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Notation

a size parameter for fi bre length probability density 
function

A crack area (area of crack plane, A = B · c), in the limit 
specimen cross section

Am1 matrix area between two neighbouring fi bres
b shape parameter for fi bre length probability density 

function; also beam width
B specimen thickness; also axial distance between two 

neighbouring fl ights in a screw
c crack length or subscript for expressing ‘composite’
c0 initial crack length, in Sections 10.10.5 and 10.11, nor-

malised by the fi bre length l.
c̃ critical crack length at the instability point, in 

Sections 10.10.5 and 10.11, normalised by the fi bre 
length l.

Δc change in crack length, Δc = c − c0, in Sections 10.6.5 and 
10.6.6. normalised by the fi bre length l.

C compliance (tensor)
C*ijkl effective stiffness constants
C0 thickness of core layer
d fi bre diameter = 2rf

D fi bre to fi bre spacing in the multi-fi bre model; also inter-
nal diameter of a cylindrical barrel in a screw

E elastic modulus
Ec composite modulus
Ecy transverse composite modulus
Ef axial fi bre modulus
Efl ex fl exural composite modulus
Efy transverse fi bre modulus
Em matrix modulus
Eph interphase modulus
Eij engineering stiffness constants in the directions i, j

x



 Notation xi

E
−

 effective modulus of continuous-fi bre reinforced 
composite

ET Eshelby’s tensor
E0

c longitudinal composite modulus for the undamaged 
system

Ecy transverse composite modulus
E* complex modulus
f subscript and superscript for expressing ‘fi bre’
f(l) probability density function of fi bre length
fθ fi bre orientation coeffi cient
F external force
F(l) cumulative probability function of fi bre length
Fc critical external force
FQ 5% offset load
g(θ), g(φ), g(θ, φ) probability density functions of fi bre orientation
G energy release rate (energy per crack plane) used in 

Chapter 10
G
−

 effective shear modulus used in Chapter 4
G12, G13 axial shear modulus of the composite, j = 1, 2
G23 plane strain shear modulus of the composite
Gc critical energy release rate of the composite, also com-

posite fracture toughness
Gc,m critical energy release rate of the matrix, also matrix 

fracture toughness
Gf shear modulus of fi bre
Gm shear modulus of matrix
G(θ) cumulative probability of fi bre orientation
h thickness of composite plate; also characteristic length 

of representative element
hc thickness of core layer
hf characteristic length of fi bre
hk thickness fraction of the kth ply
hm characteristic length of matrix
hp half length of plastically deformed matrix bridges 

between neighbouring fi bres
J J-integral
k serial index of ply
kij stress concentration factor
K stress intensity factor
K0 relaxation constant
Ki stress intensity factor for mode i = I, II, III
Kc critical stress intensity factor of the composite; also 

composite fracture toughness



xii Notation

Kc composite thermal conductivity
Kc,m critical stress intensity factor of the matrix, also matrix 

fracture toughness
Kc,core critical stress intensity factor of the core layer, also frac-

ture toughness of core
Kc,skin critical stress intensity factor of the skin layer, also frac-

ture toughness of skin
Kc,d critical dynamic (impact) stress intensity, also impact 

toughness
Kc

c,d critical dynamic (impact) stress intensity of the compos-
ite, also composite impact toughness

Km
c,d critical dynamic (impact) stress intensity of the matrix, 

also matrix impact toughness
K1c critical stress intensity of material 1
K2c critical stress intensity of material 2
K23 plane strain bulk modulus
KQ stress intensity for the 5% offset force
K1 thermal conductivity parallel to the fi bre direction for a 

unidirectional composite
K2 thermal conductivity perpendicular to the fi bre direc-

tion for a unidirectional composite
Kf1 fi bre thermal conductivity in the axis direction
Kf2 fi bre thermal conductivity in the direction transverse to 

the fi bre axis
Km thermal conductivity of the matrix
l fi bre length
lc critical fi bre length for axial loading
lcb critical length of a branched fi bre
lcθ,cδ critical fi bre length for inclined (θ or δ) loading
lmin minimum fi bre length
lmax maximum fi bre length
lmean mean fi bre length (number average fi bre length)
lw

mean weight average fi bre length
lmod most probable fi bre length
ld debonding length on one side of the fi bre
ls sliding length on one side of the fi bre
ls length of the shorter embedded fi bre segment
L ligament length (un-notched region of a specimen in 

front of the notch; also span length in three-point 
testing)

LA,B lengths of two edges of photographs for fi bre length 
measurement

Le embedded fi bre length



 Notation xiii

m subscript and superscript for expressing ‘matrix’
m = cos θ
M microstructural effi ciency factor
Mi bending and twisting moments per unit width, i = 

1, 2, 6
Mm,c(t) creep compliance of matrix and composite, 

respectively
Mu

m,c unrelaxed compliance of matrix and composite, 
respectively

Mr
m,c relaxed compliance of matrix and composite, 

respectively
n number of length intervals and n = lmax/Δl
n = sin θ
n number of fi bres contributing to energy dissipation per 

crack plane (n = NA/A)
ni(θ, l) number of fi bres with an angle θ and a length l < lc

nj(θ, l) number of fi bres with an angle θ and a length l > lc

ñ number of fi bres contributing to energy dissipation per 
volume (ñ = NV/(A · 2 · r i

D)
N total number of fi bres
NA,V number of active fi bres in the cross section or volume 

respectively
Ni total number of fi bres with a length of l to l + dl
Nint number of fi bres with a length of l to l + dl intersecting 

photographs for fi bre length measurement
Nv total fi bre number in the composite with a volume 

V
Nwit number of fi bres with a length of l to l + dl within pho-

tographs for fi bre length measurement
p shape parameter for fi bre orientation distribution
P weight
q shape parameter for fi bre orientation distribution
Q energy necessary for crack propagation
Qij stiffness matrix of the composite
Q−l inverse quality factor of an oscillating system
r coordinate perpendicular to the fi bre axis; also distance 

from the crack tip
rb radius of branched fi bre
rf fi bre radius
rp radius of the plastic zone
ri

D radius of dissipation zone of the mechanisms i
R crack resistance (energy per crack plane); also mean 

separation of fi bres normal to their lengths



xiv Notation

R0 crack resistance (energy per crack plane), constant with 
changing crack length

R0 radius of the representative element
s displacement perpendicular to the crack plane
sc crack opening displacement
S thickness of half skin layer; also axial distance of one 

full turn of a screw
S stiffness tensor
S1 strain-concentration tensor
S2 stress-concentration tensor
t time
t interphase thickness; also fi bre aspect ratio l/d
T specimen width
T temperature
T1, T2 strain concentration tensors
u displacement in the fi bre axial direction
uF(z) cross-sectional average of the fi bre displacement
uM(z) cross-sectional average of the matrix displacement
uf(z) fi bre displacment at the interface (at r = rf)
um(r,z), um(r,x) matrix displacment
um(z) matrix displacment at the interface (at r = rf)
Ue elastic strain energy
Up potential energy of the loading system
Upot total potential energy
Ut total energy
Upl plastic energy (under the force–displacement curve)
ΔU dissipation energy per cycle of loading
v fi bre volume fraction
vc critical fi bre volume fraction
vcrit critical (minimun) fi bre volume fraction for improving 

composite strength
vi fi bre volume sub-fraction
vm matrix volume fraction, vm = 1 − v
vmax maximum packing fraction for randomly oriented short 

fi bres
vp particle or porosity volume fraction
V volume
Vp volume of the plastic zone
w specifi c work of fracture (energy per crack plane) in 

static and impact loading of notched specimen
we specifi c essential work of fracture (energy per crack 

plane)
wi specifi c work of fracture (energy per crack plane) of the 

dissipation mechanism i = d, s, fi , po, m with d: fi bre/



 Notation xv

matrix debonding, s: fi bre/matrix sliding, fi : fi bre frac-
ture, po: fi bre pull-out, m: matrix fracture

wm,y specifi c work of fracture (energy per crack plane) of 
ductile matrix fracture

w0
m specifi c work of fracture (energy per crack plane) of 

brittle matrix fracture
winit specifi c crack initiation energy (energy per crack plane, 

which is equal to specimen cross section)
wun impact energy of unnotched specimen (energy per crack 

plane, which is equal to specimen cross section)
W energy released on the crack surfaces
W I

d fi bre/matrix debonding energy for mode I loading
Wd

II fi bre/matrix debonding energy for mode II loading
We essential work of fracture
Wf work of fracture
Wi work of fracture of the dissipation mechanism i = d, s, 

fi , po with d: fi bre/matrix debonding, s: fi bre/matrix 
sliding, fi : fi bre fracture, po: fi bre pull-out, m: matrix 
yielding

Wp non-essential work of fracture
WΔ

po restricted pull-out energy of one fi bre (pull-out over the 
distance Δ)

xi Cartesian coordinates (i = 1, 2, 3)
x, y, z Cartesian coordinates
Yi calibration factors, i = 1, 2, a
r, ϕ, θ radial and angular coordinates with the origin at the 

crack tip
I, II, II index for mode I, mode II and mode III for the fracture 

mechanical parameters
α fraction of the brittle fracture area of the crack plane; 

also percentage of sub-critical fi bres
α1, α2, αc composite thermal expansion coeffi cient
αi weighting fraction of the mechanisms (i)
β shape factor of the volume of plastic zone
χ fi bre reinforcing coeffi cient for composite strength
χ1 fi bre orientation factor for composite strength
χ2 fi bre length factor for composite strength
δ phase angle
δ fi bre spacing
δ interfi bre spacing (Chapter 6)
δ(z) boundary of plastic zone in the multi-fi bre model
Δ relaxation strength (Chapter 9)
Δ pull-out distance (Chapter 10); also in Sections 10.10.5 

and 10.11, normalised by the fi bre length l



xvi Notation

ε strain
εC,F,M average strain of the composite, fi bre, and matrix, 

respectively
ε−F,M axial mean strain of fi bre and matrix, respectively
εfy transverse fi bre strain
ε−fy mean transverse fi bre strain
εd failure strain for debonding at the fi bre–matrix 

interface
εA applied strain on composite
εC strain within the ellipsoidal inclusion in Eshelby model
εT transformation or eigen strain
ε uF ultimate deformation of the fi bre
ε uM ultimate deformation of the matrix
ε̃M matrix strain for stabilised necking
Δε difference in ultimate deformations of the matrix, ε uM, 

and fi bre, ε uF
γ specifi c fracture surface energy (energy per unit area of 

crack surface)
γ d

II specifi c fracture surface energy of fi bre–matrix interface 
under mode II loading

γ I
d specifi c fracture surface energy of fi bre–matrix interface 

under mode I loading
γ 0

m specifi c fracture surface energy of brittle matrix under 
mode I loading

γm,y specifi c fracture surface energy of ductile matrix
γfi  specifi c fracture surface energy of fi bre
γ12 shear strain of the composite
γf, γm shear strain of fi bre and matrix, respectively
η, η2 shear lag parameter or decay parameters of fi bre stress
ηi energy density of the dissipation mechanism i, i = d for 

fi bre–matrix debonding, i = s for fi bre/matrix sliding, i = 
p for plastic matrix deformation (energy per volume)

ηe elastic energy density (energy per volume)
ηc elastic energy density of the composite until creation 

(initiation) of crack propagation (energy per volume)
ηl fi bre length factor for composite fl exural modulus
ηθ fi bre orientation factor for composite fl exural modulus
η̃el geometry coeffi cients for elastic energy (dimension: one 

over area)
η̃pl geometry coeffi cients for plastic energy (dimension: one 

over area)
λ a parameter for characterising fi bre orientation 

distribution



 Notation xvii

λ, λ1, λ2 fi bre reinforcing coeffi cient for composite modulus
μ fi bre–matrix friction coeffi cient; also snubbing friction 

coeffi cient in Chapter 9
νi Poisson ratio of component i, i = f, m
νij directional Poisson ratio
θ fi bre orientation angle
θmin minimum fi bre orientation angle
θmax maximum fi bre orientation angle
(Θ, Φ) applied loading direction with respect to fi bre axis
φ fi bre orientation angle
ϕ angle between two branches of a branched fi bre
ρ matter density
σ stress
σA applied stress in general
σc applied stress of composite
σ d

c composite stress for fi bre–matrix debonding
σ sc composite stress for fi bre–matrix sliding
σ uc composite strength
σf stress at a point in the fi bre
σfy transverse fi bre stress
σF,M cross-sectional mean stress of fi bre and matrix, respec-

tively; they are mean stresses in fi bre (Chapter 5) and 
matrix (Chapters 3 and 5) at the failure of the 
composite

σ b
F average stress of a branched fi bre

σ uF ultimate fi bre strength
σFθ,Fθφ, σFδ,Fδφ mean stress of an oblique fi bre
σu

Fθ fracture stress of an oblique fi bre
σij stress component, i-direction of force, j-direction of 

surface normal
σm stress at a point in the matrix
σmy transverse matrix stress
σM,y matrix yield stress
σ uM matrix strength
σ Tn thermal stress at the fi bre–matrix interface
σ0 amplitude of the external stress σc

σy yield stress
σy applied stress in y-direction (Chapter 6)
τ shear stress at the interface
τ′ physical-chemical interaction shear stress at the 

interface
τy matrix yield shear stress
τd debonding shear strength at the fi bre–matrix interface



xviii Notation

τf shear stress at the fi bre surface
τm shear stress at the matrix surface to the fi bre
τp pull-out shear stress between fi bre and matrix
τ− mean shear stress along the fi bre axis
τ−(s) mean shear stress in the sliding zone (ls) along the fi bre 

axis
τ̂  relaxation time
ω frequency
ωc crack creation (initiation) energy per volume of the 

composite
ωm plastic deformation energy per volume of the matrix
ωf plastic deformation energy per volume of the fi bre
Ω volume per sample cross section of crack initiation 

processes
Ψ solid angle



Foreword

Some time ago, the publisher asked me whether I would like to prepare a 
foreword to a book on short fi bre reinforced polymer composites (SFRP). 
When I recognized the authors, I could not say no. I have been in close 
contact with each of them during many years of research activity, and I 
know many of their scientifi c contributions. It is therefore a pleasure for 
me to write this foreword.

I met Yiu-Wing Mai for fi rst time in the 1980s. In 2006–2007 I worked 
with him during an international professorial fellowship at the University 
of Sydney. He is an outstanding researcher in the fi eld of fracture mechanics, 
providing a fundamental understanding of cracks in fi bre reinforced com-
posite materials.

I visited Bernd Lauke at his invitation, based on our common interests 
in the fracture behaviour of short fi bre composites, at the Institute for 
Technology of Polymers, Dresden, in East Germany in 1987. Soon after the 
German reunifi cation, i.e. in 1991, I invited him to work in my group at the 
Institute for Composite Materials in Kaiserslautern. Shao-Yun Fu worked 
with Bernd Lauke as a Humboldt Fellow during 1995–1996 and they visited 
me several times. Both scientists have contributed a lot to the understand-
ing of the action of fi bres in composites. Their major working activities have 
been focused on stiffness, strength and toughness, both from the experimen-
tal and from the modelling side.

There are a huge number of journal publications related to the topic of 
this book, but only a few books have summarized the state of the art in this 
fi eld. The last one dates back to 1998. After more than 10 years, it is the 
right time to renew the extent of our knowledge of SFRP through a new 
book. Knowing the authors’ work in this fi eld, it will be worth the wait.

This book is not a collection of chapters from different contributors but 
is wholly written by the authors. This is a big advantage. All defi nitions and 
main symbols are valid from the fi rst to the last page. The contents provide 
a systematic coverage, ranging from the introduction to the components of 
these composites to the description of the production technologies involved 
and the experimental determination and modelling of their mechanical 
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xx Foreword

properties. It is well balanced between experimental fi ndings and microme-
chanical modelling, including analytical as well as numerical techniques.

The book provides a huge survey and evaluation of relevant publications 
concerning the subjects raised within the various chapters. But more than 
this, the authors provide their own contributions to the different subjects 
which they have developed over recent years. For me it is a special pleasure 
to recognize that the scientifi c fi ndings of my previous research groups in 
this subject are acknowledged.

Readers of the book will benefi t not only from basic knowledge about 
SFRPs but they will also extend their knowledge of future developments. 
In this way, they will fi nd new starting points for their own research activi-
ties in this fi eld.

I would like to thank the authors for a very interesting book and wish 
them well for their continuing research in this important fi eld. Last, but not 
least, I also hope the publisher will have a great success with this new book.

 Klaus Friedrich 
 Kaiserslautern



Preface

Composites reinforced with discontinuous fi bres are classifi ed as short fi bre 
composites. A short fi bre reinforced polymer (SFRP) composite usually 
consists of relatively short, variable length and imperfectly aligned fi bres 
distributed in a continuous polymer matrix. Although short fi bres, such as 
whiskers, have been employed to reinforce metals, the majority of short 
fi bre composites are based on polymer matrices. Short fi bre reinforced 
polymers (SFRPs) have versatile properties and are comparatively inex-
pensive to make. The concern of rapid consumption of world resources in 
metals has contributed to great interest in composite materials. Short fi bre 
reinforced polymers constitute a major proportion of composites used 
in automotive, marine, building, construction, aerospace and household 
applications, amongst others. The fi bres are mostly glass, although carbon, 
graphite, Kevlar, and natural fi bres are also used.

Extrusion compounding and injection moulding techniques are conven-
tional methods of manufacturing thermoplastics. When these thermoplas-
tics are fi lled with chopped strands of short fi bres, compounds can also be 
used with conventional extrusion and injection moulding techniques, pro-
ducing a range of new materials having properties that are intermediate 
between parent thermoplastics and their corresponding continuous fi bre 
composites. The shear forces of screws and rams during extrusion com-
pounding and injection moulding often break down the fi bres, resulting in 
a fi bre length distribution (FLD). For SFRP composites, fi bre length or 
aspect ratio plays a critical role in determining the composite mechanical 
and physical properties. Fibre orientation is another crucial microstructural 
parameter that infl uences the mechanical behaviour of SFRP composites. 
The orientation of the short fi bres depends on the processing conditions 
employed and may vary from random to nearly perfectly aligned. In general, 
there is a fi bre orientation distribution (FOD) in the fi nal injection moulded 
SFRP composite parts. It is hence imperative to include the effects of fi bre 
orientation and fi bre aspect ratio on composite mechanical properties. In 
the last three decades, injection moulded short fi bre reinforced polymers 
(SFRP) have become a very common construction material since these 

xxi



xxii Preface

composites are commercially very attractive. Even though they do not have 
as high a level of stiffness and strength as continuous fi bre reinforced coun-
terparts, they have the advantages of low cost, better surface quality; and 
injection moulding processes also allow intricately shaped parts to be made.

To the best of our knowledge, three books (Folkes, 1985; De and White, 
1996; Jones, 1998) have been published on short fi bre reinforced polymers. 
Folkes (1985) wrote the fi rst book with a similar title and his book described 
some of the concepts on which short fi bre reinforcements are based and 
which can be used to develop products having specifi ed properties. De and 
White (1996) edited a book on short fi bre-polymer composites. Research 
work on various systems that they and other researchers had studied previ-
ously was summarized. A special feature of their book is that it includes 
signifi cant discussions on rubber-matrix fi bre composites. The third book, 
more like a brochure, was edited by Jones in 1998. Components including 
fi llers, additives and polymers that are often used for manufacturing short 
fi bre reinforced plastics were presented. Brief introductions on the selection 
of raw materials, testing and evaluation of short fi bre reinforced polymers 
were also given.

Since about two decades ago, there has been much research and develop-
ment activity into short fi bre reinforced thermoplastics. The present book 
summarizes the advances and developments in this area, and serves as a 
key reference for readers who are interested in entering this exciting fi eld. 
It focuses on the basic science and engineering aspects which govern the 
mechanical and physical properties, such as modulus, strength, fracture 
toughness, thermal conductivity and expansion of short fi bre reinforced 
polymers. The book is aimed at design engineers and plastics technologists 
who are working with SFRP composites and are seeking further insight into 
their manufacture and material behaviours. It is also hoped that the topics 
covered will provide technical information and guidance to graduate stu-
dents, educators and researchers in this fi eld.

Finally, Shao-Yun Fu wishes to thank the following: the Leibniz-Institut 
für Polymerforschung Dresden, e.V., Germany; Nanyang Technological 
University, Singapore; the Centre for Advanced Materials and Technology, 
Sydney University, Australia; City University of Hong Kong, Hong Kong 
SAR, China; and the Technical Institute of Physics and Chemistry, Chinese 
Academy of Sciences, Beijing, China for the opportunity to work on this 
subject. Financial support from an Alexander von Humboldt Fellow-
ship, the National Science Foundation of China, the Chinese Academy of 
Sciences, and the Australian Research Council (ARC) is greatly 
appreciated.

Bernd Lauke also thanks the Leibniz-Institut für Polymerforschung 
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1
Introduction to short fi bre reinforced 

polymer composites

1.1 Introduction

In this book, when fi bres in a composite are discontinuous and are 
shorter than a few millimetres, the composite is called ‘short fi bre rein-
forced composite’. That is, short fi bre reinforced composites contain dis-
continuous fi bres with a length less than a few millimetres. In most cases, 
polymers are used as matrices for discontinuous fi bre reinforced 
composites.

Short fi bre reinforced polymer (SFRP) composites have found extensive 
applications in automobiles, business machines, durable consumer items, 
sporting goods and electrical industries, etc., owing to their low cost, easy 
processing and their superior mechanical properties over the parent poly-
mers. Extrusion compounding and injection moulding processes are fre-
quently employed to make SFRP composites. The use of these conventional 
fabrication techniques to produce large-scale SFRP composite parts makes 
manufacturing of these composites effi cient and inexpensive compared to 
manufacturing of continuous-fi bre reinforced polymer composites, which 
are fabricated by time-consuming processes, rendering them unsuitable for 
high volume production. At present, SFRP composites are only one class 
within a variety of composite materials with a high growth rate due to 
their extensive applications and comparatively simple manufacturing 
techniques.

1.2 Mechanical and physical properties

The mechanical and physical properties of SFRP composites have been the 
subject of much attention and are infl uenced to a great degree by the type, 
amount and morphology of the reinforcing fi bres, and the interfacial 
bonding effi ciency between the fi bres and polymer matrix. Variables such 
as fi bre content, orientation, aspect ratio and interfacial strength are of 
prime importance to the fi nal balance of properties exhibited by injection-
moulded polymer composites. The addition of short fi bres to thermoplastics 
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2 Engineering of short fi bre reinforced polymer composites

leads to composites that show signifi cant improvements in mechanical 
properties, such as strength and elastic stiffness as shown in Table 1.1. 
However, fracture toughness may be reduced for certain fi bre-matrix 
systems. For example, if a tough thermoplastic matrix like polycarbonate 
(Din and Hashemi, 1997) or polyamide (Fu et al., 2006) is reinforced by 
short glass fi bres, the strength and elastic stiffness can be improved but the 
fracture toughness is reduced. Nonetheless, for relatively brittle polymer 
matrices, this problem may not exist and incorporation of short fi bres can 

Table 1.1 Strength and Young’s modulus of some SFRP composites and 
matrices respectively*

Materials Fibre 
content 
(%)

σ M
u 

(MPa)
σ c

u 
(MPa)

Em 
(GPa)

Ec 
(GPa)

References

ABS/SGF 15 vol. 42.8 68.0 2.39 8.33 Fu and 
Lauke 
(1998b)

ABS/SGF 30 wt. 43.4 68.0–84.0 2.24 5.12–6.47 Ozkoc 
et al. 
(2005)

ABS/
PA6(70 : 30)/
SGF

30 wt. 43.4 93.0 2.24 8.82 Ozkoc 
et al. 
(2005)

PA 6,6/
SEBS-
g-MA(80:20)/
SGF

30 wt. 39.0 65.0 0.83 4.07 Tjong 
et al. 
(2002)

PA6,6/SGF 50 wt. ∼78.0 ∼250.0 — — Thomason 
(2008)

PEEK/SGF 10 wt. 91.4 108.9 3.10 4.70 Sarasua 
et al. 
(1995)

PEEK/SCF 10 wt. 91.4 135.6 3.10 6.37 Sarasua 
et al. 
(1995)

PP/SCF 25 vol. 31.6 60.1 1.30 14.9 Fu et al. 
(2000a)

PP/SGF 25 vol. 31.6 51.5 1.30 8.75 Fu et al. 
(2000a)

PC/SGF 30 wt. 40.3 67.2 1.33 8.74 Ho et al. 
(1996)

Note: volume fraction (vol.); weight fraction (wt.); short (or discontinuous) glass 
fi bre (SGF); short (or discontinuous) carbon fi bre (SCF); acrylonitrile-butadiene-
styrene (ABS); polypropylene (PP); polycarbonate (PC); polyamide 6,6 (PA6,6); 
polyamide 6 (PA6); maleated styrene-ethylene butylenes-styrene (SEBS-g-MA).
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 Introduction to short fi bre reinforced polymer composites 3

increase the fracture toughness. The mechanical and physical properties of 
short fi bre reinforced polymer composites have been shown to depend 
mainly on the following factors (Lauke et al., 1990; Fu and Lauke, 1996, 
1997, 1998a,b; Fu and Mai, 2003):

• properties of components
• fi bre-matrix interface strength
• fi bre volume fraction
• fi bre orientation distribution (FOD) and 
• fi bre length distribution (FLD).

Theoretical interpretations of strength, stiffness and fracture toughness of 
SFRP composites are given in terms of these factors.

In a short fi bre reinforced polymer composite, the deformation of the 
matrix transfers stresses by means of the fi bre-matrix interface traction 
to the embedded fi bres. The mechanical properties of a short fi bre com-
posite are therefore critically dependent on the effi ciency of stress trans-
fer from the matrix to the fi bres. Many theories have been developed to 
predict the stress transfer in short fi bre composites (Cox, 1952; Piggott, 
1980; Lauke and Schultrich, 1983; Lauke, 1992; Rosen, 1965; Fu et al., 
2000b). Since the problem of stress transfer in single short fi bre compos-
ites is relatively simple, existing theories start with these composites. 
Because the stress transfer takes place between the only fi bre and sur-
rounding matrix, these models do not include the effect of neighbouring 
fi bres on the stress transfer. In real multi-short fi bre composites, the 
neighbouring fi bres affect the stress transfer from the matrix to the fi bres. 
Hence, the stress transfer behaviour in multi-short fi bre composites is of 
practical importance for real short fi bre composites. The stress transfer 
is critical to achieving high strength and high fracture toughness, etc., of 
SFRP composites.

When polymeric materials are used in electronic packaging applications, 
where highly thermally conductive materials are required, polymers are 
often incorporated with inorganic fi llers, like short glass or short carbon 
fi bres, with a high thermal conductivity to fabricate the composites to meet 
the high thermal conductivity criterion. The effective thermal conductivity 
of a SFRP composite depends on the thermal conductivities of its compo-
nents. Besides, the composite thermal conductivity is critically dependent 
on the FLD and FOD in the SFRP composite. Further, dimensional stability 
is also important for polymers that are used in areas where temperature 
varies. Polymers usually have high thermal expansion which can be effec-
tively decreased by adding inorganic short fi bres to increase the dimen-
sional stability for applications where temperature often changes. The 
thermal expansion of SFRP composites also depends on fi bre length and 
fi bre orientation distributions.
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4 Engineering of short fi bre reinforced polymer composites

1.3 Organisation of the book

This book is arranged as follows. Because extrusion compounding and injec-
tion moulding processes are most often employed to make short fi bre rein-
forced thermoplastic composites, in Chapter 2, a brief introduction of these 
processes and the infl uence of the processing parameters on the micro-
structures (FLD and FOD) and morphology (layered structure, etc) are 
given. Chapter 3 describes the major factors infl uencing the mechanical  and 
physical properties of short fi bre reinforced thermoplastics polymers. Some 
of the factors, namely, FOD and FLD, are dependent on processing condi-
tions. Thus, the effect of processing conditions on these factors is discussed. 
Chapter 4 concerns the stress transfer in short fi bre reinforced polymer com-
posites. Chapters 5 and 6, respectively, discuss the dependence of composite 
tensile strength and Young’s modulus on these major factors. Owing to the 
partial fi bre orientation, short fi bre reinforced thermoplastics polymers 
show anisotropic mechanical properties. Hence, the anisotropies of strength 
and modulus are also discussed in Chapters 5 and 6. The fl exural modulus of 
SFRP composites, which is highly infl uenced by the layered structure of 
SFRP composites or the fi bre orientation, is considered in Chapter 7. 
Chapter 8 covers the thermal properties (e.g., thermal conductivity and 
linear thermal expansion) of SFRP composites. In Chapter 9, the non-linear 
stress–strain behaviour and, in Chapter 10, fracture mechanics of SFRP com-
posites are discussed in detail. Fracture toughness of SFRP composites is 
controlled by fi bre-related and matrix-related failure mechanisms, methods 
for evaluation of fracture toughness are therefore presented in Chapter 10.
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2
Extrusion compounding and 

injection moulding

Abstract: This chapter gives a brief introduction of extrusion 
compounding and injection moulding processes since they are most 
often used to manufacture short fi bre reinforced thermoplastic 
composites. The infl uences of various processing parameters including 
holding pressure, back pressure, screw speed, melt temperature and 
barrel temperature profi le, etc., on the microstructures (fi bre length 
distribution and fi bre orientation distribution) and morphology (layered 
structure, etc.) are discussed.

Key words: extrusion compounding, injection moulding, processing 
parameters, microstructure, morphology.

2.1 Introduction

Short fi bre reinforced polymer (SFRP) composites are very attractive 
because of their versatile properties and mass production. Extrusion com-
pounding and injection moulding are conventional techniques for fast 
manufacturing of thermoplastics. When thermoplastics are compounded 
with chopped strands of short fi bres, like short glass fi bres or short carbon 
fi bres, etc., these compounds can be used in conventional extrusion com-
pounding and injection moulding methods to produce a range of new 
materials possessing properties that are intermediate between the parent 
thermoplastics and their corresponding continuous fi bre composites. In 
the past two decades, injection moulded SFRP composites have become 
a very common construction material because they are commercially 
very attractive. Though they do not have as high a level of stiffness and 
strength as their continuous fi bre reinforced counterparts, they have the 
advantages of low cost and better surface quality. In addition, the injec-
tion moulding process also allows intricately shaped parts to be easily 
manufactured.

It is well known that some processing steps in the two techniques of 
extrusion compounding and injection moulding may reduce signifi cantly 
the fi bre length through breakage. For example, Kamal et al. (1986) 
reported a decrease from 0.71 mm to 0.27 mm during injection moulding 
of short fi bre reinforced thermoplastics. Reduction in fi bre length will 
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 Extrusion compounding and injection moulding 7

lead to decrease in composite strength, modulus and fracture toughness 
(Fu and Lauke, 1996, 1997, 1998). In the following sections, an introduc-
tion to the extrusion compounding and injection moulding processes is 
given; and an understanding of the fi bre degradation mechanisms which 
are important to achieve high fi bre aspect ratios in SFRP composites is 
provided.

2.2 Extrusion compounding

2.2.1 Processing of extrusion compounding

Before injection moulding of a SFRP, extrusion compounding can be made 
using an extruder for the corresponding compound containing a few com-
ponents. Extrusion compounding employs a screw as a transport mecha-
nism due to the ability of the screw geometry to perform all the elementary 
steps of polymer processing: feeding, pumping, melting, and mixing. 
Individual extruder screws that have been employed in processing of 
polymer and SFRP compounding are briefl y introduced below.

Figure 2.1(a) shows the geometry of a single-fl ighted extruder screw 
(White, 1990). The screw fi ts inside a cylindrical barrel with an internal 
diameter D. The radial clearance between the crest of the screw fl ight and 
the inner barrel surface is δr. The distance between the screw root and the 
internal barrel surface is H. The axial distance of one full turn of the screw 
is S. The axial distance between two neighbouring fl ights is B. The perpen-
dicular distance between two fl ights along the helical path of the screw is 
W. The angle of the helix is φ and the width of the fl ights is e. The quantities 
defi ned above are not necessarily constant along the screw. The distance W 
may increase with increasing altitude of the fl ight. φ and e may also vary 
not only with the screw radius from the screw root to the barrel but along 
the length of the screw. More generally, extruder screws are multi-fl ighted. 
Namely, melted compounding will simultaneously travel along two or more 
parallel fl ights. A double-fl ighted extruder screw and a triple-fl ighted 
extruder screw are shown in Figs 2.1(b) and 2.1(c), respectively. Screw ele-
ments may be forward or backward pumping and are often described as 
right-handed and left-handed when rotation is in a clockwise direction as 
shown in Fig. 2.2.

The main advantages of screw plasticising include the relatively large 
quantity of compound material, the homogeneity of the melt and the rela-
tive ease of temperature control of the melt compared to plunger equip-
ment of similar size. A good compound melt must have a uniform 
temperature throughout to ensure uniform quality of the end product. The 
screw rotates within the barrel in the extruder and the screw is driven by 
an electric or hydraulic motor. The screw fl ights are so shaped that the 
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(c) 

(b) 

D

δr

S 

W
e

H

B

(a) 

φ

2.1 (a) Single-fl ighted extruder screw, (b) double-fl ighted extruder 
screw, and (c) triple-fl ighted extruder screw. Adapted from White 
(1990).

Right-handed

Left-handed

2.2 Forward (right-handed) and backward (left-handed) pumping 
screws. Adapted from White (1990).
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 Extrusion compounding and injection moulding 9

compound is forced against the heated inside wall of the cylinder as the 
screw rotates. The polymer or SFRP compound is then transported towards 
the other end of the cylinder.

We will consider only the area of extrusion technology that is important 
for injection moulding of SFRP composites. In the extrusion process, the 
forward pressure is suffi cient to drive the melted material through the 
extrusion die. The extruded material can have various desired shapes such 
as sheets, fl ats, fi lms or profi les, etc. After leaving the die, the shaped mate-
rial is cooled, normally using water, and then cut to length. The polymer 
material in the compound melts gradually as it travels along the barrel from 
its feeding end to the other end due to the heat generated by friction 
between the contacting surfaces of the screw and the barrel and by friction 
between the compound materials themselves. When the compound material 
reaches the end of the barrel, the polymer material in the compound should 
be melted and inorganic fi llers such as short glass fi bres, short carbon fi bres 
and glass beads, etc., should be well mixed with the polymer matrix.

Among the various extrusion technologies, twin screw compounding is a 
popular method for short fi bre reinforced polymers since it is economically 
attractive. Twin screw extruders are of co-rotating or counter-rotating type 
with separated, intermeshing or tangential screws. As an example, com-
pounding of short glass fi bre (SGF) and glass bead (GB) reinforced poly-
oxymethylene (POM) composites is described below (Hashemi et al., 1997). 
First, formulations of composite compounds are determined and mixed. The 
mixtures are then passed through an extruder (Brabender 330 twin screw 
extruder) in an attempt to produce a homogeneous dispersion of fi bres and 
beads throughout the POM matrix. The melt temperature is kept constant 
at 200 °C and the screw speed is set at 4 rpm. As composite compounds 
emerge from the die exit, the extrudates are passed along a conveyor belt 
for cooling purposes to allow formation of continuous rods of composite 
materials. The rods are fi nally fed through a granulator to make composite 
pellets for injection moulding.

A co-rotating twin screw extruder, Werner Pfl eiderer (screw diameter = 
40 mm and screw length = 500 mm) with a fully intermeshing screw design 
as shown in Fig. 2.3 (Ramani et al., 1995), is used in preparing syndiotatic 
polystyrene (SPS) pellets reinforced by 40% by weight of glass fi bres. The 
glass fi bres are added to the melted polymer using a weight loss feeder with 
a screw to convey the fi bres into the barrel and meanwhile vacuum is 
applied after the mixing section to remove volatiles. The screw confi gura-
tion after the melting section consists of the mixing section. The mixing 
section can be altered during the experiments to investigate the effect of 
screw section design on fi bre length degradation. The extrudates are pulled 
out through an eight strand die, then a water bath and fi nally pelletised. The 
pellets will then be used in injection moulding to obtain SFRP parts.
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10 Engineering of short fi bre reinforced polymer composites

Screw sections can be designed in various forms for compounding and 
three different designs are shown in Fig. 2.4 (Ramani et al., 1995). The three 
mixing sections are combined with two toothed turbine mixing elements 
(gear mixing elements, GME) and a left-handed element (LHE) to give 
different intensities of mixing and residence times in the mixing section. 
LHE has a very large backup effect on the fl ow through the screw and 
increases the residence time in the toothed elements. GME produces pri-
marily distributive mixing that is necessary for mixing discontinuous fi bres 
with high viscosity polymer matrices. Screw design #1 has two right-handed 
GME and a LHE and would correspond to the longest residence time in 
the mixing section and produce the highest intensity of mixing among the 
three screw designs. Screw design #2 has two right-handed GME and the 
LHE is replaced by a right-handed element of the same pitch, which would 
reduce the backup effect and produce a lower residence time but keep the 
same intensity of mixing in the mixing section. Screw design #3 has one 
right-handed GME and a LHE. Removal of one GME provides a lower 
intensity of mixing than screw design #2 but retains the high residence time 
due to the backup effect of the LHE.

The screw section geometry has an effect on the fi nal fi bre length. The 
number average fi bre lengths for the 40 wt% glass-SPS for three different 
screw designs (Ramani et al., 1995) are shown in Fig. 2.5. The fi bre lengths 

Master batch

Weight belt

Twin screw extruder

Glass fibre

side feeder

Vacuum

Die

Water bath

Pelletiser

Glass

fibres

Molten

polymer

Mixing section Material

flow

Extruder barrel

Vacuum

1 2 3 4 8 9 1110 12 13 14 …… 21 22 23 24TME GME LH

2.3 Schematic of a typical twin screw extruder and the extruder 
barrel. Adapted from Ramani et al. (1995).
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show the deepest decline in the portion before the mixing section; and the 
fi bre bundles are broken and fi lamentised. The fi bre length reduction is 
larger in the mixing section than in the rest of the screw after the mixing 
section. Moreover, screw design #1 corresponds to the most severe fi bre 
damage while screw design #3 shows the least fi bre degradation.

