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Foreword

Up to the 1980s, all the experimentally observed size effects in solid mechan-
ics were generally attributed to material strength randomness. BaZant revisited
the scaling theory beginning with his 1984 discovery of the scaling law for the
size effect caused by the release of stored energy due to stable growth of large
fractures or large damage zones prior to failure. Using asymptotic matching ar-
guments, he derived a deceptively simple law of surprisingly broad applicability,
bridging the power scaling laws of classical fracture mechanics and plasticity.
With his assistants, he experimentally verified his law for various materials,
and showed how to use the scaling law to identify the cohesive fracture charac-
teristics from experiments. Later, using extreme value statistics, he formulated
a probabilistic generalization describing the transition to the classical statis-
tical size effect in very large structures failing at fracture initiation. He also
extended his size effect law to compression fracture, including kink band prop-
agation in fiber composites. Recently, he used similar asymptotic arguments
to show that the currently accepted dislocation-based strain-gradient theory
of metal plasticity for micron scale needs a fundamental revision because of
unreasonable asymptotic properties on approach to nanoscale.

Scaling of structural strength remains, however, a topic that many re-
searchers in solid mechanics seem to have temporarily set aside. It is indeed
striking to see that scaling and dimensional analysis have a tendency to dis-
appear from curricula and from the scientific literature in solid mechanics. Is
it because computers are allowing large size calculation today that scale ex-
trapolations have become useless? This topic reflects upon the relationship
between the experiments, material characteristics and structural engineeering.
As in statistical physics, it sheds new lights on the existing theories and helps
in building new, consistent engineering models. Above all, I am sure that when
reading the conclusion of the book, the reader will be convinced that scaling
ought to play a pivotal role into the understanding new problems such as earth
dynamics and nanomechanics (to mention just two extremes).

I am very glad that Zdenék BaZant agreed to take the time to write this
volume. It is an excellent and condensed presentation of the author’s pioneering
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works in this field. Zdenék decided also to include some new, unpublished
results in his manuscript. I am indebted to him for this mark of esteem and
trust.

Finally, thanks should also be extended to my graduate student Bruno Zuber
who helped in the preparation of the final manuscript.

Nantes, November 2001 Gilles Pijaudier-Cabot



Author’s Preface

In 1973, while browsing in the library, one paper in the Indian Concrete
Journal caught my eye. P.F. Walsh, a young Australian then unknown to me,
was reporting remarkable experiments. They revealed, in concrete specimens,
a strong size effect. But that size effect did not conform to a power law and
thus was in conflict with the Weibull statistical theory, then reigning supreme
and sacrosanct.

At about the same time, luckily, the late Stanley Fistedis invited me to con-
sult his group at Argonne National Laboratory in matters of failure analysis of
concrete vessels and containments under various hypothetical scenarios of nu-
clear accidents in a liquid-metal-cooled breeder reactor. The objective was reli-
able extrapolation from normal-scale laboratory specimens to these very large
(and politically very sensitive) structures. In view of dense distributed rein-
forcement, it was rccessary to somehow take realistically into account the dis-
tributed cracking, for which it seemed unavoidable to postulate strain-softening.
This phenomenon, as we know today, gives rise to a deterministic size effect.

Then, in the early 1970s, there was the luck of my getting to teach ad-
vanced topics in structural stability to some very inquisitive students in our
solid mechanics program at Northwestern, who argued about stability of soft-
ening structures, and of hearing a great seminar by Jim Rice on the triggering of
localization instability by geometrically nonlinear plastic deformations, which
is analogous to the strain-softening trigger.

Somehow all these stimuli set me at the beginning of the 1970s on an initially
controversial but exciting path which has not yet reached its end. It has been
struggle and fun—struggle because most solid mechanics sages regarded at
that time the strain softening (the cause of deterministic size effect) as a lowly
crime of ignorants (fortunately, I was no longer behind the Iron Curtain where
the mechanics bosses actually managed to get any funding for strain-softening
models proscribed by a ruling of the academy)—and fun because it led at NSF
Workshops to all these lively polemics about improperly posed boundary value
problems, uniqueness, regularization, mesh sensitivity, material stability, etc.
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In my efforts leading to this monograph, I am indebted to many. I wish
to thank my friend Jacky Mazars for advising Pijaudier-Cabot to become my
doctoral student. Gilles often dropped to my office cheerfully but debated
forcefully and gave me hard time. He contributed some key ideas of the nonlocal
damage concept and its stability foundations, which finally made the concept
of strain softening noncontroversial. Aside from Gilles, I have been blessed in
my studies of size effect and localization with the collaboration of a long line of
bright and hard-working doctoral students —E. Becg-Giraudon, S. Beissel, M.
Brocca, F.C. Caner, G. Cusatis, M. Cyr, R. Desmorat, R. Gettu, Z. Guo, M.
Jirasek, M.E. Karr, M.T. Kazemi, J.-J. H. Kim, J.K. Kim, Z. Li, F.-B. Lin, G.
de Luzio, B.-H. Oh, P.A. Pfeiffer, P.C. Prat, W.F. Schell, M. Thoma, S. Sener,
Y. Xi, K. Xu, Q. Yu, Y. Zhou and G. Zi, as well as postdoctoral associates
and visiting scholars—I. Carol, L. Cedolin, J. Cervenka, D. Ferretti, Y.-N. Li,
P. Kabele, Y.W. Kwon, D. Novak, J. Ozbolt, J. Planas and J. Vitek. Their
enormous help to my research leading to this monograph is deeply appreciated.

I cannot thank enough my esteemed colleague Isaac Daniel for his invaluable
advise and help in fracture testing of fiber composites, sandwiches and foams.
To John Dempsey, aside from provocative discussions, I am indebted for the
truly unique experience of taking part of his ‘expedition’ to the Arctic Ocean
in which size effect tests of sea ice specimens, up to the record-breaking size
of 80 m, were successfully carried out. The great research environment that
we have at Northwestern University has been a big plus, but my escapes to
the calm atmospheres of hotels Maria in Sils, Le Calette in Cefald, Paraiso del
Mar in Nerja, Parador Aiguablava on Costa Brava and others were conducive
to thinking through some more challenging sections of this monograph.

Thanks are further due to E.-P. Chen for funding, from his applied me-
chanics program at Sandia National Laboratories, my work on a review of
scaling on which much of this book is based. The present monograph would
not have happened had Gilles not pressed me gently but persistently. It cer-
tainly would not have happened without generous financial support for my
research at Northwestern, which was initially granted by the National Science
Foundation and Air Force Office of Scientific Research, and during the 1990s
came mainly from the solid mechanics program directed at the Office of Naval
Research by Yapa D.S. Rajapakse. I am grateful to Yapa for inducing me to
take more fundamental viewpoints and pushing me to shift my focus from the
scaling problems of concrete and geomaterials to those of sea ice and, more
recently, fiber composites, rigid foams and sandwich structures for ships.

Evanston, September 2001 Zden&k P. BaZant
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Chapter 1

Introduction

1.1. Nature of Problem and Approach

Scaling is the quintessential aspect of every physical theory. If scaling is
not understood, the theory itself is not understood. So it is not surprising
that the question of scaling has occupied a central position in many problems
of physics and engineering. Following Prandtl’s (1904) development of the
boundary layer theory, the study of scaling acquired during the last century a
particularly prominent role in fluid mechanics.

In solid mechanics, the scaling problem of main interest is the effect of
the size of structure on its strength. This problem is very old, in fact older
than the mechanics of materials and structures. Its discussion started in the
Renaissance. However, after an initial period of keen interest, little progress
occured for two and half centuries, until in the first part of the 20-th century
the statistical source of size effect became understood.

During the last quarter century, the non-statistical energetic source of size
effect emerged as a focus of attention. Rapid progress has been taking place.
The purpose of this treatise,! which expands an extensive recent review by
Bazant and Chen (1997), is to summarize this progress in a concise manner and
to describe the current understanding of this rich, multifaceted phenomenon.
A few new results are included as well. Emphasis is placed on quasibrittle
materials, for which the problem of size effect is most acute and most complex.
These are materials incapable of plastic yielding, failing due to fracture that is
characterized by a relatively large fracture process zone, in which the material

! Based on research supported mainly by the Office of Naval Research, Washington, D.C.,
under Grant N00014-91-J-1109, and monitored by Dr. Yapa D.S. Rajapakse, Manager, Solid
Mechanics Program.
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undergoes distributed strain-softening damage in the form of microcracking
and frictional slip.

The salient feature of quasibrittle structures is a strong and complex size
effect on structural strength. The size effect is caused principally by stable
growth of a large cohesive fracture or a large fracture process zone with micro-
cracking before the maximum load is attained. The mechanism of the size
effect is mainly deterministic, involving stress redistribution and the release of
stored energy engendered by a large fracture or a large fracture process zone.
In some situations, the randomness of local material strength also intervenes
in the size effect.

The quasibrittle material that has been researched most intensely and for
the longest period of time, is concrete. Its study provided the stimulus for
the development of strain-softening damage theories and their regularization
in the form of nonlocal continuum models, and particularly for the study of
size effects. The experimental database on damage, fracture and size effect in
concrete has become truly enormous.

Aside from normal and high-strength concretes, the quasibrittle materi-
als further include fiber-reinforced concretes, asphalt concretes, fiber-polymer
composites, various particulate composites, stiff foams, various polymers, many
types of rocks, toughened ceramics, ice (especially sea ice), snow, bone, biolog-
ical shells, stiff clays or mud, cemented sands, grouted soils, coal, paper, wood,
wood particle board, various refractories, filled elastomers, some special tough
metal alloys, etc. They also include various materials that are brittle on the
normal laboratory scale but quasibrittle on the scale of microelectronic compo-
nents or micro-electro-mechanical systems (MEMS). Many of these materials
are ‘high-tech’ materials.

This exposition will begin by sketching the long history of size effect studies.
Attention will then be focused on three main types of size effects, namely the
statistical size effect due to randomness of strength, the energy release size
effect, and the possible size effect due to fractality of fracture or microcracks.
Definitive conclusions on the applicability of these theories will be drawn.

Subsequently, the applications of the known size effect law for the measure-
ment of material fracture properties will be discussed, and the modeling of the
size effect by the cohesive crack model, nonlocal finite element models and dis-
crete element models will be reviewed. Extensions to compression failure and
to the rate-dependent material behavior will also be outlined.

Furthermore, the damage constitutive laws used for describing a micro-
cracked material in the fracture process zone will be briefly reviewed. Finally,
various applications to quasibrittle materials, including concrete, fiber compos-
ites, sea ice, rocks and ceramics, will be presented, and the role of size effect in
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some famous structural catastrophes will be pointed out.

Some key concepts and results will be explained and derived in this brief
treatise in full detail. Many subjects, however, will have to be treated only in a
review fashion, without derivations, in order to keep the exposition short. The
intent is to provide the reader a broad overview of the field without forcing him
to struggle through a bulky volume. Nevertheless, a few very recent results that
have not yet been published in periodicals (mainly Chapter 9) will be presented
in detail, with full derivation.

The recent textbook by Bazant and Planas (1998) should be considered as
complementary to the present compact treatise. Most of the results covered
here only in a review style are explained and derived in that book in full detail,
in a textbook fashion accessible to anyone with knowledge of mechanics at the
level of a B.S. degree in civil or mechanical engineering. That book also gives
many additional literature references.

IIOO ]

a) 10 10 b)

Figure 1.1: Figures illustrating the size effect discussions by (a) Leonardo da
Vinci in the early 1500s, and (b, ¢) Gallileo Galilei in 1638

1.2, Classical History

Let us begin by sketching a bit of the history. Questions of size effect and
scaling were discussed already by Leonardo da Vinci (1500s), who stated that
“Among cords of equal thickness the longest is the least strong” (Fig. 1.1a).
He also wrote that a cord “is so much stronger ... as it is shorter”. This rule
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Figure 1.2: Title page of the famous book of Galileo (1638), which founded
mechanics of materials

implied inverse proportionality of the nominal strength to the length of a cord,
which is of course a strong exaggeration of the actual size effect.

More than a century later, the exaggerated rule of Leonardo was rejected
by Galileo (1638) in his famous book (Fig. 1.2), in which he founded mechanics
of materials. Galileo argued that cutting a long cord at various points (F, D
and E in Fig. 1.1b) should not make the remaining part stronger. He pointed
out, however, that a size effect is manifested in the fact that large animals
have relatively bulkier bones than small ones, which he called the “weakness of
giants” (Fig. 1.1c).

Half a century later, a major advance was made by Mariotte (1686). He
experimented with ropes, paper and tin and made the observation, from today’s
viewpoint revolutionary, that “a long rope and a short one always support
the same weight unless that in a long rope there may happen to be some
faulty place in which it will break sooner than in a shorter”. He proposed that
this is a consequence of the principle of “the Inequality of the Matter whose
absolute Resistance is less in one Place than another”. In qualitative terms, he
thus initiated the statistical theory of size effect, two and half centuries before
Weibull. At that time, however, the theory of probability was at its birth and
was not yet ready to handle the problem.
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Marriotte’s conclusions were later rejected by Thomas Young (1807). He
took a strictly deterministic viewpoint and stated that “a wire 2 inches in
diameter is exactly 4 times as strong as a wire 1 inch in diameter”, and that “the
length has no effect either in increasing or diminishing the cohesive strength”.
This was a setback, but he obviously did not have in mind the random scatter
of material strength. Later more extensive experiments clearly demonstrated
the presence of size effect for many materials.

The second major advance was the famous work of Griffith (1921). While
founding the theory of fracture mechanics, he also introduced fracture mechan-
ics into the study of size effect. He concluded that “the weakness of isotropic
solids...is due to the presence of discontinuities or flaws... The effective strength
of technical materials could be increased 10 or 20 times at least if these flaws
could be eliminated”. He demonstrated this conclusion by his experiments
showing that the nominal strength of glass fibers was raised from 42,300 psi for
the diameter of 0.0042 in. to 491,000 psi for the diameter of 0.00013 in.

In Griffith’s view, however, the flaws or cracks triggering failure were only
microscopic, which was not characteristic of quasibrittle materials. The sizes
and random distribution of these flaws determined the local macroscopic strength
of the material but did not affect the global scaling. Thus, Griffith’s work rep-
resented a physical basis of Mariotte’s statistical concept of size effect, rather
than a discovery of a new type of size effect.

With the exception of Griffith (and von Mises), the theoreticians in me-
chanics of materials paid hardly any attention to the question of scaling and
size effect. This attitude persisted into the 1980s. The reason doubtless was
that all the material failure theories that have existed prior to nonlocal damage
mechanics and quasibrittle (nonlinear) fracture mechanics exhibit, as a rule, no
size effect because they employ a failure criterion expressed in terms of stresses
and strains; this includes the elasticity with allowable stress and plasticity, as
well as fracture mechanics of materials with only microscopic cracks or flaws
in which the only role of fracture mechanics is to establish or explain the value
of the local macroscopic strength (BaZant 1984). Therefore, the mechanicians
universally assumed, until mid 1980s, that the size effect, if observed, was
inevitably statistical, and should thus be relegated to the statisticians and ex-
perimenters. For example, the subject was not even mentioned by Timoshenko
in 1953 in his monumental treatise “History of strength of materials”.

Significant progress was nevertheless achieved in probabilistic and exper-
imental investigations. Fundamental papers by Fisher and Tippett (1928)
and Fréchet (1927) established the extreme value statistics and formulated
the weakest-link mode} for a chain. Their work was early supplemented by the
studies of Tippett (1925), and Peirce (1926), and later refined by von Mises
(1936) and others (see also Freudenthal, 1968). The capstone on the edifice of
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statistical size effect initiated by Mariotte was laid by Weibull (1939) in Sweden
(see also Weibull 1949, 1956).

Weibull (1939) reached a crucial conclusion: the tail distribution of ex-
tremely small strength values with extremely small probabilities cannot be
adequately described by any of the known distributions. He proposed for the
tail of the extreme value distribution of local strength of a small material ele-
ment, a power law with a threshold. The distribution of the strength of a chain
based on this power law came to be known as the Weibull distribution although
in mathematics it was discovered and rigorously proven earlier by Fisher and
Tippett (1928). This distribution was also found applicable to various other
physical phenomena. Weibull’s successors (see, e.g., Freudenthal 1968; Selected
Papers 1981) justified this distribution theoretically, by probabilistic modeling
of the distribution of microscopic flaws in the material.

With Weibull’s work, the basic framework of the statistical theory of size
effect became complete. Most subsequent studies until the 1980s dealt basically
with refinements, justifications and applications of Weibull’s theory (e.g., for
concrete, Zaitsev and Wittmann 1974; Mihashi and Zaitsev 1981; Zech and
Wittmann 1977; Mihashi 1983; Mihashi and Izumi 1977; see also Carpinteri
1986 1989; Kittl and Diaz 1988, 1989, 1990). It was generally assumed that, if
a size effect was observed, it had to be of Weibull type. Today we know this is
not the case.

Weibull statistical theory of size effect applies to structures that (1) fail (or
must be assumed to fail) right at the initiation of the macroscopic fracture (in
detail, see Chapter 3), and (2) have at failure only a small fracture process zone
causing only a macroscopically negligible stress redistribution. This is certainly
the case for various fine-grained ceramics and for metal structures embrittled
by fatigue. But this is not the case for quasibrittle materials, the main subject
of this short treatise.

Aside from the size effects caused by quasibrittle fracture and by material
randomness, complex size effects arise at the continuum limit on approach to
the nanoscale. These important size effects, which are caused by surface tension
and by dislocations in the lattice structure of metallic crystals, will be discussed
at the end, but only very briefly.

1.3. Recent Developments in Quasibrittle Materials

The quasibrittle material of widest use is concrete. The study of its fracture
mechanics, initiated by Kaplan (1961), prepared the ground for the discovery
of a different type of size effect.
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Leicester (1969), Kesler, Naus and Lott (1971) and Walsh (1972) concluded
that the classical linear elastic fracture mechanics (LEFM) of sharp cracks does
not apply to concrete. Leicester (1969) tested geometrically similar notched
beams of different sizes, fitted the results by a power law, oy o D~ ", and
observed that the optimum n was less than 1/2, the value required by LEFM.
The power law with a reduced exponent of course fits the test data in the
central part of the transitional size range well but does not provide the bridging
of the ductile and LEFM size effects. It was tried to explain the reduced
exponent value by notches of a finite angle, which however is objectionable for
two reasons: (i) notches of a finite angle cannot propagate (rather, a crack
must emanate from the notch tip), (ii) the singular stress field of finite-angle
notches gives a zero flux of energy into the notch tip. Same as Weibull theory,
Leicester’s power law also implied nonexistence of a characteristic length, which
cannot be the case for concrete due to the large sizes of its inhomogeneities and
its fracture process zone.

The demonstration of inapplicability of LEFM is mainly due to Walsh (1972,
1976), who tested geometrically similar notched beams of different sizes and
plotted the results in a double logarithmic diagram of nominal strength versus
size (Fig. 1.3). Without attempting a mathematical description, he made the
point that this diagram deviates from a straight line of slope —1/2, and that
this deviation must be regarded as a departure from LEFM.

In 1976 it was analytically demonstrated that localization of strain-softening
damage into bands engenders a size effect on post-peak deflections and energy
dissipation of structures (BaZant 1976) and the essential idea of the crack band
model was proposed as a remedy. In the early 1980s, based on an approximate
energy release analysis, a simple formula for the size effect law was derived
(BaZant 1984a); it described the size effect on nominal strength of quasibrittle
structures containing notches or traction-free {fatigued) large cracks that have
formed in a stable manner.

Concerning the evolution of fracture mechanics of concrete, a major step
was made by Hillerborg et al. (1976). Inspired by the softening and plastic
fracture process zone models of Barenblatt (1959, 1962) and Dugdale (1960)
(later extended by Knauss 1973, 1974, Wnuk 1974 and Kfouri and Rice 1977),
they formulated for concrete what they called the fictitious crack model, now
more often called the cohesive crack model because of its close similarity to
earlier cohesive crack models for other materials. Further they showed by
finite element analysis that the failure of unnotched plane concrete beams in
bending exhibits a size effect, and that this size effect is deterministic rather
than of the statistical Weibull type.

As a refinement of the initial studies of the role of strain softening (BaZant
1976, Bazant and Cedolin 1979, 1980; see also Bazant and Cedolin 1991), the
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Figure 1.3: Data points obtained by Walsh (1972) in four of his six series of
tests of geometrically similar notched three-point bend beams, and the fitting
curves obtained by BaZant and Oh (1983) by finite element analysis with the
crack band model
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crack band model was formulated in detail (Bazant 1982, Bazant and Oh 1983)
and was shown to accurately capture by simple finite element analysis the size
effect observed by that time on concrete specimens and structures. The crack
band model is nowadays almost the only concrete fracture or damage model
used in industry and commercial codes (e.g. code DIANA, Rots 1988 ; code
SBETA, Cervenka and Pukl 1994; or ATENA).

A more general nonlocal approach to strain-softening damage, capable of
describing the size effect in quasibrittle materials in a more fundamental and
more realistic manner, followed soon ( BaZant, Belytschko and Chang 1984;
Bazant 1984b; Pijaudier-Cabot and BaZant 1987; BaZant and Pijaudier-Cabot
1988; BaZzant and Lin 1988a,b; etc.).

Beginning with the mid 1980s, the interest in the quasibrittle size effect
surged enormously and many researchers made noteworthy contributions; to
name but a few: Planas and Elices (1988, 1989a, 1989b, 1993); Petersson
(1981), and Carpinteri (1986). The size effect has become a major theme at
conferences on concrete fracture ( Bazant, ed., 1992; Mihashi et al., eds., 1994;
Wittmann, ed., 1995; Mihashi and Rokugo 1998; BaZant and Rajapakse 1999).

It was also recognized that measurements of the size effect on the maximum
load allow a simple way to determine the fracture characteristics of quasibrit-
tle materials. This line of investigation culminated with the Cardiff workshop
(Barr, 1995) at which representatives of American and European societies en-
dorsed a unified recommendation (still pending) for a test standard based on
the measurement of maximum loads alone.

An intriguing idea was injected into the current lively debates on size effect
by Carpinteri et al. (1993, 1995a,b), Carpinteri (1994a,b) and Carpinteri and
Chiaia (1995). Inspired by numerous recent studies of the fractal characteristics
of cracks in various materials (Mandelbrot 1984; Brown, 1987; Mecholsky and
Mackin 1988; Cahn 1989; Chen and Runt 1989; Hornbogen, 1989; Peng and
Tian 1990; Saouma et al 1990; Bouchaud et al. 1990; Chelidze and Gueguen
1990; Issa et al. 1992; Long et al. 1991; Malgy et al. 1992; Mosolov and
Borodich 1992; Borodich 1992; Lange et al. 1993; Xie 1987, 1989, 1993; Xie et
al. 1994, 1995; Sacuma and Barton 1994; Feng et al. 1995; etc.), Carpinteri
and Chiaia (1995) proposed, on the basis of strictly geometrical arguments,
that the difference in fractal characteristics of cracks or microcracks at different
scales of observation is the principal source of size effect in concrete structures.
However, recent mechanical analysis by Bazant (1997b) casts serious doubt on
this proposition.
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1.4. Basic Theories of Size Effect

At present, there exist (aside from the theories for the transition from a
continuum to atomic lattice, to be discussed briefly at the end) three basic
theories of scaling in solid mechanics:

1. Weibull statistical theory of random strength (Weibull 1939)

2. Theory of stress redistribution and fracture energy release caused by large
cracks (BaZant, 1984a).

3. Theory of crack fractality, in which two variants may be distinguished.

a. Invasive fractality of the crack surface (i.e., a fractal nature of surface
roughness) (Carpinteri et al. 1993, 1995a,b,c; Carpinteri 1994a,b),
and

b. Lacunar fractality (representing a fractal distribution of microcracks)
(Carpinteri and Chiaia 1995).

Aside from these basic theories, there exist four indirect size effects:

1. The boundary layer effect, which is due to material heterogeneity (i.e., the
fact that the surface layer of heterogeneous material such as concrete has
a different composition because the aggregates cannot protrude through
the surface), and to the Poisson effect (i.e., the fact that a plane strain
state on planes parallel to the surface can exist in the core of the test
specimen but not at its surface).

2. The existence of a three-dimensional stress singularity at the intersection
of crack edge with a surface, which is actually engendered by the afore-
mentioned Poisson effect (BaZant and Estenssoro 1979). This causes the
portion of the fracture process zone near the surface to behave differently
from that in the interior.

3. Time-dependent size effect caused by diffusion phenomena such as the
transport of heat or the transport of moisture and chemical agents in
porous solids (this is manifested, e.g., in the effect of size on shrinkage
and drying creep, and is captured by the size dependence of the drying
half time (BaZant and Kim 1991) and its effect on shrinkage cracking
(Planas and Elices 1993, BaZant and Raftshol 1983).

4. Time-dependence of the material constitutive law, particularly the vis-
cosity characteristics of strain softening, which impose a time-dependent
length scale cu the material (Sluys 1992).
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Figure 1.4: (a) Geometrically similar structures of different sizes D and (b)
power scaling laws

Today the study of scaling in quasibrittle materials is a lively, rapidly moving
field. Despite considerable success in recent research, major questions remain
open (BaZant 1999a,b) and polemics abound (e.g. Planas et al. 2001; BaZant
and Rajapakse 1999). The brief exposition that follows in this book will focus
on the three main theories of size effect and the indirect ones will be left out
of consideration.

1.5. Power Scaling in Absence of Characteristic Length

The basic and simplest type of scaling characterizes any physical theory that
lacks a characteristic length. Let us consider geometrically similar systems,
for example the beams shown in Fig. 1.4a, and seek to deduce the response
Y (e.g., the maximum stress or the maximum deflection) as a function of the
characteristic size (dimension) D of the structure. Imagine now structures of
three sizes Dy, D; and D, with the corresponding responses Yp, Y1 and Y.
Given that there is no characterisitc length, we seek the dimensionless function
f(A) of the dimensionless scaling ratio A = D/ Dy representing the scaling law,
ie. Y/Yo = f(A); D¢ is considered as the reference size. This implies that
Yl/YQ = f(Dl/Do)

The ratio of the responses for sizes D and D; is

Y _ f(D/Do)

Yr ~ f(D1/Do)’ (-0

Now, if and only if there is no characteristic length, size 1; may be taken
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as the reference size instead of Dy, which means that Y/Y; = f(D/D,). Thus

we acquire the condition
f(D/Do) _ ( D )
70,00y = I\ (12)

(Bazant 1993, Bazant and Chen 1997, for fluid mechanics, see Barenblatt 1979,
Sedov 1959). This is a functional equation for the unknown scaling law f(D).
To solve it, one may differentiate it with respect to D and then substitute
D; = D. This yields the differential equation

df(A) dA . df(1)

bt U th = 2\

oy o Y MEIY
which can be easily solved by separation of variables. Because Y = Y for
D = Dy, the initial condition is f(1) = 1. One thus concludes that (1.2)
has one and only one solution, namely the power law with unknown constant
exponent m:

= const. (1.3)

FO) = am (14)
That is why power scaling plays such a prominent role.

When, for example, the scaling law is f(A) = InJ, equation (1.2) is not
satisfied; Y/Y; = (Y/Yo) / (Y1/Y0) = InA/InA; # In(A/A1). This means that
a characteristic dimension of the structures, or a characteristic length, does
exist in this case. The scaling law f(A) can be valid only for one reference
structure size, namely Dy, and the characteristic length is related to Dy.

In conclusion, the power scaling must apply for every physical theory in
which there is no characteristic length. In solid mechanics, such failure theories
include all the theories of elasto-plasticity, elasticity with a strength limit, as
well as LEFM (in which the FPZ is implied to be shrunken into a point). But
for LEFM this is true if not only the structures but also the cracks in them are
geometrically similar (this excludes metallic structures with small flaws that
are a material property and do not scale up with the structure size).

To determine exponent m, the failure criterion of the material must be
taken into account. For elasticity with a strength limit (strength theory), or
plasticity (or elasto-plasticity) with a yield surface that is expressed in terms
of stresses or strains, or both, one finds that m = 0 when the response Y
represents the stress or strain (for example the maximum stress, or the stress
at certain homologous points, or the nominal stress at failure); BaZant (1993).
Thus, if there is no characteristic length or dimension, all geometrically similar
structures of different sizes must fail at the same nominal stress. By tradition,
this came to be kncwn as the case of no size effect.

In LEFM, on the other hand, m = —1/2, provided that one deals with geo-
metrically similar structures containing geometrically similar cracks or notches.
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This may be generally proven with the help of Rice’s J-integral (see BaZant
1993).

If log oy is plotted versus log D, the power law is a straight line (Fig. 1.4b).
For plasticity, or elasticity with a strength limit, the vanishing of the power
law exponent means that the slope of this line is 0, i.e., the line is horizontal.
For LEFM, the slope is —1/2.

For quasibrittle materials and structures, which are a recently emerged ‘hot’
subject, the size effect bridges these two power laws, i.e., represents a transition
from one power law to another. What is the law that governs this transitional
law for scale bridging? This is a complex question, which is still currently the
subject of various polemics and lies in the core of the subjects to be discussed
next.

We may digress at this point to mention that, for Weibull-type statistical
theories (in which the threshold value may usually be taken as 0), the scaling
law for the nominal strength of the structure is also a power law. Based on
a preliminary study by Zech and Wittmann (1977), the power law exponents
for concrete have been thought to be —1/6 for 2D or —1/4 for 3D similarity
(see Fig. 1.4b), however, a detailed study taking into account the simultaneous
energetic size effect in concrete now shows that these exponents are —1/12 and
—1/8 (BaZant and Novak 2000b).

By the inverse of the preceding analysis of power scaling (Egs. 1.2-1.4),
the fact that the Weibull-type scaling is a power law implies that the Weibull
statistical theories have no characteristic length. This immediately invites a
question with regard to the applicability of these theories to quasibrittle ma-
terials such as concrete or composites, which obviously possess a certain char-
acteristic length corresponding to the dimension of the inhomogeneities in the
microstructure of the material. This is one reason why the Weibull-type statis-
tical theory of size effect is not applicable to quasibrittle materials, except on
scales so large that the size of their inhomogeneities becomes negligible. The
large-scale material behavior changes from quasibrittle to brittle (see Chapter

3).

1.6. Transitional Size Effect Bridging Power Laws for Different Scales

Because m = 0 for plasticity or strength criterion, the size effect in struc-
tures is measured by the nominal strength oy, which is the value of nominal
stress at maximum (ultimate) load. When the nominal strength is independent
of D, we say that there is no size effect. The size effect is the dependence of
the nominal strength on the structure size. Depending on whether the geomet-
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Figure 1.5: Transitional scaling of the nominal strength of quasibrittle struc-
tures failing only after large fracture growth

ric similarity is two-dimensional (2D) or three-dimensional (3D), the nominal
strength is a parameter of the maximum load P defined as

oN = cp P/bD  for 2D, on = ¢y P/D* for 3D (1.5)

Here b is the structure thickness in the third dimension, for the case of 2D
similarity, and ¢, is a dimensionless convenience constant which may depend
on structure shape but not size and may be exploited to make oy coincide for
example with the maximum stress or the average stress, or the stress at any
particular point.

In quasibrittle materials, the problem of scaling is more complicated because
the material possesses a characteristic length that matters. It is nevertheless
clear that, for a sufficiently large size, the scale of the material inhomogeneities,
and thus the material length, should become unimportant. So the power scaling
law should apply asymptotically for sufficiently large sizes. If there is a large
crack at failure, the exponent of this asymptotic power law must be —1/2,
which is represented by the dashed asymptote in Fig. 1.5.

The characteristic length of the material (called also the material length)
must also become unimportant for very small structure sizes, for example when
the size of concrete specimen is only several times the aggregate size. This
means that, for very small sizes, the size effect should again asymptotically
approach a power law. Because, for such small sizes, a discrete crack cannot be
discerned (as the entire specimen is occupied by the fracture process zone), the
exponent of the power law should be 0, corresponding to the strength criterion
(see the horizontal dashed asymptote in Fig. 1.5). The difficulty is that most
applications of quasibrittle materials fall into the transitional range between
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Figure 1.6: Approximate zones of stress relief caused by fracture in small and
large specimens

these two asymptotes, for which the scaling law that bridges the two power
laws may be expected to follow some transitional curve {Fig. 1.5) whose law
must be found by some other kind of arguments.

Let us now offer a simple explanation of the deterministic size effect due to
energy release (BaZant 1984). Consider the rectangular panel in Fig. 1.6, which
is initially under a uniform stress equal to the nominal stress oy . Introduction
of a crack of length ¢ with a fracture process zone of a certain length and
width A may be approximately imagined to relieve the stress and thus release
the strain energy from the areas of the shaded triangles and the crack band
shown in Fig. 1.6. The slope of the effective boundary of the stress relief
zone, k, 1s a constant when the size is varied. We may assume that, for the
range of interest, the length of the crack at maximum load is approximately
proportional to the structure size D while the size h of the fracture process
zone is essentially a constant, related to the inhomogeneity size in the material
(this assumption is usually, but not always, verified by experiment or nonlocal
finite element analysis).

For very large structure sizes, the crack band width h becomes negligible
compared to the structure dimensions, and then the energy is getting released
only from the shaded triangular zones (Fig. 1.6), whose area is proportional
to D?. This means that the energy release is proportional to D%¢% /E (E =
Young’s modulus). At the same time, the energy consumed is proportional
to the area of the band of constant width h, which in turn is proportional to
D. So the energy consumed and dissipated by fracture is proportional to Gy D
where Gy is the fracture energy—a material property representing the energy
dissipated per unit length and unit width (i.e. unit area) of the fracture surface.
Thus, 64, D?/E « G;D. Then it immediately follows that the size effect law
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Figure 1.7: Left: Load-deflection curves of quasibrittle structures of different
sizes. Right: stability is lost at the tangent points of lines of slope —Cj;, with
C, = stiffness of loading device

for very large structures is oy o« D~1/2.

When, on the other hand, the structure is very small, the triangular stress
relief zones have a negligible area compared to the area of the crack band,
which means that the energy release is proportional to Dg% /E. Therefore,
energy balance requires that Do% /E o« Gy D, from which it follows that on =
constant. So, asymptotically for very small structures, there is no size effect.

The foregoing analysis (given in more detail in Bazant, 1983, 1984) is pred-
icated on the assumptions that the crack lengths in small and large structures
are similar. According to experimental observations and finite element simula-
tions, this is often true for the practically interesting range of sizes. However,
there are some cases where the similarity of cracks does not hold true, and then
of course the scaling becomes different and more complex.

The curves of nominal strength versus the relative structure deflection (nor-
malized so that the initial slope in Fig. 1.7 be independent of size) have, for
small and large structures, the shapes indicated in Fig. 1.7. Aside from the
size effect on the maximum load, there is a size effect on the shape of the post-
peak descending load-deflection curves. For small structures, the post-peak
curves descend slowly; for larger structures, steeper; and for sufficiently large
structures they may even exhibit a snapback, that is, a change of slope from
negative to positive.

If a structure with post-peak softening is loaded by an elastic device with
a spring constant Cj, it loses stability at the point where the load-deflection
diagram first attains the slope—C; (if ever), as seen in Fig. 1.7. These tangent
points indicate failure. The ratio of the deflection at these points to the elastic
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deflection characterizes the ductility of the structure.

Small quasibrittle structures obviously have a high ductility while large
quasibrittle structures have a low ductility. The areas under the load-deflection
curves characterize the energy absorption. The energy absorption capability
of a quasibrittle structure decreases, in relative terms, as the structure size
increases. This is important for blast loads and impact.

The progressive steepening of the post-peak curves in Fig. 1.7 with increas-
ing size and the development of a snapback can be most simply explained by
the series coupling model, which assumes that the response of a structure may
be in essence approximately modeled by the series coupling of the cohesive
crack or damage zone with the elastic behavior of the structure (BaZzant and
Cedolin, 1991, Sec. 13.2).

1.7. Deductions from Dimensional Analysis

The exponents of the asymptotic power laws of the transitional size effect
can be easily deduced from dimensional analysis. The number of dimensionless
variables governing a physical phenomenon can be determined from Bucking-
ham’s I1 theorem (Buckingham 1914, 1915; see also Bridgman, 1922; Porter,
1933; Giles, 1962; Streeter and Wylie, 1975; and Barenblatt, 1979, 1987). This
theorem states that the number of governing dimensionless variables is equal
to the total number of variables minus the number of parameters with indepen-
dent dimensions (in these cases just two, length and force). It readily follows
that the condition of failure governed only by material sirength or yield limit
oo, with no role for the energy release rate, must have the form:

oN Ll Lz .

where f is a certain function and Li, Lo, ... are spatial dimensions whose ra-
tios to D characterize the structure geometry. Since oy is a constant and, for
geometrically similar structures Li/D, Lo/ D, ... are constants, too, it follows
that the nominal stress at failure, o), must be proportional to ¢g, and there-
fore a constant when the structure size D is varied. Note that the material
parameters present in the failure condition, which consist of o alone, imply no
characteristic length.

In linear elastic fracture mechanics (LEFM), the failure is determined by the
critical stress intensity factor K. (fracture toughness), the metric dimension of
which is N m~3/2, 1t is straightforward to figure out that the dimensionless
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failure condition must now have the form

onVD Ly Li _
@(—KC——,D,D,...)_O (1.7)

where L; = a = notch length. Since K, is a material constant and the ratios
Ly/D,Ly/D, ... are constant as well, for geometrically similar structures, it
follows that ox+/D must also be constant. Hence, oy o D~1/2 (e.g., BaZant,
1983, 1984; Carpinteri 1984, 1986). Note again that the material parameters
present in the failure condition, which consist of K. alone, imply no charac-
teristic length (together with material strength og, of course, K. does imply
a material length, I, = K2/o?, but og is not a parameter in LEFM; it is a
parameter in ductile-brittle or quasibrittle fracture mechanics).

The dimensional analysis, unfortunately, becomes ambiguous in some more
complex problems, for example the bending failure of floating ice plates, to be
discussed later.

For systems with no characteristic dimension, the size effect can also be
deduced, without recourse to physics, simply by converting the mathematical
formulation of the boundary value problem to a dimensionless form. To this
end we introduce the dimensionless variables, labeled by an overbar;

& =2z;/D, ui=u/D, &i;=04]00 (1.8)

pi=pifon, fi=fiDjon, Eiju= Eiju/oo (1.9)

where z; = Cartesian coordinates (i = 1,2, 3), 0;; = stress tensor components,
pi = given surface tractions, f; = body forces, and Ejj;; = elastic moduli.
The strain components are ¢;; = %(u,- j + uj.i), the field equilibrium equations
are o3;; + f; = 0, and the stress boundary conditions are n;o;; = p; on Iy,
where n; is the unit surface normal, T', is the surface domain where stresses are
prescribed, and the derivatives with respect to z; are denoted by subscript i
preceded by a comma. Denoting the derivatives with respect to dimensionless
coordinates as §; = 8/9%; and noting that 8/dz; = (1/D)d;, we can transform
the foregoing equations to the following dimensionless form:

&; = 3(0;u; + Oiu;), 8;6ij + (on/a0)fi =0 (in V) (1.10)
n;oi; = (on/o0)pi (on Ty), ;=0 (onTy) (1.11)
where &; = €;; V is the domain of structure volume and T'y is the surface

domain where the displacements are prescribed as zero. These equations must
be complemented by the constitutive law and the material failure condition.

In plasticity, or elasticity with a strength limit, the constitutive law and
material failure conditions are expressed as equations and inequalities involving
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functions of the type F(a,€) or, in dimensionless form,
F(on, 0ij, &;) (1.12)

Because D does not appear in (1.10) and (1.11), &;; &; are proportional to o,
and because at least some of the functions F' are not homogeneous functions,
the conditions in terms of these functions can remain valid for all D only if
on is a constant. This demonstrates that there is no size effect in plasticity or
strength based theories (or any theory in which the material failure condition
is expressed solely in terms of stress and strain).

In LEFM, the constitutive law and the failure condition at crack (or notch)
tip may be written as oy; = Ejjxre;; and im{oz2+/272;) = K, for 2; — 0; here
we assume that the origin of coordinates ; is placed into the crack tip, ; is the
direction of propagation and z is normal to the crack plane. Transformation
to dimensionless coordinates yields:

Gij = E{jklgij, :r;lin—IblO (5’22\/271'51’ =K. /0’()\/5 (1.13)

The second of these two equations is valid for all sizes D if and only if 095
1/+/D. Since, as we observed from (1.10) and (1.11), the stresses &;; must be
proportional to op, it follows that on 1/\/5 The first equation is then
valid for all D if and only if ¢;; = &; x on or €5 x 1/\/5 The scaling law of
LEFM is thus demonstrated again. Note that instead of the second equation
in (1.13), one could use the condition of critical energy release rate, with the
same result (BaZant 1983).

1.8. Stability of Structures and Size Effect

Failure of a structure under static loading is synonymous to loss of stability.
Generally, stability analysis must take into account the evolution of fracture
or distributed damage, which is the subject of much of this treatise. However,
for slender beams and frames, and thin plates and shells, fracture or damage
begins at (or very near) the smallest elastic critical load, P... For slender
beams or frames, P, = EIn?/L? where E = Young’s modulus, / = centroidal
moment of inertia of cross section (assumed uniform), and L = effective length
= half-wavelength of the deflection curve. For structures geometrically similar
in two dimensions, L = koD and I = k1bD? where k¢ and k; are constants. It
follows that the elastic critical stress, which represents the nominal strength,

Pcr___kl 2

D Eﬂ' = const. (1.14)

ONc¢r =



20 Scaling of Structural Strength

Hence, there is no size effect in elastic buckling of beams and frames. The same
can be shown to be true for elastic plates and shells, as well as for elasto-plastic
buckling, provided that fracture and damage localization are not involved. This
conclusion also follows by dimensional analysis from the fact that the problem
of elastic or elasto-plastic stability involves no characteristic length.

Curiously, a different conclusion is obtained for beams or plates on elastic
foundation. The best example is an ice plate floating on water, which behaves
exactly as the Winkler elastic foundation, its foundation modulus being equal
to the specific (unit) weight p,, of water. Considering periodic buckling in
one direction only, we have the critical normal force N., = 2./pET where I =
ED3/12(1 — v?), D = ice thickness, E = Young’s modulus and v = Poisson
ratio of ice (e.g. BaZant and Cedolin 1991, Eq. 5.2.7). So the critical nominal
stress of the ice plate, on. = Ner/D or

oner = CoVD, Cp= (1.15)

where Cj is a material constant.

The point to note is that the nominal strength increases, rather than de-
creases, with the thickness of ice. So there is a reverse size effect. Consequently,
only sufficiently thin ice plates can fail by buckling. Thicker ones fail by frac-
ture.

Even though the axisymmetric buckling of an axially compressed elastic
cylindrical shell is mathematically equivalent to the buckling of an elastic beam
on Winkler elastic foundation, the foregoing conclusion does not apply to shells.
The reason is that, for geometrically similar shells, the equivalent foundation
modulus of the shell is not constant but inversely proportional to D. As a
result, the nominal critical stress of the shell is independent of its size.

The foregoing conclusion could have also been easily deduced by dimensional
analysis (Sedov 1959, Barenblatt 1987). Compared to the buckling problem of
normal beams, plates and shells, already discussed, the floating ice problem
involves the specific weight of water, p, which is a parameter of a different
dimension, force/(length)3. In contrast to these normal buckling problems, a
combination of this parameter with Young’s modulus implies the existence of
a characteristic length, which in turn implies the existence of size effect.



Chapter 2

Asymptotic Analysis of Size Effect

2.1. Asymptotic Analysis of Size Effect in Structures with Notches
or Large Cracks

The scaling properties for the nominal strength o of a structure containing
a notch or a stably grown large crack can be most generally deduced by an
asymptotic analysis of the energy release (BaZant 1997a). We will now outline it
briefly, restricting attention to two-dimensional similarity although the case of
three-dimensional similarity could be analyzed similarly. The fracture may be
characterized by the dimensionless variables ap = ao/D, a =a/D, 8§ =¢; /D,
in which a = the total crack length which gives (according to LEFM) the same
specimen compliance as the actual crack with its fracture process zone; ag =
length of the traction-free crack or the notch; ¢; = a — ap = effective size of
the fracture process zone (or the effective length of the R-curve); and D is the
characteristic size (dimension) of the structure, for example taken as the depth
of the notched three-point bend beam shown in Fig. 2.1.

Note that in our analysis the interpretation in the sense of a cohesive crack
or an R-curve model is not essential. We can equally well assume that ¢; is
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Figure 2.1: Similar structures with large cracks and function g
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in general any kind of material length, for example ¢; = Gy /Wy where G; =
fracture energy of the material (dimension J/m?), and W, = energy dissipated
by distributed cracking in the fracture process zone per unit volume (dimension
J/m?) which is represented by the area under the total stress-strain curve with
strain softening in the sense of continuum damage mechanics. Or we can assume
that ¢; = EG;/f{?, where f] is the tensile strength of the material. The last
expression is the characteristic size of the fracture process zone of the material
according to Irwin (1958).

