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Preface

This book is designed as an international reference work on the
behaviour, design and analysis of reinforced concrete deep beams. It is
intended to meet the needs of practising civil and structural engineers,
consulting engineering and contracting firms, research institutes,
universities and colleges.

Reinforced concrete deep beams have many useful applications,
particularly in tall buildings, foundations and offshore structures.
However, their design is not covered adequately by national codes of
practice: for example the current British Code BS 8110, explicitly states
that ‘for design of deep beams, reference should be made to specialist
literature’. The major codes and manuals that contain some discussion of
deep beams include the American ACI Building Code, the draft Eurocode
EC/2, the Canadian Code, the CIRIA Guide No. 2, and Reynolds and
Steedman’s Reinforced Concrete Designer’s Handbook. Of these, the
CIRIA Guide No. 2: Design of Deep Beams in Reinforced Concrete,
published by the Construction Industry Research and Information
Association in London, gives the most comprehensive recommendations.

The contents of the book have been chosen with the following main
aims: (i) to review the coverage of the main design codes and the CIRIA
Guide, and to explain the fundamental behaviour of deep beams; (ii) to
provide information on design topics which are inadequately covered by
the current codes and design manuals: deep beams with web openings,
continuous deep beams, flanged deep beams, deep beams under top and
bottom loadings and buckling and stability of slender deep beams; (iii) to
give authoritative reviews of some powerful concepts and techniques for
the design and analysis of deep beams such as the softened-truss model,
the plastic method and the finite element method.

The contributing authors of this book are so eminent in the field of
structural concrete that they stand on their own reputation and I feel
privileged to have had the opportunity to work with them. I only wish to
thank them for their high quality contributions and for the thoroughness
with which their chapters were prepared.

I wish to thank Mr A.Stevens, Mr J.Blanchard and Mr E.Booth of Ove
Arup and Partners for valuable discussions, and to thank Emeritus
Professor R.H.Evans, C.B.E., of the University of Leeds for his guidance
over the years. Finally, I wish to thank Mrs Diane Baty for the much
valued secretarial support throughout the preparation of this volume.

FK.K.
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1

Reinforced concrete deep beams
F.K.KONG and M.CHEMROUK, University of

Newcastle upon Tyne

Notation
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area of horizontal web reinforce-
ment with a spacing sh

area of reinforcement bar

area of main longitudinal rein-
forcement

area of vertical web reinforce-
ment within a spacing s,

beam thickness

support lengths

effective depth

concrete cylinder compressive
strength

characteristic strength of con-
crete (of reinforcement)
overall height of beam
effective height of beam
effective span

clear distance between faces of
supports

moment

design ultimate moment; mo-
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spacing of horizontal web rein-
forcement

spacing of vertical web reinfor-
cement

1.1 Introduction
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shear force

shear strength provided by con-
crete

shear stress value

nominal shear strength

shear strength provided by steel
design ultimate shear force;
shear capacity

ultimate shear stress value
shear stress parameters

clear shear span; shear span
effective clear shear span
distances defined in Eqn (1.11)
lever arm

partial safety factor for material
(typically, y _=1.15 for reinfor-
cement and 1.5 for concrete)
angle

angle defined in Eqn (1.11) and
Figure 1.3

coefficient

coefficient

coefficient

steel ratio A /bd

capacity reduction factor; angle

Recent lectures delivered at Ove Arup and Partners, London (Kong, 1986a),
and at the Institution of Structural Engineers’ Northern Counties Branch in
Newcastle upon Tyne (Kong, 1985), have shown that reinforced concrete
deep beams is a subject of considerable interest in structural engineering
practice. A deep beam is a beam having a depth comparable to the span
length. Reinforced concrete deep beams have useful applications in tall
buildings, offshore structures, and foundations. However, their design is not
yet covered by BS 8110, which explicitly states that ‘for the design of deep
beams, reference should be made to specialist literature’. Similarly, the draft
Eurocode EC/2 states that ‘it does not apply however to deep beams...” and
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refers readers instead to the CEB-FIP Model Code. Currently, the main
design documents are the American code ACI 318-83 (revised 1986), the
Canadian code CAN-A23.3-M84, the CEB-FIP Model Code and the CIRIA
Guide 2. Of these, the CIRIA Guide gives the most comprehensive
recommendations and is the only one that covers the buckling strength of
slender beams.

The transition from ordinary-beam behaviour to deep-beam behaviour is
imprecise; for design purposes, it is often considered to occur at a span/
depth ratio of about 2.5 (Kong, 1986b). Although the span/depth ratio /4 is
the most frequently quoted parameter governing deep-beam behaviour, the
importance of the shear-span/depth ratio //4 was emphasised many years ago
(Kong and Singh, 1972) and, for buckling and instability, the depth/
thickness ratio //h and the load-eccentricity/thickness ratio //4 are both
relevant (Garcia, 1982; Kong et al., 1986).

1.2 History and development

Classic literature reviews have been compiled by Albritton (1965), the
Cement and Concrete Association (C&CA) (1969) and Construction
Industry Research and Information Association (CIRIA) (1977), which have
been supplemented by the reviews of Tang (1987), Wong (1987) and
Chemrouk (1988). These show that the early investigations were mostly on
the elastic behaviour. Of course, elastic studies can easily be carried out
nowadays, using the standard finite difference and finite element techniques
(Coates et al., 1988; Zienkiewicz and Taylor, 1989). However, a serious
disadvantage of elastic studies is the usual assumption of isotropic materials
obeying Hooke’s law; hence they do not give sufficient guidance for
practical design.

It was not until the 1960s that systematic ultimate load tests were carried
out by de Paiva and Siess (1965) and Leonhardt and Walther (1966). These
tests were a major step forward in deep beam research. They revealed a
concern for empirical evidence which reflected the philosophy of the
European Concrete Committee (CEB, 1964) which stated that ‘the Comité
Européen du Béton considered that the ‘Principles’ and ‘Recommendations’
should be fundamentally and solely based on experimental knowledge of the
actual behaviour...” The lead provided by these pioneers was subsequently
followed by many others in different parts of the world (reviews by CIRIA,
1977; Chemrouk, 1988).

In the late 1960s an extensive long-term programme was initiated by
Kong and is still continuing at the University of Newcastle upon Tyne; tests
to destruction have so far been carried out on over 490 deep beams, which
included large specimens weighing 4.5 t. each (Figure 1.1 and Kong et al.,
1978; Kong and Kubik, 1991) and slender specimens of height/thickness
ratio 4/b up to 67 (Kong et al., 1986).
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Figure 1.1 Test on a large deep beam (after Kong and Kubik, 1991)

The solution of deep-beam type problem using plasticity concepts was
reported by Nielsen (1971) and Braestrup and Nielsen (1983); shear
strength prediction by the plastic method is covered in Chapter 8 of this
book. Kong and Robins (1971) reported that inclined web reinforcement
was highly effective for deep beams; this was confirmed by Kong and
Singh (1972) and Kong ef al. (1972a) who also proposed a method for
comparing quantitatively the effects of different types of web
reinforcement (Kong et al., 1972b). Kong and Sharp (1973) reported on
the strength and failure modes of deep beams with web openings; the
proposed formula for predicting the ultimate load was subsequently
refined (Kong and Sharp, 1977; Kong et al., 1978) and adopted by the
Reinforced Concrete Designer’s Handbook (Reynolds and Steedman, 1981
and 1988). The topic has been followed up by Ray (1980) and others and
is the subject of Chapter 3. Robins and Kong (1973) used the finite
element method to predict the ultimate loads and crack patterns of deep
beams; Taner et al. (1977) reported that the finite element method gave
good results when applied to flanged deep beams. The finite element
method is now covered in Chapter 9 and flanged deep beams in Chapter 5.
Serviceability and failure under repeated loading was studied by Kong and
Singh (1974). Garcia (1982) was among the first to carry out buckling tests
on a substantial series of slender concrete deep beams; these and the
subsequent tests by Kong ef al. (1986) and others are discussed in Chapter
10. The effects of top and bottom loadings, the subject of Chapter 6, was
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studied by Cusens and Besser (1985) and, less systematically, by a few
others earlier (CIRIA, 1977). Rogowsky et al, (1986) carried out extensive
tests on continuous deep beams, which is the subject of Chapter 4. Mau
and Hsu (1987) applied the softened truss model theory to deep beams; see
Chapter 7 for details. Kotsovos (1988) studied deep beams in the light of a
comprehensive investigation into the fundamental causes of shear failure;
Chapter 2 gives further details.

The major contributions of other active workers are referred to elsewhere
in this volume; mention need only be made here of Barry and Ainso (1983),
Kubik (1980), Mansur and Alwis (1984), Regan and Hamadi (1981),
Rasheeduzzafar and Al-Tayyib (1986), Roberts and Ho (1982), Shanmugan
(1988), Singh et al. (1980), Smith and Vantsiotis (1982), Subedi (1988), and
Swaddiwudhipong (1985).

With reference to Chapter 8, plastic methods have valuable applications
in structural concrete. However, their more general acceptance has probably
been hindered by the widespread confusion over the fundamental plastic
theorems themselves (Kong and Charlton, 1983). For example, the plastic
truss model proposed by Kumar (1976) could be shown to violate the lower
bound theorem (Kong and Kubik, 1977). The difficulties are unlikely to be
overcome until the currently widespread misunderstanding of the principle
of virtual work can somehow be cured (Kong et al., 1983b).

1.3 Current design practice

The subsequent sections of this chapter will summarise the main design
recommendations of: the CIRIA Guide 2, the (draft) Eurocode and the
CEBFIP Model Code, the ACI Code 318-83 (revised 1986) and the
Canadian Code CAN-A23.3-M&4

1.4 CIRIA Guide 2

The CIRIA Guide (CIRIA, 1977) applies to beams having an effective span/
depth ratio //h of less than 2 for single-span beams and less than 2.5 for
continuous beams. The CIRIA Guide was intended to be used in conjunction
with the British Code CP110:1972; however, the authors have done some
comparative calculations (Kong et al., 1986) and believe that the CIRIA
Guide could safely be used with BS 8110:1985.

The Guide defines the effective span | and the active height h_ as follows
(see meanings of symbols in Figure 1.2.)

=1 +[lesser of (¢ /2 and 0.1 [ ]+[lesser of (c,/2) and 0.1/ ] (L.1)

h=h or [ whichever is the lesser (1.2)
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effective span £

1';_ x. effective support width:0.2 £,
cy clear span £ c2

Figure 1.2 CIRIA Guide 2—meanings of symbols ¢, ¢,, h, [ and /|

The CIRIA Guide considers that the active height 4 of a deep beam is
limited to a depth equal to the span; that part of the beam above this height
is taken merely as a load-bearing wall between supports.

1.4.1 CIRIA Guide ‘Simple Rules’

CIRIA’s ‘Simple Rules’ are intended primarily for uniformly loaded deep
beams. They can be applied to both single-span and continuous beams.

1.4.1.1 Flexural strength

Step 1:

Step 2:

Step 3.

Step 4.

Calculate the capacity of the concrete section.
M,=0.12f., bh; (1.3)

where f is the concrete characteristic strength and b the beam
thickness.

If I/h, < .5 go to step 3. If I/h 1.5 check that the applied moment A/
does not exceed M of Eqn (1.3)

Calculate the area 4_of the main longitudinal reinforcement:

A>M/0.87/ 2 (1.4)

where M is the applied moment, fy the steel characteristic strength
and z the lever arm, which is to be taken as follows:

2=0.21+0.4h_ for single-span beams (1.5)
2=0.21+0.3h_ for continuous beams (1.6)

Distribute the reinforcement A_(Eqn (1.4)) over a depth of 0.24 .
Anchor the reinforcement bars to develop at least 80% of the
maximum ultimate force beyond the face of the support. A proper
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1.4.1.2
Step 1:

Step 2:
Step 3:

Step 4:

1.4.1.3

anchorage contributes to the confinement of the concrete at the
supports and improves the bearing strength.

Shear strength: bottom-loaded beams
Calculate the concrete shear capacity:

V =0.75bh v, (1.7)

where v is the maximum shear stress taken from Table 6 of CPI 10
(1972) for normal weight concrete and Table 26 for lightweight
concrete (see also BS 8110: Part 1: clause 3.4.5.2 and Part 2: clause
5.4)

Check that the applied shear force V does not exceed V', of Eqn (1.7)
Provide hanger bars in both faces to support the bottom loads, using
a design stress of 0.87f. The hanger bars should be anchored by a
full bond length above the active height /4 or, alternatively,
anchored as links around longitudinal bars at the top.

Provide nominal horizontal web reinforcement over the lower
half of the active height 4 and over a length of the span equal to
0.4ha measured from each support. The area of this web
reinforcement should not be less than 80% that of the uniformly
distributed hanger steel, per unit length. The bar spacing and
reinforcement percentage should also meet the requirements of
Section 1.4.1.5.

Shear strength: top-loaded beams. The proven concept of the clear

shear span x, as used by Kong et al. (1972b and 1975) has been adopted by
the CIRIA Guide. The CIRIA Guide has also accepted the Kong et al.
(1972b) proposal that, for uniformly distributed loading, the effective clear
shear span xe may be taken as /4.

Step 1:

ii)

iii)

Step 2:

With reference to Figure 1.3, calculate the effective clear shear span
x, which is to be taken as the least of:

The clear shear span for a load which contributes more than 50% of
the total shear force at the support.

I/4 for a load uniformly distributed over the whole span.

The weighted average of the clear shear spans where more than one
load acts and none contributes more than 50% of the shear force at
the support. The weighted average will be calculated as Z(V x )/ZV,
where XV =V is the total shear force at the face of the support, V' =an
individual shear force and x =clear shear span of V.

Calculate the shear capacity ¥, to be taken as the value given by
Eqns (1.8) and (1.9)

Vu=2bhive/x. for h,/b<4 (1.8a)
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Vi=12bh’v./x. for h,/b>4 (1.8b)
V.=bhy, (1.9)

where the x_ is the effective clear shear span calculated from step 1,
v, is as defined for Eqn (1.7) and v, is the shear stress value taken
from Table 5 of CP1 10 (1972) for normal weight concrete and
Table 25 for lightweight concrete (see also BS 8110: Part 1: clause
3.4.5.4 and Part 2: clause 5.4).

Step 3: Check that the applied shear force /" does not exceed the shear
capacity ¥ calculated in step 2.

Step 4: Provide nominal web reinforcement in the form of a rectangular
mesh in each face. The amount of this nominal reinforcement
should not be less than that required for a wall by clauses 3.11 and
5.5 of CP1 10 (1972); this in effect means at least 0.25% of
deformed bars in each direction (see also BS 8110: Part 1: clauses
3.12.5.3 and 3.12.11.2.9). The vertical bars should be anchored
round the main bars at the bottom; the horizontal bars should be
anchored as links round vertical bars at the edges of the beam. The
bar spacings and minimum percentage should also meet the
requirements of section 1.4.1.5.

1.4.1.4 Bearing strength For deeper beams (//h<l1.5), the bearing
capacity may well be the governing design criterion, particularly for
those having shorter shear spans. To estimate the bearing stress at
the support, the reaction may be considered uniformly distributed over
an area equal to (the beam width b)x(the effective support length)
where the effective support length is to be taken as the actual support
length ¢ or 0.2/ whichever is the lesser. The bearing stress so
calculated should not exceed 0.4f,

1.4.1.5 Crack control The minimum percentage of reinforcement, in the
horizontal or vertical direction, should comply with the requirements for
a wall, as given in clauses 3.11 and 5.5 of CP110 (1972) (see also BS
8110: Part 1: clauses 3.12.5.3 and 3.12.11.2.9). The maximum bar spacing
should not exceed 250 mm. In a tension zone, the steel ratio p, calculated
as the ratio of the total steel area to the local area of the concrete in which
it is embedded, should satisfy the condition

p > (0.52f.)/(0.87f,) (1.10)

The maximum crack width should not be allowed to exceed 0.3 mm in
a normal environment; in a more aggressive environment, the
maximum crack width may have to be limited to 0.1mm. To control
maximum crack widths to within 0.3 and 0.1mm, bar spacings should
not exceed those given in Tables 2 and 3, respectively, of the CIRIA
Guide.
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1.4.1.6 Web openings See comment vi) in Section 1.4.2.4.
1.4.2 CIRIA Guide ‘Supplementary Rules’

CIRIAs ‘Supplementary Rules’ cover aspects of the design of deep beams
which are outside the scope of the ‘Simple Rules’ (Section 1.4.1) and are to
be read in conjunction with the latter. The ‘Supplementary Rules’ cover
concentrated loading, indirect loading and indirect supports but, because of
space limitation, we shall deal here only with single-span beams under top
loading.

1.4.2.1 Flexural strength The ‘Simple Rules’ of Section 1.4.1.1 can be used
without modification.

1.4.2.2 Shear strength: top-loaded beams (see also the comments in

Section 1.4.2.4).

Step 1: 1If the beam is under uniformly distributed loading, go to Step 3 or
else use the more conservative ‘Simple Rules’ given in Section
14.1.3

Step 2: If the beam is under concentrated loading, go to step 3.

Step 3: Check that the applied shear force V does not exceed the limit imposed
by Eqn (1.11); for a beam with a system of orthogonal web
reinforcement. Eqn (1.11) can be expressed in the more convenient form
of Eqn (1.12). Eqns (1.11) and (1.12) apply over the range 0.23—0.70 for
x/h (see comment (ii) in Section 1.4.2.4). In using these equations,
ignore any web reinforcement which is above the active height 4.

bh, b

where (see comments in Section 1.4.2.4) A, is 0.44 for normal
weight concrete and 0.32 for lightweight concrete, A, is 1.95 N/mm?
for deformed bars and 0.85 N/mm? for plain bars, b is the beam
thickness, 4, is the active height of the beam (Eqn 1.2), 4, is the
area of a typical web bar (for the purpose of Eqn (1.11), the main
longitudinal bars are considered also to be web bars), y, is the depth
at which the typical web bar intersects the critical diagonal crack,
which is represented by the line Y-Y in Figure 1.3, 0 is the angle
between the bar being considered and the line Y-Y in Figure 1.3
(0. <p/m) and x, is effective clear shear span as defined in step 1 of
Section 1.4.1.3.

On the right-hand side of Eqn (1.11) the term
Al —0.35xe/ha]\/fc_u is the concrete contribution to the shear
capacity. It is clear that this quantity can be tabulated from various
values of x/h, and f,, The term A, Y (1004, , sin@,/bh;) is the steel

. 2
Y <x1[1-0.35%"}«/j§+x22w (1.11)
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Step 4:

Step 5:

Figure 1.3 Meanings of symbols 4. &, x, y_0, ¢ (after CIRIA, 1977)
contribution to the shear capacity; for a beam with or thogonal web
reinforcement; it can also be tabulated for various steel ratios and
x/h, ratios. In other words, for a beam with orthogonal web
reinforcement, Eqn (1.11) can be expressed as Eqn (1.12), which is
more convenient to use in design:

V/ibh <k, v AB(v; +v,,+v..) (1.12)

where A, is A, in Eqn (1.11), v_is the concrete shear stress parameter,
as tabulated in Table 4 of the CIRIA Guide for various values of /, and
the x /h, ratio; B is 1.0 for deformed bars and 0.4 for plain round bars;
v, is the main steel shear stress parameter, as tabulated in Table 6 of
the CIRIA Guide for various values of the main steel ratio and the x/
h, ratio; v, is the horizontal web steel shear stress parameter, as
tabulated in Table 7 of the CIRIA Guide for various values of the
horizontal web steel ratio and the x /A, ratio; and v__ is the vertical web
steel shear stress parameter, as tabulated in Table 8 of the CIRIA Guide
for various values of the vertical web steel ratio and the x /A, ratio.
From the calculations in step 3, check the total contribution of the
(main and web) reinforcement to the shear capacity. The total
contribution is given by the second term on the right-hand side of
Eqn (1.11) (or Eqn (1.12)). If this is less than 0.2V, increase the web
reinforcement to bring the total steel contribution up to at least 0.2/
Check that the applied shear force V is less than the shear capacity
of the concrete section:

V/bhy < 1.30fow (1.13)
where A, is as defined for Eqn. (1.11).
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1.4.2.3 Bearing strength CIRIA’s ‘Supplementary Rules’ allow the bearing
stress limit (=0.4f, in Section 1.4.1.4) to be increased to 0.6/, at the end
supports and to 0.8f, under concentrated loads, provided the concrete in the
stress zones is adequately confined, as specified in clause 3.4.3 of the CIRIA
Guide.

1.4.2.4 Comments on Eqn (1.11) of Section 1.4.2.2

i)  Eqn (1.11), taken from clause 3.4.2 of the CIRIA Guide (1977), is
essentially the Kong et al. (1972b and 1975) equation. CIRIA,
however, has modified the numerical values of the coefficients A,
and A, to introduce the necessary factor of safety for the design

purpose.

i)  According to the CIRIA Guide (1977), Eqns (1.11) and (1.12) apply
only over the range 0.23 to 0.70 for x /A,. This is because the test
data then available (Kong et al., 1972b; 1975) were limited to this
range of x /h . However, as a result of more recent tests (Kong et al.,
1986), the authors believe that Eqns (1.11) and (1.12) can be
applied to an extended range of x /A, from 0 to 0.70.

iii)  On the right-hand side of Eqn (1.11), the quantity A\f., bk, is a
measure of the load-carrying capacity of the concrete strut, along
the line Y-Y in Figure 1.3. From the figure, it is seen that the
capacity increases with the angle ¢ in Eqn (1.11), the factor (1-
0.35x/h,) allows for the experimental observation of the way in
which this capacity reduces with ¢, (i.e. with an increase in the x /A,
ratio). When the load carried by the concrete strut is high enough, a
splitting failure occurs, resulting in the formation of the diagonal
crack along Y-Y in Figure 1.3. In Eqn (1.11), the quantity Vf.. is a
measure of the splitting strength of the concrete. After the formation
of the diagonal crack, the concrete strut becomes in effect two
eccentrically loaded struts. These eccentrically loaded struts are
restrained against in-plane bending by the web reinforcement.

iv)  On the right-hand side of Eqn (1.11), the second term represents the
contribution of the reinforcement to the shear strength of the beam. The
reinforcement helps the split concrete strut (iii)) to continue to carry
loads, by restraining the propagation and widening of the diagonal
crack. The beam has a tendency to fail in a mechanism in which the
end portion of the beam moves outwards in a rotational motion about
the loading point (Kong and Sharp, 1973). Thus, the lower down the
reinforcement bar intersects the the diagonal crack, the more effective it
would be in restraining this rotation. Hence in Eqn (1.11), the steel
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contribution A, X (100A,y, sin’ 6,)/bh; is proportional to y. The laws of
equilibrium are unaware of the designer’s discrimination between bars
labelled as ‘web reinforcement’ and those labelled as ‘main
reinforcement’. Eqn (1.11) accepts any reinforcement bar (be it labelled
as web bar or main bar) provided it effectively helps to preserve the
integrity of the concrete web by restraining the propagation and widening
of the diagonal crack. It judges the contribution of an individual bar by its
area A, the depth y, and the angle of intersection 6.

v)  As explained earlier (Kong, 1986b) ‘Eqn 1.11 focuses attention on
the basic features of what in reality is a complex load-transfer
mechanism; it does this by deleting quantities which are less
important compared with the main elements—quantities whose
inclusion will obscure the designer’s understanding of the problem at
the physical level. It is a useful tool in the hands of engineers who
possess a sound understanding of statics, geometry and structural
behaviour. Of course, the equation can be abused by indiscriminate
application—as indeed can Codes of Practice be so abused. Consider,
for example, a deep beam with a wide bottom flange, which contains
two large-diameter longitudinal bars away from the plane of the web.
These bars clearly do not effectively protect the integrity of the
concrete web, though they have a large product 4y sin’6 ; hence it
would be inappropriate to include such bars when using Eqn 1.11.”

vi)  The CIRIA Guide (1977) does not in effect cover web openings, unless
they are minor with little structural significance. Eqn (1.11), however, has
successfully been extended to deep beams with web openings; this has
been explained by Kong and Sharp (1977) and Kong et al. (1978). A
brief description of the method is also given in Reynolds and Steedman’s
Reinforced Concrete Designer’s Handbook (1981 and 1988). For a
detailed discussion of web openings in deep beams, see Chapter 3.

1.5 Draft Eurocode and CEB-FIP Model Code

The (draft) Eurocode 2 (1984): Common Unified Rules for Concrete
Structures does not directly provide guidelines for the design of deep beams.
It refers instead to clauses 18.1.8 of the CEB-FIP Model Code (1978). The
CEB-FIP Model Code applies to simply supported beams of span/depth ratio
I/h less than 2 and to continuous beams of /4 less than 2.5.

1.5.1 Flexural strength: simply supported deep beams

The area of the longitudinal reinforcement is calculated from the equation

A=MI)Y, )z (1.14)
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where M is the largest applied bending moment in the span, f, is the
reinforcement characteristic strength, ¥ the partial safety factor and z the
lever arm which is to be taken as follows:

2=0.2(/+2h) for 1<(I/h)<2
z=0.6/ for (I/h)<1 (1.15)

The two expressions show that in deep beams the lever arm varies at a lower
rate with the depth 4. When the depth exceeds the span, the lever arm
becomes independent of the beam depth. The main longitudinal
reinforcement so calculated should extend without curtailment from one
support to the other and be adequately anchored at the ends. According to
the CEB-FIP Model Code, vertical hooks cause the development of cracks in
the anchorage zone and should be avoided. The required steel should be
distributed uniformly over a depth of (0.254-0.05/) from the soffit of the
beam. The CEB-FIP Model Code recommends the use of small diameter
bars which are more efficient in limiting the width and development of
cracks under service loads and facilitate the anchorage at the supports.

1.5.2 Flexural strength: continuous deep beams
For continuous deep beams, the lever arm z is taken as:

2=0.2(1+1.5h)  for 1<l/h<2.5
2=0.51 for I/h<1 (1.16)

The main longitudinal steel in the span should be detailed as for simply
supported beams. Over the support, half the steel should extend across the
full length of the adjacent span; the remaining half is stopped at 0.4/ or 0.44,
whichever is smaller, from the face of the support.

1.5.3 Shear strength and web reinforcement
The design shear strength should not exceed the lesser of
0.10bh (f{/Y¥»)  and  0.10bl (£ /Yw) (1.17)

where b is the width, 4 is the beam depth, f¢ is the characteristic cylinder
strength of concrete and Y _ is a partial safety factor for material.

The web reinforcement is provided in the form of a light mesh of
orthogonal reinforcement consisting of vertical stirrups and horizontal bars
placed near each face and surrounding the extreme vertical bars. The web
steel ratio should be about 0.20% in each direction near each face for
smooth round bars and 0.20% for high bond bars. Additional bars should be
provided near the supports, particularly in the horizontal direction.

The aim of the web reinforcement is mainly to limit the crack widths
which may be caused by the principal tensile stresses. For beams loaded at
the bottom edge, vertical stirrups are required to transmit the load into the
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upper portion of the beam; this is in addition to the orthogonal web
reinforcement.

1.6 ACI Building Code 318-83 (revised 1986)

1.6.1 Flexural strength

For flexural design, ACI Code 318-83 (revised 1986) defines a deep beam
as a beam in which the ratio of the clear span / to the overall depth /4 is
less than the limits in Eqn (1.18):

simple spans: / /4<1.25 (1.18a)
continuous spans: [ /2<2.5 (1.18b)

1.6.1.1 Minimum tension reinforcement The main steel ratio p shall not be
less than p . of Eqn (1.19)

P =200/, (1.19)
where p_. =4 /bd, A_is the main tension reinforcement, b is the beam width,
d is the effective depth and /| is the steel strength (Ib/in*). For f=460N/mm*
(about 66500 (Ib/in?)), p_ . is about 0.3%.
1.6.1.2 Web reinforcement An orthogonal mesh of web reinforcement is
required. The minimum areas of the vertical and horizontal bars shall satisfy
Eqn (1.20).

A /bs 20.15% (1.20a)
A,/bs,20.25% (1.20b)

where A is the area of the vertical bars within the spacing s, and 4, is the
area of the horizontal bars within the spacing s, .

1.6.1.3 Flexural design Apart from the above requirements, the ACI Code
does not give further detailed guidelines. It merely states that account shall
be taken of the nonlinear distribution of strain and lateral buckling.

1.6.2 Shear strength

The shear provisions of ACI Code 318-83 (revised 1986) apply to top-
loaded simple or continuous beams having a (clear span)/(effective depth)
ratio / /d less than 5.

1.6.2.1 Shear strength: simply supported deep beams Calculations are
carried out for the critical section defined as follows. For uniformly
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distributed loading, the critical section is taken as 0.15/ from the face of the
support; for a concentrated load, it is taken as half way between the load and
the face of the support. The shear reinforcement required at the critical
section shall be used throughout the span.

The design is based on:

V<oV, (1.21)
V=VA+V, (1.22)

where V is the design shear force at the critical section (Ib), V' is the
nominal shear strength (Ib) (Eqn (1.22)) and ¢ is the capacity reduction
factor for shear, taken as 0.85, V_ is the shear strength provided by concrete
(Ib) and V_ is the shear strength provided by steel (Ib). The nominal shear
strength V should not exceed the following:

Vo< 8Vf. bd for lo/d<?2 (1.23a)
Vo< (2/3)10+ l/d)Nfibd ~ for 2<1,/d<5 (1.23b)

where f°_ is the concrete cylinder compressive strength (Ib/in?), b is the
beam width (in) and d is the effective depth (in).

The shear provided by concrete is calculated from:
Ve=(3.5-2.5M,/V,d)(1.9f. + 2500 pV,d/M,)bd (1.24)

where M is the design bending moment (Ib-in) which occurs simultaneously
with V at the critical section and p is the ratio of the main steel area to the
area of the concrete section (p=4 /bd).

The second term on the right-hand side of Eqn (1.24) is the concrete
shear strength for normal beams, given in ACI(318-83) (revised 1986). The
first term on the right-hand side is a multiplier to allow for strength increase
in deep beams, subject to the restrictions that follow:

[3.5-2.5(M /V.d)]<2.5 (1.25)
V. < 6\f! bd (1.26)

In the case where V exceeds ¢V  a system of orthogonal shear
reinforcement must be provided to carry the excess shear. The contribution
V_ of shear reinforcement is given by:

Vo Afl+lyd] Af11-1,d
fyd_sv[ 12 :|+sh{ 12 ] (127)
Combining between equations (1.21), (1.22) and (1.27) gives
Af1+Lsd] A1 =-Lsd] (Vu/o)-V. (1.28)
so| 12 Sh 12 | fd '
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where 4 is the area (in?) of vertical web reinforcement within a spacing s,
4, 1s the area (in?) of horizontal web reinforcement within a spacing s, f is
the strength of the web steel which should not be taken as more than 60 600
Ib/in* (410N/mm?), s is the spacing (in) of the vertical web bars—which
must exceed neither d/5 nor 18 in—and s, is the spacing (in) of the
horizontal web bars—which must exceed neither d/3 nor 18 in.

The orthogonal mesh provided must satisfy not only Eqn (1.28) but also
the minimum web reinforcement requirement of Section 1.6.1.1.

In (Eqn 1.28.) the quantities (1+//d)/12 and (11- /d)/12 represent
weighting factors for the relative effectiveness of the vertical and horizontal
web bars. ACI Code 318-83 (revised 1986) rightly considers that horizontal
web reinforcement is more effective than vertical web reinforcement (Kong
and Robins, 1971; Kong and Singh, 1972). At the limiting / /d ratio of 5,
quoted in Section 1.6.2, the weighting factors (1+//d)/12 and (11-1 d)/12
are equal. As the [ /d ratio decreases, horizontal web bars become
increasingly more effective compared with vertical web bars.

1.6.2.2 Shear strength: continuous deep beams Calculations for continuous
deep beams, unlike those for simply supported ones, are not based on the
design shear force at the critical section as defined in Section 1.6.2.1.
Instead, the shear reinforcement at any section is calculated from the design
shear force V| at that section. The design is based on Eqn (1.29) and (1.30).

V<oV, (1.29)
V=V+V (1.30)
where 0, V.V and V_are as defined for Eqns (1.21) and (1.22). The
nominal shear strength V' is subject to the same limits as imposed by Eqn

(1.23a, b). However, for continuous deep beams, the concrete nominal shear
strength V_is to be taken as the least value given by Eqns (1.31a—c):

Ve=3.5Vf bd (1.31a)
Ve=[1.9f, + 2500 plbd (1.31b)
Ve=[1.9VF + 2500 p(V.ud/M.)1bd (1.31c)

where M is the design moment occurring simultaneously with V at the
section considered (Ib-in); p is the main steel ratio 4 /bd; f” is the concrete
cylinder strength (Ib/in?).

Where V exceeds 0.5¢V_ vertical shear reinforcement should be provided
to satisfy the condition: ’

(4,/bs,)>(50/f)) (1.32)
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where 4 is the area (in?) of the vertical shear reinforcement within the
spacing s, and f, is the strength of the shear reinforcement which should not
be taken as exceeding 60 000 1b/in? (410 N/mm?).

Where the design shear force V exceeds ¢V, vertical shear reinforcement
shall be provided to carry the excess shear. The contribution V, of this shear
reinforcement is given by:

V=(Afdls,) (1.33)

where the symbols are as defined for Eqns (1.32) and (1.31).
Combining Eqns (1.29), (1.30) and (1.33),

(4,/bs,) > (V,/0)-V)/bd, (134)

Irrespective of the values obtained from Eqns (1.34) or (1.33), 4 /bs shall
not be taken as less than 0.0015; the spacing s shall not exceed /5 nor 18
in (450 mm). In addition, nominal horizontal web reinforcement must also
be provided, such that 4,/bs, is not less than 0.0025 and the spacing s, of
this horizontal reinforcement shall not exceed d/3 nor 18 in (450 mm).

1.7 Canadian Code CAN3-A23.3-M84

1.7.1 Flexural strength

For flexural design the Canadian Code CAN3-A23.3-M84 (1984) defines a
deep beam as a beam in which the ratio of the clear span / to the overall
depth / is less than the limits in Eqn (1.35):

simple spans 2 l/h<1.25 (1.35a)
continuous spans 2 1 /h<2.5 (1.35b)

1.7.1.1 Minimum tension reinforcement The main steel ratio p shall not be
less than p_. of Eqn (1.36)

P14/, (1.36)

where p . =A/db, A_is the area of the main tension reinforcement, b is the

min

beam width, d is the effective depth and /| is the steel strength. (Note: unlike
the ACI Code, the Canadian Code is in St units)

1.7.1.2 Web reinforcement A system of orthogonal web reinforcement is
required, with bars in each face. The minimum areas of the vertical and
horizontal reinforcement shall satisfy Eqn (1.37)

A /bs,>0.2% (1.37a)
A/bs, = 0.2% (1.37b)
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where A4 is the area of the vertical web reinforcement within the spacing s,
which shall exceed neither d/5 nor 300 mm and A, is the area of the
horizontal web reinforcement within the spacing s, which shall exceed
neither d/3 nor 300 mm.

1.7.1.3 Flexural design Apart from the above requirements, the Canadian
Code does not give further detailed guidelines. It merely states that account
shall be taken of the nonlinear distribution of strain, lateral buckling and the
increased anchorage requirements.

1.7.2 Shear strength

The Canadian code uses the concept of the shear-span/depth ratio (Kong and
Singh, 1972) rather than the span/depth ratio. The shear provisions of the
Canadian code apply to those parts of the structural member in which:

i) the distance from the point of zero shear to the face of the support is
less than 2d; or

il) a load causing more than 50% of the shear at a support is located at less
than 2d from the face of the support.

Tension tie

Figure 1.4 Canadian Code’s truss model for deep beams

The calculations are based on truss model consisting of compression struts
and tension tie as in Figure 1.4.

Unless special confining reinforcement is provided, the concrete
compressive stresses in the nodal zones, defined as the regions where the
strut and tie meet (Figure 1.4), should not exceed: 0.85¢.f¢ in nodal zones
bounded by compressive struts and bearing areas, 0.75 ¢. f; in nodal zones
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anchoring one tension tie, or 0.60 ¢. f{ in nodal zones anchoring tension ties
in more than one direction, where ¢ is a material resistance factor=0.6 for
concrete and f/ is the cylinder compressive strength of concrete.

The nodal zone stress limit conditions together with the equilibrium
condi-tion determine the geometry of the truss such as the depth of the nodal
zones and the forces acting on the struts and tie. The main tension tie
reinforcement is determined from the tensile tie force. These reinforcing
bars should be effectively anchored to transfer the required tension to the
lower nodal zones of the truss to ensure equilibrium. The code, then,
requires the checking of the compressive struts against possible crushing of
concrete as follows:

NANI. (1.38)

where f) is the maximum stress in the concrete strut, and f, _ is the diagonal
crushing strength of the concrete, given by:

f2max=)"¢cfc,/(0~8+ 17081) (139)

where A is a modification factor to take account of the type of concrete,
(A=1.0 for normal weight concrete) and el is the principal tensile strain,
crossing the strut.
Eqn (1.39) takes account of the fact that the existence of a large principal
tensile strain reduces considerably the ability of concrete to resist
compressive stresses.

For the design purpose €, may be computed from:

£ =€ +(€.+0.002)/tan’ 0 (1.40)

where €_is the longitudinal strain and @ is the angle of inclination of the
diagonal compressive stresses to the longitudinal axis of the member (Figure
1.4). An orthogonal system of web reinforcement must be provided. This
shall meet the requirements of Section 1.7.1.1.
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2 Strength and behaviour of deep
beams

M.D.KOTSOVOS, Imperial College, London

Notation

cylinder compressive strength of concrete

shear span

effective length of beam

distance of centroid of tension reinforcement from extreme compressive fibre
section flexural capacity

maximum moment sustained by cross-section through tip of inclined crack

-

gg&hah

°

2.1 Introduction

While current design concepts are based on uniaxial stress-strain
characteristics, recent work has shown quite conclusively that the
ultimate limit-state behaviour of reinforced concrete (RC) elements
such as, for example, beams in flexure (or combined flexure and
shear), can only be explained in terms of multiaxial effects which are
always present in a structure. It is the consideration of the multiaxial
effects that has led to the introduction of the concept of the
compressive-force path which has been shown not only to provide a
realistic description of the causes of failure of structural concrete, but
also to form a suitable basis for the development of design models
capable of providing safe and efficient design solutions. In the
following, the work is summarised and the concept of the compressive-
force path is used as the basis for the description of the behaviour of
RC deep beams of their ultimate limit state. The implications of the
application of the concept in RC deep beam design are also discussed
and a simple design method is proposed.

2.2 Current concepts for beam design

It is a common design practice first to design an RC beam for flexural
capacity and then to ensure that any type of failure, other than flexural (that
would occur when the flexural capacity is attained), is prevented. The
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flexural capacity is assessed on the basis of the plane sections theory which
not only is generally considered to describe realistically the deformational
response of the beams, but is also formulated so that it provides a design
tool noted for both its effectiveness and simplicity.

However, an RC beam may exhibit a number of different types of failure
that may occur before flexural capacity is attained. The most common of
such failures are those which may collectively be referred to as shear types
of failure and may be prevented by complementing the initial (flexural)
design so that the shear capacity of the beam is not exhausted before the
flexural capacity is attained, while other types of failure such as, for
example, an anchorage failure or a bearing failure (occurring in regions
acted upon by concentrated loads), are usually prevented by proper
detailing.

Although a generally accepted theory describing the causes of shear
failure is currently lacking, there are a number of concepts which not only
are widely considered as an essential part of such a theory, but also form the
basis of current design methods for shear design. These concepts are the
following:

1) shear failure occurs when the shear capacity of a critical cross-

section is exceeded

i1) the main contributor to shear resistance is the portion of the cross-
section below the neutral axis, with strength, in the absence of shear
reinforcement, being provided by “aggregate interlock™ and “dowel
action”, whereas for a beam with shear reinforcement the shear
forces are sustained as described in iii) below

iii) once inclined cracking occurs, an RC beam with shear
reinforcement behaves as a truss with concrete between two
consecutive inclined cracks and shear reinforcement acting as the
struts and ties of the truss, respectively, and the compressive zone
and tension reinforcement representing the horizontal members.

A common feature of both the above concepts and the plane section theory
that form the basis of flexural design is that they rely entirely on uniaxial
stress-strain characteristics for the description of the behaviour of concrete.
This view may be justified by the fact that beams are designed to carry
stresses mainly in the longitudinal direction, with the stresses developing in
at least one of the transverse directions being small enough to be assumed
negligible for any practical purpose. As will be seen, however, such a
reasoning underestimates the considerable effect that small stresses have on
the load-carrying capacity and deformational response of concrete. Ignoring
the small stresses in design does not necessarily mean that their effect on
structural behaviour is also ignored. It usually means that their effect is
attributed to other causes that are expressed in the form of various design
assumptions.
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Therefore before an attempt is made to use current design concepts as the
basis for the description of the behaviour of RC deep beams, it is essential to
investigate the effect of the small transverse stresses on structural concrete
behaviour.

2.3 Effect of transverse stresses

2.3.1 Flexural capacity

Flexural capacity is assessed on the basis of the plane sections theory. The
theory describes analytically the relationship between flexural capacity and
geometric characteristics by considering the equilibrium conditions at
critical cross-sections. Compatibility of deformation is satisfied by the
‘plane cross-section remain plane’ assumption and the longitudinal concrete
and steel stresses are evaluated by the material stress-strain characteristics.
Transverse stresses are not considered to affect flexural capacity and are
therefore ignored.

It is well known, however, that concrete is weak in tension and strong in
compression. Therefore, its primary purpose in an RC structural member is
to sustain compressive forces, while steel reinforcement is used to sustain
tensile forces with concrete providing protection to it. As concrete is used to
sustain compressive forces, it is essential that its strength and deformational
response under such conditions are known.

The stress-strain characteristics of concrete in compression are considered to
be described adequately by the deformational response of concrete specimens
such as prisms or cylinders under uniaxial compression. Typical stress-strain
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Figure 2.1 Typical stress-strain curves obtained from tests on concrete cylinders under uniaxial
compression.
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curves providing a full description of the behaviour of such specimens are given
in Figure 2.1 which indicates that a characteristic feature of the curves is that
they comprise an ascending and a gradually descending branch. (It will be seen
later, however, that perhaps the most significant feature of concrete behaviour is
the abrupt increase of the rate of lateral expansion that the specimen undergoes
when the load exceeds a level close to, but not beyond, the peak level. This level
is the minimum volume level that marks the beginning of a dramatic volume
dilation which follows the continuous reduction of the volume of the specimen
that occurs to this load level. The variation of the volume of the specimen under
increasing uniaxial compressive stress is also shown in Figure 2.1). Although the
curves shown in Figure 2.1 describe the deformational response of concrete in
both the direction of loading and at right angles with this direction, it is only the
former which is considered essential by the plane sections theory for the
description of the longitudinal stress distribution within the compressive zone of
the beam cross-section.

The axial stress-axial strain and the axial stress-lateral strain curves of
Figure 2.1 may be combined to form the axial strain-lateral strain curve shown
in Figure 2.2. The curve of Figure 2.2 also comprises two portions, which
correspond respectively to the ascending and descending branches of the
stress-strain curves of Figure 2.1. The transition between these portions
corresponds to the portions of the stress-strain curves between the minimum
volume and peak stress levels. If uniaxial stress-strain data do indeed describe
the deformational behaviour of the compressive zone of the beam, an axial
strain-lateral strain relationship (such as that shown in Figure 2.2) should
provide a realistic description of the deformational behaviour of an element of
concrete in this zone throughout the loading history of the beam.
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Figure 2.2 Typical axial strain-lateral strain curve constructed from the stress-strain curves in
Figure 2.1 (branches a and b correspond to ascending and descending branches, respectively).
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Figure 2.3 (a) Design details and mesured response of a typical RC beam, (b) Assessment of
average stress in compressive zone based on measured values.

The deformational response of the compressive zone can established by
testing an RC beam (such as that shown Figure 2.3) under two-point loading
and measuring longitudinal and transverse strains at the top face of the beam
within the middle zone. Such tests have already been carried out (Kotsovos,
1982) and those of the strains measured in the region of the deepest flexural
cracks have been used to plot the longitudinal strain-transverse strain curve
shown in Figure 2.4. The Figure also includes the corresponding curve
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established from tests on cylinders under uniaxial compression and it is
apparent that only the portion of the latter to the minimum volume level can
provide a realistic description of the beam behaviour; beyond this level,
there is a dramatic deviation of the cylinder from the beam curve.
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Figure 2.4 Typical relationships between longitudinal and transverse strains measured on the top
face of RC beams at critical sections.

Such results demonstrate that, in spite of the prominence given to
them in flexural design, the post-ultimate uniaxial stress-strain
characteristics cannot describe the behaviour of an element of concrete
in the compressive zone of an RC beam in flexure. Such a conclusion
should come as no surprise because it has been found by experiment
that, unlike the ascending branch, the descending branch does not
represent material behaviour; it merely describes secondary testing
procedure effects caused by the interaction between testing machine and
specimen (Kotsovos, 1983a). However, the ascending branch can only
partially describe the deformational response of a concrete element in
the compressive zone and this can only lead to the conclusion that
uniaxial stress-strain data are insufficient to describe fully the behaviour
of the compressive zone.

Additional evidence in support of these arguments can be obtained easily
by assessing the average longitudinal stress in the compressive zone of the
RC beam shown in Figure 2.3. The Figure also provides design details of the
beam together with its experimentally obtained load-deflection relationship.
Using the measured values of the load-carrying capacity of the beam and the
strength of the tensile reinforcement, the average stress in the compressive
zone at failure can be calculated as indicated in the Figure. The calculated
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average stress in the compressive zone is found to be 67 MPa which is 75%
higher than the uniaxial compressive strength of concrete (f)) and about
150% higher than the design stress, assuming a safety factor equal to 1.
Such a large stress can only be sustained if the stress conditions in the
compressive zone are triaxial compressive.

It has been argued that, in the absence of stirrups, a triaxial compressive
state of stress can be developed due to the occurrence of volume dilation in
localised regions within the compressive zone (Kotsovos, 1982). This view
is supported by the experimentally established shape of the transverse
deformation profile of the top face of the beam shown in Figure 2.5. The
characteristic feature of this profile is the large transverse expansion
(indicative of volume dilation) that occurs in the region of cross-sections
that coincide with a deep flexural crack when the load-carrying capacity of
the beam is approached. This localised transverse expansion is restrained by
concrete in the adjacent regions and such a restraint may be considered to be
equivalent to the application of a confining pressure that has been assessed
to be at least 10% f.. An indication of the effect that such a small confining
stress has on the load-carrying capacity of concrete in the longitudinal
direction is given in Figure 2.6a which describes the variation of the peak
axial compressive stress sustained by cylinders with increasing confining
pressure. The Figure indicates that a confining pressure of 10% f; is
sufficient to increase the load-carrying capacity of the specimen by more
than 50% and this should be the cause of the large compressive stresses
developing in the compressive zone.

2.0

1.0+

Transverse strain - mm/m

900

beam span — mm

Figure 2.5 Typical variation of transverse deformation profile of compressive top face of the RC
beam in Figure 2.3, with increasing load, indicating the development of internal actions (F) for
compatibility purposes.
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Figure 2.6a Typical failure envelope of concrete under axisymmetric triaxial stress.

Concurrently, the expanding concrete induces tensile stresses in
adjacent regions and this gives rise to a compression-tension-tension state
of stress. Such a state of stress reduces the strength of concrete in the
longitudinal direction (Figure 2.6a indicates that a tensile stress of about
5% f, is sufficient to reduce the cylinder strength by about 50%) and it has
been shown (Kotsovos, 1984) that collapse occurs due to horizontal
splitting of the compressive zone in regions between deep flexural cracks
(Figure 2.7). Concrete crushing, which is widely considered to be the
cause of flexural failure, appears to be a post-failure phenomenon that
occurs in the compressive zone of cross-sections which coincides with a
deep flexural crack resulting from the loss of restraint provided by the
adjacent concrete.

It is important to emphasise that the development of triaxial stress
conditions is a key feature of structural behaviour only at the late stages of
the loading history of the beam. This becomes apparent from the
experimental data shown in Figure 2.5 which indicate that the localised
transverse tensile strains become significant only when the load increases
to a level nearly 90% of the beam’s maximum load-carrying capacity.
Figure 2.6b indicates that under such triaxial stress conditions the
corresponding strains can be comparable to those measured at the top face
of the beam.
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Figure 2.6b Typical stress-strain curves obtained from tests on concrete cylinders under various
states of axisymmetric stress.
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Figure 2.7 Typical failure mode of RC beams in flexure.

2.3.2 Shear capacity

As discussed in Section 2.2, shear capacity of an RC beam is defined as the
maximum shear force that can be sustained by a critical-section. When
deemed necessary, shear reinforcement is provided in order to carry that
portion of the shear force that cannot be sustained by concrete alone. The
amount of reinforcement required for this purpose is assessed by using one
of a number of available methods invariably developed on the basis of the
truss analogy concept (Ritter, 1899: Morsch, 1909) which stipulates that an
RC beam with shear reinforcement may be considered to behave as a truss
once inclined cracking occurs.

A prerequisite for the application of the concept of “shear capacity of
critical sections” in design appears to be (by implication) the widely accepted
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view that the main contributor to shear resistance is aggregate interlock
(Fenwick and Paulay, 1968; Taylor, 1968; Regan, 1969). This is because only
through aggregate interlock can the cracked web be the sole contributor to the
shear resistance of an RC T-beam, as specified by current code provisions e.g.
BS 8110 (British Standards Institution, 1985). The concept of the shear
capacity of critical sections is itself a prerequisite for the application of the
truss analogy because it is the loss of the shear capacity below the neutral axis
that the shear reinforcement is considered to offset.

It appears therefore, that the aggregate interlock concept, although not
explicitly referred to, forms the backbone of current concepts that describe
the causes of shear failure. And yet this concept is incompatible with
fundamental concrete properties; a crack propagates in the direction of the
maximum principal compressive stress and opens in the orthogonal direction
(Kotsovos, 1979; Kotsovos and Newman, 1981a). If there was a significant
shearing movement of the crack faces, which is essential for the
mobilisation of aggregate interlock, this movement should cause crack
branching in all localised regions where aggregate interlock is effected. The
occurrence of such crack branching has not been reported to date.

The inadequacy of the concepts currently used to describe the causes of
shear failure has been demonstrated in an experimental programme
(Kotsovos, 1987a, b). The programme was based on an investigation of the
behaviour of RC beams, with various arrangements of shear reinforcement
(Figure 2.8), subjected to two-point loading with various shear span to depth
ratios (a/d). The main results of this programme are given in Figure 2.9
which shows the load-deflection curves of the beams tested.