Product flow 

GME GME LHE

GME GME

GME LHE

Design #1

Design #2

Design #3

2.4 Three different mixing sections used. GME: Gear mixing element; 
LHS: Left-handed screw. Adapted from Ramani et al. (1995).
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2.5 Number average fi bre lengths along the screw for 40 wt% 
glass-SPS. Adapted from Ramani et al. (1995).
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12 Engineering of short fi bre reinforced polymer composites

2.2.2 Fibre attrition and retention during compounding

When chopped strands of fi bres are mixed in the thermoplastic using con-
ventional extrusion technique, the composite pellets produced can be used 
for injection moulded SFRP parts. One of the defi ciencies in producing 
composite pellets is the length degradation of reinforcing fi bres. The fi bre 
length is reduced by an order of magnitude or even more from the original 
length. The length reduction decreases the reinforcement effi ciency of the 
fi bres, most notably affecting the mechanical strength, modulus and fracture 
toughness. It is necessary to understand the damage mechanisms of fi bres 
during processing in order to maintain longer fi bres.

The length reduction of fi bres during extrusion compounding as a con-
sequence of their incorporation into a resin is well documented. There are 
three likely major reasons for fi bre damage (von Turkovich and Erwin, 1983; 
Fu et al., 1999):

1. Fibre-fi bre interaction – abrasion of fi bre surfaces reduces strength by 
inducing stress concentration, leading to direct or subsequent fracture. 
Fibre breakage may also occur due to bending stresses caused by fi bre 
overlap.

2. Fibre contact with equipment surfaces – evident due to the wear of 
compounding equipment.

3. Fibre interaction with polymer matrix – viscous forces imparted by the 
polymer matrix may cause fi bre fracture.

A procedure is described below for assessing the extent of fi bre damage 
individually in the compression, melting, and mixing zones along the screw 
as shown in Fig. 2.6 (von Turkovich and Erwin, 1983). The extrusion process 
is interrupted with the barrel full of the compound melt containing fi bre 
and resin materials. The melt is allowed to cool down on the screw shaft. 
The internal threads in the screw tip are used to fi t a device by which the 
screw can be pulled out of the barrel. The composite compound is in the 

Compresson Melting Mixing

1 2 3 4 5 6

2.6 Location of the screw for analysis of fi bre length distribution. 
Adapted from von Turkovich and Erwin (1983) (Polymer Engineering 
and Science, Vol. 23, No. 13, 1983, p. 745. Copyright, 1983, John Wiley 
& Sons Inc. Reprinted with permission of John Wiley & Sons Inc.).
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form of a helical ribbon with the thickness varying upon the screw section 
from which it can be obtained. The compound samples are taken from the 
compression, melting and mixing zones for analysis. Most fi bres in zone 1 
of Fig. 2.6 maintain their original length, indicating that during this stage 
fi bre bending by solid polymer powder–fi bre interaction and inter-fi bre 
abrasion do not play much of a role in fi bre fracture. In zone 2, long fi bres 
still predominate but a signifi cant number of short fi bres appear. Examination 
of the material in the channel section shows that some melting begins to 
take place. The presence of short fi bres is due to the mechanism of fi bre 
fracture responsible for damage in the melting zone. In the melting zone 
(zones 3 and 4), a rapid reduction of fi bre length takes place. In the mixing 
zone (zones 5 and 6), the fi bres and especially longer fi bres found in the 
melting zone are further reduced and length reduction in this area is 
assumed to take place due to the viscous force of fi bres by the polymer in 
shear fl ow.

Some examples are given below to help readers to understand what 
factors infl uence the fi bre reduction during extrusion compounding. Fisa 
(1985) dealt with the mechanical degradation of glass fi bres during extru-
sion compounding with polypropylene. Effects of the parameters, which 
include resin viscosity and fi bre concentration, etc., on fi bre length and 
dispersion, were studied using an automatic particle size analyser. It was 
noted that the length degradation is most severe during the very fi rst stage 
of the process, namely when fi bre bundles are being fi lamentised. The resin 
viscosity also affects the fi bre length signifi cantly and a higher resin viscosity 
generally leads to a lower average fi bre length. Fibre length attrition 
depends on fi bre concentration, suggesting that the fi bre degradation results 
from fi bre–fi bre and fi bre–melt interactions. Bader and Bowyer (1973) 
observed that only 20% of fi bres with a diameter of 12 μm in short glass 
fi bre reinforced nylon 66 exceeded the critical length (lc ∼ 270 μm) after 
extrusion compounding though the initial fi bre length was much larger. 
Experimental work (Lunt and Shortall, 1979, 1980) shows that variation in 
glass content and processing conditions during extrusion compounding of 
short glass reinforced nylon 66 can lead to signifi cant differences in the fi bre 
length distribution of the resultant extrudates; and incorporation of glass 
fi bres into an already molten resin as opposed to processing of glass fi bre 
resin dry blends may give better results in fi bre retention.

In a dilute suspension of short fi bres, the fi bre–fi bre interaction can be 
ignored. This assumption holds true for a small number of thin and rigid 
rods in shear fl ow. However, concentrated suspensions show somewhat dif-
ferent behaviour. In a densely populated fl ow of fi bres, it is very likely that 
there is fi bre–fi bre interaction since most commercially interesting suspen-
sions exceed the maximum packing volume fraction of high aspect ratios 
rods (Milewski, 1974). The maximum volume fraction of randomly oriented 
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14 Engineering of short fi bre reinforced polymer composites

fi bres is shown in Fig. 2.7 as a function of average fi bre aspect ratio in a 
composite (von Turkovich and Erwin, 1983; Milewski, 1974). Fibres are bent, 
broken or even aligned when fi bre volume fraction exceeds the maximum 
value.

Since processing of fi bre compounds in single screw plasticating units 
inevitably causes fi bre fracture, fi bre attrition mechanisms are studied and 
some suggestions are made by Wolf (1994) for prevention of fi bre attrition. 
The reduction of initial fi bre length starts before the polymer becomes 
molten in screw compounding with the incorporation of fi bres into a 
polymer matrix. During compounding in screw machines where a dry blend 
of chopped fi bres and the polymer is extrusion compounded and then 
granulated, the fi bres are usually considerably shortened in the process of 
coating fi bres with polymer. Variation in processing conditions has a con-
siderable effect on the resulting fi bre length distributions. Consequently, it 
becomes possible to substantially minimise the reduction of fi bre length by 
proper selection of processing conditions. It is accepted that pultruded 
granules containing perfectly wetted fi bres offer the most favourable condi-
tions with regard to a well processable compound of large residual fi bre 
lengths. Granule length should thus be increased until the process of feeding 
is obstructed. To achieve good fi bre dispersion and large average fi bre 
lengths, the temperature profi le of the barrel and residence time must be 
set according to the geometry. A gentle conversion and a minimum resi-
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2.7 Maximum fi bre volume fraction as a function of average fi bre 
aspect ratio. Adapted from von Turkovich and Erwin (1983) and 
Milewski (1974) (Polymer Engineering and Science, Vol. 23, No. 13, 
1983, p. 744. Copyright, 1983, John Wiley & Sons Inc. Reprinted with 
permission of John Wiley & Sons Inc.).
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dence time in the melt are conveyed to preserve fi bre bundles to a great 
extent. Moreover, granule preheating is a helpful measure to reduce the 
dissipation of conductive heating. As a guideline, the screw length should 
not exceed 18D (where D is internal diameter) and the melting zone should 
not be longer than 3D. To ensure high residual fi bre length, the stress in 
the molten material has to be reduced by choice of a slight compression 
ratio, e.g., 1 : 18 over a length of 10D–12D.

The classical route, namely extrusion compounding for preparing fi bre 
fi lled polymer pellets, has a practical processing limit on the maximum fi bre 
content in the range of 40–45 wt% of fi bres. The composite applications for 
these materials cannot be too demanding. When the stiffness and strength 
criteria can be met with fi bre volume fraction of 0.2 or less, an extrusion 
compounding technique is applicable. However, this is low compared to 
‘high performance’ applications where volume fractions of 0.5 or greater of 
aligned continuous fi bres can be used, usually at the cost of accepting a 
lower level of processing effi ciency. Therefore, long (discontinuous, greater 
than 1 mm or so) fi bre reinforced polymers have received great attention. 
Long fi bre reinforced polymers can be made by wire coating, cross-head 
extrusion or thermoplastic pultrusion techniques (Hamada et al., 2000; 
Huang et al., 1999; Karger-Kocsis, 2000; Lee and Jang, 1999, 2000; Lin, 2003; 
Long et al., 2001; Neves et al., 2002; Thomason, 2002, 2005, 2008; Thomason 
and Vlug, 1996, 1997; Waschitschek et al., 2002; Zebarjad, 2003). The long 
fi bre reinforced composite pellets for injection moulding can give compos-
ites with many signifi cantly enhanced properties in comparison with con-
ventional short fi bre compounds (Thomason, 2002, 2005).

2.3 Injection moulding

2.3.1 Processing of injection moulding

Although many fabricating processes are available for producing non-
reinforced plastic products, injection moulding (IM) is used to produce at 
least 50% by weight of short fi bre reinforced polymers. Moulded parts 
manufactured by IM have the advantages of economy, vast quantity and no 
post-moulding fi nishing operations. IM is principally a mass-production 
method and the best return is realised when it is so used (Rosato, 1995, 1998).

A screw plasticising system is normally used in the injection moulding 
equipment. The typical reciprocating screw will melt and mix the compound 
through compression and shear. As the screw moves to the rear of the 
cylinder, the melt accumulates in front of the screw. When the desired 
amount of melt is attained for shot, the screw stops rotating and acts as a 
ram to push the melt into the mould. In a typical plasticising screw extruder, 
the compound is fed from a hopper into the side of a long heated cylinder 
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16 Engineering of short fi bre reinforced polymer composites

or barrel near its end (Fig. 2.8) (Rees, 1994). The typical screw consists of 
three basic zones: feed, transition (melting) and metering. The fi rst zone is 
the feed zone where the compound material is fed from the hopper into 
the heated barrel. The section of the screw in this zone acts like an auger 
and is designed to be an effi cient conveyor for conveying away the com-
pound material from the hopper. The second zone is the transition or 
compression zone which starts at the end of the feed zone, in which the 
compound material is melted and homogenised. The section of the screw 
in this zone is designed to enhance the friction and contact of the compound 
material with the barrel, which is different from the feed zone. Finally, the 
third zone is the metering zone. This zone is designed to act as a pump by 
generating pressure in the homogeneously molten material and to meter 
accurately by supplying a quantity of molten compound material under 
pressure, which is consistent for each operation. The design of the screw is 
important for obtaining the desired mixing and melt properties, output rate 
and temperature control. One important design factor is the compression 
ratio defi ned as the ratio of the screw fl ight depth in the feed zone to that 
in the metering zone. Thermoplastics generally require compression ratios 
between 1.5 to 1 and 4.5 to 1. However, there is no universal screw for all 
compounds. It is particularly important to choose a screw design for short 
fi bre reinforced polymers so that no excessive attrition of fi bres will take 
place by an overly high compression ratio.

In the IM process, the composite compound is fi rst introduced into a 
heated chamber where the compound melts (technically softens for amor-
phous or melts for semi-crystalline materials, but the term ‘melt’ is used 
hereafter for convenience), then the melted compound is injected under 
pressure into a metal-machined mould cavity. Afterwards, the part solidifi es 
into the intended shape. Finally, the part is ejected from the mould. The 
three basic mechanical units, including melting and injection unit, mould 

Metering zone

Heater Barrel Screw

Hopper

Drive
Feed zoneTransition

zone

2.8 A typical plasticising screw extruder showing zone locations. 
Adapted from Rees (1994).
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and clamping cylinder as shown in Fig. 2.9 (Rosato, 1998), are combined to 
perform injection moulding. The metal-machined mould may have a single 
cavity with a sprue that channels the fl ow of the compound melt from the 
heating and injection chamber to the mould cavity. The mould may have 
multiple cavities that are connected to the fl ow channels (runners) that 
direct the melt fl ow from the sprue to the cavities as shown in Fig. 2.10 
(Rosato, 1998).

Basically, there are two different types of moulds, namely ‘cold runner’ 
and ‘hot runner’ moulds, as shown in Fig. 2.11 (Rosato, 1998). The cold 
runner mould requires that the sprue and runners solidify as the part does, 
then the sprue and runners are removed when the part is ejected. This 
mould contains water lines that cool both the part and the runner, hence 
the name ‘cold runner’ mould. When the mould is kept hot around the sprue 
and runner, and water cooling lines are used around the cavity, only the 
compound in the cavity solidifi es, thus the name ‘hot runner’ mould. It is 

Clamping cylinder Mould Melting and injection unit

2.9 Three basic mechanical units of the injection molding process. 
Adapted from Rosato (1998).
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cylinder

HopperScrewNozzle

2.10 Schematic showing pressure loading on the melted compound 
going from the injection unit to the mould cavities (right to left). 
Adapted from Rosato (1998).
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18 Engineering of short fi bre reinforced polymer composites

more diffi cult but more effi cient to operate the hot runner mould than the 
cold runner mould. In addition to these two basic types of moulds, there 
are many others that are derived from them, including three plate models, 
insulated runner moulds, hot manifold moulds and stacked moulds. For 
details, readers can refer to Rosato (1998).

When the compound melt is injected into the mould, both the fi bre rein-
forcements and the polymer molecules disengage from each other and 
orient themselves parallel to the fl ow direction of the melt. When high-
speed fl ow occurs through a narrow gate as well as a thin and confi ned wall 
section, a high degree of orientation is most pronounced. Otherwise, the 
degree of orientation will be reduced at least in the centre of the injection 
moulded part. That may result in the skin–core–skin structure in the fi nal 
parts as shown in Fig. 2.12 (Xia et al., 1995). Two surface (skin) layers are 
oriented in the main fl ow direction while the central (core) layer contains 
fi bres transversely aligned to the main fl ow direction. The portion of the 

Cavity plate

Mould separates

Punch or force plate

K.O. pins

Cold runner mould

Hot runner mould

Hot runner

Heated manifold

Insulated nozzle

Mould separates

2.11 Schematic diagrams for the cold and hot runner moulds. 
Adapted from Rosato (1998).
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melt in contact with the cold mould surface solidifi es fi rst with the preferred 
orientation in the fl ow direction as it fl ows into the mould cavity.

The SFRP composite with partially aligned fi bre orientation shows aniso-
tropic physical and mechanical properties. Namely, the physical and 
mechanical properties of the SFRP are strongly directionally dependent. To 
reduce the degree of misalignment of fi bres in the SFRP, proper formula-
tions can be selected to contain glass beads or other particulate fi llers. The 
preferred orientation of the fi bres in the fl ow direction increases properties 
such as strength, elastic modulus, toughness and thermal conductivity, etc., 
when measured in the fl ow direction. When fi bre orientation is undesirable, 
increase in the mould temperature and reduction in the fi lling rate will help. 
Increase in the gate diameter and the wall thickness of the part will also 
assist by reducing the shear rate.

In some situations, weld lines may be formed. For example, when the fl ow 
of the melt is obstructed by any core used in the design of the part, the melt 
splits as it surrounds the core and reunites on the other side and continues 
fl owing until the cavity is fi lled, fi nally the rejoining of the split melt forms 
a weld line. Multiple gating may also cause the formation of weld lines. 
Since short fi bres tend to be oriented in the direction of resin fl ow, in the 
weld line where fl ow fronts meet, the short fi bres are preferentially aligned 
perpendicular to the major fl ow direction (normally the loading direction). 
Hence, the weld lines reduce composite strength, stiffness and toughness 
and hence should be avoided whenever possible. When weld lines cannot 
be avoided, the weld line strength may be optimised by increasing injection 
moulding time during processing. It is particularly diffi cult to use long dis-
continuous fi bres in injection moulded parts that unavoidably involve weld 
lines. In contrast, short fi bres may be preferable for such design in practical 
applications.

Short glass fi bre (SGF) reinforced polyoxymethylene (POM) specimens 
prepared using injection moulding containing weld lines fracture in a brittle 
manner at the weld line (Hashemi et al., 1997). The critical infl uence of the 

Flow direction
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Core
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2.12 Schematic diagram of an injection moulded SFRP along the main 
fl ow direction.
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20 Engineering of short fi bre reinforced polymer composites

weld line on the tensile strength of SGF/POM composites is illustrated in 
Table 2.1. The strength values of the composites containing weld lines are 
considerably lower than those composites containing no weld lines. The 
main cause of the weakness across the weld line is due to preferential align-
ment of short fi bres along the weld line and thus normal to the applied 
loading direction. Nonetheless, the weld line strength for these composites 
is still higher than that of the weld-free POM matrix, indicating that short 
glass fi bres are benefi cial as reinforcing fi llers even in the presence of weld 
lines.

2.3.2 Fibre attrition and retention during injection moulding

Short fi bres and particulate fi llers signifi cantly infl uence moulding charac-
teristics and, in turn, fi ller dispersion state, fi bre orientation and length are 
affected markedly by processing parameters. The fi brous and particular 
fi llers in the polymer matrix increase apparent viscosity and impede melt 
fl ow. This effect increases with increasing fi ller contents and proper process-
ing of fi lled polymers requires higher temperatures and pressures accord-
ingly. In some situations, the effects of gating and moulding conditions can 
be substantial. Moreover, the processing conditions have signifi cant infl u-
ence on the fi nal fi bre length in injection moulded composite parts (Barbosa 
and Kenny, 1999; Lafranche et al., 2005; Tjong et al., 2003; Ozkoc et al., 
2005; Vu-Khanh et al., 1991). Hence, different properties of SFRP compos-
ites can be obtained by varying gating geometry, temperature, pressure and 
time, etc. Attrition of fi bres can occur during processing and, in general, 
low screw speed and low back pressure are desirable to avoid excessive 
fi bre attrition. It is important to choose the right moulding conditions in 
addition to the right combination of fi bres and polymer matrix to obtain 
high performance SFRP composites.

Table 2.1 Tensile strength of POM and SGF/POM composites

Fibre 
volume 
fraction

0% 6% 9% 12% 18%

Strength 
without 
weldline 
(MPa)

56.87 ± 0.17 75.00 ± 0.21 82.60 ± 0.13 92.00 ± 0.14 106.60 ± 0.17

Weldline 
strength 
(MPa)

56.55 ± 0.21 64.01 ± 0.18 66.72 ± 0.25 70.80 ± 0.16 74.90 ± 0.22

Adapted from Hashemi et al. (1997).
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Signifi cant fi bre breakage occurs during the injection moulding process; 
number average fi bre length can be reduced by an order or more. Fibres 
may be damaged at a number of key stages during injection moulding: in 
the screw pre-plasticisation zone, in passing through the die, in the gate 
region of the mould, and interim convergences and divergences in the 
mould itself (Bailey and Kraft, 1987).

The mechanical properties of short fi bre reinforced polymers depend on 
the retention of fi bre length in the fi nished part. Consequently, optimisation 
of the injection moulding process is required to achieve better composite 
mechanical performance. The injection moulding conditions for long glass 
fi bre reinforced poly(butylene terephthalate)/poly(ethylene terephthalate) 
blends prepared using a standard Hengel injection moulding press of 70 
tons with a general-purpose screw having a compression ratio of 22 : 1 are 
optimised through controlling the six main moulding variables (Vu-Khanh 
et al., 1991): peak cavity pressure, holding pressure, back pressure, screw 
speed, melt temperature and barrel temperature profi le. In general, these 
moulding parameters and their interactions have signifi cant effects on fi bre 
attrition. Table 2.2 shows the results for fi bre lengths of SFRP composites 
prepared under different injection moulding conditions. Besides the effects 
of the processing parameters, the polymer matrix also has a signifi cant 
infl uence on fi bre length in the fi nal injection moulded composites such as 
those found in short glass fi bre reinforced polyamide 6,6/polypropylene 
(PA 6,6/PP) blends toughened by rubber (Fu et al., 2005). The level of glass 
fi bre attrition in long fi bre reinforced polypropylene composites is consis-
tently less than that for nylon-based composites (Bailey and Kraft, 1987).

Fibre attrition is also studied in short glass fi bre reinforced polypropyl-
ene/polystyrene (PP/PS = 70/30) blend composites with special attention to 
long glass fi bre reinforcement (Inberg et al., 1999). Specimens are produced 
in three different ways: by dry blending (direct injection moulding), mild 
compounding with a single screw extruder, and intensive compounding 
with a twin screw extruder. Thus, three different series of injection moulded 
specimens are made. The fi rst is compounded with the twin screw extruder, 
the second with the angle screw extruder, and the third is dry blended. The 
single screw compounding conditions are set at 230 °C and a screw speed 
of 30 rpm (Brabender 30/25D, 3 mm die, screw diameter = 30 mm, with 
constant screw channel depth). The twin screw compounding conditions 
are set at 230 °C and 120 rpm (Berstorff, co-rotating, L/D = 33, 3 mm die, 
and screw diameter = 25 mm). The dry blend series is produced directly 
using the pre-specifi ed fi bre content. For the extrusion compounded 
materials, extrudates containing 30 wt% are fi rst obtained and are then 
mixed with the original PP and PS to obtain the 10 and 20 wt% series. The 
extrudates are chopped into granules of 9 mm. Subsequently, tensile and 
impact samples are made using injection moulding (Arburg Allrounder 
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22 Engineering of short fi bre reinforced polymer composites

221-55-250, screw diameter = 30 mm). The fi bre lengths before and after 
injection moulding are measured; the results are given in Table 2.3 (Inberg 
et al., 1999). Before injection moulding, the fi bre length depends on the 
compounding method. Fibre lengths in twin screw granules are much 
shorter than those in single screw granules, indicating considerable fi bre 
attrition has taken place with twin screw compounding. For the dry blend, 
the fi bre length before injection moulding is as-received 4.5 mm. The injec-
tion moulding of the dry blends and the compounds causes further fi bre 
attrition. The fi bre reduction worsens as the fi bre content increases for the 
single screw extruded compound and the dry blend. This decreasing trend 
of fi bre length with increasing fi bre content is a common phenomenon (Fu 
et al., 2000, 2001; Thomason, 2005). Moreover, when hybrid composites are 
produced simultaneously using two types of fi bres (e.g. glass and carbon 
fi bres) at a fi xed total fi bre content, the average fi bre length of the rela-

Table 2.2 Effects of injection moulding conditions on fi bre attrition

Peak 
cavity 
pressure 
(GPa)

Holding 
pressure 
(GPa)

Back 
pressure 
(kPa)

Screw 
speed 
(rpm)

Melt 
temperature 
(°C)

Barrel 
temperature 
profi le

Number 
average 
fi bre 
length 
(mm)

14 1 0 50 260 Decreasing 1.06
70 1 0 50 260 Increasing 0.85
70 7 0 50 260 Decreasing 0.83
14 1 700 100 260 Decreasing 0.74
70 1 700 100 260 Increasing 0.89
14 7 0 100 260 Decreasing 0.79
70 7 0 100 260 Increasing 0.99
14 7 700 50 260 Increasing 0.79
70 7 700 50 260 Decreasing 0.82
14 1 0 100 260 Increasing 0.95
70 1 0 100 260 Decreasing 0.81
14 7 700 50 290 Decreasing 0.91
14 1 0 100 290 Decreasing 1.23
70 1 0 100 290 Increasing 0.97
70 1 0 50 290 Decreasing 1.45
14 1 700 50 290 Increasing 0.91
70 1 700 100 290 Decreasing 1.12
14 7 0 50 290 Increasing 1.03
70 7 0 100 290 Decreasing 1.00
14 7 700 100 290 Increasing 0.89
70 7 700 50 290 Increasing 0.71
70 7 700 100 260 Decreasing 0.74

Adapted from Vu-Khanh et al. (1991).
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tively less brittle glass fi bre increases as its content increases while a dif-
ferent trend is true for the more brittle carbon fi bre (Fu et al., 2001). The 
order of fi bre attrition after injection moulding for these three series is: 
twin screw extruded compound > single screw extruded compound > dry 
blend. Therefore, for injection moulded SFRP composites, on the one 
hand, there is a variable fi bre alignment over the composite part; on the 
other hand, the process of injection moulding fi lamentises the fi bres causing 
a wide distribution of fi bre lengths. This must be kept in mind when devel-
oping a mathematical model to predict the composite strength (Templeton, 
1990).

In the past three decades, the growth in using structural composites has 
resulted in the need for higher performance SFRP composites. High per-
formance levels can only be achieved from a composite part containing 
fi bres of high aspect ratio and high fi bre concentration. However, the 
demands of mass production are often in confl ict with the retention of high 
aspect ratios and the use of high fi bre concentrations (Thomason and Vlug, 
1996). This has provided the impetus for the development of techniques to 
produce long fi bre reinforced polymer composites. Although the fi bre 
volume fraction is easy to control, this is not the case for fi bre length in a 
SFRP composite, principally because most thermoplastic composite prepa-

Table 2.3 Glass fi bre lengths before and after injection moulding

Fibre 
content 
(wt %)

Number 
average 
fi bre length 
lmean (mm)

Weight average 
fi bre length 
l w

mean (mm)

Before injection moulding
Single screw granules 30 1.33 2.52
Twin screw granules 30 0.35 0.46

After injection moulding
Dry blend 10 2.21 3.43
Dry blend 20 1.48 2.72
Dry blend 30 1.09 2.25
Single screw 10 1.11 1.96
Single screw 20 0.92 1.55
Single screw 30 0.72 1.06
Twin screw 10 0.35 0.46
Twin screw 20 0.36 0.49
Twin screw 30 0.33 0.46

Adapted from Inberg et al. (1999). (Polymer Engineering and Science, Vol. 39, No. 
2, 1999, p. 341. Copyright 1999 John Wiley & Sons Inc. Reprinted with permission 
of John Wiley & Sons Inc.).
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ration routes lead to signifi cant uncontrollable degradation of fi bre length 
(Bailey and Kraft, 1987; Fisa, 1985; Franzen et al., 1989; Harmia and Friedrich, 
1995; Vu-Khanh et al., 1991; Yu et al., 1994). Thus, it is important to set 
appropriate targets for the desired fi bre concentration and fi bre aspect ratio 
in a composite part. Moreover, fi bre length is an important factor in deter-
mining fi bre concentration at which fi bre packing problems manifest them-
selves (Thomason and Vlug, 1996).

Pultrusion is often used for producing long fi bre pellets which are then 
used for making relatively ‘long’ fi bre reinforced polymers using injection 
moulding (Truckenmueller and Fritz, 1992; Wolf, 1994). Here ‘long’ denotes 
that discontinuous fi bres have a length of ∼1 mm or longer. Strictly speak-
ing, composites based on polymers reinforced with these ‘long’ fi bres are 
still SFRP composites. Alternatively, the direct incorporation of continu-
ous fi bres (DIF) as a relatively inexpensive method is also used to substi-
tute the relatively expensive pultrusion process to produce long fi bre 
pellets (Truckenmueller, 1993). Nonetheless, good fi bre dispersion and 
high fi bre length are often mutually exclusive in DIF injection moulded 
SFRP composites. Truckenmueller (1993) studied direct processing of con-
tinuous fi bres in injection moulding machines to improve fi bre dispersion 
with minimum fi bre breakage. The schematic of the DIF process 
(Truckenmueller, 1993) is shown in Fig. 2.13. The roving strands that are 
normally provided in spools of several kilograms are guided into the spe-
cially designed vent of the devolatilising unit and fed into the melt by the 

1

2

4 3

2.13 Schematic illustration of the DIF-technology: (1) spools of roving 
strands, (2) specially designed vent opening, (3) devolatilising unit, 
and (4) standard injection moulding machine. Adapted from 
Truckenmueller (1993).
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shearing motion of the screw. To achieve good fi bre dispersion and 
minimum fi bre breakage, mixing elements are introduced to provide good 
distributive mixing performance. Conversely, the dispersive mixing action 
should be as low as possible to avoid fi bre breakage. Large fi bre length is 
achieved and fi bre length distribution in DIF injection moulded discs is 
close to that in composites based on long fi bre pellets (Truckenmueller 
and Fritz, 1992).

In summary, short fi bre reinforced polymers are extrusion pre-com-
pounded, resulting in a fi bre length distribution even before the injection 
moulding process takes place. It is well accepted that discontinuous fi bre 
reinforced polymer composites should be moulded with a degree of care 
to preserve the fi bre aspect ratio in the fi nal moulded articles. The use 
of low back pressure, generous gate and runner dimensions can lead to 
minimised fi bre length reductions (Folkes, 1982; Bailey and Kraft, 1987). 
Back pressure has a more dramatic effect on the fi bre length than does 
injection speed or injection pressure. A large gate will be associated with 
lower shearing forces which will damage fi bres to a lesser degree. Also, 
matrix type and fi bre content are two important factors on fi bre 
attrition.
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3
Major factors affecting the performance 

of short fi bre reinforced polymers

Abstract: There are a few major factors that play critical roles in 
determining the mechanical performance of SFRP composites. These 
major factors include fi bre and matrix properties, fi bre–matrix interface 
characteristics, fi bre length distribution, fi bre orientation distribution and 
fi bre volume fraction. This chapter describes these major factors. Some 
of the factors, for example, fi bre length distribution (FLD) and fi bre 
orientation distribution (FOD), are dependent on processing conditions. 
Consequently, measuring methods and defi nitions of FLD and FOD are 
given in this chapter. 

Key words: fi bre length distribution, fi bre orientation distribution, fi bre 
and matrix properties, interface characteristics, fi bre volume fraction.

3.1 Introduction

The disadvantages of pure polymers for structural or semi-structural 
applications are their relatively low stiffness and strength. The incorpora-
tion of high stiffness and high strength short fi bres into the polymer 
matrices is aimed mainly at improving these mechanical properties. An 
additional advantage is that extrusion compounding and injection mould-
ing techniques that were developed originally for un-reinforced polymers 
can be adopted to produce short fi bre reinforced polymer (SFRP) com-
posites. The extrusion compounding and injection moulding processes are 
easy, rapid manufacturing techniques that have made possible the fabrica-
tion of SFRP products much faster compared with that of continuous 
fi bre composites using time-consuming techniques. SFRP composites are 
being used increasingly in automobiles, business machines, durable con-
sumer items, sporting goods and electrical industries, etc., owing to their 
superior mechanical properties over corresponding parent polymers and 
their low cost and easy processing. To develop high performance SFRP 
composites, researchers need to know the major factors that play critical 
roles in determining the mechanical performance of SFRP composites. 
The major factors include fi bre and matrix properties, fi bre-matrix inter-
face characteristics, fi bre length distribution, fi bre orientation distribution 
and fi bre volume fraction. In this chapter an introduction to these major 
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factors is given. Discussion of the mechanical and physical properties 
which depend on these major factors will be given in detail in correspond-
ing sections.

3.2 Modifi ed rule of mixtures

Before discussing these major factors, the modifi ed rule of mixtures for the 
strength and modulus of SFRP composites is fi rst introduced. This knowl-
edge is helpful to understand why fi bre and matrix properties, interface 
characteristics, fi bre length distribution, fi bre orientation distribution and 
fi bre volume fraction are the major factors. The strength (σu

c) of SFRP 
composites can be estimated by assuming that the load is carried mainly by 
the fi bres and matrix at the instance of fracture. This leads to a modifi ed 
rule of mixtures equation as below:

σ λσ σc
u

F
u

M m= +v v ,  3.1

where v and vm are, respectively, fi bre and matrix volume fraction; σ uF 
and σM are, respectively, ultimate strength of fi bre and the stress level 
of the matrix at failure of the composite. λ is fi bre reinforcing coeffi -
cient for composite strength and is a function of fi bre aspect ratio (the 
ratio of fi bre length over diameter as a measurement of fi bre relative 
length), fi bre orientation and fi bre–matrix interfacial adhesion. The 
value of λ is less than 1.0 for SFRP composites and is equal to 1.0 
for unidirectional continuous fi bre composites. It is obvious that the 
composite strength is proportional to the strength of the fi bre and the 
stress level of the matrix at failure of the composite. The stress level 
of the matrix at failure of the composites is proportional to the matrix 
stiffness and is a product of matrix stiffness and composite failure 
strain if the matrix is still in the elastic range. The fi bre generally plays 
a dominant role in determining the strength of SFRP composite because 
the strength of the fi bre is often much higher than that of the polymer 
matrix.

Similarly, an expression for the composite modulus can be written as:

E E v E vc f m m= +χ ,  3.2

where χ is fi bre reinforcing coeffi cient for composite modulus and is a 
function of fi bre aspect ratio and fi bre orientation; it is not strongly depen-
dent on the interfacial adhesion strength because modulus is a material 
property at low strain. Ef and Em are, respectively, the modulus of the fi bre 
and the matrix. Equation [3.2] is an approximate expression for the com-
posite modulus. Detailed discussion will be given in Chapter 6 on elastic 
modulus.
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3.3 Fibres

The fi bres usually used to reinforce polymers have diameters of the order 
of 10 μm. The most commonly used reinforcement is glass fi bre. However, 
to meet various demands from industries on composite strength and 
modulus, various fi bres are applied. Advanced reinforcement materials 
include but are not limited to glass, carbon, boron, silicon carbide, aramid 
and polyethylene fi bres. A survey of the mechanical and physical properties 
of some selected reinforcing fi bres is summarised in Table 3.1, in which the 
properties of high carbon steel are also provided for comparison. These data 
show that carbon, boron, SiC and Kevlar-49 fi bres have a much higher 
Young’s modulus than glass fi bres, but their prices are also much higher. 
Sometimes, hybridisation of two or more different types of fi bres is used to 
reinforce polymers to achieve a balance of properties and cost. A brief 
introduction of some selected reinforcing fi bres is given below. Detailed 
discussion on these fi bres has already been given by Jang (1994) and Weeton 
et al. (1990).

Glass fi bres comprise well over ∼90% of the fi bres used in SFRP com-
posites as they are inexpensive to produce and possess high strength, high 
stiffness (relative to parent plastics), low specifi c gravity, superior chemical 
resistance and good insulating characteristics. There are also some disad-
vantages including relatively low modulus, self-abrasiveness, low fatigue 
resistance and poor adhesion to polymer matrix resins. Several chemicals 

Table 3.1 Typical physical and mechanical properties of some selected 
reinforcing fi bresa

Fibre materials Specifi c 
density 
(g/cm3)

Fibre 
diameter 
(μm)

Young’s 
modulus 
(GPa)

Tensile 
strength 
(GPa)

Carbon (PAN HM) 1.80   7–10 400 2.0–2.8
Carbon (PAN HT) 1.7   7–10 200 3.0–3.5
Carbon (PAN A) 1.9   7–10 220 3.2
Carbon (mesophase) 2.02   7–10 380 2.0–2.4
Boron 2.6 130 400 3.4
SiC (whisker) 3.2   1–50 480 up to 7.0
E-glass 2.50–2.54  10–14  70–72.4 1.5–3.5
S-glass 2.48–2.60  10–14 85.5–90 4.6
Kevlar-29 1.44 12 60 2.8
Kevlar-49 1.45 12 130 2.8–3.6
Polyethylene 0.97 12 117 2.6
High carbon steel 7.8 250 210 2.8

a After Agarwal and Broutman (1990), Harris (1986), Jang (1994), Jones (1994) and 
Pilato and Michno (1994).
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can be added to silica/sand to prepare for glassmaking; different combina-
tions give rise to different types of glass, including A-glass, C-glass, E-glass 
and S-glass fi bres. A-glass is a high-alkali glass. The important alkalis in 
A-glass are soda and lime, which make up ∼25% of A-glass by weight. 
A-glass has very good resistance to chemicals. But, its high alkali content 
lowers its electrical properties. C-glass (chemical-glass) is a special mixture 
with extremely high resistance to chemicals. It is intended for use in situa-
tions where high chemical resistance is required. E-glass is named for its 
electrical properties. With low alkali content, it offers much better electrical 
insulation than A-glass. As a fi bre, it has good all-around strength, and it 
can strongly resist attack by water. S-glass is a high strength glass fi bre and 
its tensile strength can be much higher than that of E-glass fi bre. It also 
holds its strength better at high temperatures and resists fatigue well. Some 
typical physical and mechanical properties of E-glass and S-glass fi bres are 
given in Table 3.1.

High strength and high modulus carbon fi bres are manufactured by 
treating organic fi bres (precursors) with heat and tension, leading to a 
highly ordered carbon structure. The most commonly used precursors are 
rayon-based fi laments, polyacrylonitrile and pitch. Rayon carbon fi laments 
are stretched in a series of steps in an inert atmosphere at ∼2700 °C. 
Tension at high temperatures causes the graphite layer planes to align with 
the fi bre axis, imparting high strength and high modulus to the fi bres. 
Polyacrylonitrile is a long-chain linear polymer composing of a carbon 
backbone with attached carbonitrile groups. The conversion of polyacry-
lonitrile fi bres into carbon fi bres involves treatment of the fi bres in an 
oxidising atmosphere at temperatures typically in the range of 200–300 °C 
while under tension to avoid shrinkage. Pitch, a by-product of the coal 
gasifi cation and petrochemical industries, has long been considered as an 
attractive, inexpensive precursor for production of carbon fi bres. The pitch 
precursor is melt spun and the spun precursor is extruded through a capil-
lary spinneret and is then drawn and wound onto a rotating bobbin to 
produce fi bres. The fi bres are generally carbonised by rapidly heating to a 
temperature in the range of 1500–2800 °C. A few types of carbon fi bres 
are available in a wide range of modulus and strength. Some typical physi-
cal and mechanical properties of representative classes of carbon fi bres are 
listed in Table 3.1 (Harris, 1986; Agarwal and Broutman, 1990; Jang, 1994; 
Jones, 1994).

Aramid fi bre is a generic term for aromatic polyamide fi bres. As an 
example, Kevlar® fi bres, developed by Du Pont, consist of poly(1,4-
phenylene-terephthalamide) (Takayanagi et al., 1982). The fi bres are pro-
duced as Kevlar®-29, Kevlar®-49, the latter having a higher modulus is more 
commonly used in composite structures. Other types of aramid fi bres have 
also been developed. For details, readers should consult the books by Jang 
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(1994) and Weeton et al. (1990). Some specifi c physical and mechanical 
properties of Kevlar-29 and Kevlar-49 fi bres are given in Table 3.1.