The energy release from the structure can be analyzed either on the basis
of the change of the potential energy of the structure II at constant load-
point displacement, or the change of the complementary energy of the structure
II* at constant load. We choose the latter, and express II* in the following,
dimensionally correct, form:

2
I = YE—Ifszf(ao, a,0) (2.1)

Here £ = Young’s elastic modulus of the material, and f is a dimensionless
function characterizing the geometry of the structure. Two further conditions
for the maximum load must now be introduced.

First, the fracture at maximum load is propagating. This means that the
energy release rate G must be equal to the energy consumption rate R, which
may be interpreted in the sense of the R-curve (resistance curve) giving the
dependence of the critical energy release rate required for fracture growth of the
crack of length a. Most generally, the resistance to fracture can be characterized
as R = Gyr(ao, a,0) in which r is a dimensionless function of the relative crack
length a, the relative notch length ag, and the relative size of the fracture
process zone , having the property that » — 1 when 8§ — 0 and o — «ag.

Obtainiag the energy release rate G = (011* /da) /b from Eq. (2.1) by differ-
entiation at constant nominal stress, we thus obtain the following first condition
for the maximum load

b=1[0N* /8als,y = Gyr(ao, a,b) (2.2)

The second condition is that, under load control conditions, the maximum
load represents the limit of stability. If the rate of growth of the energy release
rate is smaller than the rate of growth of the R-curve, the fracture propagation
is stable because the energy release change does not suffice to compensate for
the rate of the energy consumed and dissipated by fracture. In the limit, both
are equal, and so the second condition of the maximum load, corresponding to
the stability limit, reads:

[ag] _08R (2.3)
oN

da], =~ da
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Geometrically, this represents the condition that the curve of the energy release
rate must be tangent to the R-curve.

Substituting now the expression for the complementary energy into Eq.
(2.1), one can show from the foregoing two conditions of maximum load that
the nominal strength of the structure is given in the form:

EG,

Dg (e, 0) 24

oON =

in which ¢ is a dimensiounless function expressed in terms of functions f and r
and their derivatives (see Bazant 1996a).

For fracture situations of positive geometry (an increasing §), which is the
usual case, the plot of function § at constant relative notch length ag looks
roughly as shown in Fig. 2.1. This function has the meaning of the dimension-
less energy release rate modified according to the R-curve.

Obviously, function § must be smooth, and so it can be expanded into Taylor
series with respect to the relative material length 8 about the point (g, 0). In
this way the following series expansion of the nominal strength of the structure
is obtained:

_ EGf . . cs 1, cr\2 —1/2
oN =\ [9(00,0)-*-!]1(00,0)5+§“!92(060,0) (*5) +]

Bfl -
= —th (D3 + D'+ kD2 4 kD3 4. )72 (2.5)
Here ¢, and g, are the first, second, etc., derivatives of function § with respect to
8, and Dy, k2, K3, ... represent certain constants expressed in terms of function

g and its derivatives at (ag,0).

The series expansion is obviously an asymptotic expansion because the pow-
ers of size D are negative. So the expansion may be expected to be very accurate
for very large sizes, but must be expected to diverge for D — 0. In fact, for
D — 0, the truncated large size expansions with more than two terms generally
approach oo or —oo, which is incorrect.

In this regard, it is helpful to deduce a small-size asymptotic expansion. To
this end, one needs to use, instead of §, the parameter n = §=! = D/c;. By
a similar procedure as before, one can show that the nominal strength of the
structure may be written (for the R-curve model) in the form:

EG,

= i (oo )] (2.6)

oN =
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Figure 2.2: Large-size and small-size asymptotic expansions of size effect
{(dashed curves) and the size effect law as their asymptotic matching (solid
curve)

This function again has the meaning of the dimensionless energy release rate
(modified by the R-curve). But this function is now expressed as a function
of the inverse relative size of the process zone, 1. Function § must also be
sufficiently smooth to permit expansion into Taylor series with respect to pa-
rameter § about the point (ag,0). This yields an asymptotic expansion of the

following form:
D D\? D\?
() v () +o ()

in which op, Dy, bs, bs,... are certain constants depending on the shape of the
structure.

-1/2

ON =0p (2.7)

The small size expansion (2.7) shows that oy approaches a horizontal
asymptote as D — 0. This fact has been demonstrated numerically with high
accuracy by Planas using the cohesive crack model (BaZant and Planas 1998)
and also proven for that model analytically. Finite element solutions with the
cohesive crack model support this fact, too.

The results obtained may be illustrated by Fig. 2.2 showing the logarithmic
size effect plot (for the case of geometrically similar structures with similar
and large cracks). The large-size and small-size expansions in Egs. (2.5) and
(2.7) are shown by the dashed curves. The large-size expansion asymptotically
approaches the straight line of slope —1/2, corresponding to the scaling accord-
ing to LEFM for the case of large and similar cracks. The small-size expansion
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approaches on the left a horizontal line, which corresponds to scaling according
to the theory of plasticity or any strength theory.

2.2. Energetic Size Effect Law and Its Asymptotic Matching
Character

It must be emphasized that the large size and small size asymptotics are
mere theoretical extrapolations. Obviously, at some very large size, the mecha-
nism of failure will change, and so an inifinite size is a mathematical abstraction.
So is a zero size because a size smaller than the inhomogeneities of the mate-
rial is meaningless. Thus the purpose of the asymptotic expansions is not to
describe the behavior for the limits of infinite and zero sizes. Rather, it is to
anchor at opposite inifinities the size effect curve for the size range of practical
interest.

So the problem is how to ‘interpolate’ between the foregoing two expansions
in order to deduce an approximate size effect law applicable over the full size
range. This is the subject of the well-known theory of matched asymptotics.

We face here a situation in which the asymptotic behaviors (in our case those
for the large and small sizes) are relatively easy to obtain while the intermediate
behavior (in our case, for the intermediate sizes) is very difficult to obtain. This
is a typical situation in which the technique of asymptotic matching is effective
(Bender and Orszag 1978, Barenblatt 1979, Hinch 1991). This technique was
introduced at the beginning of the century in fluid mechanics by Prandtl in his
famous development of the boundary layer theory.

As it turns out, the asymptotic matching is in our case very simple because
the first two terms of both asymptotic series expansions (Egs. 2.5 and 2.7) lead
to a formula of the same general form, namely

VI+ PG’ Do

where Dy is a constant called the transitional size, B is a dimensionless con-
stant, and the tensile strength f{ is introduced for reasons of dimensionality
(it should however be pointed out that this is not asymptotic matching in a
pure sense because the coefficients of both asymptotic expansion are not fixed
numbers, known and separately determined a priori, but are adjusted so as to
match one and the same formula}.

(2.8)

The last formula is the energetic size effect law, which was derived initially
by Bazant (1983, 1984) on the basis of simplified energy release arguments. The
ratio B in this formulais called the brittleness number (BaZant 1987, BaZant and
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Pfeiffer, 1987) because the case § — oo represents a perfectly brittle behavior,
and the case # — 0 represents a perfectly nonbrittle (plastic, ductile) behavior.
Because the constant Dy, representing the point of the intersection of the two
asymptotes in Fig. 2.2, depends on structure geometry, this definition of brit-
tleness number is not only size independent but also shape independent (which
is not true of other brittleness definitions in the literature). The brittleness is
understood as the proximity to LEFM scaling.

The asymptotic analysis can be made more general by considering function
g or § to be a smooth function of 8" or 7", rather than 8 or 7, where r is some
constant. Furthermore, it is also possible that, for very large sizes, there is
a transition to a ductile failure mechanism which endows the structure with
an additional residual nominal strength, o, (this may, for example, happen
in the Brazilian split-cylinder test, due to friction on sliding wedges under the
platens). These modifications can be shown to lead to the following generalized
formula:

ON =0p (l+ﬁr)_l/2r+0'r (2.9)

in which op = constant = small-size nominal strength. Exponent r is often
more effective in approximating broad-range experimental results than adding
higher-order terms of the series expansion. Eq. (2.9) allows close approximation
of numerical results obtained by nonlocal finite element analysis of the cohesive
crack model for a very broad size range, at least 1:1000. The optimum values of
exponent r depend on geometry (e.g., r = 0.44 for standard three-point bend
beams and 1.5 for a large center-cracked panel loaded on the crack).

It must be emphasized that the simple size effect formula (2.5) is not in-
tended to cover all the possibilities. In fact, more general laws have been
developed (for a review, see BaZant and Planas 1998, Ch. 9). The important
point, however, is that an equation for the size effect that would be valid over
the full size range (0, co) is difficult, if not impossible, to derive merely by re-
fining the asymptotic expansion (i.e., adding more terms) at only one end. The
reason, of course, is that the radius of convergence may be limited and, even if it
were infinite (which is hard to prove), the number of terms required for a good
approximation far from the asymptote would become too large to be practical
(for example, in the expansion exp(z~!) = 1+ 2~ +272/2' +273/3! + ..., the
number of terms for small @ that need to be taken to achieve good accuracy is
n > z7!; for = 0.01, this means n > 100).

To sum up, the size effect formula (2.5) must be understood as an asymptotic
matching formula. The crucial point to realize is that, in the plot of log oy,
versus log D, all the physically admissible size effect formulae must approach
for D — 0 a horizontal asymptote.
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2.3. Size Effect Law in Terms of LEFM Energy Release Function

The coefficients of the size effect law can also be expressed in terms of
LEFM functions and material parameters, in the sense of an equivalent LEFM
approximation. To this end, one may introduce the approximation §(wg, 6} =
g(ao +8). With this approximation, which is asymptotically exact for large D,
the size effect law corresponding to the asymptotic matching formula in Eq.
(2.8) acquires the form:

EG; < D )-1/2
= =Bfl {1+ — 2.10
o \/g'(ao)cf Faaab - It B, (210

The parameters in the last size effect expression are:

i
E
Dy = cfg (ag), Bf, = —Ii (2.11)
9{ao) crg'(ao)
Note that the transitional size Dy, delineating the brittle behavior from nonbrit-
tle behavior, is proportional to the effective size of the fracture process zone.

Further note that Dy is proportional to the ratio ¢’ /¢, and that Bf] depends
on ¢'. These functions depend only on the geometry of the structure, not on
its size. Thus, the size effect law in Eq. (2.10) expresses not only the effect of
size but also the effect of structure geometry (shape). It might better be called
the size-shape effect law. This law can be applied to structures or specimens
that are not geometrically similar.

2.4. Use of J-Integral for Asymptotic Scaling Analysis

Rice’s J-integral allows the most fundamental derivation of the scaling law
and lends itself naturally to a generalization for compressive fracture in which
normal stresses are transmitted across the cracking band. However, there is
a disadvantage. Unlike the LEFM energy release function g{a), the J-integral
does not capture the shape (geometry) effect and thus does not provide a
method to determine the coefficients in the size effect formulae.

We consider geometrically similar structures scaled in two dimensions (the
treatment for three dimensions, however, would be analogous). We introduce
dimensionless cartesian coordinates (Fig. 2.3) & = z;/D and dimensionless
displacements (; = u; where i = 1,2. For two-dimensional similarity, the
elastic material compliances scale as Cijx = ¢ijri/E where ¢;;1 are constant.
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Figure 2.3: Path of J-integral used in size effect analysis

If ¢y were zero, the stresses would scale as oi; = onS;;(€) where £ =
coordinate vector of §;, and S;; are size-independent functions. However, the
presence of nonzero material length c; will influence the stress distributions.
Based on the principles of dimensional analysis, this influence and the influence
on the displacement field must have the form:

oi; = onSi;j(€,0), u; = (on/E)DGi(&,9) (2.12)

where 6 = ¢;/D and (; are dimensionless functions. The flux of energy into
a fracture process zone advancing in the direction of z; (Fig. 2.3) can be
calculated by Rice’s J-integral:

J = /(‘/an - nja';ju,-,l)ds (2-13)
r
1 Ou;
= ./r‘ (§Cz'jklo'ij0'kln1 — nj0ij %I) ds (2.14)
0'2 23 D(?C, _
‘/1_1 (-Q%Cijklsijsktnl - anNSij—]z.—£> Dds (2.15)
2
2 g00), (2.16)
1 6 i ,0 _
70 = [ (Gesmsu€0Su(e.0m - nssis(e.0) 52 ) as 2.17)

Here T are geometrically scaled closed integration contours BCDE (Fig. 2.3)
with length coordinate s, starting and ending on the crack and passing outside
the fracture process zone, I' = chosen fixed contour in dimensionless coordi-
nates, with length coordinate 5 (ds = Dd5), n; = unit normal to the contour
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(which does not change with scaling), W = strain energy density; J(6) is
the dimensionless J-integral. This integral may be expanded in Taylor series,
providing

JO) = To+ J10+ J26% + ... (2.18)
7 = /F [e531S%, 5%, /2 — 1 S50 15, (2.19)
Bio= [ Lol S5 + S5 )/2 = ns(ShCs + ShacSlds (2:20)

Superscript 0 labels the values or fields evaluated for # = 0 (which is the case
of LEFM). Substituting this into (2.16), truncating the series after the second
term, and noting that, at failure, J must be equal to the fracture energy Gy of
the material, one gets again the same size effect law as (2.10):

o 2EG, ~__ Bh
NN % + Ti(es /D) + Toles /DY +..0D /1t (D/Do)

where Bf] = \/2EG;/J1c; and Dy = ¢; J1/Jo. The truncation leading to this
formula is of course justified only if 7 is non-zero and non-negligible, which
means that a notch of stress-free crack is assumed to exist at the outset.

(2.21)

The foregoing derivation has been simplified in the sense that the length
parameter influencing J has been considered as a known constant. Although
this seems a good approximation, one could more generally consider J to de-
pend on ¢/D instead of ¢; /D, where c is a variable crack extension. One could
then also introduce a variable fracture resistance in the form of an R-curve, and
impose the maximum load condition as the condition of the tangency of the
R-curve to the energy release curve, in the same manner as used in equivalent
LEFM analysis (Bazant 1986, Bazant and Planas 1998). The size effect law
ensuing from such refined analysis is found to be the same.

For the case of LEFM, corresponding to the limit § = ¢;/D — 0, the
foregoing J-integral analysis (which can be simplified) proves in general that
the power law for stress scaling has the exponent m = —1/2.

2.5. Identification of Fracture Parameters from Size Effect Tests

One useful application of the size effect in Eq. (2.10) has proven to be the
determination of the nonlinear fracture parameters of the material. To this end
one must test a set of specimens with a sufficiently large range of the brittleness
number 8. The range depends on the degree of statistical scatter of the results.
If the scatter is very small, a small range of 3 is sufficient, and if the scatter
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Figure 2.4: Similar three-point bend specimens tested by BaZant and Pfeiffer
(1987)

is very large, a large range of 3 is needed. For the typical scatter observed
in concrete and many other materials, the minimum range of the brittleness
number is 1:4, and preferably, for more accurate results, 1:8. The broader the
range, the more accurate the results.

To achieve a sufficient range of brittleness numbers, one may test geomet-
rically similar notched fracture specimens of sufficiently different sizes, as il-
lustrated in Fig. 2.4. However, geometric similarity is not necessary, although
the results for geometrically similar specimen are somewhat more accurate be-
cause the effect of the changes of geometry is described by Eq. (2.10) only
approximately.

To determine the material fracture characteristics from the measured max-
imum loads of specimens of different brittleness numbers, one may rearrange
Eq. (2.10) into a linear regression plot (Fig. 2.5):

Y=AX+C with Y=-——r x=29)
g'(ao)

, 2.22
g'(x0)o} (2:22)
evaluated at ag. After identifying A and C by regression, the fracture charac-
teristics are then obtained as

Gf = I/AE, cy = C/A (2.23)

In carrying out the regression, proper weighting of the data is helpful; see
BaZant and Planas (1998). The optimum weighting is achieved by fitting the
test data directly in the plot of log o versus log D with the help of a nonlinear
optimization algorithm such as Levenberg-Marquardt algorithm.
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Figure 2.5: Linear regressions (according to the size effect law) of the nominal
strength values of notched concrete specimens measured by BaZant and Pfeiffer
(1987), Bazant and Gettu (1992) and Gettu et al. (1990)
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From Gy and cy, one can also obtain the critical crack-tip opening displace-

ment
JCTOD =(1/7r)\/8Gfo/E (2.24)

(BaZant and Gettu 1990; Bazant 1995d). The fracture parameter dcrop was
introduced in the early 1960s in the models of Wells (1961) and Cottrell (1963)
for metals, and was co-opted for a similar model for concrete by Jenq and Shah
(1985).

The size effect method has been adopted as a standard recommendation for
concrete fracture testing by RILEM (1990). A proposal to incorporate it in a
new ASTM standard is pending.

There is another definition of fracture energy, introduced for concrete by
Hillerborg. It defines the fracture energy, denoted as G, as the area under
the complete softening stress-displacement curve of the cohesive (or fictitious)
crack model. G is deduced from the area under the measured complete load-
deflection curve of notched fracture specimens of one size, sufficiently large.
This is called the work-of-fracture method (Nakayama 1965; Tattersall and
Tappin 1966), which was pioneered for concrete by Hillerborg et al. (1976)
(see also Hillerborg 1985a,b).

Measurement of G is, however, quite uncertain. One reason is the difficulty
in measuring the far-off tail of the load-deflection diagram. This difficulty is
doubtless the explanation why the statistical data on G exhibit a much higher
coefficient of variations that those on Gy (see the review in Bazant and Becq-
Giraudon 2001).

From test results, Planas et al. (1992), Elices et al. (1992) and Guinea et
al. (1992) deduced that Gr =~ 2.5G;. This is explained by the finding that Gy,
determined from the size effect on the maximum load, corresponds to the area
under the initial tangent of the stress-displacement diagram of the cohesive
crack model, and not to the complete area under the softening curve.

When the values of material fracture parameters are determined by a method
that is not based on the size effect, one faces the question of spurious size depen-
dence of these values. The fracture energy G'r determined from the area under
the measured load-deflection diagram has been found to depend on the size of
the specimen (BaZant 1996a, 1995d; Bazant and Kazemi 1991b). Methods to
eliminate this dependence were pointed out by Planas and Elices (BaZant and
Planas 1998).

As mentioned, the specimens may differ in both size and shape. Then it is
convenient to write the size (or size-shape) effect law as o; = [E'G;/(gics +
9:D;)]}/? where integer subscript ; refers to specimen number i and the fol-
lowing abbreviated notations are introduced: o; = on;, ¢ = ¢i(@o;) and
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9; = gi(ao;) = dgi(a)/da at @ = ap;. D; is the size of specimen ¢; and
gi(a) = k?(a) = dimensionless energy release function of specimen i, k;(a)
being the dimensionless stress intensity factor. Least-square fitting of the fore-
going formula to the measured ¢; values provides the values of G and ¢;. This
is a nonlinear problem which can be easily handled, for instance, by applying
the standard library subroutine for the Levenberg-Marquardt optimization al-
gorithm. However, conversion to a linear regression problem can be achieved
by rearranging the formula as follows:

Fi(Gj,Cf) = g,'D,'-i-g;Cf - Eleo’i_z =0 (2.25)

where F;(Gy,cy) is a function of Gy and ¢;. The right-hand side is zero only
for theoretically perfect data. In practice it is nonzero and its square should
be minimized; & = Zf\;l F}(Gy,c) = min. The minimizing conditions are
0®/0G; = 0 and 0®/0c; = 0. They provide the following linear regression
equations for the unknowns G; and c;:

AnGys + Apey = O,
A21Gf + Angf = (2.26)
in which
12 ’ -
An=E"Y 07t An=Au=-E ¥, d07% An=Y, 922 (2.27)
C = E Zi g,’DiO’i_z, Cy = -E Zi g;g,'-D,- (2.28)

Multiplying the expression for F; by o; or ¢, or dividing it by g; or g/, one
can obtain different linear regression equations. For perfect data, they would
of course give the same results but, because of the scatter in the real data, the
results are slightly different. The reason is that these different regressions imply
different weights for different ;. Compared to the case with the expression for
F; multiplied by o7 (or divided by g;), the regression defined by Eq. (2.27) and
Eq. (2.28) gives higher weights for the domain of larger specimen sizes and not
too short notches. This is desirable because the experimental scatter in that
domain is generally lower.

2.6. Validation by Fracture Test Data and Numerical Simulation

Fig. 2.6 shows the comparison of the size effect law with the data points
obtained in the testing of Indiana limestone, carbon-epoxy fiber composites,
silicone oxide ceramic and sea ice. The data for sea ice, obtained by Dempsey
et al. (1995, 1999) cover an unprecedented, large size range (also Mulmule et
al. 1995). In Dempsey’s tests, floating notched square specimens of sea ice of
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Figure 2.6: Nominal strength data from the tests of Indiana limestone (BaZant,
Gettu and Kazemi 1991), carbon fiber epoxy laminates (BaZant, Daniel and Li
1996), SiO; ceramics (McKinney and Rice 1981), and sea ice (Dempsey et al.
1995, 1999, Mulmule et al. 1995), and their fits by the size effect law
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Figure 2.7: Nominal strength data from BaZant and Kazemi’s (1991a) tests of
diagonal shear failure of reduced-scale concrete beams with longitudinal rein-
forcement (of size range 1:16), their fit by the size effect law, and comparison
with prediction of statistical Weibull-type theory (with m=12)

sizes from 0.5m to the record size of 80m (and thickness 1.8m) were tested in
situ in the Arctic Ocean (West of Resolute, Cornwallis Island).

Dempsey et al.’s results (1999) revealed a very strong size effect, closely
approaching the LEFM asymptote for sizes in excess of 3m. These results
indicated a high brittleness of sea ice at large scales. They led to a complete
revision of the previous widespread conviction, based on the testing of small
laboratory tests, that sea ice was non-brittle, notch-insensitive, and free of size
effect. These results apparently explain why the forces measured exerted on an
oil platform by an ice floe, typically several kilometers in size, are usually two
orders of magnitude less than those predicted by means of plastic analysis or
strength theory. They also confirm that fracture mechanics, which inevitably
involves size effect, ought to be used in predicting the load capacity of the
floating ice plate in the Arctic.

Fig. 2.7 illustrates the comparison with the size effect law for data obtained
on specimens without notches (tests of diagonal shear failure of geometrically
similar reinforced concrete beams by BaZant and Kazemi (1991a), with size
range 1:16). Fig. 2.8 shows a comparison of the size effect law with data
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Figure 2.8: Nominal strength data from Marti’s {1989) tests of double punch
failure of concrete cylinders (of size range 1:16), and their fit by size effect law

obtained on unnotched and unreinforced specimens (cylinders in double-punch
loading, size range 1:16; Marti 1989).

The size effect law also closely agrees with the results of finite element
analysis using the nonlocal damage concept (e.g., Fig. 2.9, Ozbolt and BaZant
1996), the crack band model (see the curves in Fig. 1.3, BaZant and Oh 1983,
Bazant and Lin 1988a , or the cohesive crack model (BaZant and Li 1995b).
Furthermore, the size effect law was shown to approximately agree with the
mean trend of maximum load values calculated by the discrete element method
(random particle simulation of concrete, BaZant, Tabbara et al. 1990, and of
sea ice Jirasek and BaZant 1995a, 1995b, Fig. 2.10).

There are nevertheless some instances in which the simple size effect law
in Eq. (2.8) or (2.10) is insufficient because the logarithmic size effect plot of
the data exhibits a positive curvature, as illustrated in Fig. 2.11. This is for
example observed for the Brazilian split cylinder test. The cause seems to be
that, for a very large structure, the load to produce the diagonal cracks in a
cylinder becomes negligible but failure cannot occur because the wedge regions
under the load must slide frictionally, which imposes a certain residual strength
oy. Another reason may be that the crack length at failure ceases to increase
in proportion to the specimen size. Such data can be well described by the
generalized size effect law in Eq. (2.9) in which Dg is very small, smaller than
the smallest D in the data set (see Fig. 2.11).
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Figure 2.9: Nominal strength values obtained by finite element analysis using
the nonlocal model with crack interactions (OZbolt and BaZant 1996) com-
pared to test data of BaZant and Kazemi (1991a) for diagonal shear failure
of longitudinally reinforced concrete beams and to the size effect law (dashed
curve)
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Figure 2.10: Nominal strength values obtained by discrete element method
(random particle simulation of the specimens shown) and their comparison
with size effect law, exploited for determining the fracture characteristics of
the random particle system (Jirasek and Bazant 1995a,b)
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Figure 2.11: Nominal strength data from Brazilian split-cylinder tests of
Hasegawa, Shioya and Okada (1985) and their fit by the size effect law with
residual strength in Eq. (12)

2.7. Size Effect for Crack Initiation via Energy Release

Aside from notched fracture test specimens, the foregoing analysis applies
only to structures that contain at maximum load a large stably grown crack
that is traction-free (a state that may be produced in cohesive materials by
previous fatigue due to repeated loads). Formation of a large crack before
the maximum load is reached is typical for quasibrittle materials. It is in fact
the objective of a good design because the large stable crack growth endows
the structure with a large energy dissipation capability and a certain measure
of ductility. For example, the objective of reinforcing concrete structures, of
toughening ceramics, of putting fibers in composites, etc., may be seen in the
attainment of the capacity of a structure to grow large cracks prior to failure.

In some situations, however, quasibrittle structures fail at crack initiation.
For example, this happens for a plain concrete beam. This nevertheless does
not mean that the fracture process zone size would be negligible. Because
of heterogeneity of the material, the process zone size is still quite large, as
illustrated in Fig. 2.12 (top left). The maximum load is obtained typically when
this large cracking zone coalesces into a continuous crack capable of further
growth. Because a large cracking zone forms in the boundary layer prior to the
maximum load, one cannot expect the Weibull theory to be applicable, as will
be explained in Chapter 3.

As described in detail in BaZant (1995d), the failure at crack initiation from
a smooth surface can also be analyzed on the basis of the expansions in Eq.
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Figure 2.12: Cracking zone at maximum load P in a notchless quasibrittle spec-
imen (top left); law of the size effect for quasibrittle failures at crack initiation
(Bazant and Li 1995b, 1996) (top right}; and use of this law in linear regression

of test data for concrete obtained in eight different laboratories (BaZant and Li
1994b) (bottom)
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(2.5) or (2.7), however, with one modification. Since the expansions are made
with respect to a zero value of the relative process zone size § = ¢;/D, the
argument of the energy release function g(a) is @ = 0. This means that the
energy release rate g(a) = g(0) = 0, and so the first term of the large-size
expansion in Eq. (2.5) vanishes. Thus, if the series were truncated after the
second term, as before, no size effect would be obtained.

Therefore, one must in this case also include the third term of the large-
size asymptotic expansion. This leads to the following approximation for the
nominal strength of structures failing at crack initiation from a smooth surface:

EG,
= 2.20
7 \/ 70)er + 30D (229)

A rather general derivation of Eq. (2.29) can alternatively be given on
the basis of energetic aspects of fracture mechanics. Using the approach of
equivalent linear elastic fracture mechanics (LEFM), one can approximate a
cracked structure with a large fracture process zone by a structure with a line
crack whose tip is placed approximately in the middle of the fracture process
zone (the exact location could be determined from a condition of compliance
equivalence). The fracture process zone at maximum load, having depth 2¢;,
is attached to the tensile face of beam, and so the actual crack length is ag = 0.
The equivalent LEFM crack length is a &~ ap + ¢; = ¢;.

As stated before, equivalent LEFM in general yields for the nominal strength
on of the structure the general expression oy = \/EGy/Dg(ao + ¢/ D) where
ag = ag/D. The function g¢ is sufficiently smooth to allow expansion into a
Taylor series in terms of ¢y /D, which represents an asymptotic expansion:

EGy
oN =
\/ Dlg(an) + 9'(@0)(e/D) + 29" (@0)(es/D)? + -]
Note that Eq. (2.30) describes not only the size effect but also the shape effect,
which is embedded in the LEFM function g(a). Because the energy release
rate for a zero crack length is zero, i.e. ¢(0) = 0, the first term of the series

expansion in Eq. (2.30) vanishes, and so the series must be truncated no earlier
than after the third, quadratic term. This yields the asymptotic expansion:

. EG,
lim [ ———
@00 \[ Dg(ag + 7)

(2.30)

on=[fr =

= EGy

= \/g'(O)c; + i1.!g//(0)c§D—l + %g’”(O)c?D‘@ T (2.31)
= froo

- \/1 —(1/D) + {92/ D)* — (g3/ D)3 + ... (2.32)
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in which the nominal strength o is now represented by the modulus of rupture
Jr, and
_ [|_EG; —¢"(0)
froo = g T Y20 ¢

(2.33)

The objective is not merely a large-size asymptotic approximation but also,
and mainly, a generally applicable approximate formula of the asymptotic
matching type that has admissible behavior also at the opposite infinity (In D —
—oo or D — 0) and provides a smooth interpolation between the opposite in-
finities. The asymptotic behavior of Eq. (2.32) for D — 0 is not acceptable
because it yields an imaginary value. To get a proper asymptotic matching for-
mula, Eq. (2.32) must be modified in such a manner that at least the first two
terms of the asymptotic expansion of ox in terms of 1/D remain unchanged.
This modification can be accomplished as follows. Eq. (2.32) may be rewritten
as

fr = froo [1=2)72] (2.34)

where 7 is an arbitrary positive constant (which is related to the third term in
the expansion of function g(c;/D) ), and

= (q1/D) = (¢2/D)* + (¢3/D)° — ... (2.35)

Then, according to the binomial series expansion

- 1/r
fr = freo |1+ ( 2/2 ) (=) + ( ;/2 ) (__z)2 + ] (2.36)
: 1/r
= froo |1+ —;—w+ T(T;Q)x2+...] (2.37)
[ r r+2 1 1 Yr
= freo 1+§%+r< 3 q?—§q'§’)—55+-~] (2.38)

In contrast to Eq. (2.32), this formula is admissible for D — 0; it gives for
fr a real rather than imaginary limit value. The feature that f, — oo is
shared by the famous, widely used Petch-Hall formula for the yield strength
of polycrystalline metals. One might prefer a finite limit for f, but this does
not matter in practice because D cannot be less than about three maximum
aggregate sizes (as the material could no longer be treated as a continuum).
The limit D — 0 is an abstract extrapolation,

Keeping just the first two terms, we obtain from Eq. {2.38) the final deter-
ministic energetic size effect formula:

1/r
"D”) (2.39)

on = fr = frooq(D), g(D) = (1 t0
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where ¢(D) is a positive dimensionless decreasing function of size D having a
finite limit for D — oo, and

_ [/ —=c19"(0)
Dy = < —fm—> (D > 0) (2.40)

As will be shown later, Dy roughly represents twice the thickness of the bound-
ary layer of cracking. In the last expression, the signs (..), denoting the positive
part of the argument, have been inserted [(X) = Max(X,0)]. The reason is
that ¢'/(0)/9’(0) can sometimes be positive, in which case there is no size ef-
fect, and this is automatically achieved by setting D, = 0. In the modulus of
rupture test, g”(0)/¢’(0) < 0 and Dy > 0. Note that for uniform tension (zero
stress gradient, as in the direct tensile test) there is no deterministic size effect
according to Eq. (2.40) because ¢"(0) = 0 or Dy, = 0.

The special case of Eq. (2.39) for » = 1 (derived in BaZant, 1995) reads:

D
ON = fr = froo (1 + 3") (2.41)
The case r = 2, derived in Bazant (1998), yields the formula:
A
fr=on=\[A1+ 32 (2.42)
D
in which
EG EG;¢"(0)
— 2 £ — f2 - D, = 2418
Al froo [c;g’(O)]z’ AZ frooql 2froo b 2Cf [g’(O)]3 (243)

Formula (2.42) was proposed and used to describe some size effect data
by Carpinteri et al. (1994, 1995). These authors named this formula the
‘multifractal’ scaling law (MFSL) and tried to justify it by fracture fractal-
ity using, however, strictly geometric (non-mechanical) arguments. The term
‘multifractal’, though, seems questionable because, as shown in BaZant (1997b
and 1997¢), the mechanical analysis of fractality leads to a formula different
from Eq. (2.42) (this is the case whether one considers the invasive fractality
of the crack surface or the lacunar fractality of microcrack distribution in the
fracture process zone). No logical mechanical argument for the size effect on
on to be a consequence of the fractality of fracture has yet been offered.

2.8. Stress Redistribution Caused by Boundary Layer of Cracking

The size effect formulae {2.41) and (2.39) can also be derived by consider-
ing the stress redistribution caused by a finite size zone of distributed cracking,
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characterized by strain softening (Fig. 2.13 left). The simplest way is illus-
trated by the bending stress diagram of a beam in Fig. 2.13 (middle). We
may assume that failure is not decided by the maximum elastically calculated
stress occurring at the bottom face of the beam, but by the average elastically
calculated stress & in a boundary layer having the thickness 0y, which is

e _AI{ (_122 _ %) (2.44)

where D = beam depth, M = bending moment, and [ = centroidal moment
of inertia of cross section. Noting that the modulus of rupture f,, representing
the nominal strength, is defined as f. = oy = M D/2], we have

D\ 7!
oON = froo (1 - ‘l')“') (D > Db) (2.45)

According to the asymptotic expansion in terms of powers of 1/D, we may
make the replacement (1 — Dy/D)™! &~ (1+7Dy/D)" (r being any positive
constant), and we see that this leads immediately to the size effect expression
in Eq. (2.39). The fact that the result is identical, validates retroactively our
simple hypothesis that the average elastic stress in the boundary layer of a
fixed thickness D, is what matters.

Clearly, this hypothesis becomes meaningless if D < D,, and unrealistic
if D is close to D,. So, our hypothesis can have only asymptotic validity for
D,/D — 0. However, the size effect formula we obtained is not unreasonable
even for small sizes D, such that D > D, (it makes hardly any sense to consider
beams shallower than D).

A more realistic hypothesis is to consider that, up to the maximum load,
the cracking remains distributed (the discrete crack being formed only at, or
after, the maximum load), and that the cracking is described by a bilinear
stress-strain diagram with post-peak strain-softening characterized by tangent
modulus E;. The distributed cracking at maximum load is assumed to occupy
a boundary layer of a certain fixed thickness denoted as {;. The corresponding
stress distribution is sketched in Fig. 2.13 on the left. The result of such a
calculation (BaZant and Li 1995, BaZant and Planas 1998) is a formula that
coincides with (2.41) or (2.39) up the second term of the asymptotic expansion
of o as a power series in 1/D, provided that one sets Iy = Dy /2. Differences
occur only in the third and higher terms. This coincidence lends further support
to the hypothesis underlying equation (2.44), namely that the average elastic
stress in layer D, can be considered to be fro. It also shows that the thickness
of the boundary layer of cracking is about D, /2.
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Figure 2.13: Stress redistribution in the boundary layer of distributed cracking
and its approximations.

To achieve greater flexibility in the modeling of test data for small sizes,
equation {2.39) may further be generalized as

D+r(s+1)Db>1/T (2.46)

o =fwt(D),  a(D)= (2HEL]

where s is a non-negative constant and the dimensionless decreasing positive
function ¢(D) generalizes the function originally introduced in Eq. (2.39).
This formula is, for large sizes, again asymptotically equivalent to the original
formula (2.45) as well as {2.41) up to the second term of expansion in 1/D.
One can verify it by the following approximations, accurate up to the second
term of the asymptotic power series in &, with £ = Dy/D;

froo 1+ rsé 1/r~ 1+ s€
on (1+r(s+ 1)5) T 14 (s+1)E (247)
or i D
roo _ ~ _ _b

For a certain sufficiently small size D,;, the modulus of rupture f, should
agree with the prediction of plastic analysis, for which one may assume the
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stress distribution to be uniform (rectangular) throughout the whole cross sec-
tion and the bending moment M to be balanced by this stress distribution
together with a compressive force at the extreme fiber. For a rectangular cross
section, one can deduce from this assumption that M = f..,bD?/2 while, by
definition of the modulus of rupture, M = f,bD?/6. Equating these two ex-
pressions, one gets f./froo = 3 for a fully plastic state of a rectangular cross
section (with unbounded compression strength). This relation can be used to
calibrate the value of s in (2.46), but the question is the proper value of Dj,.

According to computational experience with the crack band model as well
as the studies of the existing test data on the modulus of rupture of concrete,
it appears that the thickness of the boundary layer of cracking is about 2d,,
d, being the maximum aggregate size. This means that D, ~ 4d, and that
plastic behavior is reached for beam depth D, & 2d4, which is just about the
shallowest beam that can be cast. Therefore Dy/D = Dy/Dp = 2. Knowing
that f,/freo = 3, we may solve s from Eq. (2.46). It so happens that the
solution is s = 0.

This suggests that the simpler formula (2.39) ought to be adequate for
matching both the brittle large-size asymptotics and the small-size plastic limit,
the two basic situations that are easy to analyze. Formula (2.46) nevertheless
offers greater freedom, which would allow closer adjustment to test data of a
very broad size range once they become available.

2.9. Strain Gradient Effect on Failures at Crack Initiation

The foregoing formulae for size effect at crack initiation from a smooth
surface should apply for not only to beams but any solids. For such general
situations, they need to be rewritten in terms of gradient ¢, at surface where
¢ = normal strain parallel to the surface and subscript n refers to a derivative
in the direction normal to the surface (Fig. 2.13 right).

Since only € , matters for stress redistributions near the surface, according
to our hypothesis, we need to determine the values of M and D that give in
a beam the given € ,. In beam bending, €, = M/EI, and for failure at the
large size limit we have M D/2] = froo. Elimination of M from these two
expressions gives the relation

D= 2f£
Ee,

which is second-order accurate asymptotically {(here D must be considered as
the effective structure size corresponding to the strain gradient); Eq. (2.49)
may then be substituted into Egs. {2.41) or (2.39), or any other among the
foregoing formulae for crack initiation.

(2.49)



46 Scaling of Structural Strength

The most general formula (2.46) thus leads to

2freo +7(s + 1)DbE<c,n>> . (for € > 0) (2.50)

oN = Jroo ( 2fro0 + 78Dy E{e )

where the value s = 0 can probably be used; ¢, is defined as positive if the
strain decreases away from the surface, and (.) has been introduced to denote
the positive part of the argument because tensile failure does not start at the
surface when ¢, < 0.

The simplest formula (2.41), corresponding to r=1 and s=0, leads to

Dy
2f7'00

ow = fro (14 52 Blen) ) (2.51)

The last two formulae can be used for approximate strength estimation in
finite element codes that do not take strain-softening damage into account.

2.10. Universal Size Effect Law

The analysis we have outlined so far yields:

1. the large size expansion of the size effect for long cracks,
2. the small size expansion for long cracks, and
3. the large size expansion for short cracks, while

4. the small size expansion for short cracks could also be obtained.

The question now is whether these expansions could be interpolated, or
matched, so as to yield a single formula approximating the intermediate situ-
ations and matching all the asymptotic cases. Considering short cracks (crack
initiation) according to Eq. (2.39), BaZant (1996a,d) derived the size effect

law:
w=o(i+2) [+ 2) (4 )]} e

in which % and op are empirical constants. The plot of this formula, which
could be called the universal size effect law, is shown in Fig. 2.14 (note that
the discontinuity of slope on top left of the surface is due to expressing Dy,
for the sake of simplicity, in terms of the positive part of the derivative of
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Figure 2.14: Universal size effect law for failure both at crack initiation and
after large crack growth (BaZant 1996a,d)

function g¢; this slope discontinuity could be avoided, but at the expense of a
more complicated formula).

The foregoing universal size effect law can probably be exploited for the test-
ing of material fracture parameters (BaZant and Li, 1996; BaZant and Planas
1998). It should allow extending the size effect method to specimens of only
one size, provided that both notched and notchless are used in the test series.
In that case, it is possible to obtain, for the typical random scatter in concrete
testing, a sufficient range of brittleness number 3 (more than 1:4) without
varying the specimen size. On the other hand, if unnotched specimens are
not included in the test series, it appears impossible achieve a range broader
than about 1:2.7, just by varying the notch length, and this prevents obtaining
accurate results.

For the purpose of data fitting, Eq. (2.52) may be reduced to a series of
nonlinear regressions (BaZant and Li, 1996). The linear regression plots for
some previously reported test data are shown in Fig. 2.5, for which we have
already discussed the empty data points that correspond to notched specimens
of different sizes. The solid data points correspond to unnotched specimens.

The fact that the solid points are approximately aligned with the trend of
the empty data points confirms the approximate applicability of the universal
size effect law in Fig. 2.14. Obviously, it is possible to delete the empty data
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points for specimens of all sizes except the largest and obtain about the same
results using only the data points for the notched specimen of the largest size
and the unnotched specimen of the same size. This approach may simplify the
determination of material fracture parameters from test data.

2.11. Asymptotic Scaling and Interaction Diagram for the Case of
Several Loads

The asymptotic analysis presented in Sec. 2.1 may be easily extended to
the case of several loads P;, characterized by nominal stresses o; = F;/bD.
The energy release rates of the individual loads are not additive, but the stress
intensity factors of the individual loads, Kjy;, are. Therefore, by superposition,
Y oniy/Dgi(a) = \/EG; where g;(a) are the dimensionless energy release
rates corresponding to loads P;. The condition of stability limit (tangency of
the total energy release rate curve to the R-curve) gives for the maximum load
the relative crack length a = an, (o, 0) (this argument is similar to that which
led to Eq. (2.4) but we now consider functions g; right away as functions of one
variable, rather than introducing such a simplification at the end). Inserting
this value into the last relation and expanding functions g;(a) = gi(ao + 6)
into a Taylor series in terms of § about point § = 0, we have g;(ag + 6) =
gi(@o) + ¢'(@:)0 + 39 (x0)6® + ....

For the case of a large crack, we may truncate this series after the second
(linear) term. We also consider a positive geometry (i.e. g/(aq) > 0 for all 7).
Furthermore, we may set on; = uop; where op; are the given (fixed) design
loads and y = safety factor. After rearrangements:

p = VEGi(p1op1+ pa0p2+ ...+ pacpn) M2 (2.53)
pi = \Jola)D+gl(ao)ey, (i=1,2,...n) (2.54)

This equation gives the size effect, as well as the geometry effect, for the case
of a large crack. At the same time, it may be regarded as the interaction
diagram (failure envelope) for many loads. If ¢ is constant, these interaction
diagrams are linear for any given size D (Fig. 2.15 right). But in other than
notched fracture specimens of positive geometry, ag is not fixed and it is of
course possible for ag (the traction-free crack length at Pp,;) to depend on
the ratios Ps/ Py, P3/ Py, ...; then the interaction diagrams are not linear.

For the case of macroscopic crack initiation from a smooth surface, we have
gi(0) = 0. Therefore, similar to the case of one load, the series expansions
cannot be truncated after the linear term. We may truncate them after the
quadratic terms. A similar procedure as in Sec. 2.5 then yields for g the same
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Figure 2.15: Top left: Lines of microcracks as lacunar fractals, at progressive
refinements; bottom left: ‘MFSL’ law proposed by Carpinteri et al. (1995a,b);
right: iInteraction diagrams for different size structures with two loads and
constant ag

expression as (2.53), but with

]38

pi = \/ 9i(0)es + %yﬁ’(o) (2.55)

Equations (2.53) and (2.55) represent the large-size asymptotic approxima-
tions of size effect. Small-size asymptotic approximations for the case of many
loads can be derived similarly, replacing the variable § with n = 1/8.

Similar to the case of one load, it is further possible to find, for the case of
many loads, a universal size effect law that has the correct asymptotic proper-
ties for large and small sizes and large cracks or crack initiation. It is analogous
to (2.52) and may again be written in the form of (2.53) but with

R I B ([
ri = [ergi(a)]M? (2.57)
Do = czgi(an)/gi(ao) (2.58)
Dy = cs{—g{(a0))/49} (o) (2.59)

Here r, s and 7 are empirical constants whose values may probably be taken as
1 for many practical purposes.
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2.12. Size Effect on Approach to Zero Size

For structure sizes smaller than the size of a fully developed fracture process
zone, the use of the cohesive crack model is simpler and doubtless more realistic
than our previous use of the LEFM functions. Let us now apply this popular
model to determine the first two terms of the small-size asymptotic expansion
of size effect. Let the coordinates be positioned so that the origin is at the
front of the cohesive crack and the crack lies in the plane (z;,z3), and let
the dimensionless coordinates and variables be defined as in (1.8), Section 1.7.
The boundary value problem in the dimensionless form is defined by (1.10) and
(1.11). This must be supplemented by two conditions for the cohesive crack:
(1) The dimensionless total stress intensity factor K, = Kt\/ﬁ/aN produced
jointly by the applied load and the stresses & = #99 acting on the crack faces
must vanish, K; = 0 (which is necessary to ensure the finiteness of the crack-tip
stress); and (2) the cohesive {crack-bridging) stresses must satisfy the softening
law of the cohesive crack, i.e., the curve relating o to the opening displacement
w = 2uy on the crack plane. We will consider the law o = ¢o[1—(w/w;)P] where
p, wy = positive constants, and oy = tensile strength (also denoted as f{}). In
terms of the dimensionless variables corresponding to (1.8), the dimensionless
form of the assumed softening law is

gd=1~—(Dw) with 6=0/09, Ww=w/D, D=Djuw (2.60)

Let coordinates z; be positioned so that the crack would lie in the plane
(z1,z3) and that the tip of the cohesive crack would be at z; = 0. For a small
enough D, the crack-bridging stress ¢ > 0 along the whole crack length L, and
if D is small enough and the compression strength is unlimited, the cohesive
crack at maximum load will occupy the entire cross section or, in the case of
a notch, the entire ligament; then [ = L/D = constant (if the compression
strength is limited and the cross section is for instance subjected to bending,
L/ D will not necessarily be size independent but we may assume it to be such,
as an approximation for small D).

