation can be 
accounted for by reducing the particle energy by another factor exp (−mdi) whenever the 
particle has travelled a straight section di of its zigzag path. The particle’s ‘life’ ends when its 
energy has fallen below a prescribed value (or when the particle has been absorbed). Then 
the path of the next particle will be ‘traced’. The whole procedure is repeated until all the 
particles emitted by the sound source have been followed up.

The results are collected by means of ‘counters’, that is, of previously assigned counting 
areas or counting volumes. Whenever a particle hits such a counter, its energy and arrival 
time are stored, if needed also the direction from which it arrived. After the process has 
�nished, that is, the path of the last particle has been determined, all registered particle 
energies are classi�ed with respect to the arrival times of the particles; the result is a his-
togram as shown in Figure  9.15. This can be considered as a short-time-averaged ener-
getic impulse response. The choice of the class width Δt is not uncritical: if it is too long, the 
histogram will be only a crude approximation to the true impulse response since signi�cant 
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Figure 9.14  Principle of digital ray tracing 
(S = sound source, C = count-
ing sphere, s = specular re�ec-
tion, d = diffuse re�ection).
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details are lost by averaging. Too short time intervals, on the other hand, will af�ict the 
results by strong random �uctuations. Typical values for the class width Δt are of the order 
of 1 ms.

The class width and hence the achieved time resolution is less critical if the main interest is 
not the true shape of the energetic impulse response of a decay curve but a parameter which 
involves integrations over the impulse response or parts of it anyway. As can be seen from 
Table 8.1, this holds for most of the parameters mentioned in this book, in particular for the 
strength factor G, the ‘de�nition’ D, the ‘centre time’ ts or for the lateral energy parameters 
LEF and LG80

∞ . As an example, Figure 9.16 depicts the distribution of the strength factor (the 
stationary sound pressure level) and of the ‘de�nition’ obtained with ray tracing applied to 
a lecture hall with a volume of 3750 m3 and 775 seats.21

In any case, the achieved accuracy of the results depends on the number of sound particles 
counted with a particular counter. For this reason, the counting area or volume must not be 
too small; furthermore, the total number of particles contained in one ‘shot’ of sound impulse 
must be suf�ciently large. As a practical guideline, a total of 105–106 sound particles will yield 
suf�ciently precise results if the dimensions of the counters are of the order of 1 m.

The most tedious and time-consuming part of the whole process is the collection and 
input of room data such as the positions and orientations of the walls and their acoustic 
properties. If the boundary of the room contains curved portions, these may be approxi-
mated by planes unless their shape is very simple, for instance, spherical or cylindrical. 
The degree of approximation is left to the intuition and experience of the operator. It should 
be noted, however, that this approximation may cause systematic and sometimes intolerably 
large errors.22 These are avoided by calculating the path of the re�ected particle directly 
from the curved wall by applying Equation 4.1, which is relatively easy if the wall section is 
spherical or cylindrical.

The ray tracing process can be modi�ed and re�ned in many ways. Thus, the sound 
radiation need not necessarily be omnidirectional; instead, the sound source can be given 
any desired directionality. Likewise, one can study the combined effect of more than one 
sound source, for instance, of a real speaker and several loudspeakers with speci�ed direc-
tional characteristics, ampli�cations and delays. This permits the designer to optimize the 
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Figure 9.15  Temporal distribution of received particle energies (energetic impulse response). The class 
width is 5 ms.
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con�guration of an electroacoustic system in a 
hall. Moreover, any mixture of purely specular 
or ideally diffuse wall re�ections can be taken 
into consideration; the same holds for the depen-
dence of absorption coef�cients on the direction 
of sound incidence. Further modi�cations replace 
sound rays by ray bundles with circular or polygo-
nal cross section (cone tracing, pyramid tracing23).

The second method to be discussed here is based 
on the concept of image sources – also known as 
mirror sources – as has been described at some 
length in Section 4.1. In principle, this method is 
very old but its practical application started only 
with the advent of the digital computer by which 
constructing numerous image sources and col-
lecting their contributions to the sound �eld has 
become very easy, at least in principle.

It should be noted that only re�ections from the 
inside of a wall are relevant, as already mentioned 

in Section 4.1. Even more severe is the problem of valid and invalid image sources addressed 
in Section 4.1. It is illustrated in Figure 9.17, which shows two plane walls adjacent at an 
obtuse angle, along with a sound source A, both its �rst-order images A1 and A2 and the sec-
ond-order images A12 and A21. It is easily seen that a path running from the source A to the 
receiver R can be found which involves the images A1 and A12. But there is no path reaching 
R via the image A21 since the intersection of the line A21–R with the plane (1) is outside the 
physical wall; hence, A21 is ‘inaudible’ from the point R, and A21 is an invalid image source.

Unfortunately, most higher-order source images are inaudible. Consider, for example, 
an enclosure made up of six plane walls with a total area of 3600 m2 and a volume of 
12 000 m3. According to Equation 4.9, a sound ray or sound particle would undergo 25.5 
re�ections per second on average. To compute only the �rst 400 ms of the impulse response, 
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Figure 9.16  Distribution of (a) the stationary sound level and (b) ‘de�nition’ in a large lecture hall. (Based 
on Vorländer.21)
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Figure 9.17 Valid and invalid image sources. 
Image source A21 is invalid, 
that is, ‘invisible’ from receiver 
 position R.
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image sources of up to the 10th order must be considered. With this �gure and N = 6, 
Equation 4.2 tells us that about 1.17 × 107 (!) image sources must be constructed. However, 
if the considered enclosure were rectangular, there were only

 i i i i( )( )ν = + +2
3

2 3 4r 0 0
3

0
2

0 (9.23)

image sources of order ≤ i0 (neglecting their multiplicity), and all of them are audible. For 
i0 = 10, this formula yields Nr(i0) = 1560. This consideration shows that the fraction of audi-
ble image sources is very small unless the room is highly symmetric. And the set of audible 
image sources differs from one receiving point to another, of course.

In principle, the audibility of image sources is checked as has been explained in Figure 9.17. 
Several authors have developed algorithms by which these tests can be facilitated. One of 
them is by Vorländer,24 who performs an abbreviated ray-tracing process preceding the actual 
simulation. Each sound path detected in this way is associated with a particular sequence 
of valid image sources, for instance, A → A1 → A12 → R in Figure 9.17, which is identi�ed 
by backtracing the path of the sound particle, starting from the receiver R. Hence, A1 and 
A12 are identi�ed as audible. The next particle which happens to hit the counting volume at 
the same time can be omitted since it would yield no new image sources. After running the 
ray tracing for a certain period, one can be sure that all signi�cant image sources – up to a 
certain maximum order – have been found, including their relative strengths, which depend 
on the absorption coef�cients of the walls involved in the mirroring process. It should be 
noted that this simulation model is still based on the image source concept and that the only 
purpose of this ray tracing procedure is checking the audibility of image sources.

Another useful criterion of audibility is due to Mechel.25 It employs the concept of the 
‘�eld angle’ of an image source, that is, the solid angle subtended by the physical wall poly-
gon which a source irradiates. To create an audible image source, the re�ecting wall polygon 
must be inside the �eld angle of the ‘mother’ image source. With each new generation of 
image sources, the �eld angles are diminished. Besides a careful discussion of criteria for 
interrupting the process of image source construction, this publication offers many valuable 
computational details.

Having identi�ed the relevant image sources, we are ready to form the energy impulse 
response by adding their contributions. Suppose the original sound source produces a short 
power impulse at time t = 0, represented by a Dirac function δ(t), then the contribution of 
a particular image source of order m to the energetic impulse response at a given receiving 
point is
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where E0 is the total energy released by the original sound source, the subscripts 1, 2, …, m 
indicate the walls involved in the particular sequence of a particle’s re�ections, the factors 
ρi = 1 − αi are their re�ection coef�cients, and dm is the length of the path connecting the 
considered image with the receiving point, which corresponds to the time delay τm = dm/c.

In Figure 9.18, an impulse response obtained in this way is depicted. Note that no random 
processes whatsoever are involved in its generation. Since the absorption coef�cients are 
usually frequency dependent, this computation must be repeated for a suf�cient number of 
frequency bands.

The construction of the impulse response by addition of its energetic components may 
be permissible if we can assume that the contributions of all image sources are mutually 
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incoherent, that is, they cannot interfere with each other. However, in 1999 Suh and 
Nelson26 have shown experimentally that energetic impulse responses calculated after 
the expression (9.24) are less accurate than the pressure-related impulse responses which 
contain all phase effects. To obtain such a response, we have to replace in Equation (9.24) 
the re�ection coef�cients ρi of the boundary by the ‘re�ection responses’ ri(t) as already 
introduced in Section 4.1 as the Fourier transform of the complex re�ection factor Ri(f). 
Accordingly, each multiplication must be replaced by a convolution indicated by asterisks. 
Assuming non-directional sound radiation from the original sound source, we obtain (see 
Equation 1.27)
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For the practical computation, it is more convenient to use the Fourier transform of 
Equation 9.25. Hence, the contribution of an image source of order m to the frequency 
transfer function of the room reads
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The factors R1, R2, …, Rm are the complex re�ection factors of all walls from which the 
sound ray has been re�ected. If needed, the air attenuation can be taken into account by an 
additional factor exp(−mdm) in Equation 9.24 or exp(−mdm/2) to Equations 9.25 and 9.26.

In practical applications, it may turn out to be dif�cult to �nd the correct re�ection factor 
Ri of a given surface as this is a complex function of the frequency and of the angle of sound 
incidence. However, it may be permissible to determine the absolute values of the re�ection 
factors from the absorption coef�cients

 R = ρ = − α(1 )i i i (9.27)

and to combine them with some arbitrary phase function, which must be an uneven func-
tion of the frequency. To eliminate the angle dependence of the absorption coef�cient, its 
Paris average according to Equation 2.53 can be used.
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Figure 9.18  Room impulse response computed from image sources.
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Since the image model yields the complex transfer function of a room (or, more exactly, of 
a particular transmission path within the room), which is equivalent to its pressure-related 
impulse response, it is in a way more ‘powerful’ than ray tracing. Furthermore, its results are 
strictly deterministic. It fails, however, if the boundary of the room is not piecewise plane 
or if it is so complicated that it cannot be modelled in every detail. This holds especially 
for acoustically ‘rough’ surfaces. And its application is restricted to polyhedral enclosures. 
Moreover, for small rooms and at low frequencies, it may happen that the assumptions for 
assuming the ‘plane-wave condition’ are violated (see Section 2.4). The ray-tracing method, 
on the other hand, is not subject to any limitations of room shape, and it permits us to 
treat the re�ection from structured surfaces, for instance, a coffered ceiling, by allowing 
for sound scattering. Therefore, it suggests itself to combine both methods. In fact, several 
authors have developed hybrid procedures which in principle are based on the image model 
thus preserving the high temporal and directional resolution of that model. At the same time, 
every surface element is treated as a source of diffusely re�ected sound energy, the amount 
of which depends on the scattering coef�cient of the surface. This latter part of the re�ected 
energy can be processed with a stochastic method such as low resolution ray tracing27,28 or 
with the radiosity method29 described in Section 4.5. The specularly re�ected components 
are used to construct the early part of the impulse response, which can be considered as the 
acoustical �ngerprint of a room, whereas the later parts of the response, which are perceptu-
ally less characteristic for a room’s acoustics, are composed of the scattered energy.

The reader may have noted that both the ray-tracing process and the method of image 
sources completely disregard any diffraction effects. This is a serious shortcoming since 
diffraction is a very common phenomenon in acoustics. In a real hall, every protruding 
edge, every column or pillar, and every niche or balcony is the origin of secondary waves 
produced by diffraction. The same holds for all abrupt changes of the impedance of an 
otherwise smooth boundary. Some of these effects can be accounted for in ray tracing, 
but others cannot. The diffraction by the steps of a stair, for instance, can be taken into 
regard by treating the stair as an inclined plane and assigning a certain scattering coef-
�cient to it. Obviously, the diffraction by the edges of a balcony face cannot be treated 
in this way.