On the basis of the concept of shear capacity of critical sections, all
beams that lack shear reinforcement, over either their entire shear span or a
large portion of its length, should have a similar load-carrying capacity.
However, beams C and D were found to have a load-carrying capacity
significantly higher than that of beams A which had no shear reinforcement
throughout their span. Beams D, in all cases, exhibited a ductile behaviour,
which is indicative of a flexural mode of failure, and their load-carrying
capacity was higher than that of beams A by an amount varying from 40 to
100% depending on a/d. These results indicate that such behaviour cannot
be explained in terms of the concept of shear capacity of critical sections
and the failure of the beams cannot be described as a shear failure as defined
by this concept.

The evidence presented in Figure 2.9 also counters the view that
aggregate interlock makes a significant contribution to shear resistance. This
is because the large deflections exhibited by beams D, in all cases, and
beams C, in most cases, led to a large increase of the inclined crack width
and thus considerably reduced, if not eliminated, aggregate interlock. In fact,
near the peak load, the inclined crack of beams D had a width in excess of 2
mm which is an order of magnitude larger than that found by Fenwick and
Paulay (1968) to reduce aggregate interlock by more than half. It can only be
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Figure 2.9 Load-deflection curves of beams with (a) a/d=1.5 (b) a/d=3.3 (c) a/d=4.4

concluded, therefore, that, in the absence of shear reinforcement, the main
contributor to shear resistance of an RC beam at its ultimate limit state is the
compressive zone, with the region of the beam below the neutral axis
making an insignificant contribution, if any.

As with the concepts discussed so far, the test results are in conflict
with the truss analogy concept. The shear span of beam D with a/d=1.5
and a large portion of the shear span of beams C and D with a/d 2.0
cannot behave as trusses because the absence of shear reinforcement does
not allow the formation of ties; but the beams sustained loads significantly
larger than those widely expected. Such behaviour indicates that, in
contrast with widely held views, truss behaviour is not a necessary
condition for the beams to attain their flexural capacity once their shear
capacity is exceeded.

In view of the negligible contribution of aggregate interlock to the shear
resistance of an RC beam without shear reinforcement, shear resistance
should be associated with the strength of concrete within the region of the
beam above the neutral axis. The validity of this view has been verified by
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testing RC T-beams with a web width significantly smaller than that
generally considered to provide adequate shear resistance (Kotsovos et al.,
1987). Design details of a typical beam, with 2.6 m span, tested under six-
point loading are shown in Figure 2.10. Figure 2.11 shows a typical mode
of failure.

The tests indicated that the load-carrying capacity of the beams was up to
3 times higher than that predicted on the basis of the currently accepted
concepts. It was also found that failure usually occurred in regions not

B4 KA« F=45KN -

Figure 2.11 Typical mode of failure of an RCT-beam under six-point loading.

regarded, by current Code provisions, as the most critical. As the web width
of these beams was inadequate to provide shear resistance, the results
support the view that the region of the beam above the neutral axis (the
flange in the present case) is the main, if not the sole, contributor to shear
resistance.

Figure 2.11 shows that the inclined crack, which eventually caused
failure, penetrated very deeply into the compressive zone. Locally it
reduced the depth of the neutral axis to less than 5% of the beam depth. In
view of such a small depth of the compressive zone, it may be argued that
concrete is unlikely to be able to sustain the high tensile stresses caused by
the presence of the shear force. Such an argument is usually based on the
erroneous assumption that concrete behaviour within the compressive
zone of a beam at its ultimate limit state is realistically described by using
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uniaxial stress-strain characteristics. This assumption is in conflict with
the failure mechanism discussed in the preceding section for the case of
flexural capacity.

As in the case of the compressive zone in the region of a section that
coincides with a flexural crack, concrete in the region of a section through
the tip of a deep inclined crack is also subjected to a wholly compressive
state of stress. This is because concrete (due to the small neutral axis depth)
will reach its minimum volume level before this level is reached anywhere
else within the compressive zone. The compressive state of stress mentioned
represents the restraining effect of the surrounding concrete.) A part of the
vertical component of this compressive state of stress conteracts the tensile
stresses that develop in the presence of shear force. Hence, in spite of the
presence of such a force, the state of stress remains compressive and this
causes a significant enhancement of the local strength. The mechanism that
provides shear resistance is represented in Figure 2.12.
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Figure 2.12 Mechanism for shear resistance.
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2.4 Compressive force path concept

An attempt to summarise the experimental information discussed in the
preceding sections and present it in a unified and rational form has led to the
concept of the ‘compressive force path’ (Kotsovos, 1988a). On the basis of this
concept, the load-carrying capacity of an RC structural member is associated
with the strength of concrete in the region of the paths along which compressive
forces are transmitted to the supports. The path of a compressive force may be
visualised as a flow of compressive stresses with varying sections perpendicular
to the path direction and with the compressive force, representing the stress
resultant at each section (Figure 2.13). Failure is considered to be related to the
development of tensile stresses in the region of the path that may develop due to
a number of causes, the main ones being as follows.

Figure 2.13 Compressive force path.

1)  Changes in the path direction. A tensile stress resultant (7 in Figure
2.13) develops for equilibrium purposes at locations where the path
changes direction.

i) Varying intensity of compressive stress field along path. The
compressive stress will reach a critical level at the smallest cross-
section of the path where stress intensity is the highest before that level
is reached in adjacent cross-sections. As indicated in Section 2.3, this
level marks the start of an abrupt, large material dilation which will
induce tensile stresses (71 in Figure 2.13) in the surrounding concrete.

i)  Tip of inclined cracks. 1t is well known from fracture mechanics that
large tensile stresses (2 in Figure 2.13) develop perpendicular to the
direction of the maximum principal compressive stress in the region
of the crack tip (Kotsovos, 1979; Kotsovos and Newman, 1981a).

iv)  Bond failure (Kotsovos, 1986). Bond failure at the level of the tension
reinforcement between two consecutive flexural cracks changes the
stress conditions in the compressive zone of the beam element between
these cracks, as indicated in Figure 2.14. From the Figure, it can be
seen that the loss of the bond force results in an extension of the right-
hand side flexural crack sufficient to cause an increase dz of the lever
arm z, such that Cdz=Va. Extension of the flexural crack reduces the
depth of the neutral axis and thus increases locally the intensity of the
compressive stress block. This change in the stress intensity should
give rise to tensile stresses as described in ii).

© 2002 Taylor & Francis Books, Inc.



sy
Y
C l C+ C
v
N N
B
G— |
T T+ AT

V.a = AT. 2z V.a = T.Az

before bond failure after bond failure
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In order to use the concept as the basis for description of the causes of failure
of structural concrete members it is essential to visualise the shape of the path
along which a compressive force is transmitted to the support. This is not
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Figure 2.15 Path of compressive force and corresponding outline of compressive stress trajectories
for RC beams with various a/d ratios.
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necessarily a difficult task and it has been shown that, for a simply supported
RC beam at its ultimate limit state, the compressive force at the mid cross-
section is transmitted to the support by following a path which, for any practical
purpose, may be considered to be bi-linear (Kotsovos, 1983b; 1988a). The
change in path direction appears to occur at a distance of approximately twice
the beam depth d for the cases of (@) two-point loading with a shear span-to-
depth (a/d) ratio greater than a value of approximately 2.0 and (b) uniformly
distributed loading (UDL) with a span-to-depth (L/d) ratio greater than a value
of approximately 6.0 (Figure 2.15a); for smaller ratios it is considered to occur
at the cross-section coinciding with the load point, assuming that UDL can be
replaced by an equivalent two-point loading at the third points (Figure 2.15b).
Although a deep beam is usually considered to be, by definition, a beam with L/
d<2.0, investigations of deep beam behaviour often include beams with values
of L/d as large as 3.0. It would appear, therefore, that, in all cases, an RC deep
beam should be characterised by a compressive force path similar to that of a
beam with a/d<2.0 or L/d<6.0 (Figure 2.16).

—~—- path
.--=-._.-outline of compressive
stress trajectories

1
—>|
N
~
ﬁ\

L < 3d

Figure 2.16 Path of compressive force and corresponding outline of compressive stress trajectories
for a typical deep beam.

2.5 Deep beam behaviour at ultimate limit state

It is well known that the behaviour of an RC beam with a rectangular cross-
section and without shear reinforcement may be divided into four types of
behaviour depending on either a/d, for beams subjected to two-point
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loading, or L/d, for beams under UDL (Kani, 1964). Figure 2.17 indicates
the variation of bending moment, corresponding to the maximum load
sustained by such beams, with varying a/d, for the case of two-point loading,
and L/d, for the case of UDL. The Figure includes a representation of the
failure mode that characterises each type of behaviour. It has been shown
that the concept of the compressive force path can provide a realistic
description of the causes of failure in all four types of behaviour (Kotsovos,
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Figure 2.17 Types of behaviour exhibited by RC beams without shear reinforcement subjected to

two-point loading.
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1983b; 1988a). In the following, however, attention will be focused on types
of behaviour III and IV as only these are generally considered to represent
deep beam behaviour.

2.5.1 Causes of failure

2.5.1.1 Type Il behaviour Figure 2.18a is a representation of the typical
mode of failure for the case of a deep beam, without web reinforcement,
subjected to two-point loading with a/d=1.5 (Leonhardt and Walther, 1962).
The Figure indicates that the mode of failure is characterised by a deep
inclined crack which appears to have formed within the shear span
independently of the flexural cracks. The inclined crack initiated at the
bottom face of the beam close to the support, extended towards the top face
of the beam in the region of the load point and eventually caused failure of
the compressive zone in the middle zone of the beam.

r/l\\r

(a)

} |
r/// | \\\\T

(b)

Figure 2.18 Typical modes of failure of deep beams exhibiting (a) type III, (b) type IV behaviour.

Although such a mode of failure does not indicate clearly the underlying
causes of failure, the possibility that these are associated with the ‘shear
capacity of a critical section’ within the shear span appears to be remote. As
discussed in Section 2.3.2 for the case of an RC beam under similar loading
conditions (beam D in Figure 2.8a), reinforcement with stirrups of only the
region adjacent to the load-point within the middle portion delays the
extension of the inclined crack into the middle portion and allows the beam
not only to sustain the design load, but also to respond in a ductile manner
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(beam D in Figure 2.9a). The causes of failure should therefore be sought
within the middle, rather than the shear, span of such beams.

Figure 2.18a indicates that the inclined crack penetrates the compressive
zone of the middle span significantly deeper than any of the flexural cracks
that develop within this region of the beam. As the area of the compressive
zone of the cross-section coinciding with the tip of the inclined crack is the
smallest, it will be there that concrete will first reach its minimum volume
level. It should be expected, therefore, that, as discussed in Section 2.3.1, a
further increase in load will cause volume dilation that will induce transverse
tensile stresses in the adjacent regions. It is the failure of concrete in such
regions under the combined action of compressive and tensile stresses that
will eventually lead to collapse of the beam. Collapse, therefore, occurs under
a load that can be significantly smaller than that which corresponds to flexural
capacity and this is indicated in the variation of the maximum moment
sustained by the beams with a/d, shown in Figure 2.17.

This description of the causes of failure is based entirely on the concept
of the compressive force path and it should be emphasised that such a
description would be impossible without consideration of the triaxial stress
conditions which always develop within an RC structural member at its
ultimate limit state in the region of the compressive force path. Although
such triaxial stress conditions may develop in both the horizontal and the
inclined portions of the path (Figure 2.16), it appears that for type III
behaviour the most critical conditions develop within the horizontal portion
of the path.

2.5.1.2 TBype IV behaviour Figure 2.18b is a representation of a typical mode
of failure for a case of a deep beam, without shear reinforcement, under two-
point loading with a/d=1.0 (Leonhardt and Walther, 1962). As for the case of
type III behaviour, the above mode of failure is characterised by a deep
inclined crack which appears to have formed within the shear span
independently of the flexural cracks. However, in contrast with type III
behaviour, the inclined crack that characterises type IV behaviour almost
coincides with the line joining the load point and the support. It usually starts
within the beam web, almost half way between the loading and support points,
at a load level significantly lower than the beam load-carrying capacity, and
propagates simultaneously towards these points with increasing load.
Eventually, collapse of the beam occurs owing to a sudden extension of the
inclined crack towards the top and bottom face of the beam in the regions of
the load point and support, respectively, within the shear span.

Such a mode of failure is usually referred to as ‘diagonal- splitting” and its
causes are considered to be associated with the shape of the compressive
stress trajectories within the shear span of the beam. The shape of these
trajectories is given in Figure 2.16 which indicates that they form a barrel-
shaped region with its larger cross-section situated roughly half-way between
load-point and the support. The curved shape of the stress trajectories should

© 2002 Taylor & Francis Books, Inc.



give rise, for purpose of equilibrium, to tensile stresses at right angles to the
direction of the trajectories with the tensile stress resultant acting in the region
of the largest cross-section as indicated in Figure 2.16. However, the inclined
crack, which starts in this region when the local strength of the material is
exceeded, is insufficient to cause collapse of the beam. The inclined crack
starts at a load level often several times lower than the collapse load (Kong
and Evans, 1987). With increasing load the inclined crack extends
simultaneously towards the loading and support points and such an extension
should inevitably result in a continuous stress redistribution in the region of
the crack tips. The stage is reached, however, when such redistributions
cannot maintain the stress levels below critical values and therefore crack
extension continues in an unstable fashion simultaneously towards the top and
bottom faces and leads to collapse.

The cracking process of structural concrete under increasing load has
been investigated analytically by means of nonlinear finite element analysis
(Kotsovos and Newman, 1981b; Kotsovos, 1981; Bedard and Kotsovos,
1985; 1986). The results obtained from such investigations for the case of
deep beams under two-point loading are shown in Figure 2.19 which shows
the crack pattern of a typical beam at various load levels up to ultimate.
Cracking not only always starts in regions subjected to a critical
combination of compressive and tensile stresses, but also propagates into
regions subjected to similar states of stress. The Figure also indicates that
the region of the loading point, which is subjected to a wholly compressive
state of stress, reduces in size as the applied load increases above the level
which causes crack initiation. This is due to stress redistribution which
transforms the state of stress at the periphery of this region from a wholly
compressive state of stress to a state of stress with at least one of the
principal stress components being tensile. When the strength of concrete
under this latter state of stress is exceeded cracking occurs and the size of
the compressive region further reduces. In all cases investigated collapse
occurs before the strength of concrete in the compressive region is
exceeded. Such behaviour is in compliance with the conclusions of the
experimental information discussed in Section 2.3.

The mode of failure shown in Figure 2.18b is also characterised by a
number of flexural and inclined cracks. However, although the inclined
cracks extend towards the compressive zone within the middle span as do
the inclined cracks that characterise type III behaviour, they differ from the
latter in that their depth is similar to that of the flexural cracks. For type IV
behaviour, the presence of such cracks may lead to an alternative mode of
failure which is characterised by failure of the compressive zone of the
middle span of the beam. The causes underlying this mode of failure should
be similar to those described earlier in the section for type III behaviour:
volume dilation of the concrete in the region of the section that coincides
with the tip of the deepest flexural or inclined crack will induce tensile
stresses in adjacent regions. It is failure of these regions under the combined
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action of the compressive and tensile stresses that will cause collapse of the
beam. However, in contrast with type III behaviour, failure of the
compressive zone for type IV behaviour occurs when flexural capacity is
attained.
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Figure 2.19 Typical stages of crack pattern of deep beams predicted by finite element analysis.
(Shaded regions represent regions subjected to a wholly compressive state of stress; single and
double short lines inside elements represent cracks occurring at previous and current, respectively,
load stages)

As with type III behaviour, the foregoing description of the causes of
failure characteristic of type IV behaviour complies with the concept of the
compressive force path. Consideration of the triaxial stress conditions has
been essential, not only to explain the development of tensile stresses within
the horizontal portions of the compressive force path, but also to identify the
source of strength of the inclined portion of the path after the occurrence of
diagonal-splitting. The existence of a triaxial wholly compressive state of
stress in the region of the loading point delays the extension of cracking into
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such regions; additional load is, therefore, required for cracking to overcome
this local resistance and lead to structural collapse. Unlike type III
behaviour, critical conditions may develop within both the inclined and the
horizontal portions of the compressive force path.

2.5.2 Arch and tie action

The causes of failure of the horizontal portion of the compressive force path
(Section 2.5.1) are similar to those which characterise the flexural mode of
failure discussed in section 2.3.1. However, unlike the flexural mode of
failure, that mode of failure is not associated with beam action. The
variation in bending moment along the beam span, essential for a beam to
carry shear forces, is mainly effected by a change of the lever arm rather
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Figure 2.20 Beam, arch and tie actions.
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than the size of the internal horizontal actions (Figure 2.20). Such behaviour
has been found to result from the fact that the force sustained by the tension
reinforcement of a deep beam at its ultimate limit state is constant
throughout the beam span (Rawdon de Paiva and Siess, 1965).

It may be deduced therefore that if an RC deep beam at its ultimate limit
state cannot rely on beam action to sustain the shear forces, it would have to
behave as a tied arch. However, the word ‘arch’ is used in a broad context; it
is considered to describe any type of frame-like structure that would have a
shape similar to that of the compressive force path shown in Figure 2.16. It
appears, therefore, that the concepts of tied arch action and compressive
force path are compatible in the sense that while the former identifies the
internal actions providing ultimate resistance to the structure, the latter
provides a qualitative description of the causes of structural failure.

2.5.3 Effect of transverse reinforcement

2.5.3.1 Type III behaviour As discussed in Section 2.5.1.1, for type III
behaviour failure is associated with a large reduction of the size of the
compressive zone of the cross-section coinciding with the tip of the main
inclined crack. Such a reduction in size will lead to the development of
tensile stresses within the compressive zone for the reasons described in
item ii) of Section 2.4. Failure, therefore, will occur when the strength of
concrete under the combined action of compressive and tensile stresses is
exceeded. This type of failure may be prevented either by providing
transverse reinforcement that would sustain the tensile stresses that cannot
be sustained by concrete alone, or by reducing the compressive stresses.

The effectiveness of transverse reinforcement in sustaining the tensile
stresses that develop within the compressive zone is indicated by the fact
that such reinforcement prevented the extension of the inclined crack into
the compressive zone of beam D in Figure 2.8a and allowed the beam to
attain its flexural capacity (Figure 2.9a). However, the amount of
reinforcement required to sustain the tensile stresses is difficult to assess,
because the tensile stresses are difficult to calculate. Figure 2.9a also
indicates that provision of transverse reinforcement only within the shear
span can be equally effective (beam C in Figure 2.8a). Such reinforcement
reduces the compressive stresses that develop in the cross-section which
coincides with the tip of the inclined crack, as it sustains a portion of the
bending moment developing in that section (Figure 2.21). A method for
designing such reinforcement is discussed in Section 2.6.2.

However, the presence of transverse reinforcement beyond the critical
section is essential, as it has been shown experimentally that reinforcing
with stirrups only to the critical section does not safeguard against brittle
failure (Kotsovos, 1987a). This is because the inclined crack is likely to
extend deeply into the compressive zone and, although the presence of such
reinforcement within this region inhibits crack opening (and therefore may
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Figure 2.21 Effect of transverse reinforcement on compressive stresses at critical cross-section for
type III behaviour and method of design of such reinforcement.
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prevent further crack extension), the section through the tip of the inclined
crack has the smallest compressive zone and it will be there that concrete
will reach its minimum volume level. The volumetric expansion that follows
will, induce tensile stresses in adjacent sections and these may lead to
splitting of the compressive zone and collapse before the flexural capacity is
attained. This type of failure may be prevented by extending the transverse
reinforcement beyond the critical section to a distance approximately equal
to the depth of the compressive zone.

2.5.3.2 Type IV behaviour In contrast, due to the large compressive forces
carried by deep beams, it is unlikely that, for type IV behaviour, the
presence of conventional web reinforcement in the form of vertical stirrups
and/or horizontal (in the longitudinal direction) bars considerably improves
load-carrying capacity. Such reinforcement may delay the cracking process
but may give only a small increase in load-carrying capacity. This view is
supported by most experimental evidence published to date which indicates
that the presence of the web reinforcement has little (Rawdon de Paiva and
Siess, 1965; Smith and Vatsiotis, 1982), if any (Kong et al, 1970), effect on
the load-carrying capacity of deep beams. However, the use of nominal web
reinforcement is considered essential not only for crack control purposes but
also because it reduces the likelihood of instability failures due to out plane
actions related to the heterogeneous nature of concrete.

For type IV behaviour, web reinforcement is provided in order to prevent
splitting of the inclined portion of the compressive force path (diagonal-
splitting). Although the crack faces due to such splitting can, in theory,
coincide with any plane including the direction of the inclined portion of the
path, conventional web reinforcement can only be effective in sustaining
tensile stresses that cannot be sustained by concrete alone on the plane of
the beam; web reinforcement designed to sustain tensile stresses developing
at right angles to this plane is not normally provided. It should come as no
surprise, therefore, that conventional web reinforcement does not appear to
have any significant effect on load-carrying capacity. Furthermore, for the
cases where it was reported that there was some improvement in load-
carrying capacity due to the provision of web reinforcement, the
improvement may have been due to the simultaneous provision of transverse
reinforcement used to form the cage of the web reinforcement.

2.6 Design implications

2.6.1 Modelling

As discussed in Section 2.4, the path of the compressive force may be
visualised as a flow of compressive stresses with varying sections
perpendicular to the path direction and with the compressive force
representing the stress resultant at each section (Figure 2.15 and 2.16).
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Figure 2.22 Typical inclined compression failures of deep beams under (a) uniform (b) two-point
loading.

Although the compressive force carried along the path at a particular
location may be easily assessed, such as to satisfy the static equilibrium
conditions, the shape of the stress flow and the intensity of the stresses are
difficult to establish without resorting to sophisticated methods of analysis
(such as, for example, finite element analysis). The use of such methods in
design is, however, prohibitive not only because of their high cost but also
because they are not widely available and their use depends on expert
advice. A simple method is required, as such information regarding the
stress field in the region of the compressive force path is essential for
assessing the maximum force that can be carried along the path.

The shape of the stress flow and the intensity of the stress field are very
much dependent on the beam boundary conditions. For a simply supported
deep beam subjected to a load uniformly distributed on its top face, the
stress flow may have a shape similar to that indicated in Figure 2.22a. It has
been suggested (Kotsovos, 1988a) that it is realistic to consider that the
difference in shape between such a flow and that caused by an equivalent
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load concentrated at the two third points affects only the location of failure
initiation within a particular portion (inclined or horizontal) of the path and
not the magnitude of the force that can be carried along this portion (Figure
2.22). Based on this reasoning, it is considered realistic for design purposes
to replace the actual stress flow with a uniform stress flow of intensity equal
to the uniaxial cylinder compressive strength (f). The cross-section of the
flow should be chosen such that the actual maximum compressive force
carried along the path remains unchanged.

Figure 2.23 shows two such simplified compressive force paths for the
case of a deep beam subjected to single-and two-point loading, respectively.
The compressive force path for a two-point loading may also be valid for the
case of a uniform load if the equivalent two-point load is applied at the third

(b)

Figure 2.23 Proposed models for deep beams under (a) single-point (b) two-point and/or uniform
loading.
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points. The stress flow is considered to have a rectangular cross-section with
a width equal to the beam width. The depth of the horizontal portion of the
stress flow of the path may be assessed such that the compressive force
equals the force sustained by the tensile reinforcement. As indicated in
Figure 2.23, the inclined stress flow of the path is symmetrical with respect
to the line connecting the intersection of the directions of the applied load
and the horizontal path of the compressive force, with the intersection of the
directions of the reaction and the tensile reinforcement. A suitable depth for
the inclined stress flow is considered to be a/3, where a is the shear span. If
a/3 is smaller than the effective width of the bearing, a/3 should be
substituted with the width of the bearing, as recommended by the Joint
Committee of the Institution of Structural Engineers and the Concrete
Society (1979).

A precise description of the shape of the idealised path of the
compressive force in the region where it changes direction is not deemed
essential. This is because as discussed in Section 2.5.1, the causes of failure
appear to be associated with the stress conditions in regions away from the
location where the path changes direction. Furthermore, implicit is the
assumption that failure in localised regions resulting from anchorage
problems, concentrated loads, and so on are prevented by proper detailing.

2.6.2 Design method

The concepts described in the preceding section indicate that a deep
beam will withstand the action of an applied load if the resulting internal
actions can be safely sustained by the members of the proposed model.
The objective of a design procedure, therefore, should be the sizing of
these members such as to sustain these actions. A typical procedure for
the case of two-point loading (Figure 2.23b) may be formulated as
follows (Figure 2.24):

1)  Assuming the beam depth 4 and width b, are given, assess the depth
of the horizontal portions of the stress flow by satisfying the
moment equilibrium condition with respect to the intersection of the
directions of the reaction and the tension reinforcement. If that
condition cannot be satisfied with the given values of d and b,
adjust d and b accordingly.

i1) Considering that the tension reinforcement yields before the load-
carrying capacity of the horizontal portion of the stress flow is
attained, assess the amount of tension reinforcement required to
satisfy the equilibrium condition of the horizontal internal actions,

iii) Check whether the vertical component of the compressive force
carried by the inclined portion of the stress flow is greater than, or
equal to, the external load carried by the flow to the support. If not,
adjust the beam width b and repeat the process.
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e _TXIZ
L x
b3 e z=\d-2
T=As fy

(a) Moment  equilibrium Cz=Pda yields x
{b) Horizontal force equilibrium T=C yields Ag

(c) Check whether a/3 satisfies vertical force
equilibrium Cp sinp= P

it not, adjust b and repeat

Figure 2.24 Proposed method for designing an RC deep beam.

For type IV behaviour, this design procedure needs only to be
complemented by good detailing which can be achieved by following the
recommendations of current Code provisions for deep beam design. For type
[T behaviour, the proposed procedure does not safeguard against failure of
the horizontal compression member of the model due to the deep
penetration of the inclined crack (see Section 2.5.1). The maximum moment
M_ that can be sustained by the section through the tip of the inclined crack
can be assessed as described by Kotsovos (a) (Figure 2.25) by using the
empirical formula proposed by Bobrowski and Bardham-Roy (1969) and
recommended by the joint committee of the Institution of the Structural
Engineers and the Concrete Society (1979). If M, is the flexural capacity of
the beam, then web reinforcement is provided such that its contribution to
the flexural capacity of the critical section is M-M_ (see Figure 2.21). Such
reinforcement is uniformly distributed in both the horizontal and vertical
directions.

The proposed design method may be easily extended to apply for deep
beams subjected to loading applied to their bottom face. This load can be
easily transferred to the top face of the beam by using stirrups designed so
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Maximum moment Mc at critical cross—section, at a
distance a < 2d  from support, may be assessed as
> d
follows:
1. Assess flexural capacity Mf = Ag *fy * 2z {see Fig.24)

2. Use eqn (1) below to assess Mc for s=2d

3. M¢ =My — Mg — M¢c'Ha—d)/d

4
Mc = 0.875 s d (0.342bg +0.3 M1 \/}_ ) \/15-55 A1
d2 s Pw fy

where s is the distance of cross—section from support (mm)

shear span for two—point loading
ss 2d for uniformly distributed loading
all parameters refer to cross—section s
Mc is the moment corresponding to “shear” failure (Nmm)
Mg is the flexural capacity (Nmm)
d is the effective depth (mm)
z is the lever arm of horizontal internal actions (mm)

area of tension steel

Pw is the ratio
web area of concrete to effective depth

fy is the characteristic strength of the tension steel N/mm2)
bq is the effective width {mm) given by the lesser of
by *+2bg , by *2dg ; by, bg, dg , are as shown

in the Figure below

Figure 2.25 Assessment of ultimate moment of resistance of an RC beam cross-section under
combined flexure and shear (type III behaviour).
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as to withstand the loading as indicated in Figure 2.26 (Leonhardt and
Walther, 1966).

Figure 2.26 Schematic representation of method of transfer of load from bottom to top face of deep
beam.

2.6.3 Verification of design method

The design procedure described has been used to assess the load-carrying
capacity of a large number of deep beams whose behaviour has already been
established by experiment elsewhere (Rawdon de Paiva and Siess 1965,
Ramakrishnan and Ananthanarayana, 1968; Kong et al, 1970; Smith and
Vantsiotis, 1982; Rogowski et al.,, 1986; Subedi, 1988). The correlations
between prediction and measured values are shown in Figures 2.27 — 2.29.
The investigation covers a wide range of loading conditions including
uniform, single-point, and two-point loading. In most cases, the beams
considered are simply supported (Rawdon de Paiva and Siess, 1965;
Ramakrishnan and Ananthanarayana, 1968; Kong et al, 1970; Smith and
Vantsiotis, 1982; Subedi, 1988); however, the results obtained from work on
continuous deep beams (Rogowski et al., 1986) have also been included.

No distinction has been drawn between beams with and without web
reinforcement as all beams had L/d=2.0 (type IV behaviour) and, as discussed
in section 2.5.3, the effect of such reinforcement on load- carrying capacity
appears to be insignificant. However, the values measured for beams without
web reinforcement exhibit a significantly larger variability.

As indicated in the Figures, the predicted modes of failure are classified
into two types: i) those characterised by failure of the inclined concrete
member of the model (inclined compression failure) and ii) those
characterised by failure of the horizontal concrete member of the model
(flexural failure). For the latter type yielding of the tension steel is assumed
always to have preceded collapse for the cases considered. In general, the
observed modes of failure appear to be in agreement with the predictions,
although those of the observed modes of failure characterised by inclined
cracking are usually reported in the literature as shear or diagonal splitting
failures.
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Figure 2.27 Correlation of predicted load-carrying capacity of RC deep beams under two-point
loading with experimental values reported by (a) Rawdon de Paive and Siess (1965) and Smith and
Vantsiotis (1982), (b) Ramakrishnan and Ananthanarayana (1968), (¢) Kong e al (1970), (d)
Subedi (1988).
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Figure 2.28 Correlation of predicted load-carrying capacity of RC deep beams under single-point
loading and uniformly distributed loading with experimental values reported by Ramakrishnan and
Ananthanarayana (1968).

2.6.3.1 Simply supported deep beams Figure 2.27 indicates a sufficiently
close correlation for practical purposes between predicted and experimental
values for the case of deep beams subjected to two-point loading. The slight
overestimate of load-carrying capacity in certain cases is due to the larger
variability of the results obtained for the beams without web reinforcement.
Placing nominal web reinforcement considerably reduces the variability and

Predicted Load — kN

Pt F

— —30% confidence limits for means

1500 T T
1000 .
o]
500 .
500 1000

Experimental Load — kN

1500

Figure 2.29 Correlation of predicted load-carrying capacity of continuous and simply-supported
RC deep beams under single-point loading with experimental values reported by Rogowski et al.

(1986).
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the predicted values appear always to be on the safe side. Figure 2.28
indicates an equally good correlation between predicted and experimental
values for the case of deep beams subjected to uniform and single-point
loading, with the predicted values always being on the safe side.

2.6.3.2 Continuous deep beams The load-carrying capacity of the
continuous RC deep beams may be calculated by assuming that the
indeterminate bending moment of the internal support is equal to that
obtained by elastic analysis. For a continuous beam with a uniform flexural
capacity throughout its length, the above moment will be the first to reach its
ultimate value. When this occurs, an under-reinforced beam should behave
in a ductile manner in the region of the support. Such behaviour allows load
redistribution and the ultimate limit state is reached when the flexural
capacity at another section away from the supports is attained.

On the basis of the above, the model proposed for simply supported deep
beams can easily be extended to describe the ultimate limit state of a
continuous deep beams as indicated in Figure 2.30. Using this model to
predict the load-carrying capacity of continuous deep beams tested by
Rogowski et al., (1986), the close correlation between predicted and
experimental values shown in Figure 2.29 is obtained.

— l\/i I}
1 T \

Figure 2.30 Proposed model for continuous RC deep beams.
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3 Deep beams with web openings
S.P.RAY, Regional Institute of Technology, Bihar, India

Notation
A, sectional area of tensile steel f\w
A, sectional area of individual in-
clined web steel
- sectional area of individual in- I,
clined web steel below NA
a, a, coefficients defining the di- T

mensions of web opening

b breadth (thickness) of beam
C total compressive force
C coefficient for concrete
c cohesion of concrete K,
D overall depth of beam
d effective depth of beam
e e eccentricities of web opening

, centre o
F total force in tensile steel
F total force in inclined web steel
F, total force of concrete in the

tension region
F, total force in inclined web steel
below NA

[ cylinder (150 mm dia.x300 mm
height) compressive strength of
concrete (= 0.8f¢y) L2
cylinder (150 mm dia.x300
mm height) splitting tensile
strength of concrete.
modulus of rupture strength of
concrete ( = 1.8f7) FL
[ cube (150 mm) compressive
strength of concrete.
yield point stress of tensile
steel

5~

A

Z
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yield point stress of web steel
intercepted by the critical

diagonal crack.

lever arm coefficient for tensile
steel

lever arm coefficient for in-
clined web steel in the tension

region

coefficient as defined in figure
3.14

empirical coefficient, equal to
0.85 for horizontal, cot 3 for
vertical and 1.15 for inclined
web bars.

centroidal distance of F, from
bottom of the compression

stress block = % (1-K)d.

centroidal distance of the web
bars under the NA from bottom
of the compression stress

block ( = %z ko)

coefﬁcientsndeﬁning position
of web opening

effective span of beam (i.e. dis-
tance from centre to centre of
supports)

flexural moment capacity of
beam due to concrete, tensile
steel and web steel,

ratio of path length intercepted
to total path length along the



N}

o
@

=z

£

u(test)

jav e vl vliavilla |

u(calc)

SNRE NN N@

2

net

natural load path (or critical
diagonal crack)

normal force on the inclined
plane

number of bars intercepted by
the critical diagonal crack.
first, second and third terms
respectively of Eqn (3.16)

measured ultimate load of
beam

computed ultimate load of
beam

A/bD (expressed in percent-
age)

As/bD (expressed in ratio)

Y Aw/bd (expressed in ratio)
n

ultimate shear strength of
beam (=P /2 for two-point
loading; =P /2 and P /4 in
cases of path I and path II,
respectively, for four-point
loading)

Y Aw/bD (expressed in per-
n

centage)
spacing of inclined web steel

tangential force along the in-
clined plane

cohesive force of concrete
along the inclined plane
total load on beam

effective shear-span of beam
nominal shear-span of beam

(X N¢ 1X)

3.1 Introduction

net

Y Ve

(0.6D-a,D)

lever arm.

angle of inclination of the in-
clined web bar with the hori-
zontal

angle of inclination of the na-
tural load path with the hori-
zontal

partial safety factors for loads
and materials

ratio of the tensile strength to
the compressive strength of
concrete ( = £’/ )

empirical coefficients as
defined in Eqns (3.17)—(3.20)
empirical coefficient as de-
fined in Eqn (3.33)
performance factor or safety
factors as defined in Eqns
(3.45) and (3.46)

average normal stress on the
plane of rupture,

normal stresses at a point in the
directions of X and Y respec-
tively

principal stresses in decreasing
order of magnitude

average shearing stress along
the plane of rupture

shearing stress at a point (X, y)
angle of internal friction of
concrete as defined by Eqn
(3.15)

empirical co-efficients, as de-
fined in Eqn (3.21)

In various forms of constructions, openings in the web region of deep
beams are sometimes provided for essential services and accessibility.
Figure 3.1 shows a deep beam with web opening in a building. In such
situations, it is highly important to know the behaviour and ultimate
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strength of these beams. It is well known that the so-called classical elastic
theory of bending is not applicable to problems involving deep beams. As
such, the stress pattern is non-linear and deviates considerably from those
derived by Bernaulli and Navier. Based on ultimate load theory a number
of investigators studied the problem of deep beams with solid webs and
put forward certain empirical and semi-empirical equations for predicting
their ultimate load capacity. Some national codes (CEB-FIP, 1970; BSCP
110, 1972; ACI318, 1971; 1978) eventually incorporated some provisions
regarding design of such beams. However, studies on deep beams with
web openings are very limited and no national code even provides any
guidance for design of deep beams with web openings.

Figure 3.1 Deep beam with web opening.

In the recent past Kong and his associates (1973) at the Universities of
Nottingham Cambridge and Newcastle upon Tyne studied at length the
problems of deep beams and presented semi- empirical formulae for predicting
the ultimate strengths of both solid beams and beams with web openings.

The CIRIA deep-beam design guide (Ove Arup and Partners, 1984) dealing
with the design and detailing of web openings was mainly based on published
literature, intuitive feel for the forces and constructional experiences. These
approaches tended to be cautious in the absence of adequate test data.

Therefore, there is a definite need for understanding of in particular the
behaviour and strength of deep beams with openings in the web.
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3.2 Factors influencing behaviour

The main factors affecting the behaviour and performance of deep beams
with web openings are

1) span to depth ratio;
ii)  cross-sectional properties (i.e. rectangular section, Tee-section, etc.);
iii) amount and location of main longitudinal reinforcement;
iv) amount, type and location of web reinforcement;
v) properties of concrete and reinforcements;
vi) shear span to depth ratio;
vii) type and position of loading;
viii) size, shape and location of web opening etc.

3.3 General behaviour in shear failure (under two-point loading)

Concrete strain variation at mid-span section indicates that before first cracking,
the beam behaves elastically, shows non-linear distribution of strain and more than
one neutral axes (Figure 3.2). The number of neutral axes decreases with
incremental loads and at ultimate stage only one neutral axis is present. Concrete
strain variation at the plane of rupture shows the deep beam behaviour also before
cracking and persistance of diagonal tension till failure. However, the extent of
crack width and the deflection pose no problem at the service loads. If, however,
the crack width is limited to 0.3 mm, the corresponding load will be in the range of
60-70% of the ultimate load (Ray and Reddy, 1979; Ray, 1980, 1982).

3.3.1 Beam with rectangular web openings

The first visible inclined cracks normally appear in the support bearing regions
and from the opening corners at load varying levels of about 36-55% of the
ultimate loads (Figure 3.3). With incremental loads, these initial cracks of
short lengths tend to propagate in their forward diagonal direction slowly.
Some similar types of crack parallel to and alongside the initial ones also form
for short lengths and these are not much active in the formation of critical
diagonal crack. For the loading range of about 50-97% of the ultimate, typical
diagonal cracks longer than the initial ones (resembling the phenomenon of a
critical diagonal crack in a solid web deep beam) suddenly emerge with a
harsh noise in the upper and lower shear zones above and below the openings
but appreciably away from the openings and bearing points. These critical
diagonal cracks instantaneously propagate both ways towards the bearing
regions and opening corners, widen and announce the failure of the structure.

3.3.2 Beam with circular web openings

The first visible cracks normally appear at almost the same range of
percentages of ultimate loads as in the case of rectangular openings (Figure
3.4) There are two main distinctive features.
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Figure 3.3 Crack patterns at failure of a typical deep beam with rectangular web openings (under
two-point loading)

1) The cracks that start at about the bottom-most diametrical position of
openings in the shear zones propagate towards the support bearing regions
and become established as the critical diagonal cracks in the course of the
load increments. Some of these initial cracks may completely stop
propogating towards the support bearing regions after a small length of
advancement at a few incremental load stages and prove to be harmless, as
in the case of rectangular openings.

i1) The cracks initiated at the mid-shear zones (but away from the regions of
openings and bearings) progress both ways diagonally and tangentially to
the curved contour of the openings on further incremental loading. Similar
cracks suddenly arise at positions about diametrically opposite on the
opening surface towards the bearings.

Either of these crack patterns can be responsible for final failure of the beam.

3.3.3 Flexural cracks

In both cases of opening—rectangular and circular—flexural cracks are very
few and generally occur in the range of ultimate loads of about 60-95%.
These cracks propagate hardly beyond a height of about 0.3D from the beam
soffit and close up on load release.

From the crack patterns shown in Figure 3.3 and 3.4 in general, it is obvious
that failure occurs by a diagonal cracking mode of shear failure—mainly by
sliding—and that the beams carry considerable loads after establishment of the
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Figure 3.4 Crack patterns at failure of a typical deep beam with circular web openings (under two-
point loading).

diagonal crack in the region of shear between opening and support. The
principle stress trajectories (CIRIA guide, 1977) for the uncracked state
amply support this phenomenon.

3.4 General behaviour in shear failure (under four-point loading)

In earlier stages of loading, up to 30% of the ultimate load, the beam behaves
in a truly elastic manner and the load-deflection relation is linear. Normally,
the diagonal cracks appear first in the vicinity of the opening at about 30—45%
of the ultimate load and extend both ways towards the support and load
bearing points (Figure 3.5). A diagonal crack may also appear first in the lower
part of the beam and extend up to the mid-depth or join the opening.

The load deflection is in no way appreciably affected at this stage.
Further increase in load may cause the existing cracks to widen and to
extend; simultaneously, new diagonal cracks develop more or less parallel to
the existing ones.

Flexural cracks appear only after the appearance of the diagonal cracks at
loads about 42-90% of the ultimate. The flexural cracks hardly reach the
mid-depth of the beam nor their widths exceed 0.1 mm. The formation of the
diagonal and flexural cracks affects the load-deflection relation. At this
stage, i.e. at 80—90% of the ultimate load, one of the diagonal cracks widens
and extends conspicuously and the final failure of the beam is caused.
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Figure 3.5 Crack patterns at failure of a typical deep beam with web openings (under four-point
loading).

The maximum width of diagonal crack does not pose any problem. If,
however, the crack width is limited to 0.3 mm, the corresponding load level
will be about 60% (Singh, Ray and Reddy, 1980; Ray, 1982).

3.5 Effect of web opening

Of the two shapes of web opening, the circular type is found to be more
effective in transmitting the load and the diagonal cracking is well-defined.
This type therefore may be recommended for provision in the design.
Maximum crack width at failure will be greater when the opening centre
is located at the centre of the shear zone than at any other position. So
location of the opening centre at this point is undoubtedly the maximum
damaging situation in the web region. The opening should not be brought
too close to the vertical edge and inner and outer soffits of the beam either,
because at higher loads secondary cracks might appear and cause failure of
the beam. The strength of the beam increases when the opening is located
away from what can be called the loaded quadrant to the unloaded quadrant
and vice-versa (Ray and Reddy, 1979; Ray, 1980; 1982) (see Section 3.8).
Again, for openings located completely outside the shear region, the beam
with a web opening may be assumed to be a solid web beam. The location of
the web opening is therefore a major factor influencing the strength of the
beam. It is interesting from the load-deflection characteristics that the
flexibility of the beam decreases as the location of the opening is moved
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away from the support to the interior of the beam. This is contrary to the
usual expectation. However, it should be remembered that the deflection in
deep beams are substantially influenced by shear and, as such, location of
the opening in the region of high shear and intercepting the critical path is
understandable. The openings should invariably be provided with some loop
reinforcement in their periphery to avoid possible stress concentration.

3.6 Effects of main and web reinforcements

It was probably for the first time that Kong and his associates, in 1970-72,
considered the main reinforcement as an integral part of the shear
reinforcement for calculation purposes. The main steel not only acts as tension
reinforcement in flexure, but contributes substantially to the shear strength of
beams. Further, web reinforcement controls crack widths and deflection.
However, first cracking is generally not influenced by its provision. Of all
types of web reinforcement, the inclined type placed perpendicular to the
plane of rupture (critical diagonal crack) has been found to be the most
effective arrangement to offer resistance to sliding (Ray, 1980; 1982a, b 1983;
1984). The next practical and effective type is the horizontal web steel which
with nominal vertical web steel may further increase the effectiveness of the
beam and so its strength. It was observed (Ray, 1980; 1982a, b; 1983; 1984)
that in beams with web openings, horizontal web reinforcement distributed
equally on either side of the opening location showed better results. In beams
with unusually high web reinforcement, special attention should be paid to the
detailing of anchorage and bearings at the load and support points. Otherwise,
web steel must be limited to a certain amount.

Failure will be gradual and slow in beams with web reinforcement, while
it is sudden in beams without web reinforcement. A vertical web
reinforcement placed near the vertical edge of a beam with web opening
located in its neighbourhood, guards against any premature failure due to
rotation of the corner of the beam. From electrical strain measurements on
main steel it was observed (Ray, 1980; 1982) that the general trend of the
stress-strain characteristics under different load levels resembled stress-
strain behaviour of steel but shear failure occurred at steel strains below the
yield-point values normally expected in shear failures. It was further seen
(Ray, 1980; 1982) that after cracking of the beams the steel strain rapidly
increased at the location near the supports and the steel strain in the flexural
zone remained almost constant (i.e. tension was uniform). The inclined
cracks began to develop at higher loads.

3.7 Diagonal mode of shear failure load

The failure of reinforced concrete deep beams occurs under a state of biaxial
stress. It is assumed that the diagonal mode of failure, more commonly
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encountered in problems involving deep beams, is a state of failure which is
akin to the rupture phenomenon in the Mohr-Coulomb failure criterion with
straight line envelopes. Equilibrium equations involving ¢ and tan ¢ of the
Mohr diagram have been developed with the normal and tangential forces
acting on the ruptured inclined plane at failure of the beam. These equations
have been modified to account for the shear span depth ratio and web
opening parameters (Ray and Reddy, 1979; Ray, 1980; 1982). For a clear
understanding, a few definitions related to the analysis of the beam are given
in section 3.8.

3.8 Definitions

a) Failure: A test specimen is said to have reached the state of failure when
it has attained the ultimate load carrying capacity.

b) Shear span:

(i) Nominal shear span X,: The distance from centre of the support
bearing block to the centre of the load bearing block measured
longitudinally is known as the nominal shear span.

(il) Effective shear span X: The distance measured longitudinally from
the inner edge of the support bearing block to the outer edge of the
load bearing block is the effective shear span.

¢) Diagonal tension crack: The first diagonal crack that forms at about the
mid-depth of the beam (solid web) and extends both ways towards the
support and load bearing blocks is the diagonal tension crack. Sometimes,
this crack might form at the tension steel level and extend towards the mid-
depth of the beam (solid web).

In beams with web openings, normally the diagonal cracks develop from
levels of the openings and extend both ways towards the load and support
bearing blocks. Sometimes the diagonal cracks may develop from the
tension steel level and extend towards the opening.

d) Critical diagonal crack: The diagonal crack which extends from the support
bearing block to the load bearing block (for solid web beam) is the critical
diagonal crack. In the case of beams with openings, the crack may be intercepted
by the opening. Establishment of this type of crack warns of impending failure.

e) Rupture plane: A diagonal surface in the cross-section of the beam on
which the two parts of the beam slide before failure is known as the rupture
plane. The critical diagonal crack follows this rupture plane.

f) Failure by sliding: The diagonal mode of failure by sliding along the
critical diagonal crack is known as failure by sliding. The other modes of
failure reported here, such as shear-compression, shear-flexure and shear-
proper, are considered to be manifestations of the diagonal mode of failure
by sliding influenced by the beam parameters.

g) Local and anchorage failure: Failure due to crushing of concrete over
supports or under concentrated load points due to insufficient resistance is
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called the local failure. Anchorage failure results from insufficient anchorage
length or splitting of concrete above the upright bend of the tensile steel.

h) Shear zone or practical region for web opening: The zone or region
bounded by the verticals from the centre of support point and centre of load point
and the horizontals at 0.2D and 0.8D from top of the beam. The region marked
EFGH in Figure 3.6 represents the practical region. This region is divided into four
equal quadrants 1-4 by the axes XX’ and YY passing through the centre of the
plane of rupture (natural load path). It is not advisable to position any opening
within the 0.2D width regions at the top and bottom soffits of the beam.
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Figure 3.6 Practical region for web opening (Ray and Reddy, 1979; Ray, 1980; 1982).

i) Loaded and unloaded quadrants: In Figure 3.6 the quadrants marked 1
and 3 are known as the loaded quadrants (shown hatched), whereas the
quadrants marked 2 and 4 are taken to be the unloaded quadrants. Loaded
quadrants are the regions located nearer to the load and support bearing
blocks. An opening in any loaded quadrant is naturally more harmful than
one in the unloaded quadrant.

j) Maximum size of web opening: For practical applicability, rectangular
web opening of a maximum size X,/2x0.6D/2 has been considered to be
admissible. For circular or other types of opening geometrically not much

© 2002 Taylor & Francis Books, Inc.



different from the rectangular types, an equivalent square or rectangle that
encompasses the opening may be considered for defining prescribed limits.

k) Eccentricity of web opening: The eccentricity of the centre of the
opening with respect to the centre point of the critical diagonal crack (plane
of rupture) is expressed by the co-ordinates e, and e, as shown Figure 3.7.
The limits of eccentricity come from the maximum admissible size of web
opening and are given by

e, <X,/4 and ¢ <0.6D/4 (3.1)

For eccentricities e_and e greater than X, /4 and 0.6 D/4 respectively, the
limiting values are to be taken as X, /4 and 0.6 D/4.
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Figure 3.7 Typical opening in the web and other dimensions (Ray and Reddy, 1979; Ray, 1980;
1982).

1) X ,and Y _ These are dimensions of solid shear zone in the X and Y

net N
directions, obtained after deducting the dimensions of the web opening in
the respective directions, that is

cht: (XN -a lx)
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and Y, =(0.6D-a,D) (3.2)

In the case of a circular opening these measurements are made with
reference to the equivalent square opening, the side of which is equal to the
diameter of the circular opening.

3.9 Criterion of failure and strength theory

From the mode of failure shown in Figures 3.2, 3.3 and 3.5 for beams with
web openings and in Figure 3.8 for a beam without web opening, it is clear
that the failure along the critical diagonal path is by sliding. This particular
mode of failure can be interpreted in terms of Coulomb’s internal friction
theory and Mohr’s generalised failure criterion with straight line envelopes,
combined as used by Guralnick (1959) in the case of an ordinary reinforced
concrete beam, Figure 3.9. By this, two independent physical properties of
concrete, namely cylinder compressive strength f”. and cylinder splitting
tensile strength f”, are accounted for. The ratio f’/f”. varies widely (from
about 1/8 to 1/16) with the quality of concrete. In absence of any practical
test data, adoption of a suitable ratio for /”/f” . may be erratic. Therefore, it is
advisable that the parameters f’. and f”, to be used for deep beams be
determined by independent tests.
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Figure 3.8 Crack patterns at failure of a typical deep beam with solid web (under two-point
loading).
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Figure 3.9 Proposed simplified Morh-Coulomb failure criterion (Ray and Reddy, 1979; Ray, 1980;
1982; 1984).

In deep beams under applied loading, an average shearing stress (T) and
an average normal stress (G) acting on the rupture plane of sliding may be
given by the Mohr-Coulomb internal friction theory as

T =c+0 tand (3.3)

where c¢ is the internal cohesion of concrete and tan¢ is the coefficient of
internal friction. This apparent internal cohesion of concrete is due to the
cement paste and the sliding friction (i.e. internal frictional resistance is due
to the presence of aggregates in concrete.)