To study the dependence of on on D, we will now assume that, for small
enough D,

on =0} +oyDP, & =ol +6;;DP, 6=5"+5D" (261)

i =) +alD?, @ =uw"+@'DP, (2.62)
Ky =K)+ K{D? +&;;D* + ... (2.63)
where o, oy, ao,a",o?j, ..., K[ are size independent. These expressions may

now be substituted into (2.60), (1.10), (1.11} and the condition K: = 0. The

resulting equations must be satisfied for various small sizes D. For D — 0,
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the dominant terms in these equations are those of the lowest powers of D,
which are those with D° and DP. By collecting the terms without D and those
with DP | we obtain two independent sets of equations. It so happens that each
of these two sets defines a physically meaningful boundary value problem of
elasticity for a body with a crack.

Elasticity Problem I: By isolating the terms that do not contain D (i.e.,
contain D?%), we get:

K? =0, =1 (for ~L < 2, < 0,2, = 0) (2.64)
&% = Eiju (0,20 + 8:@%), ;6% + fi 0%/o0=0, (in V) (2.65)
n;oy; = pi oyfoo (onT,), @) =0 (onTy) (2.66)

Elasticity Problem II: By isolating the terms that contain DP, we get:

Kl =0 & = —(w°)P (for —L < %, < 0,83 =0) (2.67)
&;j = —ijkl %(6112: + 8,'1_13-), 3j5‘;j + fT, 0'},/0’0 =0, (in ]}) (2.68)
n;oi; = pi oy/oo (onT,), @ =0 (onTy4) (2.69)

The role of stresses and displacements is played by &?j and @ in problem

I, and by &fj and %} in problem II. In problem I, the crack faces are subjected
to fixed uniform tractions equal to 1. In problem II, in which ¢’ plays the role
of the cohesive stress, the crack faces are subjected to nonuniform tractions
—(w°)? which can be determined in advance from the @’ values obtained in
solving problem I.

The magnitude of the loads (surface tractions and body forces) is propor-
tional to 0% in problem I, and to ¢y in problem II. These elasticity problems
are known to have a unique solution. If 6% were zero, i.e., if the applied load
in problem I vanished, the crack face tractions equal to 1 would cause K to
be nonzero, in violation of (2.64). Likewise, if o}y were zero, i.e., if the applied
load in problem II vanished, the nonuniform crack face tractions —(w°)? in
problem II would cause K{ to be nonzero, in violation of (2.67). If the loads
for problems I and II were infinite, then K? or K! would be infinite as well,
which would again violate (2.64) or (2.67). Therefore, the only possibility left
is that both ¢, and ¢’y are finite (BaZant 2001a).

The initial descending slope of the softening cohesive laws used for quasi-
brittle materials such as concrete is finite, i.e., p = 1. Consequently, according
to (2.61), the size effect law must begin near D = 0 as a linear function of
D, and as an exponential in the logarithmic plot [the latter ensuing from the
approximation Inoy —Ino%, =In(1 + oy D/0%) = (o) /o%) €™ P]. The case
P > 1 means that the softening law begins its descent from a horizontal initial
tangent, which is reasonable for ductile fracture. The case p < 1 means that
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the cohesive law begins its descent with a vertical tangent, which seems to be
an unrealistic super-brittle behavior.

The condition that p = 1, according to the cohesive crack model, is satisfied
by the classical size effect law proposed by Bazant (1984). Indeed, oy
(1+ D/Dy)~Y/2 m 1 — D/2D, for small D (Dg = constant). But this condition
is satisfied for neither oy = Bf!/(1++/D/Dqg) nor oy = Bfi[14+(D/ Do)~ 1/
with » < 1. As for the case r > 1 (p = r), the softening law begins its descent
from a horizontal asymptote, which means that this case is suitable for ductile
fracture of plastically yielding materials.

It must of course be admitted that imposing the small-size asymptotic prop-
erties of the cohesive crack model is debatable since, for cross section thicknesses
less than several aggregate sizes, the material is not a continuum. Yet imposi-
tion of these properties appears advantageous from the viewpoint of asymptotic
matching—an approximation for the middle size range will be better if it sat-
isfies the asymptotic properties of the theory applicable for that range.

In the foregoing arguments, we actually did not need to distinguish be-
tween the cases of a large crack and of crack initiation from a smooth surface.
Therefore, the asymptotic form ony = "?v + oy D is appropriate for the latter
case as well. Formula (9.66), which will be derived in Section 9.4, has such an
asymptotic property.



Chapter 3

Randomness and Disorder

3.1. Is Weibull Statistical Theory Applicable to Quasibrittle
Structures?

The statistical theory of size effect based on the concept of random strength
was, in principle, completed by Weibull (1939) (also 1949, 1951, 1956). The
Weibull theory has been enormously successful in applications to fine-grained
ceramics and metal structures embrittled by fatigue. However, it took until
the 1980s to realize that this theory does not really explain the size effect in
quasibrittle structures failing after a large stable crack growth.

The Weibull theory rests on two basic hypotheses:

1. The structure fails as soon as one small element of the material represen-
tative volume attains the strength limit.

2. The strength limit is random and the probability P; that the small el-
ement of material does not fail at a stress less than o has a cumulative
distribution with a power law tail:

o(o) = <a’—0'u> (6> 0y =0) (3.1)
gy

(Weibull 1939) where m, gg, 0y = material constants (m = Weibull modulus,

usually between 5 and 50; o9 = scale parameter; o, = strength threshold,

which may usually be taken as 0).

Based on Eq. (3.1), a three-dimensional continuous generalization of the
weakest link model for the failure of a chain of links of random strength leads
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to the Weibull distribution:
Priow) =1=exp |~ [ clota),on)laV(z) (3.2
v

which represents the probability that a structure that fails at nominal stress
on as soon as macroscopic fracture initiates from a microcrack (or a some
flaw) anywhere in the structure; o = stress tensor field just before failure, =
= coordinate vectors, V' = volume of structure, and ¢(e) = function giving
the spatial concentration of failure probability of the material, which is V,~1x
failure probability of material representative volume V) (Freudenthal 1968);
c(o) = 3; Pi(0i)/Vo where ¢; = principal stresses (i = 1,2,3), Pi(0) = ¢{0)
failure probability (cumulative) of the smallest possible test specimen of vol-
ume Vp (or representative volume of the material) subjected to uniaxial tensile
stress o, as expressed by Weibull’s expression (3.1); and V = reference volume
understood as the volume of specimens on which ¢(¢) was measured.

For specimens under uniform uniaxial stress (and o, = 0), (3.2) and (3.1)
lead to the following simple expressions for the mean and coefficient of variation
of the nominal strength:

v = sol' (1 4+ m™ Y (Vo/ V)™, w=[[(1+2m~ ) /T2 +m ) - 1)}/?

(3.3)
where I' is the gamma function. Since w depends only on m, it is often used
for determining m from the observed statistical scatter of strength of identical
test specimens. The expression for @ includes the effect of volume V which
depends on size D.

In view of Eq. (3.3), the value ow = O'N(V/Vo)llm for a uniformly stressed
specimen can be adopted as a size-independent stress measure called the Weibull
stress. Taking this viewpoint, Beremin (1983) proposed taking into account
the nonuniform stress in a large crack-tip plastic zone by the so-called Weibull

stress:
v 1/m
ow = (z,: o %) (3.4)

where V; ({ = 1,2,...Nw) are elements of the plastic zone having maximum
principal stress or;. Ruggieri and Dodds (1996) replaced the sum in (3.4) by
an integral. Eq. (3.4), however, considers only the crack-tip plastic zone whose
size which is almost independent of D. Consequently, Eq. (3.4) is applicable
only if the crack at the moment of failure is not yet macroscopic, still being
negligible compared to structural dimensions.

It should be emphasized that distribution (3.1) is only the tail distribution
of the extreme values. Of course, far beyond the threshold &, there may be
a transition to some distribution such as normal, log-normal, or gamma, but
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Figure 3.1: Weibull {cumulative) distribution of local material strength (top
left), a critical flaw (encircled) in a field of many flaws (top right), and example
of a multidimensional statically determinate structure that behaves as a chain
and follows Weibull theory {bottom)

on the scale of the drawing in Fig. 3.1 (top left) this occurs in the sky (for a
discussion of the implications of extreme value statistics, see Bazant 2001c).

Weibull applied his distribution to the classical problem of a long chain (Fig,.
3.1 top right) or cable, for which the weakest-link model obviously applies. This
model also applies to any statically determinate structure consisting of many
elements (for example bars), because such a structure fails as soon as one
element fails. But this is not the case for statically indeterminate structures
and multidimensional bodies.

Weibull’s theory has been applied to such structures by many researchers.
This is correct, however, only if the multidimensional structure (Fig. 3.1 bot-
tom) fails as soon as one small element of the material fails. Such sudden
failure occurs in fatigue-embrittled metal structures, in which the critical flaw
at the moment at which the sudden failure is triggered is still of microscopic
dimensions compared to the cross-section size. But this is not the case for
concrete structures and other quasibrittle structures which are designed to fail
only after a large stable crack growth. For example, in the diagonal shear
failure of reinforced concrete beams, the critical crack grows over 80% to 90%
of the cross-section before the beam becomes unstable and fails. During such
large stable crack growth, enormous stress redistributions occur and cause a
large release of stored energy which, as we already discussed, produces a large
deterministic size effect.

The size effect in Weibull theory arises from the fact that, in a larger struc-
ture, the probability of encountering a small material element of a certain small
strength increases with the structure size. The probability of survival of the
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structure, 1 — Py, is the probability that all the elements survive, which (ac-
cording to the joint probability theorem) is [1 — P;(c)}¥ where N = number
of elements in the structure. Noting that Pj(e) < 1 and taking logarithms,
In(1 - P;) = Nln[l — Py(0)] ® —NPy(0) (Fréchet 1927, Fisher and Tippett
1928, von Mises 1936). This is then generalised for nonuniform stress as follows:

(-7 = [ plota]dvie)v (3.5)

in which Py = failure probability of the structure, V' = volume of the structure,
V. = small representative volume of the material whose strength distribution
tail is given by ¢(c), and & = spatial coordinate vector. By virtue of the fact
that the Weibull distribution tail is a power law, the aforementioned probability
integral always yields for the size effect a power law. It is of the form

on = ky VU™ = kep~n™ (3.6)

where ky = constant characterizing the structure shape, and n = number of
dimensions of the structure (1, 2 or 3). For two-dimensional similarity (n = 2)
and typical properties of concrete, the exponent is approximately n/m = 1/12
(BaZzant and Novak 2000b), rather than 1/6 as believed on the basis of the
classical study by Zech and Wittmann (1977).

As already mentioned, the fact that the scaling law of Weibull theory is a
power law implies that there is no characteristic size of the structure, and thus
no material characteristic length (this is also obvious from the fact that no
material length appears anywhere in the formulation). This observation makes
the Weibull-type scaling suspect when one deals with quasibrittle structures
whose material is highly heterogeneous, with a heterogeneity characterized by
a non-negligible material length.

Applications of the classical Weibull theory to quasibrittle structures face a
number of serious objections:

1. The fact that in (3.6) the size effect is a power law implies the absence of
any characteristic length. But this cannot be true if the material contains
sizable inhomogeneities.

2. The energy release due to stress redistributions caused by macroscopic
FPZ or stable crack growth before P ., gives rise to a deterministic
size effect which is ignored. Thus the Weibull theory is valid only if the
structure fails as soon as a microscopic crack becomes macroscopic.

3. Every structure is mathematically equivalent to a uniaxially stressed bar,
which means that no information on the structural geometry and failure
mechanism is taken into account.
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4. The size effect differences between two- and three-dimensional similarities
(ng = 2 or 3) are predicted much too large.

5. Many tests of quasibrittle materials (e.g., diagonal shear failure of rein-
forced concrete beams) show a much stronger size effect than predicted
by Weibull theory (see BaZant and Planas, 1998, or the review in BaZant
1997a).

6. The classical theory neglects the spatial correlations of material failure
probabilities of neighboring elements caused by nonlocal properties of
damage evolution (while generalizations based on some phenomenological
load-sharing hypotheses have been divorced from mechanics).

7. When (3.3) is fit to the test data on statistical scatter for specimens of
one size (V' = const.), and when the Weibull size effect equation is fit to
the mean test data on the effect of size or V (of unnotched plain concrete
specimens), the optimum values of Weibull exponent m are very different,
namely m = 12 and m = 24, respectively (BaZant and Novék, 2000a). If
the theory were applicable, these values would have to coincide.

In view of these limitations, among concrete structures the Weibull theory
appears applicable to some extremely thick plain (unreinforced) structures,
e.g., the flexure of an arch dam acting as a horizontal beam (but not for verti-
cal bending of arch dams nor gravity dams because large vertical compressive
stresses cause long cracks to grow stably before the maximum load). Most other
plain concrete structures are not thick enough to prevent the deterministic size
effect from dominating. Steel or fiber reinforcement prevents it as well.

To take into account stress redistributions and the inherent energy release,
various phenomenological theories of load sharing and redistribution in a system
of parallel elements have been proposed (e.g., L. Phoenix). Although they are
useful if the redistributions and load-sharing are relatively mild, they appear
insufficient to describe the large stress redistributions caused by large stable
crack growth and the effects of structure geometry. They lack the fracture
mechanics aspects of a large fracture process zone.

3.2. Nonlocal Probabilistic Theory of Size Effect

To take into account the stress redistribution due to a large fracture, one
might wish to substitute the LEFM near-tip stress field into the probability
integral in (3.5). However, for normal values of the Weibull modulus (m > 4),
the integral diverges. So this is not a remedy. However, Weibull theory can be
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Figure 3.2: Neighborhood, simulating the fracture process zone, over which the
strain field is averaged in the nonlocal generalization of Weibull theory (BaZant
and Xi, 1991)

extended to capture large stress redistributions approximately—by introduc-
ing a nonlocal generalization (BaZant and Xi, 1991), in which the probability
integral (3.5) is replaced by the following integral:

In(1— Py) = ky /V o [E 2(z)) dV (=)/V, (3.7)

Here the stress at a given point in the structure is replaced by the average
(over a certain neighborhood, Fig. 3.2) of the strain field, € times the elastic
modulus E, to get a quantity of the stress dimension. In other words, the
failure probability at a certain point & of the structure is assumed to depend
not on the stress (stress according to the continuum theory) at that point but
on the average strain in a certain neighborhood of the point, as in nonlocal
theories for strain localization in strain-softening materials.

With this nonlocal generalization, the analytical evaluation of the integral
(3.7) seems prohibitively difficult, however it is easy to obtain the asymptotic
behavior of notched or cracked structures for D — oo and D — 0. Also, for
m — oo, the solution should approach the size effect law based on energy
release, Eq. (2.8).

It was shown that a simple formula that interpolates between these three
asymptotic cases, i.e., achieves asymptotic matching, is as follows (BaZzant and
Xi, 1991):

op D

(3.8)
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Figure 3.3: Scaling law according the nonlocal generalization of Weibull theory
for failures after large crack growth (left) and at crack initiation (right)

This formula, applicable only to structures with notches or large cracks at max-
imum load, is sketched in Fig. 3.3 (top). This figure also shows the aforemen-
tioned asymptotic scaling laws {which turn out to be the same as the Weibull
type scaling law for small sizes—a line of slope —m/n), and the LEFM scaling
law for large similar cracks and large sizes (a line of slope —1/2).

According to the foregoing results, the scaling law of the classical Weibull
theory is, in the case of notches or pre-existing large cracks, applicable only
in the limit of sufficiently small structures. However, comparisons with test
data for concrete show that the deterministic size effect law which begins by
a horizontal asymptote, and the size effect law in (3.8) which begins by an
asymptote of slope -m/n, both fit the test data about equally well, relative to
the scatter of measurements. So it seems that, for the case of notches or pre-
existing cracks, material randomness of Weibull type cannot play a significant
role in sized effect. But this is not quite true for structure failing at crack
inttiation from the surface, as will be discussed in the next section.

It is interesting that the effect of material randomness in notched or pre-
cracked structures completely disappears for large structure sizes. This is re-
vealed by the fact that the large size asymptote has the LEFM slope of —1/2.
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Figure 3.4: Changes of fracture process zone size with increasing structure size

How can it be explained physically?

The explanation is that, when the structure is sufficiently large, a further
increase of the structure size is not accompanied by any increase in the size
of the fracture process zone (Fig. 3.4). The Weibull-type probability integral
in Eq. (3.7) is taken over the entire structure, however, the only significant
contribution to the integral comes from the fracture process zone. Since the
fracture process zone does not increase with an increase of the structure size,
it is obvious that the failure probability should not be affected by a further
increase of the structure size if it is already large.

In the nonlocal formulation of Weibull theory for quasibrittle materials such
as concrete, originally developed for notched specimens or structures with a
large notch or traction-free crack at the moment of failure (BaZant and Xi
1991), the failure probability of a small material element is a function of non-
local (spatially averaged) continuum strain. Recently, however, it was found
more appropriate to use the average of the inelastic part of strain (BaZant and
Novak 2000a). This refined formulation was found to work well in general—
not only for notched specimens but also for unnotched specimens or structures
failing at the initiation of macroscopic fracture, and in particular to the test
of flexural strength, called the modulus of rupture (Fig. 3.5). The purpose
of the nonlocality is not only to prevent spurious localization of cracking but
also to introduce spatial correlation of random material strength, governed by
a certain finite characteristic length of the material.

As in BaZant and Xi’s (1991) analysis of structures containing notches or
large traction-free cracks, the size effect on the mean or median of the modulus
of rupture is found, for normal size beams, to be essentially deterministic. How-
ever, the size range in which the statistical size effect dominates is different—it
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Figure 3.5: Monte Carlo simulation showing how various points in a three-
point bent unnotched beam contribute to the failure probability at subsequent
loading stages (after BaZant and Novik 2000a)
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is the asymptotic range of very large (rather than very small) sizes. While in
the case of notches or large cracks this range lies below the range of practical
interest, in the case of crack initiation it lies, by contrast, above the normal
size range and is important for extrapolations to bending fracture of extremely
large structures such as arch dams or foundation plinths (BaZant and Novak
2000a,b).

The main benefit of the nonlocal Weibull theory is the possibility to pre-
dict for various structure sizes (and shapes) the full probability distribution
of structural strength, and in particular the modulus of rupture. Examples of
calculating the 5% and 95% probabilities of structural failure have been given
(Bazant and Novdk 2000a,b) and a good agreement with the extensive test
data available in the literature has been achieved; see Figs. 3.6, 3.7 and 3.8.
Calculations show that the coefficient of variation characterizing the scatter of
the modulus of rupture decreases with an increasing beam size, In agreement
with experimental results.

As a fundamental check of soundness of any probabilistic theory of failure,
the classical Weibull theory based on the weakest link model (extreme value
distribution) must be recovered as the asymptotic limit when the size of a
quasibrittle or strain-softening structure tends to infinity. This requirement is
obviously satisfied by the probabilistic Weibull theory (Bazant and Xi 1991,
BaZant and Novak 2000a,b). The usual stochastic finite element methods,
however, do not satisfy this basic requirement. This casts doubts on their
applicability, for calculating loads of an extremely small failure probability
such as 10~7, requiring the use of extreme value distribution.

Compared to the usual stochastic finite element methods, a useful simplifi-
cation achieved by the nonlocal Weibull theory is that the nonlocal structural
analysis with strain softening can be conducted deterministicaly because the
probability analysis is separated from the stress analysis, similar to the classical
Weibull theory.

3.3. Energetic-Statistical Formula for Size Effect for Failures at
Crack Initiation

The large size asymptote of the deterministic energetic size effect formula
(2.29) is horizontal, f,/fr o = 1. The same is true of all the existing formulae
for the modulus of rupture, reviewed in BaZant and Planas (1998). But this is
not in agreement with the numerical results of the aforementioned BaZant and
Novak’s (2000a) nonlocal Weibull theory as applied to modulus of rupture, in
which the large-size asymptote in the logarithmic plot has the slope —n/m cor-
responding to the power law of the classical Weibull statistical theory (Weibull
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Figure 3.6: Energetic-statistical formula (3.9) for failures at crack initiation,
compared with test data from the literature on the modulus of rupture of
concrete (with 5 and 95 probability percentiles (after Bazant and Novak 2000b)
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1939).

In view of this theoretical evidence, there is a need to amalgamate the
energetic and statistical theories, despite the fact that the existing test data can
be matched very well by the deterministic theory for failures at crack initiation,
already described (Eq. 2.11). Such amalgamation is important, for example, for
analyzing the size effect in vertical bending fracture of arch dams, foundation
plinths or retaining walls—a phenomenon that must have contributed to the
catastrophic failures of Malpasset Dam in the French Maritime Alps in 1959,
the Saint Francis Dam near Los Angeles in 1928, or the Schoharie Creek Bridge
on New York Thruway in 1987. Briefly, the formula may be deduced as follows.
According to the deterministic energetic model, A" = (fo/fr o) —rDpy /D =1,
which 1s the value of the large-size horizontal asymptote. From the statistical
viewpoint, this difference, characterizing the deviation of the nominal strength
from the asymptotic energetic size effect for a relatively small fracture process
zone (large D), should conform to the size effect of Weibull theory, D—nim,
where m = Weibull modulus and n = number of spatial dimensions (n = 1,
2 or 3, in the present calculations 2). Therefore, instead of A = 1, one needs
to set A = (D/Dy)~™™. This leads to the following Weibull-type statistical
generalization of the energetic size effect formula (2.11):

Db rnfm ’I‘Db 1/r
fr = freo (F) + ) (3.9)

(BaZant and Novak 2000b) where f; o, Dy, r are positive constants, repre-
senting the unknown empirical parameters to be determined by experiments.
Because in all practical cases rn/m < 1 (in fact, < 1), formula (3.9) satisfies
three asymptotic conditions:

1. For small sizes, D — 0, it asymptotically approaches the deterministic
energetic formula (2.29);

1/r
fr = froort" (PD—") x D~V (3.10)

2. For large sizes, D — o0, it asymptotically approaches the Weibull size
effect;
D nfm
fr=freo (7)2) o D™m (3'11)

3. For m — oo, the limit of (3.9) is the deterministic energetic formula
(2.29).
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Equation (3.9} is in fact the simplest formula with these three asymptotic
properties. It may be regarded as the asymptotic matching of the small-size
deterministic and the large-size statistical size effects.

Based on the preliminary results of Zech and Wittmann (1977), the value
of Weibull modulus was long ago fixed as m = 12, which implies the final
asymptote to have the slope —n/m = —1/6 (since n = 2 for most of the data}.
Based on a limited data set available in 1977, these investigators obtained the
value m = 12. They deduced it in the standard way, which was from the
coefficient of variation of strength values measured on specimens of one size
and one shape. However, optimization of the much larger set of test data that
exist in the literature today and include good size effect data (Rocco 1995,
Rokugo et al. 1995), showed the value m = 24 to be optimal.

3.4. Size Effect Ensuing from J-Integral for Randomly Located
Cracks

Formula (3.9) can also be derived in a more fundamental manner by gen-
eralizing the deterministic derivation from the J-integral. To this end, note
that, in the case of failure at crack initiation, the point at which the crack may
originate is randomly located according to the weakest link theory, and, in the
case of large cracks at failure, the location of the crack tip at failure is random.
The randomly located fracture process zone (FPZ) at the tip of such a crack
is enclosed by the contour of the J-integral, and so the contour is randomly
located, too.

For D —+ oo, the FPZ, and thus also the smallest possible J-integral contour
that surrounds the FPZ, occupy an infinitely small portion of the structure vol-
ume V. Therefore, there must exist a certain domain U that is so remote from
the crack and simultaneously so much smaller than the structural dimension
D that the stress field oy in U may be considered nearly uniform. Obviously
oy X oy.

It is now helpful to exploit Beremin’s (1983) concept of Weibull stress (Eq.
3.4). The Weibull stress o¥, for domain U is

o¥y « oy D™ x oy DM (3.12)

The weakest link theory is equivalent to comparing the Weibull stress with a
fixed strength limit, but since the magnitude of stress oy is proportional to
the J-integral, the weakest link theory is actually equivalent to comparing the
Weibull J-integral (or Weibull energy release rate), defined as

Jw « JD™Mm (3.13)
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to a fixed critical value of the J-integral, that is, to the fracture energy, G;y.
According to equation (3.6), an equivalent approach is to replace the nominal
strength ox with the Weibull nominal strength:

o = on (Ds/D)M™ (3.14)

where Dy is some unspecified constant. Making this replacement in (2.16) with
(2.18), we can retain (2.16) if we redefine

J(0) = (Da/ D)™™ (Jo + T10 + 0% + ...) (3.15)

Consider now the failures at crack initiation Jo = 0. If we introduce again
the arbitrary random parameter r (which has no effect on the first two asymp-
totic terms), choose a suitable value for the arbitrary constant D,, and proceed
in the same way as from Eq. (2.18) to Eq. (2.21), we acquire formula (3.9).
Thus we have gained a more fundamental derivation of that formula.

To derive the energetic-statistical formula (3.8) for notches or large cracks,
expansion (2.21) must be modified. If we consider geometrically similar notches

in specimens of various sizes, then the first term Jp should not be randomized
with the Weibull factor (D,/D)"/™, i.e.

J(0) = Jo + (Da/ DY ™(J16 + J26°..) (3.16)

where Jp is now large. Truncating this after the second term of expansion and
proceeding in the same way as from (2.18) to (2.21), we readily obtain the
energetic-statistical size effect law (3.8) for large similar cracks.

If, however, there is no notch and the material randomness causes the lo-
cation of the tip of a large crack in specimens of different sizes to deviate
randomly from a geometrically similar location, then the fully randomized ex-
pansion (3.15) applies. Proceeding similarly as from (2.18) to (2.21), one gets
a new formula

on =opB M (14872, B=D/Dy (3.17)
The corresponding large-size asymptotic size effect is
oy o D~5t%) (3.18)

This is a stronger size effect than LEFM gives for similar cracks, which is
explained by the fact that the randomness of crack tip location intensifies the
size effect—in a larger structure, the chance for the crack tip to find a location
of a given low strength is greater. It must be recognized, though, that formula
(3.18) might be an oversimplification. In reality, the tip of a large crack is not
necessarily located at the place of the lowest strength; rather, the tip location
is influenced by the previous crack path, which is ignored by equation (3.18).
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Figure 3.9: Von Koch fractal curve at progressive refinements and measurement
of its length by a ruler of length J;

The derivation of the deterministic size effect laws from equivalent LEFM
can be randomized in a similar manner, and the same formulae result. In
that approach, the shape dependence of the formula ensues directly. The
shape dependence, however, is introduced into the foregoing formulae by setting
J(8) = g(ao + 0), which shows that Jo = g(ao), J1 = 3¢'(ac), J» = 29" (aa),
etc.

3.5. Could Fracture Fractality Be the Cause of Size Effect?

This intriguing question was recently raised by Carpinteri (1994a,b) (see
also Carpinteri et al. 1993, 1995a,b,c; Carpinteri and Ferro 1994; and Carpin-
teri and Chiaia 1995). The arguments he offered were original and ingenious,
however, they were not based on mechanical analysis and energy considerations.
Rather they were strictly geometrical and partly intuitive.

Subsequently, BaZzant (1995d) attempted a mechanical analysis of the prob-
lem, which will now be briefly outlined. The answer has been negative. How-
ever, the fact that the surface roughness of cracks in many materials can be
described, at least over a certain limited range, by fractal concepts, 1s not
in doubt (e.g., Mandelbrot et al. 1984; Brown 1987; Mecholsky and Mackin
1988; Cahn 1989; Chen and Runt 1989; Hornbogen 1989; Peng and Tian 1990;
Saouma et al. 1990; Bouchaud et al. 1990; Chelidze and Gueguen 1990; Issa
et al. 1992; Long et al. 1991; Malgy et al. 1992; Mosolov and Borodich 1992;
Borodich 1992; Lange et al. 1993; Xie 1987, 1989, 1993; Xie et al. 1994,
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Figure 3.10: Size effect curves predicted by nonfractal and fractal energy-based
analyses, for failures after large crack growth (right) or at crack initiation (bot-
tom)

1995; Saouma and Barton 1994; Feng et al. 1995). A fractal description of the
crack surfaces might offer one viable way to characterize the dependence of the
fracture energy of quasibrittle materials on the crack surface roughness.

In two dimensions, a fractal curve, which can be imagined to represent a
crack, can be illustrated, for example, by the von Koch curves shown in Fig. 3.9.
Progressive refinements are obtained by inserting self-similar bumps into each
straight segment. If the length of this curve is measured by a ruler of a certain
resolution dg, imagined as the ruler length, the length measured will obviously
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depend on the length of the ruler and if the length of the ruler approaches zero,
the measured length will approach infinity. This is described by the equation

as = do(a/8g)% (3.19)

where a5 is the measured length along the curve, a is the projected (smooth,
Euclidean) crack length. Exponent dy is called the fractal dimension, which is
greater than 1 if the curve is fractal, and equal to 1 if it is not.

Obviously the total energy dissipation Wy for the crack length a; would be
infinite if we assume that a finite amount of energy Gy is dissipated per unit
crack length. This is a conceptual difficulty for fracture mechanics of fractal
cracks. In a sequel to the study of Mosolov and Borodich (1992), Borodich
(1992) proposed to resolve this difficulty by setting

Wy /b = Gpa®t (3.20)

in which W; = total energy dissipation; G represents what may be called the
fractal fracture energy whose dimension is not J/m? but J/m%+1,

Based on this fractal concept of fracture energy, one may carry out a similar
asymptotic analysis as we have outlined for non-fractal cracks (BaZant, 1997b).
For the case of failure after a large stable crack growth, the matching of the
large size and small size asymptotic expansions for the fractal fracture yields,
instead of Eq. (2.8), the result:

p\~/?
o, = oy Dr-1/2 (1 + —50) (3.21)

For failure at crack initiation, the asymptotic analysis yields instead of Eq.
(2.29) the result:

D

These expressions reduce to the nonfractal case when dy = 1. The plots of these
equations are shown in Fig. 3.10 in comparison with the size effect formulas
for the nonfractal case.

oy = o Dl4r=/2 (1 + 92) (3.22)

The hypothesis that the fracture propagation is fractal has been made and
the consequences have been deduced (Bazant, 1997b). Now, by judging the
consequences we may decide whether the hypothesis was correct. Looking at
the plots in Fig. 3.10 it is immediately apparent that the fractal case disagrees
with the available experimental evidence. For failures after large crack growth,
the rising portion of the plot has never been seen in experiments, and there
are many data showing that the asymptotic slope is very close to —1/2, rather
than to the much smaller value predicted from the fractal hypothesis. This is
clear by looking at Figs. 2.6-2.8. For failures at crack initiation, the kind of
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Fracture Process Zone (FPZ)

Figure 3.11: Fractal crack curve and its fracture process zone with distributed
cracking

plots seen in Fig. 3.10 (bottom), with a rising size effect curve for large sizes,
is also never observed. Thus it is inevitable to conclude that the hypothesis of
a fractal source of size effect is contradicted by test data and thus untenable.
(The existence of fractal characteristics of fracture surfaces in various materials
is of course not questioned, and neither is the possibility that these fractal
characteristics may influence the value of the fracture energy of the material
and may have to be considered in micromechanical models which predict the
fracture energy value.)

What is the physical reason that the fractal hypothesis fails? Probably it is
the fact that the front of the crack is surrounded by a large fracture process zone
consisting of microcracks and frictional slips, as shown in Fig. 3.11. Because
the fracture energy Gy of quasibrittle materials is usually several orders of
magnitude larger than the surface energy, the whole volume of the fracture
process zone of microcracking dissipates far more energy than the formation
of the crack surface. Therefore, from the energy viewpoint, the crack curve,
which might of course be fractal, cannot matter.

3.6. Could Lacunar Fractality of Microcracks Be the Cause of Size
Effect?

Having already discussed Weibull theory, we are ready to tackle another
type of fractality—the lacunar fractality of microcracks, which is illustrated in
Fig. 2.15 (top). From distance we see one crack, but locking closer we see
it consists of several shorter cracks with gaps between them, and looking still
closer we see that each of these cracks consists of several still shorter cracks with
shorter gaps between them, and so forth. Refinement ad infinitum generates a
Cantor set or a fractal set whose fractal dimension d; is less than the Euclidean
dimension of the space (which is 1 in this example; Fig. 2.15 top left).
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It seems that the microcrack systems in concrete do exhibit this type of
fractality, but only to a limited extent. Quasibrittle materials are materials
with large heterogeneities and a large characteristic length. So obviously the
refinement to smaller and smaller cracks must have a cutoff.

The argument that lacunar (or rarefying) fractality is the cause of size effect
in quasibrittle structures (Carpinteri and Chiaia, 1995) went as follows. The
fractal dimensions of the arrays of microcracks are different at small and large
scales of observation. For a small scale, the fractal dimension Dy is distinctly
less than 1, and for a large scale it is nearly 1. For the failure of a small
structure the small scale matters, and for the failure of a large structure the
large scale matters.

Therefore, as it was argued, there should be a transition from a power
scaling law corresponding to small scale fractality to another power scaling law
corresponding to the large scale fractality, the latter having exponent 0 for the
strength, i.e., no size effect. Thus, as it was claimed, the size effect should be
given by a transitional curve between the two asymptotes of slope —1/2 and
0 shown in Fig. 2.15 (bottom left). The slope of the initial asymptote was
assumed to be —1/2.

This size effect was described by the formula oy = /A1 + A2/D which
coincides with (2.42) and was called the ‘multifractal’ scaling law (MFSL) (4,,
Az = constants).

There exist, however, test data that clearly disagree with the MFSL Law,
Eq. (2.42). Many test data exhibit in the logarithmic size effect plot an initial
slope much less than —1/2, particularly for specimen sizes that are as small as
possible for the given size of aggregate. The MFSL law was also proposed for
structures with notches and large cracks at the moment of failure, but many
test data approach an asymptote of slope —1/2 at very large sizes, and there are
many others that exhibit a negative rather than positive curvature in the plot
of log on and log D, which disagrees with the MFSL law. A comprehensive
analysis of test data on the modulus of rupture (BaZant and Novdk 2000b)
showed that the MFSL law may be improved by adding exponent r, with
optimal value about r = 1.44, as indicated in Eq. (2.29).

On closer scrutiny, there are also mathematical and physical reasons why
the lacunar fractality cannot be the source of the observed size effect. If the
failure is assumed to be controlled by lacunar fractality, that is by microcracks,
it obviously implies that the failure occurs at crack initiation, in which case the
mathematical formulation must be akin to Weibull theory.

Labeling the aforementioned small and large scales of observations by super-
scripts A and B, the Weibull distributions of the strength of a small material
element in the fracture process zone with lacunar microcracks may be written
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o cl—d? . "

¢ [o(2);df] = < v3E) ;6‘ - > (3.23)
o cl_d? — B "

obtoriaf] = (220 =% ) 520)

Here the stress in the small material element of random strength has been writ-
ten as ¢ = onS(£), in which S is the same function for all sizes of geometrically
similar structures, and & = #/D, for the nonfractal (non-lacunar) case.

For the fractal (lacunar) case, this is generalized as o = aNS(f)c}—d’ be-
cause the stress of the material element, in the case of lacunar microcracks,
must be considered to have a non-standard, fractal dimension. Obviously, the
Weibull constants &3 and &, must now be considered to have fractal dimen-
sions as well, but Weibull modulus rn must not. An equation of the type of Eq.
(3.23) or (3.24) was written by Carpinteri et al.; however, further analysis con-
sisted of geometric and intuitive arguments. We will now sketch a mechanical
analysis (BaZant, 1997b).

In Weibull theory (failure at initiation of macroscopic fracture), every struc-
ture is equivalent to a long bar of variable cross section (BaZant, Xi and Reid
1991; Fig. 3.12). Carpinteri et al’s argument means that a small structure is
subdivided into small material elements (Fig. 3.12a) and a large structure is
subdivided into proportionately larger material elements (Fig. 3.12c). How-
ever, this is not an objective view of the failure mechanism of two structures
made of the same material.

The large elements of the larger structure shown in Fig. 3.12c¢ must be
divisible into the small elements considered for the structure in Fig. 3.12a,
which are the representative volumes of the material for which the material
properties are defined. If the large elements were not divisible into the small
ones, it would imply that the material of the small structure is not the same.

Having in mind the subdivision of the large elements into the small elements
as shown in Fig. 3.12b, we may now calculate the failure probability of the large
structure on the basis of the refined subdivision into the small elements, as
shown in Fig. 3.12b, or else it would imply that the small and large structures
are not made of the same material. We note that the failure probability Py
of the large structure subdivided into large elements AVp; (7 = 1,2,--- N),
and the failure probability lej- of the large element AVp; of the large structure
subdivided into small elements AVy;;, must satisfy the following relations of
Weibull theory:

—In(1 - Py) Zcp (onSP; dB)AVp;/V; (3.25)
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Figure 3.12: Subdivision of: (a) a small structure into small elements, (b) a

large structure into small elements, and (c) a large structure into large elements

—~In(1 = PE) = “plonSaij; df)AVai;/ Vi (3.26)
J

Now, since we may subdivide each element B of the large structure into the
small elements A if the material is the same, we have

—In(1 - P;) = Zln 1-Pf)= ZZgo (onSh; df)AVaii/ Ve (3.27)

Equating this to Eq. (3.6), we see that, in order to meet the requirement of the
objective existence of the same material, the Weibull characteristics on scales
A and B must be different and such that

p(onSE; d?) = (AVE)- Z(p onSf; df)AVS (3.28)

Egs. (3.27) and (3.28) imply that consideration of different scales cannot
yield different scaling laws. The same power law must result from the hy-
pothesis of lacunar fractality of microcrack distribution, regardless of the scale
considered.

If the argument for the MFSL law were accepted it would imply that a
large material volume with no fractality may not be subdivided into smaller
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representative material volumes exhibiting lacunar fractality. As long as both
the small and large volumes are sufficiently larger than the size of material
inhomogeneities (the maximum aggregate size in concrete), this implication is
selfcontradicting,.

The argument would be acceptable if the size of the smaller material volume
were less than the size of these inhomogeneities, for instance on the scale of
the matrix between the inhomogeneities (e.g., the mortar between the large
aggregates in concrete). The fractal dimensions of the systems of the tiny
cracks in the matrix and of the cracks in concrete as a composite must of
course be different. By definition, the failure of even the smallest concrete
structure is not governed by the mortar alone. The aggregates are essential,
and the failure is governed by the properties of the composite. So Carpinteri’s
argument does not appear acceptable as a basis of the scaling law for one and
the same material.

To sum up, the scaling law of a structure failing at the initiation of fracture
from a fractal field of lacunar microcracks must be identical to the scaling of
the classical Weibull theory. The only difference is that the values of Weibull
parameters depend on the lacunar fractality. This difference could be taken into
account if the values of these parameters could be predicted by micromechanics.
But as long as the Weibull parameters are determined by experiments, the
concept of lacunar fractality of microcracks contributes nothing. The lacunar
fractality can have no effect on the scaling law. However, the lacunar fractality
may offer a valid way to describe the influence of microcrack distribution on
the fracture energy.



Chapter 4

Energetic Scaling for Sea Ice and
Concrete Structures

4.1. Scaling of Fracture of Floating Sea Ice Plates

Thermal Bending Fracture

Different types of size effect are exhibited by sea ice failures. The scaling of
failure of floating sea ice plates in the Arctic presents some intricate difficulties.
One practical need is to understand and predict the formation of very long
fractures (of the order of 1 km to 100 km) which cause the formation of open
water leads or serve as precursors initiating the build-up of pressure ridges and
rafting zones.

Large fractures can be produced in sea ice as a result of the thermal bending
moment caused by cooling of the surface of the ice plate (Fig. 4.1). Due
to buoyancy, the floating plate behaves exactly as a plate on elastic Winkler
foundation, with the foundation modulus equal to the unit weight of sea water.
Under the assumption that the ice plate is infinite and elastic, of constant
thickness h, that the temperature profiles for various thicknesses h are similar,
and that the thermal fracture is semi-infinite and propagates statically (i.e.,
with insignificant inertia forces), it was found (BaZant 1992b) that the critical
temperature difference

AT, o h=3/8 (4.1)
This means that the critical nominal thermal stress ox  A~=3/8. The analysis
was done according to LEFM. Despite the existence of a large fracture process
zone, LEFM is justified because a steady-state propagation must develop. The
fracture process zone does not change as it travels with the fracture front, and
thus it dissipates energy at a constant rate, as in LEFM.
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Figure 4.1: Bending fracture of floating sea ice plate caused by temperature
difference

It has been shown that the scaling law in (4.1) must apply to failures caused
by any type of bending cracks, provided that they are full-through cracks prop-
agating along the plate (created by any type of loading, e.g. by vertical load;
Slepyan 1990, Bazant 1993).

It may be surprising that the exponent of this large size asymptotic scaling
law is not —1/2. However, this apparent contradiction may be explained if
one realizes that the plate thickness is merely a parameter but not actually a
dimension in the plane of the boundary value problem, that is, the horizontal
plane (z,y). In that plane, the problem has only one characteristic length—
namely the well-known flexural wavelength of a plate on elastic foundation, Lg.
As it happens, Lg is not proportional to h but to h34. Thus it follows that
the exponent of Lg in the scaling law is (—3/8)(4/3) = —1/2. So the scaling
of thermal bending fracture does in fact obey the previously mentioned LEFM
scaling law:

AT,  Ly2, (4.2)

Simplified calculations (BaZant, 1992b) have shown that, in order to prop-
agate such a long thermal bending fracture through a plate 1m thick, the
temperature difference across the plate must be about 25°C, while for a plate
6m thick the temperature difference needs to be only 12°C. This is a large size
effect. It may explain why very long fractures in the Arctic Ocean are often
seen to run through the thickest floes rather than through the thinly refrozen
water leads between and around the floes (as observed by Assur in 1963).

Numerical Simulation of Vertical Penetration

An important practical problem, in which the scaling is different, is the fail-
ure caused by vertical (downward or upward) penetration through the floating
ice plate (Fig. 4.2). In that case, the fractures are known to form a star pat-
tern of radial cracks (Fig. 4.2, top left) which propagate outward from the
loaded area. The failure occurs when the circumferential cracks begin to form,
as indicated by the load-deflection diagram in Fig. 4.2 (bottom).
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Figure 4.2: Top left: radial and circumferential cracks caused by vertical pen-
etration of an object through floating sea ice plate. Top right: part-through
radial crack and shift of compression resultant causing dome effect. Bottom:
typical load-deflection diagram

This problem was initially analyzed under the assumption of full-through
bending cracks, in which case the asymptotic scaling law for large cracks again
appears to be of the type h=3/8 (Slepyan, 1990, BaZant 1992a). However,
experiments as well as finite element analyses show that the radial cracks before
failure do not reach through the full thickness of the ice plate, as shown in Fig.
4.2 (top). This enormously complicates the analysis.

To solve this problem (Bazant and Kim 1997), the elasticity of one half of the
sector of the floating plate limited by two adjacent radial cracks is characterized
by a compliance matrix obtained numerically. The radial cross section with
the crack is subdivided into narrow vertical strips. In each strip, the crack
is assumed to initiate through a plastic stage (representing an approximation
of the cohesive zone). This is done according to a strength criterion (in the
sense of Dugdale model), with constant in-plane normal stress assumed within
the cross section part where the strain corresponding to the strength limit is
exceeded.

For the subsequent fracture stage, the relationship of the bending moment
M and normal force N in each cracked strip to the additional rotation and
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Figure 4.3: Calculated subsequent profiles of the radial part-through crack,
after Baant and Kim (1998) (the plate thickness is strongly exaggerated)

in-plane displacement caused by the crack is assumed to follow the nonlinear
line spring model of Rice and Levy (1972). The transition from the plastic
stage to the fracture stage is assumed to occur as soon as the fracture values
of M and N become less than their plastic values (to do this consistently, the
plastic flow rule is assumed such that the ratio M/N would always be the same
as for fracture).