The name ‘boron fi bres’ is not strictly accurate because these fi bres are 
actually composites. Boron fi lament is manufactured by chemical vapour 
deposition (CVD) and the metal boron is coated on a thin fi lament of 
another substance called a substrate. Substrates are usually tungsten (W) 
or carbon. Boron fi bres have been used for many years for polymer matri-
ces. The elastic modulus of boron fi bre is extremely high, offering good 
stiffness to reinforced composites. Some specifi c physical and mechanical 
properties of boron fi bres are given in Table 3.1.

Silicon-carbide fi laments are also produced by CVD. β-SiC is obtained 
by the reaction of silane and hydrogen gases with the carbon fi lament being 
the substrate for deposition. SiC fi bres have physical and mechanical prop-
erties comparable to those of boron fi bres. SiC fi bre is less expensive than 
boron fi bre when available in production quantities. Typical mechanical and 
physical properties of SiC and polyethylene fi bres are given in Table 3.1.

3.4 Polymer matrices

While the reinforcing fi bres play a very important role in determining the 
stiffness and strength of SFRP composites, the ability of the matrix to 
support the fi bres and transfer the applied stress to the fi bres is also very 
important. Most polymers are relatively high molecular weight materials, 
in which no further chemical reaction occurs. By taking advantage of the 
inherent nature of polymer molecules to undergo thermally-induced fl ow, 
various shaped SFRP products can be fabricated at elevated temperatures 
by easy and fast processing techniques, such as extrusion compounding and 
injection moulding processes.

Matrix materials in SFRP composites are extensive, such as polypropyl-
ene (PP), polyamides (PA6 and PA6,6), polystyrene (PS), acrylonitrile 
butadiene styrene (ABS) terpolymer, polyethylene (PE), polybutylene 
terephthalate (PBT), polycarbonate (PC) and poly (ether ether ketone) 
(PEEK), etc. The property requirements for matrix materials are different 
from those for short fi bres. Since the fi bres must serve as the principal load-
bearing members in a composite, they must be of high strength and stiffness. 
Reinforcement fi bres usually have low ductility; but in contrast, polymer 
matrix materials usually have relatively high ductility. The matrix serves to 
bind the fi bres and protect the rigid and brittle fi bres from abrasion and 
corrosion. The matrix transmits the applied stress in and out of composites 
and in some cases the matrix carries some (especially transverse) load. The 
mechanical properties of some selected polymers that are most often used 
in SFRP composites are given in Table 3.2. It must be recognised that the 
values given in the table represent only the range of these mechanical 
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properties because they depend on testing and environmental conditions, 
breakdown of molecular chains and chemical reaction during thermal treat-
ment (that is, melting and cooling).

3.5 Interface and interphase

The mechanical properties like strength and toughness, etc., of SFRP com-
posites depend critically on the properties of the interface or interphase 
between the fi bre and matrix. An ‘interface’ is a boundary demarcating 
distinct phases such as fi bre, matrix and coating layer. An ‘interphase’ may 
be a diffusion zone, a nucleation zone, a chemical reaction zone, a thin layer 
of fi bre coating or any combination of the above. Sizing materials are nor-
mally coated on the surface of fi bres immediately after forming as protec-
tion from mechanical damage. The coating material of the fi bres involves 
different agents. It contains in general a fi lm-forming agent for protection, 
lubricants for reduction of wear during handling and coupling agents for 

Table 3.2 Typical physical and mechanical properties of selected polymer 
matricesa

Materials Specifi c 
density (g/cm3)

Young’s modulus 
(GPa)

Tensile strength 
(MPa)

Polypropylene (PP) 0.9 1.1–1.6 30–40
Nylon 6 — 3.0 80
Nylon 6,6 1.14 2.5–3.8 50–90
Polystyrene (PS) 1.05 2.37–3.0 40–49.6
Rubber 0.85–0.90 0.001 —
Poly-2,6-dimethyl-1,4-

phenylene oxide 
(PPO)

1.07 1.65 68.9

Acrylonitrile butadiene 
styrene (ABS)

— 2.2 45

Polycarbonate (PC) 1.06–1.2 2.2 65
Polybutylene 

terephthalate (PBT)
— 2.6 60

Poly ether ether 
ketone (PEEK)

1.32 3.1–4.5 90–103

Poly ether sulphone 
(PES)

1.37 2.4–2.6 80–84

Polyethylene 
terephthalate (PET)

1.21 2.7–4.0 50–70

Poly (phenylene 
sulfi de) (PPS)

— 3.5–4.4 74–80

a After Berglund (1998), Berthelot (1999), De and White (1996), Tekkanat and 
Gibala (1991), Jones (1994) and Pilato and Michno (1994).
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enhancement of the fi bre-matrix interfacial adhesion. For glass reinforce-
ment used in SFRP composites, the sizing usually contains a coupling agent 
to bridge the fi bre surface with the polymer resin matrix used in the SFRP 
composites. The coating of the fi bres leads to an interlayer between the two 
components.

The interface plays a decisive role in stress transfer from polymer matrix 
to short fi bres and controls the mechanical properties of the SFRP compos-
ites, thus, suffi ciently high stress transfer ability must be guaranteed to 
achieve high strength of the composite. Therefore, appropriate coupling 
agents are often used to improve the quality of bonding between fi bres and 
polymer matrix, since the interfacial shear stress τ between them is impor-
tant to stress transfer. τ can be used to evaluate the critical fi bre length, lc, 
at which the fi bre stress at its ends transferred from the matrix reaches the 
maximum stress, that is, the fi bre failure stress:

l rc f F
u= ⋅σ τ,  3.3

where rf is fi bre radius. Undoubtedly, the interface or interphase between 
polymer matrix and short fi bres is one key factor to understand composite 
performance. The effects of the interface on the mechanical properties of 
SFRP composites are explored in the following chapter. But a detailed 
study of the mechanisms by which the interface works lies outside the scope 
of this book. Further discussions of the coating materials and the mechanics 
of interface and interphase can be found in Jang (1994), Kim and Mai (1998) 
and Watts (1980).

3.6 Fibre length

3.6.1 Fibre length in SFRP composites

Short fi bre reinforced polymer (SFRP) composites are often produced by 
rapid, low-cost extrusion compounding and injection moulding processes. 
In the course of these processes, the shear stresses exerted by the screw or 
ram will break the fi bres and result fi nally in a fi bre length distribution with 
an asymmetric character with a tail at the long fi bre end. The fi bre length 
is governed by a number of factors including fi bre content and processing 
conditions, etc. (see Fu et al., 1999a and references therein). The viscosity 
of the matrix affects the fi nal fi bre length distribution in the SFRP compos-
ite, which in turn controls the composite mechanical properties. A higher 
matrix viscosity leads to a lower mean fi bre length, and thus a lower fi bre 
reinforcing effi ciency for the composite strength and modulus.

Fibre breakage in processing of reinforced polymers is often caused by 
fi bre–fi bre interaction, fi bre–matrix interaction and fi bre contact with the 
surfaces of equipment. The fi bre damage is related not only to the equip-
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ment type used and the processing conditions but also to the fi bre content 
and the resin type. It is generally observed that when the fi bre content 
increases, the fi bre–fi bre interaction will cause more damage to fi bre length 
so that the fi nal mean fi bre length decreases with increasing fi bre content. 
That is, the mean fi bre length is inversely proportional to fi bre content (Fu 
et al., 2000).

3.6.2 Measurement of fi bre length

Mechanical properties, such as strength, elastic modulus and fracture tough-
ness, of SFRP composites are critically dependent on the fi bre length dis-
tribution (FLD). To study the relationships between mechanical properties 
and FLD, the latter parameter must be measured. The most common 
method used for fi bre length measurement is direct measurement of fi bre 
lengths after resin burnout (Arroyo and Avalos, 1989; Chin et al., 1988; Fu 
et al., 2002; von Turkovich and Erwin, 1983).

Conventional fi bre length measurement is simple and rapid. Fibre samples 
are collected by burning off resin matrix in a muffl e furnace or removing 
resin matrix using solvent extraction. The fi bres are cast onto glass slides 
and dispersed in an aqueous solution like saline/lubricant solution or natural 
water. The fi bre dispersion is then dried, leaving an even fi bre distribution 
on the glass slides. The fi bre samples are then used for measurement of fi bre 
length as shown in Fig. 3.1. First, optical photos can be taken for fi bre 
samples. Fibre lengths are then measured using a slide projector (von 
Turkovich and Erwin, 1983) or with computer software SemAfore 4.0 (Fu 
et al., 2002). When using a slide projector, the light source projects the image 
of the fi bres onto the digitising tablet as shown in Fig. 3.2. Magnetisation of 
the fi bre image is controlled by adjusting the focal length of the projection. 
The operator uses a magnetic pen to locate the end-points of each fi bre to 
obtain the fi bre length. When using the computer software SemAfore 4.0, 
the optical micrographs of short fi bres stored in a computer are used for 

Furnace
Resin burn-off

Fibres are dispersed
in aqueous solution

Fibre samples
deposited
on glass slide

3.1 Preparation of fi bre sample for fi bre length measurement.
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measurement of fi bre lengths and fi bre length measurements can be easily 
carried out by semi-automatically locating the two ends of short fi bres in 
the micrographs to evaluate values of fi bre lengths.

Figure 3.3(a) shows a schematic of the full view of fi bres to be photo-
graphed and PIC 1–4 therein will be used for measurement of fi bre length 
(Fu et al., 2002). It can be seen that the fi bres crossing the edges of the 
pictures cannot be measured because the parts beyond the picture edges of 
the crossing fi bres are not visible. The crossing fi bres usually have longer 
fi bre length than the un-crossing fi bres near the edges and as a result the 
average fi bre length would be underestimated since the crossing fi bres 
could not be properly counted. In the photomicrograph technique, 
fi bres are normally cast onto the surface of glass slides or the like and the 
fi bres are then photographed using an optical microscope. Fibre length can 
be measured using computer software or a scale on photographs of extracted 
short fi bres from the samples. However, the photographs cannot be unlimit-
edly large as shown in Fig. 3.3(a). So, there will be many fi bres intersecting 
the edges of the pictures as shown in Fig. 3.3(b).

To obtain the correct average fi bre length, all the fi bres within the pho-
tographs and across the edges of the photographs have to be considered. 
The lengths of the fi bres within the photographs can be easily measured. 
Normally, 600–1000 fi bres in total are needed for measurement of short 
fi bres. Assume the number of the fi bres with a length of l to l + dl is Nwit 

Slide location

Projector

Fibre length
histogram

Computer

Digitising tablet

Fibre image

3.2 Fibre length measurement using a slide projector (von Turkovich 
and Erwin, 1983). (Polymer Engineering and Science, Vol. 23, No. 13, 
1983, p. 745. Copyright, 1983, John Wiley & Sons Inc. Reprinted with 
permission of John Wiley & Sons Inc.).
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PIC 1 PIC 2

PIC 3 PIC 4

(b)

(a)

3.3 (a) Schematic showing the full view of the fi bres to be 
photographed and used for measurement of fi bre lengths, (b) optical 
photograph of short fi bres in which the length of fi bres only within 
the photograph can be measured. Adapted from Fu et al. (2002).
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within the photographs, which are simply counted. Then, the number (Nint) 
of fi bres with the same length range intersecting the photographs can be 
obtained from Fu et al. (2002):

N
l L L N

L L l L L l
int

.

. .
,=

+( )
− +( ) +
1 2732

0 6366 0 3183 2

A B wit

A B A B
 3.4

where LA and LB are the lengths of the two edges of the photographs. When 
LA, LB >> l, Nint << Nwit. For example, LA = LB = 100 l, then Nint = 0.025 Nwit. 
Otherwise, Nint has to be counted in the total number of fi bres for evalua-
tion of fi bre length. For example, LA = LB = 10 l, then Nint = 0.29 Nwit. This 
means more long fi bres than short fi bres would intersect the edges of the 
photographs that are used for measurement of fi bre length. As a result, the 
total number (Ni) of fi bres with a length of l to l + dl is Nwit + Nint. Finally, 
the (number) average fi bre length can be obtained by counting all the fi bres 
within and across the photographs:

l
l l N

N
mean

i

i

=
∑ +( )

∑
Δ 2

.  3.5

Sometimes, the weight average fi bre length is also evaluated and is defi ned 
by:

l
l l N

l l N
mean
w i

i

=
∑ +( )
∑ +( )

Δ
Δ

2

2

2

.  3.6

3.6.3 Defi nition and characterisation of fi bre 
length distribution (FLD)

To predict the physical and mechanical properties of SFRP composites, the 
fi bre length distribution should be properly defi ned. The length distribution 
of fi bres in a short fi bre reinforced polymer composite can be described 
with a probability density function. The fi bre length probability density 
function f(l) can be defi ned such that f(l)dl and F(l) are the probability 
density that the fi bre length is between l and l + dl and the probability that 
the fi bre length is less than or equal to l, respectively. Thus, the relation of 
f(l) and F(l) is given by (Fu and Lauke, 1996, 1997a, 1998a, b, Lauke and 
Fu, 1999):

F l f x x
l

( ) = ( )∫ d
0

 3.7

and

f x x
l

l

( ) =∫ d
min

max

,1  3.8
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where lmin and lmax are, respectively, minimum and maximum fi bre length. 
A reasonable fi bre length probability density function that allows the 
description of the experimental results is given by:

f l abl al l( ) = −( ) >−b b for1 0exp ,  3.9

where a and b are size and shape parameters, respectively. Therefore, the 
cumulative distribution function, F(l), is given by combination of eqns [3.7] 
and [3.9] so that:

F l al l( ) = − −( ) >1 0exp .b for  3.10

From eqn [3.9] the mean fi bre length (i.e., the number average fi bre length) 
becomes:

l lf l l a bmean
bd= ( ) = +( )−

∞

∫ 1

0

1 1Γ ,  3.11

where Γ(x) is the gamma function. To fulfi ll the normalisation condition of 
eqn [3.8] the limiting case of lmin close to zero and lmax close to infi nity is 
assumed. The most probable length (mode length), lmod, where the probabil-
ity density function has a peak value, is obtained by differentiating eqn [3.9] 
and putting the resultant equation equal to zero, which gives:

l a abmod .= − ( )[ ]1 1
1 b

 3.12

An indirect two-section experimental method is also proposed for esti-
mating the average fi bre length in layered composites by using data gener-
ated from two parallel, closely spaced sections of a specimen (Zak et al., 
2000). The average fi bre length is estimated from the ratio of matched fi bres 
appearing in both cross sections to the total number observed in a single 
cross section. The results obtained by this indirect method are consistent 
with the most commonly used matrix burnout method. However, it should 
be noted that this indirect method can only provide the data of average 
fi bre length (Zak et al., 2000).

Assume the fi bre length (l) varies from zero to lmax in a short fi bre rein-
forced polymer composite. The fi bre length lmax can be divided into n inter-
vals and each fi bre length interval equals Δl, then,

n
l

l
= max .

Δ
 3.13

It is obvious that n decreases with increasing Δl. Assume that N fi bres are 
collected in total and the number of fi bres with a length within the ith 
interval (i = 1, 2,  .  .  .  n) is Ni as done in measurement of fi bre length. The 
total number of fi bres within all the intervals is:

N N
i

n

=
=
∑ i

1

.  3.14
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Naturally, N does not depend on Δl. The number fraction relative frequency  
h(l) of the fi bres within the ith interval is defi ned by:

h l
N
N

( ) = i ,  3.15

where l is the fi bre length at the beginning of the ith interval. Equation 
[3.15] is often used to characterise the fi bre length distribution in 
SFRP composites. But the number fraction of the fi bres depends on 
the size of the fi bre length interval Δl and increases with Δl. Hence, 
the fi bre length distribution obtained according to eqn [3.15] is not 
constant.

It is more reasonable to characterise the fi bre length distribution (FLD) 
by the fi bre length probability density:

f l
N N

l
( ) = i

Δ
.  3.16

Equation [3.16] has been shown to describe the FLD well (Fu et al., 2001a). 
In principle, when Δl is infi nitely small, the fi bre length probability density 
could be independent of the fi bre length interval Δl. However, this is imprac-
tical because very tedious experimental work in measuring fi bre length is 
then required. In practice, the fi bre length probability density still depends 
on the fi bre length interval. As an example, Fig. 3.4 shows the fi bre length 
probability density f(l) as a function of fi bre length using experimental data 
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3.4 Fibre length probability density versus fi bre length for a 30 wt% 
short glass fi bre reinforced polybutylene terepthalate (PBT) composite. 
Adapted from Fu et al. (2001a).
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given by Sarasua et al. (1995). It is clear that f(l) depends on the fi bre length 
interval Δl. The FLD curve moves horizontally by an amount about [(Δl)1 
− (Δl)2]/2 when the fi bre length interval changes from (Δl)1 to (Δl)2, where 
(Δl)1 = 22–23 μm and (Δl)2 = 44–45 μm (Fu et al., 2001a).

In contrast, the cumulative fraction of fi bres with a length from 0 to l 
does not depend on the fi bre length interval Δl. The cumulative fraction of 
fi bres is given by:

F l N N
l

l

( ) =
=

∑ i
i 0

.  3.17

The same cumulative fi bre length distribution can be obtained by changing 
the fi bre length interval Δl. This is because the cumulative number of fi bres 
with a length less than a certain value is constant for all fi bre length intervals 
and thus does not depend on fi bre length interval.

The cumulative fi bre length distribution can be described with the cumu-
lative distribution function, F(l), expressed by eqn [3.10]. If the values of 
F(l) at l1 and l2 are known, then a and b can be evaluated from eqns [3.18] 
and [3.19]:

F l al1 11( ) = − −( )exp b  3.18

F l al2 21( ) = − −( )exp .b  3.19

Combination of eqns [3.18] and [3.19] gives the solutions of a and b as:

b
F l F l

l l
=

− ( )[ ] − ( )[ ]{ }
( )

ln ln ln

ln

1 11 2

1 2

 3.20

a
F l

l
= −

− ( )[ ]ln
.

1 1

1
b

 3.21

Since the cumulative fi bre length distribution F(l) does not depend on the 
fi bre length interval, the parameters a and b can be determined according 
to eqns [3.20] and [3.21].

Alternatively, the parameters a and b can also be obtained from eqns 
[3.11] and [3.12] provided the mean fi bre length (lmean) and mode fi bre 
length (lmod) are given experimentally, in which lmean is obtained in terms of 
eqn [3.5] while lmod can be obtained from the measured fi bre length profi le:

1 1 1 11−( ) +( ) =b b l lb
mod mean  3.22

a b l= −( )1 1 mod
b  3.23

The number average fi bre length and the weight average fi bre length can 
be evaluated from the measured fi bre lengths and are given by eqns [3.5] 
and [3.6].
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3.7 Fibre orientation

3.7.1 Fibre orientation in SFRP composites

SFRP composites are very attractive because of their ease of fabrication, 
economy and superior mechanical properties. Conventional injection 
moulding is often used to make SFRP composites (Bader and Collins, 1983; 
Bijsterbosch and Gaymans, 1995; Biolzi et al., 1994; Curtis et al., 1978; 
Denault et al., 1989; Doshi and Charrier, 1989; Friedrich, 1985; Fu and 
Lauke, 1997b, 1998c,d; Fu et al., 1999b, 2000, 2005, 2006; Hine et al., 1993a; 
Ho et al., 1996; Joshi et al., 1994). In the fi nal SFRP composites prepared 
using this technique, the fi bres will show certain orientation distribution. 
Several studies (Bay and Tucker, 1992; Fu et al., 2002; Gupta and Wang, 
1993; Silva et al., 2006) revealed that injection-moulded SFRP composites 
have quite complex fi bre orientation distributions which vary both through 
the thickness and at different positions along the composite mouldings 
(Barbosa and Kenny, 1999). Mechanical properties of SFRP composites are 
normally orthotropic due to partial fi bre misalignment in moulded parts. 
The fi bre orientation pattern is the dominant structural feature of injection 
moulded short fi bre reinforced polymer composites. The composite is stiffer 
and stronger in the direction of the major orientation while much weaker 
in the transverse direction. Fibre orientation can be strongly infl uenced by 
processing condition and mould geometry.

Fibre orientation is dependent on mould geometry and hence specimen 
geometry. For large samples like injection moulded plaques, the composite 
moulding has a typical skin–core–skin structure with two skin layers where 
the fi bres are highly oriented in the fl ow direction and a core layer where 
fi bres are mainly aligned transversely to the fl ow direction (Bay and Tucker, 
1992; Darlington and McGinley, 1975; Fu et al., 2002; Friedrich, 1998; 
Solomon et al., 2005; Tjong et al., 2002; Xia et al., 1995). An example is given 
in Fig. 3.5 for a 45 wt% short-glass-fi bre (SGF)/polyethyleneterephthalate 
(PET) composite (Friedrich, 1998), in which the skin–core–skin structure 
in the sample cut from an injection moulded plaque is clearly demonstrated. 
In the centre section away from the surfaces, the fi bres are distributed more 
transversely to the mould fl ow direction. In contrast, for small specimens 
with narrow cross sections used for tensile testing, the fi bres will be aligned 
preferentially along the mould fl ow direction. Figure 3.6 shows SEM micro-
graphs of the fracture surfaces of a short glass fi bre (SGF)/polypropylene 
(PP) composite in three different positions across the specimen thickness 
from one side to the middle, and to the other side (Fig. 3.6a–c). It can be 
seen that the short fi bres are aligned preferentially along the fl ow direction 
in the whole specimen thickness. This observation agrees with previous 
studies from fractured surfaces (Fu and Lauke, 1998c; Ramsteiner and 
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Theysohn, 1979) and polished surfaces (Takahashi and Choi, 1991) of tensile 
samples with narrow cross sections. Moreover, when short glass and short 
carbon reinforced polypropylene composite specimens were injection 
moulded into dumbbell-shaped tensile bars (Fu et al., 2001b), in which an 
end gated mould was used according to DIN 53455, the fi bres in the tensile 
bars were preferentially oriented in the fl ow direction as shown in Fig. 3.7. 
Here, it should be pointed out that ‘preferentially oriented’ does not mean 
perfect alignment and there should be a fi bre orientation distribution with 
a small average angle of the fi bres with the fl ow direction. Further, as the 
specimen thickness increases, fi bre orientation also changes. The fi bre ori-
entation or orientation distribution can be measured using the image analy-
ser technique discussed below.

3.7.2 Measurement of fi bre orientation

Fibre orientation can be measured using an image analyser system (Clarke 
et al., 1990, 1993; Hine et al., 1996; Lee et al., 2003). The system works by 
imaging directly from a polished and etched section taken from the SFRP 
composite, in which each fi bre image appears as an ellipse. The refl ection 
microscopy of a polished composite section easily lends itself to automation 
allowing a large number of fi bre images to be processed in a short time at 
the order of 10,000 images in 20 minutes. The analysis method allows 
three-dimensional (3D) fi bre orientation distribution functions to be deter-
mined. The two Euler angles (θ φ) which specify the 3D orientation of a 
fi bre can be calculated by the analysis system for every fi bre image with no 
need to make any assumptions about the symmetry of the fi bre orientation 
distribution (e.g. transverse isotropy).

3

2

S C S
B

100 μm

3.5 SEM micrograph of the layer structure in the 2–3 plane (cross-
section) of a 45 wt% SGF/PET composite. ‘C’ and ‘S’ are respectively 
the core and skin layer size while ‘B’ is the specimen thickness. 
Adapted from Friedrich (1998).
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Flow direction

(a)

Flow direction

(b)

Flow direction

(c)

3.6 SEM micrographs of tensile fracture surfaces of an SGF/PP 
composite with an 8 vol% glass fi bres: (a) one side, (b) middle, 
(c) another side. Adapted from Fu et al. (2000).
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The spatial position of a fi bre can be defi ned by the two Euler angles θ 
and φ as shown in Fig. 3.8. θ is defi ned as the angle that the fi bre makes 
with the injection direction 1 or the normal direction of a plane on which 
the fi bre orientation will be measured. φ is the angle that the fi bre makes 
with the 2-axes when projected onto the 2–3 plane, that is, the one whose 
normal is parallel to the 1-axis direction. θ is determined by the inverse 
cosine of the ratio of the semi-minor to semi-major axis of the ellipse, while 
φ is determined from the orientation of the semi-major axis of the ellipse 
to the 2-axis. The image analysis system for measuring fi bre orientation 
takes each image frame, and fi ts an ellipse to every fi bre image and then 
determines θ and φ (Hine et al., 1996). For further details on the use of the 
image analysis system and a more detailed discussion, please see Clarke 
et al. (1990, 1993) and Hine et al. (1996).

(a) (b)

(c) (d)

3.7 Orientation of fi bres in specimens taken from: (a) the side and (b) 
the central area of the short carbon fi bre (SCF)/PP composite with 
v(carbon) = 25%, (c) the side and (d) the central area of the hybrid 
SGF/SCF/PP composite with v(carbon) = 18.75% and v(glass) = 6.25%. 
Adapted from Fu et al. (2001b).
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The measurement of fi bre orientation by the image analysis technique 
requires the preparation of a cross section at a prescribed location in the 
fi nished SFRP component. The preparation method depends on the tech-
nique, e.g., scanning electron microscopy (SEM) or refl ected light micro-
scopy used to image the polished cross section of the specimen. The cost of 
a light microscope is considerably less than that of a SEM and is thus the 
preferred choice. The preparation of a specimen for inspection by refl ected 
light microscopy requires high contrast between fi bre and matrix. A major 
increase in contrast can be achieved if the specimen is etched with oxygen 
ions (Mlekusch et al., 1999). The matrix is roughened resulting in greater 
light scattering and images with contrast comparable to those obtained by 
SEM (Mlekusch et al., 1999).

It is recognised when a polished section is taken through an SFRP com-
posite the fi bres appear as circular or elliptical images. Measurement of the 
elliptical parameters of these images allows the fi bre orientation distribu-
tions to be measured. Methods to obtain the elliptical parameters include 
direct measurements of photographs (Yurgatis, 1987; Fakirov and Fakirova, 
1985) and use of commercially developed image analysers (Fischer and 
Eyerer, 1988; Fischer et al., 1990). A polished composite section must be 
prepared for image analysis. Figure 3.9 shows a typical sectioned surface 
whose axes are defi ned as X, Y′ and Z′ (Hine et al., 1993b). In theory, this 
section could be made at any angle α to the Z-axis. Although the transverse 
section (X–Y plane) is taken traditionally, this can cause problems with 
well-aligned fi bres. For well-aligned fi bre reinforced composites, it is benefi -
cial to prepare the section at a small angle to the Z-axis, making the majority 
of the fi bre images elliptical with a large ellipticity.

(a) (b)

θ = cos–1 (b/a)
2

3

2b 2a

2 

3

1 

φ

φ

Fibre 

θ

3.8 Defi nition and determination of the fi bre orientation angles θ and 
φ. Adapted from Hine et al. (1996). (Polymer Composites, Vol. 17, No. 
3, 1996, p. 402. Copyright, 1996, John Wiley & Sons Inc. Reprinted 
with permission of John Wiley & Sons Inc.).
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Elliptical fi bre images measured on this sectioned plane are defi ned by 
the angles θ and φ. θ is the angle the fi bre makes with the Z′-axis, while 
φ is the angle between the projection of the fi bre image in the X–Y plane 
and X-axis.θ = cos−1(b/a), where a and b are major and minor axes of the 
ellipse, respectively. For a near circular image (θ ≈ 0), a 1% error can 
lead to an uncertainty of 8° in θ. However, when the section is taken at 
an angle to the Z-axis for the aligned fi bre composite, this makes all the 
images elliptical. Then, a 1% change in b/a gives a 0.5° error in θ. 
Therefore, it is recommended that the cross section to be used for mea-
surement of fi bre orientation in aligned SFRP composites should be 
selected at an angle to the Z-axis so that the measuring error can be 
very small.

The above approach uses destructive techniques for determining fi bre 
orientation. As stated above, destructive techniques generally consist of 
cutting a material sample by a microtome, polishing the surface and analys-
ing the elliptical footprints left by fi bres cut by the sectioning plane by 
means of image analysis software. In contrast, non-destructive techniques 
consisting of using X-rays are also used to obtain an image projection of 
the fi bres on a plane perpendicular to irradiation direction (Kim et al., 2001; 
Bernasconi et al., 2008). Using non-destructive techniques, the planar fi bre 
orientation distribution can be obtained, but fi bre orientations along the 
thickness of the sample cannot be captured. To obtain a complete spatial 
distribution description, computed microtomography (μCT) is required. 
The X-rays produced by the source hit the sample, which is placed on a 
rotating table, travel through the structures and are collected on the detec-
tor plane located downstream. In this way, a large number of radiographs 
(projections) of the sample are taken at small angular increments over a 
180/360° rotation. From these projections it is possible to reconstruct the 

Z Z′

Y′

Y

X

Sectioned surface

α

3.9 Defi nition of the section angle (Hine et al., 1993b).
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internal 3D microstructure of the sample using well-known mathematical 
algorithms.

3.7.3 Defi nition and characterisation of fi bre orientation 
distribution (FOD)

To describe the fi bre orientation distribution (FOD) in a short fi bre rein-
forced polymer composite, a spatial curvilinear coordinate system is adopted 
as shown in Fig. 3.10. Provided θ is the angle that one end of a fi bre makes 
with the 1-axis, then (π − θ) is the angle at the other end of the fi bre with 
the 1-axis. φ and (π + φ) are the two angles of the projection of the two fi bre 
ends onto the 2–3 plane with the 2-axis, respectively.

A two-parameter exponential function is used to describe the fi bre ori-
entation distribution g(θ) as follows:

g θ θ θ

θ θ θ
θ

θ

θ( ) = ≤ ≤
− −

− −∫

sin

sin d
for 0

p 1 q

p 1 q

min

max

2 2 1

2 2 1

cos

cos
min θθ θ π≤ ≤max ,2  3.24

where p and q are the shape parameters that can be employed to deter-
mine the shape of the distribution curve, and p ≥ 1/2 and q ≥ 1/2. g(θ)
dθ is the probability that the fi bre orientation is between θ and θ + dθ. 
Equation [3.24] has been verifi ed to be a suitable probability density 
function to describe the fi bre orientation distribution g(θ) in injection 
moulded short-fi bre reinforced polymer composites (Fu and Lauke, 1996, 

2
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1 

Fibre

p+f

p-q

f

q

3.10 Defi nition of the fi bre orientation angles: θ, π − θ, φ and π + φ.

�� �� �� �� ��



50 Engineering of short fi bre reinforced polymer composites

1998,a,b). The mean fi bre orientation angle (θmean) can be obtained from 
eqn [3.24] by:

θ θ θ θ
θ

θ

mean d= ( )∫ g
min

max

.  3.25

Let the resultant equation after differentiating eqn [3.24] be zero, then we 
have:

θmod .= −( ) −( )[ ]{ }arctan 2 1 2 1
1 2

p q  3.26

Equation [3.26] represents the most probable fi bre orientation angle, 
namely, mode fi bre angle at which the fi bre probability density is the 
highest. When p = q = 1, then θmod = π/4; when p = 1 and q > 1, θmod < π/4; 
when p > 1 and q = 1, θmod > π/4; when p = 1/2, θmod = 0; when q = 1/2, θmod 
= π/2; when p = q = 1/2, there will be no θmod and the fi bres are randomly 
distributed in the SFRP composite; the corresponding fi bre orientation 
distribution curves are shown in Fig. 3.11. Moreover, when p = 1/2, large q 
(e.g. 100 or larger) indicates that fi bres are preferentially aligned parallel 
to the θmod = 0 direction; when q = 1/2, large p (e.g. 100 or larger) means 
fi bres have a major preferential orientation normal to the θmod = 0 direction. 
So, all the cases of fi bre orientation distribution in SFRP composites can 
be included in eqn [3.24]. The fi bre orientation coeffi cient, fθ, can then be 
defi ned below:

f gθ
θ

θ

θ θ θ= ( ) −∫2 12cos .
min

max

d  3.27
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3.11 Fibre orientation distribution curves for (a) p = q = 1; (b) p = 1, 
q = 2; (c) p = 2, q = 1; (d) p = 1/2, q = 2; (e) p = 2, q = 1/2; (f) p = q = 
1/2. Adapted from Fu and Lauke (1996).
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For fθ = 1, all fi bres are aligned parallel to the 1-axis direction. fθ = 0 cor-
responds to a two-dimensional (2D) random distribution or a symmetric 
distribution about the direction angle of π/4. For fθ = −1, all fi bres lie per-
pendicular to the 1-axis direction.

The cumulative distribution function of fi bre orientation (θ) is hence 
given by:

G g

d

θ θ θ
θ θ θ

θ θ θ

θ

θ

θ

( ) = ( ) =

− −

− −

∫
d

d

p q

p q

sin cos

sin cos

min

min

2 1 2 1

2 1 2 1
θθ

θ

θ

max
min

.

∫
∫  3.28

G(θ) is the cumulative percentage of the fi bres whose orientation varies 
from θmin to θ.

Equation [3.24] is the fi bre orientation distribution function for θ in the 
range of 0 to π/2. Thus, the equivalent to eqn [3.24] in the range of 0 to π 
can be obtained by replacing cos θ with |cos θ |, where || denotes the absolute 
value sign since the value of cos θ would be negative when θ is greater than 
π/2. Similar to the defi nition of g(θ), we can defi ne an orientation probabil-
ity density function g(φ) for the fi bre orientation angle φ in the range of 0 
to 2π by:

g φ
φ φ

φ φ φ
φ

φ

φ( ) = ≤ ≤
− −

− −∫

sin cos

sin cos
min

max min

2 1 2

2 1 2
0

s t 1

s t 1 d
for φφ φ π≤ ≤ ,max 2  3.29

where s and t are shape parameters that determine the shape of the g(φ) 
curve. g(φ)dφ is the probability density that the orientation of fi bres lies 
between φ to φ + dφ.

The probability function for a pair of orientation angles (θ, φ), also known 
as the orientation distribution function g(θ, φ), is defi ned such that the 
probability of the fi bres lying in the infi nitesimal ranges of θ to 
θ + dθ and φ to φ + dφ is given by g(θ, φ)dΨ, where dΨ is the infi nitesimal 
solid angle:

dΨ = .sinθ θ φd d  3.30

The probability density distribution must meet two physical conditions. 
The fi rst condition is that one end of the fi bre is indistinguishable from the 
other end, so θ and φ must be periodic:

g gθ φ π θ φ π, .( ) = − , +( )  3.31

The second condition is that every fi bre must have a pair of orientation 
angles θ and φ so that the integral over all possible directions or the orienta-
tion space must equal unity:

�� �� �� �� ��



52 Engineering of short fi bre reinforced polymer composites

g θ φ θ θ φ
θ

θ

φ

φ
, sin ,

min

max

min

max ( ) ( ) =1∫∫ d d  3.32

where 0 ≤ θmin ≤ θ ≤ θmax ≤ π and 0 ≤ φmin ≤ φ ≤ φmax ≤ 2π.
Since the probability of fi nding a fi bre in the infi nitesimal ranges of angles 

between θ and θ + dθ and between φ and φ + dφ is either equal to g(θ, φ)
dΨ or equal to g(θ)g(φ)dθ dφ, then we have:

g g gθ φ θ φ θ, sin .( ) = ( ) ( )  3.33

Finally, g(θ, φ) can be derived from g(θ) and g(φ). It can be easily verifi ed that 
the orientation distribution function g(θ, φ) satisfi es its periodic condition 
(eqn [3.31]) and its normalization condition (eqn [3.32]). Thus, g(θ, φ) is a 
proper probability density function for a pair of orientation angles (θ, φ).

Fibre orientation distribution is also described using the modifi ed Kacir 
et al. (1975, 1977) exponential function to satisfy the requirement that 
G(π/2) = 1 (Chin et al., 1988). The modifi ed density and cumulative distribu-
tion functions are:

g
e

e
θ λ( ) =

−

−

−

λθ

πλ
1 2

G
e

e
θ( ) = −

−

−

−

1

1 2

λθ

πλ
.

Large λ indicates that fi bres have a major preferential alignment. Some 
90% of fi bres are oriented within 10° of each other at λ greater than 10°. 
In contrast, as λ decreases, fi bre orientation becomes more random. Thus, 
the variation of the shape parameter λ indicates a change of material type 
from unidirectional to quasi-isotropic.

3.8 Fibre volume fraction

Consider a SFRP composite with a volume Vc comprising a volume Vf of 
short fi bres and a volume Vm of polymer matrix. The volume fraction v of 
short fi bres is:

v
V
V

= f

c

.  3.34

And the volume fraction of the matrix is:

v
V
V

m
m

c

= .  3.35

As Vf + Vm = Vc, then we have v + vm = 1.
Since fi bre weight fraction is often used in practice, it is necessary to 

convert the weight fraction to volume fraction by the following equation:
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v
P

P P
=

+
f f

f f m m

ρ
ρ ρ

,  3.36

where P represents weight and ρ denotes density for fi bre (f) and matrix 
(m). When there are more components in a SFRP composite, the denomina-
tor of the above equation is the volume sum of all components.

For a two-component SFRP composite, the density ρc of the SFRP com-
posite can be evaluated from:

P P Pc

c

f

f

m

mρ ρ ρ
= + ,  3.37

and the composite density is given by:

ρ
ρ ρc

f f m m

=
+
P

P P
c .  3.38

It may occur that the density measured experimentally does not agree with 
that estimated by eqn [3.38]. In the case where the deviation exceeds the 
experimental errors, it can be attributed to the existence of porosity. The 
difference between the theoretical density ρct and the experimental density 
ρce allows the porosity volume fraction vp to be estiamted by:

vp
ct ce

ct

= −ρ ρ
ρ

.  3.39

The presence of porosity in a SFRP composite may cause a decrease in its 
mechanical properties. Thus, preparation of high quality SFRP composites 
is of great importance.