Under the biaxial stress condition, if the normal stresses ¢, and ¢, and
shearing stress T, at some point on the plane of rupture, before failure, are
known, the expression for the principal stresses (maximum normal stress
denoted by 6, and minimum normal stress denoted by G,) is given by

(Gﬂ}max =003 =0x + G)'//2 i V {Gx - 0.}‘/2)2 + (txy)z (34)

The Mohr-Coulomb theory of failure (Figure 3.9) gives the relationship
between the stresses 6, 6, f”,and f”, in the form

(G1/fo) = (03/f() =1 (3.5)
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Eqn (3.5) (Timoshenko, 1956) is an alternative presentation to Eqn (3.3) and
is an interaction type of equation for failure criterion. Just prior to failure,
classical elastic stress analysis does not hold good, because of redistribution
of stresses at higher loads in concrete, resulting from the post-cracking
behaviour of concrete. As a result, evaluation of ¢, and ¢, will be a difficult
problem in as much as these principal stresses are dependent on G,, 6, and
7 which, in turn, could not be precisely measured just before failure. Herein
lies the difficulty in using the Eqn (3.5). Therefore, for calculation of the
sliding strength of reinforced concrete deep beams, Eqn (3.3) is invariably
preferred.

From Figure 3.9 the characteristic constants ¢ and ¢ and other
relationships are evaluated, using geometry only, and Eqn (3.3) for the
Mohr-Coulomb failure criterion assumes the form

T=(fNm)/2;+6(1 -n)/2¥n (3.6)
where  ¢=VEfi/2; tano=(fi 1)/ 2V
and n=fi/f (3.7)

Eqn (3.6) represents the failure criterion which will be utilised in developing
the ultimate strength of deep beams.

3.10 Ultimate shear strength

A typical solid deep beam with main and web reinforcement and a plane of

rupture is shown in Figure 3.10a. A part of the beam separated by the potential

diagonal crack is shown as the free body diagram in Figure 3.10b. The

penetration of the crack is considered to extend to the full depth although

usually this crack stops at one-fifteenth to one-tenth of the depth of the beam

from the top and acts in a manner similar to the compression zone of a tied arch.
Considering the plane of rupture:

N (=Normal force)=bD cosec BxG (3.9)

T (=Tangential force)=bD cosec BxT 3.9
From Eqns (3.3, 3.8 and 3.9), it may be stated that:

T=(cbD/sin §)+N tan ¢
or T=T +N tan ¢ (3.10)
T is the cohesive force of concrete along the inclined plane

=cbD/sinf} (3.11)

Since N is taken as a tensile normal force, Eqn (3.10) may be written as
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T=T-Ntan ¢ (3.12)

Referring to the free-body diagram, the statical equilibrium equations at
failure of the beam may be written as:

Nsin B+F +F cosa= T cos 3 (3.13)
Ncos B+T'sin B+F sina=Q (=P /2) (3.14)

From Eqns (3.12)—(3.14), on simplification, the ultimate strength equation
may be written as:

_ _ cbD tanPBtand — 1
Q"(—P"/Z)_sinBcosB(tanB+tan¢) FS': tan B + tan ¢ jl
+F sin o cos B + cos o cos o (3.15)

[ta_nwj ) (_ta_nﬁ_ﬂa_mtj

tanﬁtanq) l—tanatanﬂ

where Fy=Afiy; Fu=, Au fuy: Fyy is yield point stress of tensile steel, F, is

n
yield point stress of inclined web steel intercepted by the potential diagonal
crack at failure, B is the angle of inclination of the rupture plane with the
horizontal, o is the angle of inclination of the inclined web bar with the
horizontal and n is the number of web bars intercepted by the potential
diagonal crack.

Eqn (3.15) which is the general equation for the ultimate strength of a deep
beam without web opening, consists of the contributions due to concrete,
tensile steel and web steel and may be written in the short form as:

0, (=P/2)=P+P+P, (3.16)

In the comprehensive test programme (Ray and Reddy, 1979; Ray 1980;
1982), the strength of a deep beam with web openings was found to be
affected mainly by:

1) the shear span/depth ratio X/D;

ii) the amount of interception of the diagonal crack by the openings;
iii)  the location of the centre of the openings in the web region;
iv)  the dimensions of the openings.

It may be emphasised that the exact analysis of the problem, involving a
large number of parameters, presents a formidable task. However, the
problem is made amenable to an analytical solution by proposing the
following simplifying assumptions:-

(1) the effect of the opening lying within the region EFGH (practical
region) in the web of the deep beam is considered (Figure 3.6);

(i1) the size of the opening is limited to a,x<x,/2 and a, D<0.6 D/2, as
shown in Figures 3.6 and 3.7.
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(iif)

the eccentricities e_and e, of the opening are limited to the maximum
of X\/4 and 0.6 D/4 in the X- and Y- directions respectively (Figure 3.7)

Based on these assumptions, the parameters relating to the web opening will
be evaluated for the restrictions laid down here. Incorporation of these
simplified measurements of the opening parameters in the strength equation
for the solid deep beam—Eqn (3.16) —, will give the ultimate strength
equation for the deep beam with web openings.

3.10.1 Evaluation of web opening parameters
Openings in web are considered in the following manner:

(@)

(i)

As well as the typical diagonal mode of failure, slightly different
but similar types of failure—generally termed shear-proper, shear-
flexure and shear-compression—are observed. This variation in the
mode of failure is seen to be related mainly to the shear span depth
ratio which is accounted for by proposing a constant A, in P,
(Figures 3.6 and 3.7):

1K Xxn K Xn
= - <
A [] 3 [ . ]jl for D> 1 (3.17)
2 K\ Xn (3.18)
= — —_—
3 for K;D ™~ !

If the opening is so placed that it intercepts the natural load path,
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Figure 3.11 Typical position of an opening intercepting natural load path (Ray and Reddy, 1979;
Ray, 1980, 1982).
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(Figure 3.11), then the effect of this discrete load path is taken into
account by incorporating a constant A, in evaluating P_, such that

A=(1-m) (3.19)

where, m is the ratio of path length intercepted to total path length
along the natural load path=0 for non-interception, (Figure 3.7)

(iii)) The combined effect of the size of the opening as well as location
of the opening is accounted for by incorporating a constant A, in
assessing P_. Hence, with reference to Figure 3.7.

A= |:O.85 +0.3 (;:ﬂ]] [0.85 + 0.3[%]] (3.20)

where ex<Xn/4;, €,50.6D/4 3.1

and Xoe= (Xn— aix); You=(0.6D —a, D) (3.2)

Notes: a) The coefficient A, may take any value between 0.50 and 1,
depending on the location of the opening in the most unfavourable loaded
quadrant and the favourable unloaded quadrant.

b) In Eqn (3.20) the negative sign is to be used when the opening centre
is in the loaded quadrant or on one of the axes X-X’ and Y-Y’, the positive
sign when the opening centre is in the unloaded quadrant.

c) For openings located partially outside the shear zone, parameters e, e,
K X, and K,D may be measured as indicated in Figure 3.12. That is, for
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Figure 3.12 Typical position of an opening partially outside the shear zone (Ray and Reddy, 1979;
Ray, 1980; 1982).
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calculating A, the measurements of K X, and K,D are to be made as usual;
but for calculatlng A, the part of the opemng that lies outside the shear zone
(shown hatched) is to be ignored. Consequently, the centre C, of the opening
is to be determined for the remaining part which lies w1th1n the domain of
the shear zone (Figure 3.12).

d) For openings located completely outside the shear zone, the beam may
be assumed to be one with solid web.

e) For larger dimensions of openings beyond the prescribed limits (i.e. for
ax>X /2 and a,D>0.6D/2, when values of X and Y  will be found less
than half the width of the load bearing block) the minimum values for X
and Y  are to be taken as half the width of the load bearing block. In such
cases, the values for A, and A, are to be further reduced by the ratio of the
side (or sides) of the limited (admissible) dimensions to the exceeded side
(or sides) of the actual dimensions of the opening, as the case may be.

f) For marginal extensions of openings into the top and bottom 0.2D cover
regions (normally not advised), a procedure similar to that for an opening
partially outside the shear zone might be adopted for computing A, and A,.

3.10.2 Ultimate shear strength

Therefore, after knowing the values of A, A, and A, from Eqns (3.17)—(3.20),
the general equation for the ultimate shear strength of deep beams with web
openings can be written from Eqn (3.16) as:

0. (=P /2)=P_ (A).(\).(\,)+y, Py P (3.21)

where, y_is an empirical coefficient=0.65 and y_ is an empirical coefficient
=0.50.

The coefficient y_ reflects the levels of stress in the main steel, the
value of which was observed (Ray and Reddy, 1979; Ray 1980; 1982) to
be about 60—-70% of the corresponding stress in the case of the companion
solid web beams just prior to failure. Further, ultimate strengths of beams
with web openings were found to vary (Ray and Reddy, 1979; Ray, 1980;
1982) within the range 40-90% of those of identical solid web beams.

Again, the coefficient y reflects the location of placement of web
reinforcement. In beams where the web steel is distributed over the full
depth, the value of y _=0.50 is a reasonable factor. Moreover, from electrical
strain measurements in some typical beams (Ray, 1980, 1982) it was seen
that the steel strains in the neighbourhood of the openings were found to be
maximum. The strain variation of web steel can thus be approximated as
varying linearly from maximum near the opening to a minimum at the top or
bottom faces. This further justifies the stipulated value of

Thus, knowing the geometric dimensions of the beam and the openings,
the loading arrangement and the material properties of concrete and steel, O,
(=P /2) can be calculated easily from Eqn (3.21).
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However, the last expression does not consider any secondary failures at
anchorage and bearing regions—which can be taken care of by providing
suitable extra reinforcements. If suitable reinforcement is provided around
the opening, there will be no problem from this side either. For beams with
unusually high web reinforcement the anchorage and bearing regions should
receive special attention.

Eqn (3.21) has been derived for the beam with web openings and
provided with main and web reinforcements. It can be adopted for beams
that have web openings and are provided with only main reinforcement by
deleting the term containing P and may be written as:

0, (=P,/2=P, (A,).00).(A) 4y, P, (3.22)

Even for a beam with plain concrete only, the strength of the beam with
web openings can be obtained by deleting also the term containing P  which
corresponds to main reinforcement of Eqn (3.22) and may be written as:

0, =P /2)=P, (1).(h,).(1y) (3.23)

This analysis has been developed on the basis of the maximum size of
opening admissible in the region of the shear zone. However, it can be
utilised for other exceptional cases of marginal extensions of openings into
the 0.2D cover regions and for larger openings as discussed previously.

The validity of the method has been verified by comparing the available
test results, involving about 86 beams with web openings (Kong et al., 1973;
1977; 1978; Singh, 1978; Ray, 1980; 1982), presenting them in a plot of
Pu(test) versus Pu(calc) (Figure 3.13). These comparisons indicate that the
predicted strengths are in close agreement with the tested values and that the
variations beyond £20% are limited to only a few beams.

3.11 Simplified design expression

ACI (1971, 1978) put forward some design guidance of solid web beams
based on ultimate strength but that was only an extension design for the
shallow beam problems involving large calculations. PCA’s (1946) design
guidance on solid web beams is very old and that of CEB-FIP (1970) is
conservative. However, none of the national codes (CEB-FIP, 1970; BS
CP110, 1972; ACI-318, 1971, 1978) have incorporated any guidelines for
design of beams with web openings.

The expressions developed for the ultimate strength of beams with web
openings in Section 3.10 are generally rigorous and time-consuming and are,
therefore, important in the academic aspects of the problem. Deep beams
generally fail in shear following splitting or sliding. So in the kind of
complex problem that they present it is highly important to consider shear in
so far as the ultimate limit state and serviceability limit state of cracking are
concerned. For a controlled concrete mix, the parameter f”’, varies in a
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Figure 3.13 Comparison of tested and computed ultimate shear strengths of beams with opening in
web under two-point loading (Ray, 1980; 1982).

definite relation to the parameter /', Therefore the nominal shearing stress at
ultimate load (Q,/bD) should be expressed in terms of /°, p f, and K 7 f
which was emphasised by ASCE-ACI practice.

With suitable use, therefore, of the average values of the dimensional and
non-dimensional parameters in Eqn (3.15) the simplified design expression
for the strength of the beam with web openings can be written as

0,/bD (=P /2bD)=0.1 £ (A, )(A)(A,)+0.0085 s, p, .,
.01, 0 7 foy (3.24)

where ps=As/bD x 100 (%); Z A./bD x100 (%) (3.25)

and K =0.85 (for a horizontal web bar); cot B (for a vertical web bar); and
1.15 (for inclined web bar). The meanings of the coefficients A, A, A, y, and
W are as assigned earlier for a beam with web openings.
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Eqgn (3.24) is the general one and can even be used for plain beams as
well as beams with and without web reinforcements by deleting the terms
which are not involved. Ray (1980; 1982) observed that this simplified
strength predicted strength very close to that computed by the rigorous Eqn
(3.15). 1t is, therefore, hoped that Eqn (3.24) will find favour with practising
engineers for their day-to-day design work.

3.12 Ultimate strength in flexure

Knowledge of strengths of beams in both shear and flexure would enable the
designer to fix the dimensions and detailing of the beams. Normally, flexural
failure of beams is affected if the percentage of main reinforcement is kept
below the balance percentage. It has further been observed (Ray, 1980;
1982; 1985) that shear failure in deep beams could be prevented and
flexural failure might be expected if excessive web reinforcements are
provided perpendicular to the plane of rupture. In this particular case, the
support and load bearing regions must be properly strengthened to guard
against any local or anchorage failures.

Determination of the lever arm is highly important in fixing up the
amount of balance reinforcement at initial design. Even the national codes
(CEB-FIP, 1970; BS CP110, 1972; ACI318, 1971, 1978; 1S456, 1978) do
not provide any design guidance for beams failing in flexure.
Recommendations put forward by CEB-FIP (1970) are rather conservative
and limited to the case of solid web beams.

Consider simplified stress block, which is in many respects similar to the
one adopted for shallow beams but which accounts for the stress distribution
of concrete on the tension side as well as presence of the web reinforcement.
Its geometry and the associated forces are shown in Figure 3.14. The
assumptions made in the derivations are as follows:

1)  Only one neutral axis prior to failure (see also Section 3.3).
i1) A rectangular stress block (after Whitney, 1940) as used in shallow
beams, for the compression zone,
iii) A triangular stress distribution for the concrete portion in the
tension zone (in shallow beams, this effect is neglected),
iv)  The effect of web steel in compression zone is neglected,
v) The tension steel and the web steel below the neutral axis yield at
failure. The contribution of the vertical web steel is also neglected.

Referring to Figure 3.14, the following relations of forces are obtained:
Fi=Afiy: Fu= 3, Aufuy cOS QL
Fu= %bd (1-K)f; C=085f"Kbd (3.26)
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Figure 3.14 Stress-block for flexure strength of deep beams (mid-section) (Ray, 1980; 1982; 1985).

where F_is total force in tensile steel, F, is total force in web steel below
NA, A4, is sectional area of individual web steel below NA, F_ is total force
of concrete in the tensile region, f, is modulus of rupture strength of
concrete, C is total compressive force and K parameter as defined in Figure
3.14. From statical equilibrium of forces, we obtain

C=F +F +F (3.27)
ct S wt

on substitution of the values of equations in 3.26 into Eqn 3.27 and solving
for K we obtain

_PsLytPufoy-cosa+fi/2
K 0.85faf./2 328
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where P's=Ay/bd; and py= Y, Aw/bd (3.29)

n

Based on test observations (Ray, 1980; 1985), it is assumed suitably that

f,=1.8f/and f,=1.25f, (3.30)
giving the relation
£=2257f 3.31)
On simplification of Eqns (3.28) and (3.31) the value of K comes to:
K=(p+1)/(n’+1) (3.32)
where 1= (0's foy + Pur fuy cos 00) /(1.125F0)
W =0.7555f (3.33)

Considering moments about the centre of gravity of the stress block and
substituting the values given in Eqns (3.26)—(3.30), we get:

Mo p'sfs K.  pw-foy-coso(K Ku
=Lely (g Dy PuSuy COSTIA | Bm
blf. f (=) f 2 d

L2 25v’f: (3.34)

(1- 1.25K + 0.25K?)

where M =flexural moment capacity of beam due to concrete, tensile and
web steels.

From the values given in Eqns (3.32) and (3.33), Eqn (3.34) can be
rewritten as:

Pty gy g Pl €SO e (3.35)
bd? fc 1< fe
where —1-05 (g +1 J (3.36)
w+1
p+1), K
[O 5(11 - l)+ 4 J (3.37)
2
__ L _ u p+l

Cc—\(ﬁ[(}.'?S 0.9375[“,_'_ J+O lST"SL1 n IJ J (3.38)
K = Centroidal distance of web bars under NA from bottom of

compression stress block.
=1 Y K (3.39)

n - wt
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Thus the flexural capacity of the beam given by Eqn (3.35) is a function of
D'sfos/fe P fan/fe and C. (a coefficient for concrete contributing towards
the flexural strength).

3.13 Simplified expression for flexural strength

Based on the average values (Ray, 1980; 1985) for J, J and C, the ultimate
load capacity of beams failing in flexure is given by the following simple
form which is very close to the rigorous Eqn (3.35).

My =P’sfsy
bd*fl  f

pwt 'fwy - CO

(0.86) + 7 X (0.52) +0.033 (3.40)

where, the meanings of p’_ and p_, are as discussed in Section 3.12.

The mode of failure of beams—either in shear or flexural—may be
known from the comparative values of the ultimate load capacities
computed from Eqns (3.24) and (3.40).

3.14 Extension of theory of ultimate shear strength of beams to four-
point loading

Uniformly distributed loading has been stimulated by replacing it with four
equally-spaced concentrated loads.

It is contended in Section 3.9 that the failure of a deep beam eventually
follows a critical diagonal crack path (or critical path) and the strength of the
beams depends upon the resistance of concrete and steel met with along that
path. The resistance of the beam along this critical path can be predicted
satisfactorily on the basis of the simplified Mohr-Coulomb internal friction
theory with straight line envelopes as given in Figure 3.9 for the two-point
loading system.

Based on observations and developments of diagonal cracks and their
progress up to the stage of failure (Singh, Ray and Reddy, 1980), the critical
path in the case of the four-point loading system may be approximated to
follow one of the following two planes of rupture:

1) aplane of rupture given by joining a line from the inner edge of the
support bearing block to the near edge of the exterior load bearing
block (henceforth termed critical path I),

ii) a plane of rupture given by joining a line from the inner edge of the
support bearing block to the near edge of the next interior load
bearing block (henceforth termed critical path II)

Depending on the stipulated mode of failure as envisaged in the two-point
loading case, final failure of the beam is considered to occur always along
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one of the two critical paths according to the resistance of the beam along
those paths as shown in Figure 3.15.
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ICAL PATH-I

Figure 3.15 Ultimate strength of RC deep beams with solid web and practical regions for web
openings (under four-point loading) (Ray, 1980)

The Figure shows a typical deep beam under four-point loading and
includes the practical regions for web openings and the free-body diagrams
for critical load paths I and II. Critical path I lies wholly in a region of
external shear, O _P /2, whereas critical path II traverses partly through a
region having shear O =P /2 and partly through region of shear O =P /4.
However, it was observed (Singh, Ray and Reddy, 1980) that after formation
of initial diagonal cracks which usually entered into the region of shear,
Qy=Pu/4, the beam carried a substantial load before failing along the second
path. As such it is reasonable to assume that the shear causing failure along
path Il is Q =P /4.

The ultimate strength equations for beam with web openings can be
written directly from Eqn (3.21) for critical path I:

QU| (=PU/2)] =PC[ (XI)] (7\12)1 (Ad)l + \Vs : Ps] + \I’w . Pw] (3.41)
for critical path II:
Qu, (= Pu/4) = P, (M)2 (M2)2 (A3)2 + s Py, + W, P, (3.42)
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Figure 3.16 Comparison of tested and computed ultimate shear strengths of beams with and
without opening in web under four-point loading (Ray, 1980; 1985).

where, the subscripts 1 and 2 refer to the values with respect to critical paths
I and II respectively.

Eqns (3.41) and (3.42) can be utilised in predicting the ultimate strength of
beams with web openings. Moreover, the failure load path can be predicted in
advance and with greater certainty by computing the resistance of the two
critical paths, unless the difference is only marginal. Eqns (3.4.1) and (3.42)
developed for a general case of reinforced concrete deep beams with web
openings and provided with main and web steel, however, can be utilised for
finding out the ultimate strengths of reinforced concrete beams with main steel
only and of plain concrete beams by deleting the terms not involving.

However, in the four-point loading, unlike the two-point system, the
admissible size of the opening will be fixed on the basis of the larger shear
span (Figure 3.15) and the restrictions stipulated for the opening parameters
will apply in this case also.

The validity of the Eqns (3.41) and (3.42) has been verified for a few
beams available (Kong et al., 1977; Ray, 1980; 1985) and found satisfactory.
Variations beyond +20% are limited to only few beams and within a
variation of £30%, 80% of the beams under four-point loading can be
covered (Figure 3.16).
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3.15 Extension for uniformly distributed loading

For a truly uniformly distributed load the failure path described by angle
may be obtained by minimising the resistance of the concrete as given in the
first part of Eqn (3.15). That is,

SQu) _ i[ cbD }: 0 (3.43)

B ~ 8B |sinP - cosp (tan B+ tan ¢)
This yields a relation between B and ¢ in the form:
tan 2f3=-tan ¢ (3.44)

Once the value of B is established, evaluation of the ultimate strength of
beam under uniformly distributed load, will follow the usual procedure
(Ray, 1980; 1982).

3.16 Recommendations for design of beams for shear and flexure

It is now well known that elastic theory characterises the action and behaviour of
deep beams before cracking in its true perspective, but cannot highlight the
behavioural performance and strength capacity of the beams up to the stage of
collapse, which ultimate load theory can do. Limited crack width, controlled
deformation and deflection are the essential prerequisites for the satisfactory
performance of any structural element. The simplified formulae put forward in the
preceding sections, for L/D ratio up to 1.5 and shear span/depth ratio varying from
0.22t0 0.47, can predict the strength of beams with web openings at failure condition
either in shear or flexure. For a safe design, the ultimate limit state as well as the
serviceability limit states should be considered. The important codes like CEB-FIP
(1970) ACI (1971; 1978) and UNESCO international code (1971) have
recommended the use of limit state design for the concrete structures. These
recommendations are based on a semi-probabilistic approach in fixing the accepted
values of probability of reaching the limiting states in any structure. This involves
the use of characteristic values and partial safety factors for the various actions and
mechanical properties of the materials. The CEB-FIP (1970), BS CP110 (1972)
and 1S456 (1978) have stipulated these factors. Such factors have been used
conveniently in the present formulations for simplified design guide.

Thus, in order to keep the predicted ultimate load capacity of beams under safe
design, a general performance factor (or safety factor) for the ultimate limit state
(UNESCO, 1971; Winter School etc., 1978) is chosen as 0.75 for shear and 0.85
for flexure in order to get reasonable lower bounds on these failures. In addition,
the following partial safety factors (UNESCO, 1971; Winter School etc., 1978) for
loading and materials so as to cover their inherent deficiencies have been used:

Y, (=partial safety factor for loading)=1.40
Y, (=partial safety factor for steel)=1.15
Y. (=partial safety factor for concrete)=1.50

© 2002 Taylor & Francis Books, Inc.



The lower bound values of the expressions for simplified design of beams
failing either in shear or flexure may be written as follows: Beams with web
openings failing in shear: from Eqn (3.24)

b% (: 55—“0] =& [0.1 fS(AM)(A2)(A3) + 0.0085 s ps foy

+0.01WuKurfuy ] (3.45)

where & =performance factor or safety factor for beams failing in shear=
0.75.
Beams failing in flexure: from Eqn (3.40)

Mo _, 1 E0sSs Puifu COS O 5 0033} 3.46
o az[fc, 086 + =22 0,59+ (3.46)

where &, is the performance factor or safety factor for beams failing in
flexure =0.85.

As well as the performance factor (or safety factor), the partial safety factors
for loading and materials as suggested in this section will have to be used.

3.17 Recommendations for lever arm (Z)

Beams with solid webs

For a preliminary design, an approximate value of Z is necessary which
cannot be obtained from the Eqn (3.46) without full knowledge of details of
the beams in advance. So, for the preliminary design of beams a value of
Z=0.7D is recommended.

The value of Z suggested by Kong et al. (1975) was 0.6D and that by
CEB-FIP (1970) was 0.2 (L + 2D) for 1<L/D<2, which comes to 0.7D also
for L/D ratio 1.5 (Ray, 1980; 1983). So, the design bending moment should
not exceed:

0.7 4, (,/¥,)D (3.47)

Beams with openings in webs

Eqn (3.47) is applicable for beams with web openings also, but a capacity
reduction factor of 0.65 is recommended (Ray, 1980; 1982) —i.e. the design
bending moment should not exceed the limit:

0.65 [0.7 Ay (£yy/T)D] = 0.45 A, (foy/Ye)D (3.48)

3.18 Design example

For comparison the data assumed for the design example are the same as
those used by Kong and his associates (1975). In working out the example,
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the simplified design equations along with the partial safety factors
suggested in sections 3.16 and 3.17 have been utilised (Ray, 1980; 1983).
Example: Beam with web opening

Data: symmetrical two-point loading;

L=750 mm, D=750 mm; X,=250 mm;

Bearing width=75 mm; =330 kN; /’ =22 5 N/mm?;

S =30 N/mm?; f° =3 N/mm?; f, =250 N/mm?,

Openlng size: a,x=100mm; aZD 150mm;

Co-ordinates of opening centre: K X,=137.50 mm, K,D=475 mm.

Design procedure

1) Main steel A4 :
Design moment M=5775x10* Nmm (3.49)
The design moment should not exceed
0.455 A, (fy/To).D = 0.455 x A; X 250 x 750
1.15
=74.1848 x 10°. A,Nmm (3.50)

From Eqns (3.49) and (3.50) on simplification, 4 =778.4614mm?. Provide 2
—25 mm diameter bars (981 mm?) as main steel.

ii) Beam width: The web opening parameters are shown evaluated in Table
3.1. The shear resistance of concrete alone given by the first part of Eqn

(3.45) is:

075(01x0371><—212—5§ijx750 313.03136N 3.51)
Table 3.1 Web opening parameters
KiXn  KaD ex Xnet ey Fret Ay A2 A3 Arhaa
(mm)  (mm) (mm) (mm) (mm) (mm)

137.50 475.00 1250 150 100 300 0.91 0.75 0.543  0.371

It is assumed that the contribution of concrete for resisting shear is about
(0.65%50%) of that of the solid web. That is,

0.65x115.50x10%=75.075x10° N (3.52)
Simplifying Eqns (3.51) and (3.52)
b=239.8322mm; 5=200 mm (say) (3.53)

iii) Shear strength of beam with tensile steel only. Using the first two terms
of Eqn (3.45):

22.50 981 x 100 250 200 x 750
=150.9762 kN (3.54)
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iv) Web steel 4 :
Design shear force=231 kN (3.55)
Hence, shear strength due to web steel=231-150.9762=

=80.0238 kN (3.56)

Considering horizontal web steel to be provided for, the last part of Eqn 3.45
gives:

Anx100 2507 200x 750
0.75] 0.01 x 0.5 X 0.
’ [ Osxogsxzoomsoxl.ls] 1000

=0.0693 4,, kN (3.57)

Simplifying Eqns (3.56) and (3.57)

A ,=1154.7446 mm? (3.58)
q-o
27271} 1
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Figure 3.17 Details of beam with web openings (Kong ez al., 1975) and provided with horizontal
and vertical web reinforcement (Ray, 1980; 1983). Beam thickness=200: all dimensions in mm.
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Provide 6-12 mm diameter two-legged horizontal stirrups (1356 mm?) such
that 4 bars at 90 mm centres below the opening and 2 bars at 90 mm centres
above the opening are provided. In addition, nominal vertical two-legged
stirrups of 6 mm diameter may be provided. The detailing is shown in Figure
3.17.

v) Alternatively, inclined web reinforcement can be provided using the last
part of Eqn (3.45)

0.75[0.01x0.5x1.15><A““Xloo 250] 200750

200x750  1.15| " 1000
=0.0938 4, kN (3.59)
From Eqns (3.56) and (3.59) on simplification,
A4,,=853.1322 mm? (3.60)

Provide 5-12 mm diameter two-legged stirrups (1130 mm?) such that 3 bars
below the opening and 2 bars above the opening and arranged perpendicular
to the plane of rupture are provided. The detailing is shown in Figure 3.18.

20 3
T
3 INCLINED STIRRUPS 120
\
‘\' i
d o)
6d—1 | ol |100/] ~
] 30
Q

l//

{4 L=750 L 20 N
7

~={75 b

Figure 3.18 Details of beam with web openings (Kong ef al., 1975) and provided with inclined web
reinforcement (Ray, 1980; 1983). Beam thickness=200; all dimension in mm.
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vi) Shear strength of beam with tensile and web steels:
(a) With horizontal and vertical stirrups, Figure 3.18:

0. =150.9762+0.75 [0.01 % 0.5 % 0.85 X 1356 % 100 x %}
1 250 1
x 1000+0.75[0.01><0.5><0.233><112>< 100 x 1.15}‘ 1000
=247.0655 kN>231 kN (3.61)
(b) With inclined stirrups only, Figure 3.18:

0.=150.9762+0.75/0.01x0.5x 1 15% 1130% 100 x 222 | x —L

LT ) ) : : 1.15|7 1000
=256.9137kN>231kN (3.62)

vii) In addition to providing an anchorage length of about 300 mm as per BS
CP110, part I (1972) with 90° upright bends on either end of the main steel,
the load and support bearing points should be properly strengthened, each
with a 40 mm diameter spiral made of 6 mm diameter mild steel (MS) bars
150 mm long with (e.g.) 30 mm pitch and a mesh reinforcement (e.g. one
layer of 6 mm diameter MS mesh of size 120mmx175mm) to avoid any
premature failure by crushing of concrete.

Further, to guard against any possible stress concentration, the openings
should be suitably strengthened by providing a loop of 140 mmx190mm
around the opening with 6 mm diameter bars in the inclined web steel case,
whilst in the case of horizontal and vertical web steel, such a loop may get
formed by such arrangement of web steel, (Figures 3.17 and 3.18).
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4 Continuous deep beams
D.ROGOWSKY, Underwood McLellan Ltd., Canada

4.1 Introduction

This chapter will address design issues unique to continuous deep beams.
Continuous deep beams are fairly common structural elements which occur
as transfer girders, pile caps and foundation walls. Figure 4.1 illustrates
some typical examples. The areas immediately over openings in load bearing
walls also act as deep beams.

As a practical matter, extreme accuracy in predicting the strength of a
continuous deep beam is not warranted and often not possible (due to,
among other things, the inability to predict accurately differential support
settlements). Fortunately, simple rational models are available to permit
designs which are both economical of material and design time and of an
accuracy consistent with other design inputs. Concrete member sizes are
often fixed by considerations other than the purely structural. In practice,
designers are often presented members with proportions which cause them
to behave as deep beams. While it is rare to have the dimensions of a deep
beam governed by strength and serviceability, appropriate reinforcement
detailing is essential for adequate performance.

Continuous deep beams behave differently from either simply supported deep
beams or continuous shallow beams. By ignoring these differences during design,
one gives up potential available strength and may get significant unexpected
cracking. Continuous deep beams develop a distinct ‘tied arch’ or ‘truss’ behaviour
not found in shallow continuous beams. The net result of this is that conventional
reinforcement detailing rules, based on shallow beams or simply span deep beams,
are not necessarily appropriate for continuous deep beams.

Continuous deep beams exhibit the same general trend of increased shear
strength with a decrease in shear-span/depth ratio as found in simply supported
deep beams. In continuous beams, the locations of maximum negative moment
and shear coincide, and the point of inflection may be very near the critical section
for shear. Both of these conditions render most empirical strength prediction
equations for simply supported deep beams useless for continuous deep beams.
The existing empirical equations which are based almost exclusively on simple
span beam tests should not be blindly applied to continuous beams. There are too
many parameters and currently too few tests to develop empirical strength
prediction equations specifically for continuous deep beams.
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Figure 4.1 Examples of continuous deep beams

There is no universally accepted definition of deep beam. In general,
European deep beams are approximately twice as deep as North American
deep beams. For example, CEB-FIP (1970) suggests that simply supported
beams of span/depth ratio L/D (where L is the beam span in m, the smaller
of the centre to centre span, or 1.15 times the clear span; D is overall beam
depth in m) less than 2 and continuous beams of L/D ratio less than 2.5 be
designed as deep beams. ACI (1986) suggests that beams with clear with
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clear span to effective depth ratios greater than 5 (and loaded at the top or
compression face) be treated as deep beams. The ACI deep beam definition
is based on shear behaviour while CEB definition is based on flexural
behaviour. It is important to recognise the different definitions when
reviewing design recommendations. In reality the deep beam problem is a
coupled problem. This chapter will provide a review of the literature and
attempt to present a coupled or integrated solution which addresses both
shear and flexure with one consistent model.

4.2 Distinguishing behaviour of continuous deep beams

4.2.1 Previous tests

There are very few tests of continuous deep beams available in the literature.
Nylander and Holst (1946) reported perhaps the first test. They reported the
results of a test for a two span specimen with an elaborate arrangement of
truss bars. The specimen was part of a general investigation of reinforced
concrete beams, hence no general conclusions could be drawn.

Leonhardt and Walther (1966) conducted a well known and extensive
series of tests on deep beams. The tests included different loading
conditions, different reinforcement arrangements and different support
conditions including some two span beams. These tests formed the basis for
the CEB-FIP (1970) recommendations.

Rogowsky, MacGregor and Ong (1986) conducted a series of tests on
17 large-scale two span deep beams. Both spans were brought to failure,
providing a total of 34 test results. The tests covered span to depth ratios
ranging from approximately 5 to 2 and had various amounts of horizontal
and vertical web reinforcement (none; minimum ACI vertical stirrups for
deep beams; four times minimum stirrups; about half ACI minimum
horizontal shear reinforcement for deep beams; and 1.5 times minimum
horizontal reinforcement). All beams were loaded by and supported by
monolithic concrete columns. For comparison purposes, six additional
companion simple span deep were also tested. Both ends of the simple
spans were brought to failure, providing a total of 12 large-scale simple
shear span test results. These tests formed the basis for some of the deep
beam recommendations in the current Canadian concrete code (CSA
A23.3 M84) and proposed revisions to the American concrete code (ACI
318-86).

A brief description of the behaviour of a typical deep beam test
specimen is now presented. Figure 4.2 illustrates the key events in the life
of a continuous deep beam. In general, deep beams develop little initial
flexural cracking. For the beams tested by Rogowsky et al. (1986),
midspan flexural cracks tended to form before negative cracks over the
interior support. The first significant event during loading of a deep beam
is the development of diagonal, inclined or shear cracks which occur
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suddenly and are accompanied by a loud bang. The cracks tend to
delineate a truss or tied arch mode of behaviour. In the tests by Rogowksy
et al. (1986) the inclined cracking occurred at about 50% of the ultimate
load. This stage, illustrated in Figure 4.2b, is the key stage in terms of
understanding deep beam behaviour. (The transparency of behaviour is
subsequently obscured by secondary flexural cracking as the
reinforcement is brought to yield.) As the load is increased, additional
flexural cracks form. Yield of the main flexural reinforcement brings about
significant deflections. These deflections are accompanied by joint
rotations of the so called truss which eventually cause the concrete
compression struts to fail. The strength of the member is governed by the

25% P,
T
[ 1A\ ’l i / \
a) Initial Flexural Cracking
Inclined 50% Pu
cracks

/\

b) Inclined Cracking

Crushlng

f/\//\\\

c) Ultimate Failure

Figure 4.2 Typical continuous deep beam cracking behaviour
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yield of the main flexural reinforcement while ductility is governed by
failure of the concrete.

For the tests which have been conducted, the main reinforcement ratios
(typical of these found in practice) were low enough for the main
reinforcement to yield. It is theoretically possible to increase the amount of
reinforcement to the point where it does not reach yield before the concrete
crushes. As in the case of normal or shallow beams, such over-reinforced
members are to be avoided in practice.

4.2.2 Continuous deep beams vs continuous shallow beams

The two test series noted in section 4.2.1. revealed the following major
behavioural differences between deep and shallow continuous deep beams,
i) Deep beams develop a marked truss or tied arch action while shallow
beams do not. Figure 4.3 presents a comparison of deep beam and a shallow
beam. In the shallow beam the shear is transferred through a fairly uniform
diagonal compression field with compression fans under the point load and
over supports. In the deep beam most of the force is transferred to the
supports through distinct direct compression struts (zones of predominately
uniaxial compression).

ii) After cracking, stresses in deep beams deviate significantly from those
predicted by an elastic analysis. Figure 4.4 presents the stresses in the main
flexural reinforcement of a deep beam immediately before and after
diagonal cracking.

iii) The initial diagonal cracks in a deep beam do not cross the major
compression strut. In some instances they outline the strut. After diagonal
cracking, the concrete contribution to shear strength increases for a deep
beam because a stable truss is formed. In a shallow beam there is little if any
increase in shear capacity.

iv) The bending moments over supports are smaller and the midspan
bending moments are correspondingly larger than predicted by elastic theory
for shallow beams. The crack patterns, support reactions, and strain
measurements all indicated that the negative moment over the interior
support was smaller than the positive moment at midspan. The ratio between
experimental and elastic interior support moment was typically 60-70%
prior to yielding of the bottom flexural reinforcement. For several of the
beams without heavy stirrup reinforcement, the top flexural reinforcement
did not reach yield before the specimen failed.

v) The deep beams were found to be very sensitive to differential support
settlements. Even small differences in support settlements lead to large
redistribution of moments for deep beams which must be considered in
design. In the laboratory under ideal conditions, differential support
settlements (elastic shortening of load cells and so on were hard to control.
The laboratory differential settlements ranged from about £/2000 to L/10
000. In real structures, differential support settlements can be an order of
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Figure 4.3 Comparison of deep and shallow continuous beam behaviour.
magnitude larger and must be accounted for in the design of continuous

deep beams. One must either make the beams strong enough or ductile
enough to accomodate all possible combinations of support movement.
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vi) As a result of the truss or tied arch action, the main flexural
reinforcement carries significant tension along its full length. At a given
section both the top and bottom reinforcement can carry significant tension.
Figure 4.4 gives an example. As a result, in deep beams, the development
and anchorage of the main reinforcement is critical.
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b) Top Bar Stresses

After Inclined Cracking

Before Inclined Cracking

1 -
= 7 N\ Ple I
\\ // \Z \\é -
~ _’ A ~_ 7

c) Bottom Bar Stresses

Figure 4.4 Steel stress redistribution after inclined cracking

vii) Vertical web reinforcement did not significantly increase the shear
strength of the deep beams. (As will be demonstrated later, the strength does
not increase until there is sufficient vertical web reinforcement to eliminate
the direct compression strut.) Heavy vertical web reinforcement did
significantly reduce the variability in strength and increase the ductility,

viii) The addition of minimum amounts of horizontal and/or vertical web
reinforcement often reduced the failure load to below that of a comparable
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beam without web reinforcement. The reductions were generally minor and
were believed to be due to the direct compression strut being pulled apart by
the web reinforcement as the steel strained. This pulling apart reduces the
effective concrete strut capacity.

4.2.3 Continuous deep beams vs simple span deep beams

There are some distinguishing features of continuous deep beams which
render empirical equations based on simple span tests less than useful,

1) In a continuous deep beam, the point of contraflexure often occurs near the
critical section for shear. This situation causes difficulty with some empirical
equations. In the ACI procedures the ratio of moment to shear at the critical
section is a main parameter in the shear strength prediction equation.
Unfortunately, this ratio changes drastically when the point of contraflexure is
near the critical section for shear which produces wildly varying strength
predictions. If the point of contraflexure coincided with the critical section
(moment equals zero), the ACI equations would require division by zero!

ii) At an interior support in a continuous beam, the region of high shear and
high negative bending moment coincide. In simple span beams the region of
high shear coincides with a region of low bending moment. These
differences cast further doubt on the usefulness of empirical equations based
on simple span test data.

iii) In the tests by Rogowsky et al. (1986) horizontal web reinforcement was
found to have little influence on the ultimate strength of the continuous beams.
The amounts of horizontal web reinforcement used were relatively light (typical
of minimum reinforcement used in practice). Had greater amounts of horizontal
web reinforcement been used it is possible that an observable strength increase
might have resulted. It will be shown later that for beams with proportions
similar to those tested, the addition of horizontal web reinforcement is not a
particularly efficient method of increasing shear strength.

4.3 Capacity predictions by various methods

Several of the methods available for analysing deep beams are discussed.
They were used to predict the ultimate shear strength for the continuous
deep beams tested by Rogowsky et al. (1986). The comparisons of
prediction accuracy are not intended as a criticism of the various methods.
The comparisons are intended to illustrate the difficulty of extrapolating
methods developed from or for simple span deep beams to continuous deep
beams.

4.3.1 Elastic analysis

The discussion in this section pertains primarily to the classic elastic flexural
problem associated with deep beams. It has long been recognised that in
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deep beams sections that are plane before bending do not remain so after
bending. The stresses on the beam cross section therefore do not vary
linearly with depth. Generally, the nonlinearity is of more interest when
reinforcement is designed by the working stress method than when
reinforcement is designed by the strength method. Much of the early work
on deep beams emphasised elastic analysis and many elastic solutions can
be found in the literature. The Portland Cement Association (1980) still
provides information on the elastic stress distribution in deep beams. It
covers simple span and continuous beams.

Leonhardt and Walther (1966) found that until cracking develops, the
stresses approximate those predicted by elastic theory. After cracking, the
stresses deviate significantly from the elastic distribution. Beam capacity
cannot be predicted by elastic analysis.

If reinforcement is proportioned solely in accordance with an elastic
analysis, main reinforcement would for example be curtailed in regions of
low bending moment. In real beams that demonstrate marked strut and tie
action the curtailed reinforcement is ineffective as a tie and much of the
potential post-cracking strength is lost.

One useful insight which can be drawn from the elastic solutions is the
estimation of the depth of the tension zones. The main flexural reinforcement
should be distributed over most of the tension zone to control cracks. The
CEB and CIRIA recommendations recognise this in their reinforcement
detailing requirements. The amount of reinforcement is determined by a
strength design, but the reinforcement is distributed in general accordance
with elastic analysis. Shear strength analysis was largely ignored because the
beams of interest at the time (i.e. deep enough to have non-linear but elastic
behaviour) were generally deep enough for shear strength not to be critical.

4.3.2 Finite element analysis

Finite element analysis is the subject of Chapter 9 so the comments here will
be brief and pertain to continuous deep beams. Finite element programs are
now available which can with reasonable accuracy predict the capacity of
reinforced concrete beams. The literature now contains the results of such an
analysis for continuous deep beams.

Cook and Mitchell (1988) report a non-linear finite element analysis of two
of Rogowsky et al.’s test specimens. The beams had shear span to depth ratios
of 1.5 and 2.0 respectively, and contained heavy vertical stirrups. The analysis
predicted deformations, principal stresses, principal strains and ultimate loads.
All four (two failures per beam) test results were within 4% of the predicted
values. The failure resulted from yielding of the transverse reinforcement
followed by crushing of the concrete. The high negative moment near the central
support produced large tensile strains in the adjoining shear spans thus softening
the concrete and reducing its compressive strength. The softening was gradual as
demonstrated by the ductile experimental load deflection curve.
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All finite element programs are different. It is, however, essential that the
model incorporate non-linear constitutive relationships for the steel and
concrete. In the case of the concrete, the model should account for strain
softening. The accuracy will be best for under-reinforced members with at
least modest web reinforcement (to ensure some ductility).

Currently non-linear finite element analysis is still not used for routine
design, but for special critical problems it offers an alternative to physical
testing.

433 A4ACI 318

The recommendations of ACI 318 (1977) were used to assess the strength of
Rogowsky ef al.’s test specimens. For the continuous beams, the ratios of test to
calculated strengths ranged from 1.38 to 0.48. Over half of the tests had
measured strengths less than the strength predicted by the ACI code. The
discrepancy arises because the empirical design method given in ACI is based
on simple span test data. Had ACI chosen to use the ratio of shear span to depth
ratio as the prime parameter rather than the ratio of shear to moment at the
critical section, better agreement may have been achieved. The ACI code is not
based on a clear mechanical model of behaviour and is not recommended.

4.3.4 Kong, Robins and Sharp

The method of Kong, Robins and Sharp (1975) was used to analyse the data
of Rogowsky et al. The ratio of test to calculated strength ranged from 0.53
to 1.31. Their method was found to be safe for beams with heavy stirrup
reinforcement (vertical web reinforcement ratio approximately 0.006) where
the average test to predicted ratio was 1.17. For the remainder of the tests,
the ratio of test to predicted values was highly variable and generally quite
unsafe. The method was originally developed for simple span deep beams
deeper than those analysed.

4.3.5 Truss models

In a truss model analysis one idealises the beam as a truss consisting of
concrete compression struts and steel tension ties. These models are based
on the theory of plasticity and in various forms have been proposed by a
number of authors including Grob and Thurlimann (1976), Nielsen et al.
(1978), Marti (1985a, b) and Schliach (1987). Truss models specifically for
deep beams have been presented by Rogowsky and MacGregor (1986).
Truss models have gained increasing acceptance as they have grown less
rigorous. The Canadian concrete design code (CSA A23.3-M84) contains
rules for use of truss models in design.

Truss models were used to analyse the two span data of Rogowsky et al.
Some of the predictions were excellent. For the beams with heavy stirrups
(assuming the effective concrete strength equal to the specified strength) the
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ratio of test to calculated strength ranged from 0.94 to 1.02 (mean 1.00 and
standard deviation 0.03). For the other beams, the prediction accuracy
depended upon the truss model used because the beams were not always
ductile enough fully to redistribute forces in accordance with the truss
model. If the model assumed full yield of the top reinforcement over the
support when in fact it did not yield, unconservative predictions resulted.

4.4 Truss models for continuous deep beams

This section reviews truss models in detail and describes specific models
suitable for continuous deep beams. These are discussed at some length
because the selection of truss model has a significant impact on capacity
predictions.

Truss models are based on the lower-bound theorem of plasticity which
states that:

If an equilibrium distribution of stresses can be found which balances the applied load and is
everywhere below yield or at yield, the structure will not collapse. Since the structure can
carry at least this applied load, it is a lower bound to the load carrying capacity of the

structure.

While the theorem has a rigorous mathematical basis, it is obvious to most
designers that if one can find a safe load path through the structure, it will be
a conservative lower bound to the true capacity. The structure will
undoubtedly find other more complex load paths with greater capacity. With
truss models, one produces a simple load path in the form of a truss and
checks or designs the components of the truss for the required load.

Truss models assume or require that:

1) equilibrium is satisfied

ii) concrete resists compression stresses only and has an effective
strength less than the specified design strength

iii)  steel is required to resist all tensile forces

iv) the centroids of each truss member and the lines of actions of all
externally applied loads must coincide (this ensures that local
equilibrium is satisfied)

v) failure of the truss model occurs when a concrete compression
member crushes or when a sufficient number of steel tension
members reach yield to produce a mechanism.

Truss models are composed of three elements

1) steel tension members which are permitted to reach and sustain
yield stresses; collapse of the beam does not necessarily occur with
yielding of a single tension member; collapse occurs when
sufficient tension members yield to convert the truss into a
mechanism
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ii) concrete compression members which carry a uniaxial compressive
stress; the struts have finite width and thickness which depend on
the imposed member force and permissible stress; the ends of the
strut are principal stress faces and therefore must be perpendicular
to the longitudinal axis of the strut.

iii)  joints which transfer the stresses from loads and from truss member
to truss member; the joints consist of concrete in biaxial
compression (sometimes refered to as “hydrostatic stress”), their
dimensions are finite and depend on the imposed joint forces and
permissible concrete stress; all forces at a joint must be concurrent,
making the assumption of a pinned joint reasonable.

Additional truss elements can be built up from these three basic building
blocks. Compression fans occur when a number of small compression struts
fan out from a single joint to spread out or collect a load, such as under a
point load or over a support. Compression fans can be seen in Figure 4.3d.
Compression fields occur when a number of small parallel compression
struts transfer forces from one stirrup to another. Compression fields can be
seen in Figure 4.3d. Marti (1980) provides additional elements or building
blocks which may also be used.

Before demonstrating the application of truss models to continuous deep
beams, further discussion of the permissible compression stress is warranted.
In the development of truss models by the various investigators, the
permissible or effective concrete strength has received much but perhaps
unwarranted attention. Since the capacity of a well designed beam should be
governed by steel yielding, the permissible concrete strength has little
influence. Reasonable but approximate values of permissible stress may be
used. The stress level chosen will determine the dimensions of the joints and
compression struts. This will in turn have a minor impact on the overall truss
geometry and the load which can be carried when a mechanism is developed.
In the Canadian Code (CSA A23.3-M84), the permissible concrete stress for
compression struts may be taken as 85% of the specified concrete strength. In
general, the inclination of the struts should be limited to between 25 and 65°
from the horizontal. The inclination limitation is required to prevent the
selection of a model with unrealistically steep or flat struts. Steeper struts may
be justified when point loads occur very close to a support.

For truss joints, a further reduction is warranted to account for the
incompatibility of strains and the oversimplification of stress conditions.
The Canadian Code (CSA A23.3-M84) indicates that for joints bounded by
compression struts and bearing areas, the permissible stress may be taken as
85% of the specified strength. For joints which anchor one tension tie the
permissible stress may be taken as 75% of the specified strength, and for
joints which anchor tension ties in more than one direction the permissible
stress may be taken as 60% of the specified strength. The Canadian code
uses live and dead load factors of 1.5 and 1.25 respectively. It also uses
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material performance factors of 0.85 for steel, and 0.6 for concrete. (The
permissible concrete stresses should be adjusted to suit other load and
resistance factors.) The net result is that the final effective concrete stresses
under factored loads are limited to 51%, 45% and 36% of the specified
strength for 0, 1 and more than 1 tension tie anchored at a joint.

Tension ties are shown in the diagrams with anchor plates. This
convenient shorthand emphasises the importance of positive bar anchorage
and encourages the distribution of the bar forces over the entire joint. In
practice bars will usually be developed with hooks and adequate
development length. The truss model clearly shows what bar forces need to
be developed at a joint.

¢) Primary Continuous Truss (a + b)

Figure 4.5 Primary continuous truss models
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Loads are also shown acting through bearing plates. Again, this is
convenient shorthand which emphasises the need for reasonable force
transfer into the beam. In practice loads will be transfered to and from the
beam through concrete columns.