Several authors have tried to �ll this gap. The basic idea of all these attempts is to 
apply a simpli�ed version of the diffraction pattern shown in Figure 2.14 to every sound 
ray which passes a rigid edge within a certain distance. It is obvious, however, that each 
diffraction process creates many secondary rays or particles travelling in different direc-
tions.30 This increases the complexity of the process drastically and also the processing 
time. To reduce the computational load, Stephenson23 has developed an algorithm which 
uni�es energy portions occurring at neighbouring locations and about equal time in 
space-time cells of �nite size once in a while. In this model, the carriers of sound energy 
are pyramids which include all rays connecting a particular image source with the points 
of a wall polygon. During each mirroring at a wall, the wall’s edges clip the pyramid, 
generating a narrower ‘daughter’ pyramid. Hence, the problem of invisible image sources 
will not occur at all.

9.9 AURALIZATION, VIRTUAL REALITY

The term auralization was coined to signify all techniques aimed at the creation of audible 
impressions from enclosures which do not exist in reality but in the form of design data 
only. Its principles are outlined in Figure 9.19. Music or speech signals (‘dry’ signals) origi-
nally recorded in an anechoic environment are fed to a transmission system which modi�es 
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the input signal in the same way as its propagation in a real room would modify it. This 
system is either a physical scale model of a room, equipped with a suitable sound source and 
receiver and performing a twofold frequency transformation (see Section 9.7), or it is a digi-
tal �lter which has the same impulse response as the considered room. The impulse response 
may have been measured beforehand in a real room or in its scale model, or it is obtained by 
simulation as described in the preceding section.

In any case, the room simulator must produce a binaural output signal, otherwise no 
realistic, that is, spatial impressions can be conveyed to the listener. The output signal is 
presented to the listener by headphones or, preferably, by two loudspeakers combined with a 
cross-talk cancellation system, operated in an anechoic room. The merits and shortcomings 
of both methods are discussed in Section 7.8.

If the auralization �lter consists of a physical scale model, it should cover a wide fre-
quency range without any noticeable linear distortions; hence, the model transducers have 
to meet very high standards, otherwise the listener will not get a realistic impression of a 
room’s acoustics. For the same reason, the requirements concerning the acoustical simi-
larity between an original room and its model are very stringent. The absorption of the 
various wall materials and of the audience must be modelled quite correctly, including their 
frequency dependence (see Equation 9.19), a condition which must be carefully checked 
by separate measurements. Even more dif�cult is modelling the sound attenuation by the 
medium according to Equation 9.20. Several research groups have tried to meet this require-
ment by �lling the model either with air of very low humidity or with nitrogen. If at all, 
the frequency dependence of air attenuation can be modelled only approximately by such 
measures, and only within a limited frequency range and at a particular scale factor σ. The 
�rst experiments of auralization with scale models were carried out by Spandöck’s group in 
Karlsruhe (Germany) in the early 1950s; a comprehensive report may be found in a publica-
tion by P. Brebeck, R. Bücklein, E. Krauth and F. Spandöck.31

Auralization based on a purely digital room model was �rst carried out by Allen and 
Berkley.32 In this case, most of the mentioned problems do not exist as both the acous-
tical data of the medium and all data of the enclosure are fed into the computer from 
the keyboard or from a database. Generally, digital models are much more �exible as the 
shape and the acoustical properties of the room under investigation can be changed quite 
rapidly. Therefore, nearly all auralization experiments are based on computer models 
nowadays.

Pressure-related impulse responses or transfer functions computed with the image source 
model according to Equation 9.25 or Equation 9.26 can immediately be used for auraliza-
tion, provided they are binaural. This is achieved by multiplying each sum term of expres-
sion (9.26) with L(f, φ, ϑ) and R(f, φ, ϑ), the head-related transfer functions for the left and 
the right ears, respectively (see Section 1.6). The angles φ and ϑ characterize the direction 
of incidence in a head-related coordinate system. Then, the contributions to the binaural 
transfer functions are

 [Sm(f)]l = Sm(f) ∙ L(f, φ, ϑ) (left channel) (9.28)

Scale model or
digital filter

Headphones
or CTC

Figure 9.19  Principle of auralization. The input signal is ‘dry’ music or speech.
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and

[Sm(f)]r = Sm(f) ∙ R(f, φ, ϑ) (right channel) (9.29)

L and R are either a particular listener’s individual head-related transfer functions, or they 
are averages which can be regarded as representative of many individuals.

In contrast to image source results, energy histograms as obtained with the ray tracing 
method (see, for instance, Figure  9.15) need some post-processing. Since the absorption 
coef�cients of the boundary are usually frequency dependent, the complete result of a ray 
tracing process consists of a set of such histograms, namely one for each frequency band 
(octave band or third-octave band). These histograms can be summarized in a function 
E(fi, k), where fi is the mid-frequency of the ith frequency band, and k denotes the number of 
the time intervals. Considered as a function of the frequency, E(fi, k) approximates a short-
time energy spectrum valid for the time interval around tk = kΔt. The typical class width Δt 
is of the order of one or a few milliseconds.

In the following, we describe a procedure by which these spectra can be converted into a 
pressure-related impulse response of the room, as developed by R. Heinz.27,28 By properly 
smoothing, one obtains from E(fi, k) a continuous and positive function Ek(f) of the fre-
quency. The pressure-related transfer function Gk(f) is calculated by equating its absolute 
value |Gk| with the square root of Ek(f) and ‘inventing’ a suitable phase spectrum ψk(f). Then,

 G f E f i fk k k( ) ( ) ( )= ⋅ ψ exp  (9.30)

As we know from Section 3.4, the phase spectrum is not critical at all since the propa-
gation in a room randomizes anyway all phases. Therefore, any odd phase function 
ψk(f) = −ψk(−f) could be used for this purpose, provided it corresponds to a system with 
causal behaviour, that is, to a system the impulse response of which vanishes for t < 0. 
One of several possibilities is to derive ψk(f) from Ek(f) as the minimum phase function. 
This is achieved by applying the Hilbert transform, Equation 8.18, to the natural loga-
rithm of Ek(f):
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What is still missing is the information on the direction from which the particular sound 
component arrives at the receiver. To take this point into account, the full solid angle is sub-
divided in a number of – say 37 – directional groups, each of them characterized by two rep-
resentative angles φj and ϑj, and each of them associated with a pair of head-related transfer 
functions L(f, φj, ϑj) and R(f, φj, ϑj), namely one for the left and one for the right channel.

From the directional information collected in the counter C during the ray tracing process 
(see Figure 9.14), we can derive the probability of a sound particle which is counted in a 
particular interval Δt will appear in one of the directional groups, taking into account the 
different sizes ΔΩj of these groups. The directional group with the highest probability will 
be assigned to all sound particles observed in Δt. For this purpose, we consider a random 
succession of equal Dirac impulses with a typical mean density of 10 000 per second. Each 
of the impulses collected in Δt is convolved with

 1. The inverse Fourier transform of Gk(f) after Equation 9.30
 2. The inverse Fourier transforms of both head-related transfer functions L and M 

(see Equations 9.28 and 9.29).
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Superposing all impulses which are modi�ed by the described operations yields the binau-
ral impulse response of the room – and hence of the auralization �lter in Figure 9.16.

If all steps are carefully carried out, the listener to whom the ultimate result is presented 
will experience an excellent and quite realistic impression. To what degree this impres-
sion is identical with what the listener would have in the real room is still to be inves-
tigated. It  depends on not only the quality of the simulation but also the quality of the 
electroacoustic transducers, that is, of the headphones or the loudspeakers used for the 
presentation. In fact, there are many details which are open to improvement and further 
development. Nevertheless, an old dream of acousticians is going to come true through 
the techniques of auralization. Many new insights into room acoustics are expected from 
its application. Thus, auralization may become an important research tool. At the same 
time, it will become indispensable for the acoustical consultant as it permits to convince the 
architect, the user of a hall and – last not least – himself, on the ef�ciency of the measures 
he proposes in order to reach the original design goal.

Meanwhile, several commercial software package for the simulation of sound �elds in 
rooms, computation of characteristic parameters and presentation of results by auraliza-
tion have become available (CATT, ODEON, EASE and others). Each of them exists in 
several versions, and they all are hybrid image-source cone/ray-tracing algorithms includ-
ing phases. EASE33 has originally been developed as a tool for the design and the test of 
electroacoustic sound reinforcement systems; nowadays, it is much similar to the above- 
mentioned process described by Heinz.27,28 The core of the CATT algorithm34 is cone 
 tracing. Each cone arriving at a diffusely re�ecting surface is imagined to create a second-
ary source which emits secondary cones according to the absorption and the scattering 
coef�cient of the surface. For auralization, the reverberant tail is simulated by considering 
an equivalent rectangular room which is derived from the actual room. ODEON is a hybrid 
image source – ray tracing algorithm. To account for diffuse re�ections, each diffusing 
surface is subdivided in square patches that act as receivers for incident energy and later 
serve as secondary sources for the scattered energy. A comparison of ODEON and CATT 
has been carried out by Hodgson et al.35

It should be mentioned that the techniques of auralization are not con�ned to the creation 
of audible impressions from non-existing enclosures, but that it is applicable as well to the 
demonstration of noise propagating in buildings or in vehicles (cars, ships, etc.).20,36 In this 
case, the auralization �lter must simulate the transmission of airborne sound through closed 
partitions or the propagation of sound in solid structures.

The process of auralization as described so far suffers from a serious shortcoming: It 
assumes that the listener keeps his head �xed during the whole session. Even a slight turn of 
the head has the consequence that the installed head-related transmission functions (HRTFs) 
in Equation 9.27 are no longer valid and must be replaced with modi�ed ones as soon as 
these changes exceed certain limits. The same holds when the listener is going around in 
the room. This concerns mainly the original sound source and the low-order image sources. 
Here the rate of updating the auralization �lter should typically be about 50 per second in 
order to achieve suf�cient smoothness of the perceived audio signal. This choice leaves a 
processing time of just 20 ms. This may give an idea about the tremendous challenges con-
nected with real-time auralization, which cannot be met without applying sophisticated 
procedures of signal processing such as real-time convolution and the use of a computer with 
suf�cient memory space and processor speed.

The optical counterpart to auralization is visualization, that is, the simulation of the spa-
tial distribution of light energy in a virtual environment with the intention to convey a real-
istic impression of the scenery a spectator would see in a particular hypothetical (“ virtual”) 
environment. Of course, for visualization, the auralization �lter in Figure 9.19 has to be 
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replaced with a visualization �lter, which has a ‘binocular’ output in order to produce a 
stereoscopic image of the scene. The process starts by de�ning the positions of light sources 
with prescribed spectral and directional characteristics, and also the positions and spectral 
re�ectivities of boundaries including their scattering properties. In the visualization �lter, 
similar concepts as in auralization are implemented, namely the image source model, statis-
tical ray tracing or the radiosity integral. One way to present the result of this process to a 
spectator is either by means of a head-mounted display, �tted out with two small monitors 
placed immediately in front of the spectator’s eyes. An acoustical signal can be presented by 
built-in earphones. An alternative (and preferable) method employs four or �ve projection 
screens surrounding the spectator. Each of them is associated with two projectors which are 
directed towards the screen in order to transmit the result of the simulation in form of two 
images with differently polarized light. The user looking at the scenery wears polarization 
�lters in front of his eyes which separate the two images and thus create a stereoscopic, that 
is, spatial image of the scenery. It goes without saying that the actual position and orienta-
tion of the spectator’s head must be continuously tracked. This can be achieved by applying 
electromagnetic, ultrasonic or optical means.

Both processes, the visualization and the auralization of an environment, can be com-
bined in what is called virtual reality (VR). If needed (for instance, in driving or �ight 
simulators), haptic sensations such as caused by vibrations can also be included. The output 
of the auralization �lter and the result of visualization are presented simultaneously to the 
spectator – apart from some unavoidable delay caused by the �nite processing speed. As 
long as the total delay is smaller than about 30 ms, this is still tolerable and does not disturb 
the impression.

The simplest way to present the auditory signal to the user of a VR system is by means of 
high-quality headphones. More convenient for the user, and providing a more realistic pre-
sentation, is the use of ‘dynamical crosstalk cancellation’. This is an extension of the CTC 
system described in Section 7.8;37 it permits the listener to move his head without distorting 
the auditory impression. A further re�nement is the implementation of the user’s interaction 
with the environment.