Further, there exists a critical fi bre volume fraction below which the 
composite strength cannot be improved by addition of short fi bres. For 
reinforcement, we must have (Piggott, 1980):

c
u

M
u> ,  3.40

where σ uM is ultimate tensile strength of matrix. At σ uc = σ uM, there is a critical 
volume fraction for composite strength. Thus, combination of the above 
equation and eqn [3.1] gives the critical fi bre volume fraction as:

vcrit M
u

M C
u

F
u

M C
u

=
− ( )
− ( )

σ σ ε

λσ σ ε
 3.41

where σM(ε uc) is matrix stress at composite failure and equals Em · ε uC if the 
failure streain ε uC is in the elastic range of the matrix. It now becomes pos-
sible to evaluate the critical volume fraction for composite strength. For 
example, for λ = 0.5, σM(ε uC) = 40 MPa, σ uM = 60 MPa and σ uF = 2000 MPa, 
then vcrit = 2%. Thus, only when the fi bre volume fraction is higher than 2%, 
can the composite strength be improved by incorporation of short fi bres. 
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Otherwise, the composite strength cannot be enhanced or even lowered by 
the addition of short fi bres. Eqn [3.41] gives the minimum fi bre volume 
fraction above which inclusion of short fi bres can be effective in improving 
the composite strength.

Evans and Gibson (1986) discussed the maximum packing fraction 
achievable for a random array of short fi bres. As the maximum possible 
packing density is approached, the available free volume for fi bres decreases. 
The point at which maximum packing of fi bres is reached is defi ned as that 
at which the short fi bres, whilst remaining randomly oriented, no longer 
have any rotational freedom, being constrained by the neighbouring fi bres. 
An expression has been proposed for the maximum packing fraction for 
randomly oriented short fi bres, which is:

v kd lmax ,=  3.42

where k is a constant with a value of 4 for the three-dimensional random 
fi bre composite. In short fi bre reinforced polymer composites where random 
orientation is imposed during some part of the fabrication process, it is 
expected that the form of eqn [3.42] provides a fundamental limitation to 
the amount of short fi bre reinforcement which can be added to the polymer 
matrix. However, eqn [3.42] obviously fails to hold for small aspect ratios 
of short fi bres. A slightly improved expression is given by:

v
d
l d l

max .=
+

⎛
⎝⎜

⎞
⎠⎟

4 1
1

 3.43

The inaccuracy at low aspect ratios is unimportant since most short fi bre 
reinforcements of practical interest have rather high aspect ratios.

The mechanical and physical properties of SFRP composites depend 
strongly on fi bre volume fraction. For injection moulded short fi bre rein-
forced polymer composites, the composite performance cannot be simply 
linearly related to fi bre volume fraction as expressed in eqns [3.1] and [3.2] 
as fi bre damage is related to fi bre content. In general, fi bre–fi bre interac-
tion causes more damage to fi bre length as the fi bre content increases. 
Hence, fi nal mean fi bre length decreases with increasing fi bre volume frac-
tion. The mean fi bre length lmean as a function of fi bre volume fraction v 
can be described by a fi tting exponential function with an offset (Fu et al., 
2000):

l C C v Cmean = ⋅ ( ) +1 2 3exp ,  3.44

where the absolute value of C1 is magnifi cation of the exponential function 
[exp(C2v)]. (C1 + C3) is the extrapolated fi bre length at v = 0, C2 and C3 are 
constants for a given fi bre–matrix system. Since mean fi bre length in prac-
tice decreases with increasing fi bre content, then C1 < 0 while C2 > 0 and 
C3 > 0 holds true.
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4
Stress transfer in short fi bre 

reinforced polymers

Abstract: The knowledge of stress distribution around an embedded 
fi bre within a matrix material is crucial for the understanding of the 
reinforcing action of fi bres in composite materials. This chapter provides 
the basic analytical expressions for the stresses on the fi bre, at the 
interface and within the matrix. After a review of models, both single- 
and multi-fi bre arrangements are considered. The chapter also includes a 
discussion of the effect of an interphase between the fi bres and matrix 
on the stress distribution. Finite element calculations are summarised.

Key words: interface shear stress, single fi bre, multi-fi bre arrangement, 
interphase, fi nite element analysis.

4.1 Model review

Fibre reinforced composites show their improved properties mainly by 
tension along the fi bre axis. The structure preferred in application is just 
that which can easily be dealt with theoretically, for the symmetry of stress 
coincides with the symmetry of geometry. Hence, the largest amount of 
theoretical and experimental work concerning the mechanical properties 
of fi bre reinforced materials deals with unidirectional tension in the direc-
tion of the fi bre axis. Thus, here, considerations are fi rst restricted to this 
loading condition. By doing so we neglect all such effects, which result from 
fi bre curvature or fi bre orientation distribution (this effect is discussed in 
Chapters 3, 5–8 and 10). The fi bres are considered to be straight and aligned. 
The central problem with the load-bearing properties of short fi bre com-
posites is the load transfer from the surrounding matrix to the reinforcing 
fi bres. The general picture of stress variation along the fi bre axis is sketched 
in Fig. 4.1(a) for the ideal case of elastic components and bonded interface, 
where it is assumed that no stress is transmitted over the end face of the 
fi bre. Near the fi bre end region, the fi bre axial stress will be small, less than 
or equal to the matrix stress. The higher fi bre stiffness has lead to deviations 
in the mean displacements and caused shear stresses along the interface. 
Thus, the load is transferred from the surrounding region to the fi bre until 
the fi bre stress reaches its ‘equilibrium’ value corresponding to a composite 
with continuous fi bres. The stress distribution in Fig. 4.1(b) is characteristic 
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of short fi bre composites with an elastic-plastic matrix. The increment of 
fi bre stress is determined by the constant shear stress of the matrix in the 
plastic state. In any case, a part of the fi bres is not fully loaded. This fact is 
responsible for the reduced reinforcing effi ciency of short fi bres compared 
to continuous fi bres. The importance of length effects can be estimated by 
comparison with the ‘critical fi bre length’ concept which describes the length 
necessary to build up a certain stress level in the fi bre. The critical stress 
may be determined by: (a) a certain fraction of the stress of an infi nitely 
long fi bre (σF = εFEf); (b) the fi bre actual stress (σF = ασcEf/E

−
, where E

−
 is 

effective modulus of continuous fi bre reinforced composite), and (c) the 
fi bre strength (σF = σ uF). For suffi ciently long fi bres (l ≥ lc) the fi bre strength 
σ uF would be exceeded and the fi bres would fracture, thus reducing their 
length (may even become shorter than the critical length). The stress fi eld 
around and along the fi bres has been calculated in many studies, especially 
for the case of perfect bonding and elastic behaviour of the components.

Three different approaches corresponding to different levels of approxi-
mation are used:

1. analytical transformation to integral equations for the elastic fi elds 
along the interface and their numerical evaluation (analytical-numerical 
methods);

2. approximation of ordinary partial differential equations and their ana-
lytical solution (analytical method, shear-lag analysis); and

3. fi nite element analysis of partial differential equations of elasticity 
(numerical methods).

In the case of analytical-numerical methods the basic equations are par-
tially solved by using Green’s function of the elastic problem in an infi nite 
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4.1 Tensile and shear stress distribution along the fi bre: (a) elastic 
matrix, and (b) plastic matrix; lc-critical fi bre length.
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medium and according to the Fredholm–Gebbia formula, and determina-
tion of the stress fi eld can be reduced to the stress distribution along the 
fi bre–matrix interface. Such calculations were performed, e.g., by Tolf (1983) 
who integrated Navier’s equations. He assumed perfect bonding at the 
fi bre–matrix interface and elastic behaviour of the components.

The main objective of a theoretical consideration is the derivation of 
qualitative or quantitative statements concerning the infl uence of several 
parameters (e.g., fi bre length and fi bre volume fraction), and deformation 
or failure processes on the general behaviour of composites. This allows 
suppression of undesirable damage and optimisation of composite param-
eters. To solve this task, analytical methods are most appropriate. With this 
approach, the displacement fi eld is modelled by few characteristic displace-
ments. Thus, it is a relatively crude approximation, but it yields analytical 
results containing all the parameters of interest and allows a lucid discus-
sion. A main advantage of the analytical methods lies in the fact that they 
reveal how different deformation mechanisms act. Many analytical (such 
as shear-lag) calculations are based on single-fi bre models. Early works 
have been reviewed, for example, by Holister and Thomas (1966) and 
Pegoraro et al. (1977).

The simplest and most widely used models of this kind, following Cox 
(1952), start from a characteristic composite element containing one fi bre 
only. It is embedded in a corresponding amount of matrix, which is regarded 
as showing all the essential properties of the whole composite. Cox (1952) 
studied an elastic matrix reinforced by elastic fi bres with intact interfaces. 
Kelly and Tyson (1965), however, proposed a model with plastic behaviour 
around the fi bres by assuming constant shear stress along the interface. 
Another non-elastic aspect was considered by Outwater and Murphy 
(1969), who studied debonding along the fi bre–matrix interface. The shear 
stress within the debonded zone was described by frictional forces between 
matrix and fi bre surface. This leads formally to the same result of a constant 
shear stress. Such a statement of a constant shear stress implies that these 
interfaces carry their maximum shear stress already at low applied loads. 
However, for polymer composites, this will hold true only for composite 
loads that nearly achieve the composite strength. Hence, this model is well 
suited for the case of high loads and hence for strength considerations. In 
contrast, Cox’s model is more suitable at low loads where interface failure 
can be neglected. There are many extensions of these models in the litera-
ture. The extensions concern the stress transfer across the fi bre end faces 
by Fukuda and Chou (1981) and Clyne (1989); the incorporation of axial 
matrix loads by Takao (1983); the consideration of more complicated 
loading conditions like tension non-parallel to the fi bre direction by Chou 
and Sun (1980); and the fi bre–fi bre interaction which will be discussed in 
Section 4.4. Takao (1985, 1987) examined the effect of shear resistance at 
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the fi bre ends on damage propagation. He used the critical load to calculate 
a modifi ed shear-lag model.

Aspden (1994) presented a method based on a rigorous solution of the 
equations of elasticity in cylindrical coordinates developed by Filon (1902). 
Solutions for the stress and strain fi elds within the fi bre are derived for 
given stress distributions at the surface of the fi bre. The application of the 
fi nite element (FE) method for stress calculations in SFRP is discussed 
briefl y in Section 4.5.

In the next section, an analytical model is given which is general enough 
to include interface and fracture problems, and simple enough to allow 
mathematical handling and physical transparency.

4.2 Single-fi bre model

The model assumes aligned discontinuous fi bres embedded in a matrix 
loaded in the direction of fi bres. At this stage, no restrictions are imposed 
on the material properties of fi bre, matrix and interface. Radial stresses and 
strains are neglected. The single-fi bre models are based on a representative 
composite element consisting of one fi bre (radius rf, length l) embedded in 
a cylindrical piece of matrix (radius R0) (cf. Fig. 4.2). The two radii deter-
mine the volume fraction of fi bres: v = (rf/R0)2.

Hence, the spatial variation is simplifi ed to a rotation symmetry problem 
with displacement in the loading direction: u(z, r), where r is the radial 
coordinate perpendicular to the fi bre axis. The basic idea of the model is a 
further reduction of variables by replacing the displacement fi eld, u(z, r), 
by the functions uF(z), uM(z), uf(z), um(z), describing the cross-sectional 
averages (index F, M) and the interface displacements (index f, m) of fi bre 
and matrix, respectively:

ε ∂
∂

ε ∂
∂

γ γF
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M
M

f
f F

f
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M m
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= = =
−

=
−u

z
u
z

u u
h

u u
h

.  4.1

For shear deformation at the interface, the radial derivative is approxi-
mated by the difference quotient, where hf and hm, denote characteristic 

0

z

l

um
uF 2rf = d σcσc 2R

o

4.2 Characteristic volume element of composite.
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lengths comparable with rf and R0. Various expressions for hf and hm have 
been given in the literature. For instance, the estimations (see Schultrich 
et al., 1978):

h
r l v

v
m

f n 1
=

( )
−

−
⎛

⎝
⎜

⎞

⎠
⎟2 1

1

for cubic fi bre arrangement; and

h
r

l
v

m
f n= ⎛

⎝⎜
⎞
⎠⎟2

2

3

for a hexagonal fi bre package deviating by nearly one order of magnitude 
(v = 0.5: hm = 0.99rf, hm = 0.19rf, respectively). Here, the approximately 
derived expressions from an elastic calculation by Schultrich et al. (1978) 
are used. From the deformation, we obtain the stresses by means of the 
material laws:

σ ε τ γ σ ε τ γ τF F F F M M m m m f, , , ,[ ] [ ] [ ] [ ] −[ ]u u ,  4.2

with τ as the shear stress at the interface. The condition of force equilibrium 
for a narrow slice of the fi bre yields:

∂σ
∂

τ ∂σ
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τ τF M f

f fz r z
r

R r r
v

v
= − =

−
=

−
2 2 2

10
2 2

; .  4.3

For loading in fi bre direction the external load is transferred completely 
within the considered composite element; that is, the mean stress averaged 
over the section is constant:

σ σ σc F M.= ( ) + −( )v z v1  4.4

This rule of mixtures connects the fi bre and matrix stresses. Also, assump-
tions concerning the load transfer across the fi bre ends are necessary. In 
general, it is assumed that the end faces of the fi bre are free of stress; that 
is, applied stress is acting on the matrix only:

σ F ±( ) =l 2 0.  4.5

This makes sense because in real composites the fi bre end faces are often 
debonded on account of stress concentrations and not being covered by a 
coating.

In the case of elastic behaviour of matrix and fi bre, stresses and deforma-
tions are connected by linear material equations:

σ ε τ γ σ ε τ γF f F f f f M m M m m m= = = =E G E G .  4.6

Because of the continuity of shear stresses at the fi bre–matrix interface, 
τf = τm = τ holds. With this, the shear stress relations can be transformed 
into:
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τ = − −( ) =
+

G
h

u u u
G
h

G G
G h G h

M F
f m

f m m f

Δ , ,  4.7

where Δu = (um − uf) describes a discontinuity in the displacements due to 
possible interface sliding and h is a characteristic length of the representa-
tive composite element over which shear deformations act. With hf = d/2 = 
rf and hm = D/2 (D is fi bre-to-fi bre distance), G

−
/h is reduced to:

G
h r

v G G
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=
−( ) +
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.  4.8

Equations [4.1] to [4.4] permit the derivation of the basic differential 
equation for the fi bre stress:

d
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2 2 21
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E

E E v

E z
uσ η σ η σ η− + −

−( ) =Δ ,  4.9

where E
−

 = vEf + (1 − v) Em denotes the elastic modulus for a unidirectional 
composite with continuous fi bres, and the characteristic length 1/η is defi ned 
by:

η2 2
1

=
−( )

G
h

E
r v E Ef m f

.  4.10

This length 1/η is, in any case, comparable to rf, thus agreeing with St 
Venant’s principle.

4.3 Multi-fi bre model

The single-fi bre model takes into account the load redistribution only between 
fi bre and matrix. It is obvious, however, that the matrix should be able to 
transfer load from one fi bre to another. Rosen (1965) tried to take into con-
sideration this interaction with the neighbourhood as a lump by putting the 
composite element into a homogeneous medium having the effective mate-
rial properties of the composite. However, the formalism presented in (Rosen, 
1965) is inconsistent, for it ascribes to the matrix the ability of carrying tensile 
load by assuming: E

−
 = vEf + (1 − v) Em, but neglects this ability within the 

composite element. If the material laws of the components are nonlinear, 
such an embedding in an effective material leads to diffi culties, because in 
that case the effective material law is not uniquely defi ned, without any addi-
tional assumptions. Further, the local stress enhancement from neighbouring 
fi bre ends is not effective in such a crude consideration of the surrounding. 
This is why Schultrich et al. (1978) and Lauke et al. (1990) preferred to follow 
the approach proposed by Hedgepeth and van Dyke (1967). To this end, an 
arrangement of plates embedded in a matrix, as shown in Figs 4.3(a) and 
4.3(b), was applied, which may be regarded as a two-dimensional fi brous 
composite. The deformation fi eld is simplifi ed again by some characteristic 
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displacement functions of fi bre and matrix (transverse displacements are not 
considered). Due to the lack of symmetry we need three such functions for 
every layer: two for the upper and the lower side labelled by + and −, and 
one cross-sectional average: u+

f, u−
f, uF, u+

m, u−
m, uM. The displacement may be 

discontinuous at the interface. Analogous to eqn [4.1], we obtain for the 
longitudinal tensile strain, εz = ∂u/∂z and for the shear strains:
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These deformations are related to stresses via the material laws of fi bre, 
matrix and interface. The condition of equilibrium takes the form:

∂
∂

σ τ τ ∂
∂

σ τ τ
z d z D

F
f f

M
m m= − − = − −+ − + −

,  4.12

with d and D denoting the thickness of fi bre and matrix, respectively. The 
total balance of forces and the condition of stress-free fi bre ends provide 
the boundary conditions given by eqns [4.4] and [4.5].
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4.3 Arrays of fi bres: (a) fi bre discontinuities irregularly distributed, and 
(b) regular array of fi bres of length l.
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In a composite of high modulus ratio and suffi ciently long fi bres, where 
the matrix tensile stress can be neglected, this model converges to that of 
Hedgepeth and van Dyke (1967). That is, σM = 0 leads to:

τ τm m m
m m

m
m

f f
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− +
+ − + −

= =
−

=
−
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u u

h
G

u u
h2 2

2 1 .  4.13

In the special array of fi bres, where all the fi bre ends lie in the same plane, 
there is no load transfer between parallel fi bres for reasons of symmetry, 
and the single-fi bre model described above is adequate.

Another approximation to analyse the stress transfer for multi-fi bre com-
posites was carried out in Fu et al. (2000). The material is treated as a three-
cylinder composite, where a fi bre is located at the centre of a coaxial shell 
of the matrix which, in turn, is surrounded by a trans-isotropic composite 
medium. This outer material has the properties of the composite, thus it is 
a self-consistent approximation. The shear stresses in the radial direction 
(perpendicular to the loading direction) are approximated by a Lamé form 
consisting of a term proportional to r−1 and another term proportional to r. 
This form of solution is obtained by solving the axi-symmetrical elastic 
problem. Together with all boundary and equilibrium conditions the stress 
distributions within the fi bre and matrix were calculated.

4.4 Local stress distribution

We start with a discussion of the stress distribution within the framework 
of the single-fi bre composites model with a perfectly bonded interface.

For suffi ciently small applied stresses below a critical limit, σc ≤ σ d
c (σ d

c is 
composite stress where debonding starts), ideal bonding is assumed, that is, 
uf = um, or Δu = 0. The differential eqn [4.9] and boundary conditions eqn 
[4.5] provide solutions of the well-known hyperbolic-function type:
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In suffi ciently long fi bres, the tensile stress has the value of σcEf/E
−

 along 
nearly all of their length, except for a distance 1/η from the ends where it 
falls to zero. Hence, the shear stress as its derivative (see eqn [4.3]) vanishes 
nearly everywhere, except for the end regions where it reaches its maximum 
value of:

τ
η

σ η
η

σmax ,maxtanh .= ( ) ≅r E
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r

c
f f f

F
2

2
2

 4.15

The distribution of fi bre tensile and shear stresses is shown in Fig. 4.4 as 
the dashed curves. To consider the reduced load-bearing capability at the 
fi bre ends, the critical fi bre length lc can be introduced. Hence, at this fi bre 
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length, the fi bre stress reaches a fraction α of the fi bre stress σcEf/E
−

 of a 
continuous-fi bre reinforced composite. Thus from eqn [4.14], we have:

l lc n= − −⎛
⎝⎜

⎞
⎠⎟

2 1
2η
α

 4.16

Because the fi bre tensile stress increases over the length of about 1/η from 
the fi bre end twice that value provides an approximation for the critical 
fi bre length: lc ≈ 2/η. Using eqn [4.10] it is obtained that:
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Rosen (1965) derived an expression:
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4.4 Stress along the fi bre axis, dashed lines representing the single-
fi bre model: (a) mean axial fi bre tensile stress; (b) mean axial matrix 
tensile stress; and (c) interfacial shear stress.
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which provides a lc ≈ E f1/2 dependence. In Fig. 4.5 both solutions are 
compared. Equation [4.17] gives a nearly linear increase for Ef/Em < 10. 
Performing fi nite element calculations, Termonia (1987b) succeeded in con-
fi rming the lc ≈ Ef proportionality in the Ef/Em < 50 range. Another way to 
introduce a critical fi bre length is based on fi bre failure (see Chapter 9, 
Section 9.1.3 later).

The effect of fi bre interaction can be discussed in a lucid manner by 
means of a regular version of the multi-fi bre model (see Fig. 4.3). Only one 
additional parameter is needed which describes the overlap of fi bre ends. 
The overlap parameter, a, may assume values between 1/2 and 0; the case 
a = 0 corresponds to the single-fi bre model without load transfer between 
the fi bres.

The stress distribution based on exponential functions is similar to that 
given by eqn [4.14] but more complicated (Schultrich et al., 1978). The 
stresses represent a superposition of two kinds of exponentials with differ-
ent decay lengths:
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4.5 Critical fi bre length versus fi bre modulus.
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The fi rst describes the stress transfer between the fi bre and its matrix envi-
ronment; the second concerns the effect of neighbouring fi bres due to the 
surrounding matrix. (Comparison with the equivalent expression for 1/η 
given in eqn [4.10] shows that the fi bre radius rf is replaced by the fi bre 
diameter d.)

The modifi cation of stress variation along the fi bres is illustrated in Fig. 
4.4. If the overlap, a, (see Fig. 4.3) is somewhat larger than 1/η′, fi bre stress 
peaks arise due to the discontinuities of neighbouring fi bres. If a ≤ 1/η′ no 
additional stress peaks arise. Then, the results agree with those of the 
single-fi bre model. The fi bre overlap, as a typical composite parameter, 
becomes more important, the more ‘composite-like’ the material is, that is, 
the more fi bre and matrix differ in their properties. Thus, large discrepan-
cies in the results of this more sophisticated model and the simple single-
fi bre model may arise in cases of high modulus ratio, provided the overlap, 
a, is not too small. A fi nite overlap usually exists because of the statistical 
nature of fi bre arrangement and the purpose of effective load transfer 
between fi bres as reinforcing elements. But also in such composites, a situ-
ation similar to the simple case (a = 0) may develop during the fracture 
process when the adjacent fi bres break successively under the infl uence of 
stress concentration from the previously broken fi bre.

4.4.1 Infl uence of an interphase on stress distribution

During manufacture or as a result of special fi bre coating, a certain interlayer 
may exist between fi bre and matrix (cf. Chapter 3, Section 3.5). The coating 
of fi bres may lead to an interlayer between the components. The question, 
however, is whether this coating remains on the fi bre surface during process-
ing or is being dispersed within the matrix. Yet, even if the coating does not 
remain at the fi bre surface, the region where fi bre and matrix meet shows a 
complex chemical and physical structure. Hence, the reduction of the bound-
ary layer to an interface will even have an approximate character.

The load from the matrix is mainly transferred across the interface. Thus, 
a suffi cient stress transfer ability (though not generally proven, it is most 
often characterised by the adhesion strength) must be guaranteed to obtain 
high strength values of the composite. To achieve this aim, coupling agents 
are used. They improve the bonding quality between different molecular 
structures of the constituents. Phenomena of adhesion cannot be described 
by the interaction forces only. The failure behaviour of the adhesive joint 
is decisively affected by imperfections (fl aws) and abnormalities. With these 
facts, it is necessary to treat the interface as a fi nite region with a special 
structure.

The concept of an interphase has been quite comprehensively discussed 
by Theocaris (1987). A model is developed to calculate the thermomechani-
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cal behaviour of composites on the basis of a mesophase situated entirely 
on the side of the polymer matrix. The mesophase material is treated as 
inhomogeneous, the properties of which depend on the distance from the 
fi bres. A major aspect of the model is the fact that it allows the assessment 
of adhesion quality of the fi bre–matrix interface.

Because of special fi bre coating a certain interlayer may exist between 
fi bre and matrix. The infl uence of such an interphase on the stress distribu-
tion was considered by several authors (Theocaris and Papanicolau, 1979; 
Piggott, 1987; Shih and Ebert, 1987) on the basis of shear lag models. The 
representative volume element consists of three components: fi bre, inter-
phase and matrix. If such a model is considered we have only minor changes 
in the equations derived above. With the assumption that the interphase 
deformation, εph, is equal to that of the matrix, εM, the continuity conditions 
of shear stresses at the fi bre–interphase and interphase–matrix interfaces 
provide the following changes:
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with v + vph + vm = 1, vph = (2t/d) (t: interphase thickness), and E
−

 = vEf + 
vmE′m. Consequently, the solution for the stress distribution is still valid but 
with the above given replacements.

The relation (G
−

/h)ph shows that the change of fi bre stress (cf. eqn [4.14]) 
is negligible if vph is small compared to v (or t < < rf). In polymer composites 
reinforced with short glass fi bres, the silane interphase was determined to 
be in the range of 1 to 10 nm in thickness. In composites with untreated 
fi bres, this interphase is reduced to an even smaller phase, which is reduced 
in most models to the fi bre–matrix interface. However, Hayes et al. (2001) 
showed that even a very thin interphase could signifi cantly affect the load 
transfer between fi bre and matrix.

The infl uence of the interphase properties on composite stiffness is given 
in Chapter 6, Section 6.8.

Kroh and Bohse (1986) examined the change of the stress fi eld within 
the matrix due to the presence of an interlayer. They calculated the fi bre 
and matrix normal stresses on the basis of a hybrid element program by 
reducing their multi-fi bre model to a single-fi bre model. Some of their 
results are shown in Fig. 4.6. Their calculations clearly show that the 
stress concentration of short fi bre composites shifts to the fi bre centre 
with an increasing interlayer modulus (Eph), whereas a decrease of the 
interlayer thickness results in the opposite behaviour for Eph < Em (see 
Fig. 4.6).
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4.5 Finite element analysis

Analytical solutions of differential equations of mechanical problems, 
whether elastic or non-elastic, very often result in diffi cult mathematical 
manipulations. For example, the simple problem of a particle within an 
elastic matrix under an applied tensile load can be solved analytically 
(Goodier, 1933). However, if the matrix shows plastic behaviour it will 
require numerical solution procedures such as the minimum energy prin-
ciple (Lee and Mear, 1999).

Another approach to solve such problems is to apply numerical methods 
for solving the differential equations of the considered material under load. 
The governing equations will be discretised before solving on a digital 
computer. Discretisation means the approximation of a derivative by an 
algebraic expression. There are several different techniques to do this: fi nite 
difference, fi nite volume and fi nite element (FE). For advantages and dis-
advantages of these techniques please refer to textbooks, such as Zienkiewicz 
(1984) and Bathe (1990).
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4.6 Infl uence of an interlayer between fi bre and matrix on matrix 
stress. Adapted from Kroh and Bohse (1986).
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The numerical approach provides more or less exact solutions of the 
stress fi elds for special sets of parameters. The information available from 
such calculations is limited, of course, due to the special geometry and the 
special elastic properties. However, their results are very useful to evaluate 
and to check the solutions of cruder approximations.

For the problem of short fi bres in matrix there are some early publica-
tions by Carrara and McGarry (1968), Barker and MacLaughlin (1971) and 
Larder and Beadle (1976) which used the fi nite element technique. Barker 
and MacLaughlin (1971) calculated stress concentrations near the fi bre 
ends for different sets of parameters such as fi bre gap size, volume fraction 
and modulus ratio. The stress distribution of aligned and oriented fi bres 
were examined by Sun and Wu (1983) using the FE method. They consid-
ered the infl uence of different geometrical shapes of the fi bre ends, such as 
rectangular, semi-circular or V-shaped.

Termonia (1987a) used the fi nite difference technique, at that time more 
appropriate because of the more effi cient numerical algorithms available, 
compared to that of the fi nite element technique. He showed that the load 
transfer from the matrix across the fi bre end is of marked infl uence if the 
front faces are ideally bonded to the matrix. One of the major results is 
shown in Fig. 4.7. It reveals that the assumption in eqn [4.5] of the analytical 
treatment is not correct. Over the fi bre end surface there are stresses trans-

4.7 Tensile strain in fi bre centre and in matrix near a fi bre end. Strain 
is normalised to the composite strain; d is fi bre diameter in lattice 
units. Adapted from Termonia (1987a).
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mitted from the matrix to the fi bre which are of the order of 25% of the 
fi bre overall stress.

Kroh and Bohse (1986) took into account the infl uence of a fi nite inter-
layer between fi bre and matrix. The assumption of linear-elastic matrix 
materials and ideal bonding between the components restricts the discus-
sion to the initial stage of deformation or to special systems with a brittle 
polymer matrix, such as polymethylmetacrylate (PMMA). However, many 
thermoplastics show high strain capabilities and debonding effects may 
occur at the interface of the constituents. The problem of elastic-plastic 
fi nite element analysis was discussed by Agarwal et al. (1974). They calcu-
lated the local stress distribution and the stress–strain curve of an aligned 
short fi bre composite with an elastic-plastic matrix subjected to axial load.

Also, shear stress distribution provided by shear lag analysis is approxi-
mate as comparisons between analytical and fi nite element results reveal. 
On the basis of FE calculations, Marotzke (1993) provided the variation of 
stresses along the fi bre within a matrix for the fi bre pull-out problem. In 
this case the fi bre is embedded over the length Le in a matrix cylinder and 
the fi bre is loaded along its axis. This is a special micromechanical test to 
determine fi bre–matrix interface properties, but not the typical loading situ-
ation within a SFRP. But it reveals some important features of the local 
stress distribution near the fi bre ends. Figure 4.8 shows the normalised shear 
stress along the fi bre axis for carbon fi bres within a polycarbonate matrix. 
It reveals that the shear-lag approaches underestimate the stress concentra-
tion. A typical fi nite element mesh for this pull-out geometry is shown in 
Fig. 4.9; it was developed by Beckert and Lauke (1995) for stress calcula-
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4.8 Shear stress along the embedded fi bre–matrix interface, 
normalised by the maximum fi bre stress. Comparison of shear lag 
analysis and FE results for carbon fi bres (aspect ratio, l/d = 15). 
Adapted from Marotzke (1993).
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tions and comparison of analytical and fi nite element results. On the basis 
of this fi nite element model, Singletary et al. (1997) calculated the shear 
stress along the interface, which is given for different embedded lengths in 
Fig. 4.10. Only for rather long Le does the shear-lag analysis describe the 
real situation over a broad region, except the entrance and fi bre end regions. 
However, for short Le there is a huge discrepancy. Therefore, analytical 
shear lag results are appropriate for higher aspect ratios of fi bres and 
describe the mean values reasonably. But great caution must be taken if 
these results are intended to be used for the initiation of failure mecha-
nisms. The highest stresses appear at the fi bre ends, exactly where the 
analytical results are wrong. Consequently, the values of shear stresses 
should not be used. Conversely, linear elastic fi nite element results provide 
infi nite values at the fi bre end leading to singularities of stresses. However, 
sometimes it is not shown in diagrams for it is dependent on the element 
size used. For smaller and smaller element sizes the stresses increase to 
infi nity. In real materials this is also not the case because the material will 
show matrix yielding or some failure processes will be initiated. More real-
istic results can only be obtained by the application of non-linear fi nite 
element modelling.

Chen et al. (1996) and Tripathi et al., (1996) analysed the effect of matrix 
yielding on interfacial stress transfer in a fragmentation specimen. This is 

Matrix drop

Fibre

Fibre end

4.9 Finite element model of the single-fi bre pull-out geometry. 
Adapted from Beckert and Lauke (1995).
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another micromechanical specimen to determine interfacial properties at 
the fi bre–matix interface. Calculations have shown that the shear stress 
development at the interface is limited by the yielding of the matrix 
material.

The fi bre–fi bre interaction for elasto-plastic properties of a metal matrix 
material was considered by Yang and Qin (2001), however, the method can 
be transferred to polymer matrix materials. To do so, a different elasto-
plastic material law must be applied. For FE modelling they used a micro-
structure similar to that of Fig. 4.3 and extracted a unit cell with two 
overlapping fi bres. Results for the local stress fi elds and the effective prop-
erties were given (see Chapter 9, Section 9.2.3). The variation of stress–
strain curves with fi bre aspect ratio is similar to that of analytical calculations 
described in Chapter 9, Section 9.1 (see Fig. 9.5).

Similar considerations, however, for a single fi bre embedded in a matrix 
cylinder have been published by Ding et al. (2002). Matrix plasticity was 
formulated by the J2 fl ow theory and a large strain axisymmetric model 
together with the rule of mixtures for stress and strain was used to study 
the stress–strain curves as functions of material parameters.

All the above-quoted papers deal with a 2D approximation of the 
complex structure of SFRP. The symmetry conditions used for polymers 
with continuous fi bres, for example, transversely isotropic arrangement, 
cannot be expected here. Hence, 3D models with special representative 
elements (unit cells) are necessary.

Weissenbeck (1994) used a 3D unit cell for short fi bres, as shown in Fig. 
4.11. This staggered arrangement of fi bres is relatively restricted in geom-

0.3

0.2

0.1

0 10 20 30 40 50 60

Distance along fibre from matrix surface (μm)

In
te

rf
ac

e 
sh

ea
r 

st
re

ss
, τ

 (
G

P
a)

Shear-lag

Shear-lag

Shear-lag

Le = 50 μm

Le = 25 μm

Glass-EpoxyLe = 15 μm

Ef = 80 GPa

Em = 5 GPa

rf = 5 μm

nf = nm = 0.3

4.10 Predicted interfacial shear stress along length of embedded fi bre. 
Predictions are from FE model and shear lag model of Greszczuk 
(1969). Results are given for different embedded lengths Le. Adapted 
from Singletary et al. (1997).
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etry and is computationally time consuming. Axisymmetric models are 
more appropriate to describe the axial behaviour of SFRC.

Hayes et al. (2001) used true stress–true strain relations for the matrix 
and interphase for the FE implementation. The modelling was carried out 
for the fragmentation geometry, i.e., a fi bre embedded within a block of 
resin. Because debonding cannot be seen, the maximum axial strain is the 
key quantity for elastic and plastic stress transfer. An important conclusion 
from the obtained results is that the ultimate composite properties can be 
engineered by controlling the interphase behaviour.

A 3D fi nite element analysis for fi bre composites with a plastic interphase 
and plastic matrix was performed by Lane et al. (2001). At higher levels of 
applied strain the lower yield strength limits the stress transfer ability. A 
plastic interphase leads to a reduction of strain concentration in the neigh-
bourhood of a broken fi bre compared to the same situation without an 
interphase.

Non-aligned fi bre arrangements are much more diffi cult to model by the 
FE method and especially random arrangements are most problematic. 
Böhm et al. (2002) proposed unit cell models for describing elasto-plastic 
behaviour of such metal matrix reinforced composites. Additional to the 
effective properties, micromechanical values such as von Mises equivalent 
stresses for the components were calculated.

A recent review with further literature on fi nite element modelling of 
stress transfer was given by Goh et al. (2004). Finite element modelling was 
also used for calculation of the stress–strain behaviour and the effective 
properties of SFRP. These topics are considered in Chapters 6 and 9, 
respectively.

In closing this chapter, it should be pointed out that the stress transfer 
problems considering interface/interphases using 2- or 3-cylinder models, 
mechanics and characterisations of fi bre–matrix interfaces using single-
fi bre pullout and single-fi bre fragmentation tests, and design of high tough-
ness and high strength composites with tailored interfaces, etc., are also 
extensively covered in a recent research monograph (Kim and Mai, 1998). 

4.11 Finite element mesh for 3D staggered confi guration. Adapted 
from Weissenbek (1994).
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Instead of the stress approach advocated in this chapter, an alternative new 
approach based on fracture mechanics principles is used to solve these 
problems. Interested readers may refer to this monograph and the appro-
priate references cited therein.
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5
Strength of short fi bre reinforced polymers

Abstract: Theoretical models for the longitudinal strength of 
unidirectionally aligned short fi bre reinforced polymers are fi rst 
discussed in Chapter 5 before the theoretical model for the strength of 
partially aligned short fi bre reinforced polymers is presented. The 
chapter then reviews the theoretical models for the tensile strength 
anisotropy of SFRP composites, strength of randomly aligned SFRPs 
and strength of hybrid SFRP composites. Finally, dependence of the 
tensile strength of SFRP composites on those major factors described in 
Chapter 3 is discussed.

Key words: longitudinal strength, strength anisotropy, partial alignment, 
random alignment, hybrid SFRP composites.

5.1 Introduction

Short fi bre reinforced polymer (SFRP) composites have many applications 
as a class of structural materials because of their ease of fabrication, rela-
tively low cost, and superior mechanical properties to those of the parent 
polymers. Extrusion compounding and injection moulding techniques are 
often used to make SFRP composites (Ramsteiner and Theysohn, 1985; Fu 
and Lauke 1997a, 1998c, 1998d; Fu et al., 1999a, 2000, 2001, 2002a; Sarasua 
et al., 1995; Shiao et al., 1994; Zhou et al., 1997; Ranganathan, 1990). Fibres 
are damaged due to processing and the resulting short fi bres are misaligned 
in the products. Hence, in the fi nal composites, there exist a fi bre length 
distribution (FLD) and a fi bre orientation distribution (FOD). Studies on 
the mechanical properties of SFRP composites have shown that both the 
FLD and the FOD play very important roles in determining their mechani-
cal properties (Fu and Lauke, 1996, 1997b, 1998a, 1998b; Lauke and Fu, 
1999; Fu et al., 1999b; Piggott, 1994).

Tensile strength is among the most important properties of engineering 
materials. One of the basic motivations for using composites as a class of 
engineering materials is their high tensile strength that can be achieved by 
introducing high strength fi bres into polymer matrices since these fi bres 
can carry most of the applied load. The term ‘macroscopic strength’ 
represents the ability of an engineering material to withstand stresses 
before failure. Strength even in isotropic materials would not simply be 
expressed by a value but by a closed surface in three dimensions set up by 
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the principal stresses, because stress is a tensor that can be described by 
three principal stresses and three orientations. Since it is much more con-
venient to have simple values instead of surfaces in abstract space for 
characterising a material, one readily sacrifi ces rigour while trying to fi nd a 
simple approach under the guidance of physical reasons. It is assumed that 
cracks in a material tend to propagate along a plane normal to the direction 
of the largest tensile stress, that is, the largest principal stress. Thus, conven-
tionally, strength is defi ned as the maximum tensile stress existing within 
the material body at fracture load. The failure initiation and fracture process 
of SFRP composite depend to a large extent on the fi bre volume fraction, 
orientation angle and aspect ratio, fi bre–matrix interfacial properties and 
fi bre to matrix failure strain ratio.