Typical truss models for continuous beams are presented in Figures 4.5
and 4.6. Their detailed use will be illustrated in the design examples.
Conceptually, they are statically indeterminate trusses. Assuming yield of the
reinforcement, the truss is rendered determinate and the compression
member forces can be solved by the method of joints provided it is done in
an appropriate order.

a) Truss with Vertical Web Reinforcement

b) Truss with Horizontal Web Reinforcement

Figure 4.6 Continuous truss models with web reinforcement

The solution procedure is as follows:

1) For simplicity use a final effective concrete strength of 45% of the
specified strength. (For the models shown, no more than one tie will
be anchored at a joint.)

i1) Draw the truss to scale (including strut widths).

iii) Measure the strut slopes from the diagram.

iv) Calculate the vertical and horizontal components for each strut
reacting against a stirrup assuming that, if it can, the stirrup will
yield, thus defining the vertical strut force. (Stirrups connected to
struts with inclinations steeper than 65° are not likely to yield.
These occur close to supports and point loads.)
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v) Calculate the top and bottom chord forces assuming that the bars
are at yield at points of maximum moment and reduce the chord
force by the horizontal component of each strut at each stirrup,

vi) Use any chord tension force remaining to equilibrate a direct
concrete compression strut.

vii)  Check that the truss as drawn in step 2 is still appropriate and revise
if necessary. Occasionally two or three iterations may be required,

viii)) The shear capacity is the sum of the vertical components of each
strut which comes down at the support in question.

This detailed procedure is illustrated in Figure 4.8. In steps v) and vi), the
addition of stirrups reduces the load which can be supported by the direct
compression strut. With sufficient stirrups, the direct compression strut will
not form. In deep beams, most of the load is supported by the direct
compression strut hence additional stirrups are not entirely effective in
supporting additional load until the direct compression strut is eliminated.

4.5 Design of continuous deep beams

Loading and support conditions are perhaps the most important
considerations in the design of continuous deep beams. Continuous deep
beams are very sensitive to support movements and without heavy stirrup
reinforcement, they may not be ductile enough to permit a design for one set
of moments and support reactions. The designer should select reinforcement
which can accommodate all reasonable distributions of moments and
support reactions. The distributions will depend on the specific application,
but consideration should be given to foundation settlement, column
shortening, and so on. For ideal support conditions at least the following two
distributions should be considered:

1) A distribution based on an elastic analysis that includes support
settlements but ignores shear deformation effects (e.g. moment
distribution)

it) A distribution in which the negative moments from the first
distribution are reduced by 40% and the remaining positive moments
adjusted accordingly (this comes from experimental observations).

To ensure some ductility and reduce variability in behaviour, a well
distributed minimum reinforcement should be provided. This minimum
reinforcement should be at least twice as great as current minimum
horizontal and vertical web reinforcement. Reinforcement ratios of at least
0.003 in the horizontal and vertical directions would be appropriate. In the
case of stirrups, they should be increased if required to support at least 30%
of the direct compression strut capacity.
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Truss models should be used to determine the principal reinforcement
requirements. The reinforcement should be distributed and detailed
(anchored) in accordance with the model analysis.

Crack control under service loads is expected to be satisfied by the use of
greater than normal minimum reinforcement. For large long numbers
subjected to significant shrinkage, temperature variations and restraint, one
may wish to increase the horizontal and vertical web reinforcement ratios to
0.006. This represents three to four times normal minimum reinforcement.
As a practical matter, this additional reinforcement has little impact on total
project cost as it permits much longer concrete placements (in excess of 30
m) with fewer construction and control joints.

Service load deflection predictions may be based on an elastic analysis of the
truss model duly adjusted for creep and shrinkage. The deflections due to
deformation of the web members of the truss correspond to shear deformations,
while the chord deformations account for the flexural deformations. Appendix E
of CIRIA Guide 2 (1977) should be consulted for further details.

4.6 Design example

Consider the design of the transfer girder shown in Figure 4.7. It is
continuous at one end and supports a uniformly distributed load as well as a
major point load. The specified concrete strength is 35 MPa and the
specified steel yield strength is 400 MPa.

D 3585kN D 71.6 kN/m
L 3585 kN (includes self wt.) 0861 kN
L 18.8 kN/m —117.5 kN/m
7 [
[LILILILILTY |LLLLLILLL
17860 kNm
3660 | 7320 J‘L 5591 kN 5560 kN
a) Service Loads b) Uitimate Loads and Reactions

Figure 4.7 Loads and spans for design example

Use dead and live load factors of 1.25 and 1.5 respectively. Use an
effective concrete strength equal to 75% of the specified strength times a
concrete performance factor of 0.6. This produces a final effective
permissible concrete stress equal to 45% of the specified compression
strength. Limit strut angles to between 25 and 65° from the horizontal.
Select the overall size of the beam to give an ultimate shear between 0.5 and
0.67 times the square root of the specified concrete strength.

Normally, one would consider a series of loading cases and a series of
support settlement cases. For simplicity, only one load case will be considered.
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For this design, the uniformly distributed load will be idealised as a series
of concentrated loads spaced at 600 mm centres along the length of the
beam. Similarly, the initial design will consider stirrups at a hypothetical
spacing of 600 mm coinciding with the concentrated loads. When the area of
stirrups required per 600 mm segment has been calculated, it will be
provided by stirrups appropriately spaced throughout the segment.

After two or three iterations, the truss shown in Figure 4.8 was
developed. Through the iterations, the slopes and widths of the struts, and
the size and location of nodal zones were adjusted to ensure that equilibrium
is maintained without overstressing the concrete.

. 3660 , 660 @ 6300
*

3660
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Beam and Columns 710 thick

'i 1
660 i - ...-Jos20 O L

Figure 4.8 Truss selected in design example

There is no unique ‘correct’ final design. Any one of several trusses will
prove satisfactory provided that the detailing of the structure allows the truss
to carry the loads in the manner assumed. For example, the left shear span
designs could have varied from having all of the shear carried by concrete
strut, through to having all of the shear carried by stirrups. The stirrup
reinforcement for the left shear span was selected on the basis of having 30—
35% of the shear carried by stirrups. This reduces the size of the direct
compression strut and improves ductility. The stirrups in the right shear span
were selected so that all of the shear across section 1-1 is carried by
stirrups. Stirrups loaded by struts steeper than 65° were ignored as these
stirrups are not likely to reach yield before beam failure.

Longitudinal flexural reinforcement requirements at mid span and at the
right support were determined from the moments at these locations assuming
that the steel yields at both locations. Figure 4.9 illustrates the calculation of
force in the top chord. At support U, the bar force is 6565 kN. At joint T, the
vertical applied load is equilibrated by a steep inclined strut T-UV (Figure 4.8)
Horizontal equilibrium at the joint shows that the top chord force drops to
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6539 kN. At joint S, the inclined strut equilibrates the vertical force applied at
S plus the force in stirrup S-SV which is assumed to have yielded. Joint
equilibrium shows that the top chord force drops to 6209 kN and so on.

84kN 84kN 84kN 84kN
‘Q lFi tS T
5186 kN 5751 kN 6209 kN 8539 kN 8565 kN
563 kN 460 kN 330 kN ;26 kN
824 kN 624 kN 624 kN
84 kN
708 kN 708 kN 708 kN

Figure 4.9 Forces on upper chord joints Q, R, S, T and U

The stepped envelope shown in Figure 4.10a shows the top chord force
calculated in this way. The capacity of the steel provided is shown in the
outer sloped envelope. The sloping portions of this outer envelope were
drawn assuming that the force in the bar varies linearly from zero to yield
over the development length. The steel chosen is shown in Figure 4.10b.
Figure 4.10c is similar for the bottom chord.

The bottom chord is in tension from support to support. At the left
support, the bottom chord still has significant tension forces which must be
properly anchored.

The detailing and distribution of the bars must be such that the resultants
of all the compression forces coincide with the tension force and loads or
reactions at points such as AA.

4.7 Summary

This chapter has presented an overview of the design of continuous deep
beams. The writer’s personal bias as a practising engineer is towards the use
of equilibrium truss models which have been shown to give good agreement
with tests for beams, particularly for beams with heavy stirrups.

For the design of deep beams, it is recommended that the equilibrium
truss model be use. There are three key elements to producing a successful
design:

1) Proportion and detail the reinforcement in accordance with an
equilibrium truss model. The consequent and consistent detailing of
the reinforcement is essential.

il) Consider the effects of support settlements (and the experimentally
observed shift of moment from support to midspan regions) and
included them in the resulting design envelopes for shear and moment.

iii)  Use enough web reinforcement to ensure ductile behaviour. In shear
spans where a major strut exists, the stirrups crossing the diagonal
of the span should have a shear capacity not less than 30% of the
applied shear force.
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5 Flanged deep beams

H.SOLANKI and A.GOGATE, Smally Wellford and Nalven
Inc., and Gogate Engineers, USA

Notation
a shear span / span length
A, area of tension reinforcement IR clear span length, measured face to
A, area of shear reinforcement within face of supports
a spacing s, M, factored moment
A, area of horizontal shear reinforce- S, spacing of horizontal shear rein-
ment within a spacing s, forcement
b width of beam s, spacing of vertical shear reinforce-
b, width of beam web ment
c clear shear span 4 nominal shear strength provided
d effective depth by concrete; vertical shear
f.,  concrete characteristic cube force
strength V. nominal shear strength provided
s reinforcement yield strength or by shear reinforcement
characteristic strength V. factored shear force
/7. concrete cylinder compressive z lever-arm distance
strength p,  steel ratio; web steel ratio
h height of beam ¢ strength reduction factor
h, thickness of flange

5.1 Introduction

A beam having a span to depth ratio less than about 5 may be classified as a
deep beam. Deep beams occur as transfer girders at the lower levels in tall
buildings, offshore gravity type structures, foundations and so on (Figures
5.1 and 5.2). The main design recommendations for deep beams have been
summarised in Chapter 1. This chapter covers the behaviour of reinforced
concrete flanged deep beams. Flanged beams are usually deep and consist of
a thin web (Figure 5.3). The application of flanged deep beams normally
may not be apparent in ordinary reinforced concrete structures but they are
for instance a major structural component in the foundation of offshore
gravity type structures and in the horizontal and vertical diaphragms used to
transmit wind forces in tall buildings. Little published information is
available on the behaviour of reinforced concrete flanged deep beams.
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Figure 5.1 Tall buildings after CIRIA Guide 2, 1977

5.2 Review of current knowledge

Considerable literature is available on the elastic behaviour of ordinary (not
flanged) deep beams (Albritton, 1965: Cement and Concrete Association (C &
CA), 1969). Dischinger (1932) used trignonometric series to determine the
stresses in continuous deep girders. Uhlmann (1952) and Chow et al. (1953)
used finite-difference equations to solve simple-span deep beams. Cheng and
Pei (1954) contributed much to the theory of deep beams by solving the case
in which no displacement was permitted at the supports. Kaar (1957) reported
on tests made on models of simply supported deep beams. Forster and
Stegbauer (1974) and Robins and Kong (1973) have applied the finite element
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method to produce solutions for deep beam problems. Leonhardt and Walther
(1966) undertook extensive investigation of deep beams under all loading and
support conditions and presented comprehensive findings for directly and
indirectly loaded beams. Gogate (1977) developed a finite element approach
for deep beams with progressive cracking.

Around 1965 an extensive long-term programme was initiated in the UK
which is still continuing at the University of Newcastle upon Tyne under
Kong and his coworkers. Their published work does not include
investigations of different loading conditions of deep beams. El-Behairy
(1968) included these types of loading condition in the study.

Before discussing flanged deep beams, it is necessary to consider the
research work of Robinson and Demorieux (1976). They examined 15
beams having a double T-section. They analysed the cracking of the web and
observed that the stresses of the concrete theoretical stressed directions of
the cracked web can be estimated by reference to a stress-strain diagram
observed in simple compression. They also introduced the concrete strain
softening concept.

Nylander (1967) undertook an extensive investigation of deep beams under
various loadings and support conditions. He also studied 28 flanged deep
beams. He observed that the variation in the amount of transverse reinforcement
designed to prevent bursting did not produce any significant effect on the
strength of the beam. He also observed that provision of heavy flexural
reinforcement at the inner edge of flange increased the strength substantially.

Taner et al. (1977) studied six beam-panels with variable tensile
reinforcement, simply-supported and subjected to mid-span or third point
loading. They found that the formulas based on cylinder splitting analogy
underestimate the ultimate capacity for over-reinforced and/or
asymmetrically loaded beam-panels.

Paul (1978) studied 18 wall-panels with variable tensile and web reinforcement
and different loading patterns. He concluded that the panels loaded below the
compression zone (i.e. indirectly loaded,) are weaker than the panels which were
directly loaded at the compression face under similar conditions. He also
concluded that adequate suspension or hanger reinforcement at the location of the
load and good anchoring in the compression zone increased the load-carrying
capacity of indirectly loaded beams.

Regan and Hamadi (1981) studied six beams using a simple point load
from the top. They concluded that web strength is limited by crushing of the
concrete in the diagonal strut that joins the loading point and the reaction
point. The web strength does not appear to be influenced by instability for
height/thickness ratios up to 50.

Subedi (1983) studied two micro-concrete models. He concluded that the
diagonal splitting force depends upon the limiting tensile strength of
concrete in a biaxial-compression-tension state of stress. He also concluded
that the dowel resistance of main reinforcement is significant in the
resistance of the applied load.
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5.3 Modes of failure

The structural behaviour of flanged deep beams could be analysed with
those of the conventional deep or panel beams of rectangular cross-sections.
The methods of design for conventional deep beams are available in several
documents. The main differences between a conventional deep beam and a
flanged deep beam can be categorised as follows:

1) Overall depth/web thickness ratio h/t

Conventional deep beams are designed to have an 4/ of about 10 or
less. This ratio for flanged deep beams is generally much larger and

Table 5.1 Beam geometry

Investigation Beam Overall Web
number Depth  thickness
h tw h/tw te=1 hw
(mm) (mm) (mm)
Subedi (1983) 1 500 16 31 20 460
2 500 16 31 20 460
CIRIA beams (1981) 1 2000 75 27 150 1700
2 2000 75 27 150 1700
3 1200 20 60 70 1060
4 1200 20 60 70 1060
6 1200 20 60 70 1060
Paul (1978) 211
212
213
221
222
223
231 1120 38 30 70 980
232
233
311
312
313
321
322
323
331
332
333
Taner et al. (1977) plll
pi2i
p211 1120 38 30 70 980
p221
p311
p321
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may be as high as 60, so flanged beams are considerably more
slender than conventional deep beams. Table 5.1 lists the A/ ratio of
the beams used by the different investigators.

il)  Accommodation of main tensile reinforcement
In conventional deep beams, the main reinforcement is accommodated
within the plane of the web. Flanged deep beams have wider flanges to
accommodate them.

The usual mode of failure of slender reinforced concrete flanged beams
involves the diagonal splitting of the web between the edge of the loading
plate and the support. A segment of the web between the load and the
support is subjected to a stress field equivalent to pure shear, as shown in
Figure 5.4. This produces diagonal tension and compression in the web.
When the principal tensile stress due to shear reaches the limiting tensile
strength of the concrete, rupture occurs in the web. The limiting tensile
strength of concrete could be defined as the maximum tensile in a biaxial
compression-tension field. The total splitting force in the web consists of a
contribution from the web concrete and the web reinforcement at compatible
strain. Four parameters affect the modes of failure of flanged deep beams:
the strength of concrete f’, the amount of tensile and compressive
reinforcement, the amount of web reinforcements, and the geometry of
beam. Based on the relative values and amounts of various parameters, the
modes of failure could be classified into four types.

O3
01

Figure 5.4 Biaxial state of stress due to a pure shear

5.3.1 Mode of failure 1: flexural-shear failure

The first mode, flexural-shear failure, occurs in a beam with a very small
amount of main tensile reinforcement. At first, flexural cracks develop on
the bottom flange at or near the midspan of the beam. (Figure 5.5a) As load
is increased, more flexural cracks follow accompanied by diagonal web
cracking. Finally failure occurs due to the diagonal cracks in the web and the
flexural cracks in the bottom flange near the support. The main
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Figure 5.5 Modes of failure (numbers indicate order of events) (a) flexural shear mode 1; (b)
diagonal splitting mode 3 (after Subedi (1983))

reinforcement (tension steel) will yield and large cracks will develop along
the web diagonal. If the load is further increased, the excessive strain in the
main reinforcement and the large deflections will cause the crushing of the
concrete near the top compressive flange. This type of failure occurs when:
the horizontal component of the diagonal tension force that causes the web
crack is: 1) greater than the capacity of the reinforcement in the web
traversing the diagonal crack, ii) greater than the compression capacity of
the web between diagonal cracks that force diagonal compression strut; iii)
greater than the capacity of the flexural reinforcement.
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5.3.2 Mode of failure 2: flexural-shear-compression failure

The second mode, flexural-shear-compression failure is similar to mode 1
failure except that crushing of the compression flange will occur before the
full tensile capacity is realised. This will happen when the compression
capacity is less than the tension capacity (i.e. the beam is over-reinforced
flexually). This type of failure occurs when: 1) the horizontal component of
the diagonal splitting force is (a) greater than the capacity of the tensile
reinforcement (b) greater than the compression capacity; ii) the capacity of
tensile reinforcement is greater than the compression capacity.

5.3.3 Mode of failure 3: diagonal splitting failure

Diagonal splitting failure, the third mode of failure, occurs by diagonal
splitting and excessive cracks in web in beams with thin webs and a
moderate amount of reinforcement in the top and bottom flanges.

When these beams are loaded cracking may develop on the bottom flange
at or near the mid span of the beam. These flexure cracks do not substantially
grow during the subsequent increment of loading. Additional increments will
increase the shear in the web until the limiting tensile strength is reached.
When this happens, the diagonal splitting will occur.

The splitting is generally located at mid-depth of the beam as shown in
Figure 5.5b. Additional increments of load result in more cracks of this type.
Failure occurs when the first crack at the centre of the web grows sufficiently
large. The beam may be termed ‘unserviceable’ in this state. At the last stages
of web splitting, concrete in the web near the load or the support may spall
and crush if further load is applied. The crack will penetrate into either the
tension flange near the support or the compression flange near the edge of
load and lead to the crushing of the compression zone.

This type of failure mode will occur when: the horizontal component of
the diagonal splitting force is; 1) less than the capacity of the tensile
reinforcement; ii) less than the compression capacity. If the compression
capacity is greater than the capacity of tensile reinforcement, the diagonal
crack may penetrate into the tensile flange.

5.3.4 Mode of failure 4: splitting with compression failure

The fourth mode of failure splitting with compression is similar to mode 3
except that the diagonal crack may eventually penetrate into the compression
flange. In other words, crushing of the compression flange will occur.

This type of failure will occur when: 1) the horizontal component of
diagonal splitting force is; a) less than the capacity of tensile reinforcement, b)
less than the compression capacity; ii) the capacity of tensile reinforcement is
greater than the compression capacity.

The modes of failure are also summarised in Table 5.2. In the Table it is
assumed that the amount of horizontal web reinforcement is small and that:
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S t, h,>A, f,. 1t is possible that the amount of web reinforcement could be
hlgh and that A, 7 t, h,. In such a case, the horizontal component of
diagonal sphttmg force would be A1y

Table 5.2 Modes of failure (after Subedi; 1983)

Mode of Contribution of
failure Criteria* main reinforcement
1. Flexural-shear Jic tw hw + An fs > Aatfy Aafy

<Ascfy + (Ac —Asc)fcl

2. Flexural-shear— fic tw hw + Anfs > Ast fy Acfy + (Ac—Ay) fe
compression > Ascfy + (Ac + Ase) f¢

and Astfy > Asc fy + (Ac — Asd) fE

3. Diagonal fic tw hw + An fs < Astfy fietw ho + Anfi
splitting <Ascfy + (Ac = Asc) fE
and Ascfy <Ascfy + (Ac — Asc) f¢
4. Diagonal Jic tw hw + Anfs < Astfy fetw b+ Anfs
splitting with <Ascfy + (Ac — Asc) fE
compression and Astfy > Ascfy + (Ac — Ase) f¢

* When fic fw hw < An fsy, then fic tw hw + An fs should be replaced by An fsy .

5.4 Analysis

As mentioned earlier the conventional deep beams method can be
conservatively used for the design and detailing of flanged deep beams. A
number of commonly used methods are available for the designing of
reinforced concrete deep beams. Most of the methods are developed for
directly loaded deep beams, but these also can be applied to indirectly
loaded deep beams provided properly designed suspension or hanger
reinforcements are provided and well anchored in the top compression zone.
Paul (1978) showed that indirectly loaded deep beams with hanger
reinforcement attained strength equivalent to those of directly loaded beams
if well anchored hanger reinforcement was provided. The commonly used
procedures for deep beam analysis are:

1) ACI Building Code; ii) CEB-FIP Model Code (See Chapter 1, Section 1.5 for
an account); iii) CIRTA Guide 2; iv) the method proposed by Taner et al.; v) the
method proposed by Regan and Hamadi; vi) the method proposed by Subedi.
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5.4.1 ACI Building Code

Section 11.8 of the 1983 ACI Building Code stipulates special provision for
deep beams with / /d less than 5 and loaded at top or compression face. The
critical section for calculating the factored shear force V is taken at distance
0.15 [ for uniformly loaded beams and 0.50/ for a beam with a
concentrated load but no more than d from the face of the support.

The factored shear force ¥ has to satisfy the following conditions:

Vo< 08Vf'bud)  for l,/d<2.0 (5.1a)

or

vusq;[ [10+ J\/f_b d] for 2<l,/d<5 (5.1b)

Gogate et. at. (1980) have shown that this equation is irrational but on the
conservative side. The nominal shear strength V of the plain concrete can be
taken as:

( Vd)[l9\ffc+2500pw d]b d<6\fib,d (5.2a)
where 1.0<3.5-2.5(M/V d) <2.5

Eqn (5.2a) takes into account the effect of the tensile reinforcement and M /
V d at a critical section. Otherwise V, can be determined from the simple
equation:

Ve=2Vflb.d (5.2b)

Eqn (5.2a) is illustrated in Figure 5.6. When the factored shear V exceeds
¢V, shear reinforcement is required such that:

V<o (VAV) (5.3)
where V_is the force resisted by the shear reinforcement:
A 1+hy/d Aw 11— n/d
Vs—[sv 2 Tt S, ]f,d (5.4)

where A4 is the area of shear reinforcement perpendicular to flexural tension
reinforcement, spaced at S and 4, is the area of shear reinforcement
parallel to flexural reinforcement spaced at S,

Maximum S <d/5 or 18 in
which ever is smaller (5.52)
Maximum §,<d/3 or 18 in
Minimum 4 =0.0015 bS5,
Minimum 4 ,=0.0025 bS, (5.5b)
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The shear reinforcement required at the critical section must be provided
throughout the deep beams. Extensive shear revision to the ACI provisions
are under way at the present time (1989) based on the diagonal compression
field theory and the use of truss models based on the work of Vecchio et al.
(1986).

5.4.2 CIRIA Guide 2

The CIRIA Guide (CIRIA, 1977) applies to deep beams with an effective
span/depth ratio of less than 2 for single span beams and less than 2.5 for
multi-span beams. The following equation is suggested in the guide for the
evaluation of the ultimate load capacity of a deep beam loaded from the top.

V.=C, (1 -0.35 i-) fibh+C Y A, {; sin® o (5.6)

where f is the cylinder-splitting tensile strength of concrete or f, = 0.5Vfow;
A_ is the area of a typical web bar; C, is a coefficient equal to 1.4 for normal-

X |

typical web bar

’ b = width of member

Figure 5.7 CIRIA Guide 2 deep beams—symbols
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weight concrete; C, is a coefficient equal to 130N/mm? for plain round bars
and 300N/mm? for deformed bars and b, 4, y, x and a are as shown in Figure
5.7. Eqn (5.6) was based on the large number of tests carried out at
Nottingham and Cambridge Universities under the leadership of Professor
Kong, on simple span deep beams with low a/d ratios and with various web
reinforcement configurations.

The first term on the right hand side of the equation is the load carrying
capacity of the concrete compression strut on the variables. The
compression diagonal is a component of the truss model intended to explain
the beam resisting system. It is assumed that the concrete strut fails in
splitting mode when this capacity is reached.

The second term on the right hand side is the contribution of steel
reinforcement. The contribution varies as y, the depth of individual web bar,
measured from top of the beam.

5.4.3 Method of Taner et al.

Based on the diagonal splitting strength of concrete Taner et al. have
suggested that the ultimate capacity of beam panels can be obtained from the
following equation

Vi=feab+ Y f.Ascos© (5.7a)

where f, is the limiting tensile strength at which diagonal splitting will
occur; As is the area of individual web bar located along the diagonal (main

[ N :
for
fre
\ 9\\‘ main steel
— 5
tel N
| a

b = width of member

Figure 5.8 Taner et al. panel beam—symbols
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flexural tensile steel included); f. is the stress in steel which should be
established in such a way that the width of the splitting crack will be limited
(proposed strain 0.002); and 6 is the angle between the web bar and the
principal tension direction (Figure 5.8).

In this method the incidence of diagonal splitting cracks does not lead to
the assumed failure of flexural member provided that there is sufficient web
reinforcement to take over the splitting force. It also assumes that the
biaxialcompression-tension field of stress exists in the web and therefore
biaxial stress depends on the geometry of the support segment.

If the web reinforcement can take over the splitting force, then at the load
corresponding to the yielding of the reinforcement V' is given by:

Ve= ZA 0.9f,cos 0 (5.7b)

The contribution of the concrete to the ultimate strength is considered
negligible or unreliable at this stage of the loading.

5.4.4 Method of Regan and Hamadi

Regan and Hamadi have suggested that the ultimate capacity of deep webs
surrounded by frames (flanges and stiffening ribs) can be obtained from:

wfw * .
Vo= Pufow b zcot(-)+[l —mjfw bu 1" sin’ © (5.8)

where p_ is the ratio of web reinforcement, assumed equal in vertical and
horizontal directions, f  is the yield stress of web reinforcement, b is the
web breadth of beam, f, is the cube compressive strength of concrete and a,
l.,1* h, h, z and O are shown in Figure 5.9

In this method two simple models of inclined web compression actions are
considered. The first terms relates to actions associated with web reinforcement
action similar to the CEB-FIP Code. The second term relates to the single strut
which can be formed in the absence of web steel joining the reaction point to the
compression zone and forming an angle 6 with the beam axis.

5.4.5 Method of Subedi for flanged beams with web stiffeners

The method of Subedi is based on force equilibrium conditions with the
observed behaviour from the model tests. The ultimate capacity of the beam
can be obtained (Figure 5.10)
I
= (fic tw A1 + Py Az + AL fiC + An fs A3+ 2F40) (5.9
where Ay = hote+ ¢+ hiy, Ar=2hy +ti+ 1., As=hy +1 and Py=Auf
In this method the ultimate strength of flanged beam is a sum of the
contribution from: the web concrete f;, the main reinforcement, the orthogonal
reinforcement in the web, 4, and 4 and the dowel force in the reinforcement
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Figure 5.9 Regan and Hamadi frame-symbols

F,. The contribution of the main reinforcement is based on the magnitude of
the diagonal splitting force. It is taken as the smallest value obtained from: 1)
the horizontal component of the diagonal splitting force; ii) the strength of the
main reinforcement; iii) the ultimate strength of the compression flange.
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(a) Section of a flanged beam with stiffeners (b) Cross-section

Figure 5.10 Subedi flanged beam-symbols

Taner et al. (1977), Regan and Hamadi (1981) and Subedi (1983) have
suggested a simplified method for calculating the ultimate load capacity at
deep beams based on the flanged section. Taner et al. (1977) and Regan and
Hamadi (1981) have proposed a simple expression as compared with the
Subedi (1983) expression. However the Subedi’s expression is more
comprehensive and correlates better with test data.

The ACI Code, the CEB-FIP recommendations and the CIRIA Guide 2 do
not provide a design guide for flanged deep beams. In the following section
a design example is included to provide some information for the design of
flanged deep beams. In this example, Section 11.8 of the 1983 ACI Code has
been used with cutoff limits on the shear force. The result from this
modified ACI procedure is compared with the test result of Taner et al.
beam-panels.

5.5 Design example 1: Beam-panel P311 (Taner et al, 1977)

S =52T7psi (36.4 N/mm?), £ =78400 psi (541N/mm?) for Gauge 6 wire
mesh=50000psi (345N/mm?) for No. 10 (32.0mm dia.) bar; / =89-2x 10=69
in (1750mm), /=44.0 in (1120mm) and b =1.5in (38mm). Self-weight of the
beam is neglected.
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Solution
Check [ /d, evaluate factored shear force, V,, d=h-cover-1/2 dia. of bar =44-
0.5-0.625=42.875 in (1089 mm), / /d=69/42.875=1.609<5; hence treat as a
deep beam.

Factored shear force V and resisting capacity V

Vi < ¢ (8Vfe bud)
=0.85 (8V5277 (1.5) (42.875)) = 31770 b (141.3kN)
M,=Wl,/4 [Assume W=V,]
=31770% 69/4 =548 000 in-Ib (61.9 kNm).
M,/V,d=548 p00/(31770 x 42.875)=0.4023
3.5-2.5M,/V.d=3.5-2.5%x0.4023=2.5
pu=2%1.27/1.5x42.875=0.0395, V,d/M,=2.5

From Eqn 11.30 (ACI Code)

V,=2.5(19./f.+2500p, (V.d/M))b,d
=2.5(1.9,/5277 4 2500 x 0.0395 x 2.5)1.5 x 42.875
=618801bs (2653 kN)

6/f . b,d=28030 15 (124.7kN)

Shear force due to shear reinforcement V: from Eq 11.31 (ACI Code)
A (1 +h/d) Ah(11-1/d
Vs_[s[ 12 J+‘S2 ( 12 ﬂfyd

_[0.028(1 + 1.61 +0.028 11-1.61
1 6 12 6 12

H 78 400% 42.875

=15690 15 (69.8 kN)

s =d/5=42.875/5=8.6 in (218 mm)<18 in (457 mm)
s, =d/3=42.875/3=14.3 in (363 mm)<18 in (457 mm)
Minimum 4 =0.00 15 bs
=0.0015 (1.5) (8.6)=0.019 in? (12.3 mm?)
Provided 4 =0.04 in? (19.3 mm?)
Minimum 4 ;=0.0025 bs,
=0.0025 (1.5) (14.3)=0.054 in? (34.6 mm?)
Provided 4 ,=0.067 in? (43.0 mm?)
Total shear force: V =V +V =61 880+15 690=77 570 Ib (345.0 kN)
Test, V =900001b (400.3 kN).
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Revise
M =7 570x69/4=1 338 080 in-1b
M /V d=0.4;V d/M =2.5
From Eq 11.30: ¥ =61 880 1b (275.3 kN).
From Eq 11.3 1: V=15 690 1b (69.8 kN), V' =77 570 Ib (69.8 kN).
Check flexural reinforcement
M =1338 080 in-1b (151.2 kNm)
I/h=79/44=1.795<2
where [ is the effective span measured centre to centre of support or 1.15
clear span /_ whichever is smaller.
[=69+10=79 in (2007 mm) control
[=1.15 (69)=79.35 (2015 mm)
J,=0.2 (1+2.0h)=0.2 (79+2.0x44)=33.4 in (848 mm).
A=MJjf,
_ 1338080
" 33.4x 50000
Use 2.54 in? (1639 mm?) .. OK
200 bd
Iy

_200(1.5) (42.875)
N 50 000
=0.26 in? (166 mm?) .. OK

Regan and Hamadi method (beam-panel P311)

=0.80 in’ (516 mm?)

minimum reinforcement =

P fyw

Vi=pwfiwbwzcot@+|1 - ——2——
Puty ( 0.4 f.y sin” 0

jfcu by I'sin’ @

z=h-cover— 1/2(dia. of bars)
=44-0.5-0.5-0.625-0.25=42.125 in.

tan0=1[/2/h=44.5/44=1.01

. 0=45.32°
I'=h+2h=10+2x3=16 in
f1=08 f.,=fon="5277/0.8 = 6596 psi

_0.028x7
Peh= A% 1.5

pw (ave) =0.00306

=0.00297; pw.,=0.00315
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Vu=0.00306x 78 400x 1.5x42.125x 0.99

+1- 0.00306 x 78 400
0.4 X 6596 x 0.506

=807101bs (359.0 kN)

Taner et al. method (beam-panel P311)
Eqn (6b)

J6596 x 1.5 x 16 x 0.506

V=fmab+f52Ascose

From Eqn 5, f, =367 psi, £=26100psi (interpolated from the Authors’
result), a=39.5 in (centre of support to centre of load), b=1.5 in, O=tan'44/
44.5=44.67°, V =367%39.5x1.5+26100 (2.95) 0.711
=21755+54 743=76 498 1b (340.3 kN)

Egn 8
V=1 Z A; cos 0, /=38100 (interpolated from the Authors’ result),

V=38 100x2.95x0.711=79 930 1b (355.5 kN).
Subedi method (beam-panel P311)
Vi =é(ﬁC twAr+ Py Az + A, f+ An fi A3 + 2fiC)

=(134.5+155+1.9+2.6+185.2)=479.2 kN (107 700 lbs).

5.6 Design example 2: ACI Code

12 k/ft (dead load)+100 k/ft (live load); f;=4000 psi, £ =60 000 psi.
Assume d=0.9/h=0.9 (15)=13.5 ft or 162 in.
[ /d=25%12/13.5%12=1.85<2.0, hence treat as a deep beam.
beam self weight 15/12x15%0.150=2.8 k/ft
total factored load=1.4(12+2.8)+1.7 (50)=105.72 k/ft.
distance of the critical section=0.15 In=0.15%25=3.75 ft.
Design of flexural reinforcement

M,=W.,2/8=105.72x 25°/8 = 8259.375 ft—k =99112.5 in—k
I/h=28/15=187<2
Jja=0.2(1 +2.0h)
=0.2(28+2.0x 15)

=11.6 ft.
99112.5

- in?
mx60— 13.18 in

As=My/0jafy=

Provide 12# No. 10 bars 4=15.24 in?

_200bd _ 200 (15)(162) _

.2 L2
7 50000 8.1in°<1524 in". .0OK

Min A
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Calculate factored shear force—V,

The factored shear force ¥, at the critical section is

V' =105.72x25/2-105.72%3.75=925.0 kips.

Nominal shear strength V_and resisting capacity V,
=0 (8f) bud
=0.85(8VV4000 x 15 x (13.5x 12))
=1045 kips>925.0 kips OK
M, =(105.72x25) /2 x 3.75 - (105.72% (3.75) /2

=4214.28 ft—k=505474 in—-k

M.,/V.d=50547.4/(925x 162)=0.337
3.25-2.5(M,/V.d)=3.5-2.5%x0.337=2.66>2.5 use 2.5
pw=15.24 /(15 x 162) = 0.00627
Vid/M,=2.97
Ve = 2.5(1.0f%+ 2500 p(Vud/M,)bod
=2.5(1.9v4000 + 2500 x 0.00627x 2.97)15 x 162

=1012790 in-lb
6\f% byd = 634000 x 15x 162=922120 1b< 1012790 ib;

hence V=922120 Ib controls
Shear reinforcement
Assume No. 4 bars placed both horizontally and vertically on both faces of
the beam.
A=A ,=2x0.20=0.40 in?
¢ VYOV,
V=V /$)-V=(925 000/0.85)-922 120=166 115 Ib

vs=(& 1+h/d  Aw 11-1,./d)fyd

12 32 12

Assume that s=18 in in centre to centre and s5,=10.5 in centre to centre,
hence

V. 2{0.40_ [1+1.85J+ 0.40 [11 - 1.85]:| 60000 % 162

18 12 10.5 12

=333642 Ib>116 115 1b ? OK

The maximum permissible spacing of vertical bar: s=d/5 or 18.0 in which
ever is smaller; s=162/5=32.4 in. Hence 18.0 in controls, use s=18.0 in.

The maximum permissible spacing of horizontal bar: s,=d/3 or 18.0 in
whichever is smaller; 5,=162/3=54.0in. Hence 10.5 in controls use
5,=10.5 in.

Check for minimum steel:

Minimum 4 =0.0015 bs=0.0015%15%18=0.40 in>. " .OK

Minimum 4 ,=0.0025 bs,=0.0025x15%10.5=0.393 in?. . OK
Figure 5.11 shows the reinforcement details.
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Figure 5.11 Reinforcement for a simply supported deep beam (Example2)
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6 Deep beams under top and

Notation

US>

s

e T

©“

bottom loading
A.R.CUSENS, University of Leeds

area of reinforcement at dis-
tance y,

area of main tension reinforce-
ment

area of vertical shear reinfor-
cement within a distance s
area of horizontal shear rein-
forcement within a distance s2
width of deep beam
effective depth of deep beam
(to centre of main tensile steel)
modulus of rupture of concrete
cylinder crushing strength of
concrete

characteristic cube strength of
concrete

characteristic yield strength of
reinforcement

effective height of deep beam
ratio A /bd

spacing of vertical shear rein-
forcement

spacing of horizontal shear
reinforcement

maximum value of shear stress
in concrete

uniform bottom loading on
beam

uniform top loading on beam
clear shear span

6.1 Introduction

distance from top of beam to
reinforcing bar

effective span

combinations of top and bo-
tetc tom load

clear span

ultimate bending moment
applied shear force from bot-
tom loads

applied shear force from top
loads

shear capacity of beam assum-
ing bottom loads only

shear capacity of beam assum-
ing top loads only
contribution of concrete to
shear strength of beam
nominal shear strength of
beam

contribution of steel to shear
strength of beam

ultimate shear strength of
beam

wall types

angle between reinforcement
and diagonal crack

constants (Eqn. 6.)

A/bd

The nature of deep reinforced concrete beams has various implications in
structural situations. In other chapters, attention has been drawn to the
modifications needed to general flexural theory in order to predict the
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structural behaviour of deep beams. In this chapter consideration is given to
one specific implication of the depth of these elements, which is the
additional action of vertical direct tensile forces arising from substantial
loads applied at the soffit and lower levels of the beam. Research in this
field has been limited and it is therefore reviewed within the scope of the
chapter. It will be shown on the basis of comparison with laboratory tests
that CIRIA design recommendations (1977) are safe and conservative in
their recommendations for shear walls with combined top and bottom
loadings. ACI procedures for deep beams 1983 are applicable only to top
loading and these are also conservative.

6.2 Early tests on deep beams under top and bottom loading

Graf and colleagues (1943) appear to have been the first to test a deep beam
under bottom loads. The beam had a height/span ratio of 2.2 and is shown in
Figure 6.1. Load was applied through horizontal nibs built into the soffit and
initial cracks were observed above the nibs. These cracks were horizontal but
as the load was increased additional sloping cracks appeared at higher levels
in the beam. Failure occurred due to yielding of the main reinforcement and
deterioration of the section immediately above the line of the horizontal nibs.

100
A ™
i X
3000
M) (1%
ha ]
fe———1350—— a—00—

Section A-A

Figure 6.1 Details of specimens tested by Graf.
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Schiitt (1956) reported tests on a series of reinforced concrete walls under
uniformly distributed load on the top or bottom edges. The specimens used for
top loadings were as shown in Figure 6.2 and for bottom loading the
specimens were identical to those used by Graf (Figure 6.1). All the specimens
had vertical side nibs and shear reinforcement was present in only a few of the
test specimens. As a result of his tests Schiitt proposed some design rules
which are summarised under Design approaches (Section 6.7)

UMY oo
|

1000

¢

T
‘ l

N i

b — e
ko4t g 440

A

d
55
Figure 6.2 Details of specimens tested by Schiitt.

Leonhardt and Walther (1966) have also reported tests on deep beams
with top or bottom loading. They decided that the best means of providing
main reinforcement was by means of well-anchored bars from support to
support and that these should be distributed over the lower 20% of the
height of the beam. It was suggested that inclined stirrups should be
extended to a height equal to the span. Closely spaced (£ 100 mm) stirrups
were recommended to reduce crack widths, with vertical stirrups extending
the full height of the beam.
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6.3 Tests at Leeds University

A recent series of tests carried out by Besser (1983) and Cusens and Besser
(1985) examined the effects of different combinations of top and bottom
loads on the ultimate load of wall-beams (i.e. deep beams of small
thickness). This work is the most comprehensive investigation reported on
deep beams under combinations of top and bottom loading and it is used
here as the basis of comparison with the principal design approaches.

6.4 Description of test specimens

The test specimens consisted of 17 model wall-beams 72 mm thick, 1000
mm deep and 1260 mm long (1000 mm clear span). At the soffit of each
beam a 90x72 mm nib was formed on each side (Figure 6.3). Six vertical
holes 25 mm in diameter were formed in each nib. On top of the wall, at
each end, a step 5 mm deep and 130 mm long was formed leaving a central
section of 1000 mm over which the uniformly distributed load was applied.

The main longitudinal reinforcement consisted of 10 plain bars of 10 mm
nominal diameter (f=332N/mm?’). This reinforcement was placed in five
layers, consisting of five closed stirrups. The web reinforcement was
provided by an orthogonal arrangement of 6 mm diameter plain bars (f, =367
N/mm?) on both faces of the wall. The rib was reinforced with closed 10 mm
diameter stirrups (f, =332 N/mm?). Additional diagonal bars were used in the
nibs. These consisted of 6 mm diameter deformed bars (=560 N/mm?).
Details of the reinforcement and dimensions are given in Figure 6.3.

All 17 wall-beam specimens tested had equal geometry and main
reinforcement but different percentages of vertical reinforcement. A simple
code was used to identify each wall. The numbering, W1 to W5, identified
the percentage area of vertical reinforcement in the wall corresponding to
the values given in Table 6.1.

Table 6.1 Percentage of vertical reinforcement in the walls

Notation Spacing of vertical Vertical
reinforcement (mm) reinforcement rv (%)

Wi 74 1.06

w2 98 0.80

w3 56 1.40

W4 - 0.0

W5 39 2.0
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The other two symbols (L1, L2, L3, L4 and L5) correspond to the
loading. Five different combinations of top and bottom loads were used in
the tests as follows:

L1 uniformly distributed load on top of the wall-beam

L2 uniformly distributed load applied at the soffit of the wall-beam
L3 combination of top and soffit loads in a ratio 1:1

L4 combination of top and soffit loads in a ratio 2:1

LS combination of top and soffit loads in a ratio 1:2

Thus, W1-L4 refers to a wall-beam with 1.06% of vertical reinforcement and
loaded under uniformly distributed load on top and soffit in the ratio 2:1.

A rig with two cross-heads and two independent hydraulic and
mechanical systems was used to apply the loads (Figure 6.4). These loads
were applied in constant increments up to failure; at each stage of loading
the strains at both surfaces were measured and the widths of cracks were
monitored with a hand microscope.

Figure 6.4 Test rig for Leeds tests on wall-beams.

6.5 Crack patterns
Despite differences in vertical reinforcement, crack patterns were similar for

walls W1, W2 and W3 under top loading. In general, the first cracks to
appear were small flexural cracks within the depth of the nib. The next
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cracks to form were diagonal cracks, initiated near the supports and above
the nib, spreading rapidly upwards and towards the middle of the wall. At
higher loads, these cracks lengthened and new cracks were formed near the
supports, propagating parallel with or at wider angles than previous cracks.
The failure of the specimens was brought about by local crushing of the
concrete at the support joints.

The development of cracks in walls W1, W2, W3, W4 and W5 under soffit
loading, was influenced largely by the amount of vertical reinforcement.
Different percentages of reinforcement were provided by varying the spacing
of the 6 mm vertical bars in the members. In general, the first crack was
observed at a depth of about 200 mm and extended horizontally along at least
the middle third of the span. With increased load, new cracks were formed
above the first, creating an arch-shaped pattern of cracks (Figure 6.6 b and c).
The average spacing between cracks on the central vertical section of the walls
varied with the spacing of vertical reinforcement. This is illustrated in Figure
6.5, which shows that for larger percentages of vertical reinforcement the
average spacing between horizontal cracks reduced.

750
100 AW2-13 (r,:080%)
W wi-13 (= 1.06%)
850 ® W3- 13 (= 1.40%)
600 _ _,—ﬂ
Z 550
[an]
< s00
- e
.—""/

450

400

Bm#l 1 1 i L I ] 1 i L L
00 0.2 03 04 0SS 06 07 08 09 10 WM 1.2
CRACK WIDTH (mm)

Figure 6.5 Effect upon average spacing of cracks of vertical reinforcement under bottom
loading (L2).

Under combined top and bottom loads, the crack pattern was influenced
by both the ratio of top loads to bottom loads and the percentage of vertical
reinforcement. A selection of the final crack patterns exhibited in the tests is
given in Figure 6.6. Fuller details are available in Besser’s thesis (1983).
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Figure 6.6 Final crack patterns a. W4-L2 ( =0) at 140 kN, soffit loading only; b. W1-L2
(r,=1.06%), soffit loading only; c. W3-L2 (r =1.4%), soffit loading only; d. W1-L5 (r,=1.06%), 1:2
top and soffit loading; e.W1-L3 (r,=1.06%), 1:1 top and soffit loading; f. W1-L4 (r=1.06%), 2:1
top and soffit loading; g. W1-L1 (r =1.06%), top loading only.

6.6 Crack widths

Cracks are commonly regarded as a cause for concern by engineers because of
the possibility of corrosion of the reinforcement. For serviceability purposes
BS8110 limits the crack width to 0.3 mm for members exposed to an aggressive
environment. The Comité Européen du Béton (CEB) (1970) has similar
proposals, in which the crack width is restricted to 0.1 mm for aggressive
environments, 0.2 mm for normal external conditions and 0.3 mm for normal



internal conditions. Table 6.2 shows the loads at which crack widths of 0.05,
0.1, 0.2 and 0.3 mm were observed for the specimens tested. For all wall-beams
the general crack width limit of 0.3 mm recommended by the Construction
Industry Research and Information Association (CIRIA) (1977) Guide is easily
satisfied for all loads below design ultimate; even the crack width limit of 0.1
mm for aggressive environments demanded by CEB (1970) is satisfied.

Table 6.2: Loads at which crack widths of 0.05, 0.10, 0.2 and 0.3 mm were observed

Ultimate Cylinder

load Cube splitting  Crack width (mm) Maximum
CIRIA splitting strength ) test load

Specimen (kN) £, (N/mm?) fu(N/mm?) 0.05 0.1 02 03 (kN)
W1-L1 5278 38.8 247 600 700 - - 1100 F
WI1-L2 209.6 38.8 247 180 210 237 253 375 C
W1-L3 204.1 38.8 2.47 360 422 485 510 750 C
“W1-L4 3458 38.8 247 440 625 713 765 1000 C
WI-L5 262.1 38.8 247 250 325 400 427 570 C
W2-L1 5434 439 2.63 575 700 1000 - 1100 F
W2-L2 158.2 439 2.63 167 190 217 227 300 C
W2-L3 240.5 439 2.63 305 318 343 365 600 C
W2-L4 289.6 439 2.63 470 565 635 662 900 C
W2-L5 206.7 439 2,63 200 250 305 325 400 C
W3-L1 564.9 439 2.63 650 800 1100 - 1300 F
W3-L2 276.8 439 2.63 255 315 358 375 500 C
W3-L3 365.2 439 2.63 575 645 685 700 940 F
W3-L4 416.8 439 2.63 860 1000 - - 1200 F
W3-L5 3328 439 2.63 450 510 550 570 800 F
W4-L2 - 43.9 2.63 130 130 130 130 150 C
wsL2 3954 439 263 275 - - 375 C

F=failure in bearing at support.
C=test suspended due to large crack widths and extensive damage to concrete.
S=test suspended before failure.

In general, cracks were detected initially when their width was about 0.02
mm. For top-loaded specimens a diagonal crack provided the greatest crack
width. For beams loaded at the soffit, a horizontal crack invariably gave the
largest crack width. Figure 6.7 presents the maximum crack widths for top-
loaded wall-beams (loading L1). For the three specimens, this measurement
took place at a height of about 250 mm from the soffit. On examining Figure
6.7 the maximum crack width seems to have developed very similarly in
specimens W1 and W2. For a given load, crack widths in specimen W3 were
slightly narrower than those in the other two wall-beams, and this is attributed
to the larger percentage of vertical reinforcement (1.4%) in specimen W3. In
general, the results indicate that up to a load of 1000 kN the crack widths in
the three specimens exhibited relatively linear behaviour.
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Figure 6.7 Crack width development for top-loaded walls.

The values of maximum crack width for bottom-loaded (L2) walls are
summarised in Figure 6.8. This figure exhibits values of mid-span crack
width up to 1.2 mm. In specimen W4, the first crack appeared at a load of
130 kN and measured 3.5 mm. This large instantaneous crack width was
predictable because of the absence of vertical reinforcement in W4.

Under combined top and bottom loads, the maximum crack width was
also recorded on horizontal cracks at mid-span. Figure 6.9 shows these
values for crack widths up to 1.2 mm for the specimens loaded under equal
top and bottom loading (L3). It is clearly shown in Figure 6.8 and 6.9 that
when load was applied at the soffit, the crack width in the wall-beams was
directly dependent upon the amount of vertical reinforcement.

6.7 Design approaches

6.7.1. American Concrete Institute

The ACI Building Code 318M-83 presents a series of rules applicable to
flexural members with a clear span to effective depth ratio (L /d) less than 5
and loaded at the top face.

For members subject to shear and flexure the nominal shear strength V' is
found from the contributions of steel and concrete, i.e. V =V +Vs.

I p i<z, Vi< bd (6.1a)
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Figure 6.8 Crack width development for bottom loaded walls (Loading L2).

For (6.1b)

2<Lo/d<5 V, <0.055 (10+%]\/}?bd

where f is the cylinder crushing strength of concrete. These equations are
expressed in SI units (note that Eqn (6.1b) is shown incorrectly in the June
1984 printing of the Code.)

Ultimate shear strength ¥ =0.85V . For detailed calculations the shear
strength provided by the concrete is

_(35-2.5M,\(ym Vabd
V°"[ Vd j(ﬂHzOpru] 7 (6.2)

where M, V, are the factored moment and shear force occurring
simultaneously at the critical section for shear: p =4 /bd where A_is the area
of main tension reinforcement.
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In Eqn (6.2)
_25M.

35— 2 (6.22)
V.< %\/F bd (6.2b)
Av Lo Avh Lu M (63)
< =2 o | vy e
venssv [ 1+ 5} Ao -

where A is the area of the vertical shear reinforcement within a distance s
and A , is the horizontal shear reinforcement within a distance S,.