This analysis (BaZant and Kim 1997) has provided the profiles of crack
depth shown in Fig. 4.3, where the last profile corresponds to the maximum
load (the plate depth is greatly exaggerated in the figure). The figure also
shows the radial distribution of the nominal stresses due to bending moment
and to normal force. The normal forces transmitted across the radial cross
section with the crack are found to be quite significant. They cause a dome
effect which helps to carry the vertical load.

An important question in this problem is the number of radial cracks that
form. The solution (BaZant and Li, 1995) shows that the number of cracks
depends on the thickness of the plate and has a significant effect on the scaling
law.

The numerical solution of the integral equation along the radial cracked
section, expressing the compatibility of the rotations and displacements due
to crack with the elastic deformation of the plate sector between two cracks,
yields the size effect plot shown in Fig. 4.4. The numerical results shown by
data points can be relatively well described by the generalized size effect law
of BaZant, shown in the figure. The top of the figure indicates the number of
radial cracks for each range of crack thicknesses. The deviation of the numerical
results from the smooth curve, seen in the middle of the range in the figure,
is probably caused by insufficient density of nodal points near the fracture
front. As confirmed by Fig. 4.4, the asymptotic size effect does not have the
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Figure 4.4: Size effect curve calculated by analysis of growth of part-through
cracks, with varying number of radial cracks for different thickness ranges

slope —3/8 but the slope —1/2. Obviously, the reason is that, at the moment
of failure, the cracks are not full-through bending cracks but grow vertically
through the plate thickness.

Approzimate Analytical Solution of Vertical Penetration

Consider the ice plate floating on water shown in Fig. 4.5a,b. Failure under
a vertical load involves formation of radial bending cracks in a star pattern
(Fig. 4.5¢). The radial cracks penetrate at maximum load to an average depth
of about 0.8h and maximum depth 0.85h where h is the ice thickness (Fig.
4.6a). The maximum load is reached when polygonal (circumferential) cracks,
needed to complete a failure mechanism, begin to form (dashed lines in Fig.
4.5¢c). The nominal strength is defined as o = P/h%.

Superposing the expressions for the stress intensity factor K of the part-
through radial bending crack of depth a (Fig. 4.6b,d) produced by bending
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Figure 4.5: Floating ice plate, its deflection under concentrated load and crack
pattern

moment M and normal force N (per unit length), one gets

K; = \/};ﬁ [?hﬁFM(a) + NFN(OZ):I (4.3)

where functions Fy(a) and Fy(a) are found in handbooks. According to
Irwin’s relation, the energy release rate is

K? N2
G = f{" = ﬂg(a) (4.4)

where g is a dimensionless function, g(@) = ra [(6e/h) Far(@) + Fn (2)])%; (a =
a/h); e = =M /N = eccentricity of the normal force resultant in the cross
section (positive when N is above the mid-plane), and E' = E/(1 — v?).

f4

To relate M and N to vertical load P, consider element 12341 of the plate
(Fig. 4.5c and 4.6e,f,g), limited by a pair of opposite radial cracks and the
initiating polygonal cracks. The depth to the polygonal cracks at maximum
load is zero, as they just initiate, and since the cracks must form at the location
of the maximum radial bending moment, the vertical shear force on the planes
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Figure 4.6: Analysis of vertical penetration fracture: (a) Crack profile and
(b-h) forces acting on element 123401
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of these cracks is zero. The distance R of the polygonal cracks from the vertical
load P must be proportional to the characteristic length L since this is the only
constant in the differential equation governing the problem, and so we may set
R = prL where dimensionless pg is assumed to be a constant.

In each narrow radial sector, the resultant of the water pressure due to
deflection w (Fig. 4.6b,c) is located at a certain distance r,, from load P. Since
rw can be solved from the differential equation for w, and since the solution
depends only on one parameter, the characteristic length L, it is necessary that
ry be proportional to L. Integration over the area of a semi-circle of radius 7y,
yields the resultant of water pressure acting on the whole element 12341. Again
the distance of this resultant, whose magnitude is P/2, from load P must be
proportional to L, i.e., may be written as R,, = p,, L where p,, is a constant
that can be solved from the differential equation of plate deflections. Of course,
[y 1s a constant only as long as the behavior is elastic; this is true only if the
crack depth a is constant, which is what is assumed.

The normal force N and bending moment Mon the planes of the radial
cracks and the polygonal cracks may be assumed to be approximately uniform.
The condition of equilibrium of horizontal forces acting on element 12341 in the
direction normal to the radial cracks requires the normal forces on the planes
of the polygonal cracks to be equal to the normal force N acting in the radial
crack planes. The axial vectors of the moments M. acting on the polygonal
sides are shown in Fig. 4.6e,g by double arrows. Summing the projections of
these axial vectors from all the polygonal sides of the element, one finds that
their moment resultant with axis vector in the direction 14 is 2RM,, regardless
of the number n of radial cracks. So, upon setting R = pgL, the condition
of equilibrium of the radial cracks with respect to the moments about axis 14
(Fig. 4.6b,c,e,g) located at mid-thickness of the cross section may be written
as:

WprL)M +2(urL)M, — LP(uyL) = 0 (4.5)

Furthermore, condition (4.4) of vertical propagation of the radial bending
cracks must be taken into account; it may be written as G = G; where G; is
the fracture energy of ice. Thus, the critical value of normal force (compressive,
with eccentricity ) may be written as

_ E'Geh
N= \/ 9(e) (46)

The polygonal cracks are initiated when the normal stress o reaches the
tensile strength f{ of the ice. As in all heterogeneous brittle materials, one
must expect that a layer of distributed microcracking, of some effective constant
thickness D, that is a material property, will form at the top face of ice plate
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before the polygonal crack will start propagating. According to the nonlocal
concept for distributed damage, we may assume that the polygonal cracks
initiate when the average stress in this layer reaches the strength f/, and since
the average stress is roughly the elastically calculated stress for the middle of
layer Dy, the criterion of initiation of the polygonal cracks simply is
M. (h Dy N .

Y (5 - "‘z—) TR = *n
This criterion, however, can be valid only when h is sufficiently larger than Dy,
i.e., asymptotically for h/ Dy —+ co. The case h < D, is physically meaningless.
For h = Dy, i.e., when the distributed cracking zone encompasses essentially
the whole depth of plate, the moment at failure can be determined as the plastic
bending moment, which may be approximately taken as 1.5x larger than the
elastic bending moment for the same material strength. This condition and
the asymptotic properties for h > Dy are satisfied by replacing (4.7) with the
criterion:

6M, h+D, N _
W haeD, T (4.8)

Indeed, this is evidenced by the large-size approximation

h+Dy _ 14+ Do/h Dy 2Dy \ Dy
h+2D,,"1+QD,,/hN(1+h)(1 h)Nl R @49

This means that, for large enough A, (4.8) and (4.7) are equivalent asymptot-
ically, up to the first order in 1/A.

In Eq. (4.5), we may substitute M = —Ne = Npyu.h where the normal
force N is defined to be positive when tensile, although the actual value of N is
negative (compression); and p. = e/h = dimensionless parameter whose value
at maximum load may be assumed as approximately constant. This assumption
is indicated by the numerical simulation of Bazant and Kim (1998), from which
it further transpires that p. = 0.45, as a consequence of the fact the average
crack depth a at maximum load is about 0.8A (in any case, ¢, < 0.5, and so a
possible error in p, cannot have a large effect). The value 0.45 approximately
corresponds to the correct number of cracks in the star pattern; if there were
more cracks, the depth would be smaller, if fewer, larger.

Next we may express M, from (4.5) and substitute it into {4.8). Then,
taking into account (4.6), we obtain the equation:

3(h + Dy)ptw <6pe(h+ Dy) + l) E'Gsh
2h(h+2Dy)ur 9(a)

h2(h +2Ds) = h th (4.10)

which may be rearranged as

2ur h+ 2D, E'Gy 42D,
= LR . 4.11
N {[6“ ¥ h+Db] hole) " A D N
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Finally, one needs to decide how the values of a at maximum load should
change with ice thickness k. Since ice is a quasibrittle material, a finite fracture
process zone (FPZ) of a certain characteristic depth 2¢; that is a material
property must exist at the tip of the vertically propagating radial crack. This
zone was modeled in the numerical simulations of BaZant and Kim (1998) as a
yielding zone. The .ip of the equivalent LEFM crack lies approximately at the
middle of the FPZ, i.e., at a distance ¢y from the actual crack tip (BaZant and
Planas 1998), whose location is denoted as ag. The value of ag = ap/h may be
expected to be approximately constant when ice plates of different thicknesses
h are compared. Thus, denoting ¢'(ag) = dg(ag)/dag, one may introduce the
approximation g(a) = g(ao) + ¢'(ao)(cs /D). Substituting this into (4.11) and
rearranging, one gets for the size effect the formula

_4pg h+2D, E'Gy ur h+2Dp
N [”e G ] \ﬁg(ao * fi 412)

w (h+ Dy) )+ crg'(@0) | 3w h+ Ds

The results of numerical simulations of BaZant and Kim (1998) were found
to be quite well represented by the simple size effect law in Eq. (2.9) with finite
large-size residual strength o, (BaZant 1987b), which reads

—1/2
oN =09 (1 + ——) + o, (4.13)
ho

oy, however, appeared to be negliglible in BaZzant and Kim’s (1998) numerical
simulations, in which case this formula reduces to the original size effect law
(BaZant 1984a). Equation (4.12) reduces to this law when D, = 0, in which
case

ogg = 4I4Rﬂe EIGf
pu \ crg’(eo)’

Furthermore, o, = 0 if f{ = 0, which seems to be a reasonable simplification.
Anyway, the values of Dy and f] are probably too small to have an appreciable
effect.

The terms in (4.12) containing Dy, anyway decrease with increasing h much
more rapidly than (4.13)—for large h as 1/h compared to 1/v/h. Consequently,
they must become negligible for sufficiently large h regardless of the value of
Dy. Asin Eq. (4.13), equation (4.12) plotted as log o versus log h approaches
for large h a downward inclined asymptote of slope —1/2 and represents the
large-size form of tle size effect law in (4.12).
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Figure 4.7: Cleavage crack in ice plate pushing against a fixed structure

Force Applied by Moving Ice on a Fized Structure

Prediction of a force applied by a moving ice plate on a fixed structure, such
as an ocean oil platform, is a very complex problem. Several different types of
ice break-up mechanism can take place. One mechanism is the global buckling
of the ice plate as a plate on elastic foundation. It can occur only for sufficiently
thin plates and leads to a reverse size effect of ice thickness, as already discussed
in this book. Another mechanism is the compression fracture of ice plate in
contact with the structure, which leads to a size effect of ice thickness. Here the
general discussion of compression fracture in this book is pertinent. The third
possible mechanism is the overall fracture of a finite-size ice floe impacting the
structure, which is similar to the fracture problems already discussed and leads
to a size effect of the floe size. The fourth possible mechanism consists of a
long cleavage crack in the ice plate, propagating against the direction of ice
movement (Fig. 4.7). It leads to a size effect of the effective diameter d of the
structure which is different from those already discussed. Therefore, it will be
considered in some detail.

The resistance of the crack to opening causes the ice to exert on the structure

a pair of transverse force resultants ' and a pair of tangential forces 7" in the

direction of movement; T' = Ftan where ¢ nay be regarded as the friction

angle. Forces T have no effect on the stress intensity factor K at the crack
tip. Considering the ice plate as infinite, we have

F [2r

Kr = —1f— 4.15

p= (4.15)

(Murakami 1987). To determine the crack length a (Fig. 4.7), we need to

calculate the crack opening § caused by F. To this end, one may recall the
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well-known calculation of the energy release rate:

_1fomx] 14 _ F2dC(a)
G——[——]F—ga[% (0)F*] = 5 ——

5 (4.16)

h

where C(a) is the load-point compliance of the pair of forces F (Fig. 4.7).
Upon using (4.15) and Irwin’s relation, we have at the same time

_ K} 2nF?
6= 'E ~ Eh%a (417)
Equating (4.16) and (4.17), we thus get
dC{a 4n
= (+.18)

This expression is now integrated from a = d/2 (surface of structure, considered

as circular (Fig. 4.7) to a (note that integration from a = 0, which would give

infinite C, would be meaningless because a cannot be less than d). In this
manner we obtain C(a), and from it the opening deflection 4:

AnF 2a

§ = F=—n|— 4.19

cr = T (%) (1.19)

If cleavage fracture were the only mode of ice breaking, we would have § = d.

However, as will be discussed later, there is likely to be at least some amount

of local crushing at, and ahead, of the structure. Consequently, the relative

displacement between the two flanks of the crack is no doubt less than d. We
denote it as xd where x is a coeflicient less than 1. Setting § = xd, we solve

from (4.19):
a = d exp (Ehxd) (4.20)

2 4TF

(note that a/d is not constant but increases with d; hence, the fracture modes
are not geometrically similar, and so the LEFM power scaling cannot be ex-
pected to apply). Substituting (4.20) into (4.15), setting Ky = K. = \/EG;
(Irwin’s relation, K. = fracture toughness of ice), and solving for F', we obtain

2/7F Ehxd)
_vmE 4.21
nEG,d P ( grF (4.21)

The pair of forces F is related to load P on the structure (P = 27", Fig. 4.7)
by a friction law, which may be written as P = 2F tan ¢ where ¢ is the friction
angle. Substituting ' = P/2tany and P = oxhd into (4.21), and solving the
resulting equation for d, we obtain, after rearrangements,

ON

d 1 1/7 —
7 =e’ T = p (4.22)
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Figure 4.8: Size effect associated with cleavage fracture

in which r is the dimensionless nominal strength, and d. and o, are constants

defined as ArC )
Gy X tan ¢

de = ——, c= E .
F a o (4.23)

Equation (4.22), plotted in Fig. 4.8, represents the law of cleavage size effect
in an inverted form. The small-size asymptotic behavior is the LEFM scaling
for similar structures with similar cracks:

ford € d;: on &~ +/d./d (4.24)

The plot of (4.22) in Fig. 4.8 shows that the size effect is getting pro-
gressively weaker with increasing structure diameter d (although no horizontal
asymptote is approached by the curve). The reason for this is that the cracks
of various lengths are dissimilar, i.e., the ratio, a/d, of crack length to structure
diameter is not the same for different sizes but increases with the structure size.

4.2. Size Effect on Softening Inelastic Hinges in Beams and Plates

Post-peak softening of inelastic hinges in beams or plates (Fig. 4.9a) can
be engendered by both tensile and compression fracture (or by localization of
distributed cracking damage). While the effective length of the plastic zone in
plastic hinges in steel beams is proportional to the characteristic size D, which
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Figure 4.9: Softening inelastic hinge; (a) its moment rotation diagram, (b)
hinge failing by tensile crack, (c) and (d) hinge failing by compression fracture
band, and (e) size effect on moment-rotation diagram

may be taken as the beam depth D, the effective hinge length of fracturing
hinges (Fig. 4.9b,c) is, under certain plausible hypotheses, approximately con-
stant, roughly equal to the characteristic length of the material. The cause
is the localization instability of strain softening (BaZant and Cedolin 1991,
Chapter 13), and one consequence is the size effect.

Hinge softening due to tensile fracture occurs for example in plain (unrein-
forced) concrete beams or plates or in floating ice plates, due to propagation of
a crack from the tensile face (Fig. 4.9b). The energy dissipated by the crack
per unit area of the cross section is Gy.

Hinge softening due to compression fracture occurs for example in rein-
forced concrete beams if the bending moment M is accompanied by a sufficient
axial compression force N (which is the case for prestressed concrete beams,
for columns with a large enough axial force, and for frames or arches with a



Energetic Scaling for Sea Ice and Concrete Structures 91

large enough horizontal thrust). It also occurs if there is strong enough tensile
reinforcement (Fig. 4.9¢,d), for instance, if the beam is overreinforced because
of a retrofit with a fiber laminate bonded to the tensile face.

As discussed later in this treatise, the compression fracture consists of an
inclined band of axial splitting microcracks (a crushing band, which is often
regarded as a shear failure in compression although shear slip becomes possible
only after the axial stress gets reduces well below the peak). The plane of
the band, inclined by angle ¢, with respect to the orthogonal cross section,
can intersect the cross section in a line that is vertical (Fig. 4.9c where the
inclination would be seen by looking from top down) or horizontal (Fig. 4.9d).
The energy, G4, dissipated by formation of the band, per unit area of the cross
section (unit area of the projection of the compression fracture onto the critical
cross section) plays the role of the fracture energy of the band, considered to
be a material constant.

The assumption of constant Gy is indicated theoretically by studies of lo-
calization of softening damage. However, it must be pointed out that this
assumption has not yet been systematically tested in the laboratory and lacks
at present clear experimental support. On the other hand, it is clear that an
assumption of the softening damage in compression remaining distributed, with
no localization at all, would definitely be wrong. Only for such an assumption
the size effect would be absent (such an assumption would imply the area under
the stress-strain curve, including its softening tail, representing energy per unit
volume, Wy, to be a constant, while full localization implies (73, the energy per
unit area, to be a constant; the reality might be somewhere in between, but
definitely closer to a constant energy per unit area of cross section).

As explained in a previous section, the nominal strength at the initiation
of a fracture due to bending moment M, (peak moment in Fig. 4.9a) exhibits
a size effect of the the type described by formula (2.39) or (2.46); therefore,
according to formula (2.39),

1/r
’"D”> (4.25)

My=Mog(D), (D)= (1472
My is a constant representing the bending moment at fracture initiation in a
cross section of infinite size, and function ¢(D), introduced before, describes
the size effect at fracture initiation. Since froo = MoD/2I = 6My/bD? (I =
moment of inertia of cross section), we may write

My = froobD?/6 (4.26)

For a reinforced concrete cross section failing by concrete crushing, the same
expression can be derived except that froo 1s multiplied by a constant depending
on the shape of cross section and the reinforcement ratio.
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According to linear elastic fracture mechanics, the diagram of the softening
moment-rotation relation for the inelastic hinge is a curve descending from
infinity, as sketched in Fig. 4.9a. If the nonlinear cohesive nature of a tensile
crack, or the finite size of the fracture process zone of the tensile crack or
compression crushing band is taken into account, the diagram starts its descent
from a finite value, M,.

For the sake of simplicity, we will idealize the moment-rotation diagram as
linear (triangular, Fig. 4.9a), ie., M = R;(0; — 0) where R, is the tangent
stiffness of the hinge (representing the slope ot the M-8 diagram) and 8y is the
hinge rotation at complete break (Fig. 4.9a). The energy W, dissipated by a
total break of the cross section is given by the area under this diagram (Fig.
4.9a);

Wir = $Mply (4.27)

Attention will now be restricted to rectangular cross sections and plates
(although generalization to arbitrary cross sections would not be difficult).
The energy dissipated over the whole cross section upon reaching a complete
break may then alternatively be written as

Wi, = GybD (4.28)

where b is the width of a rectangular cross section (in the case of a hinge in a
plate, we consider a unit width & = 1). In view of energy conservation, both
expressions for Wy, may be set equal, which provides

_2GWD  12G, 1
/ Moq(D) fro Dq(D)

(4.29)

To bring to light the scaling, it is helpful to introduce the dimensionless
bending moment and the dimensionless tangential softening stiffness of the
softening inelastic hinge:

M = R,

where the tangent stiffness is defined as Ry = M,/0;. For non-softening elasto-
plastic materials, the diagram of M versus 6 is independent of the beam depth
(e.g. BaZant and Jirasek 2001}, and so any change in this diagram as a function
of structure size reveals a size effect. For our softening material and for a
rectangular cross section, we find, upon substituting (4.29) into (4.30) with

R, = FroobD?g(h)/66;, that

- _¢(D)D
20,

_EG,
Foo

lyr (4.31)
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where l;, represents an Irwin-type characteristic length of the material (e.g.,
BaZant and Planas 1998).

As we see from (4.31) and (4.29), if D is large enough for ¢(D)} to become
almost constant, the dimensionless softening stiffness of the hinge increases in
proportion to size [J, and the rotation at full break decreases at inverse pro-
portion to D (Fig. 4.9). As the structure size approaches infinity, R; becomes
infinite (a vertical drop). As the structure size tends to zero, R; becomes zero
(a horizontal line), and thus the softening hinge becomes equivalent to a plastic
hinge. These are size effects with important consequences for structures, which
we explore next. In plasticity, by contrast, one cannot speak of any size effect
because R, = R; = 0 for any size, 6; — oo, and ¢(D} = const. for any D.

Note: Instead of M and R, we could work with the nominal bending mo-
ment My = M/D? and the nominal tangent stiffness R,y = R;/bD?. This
would be more in line with the entrenched usage of nominal strength o in lieu
of the dimensionless strength & = o5 /F. But there is no precedent for using
My and Ry, and for the analysis of size effect if makes no difference.

4.3. Size Effect in Beams and Frames Failing by Softening Hinges

The size effects of softening hinges are important for:

o the energy absorption capability of structures (which governs the resis-
tance to earthquake, blast, shock and impact), and

¢ the strength of redundant brittle beams and frames, as well as the strength
of plates.

We now turn attention to the latter (whereas the former will be discussed in a
later section).

Consider a statically indeterminate (redundant} beam structure which re-
quires N inelastic hinges to form in order to collapse (e.g., four hinges in Fig.
4.10). Let the inelastic hinges be numbered as j = 1,2, ...N in the sequence in
which they form as the load-point displacement w is increased. Let K; be the
stiffness associated with P if hinges j = 1,2,...i — 1 have completely softened
(i.e., M = 0 and 8 > 8 in these hinges) and hinges j = i,i + 1,...N have
not yet started to form (i.e., M < M, and # = 0 in these hinges). Obviously,
Ki>Ky>Ks>..>Ky>0.

If all the hinges j = 1,2,...i — 1 have softened to a zero moment and hinge
7 has not yet started to form, the load-point deflection w is decided solely by
K; and the start of softening in the next hinge 7 is decided by a critical stress,
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Figure 4.10: (a) Frame failing by softening inelastic hinges, and (b) load-
deflection diagram when one and only one hinge is softening at a time

o;, representing the stress at the tensile face in the case of tensile fracture or
at the compression face in the case of compression fracture; therefore

P = K;w, g = S;w (4.32)

where S; are constants. Restricting again attention to rectangular cross sec-
tions, one may introduce dimensionless structure stiffness K; and dimensionless
critical stress S; in hinge ¢, such that

K; = K;Eb, S;=S,E/D (4.33)

where D is the characteristic size of the structure, considered as two-dimensional,
and b is the characteristic thickness in the third dimension (X; has been nor-

malized by b because it increases in proportion to b, while S; has not, because

the stress in a rectangular cross section depends only on the bending moment

per unit width).

Assume now that the hinges form and fully soften one by one, i.e., no two
hinges are softening at the same time (it will be seen that a large enough
structure always fails this way). Then the load-deflection diagram must look
as shown in Fig. 4.10b, where the slope of each ray emanating from the origin is
K; and the maximum load on each ray marked P; (¢ = 1,2,...), corresponds to
the start of softening of the next hinge. The trough P/ on each ray is the load
at which the softening of each hinge gets completed (i.e., M = 0 and 8 = 6;).
Since we assumed the moment-rotation diagram of the hinges to be linear, the
load-deflection diagram from P; to P} must be a straight line.
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Figure 4.11: Size effects on nominal strengths at a peak and at a trough,
matched to small-size plastic limit

The load peaks P; are determined from the condition o; = f, = freoq(D).
Noting that ; = PS;/K;, we find:

K;
F= "ST_ JreobDg(D), (4.34)
The corresponding nominal stresses are
P K;
i = == = Jro0o 4.
oni = 55 = S hreet(D) (4:35)

As may have been expected, peaks op; exhibit only the size effect of fracture
initiation (Fig. 4.11), the same as that in the modulus of rupture.

To determine the troughs P/, consider the area of the shaded triangle in

Fig. 4.10b between the rays of slopes K; and K;41; the area is

PP 1 1
A i - 4.
Wi=—3 (1{,~+1 K;) (4:36)

W; represents the work dissipated when hinge i softens from M, to 0. Since
no other hinge is assumed to be softening simultaneously with hinge ¢, energy
conservation requires W; to be equal to the work dissipated by hinge 7;

W; = Gpb; D; = G;,,B,-(S,Dz with & = b,‘/D, é; = D,‘/D (4.37)

where b; and D; are the width and depth of the cross section at hinge 7, and §;
and §; are constants for structures geometrically similar in three dimensions.
Setting this equal to (4.36), we can solve for P} and obtain:

oh; P! 2EG, ( 1 1\7'1 const.
i fpuiniuLy R - = — = for 1 D) (4.38
ONi P,' 012\11' ,K,'+1 I&'i D D ( or large ) ( )
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Factor 1/D represents the large-size asymptotic size effect on the troughs (Fig.
4.11). It is a very strong size effect, much stronger than the LEFM size effect
of large cracks, which is of the type 1/ VD.

Fig. 4.12 shows a sequence of typical load-deflection diagrams for geomet-
rically similar structures of various sizes D. These diagrams are plotted in
dimensionless coordinates w/D and on/F, and the size effect on the peaks
stemming from crack initiation, described by function ¢(D), is ignored in this
plot. This has the advantage that (1) the slopes corresponding to K; (and, due
to considering ¢(D) = 1, also the points corresponding to the peaks P;) are
independent of the size, and that (2) the diagrams for structures of different
sizes would be identical if the material were elasto-plastic (in which case the
size effect is known to be absent). Thus, any change in these diagrams with
the structure size signifies a size effect.

The scaling of the troughs P, as described by (4.38), indicates that when
the structure size increases, the response approaches a series of narrow spikes
of progressively decreasing inclination (Fig. 4.12). The descending part of each
spike in Fig. 4.12e is unstable for any type of control of P and w, and is known
as the snapback instability. This behavior may have been intuitively expected
on the basis of the fact that the diagram of M versus 6 approaches a vertical
drop as D — oo.

When the structure size decreases, the line from P; to P/ eventually changes
its slope from negative to positive, i.e., P; ceases to be a peak and P/ ceases
to be a trough. With a further size increase, P/ eventually becomes coincident
with the peak P;. For still smaller sizes, there exists, during the loading pro-
cess, a period in which hinges ¢ and 7 4+ 1 soften simultaneously. During such
simultaneous softening, the deflection diagram is again linear (lines 67 and 89
in Fig. 4.12), but different for each softening hinge combination and harder to
calculate. When the size is decreased further, more and more hinges, or all the
hinges, undergo softening at the same time.

Segments 67 and 89 in Fig. 4.12b correspond to simultaneous softening of
two subsequently formed hinges. Since areas 0120 and 0340 must be equal to
the fracture energies W;_; and W; of hinges ¢ — 1 and ¢, the area 01678950
must be equal to their sum. Therefore the two little shaded triangles of each
pair Fig. 4.12b must have equal areas. This property can be exploited for
constructing the response graphically.

In the theoretical asymptotic case of a zero size (D — 0), the slope of
the diagram of dimensionless moment M versus rotation # tends to horizontal
and, consequently, the plastic limit analysis applies. In Fig. 4.9a, the zero-size
limiting response consists of line segments parallel to the rays emanating from
the origin, which is easy to calculate by well-known methods (note the parallel
double dashes marking parallel lines).



Energetic Scaling for Sea Ice and Concrete Structures

A
ON
E
4+
+
;s Ky L.t
1" "’ "."
A e
:'l "/ —"-—’
'.’:',',—""
o -
a) Zero size limit w/D
Ay ) ASN
E o
'”’ ’/’3 5 8
gt L 74 7
A . 5{ g
. . ——_— w7 "¢ /_—'
SRRy 9 L
’ " - v’ " ’—“
:I"¢" _—"’ :" a" -"“
l’o” 'v"‘ Il," '—""
SGv e
w/D ¢) Medium w/D
AON
d) Large w/D e) Very large w/D

97

Figure 4.12: Evolution of load-displacement diagrams (in terms of dimension-
less nominal strength on/F and relative deflection w/D) with increasing size

D of a structure failing by softening hinges (in such coordinates, the secant

stiffness slopes, as well as the peak points for ¢(D) = 1, do not change with

the size). Parallel dashes in (a} mark parallel lines
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The behavior between this asymptotic case and the case of the smallest
structure for which only one hinge is softening at a time (in which P/ = P;y;)
can be approximately characterized by interpolation, better regarded as asymp-
totic matching. Matching of the large-size asymptotic size effect in (4.38) to
the horizontal small-size asymptote may be achieved by the following simple
approximate formulae for all sizes:

o0; or o0;
1+ D/Dy; (L+ D*/Dyi)Me

(4.39)

!
ON; =

where o;, Dj; and s are positive constants. For small sizes, however, the
largest size effect is caused by the fact that the overall maximum load for
different sizes occurs for different ¢ (compare Fig. 4.12 a and b). This aspect
is not reflected in Fig. 4.11.

When the structure is large enough for the load-deflection diagram to in-
volve softening segments, designing for the largest peak max P; becomes ques-
tionable because, under load control, the structure is unstable during each
softening segment. Such a design is even more questionable when the structure
is large enough for snapbacks to occur, in which case it is unstable even under
load-point displacement control (BaZant and Cedolin 1991). A completely safe
design is that for the lowest trough, min P/, but then again the safety margin
would often be unnecessarily high by far. A realistic design load P lies some-
where between max P; and min P/, for a smaller structure closer to max P; and
for a larger one closer to min P,

To decide the proper design load rationally, one should take into account
the imperfections and possible dynamic disturbances. In structures with plastic
hinges, a dynamic disturbance in which the peak load is reached only temporar-
ily leads merely to a permanent deflection but in the case of post-peak snapback
it may trigger stability loss and dynamic failure.

The problem is similar to that of an axially compressed thin cylindrical shell
(or a thin spherical dome), for which the critical load of a theoretically perfect
shell (unattainable in practice) is followed by a snapback to a very low residual
load. It is now well understood (e.g., BaZant and Cedolin 1991) that, due to
inevitable imperfections and dynamic disturbances, one must design the shell
for that residual load (typically between 1/8 and 1/3 of the theoretical critical
load). An effective semi-empirical method has been developed to deal with this
problem for shells, and a similar method might have to be developed for large
beams and frames with softening hinges.

Finally, it should be noted that brittle materials such as concrete or ice are
not the only ones that lead to softening inelastic hinges. As shown by Maier
and Zavelani (1970), local buckling of thin flanges in the plastic hinge region
can cause sharp softening in the moment curvature diagram. The foregoing
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analysis applies to that case. Obviously, the local buckling of flanges is much
more dangerous in large steel structures than in small ones.

4.4. Size Effect in Floating Ice Subjected to Line Load

It is interesting to extend the foregoing analysis to a floating ice plate loaded
by a line load P (force per unit length), which behaves as a beam on elastic
foundation. The failure occurs by line cracks propagating gradually through
the thickness of ice. As they propagate, the bending moment M in the cracked
cross section decreases as a function of the additional rotation @ caused by the
cracks. The diagram M (@) is nonlinear, but can be simplified as linear (same
as Fig. 4.9a), which makes it possible to obtain an exact analytical solution.

The only difference from the preceding section is that the sea water always
acts as an elastic foundation, i.e., never reaches plastic response (such response
can occur only if water floods the top of ice plate, which is possible only if
the deflection exceeds 1/11 of plate thickness and is not considered here). The
response of the ice beam between the softening hinges is governed by the dif-
ferential equation for beams on elastic foundation, whose solution is a sum of
complex exponentials. Softening hinges initiate at the location of the maximum
bending moment, when M = M,.

The sequence of formation of softening hinges is shown in Fig. 4.13 (top).
In the last stage with three hinges, the beam without a foundation would be
a mechanism but, for small enough thickness ice h, the solution indicates that
the load can increase further. It can be shown that further hinges cannot form;
rather the last hinge spreads, creating a continuous hinge segment of a finite
length. Such a segment, however, cannot be assumed to transmit a shear force,
which means that the load Ps at the moment of formation of the second hinge
must in fact be the maximum load. Similar to the preceding section, the load
deflection diagrams evolve as shown in Fig. 4.13 (bottom), and the nominal
strengths on; = P;/h corresponding to the first and second peaks and troughs
can be shown to be:

ony = Ag(h)RM?, oy, = BV12¢(h)h=3/* (4.40)
ong = (/2 Aq(h)hM*, oy, =2.588Bg(h)hY? (4.41)

where A = [3p(1 - ©?)/E]'/420,/3 and B = \/12pE/(1 — v?)G 0, and func-
tion g(h) is the same as ¢(D) defined in (2.39) or {2.46) (since D in plate
bending theory usually denotes the cylindrical stiffness, for plates we use A
instead of D as the characteristic size).

The difference in scaling between the beams without and with elastic foun-
dation can be easily explained as follows. In the former and latter cases, K; o< 1
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Figure 4.13: Top: sequence of hinge formation in floating ice plate. Bottom:
evolution of load-displacement diagrams as ice thickness h increases (the size
effect due to crack initiation is not shown)
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Figure 4.14: Top: composite beam and its cross section. Bottom: internal
forces and displacements

and K; o« h3/4 respectively. So, according to (4.36), PP/ «x W;K; = hq(h)
and h7/8¢(h). Hence, on;oly; < h=1¢%(h) and h='/4¢%(h), respectively. Since
oni « g(h) and g(h)h/*, we have o'y; o< A= ¢?(h)/oni « g(h)/h without a
foundation, and o’y; < A~ /4q%(h)/oni x q(h)/vh with a foundation.

4.5. Steel-Concrete Composite Beams and Compound Size Effect

Composite beams consisting of a steel beam and a concrete slab (Fig. 4.14
top) are often used in bridges and buildings. A crucial component are the
connectors between the concrete slab and the steel beam. They usually consist
of welded steel studs embedded in concrete.

A composite steel-concrete beam of the type used in bridges and building
floors (Fig. 4.14) may fail by (1) tensile yielding of the steel beam, (2) com-
pression crushing of the concrete slab, or (3) slip and pullout of the connectors
(studs) (see the literature survey in Bazant and Vitek 1999).

Let us now focus on the last mode of failure. As recently demonstrated
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(BaZant and Vitek 1999), designing against this failure mode requires consid-
eration of a size effect, which has so far been neglected by structural engineers.

One cause of size effect is the failure of the studs. The studs, always designed
strong enough to remain elastic, fail in shear due to formation of large cracks in
the concrete slab. This is generally a brittle type of failure exhibiting a strong
size effect. The failure is similar to the pullout failure of anchors which is now
known to be rather brittle, exhibiting a strong energetic size effect. Recent
tests by Kuhlmann and Breuninger (1998) confirm that the shear failure of
studs embedded in concrete exhibits a pronounced post-peak softening except
when a heavy and dense three-dimensional reinforcing mesh is used.

A second cause of size effect is that, due their softening, the studs cannot
reach their maximum shear force simultaneously all along the beam. Rather,
the stud failures must propagate along the beam, which is a fracture type
behavior calling for energy release analysis.

This problem is instructive for structural designers because it can be solved
relying exclusively on the classical beam bending theory. It might be objected
by some that the beam bending theory cannot resolve the stress concentrations
near the front of the propagating zone of connector failures. Simple though this
theory indeed is, it nevertheless does predict satisfactorily the overall energy
release from the slender enough beams and is asymptotically exact when the
slenderness tends to infinity.

Fig. 4.14 (bottom left) shows an element of the composite beam. Let ¢y,
ca be the distances of the steel-concrete interface from the centroids of the
steel beam and the concrete slab, both taken as positive (Fig. 4.14 top); y =
€1,y = eg are the y—coordinates of the centroids of the beam and slab measured
from the centroid of the transformed composite cross section, e; > 0,e5 < 0;
Z; = FE;A; = axial stiffnesses of the concrete and steel parts; R; = E;I; =
elastic bending stiffnesses; S; = F;A, = elastic shear stiffnesses (i = 1 for
beam and 2 for slab), and A,; = cross section areas A; after correction for
nonuniformity of shear stress distribution.

Let us consider the case of a uniformly loaded simply supported symmetric
beam of span L. The slip at midspan vanishes due to the symmetry and only
one half of the beam needs to be analyzed. A vertical distributed load p (per
unit length of beam) is applied on the concrete slab. The deformations are
characterized by deflection w, which is common to both parts of the cross
section, slip v between steel and concrete, axial displacements u; in the steel
beam centroid and us in the concrete slab centroid, and cross section rotations
¥ and ¥ of beam and slab (Fig. 4.14 bottom right). The total bending moment,
normal force and shear force transmitted by the whole cross section are denoted
as M, N, and V. The interaction of the beam and slab is represented by shear
flow F and vertical normal force ¢ distributed along the interface. The steel and
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concrete parts transmit internal forces My, Ny, V| and M,, N3, Vs, respectively,
and the shear flow (shear force per unit length) in the interface is denoted as
T.

With regard to design practice, it makes sense to consider geometric simi-
larity in three dimensions, defining the nominal strength of the composite beam
as on = P/D? where P = maximum load, with D taken as the cross section
depth. In the case of a uniformly distributed load p, P is defined as the load
resultant pD, and then ox = p/D.

Generally, the beam may be subjected to an arbitrary distributed or con-
centrated load with a single load parameter P. The bending moment and shear
force in the composite beam may then be expressed in the form M (z) = PDg(£)
and V(z) = P¢’(£) where P = load parameter, z = coordinate measured from
the left end of the beam, £ = z/D, ¢(€) = some size-independent dimensionless
function, ¢'(€) = dg¢(£)/d€, and D = h = beam depth.

First we assume, for the sake of simplicity, that there is a sharp (point-
wise) transition from connectors that do not slip to connectors that carry the
residual shear flow 7,.. In other words, the zone of smeared connector failures
(analogous to the fracture process zone) is assumed to have a negligible length,
as in LEFM. So we consider that there are two symmetrically located regions
of length a (Fig. 4.15) such that for z < a the shear flow 7" in the studs has
been reduced to the residual shear flow value, T, (Fig. 4.16) and for ¢ > a
there is no slip. In the sense of continuum smearing of the studs, these regions
may be regarded as two symmetric sharp interface cracks subjected on their
faces to tangential tractions T, (Fig. 4.16 bottom left).

The interface shear force per unit length of beam (called the shear flow) at
points just ahead of the tip # = a of the interface crack (i.e., just ahead of the
zone of slipped connectors) is given by

T(a,c1) = M;—tgff(c—l) (4.42)

T'(a,c1) = shear flow in the interface (y = ¢1) just ahead of point z = a, I;, =
centroidal moment of inertia of the transformed cross section, and @Q;.(c1) =
first (static) moment of inertia of the transformed area of concrete about the
centroid of the transformed cross section.

Since V(a) = P¢'(a), we may solve from (4.42) the load P, for which
T(a,¢1) = T = residual value of the shear flow in the connectors at large
slip;

Tr ]tr

b= o) o

(4.43)
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Figure 4.15: Composite beam with studs failed in symmetric crack-like regions
of length a

When the load has this value, the shear flow in the connection is continuous
through the point # = a and the energy release rate G due to extending the
smeared equivalent interface cracks vanishes.

It is now convenient to imagine the solution for load P as a superposition
of the solutions for two loading cases (Fig. 4.16 bottom):

A. the case with load value P, (or corresponding distributed load p,), for
which the energy release rate G = 0, and

B. the case with load value P — P, (or distributed load p — p,), for which
the tangential tractions on the faces of the smeared equivalent interface
cracks vanish.

In loading case A there is obviously no energy release into the tip of the equiv-
alent crack (G = 0) and thus no size effect, and P = F,. In loading case B
the energy release rate is non-zero and must be analyzed, which is what we do
next. All the size effect arises from this loading case.

The concrete and steel ahead of the crack tip act as a composite beam of
bending stiffness
R =Ry + Ra+ Aje} + Ase} (4.44)

Behind the crack tip, the steel and concrete in loading case B behave as two
separate beams forced to deflect equally (we assume the slab not to lift above
the steel beam). Therefore, M = M; + M,, and since the curvatures of the
steel beam and the slab are equal, their bending moments (for z < @) are

MR1 MR?

M= 28 = T2
' Ri+ R, " Ri+R,

(4.45)

respectively, and the bending energies per unit length of beam are M?/2R,;
and M2/2R,.
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Figure 4.16: Top left: idealized shear force-slip diagram of deformable connec-
tors. Top right: Size effect on nominal stress. Bottom: beam with equivalent
interface cracks subjected to residual tractions, and decomposition into two
loading cases according the principle of superposition (p, = P./L = distributed
load corresponding to F;)
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Small though the contribution of shear strains may be, it is easy to take
them into account. Although the Bernoulli-Navier hypothesis of cross sections
remaining plane and normal implies zero shear strains, it is known that de-
flection predictions of deep beams are improved by calculating the shear angles
from the shear force V. This is a well known, generally accepted paradox of the
classical beam bending theory. For the region without stud failures (no inter-
face crack), the shear angle is V//S where S = shear stiffness of the composite
cross section. This means that the complementary shear strain energy V2/2S
per unit length of beam should be included for the region without interface
crack. In the region with stud failures (i.e., with interface crack), both parts
of the beam undergo the same deflection w. Since V = 1} 4+ V4 and the shear
forces in parts 1 and 2 are V; = R;d®w/dz® and V, = Ryd3w/dz3, one finds
that, for the classical bending theory and loading case B, the total shear force
V = Vi + V5 distributes as

Ry Ry

V=V—"—, Vo= V—ers—
! Ri+ Ry ? Ry + Ry

(4.46)

The complementary energies of the shear stresses per unit length of the cracked
region of beam are V?/25; and V2/2S,.

Integration of the foregoing energy expressions yields the complementary
potential energy of the left half of the composite beam:

srMEOME VR VP Lz rm2 p2
R N (it S TS WP ) B T Vdr (447
n /(, (2R1+2R2+2Sl+252 ”/a 5 T35 )% (44D

where a = length of the crack (stud failure region). The energy release rate
due to growing a is obtained by differentiation with respect to a at constant
load. Because the distribution of M and V does not depend on a (as the beam
is statically determinate),

* 2 2 2 2 2 2
o] [T Tt
Ba P=const. 2R1 2R2 251 252 2R 25 r=a
2 2 2 2
- M v MV (4.49)
2(R1 + Rz) 25, 2R 25 r=a
in which we inserted (4.45) and (4.46), and made the notation
1 2 /S
2 _ Ri/S1 + R3/S» (4.50)

Sa (R1 + R3)?

Introducing now dimensionless deflections by M = (P — P,}Dq(€), V = (P —
P.)¢'(€), and noting that the energy release rate must be equal to the energy
consumed and dissipated by stud failures per unit length of the interface, 6Gi;,
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one gets:
* _ 2 _ / 2
P oLy (Vi) SR
da P=const. 2E5D4R 2E5D25
with the notations:
1 1 1 1 1 1
7=E3D4 _— T:E‘,D2 _—— = 52
2 <R1+Rz R)’ 3 (5}, S) (4.52)

These are positive size-independent dimensionless parameters of the cross-
section geometry. The energy dissipation rate, analogous to the fracture energy,
may be expressed as bGi; = Gyuan/s =, where Gyzuq = energy dissipated by
slip of one stud (representing the cross-hatched area above the residual shear
flow line in Fig. 4.16 top), s = longitudinal spacing of studs, and n = number
of rows of studs across the width of the interface strip.

Now we can turn attention to the size effect. From (4.51) we may calculate
the nominal stress corresponding to P — P, in loading case B:

ow—g = P=P 1 \/ 2E,Gypuan
NTUT DT T Dyla) \ {la(@)PRH ¢ (@20 1)s

(4.53)

From experience with many kinds of fracture, it may now be assumed that,
for a limited but significant range of sizes, the failures are geometrically similar,
i.e., the values of a/D at maximum load are the same for various sizes D (this
assumption is validated a posteriori by the fact that approximately the same
size effect ensues by solving the differential equations of the problem; Bazant
and Vitek 1999). In this regard note that no size effect would occur only if a
were either vanishingly small or constant for various sizes, which is certainly
not the case (or if all stud failures were simultaneous rather than propagating,
which however cannot be the case since the studs exhibit postpeak softening).

The zone in which the studs are already slipping but their shear flow has not
yet been reduced to T, does not have a vanishing length (i.e., it is not a point).
In reality, it occupies a certain finite length, which is denoted as 2¢q. The
behavior may be approximated by an effective (equivalent) sharp LEFM crack
in the steel-concrete interface reaching roughly into the middle of the zone.
This effective interface crack has the length a = apD + ¢y where oo = ao/D
and ag now represents the length in which the shear flow of the studs has been
reduced to 7.

By analogy with the size of the fracture process zone in quasibrittle mat-
erials, we may consider ¢g and ag to be approximately constant, i.e., size inde-
pendent. Now, substituting o = ag + (co/D) into (4.53) we may conveniently



108 Scaling of Structural Strength

LogB

Figure 4.17: Size effects predicted by energy release analysis for geometrical
scalings of Types I and II

introduce Taylor series expansions:

gla) = go+aqi(co/D)+ (g2/2)(co/D)* + ... (4.54)
¢(a) = q1+4qz(co/D)+ (g3/2)(co/D)* + ... (4.55)
where constants ¢o = ¢(@g),¢1 = ¢'(@0), 92 = ¢ (x¢), .... Thus we obtain

_1_ 2(n/s)EsGstud
DYV [go+ g1(co/D) + ..J2R~1 + [g1 + g2(co/D) + .. ]25~1

(4.56)

ON — Op =

Consider now two basic geometrical types of scaling.