It is important to be able to predict the mechanical properties of a SFRP 
composite given the component properties, their geometric size and arrange-
ment. In this chapter we will consider the strength of SFRP composites. 
Based on the fi bre orientation, SFRP composites can be divided into three 
categories:

1. unidirectionally aligned (longitudinal),
2. partially aligned, and
3. randomly aligned.

In the following, the strength of short fi bre composites is discussed fi rst 
for the case of unidirectionally aligned fi bres. Then, the case of partially 
aligned fi bres is considered and the anisotropy of the strength of short fi bre 
composites is discussed. Finally, the cases of two-dimensional (2D) and 
three-dimensional (3D) randomly aligned fi bres are considred.

5.2 Longitudinal strength of unidirectionally aligned 

short fi bre reinforced polymers (SFRP)

The pioneering research of Cox (1952) on the strength of paper and other 
fi brous materials serves as the foundation of two slightly divergent 
approaches: paper physics and mechanics for the strength of short fi bre 
reinforced composites. The Cox model and other improved theories 
(Jayaraman and Kortschot, 1996; Fukuda and Chou, 1982) are based on 
calculation of the force sustained by the fi bres crossing a scan line, i.e., an 
arbitary line perpendicular to the applied load in a rectangular specimen.

The paper physics approach (Cox, 1952; Kallmes et al., 1977; Jayaraman 
and Kortschot, 1996) involves:

1. calculating the number of fi bres of length l and θ that cross the scan line 
of the specimen,

2. fi nding the axial force in a fi bre of length l and θ,
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3. obtaining the load-direction component of the axial force in a fi bre of 
length l and θ,

4. multiplying the number of fi bres that cross the scan line by the 
load-direction component of the axial force in a fi bre of length l 
and θ, and

5. integrating the above quantity over fi bre length and fi bre orientation 
distributions to fi nd the total force sustained by all the fi bres across the 
scan line of the investigated specimen.

In contrast, the composite mechanics approach (Fukuda and Kawata, 
1974; Fukuda and Chou, 1982) involves:

1. calculating the number of fi bres of length l and θ that cross the scan 
line,

2. fi nding the axial force in a fi bre of length l and θ,
3. obtaining the load-direction component of the axial force in a fi bre of 

length l and θ,
4. averaging the load-direction component of the axial force in all the 

fi bres in the specimen, and
5. multiplying the number of fi bres that cross the scan line by the average 

load-direction component of the force in all fi bres in the specimen to 
fi nd the total force that is sustained by all the fi bres crossing the scan 
line.

Jayaraman and Kortschot (1996) pointed out that the composite 
mechanics approach (Fukuda and Kawata, 1974; Fukuda and Chou, 1982) 
underpredicted the force sustained by the fi bres crossing the scan line since 
the average load-direction component of the axial force is obtained by 
averaging all the fi bres in the specimen rather than over the fi bres that cross 
the scan line.

To achieve high strength SFRP composites, short fi bres are designed to 
be perfectly aligned along the loading direction. The tensile strength of 
unidirectionally aligned SFRP composites is fi rst studied for the cases of 
(1) plain fi bres and (2) branched fi bres.

5.2.1 Plain fi bres

For plain fi bres, the variation of fi bre axial stress with fi bre length is shown 
in Fig. 5.1 for the three cases of l < lc, l = lc and l > lc, in which the profi le of 
linear stress variation from two fi bre ends results from the assumption of a 
constant interfacial shear stress. The critical fi bre length (lc) is defi ned as 
the minimum fi bre length necessary to build up the axial fi bre stress to the 
ultimate strength of the fi bre (σ uF) at the fi bre ends:

l rc f F
u= σ τ,  5.1
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where τ is interfacial shear stress between fi bre and matrix and rf is 
fi bre radius. Critical fi bre length is an important factor for strength of 
SFRP composites and can be determined by measuring the lengths of 
the longest fi laments which protrude from the fracture surface of an 
injection moulded composite (Fu et al., 2006; Templeton, 1990). By 
defi nition, this length is just less than one-half of the critical fi bre 
length because the other part of the fi bre is assumed to be still 
embedded in the polymer matrix. The average length of the longest 
fi bres multiplied by 2 can then be taken as the critical fi bre length as 
an approximation. This method is simple and easy in determining the 
critical length.

The fi bre stress at a distance x from the fi bre end is given by:

σ τF f= 2 x r .  5.2

The composite strength for a plain short fi bre reinforced polymer composite 
can be evaluated by:

σ σ σc
u

F m M= +v v ,  5.3

where σ uc is ultimate composite strength; v and vm are volume fraction of 
fi bre and matrix, respectively; σF and σM are mean cross sectional stresses 
in fi bre and matrix at composite failure. The mean axial stress of the fi bre 
in the SFRP composite can be obtained by (Kelly and Tyson, 1965; Mittal 
and Gupta, 1982; Taya and Arsenault, 1989):

σ τ
F

f
cd for= <∫

2 2

0

2

l
x

r
x l l

l

.  5.4

l < lc

σF

σF

U

l = lc l > lc

5.1 Variation of fi bre axial stress with fi bre length.
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Then,
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Thus, we have:

σ σF F
u

c cfor= −( ) ≥1 2l l l l .  5.7

When fi bres have a uniform length l, the modifi ed rule of mixtures (MROM) 
for predicting the tensile strength of a SFRP composite is given by:

σ χσ σc
u

F
u

M m= +v v ,  5.8

where χ is fi bre length factor for composite strength and can be expressed 
for l < lc and l ≥ lc as:

= ( ) <l l l l2 c cfor  5.9

= − ( ) ≥1 2l l l lc cfor .  5.10

It is clear that the shorter the critical fi bre length, the higher is the fi bre 
length factor and thus the composite strength.

If the fi bre length is not uniform, eqns [5.9] and [5.10] must be modifi ed. 
Kelly and Tyson (1965) put forward a model considering the effect of fi bres 
with sub- and super-critical fi bre length, namely, shorter and longer than 
the critical fi bre length. This model gives:

c
u

i c F
u

i c j F
u

j M m
i

c

j c

= ( ) + − ( )⎡⎣ ⎤⎦ +
= =
∑ l l v l l v v

l l

l

l l

l

2 1 2
min

m

.
aax

∑  5.11

The fi rst and second terms are contributions from fi bres with sub-critical 
length shorter than lc and fi bres with super-critical length longer than lc, 
respectively. If the fi bre length changes continuously, there will be a fi bre 
length distribution function, then the fi bre effi ciency factor for the compos-
ite strength is given by Fu and Lauke (1996) as:

χ = ( )⎡⎣ ⎤⎦ ( ) + ( ) − ( )[ ] ( )∫l l l f l l l l l l f l l
l

l

l

2 2 1 2c mean mean cd d
c

max

,
mmin

lc

∫  5.12

where lmean is the mean fi bre length and f(l) is the fi bre length probability 
density, namely, fi bre length distribution function which was defi ned in 
Chapter 3. Finally, the composite strength can be evaluated using eqn [5.8].
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5.2.2 Branched fi bres

The case of plain fi bres has been discussed above for longitudinal strength of 
aligned SFRP composites. The case of branched fi bres and hence the effect 
of fi bre structure on composite strength is discussed below. When a polymer 
is reinforced by short fi bres with branched structures at their two ends as 
shown in Fig. 5.2, the composite strength can still be evaluated using eqn [5.8]. 
However, the average stress of the branched fi bre is increasesd over that of 
the corresponding plain fi bre at composite failure. It is assumed that the 
cross-sectional area of the main stem of the branched fi bre with a radius rf is 
equal to the sum of those of the two branches with spherical circumference 
having the same radius, rb, and the branching points of the fi bre are so strong 
that they cannot fracture before the composite fails. Then, we assume:

r rf b= 2 .  5.13

If the fi bre length is l, then half of the main stem or each branch of the 
branched fi bre is l/4. Further, the relationship between the fi bre fracture 
stress σ uF and the critical length lcb of the branched fi bre can be obtained 
from (Fu et al., 1993):

σ τ τ μϕF
u

cb f cb f= ( ) + ( )l r l r2 2 2exp ,  5.14

where 2ϕ is the angle between the two branches of the branched fi bre 
as shown in Fig. 5.2. μ is defi ned hereafter in this chapter as the snubbing 
friction coeffi cient between the fi bre and matrix at the fi bre branching 
points and has a value between 0 and 1. Due to the snubbing friction 
effect at fi bre branching points, lcb < lc (this can be seen from comparing 
eqn [5.14] with [5.1]). The average stress of the branched fi bre can be 
evaluated for different fi bre lengths. When l < lcb, the average stress σ b

F 
of the branched fi bre can be evaluated by:

σ σ σF
b

f fd d= +
⎛

⎝⎜
⎞

⎠⎟∫∫
2

1 2
4

2

0

4

l
x x

l

ll

.

,  5.15
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5.2 Schematic drawing of a branched short fi bre.
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where

σ τ μϕf f1 2 2= ( )x rexp  5.16

σ τ μϕ τf f f2 2 2 2 4= ( ) ( ) + −( )l r x l rexp .  5.17

Thus, we have

σ τ μϕF
b

f

= ( ) +⎡
⎣⎢

⎤
⎦⎥

l
r2

1 06
1
4

. exp .  5.18

It is clear that the average stress (eqn [5.18]) of the branched fi bre is greater 
than that (eqn [5.5]) of the plain fi bre.

When lcb < l < 2lcb, the average stress σ b
F of the branched fi bre can be 

obtained from:

σ σ σ σF
b

f f F
ud d d

cb

cb

= + +
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⎠⎟∫ ∫∫
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.  5.19

For the plain fi bre with length l > lc, eqn [5.6] for the average fi bre stress 
can be rewritten as:

σ σ σF f F
ud d

c

c

= +
⎛

⎝⎜
⎞

⎠⎟∫ ∫
2

3
0

2

2

2

l
x x

l

l

l

,  5.20

where

σ τf f3 2= x r .  5.21

Since σf1 (eqn [5.16]) and σf2 (eqn [5.17]) are greater than σf3 (eqn [5.21]) 
and lcb < lc, then σ b

F > σF.
When l > 2lcb, the average stress of the branched fi bre is given by:

F
b

f F
ud d
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l
x x

l
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.  5.22

It can be seen that σ b
F (eqn [5.22]) is greater than σF (eqn [5.20]).

Since the composite strength is contributed by all the fi bres with 
sub-critical and super-critical lengths in the SFRP composite and is 
estimated based on eqn [5.8], it is clear that the strength of the com-
posite reinforced with branched short fi bres would be greater than that 
of the SFRP composite with the same matrix reinforced with the cor-
responding plain fi bres. This concept can be extended to bone-shaped 
short fi bres and the corresponding composite strength should also be 
higher than that of the plain short fi bre reinforced composite. The 
composite strength increase is derived from the effective stress transfer 
from the matrix to the fi bres via mechanical interlocking at the 
enlarged fi bre ends (Zhu et al., 1999; Jiang et al., 2000; Zhu and 
Beyerlein, 2002).
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5.3 Strength of partially aligned short fi bre 

reinforced polymers (SFRP)

To achieve high stiffness and high strength of SFRP composites in the fi bre 
direction, it is desirable to orient the fi bres along the applied load direction. 
However, it is often diffi cult to achieve perfect alignment of short fi bres in 
a SFRP composite. Partial alignment of short fi bres is typical in injection 
moulded SFRP composites. It will be shown here that fi bre orientation 
plays a crucial role in determining the composite strength.

5.3.1 Fibre bridging stress

When an applied load is exerted on a short fi bre reinforced polymer com-
posite, the interfacial shear stress between fi bres and matrix will increase 
with increasing applied load. To estimate the stress required to break the 
SFRP composite at some random cross section, the average bridging stress 
of the short fi bres across the failure plane needs to be evaluated. The bridg-
ing stress of a single short fi bre will be fi rst evaluated below.

When a fi bre intersects the crack plane and the fi bre orientates parallel 
to the applied load, F, or the normal of the crack plane as shown in Fig. 
5.3(a), then the bridging stress σF of the fi bre across the crack is given by:

σ π τ π τF S f f S f S cfor= ( ) = <l r r l r l l2 2 22  5.23

F F
u

S cfor= ≥l l 2,  5.24

Matrix

Fibre

Crack

ls

(a)

F F

(b)

F F

θ

5.3 Schematic drawing of a fi bre across a crack plane. (a) A fi bre 
parallel to the crack plane normal; and (b) a fi bre crossing obliquely 
with the crack plane.
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where lS is the length of the shorter embedded fi bre segment. However, 
when the fi bre crosses obliquely at an angle θ with the crack plane (see Fig. 
5.3(b)), the fi bre bridging stress σFθ can be given by (Fu et al., 1993):

σ τ μθθ θF S f S cfor= ( ) ( ) <2 2l r l lexp ,  5.25

where θ is the angle between the fi bre and the crack plane normal; μ is the 
snubbing friction coeffi cient between fi bre and matrix at the crossing point 
(Fu et al., 1993; Li et al., 1990; Jain and Wetherhold, 1992; Wetherhold and 
Jain, 1992); lcθ denotes the critical length of the fi bre crossing obliquely (θ) 
with the crack plane. When ls ≥ lcθ/2, the bridging stress of the oblique fi bre 
is (Piggott, 1974, 1994)):

σ σθ θ θF F
u

S cfor= ≥l l 2,  5.26

where σ u
Fθ is the fracture stress of the oblique fi bres, i.e., the inclined fi bre 

tensile strength (Bartos and Duris, 1994). Since the fl exural stresses exerted 
on the oblique fi bres during loading of the composite cause an apparent 
loss of fi bre strength, the fracture strength for the oblique fi bres is then 
reduced. The pull-out test of the oblique steel fi bres also indicated that 
the inclined tensile strength of the oblique steel fi bres is signifi cantly 
reduced and decreases with increasing inclination angle (Piggott, 1974, 
1994). This is because the fl exural stresses in the steel fi bres caused an 
apparent loss of fi bre strength when the fi bres crossed obliquely at an 
angle to the crack plane normal. Hence, the introduction of the inclined 
fi bre tensile strength can undoubtedly help predict better strength of the 
SFRP composites with partially aligned short fi bres. If the fi bres (e.g., glass 
fi bres or carbon fi bres, etc.) are brittle, σ u

Fθ can be expressed by (Piggott, 
1974, 1994):

σ σ θθF
u

F
u

f= − ( )[ ]1 A tan ,  5.27

where Af is a constant for a given fi bre–matrix system and equals 0.083 for 
the carbon/epoxy system (Piggott, 1994). From eqn [5.27] it is clear that 
there is a maximum fi bre orientation angle for σu

Fθ ≥ 0 which is given by:

θmax arctan .= ( )1 Af  5.28

For oblique fi bres with θ ≥ θmax: σ u
Fθ = 0. Consequently, taking into 

consideration both the snubbing friction and fl exural effects, the critical 
length of the oblique fi bres can be derived from eqns [5.25] to [5.27]. That 
is,

l l Ac c fθ θ μθ= − ( )[ ] ( )1 tan exp .  5.29

Because of the snubbing friction and fl exural effects, lcθ is generally smaller 
than lc. If the snubbing friction effect is neglected, i.e., μ = 0, then eqn [5.29] 
becomes:
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l l Ac c f= − ( )[ ]1 tan .  5.30

Equation [5.30] is the same as that of Piggott (1994). If the fi bre fl exural 
effect is neglected, i.e., Af = 0, eqn [5.29] becomes:

l lc cθ μθ= ( )exp .  5.31

Equation [5.31] is the same as that of Wetherhold and Jain (1992). If both 
the snubbing friction effect and the fi bre fl exural effect are neglected, i.e. 
μ = 0 and Af = 0, eqn [5.29] is:

l lc c= .  5.32

This is the same as the critical fi bre length of normal plain fi bres aligned 
along the applied loading direction when both the snubbing friction effect 
and the fi bre fl exural effect are not considered.

5.3.2 Average fi bre stress in an aligned composite

It is assumed that all the fi bres are uniformly distributed in a SFRP com-
posite and the fi bres have the same length l and diameter d, and are per-
fectly aligned in the direction of the applied load, F. The stress required to 
break the composite is estimated at some random cross section. The fi bre 
across the crack plane is divided by the crack plane as shown in Fig. 5.3(a) 
into two segments. The shorter segment length of the fi bre across the crack 
plane ranges from 0 to l/2. When the shorter segment length is less than 
lc/2, the fi bre will debond fully and pull out from the matrix against the 
shear stress τ at the failure of the SFRP composite. Otherwise, the fi bre will 
break at the crack plane.

When the fi bre length l is less than lc, the fi bre will be pulled out as the 
length of the shorter segment is less than lc/2. Since the length of the shorter 
segment in the matrix crossing the crack plane varies from 0 to l/2, its 
average length across the crack plane is l/4 due to the assumption that the 
fi bres are uniformly distributed in the matrix. Thus, the average bridging 
stress of the fi bres across the crack plane in the aligned SFRP composite is 
given by:

σ π τ π τF f f= ( ) ( ) =l r r l d4 2 2 ,  5.33

then the average bridging fi bre stress is:

F F
u

c= ( )l l2 .  5.34

On the contrary, when fi bre length l is greater than lc, the shorter fi bre 
segment will be either less than or greater than lc/2. The shorter segment of 
the fi bre will be pulled out if it is less than lc/2. And the shorter segment 
length will vary from 0 to lc/2. Thus, the average length of the shorter 
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segments of the fi bres is lc/4 and the corresponding fraction of the fi bres is 
lc/l. If the shorter segment length is greater than lc/2, then the fi bres will 
not be pulled out but will be broken at composite failure and the fraction 
of the fi bres is (1 − lc/l). Thus, the average bridging stress of the fi bres with 
a length greater than lC is given by:

σ π τ π σ π σF c c f c f
2

F
u

f F
u

c= ( )( )⋅ + −( )⎡⎣ ⎤⎦ ( ) = − ( )( )l l l r l l r r l l4 2 1 1 22 ..  5.35

For simplicity, the above derivation has neglected the effect of crack diver-
sion for very short embedded segments and the stresses across fi bre ends 
that were considered by Piggott (1994).

We now consider a composite with fi bres oriented obliquely at an angle 
θ with the crack plane (see Fig. 5.3(b)). Similar to the above derivation, the 
average bridging stress of the fi bres crossing the crack plane is obtained 
from:

σ π τ μθ π σ μθθ θF f f F
u

c cfor= ( ) ( ) ( ) = ( ) <l r r l l l l4 2 22exp exp ,
 5.36

σ π τ μθ σ π σθ
θ θ

θ θF
c

f
c

F
u

f f F= ( ) + −⎛
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⎞
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⎧
⎨
⎩

⎫
⎬
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2l
l

r
l
l

r r
4

2 1 2 2exp uu c
cfor1

2
−⎛

⎝⎜
⎞
⎠⎟ ≥l

l
l lθ

θ .
 

 5.37

When θ is equal to zero, lcθ would become lc and eqns [5.36] and [5.37] 
naturally become the same as eqns [5.34] and [5.35].

5.3.3 Strength of SFRP composite with partial 
fi bre alignment

Based on the above discussion it is possible to derive the strength of the 
SFRP composite with partial fi bre alignment (Fu and Lauke, 1996). Consider 
the case that the fi bres are uniformly distributed in the SFRP composite, 
then the failure strength of any cross section of the SFRP composite can 
represent the composite strength. Assume the total fi bre number is NV in 
the composite, and Ni is the number of fi bres with a length from l to l + dl 
and the orientation angle from θ to θ + dθ. Moreover, f(l) and g(θ) are, 
respectively, the fi bre length distribution function and the fi bre orientation 
distribution function as defi ned in Chapter 3. Thus, we have:

N N f l g li V d d .= ( ) ( )θ θ  5.38

Then, the volume sub-fraction vi of the fi bres with a length from l to l + dl 
and an orientation angle from θ to θ + dθ can be obtained by:

v v N l N l v
N l

N l
i i v mean

i

v mean

= ( ) ( )[ ] =π π ,  5.39
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where v is the fi bre volume fraction and lmean is the mean fi bre length in the 
SFRP composite. All the fi bres with length from lmin to lmax and orientation 
angle from θmin to θmax and matrix contribute to the tensile strength of the 
composite:

σ σ σθ
θ θ

θ

c
u

F i M m= +
==
∑∑ v v

l l

l

min

max

min

max

.  5.40

Combining eqns [5.38]–[5.40] and replacing the summation by the integral 
gives:

σ θ σ θ σθ
θ

θ

c
u

mean F M md d= ( ) ( )( ) +∫∫v f l g l l l v
l

l

.
min

max

min

max

 5.41

The strength of the SFRP composite can be obtained by substituting eqns 
[5.27], [5.29], [5.36] and [5.37] into [5.41]. Thus, we have:

σ θ σ μθ θ
θ

θ

θ

c
u

l

l

v f l g l l l l l
c

= ( ) ( )( ) ( )( ) ( )∫ mean F
u

C d d2 exp
minmin

maxx

max

min

max

tan

∫

∫∫

⎡

⎣
⎢

+ ( ) ( )( ) − ( )( )

× −

f l g l l A
l

l

c

θ σ θ
θθ

θ

mean F
u

f1

1 ll A l l vc f M md d1 2− ( )( ) ( )( ) ⎤⎦ +tan exp .θ μθ θ σ

 

5.42

Equation [5.42] can be rewritten as the modifi ed rule of mixtures:

σ χ χ σ σc
u

F
u

M m= +1 2 v v ,  5.43

where

χ χ θ μθ θ
θ

θ

θ

1 2 2= ( ) ( )( ) ( )( ) ( )

+

∫∫ f l g l l l l l
l

l

mean C d d
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ff l g l l A
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l

l
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θ

mean f

c f

c

1

1 1
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max
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max

θθ μθ θ( )( ) ( )( )( )2l lexp ,d d

 

5.44

where χ1 is fi bre orientation factor while χ2 is fi bre length factor for the 
composite strength. In general χ1 and χ2 are not independent of each other 
since the critical length of an oblique fi bre is dependent on the fi bre 
orientation angle. So, the product of χ1χ2 can be used to predict the composite 
strength. The larger the product value of χ1χ2, the higher is the composite 
strength. For the special case of θ = 0, χ1 is equal to 1 and this is the case 
of unidirectionally aligned short fi bre composites. Then, the fi bre length 
factor can be obtained as:

2
2 2 1 2= ( )( ) ( ) + ( ) − ( )[ ] ( )∫ l l l f l l l l l l f l lc

l

l

l

l

mean mean cd d
c

cmin

mmax

.∫  5.45
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In SFRP composites, both super-critical and sub-critical fi bres of lengths 
greater than and less than the critical fi bre length will contribute to the 
composite strength. The percentage α of the sub-critical fi bres can be evalu-
ated from fi bre length density distribution function f(l):

α = − −( )1 exp .alc
b  5.46

The value of the fi bre length factor χ2 can be estimated according to eqn 
[5.45] if lmin, lmax, lc and f(l) are known. Then, the composite strength can 
be evaluated using eqn [5.43] for unidirectionally aligned short fi bre 
composites.

Assuming lmod = 0.2 mm and the parameter b is given, then we obtain 
values of the parameter a from eqn [3.12], the mean fi bre length lmean from 
eqn [3.11], and the probability density function f(l) from eqn [3.9], respec-
tively. The percentage α of the fi bres with a length less than lc can be 
evaluated with eqn [5.46]. Moreover, we can assume lmin and lmax to be, 
respectively, 0 and ∞ mm, and lc 0.2, 0.4 and 0.8 mm, then the calculated 
results for the percentage α and the fi bre length factor χ2 are shown in 
Figs 5.4 and 5.5, respectively, for the case of unidirectional SFRP com-
posites. Figure 5.4 shows that the percentage α decreases dramatically with 
increasing mean fi bre length at small mean fi bre lengths and gradually 
reaches a plateau level as the mean fi bre length increases. In contrast, the 
percentage α decreases with decreasing critical fi bre length at the same 
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5.4 Variation of the percentage, α, of fi bres with l < lc as mean fi bre 
length, lmean, varies for the cases of different lc, where lmod = 0.2 mm, 
lmin = 0 mm and lmax = ∞ mm. Adapted from Fu and Lauke (1996).
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mean fi bre length. Since the super-critical fi bres with lengths greater than 
lc would make a larger contribution to the composite strength than that of 
sub-critical fi bres with lengths less than lc, the value of χ2 increases rapidly 
with the increase of mean fi bre length lmean at small mean fi bre lengths and 
approaches gradually a plateau level at large mean fi bre lengths (see Fig. 
5.5). Therefore, the tensile strength of unidirectionally aligned short fi bre 
composites increases rapidly as the mean fi bre length lmean increases for the 
case of small mean fi bre lengths and approaches a plateau level as lmean 
increases for the case of large mean fi bre lengths. This is consistent with 
existing experimental results (Thomason and Vlug, 1995). Furthermore, the 
strength of SFRP increases as the fi bre content increases if all other 
parameters are the same as indicated in eqn [5.43]. An increase in fi bre 
content leads to a reduction in mean fi bre length (Thomason, 2007). As a 
result, the combined effect of increasing fi bre content and decreasing mean 
fi bre length brings about an up-and-down tendency of composite strength 
as fi bre content increases (Thomason, 2007).

The percentage α of fi bres with l < lc is shown in Fig. 5.6 as a function of 
critical fi bre length lc. Smaller critical fi bre length corresponds to lower 
content of sub-critical fi bres (see Fig. 5.6) and hence higher value of χ2 (see 
Fig. 5.7). Thus, a smaller critical fi bre length will bring about a higher com-
posite strength. This is consistent with experimental results (Yu et al., 1994) 
and the concept of critical fi bre length has been used to explain the effect 
of PA6,6 to PP ratio on the strength of injection-moulded rubber-toughened 
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5.5 Effects of mean fi bre length, lmean and critical fi bre length, lC, on 
fi bre length factor, χ2, for the case of unidirectional composites, where 
lmod = 0.2 mm, lmin = 0 mm and lmax = ∞ mm. Adapted from Fu and 
Lauke (1996).
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PA6,6/PP blends reinforced with short glass fi bres (SGF) (Fu et al., 2006). 
Since the critical fi bre length lc is inversely propotional to the interfacial 
adhesion strength τi, i.e., lc = rfσ uF/τi, thus the strength of a SFRP composite 
increases with increasing interfacial adhesion strength. This has also been 
verifi ed by experiments (Ozkoc et al., 2004).
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5.6 Percentage α of fi bres with l < lC as a function of critical fi bre 
length lC, where lmean = 0.4 mm, lmod = 0.213 mm, lmin = 0 mm and lmax = 
∞ mm. Adapted from Fu and Lauke (1996).
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5.7 Effect of critical fi bre length lc on fi bre length factor, χ2, for the 
case of unidirectional composites, where lmean = 0.4 mm, lmod = 
0.213 mm, lmin = 0 mm and lmax = ∞ mm. Adapted from Fu and Lauke 
(1996).
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The tensile stress–strain curves for 30 wt% short glass fi bre reinforced 
acrylonitrile-butadiene-styrene (ABS) blended with various amounts of 
polyamide 6 (PA6) are shown in Fig. 5.8 (Ozkoc et al., 2004). The results 
for strength are presented in Table 5.1. The composite tensile strength 
increases with increasing relative ratio of PA6 in the polymer blend 
matrix. The strength of composites is a direct indicator of the strength 
of interfacial bonds since the applied stress is more effi ciently trans-
ferred through the interface (Yue and Cheung, 1992). The result for the 
tensile strength can be attributed to the increasing extent of acid–base 

100

90

80

70

60

50

40

30

20

10

0
0 2 4 6 8

Strain (%)

S
tr

es
s 

(M
P

a)

neat-ABS
30wt%SGF reinforced ABS
30wt%SGF reinforced (90%ABS + 10wt%PA6)
30wt%SGF reinforced (80%ABS + 20wt%PA6)
30wt%SGF reinforced (70%ABS + 30wt%PA6)

5.8 Tensile stress–strain curves of SGF reinforced ABS and ABS/PA6 
blends. Adapted from Ozkoc et al. (2004).

Table 5.1 Ultimate strength of SGF reinforced ABS-PA6 composites (Ozkoc 
et al., 2004)

Material Tensile strength 
(MPa)

Neat ABS 44.0 ± 6.0
30% SGF reinforced ABS (with 0 wt% PA6) 78.0 ± 2.5
30% SGF reinforced (90 wt% ABS + 10 wt% PA6) blend 85.0 ± 3.0
30% SGF reinforced (80 wt% ABS + 20 wt% PA6) blend 91.0 ± 1.1
30% SGF reinforced (70 wt% ABS + 30 wt% PA6) blend 93.0 ± 1.8
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reaction between acidic end group of PA6 chains and aminopropyl 
functional group of coupling agent used on the glass fi bre surface as the 
amount of PA6 in the matrix increases. A similar observation has also been 
reported for short glass fi bre reinforced polyamide 66 (PA 6,6)/polypropylene 
(PP) blends (Fu et al., 2006). When the relative PA 6,6 ratio in the blend 
increases, the fi bre–matrix interfacial strength increases, leading to higher 
composite tensile strength.

Assuming lmin, lmax and lmean to be 0, ∞ and 0.4 mm, and lc: 0.2, 0.4 and 
0.8 mm, respectively, the calculated percentage α of fi bres with sub-critical 
lengths and the fi bre length factor χ2 are shown in Figs 5.9 and 5.10, respec-
tively. Figure 5.9 shows that the content of the fi bres with sub-critical fi bre 
length decreases with increasing mode fi bre length lmod (as discussed in 
Chapter 3) for smaller critical fi bre length, i.e., lc = 0.2 and 0.4 mm. The 
content of fi bres with sub-critical fi bre length increases with increasing 
mode fi bre length lmod for larger critical fi bre length, i.e., lc = 0.8 mm. Figure 
5.10 illustrates that χ2 decreases with increasing lmod, thus the tensile strength 
of aligned short fi bre composites decreases with mode fi bre length. 
However, the effect of mode fi bre length on tensile strength is relatively 
small compared to the effects of mean fi bre length and critical fi bre length 
as shown in Figs 5.5 and 5.7. Especially for the case of lc < lmean, e.g., lc = 
0.2 mm < lmean = 0.4 mm, this effect is very small (see Fig. 5.10). Therefore, 
in practice as an approximation, the effect of mode fi bre length can be 
neglected on the strength of injected moulded SFRP composites for the 
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length, lmod, varies for different lc (lmean = 0.4 mm, lmin = 0 mm and 
lmax = ∞ mm). Adapted from Fu and Lauke (1996).
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purpose of simplicity while the mean fi bre length and critical fi bre length 
(hence interfacial adhesion strength) should be given priority over the 
mode fi bre length in considering the infl uencing factors for the strength of 
SFRP composites.

Tables 5.2 and 5.3 show the effect of fi bre orientation distribution (FOD) 
on the fi bre effi ciency factor χ1χ2 for the composite strength, where μ = 0.1, 
A = 0.4, lmin = 0, lmax = ∞, lmean = 0.4 mm, lmod = 0.213 mm and lc = 0.2 mm. 
Table 5.2 shows that the value of χ1χ2 and hence the composite strength 
increases with decreasing mean fi bre orientation angle and with increasing 
fi bre orientation coeffi cient fθ. Table 5.3 shows that for the same fi bre ori-
entation coeffi cient fθ (for defi nition, see eqn [3.27]), the variance of χ1χ2 
with the mean fi bre orientation angle is dependent on the sign (positive or 
negative) of fθ; when fθ > 0, the value of χ1χ2 increases with increasing mean 
fi bre orientation angle; in contrast, when fθ < 0, the value of χ1χ2 decreases 
with the increase in mean fi bre orientation angle. When fθ = 0, there is 
almost no change in the mean fi bre orientation angle and hence the value 
of χ1χ2. Moreover, no direct relationship is found between the value of χ1χ2 
and the most probable fi bre orientation angle, θmod. In summary, amongst 
the infl uencing factors studied above, the mean fi bre orientation angle plays 
the most important role while the mode fi bre orientation angle the least 
role in determining the strength of injection moulded SFRP composites.

The effect of the snubbing friction coeffi cient μ on χ1χ2 is given in Fig. 
5.11, where Af = 0.4, lmin = 0, lmax = ∞, lmean = 0.4 mm, lc = 0.2 mm and 
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5.10 Effects of mode fi bre length lmod and critical fi bre length lc on 
fi bre length factor, χ2, for the case of unidirectional composites (lmean = 
0.4 mm, lmin = 0 mm and lmax = ∞ mm). Adapted from Fu and Lauke 
(1996).

�� �� �� �� ��



98 Engineering of short fi bre reinforced polymer composites

lmod = 0.213 mm, and p = 0.5 and q = 10 for the fi bre orientation distribution 
function, respectively. It is obvious that the value of χ1χ2 increases slightly 
with increasing snubbing friction coeffi cient, suggesting that snubbing fric-
tion has only a small effect on the strength of SFRP composites.

Figure 5.12 shows the effect of the constant Af on the value of χ1χ2. It is 
clear that the fi bre effi ciency factor χ1χ2 decreases with increasing Af. This 
means that if the fi bre fl exural effect on the fracture strength of oblique 

Table 5.2 Effect of FOD on the tensile strength of 
SFRP composites. Adapted from Fu and Lauke, 1996*

p q θmean θmod fθ χ1χ2

100 0.5 1.514 π/2 −0.99 0
16 1 1.351 1.393 −0.88 0.013
8 1 1.262 1.318 −0.78 0.068
4 1 1.141 1.209 −0.6 0.174
2 1 0.982 1.047 −0.33 0.308
0.5 0.5 0.785 no 0 0.417
0.5 1 0.571 0.0 0.33 0.549
1 4 0.430 0.361 0.6 0.652
1 8 0.308 0.253 0.78 0.693
1 16 0.220 0.178 0.88 0.717
0.5 10 0.179 0.0 0.91 0.726
0.5 100 0.056 0.0 0.99 0.755

* p and q are parameters for fi bre orientation 
distribution as shown in eqn [3.24] of Chapter 3; fθ is 
fi bre orientation coeffi cient defi ned in eqn [3.27] of 
Chapter 3.

Table 5.3 Effect of FOD on the tensile strength of 
SFRP composites. Adapted from Fu and Lauke, 1996

p q θmean θmod fθ χ1χ2

0.5 1 0.571 0.0 0.33 0.549
1 2 0.589 0.524 0.33 0.569
2 4 0.601 0.580 0.33 0.588
4 8 0.608 0.599 0.33 0.595
0.5 0.5 0.785 no 0 0.417
1 1 0.785 0.785 0 0.416
2 2 0.785 0.785 0 0.415
4 4 0.785 0.785 0 0.414
8 4 0.962 0.972 −0.33 0.351
4 2 0.970 0.991 −0.33 0.330
2 1 0.982 1.047 −0.33 0.308
1 0.5 0.999 1.57 −0.33 0.290
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fi bres is small, the composite strength would be high. Otherwise, the com-
posite strength would be relatively low. Hence, the inclined fi bre tensile 
strength is a very useful parameter for the development of high strength 
misaligned SFRP composites.

Theoretical models are developed to explain observed data and predict 
future results. They are as good as can be verifi ed with published 
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5.11 Effect of snubbing friction coeffi cient, μ, on fi bre effi ciency factor 
χ1χ2 for the composite strength. Adapted from Fu and Lauke (1996).
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5.12 Effect of the constant Af on fi bre effi ciency factor χ1χ2 for the 
composite strength. Adapted from Fu and Lauke (1996).
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experiments. Equations [5.43] and [5.44] are applied to the experimental 
results of Templeton (1990). Since the composite strength, the fi bre volume 
fraction and the matrix strength have all been obtained, then the experi-
mental values of (χ1χ2)e can be estimated with eqn [5.43] as shown in Table 
5.4. Also, the mean fi bre length is given, then with eqn [3.11] the parameter 
a can be obtained by setting arbitrarily, b = 1.2. This arbitrary value will not 
result in a large error since different values of b may result in different 
mode fi bre lengths, but as shown in Fig. 5.10, the effect of mode fi bre length 
on the tensile strength of SFRP is very small. The parameter q can be evalu-
ated from eqn [3.27] by setting arbitrarily, p = 1 because the fi bre orientation 
coeffi cient is given (Templeton, 1990). This arbitrary value may bring about 
only a small error for a given fi bre orientation coeffi cient as shown in 

Table 5.4 Comparison of the theory (eqns [5.43] and [5.44]) (Fu and Lauke, 
1996) with experimental results (Templeton, 1990)*

ID Glass 
fi bre 
strength 
(MPa)

Matrix 
strength 
(MPa)

Fibre 
volume 
fraction 

Critical 
fi bre 
length 
(mm)

Mean 
fi bre 
length 
(mm)

Fibre 
orientation 
coeffi cient 
(fθ)

Composite 
strength 
(MPa)

Nylon-1 2758 74.6 0.176 0.5613 0.8814 0.4333 201.5
Nylon-2 2758 74.6 0.186 0.5994 1.1862 0.3461 191.0
Nylon-3 2758 74.6 0.186 0.5994 0.8712 0.4095 195.8
PP-1 2758 31.1 0.100 1.4554 2.4714 0.2359 61.5
PP-2 2758 31.1 0.100 1.3995 2.4841 0.2029 58.1
PP-3 2758 31.1 0.100 1.3995 2.4866 0.2985 75.1
PBT-1 2758 34.2 0.181 0.6807 0.9144 0.3673 142.0
PBT-2 2758 34.2 0.181 0.8407 0.9931 0.3407 137.8
PBT-3 2758 34.2 0.181 0.6807 1.0007 0.3472 140.7

ID a b p q μ A (χ1χ2)e (χ1χ2)t

Nylon-1 1.0813 1.2 1 2.5294 0.1 1.2 0.2884 0.2826
Nylon-2 0.7571 1.2 1 2.0586 0.1 1.2 0.2539 0.2550
Nylon-3 1.0964 1.2 1 2.3870 0.1 1.2 0.2633 0.2682
PP-1 0.3138 1.2 1 1.6175 0.1 1.7 0.1215 0.1262
PP-2 0.3118 1.2 1 1.5091 0.1 1.7 0.1090 0.1197
PP-3 0.3115 1.2 1 1.8510 0.1 1.7 0.1707 0.1425
PBT-1 1.0346 1.2 1 2.1611 0.1 1.3 0.2284 0.2237
PBT-2 0.9370 1.2 1 2.0335 0.1 1.3 0.2199 0.2082
PBT-3 0.9284 1.2 1 2.0637 0.1 1.3 0.2258 0.2202

* PP: polypropylene and PBT: polybutylene terephthalate; a, b, p and q are 
parameters respectively for determining fi bre length distribution and fi bre 
orientation distribution, given in Chapter 3.
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Table 5.3. The snubbing friction coeffi cient μ can be arbitrarily assumed as 
0.1 because μ has only a very small effect on the value of χ1χ2 as indicated 
in Fig. 5.11. And the constant Af can be adjusted. Consequently, the theoreti-
cal values of (χ1χ2)t can be evaluated and the fi nal results are listed in Table 
5.4. The comparison shows that the theoretical results agree well with the 
experimental data, indicating that the theory (eqns [5.43] and [5.44]) can 
give good predictions of the strength of SFRP composites.

