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PREFACE

Dynamical systems are an important topic in engineering. Applications are
prevalent within mechanical, electrical, and biomedical engineering and can
be found within robotic, automotive, aerospace, and human systems,
among others. The purpose of this book is to present dynamical systems
topics in a way that is relevant for practicing engineers. It is intended for
engineers who need to understand both the background theory and how to
apply it. As such, there is an attempt to create a bridge between the theory
and the application. Every abstract concept is discussed in depth, described
in a readable and down-to-earth manner, and illustrated using practical
examples. The intended audience is engineers who are working in industry,
graduate students who are taking courses or doing research related to
dynamical systems, and undergraduate students who are taking courses in
control systems. This is not a textbook, and there are no end-of-chapter
problems. Rather, it should be considered an application guide for those in
the trenches of working with and learning about dynamical systems.

It is assumed that readers have a solid mathematical foundation in cal-
culus, differential equations, and matrix theory. In presenting the material,
the emphasis is on applying the theory, so there are relatively few theorems
and no proofs. However, there is a lot of mathematics. Much mathematical
detail is given that is missing from other texts on these topics. The reason
for this level of detail is to help readers understand the complete application
in real-world systems. The focus is on depth and not breadth. In covering
the selected topics at this level of detail, unfortunately, the number of topics
had to be limited. As such, this is not a complete and comprehensive
presentation of all topics in dynamical systems. However, this book at-
tempts to cover many relevant topics that an engineer in the field would
encounter and provide a foundational understanding for further study.

It is also assumed that the reader has some understanding of MATLAB
and Simulink, although expertise is not required. Many of the concepts are
demonstrated using real-world examples in MATLAB or Simulink. For the
earlier chapters, the MATLAB code is explained line by line to show how
various concepts are implemented. These explanations are gradually
decreased throughout the book.

The book transitions from topics commonly found at the undergraduate
level in engineering, to those covered in graduate courses, to those that engineers

xix



may never see in a course. As such, the coverage changes in its approach and
assumptions about what the reader knows. The layout of the topics is as follows.
Chapter 1 introduces dynamical systems, provides motivation for why it’s
important to study them, and discusses different types of systems. This material
should be familiar from undergraduate engineering courses in linear systems and
control theory. There is high-level discussion of this material, but the mathe-
matics starts early with definitions of the different classes of systems.

Chapter 2 discusses modeling and covers differential and difference
equations, transfer functions, state-space models, eigenvalues, eigenvectors,
and singular value decomposition. Although many of these topics are familiar
from courses in differential equations, control systems, and linear algebra, the
emphasis is on putting them in the context of dynamical systems. There is
also an emphasis on working through examples in MATLAB and giving
details of the implementation, which may not be covered in those courses.

Chapter 3 focuses on solutions of dynamical equations, equilibrium
points, and stability. These concepts are often encountered in introductory
graduate-level courses in dynamical systems and control theory. Again, the
emphasis is not on deriving the results but applying them. As such, several
of the relevant theorems are presented and applied.

Chapter 4 discusses nonlinear systems and some rich behavior that is
only found in them such as limit cycles, bifurcations, chaos, and lineari-
zation. These are topics typically found in graduate-level engineering
courses. There is a minimal amount of theoretical coverage, and the be-
haviors are described through examples.

Finally, Chapter 5 introduces Hamiltonian systems, which typically fall
in the realm of physicists. However, undamped vibrational systems and
their equivalent are an important class of Hamiltonian systems, and there is
much rich theory in this area. As with Chapter 4, there is minimal theo-
retical coverage, and the focus is placed more on the introduction of the
concepts through examples.

Many people contributed to the creation of the book. Acknowledge-
ment goes out to colleagues and students at the University of Hartford,
particularly Lee Townsend and Iman Salehi for their supportive ideas and
engaging discussion; colleagues in the van Rooy Center for Complexity
and Conflict Analysis for the productive biweekly meetings; Harriet
Clayton and Glyn Jones at Elsevier for the support and feedback; and Joe
Romagnano for his editorial skills.

Patricia Mellodge
West Hartford, CT
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CHAPTER 1

Introduction: What Is a
Dynamical System?

1.1 OVERVIEW

Dynamical systems are all around us: from a car traveling down the road to
the ripples caused by throwing a pebble into a pond to a clock pendulum
swinging back and forth. But what is a dynamical system? First, let us
explore the words that make up the phrase “dynamical system.” The
Merriam-Webster Dictionary gives these definitions:

Dynamic (adjective): always active or changing; having or showing a lot of
energy; of or relating to energy, motion, or physical force

System (noun): a group of related parts that move or work together

The term “dynamic” gives us the idea of change or motion and can deal
more specifically with physical phenomena. Mathematically, when one
thinks of change, derivatives should spring to mind; indeed, these are a key
component of how we model dynamical systems.

The definition of “system” involves groups of related parts working
together. Although this definition works in general, a diagram such as the
one shown in Figure 1.1 best illustrates the concept that we use throughout
the book. Simply stated, a system is an entity that has an input and an
output. A system receives an input and produces an output based on the
input and its state.

When the two words are put together to form “dynamical system,”
things get interesting. A dynamical system is one in which inputs, out-
puts, and even the system characteristics themselves can change with time.
The relationship between input and output can be modeled mathematically
using various techniques, such as differential and difference equations,

Input OutputSystem

Figure 1.1 Block diagram representation of a system.
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transfer functions, and state space equations. Throughout this book, we
focus on two objectives: (1) investigate various techniques and analysis
methods for dynamical systems and (2) apply these methods to examples of
real-world systems and show how they can be used in practice. As we will
see, the study of dynamical systems can reveal some very interesting
behaviors, some desirable and some not.

What about a car driving down a road makes it a dynamical system?
One example is its suspension system, represented in Figure 1.2. The input
to this system is the road, which has a varying height as the car drives down
it. The output might be the ride height of the car itself. The system consists
of the various components linking the road to the passenger’s body: the
tires, control arm, shock absorber, chassis, and so on. When you hit a bump
in the road, you experience a dynamical response: perhaps your body is
jarred by the sudden change in wheel height, or perhaps you barely notice
it. The response depends on the characteristics of the car’s suspension,
which can be modeled as a mass-spring-damper system.

1.1.1 Why Do We Study Dynamic Systems?
The main reasons are (1) to predict system behavior and (2) to control
system behavior.

An example of a system we study for prediction is the weather. Sci-
entists, meteorologists in particular, have spent many years and many
computing hours creating models used to predict the weather. We rely on

Output: car height

Intput: road height

Figure 1.2 A car’s suspension system with the road height as the input and the car’s
height as the output.
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these predictions to plan our daily activities, from scheduling an event to
deciding what to wear. As computing power advanced and more atmo-
spheric data became available, the models used to predict the weather
increased in sophistication and accuracy.

The above example of the car suspension is another case of a systemic
behavior we wish to predict. Knowing the effects of variables such as spring
stiffness, fluid viscosity in shock absorbers, tire pressure, and the many other
parameters that go into the system allow the designers to predict and
therefore design a system to have the desired characteristics. Certainly,
someone buying a sports car would be disappointed if the vehicle handled
like a school bus!

There are many examples of systems whose behavior we wish to
control. The previous example of the car suspension is also one of them.
Many modern cars now have adaptive suspension systems in which the
vehicle performance through turns and over bumps in the road is moni-
tored. Based on this performance, the system is designed to adjust itself by
changing the damping coefficient of the shock absorbers.

Another example of controlling a system from everyday life is a ther-
mostat like the one shown in Figure 1.3. A thermostat allows us to set a
comfortable temperature for the room we are in, and this temperature is
maintained automatically. The temperature of the room depends on many
parameters, including heat sources within the room (e.g., heaters, lights,

Figure 1.3 A thermostat automatically controls the temperature of a space. In (a), the
temperature is above the set point, and heating does not occur. In (b) the desired
temperature is above the room temperature, and the system is heating.

Introduction: What Is a Dynamical System? 3



people); the amount of insulation in the walls, doors, and windows; and the
temperature outside the room. Designers wishing to optimize thermostat
performance need to have an understanding of the temperature dynamics in
the room. With this knowledge, the designer can choose the controller
parameters to get the best performance from the system.

The analysis strategy for a system depends on the objective. If one is
trying to predict system behavior, then often the strategy is to model as
much of the characteristics as possible. In the case of weather, an
extraordinary amount of data is gathered for use in computer models. This
data is taken from many different sensors to measure a number of condi-
tions (e.g., temperature, humidity, barometric pressure) in many different
locations. Despite sophisticated modeling techniques, one aspect of weather
systems that makes prediction so difficult is its inherently chaotic behavior.
This is exemplified by the thought experiment known as the butterfly
effect: a butterfly flapping its wings in one part of the world can cause a
hurricane somewhere else weeks later. We will discuss chaos later in
Chapter 4.

If a designer is trying to analyze a system to develop a control algorithm,
the technique may not be to model as much as possible about the system. In
many cases, it is not practical and simply not necessary to obtain so much
information. For the example of a thermostat, a comprehensive model of
the room would need the temperature distribution in the space. In other
words, we would need to measure the temperature at every point in the
room. However, this kind of measurement is not practical because we
cannot possibly fit that many sensors in the room. It is more likely that we
can get away with one, two, or four sensors by making assumptions about
the temperature distribution in the room. Furthermore, the control
designer often relies on a relatively simple model and focuses on a so-
phisticated control algorithm to compensate for modeling errors and
uncertainty.

1.2 TYPES OF SYSTEMS

Dynamical systems can be categorized by their characteristics. In this sec-
tion, we discuss several of these categories and give examples of each type.
Understanding the type of system you are dealing with is important because
it will drive which techniques are available for you to use. Serious problems
can occur if analysis and design methods are used on the wrong type of
system!

4 A Practical Approach to Dynamical Systems for Engineers



1.2.1 Continuous versus Discrete
Consider the above example of a car suspension system. A plot of the car’s
ride height versus time after going over a bump may look something like
the curve shown in Figure 1.4. At every instant of time, we can get a value
for the car’s height. A fraction of an instant later, we can get another value.
In fact, we can get a different value at every instant in time. This is an
example of a continuous-time system.

In contrast, consider money in a bank account. Assume an account is
earning 5% interest and there is an initial deposit of $10,000. Figure 1.5
shows how the money would grow if no deposits or withdrawals are made
and the bank applied interest monthly. Now similar to the car suspension
example, we can check the account balance at any time and get a value.
However in this case, changes only occur once every month. Because the
in-between values are known to be held constant, we can represent the
balance as shown in Figure 1.6.

The formula for the amount of money in the account is

An ¼ A0

�
1þ r

12

�n
(1.1)

where r is the annual interest rate, n is the number of months, A0 is the
initial deposit, and An is the amount of money in the account in month
n. This variable n represents a discrete interval of time.

The bank account is an example of a discrete-time system. In a
discrete-time system, the values are only recorded at particular time instants.
The in-between values do not matter or do not change (as in the bank
account), or we do not have access to them. Sampling is the process by

Car height (m)

Time (s)

Figure 1.4 The car’s height is an example of a continuous-time signal.
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which a continuous-time system is converted to discrete time. In this sit-
uation, the sampling rate is very important because if the samples are not
taken often enough, important information in the signal can be lost.1 On
the other hand, there is always an upper limit on the sampling rate caused
by hardware processing limitations, and faster sampling is not always the
key to improving system performance.

$10,500

$10,400

$10,300

$10,200

$10,100

$10,000
0 1 2 3 4 5 6 7 8 9 10 11

Amount

Month

Figure 1.5 An account balance with interest applied monthly represented by a
continuous-time signal.

$10,500

$10,400

$10,300

$10,200

$10,100

$10,000

Month

Amount

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1.6 The same account balance represented as a discrete-time signal.

1 This issue is addressed by the Nyquist sampling theorem, which states that if the highest frequency
in a signal is fmax, then the signal can be completely reconstructed from a sampled version if the
minimum sampling rate is 2fmax.
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Real physical systems, such as the car suspension system, are mostly
analog in nature and therefore continuous-time systems. So why study
discrete-time systems? The major reason is that many of these systems are
computer controlled, and computers are discrete-time machines that run on
a clock. Figure 1.7 shows a typical physical system controlled by a com-
puter. Typically, when a computer sends signals to actuators and receives
signals from sensors, some form of analog-to-digital and digital-to-analog
conversion must take place.

1.2.2 Linear versus Nonlinear
A linear system can be characterized in several different, but related, ways.
• Its dynamics can be represented by a system of linear differential equa-

tions (for continuous-time systems) or linear difference equations (for
discrete-time systems).

• It has a transfer function.
• It obeys the law of superposition.
• A sinusoidal input produces a sinusoidal output of the same frequency.

Computer

Data acquisition
circuits

Actuator
driver

Actuator

Physical
system

Sensors

Figure 1.7 A typical computer-controlled system.
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One of the most common ways to test for a system’s linearity is by
verifying if it follows the law of superposition. Superposition is usually
introduced to engineers in a circuit analysis course, but the concept applies
to linear systems in general. (Resistive circuits are linear systems after all.)
Superposition is composed of two parts, scaling and additivity.

Scaling: If a system’s input x(t) results in an output y(t), then an input of
ax(t) will result in the output ay(t) for any value a. This characteristic is
shown in Figure 1.8.

In other words, if you multiply the system’s input by some value, you
end up multiplying the output by the same value. Note that this also means
zero input should result in zero output.

Additivity: If a system’s input x1(t) results in y1(t) and x2(t) results in y2(t),
then if the input is x1(t)þ x2(t), the output is y1(t)þ y2(t). A block diagram
depicting this characteristic is shown in Figure 1.9.

In other words, in a linear system, it does not matter if you sum the
signals before or after the system. The output is the same.

A nonlinear system is simply one that is not linear. However, there are
several reasons why a system might be nonlinear, and different classes of
nonlinearities come about because of different physical reasons.

Linear
system

Linear
system

Linear
system

α

α

αy(t)αx(t)

y(t)

y(t)x(t)

x(t)

x(t)

αy(t)

(a)

(b)

(c)

Figure 1.8 The scaling property. For a linear system with input x(t) and output y(t) as
in (a), a multiplier block placed before the system (b) will result in the same output as
when the multiplier block is after the system (c).
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Let’s consider an example of a simple nonlinear system. Suppose a
system has input x and output y and they are related by

y ¼ mxþ b (1.2)

where m and b are nonzero constants. This is a linear equation! So how can
it be nonlinear? Although it may be a linear equation, the system it repre-
sents is nonlinear. We can see this if we look at the scaling property.

According to the scaling property, let x0(t) be the input and y0(t) be the
corresponding output, as in

y0 ¼ mx0 þ b (1.3)

Now let’s see what happens when we multiply the input by a and call
the output y1.

y1 ¼ mðax0Þ þ b (1.4)

And when we multiply the output by a, we get

ay0 ¼ aðmx0 þ bÞ
¼ mðax0Þ þ ab

(1.5)

x1(t)

x1(t) + x2(t) y1(t) + y2(t)

x2(t)

+

+

y1(t)

y2(t)

y1(t) + y2(t)

x2(t)

x1(t)

+

+

Linear
system

Linear
system

Linear
system

(b)

(a)

Figure 1.9 In a linear system, signals may be summed together before entering the
system (a) or after leaving the system (b). The output signal is the same in both cases.
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Because y1 does not equal ay0, the system is nonlinear! We can also see
this if we put zero into the system, the output is b (not zero).

Let’s also take a look at how the system does not obey the additivity
property. (This is just an exercise. We have already shown the system is
nonlinear because it violates the scaling property.)

Suppose the inputs x1(t) and x2(t) result in outputs y1(t) and y2(t),
respectively. Then

y1 ¼ mx1 þ b (1.6)

y2 ¼ mx2 þ b (1.7)

Putting the sum of x1 and x2 into the system, the output is

ys ¼ mðx1 þ x2Þ þ b (1.8)

But

y1 þ y2 ¼ mx1 þ bþ mx2 þ b

¼ mðx1 þ x2Þ þ 2b
(1.9)

Again we see that the system is nonlinear because ys s y1þ y2, and the
additivity property is not followed.

Here is another example that’s practical and not purely mathematical.
Consider the amplifier circuit shown in Figure 1.10.

A circuit like this is usually discussed in an introductory circuits or
electronics course. It is an inverting amplifier, and the inputeoutput
relationship is given by

Vout ¼ �R2

R1
Vin (1.10)

If you double the input voltage, the output voltage is doubled, and the
scaling property holds. Also, if you add two inputs, the result is

�R2

R1
ðV 1 þV2Þ ¼

�
� R2

R1
V1

�
þ
�
� R2

R1
V2

�
(1.11)

and the additivity property holds. Clearly, this must be a linear system.
Mathematically, yes, the system is linear. However, suppose your two

input voltages are 10 and 15 V. Will the output be �25 V? No, of course
not! The circuit is only being supplied with �12 V, and the output cannot
exceed this limit.
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This op-amp circuit is an example of a system that is modeled linearly
and behaves linearly within certain limits (for input voltages less than
R1

R2
12 V in magnitude). However, when you exceed those limits, the output

saturates, and the nonlinearity is seen as a distortion, as shown in
Figure 1.11. This limitation is one reason microphones clip and speakers
distort sound.

There are many types of nonlinearities, and they can come about from
different types of physical limitations such as thresholds, sticking, hysteresis,
or other imperfections. Nonlinear systems, and how to deal with them, are
discussed in more detail in Chapter 4.

1.2.3 Time-Invariant versus Time-Varying
A time-invariant (or autonomous) system is one whose behavior does
not depend explicitly on time. In other words, given an input, if you run
the system now, an hour from now, or next Tuesday, the output will be the
same. Mathematically, time invariance means that the “constants” in the
system are truly constant and do not vary with time.

As an example, consider a simple first-order model of a car:

m€xðtÞ ¼ FðtÞ � b _xðtÞ (1.12)

R1 = 10 kΩ

R2 = 10 kΩ

Vin
Vout

–12 V

+12 V

_

_

+
+

_

+

Figure 1.10 Op-amp inverting amplifier circuit.
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where m is the mass of the car, x is the position, F is the force applied to the
wheels by the engine and drivetrain, and b is the coefficient of friction. We
model this system as one that is time-invariant because we assume the mass
and friction to be constant.

In reality, the car is a time-varying (or nonautonomous) system. As
you drive, the car consumes fuel, and the mass decreases. However, this
change is small and occurs slowly, so mass is assumed constant. Many sys-
tems we take to be time invariant are not because of aging. In our equa-
tions, we use parameters such as mass, friction, length, area, resistance, and
many others as constants. But they do change as components age. The
time-invariance assumption is valid as long as the timeframe over which the
parameters change is much longer than the run time for our system. If it
takes many years for a resistor value to change, but if we run the circuit for
minutes or days, then the time-invariance assumption works. In the bank
account example, the interest rate may change, but the system can be
considered time-invariant if the interest rate is constant during the window
of time we are investigating.

Ideal output (dashed)

Actual output (solid)

20

15

10

5

–5

–10

–15

–20

0
0 20 40 60 80 100 120

Time

Output voltage

Figure 1.11 The ideal output according to the equation of the inverting amplifier is a
sine wave. However, in reality, the actual output voltage is limited to a maximum
value, so the sine wave is distorted.

12 A Practical Approach to Dynamical Systems for Engineers



To check to see if a system is time-invariant, one only needs to delay the
input and observe the output. Assuming that an input of x(t) produces an
output y(t), then the system is time invariant if the input x(t-s) gives an
output of y(t-s) for any value of s. This relationship is shown in Figure 1.12.

1.2.4 Memory versus Memoryless
A system hasmemory if its output depends at all on past inputs. A system is
memoryless if its output depends only on the current input. This concept
can be seen by the following example.

Consider a spring, with the relationship between position and force
given by

F ¼ kx (1.13)

where k is the spring constant. If you want to know the position of the
spring given its force, you simply divide by k. On the other hand, suppose
you have a system with friction where

F ¼ b _x (1.14)

where b is the coefficient of friction, then given the force, you need to inte-
grate to get position

xðtÞ ¼ 1
b

Z t

�N

FðsÞds (1.15)

Input Output

Time-
invariant
system

Delayed input Delayed output

Time-
invariant
system

(a)

(b)

Figure 1.12 If a time-invariant system has an input and output as in (a), then if the input
is delayed by a certain amount, the output will be delayed by the same amount (b).
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In this case, the force needs to be known for all time up the current time
to determine the position.

1.2.5 Causal versus Noncausal
A causal system is one whose output depends only on the present and the
past inputs. A noncausal system’s output depends on the future inputs. In a
sense, a noncausal system is just the opposite of one that has memory.

How can a real-world system be noncausal? It cannot because real
systems cannot react to the future. But noncausal systems have important
real-world applications. Consider a song stored in a sound file. Because the
entire song is stored, we could process the sound by filtering in a way that
has the current notes depend on notes later in the song. This is an example
of postprocessing in which noncausal systems may be implemented.
Another example of a noncausal system application is image processing.
The pixels to the left of the current location can be considered as the “past”
and pixels to the right as the “future.”

1.2.6 Deterministic versus Stochastic
A deterministic system is one in which parameters and inputs are known.
Consider the earlier example of the simple first-order model of a car:

m€xðtÞ ¼ FðtÞ � b _xðtÞ (1.16)

This system is deterministic if we know exactly values for the mass m,
friction coefficient b, input force F, and initial conditions of x and _x and
know that there are no other inputs, or disturbances, acting on the system.
In this ideal case, we can figure out the system’s trajectory (the signals x(t)
and _xðtÞ) simply by solving the differential equation (either analytically or
numerically).

Unfortunately, real-world systems usually have some uncertainty in
them, and figuring out the system’s trajectory is not so simple. If any one of
the parameters or inputs in the equations describing the system is not or
cannot be known exactly, then the system is stochastic. Also if a system is
affected by noise in any part of it, then the system is stochastic.

Stochastic systems are an active field of study involving what are known
as stochastic differential equations. In these sorts of systems, the parameters or
inputs to the system are not known exactly, but it is assumed that their
probabilistic properties are known. For example, it could be assumed that
Gaussian white noise is entering the system through the sensor data.
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A more thorough discussion and exploration of stochastic systems are
beyond the scope of this book. However for interested readers, good
starting points are books by Astrom (1970) and Pugachev and Sinitsyn
(2001).

1.3 EXAMPLES OF DYNAMICAL SYSTEMS

So far, several examples were introduced in the context of the different
system types, such as the car suspension system, bank account, and op-amp
circuit. One focus of this book is to provide real-world examples for each of
the concepts discussed. The hope is to show how the theory can be applied
to real systems. As a result, many more examples will be covered
throughout the book to illustrate the concepts being discussed and then to
apply them to real-world systems. Some of these examples will carry
through multiple chapters, and many analytical methods will be applied to
them. Examples of real-world systems presented include:
• Driving a car, both lateral (steering) and longitudinal (speed) dynamics
• Populations of humans and other living organisms
• The human body, in particular the balance system
• Aircraft engines
• Electromechanical systems such as motor-driven devices
• Translational and rotational mechanical systems such as the masse

springedamper and pendulum

1.4 A NOTE ON MATLAB AND SIMULINK

A second focus of this book is to illustrate analysis methods using the
common software tools of MATLAB and Simulink created by Mathworks,
Inc. As with the examples, many concepts will involve MATLAB or
Simulink (or both) to apply the methods. These programs were chosen
because of their popularity in industry and academia.

MATLAB (which stands for MATrix LABoratory) is a powerful pro-
gram that allows engineers to perform computations based on matrices
using a high-level programming language. With this program, one can
perform simulations, apply analytical tools, and display plots of results.
MATLAB has many toolboxes, which are available to expand the capa-
bilities into many different areas. Some examples of toolboxes relevant to
dynamical systems are the Control Systems Toolbox and System Identifi-
cation Toolbox.
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Simulink is an add-on program to MATLAB that has a drag-and-drop
interface that allows users to create and simulate systems visually using block
diagrams. It has much of the same capabilities as MATLAB but with a
graphical interface, and information can be passed back and forth between
the two programs.

For this book, there is the expectation that readers have some familiarity
with MATLAB and Simulink. However, expertise is not necessary. Someone
who has used these programs should be able to follow the examples and
reproduce the results, along theway learning new elements of the software and
new strategies for using them as analytical tools. Expertise comeswith studying
examples and practice with creating code. Readers who have not used
MATLAB or Simulink should also be able to follow the examples and
understand the results being obtained. If further help is needed, several good
books are available as MATLAB and Simulink references, including those by
Beucher and Weeks (2008), Moore (2014), and Tyagi (2012).

The MATLAB and Simulink examples show one way to address the
problem. As with any programming task, there are multiple ways to
accomplish the desired result. The provided code may or may not be the
“best” program in terms of execution time, memory use, or efficiency.
These characteristics were secondary to clarity and ease of understanding
because the main goal is conveying the ideas behind how MATLAB and
Simulink are used as a tool to solve problems.
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CHAPTER 2

System Modeling

2.1 INTRODUCTION

What is a system model? At the most basic level, a model of a system
describes how that system behaves. Such descriptions can be in the form of
words, diagrams, or equations depending on what is appropriate for the
system being modeled. Although systems can include people or businesses
(think of role models or business models), we will be concerned with
physical systems and their mathematical representation.

In Chapter 1, we discussed how a system can be represented simply and
abstractly by a block diagram such as the one shown in Figure 2.1, in which
there is an input to the system and an output from the system. In this
chapter, the focus is on what happens inside the block and the mathematical
relationship between the input and the output.

System models can take several forms, and some of these forms depend
on the type of system. Every system we present can be modeled using either
differential equations (for continuous-time systems) or difference equations
(for discrete-time systems). There is also a class of system known as hybrid
systems that have both continuous-time and discrete-time characteristics.
Physical hybrid systems are typically modeled using differential equations
with discrete transitions. A classic example of a hybrid system is a bouncing
ball when there are continuous-time dynamics when the ball is in the air
and discrete transitions when it hits the ground. In any case, these differ-
ential and difference equations are time domain models. In Section 2.2, these
equations are discussed in detail. These equations can also be generalized
into a standard form known as a state-space model, which is covered in
Section 2.4.

Although differential and difference equations can tell us a lot about
a system, sometimes they do not provide information about the system in

Input OutputSystem

Figure 2.1 Block diagram representation of a system.
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a form in which we can easily identify certain system characteristics. Another
way of representing a linear system model, which provides an alternative
perspective, is in the Laplace domain or z domain using transfer functions.
In this form, we can more easily see the frequency response of a system and
its stability properties. Transfer functions of both continuous-time and
discrete-time systems are discussed in Section 2.3.

Finally, in Section 2.5, the determination of model parameters is dis-
cussed. System identification refers to the process of figuring out the
constants of a system through experimentation. This process is different
from modeling a system from physical principles, as can be done with
simpler systems. With system identification, a system is treated more like a
black box, and experiments and tests need to be performed to determine
the parameters.

It is important to point out that a system’s model is only a representation
of its behavior and an imperfect one at that. A mathematical model of a real
system can never account for everything, and there will always be some
source of error to mess up the description it provides. When finding these
imperfections, there is always the temptation to “fix” them by modifying
the model to better fit the behavior we see. However, this temptation must
be kept at bay to prevent our models from becoming too complex. One has
to keep in mind the tradeoff between complexity and accuracy and decide
when the model is “good enough” for its purpose. Unfortunately, there is
no black and white answer to the question of how good is “good enough.”
The answer is application specific and can only be found through
experience.

One example of a system that can have different types of models is
vehicle traffic. On the one hand, the traffic can be thought of as fluid flow
with varying density as the vehicles get bunched or spread apart. In this
scenario, fluid dynamics equations can be used for the model. On the other
hand, the model may be formulated to keep track of individual vehicles and
their interactions with the other vehicles and the road environment. Then
in this scenario, equations of motion for each individual vehicle would be
used, and their combination would describe the entire system. These two
types of models treat vehicle traffic at different scales. The fluid model is
macroscopic, and the individual vehicle models are microscopic. Depending
on the application, one level of detail may be more appropriate than
the other.
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2.2 EQUATIONS OF MOTION

When we refer to equations of motion, we are referring to a set of
equations that describes how a system changes in time. For the car sus-
pension system previously discussed, these equations describe the up and
down motions of the car relative to the road surface as it drives and ex-
periences variations in the road surface. In this example, there truly is
motion in the physical sense. Equations of motion, however, are more
general. As another example, consider a bank account earning interest.
There is no physical motion happening in the account, but the money is in
fact “moving” in the sense that it is changing value with time.

In this section, we develop equations of motion for several different
systems (car suspension, car kinematics, bank account, and a computer-
controlled vehicle) and show how to use MATLAB to represent and solve
these equations.

2.2.1 Differential Equations for Continuous-Time Systems
Let us start with the popular example of the car suspension as shown in
Figure 1.2. We will first develop the equations of motion from physical
principles and then discuss the form and meaning of these equations.

A simplified version of the system is shown in Figure 2.2. This version
consists of two masses. The bottom mass m1 represents the wheel, and it is
connected to the ground by a spring (the flexion of the tire). In this simple
model, we assume that the tire’s damping is negligible (a simplification that
leads to a “good enough” model in this case). The top mass m2 represents
the portion of the car body supported by the wheel. The mass m2 is con-
nected to the wheel mass by a spring and damper (the shocks and linkage
connecting them together). The variables x1 and x2 denote the height of
the wheel and car, respectively, and the arrows indicate the direction of
positive values. We assume that x1 ¼ 0 and x2 ¼ 0 are the equilibrium
positions of both masses where the springs are not compressed or stretched.
We also assume that r is the height of the road above some reference.

To develop the equations of motion for this system, we first draw a free
body diagram for each mass and then apply Newton’s second law of mo-
tion. The free body diagram for m1 is shown in Figure 2.3. The large arrows
indicate the direction of the force being applied to the body caused by the
movement of both masses. The dots above x1 and x2 indicate derivatives
with respect to time.
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According to Newton’s second law, summing the forces on this body
and setting it equal to mass times acceleration gives

k2ðx2 � x1Þ þ bð _x2 � _x1Þ � k1ðx1 � rÞ ¼ m1€x1 (2.1)

Note that the effect of gravity can be ignored if we define our dis-
placements, x1 and x2, with respect to the equilibrium positions of
the springs. Gravity is taken into account when we define the x1 ¼ 0 and
x2 ¼ 0 positions by these equilibria because the gravitational force creates an
offset that is eliminated by this definition of zero displacement.

We now repeat the process for m2. First the free body diagram is shown
in Figure 2.4.

m2

m1

r

k1

x1

x2

k2 b

Figure 2.2 Simplified version of the car suspension system.

20 A Practical Approach to Dynamical Systems for Engineers



Then summing the forces on m2 gives

�k2ðx2 � x1Þ � bð _x2 � _x1Þ ¼ m2€x2 (2.2)

Finally, the car suspension system dynamics can be represented by the
two equations of motion.

€x1ðtÞ þ b
m1

_x1ðtÞ þ k1 þ k2
m1

x1ðtÞ � b
m1

_x2ðtÞ � k2
m1

x2ðtÞ ¼ k1
m1

rðtÞ

€x2ðtÞ þ b
m2

_x2ðtÞ þ k2
m2

x2ðtÞ � b
m2

_x1ðtÞ � k2
m2

x1ðtÞ ¼ 0

(2.3)

k2(x2 – x1)

k1(x1 – r)

m1
x1

b(x2 – x1)⋅ ⋅

Figure 2.3 The free body diagram for the wheel.

k2(x2 – x1) b(x2 – x1)⋅ ⋅

m2

x2

Figure 2.4 Free body diagram for car body.
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Note that these equations describe a fourth-order system (i.e., there are
two states x1 and x2, each with a second derivative). The final form in (2.3)
is in monic form. Also note that the variable t has been added to show
explicitly which variables depend on time and which do not. However the
(t) is often dropped for brevity. The characteristics of monic form are:
1. State variables (x1 and x2) are collected on the left side of the equation.
2. Input variables (r) are collected on the right side of the equation.
3. State variables are collected together and arranged in descending order

of the derivatives.
4. The highest derivative term in each equation has a coefficient of 1.

It is useful to put equations in a standard form because it flows easily into
the concepts of transfer functions and state-space representations of system.
We will see this connection when these concepts are discussed in Sections
2.3 and 2.4.

The model in (2.3) is an ordinary differential equation (ODE)
because it has one independent variable (t). In contrast, partial differential
equations (PDEs) have more than one independent variable. Partial dif-
ferential equations are not discussed in this book, but interested readers may
consult Farlow (1993) as a starting point.
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Figure 2.5 The results of the MATLAB simulation for the car suspension system.
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2.2.1.1 MATLAB Example: Car Suspension
We now discuss how to represent and simulate the car suspension system in
MATLAB. The basic m-file that runs the simulation is shown below, and
the simulation results are shown in Figure 2.5. First we show the m-file that
runs the basic simulation and describe how the simulation works.

% suspension_simulation.m

% Close all figures and clear all variables
close all
clear all

% How long to simulate (in seconds)
t_end ¼ 5;

% Set initial conditions on the system
x1_0 ¼ 0;
x2_0 ¼ 0;
x1_dot_0 ¼ 0;
x2_dot_0 ¼ 0;

% Solve the system equations
[T X] ¼ ode45(@suspension_model,[0 t_end],[x1_dot_0 x1_0 x2_dot_0

x2_0]);

% Save the results in a vector
x1_dot ¼ X(:,1);
x1 ¼ X(:,2);
x2_dot ¼ X(:,3);
x2 ¼ X(:,4);

% Plot the results
plot(T,x1,'k',T,x2,'k--')
xlabel('Time (s)')
ylabel('Height (m)')
title('Wheel Height and Car Height vs. Time')
legend('Wheel Height, x_1','Car Height, x_2')

We now discuss the above code in detail and describe each line.

close all
clear all
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These first two lines of the code close figure windows and clear variables
so that the simulation is starting with a clean slate.

t_end ¼ 5;

Next the simulation time is set and stored in the t_end variable. This
value is used later in the code to solve the system equations for the specified
amount of time (5 seconds in this case). Note that MATLAB does not
assign units. Rather, it is up to the user to interpret the results and associate
appropriate units with the values. We may wish to associate any system of
units with (2.3), but in this example and throughout the book, we generally
use SI units.

x1_0 ¼ 0;
x2_0 ¼ 0;
x1_dot_0 ¼ 0;
x2_dot_0 ¼ 0;

In these four lines, the initial conditions are set for the system. In this
simulation, the wheel height, car height, and their derivatives set to zero,
meaning the system is initially at rest. These values are used to solve the
system equations.

[T X] ¼ ode45(@suspension_model,[0 t_end],[x1_dot_0 x1_0 x2_dot_0
x2_0]);

The next line is the one that solves the system equations given by (2.3).
The command ode45 is MATLAB’s differential equation solver that can be
used for nonstiff1 ordinary differential equation problems with a medium
order of accuracy. Several other ODE solvers are available (e.g., ode23 and
ode113) that may be more appropriate for certain equations.

The ode45 command uses three parameters to describe how the simulation
should run. First, thefile containing the systemequations (suspension_model.m
described below) is included after the @ symbol, indicating a function handle.
Second, the simulation time parameters are included in a vector, indicating that
the equations should be solved starting at time zero and ending at t_end. Finally,
the initial conditions are included in a vector as the third parameter in the
command.

Last, the ode45 command returns the results of the solution to the vector
[T X]. After the solver runs, the time vector is stored in T, and the solution

1 See the series of blog posts by MathWorks’ co-founder and chief scientist, Cleve Moler, on the
MATLAB ODE solvers (Moler, 2014).
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to the differential equations is stored in matrix X. In the case of the car
suspension system, T has 437 elements, and X is a 437 � 4 matrix with each
row corresponding to the time and each column corresponding to the states
_x1, x1, _x2, and x2 in the order that they appear in the initial conditions and
suspension_model.m file.

x1_dot ¼ X(:,1);
x1 ¼ X(:,2);
x2_dot ¼ X(:,3);
x2 ¼ X(:,4);

These four lines extract the values from the X matrix and put them into
separate vectors for each state. This step is not necessary, but it simplifies
working with the data.

plot(T,x1,'k',T,x2,'k--')
xlabel('Time (s)')
ylabel('Height (m)')
title('Wheel Height and Car Height vs. Time')
legend('Wheel Height, x_1','Car Height, x_2')

These last five lines in the file plot x1 and x2 versus time for the 5 s of the
simulation, add labels, and format the plot. The results of the plot are seen
in Figure 2.5. In the plot, notice that the wheel height and car height are at
zero until 1 s, when there is a sudden increase and then they settle to a value
of 0.1. The fact that the wheel and car heights are both zero does not mean
they are at the same height but rather that they are in their equilibrium
position with the springs not stretched or compressed beyond what gravity
would do.

The jump in values at 1 second is a result of changing the input r(t) from
0 to 0.1. There was nothing in the main simulation program discussed earlier
that set the value of r, so where does this occur? The answer lies in the other
file specifying the system model, suspension_model.m shown below.

function dy ¼ suspension_model(t,y)

% Define the model parameters
m1 ¼ 70; % kg
m2 ¼ 350; % kg
k1 ¼ 176000; % N/m
k2 ¼ 27000; % N/m
b ¼ 2500; % Ns/m
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% Define the input r(t)
t_start ¼ 1;
if (t < t_start)

r ¼ 0;
else

r ¼ 0.1;
end

dy ¼ zeros(4,1);

dy(1) ¼ -(b/m1)*y(1) - ((k1þk2)/m1)*y(2) þ (b/m1)*y(3) þ (k2/m1)*
y(4) þ (k1/m1)*r;

dy(2) ¼ y(1);
dy(3) ¼ (b/m2)*y(1) þ (k2/m2)*y(2) - (b/m2)*y(3) - (k2/m2)*y(4);
dy(4) ¼ y(3);

We now describe this m-file line-by-line and how it relates to the
system model in (2.3).

function dy ¼ suspension_model(t,y)

The first line of the file defines it as a function and gives its name
(suspension_model), which is used in the ode45 command. The vectors t

and y hold the simulation time parameters [0 t_end] and initial conditions
[x1_dot_0 x1_0 x2_dot_0 x2_0], respectively.

m1 ¼ 70; % kg
m2 ¼ 350; % kg
k1 ¼ 176000; % N/m
k2 ¼ 27000; % N/m
b ¼ 2500; % Ns/m

These five lines give the values to the constants used in the model.2

t_start ¼ 1;
if (t < t_start)

r ¼ 0;
else

r ¼ 0.1;
end

2 The numbers used in the simulation were obtained from Dixon (2007) and Yong (2008).
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The if statement defines the input r(t). In this case, wewish to have r(t) be a
delayed step functionwith a value of 0.1 after 1 second, as shown in Figure 2.6.
The transition time is set in the variable t_start, and when the ODE solver
time is less than this value, the input is zero. When the time exceeds 1 s, the
input is 0.1. These input values are used in the system equations that follow.

dy ¼ zeros(4,1);

This line initializes the size of dy as appropriate. The vector dy stores the
derivatives of each state variable, which get modified according to (2.3). In
this case, the system is fourth order, and the vector is created with four
elements. Initially, the values are set to zero, but these will be overwritten
with the initial values of the system when the solver runs.

dy(1) ¼ -(b/m1)*y(1) - ((k1þk2)/m1)*y(2) þ (b/m1)*y(3) þ (k2/m1)*
y(4) þ (k1/m1)*r;

dy(2) ¼ y(1);
dy(3) ¼ (b/m2)*y(1) þ (k2/m2)*y(2) - (b/m2)*y(3) - (k2/m2)*y(4);
dy(4) ¼ y(3);

These next four lines specify the system using (2.3), andwewill go through
a bit of detail to explain where they came from. The system is a fourth-order
system and thus needs four equations in the model, but there are only two
equations specified in (2.3). Where do the other two equations come from?

The answer lies in the concept states of the system, which is described
in more detail in Section 2.4, but we will use it here to our advantage in
creating the model equations in MATLAB. Two obvious choices for states
are x1 and x2, the wheel height and car height, respectively. We can
generate two more states by taking their derivatives, _x1 and _x2. Why not

Input r(t) (m)

0.1

1 Time (s)

Figure 2.6 The input signal for the simulation of the car suspension.
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take another derivative to get two more states €x1 and €x2? One reason is that
the system is fourth order, and when we took the first derivative, that gave
us four states, and no more are needed. Another reason is that taking more
derivatives will cause problems in the procedure we are about to outline.

The model equations in the function file need to provide update
equations for each of the system’s states with respect to the system states and
inputs only. In the case state x1, we need to tell MATLAB how x1 changes
with time; this is done by specifying its derivative in terms of the states and
inputs. In other words,

_x1 ¼ _x1 (2.4)

This may seem like a trivial equation, but it needs to be interpreted
properly. The left side represents the derivative of x1, where x1 is a state.
The right side represents the derivative of x1, which is itself a state of the
system.

The update equation for the state _x1 is not trivial and a bit more
complicated. How does _x1 change with time? We specify it in terms of its
derivative,

€x1 ¼ � b
m1

_x1 � k1 þ k2
m1

x1 þ b
m1

_x2 þ k2
m1

x2 þ k1
m1

r (2.5)

which is obtained by solving the first equation in (2.3) for €x1. Similarly, we
can go through the same process for x2. The update equation for x2 is

_x2 ¼ _x2 (2.6)

and the update equation for _x2 is

€x2 ¼ � b
m2

_x2 � k2
m2

x2 þ b
m2

_x1 þ k2
m2

x1 (2.7)

We can now see why €x1 and €x2 cannot be states. The update equations
would need to involve €€x1 and €€x2, which do not show up anywhere in the
derivation of the model.

For ease of notation, let’s define

y1 ¼ _x1
y2 ¼ x1
y3 ¼ _x2
y4 ¼ x2

(2.8)
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Then the update equations become

_y1 ¼ � b
m1

y1 � k1 þ k2
m1

y2 þ b
m1

y3 þ k2
m1

y4 þ k1
m1

r

_y2 ¼ y1

_y3 ¼ � b
m2

y3 � k2
m2

y4 þ b
m2

y1 þ k2
m2

y2

y4 ¼ y3

(2.9)

These final equations are the ones that appear in the model file. Note
that the choice of y1, y2, y3, and y4 was arbitrary. We could have equiva-
lently set them to any order of _x1, x1, _x2, and x2. We will see in Section 2.4
that there are conventions about how to define the state variables that make
certain forms of model immediately identifiable and easy to study.

The car suspension system is an example of a linear system with one
input. The system is described by a set of linear differential equations,
meaning that the equations are linear combinations of the states and their
derivatives. Furthermore, these differential equations obey the principles of
scaling and additivity as discussed in the previous chapter. We contrast this
with an example of a nonlinear system and the derivation of its nonlinear
differential equations.

Consider a kinematic model for a car. In this model, we assume
there is no slip on the wheels, and the vehicle is traveling in the x, y
plane with no vertical movement. We also consider only the movement
of the vehicle and not acceleration. Under many conditions (e.g., on dry
roads and when the car is being driven within its handling limits), these
assumptions are valid, and the kinematic model’s behavior closely
matches the actual car. Given these assumptions, the mathematical
model can be derived starting with the coordinate definitions shown in
Figure 2.7.