6.7.2 Schiitt'’s equations

Schiitt (1956) evolved Eqn (6.3) on the assumptions that 1/3 to 2/3 of the
main flexural reinforcement was bent up to provide shear reinforcement and
that the area of main reinforcement was determined by the design bending
moment on the beam. For uniform top and bottom loads w, and w, per unit
length, his equations may be rearranged in the form:

‘ X - /concenhufed top load
{clear shear span) ‘l
A A
/
/
/
= /
g | /
£
e notional shear
8 splitting line
OD /
[
“1g
vy
2
&
s
typical bar

crossing Y-Y, area Ap

l Lo
i ) (ceLur span)
{effective span)

A
v

Figure 6.10 Clear shear span for top loads (CIRIA Guide 2).
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- 0.5w, + 0.45wbﬁbb2@ (6.4)

ultimate shear force Ve
Wi+ Wy b

where f, is the modulus of rupture of the concrete. Eqn (6.4) takes no
account of the volume of web shear reinforcement.

6.7.3 CIRIA Guide

In 1977, CIRIA published a Guide to the design of deep beams. This
presents the most comprehensive set of design recommendations available
and includes a condition to be satisfied when both top and bottom loading
are present. The condition states

VoV IV V)<l (6.5)

where V and V are the values of applied shear force from top and bottom
loads respectively, V and V', are the shear capacities assuming top loads
only or bottom loads only. V is defined as the lesser of 0.75 bh v and the
resultant force taken by the shear reinforcement, where v, is the maximum
value of shear stress in concrete from CP110 (Cusens and Besser, 1985) V|
is based on Kong’s work and is stated as:

Va o acXe 100 Ay; sin® 6, (6.6)
b <M (1 0.35 h][\/f_ +A2 Z———bhg ]

where: A,, A, are constants, dependent upon type of aggregate and type of
reinforcement respectively; 6. is the angle between reinforcement and
diagonal crack (Figure 6.10); y, is the distance from top of wall to position
of bar; and x_ is the effective clear shear span (Figure 6.10). However, the
ultimate shear capacity is subject to the condition:

V< 1.30 Vf., bh, (6.7)

In all cases shear reinforcement must be provided to carry at least 20% of
the ultimate shear force.

The CIRIA Guide recommends particular arrangements of shear
reinforcement for bottom loads (which are also applicable to indirect loads).
Figure 6.11 shows an arrangement where steel additional to the nominal web
reinforcement is provided in the form of an orthogonal mesh. Figure 6.12
shows an alternative arrangement consisting of inclined bars.

6.8 Top-loaded wall-beams

The values of ultimate shear strength for the Cusens and Besser (1985) wall-
beams W1-L1, W2-L1 and W3-L1, which were loaded on the top only, have
been calculated using the three design approaches of ACI, Schiitt and
CIRIA.
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Table 6.3 compares the ultimate load capacity of top-loaded wall-beams
WI1-3 as predicted by the respective equations. In the calculations for the
ACI method Eqn (6.1a) governs for this group of wall-beams and the

| - Nominal web reinforcement
I | beyond shear area bond
|r 1 with shear mesh
i1 o [} pu
::/;rrt;lcfa;rgirv c\;/fhr:rec“lz’ is ] Horizontal bars of mesh carry force
the max. shear at the Y 0.8V distributed over height 0.5h,.
face of support [ % gﬁoar;rt)rii!uetzl may be assurned to
o Bars in orthogenal mesh anchored
5L (eg as ljnks) to develop design
s|E \; stresses at or beyond shear
S - I area limits
55 |
olc
5|2 | F— Principal bending reinforcement
58|~ I
S|E } —
At a direct supr.\or(Avertical l kO.3I or 0.4h, [ Deep beamafiactive height hy
mesh reinforcement is b | take smaller value offective span |
extended over the support. '_T ¥ Width of orth * | N
At an indirect support ’ idth of orthogonal mes
hanger reinforcement is required of shear reinforcement

Length of indirect support or altarnatively
length of direct support

Table 6.3 Predicted ultimate loads and test values for top-loaded wall-beams

unmodified value of V, has been used. In evaluating the Schiitt Eqn (6.4) the
value of the modulus of rupture of concrete has been assumed to be
2xgplitting strength for each specimen. In the CIRIA Eqn (6.6) the
recommended values A =0.44 for normal concrete and A,=0.85 N/mm2 for
plain bars have been used.

Figure 6.11 Shear reinforcement at support for bottom loads (CIRIA Guide 2).

Cracking Failure
ACI Schiitt CIRIA load load
Specimen (kN) (kN) (kN) (kN) (kN)
WI1-L1 496 103 528* 600 1100
W2-L1 517 110 543 500 1100
W3-L1 545 110 565* 600 1300

* Value from Eqn (6.6). However, governing ultimate shear capacity values are W1-L2:513
kN and W3-L1:546 kN.

The load at which the first diagonal crack was detected in these specimens
is also given in Table 6.3. It can be observed that Schiitt’s equation is grossly
conservative and that the ACI figures are more conservative than the CIRIA
values. Both CIRIA and ACI design values of ultimate loads are in the same
range as the test values of load at first crack. However, the failure load for
these three specimens is more than twice the shear strength calculated by Eqns
(6.1a) and (6.6). Moreover Eqn (6.6) values for two of the wall-beams exceed
the governing value of Eqn (6.7). In addition, failure of these specimens was
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Figure 6.12 Alternative arrangement of shear reinforcement at end support for bottom loading
(CIRIA Guide 2).

actually due to local crushing in bearing (Table 6.2), suggesting an even
greater capacity of the section to resist shear.

Both the ACI and CIRIA equations refer to design ultimate loads with
some in-built material factors and perhaps the conservatism of the calculated
values is not surprising. It should be noted that concrete is the sole
contributor to shear strength in the ACI code (Eqn (6.1a) which is the
governing equation here) and that concrete strength is the major contributor
in the CIRIA Eqn (6.6); in computing the values given in Table 6.3 the
actual test results of concrete strength were used. A designer would use
characteristic strength values which would lead to even lower estimates of
ultimate load—i.e. effectively providing an additional material factor not
considered here.

It may be concluded that for these wall-beams the CIRIA and ACI procedures
predicted the approximate load at which the first diagonal cracks occurred, with
the value of ultimate shear strength being more than twice the predicted figure.
Schiitt’s equation does not appear to have any practical value.

6.9 Bottom-loaded wall-beams

Of recent documents dealing with recommendations for reinforced concrete
design, only the CIRIA (1977) Guide has specific proposals for designing
deep flexural members loaded at the soffit or under combined top and
bottom loads. Schiitt’s equation considers top and bottom loads but does not
consider the effect of the volume of shear reinforcement; moreover in view
of the evidence of Table 6.3 it is unlikely to be of practical significance.
Table 6.4 presents data concerning five wall-beams tested under load at
the soffit only (loading L2). This data is listed in relation to the ascending
percentage of vertical reinforcement 7 in the specimens. Wall-beam W4,
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without vertical reinforcement, sustained 130 kN before it cracked
horizontally, forming a secondary beam at the lower level of the wall, whose
flexural rigidity continued to carry load. A small increase in the cracking
load can be observed in specimen W2 with 0.8% of vertical reinforcement.
For the range of vertical reinforcement from 0.8 to 2.0%, the load at first
horizontal crack was virtually constant. The cracking load noted for
specimen W3 is inconsistent with other values and is thought to be due to a
delay in detecting the initial crack.

Table 6.4 Effect of vertical reinforcement on cracking load and comparison with CIRIA ultimate
load prediction for wall-beams loaded at the soffit only (loading L2)

Vertical
reinforcement CIRIA Schiitt Cracking load Ultimate load
Specimen rv (%) (kN) (kN) (kN)
W4-L2 0 0 92 130 150
W2-L2 0.80 158 92 167 300
Wi-L2 1.06 210 86 167 375
W3-L2 1.40 277 92 200 500
W3-L2 2.00 395 92 164 -

6.10 Combined top and bottom loading

When combined top and bottom loading is present the CIRIA Guide states that
Eqn (6.4) should be applied. The equation controls the permissible amounts of
top and bottom load for a given deep beam and clearly is of interest here. In
Figure 6.13 the ultimate test loads are compared with the CIRIA values; with
the exception of the bottom loaded wall-beams, all tests show an ultimate load
of at least twice the design ultimate value. Bearing in mind that in tests the
ultimate loads in shear of the stronger wall-beams were limited by local
crushing failures (Table 6.2), the CIRIA values are obviously quite
conservative for wall-beams with a high proportion of top loading.

Adopting the CEB criteria of a 0.1 mm crack width as a serviceability
limit state, Figure 6.14 compares the corresponding loads in tests of wall-
beams W1, W2 and W3 and the CIRIA ultimate load values calculated from
Eqns (6.1) and (6.2). All test loads corresponding to a maximum crack width
of 0.1 mm are in excess of the CIRIA predictions of ultimate load. The load
factor is enhanced as the proportion of top-loading increases above 50% and
also with the percentage of vertical reinforcement.

If Schiitt’s equation (Eqn (6.4)) is applied to these beams all of the results
for ultimate load fall within the range 85-112 kN and although individual
values are influenced by the ratio of top/bottom loading, the effects are
small. Moreover the volume of shear reinforcement is not taken into account
and, in comparison with test results, values are ultra-conservative. Use of
this equation is not recommended.
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Figure 6.13 Comparison of CIRIA ultimate loads and ultimate test loads.
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6.11 Summary and recommendations

The chapter has reviewed the principal research programmes and design
approaches for deep beams under top and bottom loading. Of the three
design approaches available, the American Concrete Institute method makes
no special provision for bottom loading and is very conservative for top
loaded beams. The Schiitt equation (Eqn (6.4)) is dependent primarily upon
the concrete tensile strength and dimensions of the deep beam. Although the
ratio between top and bottom loading is taken into consideration in the
equation the apparent effect is much smaller than obtained in tests. The
equation also makes assumptions about the volumes of tensile and shear
reinforcement which limit its use. All calculated results of ultimate load
have been found to be grossly conservative and use of the equation by
designers is not recommended.

The CIRIA Eqns (6.5) and (6.6) take into account the volume of shear
steel and the ratio of top/bottom loading. The CIRIA estimates of ultimate
load accord more accurately with test values of initial cracking (or
serviceability) load than with values of ultimate load. Booth (1986) points
out that the CIRIA recommendation (Eqn (6.6)) is based on a lower bound
curve set at about 75% of Kong’s experimental values. Moreover the A, and
A, values in Eqn (6.6) include some allowance for variability of materials.
Overall, the 1977 CIRIA recommendations provide a rational and safe
approach to the design of deep beams under combinations of top and bottom
loading, although, the design guide is long overdue for revision, to include
the provisions of BS8110 (1985), rather than the obsolete CP110.
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7 Shear strength prediction—

softened truss model
S.T. MAU and T.T.C. HSU, University of Houston

Notation

a shear span; measured centre-to-
centre from load to support

a’ shear span measured from centre
of loading to edge of support

A,  cross-section area of horizontal
web steel

b thickness of beam
stress ratio 6 /f°,

ent index in 1-direction
ratio v_/,
n C

ent index in t-direction

d effective depth of beam; meas-
ured from extreme compression
fibre to centre of tension reinfor-

cement

d distance from top surface of the
beam to centre of flexural comp-

ression steel

E,  initial modulus of elasticity of
concrete taken to be -2/ /e,

E, modulus of elasticity of reinfor-
cing bars

f.  cylinder compression strength of

concrete

sumed to be 4\f%
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limiting constant for reinforcem-
C limiting constant for strength

C limiting constant for reinforcem-

d effective depth of shear element,
taken as d-d” when compression
steel is present and 0.9d when
compression steel is not present

cracking strength of concrete, as-

N

xS

steel stress in 1-direction
yielding stress of longitudinal st-
eel reinforcement

steel stress in the t-direction
yielding stress of transverse steel
reinforcement;

yield stress of steel reinforcement
total depth of beam

ratio of the effective compressive
stress in transverse direction to
the effective shear stress in the
shear element

the longitudinal direction; usually
horizontal for a beam;

clear span of the beam

effective transverse compression;
acting on the shear element
ratio of calculated shear strength
to test shear strength

ratio of theoretical shear strength
from softened truss model to exp-
erimental shear strength

spacing of vertical reinforcement
spacing of horizontal web reinfo-
rcement

the transverse direction; usually
vertical for a beam

effective shear stress in the shear
element

shear strength taken as the maxi-
mum shear stress in the v-vs 71t
curve

shear force in the shear span
ultimate shear force



X clear span of the shear span, me- P, reinforcement ratio of flexural
asured from edge of loading to compression steel
edge of support P reinforcement ratio in 1-direction
o angle of inclination of the d-axis P, reinforcement ratio in t-direction
with respect to l-axis; p,  reinforcement ratio of horizontal
Yo average shear strain in the I-t co- web steel
ordinate (positive as shown in p,  reinforcement ratio of flexural
Figure 7.1 for 1) tensile steel
e,  tensile strain at which concrete o,  principal stress in concrete in the
cracks, taken to be f, /E, principal d-direction
€, average principal strain in d-dir- o, normal stresses in the combined
ection reinforced concrete element in I-
g, average normal strain in the 1- direction (positive for tension)
direction (positive for tension) o, principal stress in concrete in the
g,  yield strain of longitudinal steel principal r- direction
reinforcement o, normal stresses in the combined
€, compression strain at maximum reinforced concrete element in t-
stress in a uniaxial stress-strain direction (positive for tension)
curve of concrete cylinder; tak- o0,  normal stress in concrete in the |
en as—0.002 direction (positive for tension)
g, average normal strain in r-direc- o,  normal stress in concrete in the t
tion direction (positive for tension)
g, average normal strain in the t- T shear stresses in combined rein-
direction (positive for tension) forced concrete element in I-t co-
g,  yield strain of transverse steel ordinate (positive as shown in
reinforcement. Figure 7.4)
4 softening coefficient (reciprocal T,  shear stress in concrete in the I-t
of A) which is less than unity co-ordinate (positive as shown in
A coefficient for softening effect, Figure 7.4)
given by Vecchio and Collins ®,  reinforcement index in I-direction
0 Poisson’s ratio o, sreinforcement index in t-direction

7.1 Introduction

In the past, there were two basic approaches used to analyse shear problems
in reinforced concrete: namely, the mechanism method and the truss model
method. The mechanism method is the basis of the current shear provisions
in the ACI Code (ACI-318, 1989). By fitting the mechanism method to the
test results, the ACI method becomes empirical or at best semi-empirical.
From a theoretical point of view, this method cannot satisfy the
compatibility condition, unless the materials (concrete and steel) are
assumed to have infinite plasticity.

It is generally agreed by researchers in recent years that the truss model
theory provides a more promising way to treat shear. First, it provides a clear
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concept of how a reinforced concrete beam resists shear after cracking.
Second, the effect of prestress can be included in a logical way.
Consequently, the whole range of prestressing from nonprestressed
structures to fully prestressed structures can be unified. Third, the
interaction of bending and axial load with shear can be easily managed. The
combination is quite consistent and comprehensible. Fourth, it can serve as a
basis for the formulation of general design codes.

The original truss model concept was first proposed to treat shear
problems by Ritter (1899) and Morsch (1909) at the turn of the twentieth
century. It was extended to treat torsion problems by Rausch (1929) in 1929.
In these theories, a concrete element reinforced with orthogonal steel bars
and subjected to shear stresses will develop diagonal cracks at an angle
inclined to the steel bars. These cracks will separate the concrete into a
series of diagonal concrete struts, which is assumed to resist axial
compression. Together with the steel bars, which are assume to take only
axial tension, they form a truss action to resist the applied shear stresses. For
simplicity, the concrete struts are assumed to be inclined at 45° to the steel
bars. Consequently, these theories are known as the 45° truss model.

The rudimentary truss model of Ritter, Morsch and Rausch is very
elegant and the equations derived from the equilibrium conditions are
simple. Unfortunately, the predictions from these equations did not agree
with the test results. For the case of pure torsion, the theory may
overestimate the test values by 30%. For the case of low-rise shear walls,
the overestimation may exceed 50%.

In order to improve the predictions of the truss model, the theory had
undergone three major developments. The first important development was
the generalisation of the angle of inclination of the concrete struts by Lampert
and Thurlimann (1968). They assumed that the angle of inclination may
deviate from 45°. On this basis, three basic equilibrium equations had been
derived, which could explain why longitudinal and transverse steel with
different percentages can both yield at failure. Their theory was known as the
variable-angle truss model. The second development was the derivation of the
compatibility equation by Collins (1973) to determine the angle of inclination
of the concrete struts. Since this angle is assumed to coincide with the angle of
inclination of the principal compression stress and strain, this theory is also
known as the compression field theory. In this theory, the average strain
condition should satisfy Mohr’s strain circle and the stress in the concrete
struts should satisfy Mohr’s stress circle. The third development was the
discovery of the softening of concrete struts by Robinson and Demorieux
(1968) and the quantification of this phenomenon by Vecchio and Collins
(1981). Vecchio and Collins proposed a softened stress-strain curve, in which
the softening effect depends on the ratio of the two principal strains.

Combining the equilibrium, compatibility and softened stress-strain
relationships, a theory was developed which can predict with good accuracy the
test results of various types of reinforced concrete structures subjected to shear

© 2002 Taylor & Francis Books, Inc.



or torsion. The theory can predict not only the shear and torsional strengths, but
also the deformations of a structure throughout its post-cracking loading history.
This thoery is called the softened truss model theory to emphasise the
importance of the concrete softening phenomenon. It has been successfully used
to predict the shear strength of low-rise shearwalls (Hsu and Mo, 1985d; Mau
and Hsu, 1986), shear strength of framed wall panels (Mau and Hsu, 1987a),
shear transfer strength across an initially uncracked shear plane (Hsu, Mau, and
Chen, 1987), torsional strength of beams (Hsu and Mo, 1985a, b, c¢), and
membrane strength of shell elements (Han and Mau, 1988).

The softening of concrete struts was also incorporated in the prediction of
the shear strength of beams by Hagai (1983), For slender beams with shear-
span to effective-depth ratio between 2.5 and 6, his truss model predictions
agree well with experimental results. However, for beams with shear-span to
effective-depth ratio below 2.5 (i.e. the range of deep beams), his predictions
underestimate considerably the actual shear strength. For example, for shear-
span to depth ratio equal to or less than 0.5, the underestimation may exceed
50%. In this study, it is shown that a correct model for deep beams in shear
should include a component of transverse compression in the shear element.
With the proper estimation of this transverse compression, the softened truss
model theory predicts accurately the shear strength of deep beams.

In this chapter, the modelling of the deep beams is described first. The
softened truss model theory is then introduced in detail and is applied to the
deep beam model. A prediction of the shear strength is obtained by tracing
the load-deformation history numerically and locating the peak shear stress.
The accuracy of the theoretical prediction is established by a comparison
with experimental data and a sensitivity study. From the theoretical
equations, it is seen that the most important factors in the shear strength of
deep beams are the shear-span to height ratio, the amount of longitudinal
reinforcement, and the amount of transverse reinforcement. A parametric
study is carried out to determine the influence of the three factors on the
shear strength of deep beams.

Based on the results of the parametric study, an explicit shear strength
formula is derived from the equilibrium equations and simplified to a form
suitable for design purposes. The constants in the formula are calibrated
with experimental data.

7.2 Modelling of deep beams

7.2.1 Shear element

Consider a typical deep beam of rectangular cross-section loaded on top and
simply supported at bottom as shown in Figure 7.1. Within the shear span a,
the beam can be separated into three elements—each with a different
function to resist the applied load. The top element with a thickness of d’,
including the concrete and the longitudinal compression steel, is to resist the
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longitudinal compression resulting from the sectional moment. The bottom
element, including only the longitudinal tension steel, is to resist the
longitudinal tension resulting from the sectional moment. The middle
element, including the web reinforcement and both the top and bottom
longitudinal steel, is to resist the sectional shear. This web shear element is
indicated in Figure 7.1 by the dashed lines. The height of the web shear
element is denoted by d_ and is equal to d-d’. The top and bottom
longitudinal bars are used to carry the flexural stresses as well as the
longitudinal stresses due to shear.

a Vv \)
d a
+ X
| -
! |
Shear
d|dy : : s2l h
) Element |
S
R Lo __J >
B L . 1_ b
' 1 I"‘"
v [ v

p
Figure 7.1 Definition of symbols and stress condition in shear element

If the shear element were assumed to carry only an average shear stress,
then the model would be similar to that for a slender beam (Hagai, 1983).
The model would lead to the underestimation of the shear strength when the
softened truss model is applied. In order to reflect the special characteristic
of a deep beam, the concept of an average compressive stress in the shear
element is developed.

7.2.2 Effective transverse compression

For a simple deep beam with concentrated load on top, the top load and the
bottom support reaction create large compressive stresses transverse to the
horizontal beam axis. These transverse compression stresses interact with
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the shear stresses to form a complicated stress field in the web. Because of
the short horizontal distance between the top and bottom loading points (i.e.
small a/h ratio), the effect of such a transverse compression stress on the
shear strength of the web is quite significant and should not be ignored, as in
the case of slender beams. In fact, such a transverse compression stress is
the source of the arch action unique to deep beams.

Ha= h/4 '-—-la=h/_2

7N P -
/ I \ 7N el Distribution
\ / \ ;
! \ / \ y; H of Transverse
/\ _ﬁ/_‘]l’ 1' Compression
h —h——l——l—
i ons2 ) 1 hi2 ] /' h/2 L — Isostatic
\ ] " // ,l // Compressive
\ / \ ’ 1 L’ Curve
\\ 7 7 \>4’
{(a) a’/h=0 (b) a’/h = 0.25 (c) a’/h =0.5

lt—a=h——-‘ }1— a=2h ———.l
,/"\‘ ,7 N
7 7 \

} s ]

P / - /—l\
h - — 7/ 7/‘ = —— 7
I’ //’—_ /, e
,' y f
\ e \ ,
\\4’ N~
(d) a/h =1 (e) a’th=2

Figure 7.2 Distribution of transverse compressive stress for various shear span ratios

The distribution of the transverse compression stresses within the shear span
is estimated as follows. In Figure 7.2, the distributions of transverse
compression stresses at mid-height of the beam are sketched for various a/A
ratio from 0 to 2. For a/h=0, transverse stress is maximum at the line of actions
and gradually decreases when moving away from the line of action. This
characteristic of stress distribution should remain the same for the two cases of
a/h =0.25 and 0.5, except that the maximum stress is now located at the centre
of the shear span. The magnitudes of the maximum stress also decrease slightly,
and the stresses become more uniform when a/4 increases from 0 to 0.5. For a/
h=1, the maximum stress will occur at two locations near the two lines of action,
and the distribution of stress shows the characteristics of two humps. For a/h=2,
this two-humps characteristic becomes more distinct, meaning the stresses are
approaching zero at the centre of the shear span.
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Figure 7.2 also shows the isostatic compression curves (dotted) for the
various cases. For the three cases a/A=0, 0.25 and 0.5, each isostatic curve
can be approximated by an ellipse. In contrast, for the case of a/h=2, the
isostatic curve concentrates near the two loading points. The curve for a/h=1
lies somewhere in between.

The effect of transverse compression can now be represented by an
effective transverse compression of intensity p, acting uniformly throughout
the shear element. The magnitude of the effective transverse compression p
is related not only to the shear force ¥, but also to the shear span ratio.
Obviously, the larger the shear span ratio, the smaller the effective
transverse compression will be, given the same shear force V. Therefore, the
effective transverse compression p can be developed as a function of shear
force V and the shear span ratio a/h.

Consider the case of a/h=0.5 as shown in Figure 7.2(c). The dotted
isostatic curve indicates the boundary of a possible stress path between the
top and bottom loading points. The width of the load path at the mid-height
can be estimated as 4/2, which is the same as the shear span a. Thus, an
estimate of the effective transverse compression is p=V/ba or 2V/bh, where b
is the width of the beam. For larger a/h, p should decrease to zero at certain
value of a/h. It is reasonable to assume that such a value is a/A=2. Beyond a/
h=2, the shear behaviour would approach that of a slender beam. When a/h
increases from 0.5 to 2, p will decrease not only with V/ba, but should
incorporate a linear function (4/3-2a/3h) so that p=0 when a/h=2. The
resulting expression for p is

V(4 2a
== —== < <
ba (3 3hJ 0.5<ash<2

The right-hand side of this equation can be expressed in terms of the
nominal shear across the whole section V/bh

vIa(n 1
=, [3 [a - 2}] 0.5<a/h<2 (7.1)

This expression is plotted in Figure 7.3.

For a/h<0.5, the transverse compression is assumed to remain constant
since the effective area remains essentially the same as shown in Figure 7.2(a)
and (b). The expression of p=2V/bh for a/h<0.5 is also shown in Figure 7.3.

An effective shear stress v in the shear element can be defined by the
following formula

v=V/bdv (7.2)

Thus the stress conditions for the shear element are completely defined
by p and v. To find the shear strength of the beam is to find the maximum
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Figure 7.3 Estimation of effective transverse compression

shear stress v that the shear element can withstand. This calls for the
solution of equations governing the equilibrium, compatibility and material
behaviour of the shear element. These equations can be obtained from the
equations of the softened truss model theory for a reinforced concrete
element carrying general two-dimensional stresses.

7.3 Softened truss model

7.3.1 Fundamental assumptions

A reinforced concrete element is subjected to shear stresses and normal
stresses as shown in Figure 7.4. The directions of the longitudinal and
transverse steel bars are designated as the /-and t-axes, respectively, forming
the /-t co-ordinate system. Accordingly, the normal stresses are denoted by G,
and o, and the shear stresses are 1,

After the development of diagonal cracks, the concrete struts are
subjected mainly to compression and the steel bars act as tension links, thus
forming a truss action. The compression struts are oriented in the d-axis,
which is inclined at an angle o to the longitudinal steel bars. This direction
is also assumed to be the direction of the principal compressive stress and
strain of the concrete element. Taking the direction perpendicular to the d-
axis as the r-axis, a d-r co-ordinate system in the direction of the principal
stresses and strains is established. The normal principal stresses in the d- and
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Figure 7.4 Stress condition in reinforced concrete element

r-directions are 0, and o, respectively. The concrete strut is also assumed to
carry a small tension in the r-direction, G..

It is assumed that the behaviour of the cracked concrete element may be
characterised by its overall average strain and stress. The assumption is based
on the availability of an empirical material law linking the average strain to the
average stress in the concrete. This material law will be described later. With
this assumption, the difficulty encountered in the characterisation of the local
behaviour between the cracks is bypassed. The average normal strains of
concrete in the longitudinal and transverse directions are assumed to be
identical to those in the longitudinal and transverse reinforcements.

7.3.2 Stress transformation (equilibrium)

From the three equilibrium conditions of the truss model, it can be shown (Hsu,
1984) that the stresses in the concrete satisfy Mohr’s stress circle. Thus,

6,=0,cos’ 0+0,sin® o (7.3a)
0,=0,sin’ 0i+G cos? o (7.3b)
7,.~(0,-0,)sin 0icos O (7.3¢)

where 6, , 0, are normal stresses in concrete in / and t-directions,
respectively (positive for tension); 7, is shear stress in concrete in /-t co-
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ordinate (positive as shown in Figure 7.4); 6,, ©, are principal stresses in
concrete in d- and r-directions, respectively (positive for tension) and o is
the angle of inclination of d-axis with respect to /-axis.

Assuming that the steel bars can resist only axial stresses, then the super-
position of concrete stresses and steel stresses gives:

6,~0,c0s* 0i+0 sin? o+ f; (7.4a)
06=0,sin? 0/+0,cos? 0P f; (7.4b)
1,~(0,-0,)sin 0lcos O (7.4¢)

where G, 0, are normal stresses in the combined reinforced concrete element
in / and t-directions, respectively (positive for tension); 1, is the shear stress
in the combined reinforced concrete element in /-t co-ordinate (positive as
shown in Figure 7.4); p,, p, are reinforcement ratios in /- and t-directions,
respectively and f,, f, are steel stresses in /- and t-directions, respectively.

Comparison of the stress condition of a reinforced concrete element
shown in Figure 7.4 with the stress condition of the shear element in a deep
beam shown in Figure 7.1 leads to

=0 (7.5a)
o=p (7.5b)
T,=V (7.5¢)

Combining Eqns (7.4) and (7.5), the following equilibrium equations are
obtained for deep beams:

©,sin? 0+0 cos? o+p /=0 (7.6a)
©,cos? o+ sin? oHp f=-p (7.6b)
(0,-0)sin 0icos O=-v (7.6¢)

The above equilibrium equations are expressed in terms of s_ and sd because
the concrete material law will be expressed in terms of these stresses.

7.3.3 Strain transformation (compatibility)

From the compatibility condition of the truss model, it can also be shown
(Hsu, 1984) that the average strains (or smeared strains) satisfy Mohr’s
strain circle, giving:

€=€,c0s? or+e sin’ o (7.72)
€=€,sin’ o-+€ cos? o (7.7b)
Y,=2(g,-€,)sin 0icos o (7.7¢)

where €, € are average normal strains in /- and t-directions, respectively
(positive for tension), v, denotes average shear strains in /-t co-ordinate
(positive as shown in Figure 7.1 for 7,) and €, € are average principal
strains in d- and r-directions, respectively (positive for tension). The normal
strains in the d-r co-ordinate are needed in the concrete material law,
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whereas the normal strains in the /-¢ co-ordinate are needed in the material
law of the reinforcing bars.

Eqgn (7.8a)

_Cf’c. ________

Eqgn (7.8b)

Le, €4
(a) Compression Stress—Strain Relationship

Iy
Eqgn (7.9a)
ferf-
Egn (7.9b)

Mm%~

(o]
-

€

(b) Tension Stress—-Strain Relationship
Figure 7.5 Stress-strain relationship for softened concrete

7.3.4 Material laws

The stress and strain of concrete in the d-direction is assumed to obey the
following material law proposed by Vecchio and Collins (1981) for the

softened concrete
2

lesl <] e, | Cfc[ (C&j] [;;J } (7.8a)
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2
leg | > 1 Ceo | cd=—cf:{1—(e"’2’—ejﬂ] (7.8b)
Eqns (7.8a and b) are plotted in Figure 7.5(a). The stress f”_ is the maximum
compressive stress of a non-softened standard cylinder, taken as positive
(od, &d and €o are negative for compression). The strain €_ is defined as the
strain at the maximum compressive stress of non-softened concrete and can
be taken as -0.002. The factor & is a softening coefficient suggested to be

G_ €4
N (I-wes—& (7.8¢)

The softening coefficient &, which is less than unity, is the reciprocal of the
coefficient A given in previous references (Vecchio and Collins, 1981; Hsu,
1984). The Poisson ratio p in Eqn (7.8¢) is taken as 0.3.

The stress-strain relationship in the r-direction can be expressed by

e<e Oo=E¢g (7.92)

where E_is the initial modulus of elasticity of concrete, taken to be —2f /e with
€,=-0.002, € _ is the strain at cracking of concrete taken to be f,/E_and f is
the stress at cracking of concrete assumed to be 4vf!, where f°_ and f, are

expressed in psi
_ Er — Ecr
&> Eor o —fc,/[l + / 0008 J (7.9b)

Eqns (7.9a and b) are plotted in Figure 7.5(b).
The stress-strain relationships for the longitudinal and transverse steel
bars are assumed to be elastic-perfectly plastic

€2€, flzfly (7.10a)
g<e, I=EEg, (7.10b)
g€, S (7.10¢)
<€, J=EE, (7.10d)

where E_ is the modulus of elasticity of steel bars, f, f, are yield stresses of
longitudinal and transverse steel bars, respectively and ¢, €  are yield
strains of longitudinal and transverse steel bars, respectively.

The general equations of the softened truss model theory, Eqns (7.4), (7.7
7.10) are described in a summary paper (Hsu, 1988). The equations for deep

beams, Eqns (7.5) and (7.6), are given in a separate paper (Mau and Hsu, 1987b).

7.3.5 Solution algorithm
Eqns (7.6) to (7.10) are to be solved for a pair of given p and v. However,
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the effective transverse compression p and the effective shear stress v are not
independent. They are related by a factor that is dependent on the shear-
span-to-height ratio a/h. Using Eqns (7.1) and (7.2), one obtains

p=Kv (7.11)

where K=2d /h 0<a/h<0.5 (7.12a)
_d|4(h_1

K= W [3 [a 2]] 0.5<a/hs2 (7.12b)

K=0 a/h>2 (7.12¢)

Using Eqn (7.11), Eqns (7.6 b and c) and solving the resulting equation
for o

_ 64 (Ksin o cos o — sin’ &) — p, E, &
- Ksin o cos 0.+ cos’ o

o & < &y (7.13a)

_ 4 (Ksin acos o — sin’ @) — p. fi
Ksin oL cos 0. + cos’ &

€26, (7.13b)

where € is determined from Eqn (7.7b).
Using Eqns (7.10a or b) and (7.7a), the remaining equilibrium condition
Eqn (7.6a) can be used to solve for the angle o

o +p Es &
= <Eg
cos’ i~ ot pr B (Ea—8) € <&y (7.14a)
G, +
COS2 o= -G_,'—p—ldfy €2 €y (7 14b)

The five Eqns (7.8a or b), (7.8¢c), (7.9a or b), (7.13a or b) and (7.14a or b)
include six unknowns: 6,, G, €, €, O, and €. When one unknown is given,
the other five can be solved. The solution of the five simultaneous equations
follows a simple iterative procedure. With the help of a computer, this
procedure is used to trace the response history of the shear element and to
locate the maximum shear sustained by the shear element. The tracing
procedure is controlled by the compression strain €,, the magnitude of which

increases monotonically from zero.

Select a value for €

Assume a value of €

Calculate 6, using Eqn (7.9a or b)

Calculate &, using Eqn (7.8¢)

Calculate 6,, using Eqn (7.8a or b)

Solve for ¢, using Eqn (7.14a or 14b) and check el to make sure the
correct Eqn (7.14) has been used.

7. Calculate 6, using Eqn (7.13a) or (b) and check € to make sure the
correct Eqn (7.13) has been used.

SNk w =
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8. Compare the two values of ¢, obtained in step 3 and step 7. If they
are within a small error, the assumed value of €_is accepted and the
solution procedure continues at step 10.

9. If the error in ©, is too large, iteration continues from step 2 to step
8 by sweeping through possible values of €.

10.  Calculate vy, [Eqn (7.7¢)] and v [Eqn (7.6¢)].

11.  Select another €d with a suitable increment and repeat step 1 to step
10. In this way, the loading history of v vs. 7, can be traced and the
maximum shear stress can be determined. The maximum shear
stress is defined as the shear strength v .

7.3.6 Accuracy

A total of 64 test specimens are available in the literature to compare with
the proposed theory. They were reported by Smith and Vansiotis (1982),
Kong, Robins and Cole (1970), and de Paiva and Siess (1965). The basic
data are listed in Table 7.1. The specimens were selected because they
satisfy the following conditions: 1) the test specimen must fail in web shear
mode, not in bearing or flexural modes; ii) the test specimen must contain at
least a minimum amount of transverse web reinforcement specified in the
ACI Code (1989) to render the truss model applicable; iii) the span-depth
ratio a/h must be less than 2; and iv) the test specimens must be simply
supported at the bottom surface and the loads acting on the top surface of
the beam.

In calculating the longitudinal steel ratio of the shear element, the
longitudinal steel reinforcement provided at the bottom and the top of the
beam is also included. This is because the expansion of the element in the
longitudinal direction due to shear is restrained by the longitudinal steel in
the top and bottom bars. Thus tests on beams with no horizontal web
reinforcements can still be used for comparison. The effective depth of the
shear element d is taken as the distance between the centre of the
compression steel and the centre of the tension steel. When compression
steel reinforcement is not provided, the depth &’ is estimated as 0.1d.

The theoretical values of the normalised shear strength, (v /f° ), are
computed according to the procedure outlined in the previous section. The
results are listed in Table 7.2. Using the ratio of calculated shear strength to
test shear strength R as an indicator, the mean and standard deviation of this
ratio for the 64 data are 1.028 and 0.094, respectively. The agreement
between theory and test is quite good. A comparison of the theoretical and
experimental shear strengths is also presented in Figure 7.6.

The sensitivity of the shear strength to the magnitude of the effective
transverse compression is studied using the available test specimens. The
available test specimens are divided into nine groups based on the different a/
h ratios ranging from 0.33 to 1.29. These nine groups are identified in Table
7.1 as SA, SB, SC, K30, K25, K20, K15, K10, and PS. As the effective
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Table 7.1 Basic data of the test specimens

No. Speci. Group pw Pvt Pc Pt Pt fy fiy E, & L v ] x h d b

% % % % % i i ksi i__in in in in__in in_in
1 1A1-10 SA 194 023 0.10 2.15 0.28 62500 63430 27000 2710 28 100 120 8.0 14 120 4
2  1A3-11 SA 194 045 0.10 236 028 62500 63400 27000 2615 28 10.0 120 8.0 14 120 4
3 1A4-12 SA 194 0.68 0.10 246 028 62500 63400 27000 2330 28 100 12.0 8.0 14 12.0 4
4 1A4-51 SA 194 0.68 0.10 246 0.28 62500 63430 27000 2980 28 100 12.0 8.0 14 120 4
5 1A637 SA 194 091 0.10 2.67 028 62500 63430 27000 3050 28 100 120 8.0 14 120 4
6 2A1-38 SA 194 023 0.10 2.15 0.63 62500 63430 27000 3145 28 100 120 8.0 14 120 4
7 2433 SA 194 045 0.10 236 0.63 62500 63430 27000 2865 28 100 120 8.0 14 120 &
8§ 2A440 SA 194 0.68 0.10 246 0.63 62500 63430 27000 2950 28 100 120 8.0 14 120 4
9 2A661 SA 194 091 0.10 2.67 0.63 62500 63430 27000 2775 28 100 120 8.0 14 120 4
10 3A142 SA 194 023 0.0 2.15 1.25 62500 63430 27000 2670 28 100 120 8.0 14 12.0 4
11  3A343 SA 1.94 045 0.10 236 125 62500 63430 27000 2790 28 10.0 120 8.0 14 120 4
12 3A445 SA 194 068 0.10 246 125 62500 63430 27000 3020 28 100 120 8.0 14 120 4
13 3A646 SA 194 091 0.10 2.67 125 62500 63430 27000 2890 28 100 120 8.0 14 120 4
14 1B1-04 SB 194 023 0.10 2.15 024 62500 63430 27000 3200 33 125 145 105 14 120 4
15 1B329 SB 194 045 0.10 236 0.24 62500 63430 27000 2915 33 125 145 105 14 120 4
16 1B440 SB 1.94 0.68 0.10 246 024 62500 63430 27000 3020 33 12.5 145 105 14 12.0 4
17 1B631 SB 1.94 091 0.10 267 024 62500 63430 27000 2830 33 125 145 105 14 120 4
18 2B105 SB 1.94 023 0.10 215 0.42 62500 63430 27000 2780 33 125 145 10.5 14 120 4
19 2B3-06 SB 194 045 0.10 236 042 62500 63430 27000 2755 33 125 145 105 14 120 4
20 2B407 SB 194 0.68 0.10 246 042 62500 63430 27000 2535 33 125 145 105 14 120 4
21 2B4-52 SB 194 0.68 0.10 246 0.42 62500 63430 27000 3160 33 125 145 105 14 120 4
22 2B632 SB 194 091 0.10 2.67 042 62500 63430 27000 2865 33 125 145 105 14 120 4
23 3B108 SB 1.94 023 0.10 2.15 0.63 62500 63430 27000 2355 33 125 145 105 14 120 4
24 3B1-36 SB 1.94 023 0.10 2.15 0.77 62500 63430 27000 2960 33 12.5 145 105 14 120 4
25 3B333 SB 1.94 045 0.10 236 0.77 62500 63430 27000 2755 33 125 145 105 14 120 4
26 3B4-34 SB 194 0.68 0.10 246 0.77 62500 63430 27000 2790 33 125 145 105 14 120 4
27 3B635 SB 1.94 091 0.10 2.67 0.77 62500 63430 27000 2995 33 125 145 105 14 120 4
28 4B109 SB 1.94 023 0.10 2.15 1.25 62500 63430 27000 2480 33 125 145 105 14 120 4
29 1C1-14 SC 194 023 0.10 2.15 0.18 62500 63430 27000 2790 40 160 18.0 140 14 120 4
30 1C302 SC 194 045 0.10 2.36 0.18 62500 63430 27000 3175 40 160 18.0 140 14 120 4
31 1C4-15 SC 1.94 0.68 0.10 246 0.18 62500 63430 27000 3290 40 160 18.0 140 14 120 4
32 1C616 SC 1.94 091 0.10 2.67 0.18 62500 63430 27000 3160 40 160 18.0 140 14 12.0 4
33 2C1-17 SC 194 023 0.10 2.15 031 62500 63430 27000 2880 40 160 18.0 14.0 14 120 4
34 20303 SC 194 045 010 236 031 62500 63430 27000 2790 40 160 18.0 140 14 120 4
35 2327 SC 194 045 0.0 236 031 62500 63430 27000 2800 40 160 18.0 140 14 120 4
36 2C4-18 SC 194 0.68 0.10 246 031 62500 63430 27000 2965 40 160 180 14.0 14 120 4
37 20619 SC 1.94 091 0.10 2.67 0.31 62500 63430 27000 3010 40 16.0 18.0 140 14 12.0 4
38 3C1-20 SC 194 023 0.10 2.15 0.56 62500 63430 27000 3050 40 16.0 18.0 140 14 120 4
39 3C3-21 SC 194 0.45 0.10 236 056 62500 63430 27000 2400 40 160 18.0 140 14 12.0 4
40 3C422 SC 194 0.68 0.10 246 056 62500 63430 27000 2650 40 160 18.0 140 14 120 4
41 3C6-23 SC 194 091 0.10 2.67 0.56 62500 63430 27000 2755 40 160 18.0 140 14 120 4
42 4C1-24 SC 1.9%4 023 0.10 2.15 0.77 62500 63430 27000 2840 40 160 18.0 140 14 120 4
43 4C304 SC 194 045 0.10 236 0.63 62500 63430 27000 2690 40 160 18.0 140 14 12.0 4
44 4C3-28 SC 194 045 0.10 236 0.77 62500 63430 27000 2790 40 160 18.0 140 14 12.0 4
45  4C4-25 SC 194 0.68 0.10 246 0.77 62500 63430 27000 2685 40 160 18.0 140 14 120 4
46 40626 SC 194 091 0.10 267 077 62500 63430 27000 3080 40 160 18.0 140 14 120 4
47 4DI-13 - 194 023 0.10 2.67 042 62500 63430 27000 2330 58 23.0 250 21.0 14 120 4
48 1-30 K30 0.52 000 0.00 0.52 245 41600 40600 29000 3120 27 8.5 100 7.0 30 285 3
49 125 K25 0.63 0.00 0.00 0.63 2.45 41600 40600 29000 3560 27 85 100 7.0 25 235 3
50 120 K20 0.80 0.00 0.00 0.80 2.45 41600 40600 29000 3080 27 &5 100 7.0 20 185 3
51 115 K15 1.09 0.00 0.00 1.09 245 41600 40600 29000 3080 27 85 100 7.0 15 1353
52 1-10 K10 1.73 000 0.00 173 2.45 41600 40600 29000 3140 27 85 100 70 10 853
53 230 K30 0.52 000 0.00 052 0.86 41600 44000 29000 2785 27 8.5 100 7.0 30 285 3
54 225 K25 0.63 000 0.00 0.63 0.86 41600 44000 29000 2700 27 8.5 100 7.0 25 235 3
55 220 K20 0.80 0.00 0.00 0.80 0.86 41600 44000 29000 2880 27 85 100 7.0 20 185 3
56 2-15 K15 1.09 0.00 0.00 1.09 0.86 41600 44000 29000 3300 27 &5 100 7.0 15 1353
57 210 K10 1.73 0.00 0.00 1.73 0.86 41600 44000 29000 2920 27 &85 100 7.0 10 853
58 530 K30 052 061 0.00 1.13 061 40600 40600 29000 2690 27 85 10.0 7.0 30 285 3
59 525 K25 0.63 0.61 0.00 1.24 0.61 40600 40600 29000 2790 27 85 100 7.0 25 235 3
60 520 K20 0.80 0.61 0.00 141 0.61 40600 40600 29000 2920 27 85 100 7.0 20 185 3
61 515 K15 1.09 061 0.00 1.70 0.61 40600 40600 29000 3180 27 85 100 7.0 15 1353
62 510 K10 1.73 0.61 0.00 234 0.61 40600 40600 29000 3270 27 85 100 7.0 10 853
63 (G335-12 PS 1.67 0.00 092 2.59 1.09 47300 32000 29000 2890 20 6.0 80 40 9 803
64 G335-32 PS 2.58 0.00 0.83 341 1.09 44200 32000 29000 2910 20 60 80 40 9 803

transverse compression is assumed to be a function of @/ ratio, the magnitude
of the transverse compression may be changed individually for each group to
see its effect on the calculated shear strength. The non-dimensionalised factor
K, which varies from approximately 1.6 to 0 as calculated from Eqn (7.12), is
taken as the benchmark value and a variation of K, designated as AK, is
introduced up to £0.25 (Figure 7.7). The resulting variation of the calculated
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Table 7.2 Experimental and computed results

- " v v
Elum 4 :; ( f:')r Ld dv o o K nible“ ( f:-')p Rt L2
1 0.56 442 0.288 233 11.0 0496 0066 070 36250 0.296 0.95 0.97
2 0.57 44.0 0.294 233 110 0564 0068 0.70 33350 0.298 1.01 1.03
3 0.58 44.0 0.304 233 110 0660 0076 070 31750 0.300 0.98 0.97
4 0.56 43.8 0.286 233 110 0.516 0060 0.70 38430 0292 098 0.99
5 0.56 436 0.287 233 110 0.547 0.058 070 41385 0.291 0.93 0.94
6 0.56 46.0 0.290 233 110 0427 0127 070 39230 0.300 1.02 1.06
7 0.58 458 0.301 233 110 0515 013 070 38350 0.300 0.99 0.99
8 0.58 45.6 0.300 233 110 0521 0135 070 38650 0.300 1.01 1.01
9 0.59 45.5 0.308 233 110 0601 0144 070 36400 0.300 1.03 1.01
10 0.60 476 0.313 233 110 0503 0297 070 36200 0.300 1.01 0.97
1 0.61 474 0.313 233 110 0.529 0284 070 38830 0.300 0.99 0.95
12 0.60 473 0.310 2331 110 0509 026 070 40140 0.300 1.02 0.99
13 0.61 47.0 0.316 233 11.0 0577 0274 0.70 37800 0.300 1.06 1.0
14 0.48 39.5 0.241 2.75 11.0 0.420 0.048 0.49 33150 0.236 1.02 1.00
15 0.50 39.9 0.255 2.75 11.0 0.506 0.052 0.49 32275 0.240 1.01 0.96
16 0.50 39.7 0.253 2.715 11.0 0.509 0.050 049 31550 0.239 1.06 1.01
17 0.52 39.8 0.262 2.75 11.0 0.590 0.054 0.49 34475 0.242 0.94 0.87
18 0.53 423 0272 275 110 0483 0096 049 29000 0.274 1.15 1.16
19 0.54 42.0 0.275 2.75 11.¢ 0.535 0.097 0.49 29500 0.275 1.13 1.13
20 0.55 42.0 0.282 275 110 0.607 0.105 0.49 28350 0.281 1.11 1.10
21 0.53 41.7 0.266 2.75 11.0 0.487  0.084 0.49 33700 0.266 1.10 1.10
n 0.54 41.6 0.276 275 110 0.582 0.093 049 32650 0.272 1.07 1.05
23 0.56 43.8 0.294 2.75 11.0 0.571 0.170 049 29400 0.291 1.04 1.03
24 0.55 44.3 0.283 2.75 11.0 0454  0.165 0.49 35735 0.291 1.03 1.06
25 0.56 44.1 0.291 275 110 0.535 0177 049 35600 0.291 0.99 0.99
26 0.56 439 0.291 275 110 0.551 0175 049 34850 0.291 1.03 1.02
27 0.56 43.6 0.289 2.75 11.0 0.557 0.163 0.49 36350 0.291 1.02 1.05
28 0.59 459 0.307 2.75 11.0 0.542 0.320 0.49 34500 0.291 0.97 0.92
29 0.41 33.7 0.200 33 11.0 0.482 0.041 0.29 26750 0.192 0.92 0.88
30 0.40 328 0.190 333 110 0465 0036 029 27750 0.187 0.96 0.94
k) 0.40 32.6 0.188 333 110 0467 0.035 029 29450 0.185 0.92 0.91
2 0.41 32.7 0.194 333 110 0.528 0036 029 27500 0.187 0.98 0.95
33 0.45 36.9 0.225 333 110 0.467 0068 029 27900 0.216 1.02 0.98
34 0.47 36.9 0.232 333 110 0.529 0070 029 23300 0.218 1.22 1.15
35 0.47 36.9 0.231 333 110 0527 0070 029 25925 0.218 1.10 1.03
36 0.46 36.4 0.226 333 110 0.519 0066 029 28000 0.215 1.05 1.00°
7 0.46 36.2 0.227 333 110 0.554 0065 029 27900 0.214 1.08 1.01
38 0.51 41.2 0.257 333 11.0 0.441 0.116 029 31650 0.253 1.09 1.07
39 0.54 41.1 0277 333 110 0615 0.148 029 28100 0.255 1.04 0.96
40 0.53 40.9 0.270 331 110 0580 013 029 28700 0.255 1.10 1.04
41 0.53 40.6 0.269 333 11.0 0.606 0.129 0.29 30850 0.255 1.06 1.00
42 0.53 42.6 0.272 333 110 0473 0172 029 32950 0.255 1.03 0.97
43 0.53 41.5 0272 333 110 0.548 0.149 029 28900 0.255 1.12 1.04
44 0.54 423 0.276 333 110 0529 0175 029 34250 0.255 0.99 0.91
45 0.55 42.1 0.280 333 110 0573 0182 029 34300 0.255 0.96 0.88
46 0.54 41.7 0.272 3331 110 0542 0159 029 35850 0.255 1.03 0.96
47 0.46 36.1 0.231 483 110 0716 0114 029 19650 - 1.20 -
48 0.53 62.3 0.215 095 257 0069 0319 171 53700 0.236 0.96 1.06
49 0.53 62.1 0.216 115 212 0.074 0279 169 50400 0.244 0.97 1.09
50 0.58 60.1 0.263 146 167 0.108 0323 167 42600 0.300 0.95 1.08
51 0.54 552 0.271 2.00 122 0.147 0323 1.08 36900 0.289 0.82 0.88
52 0.58 48.7 0.299 3.18 7.7 0229 0317 051 20100 0.280 1.07 1.00
53 0.57 62.5 0.238 095 257 0078 0136 171 56000 0.253 0.91 0.97
54 0.60 61.5 0.265 115 212 0097 0140 1.69 50400 0.286 0.90 0.97
55 0.62 60.6 0.285 146 167 0.116 0131 1.67 48400 0300 0.85 0.89
56 0.49 54.7 0.248 200 122 0137 0115 1.08 31400 0.275 0.95 1.05
57 0.55 45.4 0.283 3.18 1.7 0.130 0.51 22400 0.292 0.85 0.87
58 0.72 59.6 0.328 095 257 0171 0092 1T 53800 0.300 1.26 115
59 0.72 53.0 0.330 .15 212 0.180 0.089 1.69 46800 0.300 1.25 1.13
60 0.71 58.2 0.332 146 167 0.196 0085 1.67 38800 0.300 1.25 1.13
61 0.60 50.2 0.305 2.00 122 0217 0078 1.08 28600 0.300 1.24 122
62 0.50 40.5 0.255 3.18 7.7 0291 0076 0.51 17500 0272 1.09 1.17
[:x] 0.61 46.5 0.315 2.50 713 0424 0121 0.67 19000 0.300 1.04 0.99
64 0.62 458 0.324 2.50 73 0518 0120 0.67 22800 0300 0.90 0.83

shear strength is represented by the mean calculated-to-test shear strength ratio
in Figure 7.8. This Figure shows that the mean values change by less than
+5% from the benchmark value at AK=0, except in groups SB and SC when K
is small. For these two groups, K is equal to 0.49 (SB) and 0.29 (SC) while the

mean values change by more than +10%.
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Figure 7.6 Comparison of calculated and experimental shear strength
7.4 Parametric study

Parametric studies will now be carried out to investigate the variation of
shear strength with respect to the important factors involved. A close
examination of the governing Eqns (7.6)—(7.10) reveals that the normalised
shear strength v,/f/ is mainly affected by the two dimensionless

parameters Pifiy/fe and p, f,/f+. Together with the parameter a/h inherent in
K, these three parameters represent the amount of longitudinal
reinforcement, the amount of transverse reinforcement, and the geometry of
the beam, respectively. The first two parameters may be called the
longitudinal reinforcement index and the transverse reinforcement index.