5.4 Anisotropy of tensile strength of short fi bre 

reinforced polymer (SFRP) composites

It is well documented that the mechanical properties, such as tensile 
strength, of short fi bre reinforced polymer (SFRP) composites depend on 
the fi bre length distribution (FLD) and the fi bre orientation distribution 
(FOD) in fi nal composite parts (Chin et al., 1988; Chou and Nomura, 1981; 
Choy et al., 1992; Fu and Lauke, 1996; Lauke and Fu, 1999; Hine et al., 1995; 
Xia et al., 1995). Owing to the partial fi bre orientation in the fi nal parts, 
SFRP composites show anisotropy or direction dependence of their 
mechanical properties. The anisotropy of the strength of SFRP composites 
will be discussed below.

5.4.1 Bridging stress of fi bres

To study the direction dependence of the strength of a SFRP composite, it 
is assumed that a force F is applied in the (Θ, Φ) direction on the SFRP 
composite (see Fig. 5.13). To estimate the stress in the (Θ, Φ) direction 
required to break the composite, it is necessary to estimate the average 
bridging stress of the fi bres across the corresponding failure plane. The 
single fi bre bridging case will be fi rst considered as follows.

When a fi bre intersecting the crack plane orients normally to the crack 
plane, the bridging stress σF of the fi bre across the crack plane can be esti-
mated by eqn [5.23] (Fu and Lauke, 1996). In contrast, when a fi bre obliquely 
crosses the crack plane, the bridging stress σFδ is given by Fu et al. (1993), 
Jain and Wetherhold (1992) and Li et al. (1990):

σ τ μδδ δF S f S cfor= ( ) ( ) <2 2l r l lexp ,  5.47

where ls is the embedded length (shown in Fig. 5.3 but θ should be replaced 
by δ), lcδ denotes the critical fi bre length for an obliquely crossed fi bre (Li 
et al., 1990; Fu et al., 1993); δ is the angle between the fi bre axial direction 
(θ, φ) and the crack plane normal or the applied loading direction (Θ, Φ) 
(see Fig. 5.13), we have:

cos cos cos sin sin cos .δ θ θ φ= + −( )Θ Θ Φ  5.48
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Assume δ � 90°, then the right-hand side of eqn [5.48] should have an 
absolute value. If lS is not less than lcδ/2, the bridging stress of the oblique 
fi bre is given by:

σ σθ δ δF F
u

S cfor= ≥l l 2,  5.49

where σ u
Fδ denotes the fracture stress (namely, inclined tensile strength) of 

the oblique fi bres due to the fi bre fl exural effect (Bartos and Duris, 1994). 
Since the fl exural stresses for the oblique fi bre cause an apparent loss of 
fi bre strength during loading, the fracture strength for the oblique fi bre 
would be reduced (Piggott, 1974, 1994). If the fi bres are brittle (e.g., glass 
or carbon fi bres, etc.), σ u

Fδ can be estimated using eqn [5.27] (Piggott, 1974, 
1994). Obviously, there will be a maximum fi bre orientation angle for 
σ u

Fδ ≥ 0:

δmax arctan .= ( )1 Af  5.50

The above equation is the same as eqn [5.28]. When δ ≥ δmax, σ u
Fδ = 0. Taking 

into account the fi bre snubbing friction and fl exural effects, the expression 
for the critical length of the oblique fi bre is the same as eqn [5.29] by replac-
ing θ with δ.

5.4.2 Average fi bre stress in aligned SFRP composites

To estimate the stress in the applied loading (Θ, Φ) direction required to 
break the composite, the average bridging stress of the fi bres is evaluated 
below. Consider an aligned SFRP composite with uniformly distributed 
short fi bres having the same length l, the fi bres are aligned perfectly along 
the (Θ, Φ) direction. When l is less than lc, the average fi bre bridging stress 
is estimated by eqn [5.5]. When l ≥ lc, the average bridging stress of the fi bres 
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5.13 Defi nition of loading direction angles Θ and Φ.
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is expressed by eqn [5.7]. Conversely, for a composite with short fi bres that 
are oriented obliquely at an angle δ with the (Θ, Φ) direction, the average 
bridging stress of the fi bres crossing the crack plane is, respectively, expressed 
by eqns [5.36] and [5.37] by replacing θ with δ (Fu and Lauke, 1996).

5.4.3 Anisotropy of strength of SFRP composite

The anisotropy on the mechanical properties including strength of SFRP 
composites is dominated by the fi bre orientation (Hine et al., 1996). The 
strength anisotropy of a SFRP composite is the dependence of the compos-
ite strength on the applied loading direction (Θ, Φ). Let Nv be the total fi bre 
number in the composite, and Ni the number of fi bres with a length from l 
to l + dl and a pair of orientation angles from θ to θ + dθ and from φ to φ 
+ dφ. Then, we have:

N N f l g g l di v d d= ( ) ( ) ( )θ φ θ φ.  5.51

The volume subfraction vi of the fi bres with a length from l to l + dl and a 
pair of orientation angles from θ to θ + dθ and from φ to φ + dφ can be 
otained from:

v v N l r N l r v N l N li i f v mean f i v mean= ( ) ( )⎡⎣ ⎤⎦ = ( ) ( )[ ]π π2 2 .  5.52

The composite strength is contributed by all the fi bres in the composite. 
Thus, similar to the derivation of eqn [5.42], the composite strength for 
loading in the (Θ, Φ) direction is given by:

σ σ σθφ
θ θ

θ

φ φ

φ

c
u

F M mΘ Φ, ,
min

max

min

max

min

max

( ) = +
===
∑∑∑ v v

l l

l

 5.53

where σFθφ = σFδ and θ, φ and δ satisfy eqn [5.48]. Combining eqns [5.51]–
[5.53] and replacing the summation by the integral, we have:

σ θ φ σ θ φ σδ
θ

c
u

mean F M md dΘ Φ, .
min

max

min

( ) = ( ) ( ) ( )( ) +∫v f l g g l l l d v
l

lθθ

φ

φ max

min

max

∫∫  5.54

Thus, the strength of SFRP composite in the (Θ, Φ) direction becomes:

σ θ φ σ μδ θ φc
u

mean F
u

c d dΘ Φ, exp
min

( ) = ( ) ( ) ( )( ) ( )( ) ( )v f l g g l l l l l d
l

2
ll

f l g g l l A

c

mean F
u

f

δ

θ

θ

φ

φ

θ φ σ δ

∫∫∫
⎡

⎣
⎢

+ ( ) ( ) ( )( ) −

min

max

min

max

tan1 (( )( )

× − − ( )( ) ( )(
∫∫∫

l

l

l A l
c

C f

δθ

θ

φ

φ

δ μδ

max

min

max

min

max

tan exp1 1 2 ))( ) ⎤⎦ +d d d M ml vθ φ σ .

 
 

5.55

Equation [5.55] can be rewritten in the following form:

σ χσ σc
u

F
u

M mΘ Φ, ,( ) = +v v  5.56
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where

χ θ φ μδ θ φ
δ

θ

θ

= ( ) ( ) ( )( ) ( )( ) ( )∫ f l g g l l l l l d
l

l

mean C d d
c

2 exp
minmin

maxx

min

max

max

min

tan

∫∫

∫+ ( ) ( ) ( )( ) − ( )( )
φ

φ

θ

θ

θ φ δ
δ

f l g g l l A
l

l

mean f

c

1
mmax

min

max

tan exp .

∫∫
× − − ( )( ) ( )( )( )

φ

φ

δ μδ θ φ1 1 2l A l lc f d d d

 

5.57

The parameter χ is defi ned as the fi bre reinforcing effi ciency factor 
containing both the fi bre length and orientation effects for the strength of 
the SFRP composite in the (Θ, Φ) direction. The larger the value of χ, the 
higher is the composite strength in the (Θ, Φ) direction. The dependence of 
the composite strength on the loading direction (Θ, Φ), namely, the anisot-
ropy of the composite strength, can be investigated using eqns [5.56] and 
[5.57]. In the case of transverse loading (Θ = 90°, Φ = 0°) and the fi bres 
aligned along the θ = 0° direction, the fi bre contribution to the composite 
strength is ignored (namely, σ u

Fδ = 0) and the failure of the SFRP composite 
is matrix- and/or interface-controlled.

For a unidirectional short fi bre composite, the strength anisotropy is 
obtained from eqns [5.56] and [5.57]. Here, θ = 0, and δ = Θ according to 
eqn [5.48] and Fig. 5.13. The angle φ is independent of other angles and fi bre 
length, its integration is unity in eqn [5.57]. Hence, the parameter χ for the 
strength anisotropy σ uc(Θ, Φ) of a unidirectional fi bre composite can be 
derived from eqn [5.57]. That is,

χ μ= ( )⋅ ⋅ ⋅ ( )

+ ( )⋅ ⋅ −(

∫ f l
l

l
l
l

l

f l
l
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5.58

Equation [5.58] can be further simplifi ed for a unidirectional short fi bre 
composite with a constant length l.

χ μ= ⋅ ⋅ ( ) <
l
l

l l
2 c

cforexp Θ  5.59

χ
μ

= ⋅ −( )⋅ −
−( )

( )
⎛

⎝
⎜

⎞

⎠
⎟ ≥1 1

1
2

A
l A

l
l lf

c f
cfortan

tan
exp

.Θ
Θ

Θ
 5.60

Equations [5.59] and [5.60] are the expressions for the fi bre length factor 
(also the fi bre reinforcing effi ciency factor since the fi bre orientation factor 
equals 1) for the strength of a unidirectional short fi bre composite loaded 
at the (Θ, Φ) direction and the composite strength can be estimated by: 
σ uc(Θ, Φ) = χσ uFv + σMvm. When Θ = 0, eqns [5.59] and [5.60] naturally become 
the same as eqns [5.9] and [5.10], respectively.
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The following parametric values are used in the calculation: Af = 0.4, μ = 
0.1, lc = 0.2 mm, lmean = 3.198 mm (a = 0.15 and b = 1.5) and θmean = 12.95° 
(p = 0.6 and q = 8). For simplicity and without loss of generality, one impor-
tant case, namely, the planar fi bre orientation distribution (Chin et al., 1988; 
Xia et al., 1995; Kwok et al., 1997), in which s = 0.5 and t = ∞ for g(φ) (see 
eqn [3.29]), will be considered. Also, g(θ) is reasonably assumed to be sym-
metrical about θ = 0°, which is the mould fl ow direction.

Figure 5.14 shows the fi bre effi ciency factor χ plotted as a function of the 
direction angle Θ and the mean fi bre length. It is clearly seen that χ increases 
with increasing mean fi bre length at small Θ while it is insensitive to (Fig. 
5.14(a)) or independent of (Fig. 5.14(b)) the mean fi bre length at large Θ 
(≥70°). Moreover, χ decreases generally with increasing angle Θ at both 
Φ = 0° and 90° while it becomes insensitive to angle Θ when Θ = ∼70° at 
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5.14 Variation of fi bre effi ciency factor, χ, for strength of SFRP 
composites with direction angle Θ for various mean fi bre lengths at 
(a) Φ = 0° and (b) Φ = 90° and with mean fi bre length for various Θ at 
(c) Φ = 0° and (d) Φ = 90°. Adapted from Lauke and Fu (1999).
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Φ = 90°. Further, from Fig. 5.14(c)–(d) it is obvious that the fi bre effi ciency 
factor χ increases dramatically with increasing mean fi bre length when it is 
small while it increases slowly with increasing mean fi bre length when 
it is large at various loading directions.

The fi bre effi ciency factor χ for the composite strength at Φ = 0° and 90° 
is shown in Fig. 5.15 as a function of the direction angle Θ for various critical 
fi bre lengths. It can be seen that a smaller critical fi bre length (or a larger 
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5.15 Variation of fi bre effi ciency factor, χ, for composite strength with 
direction angle Φ for various critical fi bre lengths at (a) Φ = 0° and 
(b) Φ = 90°. Adapted from Lauke and Fu (1999).
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interfacial adhesion strength, since lc = rfσ uF/τi) generally leads to a higher 
fi bre effi ciency factor when Θ is not large (<∼70°) while the fi bre effi ciency 
factor becomes insensitive to (Φ = 0°, Fig. 5.15(a)) or independent of (Φ = 
90°, Fig. 5.15(b)) the critical fi bre length when Θ is larger than a certain 
value (here ≥ ∼70° for Af = 0.4). Note that the critical value of Θ is dependent 
on the constant Af which determines the critical angle of δmax (eqn [5.50]) 
and then the critical angle of θmax (eqn [5.48]) and fi nally the critical value 
of Θ.

Figure 5.16 displays the effect of mode fi bre length on the fi bre effi ciency 
factor for the strength of SFRP composites with the direction angle Θ at 
Φ = 0° and 90°. It is shown that the mode fi bre length has only a small infl u-
ence on the fi bre effi ciency factor for the two cases of small and large mean 
fi bre lengths at various loading directions.

The anisotropy of the composite strength defi nitely and strongly depends 
on the fi bre orientation distribution in the SFRP composite. The effect of 
the mean fi bre orientation angle on the fi bre effi ciency factor for composite 
strength as a function of the direction angle Θ is shown in Fig. 5.17. It reveals 
that at Φ = 0° the fi bre effi ciency factor decreases with increasing mean fi bre 
orientation angle θmean when Θ is small (e.g., ≤45°) but it increases with 
increasing mean fi bre orientation angle when Θ is large (≥50°). For the two-
dimensional (2D) random fi bre alignment case with a 45° mean fi bre 
orientation angle, the fi bre effi ciency factor is constant with changing Θ. At 
Φ = 90°, the fi bre effi ciency factor decreases monotonically with increasing 
mean fi bre orientation angle when Θ is small (<∼70°) and then becomes 
zero when Θ is large (≥∼70°).

Figure 5.18 shows the effects of mode fi bre orientation angle and fi bre 
orientation coeffi cient on the fi bre effi ciency factor as a function of the 
direction angle Θ. At Φ = 0° (Fig. 5.18(a)) a smaller mode fi bre orientation 
angle or a smaller fi bre orientation coeffi cient corresponds to a higher fi bre 
effi ciency factor when Θ is small (≤∼25°) while a larger mean fi bre orienta-
tion angle or a larger fi bre orientation coeffi cient corresponds to a higher 
fi bre effi ciency factor when Θ is medium (about 25° ≤ Θ ≤ ∼80°). Figure 
5.18(b) shows that at Φ = 90°, a smaller mode fi bre orientation angle (or a 
smaller fi bre orientation coeffi cient) corresponds in general to a higher fi bre 
effi ciency factor when Θ is not large (<∼50°) while the fi bre effi ciency factor 
becomes insensitive to Θ when Θ is large or is even equal to zero when 
Θ ≥ ∼70°.

Therefore, an SFRP composite with partial fi bre alignment obviously 
shows direction dependence of its strength and its strength anisotropy is 
controlled by the fi bre length and fi bre orientation distributions. The fi bre 
effi ciency factor and hence the composite strength decreases generally 
with increasing loading direction angle Θ as shown in Figs 5.14–5.18. 
Comparatively, the mean fi bre length at a small value less than 1 mm has 
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a signifi cant effect and the critical fi bre length has a moderate effect while 
the mode fi bre length has little effect on the strength anisotropy of the 
SFRP composite. Moreover, mean fi bre orientation angle has a signifi cant 
infl uence while mode fi bre orientation and fi bre orientation coeffi cient have 
a moderate infl uence on the strength anisotropy. In practice, injection 
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5.16 Effect of mode fi bre length on fi bre effi ciency factor, χ, for 
strength of SFRP composites as a function of direction angle Θ at 
(a) Φ = 0° and (b) Φ = 90°. Adapted from Lauke and Fu (1999).
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moulded SFRP composite parts often show anisotropic mechanical proper-
ties owing to the fl ow-induced partial fi bre orientation (Liang and Stokes, 
2005). Thus, mechanical properties of short glass fi bre fi lled poly(butylene 
terephthalate) composite plaques are strongly thickness dependent. 
The thinnest plaques display the largest differences between the fl ow and 
crossfl ow tensile strengths and moduli. These differences decrease with 
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5.17 Effect of mean fi bre orientation angle on fi bre effi ciency factor, χ, 
for strength of SFRP composites as a function of direction angle Θ at 
(a) Φ = 0° and (b) Φ = 90°. Adapted from Lauke and Fu (1999).
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5.18 Effect of mode fi bre orientation angle and fi bre orientation 
coeffi cient on fi bre effi ciency factor, χ, for strength of SFRP 
composites as a function of direction angle Θ at (a) Φ = 0° and (b) Φ = 
90°. Adapted from Lauke and Fu (1999).
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increasing plaque thickness. Hence, thinner plaques have higher in-plane 
anisotropic mechanical properties than thicker plaques.

5.5 Strength of randomly aligned short fi bre 

reinforced polymers (SFRP)

Now we consider two-dimensional (2D) and three-dimensional (3D) 
random fi bre distribution cases. A two-dimensional (2D) random fi bre 
composite is defi ned as that in which all the fi bres are randomly distributed 
in a plane (namely a two-dimensional space) while a three-dimensional 
(3D) fi bre composite is defi ned as that in which all the fi bres are randomly 
distributed in a three-dimensional space. The strength is discussed below 
for the 2D and 3D random cases.

5.5.1 Two-dimensional random fi bre distribution

If a short fi bre reinforced polymer composite is assumed to be of the form 
of a sheet thinner than the average fi bre length, the composite can be mod-
elled as a quasi-isotropic laminate. In principle, the laminate can be 
established by stacking up laminae of unidirectional fi bres in all directions 
in the plane of the laminate. Hahn (1975) replaced the two-dimensional 
(2D) random fi bre composite by a laminate consisting of unidirectional 
fi bres in all directions in the laminate plane and applied a rule of mixtures 
to evaluate the 2D random fi bre laminate strength such that:

σ
π

σ θθ

π

c Dr
u

c
u d− = ∫2

0

22
, ,  5.61

where σ uc,θ is the strength of a unidirectional laminate with a fi bre orientation 
angle θ. Using the maximum stress theory for failure, Hahn (1975) derived 
the strength of the 2D random fi bre composite as:

σ
π

σ σc Dr
u

c
L u

c
T u

− = ( )2
1 24 , , ,  5.62

where σ cL,u and σ c
T,u represent, respectively, the longitudinal and transverse 

strength of a unidirectional fi bre laminate with the same fi bre volume 
fraction as the 2D random fi bre composite.

An alternative approach for predicting the strength of a two-dimensional 
random fi bre composite is the method of laminate analogy. Equations [5.43] 
and [5.44] can be used for prediction of the strength of a two-dimensional 
(2D) random case, in which g(θ) must be constant for the angle θ in the 
whole range of 0 to π/2, then g(θ) = 2/π. Also, we have σ uc−2Dr = χσ uFv + σMvm, 
where χ is the fi bre reinforcing coeffi cient for the 2D random fi bre composite 
and can be determined by:
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When the fi bre length is constant in the 2D random fi bre composite, then 
we obtain:
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The strength of a 2D random SFRP composite with a constant length l is 
obtained by Miwa et al. (1979, 1980; Miwa and Horiba 1994) dependent on 
the interfacial shear strength τd and is written as follows:
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where σ ′M is the matrix stress at the breaking strain of the fi bre, σM is the 
mean stress in the matrix at the failure of the composite, [σr]T is the thermal 
stress produced during moulding of the composite due to the difference of 
the thermal expansion coeffi cients between fi bres and polymer matrix, and 
is given by:

σ
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m f m f
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1 1

E T

E E

Δ
,

where αf and αm are, respectively, the thermal expansion coeffi cient of the 
fi bres and matrix, and ΔT is the temperature difference from the moulding 
temperature to room temperature.

5.5.2 Three-dimensional random fi bre distribution

For a three-dimensional (3D) random fi bre composite, g(θ) must be con-
stant for the angle θ in the whole range of 0 to π/2, then g(θ) = 2/π; while 
g(φ) must also be constant for the angle φ in the whole range of 0 to π, 
then g(φ) = 1/π. For a 3D random short fi bre composite, the composite 
strength does not change with the applied loading direction. Namely, a 3D 
random short fi bre composite shows isotropic characteristics in its strength 
and the composite strength in the (Θ = 0, Φ) direction can be evaluated. 
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Equations [5.56] and [5.57] will be used to predict the strength of the 3D 
random short fi bre composite and σ uc−3Dr = χσ uFv + σMvm, where χ is the fi bre 
reinforcing coeffi cient for the 3D random fi bre composite. From eqn [5.48], 
we have δ = θ since Θ is assumed to be zero. Then, we can obtain χ from 
eqn [5.57] as:
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The above equation is the same as eqn [5.63]. This indicates that the 
strength of a 3D random fi bre composite is independent of the angle φ, 
and then the composite strength for both the 2D and 3D random cases 
will be the same if they have the same fi bre length distribution for a 
given fi bre–matrix system. If both the snubbing friction effect and the 
fi bre fl exural effect are neglected, i.e. μ = 0 and Af = 0, eqn [5.68] or [5.63] 
becomes:
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If the fi bre length is constant, eqn [5.69] can be further simplifi ed to:

= ( ) <l l l l2 c cfor  5.70

= − ( ) ≥1 2l l l lc cfor .  5.71

The above equations are the same as eqns [5.9] and [5.10] for the 
unidirectional SFRP composites. This shows that it is possible to obtain 
the composite strength of random composites in the same way as for 
unidirectional SFRP composites when the snubbing friction effect and the 
fi bre fl exural effect are neglected. This information may be useful in 
designing high performance SFRP composites or similar composites since 
random composites have the same strength at all directions in 2D plane 
(2D random case) or 3D space (3D random case).

5.6 Strength of hybrid short fi bre reinforced 

polymer (SFRP) composites

When two different types of short fi bres are simulataneously used to 
reinforce a polymer matrix, the strength [σ uc]H of the hybrid short fi bre 
composite can be estimated using the following rule-of-hybrid mixtures 
(RoHM) equation (Hashemi et al., 1997; Fu et al., 2002b)

σ σ σc
u

H c
u

c
u⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ [ ] + ⎡⎣ ⎤⎦ [ ]

1 1 2 2
v v ,  5.72
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where [v]1 and [v]2 are, respectively, hybrid volume fraction of the two types 
of short fi bres and [v]1 + [v]2 = 1. [σ uc]1 and [σ uc]2 are strengths of the 
composites reinforced, respectively, by these two types of fi bres at the same 
volume fraction as the total fi bre volume fraction. [σ uc]1 and [σ uc]2 can be 
evaluated using all of the above theoretical equations when appropriate. 
For example, when the short fi bres are unidirectionally aligned along the 
loading direction with lengths smaller than their critical lengths, eqn [5.5] 
can be used to predict the composite strength for each SFRP composite. 
Equation [5.72] can be extended for hybrid composites containing three or 
more types of short fi bres and the right-hand term should include 
contributions from three or more types of short fi bres.

Hybrid equations such as eqn [5.72] are often used to estimate composite 
mechanical properties including strength and toughness. If the experimentally 
obtained composite mechanical properties are higher than those estimated 
using the hybrid equations, it is then regarded that the SFRP composite 
shows a positive or ‘synergistic’ effect on the mechanical properties (Fu 
et al., 2001, 2002a,b). The effect of the relative carbon fi bre volume fraction 
on the tensile strength of injection moulded polypropylene (PP) composites 
reinforced with hybrids of short glass and carbon fi bres is presented in Fig. 
5.19 (Fu et al., 2001), where the total glass and carbon volume fraction is 
fi xed at 25%. Figure 5.19 shows that the experimental values of the ultimate 
strength of the hybrid fi bre composites lie above the RoHM prediction. This 
indicates that the strength exhibits a positive deviation from the mixtures 
rule and hence shows a synergistic hybrid effect for the composite strength.
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5.19 Tensile strength versus relative carbon fi bre volume fraction for 
hybrid SGF/SCF/PP composites with v(total) = v(carbon) + v(glass) = 
0.2 s. Adapted from Fu et al. (2001).
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6
Elastic modulus of short fi bre 

reinforced polymers

Abstract: Chapter 6 begins by reviewing different theoretical models for 
longitudinal modulus of unidirectionally aligned short fi bre reinforced 
polymers before discussing the theoretical model for the elastic modulus 
of partially aligned short fi bre reinforced polymers. Theoretical models 
for elastic modulus anisotropy, modulus of randomly aligned and hybrid 
SFRP composites are then discussed. Also, numerical methods for elastic 
modulus of SFRP composites and effect of interphase properties on 
composite modulus are presented.

Key words: Young’s modulus, modulus anisotropy, analytical approaches, 
numerical methods, interphase effect.

6.1 Introduction

Fibre reinforced polymer composites are practical and useful, but there is 
always a problem with understanding how they work. Even the elastic 
modulus of aligned continuous fi bre reinforced composites has been the 
subject of a great deal of study, in which the strains in the fi bres and the 
polymer matrix are assumed to be the same. Thus, so long as neither matrix 
nor fi bres have yielded, the rule of mixtures (RoM) can be used to predict 
the elastic modulus:

E E v E vc f m m= +  6.1

Just as in continuous fi bre reinforced composites, the study of elastic 
modulus of short fi bre reinforced polymer (SFRP) composites has been the 
most active among all mechanical and physical properties. It is convenient 
to subdivide short fi bre reinforced polymer composites into three categories 
in terms of fi bre orientation: (a) aligned short fi bres, (b) partially aligned 
short fi bres, and (c) random short fi bres. The elastic modulus in this chapter 
refers to the initial modulus at infi nitesimal strains. For SFRP composites, 
the elastic modulus depends signifi cantly on both fi bre length distribution 
(FLD) and fi bre orientation distribution (FOD). It also depends on the 
loading direction, that is, SFRP composites show modulus anisotropy. The 
elastic modulus of SFRP composites and its anisotropy will be discussed in 
detail in this chapter.
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6.2 Elastic modulus of unidirectional short fi bre 

reinforced polymer composites

In practice, injection-moulded SFRP composites have misoriented fi bres of 
highly variable length but aligned SFRP properties with a constant fi bre 
length are always calculated as a prelude to model the more realistic situ-
ations. Here, models that predict the elastic moduli of SFRP composites 
having aligned short fi bres with uniform length and properties are fi rst 
given. Modelling of more realistic SFRP composites with distributions of 
fi bre orientation and length are then discussed.

6.2.1 Cox shear lag model

The Cox shear lag model (1952) is the pioneering work on the longitudinal 
elasticity of paper and fi brous materials containing aligned discontinuous 
fi bres. Detailed derivation of Cox’s model is given below. A unidirectional 
short fi bre composite shown in Fig. 6.1 is subjected to an applied strain and a 
typical composite element is selected in which 2R is the diameter of the element 
and R is mean centre to centre separation of fi bres normal to their lengths 
(Cox, 1952; Piggott, 1980). rf is fi bre radius and l is embedded fi bre length. It is 

ecec

x

dx

(a)

(b) (c)

tm(r,x)

tf

tm(r,x)

tf

2rf
2R

dr

R
r

6.1 Schematic drawing of (a) a multi-discontinuous-fi bre composite 
with no fi bre end gap, (b) short length of fi bre and surrounding 
matrix, (c) fi bre with nearest neighbouring fi bres, hexagonally packed.
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assumed that perfect bonding exists between fi bre and matrix and lateral 
contraction of fi bre and matrix is equal (Cox, 1952).

Equating the shear stress τm(r, x) at distance r with that τf(x) at the fi bre 
surface (r = rf) in the composite element, we have (Piggott, 1980):

2 2π τ π τr r x x r x xm f fd d,( ) = ( )  6.2

or

τ τm f fr x r x r, .( ) = ( )
The ratio, τm(r, x), to shear strain, dum(r, x)/dr, is equal to the matrix shear 
modulus Gm, so that

τ τm

m

m f f

m

d

d

r x

G

u r x

r

x r

G r

, ,
.

( ) = ( ) = ( )
 6.3

This equation is integrated between rf and R to give:

τ f
m

f f
m m fx

G
r R r

u R x u r x( ) = ( ) ( ) − ( )[ ]
ln

, , .  6.4

τf(x) transfers stress to the fi bres. Equilibrium of the fi bre–matrix interface 
shear stress τf(x) and the axial fi bre stress σF(x) requires:

d ( )
d

.
f

σ τF
f

x
x r

x= − ( )2
 6.5

Substitution of τf(x) (eqn [6.4]) into eqn [6.5] yields:

d ( )
d ln

, , .
σ F m

f f

m m f
x

x
G

r R r
u R x u r x= − ( ) ( ) − ( )[ ]2

2  6.6

By using the continuity condition of displacements at the interface: 
um(rf, x) = um(x) = uf(rf, x) and the assumption that the interface displace-
ment is equal to the mean displacement of the fi bre cross section: uf(rf, x) = 
uF, then differentiation of eqn [6.6] about x gives:

d

d ln

,
.

2

2 2

2σ F m

f f

m Fd

d

d

d

x

x
G

r R r

u R x

x

u x

x
( ) = − ( )

( ) − ( )⎡
⎣⎢

⎤
⎦⎥

 6.7

The fi bre displacement, uF(x), can be calculated from the fi bre stress, since 
the fi bre strain is εF = duF(x)/dx. Thus, duF(x)/dx = σF(x)/Ef. At r = R, the 
strain is assumed equal to the overall strain (far fi eld strain), that is,

d constant.m cu R x dx,( ) = =H  6.8

Thus, eqn [6.7] becomes:

d

d ln
.

2

2 2

2σ
ε

σF m

f f
c

F

f

x

x
G

r R r

x

E

( )
= −

( )
−

( )⎡

⎣
⎢

⎤

⎦
⎥  6.9
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Then, the solution of eqn [6.9] is given by:

σ ε η ηF f cx E A x B x( ) = + +sinh cosh ,  6.10

where A and B are constants that can be determined by the boundary 
conditions at the fi bres when stress transfer is intended to be studied. The 
shear lag parameter η is given by:

η = ( )
2

2

G
r E R r

m

f f fln
.  6.11

For square packing of fi bres (see Fig. 6.2(a)), the fi bre volume fraction is:

v
r

R
r
R

= =
π πf f

2

2

2

0
24

 6.12

or

ln ln / .2
1
2

0R r vf( ) = ( )π  6.13

Similarly, for hexagonal packing (see Fig. 6.2(b)), we obtain:

v
r

R

r

R
= =

2

3 2 3

2

2

2

0
2

π πf f
 6.14

or

ln ln .2
1
2

0R r vf 2 3( ) = ( )π  6.15

(a) (b)

2rf 2rf

2R0
R0

6.2 Schematic drawing of (a) the square packing of fi bres and (b) the 
hexagonal packing of fi bres.
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By taking into account the boundary conditions, σF(x) = 0 at x = 0 and at 
x = l, the axial fi bre stress is fi nally given as:

σ ε
η

ηF f cx E
l x

l
( ) = −

−( )⎡

⎣
⎢

⎤

⎦
⎥1

2

2

cosh

cosh
 6.16

or

σ
σ

η
η

F

c

f

c

x E
E

l x

l
( ) = −

−( )⎡

⎣
⎢

⎤

⎦
⎥1

2

2

cosh

cosh
,  6.17

where σc is applied stress on the composite and is equal to Ecεc in which Ec 
is composite modulus. From eqn [6.16], the mean stress in the fi bre is 
obtained as:

σ ε η
ηF f c= −

⎡

⎣
⎢

⎤

⎦
⎥E

l
l

1
2

2
tanh

.  6.18

The longitudinal modulus of the composite can then be obtained by the 
equilibrium of forces for the composite element and can be expressed using 
a modifi ed rule of mixtures (MRoM) equation by introducing a fi bre length 
factor λ: Ecεc =  λEfvεc + Em(1 − v)εc. Hence by eliminating εc on both sides, 
we have

E E v E vc f m= + −λ ( ),1  6.19

where λ can be written as:

λ η
η

= −1
2

2
tanh

.
l

l
 6.20

The composite modulus is thus diminished by the reduced fi bre stress by 
λ. This approach is very similar to that given in Section 9.2.1.

6.2.2 Semi-empirical equation

Semi-empirical approaches are used to derive the elastic constants of uni-
directional fi bre composites. A well-known example is the Halpin–Tsai 
equation (Halpin and Tsai, 1967), which is obtained by reducing Hermans’ 
solution (1967) to a simpler analytical form. For unidirectional short fi bre 
composites, the elastic properties such as elastic modulus, Poisson’s ratio, 
and shear modulus are predicted by the following Halpin–Tsai equations 
(Halpin and Tsai, 1967; Tsai and Hahn, 1980):

E E
l d v

v
Ec

L

L
m= =

+ ( )
−11

1 2

1

η
η

 6.21

E
v

v
E22

1 2
1
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+
−

η
η
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T
m  6.22
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ν ν ν12 = +f m mv v  6.23

ν ν21
22

11
12=

E
E

 6.24
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G12
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−

η
η

G
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m,  6.25

where
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−
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 6.26
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f m

f m

=
−
+

E E
E E

1
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 6.27
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f m

f m

=
−
+

G G
G G

1
1

 6.28

and l/d = fi bre aspect ratio. In theory, as l/d becomes large, the modulus of 
a SFRP composite attains a plateau representing the continuous fi bre result. 
The critical value of l/d at which the plateau is reached is strongly depen-
dent on the ratio of Ef/Em. For glass fi bres, the critical value of l/d is approxi-
mately equal to 100 (Fu and Lauke, 1998c, 1998d).

Equation [6.21] indicates that the longitudinal elastic modulus of a uni-
directional SFRP composite depends not only on the fi bre volume fraction 
and the fi bre–matrix modulus ratio, but also on the fi bre aspect ratio l/d. 
For a high aspect ratio SFRP composite, the longitudinal elastic modulus 
approaches a limiting value that is the same as that for a unidirectional 
continuous fi bre composite given by the rule-of-mixtures equation.

Since the composite elastic modulus is not a linear function of fi bre 
length, the predicted elastic modulus using the mean fi bre length by the 
Halpin–Tsai equation is not the same as the mean elastic modulus using 
the fi bre length distribution density function f(l). The mean Young’s modulus 
is defi ned as (Chin et al., 1988; Fu and Lauke, 1998c):

E

E l f l l

f l l

l

l

l

lc

d

d

=
( ) ( )

( )

∫

∫

11

min

max

min

max
.  6.29

The difference between the elastic modulus calculated using eqn [6.21] and 
the above equation is:

E
E E

E
% %.=

−
∗11 100c

c
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This difference is generally non-zero since the fi bre length distribution at a 
fi xed mean fi bre length but different mode fi bre length has an effect on the 
composite Young’s modulus to be shown later.

6.2.3 Self-consistent method

In the self-consistent method, it is assumed that the fi bre and matrix are iso-
tropic, homogeneous, and linearly elastic and the aligned fi bre composite is 
macroscopically homogeneous and transversely isotropic. There exist two 
basic variants of the self-consistent approach, namely, the method used by Hill 
(1965a, 1965b) and that used by Kilchinskii (1965, 1966) and Hermans (1967). 
Chou et al. (1980) used Hill’s approach to study the stiffness of SFRP com-
posites by simulating short fi bres as ellipsoidal inclusions and obtained stiff-
ness solutions for multi-component systems. In the self-consistent model, a 
single inclusion is assumed to be embedded in a continuous and homogeneous 
medium. The inclusion has the same elastic properties as that of the short 
fi bres while the surrounding material has the properties of the composite, 
which is the unknown composite elastic property to be determined. The short 
fi bres are represented by ellipsoidal inclusions that are aligned and uniformly 
distributed in the short fi bre reinforced composite. The constitutive equations 
of the unidirectional short fi bre composite are expressed in terms of fi ve 
independent stiffness constants (Hashin and Rosen, 1964). Thus, we have,

σ ε ε ε11 1111 11 1122 22 33= + +C C* *  6.30

σ ε ε ε22 1122 11 2222 22 2233 33= + +C C C* * *  6.31

σ ε ε ε33 1122 11 2233 22 2222 33= + +C C C* * *  6.32

σ ε12 1212 122= C*  6.33

σ ε23 2222 2233 23= −( ) ,C C* *  6.34

where ‘1’ direction is along the fi bre axis. Following Hashin and Rosen 
(1964), the effective stiffness constants C*ijkl can be expressed in terms of 
the familiar engineering constants: longitudinal Young’s modulus E11, plane 
strain bulk modulus K23, plane strain shear modulus G23, axial shear modulus 
G13 and major Poisson’s ratio υ21 (= υ31). Thus, we obtain:

C E K1111 11 23 21
24* = + υ  6.35

C K G2222 23 23* = +  6.36

C G1212 12* =  6.37

C K G2233 23 23* = −  6.38

C K1122 23 212* = υ .  6.39
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From the above equations, the expressions for the elastic stiffness con-
stants of the SFRP composite can be established. The solutions of the self-
consistent model are obtained by the iteration method. Convergence will 
occur and the iteration process will then terminate. Prediction of the elastic 
modulus of short fi bre composites was performed for the special case of a 
binary system of a matrix and one type of fi bre. Figure 6.3 shows the varia-
tion of normalised longitudinal modulus (Ec/Em) of short glass fi bre rein-
forced epoxy composites with fi bre volume fraction v at three different fi bre 
aspect ratios (l/d). For l/d = 100, the self-consistent model predicts that the 
short fi bres behave like continuous fi bres and the rule-of-mixtures is 
approximately valid. This is because the Young’s modulus of SFRP com-
posites would approach a plateau level as the fi bre aspect ratio increases 
for the case of l/d ≥ 100 (Fu and Lauke, 1998c). The predictions of the semi-
empirical relation of Halpin–Tsai equation are also presented in Fig. 6.3 for 
the composite modulus. The discrepancy between the self-consistent model 
and the Halpin–Tsai equation is most pronounced at intermediate values 
of aspect ratio.