Although there are many parallels between processing the acoustical and the visual branch 
of VR, there are also important differences between both processes. One of them is that in 
visualization no phases at all must be considered because the light is assumed as incoherent. 
For this reason, and because optical wavelengths are much smaller than the dimensions of 
typical obstacles, any diffraction effects can be neglected. Another, very signi�cant differ-
ence is due to the high speed of light propagation (about 300 000 km/s compared with the 
sound velocity of about 340 m/s). This has the consequence that in visualization all transient 
effects can be completely neglected; the optical �eld is always stationary even if there are 
rapid movements of the spectator’s head or changes of the scenery. Thus, some of the dif-
�cult problems which one faces in auralization, such as real-time convolution, for instance, 
do not appear when it comes to visualization.

This may be the reason why visualization is much more advanced nowadays than aural-
ization. On the other hand, Virtual Reality cannot yield realistic impressions of some spatial 
scenery without the correct transmission of auditory signals including the acoustic informa-
tion on source positions, on the effects of the boundary and the medium and generally on 
the spatial dimension.

Concerning the practical use of VR systems much can be repeated what previously has 
been said about the use of auralization. In the �rst place, the designers of theatres, concert 
halls, large lecture or congress halls including the electroacoustic systems to be operated in 
them (architects, acoustical consultants, electrical engineers) will bene�t from the possibil-
ity to obtain immediate listening and seeing impressions from their project and from the 
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practical and aesthetic effect of modi�cations. Regarding the rapid progresses of computer 
technology along with falling costs, it can be expected that VR will appear on the consumer 
market too.
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Chapter 10

Electroacoustical systems in rooms

There currently are many points of contact between room acoustics and electroacoustics, 
even if we neglect the fact that modern measuring techniques in room acoustics could not 
exist without the aid of electroacoustics. Thus, we shall hardly ever �nd a meeting room 
of medium or large size which is not provided with a public address system for speech 
ampli�cation; it matters not whether such a room is a church, a council chamber or a 
multipurpose hall. We could dispute whether such an acoustical ‘prothesis’ is really neces-
sary for all these cases or whether sometimes they are rather a misuse of technical aids; 
it is a fact that many speakers and singers are not only unable but also unwilling to exert 
themselves to such an extent and to articulate so distinctly that they can make themselves 
clearly heard even in a lecture or meeting room of moderate size. Instead, they prefer to 
rely on the microphone which is readily offered to them. But the listeners are also demand-
ing, to an increasing extent, a loudness which will make listening as effortless as it is in 
broadcasting, television or cinemas. Acousticians have to come to terms with this trend 
and they are well advised to try to make the best of it and to contribute to an optimum 
design of such installations.

But electroacoustical systems in rooms are by far more than a necessary evil. They open 
acoustical design possibilities which would be inconceivable with traditional means of room 
acoustical treatment. For one thing, there is a trend to build halls and performance spaces of 
increasing size, thus giving large audiences the opportunity to witness personally important 
cultural, entertainment or sports events. This would be impossible without electroacousti-
cal sound reinforcement, since the human voice or a musical instrument alone would be 
unable to produce an adequate loudness at most listeners’ ears. Furthermore, large halls are 
often used – largely for economic reasons – for very different kinds of presentations (see also 
Section 9.6).

In this situation, it is a great advantage that electroacoustical systems permit the adapta-
tion of the acoustical conditions in a hall to different kinds of presentations, at least within 
certain limits. Imagine a hall with relative long reverberation, well suited for musical per-
formances. Nevertheless, a carefully designed electrical sound system can provide for good 
speech intelligibility by directing the sounds towards the audience and hence avoiding the 
excitation of long reverberation.

The reverse way is more versatile and also more dif�cult technically: to render the natural 
reverberation of the hall short enough in order to match the needs of optimum speech trans-
mission. For the performance of music, the reverberation can be enhanced by a sophisticated 
electroacoustical system to a suitable and adjustable amount. The particular circumstances 
will decide which of the two possibilities is more favourable.

Electroacoustical systems for reverberation enhancement simulate acoustical conditions 
that are not encountered in the given hall as it is. At the same time, they can be considered as 
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a �rst step towards producing new arti�cial effects that are not encountered in halls without 
an electroacoustical system. In the latter respect, we are just at the beginning of a develop-
ment whose progress cannot yet be predicted.

Whatever the type and purpose of an electroacoustical system, there is a close interac-
tion between the system and the room where it operates in that its performance depends 
to a high degree on the acoustical properties of the enclosure itself. Therefore, the instal-
lation and use of such a system does not dispense with careful acoustical planning. 
Furthermore, without the knowledge of the acoustical factors responsible for speech 
intelligibility and of the way in which these factors are in�uenced by sound re�ections, 
reverberation and other acoustical effects, it would hardly be possible to plan, install 
and operate electroacoustical systems with excellent performance. It is the goal of this 
chapter to deal particularly with this interaction. More information on electroacoustical 
sound systems can be found in books on this subject – see that by Ahnert and Steffen,1

for instance.

10.1 LOUDSPEAKERS

In the simplest case, an electroacoustic sound reinforcement system consists of a micro-
phone, an electrical ampli�er and one or several loudspeakers. The microphone and the 
loudspeaker are the electroacoustic links to the world of sound. Another important compo-
nent of the system is the room in which the system is operated.

The frequency range which the system must cover depends on its intended use. If it is to 
be used for speech reinforcement only – maybe apart from occasional musical interludes – a 
range from 100 Hz to about 6000 Hz may be suf�cient as spectral components with higher 
frequencies will not appear in speech. When it comes to music transmission, the required 
quality standards are much higher. Accordingly, the system should transmit frequency 
components reaching from 20 Hz to 20 000 Hz or even higher which implies a signi�cant 
increase of expenditure and costs.

The most critical part of a sound reinforcement system is the loudspeaker because it must 
generate high acoustical power in a very limited space (compare the size of a loudspeaker or 
loudspeaker cluster with that of a symphonic orchestra!) without producing noticeable non-
linear distortions. At the same time, it should distribute the sound it generates as uniformly 
as possible over the audience.

For the construction of a loudspeaker, nearly every known transduction principle can 
be employed. We mention here the most successful ones, namely the piezoelectric, the elec-
trostatic and the electrodynamic principle. Among these, the last one is de�nitely the most 
popular, due to its �exibility and its power handling capacity. Figure 10.1 presents a cross-
sectional view of an electrodynamic (or just dynamic) loudspeaker system. It consists of a 
small coil arranged in the cylindrical gap of a strong permanent magnet which produces 
a radial magnetic �eld in the gap. An electrical current �owing through the coil produces 
an axially directed force acting onto a conical (or nearly conical) diaphragm, from which 
the sound wave is radiated. Both the diaphragm and the coil are kept in correct position 
by highly compliant spring elements. These elements together with the mass of the moving 
parts form a mechanical resonator, the resonance frequency of which determines the lower 
frequency limit of the loudspeaker.

A loudspeaker system according to Figure 10.1, for example, without any additional mea-
sures would be a rather inef�cient sound source since both sides of the diaphragm emit sound 
waves of opposite phase which partially cancel each other especially at low frequencies 



Electroacoustical systems in rooms 269

(‘acoustical short-circuit’). This unwanted 
effect can be reduced or avoided by mount-
ing the chassis system based on Figure  10.1 
into a panel or into an open or a closed box. 
The  useful frequency range of the loudspeaker 
can be extended towards lower frequencies by 
using more sophisticated boxes.

As an abstract model of a loudspeaker, we 
now consider a plane circular piston mounted 
�ush in an in�nite baf�e which  oscillates in the 
direction of its normal (see Figure 10.2). Each 
of its surface elements contributes a spheri-
cal wave to the sound pressure at some point. 
At higher frequencies when the radius a of the 
piston is not small compared with the wave-
length of the radiated sound signal, noticeable 
phase differences between these contributions 
may occur, resulting in an interference  pattern 

of the sound pressure amplitude. In the far �eld of the loudspeaker, that is, in the region 
where the distance from the source is considerably larger the S/λ (S = area of the  piston), 
the directional structure of the sound �eld can be described by the directional factor 
(see Equation 1.29), which in the present case reads

S N

Figure 10.1  Electrodynamic cone loudspeaker system (schematic). (Reproduced with permission from 
H. Kuttruff, Akustik - Eine Einführung. Copyright (2004) S. Hirzel Verlag Stuttgart.)

ϑ

P

Figure 10.2  Piston radiator (schematic).
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Here ϑ denotes the angle between the normal to the piston area and the direction of radia-
tion, J1 is the Bessel function of �rst order, and ka = 2πa/λ is the so-called Helmholtz number, 
which is the circumference of the piston divided by the acoustical wavelength. Figure 10.3 
depicts a few directional patterns of the circular piston, that is, polar representations of the 
directivity factor | Γ | for various values of ka. (The three-dimensional directivity factors are 
obtained by rotating these diagrams around their horizontal axes.) For ka = 2, the radiation 
is nearly uniform, but with increasing ka the sound is increasingly concentrated toward the 
middle axis of the piston. For ka > 3.83, additional smaller lobes appear in the diagrams.

The shape of the main lobe of a radiator’s directional diagram can be characterized by its 
half-power bandwidth, that is, the angular distance 2Δϑ of the points for which | Γ |2 = 0.5.*

For the circular piston with ka >> 1, this quantity is approximately

 ∆ϑ ≈ λ ⋅ °
a

2 30  (10.2)

Another important characteristic �gure is the directivity or gain g, de�ned as the ratio 
of the maximum and the average intensity, both at the same distance from the source (see 
Equation 5.46). For the circular piston, it is given by
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The dependence of this function on ka is shown in Figure 10.4.
The membrane of a real loudspeaker is neither plane nor rigid, and in most cases, it is not 

mounted �ush in a plane in�nite baf�e but in the front side of a box. Hence, its directivity 
differs more or less from that described by Equations 10.1 through 10.3. Nevertheless, these 
relationships yield at least a guideline for the directional properties of real loudspeakers.

Another type of loudspeaker which is used in many sound reinforcement systems is the 
horn loudspeaker. It consists of a tube with continuously increasing cross-sectional area, 
called a horn, and an electrodynamic driver attached to the horn at its narrow end. The 
main advantage of this loudspeaker is its high-power ef�ciency because the horn improves 

* As shown in Figure 10.6.

(a) (b) (c)

Figure 10.3 Directional factor (magnitude |Γ(ϑ)|) of the circular piston: (a) ka = 2, (b) ka = 5 and (c) ka = 10.
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the acoustical match between the driver’s 
diaphragm and the free �eld. This effect 
is usually augmented by a pressure cham-
ber incorporated in the driver acting as a 
mechanical impedance transformer (see 
Figure 10.5). Another advantage of the 
horn loudspeaker is that it has a certain 
directivity even at low frequencies. The 
simplest horn types are the conical and the 
exponential horn. Unfortunately, no closed 
formulae are available for calculating or 
estimating the directional characteristics of 
a horn loudspeaker which depends on the 
shape and the length of the horn as well as 
the size and the shape of its ‘mouth’. Thus, 

the directional pattern of a horn has to be determined experimentally or with numerical 
methods. The same holds for its frequency characteristics. The most successful way to do 
this is by application of the boundary element method (BEM), which has been mentioned 
in Section 3.5. By combining several horns a wide variety of directional patterns can be 
achieved. The most straightforward solution of this kind are the multicellular horns consist-
ing of many single horns, the openings of which approximate a portion of a sphere and yield 
nearly uniform radiation into the solid angle subtended by the opening of the horn.

A well-tried method to achieve directivity of sound radiation is combining several loud-
speakers, which are fed by the same electrical signal, in a regular array. The sound pressure 
obtained in some point R is the sum of the contributions. Depending on the direction of 
R and of the sound frequency, phase differences between these contributions may lead to 
partial or total mutual cancellation.