7.4.1 Shear-span-to-height ratio

The four curves in Figure 7.9 show the variation of the shear strength with
respect to the shear-span-to-height ratio. Because each curve represents a
different amount of reinforcement in the beam the four curves together
cover the practical range of longitudinal and transverse reinforcement
ratios. For transverse reinforcement, the minimum percentage is 0.0025

© 2002 Taylor & Francis Books, Inc.



3.0

2.0
4. h 1
a3

Egn (7.1)

0 0.5 1.0 1.5 2.0 2.5

Shear Span Ratio, a/h

Figure 7.7 Variation of effective transverse compression (?K=+0.25)

1.2
H
=
e o111
-]
=
©
o 10
3
©
-
£ 0.9
Q
s
0.8 -0.2 -0.1 0 0.1 0.2
AK

Figure 7.8 Sensitivity of shear strength to effective transverse compression

based on the ACI Building Code. For longitudinal reinforcement, the
minimum is 0.0060, which is approximately the sum of the minimum web
steel ratio (0.0025) and the minimum flexural steel ratio (ZOO/jjy). Figure
7.9 indicates that the shear strength ratio v,/f:generally decreases with
increasing a/h ratio. The rate of decrease is larger for the two cases with
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Figure 7.9 Effect of shear-span ratio on shear strength

low ratio of transverse reinforcement (0.0025). The dotted part of a curve
represents the region where the present iterative algorithm fails to
converge to a solution. This is due mainly to a very small amount of
reinforcement.

7.4.2 Longitudinal reinforcement

The effect of the longitudinal reinforcement index pify/f: on the shear
strength ratio va/f¢ is shown in Figure 7.10 for six combinations of shear span

’
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Figure 7.10 Effect of longitudinal reinforcement index on shear strength
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ratios a/h and transverse reinforcement indices p:fiy/f¢. For all six cases, the
shear strength ratio increases with the increase of longitudinal reinforcement
index. This means that the longitudinal steel is effective for a/h ratios from 0.5
to 2 and with transverse reinforcement indices from 0.05 to 0.55. The
effectiveness is relatively large when the longitudinal reinforcement index
varies from 0.1 to 0.3 but becomes gradually smaller at higher range.

7.4.3 Transverse reinforcement

The variation of shear strength ratio as a function of the transverse
reinforcement index is shown in Figure 7.11 for six combinations of shear
span ratios and longitudinal reinforcement indices. For large a/h ratios of 1.0
and 2.0 (cases 2,3,5 and 6), v./f¢ increases with the increase of p,fy/f¢
especially in the low range. For small a/h ratio of 0.5 (cases 1 and 4),
however, v./fi decreases slightly with the increase of pifiy/fc. This is
because under large effective transverse compression, (i.e. small a/4 ratio) more
transverse reinforcement leads to relatively less compressive strain €, and this in
turn leads to more softening of the concrete according to Eqn (7.8¢)
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Figure 7.11 Effect of transverse reinforcement index on shear strength

The ineffectiveness of the transverse reinforcement in the range of
low a/h ratios can also be observed from the tests of Kong et al. (1970).
Three pairs of their test specimens with a/k ratios less than 0.5 are listed
in Table 7.3.

In each pair of beams (1-30 versus 2-30; 1-25 versus 2-25, and 1-20
versus 2-20), the a/h ratio and the longitudinal steel percentage are
identical, but the transverse steel percentage p, differs greatly, 0.0245 versus
0.0086. It can be seen that the three beams with lower p, (0.0086) all have
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experimental maximum shear forces equal to or greater than those of the
corresponding beams with higher p, (0.0245).

In view of the theory and the above tests, it seems reasonable to state that
the effectiveness of transverse reinforcement decreases when a/h ratio
decreases from 2 to 0.5. When a/A<0.5 an increase of transverse
reinforcement beyond the ACI Code minimum requirement, p=0.25%, is not
effective in increasing the shear strength of deep beams.

Table 7.3 Effect of tensverse reinforcement at low a/h ratios

Specimens ?l‘ pe Pt fe' Vn, test
psi b
1-30 0.33 0.0052 0.0245 3120 53,700
2-30 0.33 0.0052 0.0086 2785 56,000
1-25 0.40 0.0063 0.0245 3560 50,400
2-25 0.40 0.0063 0.0086 2700 50,400
1-20 0.50 0.0080 0.0245 3080 42,600
2-20 0.50 0.0080 0.0086 2880 48,400

1psi = 6984.8 N/m2; 11b = 4.448 N.

7.5 Explicit shear strength equation

7.5.1 Derivation of equation

The accuracy of the theoretical results confirms the usefulness of the
theoretical model. However, the solution procedure is too complicated to be
used in design. An explicit formula suitable for practical design is presented
in this section. The formula is derived from the three equilibrium Eqns
(7.6a-c) alone. Recognising that the three quantities G, p/f, and pf may be
estimated, the shear capacity v may be expressible in terms of these three
quantities by eliminating the other unknowns 6, and o from Eqns (7.6a-c).
This is achieved by the following manipulation.

Utilizing the identity sin? oi+cos? 0=1, one may rewrite Eqns (7.6a and
b) as

(0,-6,)cos? 0=-pf-O, (7.15a)
(0,-0)sin* 0=- K - pf-O, (7.15b)

Eqn (7.6¢) may be squared to become
(0,-6,)*sin? ¢/ cos? O=V? (7.15¢)

Multiplying Eqn (7.15a) by Eqn (7.15b) and subtracting the result from Eqn
(7.15¢) gives:
V=(pfito )(K +p/ito,)=0 (7.16)
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This is a quadratic equation in v and a solution for v gives an explicit
expression

v= % [K(plﬁ +0,) + 'J Kz(plfl +0.)? +4(pifi+ G XP fi+ O ] (7.17)

Assuming the yielding of steel, the variables p f and pf in Eqn (7.17) can
be non-dimensionalized by using the definition of the reinforcement index, ®

o =pfi/fe=pifysfe (7.18a)
o =pfi/fE = pfy/fe (7.18b)

Also
C=o./f; (7.18¢)

Dividing Eqn (7.17) fZ by and substituting ®,, ®, and C from Eqn (7.18)
into (7.17) results in an explicit and non-dimensional formula

Vo _1
fi2
The shear strength v _is controlled by the yielding of the steel if ®, and ®, are
limited to a maximum value as follows:

®<C, (7.20a)
®<C (7.20b)

If the reinforcement indices exceed the limiting value, the shear strength
may not be controlled by the yielding of the steel. In such cases, Eqn (7.19)
is still applicable with the upper limits of Eqn (7.20) in effect, except the
result may be slightly on the conservative side.

The parametric studies show that the shear strength tends to increase only
slightly beyond certain value, Figures 7.10 and 7.11. Thus, for all practical
purposes, the shear strength may also be limited by

v/fl < Cy (7.20¢)

The four constants C, C, C, and C, can be obtained by calibration with the
test data of Table 7.1.

[K(cowC)+‘«IK2(m+C)2+4(m.+C)((0.+C}J (7.19)

7.5.2 Calibration

To calibrate the four constants, the experimental data compiled in Table 7.1
will be used. These data were for simply-supported deep beams loaded by
concentrated forces. All the beams had vertical web reinforcements. Of the
64 specimens compiled, one is for a beam with a/h=1.79 (L/d=4.83) and all
the others have a/h<1.3 (L/d<3.3). As it is not reasonable to calibrate a
formula with only one test in that range of a/h, it is decided to drop that
single test and limit the applicability of the formula to a/A<1.3 or L/d<3.3.
The listed reinforcement ratio for the horizontal web steel ?v, is based on the
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vertical spacing of the steel, S, and width of beam b, while the
reinforcement ratio for the total horizontal steel p, is based on the total steel
area and the effective cross-sectional area, bd.

For any given set of the C values the ratio of the calculated shear strength
to the experimental shear strength R for each test is determined. The mean
value and the coefficient of variation of this ratio for the 63 tests are then
computed. A search for the least coefficient of variation leads to the
following set of C values: C=0.03, C=0.26, C=0.,2 and C =0.3.

Substituting these constants into Eqn (7.19) gives the explicit formula
proposed for shear strength design:

;71 =% [K(co. +0.03)+ N K +0.03) + 4(c + 0.03)(e + 0.03) ]
<03 (7.21)

with the limitations @ = pyf;/f¢ <0.26 and @, = p, f,/f £0.12. The coefficient
K, representing the shear span effect, is given in Eqn (7.12). The shear
strength V is then obtained from Eqn (7.2).
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Figure 7.12 Comparison of proposed explicit formula (Eqn 7.21) with tests
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The computed normalised shear strength (va/f¢), and R, values are given
in Table 2. The mean value of R, for Eqn (7.21) is 1.008 and the coefficient
of variation is 0.082. Also shown in Table 7.2 is the ratio for the theoretical
shear strength from the softened truss model to the experimental shear
strength R, The mean value and the coefficient of variation of R for the 63
specimens are 1.025 and 0.092, respectively. It is observed that the proposed
explicit formula gives as good a prediction as the more rigorous and
complicated theory. The shear strengths calculated from Eqn (7.21) and Eqn
(7.2) are plotted in Figure 7.12 against the experimental shear strengths for
the 63 specimens. It is seen that only one of the data points falls slightly
below the lower 15% line. Eqn. (7.21) has also been compared to other
empirical formulas found in literature (Mau and Hsu, 1989). The
comparison shows that the proposed explicit formula has the least
coefficient of variation.

7.6 Conclusions

i) The softened truss model theory is shown to predict with reasonable
accuracy the shear strength of simply-supported beams with transverse web
reinforcement and having shear-span to height ratio (a/h) between 0.33 and 2.

ii) Three non-dimensionalised parameters are identified as having major
effect on the shear strength of deep beams. They are the shear span ratio, the
transverse reinforcement index, and the longitudinal reinforcement index.
The present theory predicts that the effectiveness of transverse
reinforcement decreases when the a/h ratio decreases from 2 to 0.5. For
small a/h ratio below 0.5, the transverse reinforcement is ineffective in
increasing the shear strength.

iii) An explicit formula is proposed for shear strength design. This non-
dimensional formula expresses the shear strength ratio as a function of shear
span ratio, (through K), longitudinal reinforcement index and transverse
reinforcement index. This formula has been calibrated to the available test
data in the following range: 0.95<L/d<3.3, 0<p =4 /bS,<0.0091, 0.0018<p,
<0.0245. The compression steel ratio is within 0.92% and the concrete
cylinder compression strength is close to 3000 psi (21 MN/m?).
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8 Shear strength prediction—

plastic method

M.W.BRAESTRUP, Rambull and Hannemann, Denmark

Notation

A,  cross-sectional area of concrete
perpendicular to steel area 4_

A, cross-sectional area of steel rein-
forcement

a clear span between load and sup-
port platens

b width of beam

c distance from bottom face of be-
am to centroid of reinforcement

d effective depth of beam; d=h-c

f cylinder strength of concrete

A effective compressive strength of
concrete

s yield stress of reinforcement

h total depth of beam

/ shear span between point load and

support reaction

r geometrical ratio of smeared rein-
forcement, r=A4 /A

s length of support platen

s, minimum support platen length to
attain flexural capacity

T force in longitudinal reinforcem-
ent

T yield force of longitudinal reinfo-
rcement; T, y:A fy
t length of load platen

tl minimum length of load platen

V applied point load

v relative displacement rate in yield
line

X width of triangular region in bia-

xial compression
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depth of triangular region in bia-
xial compression

value of y corresponding to yield-
ing of reinforcement, y, =h¢/v<h/2
inclination of relative displacem-
ent rate

inclination of yield line (or ch-
ord)

inclination of reinforcement rela-
tive to yield line

thickness of deforming zone ide-
alised as yield line

first principal strain rate

second principal strain rate
strain rate in reinforcement
relative rotation rate of rigid parts
inclination of compressive conc-
rete strut

effectiveness factor, v=f_"/f,
geometrical ratio of long- itudinal
reinforcement, p=T7 /bhf,
compressive concrete stress

first principal concrete stress
second principal concrete stress
tensile stress in reinforcement
vertical component of compress-
ive concrete stress, 6, =osin* 0
shear stress in concrete
mechanical degree of reinforcem-
ent ¢=7/bhf,



8.1 Introduction

The capacity of a slender beam subjected to concentrated loading is governed
by either the strength in flexure of the maximum moment section or the
strength in shear of the span. For a deep beam, however, the ultimate load is
determined by the transfer of forces between load and support. Consequently,
the capacity—whether it be termed flexural or shear—depends upon the
detailing of loading and support.

For a simply supported beam under point loading the shear span 1 is
defined as the distance between the lines of action of the load and the
support reaction. If, on the other hand, the beam is indirectly loaded and
built in at the support, it is the clearance a=[-s/2-—#/2 (Figure 8.7) between
the edges of the load and support platens which is given. Some cases, e.g.
corbels, are hybrid, in the sense that the known span is the distance /-s/2
between the point load and the edge of the support.

Each of these cases can be solved by plastic analysis, and some solutions
are derived in the present chapter. By way of introduction, a brief review is
first given of the theory of plasticity, and the corresponding material
description of structural concrete is presented.

The application of plastic methods to concrete structures has a fairly long
history, but deep beams have not been the subject of much dedicated effort.
Nielsen (1971) derived some solutions for deep beams considered as wall
elements, and corbels were treated by B.C.Jensen (1979). Beam shear in general
has been covered extensively, cf. Braestrup and Nielsen (1983), Nielsen (1984).
The solutions given in this chapter were originally derived by J.F. Jensen (1981),
but the formulation presented here is somewhat different.

Attention is restricted to beams under point loading. Deep beams
subjected to a uniformly distributed load are most efficiently treated by the
plasticity theory for plane elements, and reference is made to Nielsen
(1984), cf- also J.F.Jensen (1981).

8.2 Plasticity theory

8.2.1 Limit analysis

To assess the strength of a structure under load designers have always,
knowingly or unknowingly, made use of two fundamental principles of
nature:

1) If there is any manner in which a structure can possibly collapse
under a given load, then it will do so.

ii) If there is any manner in which a structure can possibly carry a
given load, then nature will find it.

The first principle implies that if we can identify just one mode which
can lead to collapse, with due account taken of the strengths of the
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materials and members involved, then we know that the structure is
unsafe under the given load.

The second principle implies that if we can identify just one way of
transferring the load down through the structure, without overstressing any
materials or members, then we know that the structure is safe under the
given load.

These intuitive principles of structural behaviour are not particularly
operational, but in the theory of plasticity they are refined and substantiated
into the three theorems of limit analysis:

1) The upper bound theorem, stating that any load corresponding to
which we can find a kinematically admissible failure mechanism is
greater than or equal to the collapse load,

i1) The lower bound theorem, stating that any load corresponding to
which we can find a statically admissible stress distribution is less
than or equal to the collapse load;

iii) The uniqueness theorem, stating that the lowest upper bound and
the highest lower bound coincide, and constitute the exact collapse
load of the structure.

The first complete formulation of the limit analysis theorems was given by
Gvozdev (1938), but his work was not known and credited in the West until
1960. The statement of the theorems 1i)-iii) was formulated by Drucker,
Prager and Greenberg (1952), based upon work by Hodge and Prager (1948)
and Hill (1950).

8.2.2 Rigid, perfectly plastic model

The limit analysis theorems can be rigorously proved under certain idealised
assumptions of material behaviour. Materials complying with these are called
plastic, the simplest example being comprised of the class of rigid, perfectly
plastic materials. The structural response of a rigid, perfectly plastic body is
described by a set of statical quantities O, called the generalised stresses, and
a set of kinematical quantities g, called the generalised strain rates, such that
the inner product: D=0,g, constitutes the rate of internal work per unit element
of the body. The scalar D is called the dissipation.

In order to estimate the collapse load of a rigid, perfectly plastic body it is
not necessary to insist that the g, be considered as rates or increments, and
the distinction from conventional small strains is merely academic.

A yield function f,(Q)) is a scalar function of the generalised stresses such
that stress states for which f,(Q,) >0 cannot be sustained by the body and
£(0.)=0 for at least one stress state O =0°. A set of yield functions
constitutes a yield condition: f,(Q,)<0. The frontier of the set of allowable
stress states defined by the yield condition is called the yield surface with
the equation: F(Q,)=0.
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A supporting plane to the yield surface is a plane in stress space with the
equation: 7(Q,)=0 where T(Q,) is a linear yield function.

A rigid, perfectly plastic body can now be defined as a body with the
following properties:

i) There exists a convex yield surface F(Q,)=0 such that non- zero strain
rates qi° are only possible for stress states O.° for which F(Q,°)=0

ii)  The strain rates g° are governed by the associated flow rule, which
may be expressed: ¢°=AOn/0Q,, where A is a non-negative constant
and 1(Q,)=0 is a supporting plane to the yield surface through the

point =0

The associated flow rule is also called the normality condition, because if
the strain rates g, are represented as a vector in generalised stress space, g,°
is an outwards directed normal to the yield surface at the corresponding
stress point Q=0 if the point is regular. If the yield surface is not
differentiable at O,=0.° the direction of g,° is confined by the normals to the
adjoining parts of the yield surface.

It appears from the above that the limit analysis theorems reflect sound
engineering concepts of structural response, but that the formal proof is based
upon the assumption of plastic material behaviour, in particular the conditions
of convexity and normality. For a more comprehensive review of the theory of
plasticity reference is made to standard textbooks, e.g. Martin (1975).

8.3 Structural concrete plane elements

8.3.1 Concrete modelling

In many reinforced concrete structures, including deep beams, the concrete can
reasonably be assumed to be in a state of plane stress. This means that the
principal stresses 6,=(0,, 0,) may be taken as generalised stresses, the
corresponding generalised strain rates being the principal strain rates £=(¢, €,).

The uniaxial strength of concrete in compression is termed and, assuming
that the strength in biaxial compression is independent of the lateral stress,
two yield functions have been identified: /,=-f"-6, and f,=-f."-G,. The tensile
strength of concrete is small and unreliable, and is prudently neglected in
plastic analysis of plane elements. Thus we have the additional yield
functions: f,=0, and f,=0,.

The four yield functions £,(0,, 6,)<0 constitute a yield condition for concrete
in plane stress, and the corresponding yield locus in the principal stress plane is
shown in Figure 8.1, which also indicates the associated flow rule.

The well-known square yield locus of Figure 8.1 corresponds to a
more comprehensive material model for concrete, know as the Coulomb
failure criterion, modified by a zero tension cut-off. The modified
Coulomb criterion (also with a non-zero tension cut-off) was introduced
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Figure 8.1 Square yield locus for concrete in plane stress.

into plastic analysis by Chen and Drucker (1969), and has been widely
used for analysis and design of concrete structures, c¢f. B.C.Jensen
(1977), International Association of Bridge and Structure Engineering
(IABSE) (1978, 1979), Marti (1980), Braestrup and Nielsen (1983),
Nielsen (1984).

The principal reservations concerning the applicability of plasticity to
structural concrete are based upon the facts that concrete does not exhibit
rigid, perfectly plastic behaviour, and the associated flow rule overestimates
the dilatancy of concrete at failure. The latter objection appears to be
inconsequential for ultimate load estimation, whereas the former has
significant practical implications.

Figure 8.2 shows a typical stress-strain curve for a cylindrical concrete
specimen under compression. The shape of the falling branch is debatable,

o(N/mm?2)
&0

17 <

0 1 2 3 4 5 6 e( %o )

Figure 8.2 Stress-strain curve for concrete in compression.
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but it is obvious that concrete does not possess any pronounced yield
plateau, which would normally be required to justify the use of plasticity.

The simplest way of accounting for the shape of the stress-strain
curve is to represent the uniaxial concrete strength not by the peak
stress (cylinder strength) f,, but by a reduced effective strength f.*. The
ratio v=f"/f, is called the effectiveness factor and its value must be
assessed by comparing test results with the predictions of plastic
analysis. It appears that the effectiveness factor is primarily a measure
of concrete ductility, ¢f. Exner (1979), but as it is the only empirical
factor of the theory it will have to absorb all other model uncertainties
as well. The introduction of such an empirical calibration factor is by
no means novel; in classical flexural analysis it is known as a stress
block factor.

8.3.2 Reinforcement modelling

The reinforcing bars are assumed to resist forces in their axial direction only,
dowel action being neglected. Thus the response of the reinforcement is
described by the axial steel stress . For convenience the strength of
compression reinforcement is also neglected, as the contribution is normally
small in comparison with that of the surrounding concrete. The yield stress
of the reinforcing steel is termed f, and the yield condition £,(6,)<0 is then
defined by the two yield functions: f,=0,-/, and f,=-G, The one-dimensional
yield locus is visualised in Figure 8.3.

€s € ogleg)

-— — »
O fy

Figure 8.3 One-dimensional yield locus for reinforcement.

The reinforcement is assumed to be either concentrated in lines (stringers) or
distributed over the section (smeared). In the latter case the bars are
assumed to be parallel and sufficiently closely spaced.

The tensile strength of a stringer is the yield force 7,=4 f,, where A4 is the
cross-sectional steel area. The strength of smeared re1nforcement is
described by the equivalent yield stress 7f, where r is the geometrical
reinforcement ratio 7=4 /4, A_ being the area of the section of concrete
perpendicular to the bars of area 4.

The actions of reinforcement in different directions are assumed to be
independent, and generally problems with bond and anchorage are
neglected. Perfect bond is therefore assumed in upper bound analysis,
whereas lower bound analysis may assume any stress transfer, including
complete slip.
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Figure 8.4 Yield line in plain concrete.

8.3.3 Yield lines

A yield line in a plane concrete element is the mathematical idealisation of a
narrow zone with high strain rates, separating two rigid parts of the body,
Figure 8.4a. The relative displacement rate of the rigid parts is v, inclined at
the angle . to the yield line. Assuming the straining to be homogeneous over
the depth A, we find the principal strain rates:

£, =(v/2A)(1+sina), £,=-(v/2A)(1-sincr)

The principal directions of strain rate, which coincide with the principal
directions of stress, are indicated in Figure 8.4b. The first principal axis
bisects the angle between the displacement vector and the yield line normal.

For -n/2<0<m/2 we have €20 and €,<0 and according to the associated
flow rule the only state of stress in the concrete for which such deformations
can occur is (0,6,) =(0./-f")cf. Figure 8.1. The rate of internal work
(dissipation) per unit length of the yield line is:

D =bA(c,£,t0,8,)= :lzbvf;’(l — sin o)
for - /2 <o<n/2

Here b is the thickness of the element. The dissipation in the yield line is
independent of the assumed depth A of the deforming zone.

The concept of yield lines introduced in this section should not be
confused with cracks. Cracking of concrete may result from a number of
reasons, including changes in temperature or humidity, and is not necessarily
accompanied by any appreciable deformations. Under loading cracks tend to
form perpendicular to the direction of first principal stress. Thus a yield line
will only coincide with the crack direction if it is perpendicular to the
relative displacement rate, cf. Figure 8.4.
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Figure 8.5 Hyperbolic yield line in concrete element.

During a loading history leading to collapse the principal axes of stress in
the concrete are likely to change directions, and at failure the latest formed
cracks will generally be at an angle to the yield line. This implies that shear
stresses are transferred across the yield line, by friction or aggregate
interlock in old cracks and by crushing zones between cracks.

The transfer of shear in yield lines is expressed by the rate of work dissipated,
which depends upon the inclination a of the displacement rate, Figure 8.4. For
pure separation (0=71/2) the dissipation reduces to D =0 reflecting the assumption
of zero tensile concrete strength. However, as soon as tangential deformation is
introduced (0<m/2) the resistance increases proportionally with the compressive
concrete strength, corresponding to a failure stress T=f."/2 for pure shearing (0=0).
For pure crushing (0=1/2) the compressive resistance is 6=f.°

In the general case a yield line will be a curve AB separating the element
into two rigid parts, the relative movement of which is a rotation about a point
O in the plane of the element (Figure 8.5). By calculus of variation it was
shown by J.F.Jensen (1981, 1982) that the optimal shape of the yield line,
leading to a stationary value of the total dissipation, is a hyperbola with
orthogonal asymptotes through O. The corresponding rate of internal work is:

W, = %kbtf;(l _ sin o) 8.1)
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v
Figure 8.6 Yield line in crossed by reinforcing bar.

Where £ is the length of the chord AB, and the magnitude v and inclination
a of the displacement rate are measured at the midpoint of the chord
(Figure 8.5).

The centre of rotation O must be outside the circle with diameter AB,
otherwise the hyperbola is replaced by straight yield lines OA and OB, one
with pure separation (0=m/2) the other with pure crushing (o=-w/2). If O is at
infinity the yield line reduces to the straight line AB, with constant v and o.

Suppose a reinforcement stringer intersects a yield line at the angle y
where 0<y=n and y=0 corresponds to the same direction as o=0 (Figure 8.6).
The strain rate €_is then: € =(v/A) sin y cos (y-01). The rate of internal work is
determined by the flow rule and the yield condition (Figure 8.3):

W=vT, cos (y-0) for y-o<mn/2 (8.2)
w=0 for y-o=m/2

If the yield line is intersected by a band of smeared reinforcement the
contribution to the rate of internal work per unit length of the yield line is:

D=bvif, cos (y-o) siny  for y-a<n/2 (8.3)
D=0 for y-o=>m/2

The factor sin y takes account of the fact that the reinforcement ratio r is
defined per unit area perpendicular to the direction of the reinforcing bars.

8.4 Shear strength of deep beams

Consider a rectangular beam of width » and depth 4, subjected to a point
load V. The shear span / is defined as the distance between the point load
and the support reaction. The term a denotes the clearance between the
support and load platens, the lengths of which are s and ¢ respectively
(Figure 8.7).
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The effective concrete strength is f*=vf., and the yield force of the
longitudinal reinforcement is 7. The mechanical reinforcement degree is
introduced: ®=T/bhf.. The effective depth to the centroid of the
reinforcement is termed d=h-c, and the beam is assumed to be in a state of
plane stress.
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Figure 8.7 Stress distribution for beam with point loading.

8.4.1 Lower bound analysis

The statically admissible stress distribution shown in Figure 8.7 consists
of a concrete strut running between the load and the support at the
inclination 0. The compressive stress in the strut is ¢ and the triangular
shaded areas are under biaxial hydrostatic compression. The force in the
reinforcement is 7

The width x and depth y of the regions in biaxial compression are
determined by the equations of vertical and horizontal equilibrium:

V=bxG (8.4)
T=by G (8.5)

The lengths s and ¢ of the load and support platens are assumed to be
necessary and sufficient to ensure equilibrium with the applied load. If the
physical dimensions of the platens are greater it will not affect the validity of
the solution as a lower bound. The required length of the load platen is
determined by the size of the triangular region, (i.e. =x).
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The reinforcement is assumed to be anchored behind the support,
symbolised by an anchor plate in Figure 8.7, resulting in a compressive
concrete force 7 distributed over the depth y. If the reinforcement is not
cocentral with the concrete compression (i.e. y>2c¢) this gives rise to a
moment, which must equal the moment delivered by the support reaction.
Hence: V(s/2-x/2)=T(y/2-c), from which the required length s of the support
platen is determined. This is equivalent with the geometrical relation:

cot O=y/x=(s-x)/(y--2c¢) (8.6)

which can also be deduced from Figure 8.7.

Although the stress distribution of Figure 8.7 formally satisfies
equilibrium, the detailed load transfer at the support is left unexplained.
Figure 8.8 shows a more consistent stress distribution at the support for the
case where the reinforcement is concentrated in a single stringer (in Figure
8.7 the reinforcement may in principle be located anywhere in the beam
section, as long as the effective depth to the centroid is d=h-c). The shaded
areas are under the biaxial hydrostatic compression a and the vertical stress
over the central part of the support platen is 6 =csin? 6, the inclined
concrete stresses being transferred to the reinforcement by bond shear.

Figure 8.8 Alternative stress distribution at support.

The stress distributions mentioned are topical for y>2¢. If y<2c¢ it is
possible to place the concrete compression symmetrically about the
reinforcement centroid, and the stress distribution at the support is modified
as shown in Figure 8.9.

Figure 8.7 yields an expression for the strut inclination:

cot 8=y/x=l/(h-c-y/2) (8.7)
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Figure 8.9 Stress distribution at support for y=2c.

Hence with Eqns (8.4) and (8.5), V=T(d-1/2bG), which expresses moment
equilibrium at the loaded section. The classical flexural failure load V=V is
found by putting 7=T7,, and o=f"=vf,, and introducing ®=T./bhf:

Ve= %bvﬁ(h/!) (2d - h®/v) D /v (8.8)

However, the flexural solution fails to account for the transfer of forces from
load to support, which requires a closer examination of the stress
distribution. It appears that the highest load is obtained with the maximum
compressive stress in the concrete (0=f.") whereas it is not always optimal to
have maximum force in the reinforcement (7=T)).

Inspection of Figure 8.7 shows that if the parameters /, 4, ¢ and ¢ are
given, one of the quantities s and y is necessary and sufficient to define the
stress distribution. Thus the lower bound is determined either by the strength
T, of the reinforcement or by the length s of the load platen. In the former
case we have:

y=Ty/bfc=h®d,/v=y,

whereas in the latter case y<y_, which means that the reinforcement is not
yielding. The strut inclination 8 satisfies the geometrical relation:

cot O=y/x=(a+x)/(h-y) (8.9)

which also expresses moment equilibrium of the strut. Solving for x and
using Eqns (8.4) and (8.5), we find the lower bound solution:
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V= %(\/ (bac)? +4T (bhs—T ) — bac) (8.10)

The highest lower bound is determined by maximising with respect to the
statical parameters s and 7. It appears that:

dV/9o>0
dV/oT=0 for T=bho/2

Therefore the highest lower bound is obtained with the maximum concrete
stress (i.e.s=/,"). For T, <bhf/2 the highest lower bound is obtained with the
maximum reinforcement force (i.e. 7=T y). Inserting into Eqn (8.10) and
introducing and ®=T7/bhf,, we find:

V= %bvfc (\/ a + 4R d(v — D) /v —a)
For ®<v/2. For Tyzébhf; the highest lower bound is obtained with

1
T= ibhfc*, whence:

= %bvfc(\j a+h -a)

For ®>v/2. In this case the beam is over-reinforced, in the sense that the
longitudinal reinforcement is not yielding at failure of the beam.
The lower bound solution may be written:

V=%bvfc(Vaz+4yo(h~yo)—a) (8.11)

With y =h®/v<h/2. 1t is understood that y_ is replaced by //2 if ®>v/2.

The minimum dimensions of the load and support platens to ensure
validity of Eqn (8.11) can now be determined. The required length /=¢, of the
load platen is:

1
h=x=o a* + 4y, (h—y,) —a) (8.12)
The required length of the support platen is determined by Eqn (8.6):
sEx+(y -2c)y /x (8.13)
Inserting Eqn (8.12) we find:
_ h-2c¢ 2 _ _
Sl_2(h—y0)( a+4y,(h-y,)+a)—a (8.14)

It is assumed in the following that c¢<y /2, otherwise the required support
length reduces to s=x (Figure 8.9). It is further assumed that the load platen
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is sufficiently long (#=t,), otherwise the solution is either trivial ( V = bif,") or
governed by the analysis below.

If the support platen is shorter than required (s<s,) then the depth y of the
concrete compression is determined by Eqn (8.6). From Figure 8.7 we find
the geometrical relation: cot®=y/x=(a+s)/(h-2c¢). Solving for y, inserting into
Eqns (8.6) and using Eqn (8.4) we find the lower bound solution:

(h = 2c) (2ac + hs) (8.15)

V = bvf,
(a+s)+ -2

By Eqns (8.11) and (8.15) the lower bound solution is given in terms of the
clearance a. In most design situations, however, it is the distance / between
load and reaction which is given. Exceptions are formed e.g. by cases of
indirect loading and built-in support.

When the capacity is governed by the reinforcement the load is found in
terms of the span / from Eqn (8.8):

1
V=“2-bvﬁ; (2h—2¢ - yo) Yo/ 1 (8.16)

With y =h®/v<h/2. The relationship between / and a is (Figure 8.7): I=a+s/
2+t/2. Inserting s=s, from Eqn (8.14) and ¢=¢, from Eqn (8.12), we find:

f=2(—2(;f—)y‘)ﬁ @ +4yh—y,) +a) (8.17)

Eqn (8.16) is identical with Eqn (8.11) by virtue of Eqn (8.17).
The limiting size of the load platen 7=x=V/bvf. as a function of / is found
from Eqn (8.16):

t=x=(2h-2c-y )y /21
Inserting into Eqn (8.13) we find the minimum size s, of the load platen:

- (2h =2¢ = yo) yo + 41 (yo — 2¢)
! 21 (2h = 2¢ - yo)

(8.19)

When the capacity is governed by the support length the load is found in
terms of / by solving Eqns (8.7) and (8.6) for x=V/bvf.. Elimination of y
yields the cubic equation:

X3-2x% (21Hs)+x[(21+s)*+4(h-c)(h-2c)]
-4(h-2¢) [2lcts(h-¢)]=0 (8.20)
Eqn (8.20) has one real root, which may be expressed analytically, but the

result is not particularly illuminating, and Eqn (8.20) is most easily solved
by iteration.
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Example

Consider a beam with span /=34/2, reinforcement strength y =h®/v=h/3 and
level of reinforcement ¢=h/12 corresponding to d=0.92/h. From Eqn (8.16)
we find the solution: V/bvf=x=h/6=0.167h and Eqn (8.19) gives s=h/2. The
geometry of the considered beam is shown in Figure 8.7, and we note that
attainment of the flexural capacity requires a substantial length of the
support platen.

If more realistically we assume s=t=k/6, the solution is found from Eqn
(8.20): V/bvf=x=0.108h corresponding to a reduction by 35%. If, on the
other hand, the level of the reinforcement is increased to ¢=h/6,
corresponding to d=0.834, we find from Eqn (8.16): V/bvf=x=0.148h. This
is a reduction of 11% only, and the attainment of this flexural capacity
requires no oversize support platen, as we now have s=x by Eqn (8.13).

8.4.2 Upper bound analysis

The kinematically admissible failure mechanism shown in Figure 8.10
consists of a straight yield line running at the inclination 8 from the edge of
the load platen to the edge of the support platen. The relative displacement
rate is v, inclined at the angle o to the yield line.

v

7 | ;01_

| 1
v

-

s a t

T

Figure 8.10 Failure mechanism for beam with point loading.

We assume that the reinforcement is not compressed, i.e. =>1/2-8 or
o+B27/2. The rate of external work done by the load is W=V sin (0/+8). The
rate of internal work dissipated in the mechanism is:

W, =—b—— vf*(l —sino) —vT, cos (ot + B)

1, h
2 sinf3
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where the contributions from the web concrete and from the reinforcement
are calculated by Eqns (8.1) and (8.2), respectively.
The work equation W =W, gives the upper bound solution:

_ bhfe(1 —sin (o + B)cosP + (bhfs— 2T,)cos (o + B)sin B

v 2sin (oL + P)sin B

(8.21)

The lowest upper bound is determined by minimising with respect to the
variable angle of. A minimum is found for dV/d(o+B)=0, which gives:
hcos (00 + B) =— (bhf:—2T,)sin B (8.22)

Inserting into Eqn (8.21) and introducing f"=vf, ¢~T,/bhf and cot B=a/h we
find:

V= %b\rf; (\/ a’ + 4oV - ¢) /v’ —a)

for 0<v/2. The validity range arises from the condition 0+B=m/2, together
with Eqn (8.22).

For o+B<n/2 we have dV/d(0+B)<0 which means that the lowest upper
bound is obtained with o+B=m/2. This is the case also if a contribution to the
rate of internal work is assigned to compressed reinforcement c¢f. Eqn (8.2).
Thus we get:

v=bv (N @+ i -a)

for ¢=v/2. The situation o+B=mn/2 corresponds to a relative displacement rate
which is perpendicular to the beam axis (Figure 8.10), in which case the
longitudinal reinforcement does not yield, (i.e. the beam is over-reinforced).

The upper bound solution is seen to be identical with the lower bound
solution, Eqn (8.11). This means that the flexural capacity, Eqn (8.16), is the
exact plastic solution if we have =, given by Eqn (8.18), and s=s, given by
Eqn (8.19). For £t and/or s>s, (and unchanged shear span 1), the lowest
upper bound will exceed the highest lower bound.

Figure 8.11 shows an alternative, flexural mechanism, consisting of a
clockwise rotation ? of the beam end about a point O at the distance y below
and the distance x outside the inside edge of the load platen. The rate of
external work done by the load is: W =V(a+ s/2 + x)n. The rate of internal
work dissipated in the mechanism is:

1 el
Wi= b6 +y M+ Tyth—c = ym
The work equation W =W, gives the upper bound solution:

Ve bfo( +y)+ 2Ty (h—c - )
2a+ s+ 2x

(8.23)
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Figure 8.11 Rotational failure mechanism.

The lowest upper bound is determined by minimising with respect to the
variables x and y. The condition 8V/8y=0 gives y =T, /bf.'=y,, whereupon
the condition dV70x=0 yields:

2.r=\/{2¢1+3}2+4y0(2h—26—y.,} -(2a+5s)

Inserting into Eqn (8.23), we find:

V= %bfc{\’ (2a+5) +4y,(2h—2c-y,) - (2a+ 3)}

Therefore V = bxfrand /=a+s/2+x/2 whereupon this solution is also seen to
be identical with the flexural capacity, Eqn (8.16).

In the failure mechanism of Figure 8.10 the reinforcement may be located
anywhere in the section, as long as the effective depth to the centroid is d=h-c,
whereas the mechanism of Figure 8.11 requires that the reinforcement is
located in the tension zone of depth h-y . Figure 8.12 shows a failure
mechanism without yielding of the reinforcement for the case that the
reinforcement is concentrated in a single stringer at the effective depth d=h-c.

The failure mechanism of Figure 8.12 consists of a hyperbolic yield line
through the edges of the load and support platens, the inclination of the
chord being B. Relative to the loaded beam section the beam end is rotating
counterclockwise at the rate 1 about a point O located outside the beam at
the level of the reinforcement. The relative displacement rate at the midpoint
of the chord is:

v=nr=n(h/2-c)/sin (0:+B-1/2)

where o is the inclination of v relative to the chord.
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Figure 8.12 Failure mechanism with hyperbolic yield line.
The rate of external work is found by considering the displacement rate
of the support reaction relative to the mid section of the beam:
W=vn(-(h/2-c) tan(o:+B) -a/2-s/2)

The rate of internal work is found from Eqn (8.1):

1
W[ 2 sin Bb\ﬁ- {1 —sin 0’-)

h-2¢
smB 2cos a+[3)

=5 ﬁ —sinao)
The reinforcement does not contribute to the rate of internal work because
the relative displacement rate is perpendicular to the reinforcement at the
intersection with the yield line.

The work equation W =W, gives the upper bound solution:

hih - 2c) 1 -sina
sinB (a+s)cos(o+PB)+(h—2c)sin (o +P)

1
Vb (8.24)

The lowest upper bound solution is determined by minimising with respect
to the variable angle o. The condition dV/da=0 gives:
1-sinot _(a+s)sinB—(h—2c)cosP
cosot  (a+s)cosB+(h—2c)sinp

Inserting into Eqn (8.24) and introducing f = Vf. and cotB=a/h we recover
Eqn (8.15). Thus also in this case is the upper bound solution identical with
the lower bound.
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8.4.3 Experimental evidence

There exists a wealth of published shear test results, which have been
compared with the plastic solution, albeit exclusively with the flexural
capacity prediction in the ‘shear strength’ formulation, Eqn (8.11). Nielsen and
Braestrup (1978) reported a series of five rectangular, simply supported,
prestressed beams under two-point loading. The beam parameters were: depth
h: 360 mm, concrete cylinder strength £:55 N/mm?, degree of reinforcement
0:0.21 (including both bottom and top strands), and shear span ratio a/k: 0.5,
1.0, 2.0, 3.0 and 4.0. The latter beam failed in flexure, whereas shear failure
was obtained for the four beams with lower shear span ratios.

The ultimate loads of all five beams were in excellent agreement with
Eqn (8.11), with an effectiveness factor v=0.46, thus the beams were close
to being over-reinforced. Comparison with a number of over-reinforced
beams (¢=v/2) from the literature showed some scatter around the prediction
corresponding to v=0.6.

It appears that in comparing with test results, as well as in practical
applications of the solution, the crux of the matter is the assignment of a
value to the effectiveness factor. As mentioned in Section 8.3.1 the reduced
effective concrete strength reflects the limited ductility of concrete, which
depends primarily on the strength level f. In addition, however, the
effectiveness factor must account for other neglected features, notably the
size effect, the tensile concrete strength, and the state of stress at failure.

The amount of stress redistribution increases with the flatness of the
compressive concrete strut, wherefore the effectiveness factor is expected to
be a decreasing function of the shear span ratio a/4. On the other hand, the
neglect of the tensile concrete strength leads to an underestimation of the rate
of internal work in the yield line (Figure 8.10), which is greater for flatter yield
lines, where the relative displacement rate is closer to the yield line normal.
Consequently, the tensile strength leads to an increased effectiveness factor for
higher shear span ratios, cancelling out the above effect.

The development of cracking that eventually leads to failure is basically a
fracture mechanics phenomenon, which is scale dependent. The
effectiveness factor is therefore a decreasing function of the absolute
dimensions of the beam, e.g. represented by the depth 4.

Finally, experience shows a beneficial influence of the reinforcement,
possibly due to dowel action, in addition to the dependence upon the
reinforcement degree ®. Hence the effectiveness factor is also an increasing
function of the geometrical reinforcement ratio p=A4 /4.

A comprehensive investigation of published test results has been carried
out by GW.Chen (1988). The conclusion is that the effectiveness factor for
rectangular, non-prestressed beams can be expressed by the formula:

v =(1—0.25h)(2 - 0.4a/h)(2 + 100p)0.60/Nf. (8.25)
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where / is measured in m and f, in N/mm?, and we have the restrictions:
h<1 m, a/h<2.5, p<0.02

Chen (1988) compared the strength prediction of Eqn (8.11), with v given
by Eqn (8.25), with a large number of beam test results (including deep
beams and corbels) and found very good agreement. Eqn (8.25) is
complicated for practical use, and a safe and reasonably good estimate may
be obtained by taking:

v=2.0/f (8.26)

8.4.4 Shear reinforcement

In the analysis so far attention has been given only to beams without
secondary reinforcement in the shear span. As the flexural capacity is not
influenced by the introduction of shear reinforcement, the latter is seen to be
efficient in two cases only i) beams with insufficient support length (s<s,) ii)
over-reinforced beams (¢p>v/2). This above statement is, however, in need of
qualification, (see Section 8.5).

The latter case has been investigated (Braestrup and Nielsen, 1983).
Considering the failure mechanism of Figure 8.10 we note that a uniformly
distributed stirrup reinforcement of strength rf will give rise to a
corresponding contribution to the rate of internal work, resulting in the upper
bound solution:

V= Ibvf. (Na* + dyo(h — yo) - a) + barf, (8.27)

with y =h¢/v<h/2.The over-reinforced case is obtained by putting y =h/2,
and a coinciding lower bound can then be found, J.F.Jensen (1981). Eqn
(8.27) is only topical for low shear span ratios, the range depending upon
the amount of shear reinforcement. For

vf. - of,
N )

the strength is given by the general plastic solution for beam shear (the web
crushing criterion), Nielsen (1969), Braestrup (1974):

V=bhNrfy(vf — 1fy) (8.28)

with 77 <vf/2. Eqn (8.28) is a coinciding upper and lower bound.

Braestrup (1980) gave a catalogue of solutions for beams with all
combinations of longitudinal and web reinforcement (vertical or inclined
stirrups) under concentrated or distributed loading.
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8.5 Conclusion

In the preceding sections coinciding lower and upper bound solutions have
been presented for deep beams subjected to point loading. Basically, the
analysis shows that the ultimate load is determined by the flexural capacity,
expressed in terms of the clearance a by Eqn (8.11), and in terms of the span
[ by Eqn (8.16). Note, however, that when the compression zone reaches
mid-depth (y,=h/2) the beam becomes over-reinforced. Thus for ¢>v/2 the
ultimate load is governed by the strength of the inclined compression strut,
which is found by putting y=h/2 irrespective of the yield force of the
reinforcement.

On the other hand, the attainment of the flexural capacity requires a
certain relationship between the length s of the support platen and the level ¢
of the reinforcement centroid s=s, where s, is given by Eqn (8.14) in terms of
a, and by Eqn (8.19) in terms of 1. For s<s, the reinforcement does not yield,
and the ultimate load is determined in terms of a by Eqn (8.15), and in terms
of I by Eqn (8.20) (By solving for x=V/bvf).

The latter case s<s, corresponds to the generally observed shear failure,
and it typically arises when the reinforcement is placed close to the bottom
face of the beam. The stress distribution is shown in Figure 8.7, except that
the length of the support platen will normally be designed according to the
load (i.e. s=x) The capacity is determined by the inclined concrete strut, and
as the stresses are concentrated at the extremities the collapse mode may
also be classified as bearing failure.

The result is a significant loss of load-carrying capacity, unless the
support platen is very large. As shown by the example in Section 8.4.1 it is
beneficial to increase the cover to the reinforcement, the small loss in
flexural capacity being offset by a large gain in shear strength.

Shear failure of deep beams is, however, also observed in cases where the
load is governed by the flexural capacity. This is due to the fact that the
effectiveness factor for the concrete is smaller for the sliding failure of the
shear mechanism (Figure 8.10) than for the crushing failure of the flexural
mechanism (Figure 8.11). For larger shear span ratios this effect is drowned
by the influence of the neglected tensile concrete strength, wherefore slender
beams are likely to fail in flexure, (¢f. the discussion in Section 8.4.3).

The lower effectiveness factor for shear failure means that the introduction
of shear reinforcement is also beneficial for deep beams which nominally
attain their flexural capacity. The strength may be estimated by Eqn (8.27), but
this upper bound is not backed by a lower bound solution for ¢<v/2.

The well known observation that horizontal web reinforcement has little
or no effect on the shear strength is readily explained by the fact that the
relative displacement rate at failure is close to the vertical.

It may be concluded that the theory of plasticity for structural concrete
gives an insight into the behaviour of deep beams at failure, in addition to
providing reasonable predictions of the ultimate loads.
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9 Finite element analysis

Notation

A
a, b

a, b, c,

i

Nm

ST

cross-sectional area of a member
dimension of a side of a recta-
ngle

expressions of the nodal coord-
inates as defined in Zienkiewicz
(1971)

strain-displacement relationship
function

diameter of a circular section
stress-strain elasticity relation-
ship

differential of a surface, volu-
me

modulus of elasticity

element nodal forces

shear modulus

weight coefficient in Gauss nu-
merical integration

2x2 identity matrix

Jacobian operator

coefficient in the inverted Jaco-
bian matrix

stiffness of an element

length of a member

shape functions with respect to
nodes i, j and m

applied load

load increment

uniformly distributed surface
load

residual nodal forces in an elem-
ent due to excess stress

load vector of an element

strain rotational transformation
matrix

Y.K.CHEUNG and H.C.CHAN, University of Hong Kong

thickness of an element

T rotational transformation ma-
trix

u, v displacement components in the
x- and y-directions

Xy co-ordinates in the x-, y- refer-
ence axes

X,y local co-ordinates (as a distinct-
ion between the global co- ordi-
nates x, )

XY force component in the x-, y-
direction

ey strains

) displacement vector of an ele-
ment

A area of a triangular element

Ad increment in displacement

En natural co-ordinates

en first derivative of &, 1

0 angle between the local x” -axis
and the global x-axis

v Poisson’s ratio

(¢ stress

o an expression in terms of &, 1 for
oN/ox

) an expression in terms of &, n| for
oN/oy

Subscripts

i,j, m suffix to denote the node number
of a node

r,s suffix to denote the identity number

of a node

Note: Commonly used symbols are self-explanatory and are not defined here again. Most symbols
have been defined as they appear in the text and they are better understood within the text. The
repeated use of a symbol at different sections with different meanings is unavoidable as the same

symbol may be commonly used in different subjects.
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9.1 Introduction

In current design practice, structural analysis for reinforced concrete frames
is generally based on the assumption that plane sections remain plane after
loading and the material is homogeneous and elastic. Therefore, linear
elastic methods of analysis are normally adopted for the design of simple
reinforced concrete beams and frames to obtain the member forces and
bending moments that will enable the design and detailing of the sections to
be carried out, despite the fact that reinforced concrete is not a
homogeneous and elastic material (British Standard BS 8110:1985).

However, the elementary theory of bending for simple beams may not be
applicable to deep beams even under the linear elastic assumption. A deep
beam is in fact a vertical plate subjected to loading in its own plane. The strain
or stress distribution across the depth is no longer a straight line, and the
variation is mainly dependent on the aspect ratio of the beam. (Figure 9.1).

The analysis of a deep beam should therefore be treated as a two-
dimensional plane stress problem, and two-dimensional stress analysis
methods should be used in order to obtain a realistic stress distribution in deep
beams even for a linear elastic solution. There are several methods available
for the analysis of deep beams that are either simply supported or continuous.