Type L. The composite beam is scaled in proportion to D while the con-
nection characteristics per unit area of steel-concrete interface remain constant
(which would be the case for a glued interface with a crack). In that case, n/D,
s and Gt,q are constant, and so are D/n and the transverse spacing of stud
rows, b/n. Then, if the series expansions are truncated after the first (linear)
term, (4.56) can be rearranged to the form of the usual size effect law with
residual stress (BaZant 1987b; see curve I in Fig. 4.17b):

0
ONn

ON = ———=te—— + 0, 4.57
V' 1+ (D/Do) (457
in which
— Ay 0 _ 2 rn\ E,Gstud
Dy = wll  oh=y/: (5) i (4.58)
2 2

% , % go | 2
0 PR 1 q 213 (4.59)

Asymptotically, for very large D, (4.57) indicates that
ON — Oy X ! (4.60)

vD
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which is the scaling of LEFM.

Type II. In the second type of scaling, not only the composite beam but
also the connectors and their spacing are geometrically scaled. In this case,
representing the complete geometric scaling of the entire structure on both the
macroscale of beam and the mesoscale of studs, one must take into account
the effect of stud diameter d on the nominal strength of the stud. Since d is
now proportional to beam depth D, this may be done by expressing the energy
required for failure of the studs per unit length of the beam (the shaded area
in Fig. 4.16) as follows:

Gstud = 7"'d?(a'N,sL‘ud - O'r,.ttud)vszud = (O'N,stud - a’r,stud)Dzﬁstud (4-61)

where #y1uq = m(d/D)?vsuq and d/D = constant, and oy spug = Tr/7d? =
residual nominal strength of stud. The constant vs;,q, independent of stud
sizes, represents the effective slip displacement of stud characterizing its dissi-
pated energy. The part of nominal strength of the stud that exceeds o s¢ud is
subjected to size effect:

0350 _ 030
V1+(d/ds) /14 (D/Dso)

where d,o, Dso = constants. From tests and finite element studies (e.g. Elige-
hausen and Ozbolt 1992), the pullout nominal strength is known to exhibit
a very strong size effect, closely approaching the LEFM size effect on stuq
d=1/2. Therefore it may be expected that, for practical stud sizes, d/dso =
D/Dyo > 1, which means that on stud & 050y/Dso/D and that the residual
nominal strength o s¢4q is negligible.

Using (4.61) and (4.62), (4.56), one obtains for size effect the law:

(4.62)

ON,stud — Or stud =

D\ -1/2 D\ -/
ON = +/0s00p0{ 1 + — 14+ + o, (4.63)
Dy Do

in which Dy and g are constants;

A 2n (D _
Dy = Co—l, Oh0 = ('—') Es5tua (4'64)
ap §

For very large sizes D, this expression leads to the asymptotic size effect
{curve 1I in Fig. 4.17b):
on — oy oxx D734 (4.65)

At first it may surprise that this size effect, which may be called the size ‘hyper-
effect’, is stronger than the LEFM size effect D~1/2, The reason is that this is
a compound size effect, in which the size effect due to failure of the beam as
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a whole (macroscale) is amplified by the size effect in the failure of individual
studs (mesoscale).

Obviously, from the viewpoint of the size effect, when a larger composite
beam is designed it is better not to increase the size of the studs, if possible.
This is the normal design practice anyway. But unfortunately it is not feasible
when the beam size is enlarged significantly. In that case, the stud size must
be enlarged as well.

4.6. Size Effect Formulae for Concrete Design Codes

Until almost the end of the 1980s, no size effect provisions were present in
the concrete design codes of various countries, and the code-making committee
generally regarded the size effect as a nuisance that the theoreticians were
trying to foist upon them. During the 1990s, fortunately, the attitude changed
markedly. Many members of these committees are now convinced that the size
effect ought to be introduced in one form or another, and the question now
is which form should be adopted and how to calibrate the coefficients of the
adopted formula so it optimally reflects the actual experimentally observable
behavior of structures.

This has been a healthy trend. However, what is striking is the variety of
formulae and the underlying (or absent) concepts. Many proposed formulae
ignore the energetic aspects of fracture mechanics. A point to be emphasized
in this regard is that the energetic size effect is inevitably present, and so, if
some other theory, such as statistical or fractal, is assumed, it could only come
on top of the energetic formulation, as its refinement, but not without it, not
as a replacement.

The size effect curves according to various formulae so far used in design for
the size effect in reinforced concrete structures are plotted in Fig. 4.18. The
shaded zone shows the typical range of the existing test data for structural
failures. The difficulty in deciding which formula is appropriate is that the
scatter of the existing data is too wide for the range of sizes tested.

If the choice should be made strictly empirically, it would be necessary to
greatly extend the test data into larger size ranges, and obtain a statistically
significant number of test results for geometrically scaled structures. Unfor-
tunately, most large-scale tests have been conducted in the past on structures
that were not geometrically scaled (e.g., the bar sizes, cover thickness and bar
spacing were not geometrically similar). The effects of the changes of shape
(geometry) are known only crudely and introduce additional errors. Therefore,
formulae that have the strongest theoretical support ought to be preferred. The
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Figure 4.18: Existing ‘zoo’ of size effect formulae for concrete structures and
the range of existing data from structural tests

theory itself may be verified by checks other than extension of the size range of
the tests of the given particular failure. Unless such an approach is adopted,
the choice between the formulae will be random, depending solely on the voting
of committee members.

For the diagonal shear failure of reinforced concrete beams and punching
shear failure of slabs, Japan Concrete Institute, based on unprecedented failure
tests of very large beams and slabs up to several meters in depth, adopted the
Weibull size effect formula — a power law with exponent n/m = —1/4 (curve
5 in Fig. 4.18. Although the comparison with tests is acceptable, thanks to
a wide random scatter and limited number of data, it is however incorrect to
ignore the energetic size effect, which is inevitably present. Anyhow, the power
law implies the structure possesses no characteristic dimension (i.e., exhibit
complete self-similarity), yet a characteristic dimension must exist due to the
size of aggregate as well as the spacing and size of reinforcing bars.

The CEB (European) concrete design code and the German code DIN
adopted Carpinteri’s MFSL law based on a fractal geometric viewpoint, oy =
oo/ A1 + A2/ D, despite the critique of the underlying concept, already dis-
cussed. Anyway, this formula would not be entirely unjustified for the case of
bending strength of plain concrete, but not for reinforced concrete failing only
after large stable crack growth. Still another size effect formula for the diagonal
shear failure was proposed by M. Collins of the University of Toronto, based on
some arguments about crack opening width in small and large beams (which
have been challenged by the writer).
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Swiss code SIA 162 introduced a curious formula, namely

oy = min ( ﬁ%, ‘rc) (“Leonardo” size effect) (4.66)
(curve 6 in Fig. 4.18), to describe the size effect in punching shear failure of
slabs {og, Dy, 7. = constants). The formula was based strictly on test results,
but its form is theoretically unacceptable. For sufficiently large sizes D it gives
an impossibly strong size effect; it approaches the “Leonardo” size effect (da
Vinci 1500s), namely on being inversely proportional to D, which is thermo-
dynamically impossible. Nevertheless, the Swiss code deserves praise for being
the first, and so far the only one, to recognize that there indeed is a strong size
effect in punching shear.

The LEFM size effect (asymptote of slope —1/2 of curve 1 in Fig. 4.18) for
anchor pullout was introduced into German and ACI Code Recommendations,
based mainly on the tests of Eligehausen. This size effect is excessive for anchors
that are very small, although such anchors might not be of great concern.

There are other provisions in various codes which, if scrutinized, imply a
size effect without stating it explicitly. For example, the code ACI 318 R-
89 implied a huge size effect for the failure of splices, shown graphically in
Fig. 4.19. This was in fact the “Leonardo” size effect of slope 1, which is
thermodynamically impossible. The figure shows for comparison also the size
effect in ACI 318 R-95, in which the discontinuous jump is objectionable (note
that these diagrams are plotted assuming the cover thickness to be proportional
to the bar diameter, or else one could not speak of size effect). The enormous
sudden change between the two plots of two subsequent ACI code provisions
shown in this figure, a “U-turn” made in absence of any new revolutionary
finding, is striking indeed.

No provisions exist so far in any design code for the size effect in reinforced
concrete columns, to the writer’s knowledge. Yet this is a case where the
size effect is most important, and a strong size effect has been experimentally
demonstrated in reduced size test (BaZant and Kwon 1994). Failure of one
beam usually does not make a building collapse, but failure of one column
often does.

A difficult problem of the various proposed formulae is the prediction of
its constants, for example Dy and ay. Formulae for this purpose need to be
worked out for many cases. Due to complexity of various reinforced concrete
structures, these coefficients may have to be determined partly empirically for
each type of failure. Considerable testing might be needed for this purpose.

At present it is clear that the size effect needs to be taken into account in
the provisions ensuring safety against all types of brittle failures of concrete
structures. They include:
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Figure 4.19: Comparison of size effects implied by two subsequent provisions
of ACI Code for the failure of splices

10.

. Diagonal shear failure of reinforced concrete beams.

. Punching shear failure of reinforced concrete slabs (BaZant and Cao

1987).

Torsional failure of reinforced or plain concrete beams {Bazant and Sener
1997; BaZant, Sener and Prat 1988).

Failure of reinforced concrete columns (except very strong filled tubes);
BaZant and Kwon (1994).

Pullout of anchors and of studs in composite beams.
Pullout and embedment length of reinforcing bars.

Failure of splices of reinforcing bars (Sener, BaZzant and Becq-Giraudon
1999).

. Failure of some types of frame joints.

Fracture of gravity dams, e.g., in earthquake (BaZant 1996b).

Bending failure of arch dams, unreinforced beams, foundation plinths,
retaining walls, etc.
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4.7. Size Effect Hidden in Excessive Dead Load Factor in Codes

Since we have discussed the design codes, it is important to point out that
the dead load factor values in the current codes are excessive and that this
implies a hidden size effect. The currently used dead load factors have recently
been criticized by structural engineering statisticians as unjustifiably large, and
proposals for a reduction have been made. However, without simultaneously
incorporating the size effect into the code provisions, such a reduction would
be dangerous.

The point to note is that, the larger the structure, the higher is the percent-
age of the own weight contribution to the ultimate load U. Thus, if the load
factor for the own weight is excessive, structures of large sizes are overdesigned
from the viewpoint of strength theory or plastic limit state design—the theory
underlying the current building codes. However, such an overdesign helps to
counteract the neglect of size effect in the current codes, which is inherent to
plastic limit analysis concepts (BaZant and Frangopol 2001). Doubtless it is
the reason why the number of structural collapses in which the size effect was
a contributing factor has not been much larger than we have seen so far.

Let L and D be the internal forces caused by the live load and the dead load,
and U the internal force caused by ultimate loads, i.e., the loads magnified by
the load factors. Using the load factors currently prescribed by the building
code (ACI Standard 319, 1999), one has

U=14D+1171L (4.67)

Consider now that the dead load factor 1.4 is excessive and that a realistic
value, justified by statistics of dead load, should be pp. Then the ratio of the
required ultimate design value of the internal force to the realistic ultimate
value, which may be called the overdesign ratio (BaZant 2000), is

R Udesign _ 1.4 D+1.71

=22 - (4.68)
Ueal pp D+171L

Let us limit consideration to dead loads caused by the own weight of struc-
tures, which for example dominate the design of large span bridges. For a
bridge of very large span, the dead load may represent 90% of the total load,
and the live load 10%. In that case, the overdesign ratio is

_ 14x0941.7x0.1
T up x09+1.7x0.1

(4.69)

For small scale tests which were used to calibrate the present code specifica-
tions, the own weight may be assumed to represent less that 2% of the total
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load. In that case, the overdesign ratio is

14 x0.02+4+1.7x 0.98
_ 4.
Ro pp % 0.024 1.7 x 0.98 (4.70)

Although a precise value is debatable and should be determined by extensive
statistics, it seems reasonable to assume that the own weight of a very large
structure cannot be underestimated by more than 5%. This means that pp =
1.05. So,

R~ 1.28, Ro ~ 1.00 (4.71)

It follows that, compared to the tests used to calibrate the code, a structure of a
very large span is overdesigned, according to the current theory, by about 28%
(Bazant 2000). Such overdesign compensates for a size effect in the ratio 1.28.
This is approximately the size effect for very large spans that is unintentionally
hidden in the current code specifications.

To give a simple example, consider geometrically similar bridge girders of
different sizes D), where DD may for example be taken as the depth of the girder
at the support. For the sake of simplicity and as an an extreme case, assume
that all the dead load is the own weight of a large structure such as a bridge.
The weight per unit length of the girder may be written as

g =gopD° (4.72)

Here p is the average weight of the material per unit volume of the structure
and g, = dimensionless factor characterizing the geometry of the cross section.
The bending moment in the critical cross section is expressed as

M = gmql? (4.73)

where L = span and g, = dimensionless factor characterizing the structural
system (for a simply supported beam of a pair of two cantilevers connected by
a hinge, for instance, g, = 1/8). The nominal stress oy, due to own weight,
which may for example be defined as the critical stress o due to own weight to
be compared with material strength oo, may be expressed as

ONo = gspD (4.74)

where g, = dimensionless geometry factor. If, for instance, a homogeneous
beam of rectangular cross section with equal compressive and tensile yield
limits is failing by plastic bending, then

gs = 49mg.(L/D)* (4.75)

where L/ D = constant when the size effect for geometrically similar structures
is considered; for a concrete girder, unprestressed or prestressed, the expression
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is of course more involved although Eq. (4.74) remains valid. The nominal
stress due to the live load is i
onNL = gL L (4.76)

where g7 is again a dimensioniess geometry factor.

Now, noting that, in Eq. (4.68) for the ultimate state, the unfactored dead
load contribution to the ultimate internal force is proportional to g;pD and the
unfactored live load contribution is proportional to g L, one concludes that the
size effect implied by excessive dead load factor is approximately

oy 1 paaD + b

= — = ——_———- =gs p, b=1. T )
onN.e R TaaDgsb' 1797 Tgr L (4.77)

where a and b are constants if geometrically similar structures are considered.

Using an excessive dead load factor as a substitute for size effect, however,
is inadequate, for various reasons:

1. For some brittle failures, 28% as the maximum capacity reduction due to
size effect is too small by far, for others excessive.

2. Eq. (4.77) does not approach its final asymptotic value as 1/+/D but
as 1/D which is too fast (and in fact thermodynamically impossible).
Besides, this equation implies a finite residual strength for D — oo, which
cannot be justified if the residual stress in the critical state is not zero.

3. The hidden size effect implied by the current codes is the same for brittle
failures (such as the diagonal shear failure), which do exhibit a size ef-
fect, and ductile failures (such as the bending failure due to tensile steel
yielding), which do not.

4. Even for brittle failures alone, the own weight is very poorly correlated
to the brittleness number which controls the size effect. For example, a
very tall column or pier might not be protected by the excessive dead
load factor because the own weight might cause no significant bending
moment; yet brittle failure due to compression crushing in flexure, which
exhibits a size effect, may be caused mainly by horizontal loads such as
wind or earthquake, for which the load factor is not excessive.

5. For prestressed concrete structures, which are generally lighter than un-
prestressed ones, the size effect implied by the code is generally weaker.
Yet these structures are more brittle than unprestressed ones and thus
exhibit stronger size effects.

6. Eq. (4.77) can never substitute for the Weibull statistical size effect,
which is important for bending of unreinforced cross sections thicker than
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about 1 m (e.g. for fracture of an arch dam due to flexure in a horizontal
plane).

Further it should be noted that a hidden size effect also exists in various
proposals for reliability-based codes. This is due to the fact that the reliability
implied in the code increases with the contribution of the dead load to the
overall gravity load effect (in detail, see BaZant and Frangopol 2000).

The problem is not limited to simplified code formulae. Even when finite
element codes with a realistic cracking and fracture model are used, they, too,
generate systematic overdesign and overreliability for large structures when
combined with the currently prescribed load factors. A much lower dead load
factor, justified by statistics, should be used in conjunction with such realistic
computational approaches exhibiting size effect. To develop a rational proce-
dure for the design based on computer analysis of structures, the researchers in
finite element analysis of concrete structures and in structural reliability must
work in synergy.

In conclusion, the question of a possible reduction in the dead load factor
cannot be separated from the question of size effect, and vice versa. The
reliability experts and fracture experts must collaborate.

4.8. No-Tension Design of Concrete or Rock from the Size Efffect
Viewpoint

Design of unreinforced concrete structures such as dams or retaining walls,
as well as rock structures such as tunnels, caverns, excavations and rock slopes,
has commonly been made under the hypothesis that the material has no tensile
strength. The same approach has traditionally been used for masonry—for
example stone arches, domes or pillars. During the 1960’s, the ‘no-tension’
hypothesis was introduced into finite element analysis and implemented as the
limit case of plasticity in which the tensile yield strength is reduced to zero (as
in Rankine yield criterion).

The simple no-tension concept was widely believed to be always on the safe
side, which would mean that safe designs could be obtained without bothering
about the complexities of fracture mechanics. Although this is usually true, it
is, however, not always true. The case where the no-tension approach may fail
to be on the safe side is the case of very large structures (BaZant 1996b).

Since the no-tension approach is a plasticity approach, it exhibits no size
effect. Fracture mechanics, on the other hand implies size effect, and if the
cracks at failure are large, as is the case for a dam overloaded by a horizontal
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Figure 4.20: (a) Specimen analyzed, (b) distributed cracking implied by no-
tension design, {c,d) stress distributions when the crack has the same depth
ag = D/2 as the no-tension zone depth (K; > 0) and when it grows enough to
make K = 0, (¢) approximate principal stress trajectories for a = ag

force, the nominal strength approaches zero as the structure size tends to in-
finity. Thus, the size effect plot of on versus D for the fracture solution must,
at some sufficiently large size, cross the horizontal line for the no-tension plas-
ticity solution. Numerical examples of such situations have been given (BaZant
1996b).

These examples imply that by replacing a zero tensile strength with a finite
resistance to tensile failure in the form of a finite fracture energy (finite fracture
toughness), one can obtain a lower load capacity of the structure. In plasticity,
this is impossible.

One simple example is shown in Fig. 4.20. Considering load eccentricity e =
D/3, the left half of the specimen is, according to the no-tension assumption,
stress free. But if the tensile strength is finite, only one crack will form and its
stress intensity factor K1 will be positive (which may be expected upon noting
that the principal stress trajectories from the tensile side must crowd together in
passing aroung the crack tip; Fig. 4.20). So this crack will propagate (precisely
to the length a = 0.549D if K; = 0 is assumed). Since the uncracked ligament
becomes shorter, the load capacity for subsequently applied horizontal loads
will be diminished. Demonstrations of a reduced capacity for the vertical load
have been given for a specimen loaded by water pressure on crack faces (Bazant
1996b).
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The no-tension concept nevertheless remains valid and useful for the design
of dams (as shown by Elices). But the design should be checked by fracture
mechanics, especially when the dam is very large.
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Chapter 5

Energetic Scaling of Compression
Fracture and Further Applications to
Concrete, Rock and Composites

5.1. Propagation of Damage Band Under Compression

The fracture of quasibrittle materials due to compressive stress is one of
the most difficult aspects of fracture mechanics. In compression fracture, one
must distinguish two distinct phenomena: (1) micromechanics of initiation of
compression fracture, and (2) mechanics of global compression fracture causing
failure.

The first problem has been investigated much more than the second, and
various micromechanical mechanisms that initiate fracture under compressive
stresses have been identified; e.g., the growth of axial splitting cracks from
voids (Cotterell 1972, Sammis and Ashby 1986, Kemeny and Cook 1991, Steif
1984, Wittmann and Zaitsev, 1981, Zaitsev 1985, Fairhurst and Cornet 1981,
Ingraffea and Heuzé 1980, Nesetova and Lajtai 1973, Carter 1992, Yuan et
al. 1993) or near inclusions, the creation of axial splitting cracks by groups
of hard inclusions, and the formation of wing-tip cracks from sliding inclined
surfaces (Hawkes and Mellor 1970, Ingraffea 1977, Ashby and Hallam 1986,
Horii and Nemat-Nasser 1982, 1986, Sanderson 1988, Schulson 1990, Costin
1991, Schulson and Nickolayev 1995, Lehner and Kachanov 1996, and a critique
by Nixon 1996).

It must be realized, however, that these mechanisms do not explain the
global failure of the structure. They can cause only a finite extension of the axial
splitting cracks whose length is of the same order of magnitude as the size of the
void, the inclusion, or the inclined microcrack. Each of these mechanisms can
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produce a zone of many splitting cracks approximately parallel to the uniaxial
compressive stress or, under triaxial stress states, to the compressive principal
stress of the largest magnitude.

Biot (1965) proposed that the cause of compression failure may be three-
dimensional internal buckling which can occur either in the bulk of specimen
or within an inclined band. However, he considered only elastic behavior and
did not conduct any energy analysis. Finite strain analysis of compression
failure caused by internal buckling of an orthotropically damaged material or
orthotropic laminate was presented by BaZzant (1967). Kendall (1978) showed
that, with the consideration of buckling phenomena under eccentric compres-
sive loads, the energy balance condition of fracture mechanics yields realistic
predictions of compression fracture of test cylinders loaded only on a part of
the end surface.

The global compression fracture has been analyzed (BaZant 1993, BaZant
and Xiang 1997) under the hypothesis that some of the aforementioned mi-
cromechanisms create a band of axial splitting cracks (shown in Fig. 5.1),
which propagates laterally, in a direction either inclined or normal to the di-
rection of the compressive stress of the largest magnitude. In the post-peak
regime, the axial splitting cracks interconnect to produce what looks like a
shear failure although there is no shear slip before the post-peak softening (in
fact, shear failure per se is probably impossible in concrete). The energy anal-
ysis of the propagating band of axial splitting cracks shows that, inevitably,
there ought to be a size effect. Let us discuss it for the prismatic specimen
shown in Fig. 5.1.

Formation of the axial splitting cracks causes a narrowing of the band and,
in an approximate sense, a buckling of the slabs of the material between the
splitting cracks as shown in the figure (alternatively, this can be modeled as
internal buckling of damaged continuum). This causes a reduction of stress,
which may be considered to occur approximately in the shaded triangular areas.

For the calculation of the energy change within the crack band one needs to
take into account the fact that the slabs of material between the axial splitting
cracks ought to undergo significant post-buckling deflections corresponding to
the horizontal line 3-5. Thus, the energy change in the splitting crack band is
given by the difference of the areas 0120 and 03560 (the fact that there is a
residual stress o, in compression fracture is an important difference from a
similar analysis of tensile crack band propagation). The energy released must
be consumed and dissipated by the axial splitting cracks in the band. This is
one condition for the analysis.

The second condition is that the narrowing of the band due to microslab
buckling must be compatible with the expansion of the adjacent triangular areas
due to the stress relief. One needs to write the condition that the shortening
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Figure 5.1: (a,b,c) Sideways propagations of a band of axial splitting cracks,
with energy release zones, (d,e) reduction of strain energy density outside and
inside the band, and (f) resulting approximate size effect curve
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of segment HI in Fig. 5.1 on top left is compensated for by the extension of
segments GH and 1J, which is a compatibility condition. The energy release

from the crack band is given by the change of the areas under the stress-strain
diagrams in the middle of Fig. 5.1 (bottom), caused by the drop of stress from
the initial compressive stress op to the final compressive stress o., carried by
the band of splitting cracks.

The resulting size effect on the nominal strength of large structures failing
in compression has, according to this analysis, the form:

ony = C D75 4 ¢ (5.1)

where Cy, Cp = constants. Mathematical formulation of the foregoing argu-
ments (BaZant 1993; Bajant and Xiang 1997) provided for the compression
failure a formula which exhibits a size effect. This size effect is plotted in
Fig. 5.1(f), with the logarithm of size D as a coordinate and either logoy
or log{ocn — o,) as the ordinate. In the latter plot (Fig. 5.1f), the size effect
is shown to approach an asymptote of slope —2/5. This is another interesting
feature, which results from the fact that the spacing of the axial splitting cracks
is not constant but depends on the overall energy balance.

The solution of the nominal strength o was obtained under the assumption
of arbitrary spacing s. It was noted that ox exhibits a minimum for a certain
spacing s, which depends on size D. It is this condition of minimum which
causes the asymptotic slope to be —2/5 instead of —1/2.

Why do small uniaxial compression specimens fail by an axial splitting crack
and exhibit no size effect? In a uniform uniaxial stress field, a sharp planar axial
crack does not change the stress field and thus releases no energy. Therefore a
damage band of finite width (Fig. 5.1g) must precede the formation of an axial
splitting crack. The energy is released only from this band but not from the
adjacent undamaged solid. Therefore, the energy release is proportional to the
length of the axial splitting crack, which implies that there is no size effect (Fig.
5.1h). Thus, the lateral propagation of a band of splitting cracks, which involves
a size effect, must prevail for a sufficiently large specimen size (Fig. 5.1h, BaZant
and Xiang 1996). The reason that the axial splitting prevails for a small enough
size is that the overall fracture energy consumed (and dissipated) by a unit axial
extension of the splitting crack band is smaller than that consumed by a unit
lateral extension, for which new cracks must nucleate.

5.2. Size Effect in Reinforced Concrete Columns

The results of the aforementioned approximate analysis in terms of a band
of axial splitting cracks propagating sideway have been compared to the test
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results (BaZant and Kwon 1994) on size effect in eccentrically loaded reduced-
scale tied reinforced concrete columns of three different sizes (in the ratio 1:2:4)
and three different slendernesses, A = 19.2, 356.8 and 52.5 (Fig. 5.2). The
columns were made of concrete with reduced aggregate size.

The test results indicated a size effect which is seen in Fig. 5.2 (and is
ignored by the current design codes). The formulas obtained by the foregoing
approximate energy analysis of the propagation of a band of axial splitting
cracks are shown by the solid curves in the figures, indicating a satisfactory
agreement.

Recently, Bazant and Kwon’s (1994) tests of eccentrically loaded reduced-
scale reinforced concrete columns (Fig. 5.2) have been analyzed using three-
dimensional finite elements (Brocca and Bazant 2000). The meshes are shown
in deformed and undeformed configurations in Figs. 5.3. The steel bars were
assumed not to slip against concrete at the mesh nodes.

The stress-strain relations for concrete was simulated by the latest version
M4 of the microplane model (Bazant and Novak 2000a) which was generalized
to finite strain as described in BaZant and Novak (2000b) (the use of finite
strain automatically captured the second-order bending moments due to axial
load). The characteristic length of the material, necessary for simulating the
quasibrittle size effect, was introduced through the crack band model.

Looking at mesh deformations seen in Fig. 5.3, one can discern inclined
crack bands developing during failure, which agrees with observations made
during the tests. Fig. 5.4 shows the computed load-displacement curves, which
exhibit postpeak softening due to the combined effect of softening damage of
concrete and of geometrical nonlinearity.

Fig. 5.5 shows the computed nominal strength values in the bi-logarithmic
size effect plots. For comparison, the test data as well as the results of the
aforementioned simplified analysis are shown as well. The comparison with
test data is seen to be satisfactory.

In comparison with the simplified analysis, the slope of the computed size
effect plot is somewhat smaller. This small discrepancy might have two expla-
nations: (1) the neglect of bond slip of steel bars at mesh nodes, and (2) the
fact that the crack band model tends to be too stiff for damage propagation in
directions inclined to the mesh lines.

The finite element results confirm that the current design procedures based
on plastic limit analysis, for which the size effect plot is a horizontal line, are
questionable. Their safety margin for very large columns is systematically less
than it is for normal size columns. A change is needed. However, further size
effect tests ought to be caried out on full-size columns with normal aggregate
and normal reinforcing bars.
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Figure 5.2: (a,b,c) Reduced-scale reinforced concrete columns of different sizes
and slendernesses, tested by Bazant and Kwon (1994); (d) Measured nominal
strength versus column size, and fits by formula (Ba%ant and Xiang 1997)
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Figure 5.3: Undeformed and deformmed meshes used for the computations of
failure of columns (after Brocca and Bazant 2000)
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5.3. Fracturing Truss (Strut-and-Tie) Model for Shear Failure of
Reinforced Concrete

It appears that compression failure is also the final failure mechanism in
shear failures of reinforced concrete beams, such as diagonal shear of beams
and torsion of beams, punching of plates, pullout of anchors, failure of corbells
and frame connections, etc. The importance of the size effect in shear failure of
beams has been experimentally documented by many investigators (Leonhardt
and Walther 1962; Kani 1967; Kupfer 1964; Leonhardt 1977; Walraven 1978,
1995; Iguro et al. 1985; Shioya et al. 1989; Shioya and Akiyama 1994; BaZant
and Kazemi 1991a; Walraven and Lehwalter 1994; see also BaZant and Cao
1986a, 1986b, 1987; BaZant and Sun 1987; BaZant, Sener and Prat 1988). Let
us briefly outline the mechanics (BaZant, 1996) of the size effect in the diagonal
shear failure of reinforced concrete beams.

According to the truss model of Ritter (1899) and Mérsch (1922), refined
by Nielsen and Braestrup (1975); Thiirlimann (1976); Collins (1978); Collins
et al. (1996); Marti (1980); Collins and Mitchell (1980); Hsu (1988); Schlaich
et al. (1987) and others, and recently called the strut-and-tie model, a good
approximation is to assume that a system of inclined parallel cracks forms in
the high shear zone of a reinforced concrete beam before the attainment of
the maximum load (Fig. 5.6). The cracks are assumed to be continuous and
oriented in the direction of the principal compressive stress (which is, of course,
an approximation). This assumption implies that there is no shear stress on
the crack planes and that the principal tensile stress has been reduced to 0.

According to this simplified picture, the beam acts as a truss. The truss
consists of the longitudinal reinforcing bars, the vertical stirrups (which are in
tension), and the inclined compression struts of concrete between the cracks. If
the reinforcing bars and stirrups are designed sufficiently strong, there is only
one way the truss can fail—by compression of the diagonal struts.

In the classical approach, the compression failure of the struts has been han-
dled according to the strength concept, which cannot capture the localization
of compression fracture and implies the compression fracture to occur simulta-
neously everywhere in the inclined strut. In reality, the compression fracture,
called crushing, develops within only a portion of the length of the strut (in a
region with stress concentrations, as on the top of beam in Fig. 5.6). Then it
propagates across the strut.

For the sake of simplicity, the band of axial splitting cracks forming the
crushing zone may be assumed to propagate as shown in Fig. 5.6 and reach,
at maximum load, a certain length ¢. The depth of the crushing band may be
expected to increase initially but later to stabilize at a certain constant value
h governed by the size of aggregate.
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B : Crushing band (area ~ d)
R : Stress relief strip (area ~ d2)

Figure 5.6: Fracture adaptation of truss model for diagonal shear failure of
reinforced concrete beams: Compression crushing zone and energy release
zone in beams of different sizes (after Bazant 1996a)

It is now easy to explain how the size effect arises. Because of the existence
of parallel inclined cracks at maximum load, the formation of the crushing band
reduces stress in the entire inclined white strip of width ¢ and depth d (beam
depth shown in Fig. 5.6). The area of the white strip is c¢d or (¢/d)d® and
its rate of growth is (c¢/d)2dd, in which ¢/d is approximately a constant when
similar beams of different sizes are compared.

So, the energy release rate is proportional to a,zvdd/ E, where the nominal
strength is defined as oy = V/bd = average shear stress, V = applied shear
force and b = beam width. The energy consumed is proportional to the area
of the crushing band, ch or (¢/d)hd, that is, to Gyd/s, and its rate of Gyd/s
where Gy = fracture energy of the axial splitting cracks (s = crack spacing).
This expression applies asymptotically for large beams because for beams of a
small depth d the full width h of the crushing band cannot develop. Equating
the derivatives of the energy release and energy dissipation expressions, i.e.,
0% dd/E o« G;d/s, we conclude that the asymptotic size effect ought to be of

the form:
on x s~'\/EG,d (5.2)

The complete size effect represents a transition from a horizontal asymptote to
the inclined asymptote in the size effect plot given by this equation. Relatively
simple design formulas are obtained in this manner (Bajant, 1996a}. The
analysis can also be done in a similar way for the diagonal shear failure of beams
with longitudinal reinforcement but without vertical stirrups, and further for
torsion, etc.
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Figure 5.7: Borehole in rock and growth of an elliptical zone of axial splitting
cracks (after BaZant, Lin and Lippmann 1993)

5.4. Breakout of Boreholes in Rock

A size effect is known to occur also in the breakout of boreholes in rock,
as experimentally demonstrated by Nesetova and Lajtai (1973), Carter (1992),
Carter et al. (1992), Yuan et al. (1992), and Haimson and Herrick (1989).
It is known from the studies of Kemeny and Cook (1987, 1991) and others
that the breakout of boreholes occurs due to the formation of splitting cracks
parallel to the direction of the compressive stress of the largest magnitude,
Oyco. An approximate energy analysis of the breakout was conducted under
the simplifying assumption that the splitting cracks occupy a growing elliptical
zone (although in reality this zone is narrower and closer to a triangle).

The assumption of an elliptical boundary permitted the energy release from
the surrounding infinite solid to be easily calculated according to Eshelby’s
theorem for eigenstrains in ellipsoidal inclusions (BaZant, Lin and Lippmann,
1993}. According to the theorem, the energy release from the infinite rock mass
can be approximated as

ANl = —x((a + 2R)Ro2, + (2a + R)ac,, — 2aR02000yc0
(6.3)
—2a%02)(1 — v?)/2E

in which R = borehole radius, a = principal axis of the ellipse (Fig. 5.7), 6200
and oy, = remote principal stresses, £ = Young’s modulus of the rock, and
v = Poisson ratio.

A similar analysis as that for the propagating band of axial splitting cracks,
already explained, has provided a formula for the breakout stress. This formula
has a plot similar to those in Fig. 5.1(f). Its asymptotic behavior is described
by Eq. (5.1).
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5.5. Asymptotic Equivalent LEFM Analysis for Cracks with
Residual Bridging Stress

In the case of compression fracture due to lateral propagation of a band of
axial splitting cracks, a residual stress given by the critical stress for internal
buckling in the band remains. Lumping the fracturing strains in the band into
a line, one may approximately treat such a fracture as a line crack in which
interpenetration of the opposite faces is allowed and the softening compressive
stress-displacement law terminates with a plateau of residual constant stress
oy . Likewise, a constant residual stress oy may be assumed for characterizing
the tensile stress-displacement law for a crack in a fiber-reinforced composite
(e.g. fiber-reinforced concrete).

The asymptotic formulae (2.53)-(2.55) for the case of many loads can be
applied to this case because the uniform pressure oy along the crack can be
regarded as one of two loads applied on the structure. We write the stress
intensity factors due to the applied load P and the uniform crack pressure oy
as K = 03, Dg(ao +8) (with 8§ = ¢;/D), and K? = cr%,‘y(ao + ), respectively,
where g and v are dimensionless functions taking the role of g; and g3 in the
preceding formulae. In this manner, (2.53) and (2.54) yield, after rearrange-
ments, the following formula for the size effect (and shape effect) in the case of
a large crack (BaZant 1997a; 1998a,b):

_ VEG; +ovy/7(a0)es + y@0)D
V9 (ao)es + glao) D

(5.4)

oN

For geometrically similar structures and size-independent ag, this formula yields
a size effect curve that terminates, in the log D scale, with a horizontal asymp-
tote in the manner shown in Fig. 2.12 (top right) and Fig. 2.15, but has also
a horizontal asymptote on the left.

In the case of initiation of a crack with uniform residual stress oy, equations
(2.53) and (2.55) can be reduced to the following size (and shape) effect formula:

C2
VEGT + oy /¥ Ocs + 140)F

c2

Vo Ocs + 100 %

(Bazant 1997a; 1998a,b), whose logarithmic plot also terminates with a hori-
zontal asymptote as in Fig. 2.12 (top right).

(5.5)

N

If the residual stress is compressive and is determined by internal buckling in
a band of axial splitting cracks of arbitrary spacing, then oy in the foregoing
equations is not constant. As already explained, minimization of on with
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respect to the crack spacing s shows that the crack spacing in the band should
vary with D. Then, in the foregoing equations (5.4) and (5.5):

VvV EG; must be replaced by \/EGfDl/w (5.6)

Furthermore, the oy value will also depend on the crack spacing, according to
the formula for the critical buckling load. The overall trend will be well approx-
imated by (5.1), and in particular o will approach the large-size asymptotic
limit as D~2%/5,

Arguing in favor of his MFSL law (to be discussed later), Carpinteri made
the point that some measured size effect plots (of logon versus log D) exhibit
a positive curvature and approach a horizontal asymptote (as in Fig. 2.12).
However, as we have seen by now, this can have any of the following four
(deterministic nonfractal) causes:

1. In unnotched structures, the relative length g of traction-free crack
might not be constant but may decrease with increasing size D.

2. There may be a residual cohesive {crack-bridging) stress oy in the crack.
3. The failure may occur at the initiation of macroscopic crack growth.

4. Above a certain size D, there may be a transition to some plastic failure
mechanism.

5.6. Application to Compression Kink Bands in Fiber Composites

Equations (5.5) and (5.6), after some refinements (BaZant et al. 1999), have
been shown applicable to the compression kink bands in composites reinforced
by parallel fibers, and in wood. This problem has so far been treated by elasto-
plasticity, and solutions of failure loads which give good agreement with the
existing test data have been presented (Rosen 1965, Argon 1972, Budianski
1983, Budianski et al. 1997, Budianski and Fleck 1994, Kyriakides et al. 1995,
Christensen and DeTeresa, 1997).

Measurements of the size effect over a broad size range, however, appear
to be unavailable at present, yet there is a good reason to suspect that a size
effect exists. This is indicated by observing that (1) the shear slip and fracture
along the fibers in the kink band probably exhibits softening, i.e., a gradual
reduction of the shear stress to some final asymptotic value, and (2) the kink
band does not form simultaneously along the entire kink band but has a front
that propagates, in the manner of the band of parallel compression splitting
cracks.
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5.7. Effect of Material Orthotropy

In the case of fiber composites, as well as some rocks, LEFM must be
generalized to take into account the orthotropy of the material. The stress
intensity factor of a sharp crack with a negligibly small FPZ may always be
written in the form:

K; = onVnDa F(a) (o =a/D) (6.7)

where o = nominal stress, considered here at maximum load, D = charac-
teristic dimension, a = crack length, @ = relative crack length, and F{a) =
function characterizing structure geometry and material orthotropy.

The energy release rate G may be related to Ky using Bao et al.’s (1992)
generalization of Irwin’s {1958) relation for orthotropic materials:

K _Doria),  g(a) = rolF(a))? (5.8)

9=TF =FN

where g(a) = dimensionless energy release function, characterizing the struc-
ture geometry and material orthotropy, and

1 (Eo/Ey)'/*
Y(p)? /(14 p)/2E. E>

vVE\E
p = 2(;122 — \/V12V21 (510)

T
|

(5.9)

and
Y(p) = [1+0.1(p— 1) = 0.015(p — 1) + 0.002(p — 1)3)[(p + 1)/2]"1/* (5.11)

Subscripts 1 and 2 refer to Cartesian axes z; = z and 23 = y; z2 coincides with
the fiber direction; Ey, F2, G192, and vyo are the orthotropic elastic constants;
and parameters £3/F; and p characterize the degree of orthotropy. The for-
mula is valid when the crack propagates in the direction z; orthogonal to the
fibers, but it is used here as an approximation even for propagation directions
forming a small angle with ;.

For fracture specimens in the form of long notched strip or slender notched
beams, function g(a) or F{a) may be taken approximately the same as for
isotropic specimens.

The results obtained by BaZant, Daniel and Li (1996) with the size effect
law modified for orthotropy are shown in Fig. 2.6.
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Chapter 6

Scaling via J-Integral, with Application
to Kink Bands in Fiber Composites

6.1. J-Integral Analysis of Size Effect on Kink Band Failures

It is instructive to show now the application of the J-integral to the deriva-
tion of the basic scaling properties of kink band failures, as presented in BaZant
et al. (1999). This represents the most fundamental approach to fracture. Let
us analyze the specimen with unidirectional (axial) fiber reinforcement shown
in Fig. 6.1. The kink band has length ¢ which can be long or short compared
with the specimen width D taken as the characteristic dimension. The width
of the kink band, considered to be small, is denoted as w, and its inclination
as 3 (Fig. 6.2a, 6.3). Although tractable, the bending stiffness of the fibers is
neglected, for the sake of simplicity.

The loading is assumed to produce cohesive shear cracks that are parallel to
the fibers and have a certain characteristic spacing s. The axial normal stress
transmitted across the kink band (band-bridging stress) is denoted as o (Fig.
6.3). Although Fig. 6.2a depicts an in-plane fiber inclination, the behavior is
similar for the out-of-plane fiber inclination in the test specimen used because
what matters for the analysis is the reduction of axial stress across the kink
band, which is the same for both cases.

The diagram of the shear stress T transmitted across the shear cracks versus
the slip displacement 7, on these cracks must exhibit post-peak softening (Fig.
6.4 top left). This is confirmed by two important recent experimental findings.

First, Fleck and Shu (1995) placed strain gauges at the flanks of the kink
band and, as the kink band grew, observed the strain in the gages to decrease,
rather than remain constant (see also Fleck and Hutschinson 1997). Second,
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Figure 6.1: Geometrically similar single-edge notched carbon-PEEK (poly-
ether-ether-keton) specimens tested (BaZant et al. 1999)

Moran et al. (1995) recently discovered the phenomenon of band broadening
(see also Sutcliffe et al. 1996), which implies that the relative displacement
across the band increases as the band grows, and thus indicates that the kink
band plays a role similar to a crack (whose opening width grows with the dis-
tance from the front and the transmitted stress decreases), rather than to a line
of dislocations (on which the relative displacement as well as the transmitted
stress remains constant).

For the sake of simplicity, the stress-displacement diagram of the axial shear
cracks is considered to be bilinear, as shown in Fig. 6.4 (top right) where 7, =
peak stress or shear strength = shear stress parallel to fibers at which the
cohesive crack initiates, and 7, = the residual shear strength, representing the
final yield plateau. According to the analysis of mode II slip bands by Palmer
and Rice (1973), the area of the diagram above the yield plateau is known to
play the role of shear (Mode II) fracture energy, G; (see the shaded triangle
in Fig. 6.4 top left) (the critical value J., of the J-integral also includes the
rectangle below the triangle). The fracture energy of the kink band, that is,
the energy dissipated by fracture per unit length of the band is

Gy = Gyw/s (6.1)
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Figure 6.2: (a) Idealized kink band of width w in a notched specimen, with
a fracture process zone of effective length ¢;; (b) path of J-integral, with en-
ergy release (stress relief) zones OFGO, OBCO; (c) fracture process zone of

equivalent cohesive crack



140 Scaling of Structural Strength
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Figure 6.3: Idealized microbuckling of fibers in the kink band and axial shear
cracks

6.2. J-integral Calculations

To approximately calculate the energy release due to propagation of the kink
band, we use Rice’s (1968a) J-integral, for which we consider the rectangular
closed path ABCDEFGH shown in Fig. 6.2b. The start and the end of
this path at the crack surfaces must lie at the boundary of the FPZ because
the residual stress across the band does work (for Mode II cracks this was
shown by Palmer and Rice, 1973). The top, bottom and right sides of this
rectangular path, CDEF, are sufficiently remote from the crack band for the
initially uniform stress state to remain undisturbed.

On the left downward sides of the rectangular path, G and BC, the dis-
tribution of the axial stress has some kind of a curved profile sketched on the
left of Fig. 6.2b. The precise shape of this profile is not important but it is
important that asymptotically, for large sizes D >>»> w, the profiles must become
geometrically similar. This observation is the basic idea of the asymptotic size
effect analysis via the J-integral.

For the sake of simplicity, we may replace this profile by the stepped piece-
wise constant profile shown, in which the stress drops abruptly from the initial
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%

Figure 6.4: Top left: assumed bilinear diagram of shear stress versus slip dis-
placement on the axial cracks of spacing s, crossing the kink band. Top right:
superposition of elastic deformation between the cracks to obtain the diagram
of shear stress versus total shear displacement accumulated over distance s
between cracks. Bottom: Diagram of the axial normal stress o versus axial dis-
placement § across the kink band, and area representing the kink band fracture
energy Gy
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stress oy to the residual stress o, which is transmitted across the band after
the band contracts sufficiently. An important point again is that, for large
enough geometrically similar specimens (D > w), the locations of the stress
steps in this replacement profile must also be similar, that is, points F and C,
must lie on inclined rays of a certain constant slope k shown dashed in Fig.
6.2b. These rays may be imagined to emanate from the tip of the equivalent
crack of length a = ag + ¢» (Fig. 6.2b) where ¢, characterizes the length of
the FPZ of the kink band and represents approximately the distance from the
center of the FPZ of kink band to the point where the stress is reduced to its
residual value o, (Fig. 6.4 bottom; the length of the FPZ is about 2¢;,). Slope
k depends on the structure geometry and on the orthotropic elastic constants.