As an example, we consider a linear array consisting of N point sources each of them 
producing a spherical wave according to Equation 1.27. They are arranged along a straight 
line at equal distances d, and they all are fed with the same electrical signal. Suppose its 
frequency is ω = kc, then the directional factor of this array is given by

 ( )Γ ϑ =
ϑ





ϑ
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Figure 10.5 Horn loudspeaker with pressure chamber driven by a moving piston (longitudinal section).
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as a function of ka.
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where ϑ is the angle in which the considered direction includes with the normal of the array. 
This is illustrated in Figure 10.6, which plots |Γa(ϑ)| as a polar diagram for kd = π/2 and 
N = 8. The subscript a is to indicate that the directional pattern of Equation 10.4 is a prop-
erty just of the regular arrangement of the elements. In real loudspeaker arrays, each element 
has a directivity on its own with the directivity factor Γ0. Then, the total directivity factor is 
simply obtained by multiplying Γa with Γ0:

 Γ(ϑ) = Γ0(ϑ) ⋅ Γa(ϑ)

The three-dimensional directivity pattern is obtained by rotating the diagram in 
Figure 10.6 around the vertical axis of the array. It is noteworthy that the radiated sound 
is concentrated into the plane perpendicular to the array axis. As in the case of the circular 
piston, the directional pattern Γa(ϑ) contains a main lobe which becomes narrower with 
increasing frequency. Furthermore, for f > c/Nd it shows smaller satellite lobes, the number 
of which grows with increasing number of elements and with the frequency.

For N > 3, the largest of these side lobes is at least 10 dB lower than the maximum of the 
main lobe. The angular half-power width of the main lobe is

 ∆ϑ ≈ λ ⋅ °
Nd

2 50  (10.5)

This relationship, however, holds only if the resulting half-width 2Δϑ is less than 30°.
It should be noted that by introducing phase shifts into the signals feeding the elements of 

the array, the direction of the main lobe can be changed. This is of practical interest because 
in this way a �ne adjustment of the direction of maximum radiation can be effected.

Sometimes it may be advantageous to modify the concept of an array with elements 
arranged along a straight line. In fact, it is easy to imagine that a loudspeaker array with a 
slightly convex curvature permits a more uniform irradiance of the audience area. The effect 
of this measure is twofold: �rstly, there is always one loudspeaker directed toward listeners, 
and secondly, by the curvature the idea of several contributions arriving at a listener with 
equal amplitudes and phases is given up and this the more the larger the angle between the 
axes of neighbouring loudspeakers. Obviously, it is the component Γa(ϑ) of the directivity 
which is most affected by the modi�ed shape of the array.

10.2 REQUIRED POWER AND REACH OF A LOUDSPEAKER

A question of crucial importance for the practical design of a sound ampli�cation system is 
that of which sound power must be provided by the sound source because this determines 
the choice of the loudspeakers and their arrangement.

2∆ϑ

1/√2
1

ϑ

Figure 10.6  Linear loudspeaker array with N = 8 and its  directional factor (magnitude |Γa(ϑ)|) for kd = π/2.



Electroacoustical systems in rooms 273

The sound pressure level which must be achieved by the loudspeakers of a sound repro-
duction system depends on the type of sound signal (speech or music) and on the noise in the 
auditorium where the sound is to be presented. This noise may be due to a restless audience, 
or to technical installations such as the air-conditioning system, or to insuf�cient insulation 
against exterior noise sources. In any case, the level of the ampli�ed signal should exceed 
the noise level by 10 dB at least. Under normal conditions, a level of 70–75 dB should be 
adequate for speech transmission. For music, the required sound level is considerably higher, 
namely 95–105 dB, depending on the sort of music.

In the free �eld, the relation between the energy density wd and the acoustic power P of a 
sound source with the directivity factor g reads

 =
π4

d 2w
gP
cr

(10.6)

To calculate the energy density in an enclosure, one might be tempted to apply Equation 5.5
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= α (10.7)

denoting the total absorbing area in the room. However, then one would disregard the fact 
that the impulse response between two points of a room consists of ‘early re�ections’, which 
are highly welcome because of the support they give to the direct sound (among other ben-
e�cial effects), and of ‘late re�ections’, which make up the reverberant tail of the response. 
This latter part is an indispensable ingredient of the acoustics of �ne concert halls, but for 
the intelligibility of speech it is rather disturbing in that it forms a kind of background noise 
which does not carry any useful information. Obviously, this ‘noise’ cannot be overcome 
just by increasing the gain of the ampli�er since this would increase not only the useful 
components (direct sound and early re�ections) but also the reverberant part of the impulse 
response. The only way to reduce the ‘reverberant noise’ is to reduce the reverberation time 
of the room and/or to improve the design of the whole system, especially the position and 
the directivity of the loudspeaker(s) with the goal to achieve a more favourable ratio of the 
early and the late energy transported in the impulse response.

To estimate the energy contained in the ‘reverberant tail’ of the impulse response, we 
model the latter as an exponential decay of sound energy with a decay constant δ = cA/8V

 E(t) = E0 exp(−2δt)

Now suppose a sound source supplies the constant sound power P to the room, resulting 
in the steady-state energy density w according to Equation 10.7. We regard as detrimental 
those contributions to w which are conveyed by all re�ections with delays exceeding 100 ms 
with respect to the direct sound, in some rough accordance with the de�nition (7.10) of the 
clarity index. Thus, the energy they carry is

 ∫ ( ) ( )′ = − δ =
δ

− δ
∞

exp 2 d
2
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P
V

t t
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 (10.8)

This expression will now be compared with the energy density wd contained in the direct 
sound as given by Equation 10.6. We postulate that satisfactory speech intelligibility can 
only be achieved if wd is at least equal to wr′ or more explicitly

 ( )
π

≥
δ

− δgP
cr

P
V4 2

exp 0.22 (10.9)
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In the following, we denote with rmax the largest distance r for which this condition can 
be ful�lled, it indicates the range in which we can expect good intelligibility, provided the 
loudness of the sound signal is high enough. Introducing the reverberation time by T = 3 ∙ 
ln10/δ and observing that exp(0.3 · ln10) ≈ 2, we obtain from Equation 10.9:

 ≈ 





⋅r
gV
T

T0.06 2max

1/2
1/ (10.10)

where rmax is in metres and V in cubic metres. This quantity differs from the critical distance 
rc in Equation 5.48 by the factor 21/T.

In Figure 10.7, rmax is plotted as a function of the reverberation time; the product gV of the 
loudspeaker gain and the room volume is the parameter of the curves.

It should be noted that Equation 10.10 represents rather a rough estimate of the maximum 
distance rmax than an exact limit. This is a consequence of the somewhat crude assumptions 
in the derivation before. In particular, it underestimates the distance rmax for two reasons:

 1. In most cases, the loudspeaker will also produce early wall re�ections which contribute 
to the left-hand side of Equation 10.9, but there is no general way to account for them.

 2. It is safe to assume that the main lobe of the loudspeaker’s directional pattern will be 
directed towards the audience which is highly absorbing at mid and high frequencies. 
This reduces the power available for the excitation of the reverberant �eld roughly by 
a factor

 
1 1

1g
a

′
= − α

− α
 (10.11)

 with αa denoting the absorption coef�cient of the audience, while /A Sα =  (see Equation 
10.7) is the mean absorption coef�cient of the boundary. Consequently, the gain g in 
Equation 10.10 and Figure 10.6 can be replaced with gg′, which is larger than g.
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Figure 10.7 Maximum distance of listeners from a loudspeaker (‘reach of a loudspeaker’) as a function of the 
reverberation time for various values of gV (V in m3).
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The most important result of this consideration is that the reach of a sound source in a 
room is limited by the reverberant sound �eld and cannot be extended just by increasing 
the sound power. To illustrate this, let us consider a hall with a volume of 15 000 m3 and a 
reverberation time of 2 s. If the product gg′ can be made as high as 16, the maximum dis-
tance which can be acoustically bridged will be rmax ≈ 28 m.

At �rst glance, it seems that the condition r < rmax with rmax from Equation 10.10 is not too 
stringent. This holds indeed for medium and high frequencies. At low frequencies, however, 
g as well as g′ is close to unity, and often, the reverberation time of the room is higher than 
that at mid-frequencies. As a consequence, most of the low-frequency energy supplied by the 
sound source will feed the reverberant part of the energy density where it is not of any use. 
This is the reason why so many halls equipped with a sound reinforcement system suffer 
from a low-frequency background which is unrelated to the transmitted signal and is per-
ceived as a kind of noise. The simplest remedy against this evil is to mute the low-frequency 
components of the signal which do not contribute to speech intelligibility anyway by a suit-
able electrical �lter.

Of course, Equation 10.10 is not the only condition which must be met if the system is to 
perform satisfactorily. Other ones are a well-controlled directivity of the loudspeaker and 
the acoustical power it can produce. So we are coming back to the question already raised 
at the beginning of this section. We require that the sound pressure level of the direct loud-
speaker signal in all points closer to the source than rmax is at least Ld. Using Equations 10.6 
and 1.64 (with SPL ≡ Ld and cwd = Id), one obtains for the necessary sound power

 = π ⋅ ≈ π ⋅ −4 4
10max
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d max
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cr
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r L  watts (10.12)

This is the same formula as would be adequate for outdoor sound ampli�cation – apart 
from the maximum distance rmax based on Equation 10.10.

10.3 REMARKS ON LOUDSPEAKER POSITIONS

In this section, we consider again a sound reinforcement system which, in the simplest 
case, consists of a microphone, an ampli�er and a loudspeaker, as presented in Figure 10.8. 
Additional electrical components, such as equalizers, delay units, and limiters, are not 
shown. The ampli�ed microphone signal is supplied to the room and hence to the audience 
either by one central loudspeaker, or by several or many loudspeakers distributed through-
out the room. (The  term ‘central loudspeaker’ includes of course the possibility of com-
bining several loudspeakers closely together, for instance, in a cluster or a linear array as 

described in Section 10.1.) This section 
deals with several factors which should 
be considered when loudspeaker loca-
tions are selected in a room.

In any case, the loudspeakers must 
ensure that all listeners are supplied 
with suf�cient sound energy and that 
a satisfactory speech intelligibility is 
attained. Furthermore, a sound rein-
forcement system should yield a natu-
ral hearing impression. In the ideal 
case (possibly with the exception of the 

M
x

A

L

Figure 10.8 Central loudspeaker system: L = loudspeaker, 
M = microphone, A = ampli�er and x = source.
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presentation of electronic music), the listener would be unable to notice the electroacoustical 
support at all. To achieve this, it is necessary, apart from using high-quality microphones, 
loudspeakers and ampli�ers, that the sounds produced by the loudspeakers reach the lis-
tener from about the same direction in which he is seeing and hearing the actual speaker or 
the natural sound source.

Since the microphone and the loudspeaker are operated in the same room, it is inevi-
table that the microphone will pick up not only sound produced by the natural source, for 
instance, by a speaker’s voice, but also sound arriving from the loudspeaker. This phenom-
enon, known as ‘acoustical feedback’, can result in instability of the whole system and lead 
to the well-known howling or whistling sounds. We shall discuss acoustical feedback in a 
more detailed manner in the next section.

In most cases, the loudspeaker will be mounted more or less above the natural sound source. 
This arrangement has the advantage that the direct sound, coming from the loudspeaker, will 
always arrive from roughly the same direction (with regard to a horizontal plane) as the sound 
arriving directly from the original sound source. The vertical deviation of directions is not 
very critical, since our ability to discriminate sound directions is not as sensitive in a vertical 
plane as in a horizontal one. The subjective impression is even more natural if care is taken 
that the loudspeaker sound reaches the listener simultaneously with the unampli�ed sound or 
even 10–30 ms later. In the latter case, the listener bene�ts from the law of the �rst wavefront 
(precedence effect), which raises the illusion that all the sound he hears is produced by the 
natural sound source, that is, no electroacoustical system is in operation. This illusion can 
be maintained even if the level of the loudspeaker signal at the listener’s position surpasses the 
level due to the natural source by 5–10 dB, provided the latter precedes the loudspeaker signal 
by about 10–15 ms (Haas effect; see Section 7.4). The delayed arrival of the loudspeaker’s sig-
nals at the listener’s seat can be achieved by increasing the distance between the loudspeaker 
and the audience. However, the application of this simple measure is limited by the increasing 
risk of acoustical feedback which was already mentioned before. A more elegant and �exible 
way is to employ an electrical delay device inserted in the electrical signal path.