The exact position and orientation of the car in the global coordinate
system can be described by four variables. The (x, y) coordinates give the
location of the center of the rear axle. The car’s angle with respect to the
x-axis is given by q. The steering wheel’s angle with respect to the car’s
longitudinal axis is given by 4. The state of the car can be described by
these four variables, and thus it is a fourth-order system requiring four
update equations.
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From the no-slip constraints, the instantaneous velocity of the car in the
x and y directions is given as

_x ¼ v1 cos q
_y ¼ v1 sin q

(2.10)

where v1 is the linear velocity of the rear wheels. The location of the center
of the front axle (x1,y1) is given by

x1 ¼ xþ l cos q

y1 ¼ yþ l sin q
(2.11)

and the velocity of this point is given by

_x1 ¼ _x� l _q sin q

_y1 ¼ _yþ l _q cos q
(2.12)

Now if we apply the no-slip condition to the front wheels, meaning
there can be no velocity component perpendicular to the direction of
wheel travel, then

_y1 cosðqþ 4Þ ¼ _x1 sinðqþ 4Þ (2.13)

y1

x1x

y

l

ϕ

θ

Figure 2.7 The coordinate system for the car model.
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Substituting _x1 and _y1 from (2.12) into (2.13) and solving for _q gives

_q ¼ tan 4

l
v1 (2.14)

Then the complete model for the car is

_x ¼ v1 cos q

_y ¼ v1 sin q

_q ¼ tan 4

l
v1

_4 ¼ v2

(2.15)

This is a two-input system in which v1 is the linear velocity of the rear
wheels and v2 is the angular velocity of the steering wheels.

2.2.1.2 Simulink Example: Kinematic Car Model
Below is a simulation of the kinematic car model using Simulink. This
system could be modeled in MATLAB using the above procedure for the
suspension system, but instead we will demonstrate the power of Simulink.
The Simulink model for the system is shown in Figure 2.8. The model in
the figure is annotated to indicate the location of x, y, q, 4, l, v1, and v2.
Creating and running the model in Simulink is easier than writing the
MATLAB code and gets the same results. However, the MATLAB code
offers much more flexibility when system interactions become more
complex.

The results of running the Simulink simulation for 10 s are shown in
Figures 2.9 and 2.10. The length of the car is set to 1 m, the velocity input
v1 is set to a constant of 5 m/s, and the steering velocity input v2 is set to a
sinusoid of amplitude 0.5 rad/s and frequency 1 rad/s. As with the previous
MATLAB example, units are not associated the values but must be inter-
preted by the user. In Figure 2.9, all the states are plotted versus time using
“Scope” blocks. In Figure 2.10, the x,y position of the car is shown having
been plotted using the “XY graph” block. The initial position of the car is
at (0,0) facing along the x-axis and with straight front wheels because the
initial conditions of each integrator was set to zero (the default value).
Changing the initial position of the car is obtained by setting the integrator
initial conditions.
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2.2.2 Difference Equations for Discrete-Time Systems
Just as differential equations describe the dynamics of continuous-time
systems, difference equations describe the dynamics of discrete-time
systems. Although the principle is the same, difference equations are
often easier to derive and simulate because of their discrete, step-by-step
nature.

As a first example, let’s again consider the bank account with accruing
interest as discussed in Chapter 1. In this example, the formula for the
amount of money in the account is

An ¼ A0

�
1þ r

12

�n
(2.16)

where r is the annual interest rate, n is the number of months, A0 is the
initial deposit, and An is the amount of money in the account in month
n. This variable n represents a discrete interval of time. If we think about
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Figure 2.8 The Simulink model for the kinematic car showing the locations of the
states, inputs, and parameters.
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Figure 2.9 x versus time (top left), y versus time (top right), q versus time (bottom left),
and 4 versus time (bottom right).

Figure 2.10 The x,y position of the car from 0 to 10 s.
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how the amount of money changes at each step, this will give a difference
equation to update A, similar to the role differential equations played in the
previous two examples. Mathematically, the change is expressed as

An � An�1 ¼ A0

�
1þ r

12

�n
� A0

�
1þ r

12

�n�1

¼ A0

�
1þ r

12

�n�1��
1þ r

12

�
� 1
�

¼ An�1

� r
12

�
(2.17)

Solving for An yields an update equation.

An ¼ An�1 þ An�1

� r
12

�
(2.18)

The equation lends itself nicely to a difference equation form, which
looks similar but has some notational differences.

A½n� ¼
�
1þ r

12

�
A½n� 1� (2.19)

In this form of the equation, the [n] is used to explicitly show how the
expression depends on the discrete-time variable n. It is analogous to
showing (t) in the continuous-time case. This equation is already in standard
form because the current value of A, denoted by A[n], is isolated and has a
coefficient of 1. Note that r is a constant (the interest rate), so the coefficient
of A[n � 1] is a constant. As with the continuous-time system, this standard
form allows us to more efficiently convert to transfer functions and
state-space form.

2.2.2.1 MATLAB Example: Bank Account with Interest
We now discuss how to represent and simulate the bank account in
MATLAB. You will notice that the discrete-time system simulation file is
much simpler than the continuous-time case, mainly because the
discrete-time update equation is almost exactly in the form that can be used
in MATLAB, and each entry in the vector represents a discrete time step.
One does need to be careful about indices for the vectors, however. In the
example, the 0 subscript refers to the initial time, but MATLAB does not
allow 0 as an index to its arrays. Rather, array indices start at 1, which can
cause confusion between the convention used in mathematical represen-
tations and its MATLAB implementation. For this reason, two separate
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array variables are created: n to represent the month as in the equation and k

to represent the array index. These two arrays are the same length, but the
values in them are offset by 1.

The basic m-file that runs the simulation is shown below, and the
simulation results are shown in Figure 2.11.

% bank_account.m

close all
clear all

r ¼ 0.05; % interest rate
n_max ¼ 11; % how long to run the model
n ¼ 0:n_max; % define the n vector
A(1) ¼ 10000; % initial deposit

for k ¼ 2:length(n)
A(k) ¼ (1þr/12)*A(k�1);

end
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Figure 2.11 Results of the bank account simulation.

System Modeling 35



plot(n,A,'o')
y ¼ [10000:100:10500];
set(gca,'YTick',y)
set(gca,'YTickLabel',sprintf('%5.0fj',y))
xlabel('Month')
ylabel('Amount')

2.2.3 Models for Hybrid Systems
Now let us consider another example of a real-world discrete-time system:
the discretization of a continuous-time system. As discussed in Chapter 1,
continuous-time systems are often controlled by some type of computer
system (PC based or microprocessor), and these computers are inherently
discrete-time systems because they run off a clock and their events occur in
discrete time intervals. This is an example of a hybrid system, one that has
continuous-time and discrete-time parts. The continuous-time part of the
system is the mechanical or physical part such as the turning motor or the
vibrating mass. The discrete-time part is the computer control that reads
sensors and updates command signals at a specific sampling rate.

Hybrid systems are more general than this computer-controlled example.
Simply stated, a hybrid system is one that has discrete and continuous dy-
namics such as the familiar bouncing ball example. If a ball is dropped from
some height, it continues to fall until it hits the ground. Up to this point, the
dynamics were continuous, and the ball was falling because of gravity.
However, when it hits the ground, at that moment its velocity changes
direction. In a perfect collision, it would travel with the same speed in the
moments before and after impact but with opposite directions. Its new
velocity would then be initial conditions for the system equation.

Another example of a hybrid system is a vehicle with a geared trans-
mission. In each of the gears, the vehicle has certain continuous dynamics
that relate the fuel input to the speed and acceleration, and these dynamics
depend on what gear is selected. Changing gears is a discrete transition
between each of these continuous dynamics.

Hybrid systems are an area of much recent research, and readers are
encouraged to explore the references at the end of the chapter (Goebel,
Sanfelice, & Tell, 2012; van der Schaft & Schumacher, 2000) for more
information.

We illustrate the concept of hybrid systems through an example of a
computer-controlled car model. To do this, we will revisit the kinematic
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car model in Simulink and simulate the system as if the velocity commands
were coming from a computer at discrete intervals. But first, an overview of
the process is provided.

The system simulation follows the steps shown in Figure 2.12. The
first step is to set the initial conditions and initial control inputs to the
system. With these initial values known, the system equations are solved
for T seconds, where T is the sampling time of the system. After this
solution is obtained, we see what the endpoint of the solution is and take
it to be the initial condition of the system when solving the equations for
the following iteration. Also, the system inputs must be chosen (either by
closed-loop feedback or an open-loop scheme). With these new initial
conditions and inputs, the system equations are solved for another T
seconds. This procedure of determining system evolution in T second
intervals continues until enough time has elapsed or a stopping condition
is met.

Set system input and
initial condition

Solve system equations for
T seconds

Obtain value of solution at
time T

Figure 2.12 Steps in simulating the hybrid vehicle system.
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Figure 2.13 shows a possible output of a system simulation. The
simulation is carried out over five sample intervals. The curve between each
point is the solution to the system equations. Then the endpoint of the
curve in each interval is the initial condition to the system equations for the
next interval. Because of this condition, the overall solution is continuous,
but it may not be differentiable (e.g., at time 2T in Figure 2.13). The reason
for this lack of smoothness is the inputs to the system. New inputs are
applied at each time T, 2T, 3T,. , and the inputs themselves are piecewise
constant, being held at a constant value during the intervals that the system
equations are being solved but may change to new values at each sampling
time.

2.2.3.1 MATLAB Example: Computer-Controlled Vehicle Dynamics
We now illustrate the above procedure with an example in MATLAB.
This simulation is set up in two parts. The MATLAB code simulates what
would run on a microprocessor or computer. It reads the current state of
the system from sensors and outputs the commands to the system for
control. The Simulink block diagram simulates the system dynamics. The

Solution to
system equation

0 T 2T 3T 4T 5T

Time

Figure 2.13 Example of a system solution showing the sampling times and solution
intervals.
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MATLAB code calls the Simulink file to initiate the process of solving the
system equations.

The MATLAB code is shown below and the Simulink block diagram is
shown in Figure 2.14.

% hybrid_car.m

close all
clear all

% Initialize constants
T ¼ 0.01; % Sampling time (seconds)
t_stop ¼ 10; % Simulation run time (seconds)
t ¼ [0:T:t_stop]; % Time vector
v1 ¼ 5; % Rear wheel linear speed (m/s)
v2 ¼ 0.5*sin(t); % Steering wheel speed (rad/s)
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Figure 2.14 The Simulink model for the hybrid car simulation.

System Modeling 39



% Set initial conditions
x0 ¼ 0;
y0 ¼ 0;
theta0 ¼ 0;
phi0 ¼ 0;

% Set up state storage arrays
X ¼ zeros(size(t));
Y ¼ zeros(size(t));
THETA ¼ zeros(size(t));
PHI ¼ zeros(size(t));

for k ¼ 1:length(t)

% Update state storage arrays
X(k) ¼ x0;
Y(k) ¼ y0;
THETA(k) ¼ theta0;
PHI(k) ¼ phi0;

% Get current inputs
v10 ¼ [0 v1];
v20 ¼ [0 v2(k)];

% Simulate car movement for time T
simOut ¼ sim('kinematic_car','StopTime',num2str(T));

% Store last value of state from simulation
x0 ¼ simOut.get('x').data(end);
y0 ¼ simOut.get('y').data(end);
theta0 ¼ simOut.get('theta').data(end);
phi0 ¼ simOut.get('phi').data(end);

end

plot(t,X)
title('x vs. t')
xlabel('Time (seconds)')
ylabel('x (meters)')
figure
plot(t,Y)
title('y vs. t')
xlabel('Time (seconds)')
ylabel('y (meters)')
figure
plot(t,THETA)
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title('ytheta vs. t')
xlabel('Time (seconds)')
ylabel('ytheta (radians)')
figure
plot(t,PHI)
title('yphi vs. t')
xlabel('Time (seconds)')
ylabel('yphi (radians)')

For the first part of the code:

T ¼ 0.01; % Sampling time (seconds)
t_stop ¼ 10; % Simulation run time (seconds)
t ¼ [0:T:t_stop]; % Time vector
v1 ¼ 5; % Rear wheel linear speed (m/s)
v2 ¼ 0.5*sin(t); % Steering wheel speed (rad/s)

We set the sampling time to 0.01 s, set the end time of the simulation to
be 10 s, and define the time vector to go from 0 to 10 s in 0.01-s in-
crements. Also, the inputs are chosen for the entire simulation. The rear
wheel speed is set to a constant of 5 m/s, and the steering wheel speed
changes according to a slowly varying sinusoid. Using this method, the
system inputs are known a priori and thus follow an open loop scheme.

% Set initial conditions
x0 ¼ 0;
y0 ¼ 0;
theta0 ¼ 0;
phi0 ¼ 0;

Next, the initial conditions are chosen for the system. As in the previous
Simulink example, the initial position of the car is at (0,0) facing along the
x-axis and with straight front wheels. These variables will be updated at
each sampling interval to hold the new initial conditions for the next
iteration of the simulation loop.

% Set up state storage arrays
X ¼ zeros(size(t));
Y ¼ zeros(size(t));
THETA ¼ zeros(size(t));
PHI ¼ zeros(size(t));

These next four lines are for housekeeping purposes. The variables X, Y,
THETA, and PHI are created to hold the values of the car’s four states at each
sampling interval so the results can be plotted at the end of the simulation
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versus time. For this reason, they are made to have the same size as the
t vector. The entire array is created before the for loop and set to zero so
that MATLAB does not need to resize the array each time through the
loop. (This can be a time-saving measure in many situations.)

Now the main for loop begins. First, inside the loop

% Update state storage arrays
X(k) ¼ x0;
Y(k) ¼ y0;
THETA(k) ¼ theta0;
PHI(k) ¼ phi0;

These four lines update the storage arrays with the current initial con-
dition. (The first time through the loop, these are set to the user’s initial
condition of all zeros.)

% Get current inputs
v10 ¼ [0 v1];
v20 ¼ [0 v2(k)];

These following two lines set the inputs for the system equations to be
solved in the next line. For the first input, the assignment is redundant
because v1 is a constant (5 m/s), and the same value is stored each time
through the loop. However, placing the assignment here allows for easy
updating of the code for a time-varying v1. The variable v2 is time-varying,
and thus the input to the system equation needs to be updated each time
through the loop as denoted using the index k, the counter in the for loop.

In both cases, notice the syntax of the assignment statement. The var-
iables v10 and v20 will be passed to the sim command in the next line and
will be read into the Simulink model through the “From Workspace”
block. This block requires an array containing all the inputs to be applied to
the Simulink model and a time index for each one. For this simulation, we
are sending a single input value during each iteration; thus, the array has
only one row. The zero in the first column is the time index.

% Simulate car movement for time T
simOut ¼ sim('kinematic_car','StopTime',num2str(T));

The sim command runs the Simulink model contained in the file
“kinematic_car.mdl.” The command allows the user to specify several
parameters in the model, but in this case, we only specify the stop time. The
“StopTime” parameter is the one we wish to define, and the following
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argument in the list, num2str(T), is used because the command expects the
stop time value to be passed as a string. The entire list of parameters can be
found in the MATLAB documentation.

The Simulink model called in this command is shown in Figure 2.14.
This model is almost identical to the one used in Simulink Example 2.2.1.2,
but there are a few key differences. First is the way v1 and v2 are generated.
Here, they are passed from the MATLAB code as described above using the
“From Workspace” block rather than created in Simulink using the
“Constant” and “Sine Wave” blocks as in the previous example.

Second, the system states x, y, q, and 4 are returned to the MATLAB
program using the “To Workspace” blocks. The labels on the blocks must
match the variables that are used in MATLAB. In the previous example,
these states were simply plotted using the “Scope” blocks. If the plotting
was done within Simulink, then only a portion of the entire trajectory
would be shown (for that sampling interval) and overwritten the next time
the sim command is called.

Finally, the initial conditions of each integrator (the initial conditions of
the system) are passed from MATLAB. This is accomplished by double
clicking on the “Integrator” block and setting the initial condition to be the
variable in MATLAB. The parameters for the x integrator block are shown
in Figure 2.15. The name used as the “Initial condition” parameter (x0)
must match the variable name in MATLAB. This is the key to allowing us
to update the initial condition of the system for each iteration by saving the
last values of x, y, q, and 4 and using them as the new initial conditions in
the next iteration.

Returning to the sim command in MATLAB, the output stored in the
variable simOut is an object containing all the values from the Simulink
model simulation. To obtain the values from the simulation, the following
object oriented assignment statements are used.

% Store last value of state from simulation
x0 ¼ simOut.get('x').data(end);
y0 ¼ simOut.get('y').data(end);
theta0 ¼ simOut.get('theta').data(end);
phi0 ¼ simOut.get('phi').data(end);

In these lines, the .get allows us to access the variables that were sent
back from Simulink using the “From Workspace” block. The variable
names from those blocks must appear in the parentheses surrounded by
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Figure 2.15 The parameters for the integrator block are set in dialog box.

Figure 2.16 The results of the hybrid car simulation with sampling time T ¼ 0.01 s.
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single quotes. The .data returns all the values stored in those variables. In
our case, we are only interested in the last value of the solution because this
represents the value of the variable at the sampling time and is used as the
initial condition for the next iteration. Using end as the index of the array
allows us to quickly obtain the last value in the array without knowing the
exact size of the array.

The final lines of code outside the for loop are used to plot the
simulation data and format the figures. The results of the simulation are
shown in Figure 2.16. Notice that these results match those obtained in the
Simulink simulation of the kinematic car shown in Figure 2.9. The reason
for the similarity is the hybrid simulation was run with a sampling time T of
0.01 s, a short interval that accurately models the physical system. In
Figure 2.17, the same results are shown with the sampling time increased to
0.5 s. In this case, the results differ and the piecewise nature of the system
can be seen.

Figure 2.17 The results of the hybrid car simulation with sampling time T ¼ 0.5 s.
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2.2.4 Flows, Vector Fields, and the Phase Plane
Up to this point, we have looked at the time evolution of the variables in a
particular waydplotted with time on the horizontal axis and the variable on
the vertical axis. This form of viewing data is intuitive and provides a nice
picture of how the individual variables evolve. However, there is another way
to look at the data, particularly for second-order systems, which shows re-
lationships between the variables. Known as a phase plot, this is a plot
commonly showing _x versus x, where _x and x are the states of the system.
Time is not shown explicitly, but the resulting curves are the system’s tra-
jectory parameterized by time. We saw a hint of what a phase plot is in
Figure 2.10, which shows the (x,y) position of the car as it evolved over time.

In general, an Nth order continuous dynamical system can be repre-
sented by a system of N differential equations.

_x1 ¼ f1ðx1; x2;/; xNÞ
_x2 ¼ f2ðx1; x2;/; xNÞ
«

_xN ¼ fNðx1; x2;/; xNÞ
(2.20)

For now, we assume the system inputs are set to zero. We can think of the
variables x1, x2,., xN as flowing through theirN-dimensional space, starting
at some initial state and moving according to their derivatives. This flow
is defined by the vector field (f1, f2, ., fN) which is used to generate the
phase plot as shown in Figure 2.18 for a second-order system. In the figure, one
of the states is plotted against the other (x2 vs. x1, commonly x2 ¼ _x1). The

x2

x1

Initial condition

Figure 2.18 A phase plot for a second-order system.
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phase plot consists of a smooth curve showing how x1 and x2 evolve over
time from initial conditions. Each point on the curve has a vector tangent
to the curve whose magnitude and direction are defined by ð _x1; _x2Þ, the
vector field. If you imagine traveling along the curve, these tangent vectors
indicate your velocity. The longer the tangent vector is, the faster you are
moving.

Let us illustrate these concepts with a concrete example of a pendulum
as shown in Figure 2.19. Assume the pendulum has length l with all its mass
m concentrated at the end and that it makes an angle of q with vertical. We
now derive the differential equation for this system.

Assume the only downward force on the pendulum is due to gravity,
resulting in a torque pulling the pendulum toward q ¼ 0. Also assume there
is frictional torque acting in the direction opposite the motion and that it is
proportional to the pendulum’s speed. Summing the torques gives

�mgl sin q� b _q ¼ I€q (2.21)

where m is the mass of the pendulum, g is gravitational acceleration, l is the
pendulum length, b is the coefficient of friction, and I is the mass moment
of inertia. Using I ¼ ml2 and simplifying results in the second-order equa-
tion for the pendulum.

€q ¼ � g
l
sin q� b

ml2
_q (2.22)

θ l

 θT = mgl sin 

F = mg 

Figure 2.19 The pendulum system.
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We next generate a phase plot of _q vs. q for this system using MATLAB,
but first we convert (2.22) into state-space form as we did with the car
suspension in MATLAB Example 2.2.1.1.

First define two states

x1 ¼ q

x2 ¼ _q
(2.23)

and then obtain the update equations for each state, _x1 and _x2

_x1 ¼ x2

_x2 ¼ � g
l
sin x1 � b

ml2
x2

(2.24)

2.2.4.1 MATLAB Example: Phase Plot of a Pendulum
We now enter the model of the pendulum into MATLAB much like
we did for the previous examples. The simulation results are shown in
Figures 2.20 and 2.21 for b ¼ 0 and Figures 2.22 and 2.23 for b ¼ 0.1. The
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Figure 2.20 Phase plot for the pendulum with b ¼ 0.
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basic m-file that runs the simulation is shown after the figures. This m-file
has some differences from the previous examples, and we will discuss those
differences.

First let’s look at the results in the figures. Figure 2.20 shows the phase
plot for the pendulum with no friction (b ¼ 0). The initial angle is 45
degrees or 0.79 radians, and the initial speed is zero. The initial condition is
denoted by the circle on the plot. At this point, there is a vector pointing
down. This vector is defined by ð _q; €qÞ, so the component of the vector
along the horizontal axis of the plot is 0 because by the initial condition
_q ¼ 0. The component along the vertical axis is negative, indicating that
the pendulum is accelerating back toward q ¼ 0 due to gravity.

At the point (0,-2.4) on the plot, notice that the pendulum is at its
vertical position, and its rotational velocity is at its minimum value
(although its absolute value is at a maximum). The vector is pointing to the
left, indicating that the velocity is negative and its acceleration is zero.
Notice also that all around the curve, the vectors are the same length,

meaning that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_q
2 þ €q

2
q

is constant.
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Figure 2.21 Time evolution of pendulum angular position and speed with b ¼ 0.
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Figure 2.21 shows q and _q versus time. For each time instant, if the
values of q and _q are plotted as points, the phase plot is generated.
Furthermore, the slopes of each of the time plots give the horizontal and
vertical components of the vector in the phase plot.

Figures 2.22 and 2.23 show the results when there is friction by setting
b ¼ 0.1. Starting with the same initial conditions as before, the phase plot
(see Figure 2.22) spirals inward toward (0,0). Note that the lengths of the
vectors decrease as the curve moves away from the initial point. Eventually,
the pendulum stabilizes to q ¼ 0 and stops moving. The origin is an
example of a stable equilibrium point (discussed further in Sections 3.3 and
3.4). In Figure 2.23, the angular position and velocity versus time are seen
to have oscillations that eventually dampen to zero.

Now let’s discuss how these resultswere generated.Note that inMATLAB,
there are usually several ways to accomplish a desired result, andwhich one you
choose depends on exactly what youwant. For example, in this case, the phase
plot could have been generated using the odephas2 as the OutputFcn setting in
the odeset function. However, this option does not produce a desirable
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Figure 2.22 Phase plot for the pendulum with b ¼ 0.1.
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looking plot, so the quiver function was used instead. This way required more
code, but the resulting plots were more appropriate for this discussion.

% pendulum_simulation.m

% Close all figures and clear all variables
close all
clear all

% How long to simulate (in seconds)
t_end ¼ 10;
t_sample ¼ 0.1;
t ¼ [0:t_sample:t_end];

% Define the model parameters
m ¼ 0.1; % kg
l ¼ 1; % m
b ¼ 0.1; % kg*m ^2/s
g ¼ 9.8; % m/s^2
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Figure 2.23 Time evolution of pendulum angular position and speed with b ¼ 0.1.
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% Set initial conditions on the system
theta_0 ¼ 45*pi/180;
theta_dot_0 ¼ 0;

% Create vectors for storing data
theta ¼ zeros(size(t));
theta_dot ¼ zeros(size(t));

% Solve the system equations
for k ¼ 1:length(t)
theta(k) ¼ theta_0;
theta_dot(k) ¼ theta_dot_0;
[T result] ¼ ode45(@pendulum_model,[0 t_sample],[theta_0
theta_dot_0],odeset,m,l,b,g);
theta_0 ¼ result(end,1);
theta_dot_0 ¼ result(end,2);
end

x ¼ theta;
y ¼ theta_dot;
u ¼ theta_dot;
v ¼ -g*sin(theta)/l-b/(m*l^2)*theta_dot;

% Create the phase plot
quiver(x,y,u,v)
hold on
plot(theta,theta_dot,'b')
plot(theta(1),theta_dot(1),'bo')
axis([-1 1 -2.5 2.5])
xlabel('ytheta')
ylabel('ythetayprime')
title('Pendulum Phase Plot')
% Plot the results
figure
plot(t,theta,'k',t,theta_dot,'k–')
xlabel('Time (s)')
ylabel('Angle (radians) and Angular Velocity (radians/s)')
title('Pendulum Angle and Velocity vs. Time')
legend('Pendulum Angle,ytheta','Pendulum Velocity,ytheta^yprime')

The above code follows the same basic structure as the hybrid system in
the previous example, which simulated the system using sampling. The
reason for using the same structure here is that we are “sampling” the
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trajectory at certain points so that we can plot the vectors at appropriate
points along the curve (but not too many to crowd the figure) while still
having a smooth curve underneath.

% How long to simulate (in seconds)
t_end ¼ 10;
t_sample ¼ 0.1;
t ¼ [0:t_sample:t_end];

The code begins with initializing the time vector. The simulation is set
to run for 10 s with a sampling time of 0.1 s. As in the hybrid system
example, the “continuous” part of the system will be executed for 0.1 s to
determine what the values of the system variables are during that time. The
ending value of these variables are then used as initial condition for the next
sampling period, with these values also being stored in an array for plotting
the results later in the code.

% Define the model parameters
m ¼ 0.1; % kg
l ¼ 1; % m
b ¼ 0.1; % kg*m ^2/s
g ¼ 9.8; % m/s^2

Next, the constants (mass, pendulum length, friction coefficient, and
gravitational acceleration) for the problem are defined. This is a change
from what was done in previous examples, in which the constants were
defined in the model file or Simulink file. The reason for this change is the
values must be used to generate the vector field values later in the file. This
change also means the ode45 command must be called in a slightly different
way, as we will see below.

% Set initial conditions on the system
theta_0 ¼ 45*pi/180;
theta_dot_0 ¼ 0;

In these two lines, the initial conditions of the pendulum are set to an
angle of 45 degrees and an angular velocity of zero.

% Create vectors for storing data
theta ¼ zeros(size(t));
theta_dot ¼ zeros(size(t));

The vectors for storing q and _q are created next. This step is to minimize
code run time as before.
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% Solve the system equations
for k ¼ 1:length(t)
theta(k) ¼ theta_0;
theta_dot(k) ¼ theta_dot_0;
[T result] ¼ ode45(@pendulum_model,[0 t_sample],[theta_0

theta_dot_0],odeset,m,l,b,g);
theta_0 ¼ result(end,1);
theta_dot_0 ¼ result(end,2);

end

This for loop is where the system equations are solved, simulating the
“continuous” part of the system as before. There is one difference between
this code and the previous examples, and it is how the ode45 command is
called. There are extra entries in the parameter list. The odeset function is
included to specify that default parameters are used. Then the last set of
parameters includes the constants for the system (m, l, b, and g). The
pendulum_model.m file is shown after the discussion of the main code.

x ¼ theta;
y ¼ theta_dot;
u ¼ theta_dot;
v ¼ -g*sin(theta)/l-b/(m*l^2)*theta_dot;

In these four lines, the variables needed for the quiver command to
generate the phase plot are created. The variable names x, y, u, and v were
chosen to match the documentation for the command. The values in x and
y are plotted to create the trajectory curve. The values in u and v are the
vector fields from (2.24) and are used to plot the arrows along the curve.
Because of the way the state variables were defined in (2.23), y and u

happen to be the same.

% Create the phase plot
quiver(x,y,u,v)
hold on
plot(theta,theta_dot,'b')
plot(theta(1),theta_dot(1),'bo')
axis([-1 1 -2.5 2.5])
xlabel('ytheta')
ylabel('ythetayprime')
title('Pendulum Phase Plot')

Next, the quiver command plots the points with their tangent vectors
attached as arrows. There are several options for specifying how the plot
looks, including a scaling factor to adjust the lengths of the vector arrows.
Following the quiver plot, the full trajectory is plotted in blue (“b”) un-
derneath the arrows, and the initial condition is plotted as “o” in blue as
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indicated by the “bo” parameter in the plot command. Then the axes are
scaled to appropriate values to show the whole plot and labeled.

The model file is shown below.

function dx ¼ pendulum_model(t,x,m,l,b,g)

dx ¼ zeros(2,1);

dx(1) ¼ x(2);
dx(2) ¼ (-g/l)*sin(x(1))-(b/(m*l^2))*x(2);

This m-file model is similar to the one used in the car suspension
example, with one major difference. The constants for the problem are
passed to the function as parameters rather than defined in the file so that
they can be used in the main m-file.

We have only introduced what phase plots are and how to produce
them in MATLAB. However, these plots are rich with information about
system behavior. In Chapter 3, we will see how they can be useful tools to
study stability and equilibrium points in dynamical systems.

2.3 TRANSFER FUNCTIONS

2.3.1 Overview
So far we have dealt exclusively with systems in the time domain. We have
used differential equations and difference equations to mathematically
represent how a system behaves, and we have plotted variables versus time
and generated phase plots. However, there is another way to mathematically
represent systems that is a bit more abstract but holds much information.

A transfer function (or system function) is a frequency domain rep-
resentation of a dynamical system. Before giving going further, let us first
express three assumptions that we will use when discussing transfer
functions.
1. Transfer functions are used for linear time-invariant systems. Nonlinear

or time-varying systems need different analysis techniques.
2. Transfer functions assume the system is initially at rest (zero initial con-

ditions). An example of trying to use transfer functions with nonzero
initial conditions (and the associated difficulties) will be given.
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3. Transfer functions describe behavior between a single input and a single
output. Multi-input and multi-output systems have more than one
transfer function to describe the various inputeoutput relationships.
Simply stated, a transfer function of a continuous-time system is

defined by

HðsÞ ¼ YðsÞ
XðsÞ (2.25)

where X(s) and Y(s) are the Laplace transforms of the system input x(t) and
output y(t) respectively.

For a discrete-time systems, the transfer function is defined by

HðzÞ ¼ YðzÞ
XðzÞ (2.26)

where X(z) and Y(z) are the z-transforms of the system input x[n] and
output y[n], respectively.

We will not discuss Laplace and z-transform theory in detail, nor will
we derive many of the relationships and characteristics. In the following
sections, we will discuss what the transforms and transfer functions are, how
they are used, and apply them to various examples.

2.3.2 Laplace Transforms for Continuous-Time Systems
Laplace transforms are typically introduced in a course on differential
equations, and they are used to provide an alternative method for solving
differential equations using algebraic methods. This method is quite useful
in dynamical system theory in which systems are described by differential
equations. If we know the input to the system x(t) and the transfer function
H(s), we can determine the output y(t) according to the path shown in
Figure 2.24. In the figure, if x(t) is known, we take the Laplace transform,
denoted by L . Then we multiply the result by H(s) and take the inverse
Laplace transform, denoted by L -1, to get y(t). Although more steps are
required than directly solving the differential equation, the steps are simpler,
and the many properties of Laplace transforms may be used to make the
problem even simpler.

The definition of a Laplace transform of a continuous-time signal x(t) is

XðsÞ ¼
ZN

�N

xðtÞe�stdt (2.27)
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In this definition, s is the Laplace variable and is a complex number
typically denoted by s ¼ s þ ju, where j is

ffiffiffiffiffiffiffi�1
p

.
The inverse Laplace transform is given by

xðtÞ ¼ 1
2pj

ZsþjN

s�jN

XðsÞestds (2.28)

In practice, the definitions in (2.27) and (2.28) are rarely used. Instead,
tables of transforms and their properties are commonly used to simplify the
solution procedure outlined in Figure 2.24.

For our purposes in finding the transfer functions of systems, we
introduce notation and properties that will be useful to us. First is to define
the notation for signals and their transforms. Table 2.1 shows three variables

{x(t)}

   –1 {x(t)}

X(s)

Y(s)y(t)

x(t)

X(s)H(s)
Laplace

transform
method

Figure 2.24 Steps in the Laplace transform method of solving differential equations.

Table 2.1 Notation for Laplace Transforms
Time Domain
Signal

Laplace
Transform

xðtÞ4XðsÞ
yðtÞ4YðsÞ
qðtÞ4QðsÞ
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we have used thus far, x(t), y(t), and q(t). These time domain signals are
represented by lower case letters and are shown explicitly to be functions of
t. Their Laplace transforms are represented by the same letter capitalized and
are functions of s.

Three properties of Laplace transforms will be particularly useful to us as
we derive transfer functions: linearity and differentiation. These properties
are illustrated in Table 2.2.

As an example of deriving a transfer function, we return to the sus-
pension system model Equations (2.3) repeated here.

€x1ðtÞ þ b
m1

_x1ðtÞ þ k1 þ k2
m1

x1ðtÞ � b
m1

_x2ðtÞ � k2
m1

x2ðtÞ ¼ k1
m1

rðtÞ

€x2ðtÞ þ b
m2

_x2ðtÞ þ k2
m2

x2ðtÞ � b
m2

_x1ðtÞ � k2
m2

x1ðtÞ ¼ 0

(2.29)

We wish to find the transfer function of the system from road input R(s)

to the car height output X2(s). In other words, the transfer function is X2ðsÞ
RðsÞ .

The first step is to convert (2.29) by taking the Laplace transform term
by term using the properties shown in Tables 2.1 and 2.2. Because the
Laplace transform is a linear operation, the constant multipliers remain
constant.

s2X1ðsÞ þ b
m1

sX1ðsÞ þ k1 þ k2
m1

X1ðsÞ � b
m1

sX2ðsÞ � k2
m1

X2ðsÞ ¼ k1
m1

RðsÞ
�
s2 þ b

m1
sþ k1 þ k2

m1

�
X1ðsÞ �

�
b
m1

sþ k2
m1

�
X2ðsÞ ¼ k1

m1
RðsÞ

(2.30)

s2X2ðsÞ þ b
m2

sX2ðsÞ þ k2
m2

X2ðsÞ � b
m2

sX1ðsÞ � k2
m2

X1ðsÞ ¼ 0 (2.31)

Table 2.2 Important Properties of Laplace Transforms
Property Time Domain Signal Laplace Transform

Linearity ax1ðtÞ þ bx2ðtÞ4aX1ðsÞ þ bX2ðsÞ

Differentiation
dxðtÞ
dt

4sXðsÞ

Time Delay xðt � sÞ4e�ss XðsÞ
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Solving (2.31) for X1

X1ðsÞ ¼
 
s2 þ b

m2
sþ k2

m2

b
m2
sþ k2

m2

!
X2ðsÞ (2.32)

and plugging into (2.30) eliminates X1, yielding an expression with only X2

as the output and R as the input.
�
s2 þ b

m1
sþ k1 þ k2

m1

� 
s2 þ b

m2
sþ k2

m2

b
m2
sþ k2

m2

!
X2ðsÞ

�
�

b
m1

sþ k2
m1

�
X2ðsÞ ¼ k1

m1
RðsÞ

(2.33)

Simplifying gives the transfer function:

X2ðsÞ
RðsÞ ¼

�
k1b
m1m2

�
sþ k2

b

s4 þ
�

b
m1
þ b

m2

�
s3 þ

�
k2
m2
þ k1þk2

m1

�
s2 þ bk1

m1m2
sþ k1k2

m1m2

(2.34)

This transfer has been put into monic form, meaning the coefficients of
the highest order of s in the numerator and denominator are 1. This is

accomplished by factoring out the
�

k1b
m1m2

�
, so it is a multiplier in front of

the fraction.

2.3.2.1 MATLAB Example: Transfer Function for the Car Suspension
MATLAB is well equipped to handle systems described by transfer func-
tions. Many of the commands we will use here are part of the Control
Systems Toolbox.

To represent the car suspension transfer function, we use (2.34) as
shown in the code below.

% suspension_system_tf.m

close all
clear all

% Define the model parameters
m1 ¼ 70; % kg
m2 ¼ 350; % kg
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k1 ¼ 176000; % N/m
k2 ¼ 27000; % N/m
b ¼ 2500; % Ns/m

% Define the transfer function
num ¼ (k1*b/(m1*m2))*[1 k2/b];
den ¼ [1, (b/m1þb/m2), (k2/m2þ(k1þk2)/m1), b*k1/(m1*m2), k1*k2/

(m1*m2)];
sys_tf ¼ tf(num,den)

% Plot the step response
step(sys_tf)

This code shows the basics of how to represent the system. First the
constants are defined using the same values as in MATLAB Example 2.2.1.1.

After the constants are defined, the system is created using the tf

command. To use this command, we define the numerator and denomi-
nator of the transfer function according to the coefficients of the poly-
nomials in s and store them in two different variables, num and den. These
coefficients are simply stored in a row vector and separated by commas
(separation by a space would also work). Notice that the num variable has a
multiplier in front because of the form of (2.34). After the numerator and
denominator are defined, these variables are used as parameters in the tf

command. Because this line does not end with a semicolon, the result is
returned to the command window as shown below.

sys_tf ¼

1.796e04 s þ 1.94e05
———————————————————————————————————————————————

s^4 þ 42.86 s^3 þ 2977 s^2 þ 1.796e04 s þ 1.94e05

Continuous-time transfer function.

Checking the result is always a good idea to make sure the coefficients
were entered correctly. One common source of error is to leave out
coefficients. For example, s2þ 3 needs to be entered as [1, 0, 3].

The step command produces a plot showing the unit step response for the
system. The default for this command is to set the system input to a unit step as
shown inFigure 2.25.The resulting systemoutput plot is shown inFigure 2.26.
The dotted line in the figure indicates the steady-state value for the output.
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This step response is almost identical to the one in MATLAB Example
2.2.1.1 except for the scaling and time delay. In the previous example, we set
the input r(t) to a step of height 0.1, not 1, and it transitioned from 0 to 0.1
after 1 s. If we want to replicate that input, we can use the lsim command to
plot the system response to arbitrary inputs. To do this, we define a delayed
unit step input and then use it as a parameter in the command as follows.

System input

Time (s)0

1

Figure 2.25 The input used in the step command.
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Figure 2.26 The unit step response for the car suspension system.
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T ¼ 0.01;
t_end ¼ 3.5;
r_start ¼ 1;
scale_factor ¼ 0.1;
t ¼ [0:T:t_end];
r ¼ [zeros(1,1þr_start/T),scale_factor*ones(1,(t_end-r_start)/T)];
lsim(sys_tf,r,t)

In the above code, the input r is defined from 0 to 3.5 s with the
transition occurring at 1 s. In the lsim command, the transfer function,
input, and time vector must be specified. The resulting plot is shown in
Figure 2.27. The input is added to the plot by default as a light gray line.

There is an alternative, and possibly simpler, way to create a transfer
function in MATLAB shown below.

% Define the transfer function
s ¼ tf('s');
sys_tf ¼ (k1*b/(m1*m2))*(s þ k2/b)/(s^4 þ (b/m1þb/m2)*s^3 þ

(k2/m2þ(k1þk2)/m1)*s^2 þ b*k1/(m1*m2)*s þ k1*k2/(m1*m2))
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Figure 2.27 The scaled and delayed step response of the car suspension.
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Using this method, one enters the transfer function directly as shown in
(2.34) rather than as coefficients in the numerator and denominator. It is
possibly simpler because it is just like the transfer function expression, but it
can be much longer, and the chances are greater of making a mistake while
typing it into the code. Both methods produce the same result and it’s the
user’s discretion to choose the more suitable one.

As a second example, we give a simple model of the human balance
system as a single link inverted pendulum.3 This system incorporates
feedback and we will show how MATLAB can help with the transfer
function derivation.

The single link inverted pendulum is shown in Figure 2.28. In the
figure, the person is represented by a single pendulum rotating about the
ankles. There are three angles associated with the system: qBS, the body’s
angle in space; qFS, the foot’s angle in space; and qBF, the foot’s angle
with respect to the body. Additionally, the person may apply torque T
about the ankle to control balance. For this simple model, we assume the
mass m is concentrated at the center of mass located distance l above
the feet.

The differential equation describing the motion of the system is

mgl sin qBS þ T ¼ J€qBS (2.35)

T

BS
BF

FSθ

θ θ

Figure 2.28 Simple model for the human balance system using a single link inverted
pendulum.

3 The model is described in Peterka (2003).
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Because this is nonlinear system, it does not have a transfer function
representation. However, using the linear approximation sin qBS z qBS,
the transfer function from T to qBS is found to be4

QBSðsÞ
TðsÞ ¼

1
J

s2 þ mgl
J

(2.36)

This transfer function describes how torque applied to the ankle affects the
body angle. To complete the model, we have to account for how a person
might react to changing foot angle qFS. To accomplish this effect, the system is
modeled using feedback as shown in Figure 2.29. This model assumes only
proprioception is used for feedback (i.e., joint angles are used to determine
body position with respect to itself) and ignores the vestibular and vision sys-
tems. The input to the system is the foot’s angle in space, which represents the
slope on which the person is standing. The output is the body’s angle in space,
which is controlled by applying torque to the ankle. The difference between
these two angles is qBF, which is sensed using proprioception.

Researchers use this model to help understand the human balance
system. One of the key features that they had to identify was the form of
the controller. They have found that a proportional-integral (PI) controller
works when fitting the model to the data. A PI controller has a transfer
function C(s) given by

CðsÞ ¼ kP þ kI
s

(2.37)

where kP and kI are called the proportional gain and integral gain, respectively.
These are constants that must be chosen to match the model to the data.

Also note the left block in the diagramwhose transfer function is e�std . This
block represents a delay time of td in the system caused by the person’s reaction

+

–

ΘBS(s)FSθ BSθBFθ–
e–t ds Controller T (s)

Figure 2.29 A simple model of human balance using proprioception in a feedback
system.

4 Because the time domain representation of torque T was already capitalized, the bar notation is
used for its Laplace transform.
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time. As discussed earlier, a signal delayed by td in the time domain corresponds
tomultiplication by e�std whenusing Laplace transforms.Researchersmust also
determine td to make the model accurately fit their collected data.