The classifical analytical method is based on the classical theory of
elasticity and it relies on finding a solution for the biharmonic differential
equation of Airy’s stress function satisfying all boundary conditions. But in
the practical situation, a mathematical solution is not always possible.

The finite difference technique may be used to solve the differential
equation to obtain a numerical solution if the analytical solution is not readily
available. Both methods are more suitable for deep beams with rectangular
shapes, straight top and bottom soffits, prismatic constant cross-section and
with uniform material properties (Timoshenko and Goodier, 1951)

The finite element method is a much more versatile tool compared with
the former methods. It can be used to analyse variable thickness deep beams
with curved, stepped or inclined edges. Edge stiffening, openings and
loading at any location of the beam can be easily dealt with; and the
different properties of the constituent materials, concrete and steel, can be
separately represented. By incorporating a known constitutive law and an
iterative procedure, the non-homogeneous and non-linear nature of the
composite construction can be accounted for (Zienkiewicz, 1971).

9.2 Concept of finite element method

The finite element method can be regarded as an extension of the
displacement method for beams and frames to two and three dimensional
continuum problems, such as plates, shells and solid bodies. The actual
continuum is replaced by an equivalent idealised structure composed of
discretised elements connected together at a finite number of nodes.
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By assuming displacement fields of stress patterns within an element it is
possible to derive a stiffness matrix relating the nodal forces to the nodal
displacements of an element. The global stiffness matrix of the structure,
which is the assemblage of all the elements, is then obtained by combining
the individual stiffness matrices of all the elements in the proper manner. If
conditions of equilibrium are applied at every node of the idealised
structure, a set of simultaneous equations can be formed, the solution of
which gives all the nodal displacements, which in turn are used to calculate
all the internal stresses (Ghali, Neville and Cheung, 1971).

In applying the finite element method to a problem, it is first necessary to
discretise the continuum, that is to subdivide the continuum into small areas
of triangular or rectangular shapes. Obviously, it is clear and more
straightforward to use triangular elements to model a structure with inclined
or curved edges.

9.3 Triangular plane stress elements

Let us therefore first of all derive the stiffness matrix of a triangular element
which is the simplest element available in two-dimensional stress analysis.

Consider a triangular element ijm with nodal co-ordinates (x;, y,), (Xj, yj)
and (x_, v, ) respectively as shown in Figure 9.2.

Figure 9.2 Triangular element.
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The displacement at any point can be defined by two internal displacement
components in the x- and y-directions, u(x, y) and v(x, y). Assuming a linear
displacement field the displacements u and v can be expressed in terms of the
nodal displacements and the shape functions N, N, and N, .

u=NUNUN 1,
©.1)

v=Ny, +Nj v, +N v

in which N=(a+bx+cy)/2A etc. for (i, j, m) is simply the area co-ordinate
which takes up the value of unity at node i and the value of zero at the edge
opposite to node i, where

;i = X¥m — XY

b=y = Yn etc. for (i, j, m) 9.2)
C'.=—XJ'+Xm
1 L xi y
A=§ 1 Xi oy (93)
1 Xn ¥m

In matrix form

{i} o w ws

Ui
Vi

0 Nj 0 Nm 0 U
N.ON 0 Nol | (9.4)
Um

Vm

It follows that the strains will be obtained from the derivatives of the
displacements as follows

Su

£, = & = (biui + bjh'j + bmum)/ZA

g, = %;—: = (C-l‘y"-. + Cv; + Cm‘r'm)/ZA (95)
du  dv

Yoy = S_y * Sx [(ciui + cjtgj + Cralhm) + (Bivi + by + b)) /24

or written in matrix form
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Su Ui
€ gx b ObOb, 0]|"
v 1 uj
{E}: g r= 5— =£ ] Ci 0 Cj 0 cm v
Y’(Y Y C; bi Cj b.i Cm bm !
du +Q U
k5y 6)\’ Vi
e} = (8118 (9.6)
in which
1 b 0 b 0 by, O
[3]=[}3i B, Bm]=£ 0c¢0¢ 0 ca 9.7)
C; b'. Cj b} Cm bm
b, 0
(Bil=2,10 ;. etc. for (i, j, m) 9.8)
G 1

The stresses in the element are obtained by multiplying the strains by the
material elasticity properties

{o}=[D]{e} 9.9)
For isotropic materials

E
1-v?

0
(D1= 0 (9.10)

and in order to prepare for the more general case in non-linear analysis, the
more general form for orthotropic materials is given by

L [EvE 0 ©.11)
(D] = vE, E, 0
L=Vl 9" 0 (1-vwv)G
or
E E. O
[D1=|E, E, 0 (9.12)
0 0 G,

Where E, E, E and G, are the material properties which should take the
appropriate values at different stress-strain level according to the
constitutive law adopted.

The stresses caused by the element nodal displacements are then related
by the following relation
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Oy
{8} =40, t =[D1 e} = D1 (B {3} (9.13)
Tuy

From virtual work principle, it can be established that the element nodal
forces induced by the nodal displacements are given by

(F)=[ [ 1B1" (D) (B) ¢ dx dy 18] (9.14)

where ¢ denotes the thickness of the element and hence the stiffness matrix
of the element is

k)= [ (BT D] [B) dx dy ¢ (9.15)

Since all the terms are constant, the integral de dy over the whole area of
the element is just its area A. Hence

{F1=[B1" (D] (Bl A 8] = k] {8) (9.16)
where
kl=[B1" (DI (B¢ A 9.17)
or written in terms of the sub-matrices
kii kij kirn
k] =| ki kj Kim (9.18)
kmi kmj kmm

The coefficients of the stiffness sub-matrix can be expressed explicitly, e.g.
for the case of isotropic medium

l-v l1—v
5 s Vheot 5 b (r=ij,m
vc.bs+l_;\ibrcs qcﬁ%brbs §=i.j.m)

Et bb,+

TR

(9.19)

and for the general case

__t |Ebb+Gicies Ebieo+Guebs | (r=i,j,m
[krs] 4A |:Enfrb; + anrc‘- EyCrCs + Gllbrbs:| L §= i, j. m} (920)

Hence, the forces at a node i are given by

{Fi}={i‘}=[ku Ky K EJ 9.21)
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8
)

m

where are the displacement vectors of the nodes of the triangular element

and

etc. for (i, j, m)

9.4 Rectangular plane stress elements

Another type of finite element commonly used for the analysis of deep
beams is the rectangular element. However, right-angled rectangular
elements are not suitable for beams with inclined or curved edges, and it is
more convenient to use the quadrilateral element, which must be formulated
through the use of natural co-ordinates (€, 1) and co-ordinate transformation
techniques.

9.4.1 Isoparametric quadrilaterals

Based on some mathematical manipulation, regular shaped elements can be
distorted into desired irregular shapes with either straight or curved edges
which can then be made to coincide nearly with the curved boundary of a
structure. In general a one-to-one correspondence must exist between points
on the original element and those on the distorted one. The co-ordinates of a
point on the parent element and on the distorted one are related by means of
interpolation functions or shape functions. If the same shape functions are
used to represent the relationships of the displacements as well as the
geometric co-ordinates system, the procedure is known as the isoparametric
finite element formulation (Zienkiewicz, 1971).

Figure 9.3 Natural co-ordinates of a parent square element and element co-ordinates of a
quadrilateral.
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For example, the co-ordinates of a point (X, y) in a quadrilateral can be
expressed in terms of the co-ordinates at the four nodes and the shape
functions as

{X:N1x1+N2,X2+N3X3+N4.X4}

)’=N1)7| +Nzyz+N3y3 +N4y4 (922)

in which the N are the shape functions given in terms of the natural co-
ordinates (&, 1)) of the corresponding point in the parent square element.

Ni='(1-&)(1-n)
N>=Y1+&)(1-n)
Ns=1(1+8)(1+m) (9.23)
Na=(1-8)(1+m)

If the same shape functions are used to relate the displacements

{u=N;u1 +N2M2+N3M3+N4Ll4}

v=Nwy;+ Ny + N3vs+ Navy (924)
the quadrilateral element is called iso-parameteric.
As before, the strains are given by
Su ] [N BN BN N ]
c ox ox 0 Ox 0 Ox 0 ox 0
X 5v 8N1 8N2 8N3 8N4
€= = -~ = 0 - _ —_— —_
tel > 5 v O % 05 0 5|0
d 8x| [ & & & & & & By x|
= (B B, B; Bd] {8} =[B) {3 (9.25)
with
6N, 5
Ox 0
BN .
[B]=| 0 s [ (71234 (9.26)
N, BN,
| By dx
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Because the strains are given by the differentials of the displacements with
respect to x and y whereas the displacements have now been expressed as
functions of & and m, the relation between the derivatives in the two co-
ordinate systems has to be established and this is done by the chain rule for
differentiation to give the Jacobian operator or Jacobian transformation

matrix as follows:

BN, BN 8 BN, &y
6 a8 & &
BN, _ BN, 8x 8V, 8
dn & &n & &
or put in matrix form
v [ 8] [aw &,
& = o 8¢ dx Y &
o, [T gy | o [TV aw
nj) | on| | & 3)
where
b ] (g, g,
[ﬂ= 8% 6& =I=I& uzlaé
S WlTio o g M
on on i=|8n l=13nl
SN, BN, 8Ny W] [
=8§5§6§8§ XZ)’E:JH
%%%% X3 ¥ Ja
dn o &M | |xs v

(9.27)

(9.28)

(9.29)

The proper differentials are obtained by inversion of [J], which is possible
only when there is a one-to-one correspondence between the natural and the
local co-ordinates. In general [J] becomes singular for a quadrilateral with a

re-entrant corner.

N, aN,
ox | _ U & Ju Ju
ON; | N | |Ju In
Sy on

Therefore
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m i
g 0

[Bl=| 0 S_yl =0 wi (9.32)
% % lI-“i ¢I
[y Bx

The stiffness matric will be given as before by

(K=, 1B D B1dv= [ [ (BI" (D) (B dxdy-
S RIGHCIGINE N 9.33)

or in terms of the stiffness sub-matrices

ki ki ki ki
ka ko ko ko
ka ks ks ky (9‘34)
kay ki kaz ku

(k] =

in which each of the stiffness sub-matrix is given by
k=] J' BT DVBIIJIGE dn 15 (r=1,2,3,4 s=1,2,3,4) (9.35)
-1%-1

An explicit solution of [J]-! and the subsequent integrals are generally not
obtainable and numerical integration technique has to be resorted to. Gaussian
integration is one of the processes commonly used for this purpose.

[krs] = Z 2 H_'l Hi {Br];l; [D] [Bs]ji [JI-t (936)

j=1i=1

Where H and H, are the weight coefficients corresponding to the specified
Gauss points (ij, n,) and n is the number of Gauss points in each direction.

Table 9.1 Gaussian point natural co-ordinates and weight coefficients

Number of Gauss points Gaussian point natural coordinate Weight coefficient
nxn E or m Hi or Hj
2x2 —0.5773502692 1.0
0.5773502692 1.0
3x3 ~0.7745966692 0.5555555555
0.0 (0.8BBBEBEERY
0.7745966692 0.5555555555
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9.4.2 Equivalent load vector

The equivalent load vector at the nodes due to the effect of uniformly
distributed element surface load is

Ry=] N1 fgjas =] ['iN") (g 171 dE - an

=Y, Y, H;H: [N g}/ (9.37)

=l i=1

9.4.3 Stiffness matrix of rectangle with sides 2ax2b

For example, consider a rectangle with sides 2ax2b as shown in Figure 9.4.

yT 2a

2b
0 - y X
Figure 9.4 Rectangular element.
The Jacobian transformation matrix is
0 0
[}]:l _(l_n) (I-m) (1+n) _(I"'n) 2a 0
d=(1=8) —(1+& (1+& (1-8&| |2a 2b
0 2b
! {(1=m2a+ 1 +m)2a] {(1+m)2b-(1+n)2b) |a 0‘
) [—(1+82a+(1+8)2d) {(1+8&)2b+(1-8)2b) o b
1
-0
_ a__ 1 [bO]_|a
IJl=a.b, [J] _a.b‘(]a = . 1
b
3N, 3N, 11, ;)
S - SE ;Z§1(1+TIJ'I) o
&N, [~ N [T)1 1, r>={i}
Sy on) bW (1+88) v
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in which for i=1,2,3,4
&’i=— 1,1
n

j b

,1,-1 and
-1, 1, 1 respectively

0

dx
sn,| | & O
[Bi]= 0 VS_'_ =|0 Wi
Y v O

DY
| 8y  Ox |

T (6. 0 w]
(81" [D] lBs]-_O v o

_[QED+WGw)  (OEW, + WGih)
_[‘-l’rEans + 0.6y (WED: + 0.Guds)

Substituting into
1 1
(k) =I_I _[_]{B,]T (D) (B]1J1dE-dn -t

gives the stiffness coefficients in the stiffness matrix.
To find [k, ]

or=-7- (-1 Wi=- (-9

[ [ooazan=pe ' [la-myae

(1 1 (1
J_| L‘I’I‘Vl d&dn = 166 J—l ‘[—|{1 B

1
.[ Iq’l"l"ld"édﬂ—mabj _[(l (1 -8 dédn =,

LA —%En—lG.,

33
|l_
_1g 1 a
3 G., 3le+ G..
To find [k, ]
o= (1-m) ——La-g
"4a n V="
1
= -1 We=- (14D
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J; _{_:lll2¢|d&_,dn= J J (1-m)* dédn =~

164

L,L‘Pz‘l»‘l d&dn = 16b' .[ j (1 ﬁ)dﬁdn——

1 1 l Il l
I' Towdean=- ['['0-my1 -5 dean=-
101
J'['wsor dean = ['['a+8)1-m) dean =
ﬁ 1 1
-3, Ex +6bG., 'E.+1G,
k2|= b
lp -1
By Gn 6bEy 3a G
and similarly for other stiffness sub-matrices.
For the case of isotropic elasticity
Ec E, 0O g |1y O
ID]=|E, E, 0|=—"—|v1 0
0 0 G| '"Vi§ool-v
2
The full stiffness matrix for the rectangular element with sides 2ax2b is
‘a 6 b
I+v 1a +_1__‘:_\12 Symmetric
8 ‘b 6 a
___+l;vc_r 1-3v lQ_l—vg_
g 12°0b 8 a6 b
_1=3v b _1-vb | 1-v a 1-vb
6 3
k] = 8 a_ 6 a 8 b 6 a
b _l-va | 1+v 1b_1-va |1-3v
bqa 12 b 8 ba 6 b 8
_1+y _1a_1-vbh| 1-3v _ia 1-vb
8 6p 12 8 b 12 a
1a_l-va | 1-3v _1b_1-va l+v
b 6 b 8 Sa 12 b 8
1-3v _,g+l—vg 1+v _i1a_1-vb
| 8 3p 12 a| 8 b 12 a

© 2002 Taylor & Francis Books, Inc.




Symmetric
b l-va
12, 2=7ve
'at 6 b |
l+v ya l1-vb i
irV 14,1°VD
8 b 6 a
b 1-va 1-3v 194.1_\'2
3a 12 b 8 ‘a6 b
_1-3v b _1-vb | _1-v lg+l—vg
8 ¢ 6 a | 8 3b 6 _a]

9.5 Elastic stress distribution in deep beam by finite element method

If it is only required to obtain a pattern of the stress distribution in a deep
beam for preliminary study or design purpose, one can proceed by
assuming the reinforced concrete beam as an elastic isotropic plate,
discretising the beam with triangular and/or rectangular elements,
assembling the element stiffness matrices and setting up equilibrium
equations for the nodes. The nodal displacements can be solved and the
element principal stresses calculated. Figure 9.5 shows the distribution of
the magnitude and direction of the principal stresses in a simply supported
deep beam with a span/depth ratio of 2.0 subjected to a uniformly
distributed load applied at the top.

9.6 Finite element model for cracked reinforced concrete

However, the linear elastic solutions and stress distributions will have little
meaning once cracking of concrete occurs, and a more sophisticated finite
element model which can make a realistic representation of reinforced
concrete and take into account the actual complexity of the construction
should be employed.
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Figure 9.5 (a) Idealisation by triangular element; (b) Elastic stress distribution of a simply

supported deep beam with span/depth ratio of 2.0 subjected to a uniformly distributed load applied
at top.
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In a more realistic numerical model, it is necessary to take into account:

1) the composite nature of the construction—the reinforced concrete
section is composed of two different materials, concrete and steel,
with intrinsically different properties;

i1) the non-homogeneous and non-linear behaviour of concrete—
concrete is a mixture of aggregates and mortar and is highly non-
homogeneous; the stress-strain relationship for concrete varies with
many variables and is non-linear under load;

iii) the possible relative slip between steel reinforcement and concrete
and the effect of the bond stress;

iv) the low tensile strength of concrete—as a result of which
progressive cracking of the concrete section will occur under
increasing load;

v) other time-dependent effects of the materials such as shrinkage and
creep.

In view of the great complexities involved in such a problem, it is virtually
impossible to obtain an exact analytical solution for the distribution of
stresses throughout a reinforced concrete member by direct application of
the classical theories of continuum mechanics. Approximate numerical
methods must be resorted to and the finite element method is apparently one
of the most appropriate approaches. In order to deal with the composite
material, it is necessary that separate finite elements are used to represent
individually the steel bars and the concrete in a reinforced concrete section
(Ngo and Scordelis, 1967).

9.7 Modelling of reinforcing steel bars

For the steel bars, whether tension or compression main steel, distribution
bars or stirrups, it is possible to use either the triangular or the rectangular
element, as described in the previous sections, to model them.

If triangular or rectangular elements are used, the circular section of a bar
of diameter d is taken as an equivalent square with sides YV d/2 and the
thickness of concrete at the steel level is reduced accordingly (Nilson, 1968).

Reinforcing steel bars can also be modelled in a much simpler manner by
bar elements or line elements (Figure 9.6).

L
-
-
*

Figure 9.6 Bar element
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For a bar element as shown in Figure 9.6 the displacement function is
Xy X
u=[(1 I)‘ {]{uz} (9.38)

By the method already explained earlier, the stiffness of the bar is

EA -
=51 [_} }] (9.39)

For simplicity, it is sometimes assumed that the bar elements are connected
to the planar elements in such a way that the bar elements do not occupy any
cross-sectional area of the planar elements and they are interconnected at the
nodes with perfect bonding (Nam and Salmon, 1974).

9.8 Point element or linkage element

At low stress level, perfect bonding between steel and concrete may exist.
As the stresses in the steel and concrete increase, cracking as well as
breaking of the bond will occur and there will be bond slip between the bar
and concrete (Ngo and Scordelis, 1967)

In order to account for the slip between concrete and steel a point
element or linkage (Figure 9.7) element may be used to connect the steel and
concrete elements. This can be considered to consist of two springs with
appropriate stiffnesses arranged in orthogonal directions, parallel to the axes
along the longitudinal direction of the bar and the normal direction. These
springs are considered to have negligible lengths and only their mechanical
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Figure 9.7 Linkage element
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properties are significant in the analysis. Therefore a point element is
assumed to have no physical dimensions (Ngo and Scordelis 1967). The
stiffness matrix of the linkage element is

0;' - kx’ 0 u
oy [T]0 kv (9.40)
For generality, the reference x’ axis of the linkage element or bar element

may be oriented at any angle 0 with the horizontal axis of the beam. The
usual rotational transformation matrix

[T]= [ cng sin %:l and its transpose [77]
-sin® cos

should be applied to the displacement, force and stiffness matrices.

9.9 Discrete cracking model

Wherever relative movement such as slip or crack is anticipated, a linkage
element may be introduced at the nodal point at which a steel element is
connected to a concrete element or between the adjacent concrete elements
which are triangular or quadrilateral finite elements (Ngo and Scordelis,
1967). A discrete cracking model will then result (Figure 9.8).

The spring in the linkage element parallel to the longitudinal axis of the
bar represents the bonding between the steel and concrete elements. It will

Figure 9.8 Discrete cracking model
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permit a certain amount of slippage to take place during the transfer of stress
from steel to concrete. The amount of slippage at various stress levels will
depend on the assumed characteristics of the spring.

The true relationship between bond slip and bond stress is a complex one
which is affected by many factors. From their study of bond stress-slip
relationships, Mirza and Houde (1979) proposed the bond spring stiffness
modulus as

dBUESY _ 1 95% 10°~ 470 10%s +4.17x 102 — 132x 105" (9.41)
d(slip)
where s is slip in inch and pound force units. For simplicity a linear
relationship between bond slip and bond stress could be assumed for k_(Ngo
and Scordelis, 1967).

The spring in the linkage element normal to the direction of the bar
represents the effect of the relation of bond stress and normal separation. This
effect depends not only on the adhesion and the mechanical interlocking
between the steel and concrete, but also on how well the surrounding concrete
is holding the steel from vertical separation. The vertical spring stiffness & is
even more difficult to determine. It is reasonable to stipulate that under normal
conditions the vertical separation is very small and its effect may be neglected.
Hence the spring in the normal direction to the bar is assumed to be very stiff
and k is arbitrarily taken to be a very large value. This means that the steel
element is rigidly connected to the concrete element in the normal direction of
the bar (Ngo and Scordelis, 1967).

In the case when a point element is used to define a crack between two
concrete elements the spring stiffness should be an appropriate
representation of the relationship between the tensile stress and strain as
well as the aggregate interlocking force of concrete (Nilson, 1982).

9.10 Smeared cracking model

Since the use of a discrete cracking model is not sufficiently flexible with
regard to the location of crack development and also involves the
complications of a bond-slip relationship which has not been definitely
established yet, some investigators prefer not to use a linkage element at all
but to put up with the assumption that perfect bond exists between concrete
and reinforcement in their analysis (Valliappan and Doolan, 1972) leading to
what is called a smeared cracking model (Figure 9.9).

In this approach, the cracked concrete is assumed to remain a
continuum, and the effect of the cracks is assumed to spread over the
entire element or a portion of it. After the first crack has occurred, the
concrete will become orthotropic with one axis being oriented along the
direction of the crack. This model has the advantage that cracks are
allowed to form anywhere in the structure as the stresses reach the limiting
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Figure 9.9 Smeared crack model showing stress distribution (a) just before cracking: (b) just after cracking



value and the same delineated model with the node numbers can be
retained throughout the entire non-linear analysis.

9.11 Modelling of constitutive relationships of concrete

In non-linear finite element analysis of reinforced concrete structures, the
stress-strain relationships of concrete under various conditions are required.
A great deal of research work has been done in this field in recent years and
there are several proposals commonly used in the finite element analysis of
reinforced concrete structures.

Liu, Nilson and Slate (1972) assumed concrete to be orthotropic with two
tangential moduli of elasticity which vary according to the state of stress and
strain in each principal direction. They proposed the following incremental
constitutive relations in the form of an elasticity matrix:

vEwr gy 0
Ez.b
do, de,
do; |=| Av X 0 de; (9.42)
7 " d 2
do» . E\ E's €
L E\'|b+E’2b+zE’3|w_

in which E’ , and E’,, the two tangential moduli, are given by

E".b= T3 (943)
1 E € & ]
(e )]
and W= (9.44)
Ewn_
Ezb

Tasuji, Slate and Nilson (1978) suggested the following expression for
the biaxial stress-strain relationship for plain concrete:

o= Ee (9.45)

ool (g2 ()]

where G is principal stress, € is principal strain, £ is the uniaxial elastic
modulus, v is Poisson’s ratio, k is the ratio of principal stresses, c, is the
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ultimate stress, € is strain at ultimate stress and Es:Gp/gp is the secant
modulus at ultimate load.

Kotsovos (1984) proposed that if the internal compressive state of stress
is known, the non-linear behaviour of concrete can be described by using
linear material properties. Thus the strains (g,, €,, €,) corresponding to a
given state of applied principal stresses (0,, 0,, 0,) can be related by
Hooke’s law as follows:

ES1:(01+51)'V(02+52+03+S3)
Ee =(0,ts,)-v(0,+5,.0,%s,) (9.46)
Ee,=(0,+s,)-V(6,*s,10,ts,)

where E is modulus of elasticity, v is Poisson’s ratio and (s, s,, s,) are the
principal stress components of the internal compressive state of stress.
Details of these expressions are given in the corresponding references. A
number of other proposals can be found in the literature [9.6, 9.18-21]
(Chen and Han, 1988, Han and Chan, 1987; Chen and Chan, 1975, Kupfer
and Gerstle, 1973 Darwin and Pecknold 1977).

9.12 Constitutive relationship of steel bars

The steel bars are generally assumed to take axial forces only. Hence, the
stress-strain relationship under uniaxial loading is required and the most
commonly adopted model is the bilinear curve with a linearly elastic and a
perfectly plastic branch. The same relationship is assumed for compression
as well as for tension. This is similar to that specified in Figure. 2.2 of BS

Stress
i d
Y Tension
200 kN/mm®
Strain

Compression

yd

Figure 9.10 Stress-strain curve for steel reinforcement
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8110 1985. However, it has been pointed out that the plastic range of the
curve should be given a slight inclination to facilitate computation
(Kotsovos, 1984) (Figure 9.10).

9.13 Cracking in concrete and yielding in steel

Concrete has a very limited tensile strength. If the principal tensile stress in
the concrete exceeds its tensile capacity, cracks will develop in the direction
perpendicular to the appropriate principal stress. The tensile stress that
fictitiously existed just prior to cracking has to be removed and transferred
to other parts of the structure. This is done by working out the equivalent
nodal forces in the element due to the excess stress and treating them as
additional external loads in the next cycle of iteration in non-linear analysis
(Zienkiewicz, 1971; Valliappan and Doolan, 1972).

’}=x ] (8" fou] dv (9.47)

Similarly, if the stress value exceeds the yield strength of the material, the
excess stress is also to be removed and transferred in the same manner. In
this case only the portion of the stress exceeding the yield stress is removed;
whereas in the case of cracking, all of the normal stress perpendicular to the
crack becomes excess stress.

9.14 Stiffness of cracked element

Once yielding or cracking has started to form and develop in an element, the
material elasticity matrix will be different and its stiffness will decrease. The
element which has cracked should have its stiffness reduced before going
further with the analysis.

For a quadrilateral element, direct integration cannot be performed on the
cracked element because the stiffness function is no longer continuous. Only
approximate integrations are possible with cracked elements.

In the smeared cracking model, it is assumed that the concrete
becomes anisotropic with one of the material axis x* being oriented along
the direction of the crack. The modulus of elasticity along the direction
perpendicular to the crack will be reduced to zero whereas the modulus
of elasticity along the direction of the crack may remain to take its
appropriate value under uncracked condition. Hence, the elasticity
matrix [D_,] should be modified to

o]
L
oo o

0
0
AG

oo
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in which x’ is parallel to the crack. The introduction of the cracked shear
factor M(0<A<1) will enable the effective shear modulus to be estimated
realistically (Liu and Scordelis, 1975; Suidan and Schnobrich, 1973) The
new elasticity matrix is now at an angle of rotation, say ?, with regard to the
global axis. Hence

[D,J=[ST] [D,] [STT" (9.48)
in which
cos’ ® sin® ® — 25in ® Ccos M
[ST]=| siffo cos’ @ 2sin ® cos ® (9.49)

SiNWCos M —sin®WCos®W Cos” — sin’ ®

is the strain rotational transformation matrix.

The Gaussian integration points are used as check points to assess
cracking or plasticity, assuming that the elastic coefficient matrix [D] varies
continuously throughout the element.

An alternative method is to use four corner nodes as the check points
(Nam and Salmon, 1974). If cracking or yielding is present at a node,
necessary adjustment to elasticity coefficients and computation of excess
stress are made. Interpolation by the Lagrangian interpolation formula is
used to get the appropriate values at the Gaussian integration points. These
values are used to determine the cracked element stiffness and the
unbalanced nodal forces.

9.15 Solution procedure

With all these techniques, a realistic numerical model for reinforced
concrete structures can be built up. Now it depends on the degree of
sophistication of the solution required which different numerical procedures
should be followed.

If the applied loading is small compared with the ultimate load, it may be
assumed that the structure behaved elastically and a linear elastic analysis
can be performed to give the elastic stress distribution in the steel and in
different parts of the concrete. If nearly full ultimate loading is considered
then it is necessary to have the non-linear stress-strain relationships, tensile
cracking strength and bond stress-slip relationship and so on established and
a non-linear analysis can then be performed.

The major steps in the linear and non-linear analysis at a typical load
increment are:

Linear analysis:
1) Subdivision of the deep beam and representing different parts by
appropriate types of finite elements

i1)  Generation of the element stiffness
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iii)  Assembly of the structure stiffness
iv) Assembly of the load vector

v)  Solution for the nodal displacements
vi) Determination of the element stresses

Additional steps in each load increment of the non-linear analysis:
vii)  Check for cracking, yielding, and failure
viii)) Determination of the unbalanced nodal forces
ix) Check for convergence
x) Ifnew crack appears: repeat steps ii)—iii) and then followed by steps
x) Ifyielding only occurs: repeat steps iv)—ix)
xi)  Stop when failure occurs or when full loading has been applied.

The linear solution procedure is well-known (Ghali, Neville and Cheung,
1971) and needs no further explanation.

Three different approaches are commonly used to solve a non-linear
problem, namely: incremental procedure, iterative procedure, and mixed
procedure.

9.15.1 Increment procedure

The total load is divided into a number of equal or unequal load increments.
At each step only one increment of load is added to the structure each time.
At each stage of loading the stiffness of the structure may have a different
value depending on the deformation reached and the constitutive law
adopted for the material as well as the method for estimating the stiffness at
that stage. After the application of the (i-l)th load increment AP, and the
determination of the stress o, , the elasticity matrix [D, ] can be determined
from the stress-strain relationship and hence the new stiffness [K,] can be
estimated. The ith increment of displacement can then be determined from

[K.1{A8) =|AP| (9.50)

It is obvious that in the incremental procedure (Figure 9.11) a series of linear
solutions is used to yield the continuous non-linear solution. In fact the non-
linear curve is approximately represented by a number of short linear segments.
The total load and displacement at any stage is given by the sum of the
increments of all the loads and displacements of the previous stages.

P/=Y aP) and [8)=Y (48) 9.51)
i=1 1=1
This method has the advantage that it is simple to apply but the accuracy is
rather low unless the load increments are very small. However, the method has a
serious drawback that at each step the stiffness matrix has to be re-assembled
and the solution procedure for the linear equations has to be performed each
time. This is uneconomical in terms of computational efforts.
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Figure 9.11 Incremental procedure

9.15.2 Iterative procedure

In the iterative procedure, the total load is applied to the structure and then
the displacement is adjusted in accordance with the constitutive laws until
equilibrium is attained.

In general, the finite element method for structural analysis results in a
system of simultaneous equations as follows

[K]{8}+{P}=0 (9.52)

in which [K] is the assembled stiffness matrix which may vary according to
the state of stress and strain, or in other words, it may depend on the
displacement {3} reached. If the coefficients of [K] depend on the unknown
displacements {8} the problem is non-linear and therefore direct solution of
Eqn (9.52) is generally impossible and an iterative method should be used.

During any step in the iteration process, before satisfactory convergence
is reached, the equilibrium condition as set out by the system of Eqns (9.52)
will not be satisfied. A set of unbalanced residual forces will remain on the
structure given by
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{R}=[K({5})]{d}+{P}#0 (9-53)

The residual force vector {R} can be considered as a measure of the
deviation from the equilibrium state.

To implement this iterative procedure, first of all, solve for the first
approximate displacements {8} using the initial stiffness [K_ ] and the initial
total load [P ]

{B)=IK 1" P} (9-54)

and work out the strain {e } from {e}=/B] {6°}.
Suppose that it is possible to express the nonlinear stress-strain
relationship of the material by

loj=Alie}) (9.55)

If the tangential elasticity matrix [D ] is used and an initial stress {0} is
introduced

{01}:[])0] {81}'{001} (956)
where {G,,} is the initial stress as shown in Figure 9.11. Therefore
{0, 1=[D,] {e}-A{e })={0,}-{0,} 9.57)

where {c}=[D,] {€,} is the elastic stress. The excess initial stress {c,,}
corresponding to {€} can then be obtained.

The initial stress in an element may be considered as the difference in
stress between the non-linear stress actually exists in the element due to the
deformation and the elastic stress.

The unbalanced residual forces on the structure are the assembly of all
the element residual forces given by

®I=3 J] B fou - ax-ay 9.58)

Hence it is now possible to make an adjustment to the displacement as follows:
{A8 }=[K ]! (R} (9.59)
Therefore {0,}={0,}+{Ad,} (9.60)

The procedure is repeated until {Ad } is sufficiently close to zero.
Here, in this case, a constant stiffness [K ] has been employed in one
stage of iteration and the method is thus called the initial stiffness
method.

One distinctive advantage of this method is that the same stiffness matrix
is used at each step of iteration (Figure 9.12) Once the stiffness matrix is
inverted, it only involves a small amount of computing effort in each
subsequent iteration step for determination of {Ad }. But the rate of
convergence is slow. Other methods with variable stiffness matrix /K] such
as the secant stiffness method and Newton-Raphson method may have a
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faster convergence rate but only at the expense of having to re-assemble and
solve a new system of linear equations at each iteration.

9.15.3 Mixed procedure

In practice, usually both the incremental and iterative procedures are used
together. The total load will be divided into a number of load increments.
At every increment of load, iterative procedure is applied until
convergence is obtained under that load increment. The accumulated load,
displacement, stress and strain arrived at up to that stage are stored and
become the starting values for the next load increment and the same
procedure is repeated till the full load has been applied. For non-linear
analysis of reinforced concrete structures, experience seems to indicate
that relatively small load increments with fairly frequent updating of the
stiffness for just a few iteration steps are required to produce the best
results. The mixed procedure is illustrated in Figure 9.13.

9.15.4 Flow chart of the non-linear analysis procedure

In short, the non-linear analysis procedure in fact consists of a series of
linear solutions in an iterative process which is based on the initial stiffness
method or Newton-Raphson (tangential stiffness) method and the residual
force concept. It also requires the use of constitutive laws describing the
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Figure 9.14 Flow chart for linear and non-linear analysis of reinforced deep beams
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Figure 9.15 (a) Idealisation by rectangular and bar elements; (b) smeared crack pattern at 70%
ultimate load; (c) load vs deflection at mid-span of a simply supported deep beam under nonlinear
analysis.
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strength and deformational properties of concrete and steel. Such laws form
the basis for the evaluation of residual forces and the elasto-plastic material
matrix /D] used in the linear solution technique. The flow chart in Figure
9.14 shows the organisation of the finite element nonlinear analysis
procedure.

9.16 Example of non-linear analysis of reinforced concrete deep beams

Dimensions and properties of example beam:
A concrete beam 480 mm deep, 1000 mm long and 100 mm thick.
Distance between centre-lines of simple supports=800 mm
Two concentrated loads at 100 mm from either side of the centre-line of the
beam were applied at top
Shear span to depth ratio=300/480=0.625
Concrete: compressive strength=25 Mpa

tensile strength=2.2 Mpa

modulus of elasticity=26 kN/mm?

Poisson’s ratio=0.2
Main reinforcement: Two ¢—14 mild steel bars at bottom
Steel: yield stress=300 Mpa

modulus of elasticity=200 kN/mm?
Half of the beam was idealised by 5%8=40 rectangular elements and 5 bar
elements as shown in Figure 9.15a. The crack pattern arrived at after the total
load reached 70% of the ultimate load is shown in Figure 9.15b. The full curve
showing the load versus the deflection at mid-span is shown in Figure 9.15c.
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10 Stability and strength of

slender concrete deep beams

F.K.KONG and H.H.A.WONG, University of Newcastle
upon Tyne and Ove Arup and Partners

Notation

area under concrete stress-
strain curve

area of ith layer of reinfor-
cement

breadth of column section;
thickness of deep beam
effective column width
width of bearing

depth of th layer of reinf-
orcement measured from top
of more compressed fibre
(Fig. 10.10 and 10.11)
effective load eccentricity,
defined as 0.6e,+0.4e,
bottom (top) eccentricity of
reaction (load)

lateral deflection

flexural stiffness of equiv-
alent panel

modulus of elasticity of ith
layer of reinforcement
stress of ith layer of reinfo-
rcement

yield stress of ith layer of
reinforcement

overall depth of column se-
ction; overall height of deep
beam

effective height and length
of equivalent panel

height and width of equiv-
alent panel

ratio of centroidal distance
measured from the more hi-
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X,

[X/A), ..
(Lx/h],,)

ghly compressed face to the
neutral axis

overall length of deep beam
resistance moment

external moment

total axial force

axial force contributed by
concrete

total axial force at instability
failure

mean equivalent horizontal
and vertical stresses

critical horizontal and vertical
stresses

ultimate load

curvature at critical section
ratio of measured to predi-
cted buckling load. Subsc-
ripts to R: SR, SP TP stand
for CIRIA Guide’s supplem-
entary rules, single-panel and
two-panel methods respect-
ively; EC1 to EC4 stands for
Case 1 to 4 of equivalent-
column method

neutral axis depth of column
section; clear shear span of
deep beam

total shear span of deep beam
(Fig. 10.3)

neutral axis depth ratios at
which ith layer of reinforce-
ment yields in compression
(tension)



o total axial force ratio, N/f, bh) € concrete strain at the extreme
(Eqns 10.3 and 10.19) fibre of the least highly com-
o, concrete axial force ratio, pressed face for an uncracked
N/t bh) section
o total axial force ratio at ulti- €, ultimate concrete strain
mate condition €, steel strain of ith layer of re-
Oy total axial force ratio at inforcement
e /e =1 and x/h=1 €, steel yield strain of ith layer
B resistance moment ratio, of reinforcement
M/, bh) [e/e, ],  minimum concrete strain ratio
B, external moment ratio, below which Eqn 10.23 is not
M/(f. bh?) solvable
concrete strain [e/e, ], =1 concrete strain ratio at x/A=1
. concrete strain at the extreme P steel ratio of ith layer of re-
fibre of the more highly com- inforcement, 4 /bh
pressed face T shear stress

10.1 Introduction

In the past three decades, much of the research on the ultimate load
behaviour of reinforced concrete beams has been concentrated on their
bearing, flexural and shear strengths (Albritton, 1965; C & CA, 1969;
CIRIA, 1977, Kong, 1986a). At a recent lecture given at Ove Arup and
Partners, (Kong, 1986b; Whittle, 1986), it became clear that deep beam
buckling is a failure criterion that needs to be considered in design.
Indeed, with the expected advances in materials technology (ACI
Committee 363, 1984; Clarke and Pomeroy, 1985; Kong et al, 1983)
deep beam designers will find it possible to use much smaller cross
sections in the future. This would clearly allow more slender deep
beams. As with other thin- walled and slender members such as thin
plates and slender columns, stability rather than strength requirements
will probably dictate the design of slender deep beams. Of the four main
deep beam design documents, namely, the Canadian Building Code
CAN3-A23.3-M84 (CSA, 1984), the American Building Code ACI 318—
83 (1983), the CEB-FIP Model Code (1978) and the CIRIA Guide No. 2
(1977), the only one that gives direct recommendations on the buckling
strength of concrete deep beams is the CIRIA Guide. However, because
of the lack of experimental data, the CIRIA’s buckling recommendations
had to be based on theoretical studies and engineering judgement; at the
end of the CIRIA Guide’s Appendix C: Buckling strength of deep beams,
it is pointed out that ‘there is no experimental evidence to substantiate
these procedures’ (CIRIA, 1977).

This chapter explains the behaviour of slender concrete deep beams and
presents recent test results which show that the CIRIA Guide (1977)
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Figure 10.1 Slender wall, thin plate, slender deep beams-comparison of elastic behaviour.
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methods are very conservative. An equivalent-column method is also
proposed for more accurate prediction of deep beam buckling loads.

10.2 Slender deep beam behaviour

10.2.1 Elastic behaviour

There is very little information on the elastic behaviour of slender deep
beams in the literature (Albritton, 1965; Andrews, 1978; CIRIA, 1977). It is
reasonable to expect that the buckling behaviour of a slender deep beam
with free vertical edges is comparable to that of a slender wall (Figure 10.1a
and b). Similarly, the buckling behaviour of a slender deep beam with lateral
restraint along four edges can be expected to be comparable to that of a thin
plate (Figures 10.1 ¢ and d). Using the finite element program PAFEC, the
specimens shown in Figure 10.1 were modelled by three layers of Brick
elements, and their lateral deflections were determined and compared.

Figure 10.1e shows that the maximum deflections of the wall (i.e. wide
column) in Figure 10.1a and those of the deep beam in Figure. 10.1b always
occurred at around mid-height. Figure 10.1e also shows that the mid-height
deflections of the column were practically the same at Sections A-A, B-B,
and C-C, but those of the deep beam decreased markedly from A-A to C-C:
over the support (Section A-A), the mid-height deflection of the deep beam
was about 20% higher than that of the column; at the quarter-span (Section
B-B), the mid-height deflection of the deep beam and that of the column
were almost the same; at mid-span (Section C-C), the mid height deflection
of the deep beam was about 20% less than that of the column. Therefore,
Figure 10.1e suggests that, for a slender deep beam with unrestrained
vertical edges (Figure 10.lb), buckling failure is likely to occur at mid-
height by horizontal cracks, initialised from the vertical edges where the
lateral deflections are maximum; this seemed to agree with the authors’ tests
(Wong, 1987a). Figure 10.1e shows that when the vertical edges of the
slender deep beam in Figure 10.1 b were restrained (Figure 10.1d), its lateral
deflections were considerably reduced, and were always less than those of
the column in Figure 10.1a and the plate in Figure 10.1e. Figure 10.1e also
shows that the buckling failure mode of the deep beam in Figure 10.1d
would be in biaxial curvature, as that of the plate in Figure 10.1c.

The above comparison is based on elastic analysis, which assumes an
isotropic material obeying Hooke’s law, and hence provides no information
on the post-cracking behaviour and inadequate guidance of the ultimate load
behaviour under the influence of the slenderness effect.

10.2.2 Ultimate load behaviour

Experiments on slender concrete deep beams are comparatively difficult to
carry out and require attention to details to prevent injury to personnel or
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damage to equipment (Kong et al, 1986a; Wong, 1987a). Probably for this
reason, experimental studies of the ultimate behaviour of slender deep
beams are few (Albritton, 1965; C & CA 1969; Marshall, 1969; PCA,
1984). The first published results on the ultimate load behaviour of deep
beams with high height/thickness ratios are probably the 4 beams tested by
Besser and Cusens (1984) and the 38 beams tested by the authors (Kong et
al., 1986a). Of these reported results, one of Besser and Cusens and 30 of
Kong failed by buckling. Though very few test data were previously
available on slender deep beams, much is known about the behaviour of
stocky deep beams. Hence, it would be helpful to describe the behaviour
of slender deep beams, as observed in recent tests (Kong et al., 1986a),
with reference to that of the stocky concrete beams as explained elsewhere
(Kong, 1986a; Kong and Singh, 1972; Kong et al., 1975, 1986a). The
general behaviour of top-loaded slender deep beams can be briefly
summarised as follows:

1) On loading, the first cracks to form were the flexural cracks in
the midspan region (Figure 10.2: cracks [1]). The flexural
cracking load was typically 20-40% of the ultimate load and was
somewhat lower than that for a stocky deep beam of comparable
span to depth ratio,

ii)  On further loading, long diagonal cracks (Figure 10.2: cracks [2])
would form, usually with a fairly loud noise. Typically these
diagonal cracks initiated not at the soffit, but within the depth of the
beam. These cracks were usually fairly long, even detected first by
visual observation. Comparing with stocky deep beams, the first
major diagonal cracks of slender deep beams tended to form at
lower loads and to be more inclined to the horizontal. It was

P/2 P/2
RN 8
y ®

,Hff

T

Figure 10.2 Typical sequence in which the cracks appeared in top-loaded slender deep beams
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Figure 10.3 Representation of critical diagonal crack—dotted line for stocky deep beams; full and
chain-dotted lines for slender deep beams

observed that the direction of the major diagonal cracks was
generally between those of the solid line and the chain-dotted line
in Figure 10.3 (Kong et al., 1986¢; Wong 1987a).

iii)) As the load was further increased, the failure mode depended
strongly on the height/thickness ratio A4/b and the load-
eccentricity/thickness ratio e/b. Generally speaking, the higher
these ratios, the more likely it was that buckling failure would
occur. Where the effective e/b ratio, defined as 0.4e,/b+0.6e,/b
(Kong et al., 1986a), did not exceed 0.03, none of the test
beams failed by buckling even when the 4/b ratio was high as
50. However, when the effective e/b ratio was 0.1 or more,
even test beams of 4/b ratio down to 25 failed by buckling. The
buckling mode was characterised by prominent horizontal
cracking, usually across the length of the beam (Figure 10.2:
cracks [3]) and was accompanied by a significant reduction in
the failure load.

10.3 Current design methods—CIRIA Guide 2 (1977)

As explained in Section 10.1, the CIRIA Guide is the only major deep beam
design document that gives recommendations on the buckling strength of
slender concrete deep beams. Other documents that provide guidance for the
buckling design of slender concrete deep beams are the ACI Committee 533
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Report (1971) and the Portland Cement Association’s Report (PCA, 1979).
Of these, the CIRIA Guide’s coverage is the most comprehensive. The
Portland Cement Association’s recommendations apply only to a limited
class of deep beam and the ACI Committee Report is even more restrictive
in scope and now rather out-of-date. Because of space limitation, only the
CIRIA’s methods will be examined in the following sections. Detailed
worked examples and comparison of the above-mentioned design
documents for slender deep beams are given elsewhere (Kong et al., 1987;
Wong, 1987a).

In the CIRIA Guide, the deep beam buckling problem is approached in
two stages (Figure 10.4). In stage 1, the CIRIA Guide’s Simple Rules
(Section 10.3.1 this chapter) is used to check whether the deep beam can be
defined as a short braced wall or not. If the deep beam cannot be defined as
a short braced wall, its load-carrying capacity is determined in stage 2
(Sections 10.3.2 and 10.3.3 this chapter). The CIRIA Guide is intended to be
used in conjunction with CP110:1972 which has been replaced by BS
8110:1985. In the following sections, the BS 8110 clause numbers are used.
The CIRIA buckling design methods are compared with authors’ test results
(Kong et al., 1986a) in Section 10.6.

10.3.1 CIRIA Guide Simple Rules

The Simple Rules assume no reduction of capacity due to the slenderness of
the section or to lack of adequate restraint, if every panel can be defined as a
short braced wall in terms of Clause 3.9.1.2 of BS8110. Otherwise, the
Supplementary Rules of Appendix C of the CIRIA Guide should be used to
design the slender deep beam against buckling (Figure 10.4). For the
purpose of assessing the slenderness limit of a panel in accordance with BS
8110, the CIRIA Guide gives the following recommendations for
determining the effective height:

1) For a panel with effective lateral restraints at all four edges, its
effective height is taken as 1.1 times the shortest distance between
centres of parallel lateral restraint,

ii) For a panel with one or two opposite edges free, its effective height
is taken as 1.5 times the distance between the centres of the parallel
lateral restraints,

iii) For a panel with both rotational and lateral movements restrained,
its effective height may be taken as the clear distance between
restraints.

10.3.2 CIRIA Guide Supplementary Rules

When the CIRIA Guide’s Simple Rules do not apply, it is necessary to treat
the panel as a slender wall in accordance with Clause 3.9.1 of BS
8110:1985.
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Figure 10.4 Flow diagram-CIRIA Guide’s buckling recommendations

The Supplementary Rules for the design of slender deep beams can be
summarised as follows:

Step 1: Determination of maximum compressive stresses.

Based on the elastic stress distribution in the deep beam, the greater

of the maximum vertical and horizontal axial stresses are used to

calculate the additional moments in Step 3.

Step 2: Calculation of effective height, 4,

The recommendations described in Section 10.3.1 are applicable

when the following conditions a-c are satisfied; otherwise Appendix

C of the CIRIA Guide should be used.

(a) The web panel is rectangular and braced.

(b) The web panel has effective lateral restraint on a minimum of
two opposite edges.

(¢) The nominal average shear stress (V/bh ) is less than 50% of
the average axial compressive stress in the vertical or horizontal
direction of the panel, whichever is the greater, where V' is the
total shear force on a vertical section due to the applied loads, b
is the thickness of deep beam, and #_ is the effective height of
deep beam as defined in Clause 2.2.1 of the CIRIA Guide. The
effective height %, so obtained may have been calculated from
either a vertical or horizontal dimension.
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Step 3:

Design of vertical and horizontal column strips.

The vertical and horizontal column strips of unit width are then
designed as slender columns in accordance with BS 8110: Clause
3.8.3, with the additional moment for the horizontal strips to be taken
as the greatest additional moment (see Step 1) calculated for the
vertical strips.

10.3.3 CIRIA Guide Appendix C: Single-Panel Method

The Single-Panel Method is one of the two methods given in Appendix C of
the CIRIA Guide for a more accurate estimate of the effective heights and
effective lengths, using interaction diagrams to allow for the effects of the
in-plane biaxial stresses due to bending and shear. The procedure for the
Single-Panel Method is outlined below.

Step 1:

Step 2:

Step 3.

Step 4.

Division of beam into panels.

The deep beam is divided into panels by adequate restraints. If there

are lateral restraints at the top and bottom edges only, then the

whole beam forms one panel. Each panel is to be considered
individually in the following steps.

Determination of equivalent panel.

If the actual panel is non-rectangular, it is to be replaced by a

notional safe equivalent panel which comprises a rectangular plate,

with its edges either simply supported or free. The width L (the
height /) of the equivalent panel is taken as equal to the width (the
height) of the actual panel at the point where the actual horizontal
stress (the actual vertical stress) is at a maximum, as shown in

Figure 10.5. Further recommendations are also given in the CIRIA

Guide (1977) to take into account the effect of rotational restraint

along the edges of the panel.

Determination of equivalent applied stresses.

The equivalent applied stresses acting on the equivalent panel

comprise linearly varying axial compressive stresses [N, N, ]

applied to the edges and a constant shear stress T. The equivalent
applied stresses are chosen such that

(a) The axial stresses [N, N,] produce compressive stresses within
the panel that are at no point less than the actual stresses;

(b) The shear stress 7T is equal to the algebraic mean of the actual
average vertical shear stresses applied at the ends of the panel.
Where the actual stresses are tensile, they should be treated as
if they were zero.

Determination of elastic critical stresses.

Depending upon the edge restraint, the critical axial and shear

stresses are found, each in the absence of any other applied stresses

from the charts given in the CIRIA Guide (1977). The effect of the
shear stress and the in-plane biaxial stresses are then allowed for
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Figure 10.5 Equivalent panels and loads (after CIRIA (1977))

using the CIRIA Guide’s interaction diagrams to give modified
critical stresses N in the vertical direction and N,  in the
horizontal direction in terms of EI’, where EI’ is the flexural
stiffness of the equivalent panel.