Very good results in sound ampli�cation, even in large halls, have occasionally been 
obtained by using a speaker’s desk which has loudspeakers built into the front facing panel. 
These loudspeakers are arranged in properly inclined, vertical columns with suitable direc-
tionality. With this arrangement, the sound from the loudspeakers will travel in almost 
the same direction as the sound from the speaker himself. This reduces problems due to 
feedback provided that the propagation of structure-born sound is prevented by resiliently 
mounting the desk loudspeakers and the microphone.

In very large or long halls, or in halls consisting of several sections, the supply of sound 
energy by one single loudspeaker only will become increasingly dif�cult because condition 
(10.9) cannot be met without unreasonable expenditure. The use of several loudspeakers at 
different positions has the consequence that each loudspeaker supplies a smaller area which 
makes it easier to satisfy Equation 10.9. Two simple examples are shown in Figure 10.9. 
If all loudspeakers are fed with identical electrical signals, however, confusion zones may be 
caused in which listeners are irritated by hearing sound from more than one source. In these 
areas, not only the natural localization of the sound source is impaired but also the intel-
ligibility is signi�cantly diminished. Again, this undesirable effect is avoided by electrically 
delaying the signals applied to the subsidiary loudspeakers. The delay time should at least 
compensate the distances between the auxiliary loudspeaker(s) and the main loudspeaker. 
Furthermore, the power of the subsidiary loudspeakers must not be too high since this again 
would make the listener aware of it and hence destroy the illusion that all the sound he 
receives is arriving from the stage. The delay times applied in sound reinforcement systems 
are typically in the range 10–100 ms, sometimes even more.
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In halls where a high noise level must be expected but where announcements or other 
information must be clearly understood by those present, the ideal of a natural-sounding 
sound transmission, which preserves or simulates the original direction of sound propaga-
tion, must be sacri�ced. Accordingly, the ampli�ed signals are reproduced by many loud-
speakers which are distributed fairly uniformly and are fed with identical electrical signals. 
In this case, it is important to ensure that all the loudspeakers which can be mounted on the 
ceiling or suspended from it are supplied with equally phased signals. The listeners are then, 
so to speak, in the near �eld of a vibrating piston. Sound signals of opposite phases would 
be noticed in the region of superposition in a very peculiar and unpleasant manner.

If the sound irradiation is effected by directional loudspeakers from the stage towards the 
back of the room, the main lobe of one loudspeaker will inevitably project sound towards 
the rear wall of the room, since the listeners seated in the most remote parts of the hall 
are also meant to bene�t from the sound system. Thus, a substantial fraction of the sound 
energy will be re�ected from the rear wall and can cause echoes in other parts of the room 
disturbing listeners as well as speakers. For this reason, it is recommended that such walls 
or wall portions are rendered highly absorbent. In principle, an echo could also be avoided 
by a diffusely re�ecting wall treatment which scatters the sound in all possible directions. 
But then the scattered sound would excite the reverberation of the room, which, as was 
explained earlier, is not favourable for speech transmission.

The performance of an electroacoustical system can be tested by applying suitable test 
signals to the ampli�er input and measuring the response of the system at many points 
distributed over the area where the audience is seated. In the simplest case, stationary ran-
dom noise is used as a test ‘signal’ and the received signal is analysed using an octave 
or a third-octave �lter. The result can be used for adjusting an equalizing �lter which is 
inserted into the electrical signal path in order to compensate for linear distortions as caused 
by the frequency dependence of the reverberation time or of the loudspeaker(s)’ directiv-
ity. More detailed information can be gained with impulses or impulse-equivalent signals 
(maximum length sequences, sine sweeps, see Section 8.2). Such measurements yield the 
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Figure 10.9  Public address system with more than one loudspeaker (L, L′ = loudspeakers, M = microphone, 
A = ampli�er).
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impulse response of the transmission path and permit us to discriminate the ‘useful’ signal 
components from the reverberant ones. In particular, the indicators of speech intelligibility, 
as discussed in Section 7.4, can be evaluated from the impulse response either of the rein-
forcement system itself or of its combination with a loudspeaker which simulates a natural 
speaker. Furthermore, the correct function of the delay devices can be checked.

The preceding discussions concern mainly the transmission of speech. The electroacousti-
cal ampli�cation of music – apart from entertainment or dance music – is rejected by many 
musicians and music lovers for reasons which are partly irrational. Obviously, many of 
these people have the suspicion that the music could be manipulated in an undue way which 
is outside the artists’ in�uence. On the other hand, almost everybody has experienced the 
poor performance of technically imperfect reinforcement systems. If, in spite of objec-
tions, electroacoustical reinforcement is mandatory in a performance hall, the installation 
must be carefully designed and the system must be equipped with �rst-class components. 
Furthermore, it must preserve under all circumstance the natural direction of sound inci-
dence and the natural timbre. Care must be taken to avoid linear as well as non-linear dis-
tortions and the ampli�cation should be kept at a moderate level. A particular problem is to 
comply with the large dynamical range of symphonic music. For entertainment music, the 
requirements are not as stringent; in this case, people have long been accustomed to the fact 
that a singer has a microphone in his or her hand and the audience will more readily accept 
that it will be conscious of the sound ampli�cation.

These remarks have no signi�cance for the presentation of electronic music; here the 
acoustician can safely leave the arrangement of loudspeakers and the operation of the whole 
equipment to the performers and their technical staff.

10.4 ACOUSTICAL FEEDBACK AND ITS SUPPRESSION

Acoustical feedback in sound reinforcement systems has already been mentioned in the 
preceding section. In principle, feedback will occur whenever the loudspeaker of a public 
address system is located in the same room as the microphone which inevitably will pick up 
a portion of the loudspeaker signal. Only if this portion is suf�ciently small are the effects 
of feedback negligible; higher ampli�cation of the feedback signal may cause substantial 
linear distortions such as ringing effects or colouration. At still higher ampli�cation, the 
whole system will perform self-sustained oscillations at some frequency which makes the 
system useless.

Before discussing measures for the reduction or suppression of feedback effects, we shall 
deal with its mechanism in a somewhat more detailed manner.

We assume that the original sound source, for instance, a speaker, produces a sound signal 
with spectrum S(ω) at the microphone (see Figure 10.10). The output voltage of the micro-
phone is ampli�ed with a frequency-independent gain q and is fed to the loudspeaker. The 
loudspeaker signal will reach the listener via a transmission path in the room with a complex 
transfer function ωG( ); at the same time, it will reach the microphone by a different path 
with the transfer function G(ω). The latter one, together with the microphone, the ampli�er 
and the loudspeaker, constitutes a closed loop which the signal passes through repeatedly.

The lower part of Figure 10.10 shows the mechanism of acoustical feedback in a more sche-
matic form. The complex amplitude spectrum of the output signal (i.e., of the signal at the 
listener’s seat) is given by
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The �rst of these expressions clearly shows that acoustical feedback is brought about by 
the signal repeatedly passing through the closed loop. The second one shows us that the 
acoustical feedback has changed the original transfer function ωqG( ) into

 G
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ω
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− ω

⋅ ω (10.14)

The factor qG(ω), which is characteristic for the amount of feedback, is called the ‘open 
loop gain’ of the system. Depending on its magnitude, the spectrum S ′(ω) of the received 
signal and hence the signal itself may be quite different from the original signal with the 
spectrum S(ω).

The properties of the ‘effective transfer function’ G′ can be illustrated by means of the 
Nyquist diagram, in which the locus of the open loop gain is represented in the complex 
plane (see Figure 10.11). Each point of this curve corresponds to a particular frequency; 
abscissa and ordinate are proportional to the real part and the imaginary part of qG, respec-
tively. The arrows point in the direction of increasing frequency. The whole system will 
remain stable as long as this curve does not include the point +1. This condition is certainly 
ful�lled if |qG| < 1 for all frequencies. Mathematically, this condition guarantees the con-
vergence of the series in Equation 10.13.

Suppose that we start with a very small ampli�er gain, that is, with |qG| being small com-
pared to unity. If we increase the gain gradually, the curve in Figure 10.11 will be in�ated, 
keeping its shape. In the course of this process, the distance between the curve and the point 
+1, that is, the quantity |1−qG|, could become very small for certain frequencies. Consequently, 
the magnitude of the transfer function G′ will become very large at these frequencies. Then, 
the signal received by the listener will sound ‘coloured’ or, if the system is excited by an 
impulsive signal, ringing effects are heard. With a further increase of q, |qG| will exceed unity 
and this will happen at a frequency close to that of the absolute maximum of |G(ω)|. Then, the 
system becomes unstable and performs self-excited oscillations at that frequency.

G(ω)
G(ω)

q

G(ω)S(ω) S´(ω)+ q

G(ω)

Figure 10.10  Acoustical feedback in a room. The lower part of the �gure represents the block diagram of 
the system.
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The effect of feedback on the performance of a public address system can also be demon-
strated by plotting |G′(ω)| on a logarithmic scale as a function of the frequency. This leads 
to ‘frequency curves’ similar to that shown in Figure 3.8b. Figure 10.12 presents several such 
curves for various values of the open loop gain |qG|, obtained by simulation with a digital 
computer.2 With increasing gain, one particular maximum starts growing more rapidly than 
the other maxima and becomes more and more dominating. This is the condition of audible 
colouration. When a critical value q0 of the ampli�er gain is reached, this leading maximum 
will become in�nitely high which means that the system will start to perform self-sustained 
oscillations. (In real systems, the amplitude of these oscillations remains �nite because of 
inevitable non-linearities of its components.)

A question of great practical importance concerns the ampli�er gain q which must not 
be exceeded if colouration is to be avoided or to be kept within tolerable limits. According 
to listening tests as well as to theoretical considerations, colouration remains imperceptible 
as long as

 20 log10(q/q0) ≤ −12dB (10.15)

For speech transmission, it is suf�cient to keep the relative ampli�cation 5 dB below the 
instability threshold to avoid audible colouration.

Another effect of acoustical feedback is the increase of reverberance which, however, is 
restricted to those frequencies for which G′(ω) is particularly high. To show this, we �rst 
simplify Equation 10.14 by setting G G= :
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Figure 10.11  Nyquist diagram illustrating stability of acoustical feedback.
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To demonstrate the increase of reverberation time by acoustical feedback, we consider a 
single component of the natural sound decay in a room (see Equation 3.60):

g(t) = exp(iω0t) ∙ exp(−δt) for t ≥ 0

The inverse Fourier transform of this ‘impulse response’ reads

 ω =
δ + ω − ω
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Inserting this expression into Equation 10.16 yields the impulse response of the complete 
system:
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The comparison of Equations 10.17 and 10.18 tells us that feedback reduces the original 
decay constant from δ to δ′ = δ − q and thus increases the reverberation time of the system 
by a factor

 ′ = δ
′δ

=
− δ

T
T q

1
1 /

(10.19)

In principle, acoustical feedback can be avoided by keeping the open loop gain qG in 
Equation 10.14, small compared to unity. However, if we would try to achieve this by reduc-
ing the ampli�er gain q, this would reduce the loudness of the loudspeaker signal and the 
system would become useless. Thus, the only way to improve the stability of the system is to 
make the magnitude of G(ω) as small as possible in the interesting frequency range. For this 
purpose, the loudspeaker must be given a suitable and well-adjusted directivity; the main 
lobe of the radiation pattern should point towards the listeners without feeding much energy 
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Figure 10.12  Frequency curves of a room equipped with an electroacoustical sound reinforcement 
 system, simulated for different ampli�er gains2. The latter varies in steps of 2 dB from 
−20 dB to 0 dB relative to the critical gain q0. The total frequency range is 90/T hertz (T = 
 reverberation time).
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into the reverberant sound �eld. Likewise, a microphone with a suitable directivity may be 
used, for instance, a cardioid microphone oriented in such a way that it gives the original 
sound source much more weight than the signal arriving from the loudspeaker which is 
more or less suppressed. If there are more than one microphones, the ‘idle’ ones should be 
switched off. And also, the number of loudspeakers should be kept as small as possible. 
In any case, it is advantageous to arrange the active microphone close to the original source. 
With these rather simple measures, acoustical feedback cannot be completely eliminated, to 
be sure, but often the point of instability can be raised high enough so that it will never be 
reached during normal operation.