Using properties of feedback loops, the overall transfer function of the
system from qFS to qBS is found to be

QBS

QFS
¼

e�std
�
kP þ kI

s

�� 1
J

s2 þ mgl
J

�

1þ e�std
�
kP þ kI

s

�� 1
J

s2 þ mgl
J

� (2.38)

2.3.2.2 MATLAB Example: Transfer Function
of the Human Balance System

We can use MATLAB to represent and simulate the human balance system
shown in Figure 2.29. In this example, we use a new tool to help with
some of the work.

So far we have seen two ways to enter transfer functions. One way is to
enter the transfer function as a numerator and denominator. In this case, it
would mean simplifying (2.38) to a simple fraction with both the numerator
and denominator expressed as polynomials of s and creating two vectors in
MATLAB to hold the polynomial coefficients. However, these coefficients
cannot be found because of the delay component e�std . The other way is to
define s using the tf command and then enter the actual polynomials and
let MATLAB do the fraction simplification. In this case, we need to do less
work than the first method because we are required to know that the
feedback system is of the form in (2.38) but do not need to do calculations.

There is a third way to enter the transfer function, and this method puts
most of the work onto MATLAB. The feedback command lets us enter the
individual blocks, and then it does the simplification. The format of the
command is

feedback(M1,M2)

where M1 and M2 show up in the system as shown in Figure 2.30. If not
specified, it is assumed that there is negative feedback.

One other item to discuss about the model is the delay component
e�std . Handling this block is easy when we first define s using tf. We
simply use the MATLAB command exp to enter the mathematical
expression.
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The code to define and simulate the system is shown below.

% human_balance.m

close all
clear all

% Define the system constants
td ¼ 0.01; % s
J ¼ 81.3; % kg m ^2
m ¼ 82; % kg
g ¼ 9.8; % m/s^2
L ¼ 0.996; % m
kp ¼ 0.5;
ki ¼ 0.001;

% Define the system blocks
s ¼ tf('s');
D ¼ exp(-s*td);
C ¼ kp þ ki/s;
G ¼ (1/J)/(s^2þm*g*L/J);

sys ¼ feedback(D*C*G,1)

In the code, first the constants of the system are defined. Some typical
values are used here5 Next the individual blocks are defined using s as
the variable, which allows us to type in the mathematical expressions
rather than just polynomial coefficients. Finally, the system is defined
using the feedback command with the series connections of the three

M1

M2

+

−

Figure 2.30 The form of the system assumed when using MATLAB’s feedback
command.

5 From Goodworth, Mellodge, and Peterka (2014).
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blocks D, C, and G in place of M1. The result of this command is shown
below.

sys ¼

a ¼
x1 x2 x3

x1 0 -2.463 -3.075e-06
x2 4 0 0
x3 0 1 0
b ¼

u1
x1 0.03125
x2 0
x3 0

c ¼
x1 x2 x3

y1 0 0.0492 9.84e-05

d ¼
u1

y1 0

(values computed with all internal delays set to zero)

Internal delays (seconds): 0.01

Continuous-time state space model.

Notice that MATLAB gives us something that looks different from
what we have seen in previous examples. Rather than return a transfer
function, it represents the system with four matrices a, b, c, d. This is
a form of state-space representation, and we will discuss this topic in
Section 2.4.

2.3.2.3 Systems with Nonzero Initial Conditions
Consider the simple circuit shown in Figure 2.31. Assume the capacitor is
initially charged to some nonzero voltage vc(0).

Applying Ohm’s law to the resistor gives

iðtÞ ¼ vinðtÞ � vcðtÞ
R

(2.39)
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and taking the Laplace transform of (2.39) results in

IðsÞ ¼ VinðsÞ � VcðsÞ
R

(2.40)

Furthermore, the relationship between current and voltage in a
capacitor is

iðtÞ ¼ C
dvcðtÞ
dt

(2.41)

Taking the Laplace transform of (2.41) results in the initial condition on
the capacitor appearing

IðsÞ ¼ CðsVcðsÞ � vcð0ÞÞ (2.42)

Trying to obtain the transfer function VcðsÞ
VinðsÞ is hopeless. Substituting

(2.42) into (2.40) and simplifying yields

VcðsÞ ¼
1
RC

sþ 1
RC

VinðsÞ � 1
sþ 1

RC

vcð0Þ (2.43)

and shows that the output Vc is a function of both the input Vin and the
initial condition vc(0). However, if we assume zero initial conditions, the
transfer function becomes

VcðsÞ
VinðsÞ ¼

1
RC

sþ 1
RC

(2.44)

What if you want to plot the time response of the RC circuit in
MATLAB for nonzero initial conditions? Fortunately, there is a simple
means to accomplish this using the system’s state-space realization. In

vin(t) vc(t)

R

C

+

−

+

−

Figure 2.31 A low-pass resistor capacitor (RC) filter circuit.
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Section 2.4, we will show how to carry this out in MATLAB and give a
detailed discussion of state-space models.

2.3.3 z-Transforms for Discrete-Time Systems
The concepts of z-transforms are generally less exposed to mechanical
engineers than they are to electrical engineers, who get a heavy dose of them
in required undergraduate courses in signals and systems theory, which are
then followed by courses in signal processing, communications, and control
systems. In particular, digital signal processing (DSP), digital communication
systems, and digital control systems rely heavily on z-transforms. Mechanical
engineers are less likely to study z-transforms in their undergraduate cour-
sework, but may encounter them in a course on digital control systems or
mathematically oriented courses at the graduate level.

The z-transform is to discrete-time systems and difference equations
what Laplace transforms are to continuous-time systems and differential
equations. Many of the same properties apply that we saw in discussing
Laplace transforms. First we will start with the definition of the z-transform
of a discrete-time signal.

The definition of a z-transform of a discrete-time signal x[n] is

XðzÞ ¼
XN
n¼�N

x½n�z�n (2.45)

where z is a complex number.
The inverse z-transform is given by

x½n� ¼ 1
2pj

I
C

XðzÞzn�1dz (2.46)

where C is a counterclockwise path that encloses the origin and the region
of convergence.

Region of convergence is defined as the set of points in the complex z
plane for which the z-transform in (2.45) converges. Notice that (2.45) is an
infinite sum, so it will only give a finite value under certain conditions for a
given discrete-time signal x[z]. For the z-transform to be complete, the
region of convergence must be specified along with X(z).

In practice, as with Laplace transforms, it is more common to use tables
than the definitions in (2.45) and (2.46). However, the definition of the
z-transform is a bit easier to use than the Laplace definition because one can
consider multiplication by z-n to be a delay operator, and difference
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equations used to describe a discrete-time system can often be expressed as a
linear combination of delays.

Let us look at an example of a signal and its z-transform to demonstrate
these ideas. Suppose x[n] is given by

x½n� ¼
	
e�n; n � 0

0; n < 0
(2.47)

Using (2.45), the z-transform is

XðzÞ ¼
XN
n¼0

e�nz�n (2.48)

Note that the lower limit of the summation is zero because x[n] ¼ 0
when n is less than 0. Simplifying the expression gives

XðzÞ ¼PN
n¼0

ðezÞ�n

¼PN
n¼0

�ðezÞ�1�n

¼ 1

1� ðezÞ�1

(2.49)

The last step was obtained using the relationship
PN

n¼0 x
n ¼ 1

1 � x. This
relationship only holds if jxj is less than 1; otherwise, the series does not
converge. This restriction leads us to the region of convergence (ROC). In
the above example, the ROC is

ðezÞ�1

 < 1 (2.50)

or

jzj > e�1 (2.51)

Because z is a complex number, this last inequality says that z must lie
outside a circle of radius e�1 for the series to converge. Graphically, the
region of convergence is the area shown in Figure 2.32.

Thus the complete z-transform is

XðzÞ ¼ 1

1� ðezÞ�1; jzj > e�1 (2.52)
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As with Laplace transforms, we introduce notation and properties that
will be useful to us. First is to define the notation for signals and their
transforms. These time domain signals are represented by lower case letters
and are shown explicitly to be functions of n. Their z-transforms are
represented by the same letter capitalized and are functions of z.

Table 2.3 Notation for z-Transforms
Time Domain
Signal z-Transform

x½n�4XðzÞ

Im(z)

Re(z)
e–1

Figure 2.32 The region of convergence for z shown on the complex plane. The
z-transform converges for values of z in the shaded region.

Table 2.4 Important Properties of z-Transforms

Property
Time Domain
Signal z-Transform

Linearity ax1½n� þ bx2½n�4aX1ðzÞ þ bX2ðzÞ
Time shift x½n� n0�4z�n0XðzÞ
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Some properties of z-transforms will be particularly useful to us as we
derive transfer functions: linearity and time shift. The notation is illustrated
in Table 2.3. These properties are illustrated in Table 2.4.

As a simple first example, consider the difference equation in (2.53), and
let’s work through the process of generating its transfer function.

x½n� þ 3x½n� 1� þ 4x½n� 2� ¼ y½n� � y½n� 2� (2.53)

becomes

XðzÞ þ 3z�1XðzÞ þ 4z�2XðzÞ ¼ YðzÞ � z�2YðzÞ (2.54)

and the transfer function YðzÞ
XðzÞ is

YðzÞ
XðzÞ ¼

1þ 3z�1 þ 4z�2

1� z�2
(2.55)

or equivalently

YðzÞ
XðzÞ ¼

z2 þ 3zþ 4
z2 � 1

(2.56)

These two forms of transfer function are used in practice, depending on
the field of study. In DSP, it is common to express transfer functions for
discrete-time systems in terms of negative powers of z as in (2.55) because
of their association with delay operations. For control systems, positive
powers of z are typically used. As we will see in the MATLAB example
later in this section, either convention may be used as long as the user
specifies which he or she is following.

The most common discrete-time system that we will see in studying
mechanical systems comes about through sampling a process for computer
control. As an example, we will work through a thermostat system in detail
and see the effects of this sampling on the model.

Consider a computer-controlled heating system represented by the
block diagram in Figure 2.33. In this situation, the computer samples the

Computer
controller

qh[n] qh(t) TI(t)

TI[n]

Digital-to-analog
converter

Analog-to-digital
converter

Continuous
plant

Figure 2.33 A closed loop temperature control system for a room.
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room temperature at discrete intervals using an analog-to-digital converter
(ADC). Note that the room temperature is denoted by TI(t) because it is a
continuous-time signal. The sampled version of the room temperature
coming out of the ADC is TI[n], a discrete-time signal. Similarly,
the computer outputs a discrete-time signal qh[n], which goes through
a digital-to-analog converter (DAC) to produce a continuous-time
signal qh(t).

For our modeling purposes, we assume the ADC has infinite resolution.
It simply samples the continuous-time signal and outputs the exact value of
the signal at integer multiples of the sampling time ts. The value of the input
signal is captured at each sampling instant so that the relationship between
the two signals is

TI ½n� ¼ TIðntsÞ (2.57)

This relationship between the signals is shown graphically in
Figure 2.34. Figure 2.35 shows how this relationship can be modeled in a
block diagram as a switch that closes momentarily every ts seconds. Note
that this model is an idealized version of how the ADC behaves, and it
ignores quantization error. In an actual ADC, the sampled value is

ADC input

ADC output

ts 2ts 3ts      ... Time

1 2 3
Sample number

...

Figure 2.34 The input and output signal for an analog-to-digital converter (ADC).
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represented by a finite number of bits. For example, in 12-bit sampling, the
value of the signal is quantized into one of 212 ¼ 4096 values.

The DAC is modeled differently from an ADC. Typically a DAC is
represented using what is called a zero-order hold (ZOH) equivalent
model. In this case, the input to a DAC is a discrete-time signal, and the
output is the input value held constant for the time between samples. The
result of the conversion is a piecewise constant signal as shown in
Figure 2.36.

If we consider the input and output to be continuous-time signals, then
we can derive the transfer function of the DAC in terms of the Laplace
transforms of the input and output signals. For example, if the input is a unit
impulse (typically denoted by d(t)), the output is a rectangular pulse whose
width is ts, which can be expressed as the difference between a unit
step (denoted by u(t)) and a delayed unit step (denoted by u(t � ts)).

DAC output

ts 2ts 3ts     ...
Time

DAC input

Sample number
1 2 3 ...

Figure 2.36 The input and output signal for a digital-to-analog converter (DAC).

ts

x(t) x[n]

Figure 2.35 The model of an ideal analog-to-digital converter.
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See Figure 2.37. Using the fact that the Laplace transforms of d(t), u(t), and
u(t � ts) are 1, 1s, and

1
s e

�tss respectively, the transfer function of the DAC is

YðsÞ
XðsÞ ¼

1
s
ð1� e�tssÞ (2.58)

Often it is convenient to combine the DAC with the continuous-time
plant that follows it into a single transfer function using the z-transform.
We will do this in the context of the temperature control system intro-
duced in this section. First, we derive the transfer function for the
continuous element in the system. Consider a room as shown in
Figure 2.38 that has perfect thermal insulation everywhere except for one
wall.6 We can derive the room’s dynamical model using the governing

Digital-to-analog
converterx(t) =   (t)δ

0 0 ts

y(t) = u(t) – u(t-ts)

Figure 2.37 The model used to derive the transfer function of the digital-to-analog
converter.

Outside temperature TO

Room temperature TI

Heat source qh

Thermal resistance R

q1

Figure 2.38 The model of heat flow for a room with perfect thermal insulation except
for one wall with thermal resistance R.

6 The model here is adopted from Franklin, Powell, and Emami-Naeini (2010).
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relationships for heat flow, temperature, and temperature difference. The
first relationship is

q ¼ 1
R
ðT1 � T2Þ (2.59)

where q is the heat flow through the material, R is its thermal resistance,
and T1 and T2 are the temperatures on either side of the material. The sec-
ond relationship is

_T ¼ 1
C
q (2.60)

where T is the temperature of an object, C is its thermal capacity, and q is
the total heat flow into the object.

Applying (2.59) and (2.60) to the room, we get

_TI ¼ 1
C
ðq1 þ qhÞ (2.61)

and

q1 ¼ 1
R
ðTO � TIÞ (2.62)

where TI is the room temperature, TO is the outside temperature, C is the
thermal capacity of the room, R is the thermal resistance of the uninsulated
wall, q1 is the heat flow into the room through the uninsulated wall, and
qh is the heat source in the room.

Substituting (2.62) into (2.61), the model for the room is

_TI ¼ 1
C

�
1
R
ðTO � TIÞ þ qh

�
(2.63)

Simplifying the model to contain only one variable, let Td denote the
difference between the inside and outside temperatures.

Td ¼ TI � TO (2.64)

Then

_Td ¼ _TI � _TO

¼ _TI
(2.65)

The last simplification can be made if we assume the outside tem-
perature is slowly time varying compared with the inside temperature
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( _TO z 0). Substituting (2.64) and (2.65) into (2.63) gives a modified
model of the room.

_Td ¼ � Td

RC
þ qh
C

(2.66)

Taking the Laplace transform (because we are still dealing with a
continuous-time system at this point) and rearranging gives the transfer
function for the room, the continuous plant in the heating system. Denote
this transfer function by Gp(s).

GpðsÞ ¼ TdðsÞ
QhðsÞ ¼

1
C

sþ 1
RC

(2.67)

Now let us combine this continuous plant with the DAC and ADC to
give us a ZOH model of the plant as shown in Figure 2.39.

Working through the block diagram in Figure 2.39, we will derive the
transfer function for the discrete-time system from qh[n] to Td[n]. Let the
input be an impulse.

qn½n� ¼ d½n� (2.68)

Then taking the z-transform gives

QhðzÞ ¼ 1 (2.69)

Given the impulse input, the output of the DAC is

qhðtÞ ¼ uðtÞ � uðt � tsÞ (2.70)

where

uðtÞ ¼
	
1; t > 0

0; t < 0
(2.71)

qh[n] qh(t) Td[n]Td(t)Digital-to-analog
converter

Analog-to-digital
converter

Continuous
plant

ZOH equivalent model

Figure 2.39 The digital-to-analog converter, continuous plant, and analog-to-digital
converter can be combined to give the zero-order hold (ZOH) equivalent model.
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With u(t) � u(t � ts) as the input to the plant, the output is the step
response given by Td(t) ¼ w(t) � w(t � ts), where

wðtÞ ¼ L �1

	
GpðsÞ
s

�
(2.72)

and

wðt � tsÞ ¼ L �1

	
e�tssGpðsÞ

s

�
(2.73)

In these expressions, L -1 denotes the inverse Laplace transform. Then
the output of the ADC is

TdðntsÞ ¼ wðntsÞ � wðnts � tsÞ
¼ wðntsÞ � wððn� 1ÞtsÞ
¼ w½n� � w½n� 1�

(2.74)

and the z-transform of the output is

TdðzÞ ¼ W ðzÞ � z�1W ðzÞ
¼ ð1� z�1ÞW ðzÞ
¼ ð1� z�1ÞZfw½n�g
¼ ð1� z�1ÞZfwðntsÞg

¼ ð1� z�1ÞZ
	
L �1

	
GpðsÞ
s

��
(2.75)

In these expressions, Z{$} denotes the z-transform. The transfer func-
tion of the DAC, continuous plant, ADC series combination Geq(z) is then

GeqðzÞ ¼ TdðzÞ
QhðzÞ ¼ ð1� z�1ÞZ

	
L �1

	
GpðsÞ
s

��
(2.76)

We will now substitute the room model into (2.76).

GpðsÞ
s

¼
1
C

s
�
sþ 1

RC

� (2.77)

Then taking the inverse Laplace transform (obtained from a table of
Laplace transforms)

L �1

	
GpðsÞ
s

�
¼ R

�
1� e�t=RC

�
(2.78)
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and now taking the z-transform of the sampled version of this signal gives

Z

	
L �1

	
GpðsÞ
s

��
¼ R

�
z

z� 1
� z
z� e�ts=RC

�

¼ R

�
1� e�ts=RC

�
z

ðz� 1Þ
�
z� e�ts=RC

�

¼ R
1� e�ts=RC

ð1� z�1Þ
�
z� e�ts=RC

� (2.79)

where this expression uses (2.49) and

Zð1Þ ¼PN
n¼0

z�n

¼ 1
1� z�1

¼ z
z� 1

(2.80)

Therefore, the ZOH equivalent transfer function becomes

GeqðzÞ ¼ ð1� z�1ÞR 1� e�ts=RC

ð1� z�1Þ
�
z� e�ts=RC

� ¼ R

 
1� e�ts=RC

z� e�ts=RC

!
(2.81)

or in terms of negative powers of z,

GeqðzÞ ¼ R

0
B@
�
1� e�ts=RC

�
z�1

1� e�ts=RCz�1

1
CA (2.82)

It is worth noting here that an assumption has been made: the same sample
rate ts is used for both the analog-to-digital and digital-to-analog conversion so
that the whole system is in sync. It is important to know this sampling rate
because it greatly affects the system performance. Also, in this sampling process,
information between samples is lost and cannot be recovered. We will see the
effects of the sampling rate in the following MATLAB example.

2.3.3.1 MATLAB Example: Model of a Computer-Controlled
Heating System

We will now simulate the step response of the system in (2.81). But before
simulating in MATLAB, we need to establish numbers to use for R and C,
and this requires a few steps.
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First, there are some values that we will assume for this situation: The
MATLAB code shown below provides the step response for both the
continuous-time and discrete-time transfer functions of the system for side
by side comparison.

% heating.m

close all
clear all

% Define constants for the system
ts ¼ 10; % sampling interval in seconds
R ¼ 0.0242; % Ks/J
C ¼ 44100; % J/K
a ¼ exp(-ts/(R*C));

% Transfer function of continuous system
num ¼ 1/C;
den ¼ [1, 1/(R*C)];
Gp ¼ tf(num,den)
subplot(2,1,1)
step(Gp,7000)
title('Step Response of Continuous System')

% Transfer function of discrete system
num ¼ R*(1-a);
den ¼ [1, -a];
Geq ¼ tf(num,den,ts)
subplot(2,1,2)
step(Geq,7000)
title(['Step Response of Discrete System with Sampling Time of
',num2str(ts),' seconds'])

In the first part of the code, the constants in the system R and C are
defined as those calculated in Table 2.5. The sampling time ts is initially set
to 10 s, and the variable a is defined to simplify entering the transfer function.

The next section of code defines the continuous transfer function from
(2.67). The method used here is exactly that which we have seen in Section
2.3.2.1.

The last section of code defines the discrete transfer function from (2.81).
Here we see the tf command being used similar to the continuous case. The
numerator and denominator of the transfer function must be defined by the
coefficients of z in decreasing powers. In this case, positive powers of z
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are used, and this is the default setting for MATLAB. The only difference
between the definitions of the continuous-time and discrete-time systems is
that the user must specify the sampling time.

Geq ¼ tf(num,den,ts)

The plot resulting from this code is shown in Figure 2.40.
What do these plots tell us? Remembering back to the transfer functions

in (2.67) and (2.76), they are defined as TdðsÞ
QhðsÞ and

TdðzÞ
QhðzÞ, respectively. That is,

temperature over heat in both cases. The step command assumes the input
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Figure 2.40 A comparison of the step response for a continuous-time system (a) and
its discrete-time counterpart (b).

Table 2.5 Parameters for the Heating System

Heat capacity at constant volume of air
at 300 K

cv ¼ 1000 J/(kg K)

Density of air r ¼ 1.225 kg/m3

Room volume V ¼ 3 m � 4 m � 3 m ¼ 36 m3

Mass of air ma ¼ rV ¼ 44.1 kg
Thermal capacity of air in room C [ cvma [ 44100 J/K
Thermal resistance of a brick wall RB ¼ 0.29 m2 K s/J
Area of brick wall A ¼ 12 m2

Absolute thermal resistance of the
brick wall

R [ RB/A [ 0.0242 K s/J
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to the system goes from 0 to 1 at time zero, and in our case, the units of heat
are J/s based on the constants we used. It is worth performing a dimensional
analysis to verify what units we are dealing with and that they are the same
in both systems.

Looking at the continuous case,

TdðsÞ
QhðsÞ ¼

1
C

sþ 1
RC

¼
1�
J =K



1h
Ks=J

i�
J =K



¼ Ks
J

(2.83)

As a result of applying heat to the system in J/s, the output is in K.
Remembering the simplification we performed in the model derivation, Td

represents the difference between the room temperature and the (constant)
outside temperature. Therefore, the step response plot shows us that when
the system has a heat input of 1 J/s, the temperature difference increases
from 0 to approximately 0.025 K in 6500 s.

We see the shape of a first-order system as we expect because of the
highest power of s (or z) being 1 in the transfer function with no overshoot
or oscillation. Because the system is linear, if we wanted to know the
response to an input of 50 J/s or 0.025 J/s, we simply scale the output
by 50 or 0.025, respectively.

Using the above code, it is relatively easy to see the effects of sampling
time on the output. In the above figure, the sampling time is 10 s. For this
sampling time the continuous and discrete responses look the same. The
reason for this is that 10 s is fast compared to the overall response time of the
system. It takes the system thousands of seconds (over an hour) to reach its
final temperature. Changing the sampling time to 120 s (or 2 min) yields
the plot shown in Figure 2.41. In this case, we see the effects of sampling

82 A Practical Approach to Dynamical Systems for Engineers



in the discrete-time system as it shows a stepwise increase in its response,
but the final value of the amplitude remains the same as its continuous
counterpart.

2.4 STATE-SPACE REPRESENTATION

2.4.1 Overview
So far in this chapter, we have represented systems using their differential or
difference equations and transfer functions. We saw how transfer functions
can be derived from equations of motion and how convenient they were to
use in MATLAB. In this section, we discuss an alternative method:
state-space representation. Using this method, we rearrange the equations
of motion into a specific format using matrices and the state variables of the
system. It is here where we will see that an understanding of linear algebra
will be of great use.

One of the defining characteristics of transfer functions is that they can
only be used to represent linear systems with zero initial conditions. We saw
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Figure 2.41 A comparison of the step response for a continuous-time system (a) and
its discrete-time counterpart (b) with a sampling time of 120 s.
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in the previous example that the transfer function method breaks down
when we try to incorporate nonzero initial conditions. Another charac-
teristic of transfer functions is that they give only the inputeoutput rela-
tionship. For example, in the car suspension model, the transfer function

was X2ðsÞ
RðsÞ , giving us the relationship between the road elevation (input) and

the car body position (output). Although this is ultimately the relationship
that interests us, it gives no indication of the wheel height x1, or
time-changing behavior of either the car body or wheel, _x1; _x2.
State-space models overcome these weaknesses and give us a fuller
picture of the system.

The major characteristics of state-space representation are
• It provides modeling for linear and nonlinear systems and thus can

model real-world systems more accurately than transfer functions.
• It gives access to internal behavior and not only inputeoutput behavior.
• There are several well-known standard forms, and many techniques

have been developed to design controllers based on these standard
forms.

• It easily models multiple input, multiple output (MIMO) systems.
• A state-space model of a given system is not unique; many equivalent

models exist, and one is free to choose the one that is most convenient
or useful for a given circumstance.
The general form for a linear state-space model is

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þDuðtÞ (2.84)

for continuous-time systems or

x½nþ 1� ¼ Ax½n� þ Bu½n�
y½n� ¼ Cx½n� þDu½n� (2.85)

for discrete-time systems.
In both (2.84) and (2.85), the first equation is called the state equation,

and the second equation is called the output equation. Also, the con-
ventions in Table 2.6 are used.

For single-input, single-output (SISO) systems, the B and C matrices
reduce to vectors of size Nx1, and 1xN, respectively, and are denoted by b
and c. Also, the D matrix reduces to a scalar d.

Also, the models in (2.84) and (2.85) are for a time-invariant system. For
time-varying systems, the matrix elements become functions of time A(t),
B(t), C(t), and D(t).
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Table 2.6 Definitions of the State-Space Matrices

x ¼

2
6664
x1
x2
«

xN

3
7775

State vector: a vector containing the N states
of the Nth order system*

u ¼

2
6664
u1
u2
«

up

3
7775

Input vector: a vector containing the p inputs
of the system

y ¼

2
6664
y1
y2
«

yq

3
7775

Output vector: a vector containing the q
outputs of the system

A ¼

2
6664
a11 a12 . a1N
a21 a22 . a2N
« « 1 «

aN1 aN2 . aNN

3
7775

State matrix: an N�N matrix relating the
states to their derivatives (continuous) or next
value (discrete)

B ¼

2
6664
b11 b12 . b1p
b21 b22 . b2p
« « 1 «

bN1 bN2 . bNp

3
7775

Input matrix: an N�p matrix relating the
inputs to the derivatives of the states

C ¼

2
6664
c11 c12 . c1N
c21 c22 . c2N
« « 1 «

cq1 cq2 . cqN

3
7775

Output matrix: a q�N matrix relating the
states to the outputs

D ¼

2
6664
d11 d12 . d1p
d21 d22 . d2p
« « 1 «

dq1 dq2 . dqp

3
7775

Feedthrough matrix: a q�p matrix relating
the input and output (so called because it
indicates how the input feeds directly
through the system to the output)

*Although it may be more typical to denote the order of a system by n, the upper case N is
used to avoid confusion with the discrete-time variable.
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2.4.2 What Is a State?
So far in this section, the term “state” has been used several times without
definition. State can mean many things depending on the circumstances;
some familiar notions of state include governmental communities (e.g.,
Rhode Island) in a political context and solid, liquid, or gas in a chemistry
context. For our purposes in discussing dynamical systems, the state refers
to an abstract notion of where the system is located in a geometrical
space.

A solid, useful definition of state is hard to come by. Many books simply
introduce the notion through the dynamical equations of the system and
call the variables in the equations the “state variables” because they describe
the state of the system. Such introductions can be frustrating because they
are vague and do not indicate where they come from or how to choose
them. The vagueness is exactly what makes state-space modeling so
powerful. We can choose the states however it is most appropriate for us.
And we can transform one model into another one that is equivalent but in
a more usable form. The state of a system is unique, but how we represent
it is not.

It is often useful to start with a physical system in which the states are
straightforward. One useful explanation of states comes from Cannon
(2003). He explains:

What we mean by the state of a mechanical system may be introduced by analogy
with configuration: The state of a system is often defined by an independent set of
position coordinates, plus their derivatives. Thus, state implies configuration plus
velocity. Configuration tells only where the system is, but state tells us both where
it is and how fast (and in what direction) it is going; and as expressed by Professor
L. Sadeh, “the state of a system at a given time, plus its differential equations of
motion and inputs, will determine its configuration for all future time.”

Let’s see how this relates to the car suspension system, whose equations
of motion are repeated below. There are two masses in the system and thus
two position coordinates x1 and x2 giving us the system configuration.
These coordinates, together with their derivatives _x1 and _x2, give the
complete information about how the system will evolve from a given
starting point (the initial state x1ð0Þ; _x1ð0Þ; x2ð0Þ; _x2ð0Þ)

€x1ðtÞ þ b
m1

_x1ðtÞ þ k1 þ k2
m1

x1ðtÞ � b
m1

_x2ðtÞ � k2
m1

x2ðtÞ ¼ k1
m1

rðtÞ

€x2ðtÞ þ b
m2

_x2ðtÞ þ k2
m2

x2ðtÞ � b
m2

_x1ðtÞ � k2
m2

x1ðtÞ ¼ 0

(2.86)
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The state-space model for this system was derived in MATLAB
Example 2.2.1.1 and was given as

_y1 ¼ � b
m1

y1 � k1 þ k2
m1

y2 þ b
m1

y3 þ k2
m1

y4 þ k1
m1

r

_y2 ¼ y1

_y3 ¼ � b
m2

y3 � k2
m2

y4 þ b
m2

y1 þ k2
m2

y2

y4 ¼ y3

(2.87)

where

y1 ¼ _x1
y2 ¼ x1
y3 ¼ _x2
y4 ¼ x2

(2.88)

Now to put this system model into the form given by (2.84), we will do
some rearranging and possibly add confusion because of multiple meanings
of the symbol x. These conversions are given in Table 2.7.

Two more changes need to be made. We will also choose an output y.
In this case, the car body height, now known as x4, will be used. Finally, the
input r to the system will be denoted by u.

Rewriting (2.87) with the new variable definitions gives

_x1 ¼ � b
m1

x1 � k1 þ k2
m1

x2 þ b
m1

x3 þ k2
m1

x4 þ k1
m1

u

_x2 ¼ x1

_x3 ¼ � b
m2

x3 � k2
m2

x4 þ b
m2

x1 þ k2
m2

x2

_x4 ¼ x3

(2.89)

Table 2.7 Explanation of the State Variables
State
Symbol in
(2.88)

New State Symbol
to Use in (2.84)

Variable in Original
Equations (2.86) Physical Meaning

y1 x1 _x1 Wheel height
rate of change

y2 x2 x1 Wheel height
y3 x3 _x2 Car body height

rate of change
y4 x4 x2 Car body height
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Rearranging into matrix form gives the state-space model for the
system.2
666666666664

_x1

_x2

_x3

_x4

3
777777777775

¼

2
66666666664

� b
m1

� k1 þ k2
m1

b
m1

k2
m1

1 0 0 0

b
m2

k2
m2

� b
m2

� k2
m2

0 0 1 0

3
777777777775

2
66666666664

x1

x2

x3

x4

3
777777777775

þ

2
66666666664

k1
m1

0

0

0

3
777777777775

u

y ¼ ½ 0 0 0 1 �

2
666666666664

x1

x2

x3

x4

3
777777777775

þ ½0�u

(2.90)

Thus, the matrices are

A ¼

2
666666666664

� b
m1

� k1 þ k2
m1

b
m1

k2
m1

1 0 0 0

b
m2

k2
m2

� b
m2

� k2
m2

0 0 1 0

3
777777777775

b ¼

2
6666666666664

k1
m1

0

0

0

3
777777777775

c ¼ ½ 0 0 0 1 � d ¼ ½0�

2.4.2.1 MATLAB Example: State-Space Model of the Car Suspension
The MATLAB code below shows how to enter the state-space model
(2.90) using the ss command.
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% statespace.m

close all
clear all

% Define the model parameters
m1 ¼ 70; % kg
m2 ¼ 350; % kg
k1 ¼ 176000; % N/m
k2 ¼ 27000; % N/m
b ¼ 2500; % Ns/m

% Define the A,B,C,D matrices
A ¼ [-b/m1, -(k1þk2)/m1, b/m1, k2/m1; 1, 0, 0, 0; b/m2, k2/m2, -b/m2,

-k2/m2; 0, 0, 1, 0];
B ¼ [k1/m1; 0; 0; 0];
C ¼ [0, 0, 0, 1];
D ¼ [0];

sys ¼ ss(A,B,C,D)
step(sys)

Entering the state-space model is as easy, if not easier, than entering the
transfer function. One simply has to directly create the A, B, C, and D
matrices, separating elements in a row by a comma7 and separating rows by
semicolons. Then the ss command is used with those matrices as argu-
ments. In the code above, the line defining the system does not have a
semicolon to suppress the output, so the command window shows the
following information when the simulation is run.

sys ¼

a ¼
x1 x2 x3 x4

x1 -35.71 -2900 35.71 385.7
x2 1 0 0 0
x3 7.143 77.14 -7.143 -77.14
x4 0 0 1 0

7 In MATLAB, row elements may be separated by either a comma or a space. Commas are used
here to make the element separation more clear.
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b ¼
u1

x1 2514
x2 0
x3 0
x4 0

c ¼
x1 x2 x3 x4

y1 0 0 0 1

d ¼
u1

y1 0

Continuous-time state space model.

Checking the result is always a good idea to make sure the matrices
were entered correctly.

The step response plot resulting from the step command is shown in
Figure 2.42. It is identical to the one obtained in MATLAB Example
2.3.2.1 shown in Figure 2.26.

One powerful and relatively simple thing we can do with the state-space
model in MATLAB is to plot the step response of any state. If we wanted to
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Figure 2.42 The step response of the car suspension obtained from the state-space
model.
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do this with transfer functions, we would need to find an expression
relating the input to each output. But with the state-space model, we only
have to modify the C matrix to include whichever state we want as an
output.

Suppose we wish to plot the step response for not only the car body
height but also the wheel height. To do this, we modify the C matrix to be

C ¼
�
0 0 0 1

0 1 0 0

�

Or in MATLAB code

C ¼ [0, 0, 0, 1; 0, 1, 0, 0];

In this case, there are two outputs: the first one corresponding to x4, the
car body height, and the second one corresponding to x2, the wheel height.
The resulting step response plot is shown in Figure 2.43.

The state-space model in (2.90) is not unique. In fact, there are infi-
nitely many models one could develop, although they would not all be
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Figure 2.43 The step response of the car suspension showing two states, the car body
height �4 (a) and the wheel height �2 (b).
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useful. One obvious way to get another representation is to rearrange the
order of the states. For example, we could have let x1 be the car body
height, x2 be the car body height rate of change, and so on. In this case, the
elements of the matrices would be the same, but rows or columns would be
switched. Another way is to use a scale factor such as letting x1 be twice the
car height. Although this latter method is mathematically correct, it may
not make much sense physically.

One way to get another model that may make sense physically is to
choose one of the states to be the difference between the wheel height and
car body height. Perhaps there is a sensor on the car that allows us to
measure this quantity directly, but we cannot measure the wheel height. In
this scenario, redefine the states and denote them by bx as follows.

bx1 ¼ x3 � x1bx2 ¼ x4 � x2bx3 ¼ x3bx4 ¼ x4

(2.91)

Substituting in from (2.89), using x1 ¼ bx3 � bx1 and x2 ¼ bx4 � bx2, and
simplifying gives

_bx1 ¼ _x3 � _x1

¼ � b
m2

x3 � k2
m2

x4 þ b
m2

x1 þ k2
m2

x2

�
�
� b
m1

x1 � k1 þ k2
m1

x2 þ b
m1

x3 þ k2
m1

x4 þ k1
m1

u

�

¼ �
�

b
m1

þ b
m2

�
bx1 �

�
k1 þ k2
m1

þ k2
m2

�
bx2 þ k1

m1
bx4 � k1

m1
u

(2.92)

_bx2 ¼ _x4 � _x2
¼ x3 � x1
¼ bx1

(2.93)

_bx3 ¼ _x3

¼ � b
m2

x3 � k2
m2

x4 þ b
m2

x1 þ k2
m2

x2

¼ � b
m2
bx1 � k2

m2
bx2

(2.94)

_bx4 ¼ _x4
¼ x3
¼ bx3

(2.95)
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Finally, the state-space model becomes
2
66666666664

_bx1

_bx2

_bx3

_bx4

3
77777777775
¼

2
66666666664

�
�

b
m1

þ b
m2

�
�
�
k1 þ k2
m1

þ k2
m2

�
0

k1
m1

1 0 0 0

� b
m2

� k2
m2

0 0

0 0 1 0

3
77777777775

2
66666666664

bx1

bx2

bx3

bx4

3
77777777775
þ

2
66666666664

� k1
m1

0

0

0

3
77777777775
u

y ¼ ½ 0 0 0 1 �

2
666666664

bx1

bx2

bx3

bx4

3
777777775
þ ½0�u

(2.96)

2.4.2.2 MATLAB Example: Alternate State-Space Model
of the Car Suspension

To verify that the model in (2.96) is correct, we simulate the system in
MATLAB with the following code.

% statespace_alternate.m

close all
clear all

% Define the model parameters
m1 ¼ 70; % kg
m2 ¼ 350; % kg
k1 ¼ 176000; % N/m
k2 ¼ 27000; % N/m
b ¼ 2500; % Ns/m

% Define the A,B,C,D matrices
A ¼ [-(b/m1þb/m2), -((k1þk2)/m1þk2/m2), 0, k1/m1; 1, 0, 0, 0; -b/m2,

-k2/m2, 0, 0; 0, 0, 1, 0];
B ¼ [-k1/m1; 0; 0; 0];
C ¼ [0, 0, 0, 1;0, 1, 0, 0];
D ¼ [0];

sys ¼ ss(A,B,C,D)
step(sys)
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As in the previous example, we redefine the C matrix to include both
bx4 and bx2 as outputs. The resulting step response plot is shown in
Figure 2.44.

The upper plot in Figure 2.44 is the first output, defined to be bx4 or the
car body height. The lower plot is the second output is defined to be bx2,
the body height minus the wheel height. Looking at the lower plot, notice
that bx2 becomes negative after hitting the bump in the road at time zero.
Does this mean that the wheel travels up and above the car’s body frame?
How is that possible? The answer lies in how we defined each of these
heights. The zero point of each variable was its equilibrium, that is, if the
car is sitting still, these values are zero. Thus, x4 and x2 from the original
model measure how far the body and wheel has varied from these starting
values. The negative value of bx2 means that the wheel has moved up from
its original position more than the car body has, as we expect when the car
hits a bump in the road.

How do we choose states? The car suspension model gives us a nice
example for applying state-space modeling because it provides a physical
example for which we have some intuition. However, we can think of
these models more abstractly and still be able to choose appropriate states.

1.5

1

0.5

0
0.5

0

–0.5

–1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

To
: o

ut
(1

)
To

: o
ut

(2
)

A
m

pl
itu

de

(a)

(b)

Figure 2.44 The step response of the car suspension system with redefined states
(a and b).
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As a general rule, choose states as those things for which you can take a
derivative.

Take, for example, the following system equations. Assume u and v are
the inputs to the system; z1 and z2 are variables; and a1, a2, a3, and b are
constants.

u ¼ a1z1 þ a2 _z2 þ a3ðz1 � vÞ
z1 � z2 ¼ b€z2

(2.97)

How do we go about finding the state-space model for the system? Can
we simply define the states as x1 ¼ z1 and x2 ¼ z2? No, because in the
state-space model, we need to have an expression for the derivatives of the
states in terms of the states and inputs. In this case, _z1 does not show up in
(2.97), so there is no expression for it. The only derivatives are of z2, a first
and second derivative. Therefore, it makes sense to define the states to be

x1 ¼ z2
x2 ¼ _z2

(2.98)

Thus

_x1 ¼ _z2
¼ x2

(2.99)

and

_x2 ¼ €z2

¼ 1
b
z1 � 1

b
z2

¼ 1
b

�
1

a1 þ a3
u� a2

a1 þ a3
_z2 þ a3

a1 þ a3
v

�
� 1
b
z2

¼ � 1
b
x1 � a2

bða1 þ a3Þ x2 þ
1

bða1 þ a3Þ uþ
a3

bða1 þ a3Þ v

(2.100)

The expressions in (2.99) and (2.100) establish the A and B matrices.
To establish c and d, we first need to know what the output of our

system is. If the output is one of the states, then d ¼ 0 and c ¼ ½ 1 0 � or
c ¼ ½ 0 1 �, depending on whether it is the first or second state. However,
the situation may not be so simple, and the output may be some combi-
nation of all states and inputs. For example, suppose the variables z1 and z2
represent voltages in a circuit and we wish to take the output to be one of
the currents, say a1z1. So,

y ¼ a1z1 (2.101)
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How do we express y as a function of x1, x2, u, and v? Or equivalently,
how do we express y as a function of z2, _z2, u, and v? As a first attempt, let
us use the second equation in (2.97) and solve for z1.

z1 ¼ b€z2 þ z2 (2.102)

Then y becomes

y ¼ a1ðb€z2 þ z2Þ (2.103)

However, €z2 is not a state of the system; it is a derivative of a state. We
cannot use (2.97) to express €z2 as a function of the states and inputs and perform
a substitution. Therefore, this is a path that will not lead us to what we need.

Alternatively, let’s start with the first equation in (2.97), solve for z1,
then multiply the result by a1.

z1 ¼ � a2

a1 þ a3
_z2 þ 1

a1 þ a3
uþ a3

a1 þ a3
v

a1z1 ¼ � a1a2

a1 þ a3
_z2 þ a1

a1 þ a3
uþ a1a3

a1 þ a3
v

(2.104)

Therefore, the expression for y becomes a function of the states and
inputs.

y ¼ � a1a2

a1 þ a3
x2 þ a1

a1 þ a3
uþ a1a3

a1 þ a3
v (2.105)

Finally, using (2.99), (2.100), and (2.105), the state-space model for the
system is
2
64

_x1

_x2

3
75 ¼

2
64

0 1

�1
b

� a2

ða1 þ a3Þb

3
75
2
64
x1

x2

3
75þ
2
64

0 0

1
ða1 þ a3Þb

a3

ða1 þ a3Þb

3
75
2
64
u

v

3
75

y ¼
�
0 � a1a2

a1 þ a3

�24 x1

x2

3
5þ

�
a1

a1 þ a3

a1a3

a1 þ a3

�24 u

v

3
5

(2.106)

2.4.2.3 MATLAB Example: System with Nonzero Initial Conditions
In this example, we revisit the circuit shown in Figure 2.31. In deriving the
equations for the system, we saw that it was impossible to obtain a transfer
function if there was an initial charge on the capacitor. Here we will show
how to obtain the system response in MATLAB when there are nonzero
initial conditions.
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There are three basic steps to the procedure.
1. Specify the numerator and denominator of the transfer function.
2. Convert the system to its state-space form using the tf2ss command.
3. Use the lsim command and specify the initial condition as a parameter.