The area between these rays and the kink band roughly represents the zone
of stress relief caused by the drop of axial stress transmitted by the kink band.
The strain energy contained within this area is released and is dissipated by the
axial shear cracks forming at the front of the kink band. Noting that this area,
and thus the energy release, increases in proportion to D?, while the energy
dissipated at the kink band front increases linearly with D, one immediately
concludes that there must be size effect.

The zone at kink band front in which the axial shear cracks are forming
represents the FPZ of the kink band. Its length ¢, may be regarded as a material
property, almost independent of the specimen dimensions and geometry. It may
be considered to be of the same order of magnitude as the width w. Throughout
this zone, the fiber inclination increases from the initial misalignment angle @
up to the value % + @ corresponding to the residual cracks. To make test
evaluation simple, the specimens must be notched and the FPZ at maximum
load must still be attached to the notch (i.e. ¢ = cs).

Referring to the sketch in Fig. 6.2b, the crack band of length aq + ¢
is approximately equivalent to a mode I crack whose faces are imagined to
interpenetrate. The length of this crack is ag 4+ ¢ where ¢ = ¢; + (w/2k),
which may again be assumed to be approximately a constant when the size is
varied. Consequently, the height F'C of the rectangular path in Fig. 6.2b is
approximately 2k(ag + ¢), as labeled in the figure.

In view of these considerations, the first part of the J-integral may be
approximately expressed as follows (Bazant et al. 1999):

_— 0’12\, 02
Yy y

in which W = strain energy density, and y = coordinate normal to the di-
rection of propagation (Fig. 6.2b), and E, = effective elastic modulus of the
orthotropic fiber composite in the fiber direction y (with different values for
plane strain and plane stress). In (6.2) we have considered that the parts of the
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integral over the horizontal segments are 0, and that the stress on the vertical
segment DE may be assumed undisturbed by the kink band, i.e., equal to on.
The portions of the integral over the crack surface segments GH and AB are,
likewise, 0.

The second part of the J-integral may be calculated in a similar manner
as that introduced by Palmer and Rice (1973) for the propagation of Mode 11
shear fracture with residual friction;

L 0a, d 1 d [1
fa : a-gjds = _/I;BWE; [§J(m)] dw—LHUT = [55(:1:)] dz

Go ao
= / ordé(z) = ar/ dé(z) = o.épg (6.3)
=0 =0

in which & = stress vector acting from the outside on the domain enclosed
by the path, & = displacement vector, s = length coordinate along the path,
d = relative displacement across the band, and épg = relative displacement
between points B and G. That displacement can be estimated as the difference
between the changes of length ED and length FC;

épc = AED- (AFG+ ABC) (6.4)
- on _ % _ o5 o
= 2k(ap+¢) B, 2k (ag + ¢) B, 2k (ap + ¢) 7 (6.5)

Now the J-integral may be readily evaluated as follows:

Wiy 00g) o & 2 ot — 2o
J = f (Wdy -- axds) =& (ag +¢) [ok — 02 — 2(on — 0r )]
k 2
= 'E—‘ (a(] + C) (O'N - 0',-) (66)
v

The energy consumed may be calculated again with the help of the J-
integral. Similar to Rice (1968b) and Palmer and Rice (1973), the integration
path that runs along the equivalent crack surface and around the crack tip
(Fig. 6.2c) may be used;

. o
Jer = f{ §o-dr (6.7)

This represents the critical value, J,,, of the J-integral required for propagation.
This critical value may be subdivided into two terms:

Jer = Gp + 0465 (68)

where Gy, is the fracture energy, i.e., the energy required to produce the axial
shear cracks across the kink band, and o.,4,, represents the plastic work that is
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done by the residual stresses o, within the FPZ of the kink band and is leaving
the FPZ in its wake. This work corresponds in Fig. 6.4 (top left) to the shaded
rectangle lying under the shaded triangle. Following the way shown by Rice
(1968b) and Palmer and Rice (1973) for shear bands, J., may be evaluated
(Fig. 6.2c) as follows:

. o0d
f@g;dx

_ /z e f[J(:c)]% [%J(r)] do + /I ® ) % [%6(1@)] do

=ao =ap+c

Jcr

ag+c o
Jo== [ NS de = [ t5(elasta) (6.9)

r=ag dz 0
(Bazant et al. 1999a,b). This means that J., represents the sum of the shaded
triangle and shaded rectangle in the stress-displacement diagram of Fig. 6.4
(top left). Therefore, according to (6.8), fracture energy G is represented by
the area under the descending stress-displacement curve and above the hori-
zontal line for the residual stress.

6.3. Case of Long Kink Band

Setting (6.6) equal to (6.8), and solving for the nominal strength on of the
specimen, we obtain (BaZant et al. 1999):

on = on+ \/Ey(Gb +0,0,)/ke N (6.10)

14 D/Dy V1+ D/Dy

in which

3,
Do=-5,  op= Ey(Gy + vdr)

- % , ocr=o0, (6.11)

Qg — D)
(for other geometries, op need not be equal to o,). The resulting formula
(6.10) has the same form as that proposed by BaZant (1987a) for the general
case of quasibrittle failures with a residual plastic mechanism, and subsequently
verified for several applications to concrete structures (BaZant and Xiang 1997).
This formula is valid when a long enough kink band transmitting constant
residual stress o, develops in a stable manner before the maximum load is
reached. Because of o,, such stable propagation can happen even in specimens
of positive geometry (i.e., for increasing g(a)). Stable propagation is helped by
rotational restraint of specimen ends.
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6.4. Failure at the Start of Kink Band from a Notch or Stress-Free
Crack

In the case of notched test specimens (of positive geometry), the maximum
load is achieved while the FPZ of the kink band is still attached to the notch.
Except for the sign of the band-bridging stresses, the situation is analogous
to tensile fracture of notched specimens. From experiments on concrete as
well as analytical studies based on the cohesive crack model, it is known that
only a short initial portion of the softening stress-displacement curve of the
cohesive crack comes into play. It is only the initial downward slope of this
curve which matters for the maximum load (the tail of the postpeak load-
deflection diagram, of course, depends on the entire stress-displacement curve
of the cohesive crack); see Bazant and Li (1995) or Bazant and Planas (1998).

A similar situation must be expected for kink bands in notched specimens.
Since the shape of the softening stress displacement curve of the cohesive crack
model is irrelevant for the maximum load, except for the initial downward slope
of the curve, the maximum load must be the same as that for a linear stress-
displacement diagram, shown by the descending dashed straight line shown in
Fig. 6.4 (bottom).

It follows that in this case the residual stress ¢, should be disregarded and
the fracture energy Gp that mathematically governs the kink band growth at
maximum load of a notched specimen corresponds to the entire area under the
extended descending straight line in Fig. 6.4. Obviously, Gg > G, if o, > 0.
Consequently, setting §, = 0 in (6.11) and replacing G, by Gp, we have the

size effect law:
(4]

N= T+ D/D,

_ fo — /EyGB _ w
Do = ao’ g = eg s Co = Cp + ok (613)

(BaZant et al. 1999). This coincides with the approximate size effect law
proposed in BaZant (1983, 1984); Fig. 6.5 (left, for o = 0).

(6.12)

with

From experience with other materials, the length (at maximum load) of
the crack band up to the beginning of the FPZ, ap, may often be considered
to be roughly proportional to the specimen size D, within a certain range of
sizes. In other words, the ratio D/ag¢ at maximum load of geometrically similar
structures is often approximately constant. So is the value of Dy in (6.12),
provided that the specimens are geometrically similar.

Similar results are obtained via equivalent LEFM (BaZant et al. 1999).
That approach relies on some stronger simplifications but has the advantage
that effect of structure geometry is also captured.
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Log (on — oR)

Figure 6.5: Top left: size effect law (solid curve) for specimens with a long kink
band or notch (Eq.2.8) and asymptotic formulas (dashed curves). Top right:
same but with oy instead of log{onx — or) as the ordinate. Bottom: size effect
law for when P,,,; occurs at kink band initiation
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Figure 6.6: Stress profiles across the ligament of the carbon-PEEK specimens
before, at and after the maximum load (after BaZant et al. 1999). Note the
shift of the compression resultant P which makes a stable kink band growth
possible

6.5. Comparison with Size Effect Tests of Kink Band Failures

To demonstrate the existence of a size effect in kink band failure and justify
the present analysis, tests of relatively large carbon fiber-PEEK specimens of
three different sizes (Fig. 6.1) have been carried out at Northwestern University
(BaZant et al. 1999). Slanting of the notches was found to achieve that no
axial shear-splitting would precede or accompany the kink band growth (Fig.
6.1). Rigid restraint against rotation at the ends made it possible for the kink
band to grow stably for a considerable distance before attaining the maximum
compression load. Attainment of this goal was verified experimentally and was
also demonstrated theoretically by the subsequent stress profiles along the kink
band calculated with the cohesive crack model (Fig. 6.6).

The results of individual tests are shown in Fig. 6.7. Despite high scatter,
which is probably inevitable in the case of fiber composites, one can see that
the present theory does not disagree with the test results (Bazant et al. 1999).

The present fracture theory exhibiting size effect may also be verified by
comparison with the test results of Soutis, Curtis and Fleck (1993). They
used rectangular prisms with circular holes. Although they did not vary the
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Figure 6.7: Optimum fits by size effect formulae and by numerical analysis with
the cohesive crack model, after Bazant et al. {1999)

specimen size, they varied the hole size, which represents a combination of
size effect and shape effect. Thanks to the fact that the formulation based on
the equivalent LEFM captures also the shape effect, the asymptotic formula
derived in BaZant et al. (1999) could be used to fit the data. The comparison
showed that the theory exhibiting size effect allows much better fits than a
theory lacking the size effect (Fig. 6.8).

The results make it clear that the present theories of kink-band failure,
which are based on plasticity or strength criteria, are adequate only for small
structural parts. For large ones, the size effect must be taken into account.
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Figure 6.8: Soutis, Curtis and Fleck’s (1993) test results for quasi-isotropic
and orthotropic carbon-epoxy laminates of six different layups, with holes of
various radii R (data points) and constant width D. Solid curves: optimum
fits by size effect law. Dashed curves: predictions of strength theory exhibiting
no size effect
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Chapter 7

Time Dependence, Repeated Loads and
Energy Absorption Capacity

7.1. Influence of Loading Rate on Size Effect

Strictly speaking, fracture is always a time dependent phenomenon. In
polymers, strong time dependence of fracture growth is caused primarily by
viscoelasticity of the material (see the works of Williams and others beginning
with the 1960s). In rocks and ceramics, the time dependence of fracture is
caused almost exclusively by the time dependence of the bond ruptures that
cause fracture. In other materials such as concrete, both sources of time de-
pendence are very important (BaZant and Gettu 1992, BaZant and Wu 1993,
Bazant and Li 1997; Li and BaZant 1997). Both sources of time dependence
have a significant but rather different influence on the scaling of fracture.

Consider first the rupture of an interatomic bond, which is a thermally acti-
vated process. The frequency of ruptures is given by the Maxwell-Boltzmann
distribution, defining the frequency f of exceeding the strength of atomic bonds,
f o e €/BT where T = absolute temperature, R = gas constant and £ = en-
ergy of the vibrating atom. When a stress is applied, the diagram of the
potential energy surface of the interatomic bonds is skewed as sketched in Fig.
7.1a. This causes the activation barrier for bond breakages to be reduced from
Q) to a smaller value Q — ¢o, and the activation barrier for bond restorations to
be increased from @) to @ +co, where () = activation energy = energy barrier at
no stress, and ¢ = constant. This causes that the frequency of bond ruptures,
f1, becomes greater than the frequency of bond breakages, f~, with the net
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A Potential ¢
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Figure 7.1: {a) Skewing of the potential surface of interactomic bond caused
by applied stress, with corresponding reduction of activation energy Q*; (b)
dependence of cohesive stress on crack opening and cohesive stress; {c) response
change after a sudden increase of the loading rate

difference
Q+t Q-
e e, r—
Af=f+ - f- « e—(@ —co)/RT _ ~(Q + co)/RT (7.1)
which becomes
Af o sinh{co/RT)e~Q/RT (7.2)

The rate of the opening w of the cohesive crack may be assumed approximately
proportional to Af. From this, the following rate-dependent generalization
of the crack-bridging (cohesive) law for the cohesive crack has been deduced
(Bazant 1993, 1995c; BaZant and Li 1997; Li and BaZant 1997):

w=g [a’ — & e9/FT a5inh (3>] (7.3)

co
The dependence of the stress displacement curves for the cohesive crack on the
crack opening rate 1 is shown in Fig. 7.1b.

The effect of linear viscoelasticity in the bulk of the structure can be intro-
duced into the aforementioned equations of the cohesive crack model on the
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Figure 7.2: Nominal strengths of 4 groups of 3 specimens of different sizes
tested at 4 different times to peak, t,, plotted as as function of size relative size
B = D/Dy (after Bazant and Gettu 1992)

basis of elastic-viscoelastic analogy (correspondence principle). Numerical so-
lutions of fracture specimens show that viscoelasticity in the bulk (linear creep)
causes the points in the size effect plot to shift to the right, toward increasing
brittleness. This explains the observations of Bazant and Gettu (1992), which
show the data points on the size effect plot for groups of similar small, medium
and large notched specimens tested at various rates of crack mouth opening
displacement (Fig. 7.2; Bazant and Li 1997). These rates are characterized
by the time ¢, to reach the peak. As revealed in Fig. 7.2, the groups of data
points move to the right with an increasing ¢,.

The fact that the brittleness of response is increasing with a decreasing rate
of loading or increasing load duration may at first be surprising but can be
explained (as revealed by calculations according to the time dependent cohesive
crack model) by relaxation of the stresses surrounding the fracture process zone,
which cause the process zone to become shorter. This behavior is also clarified
by the plot of the nominal strength (normalized with respect to the material
strength f/) versus the crack mouth opening displacement (normalized with
respect to the critical crack opening w.). For a specimen in which the only
source of time dependence is creep, the peaks of these stress displacement
curves shift with an increasing rate of loading to the left and the softening
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Figure 7.3: Curves of nominal stress versus relative crack mouth opening dis-
placement (CMOD) for different CMOD rates, calculated by cohesive crack
model under the assumption that the material exhibits only viscoelasticity in
the bulk (left) or only rate-dependent crack opening (right) (Li, Hongh and
Bazant 1995)

curves cross (Fig. 7.3 left). On the other hand, when the rate dependence is
caused only by the bond breakages, the peaks shift to the right, as seen in Fig.
7.3 (right), and in that case there is no shift of brittleness of the kind seen in
Fig. 7.2. It must be emphasized that these results are valid only in the range of
static loading, that is, in absence of inertia forces and wave propagation effects.
The behavior becomes more complicated in the dynamic range.

7.2. Size Effect on Fatigue Crack Growth

Related to the time dependence is the influence of fatigue on fracture (Paris
and Erdogan, 1967). The rate of growth of a crack caused by fatigue loading
is approximately given by the Paris law (or Paris-Erdogan law) which reads:
Aa/AN = k(AK;/K1)", in which a = crack length, N = number of cycles,
AKj = amplitude of the applied stress intensity factor: &, n = dimensionless
empirical constants; and K. = fracture toughness introduced only for the pur-
pose of dimensionality. The interesting point is that the rate of growth does not
depend on the maximum and minimum values of K, as a good approximation.

This law has found wide applicability for fatigue growth of cracks in metals.
If similar structures with similar cracks are considered, this equation implies the
size effect of LEFM, which is however too strong for not too large quasibrittle
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Figure 7.4: Crack growth per cycle versus amplitude or relative stress intensity
factor for three different sizes of concrete specimens (after Bazant and Xu 1991)
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structures. It was shown (BaZant and Xu, 1991; BaZant and Schell, 1993)
that the Paris law needs to be combined with the size effect law for monotonic
loading, yielding the following generalization of Paris law in which the effect of
structure size D is taken into account:

Aa AKp Dy "
=22 - nsiulal S & IO 4 .
AN " ( K + D ) (7.4)

in which Dy is the same exponent as in Paris law, and K. is a constant denoting
the fracture toughness of an infinitely large structure.

The necessity of the size correction is demonstrated by the test results of
Bazant and Xu (1991) for concrete in Fig. 7.4. At constant size D, the log-
arithmic plot of the crack growth rate versus the amplitude of K should be
approximately a straight line. This is clearly verified by Fig. 7.4. However,
for different specimen sizes, different lines are obtained. The spacing of these
straight lines is well predicted by Eq. (7.4), while for the classical Paris law
these three lines would have to be identical.

7.3. Wave Propagation and Effect of Viscosity

The effective length ¢, of the fracture process zone may be regarded as the
characteristic length of the material. In dynamics, the existence of a material
length further implies the existence of a characteristic time (material time):

0 =¢pfv {(7.5)

This represents the time for a wave of velocity v to propagate the distance ¢;.
Obviously, for times shorter than 7o, the material length cannot get manifested
and the damage localization that leads to a crack band or a sharp crack has
not enough time to happen.

In dynamic problems, any type of viscosity 5 of the material (present in mod-
els for creep, viscoelasticity or viscoplasticity) implies a characteristic length,
even if there is no characteristic length for very slow static response. Indeed,
since n = stress/strain rate ~ kg/ms, and the Young’s modulus £ and mass
density p have dimensions E ~ kg/ms? and p ~ kg/m3, the material length
associated with viscosity is given by

E
L, = _'I_’ v == (7.6)

vp p
where v = wave velocity. Consequently, any rate dependence in the constitutive
law implies a size effect of quasibrittle type (and a nonlocal behavior as well).
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There is, however, an important difference. Unlike the size effect associated
with a real material length, the viscosity-induced size effect (as well as the
width of damage localization zones) is not time independent. It varies with the
rates of loading and deformation of the structure, and vanishes as the rates drop
to zero. For this reason, an artificial viscosity or rate effect can approximate
the nonviscous size effect and localization only within a narrow range of time
delays and rates, but not generally.

7.4. Ductility and Energy Absorption Capacity of Structures

For dynamic loads such as blast or earthquake, the most important charac-
teristic of a structure is its energy absorption capability, which represents the
energy corresponding to the area under the complete load-deflection diagram
(with its entire post-peak softening tail). This area depends on the ductility of
the structure, which diminishes with increasing structure size.

To illustrate the size effect on structural ductility, consider the diagrams of
load P versus load-point displacement uy caused by fracture when the energy
release rate is constant, being equal to fracture energy G; of the material. For
a zero crack length (a = 0), these diagrams descend from infinity (P — oo, Fig.
7.5), which means that a crack cannot start from a smooth surface according
to LEFM. These responses can be of two types:

o Type I, for which the P(uy)-curve has always a negative slope (Fig. 7.5a),
and

e Type II, for which the slope of the P(u;)-curve reverts at a certain point
(called the snapback point) to positive (Fig. 7.5b).

(for calculations of such curves from LEFM, see Bazant and Cedolin, 1991, Fig.
12.17). It can be shown that the type of response is decided by the following
criterion:

for lim ND/M = 0 .... Type I, >0 ..o Type II (7.7)

a—>a:

where a; = crack length for full break of cross section; M, N = bending moment
and normal force transmitted across the ligament.

When the structure has a notch, of length ag (or a pre-existing traction-free
crack), the response first follows a straight line emanating from the origin (lines
01 in Fig. 7.5), and when the P(us) curve for a propagating crack is reached,
there is an abrupt slope change. If R(c) varies according to a smooth R-curve,



158 Scaling of Structural Strength

Py Type I Py Type Il
LEFM notch-free LEFM notch-free
N eeeees with R-curve .‘
1 01 -LEFM, notched ' 1
0 .- 0 E >

Deflection Due to Fracture, ug

Figure 7.5: Two types of LEFM fracture response—with and without a snap-
back

the slope change is not abrupt but smooth, i.e. the peak is rounded (see the
dashed curves in Fig. 7.5).

The elastic deflection of a crack-free structure, the additional deflection
caused by the crack, and the deflection of the spring are additive. The loads
causing these three deflections are equal. So the coupling of the corresponding
parts may be imagined as a series coupling; see Fig. 7.6 where adding the
segments a,b, and ¢ on any horizontal line yields the horizontal coordinate
a + b + ¢ of the load-deflection curve of the whole system. The inverse slopes
(compliances) at the points with the same P (lying on a horizontal line) are

also added.

The larger the structure, the lower its stiffness. As clarified by Fig. 7.6,
a sufficient enlargement of structure size, corresponding to a sufficiently soft
spring (i.e., a large enough C, or Cp), will cause the total load-deflection dia-
gram to exhibit a snapback—a point at which the descending load-deflection
curve ceases to have a negative slope. If the curve is smooth, it is a point with a
vertical tangent (dA/dP = 0), which represents a point of (locally) maximum
deflection (or an inflexion point); Fig. 7.7. This is known to represent the
stability limit under displacement control (BaZant and Cedolin 1991).

For type I fracture, no vertical tangent nor snapback will occur if the spring
and the crack-free specimen are sufficiently stiff (i.e, if C; and Cyp are small
enough). Since an increase of slenderness L/D can cause Cp to exceed any
given value, a snapback occurs if (and only if) the structure is sufficiently
slender. But this is different for type II structures, for which a snapback occurs
for any slenderness.

From the geometrical construction in Fig. 7.6, it now transpires that, on
the curve of P versus the crack-produced deflection u;, the point of snapback
instability occurs at the point at which the tangent to the curve has the slope
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Figure 7.6: Superposition of deflections due to elasticity of structure with no
crack (a) and of spring (b), and deflection due to crack (c)
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Figure 7.7; Various kinds of load-deflection curves for crack growth character-
ized by an R-curve, for monotonic loading and reloading

1/Cer = —1/(Co + Cs) (shown in Fig. 7.6). From this observation one can
readily deduce various type I or II combinations of the P(us) curve with the
combined elastic deflection characterized by the combined compliance Cy + Co
(the additional effect of the R-curve behavior, which is not shown in Fig. 7.7,
is to ‘round off’ the sharp corners on these curves in the manner shown in Fig.
7.5). These combinations lead to seven different kinds (Ia,...IId) of the overall
load-deflection curves P(A), illustrated in Fig. 7.7. For the types possessing
more than one point at which the line of slope 1/C,, is tangent, the failure
under static displacement-controlled loading will occur at the first such point.

If the structure is pre-cracked or notched, the initial loading follows an
inclined straight line until the tip of the existing crack or notch becomes critical
(G = R); see the line segments 01, 02, 03,... in Fig. 7.7. So the load-deflection
diagrams can follow any of the paths 019, 029, 039,..., 0190, 0290, 0390,...
identified in Fig. 7.7. Thus, as seen in Fig. 7.7, an enormous variety of
responses can be encountered in an elastic structure with one growing crack.

The concept of ductility has often been hazy in practice. A distinction
must be made between material ductility, characterizing the strain at which a
plastically yielding material will fail due to a microcrack, and structure duc-
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a) b)

Figure 7.8: (a) Definition of ductility; (b) Two types of R-curve considered:
R(c) = Gy\/c/(co + c) (upper curve), and geometry dependent R-curve (lower

curve)

tility. We consider only the latter concept of ductility. A rational definition
must be based on the stability loss of the structure, as proposed for fractur-
ing or damaging structures in BaZant (1976), and studied in more detail in
Bazant, Pijaudier-Cabot and Pan (1987a,b). For load control conditions (i.e.,
for gravity loads), the stability loss occurs when the maximum load is reached.

Ductility is a different concept from the maximum load or strength of the
structure. It characterizes the deformation capability under the most stable
type of loading, which is the loading under displacement control. In that case,
stability is lost at the snapback point (the first point of vertical tangent, if it
exists) of the overall load-deflection curve of the structural system.

Therefore, we define ductility (Fig. 7.8a) as (BaZzant 1976) A = Apac/Aa
where Ap,q, = total deflection of the system (cracked structure together with
the spring) at the first point of vertical tangent (snapback), and Ae = elastic
(recoverable) part of the total deflection at maximum load (Fig. 7.8a). We
can say that the ductility is infinite (or unbounded, A = c0) when no point of
vertical tangent exists, as shown in Fig. 7.7, case Ia.

The loss of stability under displacement control, i.e. the ductility limit,
corresponds in Fig. 7.5 and 7.6 to the first point of vertical tangent. For type
Ta in Fig. 7.7 there is no stability loss under displacement control, which means
the ductility is unbounded.

Would it make sense to define ductility by some post-peak point with a
certain finite softening slope? It would not. Stability loss does not occur at such
a point if the total system is considered. If the structure is considered without
the spring through which is it loaded, and the slope is equal to the negative
of the spring stiffness, then of course such a point does indicate stability loss
(BaZzant and Cedolin 1991, Sec. 13.2), but such a point must then correspond to
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a point of vertical tangent on the load-deflection curve of the complete system
with the spring.

If a structure of infinite ductility exhibits postpeak softening, no matter how
mild, its sufficient enlargement will make the ductility finite, i.e., will produce
a snapback. A further enlargement will make that finite ductility smaller.

The relative energy absorption may be defined as the area under the com-
plete load-deflection diagram divided by the elastic strain energy recovered
upon unloading from the maximum load state. Obviously, its value decreases
with increasing structure size.

Detailed examples of calculation of effects of size as well as its slenderness
on the ductility of cracked three-point-bend beams loaded through springs of
various stiffnesses are found in Bazant and Becg-Giraudon (1999). Some of the
results are plotted in Fig. 7.9. It should be noted that the family of the curves
of ductility versus structure size at various spring stiffnesses is characterized
by a certain critical spring stiffness that represents a transition from bounded
single-valued functions of D to unbounded two-valued functions of D. The
flexibility (force) method has been adapted to extend the ductility analysis
to arbitrary structural assemblages for which the stress intensity factor of the
cracked structural part considered alone is known.
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Figure 7.9: Top: ductility of concrete vs. specimen size in double logarithmic
plot. Bottom: ductility of concrete vs. slenderness in semi-logarithmic plot.
Both obtained for the geometry dependent R-curve corresponding to BaZant’s
size effect law (after BaZant and Becq-Giraudon 1999)



This page intentionally left blank



Chapter 8

Computational Approaches to
Quasibrittle Fracture and Its Scaling

8.1. Eigenvalue Analysis of Size Effect via Cohesive (Fictitious)
Crack Model

Computationally the most efficient model capable of resolving the stress
profile along the fracture process zone is the cohesive crack model (as well as
the crack band model which is essentially equivalent). There is more than one
way to calculate the size effect for this model. One primitive way is to solve
repeatedly by finite elements the complete response history of the structure for
a sequence of increasing sizes and then to collect the maximum load values.
There exists, however, a direct way which is much more efficient. It relies on
converting the integral equation of the cohesive crack model to an eigenvalue
problem (BaZant and Li 1995). The solution of the response history becomes
unnecessary.

According to the cohesive crack model, introduced for concrete under the
name fictitious crack model by Hillerborg et al. (1976), the crack opening in
the fracture process zone (cohesive zone) is assumed to be a unique decreasing
function of the crack-bridging stress (cohesive stress) o; w = g(o). The ba-
sic equations of the cohesive crack model imply the condition that the crack
opening calculated from the bridging stresses must be compatible with the elas-
tic deformation of the surrounding structure, and the condition that the total
stress intensity factor K at the tip of the cohesive crack must be zero in

order for the stress to be finite. They read:

@l =~ [ D OlE€1o€)de + D Crle)P (8.1)
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Figure 8.1: Cohesive crack and distribution of bridging stress

21
Kot = —/ k(&)o(€)Dd§ + Prp =0 (8.2)
o
in which § = z/D, = coordinate along the crack (Fig. 8.1), @ = a/D,
ag = ag/D, a,aq = total crack length and traction free crack length, C(€,¢’),
Cp(€) = compliances of the surrounding elastic structure for loads and dis-
placements at the crack surface and at the loading point (Fig. 8.1), and «(£),
Kkp = stress intensity factors at the tip of cohesive crack (¢ = a) for unit loads
applied at the crack surface or at the loading point.

The usual way to solve the maximum load of a given structure according
to the cohesive crack model was to integrate these equations numerically for
step-by-step loading (Petersson, 1981). However, recently it was discovered
that, under the assumption that there is no unloading in the cohesive crack
(which is normally the case), the size effect plot can be solved directly, without
solving the history of loading before the attainment of the maximum load. To
this end one needs to invert the problem so that one looks for the size D for
which a given relative crack length o = a/D corresponds to the maximum load
Pmax-

Then it is found that this size D represents the first eigenvalue of the fol-
lowing integral equation over the crack bridging zone (BaZant and Li 1995a,b):

o[ " e, €)0(e) e = —g'lo(€)0e) (8.3)

in which the eigenfunction v(£) has the meaning of the derivative d¢(£)/0a.
The maximum load is then given by the following quotient

S V(€)dE
D [ Cp(€)u(€)de

These results have also been generalized to obtain directly the load and dis-
placement corresponding, on the load-deflection curve, to a point with any

(8.4)

Prax =
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Figure 8.2: Stress profiles along the crack line for the maximum load and for
various sizes of similar specimens (the peaks represent the tips of the cohesive
crack)

given tangential stiffness, including the displacement at the snap-back point,
which characterizes the ductility of the structure.

The cohesive crack model nicely illustrates the transition from failure at
a relatively large fracture process zone in the case of small structures to the
failure at a relatively small process zone in the case of large structures. See
the plot of the profiles of the normal stress ahead of the tip of the traction-free
crack length (notch length) shown in Fig. 8.2. The points at the tip of the
cohesive zone represent the maximum stress points in these stress profiles. Note
how the maximum stress points move, in relative coordinates, closer to the tip
of the notch if the structure size is increased. These results of the cohesive
crack model confirm that, for large sizes, the size effect of LEFM should be
approached.

8.2. Microplane Model

Finite element analysis of failure of quasibrittle material requires a con-
stitutive model for strain-softening damage. To be objective and capable of
representing the size effect, the constitutive model must be tied in some way
to a characteristic length of the material.
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Modifications of classical plasticity, in which the stress strain relation is
formulated empirically in terms of the strain and stress tensors and their in-
variants, have not proven very effective for complex materials such as concrete.
It seems more effective to develop first-principles models which try to directly
capture the main inelastic phenomena such as microcrack opening and closure
and frictional slip, on various planes in the material.

This approach is taken in the microplane model, in which the constitutive
law is expressed not in terms of tensors but in terms of vectors of stress and
strain acting on planes of various orientations called the microplanes. This
model, proposed in BaZant (1984c) as a generalization and adaptation of an
idea of Taylor (1938), has been developed in detail for concrete (BaZant et al.
2000), although various versions have also been formulated and used for metal
plasticity, shape memory alloys, stiff foams and rocks.

The microplane constitutive model is defined by a relation between the
stresses and strains acting on a plane in the material, the microplane, having an
arbitrary orientation characterized by its unit normal n;. The basic hypothesis,
which ensures stability of postpeak strain softening (Bazant, 1984c), is that the

strain vector €y on the microplane is the projection of strain tensor e, i.e.,
€N; = €ijnj. The normal strain on the microplane is ex = nr;en,, that is,

ey = N,'jé,'j (8.5)

where N;; = n;n; (repetition of the subscripts, referring to Cartesian coordi-
nates r;, implies summation over ¢ = 1,2, 3).

The shear strains on each microplane are characterized by their components
in chosen directions M and L given by orthogonal unit coordinate vectors m
and l—: of components m; , [;, lying within the microplane. The shear strain
components in the directions of m and Fare ey = m;(eijn;) and ep = li(ei5ny),
where m; and n; are the components of two suitably chosen orthogonal unit
vectors m and ! lying in the microplane. By virtue of the symmetry of tensor
€ij,

em = Mijei;, €r, = Lijei (86)

in which M,‘j = (m,-nj + mjn,-)/Q and L,’j = (l,-nj -+ ljn;)/2.

The static equivalence (or equilibrium) of stresses between the macro and
micro levels can be enforced only approximately. This is done by the principle
of virtual work (BaZant 1984c) written for surface © of a unit hemisphere;

2%0’,']'56,']' = / (onden + order + opbepr) dQ2 (8.7)
o)
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This equation means that the virtual work of macrostresses (continuum stresses)
within a unit sphere must be equal to the virtual work of microstresses (mi-
croplane stress components) regarded as the tractions on all the surface ele-
ments of the sphere. Substituting dexy = Njjde;;, dep = Lijde;; and depyr =
M;;d¢;;, and noting that the last variational equation must hold for any varia-
tion d¢;;, one gets the following basic equilibrium relation:

N
3 ~ 65w s
oij = 5;/:1 Sij dQ =~ 6,;wpsij s (88)
with
sij = oNNij +orLi; + op My (8.9)

The integral is in numerical calculations approximated by an optimal Gaus-
sian integration formula for a spherical surface representing a weighted sum
over the microplanes of orientations 7i,, with weights w, normalized so that
Z# wy = 1/2.

The constitutive relation on the microplane level is written as a relation
between the microplane stress and strain components. These relations can
directly reflect friction and slip, as well as cracking and and crack closure,
separately for planes of various orientation in the material. For concrete, this
approach has proven very powerful and has been used successfully in explicit
dynamic analysis of impact, groundshock and blast on systems with up to
several million finite elements (BaZant et al. 2000).

8.3. Spectrum of Distributed Damage Models Capable of
Reproducing Size Effect

A broad range of numerical methods which can simulate damage localiza-
tion, fracture propagation and size effect is now available. They can be classified
as follows:

1. Discrete fracture, with elastic analysis:

(a) R-curve model
(b) Cohesive (fictitious) crack model

2. Distributed cracking damage—nonlinear analysis by:

(a) Finite elements:

1. Crack band model
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ii. Nonlocal damage model:

A. averaging type (semi-empirical)

B. based on crack interactions (micromechanics)
ili. Gradient localization limiter:

A. 1st gradient

B. 2nd gradient—explicit

C. 2nd gradient—implicit

(b) Discrete elements—random particle model:

1. with axial forces only (random truss model)

ii. with transmission of both normal and shear forces between par-
ticles.

(¢) Element-free Galerkin models, using moving least-square interpolants,
and partition of unity approach.

8.4. Simple, Practical Approaches

The simplest is the R-curve approach, which can often yield an analytical
solution. The cohesive (or fictitious) crack model is efficient if the behavior of
the elastic body surrounding the cohesive crack is characterized a priori by a
compliance matrix or a stiffness matrix.

A great complication arises in general applications in which the direction of
fracture propagation is usually unknown. For such situations, Ingraffea (1977,
with later updates) has had great success in developing an effective remeshing
scheme (in his computer program FRANC); however, this approach has not
yet spread into practice.

The engineering firms and commercial finite element programs (e.g. DI-
ANA, SBETA, Cervenka and Pukl 1994, ATENA), as it appears, use almost
exclusively the crack band model. This model is the simplest form of finite
element analysis that can properly capture the size effect.

The basic idea in the crack band model (Bazant 1982; BaZzant and Oh 1983)
is to describe fracture or distributed cracking by a band of smeared cracking
damage that has a single-element width, and to treat the band width, i.e.,
the element size in the fracture zone, as a material property (as proposed by
BaZant 1976). This is the simplest approach to avoid spurious mesh sensitivity
and ensure that the propagating crack band dissipates the correct amount of
energy (given by the fracture energy Gy).
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8.5. Nonlocal Concept and Its Physical Justification

A more general and powerful but also more complex approach is the non-
local damage approach, in which the stress at a given point of the continuum
does not depend only on the strain and that point but also on the strains in
the neighborhood of the point. While the crack band model can be regarded
as a simplified version of the nonlocal concept, the truly nonlocal finite ele-
ment analysis involves calculation of the stress from the stress values in the
neighboring finite elements.

The simplest and original form of nonlocal approach (BaZant, Belytschko
and Chang 1984; BaZant, 1984b) involves an empirical weighted averaging rule.
There are many possible versions of nonlocal averaging. But the most realis-
tic results (Jirasek 1996) are apparently obtained with a nonlocal approach in
which the secant stiffness matrix for the strain-softening stress-strain relation
(which describes the evolution of damage or smeared cracking) is calculated
from the spatially averaged strains and the stress is then obtained by multiply-
ing with this matrix the local strain.

Physically a more realistic nonlocal damage model is obtained by contin-
uum smearing of the matrix relations that describe interactions among many
cracks in an elastic solid. One type of such a matrix interaction relation, due
to Kachanov (1985, 1987), has led to the following field equation (BaZant
1994b):

85%0) - [ A@,9a3V@av(e) = (as0e)  (810)

14

This is a Fredholm integral equation in which V' = volume of the structure;
A(x, &) = crack influence function, characterizing in a statistically smeared
manner the normal stress across a frozen crack at coordinate x caused by a
unit pressure applied at the faces of a crack at £; (.) is a spatial averaging

operator; AS() or ATS'_(I) = increment (in the current loading step) of the
principal stress, labeled by (1), before or after the effect of crack interactions.
The integral in this equation is not an averaging integral because its kernel has
spatial average 0. The kernel is positive in the amplification sector of crack
interactions and negative in the shielding sector.

So, in this nonlocal damage model, aside from an averaging integral, there
is an additional nonlocal integral over the inelastic stress increments in the
neighborhood. These increments model the stress changes that relax or en-
hance the crack growth. They reflect the fact that a neighboring crack lying
in the shielding zone of a given crack inhibits the crack growth, while another
crack lying in the amplification zone enhances the crack growth (Bazant 1994b;
BaZant and Jirdsek 1994a, 1994b).
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This formulation shows that the nonlocality of damage is principally a con-
sequence of the interactions among microcracks and provides a physically based
micromechanical model. Application of this concept in conjunction with the
microplane constitutive model for damage has provided excellent results for
fracture and size effect in concrete (OZbolt and BaZant 1996). However, the
analysis is more complex than with the classical empirical averaging approach
to nonlocal damage.

In practical terms, what has been gained from the crack interaction ap-
proach is that the failures dominated by tensile and shear fractures could be
described by one and the same material model with the same characteristic
length for the nonlocal averaging. This proved impossible with the previous
models.

If the characteristic length involved in the averaging integral of a nonlo-
cal damage model is at least three times larger than the element size, the
directional bias for crack (or damage) propagation along the mesh lines gets
essentially eliminated. However, this may often require the finite elements to
be too small (although it is possible to adopt an artificially large characteristic
length, provided that this is compensated by modifying the post-peak slope of
the strain-softening constitutive equation so as to ensure the correct damage
energy dissipation).

If the characteristic length is too small, or if the crack band model is used,
then it is necessary either to know the crack propagation direction in advance
and lay the mesh lines accordingly, or to use a remeshing algorithm of the same
kind as developed by Ingraffea (1977) for the discrete crack model. -

The earliest nonlocal damage model, in which not only the damage but
also the elastic response was nonlocal, exhibited spurious zero-energy periodic
modes of instability, which had to be suppressed by additional means, such as
element imbrication ( BaZant et al. 1984; BaZant 1984b). This inconvenience
was later eliminated by the formulation of Pijaudier-Cabot and BaZzant (1987)
(see also BaZant and Pijaudier-Cabot, 1988), in which the main idea was that
only the damage, considered in the sense of continuum damage mechanics (and
later also yield limit degradation, BaZzant and Lin 1988b), should be nonlocal
and the elastic response should be local. The subsequent nonlocal continuum
models with an averaging type integral are various variants on this idea.

8.6. Prevention of Spurious Localization of Damage

While from the mechanics viewpoint, the principal purpose of introducing
the nonlocal concept is to make it possible to reproduce the quasibrittle size
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effect, from the viewpoint of finite element analysis it is to prevent arbitrary
spurious localization of damage front into a band of vanishing width if the mesh
is refined. Because, in the damage models with strain softening, the energy
dissipation per unit volume of material (given by the area under the complete
stress-strain curve) is a finite value, a vanishing width of the front of the damage
band implies the fracture to propagate with zero-energy dissipation, which is
obviously physically incorrect. This phenomenon also gives rise to spurious
mesh sensitivity of the ordinary (local) finite element solutions according to
continuum damage mechanics with strain softening.

From the physical viewpoint, the strain softening, characterized by a non-
positive definite matrix of tangential moduli, appears at first sight to be a
physically suspect phenomenon because it implies the wave speed to be com-
plex {and thus wave propagation to be impossible), and because it implies the
type of partial differential equation for static response to change from elliptic
to hyperbolic (Hadamard 1903; Hill 1962; Mandel 1964; Bazant and Cedolin
1991).

To avoid these problems, and to make simulation of quasibrittle size effect
feasible, one of two measures may be introduced:

1. some type of a mathematical device, called the localization limiter, which
endows the continuum damage model with a characteristic length; or

2. rate-dependence of softening damage.

The conclusion that strain softening causes the wave speed to be complex
rather than real, however, is an oversimplification, because of two phenomena:

¢ First, a strain softening material can always propagate unloading waves,
because the tangent stiffness matrix for unloading always remains positive
definite, as discovered experimentally in the 1960s (Riisch and Hilsdorf
1963, Evans and Marathe 1968).

e Second, as revealed by recent tests at Northwestern University (BaZant
and Gettu 1992; BaZant, Guo, and Faber 1995; Tandon et al. 1995), a
real strain-softening material can always propagate loading waves with a
sufficiently steep front.

The latter phenomenon is a consequence of the rate effect on crack propagation
(bond breakage), which causes that a sudden increase of the strain rate always
reverses strain softening to strain hardening (followed by a second peak); see
Fig. 7.1(c). This phenomenon, which is mathematically introduced by Eq.
(7.3), is particularly important for the finite element analysis of impact.
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Another type of localization limiter are the gradient limiters, in which the
stress at a given point of the continuum is considered to depend not only on
the strain at that point but also of the first or second gradients of strains at
that point. This concept also implies the existence of a certain characteristic
length of the material. It appears to give qualitatively reasonable results for
various practical problems of damage propagation, as well as the size effect.
An effective form that reduces the order of continuity requirements for finite
elements is an implicit form in which the nonlocal strain components are ob-
tained as solutions of Helmholtz differential equations (Peerlings et al. 1996,
de Borst and Gutiérrez 1999). This approach may be seen as a kind of nonlocal
model in which the weight function is a solution of the Helmoltz equation.

It should be kept in mind, however, that the gradient localization limiters
have not been directly justified physically. They can be derived in the sense of
an approximation to the nonlocal damage model with an integral of averaging
type. Indeed, expansion of the kernel of the integral and of the strain field
into Taylor series and truncation of these series yields the formulation with a
gradient localization limiter, and thus also justifies it physically (provided the
integral formulation is based on the smearing of crack interactions).

8.7. Discrete Elements, Lattice and Random Particle Models

The discrete element models for damage and fracture are a fracturing adap-
tation of the model for granular solids proposed by Cundall (1971) and Cundall
and Strack (1979). They are very demanding of computer power but are be-
coming more and more feasible as the power of computers increases. In these
models, the material is represented by a system of particles whose links break
at a certain stress.

The typical spacing of the particles acts as a localization limiter, similar
to the crack band model, and controls the rate of energy dissipation per unit
length of fracture extension (BaZant et al. 1990). The particles can simulate the
actual aggregate configurations in a material such as concrete, or may simply
serve as a convenient means to impose a certain characteristic length on the
model, as in the case of the simulation of sea ice floes ( Jirasek and BaZant,

1995a,b).

It must be warned, however, that trying to reduce the number of unknowns
by using particles and particle spacings that are larger than the typical inho-
mogeneities of the material, one imposes an incorrect, excessively large charac-
teristic length. A size effect will still be present, but will be weaker, with the
approach to the LEFM asymptote pushed into larger sizes, and the transitional
size Dy too large.
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Impact velocity = 0.5 m/s Impact velocity = 1 m/s Impact velocity =2 m/s

Figure 8.4: Random particle simulation of the breakup of an ice floe travelling
at different velocities, after it impacts a rigid obstacle (Jirdsek and BaZant
1995b)

element damage model to the analysis of failure of a tunnel excavated without
lining, and to the simulation of the break-up of a traveling sea ice floe after it
impacts a rigid obstacle.
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7.6m

. Softening zone

8.2m

Figure 8.3: Analysis of tunnel excavation using nonlocal yield limit degradation,
with deformed mesh (right) (after BaZant and Lin 1988b)

In the case of isotropic materials, it is important that the configuration of
particles be random. With a regular particle arrangement there is always a bias
for fracture propagation along the mesh lines, even when all the properties of
the particle links are randomized (Jirdsek and Bazant, 1995b}.

In the simplest discrete element model, the interactions between particles
are assumed to be only axial. But that causes the Poisson ratio of the ho-
mogenizing continuum to be 1/4 for the three-dimensional case, or 1/3 for the
two-dimensional case, and so materials with other Poisson ratios cannot be
modeled (unless some artifices are used). Another disadvantage is that the
damage band appears to be too narrow.