In view of the irregular shape of room transfer functions (see Figure 3.8), further increase 
of feedback stability should be possible by smoothing the function ǀG(ω)ǀ. A �rst step in this 
direction is to suppress the frequency at which feedback instability is expected by means of a 
narrow bandwidth bandpass �lter. The possible increase of stable ampli�er gain is not very 
high because after this step there will emerge another feedback frequency with the same prop-
erty. To achieve noticeable increase in stability, the combination of many adjustable bandpass 
�lters would be needed. Nowadays, the adjustment of such a �lterbank can be carried out 
automatically which is important because the transfer properties of a room may show tempo-
ral variations. The total increase in feedback stability achieved in this way may be as high as 
5−8 dB,1 provided the linear distortions due to the loudspeaker or the frequency-dependent 
reverberation time have been removed beforehand by an equalizing network.

Theoretically, by smoothing or averaging the room transfer function, the region of stable 
operation can typically be augmented by about 10 dB. The reason for this limit is Equation 
3.53. It tells us that the level difference ΔLmax between the absolute maximum of a frequency 
curve and its energetic average amounts typically to about 10 dB.

In an early attempt to average the transfer function of the room, the microphone was 
moved on a circular path during its operation (Franssen11). Likewise, the use of a rotating 
gradient microphone has also been proposed with the axis of rotation being perpendicular 
to the direction of its maximum sensitivity. However, the mechanical movement makes it 
dif�cult uncontrollable to pick up a speaker’s voice with such a microphone; furthermore, it 
produces amplitude modulation of the signal.

A more practical method of virtually �attening the frequency characteristics of the open 
loop gain has been proposed and demonstrated by Schroeder.3 It  is effected by modifying 
the signal during its repeated round trips in the feedback loop instead of varying the transfer 
function. As we saw, acoustical feedback is brought about by particular spectral components 
which always experience the same ‘favourable’ amplitude and phase conditions when circulat-
ing in the closed loop in Figure 10.10. If, however, the feedback loop contains a device which 
shifts the frequencies of all spectral components by a small amount Δω, then a particular 
component will experience favourable as well as unfavourable conditions, which, in effect, is 
tantamount to frequency averaging the transfer function. After N trips around the feedback 
loop, the signal power is increased or decreased by a factor

 K(ω) = |qG(ω + Δω)|2 · |qG(ω + 2Δω)|2 · … · |qG(ω + NΔω)|2

Setting L(ω′) = 10 · log10 |qG(ω′)|2, we obtain the change in level:

 10 · log10[K(ω)] = L(ω + Δω) + L(ω + 2Δω) + … + L(ω + NΔω) ≈ N ∙ 〈L〉 (10.20)

where 〈L〉 is the average of the logarithmic frequency curve in the range from ω to ω + NΔω. 
The system will remain stable if N ∙ 〈L〉 → −∞ as N approaches in�nity, that is, if 〈L〉 is 
negative.
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Now it is no longer the absolute maximum of the frequency curve which determines the 
onset of instability but a certain average value. As mentioned, the difference ΔLmax between 
the absolute maximum and the average of a frequency curve is about 10 dB for most large 
rooms; it is this level difference by which the ampli�er gain may be increased theoretically 
without the risk of instability. Note that the frequency shift Δf = Δω/2π must be small 
enough to remain inaudible. On the other hand, it must be high enough to yield effective 
averaging after a few round trips. The best compromise is to choose for Δf the mean spacing 
of frequency curve maxima according to Equations 3.48 and 3.49:

 ( )∆ = ∆ =f f
T
4

max (10.21)

This method works quite well with speech; with music, however, even very small  frequency 
shifts are noticed since they change the musical intervals. In practice, the theoretical increase 
in ampli�cation of about 10 dB cannot be reached without unacceptable reduction of sound 
quality; as soon as the increase exceeds 5–6 dB, beating effects of the repeatedly modi-
�ed signals become audible. Practically, the frequency shift is achieved by single side-band 
modulation of the signal.

Another method of reducing the risk of acoustical feedback by employing time-variable 
signals was proposed by Guelke and Broadhurst,4 who replaced the frequency-shifting 
device by a phase modulator. The effect of phase modulation is to add symmetrical side 
lines to each spectral line. By suitably choosing the width of phase variations, the centre line 
(i.e., the carrier) can be removed altogether. In this case, the authors were able to obtain an 
additional gain of 4 dB. They stated that the modulation is not noticeable even in music if 
the modulation frequency is as low as 1 Hz.

10.5  REVERBERATION ENHANCEMENT WITH 
EXTERNAL REVERBERATORS

As discussed in Section 9.6, many large halls have to accommodate quite different events 
such as meetings, lectures, performance of concerts, theatre and opera pieces, and some-
times even sports events, banquets and balls. It is obvious that the acoustical design of such a 
multipurpose hall cannot create optimum conditions for each type of presentation. At best, 
some compromise can be reached which necessarily will not satisfy all expectations.

A much better solution is to provide variable reverberation time that could be adapted to 
the different requirements. One way to achieve this is by changing the absorption within the 
hall by mechanical devices, as described in Section 9.6. Such devices, however, are costly 
and subject to mechanical wear. A more versatile and less expensive solution to this problem 
is offered by electroacoustical systems designed for the control of reverberation.

Principally, electroacoustical enhancement of reverberation time can be achieved in two 
different ways. The �rst method employs the regenerative reverberation within the room 
brought about by acoustical feedback, as mentioned in the preceding section. With the sec-
ond method, arti�cial reverberation is created by some external reverberator and is imposed 
on the sound signal, the reverberance of which is to be augmented. At �rst, we shall describe 
the second method in more detail, while the discussion of the �rst one is postponed to the 
next section.

The principle of reverberation enhancement with separate reverberators is depicted in 
Figure 10.13. The sounds produced by the orchestra are picked up by microphones which are 
close to the performers. The output signals of the microphones are fed into a reverberator. 
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This is a linear system with an impulse response fairly similar to that of an enclosure and 
hence provides the signals with its inherent reverberation. The signals modi�ed in this man-
ner are re-radiated in the original room by loudspeakers distributed in a suitable way within 
the hall. In addition, delaying devices must usually be inserted into the electrical circuit in 
order to ensure that the reverberated loudspeaker signals will not reach any listener’s place 
earlier than the direct sound signal from the natural sound source.

It should be noted that the selection of loudspeaker locations has a great in�uence on the 
effectiveness of the system and on the quality of the reverberated sound. Another important 
point is that not all the loudspeakers should be fed with identical signals; instead, these 
signals must be mutually incoherent since this is the condition for creating the impression 
of spaciousness described in Section 7.7. Therefore, the reverberator must have several out-
put terminals yielding incoherent signals which are all derived from the same input signal. 
In order to provide each listener with sound incident from several substantially different, 
mainly lateral directions, it may be necessary to use more loudspeakers than incoherent 
signals. It is quite obvious that all the loudspeakers must be suf�ciently distant from all the 
listeners in order to prevent one particular loudspeaker being heard much louder than the 
others. Finally, care must be taken to avoid noticeable acoustical feedback.

Let us now discuss the various methods to reverberate the electrical signals provided by 
the stage microphone(s). The most natural way is to apply them to one or several loudspeak-
ers in a separate reverberation chamber which has the desired reverberation time, including 
its frequency dependence. The sound signal in the chamber is again picked up by microphones 
which are far apart from each other to guarantee the incoherence of the output signals. The 
reverberation chamber should be free of �utter echoes and its volume should not be less than 
150–200 m3, otherwise the density of eigenfrequencies would be too small at low frequencies.

A system of this type was installed in 1963 for permanent use with musical performances 
in the ‘Jahrhunderthalle’ of the Farbwerke Hoechst AG (today Aventis S.A.) at Hoechst near 
Frankfurt am Main.5 This hall, the volume of which amounts to about 75 000 m3, has a 
cylindrical side wall with a diameter of 76 m; its roof is a spherical dome. In order to avoid 
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Figure 10.13  Electroacoustic reverberation enhancement with an external reverberator.
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the acoustical risks of this shape, the dome as well as the side wall was treated with highly 
absorbing materials. In this state, the auditorium has a natural reverberation time of about 
1 s. To increase the reverberation time, the sound signals are picked up by several micro-
phones on the stage, passed through a reverberation chamber and �nally fed to a total of 90 
loudspeakers, which are distributed in a suspended ceiling and along the cylindrical side and 
rear wall. This system, which underwent several modi�cations in the course of time, raised 
the reverberation time to about 2 s.

Other reverberators that have found wide application in the past employed bending waves 
propagating in metal plates, or torsional waves travelling along helical springs, excited and 
picked up with suitable electroacoustical transducers. The reverberation was brought about by 
repeated re�ections of the waves from the boundary or the terminations of these waveguides.

The essential property of these devices is the �nite travelling time of a sound ray or par-
ticle between successive re�ections. Therefore, in order to produce some kind of reverbera-
tion, we only need, in principle, a delaying device and a suitable feedback path by which the 
delayed signal is transferred again and again from the output to the input of the delay unit (see 
Figure 10.14a). As before, we denote the open loop gain in the feedback loop with q which must 
be smaller than unity for stable conditions, and t0 denotes the delay time. Then, the impulse 
response of the circuit is given by Equation 7.7. With each round trip, the signal is attenuated 
by −20log10 q decibels, and hence after −60/(20 log10 q) passages, the level has fallen by 60 dB. 
The time in which this happens is by de�nition the reverberation time of the reverberator:

 = −T
t

q
3

log
0

10
(10.22)

In order to obtain a suf�ciently long reverberation time, either q must be fairly close to 
unity, which makes the adjustment of the open loop gain very critical, or t0 must be rela-
tively long. Suppose we aim at a reverberation time of 2 s. With a delay time of 10 ms, the 
gain q must be set at 0.966, while with t0 = 100 ms the required gain is still 0.708. In both 
cases, the reverberation has an undesirable tonal quality. In the �rst case, the reverberator 
produces ‘coloured’ sounds due to the regularly spaced maxima and minima of its transfer 
function, as shown in Figure 7.9. In the second case, the regular succession of ‘re�ections’ 
is perceived as �utter.

The performance of such a reverberator can be improved to a certain degree, accord-
ing to Schroeder and Logan,6 by modifying it such that it has all-pass characteristics. 
For this purpose, the fraction 1/(1 − q2) of the input signal is subtracted from its output 
(see Figure 10.14b). The impulse response of the modi�ed reverberator is

 ∑( ) ( ) ( )= −
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Figure 10.14 Electronic reverberators with one delay unit: (a) comb �lter type and (b) all-pass type.
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Its Fourier transform, that is, the transfer function of the reverberator, is given by

( )ω = −
−

+
− − ω

G t
q q i t

1
1

1
1 exp( )2

0
(10.24)

It is easily veri�ed that this transfer function G(ω) has no maxima and minima, the sys-
tem is an all-pass. Subjectively, however, the undesirable properties of the reverberation 
produced in this way have not completely disappeared, since our ear does not perform a 
Fourier analysis in the mathematical sense, but rather a ‘short-time frequency analysis’, thus 
also being sensitive to the temporal structure of a signal.

A substantial improvement can be achieved by combining several reverberation units with 
and without all-pass characteristics and with different delay times. These units are connected 
partly in parallel, partly in series. An example is shown in Figure 10.15. Of course, simple 
ratios between the various delay times must be avoided; moreover, the impulse response of 
the reverberator should be free of long repetition periods. This can be checked by perform-
ing an autocorrelation analysis of its impulse response (see Section 8.3).

Still better results are achieved with reverberators employing units with time-variable 
delays. They are the basis of a reverberation enhancement system named LARES (Lexicon 
Acoustic Reverberance and Enhancement System), invented by Griesinger and Barbar.7 For 
picking up the sounds, only two microphones are needed, which are positioned outside the 
critical distance of the original sound source and hence are in the diffuse sound �eld of the 
hall. Each microphone is connected to many loudspeakers in such a way that neighbouring 
loudspeakers are fed with different signals. Suppose there are two microphones and eight 
loudspeakers. Then, there are 16 connections between microphones and loudspeakers. The 
essential point is that in each of these connections, a time-variant reverberator is inserted. 
These reverberators randomize the microphone signals, accordingly the processed signals 
are mutually incoherent. This has about the same effect as the frequency shifter described 
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Figure 10.15 Electronic reverberator consisting of four comb �lter units and two all-pass units. The 
numbers indicate the delay of each unit. Optionally, the unreverberated signal attenuated by 
some factor g can be added to the output. (Based on Schroeder and Logan.6)



Electroacoustical systems in rooms 287

in the preceding section, namely to smooth the effective room transmission function. It is 
important that the time variations are so fast that the autocorrelation function of the rever-
berated signals vanishes after about 1 s.