Notice that we are starting with the transfer function because it is given in
(2.44).We could have started with the state-spacemodel and directly gone to
step 3. However, this method allows us to demonstrate how easy the con-
version is from transfer functions to state-space models in MATLAB.

% circuit.m

close all
clear all

% Define constants for the system
R1 ¼ 10000; % Ohms
C1 ¼ 0.1e-6; % Farads

% Define constants for the simulation
vc ¼ 2; % Volts (initial charge of the capacitor)
t_end ¼ 0.02; % seconds
T ¼ 0.0001; % seconds
f ¼ 100; % Hertz

num ¼ 1/(R1*C1);
den ¼ [1 1/(R1*C1)];

[A B C D] ¼ tf2ss(num,den)
sys ¼ ss(A,B,C,D)

t ¼ [0:T:t_end];
u ¼ sin(2*pi*f*t);
x ¼ R1*C1*vc; % Scale factor
lsim(sys,u,t,x)

In the above code, we simulate the system with a sinusoidal input and an
initial capacitor voltage of 2 V. The resulting plot is shown in Figure 2.45.

In the code, first the constants for the system and simulation are defined.
Then the numerator and denominator of the transfer function are defined.
The state-space model is generated in the next two lines of code using the
tf2ss and ss commands.

[A B C D] ¼ tf2ss(num,den)
sys ¼ ss(A,B,C,D)
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The tf2ss command must have two arguments specifying the numer-
ator and denominator; thus, the method previously discussed of defining
s ¼ tf('s') will not work in this scenario. The output of the command is
the four matrices defining the state-space model. Next the ss command
combines these four matrices into a structure defining the system. The
output of the ss command is

sys ¼

a ¼
x1

x1 -1000

b ¼
u1

x1 1

2

1.5

1

0.5

0

–0.5

–1
0 0.002 0.004 0.006 0.008 0.01 0.014 0.016 0.018 0.020.012

Time (s)

A
m

pl
itu

de

Figure 2.45 Response of the circuit with a nonzero initial condition. The circuit input is
the dashed line, and the output is the solid line.
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c ¼
x1

y1 1000

d ¼
u1

y1 0

Continuous-time state space model.

Because the system is first order, the matrices are all 1 � 1.
As discussed earlier, the state-space model for a system is not unique. In

that case, how does MATLAB choose the matrices if there are infinitely
many to choose from? The MATLAB designers decided to use what is
known as controller canonical form. The various canonical forms will be
discussed in more detail in the next section, but in this example, the transfer
function

VcðsÞ
VinðsÞ ¼

1
RC

sþ 1
RC

(2.107)

turns into the following state-space model.

_x ¼ � 1
RC

xþ vin

vc ¼ 1
RC

x

(2.108)

The next three lines of code define the time vector, input vector, and
initial condition for use in the lsim command.

t ¼ [0:T:t_end];
u ¼ sin(2*pi*f*t);
x ¼ R1*C1*vc; % Scale factor

In this case, we are setting an initial condition for the capacitor voltage vc
of 2 V, but the lsim command requires the initial condition of the state x.
Thus, the scale factor of RC must be used.

The final line, lsim(sys,u,t,x), plots the system response for the given
input u, time t, and initial state of the system x. Note that in this example,
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because it is a first-order system, the initial state is a single value. In general,
for an Nth order system, the N initial conditions must be specified in a
vector.

2.4.3 Relationship between Transfer Functions and
State-space Models

The previous MATLAB example shows how to obtain a state-space model
directly from the transfer function using the tf2ss command. Similarly,
there is a command to do the reverse operation, ss2tf, transforming a
model from state-space form to a transfer function. Here and in the next
section, the methods behind these commands are discussed.

Mathematically, there is a straightforward calculation to obtain a transfer
function from a state-space model.

YðsÞ
UðsÞ ¼ cðsI � AÞ�1bþ d (2.109)

In this expression, I is the N�N identity matrix.
As an example, applying (2.109) to the state-space model of the car

suspension (2.90) gives

YðsÞ
UðsÞ ¼ ½ 0 0 0 1 �

0
BBBBBBBBBBBBBB@

s

2
6666666666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7777777777775

�

2
6666666666664

� b
m1

� k1 þ k2
m1

b
m1

k2
m1

1 0 0 0

b
m2

k2
m2

� b
m2

� k2
m2

0 0 1 0

3
77777777777775

1
CCCCCCCCCCCCCCCA

�12
6666666666664

k1
m1

0

0

0

3
7777777777775

¼ ½ 0 0 0 1 �

2
666666666664

sþ b
m1

k1 þ k2
m1

� b
m1

�k2
m1

�1 s 0 0

� b
m2

�k2
m2

sþ b
m2

k2
m2

0 0 �1 s

3
777777777775

�12
666666666664

k1
m1

0

0

0

3
777777777775

¼
�
k1
m1

��
bm1sþ k2m1

m1m2s
4 þ bðm1 þ m2Þs3 þ ðk1m2 þ k2m1 þ k2m2Þs2 þ bk1sþ k1k2

�

(2.110)
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Similarly, applying (2.109) to the alternate state-space model (2.96) gives

YðsÞ
UðsÞ ¼ ½ 0 0 0 1 �

0
BBBBBBBBBBBBBB@

s

2
6666666666664
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0 1 0 0

0 0 1 0

0 0 0 1

3
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2
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�
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�
�
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m1
þ k2
m2

�
0

k1
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� b
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3
7777777777775

1
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m1

�1 s 0 0

b
m2

k2
m2

s 0

0 0 �1 s

3
77777777777775

�12
66666666666664

� k1
m1

0

0

0

3
77777777777775

¼
�
� k1
m1

��
� bm1sþ k2m1

m1m2s
4 þ bðm1 þ m2Þs3 þ ðk1m2 þ k2m1 þ k2m2Þs2 þ bk1sþ k1k2

�

(2.111)

That the final results in (2.110) and (2.111) are equal points to an
important fact. The transfer function for a given system is unique even
though the state-space model is not.

Note that the lower case version of the b, c, and d matrices are used in
(2.109). The reason for this is that by definition, the transfer function relates
one input to one output. If there are multiple inputs or multiple outputs to
deal with, then a matrix form of the transfer function, denoted by H(s), is
available.

HðsÞ ¼ CðsI � AÞ�1BþD (2.112)

where

HðsÞ ¼

2
6664
H11ðsÞ H12ðsÞ / H1pðsÞ
H21ðsÞ H22ðsÞ / H2pðsÞ

« « 1 «

Hq1ðsÞ Hq2 / HqpðsÞ

3
7775 (2.113)

and Hij(s) is the transfer function from the jth input to the ith output.

System Modeling 101



2.4.3.1 MATLAB Example: Converting a State-Space Model
to a Transfer Function for a Hanging Crane

The MATLAB command for converting a state-space model to
transfer function form is ss2tf. In this example, the model of the hanging
crane8 is used, as shown in Figure 2.46. In this system, the input is the
voltage Va applied to the motor, whose rotational motion is converted to
linear motion of the cart, which in turn causes the pendulum to swing.
The cart position is denoted by x and the pendulum angle by q. The
constants for the system are Kt, the torque constant; Ke, the electric
constant; R, the coil resistance; r, the radius of the wheel; b, the friction of
the cart; mc, the mass of the cart; I, the inertia of the pendulum; l, the
length of the pendulum; and mp, the mass of the pendulum. It is assumed
the inductance of the motor coil, motor inertia, motor friction, and
pendulum friction are small enough to be ignored.

The dynamic equations for the system are

ðI þ mpl
2Þ€qþ mpgl sin q ¼ �mpl€x cos q

ðmc þ mpÞ€xþ b _xþ mpl€q cos q� mpl _q
2
sin q ¼ Kt

rR

�
Va � Ke

r
_x

� (2.114)

Va
+
−

x

Kt, Ke, R, r

b, mc

θ I, l, mp

Figure 2.46 Model for the hanging crane.

8 The model here is adopted from Franklin, Powell, and Emami-Naeini (2010).
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Converting this model to state-space form and defining the A, B, C, and
D matrices is impossible because the system is nonlinear. The A matrix
multiplies the x vector, and there is no means of taking a sine or cosine of
a state in that scenario as is needed in this system. Fortunately, we can
linearize (2.114) so that the matrices for state-space representation can
be obtained. (Linearization and nonlinear modeling are discussed in
Chapter 4.) Linearizing about q ¼ 0 and _q ¼ 0 yields

ðI þ mpl
2Þ€qþ mpglq ¼ �mpl€x

ðmc þ mpÞ€xþ b _xþ mpl€q ¼ Kt

rR

�
Va � Ke

r
_x

� (2.115)

Solving the first equation in (2.115) for €q, plugging the result into the
second equation, and solving for €x gives

€x ¼
Kt
rR ðI þ mpl2Þ

Iðmc þ mpÞ þ mcmpl2
Va �

�
KtKe
r2R þ b

�ðI þ mpl2Þ
Iðmc þ mpÞ þ mcmpl2

_x

� m2
p l
2

Iðmc þ mpÞ þ mcmpl2
q (2.116)

Similarly, solving the first equation in (2.115) for €x, plugging the results
into the second equation, and solving for €q gives

€q ¼ �
Kt
rR mpl

ðmc þ mpÞI þ mcmpl2
Va � ðmc þ mpÞmpgl

ðmc þ mpÞI þ mcmpl2
q

þ
�
KtKe
r2R þ b

�ðmplÞ
ðmc þ mpÞI þ mcmpl2

_x (2.117)

Choosing the states to be

x1 ¼ x
x2 ¼ _x
x3 ¼ q

x4 ¼ _q

(2.118)

and the outputs to be

y1 ¼ x

y2 ¼ q
(2.119)
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gives the state-space model
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(2.120)

The MATLAB code below generates the state-space model and con-
verts it to transfer function form.

% hanging_crane.m

close all
clear all

Kt ¼ 5.9e-3; % Nm/A
Ke ¼ 5.9e-3;
r ¼ 0.02; % m
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R ¼ 10; % Ohms
b ¼ 0.1; % Ns/m
I ¼ 0.005; % kg m^2
mc ¼ 0.5; % kg
mp ¼ 0.03; % kg
l ¼ 0.1; % m
g ¼ 9.8; % m/s^2

d1 ¼ I*(mcþmp)þmc*mp*l^2;
A¼[0,1,0,0;0,-(Kt*Ke/(r^2*R)þb)*(Iþmp*l^2)/d1,-mp^2*l^2/d1,0;0,0,
0, 1; 0, -(Kt*Ke/(r^2*R)þb)*(Iþmp*l^2)/d1, -(mcþmp)*mp*g*l/d1, 0];
B ¼ [0; Kt/(r*R)*(Iþmp*l^2)/d1; 0; -Kt/(r*R)*mp*l/d1];
C ¼ [1, 0, 0, 0; 0, 0, 1, 0];
D ¼ [0; 0];

[num,den] ¼ ss2tf(A,B,C,D)

tf1 ¼ tf(num(1,:),den)
tf2 ¼ tf(num(2,:),den)

subplot(2,1,1), step(tf1,60), ylabel('Cart Position (m)')
subplot(2,1,2), step(tf2,60), ylabel('Pendulum Angle (rad)')

In the above code, after initialization of all the constants, the A, B, C, and
D matrices are defined. The variable d1 is used to hold the denominator of
several matrix entries, simplifying the code.

Next, the ss2tf command is used to obtain the transfer function. There
are a few items to note about this command. First, it takes the A, B, C, and
D matrices as its arguments rather than the state-space model as generated
by the ss command. Similarly, it returns the numerator and denominator
coefficients of the transfer function rather than the transfer function model
as generated by the tf command. Finally, the numerator vector returned is
of appropriate size, meaning the numerator has as many rows as outputs.
The result of this command is

num ¼
0 0 0.0558 -0.0000 0.3108
0 0 -0.0316 -0.0180 0.0000

den ¼
1.0000 0.2058 5.5650 1.1444 0

In the next two lines, the tf command is used to generate two separate
transfer functions: one relating the cart position (state x1) to the voltage
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applied and the other relating the pendulum angle (state x3) to the voltage
applied. The two transfer functions returned are

tf1 ¼

0.05584 s^2 - 3.72e-17 s þ 0.3108
————————————————————————————————————

s^4 þ 0.2058 s^3 þ 5.565 s^2 þ 1.144 s

Continuous-time transfer function.

tf2 ¼

-0.03161 s^2 - 0.01799 s þ 1.049e-17
————————————————————————————————————

s^4 þ 0.2058 s^3 þ 5.565 s^2 þ 1.144 s

Continuous-time transfer function.

The final two lines of code plot and label the step response of the system
for 60 seconds. The resulting plot is shown in Figure 2.47.
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Figure 2.47 The response of the hanging crane to a 1 V input signal.
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As shown in the figure, the cart position increases linearly (after an initial
transient) and will continue increasing as long as the voltage is applied. The
pendulum angle becomes negative and starts to oscillate around an offset.
Because we assumed a frictionless pendulum, this oscillation will continue,
and the average angle will remain at a constant, as we expect the pendulum
to behave when the cart is moving at a constant speed.

To obtain a state-space model from a transfer function, knowing that
state-space representation is not unique (there are infinitely many ways to
represent a system), we have options for which approach to take. These
options are discussed in the next section.

There is one final note to make before concluding this section. We have
been focusing on continuous-time systems in the examples and MATLAB
code. Discrete-time systems are treated in the same manner, except z is used
in place of s and x[n þ 1] is used in place of _x.

2.4.4 Canonical Forms
As stated earlier, there are infinitely many ways to represent a system in
state-space form. However, not all of them are equally useful. A few
state-space representations are used more often because they reveal certain
features of the system or put it in a form that makes it easier to perform
certain tasks, such as designing controllers for the system. These particular
representations are called canonical forms. In this section, we will
discuss a number of these forms: controllable, observable, phase variable,
modal (or diagonal), and Jordan. Unless otherwise noted, in discussing
these forms, we start with the SISO system equations

dNy
dtN

þ a1
dN�1y
dtN�1

þ/þ aN�1
dy
dt

þ aNy ¼ b0
dNu
dtN

þ b1
dN�1u
dtN�1

þ/

þ bN�1
du
dt

þ bNu
(2.121)

and the resulting transfer function

YðsÞ
UðsÞ ¼

b0sN þ b1sN�1 þ/þ bN�1sþ bN
sN þ a1sN�1 þ/þ aN�1sþ aN

(2.122)

It is assumed that the system is proper, that is, the highest power of s in
the numerator is not greater than the highest power of s in the denomi-
nator. This is a characteristic of real-world, physical systems.
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2.4.4.1 Controllable Canonical Form
Controllable canonical form is useful in analyzing and designing con-
trol systems because this form guarantees controllability. A system is
controllable if it can move from any state to any other state in finite time.
A controllable system can be made to follow any trajectory the designer
desires.
2
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«
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3
777777777775

þ ½b0�u

(2.123)

To see where this form comes from, let X(s) be defined as

XðsÞ ¼ 1
sN þ a1sN�1 þ/þ aN�1sþ aN

UðsÞ (2.124)

Then

YðsÞ ¼ ðb0sN þ b1sN�1 þ/þ bN�1sþ bNÞXðsÞ (2.125)

Using the differentiation property of the Laplace transform, converting
(2.124) and (2.125) into the time domain gives

dNx
dtN

þ a1
dN�1x
dtN�1

þ/þ aN�1
dx
dt

þ aNx ¼ u (2.126)
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and

y ¼ b0
dNx
dtN

þ b1
dN�1x
dtN�1

þ/þ bN�1
dx
dt

þ bNx (2.127)

Finally, define the states to be x and its derivatives

xi ¼ di�1x
dti�1

(2.128)

where i ¼ 1, ., N. Solving for _xN using (2.126) gives the state equation in
(2.123). The output equation is obtained using (2.127) and substituting _xN
for dNx

dtN
to get

y ¼ b0ð�aNx1 � aN�1x2 �/� a2xN�1 � a1xN þ uÞ þ b1xN
þ b2xN�1 þ/þ bN�1x2 þ bNx1

(2.129)

Rearranging (2.129) gives the output equation in (2.123).

2.4.4.2 Observable Canonical Form
Observable canonical form is also useful in analyzing and designing control
systems because this form guarantees observability. A system is observable if
all its states can be determined by the output. Observability is useful because
it means the initial condition of a system can be back calculated from what
can be physically measured.2
66666666666664

_x1

_x2

«

_xN�1

_xN

3
77777777777775

¼

2
66666666666664

0 0 / 0 �aN

1 0 / 0 �aN�1

« « 1 « «

0 0 / 0 �a2

0 0 / 1 �a1

3
77777777777775

2
66666666666664

x1

x2

«

xN�1

xN

3
77777777777775

þ

2
66666666666664

bN � aNb0

bN�1 � aN�1b0

«

b2 � a2b0

b1 � a1b0

3
77777777777775

u

y ¼ ½ 0 0 / 0 1 �

2
66666666664

x1

x2

«

xN�1

xN

3
77777777775
þ ½b0�u

(2.130)
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Notice that observable canonical form can be obtained from the
controllable canonical form simply by transposing the A matrix and by
transposing and swapping the b and c vectors.

2.4.4.3 Phase Variable Canonical Form
2
666666666666664

_x1

_x2

«

_xN�1

_xN

3
777777777777775

¼

2
666666666666664

0 1 0 / 0

0 0 1 / 0

« « « 1 «

0 0 0 / 1

�aN �aN�1 �aN�2 / �a1

3
777777777777775

2
666666666666664

x1

x2

«

xN�1

xN

3
777777777777775

þ

2
666666666666664

0

0

«

0

k

3
777777777777775

u

y ¼ ½ 1 0 / 0 0 �

2
66666666664

x1

x2

«

xN�1

xN

3
77777777775
þ ½0�u

(2.131)

Phase variable canonical form is a special case of controllable canonical
form and assumes the system has form

dNy
dtN

þ a1
dN�1y
dtN�1

þ/þ aN�1
dy
dt

þ aNy ¼ ku (2.132)

and corresponding transfer function

YðsÞ
UðsÞ ¼

k
sN þ a1sN�1 þ/þ aN�1sþ aN

(2.133)

2.4.4.4 Modal (or Diagonal) Canonical Form
Modal canonical form allows one to immediately identify the poles of the
system (i.e., the roots of the denominator). Poles of the system play a large
part in determining the stability of a system as discussed in Section 3.4.
Modal canonical form assumes the poles are distinct. Jordan canonical form
(discussed in the following section) allows for repeated poles.
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666666666666664

_x1

_x2

«

_xN�1

_xN

3
777777777777775

¼

2
666666666666664

�p1 0 / 0 0

0 �p2 / 0 0

« « 1 « «

0 0 / �pN�1 0

0 0 / 0 �pN

3
777777777777775

2
666666666666664

x1

x2

«

xN�1

xN

3
777777777777775

þ

2
666666666666664

1

1

«

1

1

3
777777777777775

u

y ¼ ½ c1 c2 / cN�1 cN �

2
666666666664

x1

x2

«

xN�1

xN

3
777777777775

þ ½b0�u

(2.134)

Modal canonical form assumes that the transfer function can be written as

YðsÞ
UðsÞ ¼ b0 þ c1

sþ p1
þ c2
sþ p2

þ/þ cN�1

sþ pN�1
þ cN
sþ pN

(2.135)

To obtain the canonical form, write the output as

YðsÞ ¼ b0UðsÞ þ c1
sþ p1

UðsÞ þ c2
sþ p2

UðsÞ þ/þ cN�1

sþ pN�1
UðsÞ

þ cN
sþ pN

UðsÞ
(2.136)

and define the states to be

XiðsÞ ¼ 1
sþ pi

UðsÞ (2.137)

for i ¼ 1,., N. In the time domain, the expression becomes

dxi
dt

þ pixi ¼ u (2.138)

Thus, the result is the state-space representation in (2.134).
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2.4.4.5 Jordan Canonical Form
As with modal canonical form, Jordan canonical form allows one to easily
identify the poles of the system because they are arranged along the
diagonal of the A matrix. The difference between them is that this form
accommodates repeated poles.
2
6666666666666666666666666666664

_x1

_x2

«

_xr�1

_xr

_xrþ1

_xrþ2

«

_xN�1

_xN

3
7777777777777777777777777777775

¼

2
6666666666666666666666666666664

�p1 1 / 0 0 0 0 / 0 0

0 �p1 / 0 0 0 0 / 0 0

« « 1 « « « « 1 « «

0 0 / �p1 1 0 0 / 0 0

0 0 / 0 �p1 0 0 / 0 0

0 0 / 0 0 �prþ1 0 / 0 0

0 0 / 0 0 0 �prþ2 / 0 0

« « 1 « « « « 1 « «

0 0 / 0 0 0 0 / �pN�1 0

0 0 / 0 0 0 0 / 0 �pN

3
7777777777777777777777777777775

2
6666666666666666666666666666664

x1

x2

«

xr�1

xr

xrþ1

xrþ2

«

xN�1

xN

3
7777777777777777777777777777775

þ

2
6666666666666666666666666666664

0

0

«

0

1

1

1

«

1

1

3
7777777777777777777777777777775

u

y ¼ ½ c1r c1r�1 / c12 c11 crþ1 crþ2 / cN�1 cN �

2
666666666666666666666666666664

x1

x2

«

xr�1

xr

xrþ1

xrþ2

«

xN�1

xN

3
777777777777777777777777777775

þ ½b0�u

(2.139)

Jordan canonical form assumes the transfer function can be rearranged as

YðsÞ
UðsÞ ¼

b0s
N þ b1s

N�1 þ/þ bN�1sþ bN
ðsþ p1Þrðsþ prþ1Þ/ðsþ pNÞ

¼ b0 þ c11
sþ p1

þ c12
ðsþ p1Þ2

þ c1r
ðsþ p1Þr þ

crþ1

sþ prþ1
þ/þ cN

sþ pN
(2.140)
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2.4.4.6 Chained Form2
6666664

_x1
_x2
_x3
«

_xN�1

_xN

3
7777775
¼

2
6666664

1
0
x2
«

xN�2

xN�1

3
7777775
u1 þ

2
6666664

0
1
0
«
0
0

3
7777775
u2 (2.141)

This form is known as (2,N) chained form because it has two inputs and
N states. It differs from the previous canonical forms in that it does not use
A, B, C, and D matrices and can be used to model nonlinear systems.

2.4.4.7 Application Examples
Let us now look at the various canonical forms in the context of system
examples. First we return to the transfer function of the car suspension
system, rearranged in the form of (2.122).

YðsÞ
UðsÞ ¼

bk1
m1m2

sþ k1k2
m1m2

s4 þ
�

b
m1
þ b

m2

�
s3 þ

�
k1þk2
m1

þ k2
m2

�
s2 þ bk1

m1m2
sþ k1k2

m1m2

(2.142)

The controllable canonical form of the state-space model is
2
66666666666664

_x1

_x2

_x3

_x4

3
77777777777775

¼

2
66666666666664

0 1 0 0

0 0 1 0

0 0 0 1

� k1k2
m1m2

� bk1
m1m2

�
�
k1 þ k2
m1

þ k2
m2

�
�
�

b
m1

þ b
m2

�

3
77777777777775

2
6666666666664

x1

x2

x3

x4

3
7777777777775

þ

2
6666666666664

0

0

0

1

3
7777777777775

u

y ¼
�
k1k2
m1m2

bk1
m1m2

0 0

�
2
6666664

x1

x2

x3

x4

3
7777775
þ ½0�u

(2.143)
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The observable canonical form of the state-space model is

2
6666666666666666666664

_x1

_x2

_x3

_x4

3
7777777777777777777775

¼

2
6666666666666666666666664

0 0 0 � k1k2
m1m2

1 0 0 � bk1
m1m2

0 1 0 �
�
k1 þ k2
m1

þ k2
m2

�

0 0 1 �
�

b
m1

þ b
m2

�

3
7777777777777777777777775

2
6666666666666666666664

x1

x2

x3

x4

3
7777777777777777777775

þ

2
6666666666666666666666664

k1k2
m1m2

bk1
m1m2

0

0

3
7777777777777777777777775

u

y ¼ ½ 0 0 0 1 �

2
666666666666664

x1

x2

x3

x4

3
777777777777775

þ ½0�u

(2.144)

Now let us consider a second-order system and return to the pendulum
model introduced earlier in the chapter (see Figure 2.19). However, here
we will include a torque input u around the axis of rotation in the same
direction as q. With this added input, the system equation becomes

u� mgl sin q� b _q ¼ ml2€q (2.145)

Using sin q z q for small values of q, the linear equation is

u� mglq� b _q ¼ ml2€q (2.146)
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The transfer function of this system taking q to be the output gives

QðsÞ
UðsÞ ¼

1
ml2

s2 þ b
ml2 sþ g

l

(2.147)

The controllable canonical form of the pendulum state-space model is
2
664

_x1

_x2

3
775 ¼

2
664

0 1

� g
l

� b
ml2

3
775
2
664
x1

x2

3
775þ

2
664
0

1

3
775u

y ¼
�

1
ml2

0

�" x1
x2

#
þ ½0�u

(2.148)

What do the states x1 and x2 represent? In the case of the car sus-
pension, the states had no real-world meaning. They were simply a string
of integrated variables. In this case, however, they are related to the angle
of the pendulum by a simple relationship. We know the output of the
system is the angle q. Combining this fact with the output equation of
(2.148) gives

y ¼ 1
ml2

x1 ¼ q (2.149)

Therefore,

x1 ¼ ml2q

x2 ¼ ml2 _q
(2.150)

are simply scaled versions of the angle and its derivative.
Observable canonical form is obtained by transposing the A matrix and

transposing and swapping the b and c vectors.

2
664

_x1

_x2

3
775 ¼

2
6664
0 � g

l

1 � b
ml2

3
7775
2
64
x1

x2

3
75þ

2
664

1
ml2

0

3
775u

y ¼ ½ 0 1 �
"
x1

x2

#
þ ½0�u

(2.151)
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In this case, the states are

x2 ¼ q

x1 ¼ _qþ b
ml2

q
(2.152)

The diagonal canonical form can be obtained after first applying partial
fraction expansion to the transfer function.

QðsÞ
UðsÞ ¼

1

ml2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð b
ml2Þ2�4 g

l

q

sþ
�

b
2ml2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b

2ml2

�2 � g
l

q �þ
� 1

ml2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð b
ml2Þ2�4 g

l

q

sþ
�

b
2ml2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b

2ml2

�2 � g
l

q � (2.153)

Then the state-space model becomes
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b
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� 4
g
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ml2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b
ml2

�2

� 4
g
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s
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775
2
4 x1
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3
5þ ½0�u

(2.154)

Note that (2.154) is the diagonal form of the state-space model and
assumes that the transfer function denominator has distinct roots. In other
words, the system is overdamped or underdamped but not critically dam-
ped, meaning

�
b
ml2

�2

� 4
g
l
s 0 (2.155)

Also note that in the underdamped case, where the denominator has
complex roots, the elements of the matrices are complex. We will discuss
the meaning of complex matrices in the next section, which covers ei-
genvalues and eigenvectors.
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For the critically damped system, where equality holds in (2.155), the
state-space model can be expressed in Jordan canonical form. The transfer
function becomes

QðsÞ
UðsÞ ¼

1
ml2�

sþ b
2ml2

�2 (2.156)

Then the Jordan canonical form of the state-space model is

2
664

_x1

_x2

3
775 ¼

2
66664
� b
2ml2

1

0 � b
2ml2

3
77775

2
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x1

x2

3
75þ

2
64
0

1

3
75u

y ¼
�

1
ml2

0

�" x1
x2

#
þ ½0�u

(2.157)

The states are related to the pendulum angle by

x1 ¼ ml2q

x2 ¼ ml2 _qþ b
2
q

(2.158)

The modal and Jordan canonical forms are directly related to the
eigenvalues of the system; we will discuss this connection in the next
section.

2.4.5 Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors are a familiar topic to anyone who has studied
linear algebra and matrices. Recall the definition

Abx ¼ lbx (2.159)

where A is an N�N matrix, bx is an N�1 vector, and l is a scalar. In
(2.159), l is an eigenvalue of A, and bx is an eigenvector of A. The ei-
genvalues of A are found by solving the characteristic equation of A
defined as

detðlI � AÞ ¼ 0 (2.160)
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where I is the N�N identity matrix. The eigenvector associated with an
eigenvalue is found by solving the equation

ðA� lIÞbx ¼ 0 (2.161)

which is simply a rearrangement of (2.159).
The procedure for finding eigenvalues and eigenvectors is often taught

and drilled during a course in linear algebra, and therefore the process
becomes ingrained. However, what do these concepts mean in the context
of dynamical systems? This question is the topic of this section.

The first thing to note is that the use of the same matrix notation A in
(2.159) and in the state-space models is not a coincidence. The expression
in (2.159) can be interpreted as describing the evolution of the system when
there is no input (u ¼ 0). In this view,

_x ¼ Abx
¼ lbx (2.162)

means that the direction in which the system is moving ( _x), is in the same
direction it is already pointed.

Let’s look at these concepts in the context of an example and revisit
phase plots to aid in understanding. Recall the linearized model for the
pendulum with no input torque.

�mglq� b _q ¼ ml2€q (2.163)

The resulting state-space representation is2
6664
_q

€q

3
7775 ¼

2
664

0 1

� g
l

� b
ml2

3
775
2
664
q

_q

3
775 (2.164)

Note that we are only investigating the state of the system in the
absence of inputs. Thus, matrix b ¼ 0, and we do not need to consider the c
and d matrices in the output equation of the state-space model.

Now consider three cases: overdamped, critically damped, and
underdamped corresponding to distinct real, repeated real, and complex
conjugate solutions of the characteristic equation. For all three cases, we
will use MATLAB to help visualize the behavior of the system.
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2.4.5.1 MATLAB Example: Eigenvalues and Eigenvectors
of the Pendulum

For the overdamped case, let the constants in the system be m ¼ 0.1, l ¼ 1,
b ¼ 1, and g ¼ 9.8. The resulting model is2

4 _q

€q

3
5 ¼

"
0 1

�9:8 �10

#2
4 q

_q

3
5 (2.165)

The eigenvalues are found using

jlI � Aj ¼ 0










2
4 l 0

0 l

3
5�

2
4 0 1

�9:8 �10

3
5








¼ 0








l �1

9:8 lþ 10







 ¼ 0

lðlþ 10Þ þ 9:8 ¼ 0

(2.166)

Solving (2.166) gives the two distinct real eigenvalues for the system.

l1 ¼ �1:1013

l2 ¼ �8:8987
(2.167)

The eigenvectors of the system are found by solving0
@
2
4 0 1

�9:8 �10

3
5� l

2
4 1 0

0 1

3
5
1
A
2
4bx1

bx2

3
5 ¼ 0

2
4 �l 1

�9:8 �10� l

3
5
2
4 bx1

bx2

3
5 ¼ 0

(2.168)
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for each eigenvalue. Solving these systems of equations for each l gives

bxl1 ¼
"
1

l1

#
¼
"

1

�1:1013

#

bxl2 ¼
"
1

l2

#
¼
"

1

�8:8987

# (2.169)

Often the eigenvectors are normalized so that they have unit length.
Using this convention, the eigenvectors become

bxl1 ¼

2
6666664

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

q

l1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l21

q

3
7777775
¼

2
664

0:6722

�0:7403

3
775

bxl2 ¼

2
66666664

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22

q

l2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22

q

3
7777775
¼

2
664

0:1117

�0:9937

3
775

(2.170)

The code below shows the MATLAB commands to do the same
eigenvalue calculation.

% pendulum_eig.m

close all
clear all

% Define the model parameters
m ¼ 0.1; % kg
l ¼ 1; % m
b ¼ 1; % kg*m^2/s
g ¼ 9.8; % m/s^2

A ¼ [0, 1; -g/l, -b/(m*l^2)];
[x_hat, lambda] ¼ eig(A)
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The command for calculating eigenvalues and eigenvectors is eig. Using
this command alone, eig(A) will return only the eigenvalues of square
matrix A. To get the eigenvectors also, two output arguments must be
specified.

[x_hat, lambda] ¼ eig(A)

Both of the output variables x_hat and lambda are matrices that are the
same size as A. The variable lambda is a diagonal matrix whose entries are
the eigenvalues. Each column of x_hat is the eigenvector corresponding
to the eigenvalue in the same column of lambda. The following values
are output.

x_hat ¼
0.6722 -0.1117

-0.7403 0.9937
lambda ¼

-1.1013 0
0 -8.8987

Thus, the eigenvector associated with eigenvalue �1.1013 is [0.6722,
�0.7403]T and with eigenvalue�8.8987 is [�0.1117, 0.9937]T. These values
match those given in (2.170) except for a sign change in the second eigen-
vector [0.1117,�0.9937]T. This sign change does not change the eigenvector
because it still defines the same line, just in the opposite direction.

What do these eigenvalues and eigenvectors mean physically? The
phase plot provides insight into this question. In Figure 2.48, the phase
plot shows the pendulum starting from an initial angle of 1 radian with
zero initial angular velocity. At the moment the pendulum is released, the
vector field is [0, �9.8], which is obtained by plugging the initial con-

ditions into (2.165). Recall that this vector field represents ½ _q; €q�T , so it
gives the direction of change in the phase plot. Physically, it means the
pendulum is experiencing no position change and a velocity change in
the negative direction at that instant. As the phase plot progresses, we see
that the pendulum stabilizes to the origin with no oscillations (as can been
from the fact that the angle never becomes negative), as expected for an
overdamped pendulum.

Now consider the phase plot of the pendulum with initial condition at
(1, �1.1013), a scalar multiple of one of the eigenvectors. The corre-
sponding phase plot is shown in Figure 2.49. As shown in the plot, the
vector field corresponding to the initial condition is along the same line as
the initial condition vector but in the opposite direction. From this point,
one can see that the negative eigenvalue means that an initial condition
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Figure 2.49 Phase plot of overdamped pendulum with initial condition (1, �1.1013).
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Figure 2.48 Phase plot of overdamped pendulum with initial condition (1, 0).
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that lies along the eigenvector will be “pulled” directly back to the origin.
Alternatively, if the eigenvalue is positive, any initial condition that lies
along the eigenvector will be “pushed” away from the origin. From
this point of view, we can see why stable systems have negative eigen-
values associated with them, a characteristic that is discussed more in
Chapter 3.

Let us now consider an underdamped pendulum. For this case, the
constants in the system are m ¼ 0.1, l ¼ 1, b ¼ 0.1, and g ¼ 9.8. Using
the same code as above with the new values, the eigenvalues are found
to be

x_hat ¼
-0.0486 - 0.3004i -0.0486 þ 0.3004i
0.9526 0.9526

lambda ¼
-0.5000 þ 3.0903i 0

0 -0.5000 - 3.0903i

In this case, the eigenvalues are complex conjugates.9

l1 ¼ �0:5þ 3:0903j

l2 ¼ �0:5� 3:0903j
(2.171)

The corresponding eigenvectors are

bxl1 ¼
2
4�0:0486� 0:3004j

0:9526

3
5

bxl2 ¼
2
4�0:0486þ 0:3004j

0:9526

3
5

(2.172)

which also contain complex elements.
The same question may be asked as before: What do these eigenvalues

and eigenvectors mean physically? Unfortunately, we cannot use the
geometric interpretation as we did in the case of real eigenvalues and ei-
genvectors. As eloquently stated by Hirsch, Smale, and Devaney (2013),
“Now in general it is not polite to hand someone a complex solution to a
real system of differential equations.”

9 Here MATLAB uses i to denote
ffiffiffiffiffiffiffi�1

p
, but it also recognizes j. The convention in this book is to

use j because the author has an electrical engineering background.
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As shown in Section 3.2.4, eigenvalues and eigenvectors play an
important role in the analytical solution for a linear system. A solution can
be expressed as

xðtÞ ¼ elt bx (2.173)

where l is an eigenvalue, and bx is a eigenvector. With the help of Euler’s
formula,

ejq ¼ cos qþ j sin q (2.174)

the solution (2.175) becomes

xðtÞ ¼ elt bx
¼ eatðcosðbtÞ þ j sinðbtÞÞbx

if the complex eigenvalue is l ¼ a þ jb. Taking either the real or imagi-
nary part of x(t), is also a solution. Although it may seem complex (pun
intended!), the imaginary part of the expression really is just an indication
that the solution is oscillatory in nature. The real part tells us whether
the solution grows or shrinks (as we saw previously with the initial condi-
tion being pulled toward or pushed away from the origin). With the real
and imaginary parts taken together, the phase plot will form a spiral going
toward the origin (for negative real parts of l) or away from the origin (for
positive real parts of l) with the magnitude of the real part indicating how
fast it moves. The phase plot of the underdamped pendulum is shown in
Figure 2.50.

2.4.6 Singular Value Decomposition
The idea of singular value decomposition (SVD) in a sense can be thought
of as an extension of eigenvalues. First, consider the idea of eigenvalue
decomposition. Let L be the diagonal matrix of eigenvalues, that is,

L ¼

2
6664
l1 0 0 0

0 l2 0 0

0 0 l3 0

0 0 0 l4

3
7775 (2.175)

for a fourth-order system. We can then rewrite the eigenvector expression
in (2.159) in matrix form as

A½ bxl1 bxl2 bxl3 bxl4 � ¼ L½ bxl1 bxl2 bxl3 bxl4 � (2.176)
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where each bxli is a 4x1 vector. Assuming the bxli vectors are linearly inde-
pendent (i.e., the determinant of ½ bxl1 bxl2 bxl3 bxl4 � is nonzero), the
matrix can be inverted to give

A ¼ ½ bxl1 bxl2 bxl3 bxl4 ��1
L½ bxl1 bxl2 bxl3 bxl4 � (2.177)

which is known as the eigenvalue decomposition of A.
Now extending this idea to nonsquare matrices, suppose A is an mxn

matrix. Then the SVD of A is

A ¼ USVT (2.178)

where U and V are orthonormal matrices, that is, U�1 ¼ UT and V�1 ¼ VT,
and S is of the form

S ¼

2
6664
s1 / 0 0 / 0

« 1 « « 1 «

0 / sr 0 / 0

0 / 0 0 / 0

3
7775 (2.179)
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Figure 2.50 Phase plot of underdamped pendulum with initial condition (1, 0).
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and contains within it a diagonal matrix. The matrices are chosen so that the
nonzero elements of S are positive and are arranged in decreasing value
along the diagonal so that s1 � s2 � . � sr � 0. These nonzero entries
of S are the singular values of A.

There are many applications of SVD, including determining the rank of
a matrix, solving linear equations, determining an orthonormal basis for A,
computing the pseudoinverse of A, and computing projection operators, all
of which have useful application in studying systems. Rather than discussing
each use in isolation, the concepts associated with SVD will be demon-
strated by working through an example of a robotic arm.10 The SVD will
have two main uses in this example.
1. To find a solution to the inverse kinematic problem using the

pseudoinverse
2. To find the manipulability ellipses that show how easily the end effector

can move in each direction
Figure 2.51 shows a three-link robotic arm confined to move in the xy

plane. The three links have lengths l1, l2, and l3, respectively. The angle of
the first link is measured counterclockwise with respect to the x-axis. The

y

l1

l2

l3

θ

θ

θ

1

2

3

x

Figure 2.51 The three-link robotic arm restricted to movement in the xy plane.

10 This example is adopted from Bay (1999).
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angles of subsequent links are measured counterclockwise with respect to
the previous link.

The position of the end point of the robotic arm (commonly called the
end effector) is given by

x ¼ l1 cosðq1Þ þ l2 cosðq1 þ q2Þ þ l3 cosðq1 þ q2 þ q3Þ
y ¼ l1 sinðq1Þ þ l2 sinðq1 þ q2Þ þ l3 sinðq1 þ q2 þ q3Þ

(2.180)

The velocity of the end effector is then

_x ¼ �l1 sinðq1Þ _q1 � l2 sinðq1 þ q2Þ
�
_q1 þ _q2

�� l3 sinðq1 þ q2 þ q3Þ
�
_q1 þ _q2 þ _q3

�
_y ¼ l1 cosðq1Þ _q1 þ l2 cosðq1 þ q2Þ

�
_q1 þ _q2

�þ l3 cosðq1 þ q2 þ q3Þ
�
_q1 þ _q2 þ _q3

�
(2.181)

Rearranging (2.181) in matrix form gives

�
_x
_y

�
¼

2
66664

�l1 sinðq1Þ � l2 sinðq1 þ q2Þ
�l3 sinðq1 þ q2 þ q3Þ

�l2 sinðq1 þ q2Þ
�l3 sinðq1 þ q2 þ q3Þ

�l3 sinðq1 þ q2 þ q3Þ

l1 cosðq1Þ þ l2 cosðq1 þ q2Þ
þl3 cosðq1 þ q2 þ q3Þ

l2 cosðq1 þ q2Þ
þl3 cosðq1 þ q2 þ q3Þ

l3 cosðq1 þ q2 þ q3Þ

3
77775

2
64
_q1
_q2
_q3

3
75

(2.182)

The 2 � 3 matrix in (2.182) is known as the Jacobian, denoted by
J(Q), because its elements are

JðQÞ ¼

2
66664

vx
vq1

vx
vq2

vx
vq3

vy
vq1

vy
vq2

vy
vq3

3
77775 (2.183)

The expression in (2.182) describes the forward kinematics of the
robotic arm. That is, given the joint angles and their angular velocities,
we can determine how the position of the end effector moves. Designers
of robots are often concerned with the more difficult problem of inverse
kinematics in which the task is to determine how to move the joint
angles to achieve some desired movement of the end effector. In this
situation, the problem reduces to viewing (2.182) as a system of two
equations with three unknowns. In general, there is more than one so-
lution to this problem, and the SVD of the Jacobian will help find an
answer.
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Solving (2.182) for the angles gives2
664
_q1
_q2
_q3

3
775 ¼ JþðQÞ

"
_x

_y

#
(2.184)

where the þ operator denotes the pseudoinverse. According to the theory
of simultaneous equations, using the pseudoinverse gives the minimum

norm solution. In this case, that means the solution minimizes 1
2 ð _q

2
1þ

_q
2
2 þ _q

2
3Þ. Using the SVD of J(Q), it can be expressed as

JðQÞ ¼ USVT (2.185)

and then (2.184) becomes2
664
_q1
_q2
_q3

3
775 ¼ VSþUT

"
_x

_y

#
(2.186)

2.4.6.1 MATLAB Example: Inverse Kinematics of the Robotic Arm
This example shows how to solve the inverse kinematic problem using
SVD in MATLAB and plots the results. In the problem, the desired
movement of the end effector is given in terms of _x and _y. The code then
determines the necessary angular velocities to achieve that end-effector
movement. The angles are updated according to these angular velocities
to get the angles at the next sampling time. The new angles are then used in
the next iteration of the solution. The code below is the basic program for
simulating the robotic arm movement.