Step 5: Determination of effective heights 4, and lengths L .
The effective heights and lengths are determined from the following

formulae.
, TEI
W= (10.1a)
2
L§=“NEF (10.1b)
her

where N and N, are the modified critical stresses determined in
Step 4.

Step 6: Design of vertical and horizontal column strips.
The vertical and horizontal strips of unit width are then designed as
slender columns (Wong and Kong, 1986; Kong and Wong, 1988), as
if they were subjected to the equivalent axial stresses N, and N,
respectively (see Step 3 above).
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10.3.3.1 Comments on the Single-Panel Method

The Single-Panel Method is rather convenient to use, but may be too
conservative where the actual stresses vary abruptly, e.g. when concentrated
loads or reactions are applied. This is because the Single-Panel Method may
require an unnecessarily large amount of reinforcement in areas of low stresses.
In these cases, the CIRIA Guide recommends the use of the two-panel method.

10.3.4 CIRIA Guide Appendix C: Two-Panel Method

The Two-Panel Method is the second method in Appendix C of the CIRIA
Guide (1977). The Two-Panel Method is rather similar to the Single-Panel
Method, except that the former analyses and designs a braced panel as two
individual panels. The design procedure for the Two-Panel Method may be
outlined as follows.

Steps 1

and 2: As Steps 1 and 2 of the Single-Panel Method.

Step 3: Determination of equivalent applied stresses.
In the Two-Panel Method, the equivalent loads adopted to select the
effective height and the effective length differ in the two panels. For
Panel 1, the equivalent load consists of an upper-bound horizontal
stress, a lower-bound vertical stress and a constant shear stress. For
Panel 2, the equivalent load consists of a lower-bound horizontal
stress, an upper-bound vertical stress and a constant shear stress.
Some recommendations are given in the CIRIA Guide (1977) on the
choice of the lower-bound and upper-bound equivalent stresses.

Step 4: The critical stresses are determined for the two panels as in Step 4
of the Single-Panel Method.

Step 5: Following Step 5 of the Single-Panel Method, the effective height 4,
is calculated for Panel 1 and the effective length L_ is determined
for Panel 2.

Step 6: The vertical and horizontal strips of unit width are designed as
slender columns (Wong and Kong, 1986; Kong and Wong, 1988)
using the actual axial stress distributions.

10.4 The equivalent-column method

The CIRIA Guide’s methods for the buckling design of slender concrete
deep beam consist essentially of replacing the deep beam by equivalent
panels. CIRIA then uses (previously CP110) the slender column approach of
BS 8110 for assessing the strength of the equivalent panels as slender
columns. A close examination (Cranston, 1972; Kong et al., 1986b; Kong
and Wong, 1987; Wong 1987a) of the relevant BS 8110 and CP 110 Clauses
shows that these are really intended for the material failure of slender
columns and not for their instability failure. It will be shown (Section 10.6)
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that the CIRIA methods could lead to designs with a factor of safety
exceeding 60; the authors believe that BS8110’s slender column
recommendations are unsuitable for use in predicting the buckling loads of
slender concrete deep beams. Though the CIRIA methods can be grossly
inaccurate, the concept of an equivalent-column is attractive. In this section,
a computer-aided method (Kong et al., 1986b; Kong and Wong, 1987;
Wong, 1987a) is presented for the detailed stability analysis of slender
concrete columns. The method is applied to slender deep beams in Section
10.5 and compared with CIRIA’s methods in Section 10.6.

10.4.1 Theoretical background

Consider the slender column in Figure 10.6a; let the moment-deflection (M—
e,,,) curve be as shown in Figure 10.6b. The total external moment M, at the

mid-height due to the load N is M=N(ete_,,).
N
C?] tan e?’“crit
(My. M)
[(31tane, =Ng
e
add c M"'eqdd
[Mtane, <Ng.i
B
€add

{a) (b}

Figure 10.6 Simplified moment-deflection curve

For any given value of N, the relation between Mt and e, can be
represented on Figure 10.6b as a straight line having a slope equal to N and
passing through the point 4 at a distance e to the left of the origin O.
Suppose for the time being it is crudely assumed that the M—e_, curve is
independent of the load N. Let N_, be the value of N at which instability
failure of the column occurs. Then a line such as Line 1, with a slope less
than N_,, will intersect the M—e_,, curve. At the point of intersection, B, the
external moment M, [=N(e+e,,,)] is in equilibrium with the internal moment
M. If this equilibrium is disturbed by slightly increasing e_,,, then M,
becomes less than M. Hence the equilibrium at B is stable.

add?
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Figure 10.7 Typical moment-deflection curves
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Line 2, having a slope exceeding N_,, will not intersect the M—e_,, curve.
For such a line, the external moment M, always exceeds the internal moment
M, and equilibrium is impossible.

Line 3, having a slope equal to N, will touch the M—e,_, curve. At the
tangent point C, equilibrium exists between Mt and M. The equilibrium is
obviously unstable.

It can be concluded from the above that the instability load N, of a
slender column is given by the slope of the line which touches the M—e_,,
curve. In practice, N, cannot be so readily found in this way, because the
M—e_,, curve is itself dependent on the value of N. However, we can proceed
as follows.

A family of M—e_,, curves are drawn for a range of values of N, as shown
in Figure 10.7a. From the point A, straight lines are drawn tangential to
these curves. The instability load N_, is then obtained as the slope of the line

which simultaneously satisfies the two requirements:

i) the line touches the M—e_,, curve for N=N,
ii)  the line itself has a slope tan 8=N,
That is, N_, =N,
Consider again the equation M=N(e+e,,,); for computer application, it is
convenient to convert it into dimensionless form, by dividing throughout by
f..bh*:

B=ole’+e’ ] (10.2)
where
— M, — N L os_€ ., €ad
B'_W' A= Oy =y (10.3)

Figure. 10. 7a expressed in dimensionless form, becomes Figure 10.7b. The
straight line a-c in Figure 10.7b simultaneously satisfies the two requirements:

i) the line touches the B—¢l curve for o=o
i) the line itself has a slope tan ¢= o,

i

Therefore, the critical value of ¢, namely o
Hence the instability load is

Ncrit:acriﬁubh:aif;ubh ( 1 04)

It can be shown (Kong and Wong, 1987; Wong, 1988) that along any moment-
deflection curve P—€iaa, the concrete strain g, 1.e. the concrete strain ratio € /€ _,
increases with €as. Therefore, with reference to Figure 10.7b, it should be noted
that o is the correct instability load, only if at the point ¢ on the B—€us curve the
concrete ultimate strain €  has not been reached. In Figure 10.8, the B—€\aa curve

is given by o.

crit’
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Figure 10.8 Column failures modes



is shown dotted where the maximum concrete strain exceeds €_. Thus in Figure
10.8a, the column would have collapsed in material failure before the ‘instability
load’ is attained; in Figure 10. 8b, the instability and material failures occur
simultaneously; in Figure 10.8c, material failure occurs.

It is now clear that the major effort required by the method is to obtain
the moment-deflection curves (Wong 1987b, 1988). The stability analysis
described above can be carried out by three methods, listed below in order
of increasing efficiency:

1) The graphical method (Section 10.4.2)
ii) The improved graphical method (Section 10.4.3)
iii) The analytical method (Section 10.4.4)

10.4.2 Stability analysis of columns: graphical method

10.4.2.1 Assumptions and sign convention The following assumptions and
sign convention are adopted for the graphical method to be described here,
and for the improved graphical method and the analytical method to be
described in Section 10.4.3 and 10.4.4, respectively:

1) The strains in the concrete and the reinforcing steel are proportional
to the distances from the neutral axis,

i) Material failure (i.e. crushing of concrete) occurs when the concrete
strain at the extreme compression fibre reaches a specified value €_,
which is taken to be 0.0035 as specified in BS 8110 (1985). (Users
of other national Codes of Practice may of course use other values
for ¢ at their discretion),

iii)  The tensile strength of the concrete is ignored,

iv) Compressive stresses and strains are taken to be positive, and

tensile stresses and strains negative.

10.4.2.2 Stress-strain relationships Figure 10.9 shows the stress-strain
relation for concrete and steel. Expressing the concrete stress f as function
of the strain ratio €/e_ the area under the concrete stress-strain curve in
Figure 10.9a between e=¢’_and €=¢_is

A =J:f(£/&..) de [N/mm’] (10.5)

and the corresponding centcroidal distance g, (dimensionless; Figure 10.9a) is
| " fesea) € de

g= (10.6)
_[:‘ fle/e.,) de

The stress-strain relation for steel in Figure 10.9b is that of BS 8110:1985
with the partial safety factor y_set to unity.
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Figure 10.9 Stress-strain relations of concrete and steel: (a) concrete; (b) reinforcement
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10.4.2.3 The column section Figure 10.10 refers to an uncracked section
where, of course, x/h>1. Referring to the concrete stress block in Figure
10.10c, the concrete compressive force is

Ne=b] fe/e.)du (10.7a)

It is seen from Figure 10.10b that x_/&_=x/e¢ =x’/¢’ ; using these relations it
is easy to show that Eqn 10.7a can be written as

Nc=bé ™ fle /e de (10.7b)
5’:
Including the contribution by # layers of steel, the total compressive force is
N=Nc+§f5.-As. (10.8)
and the resistance moment about the mid-depth of the section is
h h
M:Nc|i§_k2x:|+2f;i145|]i5—di} (10.9)
where (Figures 10.10c and 10.9a)
Ec/acu - Eg/[':f:u
hp=—2"0 2 5
2 £ e (10.10)
Introduce the dimensionless parameter
N,
=—= 10.11

and the dimensionless parameters a and B (see Eqn 10.3). Then divide Eqns
10.7-10.9 by f, bh to obtain:

m_&’ﬁ r‘f{ﬁ/ecu) de

e e fu (10.12)

o= ouZ P j: (10.13)

B=ot [ ] ): ’(“[5 %] (10.14)

where pi=—"" and k, is defined in Eqn 10.10.

Ay
bh
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Eqgns 10.12 and 10.13 can also be applied to a cracked section where, of
course, x/h<l (Figure 10.11); note, however, that for a cracked section, the
limit of integration €’_in Eqn 10.12 becomes zero. Therefore, for a cracked
section, Eqn 10.12 becomes

_x/h (= fle/eq)
o= [P R g (10.15)

cu

10.4.2.4 Calculation of o, B and €as For any values assigned to g and x, i.e.
assigned to the pair [¢ /€_, x/h], Eqn 10.12 or 10.15 can be used to calculate
o.. o is then calculated from Eqn 10.13 and B from Eqn 10.14. It can be
shown (Kong et al., 1986b; Kong and Evans, 1987) that the additional
eccentricity

L1

€add = o

n m
where n? is the numerical constant which depends on the curvature
distribution and

Therefore the lateral deflection parameter €aa of Eqn 10.3 can be written as

’ _M__EE £ &/Ecu
=54 = M[—m] (10.16)

10.4.2.5 Preparation of B—€ia curves The procedure for preparing the
moment-deflection curves B¢ can be summarised as follows:

Step 1:  With reference to Figure 10.9a, select a convenient value for the
concrete strain ratio € /e_, say €_ /€cu.

Step 2(a): With reference to Figures 10.10b and ¢ (and Figures 10.11b and
c¢) select a convenient x/4 value, and calculate the area 4 under
the stress-strain curve and the centroidal strain € from Eqns 10.5
and 10.6 respectively, noting that €’ =¢ [1-1/(x/h)] for x/h=1 (i.e.
uncracked section; Figure 10.10), and €’ =0 for x/A<1 (i.e.
cracked section; Figure 10.11).

Step 2(b): Calculate o, B and €ia from Eqns 10.13, 10.14 and 10.16
respectively.

Step 3:  Repeat Step 2 with other x/& values until a sufficient number of
points is obtained for plotting curve la in Figure 10.12a, curve Ib
in Figure 10.12b and curve Ic in Figure 10.12c.

© 2002 Taylor & Francis Books, Inc.



Step 4: Repeat Steps 1 to 3 with other strain ratios € ,/e , € /€ ...in
stages up to € /e =€ /e =1.
% fh =a b C d
I L -
161 Curve Ia EC,n/Ecu =1
12t
¥ 08
o= = €c2/€cu
04} — €y /ecu
a 00 ' + -+
( ) 03 06 09 12

0-20}
045}
@ 010
0-05f

(b)

000F
O

[ [y o A

Figure 10.12 Relationship of a, 8, ¢’

o[l
w
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B NOTE:

1o <oo, <o, <o, <
2.@ Denotes material failure (i.e € /Ecu: 1)

€ add

Figure 10.13 Typical 8—¢’ ,, curves for various values of o

Step 5: For a chosen o value, say o, read off x/4=a, b, c, d..., from Figure
10.12a. For x/h=a, b, ¢, d..., read off the corresponding values of 3
from Figure 10.12b and €uas from Figure 10.12c¢.

Step 6: Repeat Step 5 for other o values. Then plot the moment-deflection
curves (B—¢iaa) for various o values, as shown in Figure 10.13.

The B¢l curves in Figure 10.13 can now be used to obtain the critical
load of the column, using the procedure explained in Section 10.4.1 and
Figure 10.7. It should be noted that the above steps can also be used to
obtain moment-curvature curves (Wong, 1988). Details of the authors’
computer program and worked examples of the method are given elsewhere
(Kong et al., 1986b; Wong 1987a).

10.4.3 Stability analysis of columns: improved graphical methods

10.4.3.1 Analytical expressions The basic concepts, as summarised in
Sections 10.4.1 and 10.4.2 above, will now be extended to derive several
analytical expressions which have powerful applications. First, it is
convenient to express the parameters o and B explicitly in terms of € /g
and x/h.

Consider the strain compatibility conditions in Figures 10.10b and
10.11b. The steel strain € is
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di/h
esi-a{l—xm] (10.17)

and hence the steel stress £, is

f;i=Esi Ec[l -M]

<fa (10.18)

where f,, and £ are the yield stress and Young’s modulus, respectively, of
the ith layer of steel. Therefore, £, and hence f, are completely defined by
the values assigned to €, and x/4 in other words, they are completely defined
by the values assigned to €/¢  and x/h. Substituting Eqn 10.18 into Eqns
10.13 and 10.14 and rearranging,

o=+ K 3";;“+K £ MM (10.19)
B:a([%—kgh:|+K3&;i°"+K4£c—+NN (10.20)

where ol is defined by Eqns 10.12 (or 10.15) and £, is defined by Eqn 10.10;
the values of K|, K, K, K,, MM and NN are defined in Eqn 10.21

d| Eq_ _ Esi
K|=Z [_ Pa;}r.ﬁu Ecu—Z Lll-'uﬁu Ecu (10213)

i

K;-Z (i r, 22 f Eeu = 2 Ly rl}r (10.21b)

d[1 d]| E
K’=Z{_p'h[2 h””"f_ ‘Zfﬂlf- & (10.21c)

i i

—

1 d
[2 h]} fw ZLM. €y (10.21d)
MM=Y m (10.21¢)

NN=Y n (10.21f)

where the values of ,, m, and n, are as shown in Table 10.1.
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Table 10.1 Summary of values of ri, mi and »,

Yield Elastic

Yield

in tension' tension or in cnmpressinn"
compression”
T 0 1 0
mi —pi m'i’,fcu] 0 Pi U‘}'/ﬁ'u]
ni mi [0.5 = di/h] 0 mi [0.5—di/h]

1. Figure 10.16a. 2. Figure 10.16b and c. 3. Figure 10.16d.

For any given column section, Eqns 10.19, and 10.20 and 10.16 (and
Table 10.1) show that the quantities o, B and €4 are completely defined by
the ratios x/4 and € /e . Substituting Eqn 10.12 into Eqn 10.19 to eliminate
o, and rearranging,

€eu de
tr f;:u 2 e €.
‘ x : x|, o & _
& [h} +[Kz Ew"inr“d'M'—(I“:h:|+K| &:u— (10.22)
Eau
That is,
2 L
X X
a[h] +b[h]+c—0 (10.23)
where
£
£
1 f(sm]
€y de
, Jeu (10.24a)
£
a=
£
€cu
b=Kg:—°+MM—0t (10.24b)
c=K, &i (10.24¢)
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and K|, K, and MM are defined by Eqns 10.21a, 10.21b and 10.21e
respectively. Therefore, at any point on a moment-deflection curve for a
specified value of o, the concrete strain ratio € /€ and the neutral axis depth
ratio x/h are related by Eqn 10.23. If the concrete strain ratio, say [€/€_],, at
a certain point on a moment-deflection curve for a particular value of o can
somehow be found, then the corresponding neutral axis depth ratio, say [x/
h],, can be found by solving Eqn 10.23. Hence, the values of f§ and € at
that point on the moment-deflection curve can be calculated by substituting
the pair {[e/e_],, [x/h],} into Eqns 10.20 and 10.16 respectively.

It is now clear that, for a given value of o, a complete B—€%as curve can be
constructed by the appropriate solution of Eqn 10.23 for different € /€
ratios (see Section 10.4.3.3 later). Before the detailed procedure for
preparing the whole family of P—€las curves is given, it is necessary to
examine some of their properties.

10.4.3.2. Some properties of B—€ia curves

With reference to Figures 10.14 and 10.15, the main properties relevant to
constructing the P—€las curve may be summarised as follows (Kong and
Wong, 1987):

i) On a B¢l curve for a given value of o (Figure 10.14), the neutral
axis depth ratio x/4 decreases with €. while the concrete strain
ratio € /e  increases with €ws until € /e =1, when the curve
terminates (see point D in Figure 10.14).

ii) Consider again a typical P—€ia curve for a given value of o, as
shown in Figure 10.14. The figure is divided into two regions by the

|

x/h>1 | xfh<1

Uncracked _L Cracked
Section Section

oot

- ALO: ec/ecu=minimum
AtB: €. /€.t x/h=1
AtD: €./ €, =1

Figure 10.14 Variation of x/ and € /e  along a typical ﬁ—(’:dn curve
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vertical line at x/A=1, which intersects the curve at B. To the left of
B, x/h>1 and the column sections are uncracked; to the right of B, x/
h<1 and the column sections are cracked. It turns out that the € /¢_
value of a point is a useful reference. Let [¢/e_] , , denote the
value of € /e  at the point where x/h=1, i.e. at the point B. To the
left of the line x/4=1, the ¢ /¢ of any point (e.g. point A) will be
less than [ /e_] , . To the right of the line x/A=1, the € /e  value of
any point (e.g. point C) will be greater than [¢/e_] , ,. In other
words we can test as follows:

On a P—€lu curve for given value of o, the column section is
uncracked (x/4>1) whenever € /e_ is less than [g/e_] , ,; the
section is cracked (x/h<1) whenever € /€__ is greater than [e /e ] , ..
The value of [€ /e ] ,_, can be obtained from Eqn 10.23 using x/4=1

(Kong and Wong, 1987).

Cracked : Uneracked
section ' section
Cmax =1-048 ' =
100f®--"------ dommo i emmees ec/ecu =10
¢unilyzo-791 !
075 3
o
050, ' A e e __ [e e ]
""" c for o
/ cu min or %,
0-25¢

06 12 18 24

x/h

Figure 10.15 Typical a-x/A curves

iii) Figure 10.15 shows that for a given value of o there exists a
minimum concrete strain ratio, referred to as [¢ /€_] . , below which
the B¢l curve does not exist. Since [g /€ ] . is greater than zero,
it follows that the B—el curve does not start at the origin. In Figure
10.14 the curve is shown to start at a point 0', where € /e_=[e /e_] .
for the o value of that particular curve. [g/€ ] . can be obtained
from Eqn 10.23 with a sufficiently large value of x/A (say x/h=5; see
Figure 10.15).

iv) Figure 10.15 shows that at o=o, . €/e =1, and x/h=1 occur

simultaneously. Following the arguments (i) and (ii) above, for
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oo, . the entire B—elas curve corresponds to uncracked sections
(i.e. curve BCD in Figure 10.14 does not exist). The value of o
can be found from Eqn 10.19 with € /e _=1 and x/h=1.

v) It is convenient, and sufficiently accurate, to consider that the
strength capacity of a section is reached (i.e. a=0 _ in Figure
10.15) when the concrete strain reaches € simultaneously as the
nth layer of reinforcement yields in compression. The value of o
can be found from Eqn 10.19 with € /e _=1 and x/h:[x/h]ym, where
[x/h],, 18 the x/h ratio at which the nth layer of reinforcement yields

in compression (see Eqn 10.26b). When o>0;__, the section may be

considered to have crushed; hence equilibrium is not possible and

Eqn 10.23 is not solvable.

unity

10.4.3.3 Solution of Equation 10.23 On a P—€ia curve for any particular
value of «, if the concrete strain ratio € /€_ is known at any point, then the
corresponding value of x/4 ratio at that point can be found by solving Eqn
10.23. Suppose for the time being, two simplifying assumptions are made:

Assumption (i) No reinforcement reaches its yield strength, i.e. f;<f; at all
points on the B¢l curve for the particular value of o.

Assumption (i) For any positive values assigned to o and €/¢_, Eqn 10.23
is solvable for a real and positive root (i.e. for a real and
positive x/h).

As a result of Assumption (i), 7=1 and m.=0 (see Table 10.1) and hence b and
¢ become constant. Suppose the concrete strain ratio € /€ at a certain point on

a P—¢iaa curve for a given value of o is known, then the corresponding x/4 ratio
at the point can be determined from Eqn 10.23 as follows:

Case 1: /e S[efe ).,
Reference to Figure 10.14 makes it clear that the point lies to the
left of B, that is x/A>1 and the section is uncracked. Hence, in Eqn
10.24a, the limit of integration €’_ is itself a function of x/A (see
Section 10.4.2.3). Therefore, in Eqn 10.23 the coefficient a is a
function of x/A; the solution of Eqn 10.23 requires an iterative
method, say the bisection method (Conte and Boor, 1980).

Case 2: /e >[e/e ],
The point now lies to the right of B in Figure 10.14; that is x/h<1
and the section is cracked. Hence, in Eqn 10.24a, £’ =0 (see
Figure 10.11b). Eqn 10.23 is therefore a quadratic equation, the

roots of which are

_—bt[b —4dac]”
= 2a (10.25)

==
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However, neither Assumption (i) nor Assumption (ii) is always true. In
practice, some or all of the reinforcement may reach their yield strengths at
certain values of o and € /e . Therefore, for given values of ot and € /¢_, a
trial and error procedure is required to determine the coefficients b and c,
and hence x/h from Eqn 10.23.

With reference to (iii) and (v) of Section 10.4.3.2, Assumption (ii) is valid
if, and only if, o is less than o, and the concrete strain ratio € /€ exceeds
[e/e, ], for that value of o
In practice, three cases should be considered:

Case A: Assumption (ii) is not valid.
If Assumption (ii) is not valid, there is no solution to Eqn 10.23.
Indeed, the situation is unreal and there is no need to seck a solution.
Case B: Assumption (i) and (ii) are both valid.
Use procedure described in Case 1 or 2 above.
Case C: Assumption (i) is not valid; Assumption (ii) is valid.
A trial and error procedure is required to solved Eqn 10.23, until
the root x/h satisfies both the compatibility condition and the
equilibrium condition, as explained below.

Consider the column section in Figure 10.16. For a specified value of €, i.e.
e /e _, each layer of reinforcement may be in one of the following three

¢ Tew

conditions:

(i) Yield in tension, if'}is[ﬂ (Figure 10.16a)
1 1
yti

(ii) Elastic (tension or compression), if
[ﬂ 4'71{- < Lj (Figure. 10.16b and ¢)
yli yei

(iii) Yield in compression, if

X X .
= < = >
{!]m_ p (Fig. 10.16d)

where [x/h] ; and [x/h] ; are, respectively, the neutral axis depth ratios, at

which the ith layer of reinforcement yields in tension and compression; they
are readily calculated from the geometry of Figure 10.16.

X| _|_& |d
|ihi|yn‘ - {& + eyi:’ h (10.26a)

d;
[%L B [ec EC ey.] h (10.26b)
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tension | { tension or compression) | compression
X qa X
hi .. h h

yit yei
{e} 3 possible intervals of x/h tor "si,

Figure 10.16 Column section—3 possible intervals of x/4 for each layer of steel.
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For a column section with a single layer of steel there are three possible
conditions. By drawing simple sketches similar to those in Figure 10.16, the
reader can verify that for two layers of steel there will be 3+2 conditions, for
three layers there will be 3+2+2 and so on. Therefore, for a column section
with n layers of steel, there will be

342(n-1)=2n+1

possible conditions, within which some, or all, of the reinforcement may
reach their yield strengths. It follows that the values of the parameters K|
to NN, and hence the coefficients b and ¢, have at most 2n+1 possible
combinations. The condition of compatibility is satisfied, if the root of Eqn
10.23 is within the x/Ak interval, where b and c are calculated. If the root of
Eqn 10.23 so calculated satisfies Eqn 10.19, the condition of equilibrium
is achieved.

10.4.3.4 Preparation of B—€.a curves—An interval technique The procedure
for preparing the moment-deflection (B—¢ia) curves may be summarised as
follows.

Step 1: Determine o, and o, (see (iv) and (v) of Section 10.4.3.2).
Step 2: Select a convenient positive o value, say o, such that o <o,
where o, is determined in Step 1.
Step 3: Determine the concrete strain ratio € /¢  at x/4=1, i.e. [€/e_] ,_,, for
the o chosen in Step 2 (see (ii) of Section 10.4.3.2).
Step 4: Determine the initial portion of the P—¢€i curve for the uncracked
section (i.e. curve 0'4B of Figure 10.14).
(a) With reference to Figure 10.9a, select a concrete strain ratio
e /e, such that O<e/e < [e/e ] , . where [e /e ]
determined in Step 3.
(b) With reference to Figure 10.16 calculate, for each layer of
steel, the ratios [x/h]y[i and [x/h]yci from Eqns 10.26a and b.
Therefore, for a section with n layers of reinforcement, there
are 2n such x/ ratios.
(c) From the x/h ratios calculated in Step 4b, select those with
values greater than or equal to 1. Then arrange the selected x/A
ratios in ascending order. For example,

‘max”

x/h=1 1S

| A B C + Infinity

! | ! !
Interval 1 2 3

where 4, B, C and so on are the selected x/A ratios.
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Step 5:

Step 6.

(d)

(©)

®

€9

(h)

If the o value selected in Step 2 is less than o

Choose an interval from Step 4c, say interval No.l: [1, A].
Calculate the values of K/, K, and MM from Eqns 10.21a, b
and e, and the coefficients » and ¢ of Eqn 10.23 from Eqns
10.24b and c. Then solve Eqn 10.23 as a non-linear
equation, using an iterative method. If the root of Eqn 10.23
is positive and real, proceed to Step 4e; otherwise repeat
Step 4d for other intervals of x/h. If Eqn 10.23 is not
solvable in any one of the intervals of x/4 determined in Step
4c, the selected concrete strain ratio €/¢_ is less than the
minimum possible value [¢ /e _] . for that chosen o (see (iii)
of Section 10.4.3.2). Then return to Step 4a using a larger
value of g /e .

If the root obtained in Step 4d is within the interval of x/h
chosen in Step 4d, the condition of compatibility is satisfied;
then proceed to Step 4f. Otherwise, return to Step 4d for other
intervals of x/h.

Calculate the force parameter, say 0, by substituting the pair
[e/e,, x/h] into Eqn 10.19 where the € /¢  is chosen in Step
4a and the x/h is the root of Eqn 10.23 as obtained in Step 4d
and checked in Step 4e. The condition of equilibrium is
considered satisfied if |’ ,-0,|[<TOL, where a, is the axial
force ratio chosen in Step 2 and TOL is a small number, say
1.0x104. If the equilibrium is not satisfied, return to Step 4d
for other intervals of x/A.

For the € /¢, chosen in Step 4a and the x/4 determined in Step
4d and checked in Steps 4e and 4f, calculate K,, K, and NN
from Eqns 10.21c, d and f. Then calculate the corresponding
values of B and €i4s from Eqns 10.20 and 10.16.

Repeat Steps 4a to 4g for other concrete strain ratios € /e
until sufficient pairs of [B, €a4] are obtained for plotting the
initial portion of the moment-deflection curve, for instance,
curve 0'4B of Figure 10.14.

(see (iv) of Section

unity

10.4.3.2), proceed to Step 6. Otherwise, the moment-deflection
curve determined in Step 4 represents the entire moment-deflection
curve for the selected o value. Then return to Step 2 for other o
values, if required.

Determine the portion of the P—¢€is curve for the cracked section
(i.e. curve BCD of Figure 10.14).

(a)

(b)

With reference to Figure 10.9a, select a concrete strain ratio
e/e_,, such that [e/e_] , <€/e <1. Then calculate the
coefficient a from Eqn 10.24a by putting €’ =0.
With reference to Figure 10.16 calculate the 2n values of the
x/h ratios from Eqns 10.26a and b as in Step 4b.
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Step 7:

(c) From the x/h ratios calculated in Step 6b above, select those
within the range [x/4=0; x/h=1]. Then arrange the selected x/A
ratios in ascending order. For example,

0 P Q R 1

[ | | - — —— |
Interval 1 2 3

Where P, O, R and so on are the selected x/A ratios.

(d) Choose an interval from Step 6¢c, say interval No.1: [0, P].
Calculate K|, K, and MM from Eqns 10.21a, b and e and the
coefficients b and ¢ of Eqn 10.23 from Eqn 10.24b and c.
Then determine the positive real root from Eqn 10.25.

(e) If the root obtained in Step 6d is within the interval of x/A
chosen in Step 6d, the condition of compatibility is satisfied
and proceed to Step 6f; otherwise, return to Step 6d for other
intervals of x/h.

(f)  Calculate the force parameter, say o', by substituting the pair
[e /e, x/h] into Eqn 10.19 where € /¢  is chosen in Step 6a
and the x/4 is determined and checked in Step 6d and Step 6e,
respectively. The condition of equilibrium is considered
satisfied if |0 -0, |[<TOL, where o, is the axial force ratio
chosen in Step 2 and TOL is a small number, say 1.0x104. If
the equilibrium condition is not satisfied, return to Step 6d for
other intervals of x/A.

(g) Forthe g /e chosen in Step 6a, and the x/4 determined in Step
6d and checked in Steps 6e and 6f, calculate K,, K,, and NN
from Eqns 10.21c, d and f. Then calculate the corresponding
values of B and €is from Eqn 10.20 and 10.16.

(h)  Repeat Steps 6a—6¢g for other concrete strain ratios € /€ until
sufficient pairs of [B, €] are obtained for plotting the second
portion of the moment-deflection curve (i.e. the portion BCD
of Figure 10.14).

Repeat Steps 2—6 for other a values. Then plot the moment-

deflection curves (B—¢.a) for various o values, as shown in Figure

10.13.

Details of the authors’ computer program and worked examples for the
method are given elsewhere (Kong and Wong, 1987; Wong, 1987a).

10.4.4 Stability analysis of columns: analytical method

The two methods described in Sections 10.4.2 and 10.4.3 require manual
manipulation of machine-generated curves, which would be a disadvantage
when graphical facilities are not readily available or when substantial
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amount of analysis is required. In this section, an analytical method is
presented for the direct determination of the buckling load of slender
columns.

10.4.4.1 Conditions of instability failures It is explained in Section 10.4.1
that, at the point c in Figure 10.7b, the column is in unstable equilibrium and
the following two requirements are satisfied simultaneously:

i) the line ac touches the B¢ curve for o=ot;
ii) the line ac itself has a slope ¢=0,

The requirements (i) and (ii) can be represented by the following expressions.

[_d!l}[ﬁﬁ_] o (10.27a)

ic. [—dﬁ—] —0,=0 (10.27b)

where [d(B)/d(€.0)]. is the slope of the B¢ curve for o at the point ¢ in
Figure 10.7b; [d(B) /d(€.40)].c is the slope of the straight line a-c.
Also, at the point ¢ in Figure 10.7b,
B.=B
ie. B-B.=0 (10.28a)
or, from Eqn 10.2

=

B-oile+ €] =0 (10.28b)

Note that Eqn 10.27 guarantees that the line a-c having a slope o is
tangential to the B—elas curve for o at ¢, and Eqn 10.28 guarantees that the
point a is at a distance e’ to the left of the origin 0 (see Figure 10.7b).

Next, consider Figure 10.17a. The line a,-c, has a slope equal to o, and
the point a, is at a distance e’, (=e,/h) to the left of the origin 0. Suppose the
line a,-c, touches the P~¢las curve for a=0, at c,, then from Eqn 10.27.

[_d!l] i} [ﬁ] o (10.292)

s
deadd

o

deag

ie. [—dﬁ—] —ou=0 (10.29b)

)
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Figure 10.17 Stability analysis of column—an analytical method
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where [d(B)/d(€ud)l., is the slope of the P—€lus curve for o, at the point ¢,in
Figure 10.17a; [d(B:)/d(€id)]ac, is the slope of the straight line a,-c,.

Suppose the line a-b-c in Figure 10.17a is parallel to line a,-c, and the
point a is at a distance e’ to the left of the origin 0, where e’<e’,. It is clear
from Figure 10.17a that the difference A between the values of B at ¢, on the
P—¢ias curve for a, and that at ¢ on the line a-b-c is greater than zero. That is,

A=PB.,-B.<0 (10.31a)
or, from Eqn 10.2,
A=P, -0z [+ (€] <0 (10.31b)

where B, is the value of B on the B¢ curve for the value of 0, at c,; B is
the value of 3 on the line a-c at c.

Following the arguments in Section 10.4.1, it is clear that the column is in
stable equilibrium at b (Figure 10.17a). That is, o, <ot .

In Figure 10.17b, the lines a,-c, and a-c are parallel and have slopes equal
to o2 The line a,-c, touches the moment deflection curve for o, at the point

hence Eqn 10. 27b holds at c,. Since the line a-c is above the 11ne a,-c, (ie.
e >e ’,) in Figure 10.17b, the dlfference A between the value of B at ¢, on the
P—€aa curve for o, and that at ¢ on the line a-b-c is less than zero. That is

A=B,-B,<0 (10.31a)
or, from Eqn 10.2,
A=B,— 0z [¢ + (€ha)2) <0 (10.31b)

where B, and By, are as shown in Figure 10.17b.

In this case, the external moment M, (i.e. B, value on the line a-c) always
exceeds the internal moment M (i.e. the B value on the B—¢las curve for o, in
Figure 10.17b) and equilibrium is impossible. That is, o.,>0;_,

In Figure 10.17c, the line a-c having a slope equal to «, touches the P—€as
curve for o, at c,, (i.e. at ¢). The column is in unstable equ111br1um that is,
o=0o_..In thls case,

Crll
A=B,-B,=0 (10.32a)
or, from Eqn 10.2,
A=B,—0s[e"+ (€uaa3] =0 (10.32b)

where 3., and B, are shown in Figure 10.17c.
Before further discussion of the implication of Eqns 10.30, 10.31 and
10.32, it is helpful to define the general expression for A:

A=B - o [¢ + € (10.33)
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where the pair €., B] are the coordinates at a point on the B¢ curve
for a.

With reference to Figure 10.17 and based on the above discussions, it can
be concluded that the equilibrium of a slender column can be related to the
value of A, calculated from Eqn 10.33 as follows.

Condition 1: A>0
This corresponds to stable equilibrium, as shown at the point
b in Figure 10.17a.

Condition 2: A<0
This corresponds to the condition that equilibrium is
impossible, as shown in Figure 10.17Db.

Condition 3: A=0
This corresponds to unstable equilibrium, as shown at the
point ¢ in Figure 10.17c.

10.4.4.2 Analytical expressions for instability failures As explained in
Section 10.4.4.1, the slope at a point on a P—€is curve for o is defined by the

derivative d(B)/d(€iu), where B is given by Eqn 10.20. The derivative can be
rewritten as

dB _ dp  dlx/hl
déis d[x/h]  dé (10.34)

Considering the derivatives dB/d(x/h) and d(x/h)/d(€aad) separately, it can be
shown that (Wong, 1987a)

B _1[ do [1(x) X x)

délas B |dx/m|2\h| "k
—k;m[—';] —K;;(?]} (10.35)
B:-[i}(i] [s ] (10.36)

and k,, K, and o are as defined before.

If the value of the concrete strain €_and that of the neutral axis depth x
(i.e. the values of the pair [e/e_, x/h] at a certain point on the P—€lu curve
for o are known, Eqn 10.35 can be used to calculate the slope of the B¢l
curve at that point.

Suppose the slope at a point on the €. curve for a particular value of o
is equal to o (Eqn 10.27), then substituting Eqn 10.19 (for o) and Eqn 10.35

(for) d(B)/d(¢ia)) into Eqn 10.27b, and rearranging

where
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a6 30 L0
T

Substituting Eqn 10.5 into Eqn 10.12, the parameter o, can be expressed as

A [x
m_ﬁcﬂu(fi] (10.38)

where A is given by Eqn 10.5. Hence,
_do. A N x/h | dA
dlx/h) " Efu | &fu|d[x/h]

Substituting Eqns 10.38 and 10.39 into Eqn 10.37, and rearranging,

(10.39)

5

X ’ ] X ' x| X
as|y[tas|y tas| i ral s [vanl +ap=0 (10.40)

where
; ks dA (10.41a)
*T|Becfu | dx/h]
_ 1 __dA (10.41b)
04_[2,8& f} 4ak d{_\-/h]}
. (10.41c)
*T 2Be.f,
a= (10.41d)
€ feu
a =K, & +|:&:| Ec + MM [104]6)
v | B &
and
10.41f
ap = K4 ( )

cu

where A is defined by Eqn 10.5; B is defined by Eqn 10.36; £, is defined by
Eqn 10.10; K,, K,, K, and MM are defined by Eqns 10.21b, ¢, d, and e,
respectively.

For an uncracked section (i.e. x/h=1), the area A (see Eqn 10.5) under the
stress-strain curve in Figure 10.9a, between e=¢’ =¢ [1-1/(x/h)] and e=¢, is
completely defined by the concrete strain € and the neutral axis depth x.
Hence, for a given value of € (i.e. of € /¢ ), the values of 4 and the
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derivative {d(A)/d(x/h)} (and hence the coefficients a,, a,, a,, a,) depend on
the value of x (i.e. of x/A). It follows that, for a given value of £/¢_, Eqn
10.40 is a non-linear equation in x/A, the solution of which requires an
iterative procedure such as the bisection method (Conte and Boor, 1984).

For a cracked section (i.e. x/h<l), the area A (see Eqn 10.5) under the
stress-strain curve in Figure 10.9a, between €=¢’ =0 and e=¢ , is completely
defined by the concrete strain € . For a given value of € /¢_, 4 is constant and
hence the derivative d(4)/d(x/h) is equal to zero. It follows that the
coefficient a; becomes zero and the coefficients a,, a,, a, become constant.
Therefore, for a cracked section, Eqn 10.40 becomes a quartic equation (i.e.
an algebraical equation of the fourth degree). That is,

4 3 2
a [ﬂ Ya [ﬂ ra [ﬂ +a [ﬁ] +a,=0 (10.42)

_ aAk
" Be fu

where

a, (10.43)
and a,, a,, a, and g are as defined by Eqns 10.41c, d, e and f respectively.

Following the argument in Section 10.4.3.3, it should be noted that there
are at most 2n+1 possible combination of values for the coefficients [a,, ;]
(as they depend on K,, K, K,, MM) irrespective of whether the section is
uncracked or cracked, where n is the number of layers of reinforcement.

It is now clear that Eqns 10.40 and 10.42 define the relationship between
the concrete strain €, and the neutral axis depth x (i.e. € /¢ and x/h) at a
point on a moment-deflecting B—e.as curve, where the slope is equal to the
values of o for constructing the B—¢las curve. However, at that point on the
B—€ias curve it is not known whether the section is uncracked (i.e. x/2>1) or
cracked (i.e. x/h<l1). Therefore, for a given concrete strain ratio € /€_, a trial
and error procedure similar to that described in Section 10.4.3.3 is required
to determine the corresponding neutral axis depth ratio x/& at that point on
the P—€laa curve. Further details of solving Eqns 10.40 and 10.42 are given
elsewhere (Wong, 1987a).

10.4.4.3 Procedure for determining column buckling loads
The procedure for determining column buckling loads can be outlined as
follows:

Step 1: Select a convenient value for the concrete strain ratio € /¢  between
the interval [0,1].

Step 2: Solve Eqn 10.27 (i.e. Eqn 10.40 or 10.42) for the correct value of x/
h, as explained in Section 10.4.4.2.

Step 3: For a concrete strain ratio € /¢, selected in Step 1 and the neutral
axis depth ratio x/h determined in Step 2, the values of o, B, and €%
are calculated from Eqn 10.19, 10.20 and 10.16, respectively. The
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pair [€uaa, B] so determined are the coordinates at a point on the

B—elaa curve for o, and the slope at the point is equal to o.

Step 4: Calculate the value of A from Eqn 10.33. There are three cases to
consider:

(a) If A exceeds zero (i.e. Condition 1), the column is in stable
equilibrium; instability failure would occur at a higher
concrete strain €_ (i.e. higher € /€ | ratio).

Repeat the calculations from Step 1 for a larger value of € /¢ .

(b) If Ais less than zero (i.e. Condition 2), it is impossible for the
column to attain equilibrium; instability failure would occur at
lower concrete strain € (i.e. lower € /¢  ratio). Repeat the
calculations from Step 1 for a smaller value of € /e .
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Figure 10.18 Equivalent-column method—effective column widths
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(c) If Ais equal to zero (i.e. Condition 3), or more realistically, if
A is within a small tolerance of zero, 1.OE-4 say, then the
column is considered to be at incipient instability failure. That
is, the current value of o is equal to, or sufficiently close to
o . Hence the column buckling load N_, can be calculated
from Eqn 10.4.
The steps described above assume that instability failures always precede
material failures. However, for a general computer program, the possibility
of material failure should be considered. Because of space limitation it is not
considered here.

10.5 Stability analysis of slender deep beams: the equivalent-column
method

Based on the method presented in Section 10.4, the buckling strength of a
deep beam is calculated as that of two ‘equivalent columns’, each joining a
loading block to a support reaction block, as shown in Figure 10.18. Each
column is of rectangular cross section b by b_,, where b is the actual
thickness of the deep beam and b is the effective column width. As an
exploratory investigation, four effective column widths will be considered:

Case 1: (Figure 10.18a). The effective width b of each equivalent column
is taken as L/2, where L is the overall length of the beam. The
buckling load P of the deep beam is then taken as 2N, where N is
the buckling load of an equivalent column. Case 1 is equivalent to
analysing the deep beam as a wide column.

Case 2: (Figure 10.18b) beff is taken as ¢, where ¢ is the width of each of
the stiff bearing blocks at the loading and support points. P=2N, as
in Case 1.

Case 3: (Figure 10.18c). Here the equivalent-column axis is the line joining
the loading and support reaction points, inclined at an angle ¢ to
the vertical. b, is taken as c¢ cos ¢. The buckling load P of the
beam is taken as 2N cos ¢.

Case 4: (Figure 10.18d). Cae 4 is as Case 3, except that b  is taken as
(ct+4b) cos ¢, where b is the beam thickness and (c+4b) is the
effective width recommended by Clause 14.2.4 of the ACI Code
(ACI Committee 318, 1983) for walls under concentrated loads.

The effective reinforcement for each equivalent column is taken as the average

amount of reinforcement in the direction of the equivalent-column axis.

10.6 Deep beam buckling: comparison with test results

Table 10.2 shows that the measured buckling loads of the authors’ 38 test
beams (Kong et al., 1986a) together with the predictions by the CIRIA
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Guide and the Equivalent-Column method of Section 10.4 this chapter. In
Table 10.2, the predictions of the CIRIA Guide’s Supplementary Rules
supersede those published earlier (Kong et al,, 1986a; Kong and Wong,
1986) which were incorrect, as explained elsewhere (Kong et al., 1987,
Wong 1987a). The concrete stress-strain relationship used to calculate the
equivalent-column loads is that proposed by Desayi and Krishnan (1964).
With reference to Table 10.2, several observations can be made:

1)  All the three CIRIA methods were safe and conservative. When
used in conjunction with BS 8110, the mean factors of safety are:
R ,=35.63, R,,=13.06 and R ,=7.06. Therefore, the relative
conservatism of the CIRIA Guide method was in the descending
order: the supplementary rules, the single-panel method and the
two-panel method. As shown in Table 10.2, the supplementary rules
and the single-panel method were often too conservative,
particularly for the very slender beams of 4/b ratio of 33 or more,
and could lead to factors of safety exceeding 60. The two-panel
method gave the most realistic results; the R, values ranged from
about 2 to 15, with many values in the region of 8.

i) A closer scrutiny of Table 10.2 shows that the conservatism of the
CIRIA methods increased sharply as the height/thickness ratio 4/b
increased, and decreased gradually as the load-eccentricity/
thickness ratio e/b increased.

iii)  Of the three methods given by CIRIA Guide, the supplementary
rules are the easiest to use, the single-panel method is more difficult
to use, and the two-panel method even more so. Table 10.2 shows
that the two-panel method gave the most realistic results, while the
supplementary rules gave the least realistic results. In practical
design, therefore, it is worthwhile to move straight to the two-panel
method, by-passing the supplementary rules and the single-panel
method. Even when the deep beam is such that the easier to use
supplementary rules are applicable, the supplementary rules should
be used merely as a preliminary check of the adequacy of the deep
beam against buckling failure.

iv) The ‘equivalent-column’ method generally gave comparatively
better predictions than those obtained by the CIRIA Guide.

v) The last three columns of Table 10.2 show that Cases 2, 3 and 4
(mean R,.,=2.65; R..,=3.03; R,.,=2.02) lead to quite realistic results,
indicating that the equivalent-column approach is potentially a useful
tool for the buckling analysis and design of slender concrete deep
beams. It should be noted that Cases 3 and 4 of Figure 10.18 suggests
that the buckling strengths of slender deep beams would increase
with the width ¢ of the bearings, which is yet to be confirmed by tests
(Wong, 1987a). The Case 1 results (mean R,.,=0.72) show that the
effective width b_; in Figure 10.18a is too large, as expected.
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Table 10.2 Buckling loads—comparison of test results with CIRIA Guide predictions and
equivalent—column predictions.

Experimental CIRIA Guide used Equivalent-column Method
failure with BS 8110

+ Beam load Case | Case2 Case3 Cased

kN Rsr Rsp R1p Reci Recz Recs Reca
A-67-0.2 148 6423 29.10 1347 1.48 547 6.37 4.83
A-50-0.2 360 67.40 28.75 19.93 1.56 5.78 6.67 4.73
A-40-0.2 420 48.26 18.68 9.74 0.95 3.50 4.05 2.68
A-33-0.2 560 4065  13.32 7.89 0.64 2.38 2.76 1.70
A-29-0.2 682 32.32 8.79 5.97 0.54 2.01 2.33 1.37
A-25-0.2 620 19.65 5.08 3.46 0.44 1.64 1.90 1.06
A-50-0.05 440
A-40-0.05 534 Specimens failed in shear
A-33-0.05 620
B-67-0.2 120 52.00 23.55 10.91 1.18 4.38 4.83 3.76
B-50-0.2 146 29.10 13.47 6.13 228 841 9.35 6.82
B-40-0.2 340 3898 1505 7.86 0.74 275 3.02 1.99
B-33-0.2 560 40.87  13.53 7.95 0.68 2,53 2.77 1.74
B-29-0.2 420 21.90 7.00 4.20 0.51 1.90 2.11 1.25
B-25-0.2 700 21.59 5.12 3.73 0.42 1.56 1.69 0.96
B-50-0.05 460
B-40-0.05 550 Specimens failed in shear
B-33-0.05 692
C-67-0.1 60 2691 12.13 5.64 0.47 1.73 2.00 1.54
C-50-0.1 120 2740 1141 5.63 0.35 1.30 1.52 1.06
C-40-0.1 270 35.67 13.17 7.13 0.41 1.51 1.77 1.16
C-33-0.1 450 36.92 11.65 7.12 0.48 1.76 2.05 1.28
C-29-0.1 550 28.30 7.18 5.15 0.40 1.48 1.72 1.01
D-40-0.1 300 24.68 10.13 5.06 0.51 1.89 2.13 1.41
D-33-0.1 340 14.23 5.19 2.83 0.40 1.48 1.69 1.05
D-29-0.1 538 14.99 5.20 2.93 0.46 1.69 1.93 1.13
E-67-0.1 Specimen failed by vertical splitting
E-50-0.1 200 51.02  21.26 1049 0.67 2.46 2.86 2.01
E-40-0.1 502 7402 2736 1481 0.86 318 3.70 2.43
E-33-0.1 440 40.66  13.04 7.86 0.57 2.11 2.47 1.51
E-29-0.1 700 39.46 9.47 7.13 0.49 1.82 2.12 1.24
E-25-0.1 560 19.74 4.04 3.28 0.31 1.15 1.33 0.74
E-67-0.2 Specimen damaged (accident)
E-50-0.2 170 44.76 19.55 9.30 1.16 4.29 5.05 3.50
E-40-0.2 210 32.93 13.39 6.73 0.73 2.83 3.28 2.14
E-33-0.2 300 2992 1097 5.96 0.64 235 2.74 1.67
E-29-0.2 400 26.45 8.53 5.10 0.58 2.14 2.48 1.43
E-25-0.2 540 23.99 6.67 4.43 0.54 2.01 2.32 1.27
Mean 3563 13.06 7.06 0.72 2.65 3.03 2.02
Standard
Deviation 15.04 7.14 3.20 0.43 1.60 1.80 1.40
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vi) Table 10.2 shows that the conservatism of the equivalent-column
method tended to increase slightly with the 4/b and e/b ratios.

10.7 Concluding remarks

Test data in the literature on the buckling strength of deep beams are
few, probably because experiments on slender deep beams are
comparatively difficult and hazardous to carry out. It is believed that the
tests reported by the authors and their colleagues (Kong et al., 1986a;
Wong, 1987a) represent most of the experimental data available to date
on slender concrete deep beams. These tests have revealed that the
failure mode and the failure load of slender deep beams depended
strongly upon the 4/b and e/b ratios. More recent tests have also shown
that the failure mode and the failure load of slender deep beams
depended upon concrete strength, the amount and arrangement of web
reinforcement (Wong, 1987a). The effects of other parameters such as
lateral restraints, width of bearings, loading arrangements, creep
buckling under long-term loading have yet to be studied.

The tests by the authors and their colleagues, which for the first time
enabled the CIRIA’s methods to be checked against experimental
values, show that the CIRIA Guide methods could be very
conservative, and suggest that the equivalent-column method is a
potentially useful tool for the design and analysis of slender concrete
deep beams. By choosing suitable effective widths, the equivalent-
column method may be extended to cover slender deep beams with
restrained vertical edges.
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