A quite sophisticated system has been developed by Berkhout et al.8,9 which attempts to 
modify the original signals in such a way that they contain and hence transplant not only 
the reverberation but also the complete wave �eld of the hall or – what may be even more 
promising – the wave �eld from a �ctive hall (preferably one with excellent acoustics) into 
the actual environment. This system, called the acoustic control system (ACS), is based on 
Huygens’ principle, according to which each point hit by a wave may be considered as the 
origin of a secondary wave which effects the propagation of the wave to the next points. The 
ACS is intended to simulate this process by hardware components, that is, by microphones, 
ampli�ers, �lters and loudspeakers. In the following explanation of ‘wavefront synthesis’, 
we describe all signals in the frequency domain, that is, as functions of the angular fre-
quency ω.

Let us consider, as shown in Figure 10.16, an auditorium in which a plane and regular 
array of N loudspeakers LS is installed. The purpose of these loudspeakers is to synthesize 
the wave fronts originating from the real sound sources. For this purpose, the original 
sounds are picked up by M microphones which are regularly arranged next to the stage (e.g., 
in the ceiling above the stage). These microphones have some directional characteristics, 
each of them covering a particular subarea of the stage with one ‘notional sound source’ in 
its centre which is at a point rm. If we denote the signals produced by these sound sources 
with S(rm, ω), the signal received by the mth microphone at the location rm′  is

 …M W S m Mm m m mr r r r, , , 1,2, ,( ) ( ) ( ) ( )′ ω = ′ ⋅ ω =  (10.25)

where W is a ‘propagator’ describing the propagation of a spherical wave from a source point 
rm to a microphone position rm′ . Each of these propagators involves an amplitude change by 
a factor A and a delay τ:

 m mr r cτ = − ′  (10.26)

The microphone signals r ,M m( )′ ω  are fed to the loudspeakers after processing them as if 
the source signals S(rm, ω) would have reached the loudspeaker locations rn directly, that is, 
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Figure 10.16 Principle of wavefront synthesis (M = microphones, LS = loudspeakers).
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as sound waves. Hence, we have to undo the effect of the propagator r r,W m m( )′  in Equation 
10.25 and to replace it with
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− −

−
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ik
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m n
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r r
r r

r r
,

exp
(10.27)

describing the direct propagation from the mth notional source to the nth loudspeaker. 
Finally, the input signal of this loudspeaker is obtained by adding the contributions of all 
notional sources:

 , , ,1

1
∑( ) ( ) ( ) ( )= ′ ⋅ ⋅ ′ ω−
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m
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r r r r r r (10.28)

The loudspeakers will correctly synthesize the original wave fronts if their mutual dis-
tances are small enough and if they have dipole characteristics. (The latter follows from 
Kirchhoff’s formula which is the mathematical expression of Huygens’ principle but will not 
be discussed here.) For the practical application of this principle, it is suf�cient to substitute 
the planar loudspeaker array by a linear one in horizontal orientation since our ability to 
localize sound sources in vertical directions is rather limited.

This relatively simple version of ACS can be used not only for enhancing the sounds pro-
duced on stage but also for improving the balance between different sources, for instance, 
between singers and an orchestra. It has the advantage that it preserves the natural local-
ization of the sound sources. Systems of this kind have been installed in many halls and 
theatres. Although the derivation presented above neglects all re�ections from the boundary 
of the auditorium, the system works well if the reverberation time of the hall is not too long.

Sound re�ections from the boundaries can be accounted for by constructing the mirror 
images of the notional sources at rm and including their contributions into the loudspeaker 
input signals. However, it may be more interesting to construct image sources not with 
respect to the actual auditorium but to a virtual hall with desired acoustical conditions, 
and hence to transplant these conditions into the actual hall. This process is illustrated in 
Figure 10.17. It presents the ground plan of the actual auditorium (assumed as fan-shaped) 
drawn in the system of mirror images of a virtual rectangular hall. (For the sake of simplic-
ity, the images of only one notional source are shown.) Suppose the positions and the relative 
strengths of these image sources are numbered in some way:

 , , and , ,(1) (2) (3) (1) (2) (3)B B Bm m m m m mr r r … …

then the propagator W(rm,rn) in Equation 10.28 must be replaced with

 , , , 1,2, ,(1) (1) (2) (2)( ) ( )( ) ( )+ + + =W B W B W m Mm n m m n m m nr r r r r r … …

which leads to the following loudspeaker input signal
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In practical applications, it is useful to arrange loudspeaker arrays along the side walls of 
the actual auditorium and to allocate to each of them the right-hand and the left-hand image 
sources, respectively, as indicated in Figure 10.17.
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The coef�cients Bm
k( ) contain in a cumulative way the absorption coef�cients of all walls 

involved in the formation of a particular image source (see Section 4.1). Therefore, the rever-
beration time and the reverberation level, including their frequency dependence, are easily 
controlled by varying these coef�cients. Similarly, the shape and the volume of the virtual 
hall can be changed. Thus, an ACS permits the simulation of a great variety of different 
environments.

However, since the number of image sources increases rapidly with the order of re�ection, 
a vast number of propagators ,( )( )W m

k
nr r  would be required to synthesize the whole impulse 

response of the virtual room. Therefore, this treatment must be restricted to the early part 
of the impulse response. The later parts, that is, those corresponding to reverberation, can 
be synthesized in a more statistical way because the auditive impression conveyed by them 
does not depend on individual re�ections. More can be found on this matter in the work by 
Berkhout et al.9

10.6  REVERBERATION ENHANCEMENT 
BY CONTROLLED FEEDBACK

In Section 6.4, we learned that each sound reinforcement system is subject to positive feed-
back provided the microphone of the system is located in the same room as the loudspeaker. 
Moreover, it has been shown that acoustical feedback in a room is necessarily accompanied 
by an increase in reverberation time which depends on the open loop gain of the system (see 
Equation 10.19). However, in a usual sound reinforcement system this effect is restricted 
to one frequency (see Figure 10.12) and so it cannot be used for wide-band enhancement 
of reverberation with satisfactory tonal quality. One way to overcome this problem is to 

Figure 10.17  Actual hall and image sources of a virtual rectangular hall. (After Berkhout et al.10)
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provide for numerous independent acoustical transmission channels which are simultane-
ously operated in the auditorium.

In Figure 10.18, the multi-channel system invented by Franssen11 is depicted. It consists 
of N (>>1) microphones, ampli�ers and loudspeakers, each of the latter being connected 
with one microphone. All microphone–loudspeaker distances are signi�cantly larger than 
the critical distance (see Equation 5.48). Thus, there are N2 transmission paths which are 
interconnected by the sound �eld. Accordingly, the output signal Sk(ω) of the kth micro-
phone contains the contribution S0(ω) made by the original sound source SS as well as the 
contributions of all loudspeakers. Therefore, its amplitude spectrum is given by

 ∑ ( )( ) ( ) ( ) ( )ω = ω + ω ω =
=

S S q G S k Nk i ik

i
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i …for 1,2, ,0
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(10.30)

where qi denotes the gain of the ith ampli�er and Gik(ω) is the transfer function of the 
acoustic transmission path from the ith loudspeaker to the kth microphone, including the 
properties of both transducers.

Equation 10.30 represents a system of N linear equations from which the unknown signal 
spectra Sk(ω) can be determined, at least in principle. To get an idea of what the solution of 
this system is like, we neglect all phase relations and hence replace all complex quantities by 
their squared magnitudes averaged over a small frequency range, for example,

 s S s S Gi i ik ik, , and0 0
2 2 2= = γ =
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Figure 10.18 Multi-channel system. (After Franssen.11)
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By these operations, we obtain from Equation 10.30:
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These equations mean that we are superimposing energies instead of complex amplitudes. 
This may be justi�ed if the number N of channels is suf�ciently high. In the second step, we 
assume as a further simpli�cation that all ampli�er gains and energetic transfer functions 
are equal, qi ≈ q, and γik ≈ γ for all subscripts i and k; furthermore, we suppose that si ≈ s 
(except s0). Then, we obtain immediately from Equation 10.31
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0
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The ratio s/s0 characterizes the increase of the energy density caused by the electroacousti-
cal system. On the other hand, the simple diffuse-�eld theory presented in Section 5.1 tells 
us that the steady-state energy density in a reverberant space is inversely proportional to the 
equivalent absorption area and hence proportional to the reverberation time (see Equations 
5.5 and 5.9). Therefore, the ratio of reverberation times with and without the system is

 ′ =
−

T
T Nq g

1
1 2

(10.33)

This formula is similar to Equation 10.19. However, in the present case, one can afford 
to keep all (energetic) open loop gains low enough to exclude the risk of sound colouration 
by feedback, due to the large number N of channels. Franssen recommended making q2g 
as low as 0.01; then, 50 independent channels would be needed to double the reverbera-
tion time.

However, more recent investigations by Behler12 and by Ohsmann13 into the properties of 
such multi-channel systems have shown that Equation 10.33 is too optimistic. According to 
the latter author, a system consisting of 100 ampli�er channels will increase the reverbera-
tion time by slightly more than 50% if all channels are operated with gains 3 dB below the 
instability limit.

For the performance of a multi-channel system of this type, it is of crucial importance that 
all open loop gains are virtually frequency independent within a wide frequency range. To a 
certain degree, this can be achieved by carefully adjusted equalizers which are inserted into 
the electrical paths. In any case, there remains the problem that such a system comprises N2 
feedback channels, but only N ampli�ers gains and equalizers to control them.

Nevertheless, systems of this kind have been successfully installed and operated at sev-
eral places, for instance, in the Concert House at Stockholm.14 This hall has a volume of 
16 000 m3 and seats 2000 listeners. The electroacoustical system consists of 54 dynamic 
microphones and 104 loudspeakers. That means some microphones are connected to more 
than one loudspeaker. It increases the reverberation time from 2.1 s (without audience) to 
about 2.9 s. The tonal quality is reportedly so good that unbiased listeners are not aware 
that an electroacoustical system is in operation.

An electroacoustical multi-channel system of quite a different kind, but to be used for 
the same purpose, has been developed by Parkin and Morgan15 and has become known 
as ‘assisted resonance system’. Unlike Franssen’s system, each channel has to handle only 
a very narrow frequency band. Since the ampli�cation and the phase shift in each channel 
can be adjusted independently (or almost independently), all unpleasant colouration effects 
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can be avoided. Furthermore, electroacoustical components, that is, the microphones and 
loudspeakers, need not meet very high �delity standards.

The ‘assisted resonance system’ was originally developed for the Royal Festival Hall in 
London. This hall, which was designed and built mainly as a concert hall, has a volume 
of 22 000 m3 and a seating capacity of 3000 persons. It has been felt, since its opening 
in 1951, that the reverberation time is not as long as it should be for optimum conditions, 
especially at low frequencies. For this reason, an electroacoustical system for increasing the 
reverberation time was installed in 1964; at �rst, this was on an experimental basis, but in 
the following years several aspects of the installation have been improved and so it has been 
made a permanent �xture.

In the �nal state of the system, each channel consists of a condenser microphone, 
tuned by an acoustical resonator to a certain narrow frequency band, an electrical phase 
shifter, a very stable 20 W ampli�er, a broadband frequency �lter and a 10- or 12-inch 
loudspeaker, which is tuned by a quarter wavelength tube to its particular operating 
frequency at frequencies lower than 100 Hz. (For higher frequencies, each loudspeaker 
must be used for two different frequency bands in order to save space and therefore has 
to be left untuned.) The feedback loop is completed by the acoustical path between the 
loudspeaker and the microphone. For tuning the microphone, Helmholtz resonators with 
a Q-factor of 30 are used for frequencies up to 300 Hz; at higher frequencies, they are 
replaced by quarter wave tubes. The loudspeaker and the microphone of each channel 
are positioned in the ceiling in such a way that they are situated at the antinodes of a 
particular room resonance.