% inverse_kinematics.m

close all
clear all

% Set the lengths of each link
l1 ¼ 1;
l2 ¼ 1.5;
l3 ¼ 0.5;

% Sampling time for updating
T ¼ 0.01;
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% Initial conditions
theta1 ¼ 45*pi/180;
theta2 ¼ 60*pi/180;
theta3 ¼ -20*pi/180;
theta ¼ [theta1;theta2;theta3];

% Desired trajectory
x_dot ¼ 5;
y_dot ¼ -5;

% Plot the initial position
figure
hold on
plot_arm(11,l2,l3,theta,'bo')

% Update the plot for several iterations
for k ¼ 1:10

% Define the Jacobian matrix
J(1,1) ¼ -l1*sin(theta(1)) - l2*sin(theta(1)þtheta(2)) -

l3*sin(theta(1)þtheta(2)þtheta(3));
J(1,2) ¼ J(1,1) þ l1*sin(theta(1));
J(1,3) ¼ J(1,2) þ l2*sin(theta(1)þtheta(2));
J(2,1) ¼ 11*cos(theta(1)) þ l2*cos(theta(1)þtheta(2)) þ

l3*cos(theta(1)þtheta(2)þtheta(3));
J(2,2) ¼ J(2,1) - 11*cos(theta(1));
J(2,3) ¼ J(2,2) - l2*cos(theta(1)þtheta(2));

% Perform singular value decomposition
[U,S,V] ¼ svd(J);

% Determine angular velocities
[theta_dot] ¼ V*pinv(S)*U'*[x_dot;y_dot];

% Update angles
theta ¼ thetaþtheta_dot*T;
plot_arm(11,l2,l3,theta,'b*')

end

% Format plot
xlabel('x')
ylabel('y')
axis equal
axis([-(11þl2þl3)/2 (l1þl2þl3)/2 0 (l1þl2þl3)])
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After the initial setting of the arm lengths, the sampling time is set to
0.01 s. The sampling time is needed because the angles have to be updated
for the next iteration of the solution. This method allows us to see the
progression of the arm over time.

Next, initial conditions of the arm position are set so the arm angles
are 45, 60, and �20 degrees. The desired movement of the end effector is
to move down and right at a 45-degree angle, so _x ¼ 5 and _y ¼ �5.
Using SI units, these values are in meters per second. Although 5 m/s is a
large velocity for a robotic arm to achieve, these values are used for
illustrative purposes in the simulation because it allows the movements to
be clear.

The next step in the code is to plot the initial position of the arm in a
figure. This plot is accomplished by calling the plot_arm function, which is
shown below. The arm is drawn as three vectors using the quiver com-
mand. The joints are drawn as individual points using the specified
marker, which is passed to the function. For the initial condition, the joint
positions are drawn as circles. Subsequent joint positions are drawn as
asterisks.

function plot_arm(l1,l2,l3,theta,marker)

x1 ¼ l1*cos(theta(1));
y1 ¼ l1*sin(theta(1));
x2 ¼ x1þl2*cos(theta(1)þtheta(2));
y2 ¼ y1þl2*sin(theta(1)þtheta(2));
x3 ¼ x2þl3*cos(theta(1)þtheta(2)þtheta(3));
y3 ¼ y2þl3*sin(theta(1)þtheta(2)þtheta(3));

quiver(0,0,l1*cos(theta(1)),l1*sin(theta(1)),1,marker)
quiver(x1,y1,l2*cos(theta(1)þtheta(2)),l2*sin(theta(1)þ
theta(2)),1,marker)
quiver(x2,y2,l3*cos(theta(1)þtheta(2)þtheta(3)),l3*sin(theta(1)þ
theta(2)þtheta(3)),1,marker)
plot(x3,y3,marker)

After the initial plot, the mathematical solution of the inverse kine-
matic problem begins. In the code, 10 positions are determined at 0.01-s
intervals.
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The first step is to define the Jacobian matrix J(Q). This step needs to
be done each time through the loop because as the angles change, the
values in J(Q) need to be updated. Then the SVD is performed on J(Q)
using the svd command, returning the three matrices specified in (2.185).
After these matrices are determined, the desired angular velocities are
found by implementing (2.186) using matrix multiplication. The '

operator in MATLAB takes the transpose of a matrix, and the pinv

command takes the pseudoinverse of a matrix.
After the angular velocities are determined, the new angles are calcu-

lated using the first-order approximation

qðt þ DtÞz qðtÞ þ dq
dt

Dt

or in MATLAB code,

theta ¼ thetaþtheta_dot*T;

where Dt and T are the sampling time of 0.01. Then the plot is updated to
illustrate the new arm position, and the process is repeated.

Notice that the actual mathematical solution occurs in two lines.

% Perform singular value decomposition
[U,S,V] ¼ svd(J);

% Determine angular velocities
[theta_dot] ¼ V*pinv(S)*U'*[x_dot;y_dot];

The majority of the code is for other peripheral, but important, tasks
such as setting constants, updating variables, and plotting the results.

The plot resulting from the above code is shown in Figure 2.52. As was
desired, the end effector moves down and right at a 45-degree angle from
its initial position.

Figure 2.53 shows the result of the same code using the same initial
condition but a different desired end effector movement. In this case, the
values are _x ¼ 5 and _y ¼ 5.

At first, the arm is moving as desired, and the end effector is moving up
and right at a 45-degree angle. But on the last iteration, something strange
and interesting happens. It starts to pull back in. The reason for this
behavior is that the robot is nearly completely stretched out (q2 ¼ 0 and
q3 ¼ 0) and near its kinematic singularity. In this configuration, the arm
cannot move outward as quickly as it can in other directions. We can see
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this visually by investigating the manipulability ellipse for the robotic arm,
which will be discussed next.

The next use of the SVD in the robotic arm example is to find the
manipulability ellipses. A manipulability ellipse is a means to visualize in
what directions the end effector can move when the arm is in a particular
configuration.

As a starting point in the discussion, consider the robotic arm stretched
out along the x-axis so that q1 ¼ q2 ¼ q3 ¼ 0 as in Figure 2.54. Then
according to (2.182), _x ¼ 0 and therefore there can be no movement in the
radial direction. This situation is known as a kinematic singularity in the
robot’s movement. Mathematically, singularities can be found by investi-
gating the Jacobian J and determining where JJT is not full rank, that is, the
determinant of JJT is zero.

This singularity is present not only in the configuration shown in
Figure 2.54 but is in fact the case whenever q2 ¼ q3 ¼ 0. The determinant
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Figure 2.52 The movement of the robotic arm in the xy plane. The initial joint posi-
tions are indicated by o, and the subsequent joint positions are indicated by asterisks.
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Figure 2.53 The robotic arm attempting to move toward its outstretched position.
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Figure 2.54 The robotic arm stretched out along the x-axis. From this configuration,
the end effector cannot move along the x-axis.
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of JJT is zero under these conditions. Thus, there can be no movement in
the radial direction. This characteristic is intuitive in the outward direction
(the arm cannot reach beyond its fully stretched position). However, in the
inward direction, it is somewhat surprising, even counterintuitive to our
everyday experience. If the reader has ever opened a bifold closet door,
then the mathematics has seemingly been violated. To resolve this conflict,
one must realize that the closet door and its track are never perfectly
machined, and it allows some movement in the perpendicular direction.
Any movement, even the smallest amount, brings the system away from the
singularity and prevents it from getting “stuck” when trying to move in the
radial direction.

We can now extend this idea to any end-effector position. Consider the
two arm configurations shown in Figure 2.55. The arm in position B is
“closer” to the singularity in the sense that it is more outstretched than the
arm in position A. In position B, the end effector is relatively less capable of
movement. We can characterize this idea in the manipulability ellipse.

The size and shape of the manipulability ellipse can be found using the
SVD of J. The axis lengths of the ellipse are the singular values and the axis
directions are the columns of U. At the singularities, the ellipse collapses to a
line perpendicular to the arm.

y

A

B

x

Figure 2.55 Two configurations of the robotic arm. The arm in position B is closer to
kinematic singularity than the one in position A.
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2.4.6.2 MATLAB Example: Manipulability Ellipse of the Robotic Arm
In this example, the manipulability ellipse is plotted three different con-
figurations of the robot arm. The code below performs these operations.

% manipulability_ellipse.m

close all
clear all

% Set the lengths of each link
l1 ¼ 1;
l2 ¼ 1;
l3 ¼ 1;

% Set arm position
theta1 ¼ 15*pi/180;
theta2 ¼ 100*pi/180;
theta3 ¼ -150*pi/180;
theta ¼ [theta1;theta2;theta3];

% Define the Jacobian matrix
J(1,1) ¼ -l1*sin(theta(1)) - l2*sin(theta(1)þtheta(2)) -

l3*sin(theta(1)þtheta(2)þtheta(3));
J(1,2) ¼ J(1,1) þ l1*sin(theta(1));
J(1,3) ¼ J(1,2) þ l2*sin(theta(1)þtheta(2));
J(2,1) ¼ l1*cos(theta(1)) þ l2*cos(theta(1)þtheta(2)) þ

l3*cos(theta(1)þtheta(2)þtheta(3));
J(2,2) ¼ J(2,1) - l1*cos(theta(1));
J(2,3) ¼ J(2,2) - l2*cos(theta(1)þtheta(2));

% Perform singular value decomposition
[U,S,V] ¼ svd(J);

% Create the ellipse
sc ¼ 0.3;
a ¼ sc*(S(1,1));
b ¼ sc*(S(2,2));
t ¼ 0:0.01:2*pi;
x ¼ a*cos(t);
y ¼ b*sin(t);

% Apply rotation operator
A ¼ U*[x;y];
x ¼ A(1,:);
y ¼ A(2,:);
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% Apply translation operator
x ¼ x þ l1*cos(theta(1)) þ l2*cos(theta(1)þtheta(2)) þ

l3*cos(theta(1)þtheta(2)þtheta(3));
y ¼ y þ l1*sin(theta(1)) þ l2*sin(theta(1)þtheta(2)) þ

l3*sin(theta(1)þtheta(2)þtheta(3));

figure
hold on
plot_arm(l1,l2,l3,theta,'bo')
plot(x,y,':')

% Format plot
xlabel('x')
ylabel('y')
axis equal
axis([0 (l1þl2þl3) 0 (l1þl2þl3)])

The first section of the code is identical to the previous example and is
where the link lengths, link angles, and Jacobian matrix are defined, and
then the SVD of the Jacobian is found. After this, the lengths of the
principle axes, typically denoted by a and b, are extracted from the SVD
matrix S. A scale factor, sc, with a value of 0.3 is applied to the lengths so
that the ellipse is small enough to fit in the figure window. Then the (x,y)
points on the ellipse are generated using the formula

x ¼ a cosðtÞ
y ¼ b sinðtÞ

where 0 � t � 2p.
Next, the rotation operator is applied to the (x, y) points of the ellipse.

Because the columns of U are the directions of the ellipse’s axes, simply
multiplying U with the (x, y) points provides the appropriate rotation.
Finally, the ellipse is translated so its center is the end-effector position. This
translation is performed by adding the end-effector coordinates to each
point on the ellipse.

After the ellipse is generated, the robotic arm is plotted as before and
then the ellipse is added to the plot.

Figure 2.56 shows the manipulability ellipse for link angles q1 ¼ 15
degrees, q2 ¼ 100 degrees, and q3 ¼ �150 degrees. From the figure, it can
be seen that the arm can move in all directions from this location, but it has
more mobility along the y-axis compared with the x-axis. In contrast,
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Figure 2.57 shows the arm with link angles set to q1 ¼ 35 degrees, q2 ¼ 30
degrees, and q3 ¼ �15 degrees. In this configuration, the arm is much more
stretched out, and its manipulability ellipse is more oblong, reflecting the
fact that the end effector cannot move radially outward as much as it can
perpendicularly.

Finally, Figure 2.58 shows the case when the arm is fully stretched out
with q1 ¼ 50 degrees, q2 ¼ 0 degrees, and q3 ¼ 0 degrees. In this
configuration, the ellipse collapses to a line because the singular values of
the Jacobian matrix are 3.7147 and 0. The corresponding directions of the
ellipse axis are (from the columns of U) [�0.7660 0.6428]T and [0.6428

0.7660]T. Thus, the major axis is 140 degrees
�
¼ tan�1

�
0:6428
�0:7660

��
with

respect to the x-axis, and the minor axis is at 50 degrees. In this latter
direction, the arm cannot move.
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Figure 2.56 The manipulability ellipse for the arm when q1 ¼ 15 degrees, q2 ¼ 100
degrees, and q3 ¼ �150 degrees.
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Figure 2.57 The manipulability ellipse for the arm when q1 ¼ 35 degrees, q2 ¼ 30
degrees, and q3 ¼ �15 degrees.
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Figure 2.58 The manipulability ellipse for the arm when q1 ¼ 50 degrees, q2 ¼
0 degrees, and q3 ¼ 0 degrees.



2.5 SYSTEM IDENTIFICATION

2.5.1 Overview
So far in this chapter, many models have been presented, and all of them
have parameters. Parameters, in contrast to variables, are assumed to be
constants (or very slowly varying) in the system. Bodies have mass, springs
have stiffness, linkages have length, materials have thermal capacity, resistors
have resistance, and the list continues. For any physical realization of a
system, these parameters will have values, and these values must be accu-
rately known to understand and be able to predict how the system will
behave. The process of determining the parameter values is called system
identification.

System identification is a field of study unto itself. Entire books have
been written on the topic. One book that is considered required reading is
by Ljung (1999). The results of the Ljung’s work are the basis for the
MATLAB System Identification Toolbox. The purpose of this section is to
provide a brief overview of one method of system identification in the
context of human balance as described in Goodworth et al. (2014).

2.5.2 Case Study: Human Balance Model
In this case study, we investigate a model for human balance and show how
to estimate parameters in the model. Figure 2.59 shows the physical
description of the model we are studying. Viewed from the front, the
human body may be approximated as a two-link inverted pendulum. As
the support surface rotates, a person standing on that surface generates two
torques, one for the upper body TU and one lower body TL, so that balance
is maintained. These torques depend on the angles of each body segment
qU and qL, the pelvic angle qP, and the support surface angle qS. The goal is
to determine how the torques depend on these angles to better understand
how humans balance.

Figure 2.60 shows a model of how the simplified human balance system
works. The upper part of the figure shows the mechanical modeling for the
two links of the pendulum. The parameters in this part of the system (A’s
and J’s) can be determined for each individual based on measurements such
as weight, height, leg length, and so on. However, the parameters in the
lower part of the system (K’s, B’s, G’s, and s’s) cannot be measured directly
and therefore must be calculated from the data.

For the study, frequency response data was collected from test subjects.
To obtain the data, each test subject stood on a support surface that was
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rotated. Upper and lower body sway was measured with angle sensors. To
obtain useful data for system identification, it is important that the input
signal (angular velocity of the support surface) be persistently exciting,
meaning that it should contain enough frequencies to characterize the system
behavior. There are many ways to meet this requirement, the simplest being
to input sinusoids of varying frequency and measuring the output waveform.
However, in this case, the human subjects are not given a deterministic signal
such as a sinusoid because they may be able to predict the input, and the
resulting data would not be representative of their balance reactions.

The input signal often applied for these types of studies is called a
pseudorandom ternary sequence (PRTS). This signal is a randomly
generated waveform that has three values (0, þn, �n). The pseudorandom
term refers to the fact that the random sequence is generated by a computer
algorithm, and so it is not truly random. An example of a PRTS waveform
is shown in Figure 2.61, A. If this signal is input to the system to control the
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Figure 2.59 The model of frontal plane mechanics.

140 A Practical Approach to Dynamical Systems for Engineers



Gravity and 
interaction torques 

Interaction 
torqueLower body

segments

1

Upper body
segments

Active upper
body mechanism

Active lower
body mechanism

Passive lower
body mechanism

Passive upper
body mechanism

ALUg – JLUs2

KLi + BLis

KLl + BLls

KLlu + BLlus

e–τLs

KLsl + BLsls

τLts + 1
GLt 

KUu + BUus

KUi + BUis

KUlu + BUlus

e–τUs

KUpu + BUpus

τUts + 1
GUt 

θL – θU

θS – θL

θS – θL

–θL

θL – θU

θP – θU

θP – θU

–θU

TL TU

TL TU

θS

θL

θUALSg – JLSs2
JLs2 – ALg 

1
JUs2 – AUg –JULs2

Figure 2.60 The block diagram of the balance system showing different contributing mechanisms.
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support surface velocity, the resulting angular position of that surface is
shown in Figure 2.61, B. Advantages of using this waveform are that it (1) is
random in nature and thus unpredictable for the test subjects and (2) has a
flat power spectrum, meaning the frequency components have approxi-
mately equal amplitude across the bandwidth of interest. The power
spectrum of the input signal is shown in Figure 2.62.

For each subject in the study, the upper body and lower body sway was
measured while standing on the moving platform. The measured data were
then used to formulate a frequency response function (FRF) for each subject,
which was obtained from the ratio of discrete Fourier transforms of response
signal to the platform stimulus signal. The FRFs are expressed as gain and
phase values at various frequencies that represent the magnitude and timing
of the subject’s response to the stimulus. Figure 2.63 shows an example of
FRF data. More extensive data can be found in Goodworth et al. (2014).
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Figure 2.61 (a) A pseudorandom ternary sequence (PRTS) used to generate angular
velocities for the platform. (b) The PRTS signal is integrated to obtain the angular
position of the platform.
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Figure 2.62 The power spectrum of the velocity signal.
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With the FRFs for each subject and an average FRF based on all
subjects, the parameters in the model can be estimated to obtain a
model-predicted FRF. First the transfer functions for upper body and lower

body sway with respect to the platform angle were calculated, qU ðsÞ
qSðsÞ and

qLðsÞ
qSðsÞ

from the equations of motion of the body shown in Figure 2.59,

ð JLs2 � ALgÞqLðsÞ þ ðJLU s2 � ALUgÞqUðsÞ þ ð JLSs2 � ALSgÞqSðsÞ ¼ RTLðsÞ
JULs

2qLðsÞ þ ð JU s2 � AUgÞqUðsÞ ¼ TUðsÞ
(2.187)

Then the model-predicted FRFs for upper body and lower body were
derived from the transfer function with s ¼ j2pf. The parameters in the
analytical expression for the FRF were then chosen to minimize the error

between qU ð f Þ
qSð f Þ and qLð f Þ

qSð f Þ and the experimentally collected data points for

upper and lower body sway.
This concludes our discussion on system modeling. We examined

different types of modeling paradigms in depth, including equations of
motion, transfer functions, and state-space models. While examining these
models, we saw how they were used in applications such as car suspension
and kinematic movement, bank accounts, human balance, heating systems,
circuits, and robotic arms. Next we turn our attention from how systems
are represented to their behavior. In the next chapter, we focus on some of
the concepts we already encountered such as system trajectories, equilib-
rium points, and stability. We will formalize what they are and what they
mean in terms of system behavior.
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CHAPTER 3

Characteristics of Dynamical
Systems

3.1 OVERVIEW

This chapter provides more detail about some general characteristics of
dynamical systems, in particular their solutions, implications of equilibrium
and stability, and the role of Lyapunov functions. These concepts apply to
all types of dynamical systems, and we look at several different applications.
In the next chapter, we focus on nonlinear systems and some characteristics
peculiar to them.

In Section 3.2, we investigate the existence and uniqueness of solutions
and why engineers should worry about them. We take an in-depth view of
conditions for solutions to exist, apply the existence theorems to real-world
systems, and look at what the results mean. Then the next step is taken,
and we apply solution methods to linear systems. Section 3.3 examines
certain solutions that are important in the study of dynamical systems:
equilibria (or points where the dynamical system is no longer dynamic). We
also study nullclines as a way of finding equilibrium points and dividing up a
state-space according to system behavior. The important topic of stability is
discussed in Section 3.4, and various definitions are given and discussed in
the context of real-world systems. Finally, in Section 3.5, we investigate
Lyapunov functions as a way to determine stability.

3.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS:
WHY IT MATTERS

The existence of solutions is very important when studying dynamical
systems, particularly control systems, because there is no point in trying to
solve a problem if there is no solution. For engineers, this first step may be
easy to overlook because the main emphasis is on finding the solution and
not stopping to consider if one actually exists. In fact, engineers, being the
problem solvers that they are, may actually change a system to force a
solution. Although this can be an appropriate path, it is important to realize
what is happening and what the implications of such maneuvering may be.
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In general, engineers focus on finding the solution to problems that
mathematicians have previously proven are solvable. The differing points of
view have been the topic of many jokes about engineers, mathematicians,
and physicists. Here is one example from Mike Schuh’s (n.d.) collection of
engineer-mathematician-physicist jokes.1

An engineer, a mathematician, and a physicist are staying for the night in a
hotel. Fortunately for this joke, a small fire breaks out in each room.

The physicist awakes, sees the fire, makes some careful observations, and on the
back of the hotel’s wine list does some quick calculations. Grabbing the fire
extinguisher, he puts out the fire with one, short, well placed burst, and then
crawls back into bed and goes back to sleep.

The engineer awakes, sees the fire, makes some careful observations, and on the
back of the hotel’s room service list (pizza menu) does some quick calculations.
Grabbing the fire extinguisher (and adding a factor of safety of 5), he puts out the
fire by hosing down the entire room several times over, and then crawls into his
soggy bed and goes back to sleep.

The mathematician awakes, sees the fire, makes some careful observations, and
on a blackboard installed in the room, does some quick calculations. Jubilant, he
exclaims “A solution exists!”, and crawls into his dry bed and goes back to sleep.

One of the strengths of mathematics is in its emphasis on explicit and
precise definitions. Inspired by this practice, we will start with a definition.

3.2.1 What Is a Solution?
Before discussing the existence of solutions, we should first define what
exactly is meant by a “solution.” Let us address continuous-time and
discrete-time systems separately.

For a discrete-time system, assume it is modeled by

x½nþ k� ¼ f ðx½nþ k� 1�; x½nþ k� 2�;.; x½n�; nÞ (3.1)

where x is a real-valued N-dimensional vector and the system has initial
conditions

x½n0� ¼ x0

x½n0 þ 1� ¼ x1

«

x½n0 þ k� 1� ¼ xk�1

(3.2)

1 From http://www.farmdale.com/emp-jokes.shtml.
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Note that this is a more general nonlinear and time-varying form than
was given in Chapter 2, which focuses on linear systems. A solution to
(3.1) is a sequence of numbers, starting with the given initial conditions
(x0, x1,., xk�1), and continuing on with xk, xkþ1, xkþ2,. such that when
these values are plugged into (3.1) the equality is satisfied.

For a continuous-time system, assume it is modeled by

_xðtÞ ¼ f ðt; xðtÞÞ (3.3)

where x(t) is a real-valued N-dimensional vector and the system has initial
conditions

xðt0Þ ¼ x0 (3.4)

As with the discrete-time case, here we are assuming a more general
nonlinear and time-varying system than was given in Chapter 2. A
solution to (3.3) is a function bxðtÞ such that _bxðtÞ is defined and when
plugged into (3.3) satisfies the equality. Often the solution is defined over
an interval of time, such as [t0, t1], and that _bxðtÞ ¼ f ðt; bxðtÞÞ for all
t˛½t0; t1�. These solutions are also called trajectories or orbits. The phase
plots shown in the previous chapter (such as in Figure 2.48) are examples
of system trajectories.

The uniqueness of the solution means that the given solution is the
only one that will work. There is no other solution that also satisfies the
system equations. This condition guarantees that the system will move
forward in time along the same path every time given the same starting
point (initial condition).

3.2.2 Existence and Uniqueness Theorem
In many books on dynamical systems, a great deal of space is spent on
theorems proving the existence and uniqueness of solutions to the equa-
tions that describe the systems.2 The main result that is given is a theorem
that provides sufficient conditions for the existence and uniqueness of
the solution. Below is an example of such a theorem for continuous-time
systems.3

Global Existence and Uniqueness: Suppose f(t, x(t)) is piecewise
continuous in t and satisfies the Lipschitz condition

k f ðt; xÞ � f ðt; yÞk � Lkx� yk (3.5)

2 One book (Meiss, 2007) even provides three separate proofs of one version of the theorem.
3 As stated in Khalil (1996).
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for all x; y˛<N and for all t˛½t0; t1� and also satisfies

k f ðt; x0Þk � h (3.6)

for all t˛½t0; t1�. Then the state equation _xðtÞ ¼ f ðt; xðtÞÞ with x(t0) ¼ x0 has a
unique solution over [t0, t1].

Let us look at this theorem in detail and understand what it is saying.
The first assumption is that f is piecewise continuous in t. Formally, from
the definition of continuity, this means that for every ε > 0, there exists a
d > 0 such that if

��t �bt�� < d then
��f ðt; xðtÞÞ � f ðbt ; xðbtÞÞ�� < ε. Conti-

nuity means that the function f does not have jumps as it evolves in time.
However, the piecewise modifier means that it can have jumps but only a
finite number of them in any time interval. Figure 3.1 shows an example of
a piecewise continuous function in time. The function f(t) is piecewise
continuous in the interval [t0, t1] with two discontinuities. To illustrate the
difference between continuous and differentiable, there is a point between
the two discontinuities where f comes to a sharp point and thus is not
differentiable, but it is continuous.

Notice that the continuous condition for f is with respect to t, not x.
Instead the requirement on the x argument is the Lipschitz condition,
which is stronger than continuity. In fact, continuity in x ensures that a
solution exists,4 but uniqueness requires the Lipschitz condition. This con-
dition is stated in (3.5).

f(t)

Discontinuous

Nondifferentiable

t0 t1

t

Figure 3.1 An example of a piecewise continuous function.

4 A proof is given by Miller and Michel (1982).
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First, a note about the notation k,k (which also appeared in the defi-
nition of continuity). This is called the norm of a vector. It could be the
Euclidean distance (as is often used in real-world systems), but it could also
be a more general p-norm or an even more general form. A norm simply
needs to satisfy three conditions:
1. kxk � 0 for all x˛<N and kxk ¼ 0 if and only if x ¼ 0.
2. kxþ yk � kxk þ kyk for all x; y˛<N .
3. kaxk ¼ jaj kxk for all x˛<N and a˛<.

A p-norm is defined by

kxkp ¼ ðxp1 þ xp2 þ/þ xpNÞ1=p (3.7)

and the Euclidean distance uses p ¼ 2.
The Lipschitz condition in (3.5) lies somewhere between continuity and

differentiability. That is, every function that is differentiable with contin-
uous first derivative is a Lipschitz function, and every Lipschitz function is
continuous.5 This condition is illustrated for N ¼ 2 in Figures 3.2 and 3.3.
Two points x and y are chosen. From each of those points, the function f
defines a vector field that indicates magnitude and direction of the
instantaneous velocity shown by the arrows in Figure 3.2. In Figure 3.3, the
distance between the points is shown as kx� yk, and the distance between
the vector fields is shown as k f ðxÞ � f ðyÞk. In this case, the norm is taken
to be the Euclidean distance and is determined using vector subtraction.
It should be noted that in this example, the system is time-invariant because

f(x)

f(y)

y

ℜ2

x

Figure 3.2 Two points, x and y, and their respective vector fields to illustrate the
Lipschitz condition.

5 Proof of these statements can be found in Meiss (2007).
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f does not depend explicitly on t. For time-varying systems (as described in
the theorem earlier), the relationship needs to be true for every instant of
time in the interval [t0, t1].

The Lipschitz condition states that the distance between the velocities at
two points is not too much bigger than the distance between the points
themselves. The “not too much bigger” phrase is characterized by L, which
is a constant real number.

The last condition of the theorem (3.6) states that the norm of the
vector field emanating from the initial condition isn’t too big. Here the
“isn’t too big” phrase is characterized by h. In other words, the system isn’t
moving too quickly from its initial state.

3.2.3 Application Examples
Let us explore two examples to see how this theorem works and why it’s
important.

Example 1: First consider the damped pendulum as discussed in Chapter 2
but with external torque input T. This input makes the system time-varying
because in general, T ¼ T(t). The equation for this system is

T � mgl sin q� b _q ¼ ml2 €q (3.8)

Using
x1 ¼ q

x2 ¼ _q
(3.9)

║f(x) − f(y)║

║x − y║

ℜ2

Figure 3.3 The distances between points x and y and the difference between their
vector fields.
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the state equations become

_x1 ¼ x2

_x2 ¼ � g
l
sin x1 � b

ml2
x2 þ 1

ml2
T

(3.10)

Putting these state equations in the form of (3.3) gives

f ðx1; x2;TÞ ¼
�
f1ðx1; x2;T Þ
f2ðx1; x2;T Þ

�
(3.11)

where

f1ðx1; x2;TÞ ¼ x2

f2ðx1; x2;TÞ ¼ � g
l
sin x1 � b

ml2
x2 þ 1

ml2
T

(3.12)

First, is this system piecewise continuous in t? It depends. Although t
does not appear explicitly in the system equations, it does appear implicitly
through the torque input T. Thus, if T is piecewise continuous, then so is
our system. This result comes about because f2 is a continuous function of
T, and continuous functions of continuous functions are also continuous.

Next, is f a Lipschitz function? One approach is to pick an arbitrary pair of
points in the plane, x ¼ (x1, x2) and y ¼ (y1, y2) and then find a constant L
(which is independent of x and y) so that (3.5) is satisfied. Instead of this
approach, we will rather use the fact that continuously differentiable func-
tions satisfy the Lipschitz condition. This is stated formally as a theorem.3

Theorem: Let f(t, x) be continuous on ½a; b� � <N . If vf
vx exists and is

continuous on ½a; b� � <N , then f is globally Lipschitz in x on ½a; b� � <N if and

only if vf
vx is uniformly bounded on ½a; b� � <N .

To apply this theorem, we first need vf
vx, the Jacobian of f, which is

given by

vf
vx

¼

2
66664

vf1
vx1

vf1
vx2

vf2
vx1

vf2
vx2

3
77775

¼

2
64

0 1

� g
l
cos x1 � b

ml2

3
75

(3.13)
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The Jacobian certainly exists and is continuous. Next is to determine if
vf
vx is uniformly bounded on ½a; b� � <2. This condition also holds because
none of the entries in the matrix grows without bound (the cosine gives
values between -1 and 1 and all the other entries in the matrix are constant).
Thus, we can conclude that the system equations for the damped pendulum
with torque input are globally Lipschitz. The “globally” modifier means
that the condition holds on all of plane <2, not just a subset of it.

Finally, does (3.6) hold? To determine this condition, consider any
initial condition x0 ¼ (x10, x20).

Then for t˛½t0; t1�,

f ðt; x0Þ ¼

2
64

x20

� g
l
sin x10 � b

ml2
x20 þ 1

ml2
TðtÞ

3
75 (3.14)

The dependence of torque T on time is shown explicitly. Then using
the Euclidean distance norm

k f ðt; x0Þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x220 þ

�
� g

l
sin x10 � b

ml2
x20 þ 1

ml2
T ðtÞ

�2
s

(3.15)

If T is bounded on the interval t˛½t0; t1�, then (3.6) is satisfied.
Because all the conditions of the existence and uniqueness theorem are

satisfied with certain restrictions on T, we can conclude that the damped
pendulum equations have a unique solution.

Example 2: Next, let us consider a system with a dead zone
nonlinearity.

_x ¼ axþ bfðxÞ (3.16)

where the nonlinearity is defined by

fðxÞ ¼

8><
>:

xþ d; for x < �d

0; for �d � x � d

x� d; for x > d

(3.17)

Dead zone is a common nonlinearity that often shows up in physical
systems when there is some type of “stickiness.” This type of nonlinearity
will appear again in the next chapter when discussing nonlinearities. A plot
of f(x) versus x with a > 0 and b > 0 is shown in Figure 3.4.
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Applying the existence and uniqueness theorem, we first note that f(x)
is continuous in t. Continuity can be established by the fact that f is
a continuous function of x (as seen in Figure 3.4) and x is a continuous
(actually differentiable because _x exists for all t) function of t.

Next is to check the Lipschitz condition, which is done using a geo-
metric interpretation. In one dimension, the norm k,k can be interpreted as
the absolute value. Then (3.5) becomes

j f ðxÞ � f ðyÞj � Ljx� yj (3.18)

or

j f ðxÞ � f ðyÞj
jx� yj � L (3.19)

The left side of (3.19) is the slope of the line connecting two points on the
function f. The Lipschitz condition then reduces to having a bound on the
slope of the line connecting any two points. Choosing the two points x and y
in the same region (i.e. x, y < �d, x; y˛½�d; d�, or x, y> d), the slope of the
line connecting f(x) and f(y) is the slope of that segment (a or aþ b). If the
points are in different regions, the slope connecting f(x) and f(y) does not
exceed aþ b as shown in Figure 3.5. No matter where x and y are located,
the slope of the line will never be steeper than the steepest segment of f.

Checking the final condition gives

j f ðt; x0Þj ¼ jax0 þ bfðx0Þj
� h

(3.20)

–d d

ad

–ad

f(x)

x

Figure 3.4 Plot of the system exhibiting a dead zone linearity.
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This condition holds for each x0 and all t (because f does not depend
explicitly on t). All the conditions of the existence and uniqueness theorem
are satisfied, so therefore a unique solution to (3.16) exists.

To summarize: why are we interested in whether a solution exists and
whether it is unique? So we are assured that the mathematical model of the
system can (1) predict where the system will go next and (2) make
the prediction without ambiguity! However, for engineers, this is only the
starting point. Equally as important is knowing what the solution is. In
general, finding the solution for the system is difficult. But in the case of
linear systems, there is a straightforward procedure for finding them, which
we explore next.

3.2.4 Solutions of Linear Systems
To find the solution to an autonomous linear system of the form

_x ¼ Ax (3.21)

this system is treated much like a first-order scalar differential equation
_x ¼ ax for which the solution is x(t) ¼ x0e

at where x0 is the initial condition
for the system. Likewise, the solution to (3.21) is of the form

xðtÞ ¼ eAtx0 (3.22)

except now x and x0 are vectors and the exponential is a matrix.

f (y)

f (x)
Slope = a

Slope = a + b

x y

Figure 3.5 A geometric interpretation of the Lipschitz condition as a bound on the
slope connecting two points on f(x).
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We consider two cases: A is diagonalizable and A is not diagonalizable.
One can check if A is diagonalizable by its eigenvectors. If the set of ei-
genvectors is linearly independent, then A is diagonalizable.6

In the case that A is diagonalizable, the exponential can be
expanded as

eAt ¼ el1tG1 þ el2tG2 þ/þ elN tGN (3.23)

where li denote the eigenvalues andGi is the i
th spectral projector given by

Gi ¼
PN

j¼1
jsi

ðA� ljIÞ

PN

j¼1
jsi

ðli � ljÞ (3.24)

In the case that A is not diagonalizable, the exponential is

eAt ¼
Xs

i¼1

Xki�1

j¼0

t jeli t

j!
ðA� liIÞjGi (3.25)

where s is the number of distinct eigenvalues, Gi is a spectral projector (not
the same as (3.24) as shown in the examples below), and ki is the index of li,
defined as

indexðlÞ ¼ smallest value of k such that rankðA� lIÞk ¼ rankðA� lIÞkþ1

Let us illustrate this solutionmethodwith two examples, one for each case.
Example 1: Consider the second-order system given by

€x ¼ �4x (3.26)

From studies of differential equations, we know that the solution is
sinusoidal, but let’s look at it from a systems perspective.

Letting x1 ¼ x and x2 ¼ _x, the system can be written as�
_x1
_x2

�
¼

�
0 1

�4 0

��
x1
x2

�
(3.27)

Assume the initial conditions are x1(0) ¼ x10 and x2(0) ¼ x20. The
eigenvalues of this system are l1 ¼ 2j and l2 ¼ �2j and the eigenvectors are�

1ffiffi
5

p 2ffiffi
5

p j
�T

and

�
1ffiffi
5

p � 2ffiffi
5

p j
�T

. Because these eigenvectors are linearly

6 More details can be found in Meyer (2000), an excellent book on matrix analysis.
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independent, the system is diagonalizable. Then by (3.22)e(3.24), and
Euler’s formula, the solution to (3.27) found as

G1 ¼

"
0 1

�4 0

�
�
��2j 0

0 �2j

�

2j � ð�2jÞ

¼

2
6664
1
2

� 1
4
j

j
1
2

3
775

(3.28)

G2 ¼

"
0 1

�4 0

�
�
�
2j 0

0 2j

�

�2j � 2j

¼

2
6664

1
2

1
4
j

�j
1
2

3
775

(3.29)

2
664
x1ðtÞ

x2ðtÞ

3
775 ¼ e2jt

2
664
1
2

�1
4
j

j
1
2

3
775
2
664
x10

x20

3
775þ e�2jt

2
664

1
2

1
4
j

�j
1
2

3
775
2
664
x10

x20

3
775

¼

2
66666666664

ðcosð2tÞ þ j sinð2tÞÞ
�
1
2
x10 � 1

4
jx20

�

þ ðcosð2tÞ � j sinð2tÞÞ
�
1
2
x10 þ 1

4
jx20

�

ðcosð2tÞ þ j sinð2tÞÞ
�
jx10 þ 1

2
x20

�

þ ðcosð2tÞ � j sinð2tÞÞ
�
� jx10 þ 1

2
x20

�

3
77777777775

¼

2
64 x10 cosð2tÞ þ 1

2
x20 sinð2tÞ

�2x10 sinð2tÞ þ x20 cosð2tÞ

3
75 (3.30)
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Example 2: Now consider the system given by

2
666664

_x1

_x2

_x3

3
777775
¼

2
666664

�1 �1
2

�1

�1 �1 �1

1
1
2

1

3
777775

2
666664

x1

x2

x3

3
777775

(3.31)

The eigenvalues of this system are l1 ¼ �1 and l2 ¼ 0 (l2 has

multiplicity 2). and the eigenvectors are

�
1ffiffi
6

p 2ffiffi
6

p � 1ffiffi
6

p
�T

and
�

1ffiffi
2

p 0 � 1ffiffi
2

p
�T

. Because there are only two unique eigenvectors

(instead of three), the system is not diagonalizable. Therefore, to get the
solution, (3.25) is needed.

As a preliminary step to applying (3.25), we must determine s, ki, and Gi.
Because there are two distinct eigenvalues, s ¼ 2.
For ki, we determine the index of each eigenvalue by examining the

rank of various powers of (A � liI).
For i ¼ 1,

rank
�ðA� ð�1ÞIÞ1	 ¼ 2

rank
�ðA� ð�1ÞIÞ2	 ¼ 2

and therefore k1 ¼ 1.
For i ¼ 2,

rank
�ðA� ð0ÞIÞ1	 ¼ 2

rank
�ðA� ð0ÞIÞ2	 ¼ 1

rank
�ðA� ð0ÞIÞ3	 ¼ 1

and therefore k2 ¼ 2.
Each matrix Gi must have the property that it is the projector onto the

nullspace of ðA� liIÞki along the range of ðA� liIÞki . To find the G1 and
G2, a procedure is applied for building a projector.7 First define

7 The complete procedure is found on page 385 of Meyer (2000).
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L1 ¼ ðA� ð�1ÞIÞ1

¼

2
6666664

0 �1
2

�1

�1 0 �1

1
1
2

2

3
7777775

(3.32)

Then we determine matrices X1 and Y1, where the columns of X1 are a
basis of the nullspace ofL1 and the columns ofY1 are a basis of the range ofL1.

To find X1, convert L1 to reduced row echelon form

U1 ¼

2
64
1 0 1

0 1 2

0 0 0

3
75 (3.33)

and solve for U1v ¼ 0, which gives

v1 þ v3 ¼ 0

v2 þ 2v3 ¼ 0
(3.34)

Choosing v3 as a free variable, then2
64
v1
v2
v3

3
75 ¼

2
64
�1

�2

1

3
75v3 (3.35)

and

X1 ¼

2
64
�1

�2

1

3
75 (3.36)

To find Y1, we need the basic columns of L1, that is, those that
correspond to columns of U1 containing pivots as in Figure 3.6.

Then

Y1 ¼

2
666664

0 � 1
2

�1 0

1
1
2

3
777775

(3.37)
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=

1

0 1 2

0

0

0 0

0 1

U1 =

1
2−

1
2

−1

1 2

0 −1

−1

1Λ

Figure 3.6 The basic columns of L1 correspond to columns of U1 containing pivots.

and G1 can be found by

G1 ¼ ½X1j 0 � ½X1jY1 ��1

¼

2
66664

�1 0 0

�2 0 0

1 0 0

3
77775

2
66666664

�1 0 �1
2

�2 �1 0

1 1
1
2

3
77777775

�1

¼

2
6666666664

1
2

1
2

1
2

1 1 1

�1
2

�1
2

�1
2

3
7777777775

(3.38)

Starting with L2 defined as

L2 ¼ ðA� ð0ÞIÞ2

¼

2
66666664

1
2

1
2

1
2

1 1 1

�1
2

�1
2

�1
2

3
77777775

(3.39)
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and following the same procedure yields G2 as

G2 ¼ ½X2j 0 � ½X2jY2 ��1

¼

2
6666664

�1 �1 0

1 0 0

0 1 0

3
7777775

2
6666664

�1 �1
1
2

1 0 1

0 1 �1
2

3
7777775

�1

¼

2
66666664

1
2

�1
2

�1
2

�1 0 �1

1
2

1
2

3
2

3
77777775

(3.40)

Now we can proceed with the solution as given in (3.25). Using s ¼ 2,
l1 ¼ �1, l2 ¼ 0, k1 ¼ 1, k2 ¼ 2, and initial conditions x10, x20, x30, and
plugging in gives2
66664

x1

x2

x3

3
77775 ¼

X2

i¼1

Xki�1

j¼0

tjeli t

j!
ðA� liIÞjGi

2
66664

x10

x20

x30

3
77775

¼ t0e�t

0!
ðA� ð�1ÞIÞ0G1

2
66664

x10

x20

x30

3
77775þ t0e0

0!
ðA� ð0ÞIÞ0G2

2
66664

x10

x20

x30

3
77775
t1e0

1!
ðA� ð0ÞIÞ1G2

2
66664

x10

x20

x30

3
77775

¼

2
66666666664
e�t

2
666666664

1
2

1
2

1
2

1 1 1

�1
2

�1
2

�1
2

3
777777775
þ

2
666666664

1
2

�1
2

�1
2

�1 0 �1

1
2

1
2

3
2

3
777777775
þ t

2
666666664

�1
2

0 �1
2

0 0 0

1
2

0
1
2

3
777777775

3
77777777775

2
666666664

x10

x20

x30

3
777777775

(3.41)
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Simplifying gives the final solution to (3.31) as
2
666664

x1

x2

x3

3
777775
¼

2
666664

1
2
e�t þ 1

2
� 1
2
t

1
2
e�t � 1

2
1
2
e�t � 1

2
� 1
2
t

et � 1 e�t e�t � 1

� 1
2
e�t þ 1

2
þ 1
2
t � 1

2
e�t þ 1

2
�1
2
e�t þ 3

2
þ 1
2
t

3
777775

2
666664

x10

x20

x30

3
777775

(3.42)

This section gave a method and examples of how to find solutions for
linear systems, a topic covered rarely in books on dynamical systems. The
method is straightforward enough and can be automated using a program
such as MATLAB for larger linear systems to take care of the matrix
multiplication. As can be expected, finding solutions to nonlinear systems is
more difficult. There are many different types of nonlinear systems (indeed,
any system that is not linear is nonlinear), and a general procedure for
finding an analytical solution is not available. Usually numerical methods
are used when working with nonlinear systems.