6.2.4 Dilute model

The purpose of the micromechanics models is to predict the average elastic 
modulus of the SFRP composites. Subject a representative volume to 
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6.3 Variation of normalised longitudinal modulus (Ec/Em) of short glass 
fi bre reinforced epoxy composites with fi bre volume fraction v at 
three different fi bre aspect ratios (l/d). Solid line: self-consistent 
model; dashed line: Halpin–Tsai equation. Adapted from Chou et al. 
(1980).

�� �� �� �� ��



 Elastic modulus of short fi bre reinforced polymers 127

surface displacements consistent with a uniform strain, the average stiffness 
of the composite is the tensor S that maps this uniform strain to the average 
stress:

σ εc C= S .  6.40

The average compliance C is defi ned in a similar way:

ε σC c= C .  6.41

It is clear that C = S−1. An important related concept fi rst introduced by Hill 
(1963) is the idea of strain and stress concentration tensors T1 and T2. They 
are essentially the ratios between the average fi bre strain (or stress) and 
the corresponding average in the composite:

ε εF C= T1  6.42

V VF c= T2 .  6.43

T1 and T2 are fourth-order tensors and they must be found from a solution 
of the microscopic stress or strain fi elds. The average composite stiffness 
can be cast in terms of the strain concentration tensor T1 and the fi bre and 
matrix properties (Hill, 1963; Tucker III and Liang, 1999):

S S v S S T= + −( )m f m
1.  6.44

The dual equation for the compliance is:

C C v C C T= + −( )m f m
2 .  6.45

Eshelby solved the problem for the elastic stress fi eld in and around an 
ellipsoidal particle in an infi nite matrix (Eshelby, 1957, 1961). By letting the 
particle be a prolate ellipsoid of revolution, Eshelby’s result can be used 
to model the stress and strain fi elds around a cylinder fi bre. Consider an 
infi nite solid body with stiffness Sm that is initially stress-free. A particular 
small region of the body is called the inclusion and the rest of the body is 
called the matrix as shown in Fig. 6.4. Suppose the inclusion undergoes 
some type of transformation which would acquire a uniform strain εT 
(called the transformation strain or the eigen-strain) with no surface trac-
tion or stress. The inclusion is bonded to the matrix, so when the transfor-
mation occurs, the whole body develops some complicated strain fi eld εC(x) 
relative to its shape. The stress within the matrix is simply the stiffness 
times this strain:

σ εm m Cx S x( ) = ( ).  6.46

But the transformation strain within the inclusion does not contribute to 
the stress, so the inclusion stress can be expressed by:

σ ε εI m C T= −S ( ).  6.47
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The strain within the ellipsoidal inclusion is uniform and is related to the 
transformation strain by:

ε εC T T= E .  6.48

ET is called Eshelby’s tensor and depends only on the inclusion aspect ratio 
and the matrix elastic constants.

Recall from eqn [6.44], to obtain the stiffness we only have to fi nd the 
strain concentration tensor T1. For a dilute composite the average strain is 
identical to the applied strain:

ε εC
A= .  6.49

From Eshelby, the fi bre strain is uniform and is given by the following 
equation:

ε ε εF
A C= + .  6.50

Finally, the following equation is obtained:

I + −( )⎡⎣ ⎤⎦ =E C S ST m f m
F Cε ε ,  6.51

where the symbol I represents the fourth-order unit tensor. Comparing 
this to eqn [6.42] shows that the strain concentration tensor for Eshelby’s 
equivalent inclusion is:

T E C S SEshelby
T m f m1 1

= + −( )⎡⎣ ⎤⎦
−

I .  6.52

This can be used in eqn [6.44] to predict the modulus of unidirectional 
SFRP composites. Calculations using the dilute Eshelby model to explore 
the effect of fi ller aspect ratio on stiffness are presented by Chow (1977). 
Modulus predictions based on eqs [6.44] and [6.52] should be accurate only 
at low volume fractions, say up to v = 1%. Therefore, the dilute Eshelby 

  

εT εC(x)

(c)(b)(a)

6.4 Eshelby’s inclusion problem. Starting from the stress-free state (a), 
the inclusion undergoes a stress-free transformation strain εT(b). 
Fitting the inclusion and matrix back together (c) produces the strain 
εC(x) in both the inclusion and the matrix. Adapted from Tucker III and 
Liang (1999).
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model is not very practical since in many applications, fi bre content much 
higher than 1% is usually employed.

6.2.5 Model for transverse modulus

A model to determine the transverse modulus (Ecy) of SFRP composites 
was developed by Fu et al. (1998) and is provided below.

The case of continuous fi bres will be studied fi rst. Consider a rectangular 
specimen with lengths c1, c2 and c3 and the c3 axis is parallel to the fi bre axis 
or the x-axis, as shown in Fig. 6.5 (Fu et al., 1998). It is further assumed that 
the fi bres in the unidirectional fi bre composite are distributed uniformly 
in the matrix and the fi bre–matrix interfacial adhesion is perfect. As long 
as the fi bre–matrix interfacial adhesion is good enough, the interfacial adhe-
sion has little infl uence on the transverse composite modulus since Ecy is a 
property of material at low strain.

For both square and hexagonal arrangements of fi bres, a representative 
volume element can be chosen as shown in Fig. 6.5, which can be divided 
into three regions: I, II and III along the x-z plane. In regions I and III, the 
matrix alone bears the load and hence the mean matrix strain εMy is approxi-
mately equal to:

ε σMy y m= E ,  6.53

where σy is the applied stress in the y-direction.
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6.5 Schematic drawing of a continuous fi bre composite and a 
corresponding simple representative volume element. A perfect bond 
is assumed between fi bres and matrix. Adapted from Fu et al. (1998).
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In any given cross section ABB′A′ of region II parallel to the x-z plane 
(where the line A′B′ not shown in Fig. 6.5 is parallel with the line AB), the 
stress equilibrium condition can be written as:

2 2r
d

d r
d

fi
fy

fi
my y+

+ + −
+

=
δ

σ δ
δ

σ σ ,  6.54

where σfy and σmy are the transverse fi bre stress and the transverse matrix 
stress, respectively, δ the inter-fi bre spacing and 2rfi  the string length of the 
fi bre cross section intersecting with the cross section ABB′A′.

In region II, the matrix and fi bre bear the applied load. In the 
given cross section ABB′A′, the matrix strain must be identical to the 
fi bre strain since the fi bre–matrix interface is assumed to be perfect, 
i.e., the fi bre is completely bonded with the matrix. Thus, eqn [6.54] 
becomes:

2 2r
d

E
d r

d
Efi

fy fy
fi

m fy y+
+ + −

+
=

δ
ε δ

δ
ε σ ,  6.55

where Efy is the transverse fi bre modulus, εfy and εmy are the transverse fi bre 
and matrix strain, respectively.

Now we can estimate the mean transverse fi bre strain εFy. The mean value 
(r−fi ) of rfi  is fi rst evaluated by assuming that the fi bre diameter is uniformly 
divided into n segments and n is very large, the length of each segment is 
then equal to 2rf/n. Thus, we have,

2
2

1

2r
n

r r
i

n
f

fi f
=
∑ = π  6.56

and

r
r

n
ri

n

fi

fi

f= ==
∑

1

4
π

.  6.57

Replacing rfi  with r−fi  and εfy with εFy in eqn [6.55] gives:

2 2r
d

E
d r

d
Efi

fy Fy
fi

m Fy y+
+ + −

+
=

δ
ε δ

δ
ε σ .  6.58

In addition, it is imagined that c1 = m1(d + δ) and c2 = m2(d + δ), where m1 
and m2 are integers. Thus, there are m1 × m2 representative volume elements 
in the composite. The fi bre volume fraction can be obtained as:

v
r

d
=

+( )
π

δ
f
2

2 .  6.59

Equations [6.57–6.59] can be combined to give the mean transverse fi bre 
strain:
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.  6.60

Therefore, the composite strain εcy is given by:

ε ε ε

δ
ε δ

δ
ε

cy II Fy I III My

Fy My

= + +( )
=

+
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+

v v v
d

d d
,

 

6.61

where vI, vII and vIII are the volume fractions of regions I, II and III in the 
whole representative element, respectively. Consequently, by inserting eqns 
[6.53], [6.59] and [6.60] into eqn [6.61], we can obtain:
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.  6.62

Since εcy = σy/Ecy, the transverse composite modulus Ecy follows immediately 
from eqn [6.62]:

1 4

4 1 4

1 4

E
v

v E v E

v

Ecy fy m m

=
+ −( ) +

−( )π
π π

π
.  6.63

Equation [6.63] gives the transverse modulus of unidirectional continuous 
fi bre composites. An expression for the transverse modulus of discontinu-
ous fi bre composites can now be developed in the following.

Assume that short fi bres of a length l are distributed uniformly in the 
SFRP composite, and the inter-fi bre spacing is δ and the gap between two 
fi bre ends is l1. A representative volume element is arbitrarily chosen as 
shown in Fig. 6.6. The fi bre volume fraction is then given by:

v
r l

r l l d l l
=

+( ) +( )
=

+( ) +( )
π
δ

π
δ

f

f

2

2
1

2
12 4 1 1

.  6.64

Using the same treatment as for the case of continuous fi bres, we divide the 
cross section of the element into three regions parallel to the x-z plane as 
shown in Fig. 6.6. In regions I and III, the matrix bears the load alone, then 
the mean matrix strain is the same as that in eqn [6.53].

In region II, both the fi bre and the matrix bear the load and their strains 
in this region should be approximately the same. The stress equilibrium 
equation in the cross section parallel to the x-z plane denoted by the dotted 
line can be written as follows:
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E
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δ
ε σ .  6.65
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By replacing 2rfi  with 2r−fi  and εfy with ε−fy in eqn [6.65] and combining with 
eqn [6.64], then the mean transverse fi bre strain is obtained as:

ε
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.  6.66

The composite strain is then given by:

ε
δ

ε δ
δ

εcy Fy My=
+

+
+

d
d d

.  6.67

By inserting eqns [6.53], [6.64] and [6.66] into eqn [6.67] and using the 
relationship: εcy = σy/Ecy, we have:
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6.68

Equation [6.68] can be used for the prediction of the transverse modulus 
of SFRP composites. In the limit of l1/l = 0, the transverse modulus of dis-
continuous fi bre composites becomes independent of the fi bre length (or 

d

x

y

l + l1

Matrix

y

x

Fibre

l

2rfi

d + δ

I

II

III

y

z
d + d

6.6 Schematic drawing of an aligned discontinuous fi bre composite 
and a corresponding simple representative volume element. A perfect 
bond is assumed between fi bres and matrix. Adapted from Fu et al. 
(1998).
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fi bre aspect ratio) and eqn [6.68] reduces to eqn [6.63] for a continuous fi bre 
reinforced composite. In practice, short fi bres are randomly distributed in 
SFRP composites and the limiting case will not appear. And l1 can be 
obtained from eqn [6.64] as a function of fi bre volume fraction, fi bre length 
and diameter if δ is known or vice versa.

6.2.6 The rule of mixtures equations for the 
transverse modulus

The rule of mixtures (RoM) (see eqn [6.1]) has been proposed for the 
prediction of the longitudinal Young’s modulus of unidirectional continu-
ous fi bre reinforced polymers. In parallel, the inverse rule of mixtures 
(iRoM) equation has also been developed for approximate prediction of 
the transverse modulus of unidirectional continuous fi bre composites and 
is given by (Tsai and Hahn, 1980; Piggott, 1980):

1
E

v
E

v
Ecy fy

m

m

= + .  6.69

In addition, the modifi ed RoM equation (eqn [6.19]: Ec = λEfv + Em(1 − v)) 
has also been proposed for prediction of the longitudinal Young’s 
modulus of unidirectional SFRP composites. Similarly, the modifi ed 
iRoM (miRoM) equation below has also been used to predict the trans-
verse modulus of unidirectional short fi bre composites (Tsai and Hahn, 
1980):
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fy m m
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.  6.70

In eqns [6.69] and [6.70], the subscript y is used to denote the transverse 
modulus of fi bres in case the fi bre is transversely isotropic.

We now compare predictions using the Halpin–Tsai equation, iROM 
equation, miRoM and Fu et al. model with known experimental results 
in Table 6.1. For the case of short fi bres, l1/l = 0.02 is used. The theo-
retical values of the transverse modulus (assuming l1 = δ and l = d = 
10 μm) are also given in order to compare the model with experiments 
for particulate composites. Table 6.1 shows that the theoretical results 
agree well with experimental data for the two cases of continuous and 
discontinuous fi bres. For the particulate composite, predicted values of 
transverse modulus are also fairly close to the test data. Results pre-
dicted with Halpin–Tsai’s equation [6.22] are consistent with but lower 
than the experimental data. However, iRoM and miRoM (eqns [6.69] 
and [6.70]) give much lower predicted values of the transverse com-
posite modulus than experiments.
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6.3 Elastic modulus of partially aligned short fi bre 

reinforced composites

In SFRP composites, it is desirable to orientate the fi bres for enhanced 
mechanical properties such as strength and modulus. However, it is usually 
diffi cult, if not impossible, to perfectly align short fi bres in an injection 
moulded SFRP composite. Partial short fi bre alignment is typical in injec-
tion moulded SFRP composites. Several approaches have been adopted for 
the prediction of elastic modulus of partially aligned SFRP composites.

6.3.1 The laminate analogy approach

In general, the laminate analogy approach (LAA) is considered to be appli-
cable to the evaluation of elastic modulus of SFRP composites with planar 
fi bre orientation distributions because such short fi bre composites can be 
simulated as a sequential stack of various laminae with different planar 
fi bre orientation and different fi bre length. However, in practice, there 
usually exist spatial fi bre orientation distributions in the fi nal injection 
moulded SFRP composites (Xia et al., 1995; Toll and Andersson, 1991; 
Haddout and Villoutreix, 1994; McGrath and Wille, 1995; Fu and Lauke, 
1997a,b). Therefore, a spatial fi bre orientation distribution should be con-
sidered for injection moulded SFRP composites. Consequently, it appears 
to be inappropriate to use the laminate analogy approach to evaluate the 

Table 6.1 Comparisons of different models and experimental results for transverse 
moduli of some glass/epoxy composites (Kardos, 1991)

Material Em 

(GPa)
v Transverse modulus, Ecy (GPa)

Experimental 
results

Halpin–Tsai 
equation

iRoM 
equation

miRoM 
equation

Fu 
et al. 
model

Glass 
bead/
epoxy

2.1 0.5 10.3 — — — 11.56

2.8 0.5 11.7 — — — 14.33

Short glass 
fi bre/
epoxy

2.1 0.5  9.6  7.44 4.08 4.59  9.09

Continuous 
glass 
fi bre/
epoxy

2.1 0.6 12.4  9.82 5.03 5.66 12.95

2.8 0.6 14.5 12.48 6.62 7.41 16.07
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elastic modulus of SFRP composites with a 3D spatial fi bre orientation 
distribution, since the requirement of planar fi bre orientation distribution 
for the laminate analogy approach cannot be satisfi ed. Conversely, it is 
noticed from the paper physics approach (Jayaraman and Kortschot, 1996) 
that the elastic modulus of SFRP composites is only dependent on the angle 
θ fi bres make with the direction in which the composite elastic modulus is 
to be evaluated as shown in Fig. 6.7 (the modulus in the ‘1’ direction is to 
be evaluated). That is, the composite elastic modulus for the case of a spatial 
fi bre orientation distribution g(θ, φ) [g(θ, φ) = g(θ)g(φ)/sin(θ), where g(φ) is 
defi ned as the fi bre orientation probability density function for the angle 
φ] is the same as that for the case of a planar orientation distribution g(θ), 
when g(θ) is the same for the two cases and no matter how the fi bre 

2

3

1

(a) (b)

(c)

L(l1) L(l2)… L(ln) L(li , θ1 = 0°) L(li , θm = 90°)L(li , θ2)…

(d)

θ

φ

6.7 Simulated progress of the laminated plate model of a 3D 
misaligned SFRP composite: (a) the real 3D SFRP, (b) the imagined 
SFRP composite, (c) the imagined SFRP composite is considered as a 
combination of laminates, each laminate having the same fi bre length 
and (d) each laminate is treated as a stacked sequence of laminae, 
each lamina having the same fi bre length and the same fi bre 
orientation. Adapted from Fu and Lauke (1998c).
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orientation distribution g(φ) is (Fu and Lauke, 1998c). This is a very useful 
idea since we can replace the real SFRP composite with a spatial fi bre 
orientation distribution g(θ, φ) by an imagined short fi bre composite with 
only a planar fi bre orientation distribution g(θ) in order to evaluate the 
elastic modulus of the real SFRP composite.

The simulated progress of a laminated plate model of a 3D misaligned 
SFRP composite is shown in Fig. 6.7. A SFRP composite with a 3D spatial 
fi bre orientation distribution function g(θ, φ) [= g(θ)g(φ)/sinθ] having fi bre 
end cross sections in the three visible planes (see Fig. 6.7(a)) is fi rst replaced 
by an imagined SFRP composite with the same g(θ) but φ = 0 having no 
fi bre end cross sections in the 1-2 plane or having no fi bres of out-of-planar 
direction (the 3-axis direction is out-of-planar) (see Fig. 6.7(b)). Hence, 
according to fi bre length distributions, the imagined SFRP composite is 
regarded as a combination of laminates, each laminate is comprised of fi bres 
having the same fi bre length (see Fig. 6.7(c)). In Fig. 6.7(c), ‘L(li), i = 1, 2,  .  .  . 
n’ denotes the ith laminate containing fi bres of the same length li. Each 
laminate with the same fi bre length is then treated as a stacked sequence 
of the laminae, each lamina consists of fi bres having the same fi bre length 
and the same fi bre orientation (see Fig. 6.7(d)). In Fig. 6.7(d), ‘L(li, θj), j = 
1, 2,  .  .  .  m’ denotes the jth lamina containing the fi bres having the same 
length li and the same angle θj. The elastic modulus of the imagined SFRP 
composite will be evaluated fi rst, the elastic modulus of the real SFRP can 
then be obtained as stated above.

Now, the imagined SFRP composite is considered which only has a planar 
fi bre orientation distribution g(θ) (φ = constant, for example 0), and which 
is assumed as a stack of plies. The fi bres of length between l and l + dl and 
orientation between θ and θ + dθ are imagined to be included in the same 
ply. First, the stiffness constants for each ply are given by the laminate 
theory. Second, the stiffness constants for each ply are integrated through 
the thickness of the laminate to obtain the overall stiffness constants of the 
simulated laminate. Third, the elastic modulus of the imagined composite 
can be obtained from the relation between the stiffness constants and the 
elastic modulus. Finally, the elastic modulus of the real SFRP composite 
with a spatial fi bre orientation distribution can be obtained directly from 
the elastic modulus of the imagined SFRP composite. The laminate analogy 
approach is sometimes called the ‘Fu–Lauke model’ (Thomason, 2008).

For unidirectional short fi bre composites, the longitudinal elastic modulus 
can be obtained from the Cox shear lag model (eqn [6.19]: Ec = λEfv + 
Em(1 − v)). The transverse modulus and the in-plane shear modulus, E22 
and G12, are almost independent of fi bre aspect ratio and can be evaluated 
using Halpin–Tsai equations [6.22] and [6.25]. The longitudinal Poisson’s 
ratio, ν12, which is not sensitive to fi bre length, can be estimated using the 
rule-of-mixtures equation [6.23]. The transverse Poisson’s ratio, ν21, is given 
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by eqn [6.24]. Then, we can calculate the components of the stiffness 
matrix Qij that relates the stress to the strain for the uniaxial ply when the 
principal stress directions are aligned with the principal fi bre directions. 
That is,
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where

Q E11 11 12 211= −( )ν ν  6.72

Q Q12 21 11= ν  6.73

Q16 0=  6.74

Q E22 22 12 211= −( )ν ν  6.75

Q26 0=  6.76

Q G66 12= .  6.77

The stress–strain relation in the off-axis system is given by:
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The transformation equation between the components of stiffness matrix 
in the on-axis system and that in the off-axis system is:
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where m = cosθ and n = sinθ.
The transformed stiffness constants, Q′ij, are integrated through the thick-

ness of the laminate to obtain the overall laminate stiffness matrix, A
−

ij:

A Q h
k

M

ij ij k= ′
=

∑
1

,  6.80

where M represents the number of plies in the laminate; k is the serial index 
of the ply in the laminate; and hk is thickness fraction of the kth ply. 
Since the imagined SFRP composite has a continuous fi bre orientation 
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distribution and a continuous fi bre length distribution, then, as described 
above, the kth ply can be considered to contain fi bres of length between l 
and l + dl and orientation between θ and θ + dθ. Thus, the summation in 
eqn [6.80] must be replaced by the corresponding integral:

A Q f l g l
l

l

ij ij d d= ′ ( ) ( )∫∫ θ θ
θ

θ

min

max

min

max

,  6.81

where 0 ≤ lmin ≤ l ≤ lmax < ∞ and 0 ≤ θmin ≤ θ ≤ θmax ≤ π/2. The engineering 
tensile stiffness is obtained from the laminate stiffness components:

E
A A A

A
11

11 22 12
2

22

=
−  6.82

E
A A A

A
22

11 22 12
2

11

=
−  6.83

G A12 66=  6.84

ν12 11
12

11 22 12
2

12

22

=
−

=E
A

A A A
A
A

.  6.85

E
−

11 in eqn [6.82] is not only the elastic modulus of the imagined SFRP 
composite with a planar fi bre orientation distribution g(θ), but also that of 
the real SFRP composite with a 3D spatial fi bre orientation distribution 
g(θ, φ) and g(θ) is the same as that of the imagined SFRP composite, while 
other expressions for E

−
22, G

−
12 and ν−12 hold true only for the imagined SFRP 

composite with a planar fi bre orientation distribution.
Xia et al. (1995) used the laminate analogy approach to derive the expres-

sion for the elastic modulus of SFRP composites by considering a spatial 
fi bre orientation distribution; however, the length of the fi bres in the core 
layer was projected onto one plane so that the fi bre length is reduced by 
the projection, hence the elastic modulus of SFRP is underestimated. Also, 
other researchers (Chin et al., 1988; Choy et al., 1992; Sirkis et al., 1994; Yu 
et al., 1994) used the laminate analogy approach to derive the elastic 
modulus of SFRP composites but only considered the case of planar fi bre 
orientation distribution which is rarely true in reality for the injection 
moulded SFRP composites. Moreover, none of them presented a detailed 
study on the effects of the fi bre length distribution and fi bre orientation 
distribution on the elastic modulus of SFRP composites. Equation [6.82], 
suitable for cases of both 2D and 3D fi bre orientation distributions, and 
eqns [6.83]–[6.85], suitable for the case of 2D fi bre orientation distribution, 
can be used to evaluate engineering stiffness taking into account effects of 
fi bre length and orientation distributions.

The elastic modulus of SFRP composites with a fi bre length distribution 
f(l) and a fi bre orientation distribution g(θ) can be discussed in terms of 
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eqn [6.82]. The following parametric data are used: Ef = 82.7 GPa, Gf = 
27.6 GPa, νf = 0.22, Em = 2.18 GPa, Gm = 1.03 GPa, νm = 0.35, d = 10 μm, 
v = 0.3, l = 3.198 mm (a = 0.15 and b = 1.5). The predicted results of the 
elastic modulus of SFRP composites as a function of mean fi bre orientation 
angle are shown in Fig. 6.8 for various v. The fi bre orientation distributions 
are given by setting p = 0.6 and various q. Figure 6.8 shows that both the 
fi bre volume fraction and mean fi bre orientation angle have a signifi cant 
effect on the longitudinal elastic modulus of SFRP composites. A higher 
fi bre volume fraction corresponds to a higher elastic modulus. The compos-
ite elastic modulus decreases slowly with increasing mean fi bre orientation 
angle when the fi bre volume fraction is small (e.g., v = 10%); but it decreases 
dramatically with the increase of mean fi bre orientation angle when the 
fi bre volume fraction is large (e.g., v = 50%).

Figure 6.9 shows the effect of mean aspect ratio on the elastic modulus 
of SFRP composites, where other parameters except the mean fi bre orienta-
tion angle which equals 9.46° are the same as in Fig. 6.8. When the mean 
fi bre aspect ratio is small (e.g., <90), the composite elastic modulus increases 
with the mean fi bre length or aspect ratio. However, when the mean fi bre 
length is large (e.g., >1.0 mm and the corresponding aspect ratio is >100), 
the mean fi bre length or aspect ratio has nearly no infl uence on the elastic 
modulus of SFRP composites (Fu and Lauke, 1998c). It is necessary to 
clarify that the composite modulus is dependent on aspect ratio but inde-
pendent of fi bre diameter if the aspect ratio is the same. This has been veri-
fi ed by experiments (Ramsteiner and Theysohn, 1985).
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6.8 The elastic modulus of the SFRP composites predicted by the Fu 
and Lauke model for different fi bre orientation distributions and 
various fi bre volume fractions. Adapted from Fu and Lauke (1998c).
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The Young’s modulus of short glass fi bre reinforced polyamide compos-
ites as a function of fi bre volume fraction for different fi bre diameters is 
shown in Fig. 6.10 (Ramsteiner and Theysohn, 1985). Clearly, the diameter 
of the fi bres does not play an important role in determining the Young’s 
modulus as long as the fi bre aspect ratio is not too much different. The 
results for the aspect ratios of fi bres with four different diameters show that 
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6.9 Effect of mean fi bre aspect ratio (a = 5 and various b, see eqn 
[3.9]) on the elastic modulus of SFRP composites. Adapted from Fu 
and Lauke (1998c).
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6.10 Young’s modulus of short glass fi bre reinforced polyamide (d = 
fi bre diameter). Adapted from Ramsteiner and Theysohn (1985).
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with increasing fi bre content, the fi bres become shorter as a consequence 
of the enhanced mutual attrition of the fi bres during processing. The aspect 
ratios for the four fi bre diameters exhibit similar values at a specifi c fi bre 
content. This indicates that the Young’s modulus of SFRP composites is 
determined mainly by the fi bre aspect ratio rather than the fi bre diameter. 
This is consistent with the predictions by the models stated above.

Results for prediction of composite modulus using Fu–Lauke’s model are 
compared with experimental data in Fig. 6.11 (Thomason, 2008). It can be 
seen that this model gives predicted values that show good linear correla-
tion with experimental data. It is noted that in all cases the model appears 
to underestimate the measured composite modulus; however, the differ-
ences are within the range of experimental errors on various input values 
(Thomason, 2008). Thus, the Fu–Lauke approach is a most robust model 
for the prediction of elastic modulus of SFRP composites.

Further, the effect of fi bre packing arrangement on the elastic modulus 
of SFRP composites is also investigated and the results show that the fi bre 
packing arrangement (see eqns [6.13] and [6.15]) has nearly no infl uence 
on the composite elastic modulus (Fu and Lauke, 1998c).

6.3.2 Paper physics approach

The paper physics approach (PPA) (Jayaraman and Kortschot, 1996) has 
also been developed for prediction of the elastic modulus of SFRP com-
posites. The PPA analysis is based on the elasticity solution of load transfer 
between fi bre and matrix in a single short fi bre model and the assumption 
of negligible interactions between neighbouring fi bres. In the PPA analysis, 
the plane stress condition is adopted. According to the PPA, the elastic 
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6.11 Comparison of Fu–Lauke model predictions against experimental 
values (Thomason, 2008).
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modulus of short fi bre composites can be expressed in the modifi ed rule of 
mixtures:

E E v E v11 = +1 2λ λ f m m,  6.86

where λ1 and λ2 are respectively the fi bre length and orientation factors for 
the composite elastic modulus and their expressions are given as follows:
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where 0 ≤ lmin ≤ l ≤ lmax < ∞ and 0 ≤ θmin ≤ θ ≤ θmax ≤ π/2.
Comparison of theoretical results of elastic moduli of SFRP composites 

using the laminate analogy approach (LAA) (Fu and Lauke, 1998c) and 
paper physics approach (PPA) (Jayaraman and Kortschot, 1996) is given in 
Fig. 6.12 for cases of mean fi bre orientation angle varying from 0 to 48.5°, 
where the values of the parameters are the same as those in Fig. 6.8. The 
elastic moduli predicted by the PPA are slightly higher than those by 
the LAA and the difference depends on the fi bre volume fraction when the 
mean fi bre orientation angle is small (see Fig. 6.12). At intermediate mean 
fi bre orientation angles the results predicted by the two approaches are very 

v = 0.1

0.2

0.3

0.4

0.5

0.6

0

0

10

20

30

40

50

10 20 30 40

C
o
m

p
o
s
it
e
 m

o
d
u
lu

s
 E

c
 (

G
P

a
)

Mean fibre orientation angle θmean (degree)

PPA

LAA

6.12 Comparison of the theoretical results of the elastic modulus of 
SFRP composites for different fi bre orientation (θ) distributions and 
various fi bre volume fractions predicted by the laminate analogy 
approach (LAA) by the Fu and Lauke model (solid lines) and the paper 
physics approach (PPA) (broken lines). Adapted from Fu and Lauke 
(1998c).
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close. When the mean fi bre orientation angle is large, the results predicted 
by the PPA are lower than those by the LAA model. This is because for 
the PPA the angle θ must be less than some critical angle θc (θc = arcsin{[1/
(1+ν12)]1/2}), otherwise the fi bres of an orientation angle θ greater than θc 
would make a negative contribution to the stiffness of short fi bre compos-
ites (see eqn [6.88]). However, the experimental results (Kardos, 1991) show 
that the transverse stiffness of unidirectional short and long glass fi bre 
reinforced epoxy composites is higher than that of pure epoxy matrix, it 
can then be concluded that the fi bres of θ = π/2 should make a positive 
contribution to the composite elastic modulus since they constrain the 
deformation of composites. So the argument in the PPA that the fi bres of 
an angle with the applied strain direction greater than θc make a negative 
contribution to the composite elastic modulus is incorrect. And this is also 
inconsistent with the fact that the off-axis modulus of unidirectional com-
posites is higher than the matrix modulus (Kardos, 1991). Thus, it can be 
concluded that the contribution of the fi bres of any angle with the applied 
strain direction to the composite modulus is positive. Therefore, the contri-
bution of the fi bres of a large angle with the applied strain direction to the 
composite elastic modulus will be underestimated by the PPA, and hence 
in cases where the fi bre orientation angle between fi bre axis direction and 
the applied strain direction is comparatively large, the paper physics 
approach would be invalid in predicting the elastic modulus of SFRP 
composites.

6.4 Anisotropy of modulus of short fi bre reinforced 

polymer (SFRP) composites

Consider a single misaligned fi bre of a length l and a pair of orientation 
angles (θ, φ) as defi ned in Fig. 6.13. For a given direction (Θ, Φ) (see Fig. 
6.13), which may be the loading direction in which the elastic modulus 
of a SFRP is to be measured, we can obtain the angle δ between the fi bre 
axial direction (θ, φ) and the given direction (Θ, Φ) from the following 
equation:

cos cos cos sin sin cos .δ θ θ φ= + −( )Θ Θ Φ  6.89

Similar to the derivation for the composite elastic modulus in the mould 
fl ow direction (Θ = 0, Φ) (namely, the 1-axis direction in Fig. 6.13) (Fu and 
Lauke, 1998c), we can easily derive an expression for the composite elastic 
modulus in any desired direction (Θ, Φ). The SFRP composite is simulated 
by a laminate and is assumed as a stack of plies as was done in deriving 
the expression for the elastic modulus of SFRP composites in the direction 
(Θ = 0, Φ) (Fu and Lauke, 1998c). The fi bres of length between l and l + 
dl and a pair of orientation angles between θ and θ + dθ and between φ 
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and φ + dφ are imagined to be included in the same ply. First, the stiffness 
constants for each ply are given by the laminate theory. Second, the stiff-
ness constants for each ply are integrated through the thickness of the 
laminate to obtain the overall stiffness constants of the simulated laminate. 
Finally, the elastic modulus of SFRP composites is obtained from the rela-
tion between the stiffness constants and the elastic modulus of the 
laminate.

The transformation equation for a uniaxial ply between the components 
of stiffness matrix in the on-axis system and that in the off-axis system is 
given by (Tsai and Hahn, 1980):
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where m = cosδ and n = sinδ. Note that here the defi nitions of m and n 
are different from those (m = cosθ and n = sinθ) in the direction (Θ = 0, 
Φ) (Fu and Lauke, 1998c), because the angle between the fi bre axial direc-
tion (θ, φ) and the direction (Θ, Φ) is now equal to δ. {Qij} (i, j = 1, 2, 6) 
is the stiffness matrix in the on-axis system and Qij have been defi ned in 
eqns [6.72]–[6.77]. {Q′ij} (i, j = 1, 2, 6) is the stiffness matrix in the off-axis 
system.

1

2
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Fibre

(θ,φ)

φ

θ

(Θ,Φ)

Φ

Θ

δ

6.13 Defi nitions of the fi bre orientation angles (θ, φ) and the loading 
direction angles (Θ, Φ) in which the composite elastic modulus is 
measured.
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The transformed stiffness constants, Q′ij, are integrated through the thick-
ness of the laminate to obtain the overall laminate stiffness matrix, A

−
ij:

A Q h
k

M

ij ij k= ′
=

∑
1

,  6.91

where M represents the number of plies in the laminate; k is the serial index 
of the ply in the laminate; and hk is the thickness fraction of the kth ply. 
Since the SFRP composite has a continuous fi bre orientation distribution 
and a continuous fi bre length distribution, then, as described above, the kth 
ply can be considered to contain the fi bres of length between l and l + dl 
and a pair of orientation angles between θ and θ + dθ and between φ and 
φ + dφ, thus the summation in eqn [6.91] must be replaced by the corre-
sponding integral:

A Q f l g g l
l

l

ij ij d d d= ′ ( ) ( ) ( )∫∫∫ θ φ θ φ
φ

φ

θ

θ

min

max

min

max

min

max

.  6.92

Here, m(= cosδ) and n(= sinδ) in eqn [6.90] can be transformed with eqn 
[6.89] in the functions containing θ and φ. Finally, we can obtain the elastic 
modulus of SFRP composites in any direction (Θ, Φ) by:

E
A A A

A
c Θ Φ, .( ) =

−11 22 12
2

22

 6.93

The variation of the elastic modulus Ec(Θ, Φ) of SFRP composites with 
the direction (Θ, Φ) (namely, the anisotropy of the composite elastic 
modulus) can be discussed in terms of eqn [6.93] by taking into considera-
tion both the effects of the FLD and FOD.

The following values of the parameters are used: Ef = 82.7 GPa, Gf = 
27.6 GPa, νf = 0.22, Em = 2.18 GPa, Gm = 1.03 GPa, νm = 0.35, v = 0.20, d = 
10 μm, l = 3.198 mm (a = 0.15 and b = 1.5, see eqn [3.9]) and θmean = 9.46° 
(p = 0.6 and q = 15). Also, g(φ) = 1/(2π) (namely, s = t = 0.5 for the angle 
distribution function described in Chapter 3, 0 ≤ φ ≤ 2π) is considered at 
fi rst. The predicted elastic modulus of SFRP composites as a function of 
both the direction angle Θ and the fi bre volume fraction v is shown in Fig. 
6.14 for the uni directional short fi bre alignment case (i.e. p = 0.5, q = ∞ and 
θmean = 0°), where the direction angle Φ is of any value. Figure 6.14 shows 
that the elastic modulus of SFRP composites varies with the direction angle 
Θ and the fi bre volume fraction v. The elastic modulus of SFRP composites 
possesses the maximum value at Θ = 0°, decreases with increase of Θ and 
approaches an approximate plateau for Θ ≥ ∼50°. Nonetheless, the data in 
Fig. 6.14 demonstrate that there is a minimum in the modulus at Θ = ∼80° 
for v = 0.1, at Θ = ∼70° for v = 0.2 and 0.3 and at Θ = ∼60° for v = 0.4 and 
0.5 (very slightly lower than that at Θ = 90°). This phenomenon was also 
observed by Warner and Stobbs (1989). Obviously, higher v values in the 
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composite will result in greater composite modulus. In addition, since the 
results in Fig. 6.14 are obtained for any value Φ, the modulus is unrelated 
to the direction angle Φ.