An arbitrary Poisson ratio and a wider damage band can be achieved by
a particle model in which the links between particles transmit not only axial
forces but also shear forces. This is the case for the model of Zubelewicz and
Bazant (1987), as well as the model of Schlangen and van Mier (1992) and van
Mier and Schlangen (1993). In the latter, the particle system is modeled as
a frame with bars that undergo bending (the bending of the bars is of course
fictitious and unrealistic, but it does serve the purpose of achieving a shear force
transmission through the links between particles). Van Mier and co-workers
have had considerable success in modeling concrete fracturing in this manner.

An example of numerical solutions with nonlocal models and random parti-
cle models has already been given in Figs. 2.10 and 2.11. Further two examples
are presented in Figs. 8.3 and 8.4, which show applications of a nonlocal finite



Chapter 9

New Asymptotic Scaling Analysis of
Cohesive Crack Model and Smeared-Tip
Method

Let us now attempt a detailed analysis of the asymptotic scaling properties
of the cohesive crack model, facilitated by a new smeared-tip approach.

It is proper to begin by commenting on the nature and history of the cohe-
sive crack model, which was already used in (8.1) and (8.2). The cohesive crack
model lumps into one line all the inelastic deformations in the fracture process
zone of a finite length and width, including distributed microcracking and fric-
tional or plastic slips. The benefit is that all the body volume can be treated
as elastic. From nonlocal damage analysis with finite elements it is known (e.g.
BaZant and Cedolin 1979) that the lumping causes little error whenever the
softening damage localizes into a narrow band, which is true in most practical
situations where damage ultimately leads to fracture. In these situations, the
cohesive crack model is essentially equivalent (BaZant and Cedolin 1979) to the
crack band model of finite element analysis (BaZant 1976; BaZant and Oh 1983;
BaZant and Planas 1998). It also represents a limiting case of nonlocal damage
formulations.

The basic hypothesis of the cohesive crack model is that there exists a
unique relation between the cohesive (crack-bridging) stress ¢ and the opening
displacement v, representing a material property. This model was originated
by Barenblatt (1959, 1962), while Dugdale’s (1960) work, extended to peak
load analysis, led to an analogous model for fracture with a plastic zone. Al-
though Barenblatt considered only the decrease of interatomic forces at sep-
aration of surfaces, the model has later been applied on a much larger scale
of the material—to quasibrittle fracture of heterogeneous materials. In these
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materials, the crack opening 2v represents the relative displacement that is ac-
cumulated across the width of the fracture process zone (FPZ) and is caused
by nucleation and growth of microcracks and voids combined with plastic or
frictional slip in the FPZ, and the cohesive (crack-bridging) stress is the ho-
mogenized continuum stress in the FPZ.

To simplify analysis, the stress-displacement law was, in some later works
(Willis 1967, Smith 1974, Reinhardt 1985, Wnuk 1974, Knauss 1973, 1974),
replaced with an assumed stress profile along the FPZ. Hillerborg et al. (1976)
and Petersson (1981) slightly generalized the cohesive crack model, under the
name ‘fictitious’ crack model, and introduced it into the studies of concrete. A
nearly equivalent model, which is more convenient for finite element analysis
and yields almost identical results, is the crack band model, in which the FPZ
is represented by a band of small finite width k. with transverse inelastic strain
" = 2v0/h,.

The energetic aspect of the cohesive crack model was clarified by means of
the J-integral (Rice 1968a, Kfouri and Rice 1977, Suo et al. 1992). Although
the basic characteristic of the original models of Barenblatt and Dugdale is
the vanishing of the stress intensity factor (SIF), some recent studies posited
a non-zero SIF (Rice 1992) at the tip of cohesive crack. While the traditional
assumption has been that the cohesive (crack-bridging) stress begins decreasing
with crack opening from a certain finite initial value representing the tensile
strength o, some recent models (Needleman 1990, Tvergaard and Hutchinson
1992) assume that the cohesive stress at first increases as the crack begins to
open, with the softening to come only later at larger openings (but in that case
one must get reconciled to a paradox due to the existence on the crack flanks
of stresses exceeding the stress oy that triggers the initial opening of a crack).
The present analysis will be kept sufficiently general to accommodate any of
these assumptions about the stress displacement relation or profile.

In the case of cohesive crack model as well as the almost equivalent crack
band model, finite element solutions have demonstrated the existence of size
effect and corroborated (e.g. BaZant and Li 1995a,b; BaZant and Planas 1998)
the deterministic energetic size effect laws already presented. An important
study of the asymptotics of the cohesive crack model was carried out by Planas
and Elices (1992, 1993). They established the basic large size asymptotic char-
acter of cohesive crack solutions and the asymptotic fields. They also pre-
sented highly accurate numerical solutions clarifying the large-size and small-
size asymptotic behaviors.

An explicit scaling law, however, has not been analytically derived in the
aforementioned studies from the cohesive crack model. The structure geometry
effect has neither been captured analytically; nor has the asymptotic matching
between the large-size and small-size behaviors of this fundamental fracture
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model. Filling these gaps is the objective of this section. The geometry effect
will be incorporated by introducing into the cohesive crack formulation the
energy release function of linear elastic fracture mechanics (LEFM).

Traditionally, fracture with a cohesive or yielding zone has been analyzed
on the basis of Green’s functions or compliance functions, or distributed dis-
locations. These approaches, however, appear ineffective for general asymp-
totic analysis. Another approach named the smeared-tip method, developed
by Planas and Elices (1986, 1992, 1993) and Bazant (1990a), will be adopted
here, but with a new modification that makes it more effective for asymptotic
analysis.

In the smeared-tip method, the cohesive fracture solution is represented as a
superposition of infinitely many solutions of the given body for the case of sharp
(LEFM) cracks whose tips are continuously distributed (or smeared) along the
actual cohesive crack (Fig. 9.1). In the original version of the smeared-tip
method, named here the P-version, the intensity of the distributed crack-tip
singularities was characterized in terms of the density of the load sharing. In the
new version (proposed in BaZant 2000), called the K-version, this intensity is
characterized by the density of a continuously distributed SIF. Its distribution
may be conveniently assumed as the basic material characteristic. For each
assumed distribution, analysis of a very large structure yields the corresponding
stress-displacement law of the cohesive crack model, and vice versa.

In contrast to many previous solutions based on a chosen fixed stress profile
along the FPZ, the choice of fixed SIF (stress intensity factor) density profile
has the advantage that the dimensionless SIF function k(o) can be exploited to
capture the effects of structure geometry. These previous solutions (e.g. Willis
1967, Smith 1974, Reinhardt 1985, Wnuk 1974, Knauss 1973, 1974) were of
course intended only for materials in which the FPZ is so small compared to
the structure size that the geometry effect is the same as in LEFM.

In pursuing this approach, a new law will be obtained for the size effect in
structures that fail only after the FPZ has moved away from the notch tip or
the body surface. This happens in structures with an initially negative fracture
geometry that later changes to positive.

9.1. Limitations of Cohesive Crack Model

With regard to a modification to be proposed, it is helpful to mention first
the limitations of the cohesive crack model. This model is classically defined
by a unique relation between the cohesive (crack-bridging) stress o and the
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Figure 9.1: Top left: Near-tip opening and stress distributions. Top right: Frac-
ture process zone and bridging stress profile. Bottom left: Stress-displacement
curve of cohesive crack model and fracture energy. Bottom right: Rice’s J-
integral path for calculating fracture energy of cohesive crack model

opening w of the crack faces (or half crack width; Fig. 9.1 bottom left);

r=e(3)

where ¢ is a decreasing function assumed to characterize the material; f; =
tensile strength of material = stress & at which the crack begins to open; w; =
opening width (relative displacement of crack faces) at which the crack-bridging
stress is reduced to zero. A rather general smooth expression for the inverse of
function ¢ is

w 1_1+(ﬂ_ )(1-%) O<o<f) (92

Wy ft t

where n = positive constant, and wy = intersection (for n > 1) of the initial
tangent of the softening curve with the w axis (Fig. 9.1 bottom left). For quasi-
brittle materials, the softening curve is considered to start along an inclined
tangent (whose horizontal intercept is wg, n > 1), while for ductile materials
it starts horizontally (n < 1). The test data for concrete suggest that the
area under the complete stress displacement curve is about 2.5 times larger
than the area under the initial tangent, and this ratio is achieved by setting
Wf/wo = 1+3(n+ 1)/4 (1fn > 1).
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The standard cohesive crack model is of course a simplification of the reality,
and it might not be the best one for all situations. The reality is a tortuous
meandering final crack path and an FPZ having in the transverse direction y
a certain finite effective width, 2h(z) (Fig. 9.2). The opening width (relative
displacement of the faces) of a cohesive crack, w, represents the inelastic strain
accumulated over width 2h, i.e.

h(z)

w(z) = / o SEd G=qu -y 09

where ¢, and ¢ are the total normal strain and the elastic normal strain,
and ¢ is the inelastic strain due to microcracking, plastic frictional slip and
pullout of fragments or inclusions. The deformations in the FPZ are of course
randomly scattered and all strains must be understood in the sense of some type
of statistical smoothing, describing the average behavior among many random
realizations. The magnitude of inelastic strain ¢/ increases on the average from
the margins toward the middle line of the FPZ and its localization becomes

progressively sharper as the crack-bridging stress is being reduced.

A unique relationship of the transverse y-component o(x) of stress on the
crack line to opening w(z) could be true only if each infinitesimal transverse
strip across the FPZ (Fig. 9.2) acted independently, uniaxially. In reality,
shear and normal stresses 7,y and o, act on the sides of each strip (Fig. 9.2).
This means that ¢, (z) must depend also on the opening w at the neighboring
points z. In other words, a more realistic law would be the following nonlocal
cohesive law:

2=6(Z) v = [Twesruere o4

where ay and az are the beginning and end of the FPZ, and ¥(z,z') is a
bell-shaped interaction function (or weight function) that, in theory, could be
deduced if the mean solution of the stochastic boundary value problem of ran-
dom stress and strain fields in the FPZ could be obtained. This problem is
of course hardly amenable to analytical solutions. Numerical stochastic finite
element solutions, which must employ some form of a nonlocal approach, or
nonlinear fracturing random lattice models, are currently the only way to model
the behavior of the fracture process zone more realistically. So far, such ap-
proaches have provided no evidence of a unique stress-displacement curve for
the overall response of the FPZ.

The standard cohesive crack model is in fact equivalent to assuming that
the FPZ acts as a nonlinear (softening) Winkler foundation. The limitations
of Winkler foundation are well known.
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Figure 9.2: Fracture process zone with a strip assumed to characterize the
standard cohesive crack model and stresses acting on it

9.2. K-Version of Smeared-Tip Method for Cohesive Fracture

In the smeared-tip method, one superposes the solutions of the given body
for various lengths of sharp (LEFM) cracks, the tips of which are continuously
distributed (smeared) along the crack path. Such superposition is used to
represent the solution of a cohesive crack (Fig. 9.1). Any opening profile and
any stress profile can be represented in this manner.

For a single LEFM mode I crack,
_ Ki(a) _
P =bvD Fe) (e =a/D) (9.5)

where P applied load or a parameter of a system of distributed and concentrated
loads; b body thickness; K; = SIF for Mode I and crack tip located at «;
k(a) = v/g(a) = dimensionless SIF = SIF value for D = & = P = 1, which is
a function of the relative crack length a = a/D for a body of given geometry;
g(a) = dimensionless energy release function; a = actual crack length; and D
= characteristic size or dimension of the structure (Fig. 9.1). The stresses o
on the crack line ahead of the crack tip and the crack opening width w behind
the crack tip are, according to LEFM,

o6) = Ki(@)SEa), ae(0g (96)
S(Ea) = s 4B )+ b€~ )+ (01
wE) = Kl@WEa), ac(EL/D) 98)

V32

VD(a =€) 1+ a(f)(a-€) +exé)(a— € +..] (9.9)
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where E/ = E/(1 — v?) for plane stress, E' = E for plane strain, E = Young’s
modulus, ¥ = Poisson’s ratio; and by, bs, ..., ¢, ¢, ... are nonsingular dimen-
sionless functions which depend on structure geometry (shape). They can be
approximated by polynomials obtained by curve-fitting finite element results.

The applied load P, the crack-bridging (cohesive) stresses ¢ and the crack
opening w obtained by superposition of the solutions (9.5), (9.6) and (9.8) for
infinitely many cracks with continuously distributed (smeared) tips (Fig. 9.3)
may in general be written as

P = /dP = /D /L/D di"(’s’) (9.10)

¢
o(f) = L S(¢,a)dK(a) (9.11)

L/D
w(e) = /E WiE, o) dKi(a) (9.12)

where L is the final length of the crack at total break (Fig. 9.1 top left) and
dK(a) is the SIF of the smeared tips lying between « and o + do.

The relative coordinates at the beginning and the end of the FPZ will be
labeled as a; and «5. It will be convenient to introduce a further dimensionless
coordinate p having size-independent FPZ limits such that p = 0 and p = 1
correspond to the beginning and end of the FPZ (Fig. 9.3);

_ o — aq
P= "2
where «; is the end of the stress-free crack portion and a4 is the tip of the
cohesive crack (end of FPZ).

0:%:%(012—011) (9.13)

The K-profile along the FPZ may be characterized as

dK1(a) = K;f alp(e)]da = K. q(p)dp (9.14)

where K. = fracture toughness (critical SIF); ¢(p) = K-profile = dimensionless
SIF density as a function of dimensionless crack length p (Fig. 9.3 bottom).
For reasons to become clear later, it will be assumed that function ¢(p) is
such that the function g(p)/+/|w — p| be integrable for 0 < w < 1, which also
guarantees the total SIF at the cohesive crack tip to vanish (boundedness of
q(p) is sufficient but not necessary to satisfy these conditions). For D — oo the
fracture process zone in the relative coordinate o becomes a point, and all the
solutions being superposed correspond to the same crack tip location in terms
of a. Therefore, LEFM must apply, which means that [ dK; = K. or

1
I :/0 q(p)dp=1 (9.15)
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Figure 9.3: Top: Superposition of two LEFM solutions for bodies with differ-
ent crack tip locations. Bottom: Crack opening profile caused by increments
AK1,AK,, ... of stress intensity factor (SIF) along crack line, and SIF profile
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The smeared-tip method can be formulated in two versions. In the original
version, labeled here the P-version (Planas and Elices 1986, 1992, 1993; BaZant
1990a; Ba%ant and Beissel 1994; BaZant and Planas 1998), the SIF of the
smeared crack tips between ¢ and a + da was associated not with an SIF
increment dKj(e) but with a load contribution dP = p(a) Ddo where p(a) was
the load-sharing distribution that had the meaning (BaZant and Planas 1998,
Eq. 7.5.65)

pla) = %q[p(an (9.16)

The present approach is labeled the K-version since the smeared crack tips are
associated with the increments of K.

Unlike the asymptotic K-profile ¢(p), the asymptotic distribution p(a) is
not size- and shape-independent, and so its asymptotic form is not a material
property. Although Planas and Elices (1992, 1993) gave the expression for
function ¢(p), they used in their asymptotic analysis the P-version. The differ-
ence between the P- and K-versions is of course nothing but a substitution of
a new variable, but the K-version is much more convenient.
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9.3. Nonstandard Cohesive Crack Model Defined by a Fixed K-
Profile

For sufficiently large structures, functions by, bs,...,¢1,c2,... may be ne-
glected. Then (9.11) with (9.14) furnish
? q(w) dw

o) = 3 %S(P)’ s = [ T (9.17)

wp) = “pEI W We) = [ devemrde (@19

It will be convenient to write these equations also as

_ ¢ S0) _ .. W
o(p) = ftm, v(p) = wf—(o) (9.19)

If K., c; and the profile ¢(p) are known, equation (9.17) provides a para-
metric description of the stress-displacement o(w) curve of the cohesive crack
model. Indeed, choosing a series of values of p, the corresponding pairs of w
and o can be obtained by evaluating the integrals S(p) and W(p), which are
independent of structure size and shape. Thus, for each K-profile, there exists
a corresponding stress-displacement curve (softening law) o(w) of the cohesive
crack model. Vice versa, assuming this relationship to be invertible, one can
find for each f;, wy and function ¢ the values K., ¢; and function g(p). There-
fore, defining the cohesive crack model by a stress-displacement curve or by a
fixed asymptotic K-profile is equivalent.

For the sake of simplicity, we will now introduce a nonstandard form of
the cohesive crack model defined by the hypothesis that the K-profile g(p) and
its length 2c; are material properties, i.e., are fixed. In the perspective of the
generalized cohesive law (9.4), it seems that this nonstandard form might be
no less realistic than the standard form. Both seem to involve roughly equal
degrees of simplification.

A cohesive crack model defined by the K-profile is asymptotically equivalent
to the standard cohesive crack model defined by the stress-displacement curve.
But for finite sizes, it is different (the effect of this difference will be explored
later).

If (9.17) and (9.18) are substituted into (9.2), one gets
? q(w) dw
o Vi

506 (15 / e ) 2

(9.20)

3
>
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In particular, for the law in (9.2),

Slp) _ Wip)
S0 S 1- W) + N(p) (9.22)

P A

An important point is that the structure size D is absent from (9.20). This
shows that our hypothesis of size-independence of the profile g(p), which greatly
simplifies size effect analysis, is in agreement with neglecting by, ba, ..., ¢, co, ....

=z
~—~
)
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Eq. (9.20) has a weakly singular kernel and represents an integral equation
of the first kind for function ¢(p). This equation, whose equivalent form in
terms of p(p) was introduced by Planas and Elices (1992) (see also BaZzant and
Planas (1998), Eq. 7.5.67), represents the well-known Abel integral equation
if the right-hand size F(p) is known. An explicit solution exists for that case
and may be used in successive approximations to find an accurate solution
of (9.20). One starts with some assumed function, evaluates the right-hand
side, then obtains from Abel’s formula a new solution, evaluates an improved
right-hand side, etc.

In the special case of a linear (triangular) softening curve (w; = wj), we
have N(p) = 0, and so equation (9.20) simplifies to the following linear integral
equation of the first kind:

Se) , W) _ (9.24)

Function N(p), representing the nonlinear part of the integral equation,
is negligible (for n > 1) when o is very close to the strength limit f;. This
situation occurs for p — 1. Consequently, if the softening curve begins by a
downward inclined tangent (n > 1), the terminal part of the profile ¢(p) near
p = lis governed by the linear integral equation (9.24). This observation agrees
with the well-known fact that the maximum load of structures with a notch or
preexisting stress-free crack is known to be almost independent of the shape of
the softening curve and to depend only on f; and the ratio wy/ f; characterizing
the downward slope of the initial tangent, shown in Fig. 9.1 (bottom left).

According to (9.14) and (9.10), the nominal strength of the structure, which
is a load parameter defined as o = P/bD, may now be expressed as

_ K. ' alp)dp
=75 Ha(o)] (6.25)
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Figure 9.4: Incomplete SIF density profiles when the FPZ is growing from a
notch

provided that the FPZ is not shortened by a notch. If it is, then, more generally
(Fig. 9.4),

_ K [ ap)dp
N =5 ), Ha() (9-26)

where pg is the coordinate at the notch tip.

If the K-profile ¢(p) along with ¢; and the dimensionless SIF k(a) are known,
then oy can be evaluated from (9.25). In this manner, the size effect curve
of the cohesive crack model can be computed for any given structure geom-
etry provided that function k() characterizing the geometry is known. For
many geometries, this function is given in handbooks, and for others it can be
adequately approximated by curve-fitting elastic finite element results.

If the shape of the softening stress-displacement law is fixed (e.g., if wo/wy
and n are fixed), the cohesive crack model is characterized by only two material
parameters, which may be chosen either as f; and wy or as f; and Gy where
G; = fracture energy = area under the complete curve of stress versus crack
opening. According to Irwin’s relation,

Gy = K2/FE (9.27)

To relate c; to the basic parameters of the cohesive crack model, we may
utilize Rice’s J-integral (Rice 1968a) giving the energy flux J into a fully devel-
oped FPZ. The J-integral path must envelop the entire fracture process zone.
Following Rice (1968a), we choose a J-integral path (Fig. 9.1 bottom right)
that begins at the lower crack face at «y, runs along this face to ay, then along
an infinitely small circle around the cohesive crack tip, and finally back to ay
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along the opposite crack face;

J = /:2 o(e) =22/ dff‘)/?] /:la(a)———-——d[wc(lz)/g]da (9.28)

1 2

which further yields J = 0 ! odw. If the FPZ is fully developed (i.e. if
o =0 at p = 0), it can move forward only if J = Gy, and so this condition
must asymptotically be met. Assuming this, substituting (9.17) and (9.18) or
(9.11), and taking into account (9.27), one obtains:

_u8 ., fru I3
=0 = 25()W(0) (9:29)

with the notation

o [T ([ o

Since J = G asymptotically, in view of (9.29) we must have
0 = \/7(’/2, 45(1)W(0)Gj = ﬂftw_f (931)

To determine the half-length c; of the fracture process zone, one may now
express from (9.17) the condition ¢(1) = f;. Thus, taking into account the last
expression in (9.29) and (9.31), one gets

S%(1) m E'w} K?
= b= w60 T p 6%

where {p represents Irwin’s characteristic length. Now it should be noted that,
in view of (9.15) and {9.18), W(0) < 1, and so a lower bound on the half-length
of the fracture process zone, for any shape of the stress-displacement law, is

(9.33)

The fact that neither D nor k(«a) appears in (9.32) confirms that the hypoth-
esis of size- and shape-independence of c; agrees with the neglect of 41,8, ...,
and C1,C2y 0.0
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9.4. Asymptotic Scaling Analysis

Let ag = ag/D denote the relative crack length for D — oo, which is the
case of LEFM. For D — oo, the relative FPZ size in terms of o shrinks to a
point, in which case ag = a; = a3. In studying the size effect, we consider
structures of different sizes that are geometrically similar, and so ag is constant.

Depending on the values of kg = k({ag) and kf = [dk(a)/do]n=q,, three
different cases of scaling of the smeared-tip model with a fixed K-profile must
be distinguished.

9.4.1. Case 1. Positive Geometry with Notch or Stress-Free Initial
Crack, for Fized K-Density (g0 > 0,95 > 0)

When there is a notch or preexisting stress-free crack (which may be pro-
duced by fatigue under previous repeated loads), k(ag) = 0. If the fracture
geometry is negative, i.e. k'(a) < 0, FPZ moves away from the tip in a stable
manner at increasing load. For failure to occur while the FPZ is still attached to
the tip of notch or preexisting stress-free crack (Fig. 9.5, Case 1), the geometry
must be positive. Thus, for Case 1, we assume:

kg > 0, kg >0 : (9.34)

where ko = /g0, ko = 95/2+/90; 9o = g(o), gy = dg(@o)/da. The beginning
and end of the FPZ are

oy =ag>0, as=ap+20<L/D (0 =cs/D) (9.35)

It will be convenient to introduce a Taylor series expansion of the inverse
of the dimensionless SIF function about point ag;

1 _ 1 k6 2 _ Qg — Q)

For geometrically similar notched structures, the LEFM scaling is on
1/ v/D. Thus 0',2\,D = const. in LEFM. To obtain deviations from LEFM due
to finite FPZ, it is therefore convenient to expand in power series of 8 either
0% D or 1/(0% D). The latter will provide a more direct derivation of the size
effect law.

Let us first assume, for the sake of simplicity, that the complete K-profile
is developed when the maximum load is attained (i.e., the stress continuously
approaches 0 at the notch tip). In that case, the notch tip ag = ay or pg = 0.
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Figure 9.5: Lines of dimensionless energy release function g(e) for increasing
values of constant load Py, P, P, for small (left) and large (right) sizes D, along
with stress profiles in FPZ for three basic types of failure: Case 1—notch or
stress-free crack; Case 2—initiating crack
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Substituting expansion (9.36) into (9.25) and taking into account (9.15), one
gets

1 kS % 2, 172 o K
— = —= (1= =0+ (..)0 + ... ~ —=(1 6 .
75 = gr 1m0 T R et (937
with the notations
4k} !
w=plh, k= [ 4 pdp (9.38)
0 0
For small 8, one has the approximation
K. -
(1+700)™/? (9.39)

o
N kO\/_

This may be rewritten in the form of the classical size effect law proposed in
(Bazant 1983, 1984a), i.e

-1/2
ON = 09 (1 + —D—D) (940)

in which

K. Y0 o2 k:)
—t = A Yo = 4, -2 9.41
kox/D_o’ Dy = ey S ( )0 9 cs ( )

ko
The size effect law (9.40) has been derived in many different ways and received
broad and diverse experimental support for many different quasibrittle mate-
rials, including concrete, rock, fiber composites, tough ceramics and sea ice
(Bazant and Planas 1998; BaZzant and Chen 1997; BaZant 1997a, 2000). The
asymptotic form of (9.40) for D — oo is the LEFM scaling:

0o =

K.

N = kovD

(9.42)

In view of the assumptions made, the present solution can be accurate only
up to the first two terms, i.e., up to the term with #. Therefore, any other size
effect formula for which the first two terms of the expansion of o+/D would
coincide with those in (9.39) must be regarded as equally justified. One such
formula is

K. .
N = (1 + 1‘7(]0) 1/2 (943)

D
-1/2r
<1 + '"—D—0> (9.44)

?r-

or
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Figure 9.6: Size effect laws for three basic cases at failure: Case 1—notch or
stress-free crack, Case 2—initiating crack, Case 3—negative-positive geometry
transition

with r being any real number except 0 (Fig. 9.6). Noting the Taylor series
expansion (1+2)" = 14+nz+ in(n—1)z%+ ..., we see that formula (9.43) for
r = 1 agrees with (9.39) up to the first two terms in powers of 8. Therefore,
(9.43) is no less justified than (9.39) as far as the large-size asymptotic behavior
is concerned.

The question now is what is the correct or optimum value of . The answer
depends on whether we seek a size effect law that is optimum only for very large
D or prefer a size effect formula approximately applicable also for medium and
small sizes D. The latter is much more useful.
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The plots of (9.44) for various r are shown in Fig. 9.6. For r < 1 the plots
of oy versus D are non-monotonic. For » > 1 the plot is monotonic but for
r > 1 the small-size asymptotic value of o is infinite, which seems unjustified.
Moreover, for r < 0, the on values below a certain size D are imaginary.

Obviously, ox must be real for all D. Moreover, oy for D — 0 must be
finite (which is demonstrated for the cohesive crack model in what follows). So,
to have a size effect formula applicable through the entire size range, r must
be 1, which gives a monotonic size effect plot and a finite small-size asymptotic
value.

The physically most realistic way to demonstrate the finiteness of oy for
D — 0 is not the cohesive crack model because for very small sizes the width
of the FPZ is not negligible, and in fact the structure width is less than the
width of a fully developed FPZ observed in large bodies. A more realistic model
seems to be the nonlocal continuum damage mechanics. Numerical solutions
with this approach have established the finiteness of the small size limit of o .

The foregoing arguments may be seen in the context of the so-called asymp-
totic matching between D — oo and D — 0. The technique of asymptotic
matching, originated with the boundary layer theory by Prandtl (1904}, has
been used with great success in fluid mechanics (Barenblatt 1979, 1987; Sedov
1959). It is a general approach for obtaining approximate solutions to prob-
lems that are very tough on the practical scale but become much easier for
both much larger and much smaller scales. Rather sophisticated techniques
of asymptotic matching have been found necessary in fluid mechanics. In the
present problem, however, the right asymptotic matching formula has been
obtained almost trivially.

One might wonder whether more than the first two terms should not be
taken in the Taylor series expansion (9.36). This would of course improve
accuracy for very large D; however, it would impair the representation of size
effect for normal sizes and deprive the size effect formula of its asymptotic
matching character.

Formula (9.44) differs from the generalization

oN = 00 [1 + (%)r]_mr (9.45)

proposed long ago in order to allow better fitting in the mid-range of computer
results obtained with the cohesive crack model (BaZant 1985a; BaZant and
Planas 1998). For this formula, the value » = 0.45 was found optimum for a
notched beam (BaZant 1985b) while a value of r greater than 1 was optimum
for a center cracked panel loaded on the crack faces. Eq. (9.44), however, has
only the first order asymptotic accuracy for large D; the second term of the
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expansion of O‘N\/I—) in terms of # differs from the second term obtained from
(9.43). Nevertheless, this formula might provide better asymptotic matching,
with a better description of the size effect in mid-range.

Eq. (9.43) is not the only simple formula with the required asymptotic
properties for D — oo and D — 0. For example, another such formula is

on =09V 1—eDo/D (9.46)

Indeed, its large size asymptotic expansion is

on = 0o\/Do/D[l — X(Do/D) + &(Do/D)* - ..] (b)

However, unlike (9.43), this formula is not amenable to a linear regression plot
for identifying Dy and o¢ from size effect data. Moreover, the approach of this
formula to the small-size horizontal asymptote in the size effect plot of logoy
versus log D appears too abrupt compared with the test data for concrete.

Effect of stress cutoff at notch tip

Our assumption that the K-profile at notch tip is fully developed has been
of course an approximation. Let us now check whether it makes any difference
asymptotically when we consider that the K-profile is cut off by the notch, i.e.,
the notch tip, of coordinate g, corresponds to some coordinate pg > 0. In
that case one must calculate o from (9.26) rather than {9.25). The value of
po must be found from the condition of maximum load (stability limit under
load control), which may be written as

don/dps =0 (9.47)

Here one must substitute the integral (9.26) with a variable lower limit p, and
note that a in function k(«) depends on po because o = ag + 2¢4(p — po)/D.
Differentiation according to the Leibnitz rule yields, after some rearrangements,
the maximum load condition

—q(po) = where = [ (
29k[a(po)] - ¢(p0) h 1»[)(pO) - / kz[a

Let us now expand this condition into a power series in pg.

2)

Ty 1) e (0:48)

For D — oo (or # — 0), it is necessary that ¢(pe) — 0 (Fig. 9.4). This
condition characterizes the tail end of the K-profile ¢(p) (this fact is intuitive,
since the density of SIF must vanish when the material is almost torn apart).
Since ¢(0) = 0, the first two nonzero terms of the expansion of ¢(p) for finite
but small # are

q(p) = g0+ 396p0 + .. (9.49)
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where ¢, = dg(0)/dp and qf = d?q(0)/dp?. Then we calculate the first deriva-
tive of integral ¥(po) with respect to pg and evaluate it at pp = 0. Because
¢(0) = 0, we get

| ],,F 2"/ LR 2 s (050)

So the condition (9.48) has the expansion

¥(po) = %o + Yoo + - = (g0p0 + §90P0 + --.) ko (9.51)
where kg = k[a(po)] = constant. Neglecting the higher-order small terms with
po and solving for p, one thus gets the approximation

2
po = 1/)461 d)a = ?kod)o (952)
0

where ¥, and 1y = 9(0) are constants. This pp-value must now be substituted
into the lower limit of the integral (9.26). Using also the expansion (9.36), one
gets again equation (9.37) but, instead of (9.38),

wl o, o[
= 1= g(p)dp, Ir= / g(p) (p—¥ab)dp  (9.53)
1 a

af

For small 6, these integrals may be approximated as
I =L-3qui®~ 1, Iy = Lh—vy 10+ (3q6 — 2) ¥36° =~ L — 9. 110 (9.54)

Consequently, instead of (9.39) we have

K, 4kL(Iy — ¥a0) >‘1/2
oN = s (1+ ————kn (9.55)

Now we see that the correction to the size effect law is higher-order small in
terms of 8 or 1/D. This proves what might have been intuitively expected—
namely that all the size effect law forms given before are asymptotically correct
up to 1/D.

9.4.2. Case 2. Fracture Initiation from Smooth Surface, for Fized
K-Density (9o =0,95>0)

Structures may also fail at the initiation of fracture from a smooth surface
of the body or in the interior (Fig. 9.5, Case 2). A typical example is the
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standardized modulus of rupture tests of concrete beams. For D — oo, l.e.
when the FPZ is negligible compared to D, the failure occurs when the relative
crack length vanishes; therefore,

ko=0, k>0 (9.56)

But for finite dimensions, failure can occur only after a FPZ of a finite size
2¢; gets formed (Fig. 9.5). So we have

] = g = 0, Q9 = 20 (957)

At fracture initiation, the dimensionless SIF has in general the form k(o) « /,
which means that kf, — co. Therefore, we now need to expand into Taylor series
the dimensionless energy release function g(a) = [k(a)]%. Since g(0) = 0, the
expansion, unlike before, cannot be truncated after the linear term, i.e., the
quadratic term must now be included; so

g(a) = goo + 3ggo’ + . (9.58)
where g = dg(a)/da and g = d?g(a)/da? at @ = 0. Setting @ = 26p and
substituting k(a) = /g(a) into (9 25), one obtains

I . 1 -1/2
on = — 9(p) < + 90 9p> dp (9.59)
0 v/20pg0

This equation shows that limeoy for D — oo is finite.

Typically, gif < 0 (as in beam bending). So, equation (9.59) gives imaginary
oy for small enough D, and must therefore be modified to serve as a size effect
formula for the entire range. Since this equation gives onVD with only second
order accuracy in #, it may now be noted that the formula

. 1 i/r

oN = K. _q(p)_, ( rgOH ) dp
VD Jo +/26pg} 295

for any real r (except 0) gives the same terms of expansion up to the sec-

ond order in §, and is therefore equally justified. The original formula (9.59)
corresponds to r = —2. Any positive r is acceptable.

(9.60)

Consider now that r = 1. Eq. (9.60) may be rearranged as follows:
on = Ko [ —2— + (gt (9.61)
N= e \/QC_f 8 ’3 .

in which

1 1
I = / 1\%)@, L= /0 2(p)V/Adp (9.62)
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(where I3 > 1 and Iy < 1). These integrals are constants which can be evalu-
ated if the K-profile is known or chosen. The Macauley brackets (.) in (9.61)
signify the positive part of the argument. They have been inserted because for
g4 > 0 there is no (deterministic) size effect (as is the case for direct tension of
unnotched bar).

Eq. (9.61) may be simply rewritten as

D
ON = Coo (1+3") (9.63)
mn which
K13 Iy (=90 145%(1) {—g¢
=<3 D=+ ef = ! 9.64
= Tme T e YT mh g 0 0%

Eq. {9.63) is the same as that derived by two different arguments by BaZant
and Li (1995a, 1997), and verified by extensive experimental evidence (Bazant
and Novik 2000Db).

Now we may go back to the generalization with arbitrary positive parameter
r. It may be written as

1/r
ON = Coo (1 + T—E") (9.65)

This formula gives the same first two terms of the power series expansion of
onVD in terms of 8, and is therefore equally justified from the large-size asymp-
totic viewpoint. Parameter r must be found by other arguments or empirically.
For the modulus of rupture test of concrete beams, BaZant (1998a) found the
value r = 1.44 as optimal.

Without altering the essential large-size asymptotic properties, one may
further generalize formula (9.65) as follows

_ TDb Ur
ON = Ooo (1 + 5 D) (9.66)

where D, is a positive constant (for » = 1 such formula was proposed empiri-
cally by Rokugo et al. 1995; see also BaZant and Planas 1998). This formula
has a finite limit for D — 0. However it is unclear whether this is important
in the case of a FPZ attached to smooth body surface, in which case the FPZ
is initially very wide. A realistic value of D, is so small that D, makes a sig-
nificant difference only for bodies with less than realistic sizes compared to the
size of material inhomogeneities.

For Case 2, unlike Case 1, the size effect at very large sizes (concrete beam
depth over about 5 m) becomes dominated by strength randomness and the
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asymptotic behavior must approach the Weibull-type weakest link model. Such
a statistical generalization of (9.63) and (9.64) was proposed by BaZant and
Novak (2000b) and is beyond the scope of the present analysis.

9.4.3. Cases 1 and 2 for Standard Cohesive Crack Model or First
Three Terms of Asymptotic Ezpansion

The foregoing analysis of scaling has been based on the hypothesis that the
K-profile, ¢(p), is a fixed material property. Let us now abandon this hypothesis
and consider the standard cohesive crack model in which the softening stress-
displacement o(w) law is fixed, as in (9.2).

Now one must take into account the second-order near-tip stress and dis-
placement fields characterized by functions b;(£) and ¢;(§) in (9.7) and (9.9),
in which £ = a1 +20p and a = a1 + 20w. Then it is necessary to consider that
the K-profile and the FPZ length are now variables, labeled as §(p) and 2&;,
depending of 1/D;

q(p) = a(p) + 01(P)0 + q2(p)0” + ... & =cp ey Otep, 82+ (9.67)

The same procedure as that which led to equations (9.20)—(9.30) furnishes
equations in which the terms with the zero-th and first powers of § may be
separated. Upon separating them, one obtains for ¢;(g) an integral equation
of the first kind that is similar to (9.20) except that it involves additional
terms with functions ¢(p) and b;[£(w)] and ¢;[{(w)]. For ¢;, one obtains a
similar equation as (9.32) with (9.30) except that bi[¢(w)] and ¢;[€(w)] are
again involved. This means that the second-order asymptotic profile ¢1{p)
and the second-order FPZ size ¢y, depend on the structure shape, albeit not
through the LEFM function &(a).

The same procedure as before may now be followed to analyze the scaling
for cases 1 and 2 on the basis of the nominal strength expression (9.25).

For Case 1 failure, one gets again the same classical size effect law (9.40) with
the same expression for the asymptotic nominal strength g, but the expression
for the transitional size Dy is now slightly different—it depends not only on
k() but also on b,[€(w)] and c¢;[€(w)]. This means that the shape dependence
of Dy is not entirely characterized by the dimensionless SIF function k() (or
energy release function g()).

Previous tests of notched specimens of different shapes, however, have not
so far indicated any systematic disagreement with the expression for Dy in
(9.41). It could be that the effect of b;[£(w)] and ¢;[£(w)] is so weak that it is
masked by inevitable experimental scatter and is practically unimportant.
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It may further be shown that simultaneous consideration of nonzero py does
not change the foregoing observations.

For Case 2 failure, analogous conclusions are reached. In particular, the law
(9.65) describing the size effect at fracture initiation retains the same form.

The geometry dependences of the size effect coefficients that follow for Cases
1 and 2 from a fixed K-profile are identical to those that follow from: (1) equiva-
lent LEFM, (2) R-curve model, (3) two-parameter fracture model characterized
by K. and critical dcrop (proposed for metals by Wells and Cottrell and for
concrete by Jenq and Shah), and (4) approximate analysis of energy release
from stress relief zones (BaZant and Planas 1998). But for the standard cohe-
sive crack model with a fixed stress-displacement curve there is a difference in
the second asymptotic term with 1/D.

A complete large-size asymptotic analysis of Case 1 for the standard cohesive
crack model has already been presented by Planas and Elices (1992, 1993). The
present results agree with their conclusions.

Furthermore, one may wonder whether better results could be obtained
by taking the first three (rather than two) nonzero terms of the asymptotic
expansions. This, of course, would lead to a more accurate representation of
the size effect for sufficiently large D. However, the resulting expressions then
diverge for D — 0 and the possibility of asymptotic matching is lost.

9.4.4. Case 3. Negative-Positive Geometry Transition
(90 > 0,90 = 0,95 > 0)

When the initial fracture geometry is negative, i.e., k'(a) < 0, the crack
grows stably under increasing load {(an example is a panel with a small centric
crack loaded on the crack faces). Failure under load control will occur only when
the fracture geometry changes from negative to positive (Fig. 9.7), which is
what we now consider. So, this case is characterized by ’

ko>0, k,=0, kI>0 (9.68)

a) Scaling for Nonstandard Model with a Fixed K-Profile

The problem is again much simpler for a fixed K-profile. The location of the
FPZ is determined by the maximum load condition, which reads doy /da; =0
at constant §. Denoting f(a) = ¢[p(a)]/k(c), which is a smooth function, we
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Case 3: g5 >0, g’ =0, (Neg. - Pos. Geometry Transition)
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Figure 9.7: Lines of dimensionless energy release function g(a) for increasing
values of constant load Py, P, P; for small (left) and large (right) sizes D, along
with stress profiles in FPZ for three basic types of failure: Case 3—negative—
positive geometry transition
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obtain from equation (9.25) the condition

d ay4-28
— fla)da =0 (9.69)

dal ay
which indicates that f(a; + 28) — f(ey) =0 or
f[ao + (20 + a; — O.’o)] - f[ag + (a1 - au)] =0 (970)

Expanding now both functions into Taylor series with respect to point ag (the
crack length at failure when D — oo, i.e. asymptotic LEFM crack), one con-
cludes that

aw—a;=0+0(P)~ 48 (9.71)

which means that, with an error of the third order in 8, the center of the FPZ
is located at the tip of the asymptotic LEFM crack (Fig. 9.7). In other words,
the locations of the FPZ center for structures of different sizes are geometrically
similar, with an error of the order of 1/D3.

If we truncated the Taylor series expansion (9.36) after the second, linear
term in 6, the result would be the pure LEFM size effect o o D~1/2 because
k'(ao) = 0. Therefore we must truncate it after the third, quadratic term, and

we have
1 1 kg

k(a) = k—o - Q_kg(a — ao)z + ... (972)

where @ = a; + 20p. Substituting this into (9.25), and expressing, as before,
1/(¢% D), we obtain, after rearrangement,

1 k2 2L Ts o -2
=0 (1- Z0SBg2y 7
oD KZ ( kol | T (9.73)

in which (since po = p(ap) = 3)
1
= [ o= 9o (9.74)

Eq. (9.73) is accurate only up to the first two terms of the expansion in 6.
By Taylor series expansion in may be checked that the following formula with
any 7 has the same terms of Taylor series expansion up to #2 and is therefore
as equally justified as (9.73);

. " -1/2r
oNn = 5;_) (1 + %‘;1502) (9.75)
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Consider first the value r = 1, which seems appropriate because it yields a
formula that is in the middle range close to the well tested original size effect

law;
D, D\ ?
= _— 9.7
ON = 0p ( D + Do) (9.76)
in which ¢g, Dy and D; are certain positive constants.
We will now take again the viewpoint of asymptotic matching. So far we
considered only the asymptotic properties for D — oo. To get a formula
approximately applicable through the entire size range, limoy for D — 0 must

be finite. However, the limit of (9.76) is zero. Therefore, with the goal of
proper asymptotic matching, we modify (9.76) in the following manner;

D1 D -1/2
oON = 09 (D ¥ D, + '5;) (9.77)

This modification does not change the first two terms of the large size asymp-
totic expansion of ox/D in powers of D~!. Indeed, as may be checked, the
asymptotic expansions of both expressions are:

O'N‘\/_D—/O’o\/ D() =1- -;—D()Dl l)—2 + O(D—q) (978)

To determine the expressions for Dy and Dy, we make the analogous re-
placement of D) with D + Dj in (9.75) with r = 1;

K e, o\
oN = 7‘7—3 D+ 0 (979)
0

ke D+ D

By matching this expression to (9.77), one finds

" Cfa'() 2 I{c 2
Dy = 4kok!'I5 ,  Dg= (9.80) .

K.

The value of the small-size nominal strength ¢p cannot be determined from
the present asymptotic theory. It can be determined by using plastic analysis
to solve the cohesive crack model for the case that D « ¢;. In that case the
cohesive stress along the entire crack path is nearly uniform, as if the material
were plastic, and such analysis proves that op must be finite.

One restriction, though, must be imposed. The scaling law (9.77) could
exhibit a nonmonotonic dependence on D, with a reverse size effect (increasing
on) for small D. Rut according to diverse other evidence (BaZant and Planas
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1998), the scaling law (9.77) must monotonically decrease with increasing D.
It may be easily checked that this is satisfied if and only if

Dy > Dy (9.81)

When D; = Dy, the slope doy/dD = 0 at D — 0, and when D; > Dy, this
slope is negative.

Consider now whether the r-value may differ from 1. If it does, (9.77) is

replaced by
D+D D(D+ D)\ Y
ON = 0g —1-;-;—1 (1 + r—gl%l—;Tll) (9.82)

This causes no change in the first two terms of the power series expansion of
onV'D in terms of 8, and the same expressions for Dy and D; apply. This
formula is nothing more than another way to write equation (9.75).

Negative r values give imaginary oy when D is less than a certain value,
and are therefore unacceptable. On the other hand, ox for D — 0 is oy, i.e.,
finite, for any positive r value. Furthermore, one can check that (9.77) is a
monotonic function of D if and only if r < 2 and Dy > Dy. Therefore, unlike
Case 1, all r values such that 0 < r < 2 are, in principle, acceptable (Fig. 9.6).