We now turn our focus to particular types of solutions in dynamical
systems.

3.3 EQUILIBRIUM AND NULLCLINES

An equilibrium point is a solution to a dynamical systemda special one. An
equilibrium point (also known as a critical point, stationary point, or
fixed point) is a state of the system where it will stay forever. Mathe-
matically, the equilibrium point is a state of the system x* that satisfies for
discrete-time systems

x*½nþ 1� ¼ x*½n� (3.43)

and for continuous-time systems

_x* ¼ f ðt; x*Þ ¼ 0 (3.44)

In other words, when a system gets to its equilibrium point, it doesn’t
move away from it.

Associated with equilibrium points are curves in the state-space called
nullclines. For anN-dimensional continuous systemwith states x1, x2,., xN,
the xi-nullcline is the set of points that satisfies _xi ¼ 0. The equilibrium points
for the system are those points that lie at the intersection of all the nullclines.
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Let us explore the concept of equilibrium points in the context of two
examples: population dynamics and the double pendulum.

3.3.1 Population Dynamics
Consider the example of a population consisting of predators and their
prey. Denote the predator population by x2 and the prey population by x1.
As a simplified model, the following assumptions are made.
i. If there are no predators, the prey population increases at a rate propor-

tional to its size.
ii. If there are predators, the prey population decreases at a rate propor-

tional to the number of encounters between them.
iii. If there are no prey, the predator population decreases at a rate propor-

tional to its size.
iv. If there are prey, the predator population increases at a rate propor-

tional to the number of encounters between them.
v. The predators only have their prey as a food source.
vi. Effects of overcrowding are ignored.

The equations corresponding to assumptions i to iv are
i. _x1 ¼ ax1
ii. _x1 ¼ �bx1x2
iii. _x2 ¼ �cx2
iv. _x2 ¼ dx1x2

The constants a, b, c, and d are taken to be positive and depend on how the
populations interact. Combining the four equations gives the dynamic
equations for the system (known as the Volterra-Lotka system of equations).

_x1 ¼ ða� bx2Þx1 (3.45)

_x2 ¼ ð�c þ dx1Þx2 (3.46)

The x1-nullclines and x2-nullclines each have two lines associated with
them. From (3.45), the x1-nullclines are

x1 ¼ 0

x2 ¼ a
b

(3.47)

From (3.46), the x2-nullclines are

x1 ¼ c
d

x2 ¼ 0
(3.48)
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x1

x1-nullcline

x2-nullcline

c
d

a
b

Figure 3.7 The nullclines and equilibrium points of the predatoreprey system.

The equilibrium points can be found by setting (3.45) and (3.46) to zero
and solving for x1 and x2 simultaneously. Thus, the two equilibrium points are

x1* ¼ 0 and x2* ¼ 0

x1* ¼ c
d
and x2* ¼ a

b

(3.49)

Alternatively, the equilibrium points can be found at the intersection of
the nullclines as shown in Figure 3.6. In the figure, the x1-nullclines are
shown as the solid lines corresponding to (3.47), and the x2-nullclines are
shown as the dashed lines corresponding to (3.48). The nullclines intersect

at two points, (0, 0) and
�
c
d;

a
b

	
, and these points are the two equilibrium

points of the system because both _x1 and _x2 are zero.
If the vector fields are plotted on the phase plot in Figure 3.7, there are

four distinct behaviors that appear in the four sections created by the
nullclines. This behavior is demonstrated in the next MATLAB example.

3.3.1.1 MATLAB Example: PredatorePrey System Phase Plot
Let’s now look at the phase plot of the predatoreprey system in MATLAB.
The code to obtain the plot is very similar to that used in Chapter 2.

% predator_prey_simulation.m

% Close all figures and clear all variables
close all
clear all

% Define the model parameters
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a ¼ 4000;
b ¼ 20;
c ¼ 600;
d ¼ 2;

% Define simulation constants
x1max ¼ 500;
x2max ¼ 500;
dx ¼ 40;

% Plot the equilibrium points
hold on
plot(0,0,'ko',c/d,a/b,'ko')

% Plot the nullclines
plot([0,0],[0,x2max],'k','linewidth',2)
plot([0,x1max],[a/b,a/b],'k','linewidth',2)
plot([0,x1max],[0,0],'k--','linewidth',2)
plot([c/d,c/d],[0,x2max],'k--','linewidth',2)

x1 ¼ [0:dx:x1max];
x2 ¼ [0:dx:x2max];
[X1,X2] ¼ meshgrid(x1,x2);

u ¼ (a�b*X2).*X1;
v ¼ (�cþd*X1).*X2;
mag ¼ sqrt(u.^2þv.^2);

% Create the phase plot
quiver(X1,X2,u,v,2)
%quiver(X1,X2,u./mag,v./mag,0.5)
axis([�dx,x1maxþdx,�dx,x2maxþdx])
xlabel('Prey, x_1')
ylabel('Predators, x_2')

After the constants for the simulation are defined, the code first plots the

equilibrium points at (0, 0) and
�
c
d;

a
b

	
as black circles. Then the nullclines are

generated by plotting the two endpoints of the line segment and con-
necting them with either a solid or dashed black line.

Next a grid is created to locate the positions of each vector field for
display on the plot. In this case, the grid is a 500 � 500 area (x1max by
x2max) with points located at intervals of 40 (dx). These values were chosen

166 A Practical Approach to Dynamical Systems for Engineers



because they gave the best display. The meshgrid command creates two
13 � 13 matrices as follows.

X1 ¼

2
666664

0 40 / 480

0 40 / 480

« « 1 «

0 40 / 480

3
777775

X2 ¼

2
6664

0 0 / 0

40 40 / 40

« « 1 «

480 480 / 480

3
7775

These two matrices together give the (x1, x2) coordinates of each point on
the desired grid.

The three lines that follow,

u ¼ (a�b*X2).*X1;
v ¼ (�cþd*X1).*X2;
mag ¼ sqrt(u.^2þv.^2);

define the vector field with _x1 denoted by u and _x2 denoted by v. Having
created X1 and X2 with the meshgrid command, the calculations for all
vector fields on the grid can be accomplished in two lines of code. The last
line calculates the magnitude of each vector field and stores it in the variable
mag so that the vectors of unit length may be plotted.

Last, the phase plot is generated as before using the quiver command.
Two versions are created. The first, shown in Figure 3.8, is the phase plot
with the vector field lengths drawn to scale. The other, shown in
Figure 3.9, is the phase plot with each vector field scaled to the same length
(done by dividing each vector component by mag).

The uniform-length vector fields shown in Figure 3.9 allow us to
examine the behavior of the plot in each of the sections created by the
nullclines. But first, note the behavior of the vector fields on the nullclines.
The x1-nullcline is plotted as a solid line (as in Figure 3.7). By definition,
_x1 ¼ 0 on the x1-nullcline, so the vectors coming out of points on the solid
lines are vertical. Similarly, on the x2-nullcline plotted as a dashed line, the
_x2 component of each vector field located on it is zero. Thus, the vectors
coming out of points on the dashed lines are horizontal.

The points on the nullclines are the only points in the phase space
where the vector fields are vertical or horizontal. Everywhere else, both
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Figure 3.8 The phase plot of the predatoreprey system showing the relative lengths
of the vector fields.

_x1 and _x2 must be nonzero. Therefore they can be identified as pointing
northeast, northwest, southeast, or southwest. Using the regions illustrated
in Figure 3.10, the behavior of the vector fields is summarized in Table 3.1.

Note that because the system is dealing with populations, only positive
x1 and x2 are considered. Also in these regions, the exact angle of the vector
field isn’t specified; only general direction is.

3.3.2 Double Pendulum
A double pendulum is shown in Figure 3.11. Mass m1 is connected to a
fixed point by a massless rod of length l1. Mass m2 is connected to m1

through a massless rod of length l2. Intuitively, we know that the double
pendulum has four configurations in which the segments will remain sta-
tionary if placed there carefully and not disturbed. These four configura-
tions are shown in Figure 3.12 and correspond to
a. q1 ¼ 0, q2 ¼ 0
b. q1 ¼ 0, q2 ¼ p
c. q1 ¼ p, q2 ¼ p
d. q1 ¼ p, q2 ¼ 0
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Figure 3.9 The phase plot of the predatoreprey system with each vector field scaled
to the same length.
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Figure 3.10 The four regions of the phase plot are labeled 1, 2, 3, and 4.
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Table 3.1 Summary of Phase Plot Behavior

Region Location
Vector Field
Components Vector Field Direction

1 x1 <
c
d

x2 <
a
b

_x1 > 0
_x2 < 0

Right
Southeast

Down

2 x1 <
c
d

x2 >
a
b

_x1 < 0
_x2 < 0

Left
Southwest

Down

3 x1 >
c
d

x2 <
a
b

_x1 > 0
_x2 > 0

Right
Northeast

Up

4 x1 >
c
d

x2 >
a
b

_x1 < 0
_x2 > 0

Left
Northwest

Up

y

x

l1

l2
m1

m2θ 2

θ 1

Figure 3.11 The double pendulum.
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Although these geometric positions correspond to equilibrium points of
the double pendulum, there are, in fact, infinitely many equilibrium points.
The reason for this is the circular nature of the pendulum, and adding
multiples of 2p gives a different state with the same physical position.

Although we have a physical understanding of equilibrium points for
the double pendulum, let’s explore the mathematics.

To derive the dynamical equations for this system, the Lagrangian
technique can be used.8 The equations are

ðm1 þ m2Þl1 €q1 þ m2l2 €q2 cosðq1 � q2Þ þ m2l2 _q
2

2 sinðq1 � q2Þ
þ gðm1 þ m2Þsin q1 ¼ 0

(3.50)

l2 €q2 þ l1 €q1 cosðq1 � q2Þ � l1 _q
2

1 sinðq1 � q2Þ þ g sin q2 ¼ 0 (3.51)

To determine f for this system, we first define the states to be

x1 ¼ q1
x2 ¼ _q1
x3 ¼ q2
x4 ¼ _q4

(3.52)

Figure 3.12 The four configurations of equilibrium for the double pendulum.

8 The derivation of these equations can be found in Weisstein, n.d.
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and then put the system equations into the form

_x1 ¼ f1ðx1; x2; x3; x4Þ
_x2 ¼ f2ðx1; x2; x3; x4Þ
_x3 ¼ f3ðx1; x2; x3; x4Þ
_x4 ¼ f4ðx1; x2; x3; x4Þ

(3.53)

Notice that the system is time-invariant, so fwill not depend explicitly on t.
Based on the definition of the states, f1 and f3 are simply

f1 ¼ x2 (3.54)

f3 ¼ x4 (3.55)

To obtain f2, solve (3.51) for _x4 and plug into (3.50). This gives

f2 ¼
�m2

�
l1x22 þ l2x24

	
sinðx1 � x3Þ � gðm1 þ m2Þsin x1 þ m2g sin x3

l1ðm1 þ m2 � m2 cosðx1 � x3ÞÞ
(3.56)

Similarly, to obtain f4, solve (3.50) for _x2 and plug into (3.51) to get

f4 ¼



m2 l2
m1þm2

x24 sinðx1 � x3Þ þ g sin x1
�
cosðx1 � x3Þ þ l1x22 sinðx1 � x3Þ � g sin x3

l2


1� m2

m1þm2
cos2ðx1 � x3Þ

�
(3.57)

To determine the equilibrium points of the system, we need to find
ðx1*; x2*; x3*; x4*Þ to satisfy

f1 ¼ f2 ¼ f3 ¼ f4 ¼ 0 (3.58)

For f1 and f3, it is quite straightforward with

x2* ¼ 0

x4* ¼ 0
(3.59)

meaning neither of the pendulum arms can be moving.
For f2 and f4, substituting (3.59) yields

f2 ¼ m2 g sin x3*� gðm1 þ m2Þsin x1*
l1ðm1 þ m2 � m2 cosðx1*� x3*ÞÞ (3.60)

f4 ¼ g sin x1* cosðx1*� x3*Þ � g sin x3*

l2


1� m2

m1þm2
cos2ðx1*� x3*Þ

� (3.61)
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From (3.60) and (3.61), the criteria for x1* and x3* becomes

m2 sin x3*� ðm1 þ m2Þsin x1* ¼ 0 (3.62)

sin x1* cosðx1*� x3*Þ � sin x3* ¼ 0 (3.63)

Solving (3.62) and (3.63) for sin x3*
sin x1*

and equating them to each other
gives

cosðx1*� x3*Þ ¼ m1 þ m2

m2
(3.64)

which has no solution because m1þm2

m2
> 1 � cosðx1*� x3*Þ. Therefore, the

requirement for equilibrium is

sin x1* ¼ 0

sin x3* ¼ 0
(3.65)

The solution to (3.65) is

x1* ¼ 0; �p; �2p; �3p;.

x3* ¼ 0; �p; �2p; �3p;.
(3.66)

which matches the intuitive equilibrium positions shown in Figure 3.12.
Another approach to finding the equilibrium positions is to use nullclines.

Because the system is fourth order, there will be four nullclines. Using the
system definition in (3.54) to (3.57) and setting f1 ¼ f2 ¼ f3 ¼ f4 ¼ 0 gives
x1-nullcline

x2 ¼ 0 (3.67)

x2-nullcline

�m2

�
l1x

2
2 þ l2x

2
4

	
sinðx1 � x3Þ � gðm1 þ m2Þsin x1 þ m2g sin x3 ¼ 0

(3.68)

x3-nullcline

x4 ¼ 0 (3.69)

x4-nullcline�
m2l2

m1 þ m2
x24 sinðx1 � x3Þ þ g sin x1

�
cosðx1 � x3Þ þ l1x

2
2 sinðx1 � x3Þ

� g sin x3 ¼ 0

(3.70)

Unfortunately, because this is a fourth-order system, the mathematics
becomes much more difficult to work through. Furthermore, we aren’t able
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to visualize these nullclines because they are subsets of four-dimensional
space. The expressions for the x1-nullcline and x3-nullcline are
relatively simple. The x1-nullcline is defined by points in four-dimensional
space such that x2 ¼ 0. Similarly, the x3-nullcline is defined by points
in four-dimensional space such that x4 ¼ 0. The equations to get the
x2-nullcline and x4-nullcline are quite complicated. If we were to work
through the mathematics, we would need to solve (3.68) and (3.70) to get a
relationship between x1, x2, x3, and x4 for each equation. These relationships
would define a subset of four-dimensional space. The intersection of all the
subsets would yield the equilibrium points.

3.4 STABILITY

As with many concepts in dynamical systems, we have an intuitive un-
derstanding of what stability means. We formalize the understanding with
mathematics.

What is stability? Informally, stability means something is somehow
behaving properly and predictably and is in control. Stable ground doesn’t
move. A stable stock market doesn’t jump around too much. A stable
government provides the necessary services for its people. Stability indicates
resistance to change or movement.

This concept applies to the stability of dynamical systems as well. A
stable system doesn’t behave too much in a crazy or unpredictable manner.
It doesn’t go out of control or vary greatly. Of course, we are using
well-defined terms in an informal way. But it gives an idea of what is meant
by stability in the context of dynamical systems.

We will provide formal definitions of stability below (yes, there’s more
than one), but we must consider the question: To what are we applying the
word stable? Does one talk about stable systems? Or stable equilibrium
points? Or stable responses? Yes, in fact one can discuss all of these. We will
describe what each of these ideas mean in turn and then give examples of
real-world systems.

As a motivating example, is the damped pendulum system we’ve used in
several prior examples stable? According to the informal notion of stability,
it seems that it is indeed. Its motion is, in some sense, controlled and
predictable. If an input torque is applied about the pivot, it will eventually
rotate in the same direction as that input. If the torque is removed, it
doesn’t keep rotating forever. Eventually, it comes to rest.

However, what if we investigate the two equilibrium configurations of
the pendulum: q ¼ 0 in Figure 3.13(a) and q ¼ p in Figure 3.13(b)? These
two configurations certainly behave differently. What happens in each case
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if the pendulum is bumped? For q ¼ 0, the pendulum will sway back and
forth a little bit and eventually come back to q¼ 0. By contrast, for q¼p, the
pendulum will fall down and sway back and forth around q ¼ 0, eventually
settling there. The two different behaviors can be described as (1) returning
to the original (stable) equilibrium point and (2) moving away from the
original (unstable) equilibrium point and toward the new (stable) one.

With the pendulum example, we see that there are different lenses
through which to view stability. Various aspects of a given system can be
either stable or unstable (or even marginally stable, a third characterization
of stability).

3.4.1 Stable Systems
In the case of linear systems, it is possible to characterize the stability of the
entire system. This concept is known as linear stability. Consider the
continuous and discrete linear time-invariant systems with no input

_x ¼ Ax (3.71)

x½nþ 1� ¼ Ax½n� (3.72)

where x is the Nx1 state vector and A is an NxN matrix. It is possible to
define three types of stability for a linear system, each with differing levels
of strength: spectral stability, linear stability, and asymptotic linear
stability.9

Figure 3.13 Two equilibrium points of the pendulum. Stable equilibrium (a) and
unstable equilibrium (b).

9 These definitions are provided in Meiss (2007), with extension to discrete-time systems in Hinrichsen
and Pritchard (2005).
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3.4.1.1 Spectral Stability
A system described by (3.71) is spectrally stable if all the eigenvalues of A
have negative or zero real parts. A system described by (3.72) is spectrally
stable if all the eigenvalues of A lie on or within the unit circle.

3.4.1.2 Linear Stability
A system described by (3.71) or (3.72) is linearly stable if all solutions are
bounded for all t. That is, for (3.71), if x(t) is a solution, then there exists
some M such that

kxðtÞk � M (3.73)

for all t � 0.
For (3.72), if x[n] is a solution, then there exists some M such that

kx½n�k � M (3.74)

for all n ¼ 0, 1, 2, .

3.4.1.3 Asymptotic Linear Stability
A system described by (3.71) is asymptotically linearly stable if all solutions
approach zero as t / N. That is, if x(t) is a solution to (3.71), then

lim
t/N

kxðtÞk ¼ 0 (3.75)

If x[n] is a solution to (3.72), then

lim
n/N

kx½n�k ¼ 0 (3.76)

These definitions are increasing in strength in the sense that if a system
satisfies the stronger condition, it also satisfies the weaker one. For example,
if a system is linearly stable, then it is spectrally stable, and if a system is
asymptotically linearly stable, then it is both spectrally and linearly stable.
Similarly, if a system is not spectrally stable, then it is neither linearly nor
asymptotically linearly stable.

To illustrate these concepts, let us consider some simple examples.
Example 1: Consider the first order system

_x ¼ ax (3.77)

with initial condition x(0) ¼ x0. The eigenvalue of the system is a, so the
system is spectrally stable if a � 0. The solution to this system is

xðtÞ ¼ x0eat (3.78)
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from which the other types of stability can be determined. For a ¼ 0, the
solution is constant; thus, it is bounded and linearly stable but not asymp-
totically linearly stable because it does not approach zero. For a < 0, the
solution is bounded and approaches zero; thus, it is both linearly and
asymptotically linearly stable. A summary of the results is shown in
Table 3.2.

Example 2: Consider the second-order system given by

€x ¼ �4x (3.79)

From studies of differential equations, we know that the solution is
sinusoidal, but let’s look at it from a systems perspective.

Letting x1 ¼ x and x2 ¼ _x, the system can be written as�
_x1
_x2

�
¼

�
0 1

�4 0

��
x1
x2

�
(3.80)

Assume the initial conditions are x1(0) ¼ x10 and x2(0) ¼ x20. The
eigenvalues of this system are found to be l1 ¼ 2j and l2 ¼ �2j. Thus, the
system is spectrally stable.

We saw the solution to this system derived in (3.30). It was given as2
64
x1ðtÞ

x2ðtÞ

3
75 ¼

2
64 x10 cosð2tÞ þ 1

2
x20 sinð2tÞ

�2x10 sinð2tÞ þ x20 cosð2tÞ

3
75 (3.81)

Clearly, the solution is bounded because each involves a sine or cosine
that never exceeds a magnitude of 1. Equally as clear is the fact that the
solution does not decay to zero over time but oscillates forever. Thus, in
this example, the system is linearly stable but not asymptotically stable.

Table 3.2 Stability of a First Order System
a > 0 a ¼ 0 a < 0

Solution

Spectrally stable? No Yes Yes
Linearly stable? No Yes Yes
Asymptotically
linearly stable?

No No Yes
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Example 3: In this example, we revisit (3.31), where the system was
defined as 2

666664

_x1

_x2

_x3

3
777775
¼

2
666664

�1 � 1
2

�1

�1 �1 �1

1
1
2

1

3
777775

2
666664

x1

x2

x3

3
777775

(3.82)

From that example, we know the eigenvalues are l1 ¼ �1 and l2 ¼ 0
(with 0 being a repeated eigenvalue). Therefore, the system is spectrally
stable.

The solution for this system was found to be
2
666664

x1

x2

x3

3
777775
¼

2
666664

1
2
e�t þ 1

2
� 1
2
t

1
2
e�t � 1

2
1
2
e�t � 1

2
� 1
2
t

et � 1 e�t e�t � 1

�1
2
e�t þ 1

2
þ 1
2
t �1

2
e�t þ 1

2
�1
2
e�t þ 3

2
þ 1
2
t

3
777775

2
666664

x10

x20

x30

3
777775

(3.83)

This solution is not bounded because the corner entries in the matrix
involve a term that is linear in t. These terms grow without bound as t
increases. Because there is no upper bound, the system is not linearly stable.

These examples show the different possibilities for stability in linear
systems. These definitions of stability cannot be applied to nonlinear sys-
tems. One reason is that eigenvalues are not defined for nonlinear sys-
tems.10 Also, nonlinear systems exhibit much more complex behavior. The
above definitions, involving long-term characteristics of a solution, are not
sufficient to characterize stability in nonlinear systems. The definitions for
stability presented next are applicable to general systems and are not specific
to only linear systems.

3.4.2 Stable Equilibrium Points
When discussing stability, it is most common to apply the term to equilib-
rium points, not entire systems as in the previous section. But even when

10 An attempt at extending eigenvalues and eigenvectors to nonlinear systems can be found in Halas
and Moog (2013).
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discussing stable equilibrium points, there are three different types to consider:
Lyapunov, asymptotic, and exponential. In addition, we will consider what
it means for an equilibrium point to be unstable or marginally stable.

3.4.2.1 Lyapunov Stability
An equilibrium point x* is Lyapunov stable if for every for ε > 0 there
exists a d > 0 such that if kxð0Þ � x*k < d, then kxðtÞ � x*k < ε for all
t � 0.

Lyapunov stability is implied if an equilibrium point is described simply
as “stable.”

3.4.2.2 Asymptotic Stability
An equilibrium point x* is asymptotically stable if it is stable and there exists
a d > 0 such that if kxð0Þ � x*k < d, then lim

t/N
kxðtÞ � x*k ¼ 0.

3.4.2.3 Exponential Stability
An equilibrium point x* is exponentially stable if there exists a > 0 and
l > 0 such that kxðtÞ � x*k < ae�ltkxð0Þ � x*k for all t � 0.

As with stability of linear systems, these definitions are increasing in
strength. That is, if an equilibrium point is exponentially stable, then it is
stable and asymptotically stable. These three definitions can be described
qualitatively as well. For stability, a trajectory stays arbitrarily close to the
equilibrium point if it doesn’t start too far it. For asymptotic stability, a
trajectory eventually ends up at the equilibrium point if it doesn’t start too
far from it. For exponential stability, a trajectory goes to the equilibrium
point, and we can specify how fast using an exponential function.

Two additional important terms are important to define: instability and
marginal stability.

3.4.2.4 Instability
An equilibrium point x* is unstable if it is not Lyapunov stable.

3.4.2.5 Marginal Stability
An equilibrium point x* is marginally stable if it is Lyapunov stable but not
asymptotically stable.

All of these definitions become clearer if we think about how system
trajectories behave on the phase plane. Figure 3.14 shows what is meant by
Lyapunov stability. Given any ε > 0, one can find a d > 0 so that when a
trajectory starts within the ball of radius d, it stays within the ball of radius ε.
The trajectory shown in the figure satisfies this requirement, but for
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stability, it must hold for all possible trajectories that start within the ball of
radius d. Similarly, Figure 3.15 shows what is meant by asymptotic stability.
In this case, the additional requirement is that all trajectories converge to
the equilibrium point.

x2

x1

x(0)
x∗

ε

δ

Figure 3.14 Trajectory behavior in a system with a stable equilibrium point.

x2

x1

x(0)
x∗

ε

δ

Figure 3.15 Trajectory behavior in a system with an asymptotically stable equilibrium
point.
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It is important to elaborate on unstable equilibrium points. In linear
systems, unstable means the same as “blowing up” in that trajectories move
farther and farther away from equilibrium. This behavior is associated in
continuous-time systems with eigenvalues that have positive real parts (as
shown in the examples following this section). However, nonlinear systems
are more complex. They can exhibit instability without trajectories going
off to infinity. For example, as shown in Figure 3.16, if a trajectory always
moves to a certain distance r from the equilibrium point, no matter where it
starts, then it cannot be stable even if it eventually converges to x*. The
reason is that one should be able to choose any ε > 0, and in this case, if
ε < r, then we’re out of luck choosing d. Although one can mathematically
contrive a system with almost any kind of behavior, this does actually occur
in real-world systems in the form of limit cycles. An example of this type of
system is discussed in the examples following this section and is also covered
in detail in the next chapter.

As a final note in this section, for linear time-invariant systems Lyapunov
stability and asymptotic stability come down to checking the eigenvalues of
the A matrix. We have the following theorems for stability of linear
systems.

Lyapunov Stability for Linear Time-Invariant Systems: A system _x ¼ Ax
is Lyapunov stable if and only if no eigenvalues of A are in the right half of the
complex plane.

x2

x1

x(0)
x∗

ε

r

Figure 3.16 An example of unstable behavior even though the trajectories do not
“blow up.”
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Asymptotic Stability for Linear Time-Invariant Systems: A system
_x ¼ Ax is asymptotically stable if and only if all the eigenvalues of A are in the left
half of the complex plane.

The corresponding theorems for discrete-time systems can be obtained
by replacing “left (right) half of the complex plane” with “inside (outside)
the unit circle.”

3.4.3 Stable Responses to an Input
When studying stability of equilibrium points, the effects of external inputs
are not considered. Thus, this type of stability is referred to as internal
stability because it only takes into account how the system behaves on its
own. However, in general, systems have inputs, and it is important to know
if the system reacts to those inputs in a stable manner. This type of stability
is known as external stability.

Themost common classification of external stability is known as bounded
input, bounded output (BIBO) stability. Another less used classification is
bounded input, bounded state (BIBS) stability. Informally, BIBO and
BIBS stability means that the system output or state, respectively, doesn’t
“blow up” when reasonable inputs are applied to the system.

For the following definitions, assume the system has the continuous-
time form with

_xðtÞ ¼ f ðt; xðtÞ; uðtÞÞ
yðtÞ ¼ hðt; xðtÞ; uðtÞÞ (3.84)

where x is the Nx1 state vector, y is the system output and u is the input.

3.4.3.1 BIBO Stability
The system defined by (3.84) is BIBO stable if for any bounded input u(t)
and any initial condition x(0), the output y(t) is also bounded. That is, if
there exists an M with kuðtÞk � M for all t, then there exists a constant No

such that kyðtÞk � No for all t.

3.4.3.2 BIBS Stability
The system defined by (3.84) is BIBS stable if for any bounded input u(t)
and any initial condition x(0), the state x(t) is also bounded. That is, if there
exists an M with kuðtÞk � M for all t, then there exists a constant Ns such
that kxðtÞk � Ns for all t.

It is worth mentioning an important difference between linear and
nonlinear systems when classifying stability. For linear systems, if one knows
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its behavior locally (near a certain point in its state-space), those results hold
globally throughout the entire state-space. This is a characteristic of linear
systems that makes them pleasant to work with. By contrast, nonlinear system
global behavior cannot be extrapolated from local behavior. And this char-
acteristic of nonlinear systems also makes them difficult to work with.

Because of this possible change in behavior between different points in
the nonlinear system state-space, definitions are often qualified by the term
“local” or “global.” The definitions given earlier should be considered local
when applied to nonlinear systems. For internal stability, it is assumed that the
initial condition is near the equilibrium point. If the condition holds for any
initial condition, then the equilibrium point exhibits global stability. It is also
assumed that the dynamical mappings (such as f and h in (3.84)) are defined on
a subset of the state-space about the point of interest. If f and h are defined on
the entire state-space, then the BIBO and BIBS stability are global.

Another qualification is made in the case of time-varying systems. The
earlier definitions assume the systems are time-invariant. Notice that the
starting time is always t0 ¼ 0. In these systems, the behavior depends only
on how long the system has been on (t � t0), not on the absolute time (t).
For time-varying systems, the absolute time must be used, and the initial
time is given as t0. When defining stability of equilibrium points, the choice
of d in general depends on t0 for time-varying systems. If there is no
dependence on t0, then the equilibrium point is uniformly stable. For
time-invariant systems, stability is always uniform.

3.4.4 Relationship between Types of Stability
With several different types of stability defined, one question is: how are
these various notions related? A Venn diagram with these relations for linear
systems is shown in Figure 3.17 and for nonlinear systems is shown in
Figure 3.18.11 The relationships for linear systems are more straightforward
than for nonlinear systems in that the stronger types are subsets of weaker
types. The only exception is the Lyapunov and BIBO stability. One can find
examples of systems that exhibit Lyapunov stability that are not BIBO stable
and vice versa. With nonlinear systems, the situation is more complicated
with less of the structure that has one type of stability implying another. A
detailed discussion of these relationships is outside the scope of this book but
readers are directed to Khalil (1996), which gives theorems and illustrating
examples.

11 The diagram for linear systems is adopted from Bay (1999).
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Lyapunov BIBO

BIBS

Asymptotic

Exponential

Figure 3.17 The relationship between the different types of stability for linear systems.
BIBO, bounded input, bounded output; BIBS, bounded input, bounded state.

Lyapunov BIBO

Asymptotic

Exponential

BIBS

Figure 3.18 The relationship between the different types of stability for nonlinear
systems. BIBO, bounded input, bounded output; BIBS, bounded input, bounded state.
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3.4.5 Examples
3.4.5.1 MATLAB Example: Pendulum Stability
Consider again a damped pendulum system

_x1 ¼ x2

_x2 ¼ � g
l
sin x1 � b

ml2
x2 þ 1

ml2
T

(3.85)

where x1 is the angle, x2 is the angular velocity, g is acceleration due to
gravity, l is the pendulum length, m is the mass, b is the friction coefficient,
and T is the input torque. Let us investigate the different types of stability
for this system.

Is the pendulum system spectrally stable, linearly stable, or asymptoti-
cally linearly stable? Clearly, it isn’t any of these because it’s a nonlinear
system, and these concepts only apply to linear systems. However, we can
investigate the linearized version of (3.85). (Techniques for linearization are
covered in detail in the next chapter.) Linearizing about x ¼ [0, 0]T gives

_x1 ¼ x2

_x2 ¼ �g
l
x1 � b

ml2
x2 þ 1

ml2
T

(3.86)

or in matrix form2
64

_x1

_x2

3
75 ¼

2
64

0 1

� g
l

� b
ml2

3
75
2
64
x1

x2

3
75þ

2
64

0

1
ml2

3
75T (3.87)

Setting T ¼ 0 because we are checking for an internal type of stability,
the eigenvalues are

l1 ¼
� b
ml2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b
ml2

�2

� 4
g
l

s

2

l2 ¼
� b
ml2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b
ml2

�2

� 4
g
l

s

2

(3.88)

There are three cases to consider: underdamped, critically damped, and
overdamped. For the underdamped and critically damped cases, the real
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part of each eigenvalue is � b
2ml2

, and the system is spectrally stable. For the
overdamped case, the question is if l1 in (3.88) is ever positive. It can be
seen that l1 is always negative using the fact that

�4
g
l
< 0 0

�
b
ml2

�2

� 4
g
l
<

�
b
ml2

�2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
b
ml2

�2

� 4
g
l

s
<

b
ml2

0 � b
ml2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b
ml2

�2

� 4
g
l

s
< 0

(3.89)

Thus, the overdamped pendulum is also spectrally stable.
To check for linear or asymptotic linear stability, we need the solution

x(t) to the system in (3.87) when the input T is zero. Following the pro-
cedure from Section 3.2.4, the following MATLAB code performs the
calculation using the Symbolic Toolbox.

% pendulum_solution.m

% Close all figures and clear all variables
close all
clear all

% Define symbolic variables
syms a1 a2 x10 x20 t

% Do the calculation
A ¼ [0, 1; -a1, -a2];
lambda ¼ eig(A);
I ¼ eye(2);
G1 ¼ simplify(A-lambda(2)*I)/(lambda(1)-lambda(2));
G2 ¼ simplify(A-lambda(1)*I)/(lambda(2)-lambda(1));

x ¼ (exp(lambda(1)*t)*G1þexp(lambda(2)*t)*G2)*[x10;x20]
pretty(x)

The Symbolic Toolbox allows the user to do calculations with symbols
instead of numbers, which is useful here because we haven’t specified the
parameters of the system and want a general solution. In the code, the first
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step is to declare the symbolic variables we’re using (a1, a2, x10, x20, and t).
Then the A matrix is defined and the eigenvalues are found using the eig

command. The eye(2) command defines the 2x2 identity matrix. The next
three lines perform the calculation, first by determining G1 and G2 and then
finding the solution x according to (3.22). The simplify command is used
to algebraically reduce the expression to its simplest form.

The result for x is

x ¼

x20*(exp(-t*(a2/2 - (a2^2 - 4*a1)^(1/2)/2))/(a2^2 - 4*a1)^(1/2)
- exp(-t*(a2/2 þ (a2^2 - 4*a1)^(1/2)/2))/(a2^2 - 4*a1)^(1/2)) þ x10*
((exp(-t*(a2/2 - (a2^2 - 4*a1)^(1/2)/2))*(a2/2 þ (a2^2 - 4*a1)^(1/2)/2))/
(a2^2 - 4*a1)^(1/2) - (exp(-t*(a2/2 þ (a2^2 - 4*a1)^(1/2)/2))*(a2/2 -
(a2^2 - 4*a1)^(1/2)/2))/(a2^2 - 4*a1)^(1/2)) - x10*((a1*exp(-t*(a2/2 -
(a2^2 - 4*a1)^(1/2)/2)))/(a2^2 - 4*a1)^ (1/2) - (a1*exp(-t*(a2/2 þ (a2^2 -
4*a1)^(1/2)/2)))/(a2^2 - 4*a1)^(1/2)) - x20*((exp(-t*(a2/2 - (a2^2 - 4*a1)
^(1/2)/2))*(a2/2 - (a2^2 - 4*a1)^(1/2)/2))/(a2^2 - 4*a1)^(1/2) - (exp(-
t*(a2/2 þ (a2^2 - 4*a1)^(1/2)/2))*(a2/2 þ (a2^2 - 4*a1)^(1/2)/2))/(a2^2 -
4*a1)^(1/2))

which is a little hard to decipher. Using the pretty command makes the
output more digestible for human viewing. The final output of the code is

/         / exp(-t #1)   exp(-t #2) \ / exp(-t #1) #2   exp(-t #2) #1 \ \

| x20 | ---------- - ---------- | + x10 | ------------- - ------------- |     |

|         \ #3           #3     /       \ #3              #3      /     |

|                                                                                 |

|     / a1 exp(-t #1)   a1 exp(-t #2) \ / exp(-t #1) #1   exp(-t #2) #2 \ |

| - x10 | ------------- - ------------- | - x20 | ------------- - ------------- | |

\ \ #3              #3      /       \ #3              #3      / /

where
a2 #3

#1 ¼¼ e e e ee

2 2

a2 #3
#2 ¼¼ ee þ ee

2 2

2
#3 ¼¼ sqrt(a2 - 4 a1)
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Written in a more mathematically pleasing form, the solution is

x1ðtÞ ¼ x10
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BBB@
e
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p
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a22 � 4a1

p
1
CCCA

(3.90)

Note that a1 ¼ g
l and a2 ¼ b

ml2 to simplify the expression. Although
(3.90) is a bit long and unwieldy to work with, it is clear upon inspection
that x1(t) and x2(t) are bounded as a function of the initial condition, and
thus the system is linearly stable. Also, x1(t) and x2(t) both asymptotically
approach zero because of the exponential with the negative power (in

all three damping cases, note from (3.89) that �ða2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � 4a1

p
Þ < 0).

We can conclude that the linearized pendulum is asymptotically linearly
stable.

Now let’s linearize the system about its upright position x ¼ [p 0]T.
Then the system becomes2

64
_x1

_x2

3
75 ¼

2
64
0 1
g
l

� b
ml2

3
75
2
64
x1

x2

3
75 (3.91)
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The eigenvalues of this system are

l1 ¼
� b
ml2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b
ml2

�2

þ 4
g
l

s

2

l2 ¼
� b
ml2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

b
ml2

�2

þ 4
g
l

s

2

(3.92)

These eigenvalues are always real, and l1 is always positive because
4
g
l > 0. So the pendulum system linearized about its upright position is not

spectrally stable.
Because of the hierarchy of stability, we know that this system cannot

be linearly stable. But let us investigate further using the solution to (3.91).
The solution takes the same form as (3.90) but with a1 replaced by �a1
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With the change in sign, the exponential terms with the exponent

involving a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 4a1

p
blow up as t increases because

a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 4a1

p
< 0.
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Based on the relationship between stability of a nonlinear system and its
linearized counterpart (details are discussed in Section 4.5.2), we can
conclude that (0, 0) is a locally asymptotically stable equilibrium point, and
(p, 0) is a locally unstable equilibrium point.

The next question to address is whether the pendulum is BIBO stable.
To help with this determination, we use Simulink to run the simulation and
plot x1 and x2 for various values of torque input T. The Simulink program
shown in Figure 3.19 implements the equations in (3.86).

The torque input is a step function. The response of the system for a
step input of height 5 is shown in Figure 3.20. Both states are converging to
a constant value. The angle x1 settles to a nonzero value, and the angular
velocity x2 goes to zero as expected. After the transient, the pendulum will
be held at a constant angle by the torque countering the effect of gravity.
This particular bounded input results in bounded states.

× ×

×

×

0.1

b

sin

Torque input

−
−
+

1
s

1
s

x1

x2

Phase plot
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1
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Figure 3.19 Simulink program for the pendulum.

Figure 3.20 The system response with torque input T ¼ 5.
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Figure 3.21 shows the response to another torque input. This time T is a
step input of height 10. In this case, the angle x1 continues to increase while
the angular velocity x2 levels off. The input torque is large enough so that
the pendulum overcomes the gravitational force and continues to swing
around its axis.

Is the pendulum BIBO stable? It depends on what you consider its
output to be. If the output is the angle x1, then no. When T ¼ 10 (certainly
a bounded input), the output grows without bound. It only takes one
bounded input resulting in an unbounded output to make the system not
BIBO stable. However, if the output is taken to be the angular velocity x2,
then yes. The pendulum’s rotational speed does not get arbitrarily large.12 In
any case, no matter what your choice of output, the system is not BIBS stable.

3.4.5.2 MATLAB Example: Motor Positioning System
Consider the motor system shown in Figure 3.22. The motor is controlled
by a circuit with input Vs(t), and the motor shaft is connected to a load that
it must rotate.

The dynamical equations for this system are

J1 €q1 ¼ �b1 _q1 � b2ð _q1 � _q2Þ � kðq1 � q2Þ þ Kti

J2 €q2 ¼ �b2ð _q2 � _q1Þ � kðq2 � q1Þ

Vs ¼ Riþ L
di
dt
þ Ke

_q1 (3.94)

Figure 3.21 The system response with torque input T ¼ 10.

12 This argument does not constitute a proof but rather provides evidence in support of BIBO
stability.
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Figure 3.22 Schematic of the motor with a load attached.

where the constants J1 and J2 are the inertias of the rotor and load, respec-
tively; b1 is the friction of the rotor; b2 is the damping of the shaft; k is the
spring constant of the shaft; Kt and Ke are the motor constants; R is the
armature resistance; and L is the armature inductance. The system variables
are rotor angle q1 and angular velocity _q1, load angle q2 and angular velocity
_q2, and electrical current i. Defining the states to be x1 ¼ q1, x2 ¼ q2,
x3 ¼ _q1, x4 ¼ _q2, and x5 ¼ i, the input to be u ¼ Vs, and the output to
be y ¼ q2, the state-space form of the system is2

6666666666666664
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þ
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3
77777777775
þ ½0�u

(3.95)
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Because the system is fifth order, it is difficult to find a general
expression for the eigenvalues of A. Instead we use MATLAB to simulate
the system for particular values of the parameters.

% motor_position.m

% Close all figures and clear all variables
close all
clear all

% Define constants for the system
k ¼ 2000; % N/m
J1 ¼ 20; % kg m^2
J2 ¼ 50; % kg m^2
b1 ¼ 25; % N s/m
b2 ¼ 30; % N s/m
Kt ¼ 5.9e-3; % Nm/A
Ke ¼ 5.9e-3; % Nm/A
R ¼ 10; % Ohms
L ¼ 0.01; % Henries

% Define the state space model
A ¼ [0,0,1,0,0;0,0,0,1,0;-k/J1,k/J1,-(b1þb2)/J1,b2/J1,Kt/J1;k/

J2,-k/J2,b2/J2,-b2/J2,0;0,0,-Ke/L,0,-R/L];
B ¼ [0;0;0;0;1/L];
C ¼ [0,1,0,0,0];
D ¼ 0;

lambda ¼ eig(A)
sys_ss ¼ ss(A,B,C,D)
step(sys_ss)

The above code returns the eigenvalues

lambda ¼

1.0eþ03 *

-1.0000 þ 0.0000i
-0.0015 þ 0.0117i
-0.0015 - 0.0117i
0.0000 þ 0.0000i

-0.0004 þ 0.0000i

All eigenvalues have negative real parts except for one at the origin. Thus,
we can conclude that the system is spectrally stable. We can also conclude
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that the system is linearly stable but not asymptotically linearly stable. It is
linearly stable because there is friction, damping, and resistance in the system
to eventually bring x3, x4, and x5 to zero, resulting in x1 and x2 achieving a
maximum magnitude. It is not asymptotically linearly stable because x1 and
x2 do not converge to zero. This situation is analogous to (3.77) with a ¼ 0.