There are 172 channels altogether, covering a frequency range 58–700 Hz. The spacing of 
operating frequencies is 2 Hz from 58 to 150 Hz, 3 Hz for the range 150–180 Hz, 4 Hz up 
to 300 Hz and 5 Hz for all higher frequencies. In Figure 10.19, the reverberation time of the 
occupied hall is plotted as a function of frequency with both the system on and the system 
off. These results were obtained by evaluating recordings of suitable pieces of music which 
were taken in the hall. The difference in reverberation time below 700 Hz is quite obvious. 
Apart from this, the system has the very desirable effect of increasing the overall loudness of 
the sounds perceived by the listeners and of increasing the variety of directions from which 
sound reaches the listeners’ ears. In fact, from a subjective point of view, the acoustics of the 
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Figure 10.19 Reverberation time of occupied Royal Festival Hall, London, both with (•———•) and without 
(×– – – –×) ‘assisted resonance system’.



Electroacoustical systems in rooms 293

hall seem to be greatly improved by the system and well-known performers have commented 
enthusiastically on the achievements, particularly on a more resonant and warmer sound.16

During the past years, assisted resonance systems have been installed successfully in sev-
eral other places. These more recent experiences seem to indicate that the number of inde-
pendent channels need not be as high as was chosen for the Royal Festival Hall.

The foregoing discussions should have made clear that there is a great potential in elec-
troacoustical systems for creating acoustical environments, which can be adapted to nearly 
any type of performance. Their widespread and successful application depends, of course, 
on the technical perfection of their components and on further technical progresses, but 
equally on the skill and experience of the persons who operate them.

In the future, however, the ‘human factor’ will certainly be reduced by more sophisti-
cated systems, allowing application also in places where no specially trained personnel are 
available.
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design considerations for, 232–243, 

236f, 237f

examination of, 238–243
geometrical rooms, 81–101

Room transfer functions, 70–75, 70f, 72f, 73f, 74f

Scattering
absorption and, 100
by boundary irregularities, 45–50, 45f
re�ection and, 23, 45–50, 45f
sound scattering, 43–46, 88, 223, 233, 

243, 260
Scattering coef�cients

measuring techniques, 225–228, 225f, 227f
re�ection and, 45
sound energy and, 106, 260–263
sound particles and, 255

Seat absorption; see also Sound absorption
in concert halls, 146–151, 149t, 150t, 151f
design considerations for, 236–239, 237f
equivalent absorption area, 232
in orchestra halls, 146–151, 149t, 150t, 

151f, 242–244
systematic errors and, 222–224

Shadow zone, 42–43
Short impulses, 13–14, 13f, 14f, 76, 196–197, 

216, 221
Signals, 9–16; see also Sound waves
Sine sweep signals, 199–200, 200f, 221
Sinusoidal sound signals, 15–16, 16f
Sound absorbers

in anechoic rooms, 151–154, 154f
audience absorption, 146–151, 242–244
Helmholtz resonators, 134–137, 135f
perforated sheets, 128–131, 129f, 132f
porous absorbers, 137–146, 141f, 142f, 

143f, 144f
Rayleigh model, 137–141, 139f
resonance absorbers, 131–134, 132f
seats and, 146–151, 149t, 150t, 151f
vibrating panels, 131–133, 132f

Sound absorption
absorption coef�cient and, 125–154, 131f, 

134f, 142f, 143f, 145f, 146f, 147f, 148t, 
149t, 150t

audience absorption, 146–151, 224, 
231–232, 236–244

energy losses and, 125–128
by membranes, 128–131, 129f
by perforated sheets, 128–131, 129f, 132f
porous materials and, 137–146, 141f, 142f, 

143f, 144f
re�ection losses, 138, 138f
resonance frequency and, 131–136
reverberation chamber and, 127, 134f, 

145–150, 145f, 146f, 147f, 148t, 150t, 
221–225

seat absorption, 146–151, 149t, 150t, 151f, 
222–224, 232, 236–239, 237f, 242–244

sound �elds and, 111–113, 111f, 116f, 
120–124, 123f, 247
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speci�c impedance and, 27f, 40–41
tube methods for, 218–221, 219f, 220f
wall impedance and, 129–133, 

142–144, 142f
Sound decay; see also Decay curves

autocorrelation functions, 210
duration of, 78
law of, 89–91, 104–108, 112, 118
measurement of, 207–208, 208f
process of, 103–104
sound �elds and, 104–108
sound incidence and, 226–227
sound rays and, 240–241
speech intelligibility and, 176, 179
speech transmission and, 171–173
theory of, 104–106

Sound direction, 236–238, 236f
Sound energy

carriers of, 260
conversion of, 128
decay of, 106, 273
diffuse sound �elds, 104–108, 105f, 107f
directional distribution of, 83, 90, 96, 108, 

194, 211–218, 213f, 232–233
distribution of, 233, 241–242, 241f
economic use of, 238–240
isotropic distribution of, 104
propagation of, 120
scattering coef�cients and, 106, 260–263
sound pressure level and, 232–235
speech intelligibility and, 238, 273–278
supply of, 276

Sound �elds
absorption and, 104–105, 111–119, 111f
in anechoic room, 158–160, 160f
boundary absorption, 111–113, 111f, 

120–124, 247
diffuse sound �eld, 90–91, 104–108, 105f, 

120–124, 211–218
factors affecting, 105f, 106–108
imperfect diffuseness, 120–124
loudspeakers and, 180–184
parameters of, 206–207, 207t
sound absorption and, 111–113, 111f, 116f, 

120–124, 123f, 247
sound decay and, 104–108
sound pressure level and, 121, 123f
sound rays and, 104–105, 104f
spaciousness of, 180–182
subjective room acoustics and, 180–182

Sound incidence
absorption coef�cient and, 40–42, 41f, 42f, 

83, 134f, 226–227
angles of, 24, 35, 38t, 52, 151, 218, 259
directions of, 16–17, 17f, 24–27, 26f, 35, 111, 

133–134, 134f, 159, 180–181, 188, 
239, 257, 278

frontal sound incidence, 16–17, 16f, 181
normal sound incidence, 26–29, 26f, 29f
oblique sound incidence, 128–129, 144, 147
random sound incidence, 38–42, 39f, 41f, 

42f, 83, 134, 134f, 144–146, 220, 
226–227

re�ection factors and, 28–29, 29f, 37, 
46–48, 46f

sound absorption and, 144–146, 220
sound decay and, 226–227
sound pressure and, 39–40, 39f
speci�c impedance and, 27–29, 40, 41f, 52, 83
standing waves and, 24, 28–29, 29f, 39–40, 52
wall impedance and, 25f, 26f, 27–40, 41f, 52

Sound irradiation, 277; 
see also Irradiation density

Sound particles, 100–104, 107–115, 115f, 
233, 255–258, 257f

Sound power level, 14–15, 19–20, 20t, 232
Sound pressure

absorption and, 234–235, 235f
instantaneous pressure and, 1
in plane waves, 5–6, 5f, 25–30
re�ection and, 36–38
representation of, 5–6, 5f
sound incidence and, 39–40, 39f
in spherical waves, 7, 36–38
static pressure and, 1–2
time function and, 9–12, 18f, 70, 173
wavefronts and, 3

Sound pressure level (SPL)
absorption coef�cient and, 234–235, 235f
autocorrelation functions and, 189–190, 189t
in concert halls, 152–153, 152f
decay and, 77–78, 77f
frequency curves and, 69–72, 69f
lateral energy fraction and, 181–182
loudspeakers and, 273–275
reverberation curves and, 76–77
sound absorption and, 125, 259
sound energy and, 232–235
sound �elds and, 121, 123f
sound waves and, 14–15, 20
strength factor and, 158–159

Sound propagation, 3, 88, 107, 120, 137–141, 
252–254, 263

Sound radiation, 118, 136, 194, 242, 256, 
259, 271

Sound rays
construction of paths, 239–240, 239f
curved walls and, 92–96, 95f
plane surfaces and, 36, 81–83
radiosity integral and, 95–99, 96f
in rectangular rooms, 82–83, 82f, 88–89, 88f
reverberation and, 103–107
sound �elds and, 104–105, 104f

Sound scattering, 43–46, 88, 223, 233, 243, 260; 
see also Scattering

Sound sources, 18–22, 18f, 21f, 116–120
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facts about, 1–22
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impedance and, 30–31
intensity and, 7–9
plane waves, 3–7, 3f, 25–30
propagation of, 3
reverberation and, 70–75
in rooms, 51–78, 81–101
signals and, 9–16
sound power level, 14–15
sound pressure level, 14–15, 20
sound sources and, 18–22
sources of, 1–22
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standing waves, 24, 29–32, 29f, 31f, 39–40, 

52, 56–58, 58f, 218–220
Space curves, 69, 71
Spatial impression, 180–182, 188, 241, 

247–249, 261
Speci�c impedance; see also Impedance

non-rigid walls, 60–62
pressure distribution, 62–63, 62f
shape functions, 64–65, 64f
sound absorption and, 27f, 40–41
sound incidence and, 27–29, 40, 41f, 52, 83

Spectral function, 10–11, 54, 201–202; 
see also Amplitude spectrum

Speech intelligibility
early energy and, 168–173
electroacoustical systems and, 267–268
loudspeakers and, 273–278
sound decay and, 176, 179
sound energy and, 238, 273–278
speech sound relationships, 168–169, 169f, 170f
speech transmission index, 171–173, 172f
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public address systems, 19
re�ection and, 161–164, 161f, 164f
relationships, 168–169, 169f, 170f
sound sources and, 18–19, 18f, 21f

Speech transmission index (STI), 171–173, 
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Spherical polar coordinates, 39, 39f
Spherical waves

illustration of, 3f
loudspeakers and, 7
re�ection of, 36–38
sound pressure in, 7, 36–38
sound waves and, 3–7, 3f, 36–38, 36f
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plane wavefronts and, 58, 58f
sound incidence and, 24, 28–29, 29f, 

39–40, 52
sound waves and, 24, 29–32, 29f, 31f, 

39–40, 52, 56–58, 58f, 218–220
wall impedance and, 218–220

Steady-state energy density
loudspeakers and, 273
reverberation and, 103–124, 291
sound absorption and, 104–106, 135

Steady-state sound �elds, 66–70, 68f, 69f, 97
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colouration and, 163–167
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early energy and, 168–173
echoes and, 159–167
re�ection and, 159–163, 161f, 162f
relationships, 158f
reverberation and, 174–180
sound �elds and, 180–182
sound pressure level, 158–159

Syllable intelligibility, 168–169, 169f
Systematic errors, 222–224, 256

Tangential modes, 58–59
Temperature amplitude, 127–128
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image sources, 288–289
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reverberation and, 175–179, 178t, 283
sound absorption, 146–150, 231–240, 245–250
sound energy and, 238
sound pressure and, 190
walls of, 51, 91–92

Thermal relaxation, 126
Time function, 9–12, 18, 18f, 70, 173

Unequal path lengths, 114–116

Vibrating panels, 19, 131–133, 132f
Virtual reality, 260–265
Volume diffusers, 107–108, 116, 223–224, 223f
Volume velocity, 6–9, 53

Wall impedance; see also Impedance
curved walls and, 92–96, 95f
non-rigid walls, 60–62
pressure distribution, 62–63, 62f
re�ection and, 23–25, 25f
resonance frequency and, 33–34, 34f, 46, 54
sound absorption and, 129–133, 

142–144, 142f
sound incidence and, 25f, 26f, 27–40, 41f, 52
standing waves and, 218–220

Wall irregularities, 45–51, 45f, 46f
Wave equation

basics of, 1–3
formal solution of, 52–54
numerical solution of, 63–66

Wavefronts, 3, 58, 58f
Wavefront synthesis, 287–288, 287f
Wavelengths, 4, 7, 19–20, 29–30, 29f, 

31f, 37–48
Wave normal, 3, 25–26, 57–58
Whispering gallery, 95, 95f
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