Eq. (9.77) is a new size effect formula representing the scaling law at fixed K-
profile for failures at negative-positive geometry transition. This result cannot
be obtained with the approach used in previous studies, in which the cohesive
crack was assumed to be approximately equivalent to an LEFM crack whose
tip is located at the middle of the FPZ, i.e., at distance ¢; from the end of
the stress-free crack (point g in Fig. 9.7, Case 3). That approach obviously
works only when the fracture geometry at failure is positive (g5 > 0), as in
notched fracture specimens or in the modulus of rupture test. But here the
LEFM scaling, oy o« 1/ VD, would, incorrectly, ensue because g5 =0.

The problem of size effect in Case 3 has been one motivation for this study.
Previously, the size effects for Cases 1 and 2 have been analytically derived from
the equivalent LEFM approach, from the R-curve model, and from J-integral
expansion. For Case 3, however, these methods fail to give any deviation from
the LEFM size effect because the equivalent crack tip has the same relative
coordinate «g for all D, and because the crack tip is on the R-curve located
beyond the initial rising portion.

b) Scaling for Standard Model with a Fixed Stress-Displacement Law

Consider now Case 3 for the standard cohesive crack model with a fixed
stress-displacement law. As described below (9.67), separation of the terms
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with the zero-th and first powers of @ provides for the second-order K-profile
¢1p an integral equation involving parameters of the second-order near-tip stress
and displacement fields b, [£(w)] and ¢;[£(w)], and for the second-order process
zone size ¢y, an equation also involving these second-order fields. The conse-
quence is that, instead of (9.75), one gets an equation of the form:

-1/2r

on = eo (L + e178 + ezr6?) (9.83)

in which eg, e; and e; depend on structural geometry through functions b, [¢(w)]
and ¢;[€(w)] rather than merely through the SIF function k(«). Due to the
presence in (9.83) of a term linear in 8, one gets now a size effect law of the

form:
D\~V?
ON = 0y (1 + D—D) (9.84)

which is the same as the form of the classical size effect law (9.40) for Case
1; but Dy now depends on the second-order near-tip stress and displacement
fields b, [¢(w)] and ¢;[€(w)], which gives a different geometry dependence than
that in Case 1.

It may be noted that the geometry dependence of the Case 3 scaling law
is, for standard cohesive crack model , considerably more complicated than for
the nonstandard model with a fixed K-profile. On the other hand, the result
for the standard cohesive crack model is simpler in the sense that the scaling
law for Case 3 has the same form as for Case 1.

9.5. Small-Size Asymptotics of Cohesive Crack Model

The small size asymptotic behavior of the cohesive crack model has been
derived in Sec. 2.12 directly on the basis of the boundary value problem for-
mulation. It is interesting to derive it now on the basis of the traditional
compliance (Green’s function) formulation, which may be written as

plo(z)] = —b /;”2 C(z,z')o(a')de’ + Cp(z) P (9.85)

b / k(x)o(x)dz + Prp = 0 (9.86)

1

where w = (o) = softening stress-displacement law defining the cohesive crack
model; z € (x1,z2) is the FPZ, x5 is the cohesive crack tip; Cp{x) or x(z) and
C(z,z’) or kp are the crack-face displacement (compliance) at ' and the SIF
at 24 caused by a pair of unit normal forces applied to crack faces at z or by unit

applied load P. The second equation means that the total SIF, K% caused
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by applied load P and crack-bridging stresses o(z), must vanish (which is the
condition of smooth closure at tip). Eq. (9.85) is the condition of compatibility
of elastic deformation of the body with the given softening stress-displacement
law. C(z,2’) represents a Green’s function.

Introduce now the dimensionless variables

§ = z/D, & =wz/D, &=z/D (9.87)

_ c(&) = olx)/fi, lf)(f):—‘w(:c)/wf (9.88)
C,€) = EBC(z,2), Cpl) = E'bCp(z) (9.89)
7€) = bVDk(z), &p=0bVDkp (9.90)

where f; = tensile strength = stress at which the cohesive crack begins to open;
wy = crack opening w when the cohesive (crack-bridging) stress ¢ is reduced
to 0, i.e. at full break (Fig. 9.1); ; is the beginning of the crack at either the
notch tip or the body surface, and x; is the cohesive crack tip. The softening
stress-displacement law may be written as @ = @(&) which is a dimensionless
function such that $(0) = 1 and ¢(1) = 0. Setting P = bDox and substituting
the dimensionless variables, one may transform (9.85) and (9.86) to the form:

€2 _ _
Bouwlo(©) =~ D |~ Cle.£)3(€)de’ + Cp (€ ow DO

€2
wax + i [ #E)a(E)dE = 0 (9.92)

Consider now that D — 0. The first of these two equations requires that
ola(€)] = 0 for all £, i.e. w(z) = 0. So the crack just begins to open, i.e.
the corresponding cohesive stress is equal to the tensile strength f; all along
the crack, as if the FPZ were perfectly plastic (or as if a thin strip of a rigid-
perfectly plastic material were glued into a slit cut in place of the crack). oy is
determined by the smooth closure condition (9.92), and because #(0) = 1 this
condition yields

&2
S / R(E) dt (9.93)

This expression depends on &3, and {2 must be found so as to maximize on
(note in this regard that x(£) has a square-root singularity at £;).

The foregoing analysis proves that the size effect of the cohesive crack model
begins at D = 0 with a finite value oy = 09. A much more realistic model
for D — 0 is nonlocal continuous damage mechanics. Although analytical
asymptotic solutions are unavailable, numerical solutions have confirmed that
oo 1s finite.
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9.6. Nonlocal LEFM—A Simple Approach to Cohesive
Fracture and Its Scaling

A simpler analysis of cohesive fracture can be based on the following hy-
pothesis: the FPZ moves ahead when the average G of the energy release rates
G for the crack tips located along the FPZ is equal to the fracture energy G;.
The average is defined as

1 ay+26

Glen) = 5 wlple))G(e)de = / w(p)Glalp))dp (9.94)

where w(p) is the chosen weight function, normalized so that fol w(p)dp = 1.
For the sake of simplicity, it will be assumed from now on that w(p) = 1. G
may be expressed in terms of the dimensionless energy release rate function
o(@) = (k)] 2

G = (o}/E') Dyg(e) (9.95)

The present hypothesis is intuitive. Its only justification is that, as will be
seen, it yields for all the three cases essentially the same scaling laws, as well
as the same kind geometry effect through function k(a), as does the smeared
tip method.

This is not completely true for the method of equivalent LEFM with an
effective sharp crack tip in the middle of the fracture process zone (BaZant and
Kazemi 1991b; Bazant and Planas 1998), nor for the asymptotic analysis based
on an R-curve ( BaZant 1997a; BaZant and Planas 1998), which both yield no
size effect for Case 3, contrary to the smeared-tip method.

Case 1: ko > 0 and kj > 0; this is the case with FPZ attached to the
tip of the notch (or stress-free crack). The dimensionless notch length is again
denoted as a;/D = a;, and for geometrically similar structures of different
sizes, oy = const. We again approximate g{«) by the first two terms of its
Taylor series expansion about ay, i.e., set

g(a) = go + go(a — ai) (9.96)

Substituting this and (9.95) into (9.94), one can easily integrate, with the result:
2 2 1 2
s_on Do 2 gily

9=, (91 DtT2De (9.97)

Setting G = G ¢ and solving for on, one gets the classical energetic size effect

law (9.40): s
E'Gy ( D >_
== 14 — 9.98
M\ FaD = Do 099
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in which the expressions for g9 and Dy are equivalent to those obtained in
{9.41) by the smeared tip method except for factors depending on integrals I3
and I3 (i.e., on the SIF density profile). In particular, these expressions imply
the same geometry dependence of o¢ and Dy.

Case 2: g; = 0 and g} > 0; this is the case of failures at fracture inttiation,
as in the modulus of rupture test. The first two nonzero terms of the Taylor
series expansion are:

g(@) = gi(a—a1) + 397 (e — a1)® (9.99)

Substituting this into (9.95) and then (9.94), one obtains

- 2 D? g 4¢3 4 8c3
oD (0% 0 TG :
9= (2 D26 D3) (6-100)

Setting this equal to Gy and solving for oy, one gets the same formula as (9.63)
obtained under the hypothesis of a fixed SIF profile:

-1/2 -1/2
2—g}) ¢ 2D, \ ™
on =/ E'Gy (g'lcf _ X 3‘(]1 —Df—) = Ooo (1 - Tb> (9.101)

where D, is a constant expressed similarly as in (9.64) for the smeared-tip
approach except for a difference in the coefficients involving the integrals I3
and Iy, which express the effect of the SIF distribution profile. For the same
reason as before, g7 has been replaced by (—g¢/') because typically g7 is negative
and if it is positive there is no size effect.

To achieve proper asymptotic matching, which requires a monotonic size
effect law and a finite oy for D — 0, the last formula is replaced by the

formula y
D r
ON = oo (1 + "—D”) (9.102)

which gives, for any positive r value, the same first two terms of the power
series expansion of o/ D in terms of §; Dy is expressed similarly as in (9.64).

Case 3: g9 > 0,94 = 0,9 > 0; this is the case of failure at negative-
positive geometry transition, after the FPZ has moved away from notch tip
and a large traction-free crack has formed. Unlike Cases 1 and 2, the location
ay of the beginning of FPZ is for this case unknown and must be determined
from the condition of maximum load (or stability limit), that is, doy /dag = 0.
According to (9.95) with (9.94) and the condition G = Gy,

o428
o = —D—/ g{a)de (9.103)
N QE'Gfo a
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The maximum load condition can be rewritten as doy’/de; = 0, and upon
differentiating the integral it is reduced to

glor +20) —g(ag) =0 (9.104)

This condition has the same form as (9.70), and its analysis is similar. Writing
the Taylor series expansion about the crack tip location ag for D — o0, i.e.

glay +20) = g(ao) + g6 (a — ao)* + ... (9.105)

for @ = a1 and & = a + 28, and substituting these expansions into (9.104), one
concludes that

ag—a;=0+0(6%) ~0 (9.106)
So, with only a third order error, the LEFM crack tip is at the middle of FPZ,

same as deduced from the smeared tip method. Substituting this and (9.104)
into (9.94), one can easily integrate, with the result:

2 2 " 3
5 oy D 2c; g4 16¢y
G=3me (90“5 i (9:107)

Setting G = G + and solving for oy, one gets the size effect formula

~1/2
" o2
on =/ E'Gy (goD-l— 260_‘[%) (9.108)

Now we note that this is equivalent to (9.73), and a similar transformation needs
to be carried out to obtain a monotonic size effect law and achieve asymptotic
matching. The result is

D D\"YV?
= —_— > .

ON o9 (D-|— D; -+ Dg) (D] e DQ) (9 109)
This is the same as equation (9.77) obtained under the hypothesis of a fixed
SIF profile except that the expressions for Dy and Dy have different coefficients
as they do not involve the integrals I; and Is.

9.7. Broad-Range Size Effect Law and Its Dirichlet Series
Expansion

The simple size effect law in (9.40) for the basic Case 1 is normally adequate
for a size range up to about 1:20, which suffices for most structural engineer-
ing applications. The generalized size effect law (9.43) has been shown to give
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excellent approximation of the numerical results obtained by Hillerborg with
the cohesive crack model for the size range of 1:250 (Bazant 1985b). How-
ever, only the first term of the large-size power series expansion of that law in
1/D is correct. The following broad-range size effect law for Case 1, which is
a generalization of formula (9.46), is capable of approximating the large-size
asymptotic behavior up to order n +2 in 1/D;

N
ok = B' Y Ta (1—e70n/P) (9.110)
n=1

which has the asymptotic expansion:

E S2  S3
2 _
oNn = B— (51—5'4'-55—) (9111)
with the notations:
E 1 Z 2 1 Z 3
Sl = I‘nDn, 52 = -é—! FﬂDna 53 = ﬁ FnD", ere (9.112)

Here Dy, Ds,....Dn, Ty, T, ...T'n are constants; Dy, Do, ...Dy are positive and
may be assumed to form an increasing sequence. It is evident that this formula
also preserves the finiteness of limag for D — 0.

From the foregoing expansion one can further obtain:

ang = Ao+%+%§—+... (9.113)
in which . s, 2 5
A=z, Azzgiz-, Aazglg-—s—%,... (9.114)
Case 1 is obviously characterized by
Ae>0, A1 >0 (Case 1) (9.115)

Formula (9.110) has been deliberately structured so that the expression for
0%, D/E' be the well-known Dirichlet series (called also the Prony series). This
series is the real counterpart of the Fourier series and is known to be generally
effective for modeling broad-range decay, for example the creep or relaxation
functions of linear viscoelasticity where the use of this series is well understood.
It is advantageous to transplant this knowledge to our problem.

Progressively increasing the number of terms in the broad-range size effect
law (9.110), one obtains the ‘cascading’ bi-logarithmic size effect plot shown in
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A

Log oy

LogD

Figure 9.8: Concept of cascading size effect for a very broad size range

Fig. 9.8, in which the individual terms of (9.110) terminate with progressively
shifted asymptotes of slope —1/2. Each n-th asymptote is associated with a
progressively higher fracture energy G;,. Noting that o = E'G/g(ao)D,
equating this to (9.110), setting G = G n, and renaming n as m and N as n,
we get

n
Gin=9*(20) > TmDm (9.116)
m=1
Gy,n is the fracture energy associated with the n-th asymptote of slope —1/2
in Fig. 9.8, and the equation of this asymptote is

E'Gyn
7V =\ gfa0)D (6-117)

Using the cohesive crack model to obtain very accurate o values for a very
broad size range such as 1:10%, and fitting these values with formula (9.110),
one could thus obtain a set of Gy, values. This set may be regarded as a

fracture energy spectrum of the cohesive crack model defined by a certain
softening stress-displacement curve.

The first fracture energy, Gy = Gy 1, corresponds to the area under the
initial tangent (Fig. 9.1} of the softening stress-displacement curve (Bazant
and Planas 1998, BaZzant and Li 1997). This is known to suffice for predicting
with the cohesive crack model the maximum loads of structures for a size range
of about 1:20 (which covers most practical cases in structural engineering, and
certainly the range of laboratory testing).
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If the size range is extended much farther, say up to 1:200, then more of
the area of the softening curve of the cohesive crack model, except for a remote
tail of the curve, must be expected to matter for the maximum load prediction.
This area may then be associated with the fracture energy Gy,,.

If the size range is extended still much farther and many terms are included,
the last asymptote should correspond to a fracture energy that coincides with
with the fracture energy Gr determined by the work-of-fracture method from
the area under the complete load-displacement curve of a notched beam, in-
cluding its long tail, as introduced for concrete by Hillerborg. It is well known
that for concrete Gp is about 2.5 times larger than the fracture energy Gy
determined by the size effect method using size ranges between 1:4 and 1:10.

The Dirichlet series in Eq. (9.110) resembles the retardation spectrum in
linear viscoelasticity. In analogy to what is known from the theory of retar-
dation spectrum, one may expect the problem of identification of D, from a
given size effect curve to be ill-conditioned. This means that the D, values
would need to be chosen, within certain constraints, just as the discrete re-
tardation times of a viscoelastic material with a broad retardation spectrum
must be chosen, within certain constraints. Thus the discrete fracture energy
spectrum, defined as the plot of Gy 1,Gy 2,...Gy N versus the D, values, will
be nonunique, as it will depend on the choice of Dy, D4, ...Dy in the foregoing
formulae.

However, similar to the theory of a continuous retardation spectrum in linear
viscoelasticity, one could consider infinitely closely spaced D,, values and thus
generalize (9.110) to a smooth continuous spectrum of fracture energies (which
converts formula (9.110) to Laplace transform). This spectrum would then be
unique.

With sufficiently many terms, the Dirichlet series can represent any decaying
phenomena as closely as desired. Realizing that all the spring-dashpot models
of linear viscoelasticity are equivalent to the Kelvin chain corresponding to
the Dirichlet series, one must conclude that it would make little sense to look
for other formulae for the broad-range size effect. Although infinitely other
formulae exist, they must all be equivalent to (9.110).

Formula {9.63) or (9.65) for Case 2 may be generalized in terms of the
Dirichlet series by introducing the expansion:

N
ON = 0o + Z Sn (1 - e'H"/D) (Case 2) (9.118)

n=1

where H, is an increasing sequence of positive constants.

This formula may also be written in the form (9.110) in which ', are such
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that
Ap=0, AjfA3<0 (Case 2) (9.119)

Formula (9.77) for Case 3, too, may be generalized in terms of Dirichlet
series and can be written in the form of (9.111) provided that

A >0, A;=0, A3<0 (Case 3) (9.120)

Should the size effect laws (9.40), (9.63) and (9.77) for size range up to about
1:20 be discarded and replaced by the first term of the Dirichlet series (9.110)or
(9.118)?7 They should not, because the transition of a single exponential term
between the small and large size asymptotic behaviors is too abrupt and the

size range would have to be further narrowed. At least two terms of the series
would be needed.

The Dirichlet series expansion in (9.110) is analogous to the retardation
spectrum of Kelvin chain in viscoelasticity. There exists another Dirichlet
series expansion analogous to the relaxation spectrum of Maxwell chain in
viscoelasticity:

1 1 &
- - -D./D
25 = 7D, gl Bre (9.121)
_ 1 St Ss Ss3
= 0’—(2)—1—); (So—b-'l'ﬁ—ﬁg-i-...) (9.122)
where Bj, B,, ... are constants and
So=3Y Ba, Si=) BnDn, (9.123)
1 1
Sy = 523,3133,, Sz = iEB,,D;‘;, (9.124)
n n

The first two terms of this expansion, if both non-zero, yield again the classical
size effect law (9.40) (Case 1).

While (9.110) appears suited for up-scale extrapolations (e.g., from labora-
tory specimens of concrete, rock or ice to dam failure, mountain slide or Arctic
ice sheet break-up), (9.121) appears suited for down-scale extrapolations (e.g.,
from laboratory fracture specimens of silicon to microelectronic or MEMS com-
ponents which might behave in a non-brittle manner). A different and in some
respects more convenient form of the broad-range size effect law is given in
BaZant (1999b, 2001a) and discussed in detail in Bazant (2001d) .
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9.8. Size Effect Law Anchored in Both Small and Large Size
Asymptotics

In consequence of sections 9.4, 9.5 and 2.12, the quasibrittle size effect must
have the following small and large size asymptotics:

For D - 0: D
oy x1-— D, (9.125)
For D — o0 :
o Case 1: . D
o
ON 75 (l ~35p + ) (9.126)
o Case 2: D
on & 14+ =+ .. (9.127)
D
e Case 3: )
1 D,

Here Dy, D,, Dy, D, = constants, D, = DyD;/2, D, = rDp, and x is the
proportionality sign. Note that cases 1 and 3 are verified by the following

expansions:
-1/2 -1/2
(+5) =V (+3)
Dy D D

Dyq Dy

= \/ D (1— 5p - ) (9.129)

Dy N 2 -1/2 B _D_O - DoDy -1/2

D+D;, Dy = VD D*(1+ Dy/D)

D D -1/2

_ Do 14 DoDr oDy 1D D, 4.
D D2 D

_ /Do Do Dy

=V (1— ETrR +> (9.130)

From now on, consider exclusively Case 1. As shown in Sec. 2.12, the
first two terms of not only the large-size, but also the small-size, asymptotic
expansions can be numerically predicted from the cohesive crack model using
elastic analysis only (e.g., elastic finite element analysis). To match these terms,
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an asymptotic matching formula must contain at least four free parameters.
One such formula is:

-1/2
'I'TllD2
= D .
oN (P0+P1 +m0—D ) (9.131)
where
—s 1 209,
mo:Po 0 mi=p1-s1, po=—3, P1=- ohg (9.132)
1 gocy go
_ 1 _ - 1
W= =B 1= T (9.133)

To verify that Eq. (9.131) has the correct asymptotics, note that, for small
enough D:

- -2 -
on ~ (po + p1D) V2 = [of (1~ 2‘7?V,D/U?V)] 12
~ o (1 +0% D/ed) =% +0%'D (9.134)
and for large enough D:
po—so \
-2
o = +pD - -$)D|1—- ———————
N po+p1D = (p1—s1) ( o _SI)D)
Po — So
= D — -51)D |14+ ——7F
pot Pl = (p1 =) ( (p1 —Sl)D)
= po+p1D—piD+s1D—po+so
_ _ 90¢s + 90D
= sp+s5D = W (9135)

Eq. (9.131) is applicable only if the asymptotes 01'(,2 = po+ p1 D and 0'1'\',2 =
sg + 81D intersect at positive D. This gives for the validity of (9.131) the
condition (p1 — s1)(po — s0) < 0, which seems to be satisfied for the realistic
situations.

Note that formula (9.131) captures not only the LEFM-type shape depen-
dence [through g(ag) and ¢’(ap)], which dominates for large sizes, but also the
plasticity-like shape dependence [through o% and a?v’], which dominates for
small sizes. There is a gradual transition from near-fracture to near-plasticity
shape dependence as the size is diminished.

The broad-range size effect law discussed in section 9.7 has also enough
parameters to match both the small and large size asymptotics, but is not well
suited for that purpose because it has no data fitting flexibility for D less than
about 0.3Dg. That law extends the size effect to sizes orders of magnitude



New Asymptotic Scaling Analysis of Cohesive Crack Model 215

larger than Dy, while Eq. (9.131) extends the size effect to sizes orders of
magnitude smaller than Dy.

An ongoing study by Q. Yu at Northwestern University has verified that Eq.
(9.131) can match the computed size effect curves of the cohesive crack model
for various fracture specimen geometries so closely that a visual distinction in
a graph is impossible. Since the maximum load for cohesive crack model at
D — 0 depends only on the tensile strength f{, it seems to be possible to
calibrate the size effect law, (and thus identify the values of G and ¢;) merely
by measuring the load capacity of notched and unnotched specimens of the
same size and shape. The tensioned prism with a one-sided notch seems to be
particularly attractive as a test specimen. The reason is that the size effect
computed for this prism from the cohesive crack model happens to conform
practically exactly to the classical size effect law (i.e., the relations sq = pg and
s; = py happen to hold), which means that the zero-size strength limit of the
size effect law agrees accurately with the measured direct tensile strength.

Eq. (9.131) offers the tantalizing prospect of being able to dispense with
nonlinear structural analysis according to the cohesive crack model (or the
crack band model) whenever the crack path is known in advance. It should
suffice to use a linear finite element code to determine the small and large size
asymptotic properties for the given structure geometry, and then ‘interpolate’
for any size according to (9.131).

9.9. Recapitulation

1. As an alternative to the standard form of the cohesive crack model char-
acterized by a unique stress-displacement relation, a nonstandard form
characterized by a fixed density profile of the stress-intensity factor (SIF)
in the sense of the smeared-tip superposition method may be used. This
new form facilitates analytical solutions.

2. Asymptotically for large enough structures, both forms are equivalent.
The stress-displacement law can be obtained from a given profile of SIF
density by solving an integral equation of the first kind with a weakly
singular kernel, and vice versa.

3. It is shown that, for the nonstandard form of the cohesive crack model,
the laws for the size effect, including their dependence on structure ge-
ometry, are essentially the same as for the standard form. This provides
justification for the proposed nonstandard form.

4. The asymptotic large-size scaling of the nonstandard model for structures
with a notch or preexisting stress-free crack is essentially the same as that
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established for the standard model by Planas and Elices (1992, 1993),
but it is easier to establish.

. Matching the large size asymptotic properties to the small size asymptotic

properties derived from a compliance formulation leads to approximate
size effect formulae for the entire size range.

. In the nonstandard cohesive crack model, three cases of failure, leading to

three different laws for the size effect, must be distinguished, depending
on the location of the fracture process zone (FPZ) at maximum load:

e Case 1. When the FPZ is attached to the tip of a notch or pre-
existing stress-free crack, one has the classical deterministic size
effect law proposed by BaZant (1983, 1984a), representing in the
bi-logarithmic plot a smooth transition from a horizontal asymptote
to an asymptote of downward slope —1/2.

e Case 2. When the FPZ is attached to a smooth body surface (as
in the modulus of rupture test of unnotched beams), the size effect
plot represents a transition from a downward inclined asymptote to
a horizontal one, with a finite large-size asymptotic value.

e Case 3. When the FPZ is detached from a notch or body surface—a
failure type that can happen only when a negative fracture geometry
is changing to positive—the size effect is similar as in Case 1 but
exhibits a less gradual transition from the horizontal asymptote the
asymptote of slope —1/2.

The laws for Cases 1 and 2 coincide with those derived previously in
several other ways—Dby simplified energy release analysis (BaZant 1984a),
equivalent LEFM (BaZant and Kazemi 1991) and J-integral expansion
(BaZant 1998a), and verified by tests and numerical simulations. With
the nonstandard model, the law for Case 3 is different; but it has the same
large-size and small-size asymptotes, its only difference from the classical
law for Case 1 being a more abrupt transition between the asymptotes.

. The scaling laws obtained for the nonstandard model display only small

differences compared to the standard model: (1) for Case 1, the tran-
sitional size depends on structure geometry not only through the SIF
of LEFM but also through the factor of the second-order near-tip stress
field, and (2) for Case 3 one gets a size effect law of the same form as for
Case 1 but with a transitional size whose shape dependence is given not
by the SIF of LEFM but by the aforementioned factor.

In Case 3, the crack length ¢p at maximum load is a priort unknown.
In previous works it has been tacitly assumed that the ag—values in geo-
metrically similar structures of different sizes D are geometrically similar.



New Asymptotic Scaling Analysis of Cohesive Crack Model 217

This assumption is here proven correct, except for an error third-order
small in 1/D.

9. The size effect laws for Cases 1, 2 and 3, based on a fixed K-profile,
capture also the effect of structure geometry (shape) on the size effect
law.

10. As the simplest approach, it is further proposed to introduce a model
called the nonlocal LEFM, in which the energy release rate of the struc-
ture is assumed to be the average over the FPZ of the LEFM energy
release rates. The nonlocal LEFM is shown to yield the same asymptotic
scaling properties and shape effects as the cohesive crack model.

11. To characterize the size effect for a broad size range exceeding about
1:20, an asymptotic Dirichlet series expansion of the size effect law may
be used. The terms of the series may be associated with progressively
increasing fracture energy values associated with larger and larger scales.

Note: Since the cohesive crack model can be seen as the localization limit
of the nonlocal continuum damage mechanics and the crack band model, the
same three size effect laws should approximately apply for these models.
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Chapter 10

Size Effect at Continuum Limit on
Approach to Atomic Lattice Scale

The recent emphasis of continuum mechanics studies on the transition from
continuum to atomic lattice models implies interesting questions of scaling. Al-
though the subject is not pertinent to quasibrittle and heterogeneous materials,
the main focus of this book, a brief discussion (based on BaZant 2001b) will
be presented in this section because of methodological similarities in scaling,
because of similarity of the objective (which is the strength or load capacity of
structures), and because of the importance of the subject in nano-technology.

10.1. Scaling of Dislocation Based Strain-Gradient Plasticity

Building on the initial ideas of Toupin (1962) and Mindlin (1965}, an im-
pressive series of progressively refined studies extended to microscale the theory
of metal plasticity (Fleck and Hutchinson 1993, 1997, Hutchinson 1997; Gao
and Huang 2000). Careful physical arguments based on the theory of disloca-
tions led Gao et al. (1999a,b) and Huang et al. {2000) to derive the following
constitutive relation:

2
gix = Kéixenn + 3—:€§k (10.1)
K ol
Tk = I (Engvk + 05k + %\I’{jk) (10.2)

where )
Dk = - (Aije = Tijk), Wik = fle)f' ()i, (10.3)
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a) b),"' l
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Figure 10.1: Illustration of the difference between (b) statistically stored dis-
locations and (e) geometrically necessary dislocations; (a,d) show the initial
states of square lattices with 56 and 63 atoms, respectively, and (c) shows that
for a homogeneous deformation no dislocations are necessary

and

€=y 3eiicli 1= 3Tk (10.4)

Here K = elastic bulk modulus; €, = € — %6,‘1;6,", = deviatoric strains,
€k = -%(ui,k + ug ;) = strains; €,7 = 2nd and 3rd order tensors of components
€7, Mijk; Mijk = Ux,qij = displacement curvature (or twist), reflecting the effect of
geometrically necessary dislocations (Fig. 10.1e) [the strain gradient is €5, =
%(ﬂjki + nikj)]; ngk = volumetric (hydrostatic) part of 7;jx; 7ijx = third-order
stresses work-conjugate to 7;;x (analogous to Cosserat’s couple stresses). While
Gao et al. (1999a,b) characterize the plastic constitutive properties by the semi-
empirical relation o = oy +/f2(¢) + In, we will find it interesting to consider a
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more general relation:
o = oy [f(e) + (In)")/* (10.5)

with positive exponents p and ¢ (the case p = 1,¢ = 2 corresponds to Gao et
al.); oy = yield stress, &, ¢ = stress and strain intensities; n = effective strain
gradient proportional to the density of geometrically stored dislocations (i.e., to
lattice curvature or twist); f(€) = classical plastic hardening function, reflecting
the effect of statistically stored dislocations; [ = Agb; I, = Acb = size of the so-
called ‘mesoscale cell’, which is the material length characterizing the transition
from standard to gradient plasticity and represents the minimum volume on
which the macroscopic deformation contributions of the geometrically necessary
dislocations (Fig. 10.1le) may be smoothed by a continuum; b = magnitude of
Burger’s vector of edge dislocation (e.g., 0.255 nm for copper); Ag, Ae = positive
dimensionless material characteristics expressed in terms of Taylor factor, Nye
factor and the ratio of elastic shear modulus to the dislocation reference stress
(Ae & 20000 for copper, and is generally expected to be of the order of 10* or
10%); and (Gao et al. 1999a,b)

Aije = 75[mijh + meji + Meij — 5Onpps + 8inmppi)l, (10.6)
Wik = [€xNjmn + €kNimn — 3(0inejp + 8;k€ip) TlpmnJ€mn /54> (10.7)
Wik = 3(0iknipp + 6jkipp) (10.8)

According to the principle of virtual work, the field equations of equilibrium
are
Giki — Tijk,ij + fe =0 (10.9)

Scaling:

Similarly to (1.8) and (1.9) in Section 1.7, we now again introduce the
dimensionless variables (labeled by an overbar):

r; = :L','/D, U = u,-/D, E,'j = €44,
ik = migeD, €=¢, fj=nD (10.10)
Gix = Oi/0y, Tijk = Tije/(ovle),

& = ofoy, fx=fD/on (10.11)

While the derivatives with respect to z; are denoted by subscript i preceded
by a comma, the derivatives with respect to dimensionless coordinates will be
denoted (similar to Sec. 1.7) as §; = 8/0Z;. To transform the field equations
into dimensionless coordinates, we first note that, since ngk, Aiji and I, are
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defined by Gao et al. (2000a, b) as homogeneous functions of degree 1 of tensors
7 and €, they transform as n,Jk = mjk/D A,Jk = Aijx/D, H,Jk = Iijx/D, and
50 @ik = ”k/D Viik = Yiji/D; Aijk, ,]k,CP,Jk,\II,Jk and n,]k are given by
the same expressions as (10.3), (10.6)—(10.8) except that all the arguments are
replaced by the dimensionless ones. We now substitute (10.1) and (10.2) into
(10.9) and thus, using (10.10) and noting that 8/dz; = (1/D)d;, we obtain the
following dimensionless stresses and third-order stresses

K e, T (ALY

Oix = ;;(szkfnn + 7 Gk 0= [f €+ ( D n) (10.12)
- Ae [ K 1-

Tijk = D (60’ qzjk +U¢l]k + E\I’z]k) (10.13)

where we set A; = Ao/Ae. The field equations of equilibrium transform as
~ le - ON ¢
0i0ik — Baiaj‘n‘jk + — fi=0 (10.14)
oy

To avoid struggling with the formulation of the boundary conditions, con-
sider first that they are homogeneous, i.e., the applied surface tractions and
applied couple stresses vanish at all parts of the boundary where the displace-
ments are not fixed as 0. All the loading characterized by ox is applied as
body forces fx, and on is considered as the parameter of these forces, varying
proportionally. Then the transformed boundary conditions are also homoge-
neous. For D/l — oo, 7;j; vanishes and all the equations reduce, as required,
to the standard field equations of equilibrium on the macroscale.

For D/l — 0, on the other hand, one has & ~ (fA;l/D)?/9. After substi-
tuting (10.12) and (10.13) into (10.14), we obtain the differential equations of
equilibrium in the form:

K Ml \ P9
0; [E“slkfnn + E ( ll) ) |k

I, 2 K - /\llen rlq D plq B
- (’b‘) 616_7 [E’ni‘jk + D <I>1_]k + PR \I’uk

=N g (10.15)
oy

Now we multiply this equation by (D/l¢)?**?/9 and take the limit of the left-
hand size for D — 0. This leads to the following asymptotic form of the field
equations:

8:0; (% & : ith aiow (D s 10.16
ij("?"ijk)—ka: wi X =X E(Z) (10.16)
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Since D is absent from the above field equation (and from the boundary con-
ditions, too, because they are homogeneous), the dimensionless displacement
field as well as parameter xy must be size independent. Thus we obtain the
following small-size asymptotic scaling law for the dislocation based gradient
plasticity:

+E

2 q
on = oy xN/T (%) (10.17)

(Bazant 2001b) where the exponent 2 4+ p/¢ > 2. According to Gao et al’s
theory, p/g¢ = 1/2, and so oy « D~%? (an exception is the case of pure
bending, for which on x D312 because &5 =0).

As for the loading by applied surface tractions and applied couple stresses,
one may consider them replaced by body forces fr acting within a surface
layer of a very small thickness § initially proportional to D. In that case the
preceding analysis applies, and the limit process § — 0 proves very simply that
(10.17) must also be valid for such loading.

The asymptotic size effect given by (10.17) is curiously strong. It is much
stronger than that for similar LEFM cracks on the macroscale, which is on
D-/2,

Definition of corresponding nominal stresses:

When the structure is not at maximum load but is hardening, one must
decide which are the on values that are comparable and should be described
by the scaling law (10.17). In the small-size asymptotic field equation (10.18), if
the value of (on /oy )(D/l)>*?/9 is given, then parameter ¥ is a constant, and
(if the problem is physically well posed) the partial differential equation (10.17)
with homogeneous boundary conditions must have one solution g, with the
corresponding &k, fxi;. Hence, the dimensionless deformation field is the same
for all sizes D. It follows that the oy values to which the scaling law (10.17)
applies are those are those corresponding to the same norm of the relative
(dimensionless) displacement, || @4 ||. The norm may for example be defined
as the angle of twist of a cylinder, 6; or the maximum relative displacement
Umar 10 the body; or the maximum strain in the body; or the relative depth of
indentation h = h/D; or the relative displacement at any homologous points
in the body.

The asymptotic field equation for D/l. = oo is 8iFix + fxén/oy = 0, in
which G = (K/oy)dik€nn+(6/€)E), and & = f(€). Elimination of the stresses
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yields the field equation
K . fe). ON
oy ik 0i€nn 0 (—g—fﬁk) + ;y—fk =0 (10.18)

Now again, if the ratio on /oy is given, then (for a problem properly posed
physically) this partial differential equation with homogeneous boundary con-
ditions must have one solution &;;, corresponding to one field 4. It follows
that the comparable oy values for different sizes are those corresponding to
the same norm of relative displacement, || @ ||.

Strange small-scale asymptotic properties of existing theory:

By virtue of the fact that the hardening function f(¢) disappears from the
from the field equation when it is reduced to its asymptotic form (10.16), it
turns out that, for the theory of Gao et al. (1999}, it is easy to determine the
load-deflection curve when the displacement distribution (or relative displace-
ment profile) remains constant during the loading process (this is for example
typical of the pure torsion test of a long circular fiber, in which, by arguments
of symmetry, the tangential displacements must vary linearly along every ra-
dius). For such loading, all the dimensionless displacements 4y, at all the points
in a structure of arbitrary but fixed geometry increase in proportion to a pa-
rameter w such that 4 = wiy where @y is not only independent of D but also
invariable during the proportional loading process.

Noting that 7 and ®;; are homogeneous functions of degree 1 of both  and
€, we may write for such deformation behavior 7 = w#, ®;;x = w@ijk where 7}
and éijk are functions of dimensionless coordinates that do not change during
the loading process at any small enough size D. Therefore, the asymptotic field
equation (10.16) may be rewritten as

0:0; (flfli ‘ih'jk) = xfr, with fi = w (+8) f, (10.19)

It follows from the field equation that if the relative displacement distribution
(profile) 4y is constant during the loading process, as in torsion of a cylinder,
then the distribution f; must be constant as well.

At the small-size limit we also have f, = fxo% /oy, and using (10.19) we
see that )
fi = w*?(fio} D) (10.20)

Since the expression in parenthesis is constant during loading, we must con-
clude that, for the small-size limit and for any loading with a constant relative
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displacement profile (as in torsion of a cylinder), the load-deflection curve is a

power curve of exponent 1+ (p/q) > 1; for Gao et al.’s theory, the exponent is
3/2 (Fig. 10.2).

Now it is hard to escape noticing that such a behavior is strange. The
tangential stiffness of the structure is at infinitely small deflections zero, which
is physically hard to accept, and then it increases with increasing deflection.
An increase of tangential stiffness with increasing displacement is seen in lock-
ing materials (such as rubber or cellular materials), but would be queer as a
property attributed to metals, even at the small-size continuum limit.

We included arbitrary positive exponents p and ¢ in the definition of effective
stress in order to check whether a change of p and ¢ could remedy this problem.
We see that the exponent of the power-law load-deflection curve can be made as
close to 1 as desired but cannot be exactly 1. So a complete remedy cannot be
achieved by modifying Gao et al. (1999a,b) semi-empirical definition of stress
intensity o.

Thus it seems that elimination of the strange asymptotic behavior of Gao et
al.’s (1999) theory might perhaps necessitate some fundamental improvement
of the theory. The D-values for which the small-size asymptotic behavior is
approached are, of course, below the range of the theory. However, it is always
preferable that all the asymptotic properties of a theory be reasonable.

Approzimate asymptotic-matehing formula for transitional size
effect:

The theory of Gao et al. (1999a,b) characterizes the deviation from the
classical plasticity as the structure size D becomes too small. But this formu-
lation has only one-sided asymptotic support {on the scale of log D). Ideally,
one should seek a theory with a two-sided asymptotic support, having also real-
istic properties for the small-scale limit. Smooth formulae with such two-sided
asymptotic support are generally called the asymptotic matching. Such for-
mulae are applicable over the entire size range and have the potential of being
more accurate than formulae with one-sided asymptotic support.

Even though the small-size asymptotic behavior of Gao et al.’s (1999a,b)
theory seems questionable, we may use it to illustrate the construction of a
simple asymptotic matching formula. Based on the established asymptotic
properties, the broad-range transitional scaling law having both the classical
macroscale plasticity and the gradient plasticity on the microscale as its asymp-
totes should be approximately describable by a smooth function approaching
(10.17) for D/l — 0 and oy = const. for D/l, — co. This can be achieved by



226 Scaling of Structural Strength

several simple formulae, and one of them is

D 2s/r /2 p
0
ON = 0y 1+<—) , §=2+4 =, 10.21
[ ) ] p (10.21)
- r/q — oo Us
09 = g0y X )\1 y Do = g 15 (10.22)

where aq and r are dimensionless constants which need to be determined either
experimentally or by a numerical solution of the boundary value problem of
gradient plasticity for an intermediate size D. In the plot of logon versus
log D, the transitional size Dy represents the intersection of the straight large-
size and small-size asymptotes. A similar approach can be used to construct
an asymptotic matching formula once an improved theory with a more realistic
small-size asymptotic behavior is formulated.

Tests of Micro-Torsion and Micro-Hardness:

One case for which an explicit formula in terms of an integral has been
obtained is the circular fiber of radius D subjected to torque T'; see Eq. 35 in
Huang et al. (1999). After transformation to dimensionless coordinates, that
formula (for p = 1 and ¢ = 1/2) reads:

T ok [Yfa(, B2 FSIGIHG)
ON =3 =Yg A {E(P +12D2)+ 2 D% 5 }PdP (10.23)

where kK = 7 = kD = dimensionless specific angle of twist, x = actual specific
angle of twist (rotation angle per unit length of fiber). By taking the limit of
onD®%? for D — 0, with on given by the foregoing expression, one may be
readily check that the small-size asymptotic form of this formula is

1
oN = o¥ (rcf’“ 12/l % / :é dp) D5/2 (10.24)
0

This verifies our previous result (10.17).

By optimal fitting of this formula to several numerical values of (10.21)
one could obtain parameters Dy, oy and r appropriate for the case of torsion.
Gao et al. (1999b, Fig. 6) compared this formula to torsional tests of fibers
of diameters ranging from 12 pm to 170 gm. They achieved good agreement
{except that the predicted stress-deformation curve for the smallest size was
rising at about double the slope of the data, which might be an indication of a
transition to the locking behavior that characterizes the small scale asymptotic
behavior according to (10.17)).
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Log on

Figure 10.2: (a) Size effect of the existing dislocation-based theory of strain
gradient plasticity, and (b) strange load-deflection curve for the small-size limit
implied by the existing dislocation-based theory of gradient plasticity for bodies
deforming with a constant relative displacement profile

Gao et al. (1999b) have further shown that the test results for Rockwell
micro-hardness tests of copper can be well approximated as oy = Ho+/1+ h*/D
(Fig. 10.2a) where Hg and h* are constants and oy now stands for the hardness
(stress average over the indentation area, denoted by Gao as H) and D is taken
as the depth of penetration of the diamond cone (denoted by Gao as k). This
test has the advantage that the situations at different depth of penetration of
the cone are self-similar.

For small D, the foregoing formula has the asymptotic behavior on =~
v/ h*/D, which apparently contradicts our results in (10.17). A closer look,
however, suggests that there need not be any contradiction. The test data
used were of a very limited size range, ranging from 0.15 gm to 6 pm. This
testing range is quite narrow, given that the transition from the large size to
the small size asymptotic behavior might be spread over a much broader range
of D, perhaps from from 0.005 ym to 100 pm. In the plot of logoy versus
log D, the asymptotic matching formula has a slope gradually decreasing from
-5/2 (if p/q = 1/2) at D = 0.005 pm to 0 at D = 100 pm. Within the afore-
mentioned range of the micro-hardness tests of copper, the curve of the formula
is almost straight and has the slope of about —1/2 (Fig. 10.2a).
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Conclusion:

The existing theory of gradient plasticity has only a one-sided asymptotic
support, limited to the large-size asymptotic behavior. Its small-size asymp-
totic behavior, characterized by locking, seems unreasonable. Since it is de-
sirable to refine a theory so as to achieve a two-sided asymptotic support, the
present theory should be modified and made more consistent with asymptotic
limits in the future.



Chapter 11

Future Perspectives

To close on a philosophical note, consider the gradual expansion of human
knowledge (Fig. 11.1). What is known may be imagined to form a circle. The
unknown is what lies outside. What can be discovered at any given stage of
history is only what is in contact with the circle. Questions about what lies
farther into the future, not in contact with the circle, cannot even be raised.

In our field, the problem of strength of elastic frames was not even posed
before Hooke. It started to be tackled in the middle of the 19th century and
has been for the most part solved around 1960.

One of the most formidable problems in physics and mathematics has been
that of turbulent flow. It has occupied the best minds for over a century and,
as experts say, complete understanding is not yet in sight. The problem of
scaling in quasibrittle materials is a part of damage mechanics, in which serious

Damage
mechanics

Turbulence
Unknown

Figure 11.1: Damage mechanics in the perspective of the expansion of human
knowledge



230

Scaling of Structural Strength

research started around 1960. Although much has been learned, it appears that
damage mechanics is a formidable problem whose difficulty may be of the same
dimension as turbulence. It will take a long time to resolve completely.

For the immediate future—and only such a view is possible now, the follow- .
ing is a sample of research directions that may be identified as necessary and
potentially profitable:

1.
2.

10.

11.

12.

13.

Micromechanical basis of softening damage.

Physically justified nonlocal model (based on the interactions of cracks
and inclusions).

. Scaling of brittle compression fracture and shear fracture.
. Scaling of fracture at interfaces (bond rupture).

. Rate and load duration effects on scaling, and size effects in long-time

fracture or fatigue.

. Softening damage and scaling for large strains.

. Size effect on ductility of softening structures, and on their energy ab-

sorption capability.

. Acquisition of size effect test data for all kinds of quasibrittle materials,

many of them high-tech materials (see the Introduction), and data for
real structures of various types.

. Statistical characteristics of the size effect due to energy release and stress

redistribution during fracture.

Scaling problems in geophysics, e.g., earthquake prediction or ocean ice
dynamics.

Downsize extrapolation of size effect into a range of reduced brittleness,
which is of interest for miniature electronic components and microme-
chanical devices.

Incorporation of size effect into design procedures and code recommen-
dations for concrete structures, geotechnical structures, fiber composites
(e.g. for aircrafts and ships), nuclear power plants, ocean oil platforms,
mining and drilling technology {especially rockburst and borehole break-
out}, etc.

Incorporation of extreme value statistics and the scaling of loads giving
a specified extremely low probability of failure, such as 10=7 (BaZant
2001e).
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