The equilibrium points of the system can be found from the nullspace of
A. That is, all vectors x such that Ax ¼ 0. Again, using MATLAB to help
with the calculation, the null command returns

>> null(A)

ans ¼

-0.7071
-0.7071
0.0000
0.0000

-0.0000

From this result, we can interpret the equilibrium points of the system
to belong to the set in which x1 ¼ x2 and x3 ¼ x4 ¼ x5 ¼ 0. There are
infinitely many equilibrium points of the form [a a 0 0 0]T, where a is any
real number. Looking back at what the system variables are, we can
interpret these equilibrium points to be when the motor and load are at the
same angle (x1 ¼ x2), neither the motor nor the load is turning (x3 ¼
x4 ¼ 0), and there is no current flowing in the circuit (x5 ¼ 0). In this
configuration, the system will not change. In any other configuration, the
system will change. If x1 s x2, then the spring of the shaft will cause the
angles to change. If either x3 s 0 or x4 s 0, the motor or load is moving
but will slow down because of damping. If x5 s 0, then there is current in
the circuit that will result in torque being applied to the motor shaft.

These equilibrium points are Lyapunov stable but not asymptotically
stable. If we choose an equilibrium point and an ε, say [1 1 0 0 0]T and
0.001, then we can always choose initial conditions “close enough” to the
equilibrium so that the system settles to within 0.001 of it. In other words,
we can ensure that for all t > 0,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � 1Þ2 þ ðx2 � 1Þ2 þ x23 þ x24 þ x25

q
< 0:001 (3.96)

Meaning if we choose carefully enough, we can have the system stop
really close to the angle x1 ¼ x2 ¼ 1. However, we cannot ensure that it
will stop exactly at x1 ¼ x2 ¼ 1 as asymptotic stability requires.
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The step response plot is shown in Figure 3.23. From this plot, we can
conclude that the system is not BIBO stable. This conclusion makes
physical sense. The input to the system is the supply voltage to the motor.
When a constant voltage is applied, the motor will turn at a constant speed
(in steady state). If the load angle is our output, it will keep increasing
without bound.

3.4.5.3 MATLAB Example: Mechanical Belt
Consider the belt system shown in Figure 3.24. A mass m is placed on a belt
that is moving with velocity v0. The mass is connected to a fixed object by
means of a spring. The distance of the mass from the object is denoted by x.

The equation of motion for the mass is

m€xþ b _xþ kxþ f ð _x� v0Þ ¼ 0 (3.97)

where k is the coefficient of elasticity; f ð _x� v0Þ is the friction of the belt on
the mass, which depends their relative velocity; and b represents all other

Figure 3.23 The step response of the motor position system with the load angle as
the output.
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(assumed constant) friction in the system. The function f can be linearized
about v0 (as will be shown in the next chapter), and the equation of motion
becomes

€xþ 1
m

�
b� vf

vv0

����
_x¼0

�
_xþ k

m
x ¼ f ðv0Þ

m
(3.98)

under the assumption that f is an odd function, meaning that
f ð _x� v0Þ ¼ �f ðv0 � _xÞ. Defining the offset position y as

y ¼ x� f ðv0Þ
k

(3.99)

and assuming the friction function takes the form

vf
vv0

¼ �ay2 þ b (3.100)

then the system equation becomes

€y� 1
m
ðb� b� ay2Þ _yþ k

m
y ¼ 0 (3.101)

In (3.101), we see a form of the well-known Van der Pol equation.
Converting to state-space form with y1 ¼ y and y2 ¼ _y gives

_y1 ¼ y2

_y2 ¼
1
m

�
b� b� ay21

	
y2 � k

m
y1

(3.102)

Setting _y1 ¼ 0 and _y2 ¼ 0, the one equilibrium point is found to be
[0, 0]T.

m

x

v0

Figure 3.24 A mechanical belt system exhibiting negative friction.
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The MATLAB code below simulates the system running and generates
a phase plot.

% mechanical_belt_simulation.m

% Close all figures and clear all variables
close all
clear all

% How long to simulate (in seconds)
t_end ¼ 100;

% Set initial conditions on the system
y1_0 ¼ 4;
y2_0 ¼ 1;

% Solve the system equations
[T Y] ¼ ode45(@mechanical_belt_model,[0 t_end],[y1_0 y2_0]);

% Save the results in a vector
y1 ¼ Y(:,1);
y2 ¼ Y(:,2);

% Plot the results
plot(y1,y2,'b',y1_0,y2_0,'bo')
xlabel('y_1')
ylabel('y_2')
axis equal
axis([-8 8 -8 8])

This code for the system model corresponding to (3.102) is shown
below.

function dy ¼ mechanical_belt_model(t,y)

% Define the model parameters
m ¼ 1;
k ¼ 10;
b ¼ 0.1;
alpha ¼ 1;
beta ¼ 1;

dy ¼ zeros(2,1);
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% Define the dynamical equations
dy(1) ¼ y(2);
dy(2) ¼ (1/m)*(beta-b-alpha*(y(1))^2)*y(2) - (k/m)*y(1);

The trajectory for this system with initial condition [4 1]T is shown in
Figure 3.25. Although it may look like the trajectory is converging to the
origin, it actually does not. It converges to the periodic pattern around the
origin. In fact, if the simulation is run for various initial conditions, they all
will converge to this same periodic pattern. This pattern is called a limit
cycle, a phenomenon associated with nonlinear systems discussed further in
the next chapter. Figure 3.26 shows the trajectory for an initial condition
starting inside the limit cycle and converging to it.

The origin of this system is not Lyapunov stable, and the reason is this:
one cannot choose an initial condition to get the trajectory arbitrarily close
to the origin. No matter what initial condition is chosen, it converges to

Figure 3.25 Phase plot of the mechanical belt with initial condition [4 1]T exhibiting
a limit cycle.
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this limit cycle. If an ε is chosen to lie inside the limit cycle, the trajectory
will always travel outside this radius. This situation is analogous to
Figure 3.16 in that the system is not stable, but it doesn’t “blow up.”

3.4.5.4 Example: Automobile Longitudinal Dynamics
Consider the car shown in Figure 3.27. A simple model for the longitudinal
dynamics is

m _v ¼ �Fd � mg sin qþ F (3.103)

where v is the vehicle’s longitudinal velocity, Fd is the drag force, m is the
vehicle’s mass, g is the gravitational acceleration, q is the road angle of
incline, and F is the force imparted from the driven wheels. The drag force
depends on how fast the vehicle is traveling and can be modeled as

Fd ¼ 1
2
CdrAv

2 sgnðvÞ (3.104)

Figure 3.26 Phase plot of the mechanical belt with initial condition [0.1 0.1]T

exhibiting a limit cycle.
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where Cd is the drag coefficient, r is the mass density of air, and A is the
cross-sectional area of the vehicle’s front. The system is nonlinear because of
the sgn($) function. (This type of nonlinearity is discussed in detail in the
next chapter.) So the state equation becomes

_v ¼ �CdrA
2m

v2sgnðvÞ � g sin qþ 1
m
F (3.105)

If the car is on a flat surface (q¼ 0), there is an equilibrium point at v¼ 0.
If the car is on any incline (q s 0), then there is an equilibrium point at the
velocity for which the force caused by gravity is offset by the drag force.
Mathematically, we obtain this result by setting (3.105) to zero and solving
for v with F ¼ 0.

�CdrA
2m

v2sgnðvÞ � g sin q ¼ 0 (3.106)

If v > 0, then (3.106) reduces to

v2 ¼ � 2mg
CdrA

sin q (3.107)

which has no solution for 0 < q < 90 degrees and v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2mg

CdrA
sin q

q
for �90 degrees < q < 0.

If v < 0, then (3.106) reduces to

v2 ¼ 2mg
CdrA

sin q (3.108)

which has no solution for �90 degrees < q < 0 and v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mg
CdrA

sin q
q

for
0 < q < 90 degrees.

Fd
F

mg

v

θ

Figure 3.27 The forces acting on the car to determine the longitudinal dynamics.
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From this calculation, we determined two equilibrium points. When the

car is going uphill, there is an equilibrium point at v ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mg
CdrA

sin q
q

. When

the car is going downhill, there is an equilibrium point at v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2mg

CdrA
sin q

q
.

Note that in the latter case, v is not imaginary because sin q < 0.
What can we say about the stability of this equilibrium point?

Figure 3.28 shows the trajectories for the uphill case that result when the car
starts slightly faster and slightly slower than the equilibrium velocity.
Although not a rigorous proof, this demonstrates that the car exhibits
asymptotic stability at the equilibrium point, and this matches our intuition
about how a car on a hill behaves.

Now to consider BIBO stability, we let F be nonzero. Figure 3.29
shows the response for several values of F. In each case, the vehicle’s
velocity is bounded. As with the case for no external input, the car settles to
a speed for which the all of the forces acting on it (gravitational, drag, and
now external) balance, and there is no acceleration. Based on this response,
the car’s longitudinal velocity exhibits BIBO stability.

Figure 3.28 The vehicle’s velocity for initial conditions near the equilibrium point.
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3.5 LYAPUNOV FUNCTIONS

In the examples given in the previous section, Lyapunov stability was
established by applying the definitions and using solutions to the system
equations. If the investigation is performed using closed form, analytical
solutions, this method will rigorously establish stability of equilibrium
points. However, if such a closed form solution is difficult to obtain or does
not exist, numerical solutions can be used (as in Section 3.4.5.3). However,
numerical solutions cannot rigorously establish stability for they can only
give an indication.

There are two other ways besides applying the definition of Lyapunov
stability, known as Lyapunov’s indirect (or first) method and direct
(or second) method.

Lyapunov’s indirect method establishes the local stability of an
equilibrium point by checking the behavior of the linearized system about
that point. This method is discussed in detail in the next chapter on line-
arization techniques.

Figure 3.29 The vehicle velocity response for several values of input force.
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Lyapunov’s direct method establishes the local or global stability of
an equilibrium point by checking the “energy” of the system through a
Lyapunov function. This method is the topic of this section.

The idea behind Lyapunov’s direct method is that if the energy in a
mechanical system is dissipated, the system will eventually settle down to
some equilibrium. Often this concept is introduced by means of the simplest
mechanical system: a massespringedamper as shown in Figure 3.30. In this
system, a mass moves along a frictionless surface and is connected to an
immoveable object by a spring and damper.

The equation of motion for this system is

m€xþ b _xþ kx ¼ 0 (3.109)

where m is the mass, b is the damping, and k is the spring constant. The
energy of the system is the combined kinetic and potential energies
given by

E ¼ Ekinetic þ Epotential

¼ 1
2
m _x2 þ

Zx

0

k~xd~x

¼ 1
2
ðm _x2 þ kx2Þ

(3.110)

Taking the time derivative of the energy yields

_E ¼ m _x€xþ kx _x (3.111)

k

b

m

x

Figure 3.30 The massespringedamper system used as motivation for Lyapunov’s
direct method.
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Solving (3.109) for €x and substituting into (3.111) gives

_E ¼ m _x

�
� b
m

_x� k
m
x

�
þ kx _x

¼ �b _x2
(3.112)

Because we know the solution x(t) for this linear system, we know
that the system is stable if b ¼ 0 and asymptotically stable if b > 0. In
looking at (3.112), we see that _E ¼ 0 if b ¼ 0 and _E < 0 if b > 0.
Furthermore, E ¼ _E ¼ 0 at the equilibrium point x ¼ 0, _x ¼ 0. Relating
these mathematical results to the system behavior, we can informally
conclude (without proof) that for _E � 0, the system “stays close” to the
equilibrium point, and for _E < 0, the system asymptotically approaches the
equilibrium point.

This idea is generalized by defining an energy-like function (the
Lyapunov function, typically denoted byV(x)) with the same characteristics
as energy in a mechanical system. There are three important characteristics of
the energy function that help in determining stability of the equilibrium point.
1. V > 0 is positive away from the equilibrium point.
2. _V < 0 or _V � 0 away from the equilibrium point.
3. V ¼ 0 at the equilibrium point x ¼ 0, _x ¼ 0.

The function V is energy-like because it is positive except for the
equilibrium point, where it is zero. Stability of the equilibrium point is
established by checking if _V � 0 away from equilibrium. The key is that
the “energy” is positive and either is bounded or dissipates over time until
the system settles.

Here is a formal statement of the Lyapunov theorems for stability and
asymptotic stability.

Lyapunov Theorem for Stability: Let x* be an equilibrium point of the
system _x ¼ f ðxÞ. If there exists a continuous differentiable scalar function V(x)
defined in a neighborhood D of x* such that
i. V(x*) ¼ 0
ii. V(x) > 0 when x ˛D and x s x*
iii. _V ðxÞ � 0 when x ˛D

then x* is Lyapunov stable. Additionally, if V(x) satisfies
iv. _V ðxÞ < 0 when x ˛D and x s x*,

then x* is asymptotically stable.
Note the additional condition for asymptotic stability. The time

derivative of V is negative, meaning V is always decreasing and approaching
zero (it can’t go negative because of the second condition). This is the
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mathematical statement that says “energy” is being dissipated. If the con-
dition is the weaker _V ðxÞ � 0, then the “energy” may stop decreasing, but
never increases, over time.

There is also a theorem for unstable equilibrium points.
Lyapunov Theorem for Instability: Let x* be an equilibrium point of the

system _x ¼ f ðxÞ. If there exists a continuous differentiable scalar function V(x)
defined in a neighborhood D of x* such that
i. V(x*) ¼ 0
ii. V ðxÞ > 0 when x˛D and xsx*
iii. _V ðxÞ > 0 when x˛D

then x* is unstable.
Because we have the Lyapunov theorem for stability, we only have to

find the function V(x) and check some conditions on it, and then we know
conclusively if the equilibrium point is stable without having to solve for
trajectories in the system.

Isn’t this great? Yes and no. On the one hand, it is an advantage to not
have to solve the system equations. But on the other hand, there are two
significant disadvantages to Lyapunov’s theorem.
1. The theorem cannot be used to prove instability in the absence of a

Lyapunov function. Notice that the theorem is in the form of an ifethen
statement not an if-and-only-if statement. If a function V(x) exists to
satisfy the criteria, then one can conclude something about stability.
However, if you can’t find such a V(x), the equilibrium may or may
not be stable. The theorem says nothing about this situation.

2. The theorem gives no direction about how to find such a V(x). The
statement starts assuming the Lyapunov function exists. Here again
we see the mathematical approach, which talks about the existence
of something but ignores the practical side of actually finding it. Un-
fortunately, there is no general algorithm for finding Lyapunov func-
tions, but experience provides intuition. Also, for certain classes of
systems, such as linear time-invariant systems, systematic methods do
exist for generating a V(x). But linear systems are easy to deal with
in the first place. A systematic method for nonlinear systems would
be quite useful but unfortunately does not exist. There are some stan-
dard ways one can proceed, but they do not guarantee a successful
outcome.

3.5.1 Lyapunov Functions for Linear Systems
A typical starting point for constructing Lyapunov functions for linear
systems is to make it a quadratic function of the states under the assumption
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that x* ¼ 0. This assumption ensures that V(0) ¼ 0 and V(x) > 0 for xs 0.
V(x) is defined as

V ðx1; x2;.; xNÞ ¼ ½ x1 x2 / xN �

2
6664
p11 p12 / p1N
p21 p22 / p2N
« « 1 «

pN1 pN2 / pNN

3
7775

2
6664
x1
x2
«

xN

3
7775

(3.113)

Or more succinctly,

V ðxÞ ¼ xTPx (3.114)

with the restriction that P is a positive definite matrix, which guarantees
that V(x) is positive for x s 0. Recall from matrix theory that a positive
definite matrix has all positive eigenvalues, and a positive semidefinite
matrix has all nonnegative eigenvalues.

Then taking the derivative

_V ðxÞ ¼ _xTPxþ xTP _x

¼ ðAxÞTPxþ xTPðAxÞ
¼ xTATPxþ xTPAx

¼ xT ðATPxþ xTPAÞx

(3.115)

To show stability or asymptotic stability of x ¼ 0, one chooses P so that
ATPxþ xTPA is negative semidefinite or negative definite, respectively. Also
recall that amatrixM is negative (semi)definite ifeM is positive (semi)definite.

Using this formulation, we have a theorem that provides a strong
statement about the relationship between P and asymptotic stability.

Theorem for Asymptotic Stability in Linear Time-Invariant Systems:
The origin of the system _x ¼ Ax is asymptotically stable if and only if given a
positive definite matrix Q, the P that solves ATPxþ xTPA ¼ �Q is also positive
definite.

3.5.1.1 MATLAB Example: Lyapunov Function for
a Linearized Pendulum

In this example, we use the MATLAB command lyap to find a Lyapunov
function for a linearized pendulum modeled by2

4 _x1

_x2

3
5 ¼

2
4 0 1

� g
l

� b
ml2

3
5
2
4 x1

x2

3
5 (3.116)
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The code below performs this task.

% pendulum_lyap.m

% Close all figures and clear all variables
close all
clear all

% Define constants for the system
g ¼ 9.8;
l ¼ 1;
b ¼ 0.1;
m ¼ 1;

% Define the matrices
A ¼ [0,1;-g/l,-b/(m*l^2)];
Q ¼ eye(size(A));

% Find the Lyapunov function
P ¼ lyap(A,Q)
lambda ¼ eig(P)

The lyap command solves the equation ATPxþ xTPA ¼ �Q. In using
this command for the theorem, the user needs to define Q to be positive
semidefinite or positive definite to check for stability or asymptotic stability
respectively. The above code returns the following for P and lambda.

P ¼

5.5153 -0.5000
-0.5000 54.0000

lambda ¼

5.5102
54.0052

Because the eigenvalues of P are positive, it is a positive definite matrix,
and we can conclude that the equilibrium point at x1 ¼ 0, x2 ¼ 0 is
asymptotically stable.

Setting b ¼ 0 and running the code again gives the following result.
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P ¼

1.0eþ15 *

-0.3800 -0.0000
-0.0000 -3.7239

lambda ¼

1.0eþ15 *

-3.7239
-0.3800

In this case, the eigenvalues of P are negative (in fact, they have quite
large negative values), making P negative definite. From this, we can
conclude that the undamped pendulum is not asymptotically stable, which
agrees with our intuition.

Going one step further, setting b ¼ 0 and Q ¼ [1,0;0,0] (which is a
positive semidefinite matrix) gives the following result.

P ¼

1.0eþ15 *

-0.3448 -0.0000
-0.0000 -3.3791

lambda ¼

1.0eþ15 *

-3.3791
-0.3448

This result tells us that the undamped pendulum is Lyapunov stable.
The P provided by the lyap command solves ATPxþ xTPA ¼ �Q,
meaning that ATPxþ xTPA is negative semidefinite. The existence of such
a P is what is important, not the fact that P is negative definite.

For cases in which x* s 0, the system can be reworked by redefining
the state vector so that bx ¼ x� x*, and then the equilibrium is shifted to
zero.
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3.5.2 Method of Gradients
One method for attempting to construct a Lyapunov function is to
use the method of gradients.13 Briefly, the method of gradients assumes
the system has the form2

6666664

_x1

_x2

«

_xN

3
7777775
¼

2
66664

f1ðx1; x2;.; xNÞ
f2ðx1; x2;.; xNÞ

«

fNðx1; x2;.; xNÞ

3
77775 (3.117)

Then one tries to find a function

hðx1; x2;. xNÞ ¼

2
6664
h1ðx1; x2;.; xNÞ
h2ðx1; x2;.; xNÞ

«

hNðx1; x2;.; xNÞ

3
7775 (3.118)

that satisfies three conditions:
i. h is the gradient of the Lyapunov function V, i.e. hi ¼ vV

vxi
for i ¼ 1.N

ii. The Jacobian of h is symmetric, i.e. vhi
vxj

¼ vhj
vxi

for all i, j ¼ 1.N

iii. _V ðxÞ ¼ vV
vx _x ¼ hT f < 0

Then the functions h1, ., hN are integrated to obtain V. The next
example shows this method applied to the pendulum system in detail.

3.5.2.1 Example: Lyapunov Function for the Pendulum
Let’s apply the method of gradients to the pendulum example with the
following dynamical equations.

_x1 ¼ f1ðx1; x2Þ ¼ x2

_x2 ¼ f2ðx1; x2Þ ¼ � g
l
sin x1 � b

ml2
x2

(3.119)

Now taking the third condition from above results in

h1x2 þ h2

�
� g

l
sin x1 � b

ml2
x2

�
< 0 (3.120)

13 Full details with proof are provided in Khalil (1996).
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Our job is to find some h1 and h2 so that (3.120) is satisfied for x1 and x2
near the equilibrium point [0, 0]T. This is the point where some creativity
will help. Rearranging (3.120) gives

h1x2 � h2
g
l
sin x1 < h2

b
ml2

x2 (3.121)

One approach is to try to make the left side of (3.121) to be zero and the
right side to be positive, keeping in mind the restriction vh1

vx2
¼ vh2

vx1
. The

choice of

h1 ¼ a1x1 þ bx2 þ g
g
l
sin x1

h2 ¼ bx1 þ a2x2
(3.122)

satisfies all these criteria for appropriate choices of a1, a2, b, and g.
Plugging (3.122) into (3.120) gives


a1x1 þ bx2 þ g

g
l
sin x1

�
x2 þ ðbx1 þ a2x2Þ

�
� g

l
sin x1 � b

ml2
x2

�
< 0

(3.123)

And simplifying gives

�
a1 � b

b
ml2

�
x1x2 þ

�
b� a2

b
ml2

�
x22 þ ðg� a2Þ gl x2 sin x1

� b
g
l
x1 sin x1 < 0

(3.124)

To satisfy (3.124), the following criteria are needed for the constants in
h1 and h2:
i. a1 ¼ b b

ml2

ii. b < a2
b
ml2

iii. g ¼ a2

iv. b > 0
The next step is to use h1 and h2 to construct V, which can be

accomplished through integration.
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V ðx1; x2Þ ¼
Zx1

x*1

h1ð~x1; 0Þd~x1 þ
Zx2

x*2

h2ðx1; ~x2Þd~x2

¼
Zx1
0



a1~x1 þ g

g
l
sin ~x1

�
d~x1 þ

Zx2
0

ðbx1 þ a2~x2Þd~x2

¼ 1
2
a1x21 þ g

g
l
ð1� cos x1Þ þ bx1x2 þ 1

2
a2x22

(3.125)

In more succinct form, V can be written as

V ðx1; x2Þ ¼ 1
2
½ x1 x2 �

�
a1 b

b a2

��
x1
x2

�
þ g

g
l
ð1� cos x1Þ

¼ 1
2
xTPxþ g

g
l
ð1� cos x1Þ

(3.126)

Because V needs to be positive for x s 0, the two additional conditions
on the constants derived from (3.126) are
v. P is a positive definite matrix
vi. g > 0

To ensure that P is positive definite, its eigenvalues must be positive.
Because the eigenvalues l1 and l2 are given by

l1; l2 ¼ 1
2

�
a1 þ a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 þ a2Þ2 � 4

�
a1a2 � b2

	q �
(3.127)

then condition iv can be expressed as

a1 þ a2 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 þ a2Þ2 � 4

�
a1a2 � b2

	q
(3.128)

and simplifying gives an alternative form of the condition above.
v. a1a2 � b2 > 0

To satisfy conditions i to vi, the following values can be chosen.
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a1 ¼ 1
2

�
b
ml2

�2

a2 ¼ 1

b ¼ 1
2

b
ml2

g ¼ 1

(3.129)

Then by construction, the Lyapunov function and its time derivative are

V ðx1; x2Þ ¼ 1
4

�
b
ml2

�2

x21 þ
1
2

b
ml2

x1x2 þ 1
2
x22 þ

g
l
ð1� cos x1Þ

_V ðx1; x2Þ ¼ �1
2

b
ml2


g
l
x1 sin x1 þ x22

� (3.130)

This function satisfies the conditions of Lyapunov’s stability theorem for
asymptotic stability. Therefore, we can conclude that the pendulum’s
equilibrium point at x* ¼ 0 is locally asymptotically stable.

It is worth noting some characteristics of this conclusion. First is that we
can only make a statement about local stability because the conditions
V(x1, x2) > 0 and _V ðx1; x2Þ < 0 don’t apply for all x s 0. For example, if
x1 ¼ p and x2 ¼ 0, then _V ðx1; x2Þ ¼ 0. However, [p 0]T is another
equilibrium point of the system (upright pendulum), and this point is not in
the neighborhood of [0 0]T. Because this nonlinear system has multiple
equilibrium points, the stability conclusion will only apply locally.

To emphasize again the meaning of the theorem, (3.130) is not the only
possible Lyapunov function, and there may be others. The theorem only
requires finding one V that satisfies the conditions. When such a V is found,
the work is done. If such a V is not found, no conclusion can be made
about stability.

This concludes our discussion of characteristics of dynamical systems that
can apply to general systems described by differential or difference equa-
tions. In particular, we examined in depth: existence and uniqueness of
solutions, equilibrium points, and stability. While examining these char-
acteristics, we saw how they were used in applications such as pendulums,
vehicular longitudinal dynamics, motor positioning, mechanical belts, and
predatoreprey systems. In the next chapter, we turn our attention from
these general system characteristics to nonlinear system characteristics. We
will focus on some concepts that are seen only in nonlinear systems such
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as limit cycles, bifurcation, chaos, and linearization. We will investigate
these concepts in the context of jet engine control, population dynamics,
mechanical belts, robotic control, direct current (DC) motors, and pendulum
systems.
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CHAPTER 4

Characteristics of Nonlinear
Systems

4.1 TYPES OF NONLINEAR SYSTEMS

In the previous chapter, there was quite a bit of discussion about charac-
teristics of general dynamical systems such as existence and uniqueness of
solutions, equilibrium points, and stability. Although some specific results
only applied to linear systems, such as certain theorems or solution methods,
the concepts themselves are applicable to all systems. In this chapter, linear
systems are abandoned to discuss nonlinear systems, only to be picked up
again toward the end when discussing linearization.

As mentioned previously, a nonlinear system is one that is not linear.
In other words, it is a system whose dynamical equations cannot be put in
the form

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þDuðtÞ (4.1)

for continuous-time systems or

x½nþ 1� ¼ Ax½n� þ Bu½n�
y½n� ¼ Cx½n� þDu½n� (4.2)

for discrete-time systems as described in Section 2.4.
Nonlinear systems are a very broad class of systems because they are

defined by what they are not. And because it is such a broad class, general
results are hard to come by. Researchers tend to focus on certain types
of nonlinearities and generate results for subclasses of systems, those that
can be transformed into a certain structure. An example of one type is
systems that can be put into chained form (as in Section 2.4.4.6) for which
there has been much research in designing controllers. As we begin
discussion of nonlinear systems, we will first narrow the focus to a few
types of nonlinearities that appear often in real-world systemsdelements
in systems that exhibit nonlinear characteristics. These elements, which
may be found in the system block diagram, can be represented by their
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inputeoutput relation as in Figure 4.1. We will assume the input signal to
the block is denoted by x and the output by y.

4.1.1 Relay
The relay is represented mathematically by the sign or signum function.
The inputeoutput relationship is expressed as y ¼ sgn(x), where sgn(x) can
be defined in multiple, but equivalent, ways.

sgnðxÞ ¼

8><
>:

1; if x > 0

0; if x ¼ 0

�1; if x < 0

¼

8><
>:

x
jxj; if xs 0

0; if x ¼ 0

(4.3)

Figure 4.2 shows y as a function of x, and Figure 4.3 shows the output
of the block as a function of time when the input is a sinusoid. This is a
simple element that captures the sign of the input. It can be thought of
as 1-bit analog-to-digital conversion. It is also the model for Coulomb
friction in which the relative velocity of the two surfaces is the input and
the resulting force is the output acting in the direction opposite the motion.

x yNonlinear
element

Figure 4.1 Block diagram representation of a nonlinear element.

y

x

Figure 4.2 The inputeoutput characteristic of a relay or Coulomb friction.
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This type of nonlinearity can appear in control systems in which a relay
(electromechanical switch) is the controller, such as in a thermostat or
pump. But we also saw this function in Section 3.4.5.4, the longitudinal
dynamics of a vehicle.

4.1.2 Saturation
The characteristic of saturation is mathematically expressed as

y ¼

8><
>:

þK x > xs
ax �xs � x � xs
�K x < xs

(4.4)

An element with saturation nonlinearity has a linear region within input
limits. When the input exceeds that limit, the output becomes constant.
Figure 4.4 shows y as a function of x, and it is clear that the slope of the
function is a ¼ K

xs
. The figure also shows the typical behavior in addition to

3

x y

Time

2

1

0

–1

–2

–3

Figure 4.3 The output of the relay when the input is a sinusoid.

y

x

K

–K

–xs xs

Figure 4.4 The inputeoutput characteristic of the saturation. The black line shows the
ideal characteristic, and the gray curve is closer to typical actual behavior.
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the modeled behavior. Often the saturation is modeled as a hard saturation,
meaning that there is an abrupt transition from the linear to saturation
region. However, in real systems, the saturation is usually more accurately
modeled by a curve smoothly connecting the linear and saturation regions.
The smooth transition can be modeled mathematically, but one must
consider the benefit of adding complexity to the model and whether the
expression in (4.4) is accurate enough. For example, the model can have a
different level of simplicity if the desired use of the model is to accurately
predict the output versus a model of the plant in a control system.

Figure 4.5 shows the output of the block as a function of time when the
input is a sinusoid. In this case, the gain of the linear region is 2, and the
saturation values are �3.

Systems with saturation nonlinearities are very common in hardware
applications.1 They appear in systems that “run out of room.” Opamps,
transistors, springs, and motors are examples of such systems. The opamp
example is discussed in Section 1.2.2. When dealing with a system
exhibiting saturation, a common approach is to design the system so that it
operates within the linear region so that linear techniques can be used.

4.1.3 Dead Zone
The characteristic of a dead zone is mathematically expressed as

y ¼

8><
>:

aðxþ dÞ x < �d

0 �d � x � d

aðx� dÞ x > d

(4.5)

4
3
2
1
0

–1
–2
–3
–4

Time

x y

Figure 4.5 The output of the saturation element with a gain of 2 and a limit of �3.

1 An entire book has been written on this topic. See Liu and Michel (1994).
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Figure 4.6 shows y as a function of x. These elements behave almost the
opposite of saturation. They output zero when the input is within a certain
range and are linear2 when the input exceeds some threshold. Figure 4.7 shows
the output as a function of time when the input is a sinusoid. In this case, a¼ 3
and d ¼ 1.

Dead zone nonlinearities appear in systems that get “stuck” and don’t
respond until the input is beyond some minimum value. Examples of this
behavior can be found in direct current (DC) motors, hydraulic systems,
steering systems, and limb motion in animals. In Section 4.2, we will
investigate an actuator in a jet engine that exhibits a dead zone and how it
affects the system performance.

y

–d d
x

Figure 4.6 The inputeoutput characteristic of the dead zone nonlinearity.

y

4
3
2
1
0

–1
–2
–3
–4

Time

x

Figure 4.7 The output of the dead zone element with a gain of 3 and a threshold of 1.

2 The term “linear” is being used loosely here. The function is not linear for x > d because it does
not go through the origin, but if one considers the input to be how far x is past d, that is x� d,
then there is linear behavior.
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4.1.4 Coulomb and Viscous Friction
The characteristic of Coulomb and viscous friction is mathematically
expressed as

y ¼

8><
>:

ax� K x < 0

0 x ¼ 0

axþ K x > 0

(4.6)

Figure 4.8 shows y as a function of x. This element behaves linearly3 for
x s 0 and exhibits a discontinuity at x ¼ 0. Figure 4.9 shows the output
when the input is a sinusoid, with a ¼ 3 and K ¼ 1.

y

x

K

–K

Figure 4.8 The inputeoutput characteristic of the Coulomb and viscous friction
nonlinearity.

8

y
x

6
4
2
0

–2
–4
–6
–8

Time

Figure 4.9 The output of the Coulomb and viscous friction element with a gain of 3
and an offset of 1.

3 Again the term “linear” is being used loosely. It is not truly linear because of the offset K. This
type of relationship is known as an affine transformation.
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The Coulomb and viscous friction nonlinearity is a common way to
model friction. It accounts for static friction as manifested by the offset K
and dynamic (or moving) friction through the slope a.

4.1.5 Hysteresis
Hysteresis is the most complicated of all the nonlinearities presented
because y is not simply a function of x, as it has been in the other cases.
Rather, y is also a function of _x. Unlike the other nonlinearities, there is no
single mathematical expression for hysteresis.4 It is typically expressed
graphically. Figure 4.10 shows a typical example of a hysteresis curve.

The first thing to note about the relationship between x and y is that for
a given x, there may be two possible values for y. The way to interpret the
relationship is as follows. Consider a specific value for x shown in
Figure 4.11 as x0. The question is whether the y value will take on value y1
or y2. Just knowing x0 is not enough information. The value of y depends
on the where x came from. If x is increasing, then y ¼ y2. If x is decreasing,

y

x

Figure 4.10 A typical hysteresis curve.

y

x

y1

y2

x0

Figure 4.11 Demonstrating how to interpret a hysteresis curve.

4 As with saturation, entire books have been written on the mathematics of hysteresis and where it is
encountered in real systems. See, for example Mayergotz (2003), and Bertotti and Mayergotz (2006).
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then y ¼ y1. The curve is followed in the direction given by the arrows and
indicates whether to use the upper or lower part.

A system with hysteresis is one that has memory. Its output depends on
where came from. Many physical phenomena display some form of hys-
teresis. Examples include backlash in gears caused by excess play, forces
exerted by elastic materials, Schmitt triggers from electronic circuits, and
magnetization of ferrous materials.

Hysteresis may be a desirable or undesirable characteristic of a system.
Hysteresis may be intentionally designed into a system to reduce sensitivity
to noise or time lag. An example of such a design is a thermostat that has
different temperature thresholds for turning the heater on and off. If the
desired temperature is set to 70 �F, then the switching does not actually
occur at 70 �F because any noise in the temperature sensor could cause the
system to repeatedly switch on and off very quickly. Instead, the thresholds
may be set at 68 �F and 72 �F. The thresholds should be set far enough
apart so that sensor noise does not cause the high-frequency on/off signals.
If the room is heating, the heater turns off at 72 �F, and if the room is
cooling, the heater turns on at 68 �F. As such, any error in temperature
measurement less than 4 �F would not cause on/off oscillations. Schmitt
triggers may be used as the circuit control in these control systems.

An example of undesirable hysteresis can be found as a source of error in
some types of sensors. Hysteresis is common in temperature sensors because
the material doing the sensing takes time to heat or cool. This time lag
results in a different temperature value if the sensor is heating or cooling.
The error introduced by this effect is usually given in the datasheet of the
device as a worst-case offset.

4.2 LIMIT CYCLES

One interesting behavior that nonlinear systems can exhibit is a limit cycle.
A limit cycle is an oscillation that has a fixed amplitude and frequency
regardless of initial conditions, external inputs, or disturbances. Although
linear systems may oscillate, limit cycles are specific to nonlinear systems.

Let us formalize the definition of an oscillation. A system trajectory
oscillates if there exists a T > 0 such that x(tþ T ) ¼ x(t) for all t � 0. The
period of oscillation is T. A phase plot of such a trajectory has a closed curve
and is thus sometimes called a periodic orbit or a closed orbit.

First let’s consider a linear system that oscillates. Figure 4.12 shows such
a harmonic oscillator, a mass connected to a wall through a spring with no
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damping or friction. If the mass is held at a position other than equilibrium
and let go, the mass will continue to move back and forth forever.

The state space model of this system is2
64

_x

_x2

3
75 ¼

2
64

0 1

�k
m

0

3
75
2
64
x1

x2

3
75 (4.7)

where x1 ¼ x and x2 ¼ _x. The eigenvalues are �j
ffiffiffi
k
m

q
. Systems with

imaginary eigenvalues exhibit oscillations. However, the amplitude of this
oscillation depends on the initial x position where the mass was let go.
Additionally, if there is any disturbance to the system, such as a small change
in a parameter value, the oscillation will change because it is not structurally
stable. Structural instability means that a small change in the parameter can
move the eigenvalue off the imaginary to either the left or right half of the
complex plane resulting in stable or unstable behavior respectively. When
this happens either the oscillations dampen out or the trajectory goes off
to infinity.

We also saw oscillations in the undamped pendulum as shown in
Figure 2.20. The pendulum is a nonlinear system, so is this a limit cycle?
No, because the period of oscillation depends on the initial angle of release.
The pendulum will swing back and forth to the amplitude from which it
was released. The oscillation depends very much on the initial conditions.
Also, if an external torque is applied, the pendulum can be brought to a
stop. If this trajectory were a limit cycle, the oscillations would continue
even with the external influence.

For limit cycles to occur, there needs to be a fundamental difference in
the system compared with the mass-spring or pendulum. It is this funda-
mental difference that allows these oscillations to appear no matter what.
Even when external inputs are applied to the system, the oscillation will
superimpose itself on the nominal output.

x

k

m

Figure 4.12 A mass-spring system that exhibits oscillations.
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Rather than discuss the theoretical foundations of limit cycles, we will
show their existence and behavior through an example of a real-world
system that exhibits them.5

4.2.1 Simulink Example: Limit Cycles in a Jet Engine
Control System

We saw an example of a limit cycle in the mechanical belt system in
Section 3.4.5.3. In this example, we present another situation in which a
limit cycle occursdthe control system for a jet engine that has a dead zone
nonlinearity. The block diagram of the system is shown in Figure 4.13.

At the heart of the system is the actuator, which is a cantilevered device
that allows fuel to pass into the engine. When electric current passes through
the actuator, it causes deflection. However, the deflection doesn’t start until a
minimum threshold current is reached. When this level is exceeded, the
lever’s movement is proportional to the current. For this reason, the actuator
is modeled by a dead zone nonlinearity. The lever’s movement is integrated
(the 1

s block) to obtain its position, which is equivalent to fuel flow in this
model. The inner loop maintains the desired fuel flow through negative
feedback. The fuel then flows into the engine, which is modeled by a first
order low pass filter, and the resulting output is the engine rotational speedu.
The outer loop uses a proportional-integral (PI) controller, which is used to
match the output u to the desired engine speed ud.

The Simulink model used to simulate this system is shown in
Figure 4.14. At the output, the engine speed is plotted versus time by the
block titled “Output.” The derivative of the output is taken, and together
with the output, is plotted on an XY plot to generate the phase plot. For
this simulation, the values for the PI controller were Kp ¼ 3 and Ki ¼ 10,
and the dead zone had its deadband set to �1.5.

Desired
fuel flow

K

Actuator

Lever
movement

Fuel
flow Engine

response

1
s

A
s + τ

ωDead zone
nonlinearity

PI
controller

ωd
+

– –

+

Figure 4.13 Block diagram for the engine control system. PI, proportional-integral.

5 Interested readers can investigate limit cycle theory in Khalil (1996) and Vidyasagar (1993).
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Figure 4.15(a), shows the response of the system when the desired
output signal is a step of height 1. There is an oscillation appearing that has a
frequency of about 0.7 Hz and an amplitude of about 0.5 sitting on top of
the desired output of 1. Figure 4.15(b), shows the corresponding phase plot
with the derivative of the engine speed plotted against the engine speed. As
with the mechanical belt system, there is an oscillating orbit to which the
trajectory converges. This oscillation is the limit cycle.

Compare Figure 4.15 with Figure 4.16 in which the dead zone element
is eliminated. In this case, the system behaves as expected and as desired.
After a transient that stops at approximately 15 s, the output settles to a
value of 1, matching the desired input. This behavior is shown another way
in the phase plot in Figure 4.16(b). The trajectory converges to the point
(1, 0) representing an output speed of 1 with no acceleration.

The limit cycle is always present in this system (although it may go
away for different values of PI controller gains, which would need to

Step
PID(s) 3

PID controller Gain Dead zone Integrator Transfer fcn Derivative

Output

Phase plot31
s du/dt

s+1
+– +–

Figure 4.14 Simulink program for the engine control system. PID, proportional-
integral-derivative.

Figure 4.15 The engine response to a step input. (a) The engine speed as a function of
time. (b) The phase plot for the system.
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be tested). Whatever signal for ud is input to the system, the output u will
converge to it because of the feedback control system, but the limit cycle
will be present on top of that signal. As shown in the figures, the step
response in Figure 4.15(a), matches Figure 4.16(b), except the oscillation is
added. This idea is further demonstrated in Figure 4.17. In Figure 4.17(a),
the input signal is a sinusoid of amplitude 2 and frequency of approxi-
mately 0.05 Hz. The output matches the input, but the smaller
amplitude and higher frequency oscillation is superimposed on it. Also in
Figure 4.17(b), the input is a ramp, and the output is seen to track it with a
limit cycle of the same amplitude and frequency added to it.

Figure 4.16 The ideal system without a dead zone element. (a) The engine speed as a
function of time. (b) The phase plot for the system.

Figure 4.17 The engine response when the input is sinusoidal (a) and a ramp (b).
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The limit cycle is indeed interesting system behavior, but in practice, it
may be undesirable. Certainly, in this example, it is. This limit cycle rep-
resents an oscillation that is present in the engine rotation. In an actual
engine, the rotational speed would vary at a frequency of about 0.7 Hz
even as the pilot tries to hold it steady. In general, this type of behavior may
lead to inefficiencies in operation; unnecessary wear and tear on mechanical
components that could lead to a decreased lifetime; or in the worst case,
conditions that could compromise safety.

4.3 BIFURCATION

Bifurcation in a nonlinear system can be defined simply as a change in
behavior resulting from a small change in a parameter. By behavior, we
typically mean a change in the number equilibrium points, a change in the
type of equilibrium points (stable or unstable), or the emergence of a limit
cycle. By small change in a parameter, we mean that there is a threshold
above which the system exhibits one type of behavior and below it exhibits
another.

We will discuss bifurcation in the context of two examples. The first
example is the logistic differential equation, and the second example returns
to the mechanical belt system.

4.3.1 Example: Bifurcation in the Logistic
Differential Equation

The logistic differential equation is a model of population dynamics. The
model describes the growth of a single species (unlike the predatoreprey
system in Chapter 3). The assumption is that the population increases
because of reproduction and decreases because of starvation and harvesting.
The growth is modeled as being proportional to two factors: (1) the current
population and (2) how far the current population is from its peak.

The logistic differential equation is

_x ¼ rxð1� xÞ � h (4.8)

where x is the population density in the range [0, 1], r is the parameter
describing growth rate, and h is the harvest rate.

The equilibrium points x* can be found by setting (4.8) to zero and
solving for x, resulting in

rxð1� xÞ � h ¼ 0 (4.9)
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The solution to (4.9) is

x* ¼ 1
2
�

ffiffiffiffiffiffiffiffiffiffiffi
1
4
� h

r

r
(4.10)

Because x represents a population size, only real values can be consid-
ered for equilibrium points. Thus, there are three possibilities to consider:
i. h > r

4, no equilibrium points exist
ii. h ¼ r

4, one equilibrium point exists
iii. h < r

4, two equilibrium points exist
As the parameter h changes, the number of equilibrium points changes,

and the system bifurcates. Note that the system behavior also changes with
r, but in a real-life scenario, it is more likely that we would have more
control over h. A bifurcation diagram for this system is a plot of the
equilibrium points versus h as shown in Figure 4.18. As can be seen, there
are two equilibrium points for low h values, and as h increases, the equi-
librium points get closer together until they become the same value at h0.
Then as h increases further, there are no equilibrium points. Mathemati-
cally, for h> h0, the value of x would keep decreasing forever. However, in
reality, the population would fall to zero and remain there (and thus be at
an equilibrium point) because it cannot take on negative values.

Let’s also investigate the stability of these equilibrium points. Because
the system is first order, the plot of _x versus x shown in Figure 4.19 will
help us greatly to determine stability. In the figure, first focus on the
equilibrium point at x ¼ 0.25. To the left of this point, the derivative is
negative, so any initial values starting just to the left of 0.25 will decrease
and thus move away from that point. To the right of x ¼ 0.25, the de-
rivative is positive, so any initial values starting just to the right 0.25 will
increase and also move away from that point. Based on the fact that any
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Figure 4.18 Bifurcation diagram for the logistic differential equation with r ¼ 5.
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points starting near x ¼ 0.25 will move away from it, we can conclude that
this equilibrium point is unstable.

Now consider the equilibrium point at x¼ 0.75. To the left of this point,
the derivative is positive, so initial values starting just to the left of 0.75 will
increase and move toward it. Similarly, the derivative to the right of 0.75 is
negative, so initial values starting in that regionwill decrease back toward that
point. Because any point starting near x¼ 0.75 will be attracted toward it, we
can conclude that this equilibrium point is asymptotically stable.

We can verify these results by looking at a Lyapunov function and
applying Lyapunov’s theorem for stability. For x* ¼ 0.75, define the
Lyapunov function as

V ðxÞ ¼ ðx� 0:75Þ2 (4.11)

which is positive except for V(0.75) ¼ 0. Then taking the derivative gives

_V ðxÞ ¼ 2ðx� 0:75Þ _x (4.12)

When x < 0.75, then x� 0.75 < 0 and _x > 0, thus _V ðxÞ < 0. When
x> 0.75, thenx� 0.75> 0 and _x < 0 and thus again _V ðxÞ < 0.Note thatwe
are only considering signs of V(x) and _V ðxÞ for x near 0.75. Because V(x)
satisfies the conditions of Lyapunov’s stability theorem, we can conclude
(again) that the equilibrium point at x* ¼ 0.75 is asymptotically stable.

Often the bifurcation diagram includes arrows indicating how points
near the equilibrium point move and gives an indication of stability.
Figure 4.20 shows the bifurcation diagram for the logistic differential
equation modified to include this information. For large h, there is no
equilibrium point, and the population will tend toward zero as shown. This
makes intuitive sense because if the harvest rate is high enough, the species
will eventually die out.

dx
/d

t
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Figure 4.19 Plot used to determine the stability of equilibrium points.
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4.3.2 MATLAB Example: Bifurcation in the
Mechanical Belt System

Let us return to the mechanical belt system that showed a limit cycle in
Section 3.4.5.3. However, now the equations of motion will remain in the
original coordinates: mass displacement x and velocity _x. The state equa-
tions for this system are

_x1 ¼ x2

_x2 ¼ � k
m
x1 � b

m
x2 þ 1

m
sgnðx2 � v0Þ

(4.13)

This system has an equilibrium point at x1 ¼ sgnð�v0Þ
k and x2 ¼ 0.

The MATLAB code to simulate the system is shown below.

% mechanical_belt_bifurcation.m

% Close all figures and clear all variables
close all
clear all

% How long to simulate (in seconds)
t_end ¼ 20;

% Set initial conditions on the system
x1_0 ¼ 1;
x2_0 ¼ 0;

% Solve the system equations
[T X] ¼ ode45(@mechanical_belt_model,[0 t_end],[x1_0 x2_0]);

% Save the results in a vector
x1 ¼ X(:,1);
x2 ¼ X(:,2);
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Figure 4.20 Bifurcation diagram showing direction of travel for x*.
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% Plot the results
plot(T,x1,'b')
xlabel('Time (seconds)')
ylabel('x_1')
figure
plot(x1,x2,'b',x1_0,x2_0,'bo')
xlabel('x_1')
ylabel('x_2')

The file that defines the model is below.

function dx ¼ mechanical_belt_model(t,x)

% Define the model parameters
m ¼ 1;
k ¼ 10;
b ¼ 2;
v0 ¼ -1;

dx ¼ zeros(size(x));

% Define the dynamical equations
dx(1) ¼ x(2);
dx(2) ¼ -(k/m)*x(1)-(b/m)*x(2)þ(1/m)*sign(x(2)-v0);

Figure 4.21 shows the response when v0 ¼ �1. The equilibrium
point shows asymptotically stable behavior. The initial condition x1 ¼ 1
and x2 ¼ 0 settles to the equilibrium at x1 ¼ 0.1 and x2 ¼ 0. Figure 4.22
shows the response when v0 ¼ �0.1. This response is quite different
compared with Figure 4.21 because there is now a limit cycle, and the mass
position oscillates around the origin. This is an example of bifurcation
because there is a change in behavior. Somewhere between v0 ¼ �1 and
v0 ¼ �0.1, the equilibrium point went from being asymptotically stable to
unstable, and a limit cycle emerged.

4.4 CHAOS

Another interesting behavior that can occur in nonlinear system is chaos.
The common definition of a chaotic system is that it has sensitive
dependence on initial conditions. To put it another way, if we start a

Characteristics of Nonlinear Systems 231



system at two different initial conditions, say x01 and x02, then the
trajectories resulting from each initial condition may be widely different
from each other. Figure 4.23 shows the phase plot of such a system.
Contrast the behavior with linear systems, which exhibit the scaling and
additive properties. In linear systems, two initial conditions that start

x 1

Time (s)
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0

–0.5

(a)

(b)
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Figure 4.21 The response of the mechanical belt system when v0 ¼ �1. The mass
position versus time (a) and the phase plot (b).
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close to each other will have trajectories that behave similarly and stay
relatively close to each other.

Chaos is often described by the butterfly effectda butterfly flapping its
wings causes a hurricane on the other side of the world. The relatively small
amplitude of butterfly wings is equivalent to a small change in initial
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Figure 4.22 The response of the mechanical belt system when v0 ¼ �0.1. The mass
position versus time (a) and the phase plot (b).
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condition. Surely a butterfly can’t have much of an effect on atmospheric
conditions! But even this small change is enough to make the difference
between a nice sunny day and a storm (weather trajectory) in another part
of the world.

One of the key ideas with chaotic systems is that they are unpredictable.
Even though a system may be deterministic and the model may be 100%
accurate, the long-term behavior simply cannot be predicted. Let’s explore
this idea in the context of the logistic equation.

4.4.1 Example: Chaotic Behavior in the Logistic Equation
The logistic equation is a discrete-time version of the logistic differential
equation discussed in the previous section. The logistic equation takes the form

x½nþ 1� ¼ rx½n��1� x½n�� (4.14)

where r is the growth rate parameter, x represents population density and
has range [0, 1], and n is a discrete time interval (days, years, generations,
and so on).

Figure 4.24 shows x versus n for several different values of r. In each
case, two trajectories are plotted, one starting at x ¼ 0.2 and the other
starting at x ¼ 0.3. As r increases, some interesting behavior emerges. For
r ¼ 2.7, the trajectories both converge to a steady value after a transient.
In this case, the system is stable as any initial value will converge to the same

x01 x02

Figure 4.23 Trajectories in a chaotic system may diverge from each other even if the
initial conditions are close.
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Figure 4.24 The emergence of chaotic behavior in the logistic equation as growth rates increase. Two trajectories are plotted with different
initial conditions: x ¼ 0.2 (solid line) and x ¼ 0.3 (dashed line).
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steady-state value. Similarly, for r ¼ 3.1, the trajectories come together after
a transient. However, the steady-state behavior is not a single value but a
cyclic signal, known as a 2-cycle because it takes two steps in n to return to
the same value. This is an example of a stable limit cycle because all initial
conditions converge to this 2-cycle. Somewhere between r ¼ 2.7 and
r ¼ 3.1, the system underwent a bifurcation.

For r ¼ 3.9, the system exhibits a completely different behavior. In this
case, the trajectory doesn’t settle to any observable pattern, even when the
values are plotted for n up to 100. But that isn’t the only unusual behavior.
Notice that the two trajectories are not similar at all. This is an example of
sensitive dependence on initial conditions. One could argue that 0.2 and
0.3 are not very close. However, if the two initial conditions were started
even closer to each other, say 0.2 and 0.201, the trajectories would still
behave quite differently. In fact, making the initial condition differ by
0.0000000001 results in divergent trajectories; it just takes a larger number
of time intervals to start seeing the difference.

The logistic equation is quite interesting. The same system, governed by
the same modeling equation, displays three distinct behaviors: asymptotic
stability, limit cycling, and chaos.

Chaos can have serious implications in engineering systems, and it is
important to know this behavior exists. How many engineers have spent
endless hours in lab running and rerunning experiments thinking something
was wrong with the design or the experimental setup when in fact the
bizarre behavior was inherent in the system itself ?

As important as it is to understand that chaos might manifest itself as
undesirable behavior, it is also possible to harness its power for system
design. Next we explore a control algorithm that uses chaos to ensure
favorable robotic behavior.

4.4.2 MATLAB Example: Using Chaos to Control
a Mobile Robot

In this example6 we investigate a mobile robot that uses the Arnold equation
to create trajectories to cover a given space. This type of robot behavior is
desirable in settings such as cleaning or patrolling a certain area.

The robot configuration is shown in Figure 4.25. It is a two-wheeled
differential drive robot located at position (x, y) in the plane, which
makes an angle q with the x-axis.

6 For full details, see Nakamura and Sekiguchi (2001).
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The robot is modeled kinematically, and it is assumed the linear velocity
is only in the direction of the wheels (no perpendicular slippage). The
equations of motion are 2

6664
_x

_y

_q

3
7775 ¼

2
6664
v cos q

v sin q

u

3
7775 (4.15)

where the linear velocity v and rotational velocity u are inputs.
The Arnold equation is2

64
_x1
_x2
_x3

3
75 ¼

2
64
A sin x3 þ C cos x2
B sin x1 þ A cos x3
C sin x2 þ B cos x1

3
75 (4.16)

This system of equations is known to exhibit chaotic behavior for
certain values of A, B, and C. We can incorporate (4.15) and (4.16)
together if we define x3 to be q. Then the system becomes fifth order with
the following equations.2

6666664

_x1
_x2
_x3
_x

_y

3
7777775
¼

2
6666664

A sin x3 þ C cos x2
B sin x1 þ A cos x3
C sin x2 þ B cos x1

v cos x3
v sin x3

3
7777775

(4.17)

y

x

θ

Figure 4.25 The robot configuration.
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where A, B, and C are parameters to be chosen to achieve chaos and v is the
linear velocity of the robot.

The system in (4.17) is chaotic because it exhibits sensitive dependence
on initial conditions. Figure 4.26 shows three different trajectories starting
near the origin. Although the initial conditions are near each other, the
long-term behavior is quite different.

The robot’s behavior in a room is simulated using the code below.

% robot_chaos.m

% Close all figures and clear all variables
close all
clear all

% Define simulation time
dt ¼ 0.01;
t_end ¼ 600;
t ¼ [0:dt:t_end];

% Define room parameters
xmin ¼ -1;
xmax ¼ 1;
ymin ¼ -1;
ymax ¼ 1;
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Figure 4.26 Three different trajectories starting near (0, 0) take different paths.
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% Set initial conditions on the system
x0(1) ¼ 0;
x0(2) ¼ 0;
x0(3) ¼ 0;
x0(4) ¼ 0;
x0(5) ¼ 0;

x ¼ zeros(size(t));
y ¼ zeros(size(t));

% Solve the system equations
for k ¼ 1:length(t)

[T X] ¼ ode45(@robot_model,[0 dt],x0);

x0 ¼ X(end,:);

% Adjust the angle if robot is at a wall
if (x0(4) > xmax) jj (x0(4) < xmin)

x0(3) ¼ pi-x0(3);
end
if (x0(5) > ymax) jj (x0(5) < ymin)

x0(3) ¼ -x0(3);
end

% Save the results in a vector
x(k) ¼ x0(4);
y(k) ¼ x0(5);

end

% Plot the results
plot(x,y)
xlabel('x')
ylabel('y')
axis([xmin,xmax,ymin,ymax])

The robot model (4.16) is implemented in MATLAB code as the
following.

function dx ¼ robot_model(t,x)

% Define the model parameters
A ¼ 1;
B ¼ 0.5;
C ¼ 0.5;
v ¼ 1;

dx ¼ zeros(size(x));
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% Define the dynamical equations
dx(1) ¼ A*sin(x(3))þC*cos(x(2));
dx(2) ¼ B*sin(x(1))þA*cos(x(3));
dx(3) ¼ C*sin(x(2))þB*cos(x(1));
dx(4) ¼ v*cos(x(3));
dx(5) ¼ v*sin(x(3));

The code above works similar to the example in Section 2.2.3.1, the
computer-controlled vehicle dynamics, but for a different reason. Although
the code in Section 2.2.3.1 simulated the sampling of the computer, in this
case, we need to sample the robot’s position to see if it is located at the wall.
The following two if statements check where the robot is located. If it is at
one of the walls, it rotates so that the angle of incidence equals the angle of
reflection.

% Adjust the angle if robot is at a wall
if (x0(4) >¼ xmax) jj (x0(4) <¼ xmin)

x0(3) ¼ pi-x0(3);
end
if (x0(5) >¼ ymax) jj (x0(5) <¼ ymin)

x0(3) ¼ -x0(3);
end

Figure 4.27 shows the trajectory in a 2 m � 2 m room after it runs for
10 minutes. In Nakamura and Sekiguchi (2001), the authors claim that the
chaotic algorithm performs better than a random walk algorithm in terms of
coverage in a fixed amount of time because the robot can move at a
constant velocity until it hits the boundary where the random robot had to
stop and turn every 2 s.

4.5 LINEARIZATION

When encountering a nonlinear system, a typical first step is to try to linearize
it. This is understandable because linear systems are so nice to work with, and
many, many powerful tools are available from linear system theory. It is a
lucky engineer whose nonlinear system can be well approximated by a linear
one. In this section, we review two methods of linearization and explore the
relationship between a nonlinear system and its linear approximation.

4.5.1 Linearization Using Taylor Series Expansion
A common method of linearizing a system is to use a truncated Taylor
series expansion. Recall from calculus that any analytic function f(x) can
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be represented by its Taylor series expansion, an infinite series involving
every derivative of f (x) evaluated at a point x0. Then the series expresses the
expansion of f(x) about x0.

Extending this idea to dynamical systems, assume the nonlinear
time-invariant system is given by

_xðtÞ ¼ f ðxÞ (4.18)

where x is an Nx1 vector and f:<N/<N is differentiable. The Taylor series
expansion of f about a point x* is

f ðxÞ ¼ f ðx*Þ þ Jðx*Þðx� x*Þ þ/ (4.19)

where J(x*) is the Jacobian matrix defined as

J
�
x*
� ¼

2
6666664

vf1
vx1

/
vf1
vxN

« 1 «

vfN
vx1

/
vfN
vxN

3
7777775

x¼x*

(4.20)

For linearization, the first two terms of (4.19) are kept, and the higher
order terms are discarded.
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Figure 4.27 The robot’s trajectory in a 2 m � 2 m room.
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4.5.1.1 Example: Linearizing the Pendulum
Let us return to the pendulum system given by2

64
_x1

_x2

3
75 ¼

2
64

x2

� g
l
sin x1 � b

ml2
x2

3
75 ¼

2
64
f1ðx1; x2Þ

f2ðx1; x2Þ

3
75 (4.21)

where x1 is the angle, x2 is the angular velocity, g is acceleration caused by
gravity, l is the pendulum length, m is the mass, and b is the friction coef-
ficient. Using the truncated Taylor series expansion (4.19), we can linearize
the system about [0 0]T, and it then becomes

2
64

_x1

_x2

3
75z

2
64

f1ð0; 0Þ

f2ð0; 0Þ

3
75þ

2
64

0 1

� g
l
cosð0Þ � b

ml2

3
75
2
64
x1

x2

3
75

¼

2
64

0 1

� g
l

� b
ml2

3
75
2
64
x1

x2

3
75

(4.22)

Similarly, we can linearize about the point [p 0]T. Applying (4.19) again
gives the linear system

2
64

_x1

_x2

3
75z

2
64
f1ðp; 0Þ

f2ðp; 0Þ

3
75þ

2
64

0 1

� g
l
cosðpÞ � b

ml2

3
75
2
64
x1

x2

3
75

¼

2
64
0 1

g
l

� b
ml2

3
75
2
64
x1

x2

3
75

(4.23)

The final result in (4.23) is of the form _x ¼ Ax.

4.5.1.2 Example: Linearizing a Friction Function
As discussed in Section 3.4.5.3, the friction coefficient between a mass and
a belt can be modeled by the difference in their velocities _x� v0, where _x is
the velocity of the mass with respect to an inertial frame and v0 is the
velocity of the belt. In other words,

gð _x; v0Þ ¼ f ð _x� v0Þ (4.24)
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Expanding g about v0 using (4.19) gives

gð _x; v0Þz gð0; v0Þ þ
�
vg
v _x

vg
vv0

����� _x¼0
v0¼v0

�
_x� 0
v0 � v0

�

¼ gð0; v0Þ þ vg
v _x

����
_x¼0

_x

(4.25)

Substituting in f gives

f ð _x� v0Þz f ð�v0Þ þ vf
v _x

����
_x¼0

_x

¼ f ð�v0Þ � vf
vv0

����
_x¼0

_x

(4.26)

The substitution vf
v _x
¼ � vf

vv0
comes from the chain rule. If we assume that

Dv ¼ _x� v0, then

vf ðDvÞ
v _x

¼
�
vf ðDvÞ
vv0

	�
vv0
vDv

	�
vDv
v _x

	

¼
�
vf ðDvÞ
vv0

	
ð�1Þð1Þ

Note a key difference between the previous two examples. In the case
of the pendulum, the Taylor series expansion was about an equilibrium
point (either [0 0]T or [p 0]T). Then by definition f(x*) ¼ 0, so the first
term of the series is eliminated, and what’s left is a matrix multiplying x,
resulting in the linear system _x ¼ Ax. This will always happen when
linearizing about an equilibrium point.

With the friction function, the situation is different. We linearized a
function around an operating point v0. The Taylor series expansion doesn’t
lose its first term, and the result is of the form f(x) ¼ axþ b. This is not a
linear system, as has been discussed before, because it does not pass through
the origin. What this procedure did was take a nonlinear function and
approximate it by a straight line at a certain point. However, the procedure
for linearization was the same in both cases.

4.5.2 Linearization and Stability
In this section, we explore the relationship between linearized systems and
their stability. In particular, if the linearized version of the system is stable,
what can we conclude about the original nonlinear system’s stability?
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Fortunately, there is a relatively simple relationship that is summarized in
the following theorem.

Lyapunov’s Linearization Theorem: Let x* be an equilibrium point for the
Nth order system _x ¼ f ðxÞ and let the linearized system given by _x ¼ Ax where

A ¼

2
6666664

vf1
vx1

/
vf1
vxN

« 1 «

vfN
vx1

/
vfN

vxN

3
7777775

x¼x*

(4.27)

If all eigenvalues of A are in the left half of the complex plane, then x* is an
asymptotically stable equilibrium point in the nonlinear system.

If any eigenvalues of A are in the right half of the complex plane, then x* is an
unstable equilibrium point of the nonlinear system.

To obtain the equivalent theorem for discrete-time systems, one simply
replaces “left (right) half of the complex plane” with “inside (outside) the
unit circle.”

Note that no conclusion can be made if the linearized system has
imaginary eigenvalues (corresponding to the marginally stable case). Also,
the conclusion about stability of the equilibrium point is local, not global.
This makes sense intuitively because linearization is inherently local. When
the system moves away from the point about which the system was line-
arized, the approximation may become very different from the original
system. As the system moves away from that point, the higher order terms
of the series expansion (that were dropped from the expression) may
become large and have an effect on the system dynamics.

4.5.3 Feedback Linearization
Another linearization technique used in feedback control systems is feed-
back linearization. Let’s assume the system has a block diagram of the form
shown in Figure 4.28. The plant is the part of the system that needs to be
controlled, and the controller takes the desired input r(t) and the system’s

r(t) u(t)
x(t), y(t)Controller Plant

Figure 4.28 The structure of the feedback control system for feedback linearization.
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state x(t) and generates an appropriate input to the plant u(t) to (hopefully)
result in the overall system tracking the input r(t).

Assume the plant is modeled by

_x ¼ f ðx; uÞ
y ¼ gðxÞ (4.28)

where x ¼ [x1, ., xN], u ¼ [u1, ., up], and y ¼ [ y1, ., yq].
The idea behind feedback linearization is to design the controller to

cancel out nonlinearities in the plant so that the overall system in Figure 4.28
is linear. There are two general forms: input-state linearization and
input-output linearization. For input-state linearization, it is assumed that
all states x1, . . . , xN are available (either by direct measurement or calcu-
lation), and the goal is to cancel linearities in f so that the state equation is in
linear form. Inputeoutput linearization is similar except the goal is to design
the controller to cancel linearities in g so that the output equation is in linear
form and explicitly tied to the input u. We illustrate these concepts with two
examples.

4.5.3.1 Example: Input-State Linearization of the Pendulum
Let us reconsider the pendulum system with applied torque T.

ml2 €q ¼ �mgl sin q� b _qþ T (4.29)

Suppose we wish to design a controller so that the pendulum holds a
certain constant angle qd. To stabilize the pendulum at qd s 0, there needs
to be an offset torque applied as shown in Figure 4.29.

Defining input u as

u ¼ T � Toff (4.30)

θd

θdmgl sin

Toff  = mgl sin θd

Figure 4.29 Holding the pendulum at a nonzero angle requires an offset torque.
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the system equation (4.29) becomes

ml2 €q ¼ �mgl sin q� b _qþ uþ mgl sin qd (4.31)

First let’s convert (4.31) to state-space form, but we won’t use the usual
states as x1 ¼ q and x2 ¼ _q. Instead define the states as

x1 ¼ q� qd
x2 ¼ _q

(4.32)

Then the system equations become

_x1 ¼ x2

_x2 ¼ � g
l
sinðx1 þ qdÞ � b

ml2
x2 þ 1

ml2
uþ g

l
sin qd

(4.33)

Note that there is an equilibrium point at x1 ¼ x2 ¼ 0, which is actually
q ¼ qd and _q ¼ 0. If we choose u to cancel the nonlinear terms,

u ¼ mglðsinðx1 þ qdÞ � sin qdÞ þ ml2v (4.34)

then substituting (4.34) into (4.33) results in the linear system

_x1 ¼ x2

_x2 ¼ � b
ml2

x2 þ v
(4.35)

Now one is free to choose v to satisfy whatever the system requirements
are. In this case, we wish to have the pendulum go to x1 ¼ x2 ¼ 0. Then
the control law

v ¼ �k1x1 � k2x2 (4.36)

will result in the system equations

_x1 ¼ x2

_x2 ¼ �k1x1 �
�

b
ml2

þ k2

	
x2

(4.37)

Or in matrix form2
64

_x1

_x2

3
75 ¼

2
64

0 1

�k1 �
�

b
ml2

þ k2

	
3
75
2
64
x1

x2

3
75 (4.38)
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Because the designer can choose k1 and k2, the eigenvalues of the system
can be placed to give the desired system response. The actual input to the
physical system T must be obtained through the transformation

T ¼ uþ Toff

¼ mglðsinðx1 þ qdÞ � sin qdÞ þ ml2v þ mgl sin qd

¼ mgl sin qþ ml2v

(4.39)

4.5.3.2 Example: InputeOutput Linearization of a Field-Controlled
Direct Current Motor

Consider the schematic of the field-controlled DC motor shown in
Figure 4.30.

The system equations for this motor are given by7

Vf ¼ Rf if þ Lf
dif
dt

Va ¼ Raia þ La
dia
dt

þ K1if _q

J €q ¼ K2if ia � K3
_q

(4.40)

where K1, K2, K3, and J are constants for the motor. If we assume that u¼Vf

is the input and Va is held constant, defining the states as x1 ¼ if, x2 ¼ ia, and
x3 ¼ _q, the state equations of the motor are

_x1 ¼ �Rf

Lf
x1 þ 1

Lf
u

_x2 ¼ �K1

La
x1x3 � Ra

La
x2 þ 1

La
Va

_x3 ¼ K2

J
x1x2 � K3

J
x3

(4.41)

If we take the output of the system to be the angular speed, then the
output equation is

y ¼ x3 (4.42)

The feature of this system that is undesirable is not that the output
equation is nonlinear but that the input u does not show up explicitly.

7 This example was inspired by an example in Khalil (1996).
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In this case, if we want to control the angular speed, it isn’t obvious how to
make that happen. Inputeoutput linearization is a tool to make the control
design task easier.

The procedure for inputeoutput linearization is to take derivatives of
the output y until the input u appears in the expression.

_y ¼ _x3

¼ K2

J
x1x2 � K3

J
x3

(4.43)

€y ¼ K2

J
ðx1 _x2 þ _x1x2Þ � K3

J
_x3

¼ �K1K2

JLa
x21x3�

K2

J

�
Ra

La
þ Rf

Lf
þ K3

J

	
x1x2 þ K2Va

JLa
x1þ K2

3

J2
x3 þ K2

JLf
x2u

(4.44)

Because it takes two derivatives for the input to appear, the system has
relative degree 2.

The next step is to choose input u so that €y ¼ v or specifically,

u ¼ JLf

K2x2

�
K1K2

JLa
x21x3 þ

K2

J

�
Ra

La
þ Rf

Lf
þ K3

J

	
x1x2 � K2Va

JLa
x1 � K 2

3

J2
x3 þ v

	

¼ K1Lf

La

x21x3
x2

þ
�
RaLf

La
þ Rf þ K3Lf

J

	
x1� VaLf

La

x1
x2

þ K 2
3Lf

JK2

x3
x2

þ JLf

K2

1
x2

v

(4.45)

With this substitution, the designer has direct control of y using v.
However, one problem with this approach is that the internal dynamics
of the system may be unstable. The internal dynamics of the system are the
parts of the system that aren’t seen and aren’t part of the control design. In

Vf
if

Rf

Lf Va

Ra La

ia

+

–

+

–

θ

Figure 4.30 The schematic for a field-controlled direct current (DC) motor.
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this case, the internal dynamics are governed by x1 and x2 whose state
equations are now

_x1 ¼ �Rf

Lf
x1 þ 1

Lf

�
K1Lf

La

x21x3
x2

þ
�
RaLf

La
þ Rf þ K3Lf

J

	
x1

� VaLf

La

x1
x2

þ K2
3Lf

JK2

x3
x2

þ JLf

K2

1
x2

v

	

_x2 ¼
�
Ra

La
þ K3

J

	
x1 þ K1

La

x21x3
x2

� Va

La

x1
x2

þ K2
3

JK2

x3
x2

þ J
K2

1
x2

v

(4.46)

If the internal dynamics are unstable, x1 and x2 may grow without
bound, meaning that the field current and armature current will increase
and cause the motor to burn out. This may happen even if there is desirable
output behavior. There is an entire theoretical basis for studying internal
dynamics. Readers are encouraged to explore Khalil (1996) and Slotine and
Li (1991) for further information.

Feedback linearization is unlike that obtained by truncated Taylor
series expansion. The major difference is that feedback linearization is
exact, not an approximation. It is merely transforming the model into a
linear one by choosing an appropriate input, similar to transforming a
physical model into its canonical counterpart by choosing appropriate state
variables. However, this idea is also one of the drawbacks of feedback
linearization. The technique requires precision in the model in order to
cancel the nonlinearities. For example, in (4.34), exact measurement of
the pendulum’s mass and length as well as the gravitational constant are
required.

This concludes our discussion of nonlinear system characteristics.
Although not an exhaustive or mathematically rigorous study of these
systems, some of the most interesting topics, such as limit cycles, bifurca-
tion, and chaos, were presented. We examined the application of these
concepts to jet engine control, population dynamics, mechanical belts,
robotic control, DC motors, and pendulum systems. In moving from
Chapter 3 to this chapter, we narrowed our focus from general dynamical
systems to nonlinear systems. In moving to Chapter 5, we focus again on a
specific type of system: Hamiltonian systems. Unlike our focus on nonlinear
systems, this focus brings with it a very specific structure, as we will see in
the next chapter.
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CHAPTER 5

Hamiltonian Systems

5.1 OVERVIEW

In the earlier chapters, we encountered Hamiltonian systems, the
pendulum being one example, but we did not view them from the
perspective of the Hamiltonian function. We begin the discussion by first
focusing on conservative dynamical systems and volume-preserving flows
before formally defining Hamiltonian systems and presenting examples.

From a physics perspective, a conservative system is one in which the
force F can be derived from the potential energy at a given position V(x) by
the relationship

F ¼ � dV
dx

(5.1)

In such a case, the total energy (kinetic and potential) is constant along all
possible trajectories. Contrast this with a dissipative system, in which energy
is lost. Mathematically, a conservative system can be defined explicitly.
Consider a time-invariant system modeled by

_x ¼ f ðxÞ (5.2)

This system is a conservative system if there is some function I(x),
typically total energy, but it could be more a general quantity, such that

d
dt
IðxÞ ¼ 0 (5.3)

The function I(x) satisfying (5.3) is called an invariant. The meaning of
(5.3) is that if you follow any trajectory of the system (5.2), the value of
I(x) will be the same at every point along that trajectory.

As a simple example of a conservative system, consider the model of an
undamped harmonic oscillator.

_x1 ¼ x2
_x2 ¼ �ax1

(5.4)
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where a > 0. Define the function I(x1, x2) by

Iðx1; x2Þ ¼ 1
2

�
ax21 þ x22

�
(5.5)

It is well known that the solution to (5.4) is

x1ðtÞ ¼ x10 cos
� ffiffi

a
p

t
�þ x20ffiffi

a
p sin

� ffiffi
a

p
t
�

x2ðtÞ ¼ � ffiffi
a

p
x10 cos

� ffiffi
a

p
t
�þ x20 sin

� ffiffi
a

p
t
� (5.6)

where x10 ¼ x1(0) and x20 ¼ x2(0) are the initial conditions. Plugging (5.6)
into (5.5) and simplifying gives

Iðx1; x2Þ ¼ ax210 þ x220 (5.7)

Notice that I is independent of t and is only a function of the initial
condition of the system. Another way of viewing the invariant is shown in
Figure 5.1. Plotted in Figure 5.1(a), are trajectories of the system for various
initial conditions. In Figure 5.1(b), the function I(x1, x2) is plotted for each
x1 and x2. As can be seen, I is constant along each trajectory.

Another characteristic related to Hamiltonian systems is volume-
preserving flow. Recall that the flow of a dynamical system is given by its
vector field f(x). A flow is volume preserving if for any set of points in the
state-space, the “volume” of those points does not change after they evolve
through f. It is called “volume” as a general term even though it is technically a
volume only when dealing with three-dimensional space. Figure 5.2 illus-
trates this concept in three dimensions. An initial set of points is shown as X0,
and these points occupy a certain volume in the state-space. After plugging
each point of X0 into f and evolving the trajectory for some time t, a different
volume of the state-space is occupied, shown asXt. If f is a volume-preserving
flow, then the volume occupied by X0 and Xt are the same for any value of t.

If we define the new set of points by 4tðX0Þ ¼ Xt, then mathematically,
volume preservation is expressed asZ

X0

dx ¼
Z

4tðX0Þ

dx (5.8)

A flow is volume preserving if it is divergence free.1 That is,

div f ¼ vf1
vx1

þ vf2
vx2

þ/þ vfN
vxN

¼ 0 (5.9)

1 This is Liouville’s theorem, whose proof is formulated in this notation in Wiggins (2003).
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Figure 5.1 The phase plot of the harmonic oscillator (a) and the plot of I(x1, x2)
(b) along each trajectory of the phase plot.
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Revisiting the harmonic oscillator example, the flow of (5.4) is

f ¼
�

x2
�ax1

�
(5.10)

Then the divergence of f is

div f ¼ vf1
vx1

þ vf2
vx2

¼ 0 (5.11)

and thus f for the harmonic oscillator is volume preserving. Figure 5.3
shows volume conservation with this system for a ¼ 7. The initial set of
points is the rectangle X0. This set evolves to the parallelograms X1 and
X1.5. The phase plot trajectories of the corner points of X0 are shown to
demonstrate how the initial rectangle moves and stretches. Because the
flow of (5.4) is volume preserving, the areas of X0, X1, and X1.5 are equal.

Hamiltonian systems first came about through a reinterpretation of
Newton’s second law applied to point particles in a conservative system.
Later it was discovered that the theory applies to conservative systems with
volume-preserving flows, but Hamiltonian systems have even more
structure associated with them, as we will see in the next section.

x1

x3

x2

X0

Xt

f

Figure 5.2 The flow f is volume preserving if the volumes of X0 and Xt are equal.
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5.2 STRUCTURE OF HAMILTONIAN SYSTEMS

Following the idea of writing F ¼ ma for a system of N point particles, the
formal definition of a Hamiltonian system is one whose dynamics satisfy
Hamilton’s equations:

dqi
dt

¼ vH
vpi

dpi
dt

¼ � vH
vqi

(5.12)

where i ¼ 1, . , N. The variables pi and qi represent the momentum
and position of mass mi, respectively. The function H is known as the
Hamiltonian, and it is an expression for the total (kinetic and potential)
energy of the system given by

Hðp; qÞ ¼ 1
2

XN
i¼1

p2i
mi

þ V ðqÞ (5.13)

where V(q) is the potential energy of the system.
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Figure 5.3 The volume-preserving characteristic of the flow in the undamped
harmonic oscillator.
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These ideas were first applied to conservative mechanical systems.
However, the idea can be generalized, and one can define the Hamiltonian
H to be a smooth function that maps each (p, q) to a scalar quantity. Because
p ¼ [p1, ., pN] and q ¼ [q1, ., qN], the Hamiltonian space has dimension
2N. Today one can find Hamilton’s equations formulated in the more
general way as (for a second-order system)

_x ¼ vH
vy

_y ¼ � vH
vx

(5.14)

where H: <2 / < is a smooth function.
There are a few interesting results related to the structure of Hamiltonian

systems.
• H is constant along trajectories of the system, and phase plots can be

constructed without knowing solutions of the system.
• In systems for which H is independent of time, x* is an equilibrium

point if and only if it is a critical point of H. In other words, all partial
derivatives of H evaluated at x* are zero.

• Eigenvalues of linearized Hamiltonian systems appear in pairs. If l is an
eigenvalue, then el is also an eigenvalue.
We illustrate these characteristics in the next section by revisiting some

of the previous examples in the context of Hamiltonian systems.

5.3 EXAMPLES

5.3.1 Harmonic Oscillator
Consider again the harmonic oscillator introduced in Section 4.2 with its
model given by 2

4 _x

_x2

3
5 ¼

2
4 0 1

� k
m

0

3
5
2
4 x1

x2

3
5 (5.15)

Define its Hamiltonian H to be

Hðx1; x2Þ ¼ 1
2

�
k
m
x21 þ x22

�
(5.16)

256 A Practical Approach to Dynamical Systems for Engineers



which satisfies the definition because

vH
vx1

¼ k
m
x1 ¼ � _x2

vH
vx2

¼ x2 ¼ _x1

(5.17)

Because we know that thisH is constant along the system trajectories, the

phase plot is simply created by plotting 1
2

	
k
m x

2
1 þ x22



¼ c for various values

of c > 0. Figure 5.4 shows the resulting ellipses for k
m ¼ 7 and c ¼ 1, ., 10.
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Figure 5.4 Trajectories of the harmonic oscillator obtained using the Hamiltonian. The
direction of flow must be found from the vector field.
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Although the curves for the trajectories can be obtained this way, the
direction of travel along the trajectories is unknown. Direction information
is easily obtained using the vector field.

To find the equilibrium points, we take partial derivatives of H and set
them to zero.

vH
vx1

¼ k
m
x1 ¼ 0

vH
vx2

¼ x2 ¼ 0

(5.18)

The harmonic oscillator therefore has one equilibrium point at (0, 0) as
expected. The eigenvalues of the system are the eigenvalues of matrix2
4 0 1

� k
m

0

3
5 and are located at l ¼ �j km.

If we introduce friction into the system, it is no longer Hamiltonian.
The system equations are now2

4 _x

_x2

3
5 ¼

2
4 0 1

� k
m

� b
m

3
5
2
4 x1

x2

3
5 (5.19)

The friction introduces energy dissipation into the system, so the system
is no longer conservative. Also, the flow is no longer volume preserving.
This is seen by mapping an initial set of points through the vector field for
some time t. Figure 5.5 shows the sets of points X0, X1, and X1.5 in the same
way as Figure 5.3 but now with b ¼ 1. The areas occupied by the sets of
points are shrinking as t increases. Because the trajectories are all converging
to the asymptotically stable equilibrium point at (0, 0), all initial conditions
will eventually end up at (0, 0) and occupy the origin.

5.3.2 Pendulum
Let us revisit the pendulum system in (2.24) from the Hamiltonian point of
view. For the undamped pendulum, the system equations are given as

_x1 ¼ x2

_x2 ¼ � g
l
sin x1

(5.20)
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Define its Hamiltonian H to be

Hðx1; x2Þ ¼ 1� g
l
cos x1 þ 1

2
x22 (5.21)

which satisfies the definition because

vH
vx1

¼ g
l
sin x1 ¼ � _x2

vH
vx2

¼ x2 ¼ _x1

(5.22)

Notice that the Hamiltonian is not unique. It can always be modified by
adding a constant without changing the basic properties. Next we generate
the phase plot by generating curves �g

l cos x1 þ 1
2 x

2
2 ¼ c for various values of

c> 0. Figure 5.6 shows the result. Note that this phase plot looks a bit different
from that shown in Figure 2.20 because the angular position is not restricted
to be between ep and p as it was in the previous phase plot example.
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Figure 5.5 The flow of the damped harmonic oscillator is not volume preserving.
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The equilibrium points of the system are found by the relations

vH
vx1

¼ � g
l
sin x1 ¼ 0

vH
vx2

¼ x2 ¼ 0

(5.23)

Thus, the equilibrium points for the pendulum are located at (�np, 0)
as expected.

As with the harmonic oscillator, the damped pendulum whose model is

_x1 ¼ x2

_x2 ¼ � g
l
sin x1 � b

ml2
x2

(5.24)

is not a Hamiltonian system because energy is dissipated because of friction.
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Figure 5.6 The phase plot of the undamped pendulum generated by the Hamiltonian.
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5.3.3 Population Dynamics
Recall that the dynamical equations for the predatoreprey system are

_x1 ¼ ða� bx2Þx1
_x2 ¼ ð�c þ dx1Þx2 (5.25)

where x1 is the prey population and x2 is the predator population. This sys-
tem can be formulated as a Hamiltonian system by using a coordinate trans-
formation. Define new variables y1 and y2 as

y1 ¼ ln x1
y2 ¼ ln x2

(5.26)

Differentiating (5.26) gives

_y1 ¼
1
x1

_x1

¼ a� bx2

_y2 ¼
1
x2

_x2

¼ �c þ dx2

(5.27)

Solving (5.26) for x1 and x2 and substituting into (5.27) yields the new
system equations

_y1 ¼ a� bey2

_y2 ¼ �c þ dey1
(5.28)

The Hamiltonian for the system can then be defined as

Hðy1; y2Þ ¼ cy1 � dey1 þ ay2 � bey2 (5.29)

5.3.4 Chaplygin Sleigh
We close this section with an example of a system that is not Hamiltonian.
Typically, mechanical systems that are conservative are also volume pre-
serving and Hamiltonian in nature. When dissipative forces, such as friction,
are present, the system is not Hamiltonian. The Chaplygin sleigh is an
example of a frictionless yet dissipative system.

The Chaplygin sleigh is shown in Figure 5.7. It consists of a rigid body
moving in a plane on three contact points. The two front contact points are
posts that slide along the frictionless surface with no constraints. The third
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point consists of a knife edge that also moves with no friction, but its
movement is constrained to be along the edge, or the xs-axis. The local
frame of reference is attached to the body at the point where the knife edge
contacts the surface. The center of mass is located at Cm, and d is the dis-
tance between Cm and the origin of the local frame.

If we define v ¼ _xs and u ¼ _q, the equations of motion for this
system are2

_v ¼ du2

_u ¼ md
I þ md2

vu
(5.30)

x

xs

Cm

θ

ys

y

Figure 5.7 The Chaplygin sleigh is a rigid body moving in the plane with motion
restricted to be along the xs-axis.

2 A more detailed discussion of the system can be found in Bloch (2003).
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where m is the mass of the body and I is the moment of inertia about Cm.
Figure 5.8 shows the phase plot of the Chaplygin sleigh with state variables
(v, u). The trajectories form ellipses, which all converge to the positive v
axis. Even though the system is conservative, it is not volume preserving
as shown in Figure 5.9. Because the trajectories converge to a line, the vol-
ume of a given starting set of points gets smaller as time increases.

The Chaplygin sleigh is an example of a system that exhibits non-
holonomic constraints. The word holonomic comes from the Greek
words ólo2 vómo2 meaning “entire” and “law,” respectively. Holonomic was
a term first used by Heinrich Hertz to mean “integrable.” Nonholonomic
therefore means “nonintegrable.”
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Figure 5.8 Phase plot of the Chaplygin sleigh.
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In mechanical systems, there are generally two kinds of constraints,
geometric and kinematic. Geometric constraints are position restrictions,
and kinematic constraints are velocity restrictions. If the kinematic con-
straints can be integrated to give geometric constraints, then it is considered
a holonomic constraint. However, kinematic constraints may exist that do
not restrict the geometry of the system, in which case they are known as
nonholonomic constraints.

The knife edge of the Chaplygin sleigh imposes a nonholonomic
constraint. The velocity is constrained because movement can only be in
the direction of the edge and not perpendicular to it. However, despite this
constraint, the body can move to any (x, y) position in the plane. It just
needs to follow a trajectory in which it moves along its xs-axis.

Nonholonomic systems are a large class of important dynamical systems.
Readers are encouraged to investigate Bloch (2010), Bloch et al. (2005),
and Neimark and Fufaev (1972) for further information.
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Figure 5.9 The flow of the Chaplygin sleigh is not volume preserving.
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5.4 CONCLUSION

This concludes the final chapter in our practical study of dynamical systems.
We started with an overview of what dynamical systems are and why we
study them. Then we moved into system modeling and how to represent
models using various forms of mathematical expressions. From there we
investigated important characteristics such as solutions, equilibrium points,
and stability. In the final two chapters, we focused on nonlinear and
Hamiltonian systems, respectively. It is hoped that readers have gained an
appreciation for the practical side of dynamical systems through the
application of the concepts to many different real-world examples with the
mathematics worked through in detail. We have only touched the surface
of the topics in dynamical systems, readers are encouraged to continue
studying the many systems that are rich in interesting behaviors.
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