The variation of the elastic modulus of SFRP composites with the direc-
tion (Θ, Φ) is shown in Fig. 6.15 for various θmean, namely, (a) θmean = 0° 
(p = 0.5 and q = ∞), (b) θmean = 12.95° (p = 0.6 and q = 8), (c) θmean = 35.95° 
(p = 0.6 and q = 1), and (d) θmean = 45° (p = 0.5 and q = 0.5)); other param-
eters are the same as in Fig. 6.14. The curves show that the mean fi bre 
orientation angle θmean signifi cantly infl uences the variation of the elastic 
modulus of SFRP composites with the direction (Θ, Φ). Comparison of Fig. 
6.15(a)–(d) reveals that when the direction angle Θ is small, the elastic 
modulus increases with decreasing mean fi bre orientation angle θmean; but 
when the direction angle Θ is large, the modulus decreases to some extent 
with decreasing mean fi bre orientation angle θmean. At Θ = 90°, for the cases 
of small mean fi bre orientation angle θmean the composite modulus hardly 
varies with Φ (see Fig. 6.15(a) and (b)) while for the cases of large mean 
fi bre orientation angle the modulus decreases with Φ to its minimum at Φ 
= 90° and afterwards increases with Φ to its maximum at Φ = 180°. Moreover, 
for the cases of θmean ≠ 0 it can be seen from Fig. 6.15(b)–(d) that when Φ 
is small (e.g., as shown in Fig. 6.15(c), 0° ≤ Φ ≤ ∼70°) or large (e.g., in Fig. 
6.15(c), ∼110° ≤ Φ ≤ 180°), the composite modulus increases with Θ to a 
peak value and then decreases with Θ to the minimum value at Θ = 90°. 
Further, Fig. 6.15 shows that the variation of the elastic modulus of SFRP 
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6.14 The composite elastic modulus versus the direction angle Θ for 
various fi bre volume fractions and any value of Φ. Adapted from Fu 
and Lauke (1998d).
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composites with the direction (Θ, Φ) is symmetric about the direction angle 
Φ = 90°.

Equation [6.93] is used to predict the composite modulus in the direction 
Θ = 0 and π/2 for the unidirectional fi bre alignment case and compared with 
experimental results (Kardos, 1991) as shown in Table 6.2. Two mean fi bre 
lengths [lmean = 0.466 mm (a = 5 and b = 2.5) and lmean = 3.198 mm (a = 0.15 
and b = 1.5)] and d = 10 μm are assumed and Ef = 72.4 GPa, Gf = 29.6 GPa, 
νf = 0.22, Em = 2.8 GPa, Gm = 1.17 GPa, νm = 0.35 and v = 0.50 (Kardos, 
1991). Table 6.2 shows that the results of the composite modulus for 
Θ = 0 (longitudinal to short fi bres) and Θ = π/2 (transverse to short 
fi bres) predicted by eqn [6.93] agree well with the experimental data, and 
when lmean = 0.466 mm is used, the theoretical value for the elastic modulus 
in the direction (Θ = 0, Φ) is closer to the experimental result than that 
when lmean = 3.198 mm is used. Thus, it can be speculated that the aspect 
ratio of l/d = 46.6 (0.466 mm/10 μm) may be closer to the real aspect ratio 
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6.15 The composite elastic modulus versus the direction (Θ, Φ) for 
various mean fi bre orientation angle θmean: (a) θmean = 0°, (b) θmean = 
12.95°, (c) θmean = 35.95° and (d) θmean = 45°. Adapted from Fu and Lauke 
(1998d).
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value. Also, a simple model for the transverse modulus (i.e., the transverse 
modulus theory) (Bader and Hill, 1993; Piggott, 1980):

E E E vE v Ec f m m fΘ Φ= °( ) = + −( )( )90 1,  6.94

is applied to existing experimental results. However, the modulus value 
evaluated with this transverse modulus theory is much lower. Hence, eqn 
[6.93] is more precise to predict the transverse modulus of SFRP for uni-
directional aligned fi bre composites than eqn [6.94].

6.5 Random short fi bre reinforced 

polymer (SFRP) composites

An approximate averaging technique to generate a rule-of-thumb expres-
sion is used for estimation of the modulus of a structure with a 2D random 
fi bre orientation (Lavengood and Goettler, 1971; Kardos, 1991):

E E E Ec = = +11 11 22
3
8

5
8

.  6.95

The shear modulus Gc of the 2D random short fi bre composite is given by:

G E Ec = +
1
8

1
4

11 22 ,  6.96

where E11 and E22 can be calculated using the Halpin–Tsai equations [6.21] 
and [6.22], respectively.

For a 3D random short fi bre composite, a slightly different equation for 
Young’s modulus is given by (Lavengood and Goettler, 1971):

E E Ec = +
1
5

4
5

11 22 .  6.97

Table 6.2 Comparison of theoretical and experimental results of longitudinal 
and transverse modulus of unidirectional short-glass-fi bre epoxy composites

Stiffness (GPa)

Stress 
direction

Equation [6.93] Equation 
[6.94]

Experimental 
results 
(Kardos, 
1991)

lmean = 0.466 mm lmean = 3.198 mm

Longitudinal 
to short 
fi bres

31.93 36.21 — 31.0

Transverse to 
short fi bres

 9.58  9.58 5.39  9.6
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The Poisson’s ratio of a random short fi bre composite is calculated from 
the following equation which is valid for isotropic materials:

νc
c

c

= −
E
G2

1.  6.98

The PAA (Fu and Lauke, 1998c) (eqn [6.82]) for the elastic modulus of 
partially misaligned SFRP composites is applicable to the prediction of the 
modulus of SFRP composites with any fi bre orientation distribution and 
thus is also suitable for 2D and 3D random fi bre distribution cases. The 
paper physics approach (PPA) [eqn 6.86] is, in principle, also suitable for 
the 2D and 3D random fi bre distribution cases.

The PPA and LAA approaches and the rule-of-thumb expressions are 
used to predict the composite modulus of 2D (p = 0.5 and q = 0.5 with 
g(θ) = π/2 and θmean = 45°) random short fi bre composites (Fig. 6.16), 
and compared with the experimental results (Thomason and Vlug, 1996), 
where Ef = 75 GPa, Gf = 30 GPa, νf = 0.25, Em = 1.6 GPa, Gm = 0.59 GPa, 
νm = 0.35 and d = 13 μm. Obviously, the results predicted by the 
LAA (eqn [6.82]) are closer than the PPA and the rule-of-thumb expres-
sions to the experimental data, showing that the LAA method is more 
appropriate in predicting the modulus SFRP composites. Moreover, this 
further indicates that the PPA underestimates the composite modulus 
for the case of large fi bre orientation angle while the laminate analogy 
approach (LAA) is suitable for prediction of elastic modulus of SFRP 
composites.

6.6 Hybrid short fi bre reinforced polymer 

(SFRP) composites

The simultaneous use (hybridisation) of inorganic particles and short fi bres 
in polymers leads to the development of hybrid particle/short fi bre/polymer 
composites (Fu and Lauke, 1997a, 1998a,b; Rueda et al., 1988; Yilmazer, 
1992; Hargarter et al., 1993). Particles and short fi bres can be simply incor-
porated into polymers by extrusion compounding and injection moulding 
processes. The rule of hybrid mixtures and the laminate analogy approach 
are used to predict the Young’s modulus of hybrid particle/short fi bre/
polymer composites.

It is assumed, in a hybrid particle/short fi bre/polymer composite, that 
particles and short fi bres are separated, respectively, in the corresponding 
particulate and short fi bre composites as shown in Fig. 6.17. There is no 
interaction between particles and short fi bres since particles and short fi bres 
are separated completely. Iso-strain condition is applied to the two single 
systems, namely εc = εc1 = εc2, where εc, εc1 and εc2 are, respectively, the strain 
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of the hybrid composite, the particulate composite and the short fi bre com-
posite. Force equilibrium requires that:

E E v E vc c c c c c c c2ε ε ε= +1 1 1 2 2 ,  6.99

where Ec is the Young’s modulus of the hybrid composite, Ec1 and Ec2 are, 
respectively, the elastic modulus of the particulate composite and the short 
fi bre composite, vc1 and vc2 are, respectively, the relative volume fraction of 
the particle/polymer system and the short fi bre/polymer system, and vc1 + 
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6.16 Comparison of predicted composite modulus of 2D random 
SFRP composites by eqn [6.82] (Fu and Lauke, 1998c), and (a) existing 
rule-of-thumb expression [6.95] (Lavengood and Goettler, 1971; 
Kardos, 1991), and (b) eqn [6.86] (Jayaraman and Kortschot, 1996) 
with the experimental results (Thomason and Vlug, 1996). Adapted 
from Fu and Lauke (1998d).
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vc2 = 1, vc1 = vp/vt and vc2 = vf/vt, where vt is the total reinforcement volume 
fraction and equals vp + vf. The Young’s modulus of the hybrid composite is 
then evaluated from the rule of hybrid mixtures (RoHM) by neglecting the 
interaction between particles and short fi bres:

E E v E vc c c c c= +1 1 2 2 .  6.100

A positive or negative hybrid effect is defi ned as a positive or negative 
deviation from the Young’s modulus of the hybrid composite from the 
RoHM.

In the RoHM, the particles and the short fi bres are assumed to be sepa-
rated in two different systems. So, no interaction between particles and 
short fi bres is considered. In reality, particles and short fi bres are evenly 
and stochastically distributed in the polymer matrix. Therefore, the lami-
nate analogy approach (LAA) is used for prediction of the elastic modulus 
of the hybrid particle/short fi bre/polymer composite. In this approach, 
particle-fi lled polymer is regarded as a new, effective matrix to be rein-
forced by short fi bres as shown in Fig. 6.18. Particles and short fi bres are 
uniformly and stochastically distributed in the pure polymer matrix. In this 
case, the elastic modulus and Poisson’s ratio of the particle-fi lled polymer 
are fi rst evaluated and are taken as Em and νm for short fi bre reinforced 
effective matrix composite. The elastic modulus of the effective matrix can 
be estimated using the corresponding models for particulate composites 
(Callister, 1999; Fu et al., 2002). The Poisson’s ratio (νcp) for the particulate 
composite can be estimated using the law of the mixtures such that 
(Theocaris, 1987):

Particles

Particulate
composite

Short fibre
composite

Hybrid composite

Short fibres Polymer matrix

6.17 Simulated progress of a hybrid particle/short fi bre/polymer 
composite for prediction of the elastic modulus of the hybrid 
composite using the rule of the hybrid mixture. Particles and short 
fi bres are separated respectively in the corresponding particulate 
and short fi bre composites. Adapted from Fu et al. (2002).
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ν
ν ν

ν νcp
m p

p m m p

=
+v v

,  6.101

where νp and νm are particle and polymer matrix Poisson’s ratio; and vp and 
vm are particle and matrix volume fraction. The interaction between parti-
cles and short fi bres is then incarnated in a manner that short fi bres are 
added to the effective matrix containing particles. Prediction of elastic 
modulus of the hybrid particle/short fi bre/polymer composite can be done 
using the LAA similar to that for short fi bre reinforced pure polymer com-
posites (eqn [6.82]) (Fu and Lauke, 1998c).

The predicted results for the Young’s modulus of hybrid particle/short 
fi bre/polymer composites using RoHM and LAA are shown in Fig. 6.19 as 
a function of relative fi bre volume fraction for various fi bre elastic moduli 
(Fu et al., 2002). The elastic modulus of the hybrid composites increases 
as fi bre elastic modulus and relative fi bre volume fraction increases (see 
Fig. 6.18). The predicted values for the hybrid composite modulus by the 
RoHM are somewhat lower than those by LAA. Moreover, the relative 
difference increases as the fi bre elastic modulus increases. Both the RoHM 
and the LAA are applied to calcite particle/short glass fi bre/ABS compos-
ites (Fu et al., 2002). It is found that the RoHM gives somewhat lower 
(about 5%) prediction of the elastic modulus of the hybrid composites 
while the predicted results by the LAA are in good agreement with the 
experimental results (Fu and Lauke, 1998a). This indicates that the LAA 
is more suitable for the prediction of the hybrid particle/short fi bre/polymer 
composites.

Particles Polymer matrix

Particulate composite
= effective matrix

Short fibres Hybrid composite

6.18 Simulated progress of a hybrid particle/short fi bre/polymer 
composite for prediction of the elastic modulus of the hybrid 
composite using the laminate analogy approach. Particles and short 
fi bres are evenly and stochastically distributed in the pure polymer 
matrix or, say, short fi bres are uniformly distributed in the particulate 
composite (as the effective matrix). Adapted from Fu et al. (2002).
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6.7 Numerical methods

Until now we have discussed the evaluation of elastic properties on the 
basis of analytical modelling or semi-empirical equations. Numerical 
methods have also been applied to determine the effective elastic proper-
ties. Comprehensive contributions to modelling the elastic properties of 
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6.19 (a) Comparison of the results for the elastic modulus of the 
hybrid particle/short fi bre/polymer composite predicted by the RoHM 
(broken lines) and the LAA (solid lines) and (b) relative difference as a 
function of relative fi bre volume fraction for various fi bre elastic 
moduli. Adapted from Fu et al. (2002).
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SFRP composites on the basis of fi nite element (FE) computations are 
provided by a number of researchers: Gusev et al. (2002), Hine et al. (2002, 
2004), Lusti et al. (2002), Price et al. (2006), among others. Some matrices 
(e.g., liquid crystalline polymers) and fi bres (e.g., carbon) possess anisotro-
pic properties. FE modeling was conducted based on these published studies.

In FE models, the fi bres are represented by sphero-cylinders (Lusti et al., 
2002). Namely, they are a combination of a cylindrical body and two hemi-
spheric caps at both ends to avoid the presence of cylinder edges during 
mesh generation. To apply FE models to experimental results, short glass 
fi bre reinforced polypropylene dumbbells of 80 mm length with a gauge 
length of 25 mm and a gauge diameter of 5 mm are prepared by conven-
tional and shear controlled orientation injection moulding (SCORIM) pro-
cesses using a mould gated at both ends. The Young’s modulus and Poisson’s 
ratio for polypropylene and glass fi bres are (1.57 GPa, 0.335) and (72.5 GPa, 
0.2), respectively. The average length is 448 μm for the conventionally 
moulded sample whereas it is slightly smaller with 427 μm for the SCORIM 
sample. The diameter of glass fi bres is 12 μm in both samples and the fi bre 
volume fraction is 8%. The orientation of each fi bre is determined individu-
ally by sampling the fi bre orientation distribution (see Fig. 6.20) with a 
Monte Carlo algorithm. The measured frequency distribution of the angle 
θ is transformed into the cumulative probability density function with 150 
random numbers so that to any number in the interval [0,1] a unique angle 
θ is assigned. Moreover, the angle φ is assumed to be homogeneously dis-
tributed in the interval [0°,360°] and another 150 random numbers are 
necessary to randomly determine the second angle φ. After the length, 
diameter and orientation of all 150 fi bres are given, they are then succes-
sively positioned in the periodic box. The fi bres are inserted at random 
positions into this box and a subroutine is checked for overlaps with already 
positioned fi bres. If overlaps occur, the position is rejected and the algo-
rithm repeats the procedure until the fi bre is placed without overlaps and 
all fi bres are placed in the periodic box.

In Fig. 6.21, examples of the FE models are shown together with cuts 
through the fi nite element meshes. The effective elastic properties are 
numerically calculated from the response to an applied perturbation in the 
form of a constant strain. By averaging the individual orientation distribu-
tions of the FE models, the measured distributions are approximated more 
accurately (see Fig. 6.20). An iterative conjugate-gradient solver with a 
diagonal pre-conditioner is used for the fi nite element analysis (Gusev, 
1997). At the energy minimum the local strains are known and allow us to 
assemble the effective stress. The effective elastic constants can then be 
calculated from the linear-elastic response equation. Six independent mini-
misation runs with six different effective strains are necessary to determine 
all 21 independent components of the stiffness matrix.
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6.20 The θ distributions of the fi bres in computer models by 
sampling the measured θ distribution during a Monte Carlo run 
for the conventionally moulded composite (a) and for the SCORIM 
moulded composite (b). Adapted from Lusti et al. (2002).
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Both experimental and numerical results of the Young’s modulus in the 
longitudinal direction of the glass-fi bre/polypropylene dumbbell are listed 
in Table 6.3. The numerically calculated Young’s modulus is slightly higher 
than the measured value for both conventional and SCORIM samples and 
is well inside the error range of the measurements. Both the experimental 
and numerical results lie much closer to the upper bound predictions of the 
micromechanical model (Tandon and Weng, 1984), confi rming that a state 
of constant strain is the most appropriate for well-aligned glass fi bre rein-
forced polymers. Tandon and Weng’s model (1984) combined with Ward’s 
approach (1962) give an upper and a lower bound for aggregate properties. 
The upper bound is close to the measured values for both conventionally 
and SCORIM moulded samples, while the lower bound is signifi cantly 
lower.

6.21 On the left-hand side, snapshots of the 3D multi-fi bre computer 
models for both the conventionally (top) and the SCORIM (bottom) 
moulded composites; on the right-hand side, the corresponding 
longitudinal cuts through the fi nite element mesh of both computer 
models. Adapted from Lusti et al. (2002).
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In analytical modelling, three steps were used, whereby subsequently all 
the collected knowledge of previous research was considered. The fi rst step 
consists in providing the properties of the unit of structure with aligned fi bre 
orientation. The second step is to fi nd the orientation function of the distrib-
uted fi bres and the third step applies appropriate averaging procedures to 
determine the aggregate properties. These researchers made detailed 
mechanical measurements as well as analytical and numerical calculations. 
On that basis, it could be concluded (among others) that the analytical model 
by Qiu and Weng (1990) for the unit structure with the number average of 
fi bre length is most appropriate to determine the elastic properties of the 
unit cell. Another group of researchers (Kari et al., 2007; Berger et al., 2007) 
also considered the calculation of effective properties of randomly oriented 
short fi bre composites. On the basis of a representative volume element that 
is statistically representative and is suffi ciently large relative to the fi bre size 
to ensure the results to be independent of the boundary conditions, the 
effective elastic properties of materials are evaluated.

A numerical homogenisation technique based on the fi nite element 
method (FEM) is employed to evaluate the effective elastic modulus of 
SFRP composites with periodic boundary conditions (Kari et al., 2007). The 
common approach to model the macroscopic properties of fi bre reinforced 
composites is to create a representative volume element (RVE) or a unit 
cell that captures the major features of the underlying microstructure. A 
modifi ed random sequential adsorption algorithm (RSA) is applied to gen-
erate the three-dimensional unit cell models of randomly distributed short 
cylindrical fi bre composites. Figure 6.22 shows the general procedure of 
homogenisation for car parts made of randomly distributed short fi bre 
reinforced polymer composites.

A randomly distributed short fi bre (RDSF) reinforced composite is now 
considered to evaluate the effective elastic properties by carrying out the 

Table 6.3 Longitudinal Young’s modulus of both conventionally 
and SCORIM injection moulded glass fi bre/polypropylene dumbbell 
composites (Lusti et al., 2002)

Young’s modulus (GPa)

Conventional SCORIM

Measured 5.09 ± 0.25 5.99 ± 0.31
Numerical 5.14 ± 0.1 6.04 ± 0.02

Tandon-Weng/Aggregate 
(1984)

Upper bound 5.01 5.90
Lower bound 3.78 5.48
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parametric (volume fraction and aspect ratio) study of fi bres. Figure 2.23 
shows the RVE model and the corresponding FE mesh of the RDSF com-
posite and all fi nite element evaluations are conducted using the commer-
cial FE package ANSYS. The matrix and the fi bres are meshed with 
ten node tetrahedron elements with full integration. To obtain the effective 
elastic modulus of short fi bre composites, periodic boundary conditions 
are applied to the RVE by coupling opposite nodes on the opposite bound-
ary surfaces. Homogenisation techniques and boundary conditions (Berger 
et al., 2005, 2006) are applied to evaluate the effective elastic properties. 
The ANSYS Parametric Design Language (APDL) is used for the FE 
analysis, and evaluation of needed average strains and stresses and evalua-
tion of the effective material properties are carried out. The material 
properties of constituents used for the analysis to evaluate the effective 
elastic modulus are, for the matrix material (Al 2618-T4) Em = 70 GPa, νm 
= 0.3 and for the fi bres (SiC reinforcement) Ef = 450 GPa, νf = 0.17 (Boehm 

Car parts made of short

fibre reinforced polymers

Fibre

RVE model (only short fibres

are exhibited for clarity) 

Matrix

Homogenised

material properties

6.22 Procedure of homogenisation for car parts made of randomly 
distributed short fi bre reinforced polymer composites. Adapted from 
Kari et al. (2007).

X1

X2

X3

6.23 The RVE of randomly distributed short fi bre (RDSF) composites 
and its FE mesh. Adapted from Kari et al. (2007).
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et al., 2002). Though the evaluation is done for metal matrix composites with 
randomly distributed short fi bres, the method is also applicable to predic-
tion of the elastic modulus of SFRP composites. The FE results obtained 
are compared with different analytical models (Fig. 6.24). The numerical 
homogenisation technique provides results which are in between the 
Hashin–Shtrikman bounds (1963) and close to the results of the self-
consistent approaches used by Li and Wan (2005).

6.8 Effect of interphase properties on the 

composite modulus

In the above sections, the effect of interphase properties has been ignored. 
Now the infl uence of an interphase on elastic modulus will be considered. 
Equation [6.19] which is equivalent to eqn [9.2] with the replacement of 
eqn [6.11] is used. Figure 6.25 shows a plot of stiffness ratio Eph/Ec, where 
Eph is the interphase modulus, against the shear modulus ratio Gph/Gm 
(Lauke, 1992). It becomes clear that if Gph < Gm (Gph is interphase shear 
modulus), the stiffness is reduced (and more pronounced for higher vph 
which is the interphase volume fraction). Yet it also becomes clear that the 
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6.24 Comparison of the fi nite element results for the elastic modulus 
of randomly distributed short fi bre (RDSF) composites with different 
analytical results. MTM: Mori–Tanaka estimates (1973), GSCS: 
generalised self-consistent method (Christensen and Lo, 1997), SCS: 
self-consistent method (Li and Wan, 2005), HS-L and HS-U: Hashin–
Shtrikman lower and upper bounds (1963), respectively. Adapted from 
Kari et al. (2007).
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interphase modulus has to be much smaller than Gm for the reduction to 
be important.

6.9 References

Bader M G and Hill A R (1993), ‘Short fi ber composites’, Materials and Technology, 
a comprehensive treatment, ed. by R W Cahn, P Haasen and E J Kramer, VCH 
Publishers, Weinheim, 293–338.

Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart-Diaz R, Otero J A 
and Bravo-Castillero J (2005), ‘An analytical and numerical approach for calculat-
ing effective material coeffi cients of piezoelectric fi ber composites’, Int J Solids 
Struct, 42 (21–22), 5692–5714.

Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart-Diaz R, Otero J A 
and Bravo-Castillero J (2006), ‘Unit cell models of piezoelectric fi ber composites 
for numerical and analytical calculation of effective properties’, Smart Mater 
Struct, 15 (2), 451–458.

Berger H, Kari S, Gabbert U, Ramos R R, Castillero J B and Diaz R G (2007), 
‘Evaluation of effective material properties of randomly distributed short cylin-
drical fi ber composites using a numerical homogenization technique’, J Mech 
Mater Struct, 2 (8), 1561–1570.

Boehm H J, Eckschlager A and Han W (2002), ‘Multi-inclusion unit cell models for 
metal matrix composites with randomly oriented discontinuous reinforcements’, 
Comput Mater Sci, 25 (1–2), 42–53.

Callister Jr W D (1999), Materials sciences and engineering: an introduction. Wiley, 
New York.

Chin W K, Liu H T and Lee Y D (1988), ‘Effects of fi ber length and orientation 
distribution on the elastic modulus of short fi ber reinforced thermoplastics’, 
Polym Composite, 9 (1), 27–35.

10–3 10–2 0.1 1

Modulus ratio, Gph/Gm

10 102 103

0.5

2

3

ν
ph

 = 0.1 0.03

0.01

S
ti
ff
n
e
s
s
 r

a
ti
o
, 

E
p
h
/E

c

E
f
/E

m 
= 140

l/d = 20

ν
f
 = 0.3

ν
m
 = 0.35

6.25 The plot of the stiffness ratio Eph/Ec versus Gph/Gm. Adapted from 
Lauke (1992).

�� �� �� �� ��



 Elastic modulus of short fi bre reinforced polymers 161

Chou T W, Nomura S and Taya M (1980), ‘A self-consistent approach to the elastic 
stiffness of short fi bre composites’, J Compos Mater, 14 (2), 178–188.

Chow T S (1977), ‘Elastic moduli of fi lled polymers: the effect of particle shape’, 
J Appl Phys, 48 (10), 4072–4075.

Choy C L, Leung W P, Kwok K W and Lau F P (1992), ‘Elastic modulus and thermal 
conductivity of injection-molded short fi bre-reinforced thermoplastics’, Polym 
Composite, 13 (1), 69–80.

Christensen R M and Lo K H (1997), ‘Solutions for effective shear properties 
of three phase sphere and cylinder models’, J Mech Phys Solids, 27 (4), 
315–330.

Cox H L (1952), ‘The elasticity and strength of paper and other fi brous materials’, 
Brit J Appl Phys, 3 (3), 72–79.

Eshelby J D (1957), ‘The determination of the elastic fi eld of an ellipsoidal inclusion 
and related problems’, Proc Roy Soc A, 241, 376–396.

Eshelby J D (1961), ‘Elastic inclusions and inhomogeneities’, Progress in Solid 
Mechanics, vol. 2, ed. by Sneddon I N, Hill R, North-Holland, Amsterdam, 
pp. 89–140.

Fu S Y and Lauke B (1997a), ‘Analysis of mechanical properties of injection molded 
short glass fi bre/calcite/ABS composites’, J Mater Sci Technol, 13 (5), 389–396.

Fu S Y and Lauke B (1997b), ‘The fi bre pull-out energy of misaligned short fi bre 
composites’, J Mater Sci, 32 (8), 1985–1993.

Fu S Y and Lauke B (1998a), ‘Characterization of tensile behaviour of hybrid short 
glass fi ber/calcite particle/ABS composites’, Compos Part A – Appl Sci Manu, 29 
(5–6), 575–583.

Fu S Y and Lauke B (1998b), ‘Fracture resistance of unfi lled and calcite-fi lled ABS 
composites reinforced by short glass fi bers (SGF) under impact load’, Compos 
Part A – Appl Sci Manu, 29 (5–6), 631–641.

Fu S Y and Lauke B (1998c), ‘The elastic modulus of misaligned short fi bre rein-
forced polymers’, Compos Sci Technol, 58 (3–4), 389–400.

Fu SY and Lauke B (1998d), ‘An analytical characterization of the anisotropy of 
the elastic modulus of misaligned short fi bre reinforced polymers, Compos Sci 
Technol, 58 (12), 1961–1972.

Fu S Y, Hu X and Yue C Y (1998), ‘A new model for the transverse modulus of 
unidirectional fi ber composites’, J Mater Sci, 33 (20), 4953–4960.

Fu S Y, Xu G and Mai Y-W (2002), ‘On the elastic modulus of hybrid particle/
short-fi ber/polymer composites’, Compos Part B – Eng, 33 (4), 291–299.

Gusev A A (1997), ‘Representative volume element size for elastic composites: a 
numerical study’, J Mech Phys Solids, 45 (9), 1449–1459.

Gusev A A, Lusti H R and Hine P J (2002), ‘Stiffness and thermal expansion of 
short fi ber composites with fully aligned fi bers’, Adv Eng Mater, 4 (12), 
927–931.

Haddout A and Villoutreix G (1994), ‘An experimental study of fi ber orientation in 
injection moulded short glass fi ber-reinforced polypropylene/polyarylamide com-
posites’, Composites, 25 (2), 147–153.

Halpin J C and Tsai S W (1967), ‘Environmental factors in composite materials 
design’, US Air Force Materials Lab. Rep. AFML Tech Rep, 67–423.

Hargarter N, Friedrich K and Cartsman P (1993), ‘Mechanical properties of glass 
fi ber/talc/polybutylene–terephthalate composites as processed by the radlite tech-
nique’, Compos Sci Technol, 46 (3), 229–244.

�� �� �� �� ��



162 Engineering of short fi bre reinforced polymer composites

Hashin Z and Rosen B W (1964), ‘The elastic moduli of fi ber-reinforced materials’, 
J Appl Mech, 31 (2), 223–232.

Hashin Z and Shtrikman S (1963), ‘A variational approach to the theory of the 
elastic behaviour of multiphase materials’, J Mech Phys Solids 11 (2), 127–140.

Hermans J J (1967), ‘The elastic properties of fi bre reinforced materials when the 
fi bers are aligned’, Proc K Ned Akad Wet Ser B 70, 1–9.

Hill R (1963), ‘Elastic properties of reinforced solids: some theoretical principles’, 
J Mech Phys Solids, 11 (3), 357–372.

Hill R (1965a), ‘Theory of mechanical properties of fi bre-strengthened materials – 
III. Self-consistent model’, J Mech Phys Solids, 13 (2), 189–198.

Hill R (1965b), ‘A self-consistent mechanics of composite materials’, J Mech Phys 
Solids, 13 (2), 213–225.

Hine P J, Lusti H R and Gusev A A (2002), ‘Numerical simulation of the effects of 
volume fraction, aspect ratio and fi bre length distribution on the elastic and ther-
moelastic properties of short fi bre composites’, Compos Sci Technol, 62 (10–11), 
1445–1453.

Hine P J, Lusti H R and Gusev A (2004), ‘On the possibility of reduced variable 
predictions for the thermoelastic properties of short fi bre composites’, Compos 
Sci Technol, 64 (7–8), 1081–1088.

Jayaraman K and Kortschot M T (1996), ‘Correction to the Fukuda–Kawata Young’s 
modulus and the Fukuda–Chou strength theory for short fi bre-reinforced com-
posite materials’, J Mater Sci, 31 (8), 2059–2064.

Kardos L (1991), ‘Short-fi bre-reinforced polymeric composites, structure-property 
relations’, in International encyclopedia of composites, vol. 5, ed. by S M Lee, VCH 
Publishers, New York, pp. 130–141.

Kari S, Berger H and Gabbert U (2007), ‘Numerical evaluation of effective material 
properties of randomly distributed short cylindrical fi bre composites’, Comput 
Mater Sci, 39 (1), 198–204.

Kilchinskii A A (1965), ‘On the model for determining thermoelastic characteristics 
of fi bre reinforced materials’, Prikl Mekh, 1, 1.

Kilchinskii A A (1966), ‘Approximate method for determining the relation between 
the stresses and strains for reinforced materials of the fi bre glass type’, Thermal 
Stresses in Elements of Construction, Vol. 6, Naukova Dumka , Kiev, p. 123.

Lauke B (1992), ‘Theoretical considerations on deformation and toughness of 
short fi bre reinforced polymers’, Journal of Polymer Engineering, 11 (1–2), 
103–151.

Lavengood R E and Goettler L A (1971), ‘Stiffness of non-aligned fi ber reinforced 
composites’, US Government R&D Reports, AD886372, National Technical 
Information Service, Springfi eld, VA.

Li L X and Wan T J (2005), ‘A unifi ed approach to predict overall properties of 
composite materials’, Mater Charact, 54 (1), 49–62.

Lusti H R, Hine P J and Gusev A A (2002), ‘Direct numerical predictions for the 
elastic and thermoelastic properties of short fi bre composites’, Compos Sci 
Technol, 62 (15), 1927–1934.

McGrath J J and Wille J M (1995), ‘Determination of 3D fi bre orientation distribu-
tion in thermoplastic injection molding’, Compos Sci Technol, 53 (2), 33–143.

Mori T and Tanaka (1973), ‘Average stress in matrix and average elastic energy of 
materials with misfi tting inclusions’, Acta Metall et Mater, 21 (5), 571–574.

Piggott M R (1980), Load bearing fi bre composites, Pergamon Press, Oxford.

�� �� �� �� ��



 Elastic modulus of short fi bre reinforced polymers 163

Price C D, Hine P J, Whiteside B, Cunha A M and Ward I M (2006), ‘Modelling the 
elastic and thermoelastic properties of short fi bre composites with anisotropic 
phases’, Compos Sci Technol, 66 (1), 69–79.

Qiu Y P and Weng G J (1990), ‘On the application of Mori–Tanaka’s theory involv-
ing transversely isotropic spheroidal inclusions’, Int J Eng Sci, 28 (11), 
1121–1137.

Ramsteiner F and Theysohn R (1985), ‘The infl uence of fi bre diameter on the tensile 
behavior of short-glass-fi bre reinforced polymers’, Compos Sci Technol, 24 (3), 
231–240.

Rueda L I, Anton C C and Rodriguez M C T (1988), ‘Mechanics of short fi bers in 
fi lled styrene–butadiene rubber (SBR) composites’, Polym Composite, 9 (3), 
198–203.

Sirkis J S, Cheng A, Dasgupta A and Pandelidis I (1994), ‘Image processing based 
method of predicting stiffness characteristics of short fi bre reinforced injection 
molded parts’, J Compos Mater, 28 (9), 784–799.

Tandon G P and Weng G J (1984), ‘The effect of aspect ratio of inclusions on the 
elastic properties of unidirectionally aligned composites’, Polym Composite, 5 (4), 
327–333.

Theocaris P S (1987), The mesophase concept in composites, Springer, Berlin.
Thomason J L (2008), ‘The infl uence of fi bre length, diameter and concentration on 

the modulus of glass fi bre reinforced Polyamide 6,6’, Compos Part A – Appl Sci 
Manu, 39 (11), 1732–1738.

Thomason J L and Vlug M A (1996), ‘Infl uence of fi bre length and concentration 
on the properties of glass fi bre-reinforced polypropylene: 1. Tensile and fl exural 
modulus’, Compos Part A – Appl Sci Manu, 27 (6), 477–484.

Toll S and Andersson P O (1991), ‘Microstructural characterization of injection 
moulded composites using image analysis’, Composites, 22 (4), 298–306.

Tsai S W and Hahn H T (1980), Introduction to composite materials, Technomic, 
Lancaster, PA.

Tucker III C L and Liang E (1999), ‘Stiffness predictions for unidirectional short-
fi bre composites: review and evaluation’, Compos Sci Technol, 59 (5), 655–671.

Ward I M (1962), ‘Optical and mechanical anisotropy in crystalline polymers’, Proc 
Phys Soc, 80 (5), 1176–1188.

Warner T J and Stobbs W M (1989), ‘Modulus and yield stress anisotropy of short 
fi ber metal-matrix composites’, Acta Metall, 37 (11), 2873–2881.

Xia M, Hamada H and Maekawa Z (1995), ‘Flexural stiffness of injection molded 
glass fi ber reinforced thermoplastics’, Int Polym Proc, 10 (1), 74–81.

Yilmazer U (1992), ‘Tensile, fl exural and impact properties of a thermoplastic matrix 
reinforced by glass fi bre and glass bead hybrids’, Compos Sci Technol, 44 (2), 
119–125.

Yu Z, Brisson J and Ait-Kadi A (1994), ‘Prediction of mechanical properties of short 
Kevlar fi bre-nylon-6,6 composites’, Polym Composite, 15 (1), 64–73.

�� �� �� �� ��



7
Flexural modulus of short fi bre 

reinforced polymers

Abstract: Flexural stiffness of a SFRP composite plate with given fi bre 
orientation and fi bre length distribution is discussed. The fl exural 
modulus of a unidirectional SFRP composite is fi rst evaluated to provide 
a benchmark for comparison. Theoretical models for fl exural modulus of 
SFRP composites with both uniform and continuous fi bre orientation 
distributions and a layered structure are then discussed.

Key words: fl exural modulus, unidirectional, uniform fi bre orientation 
distribution, continuous fi bre orientation distribution, layered structure.

7.1 Introduction

Short fi bre reinforced polymer (SFRP) composites have many applications 
as engineering materials. Those composites based on thermoplastic matrices 
are often processed by extrusion compounding and injection moulding 
techniques (Fu and Lauke, 1997, 1998a,b; Ulrych et al., 1993; Takahashi and 
Choi, 1991; Gupta et al., 1989; Xia et al., 1995; Chin et al., 1988). Injection 
moulding grade thermoplastics are usually high viscosity materials which 
results in considerable shear-induced fi bre breakage during compounding 
and moulding and fi nally causes a fi bre length distribution (FLD). In addi-
tion, during the injection moulding process, progressive and continuous 
changes in fi bre orientation throughout the moulded components take 
place. Cosequently, this leads to a fi bre orientation distribution (FOD) in 
the fi nal SFRP composite parts (Xia et al., 1995; Chin et al., 1988; Hine 
et al., 1995; Fakirov and Fakirova, 1985; McGrath and Wille, 1995).

The mechanical properties of SFRP composites depend not only on the 
properties and volume fractions of the constituent materials but also on the 
FLD and FOD in the fi nal injection moulded SFRP composite parts. In 
general, fi bre content (volume fraction) and FLD are regarded explicitly or 
implicitly as uniform throughout the whole thickness of the product made 
of SFRP composites (Ulrych et al., 1993; Gupta et al., 1989; Xia et al., 1995; 
Chin et al., 1988; Baily et al., 1989). However, unlike fi bre content and FLD, 
the FOD is not only non-uniform but also varies through the thickness of 
the SFRP product. FOD can be divided into three major cases. The fi rst case 
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is uniform fi bre alignment whereby the fi bres are distributed uniformly 
through the thickness. One limiting case is unidirectional fi bre alignment. In 
injection moulded dumbbell-shaped specimens most fi bres are aligned along 
the mould fi lling direction (Fu and Lauke, 1998b; Takahashi and Choi, 1991; 
Ramsteiner and Theysohn, 1979), thus the fi bre alignment in these specimens 
can be regarded approximately as unidirectional. Another limiting case is 
random fi bre alignment (O’Connell and Duckett, 1991) in which the fi bres 
are distributed uniformly and randomly throughout the specimen.

The second case is continuous fi bre alignment in which the fi bre orienta-
tion changes continuously from the centre to the surface of the specimen. 
For example, the fi bre orientation angle with respect to the mould fi lling 
direction is observed to increase from the surface to the centre of specimens 
of short glass fi bre reinforced poly(ethylene terephthalate) (Fakirov and 
Fakirova, 1985); and in injection moulded plaques of short carbon fi bre 
reinforced PEEK, the fi bre orientation averages change continuously across 
the thickness of the plaque (O’Connell and Duckett, 1991). These can be 
roughly regarded as examples of the continuous case. The third case, namely, 
the skin-core layered structure in fi bre orientation, is also often observed 
in injection moulded plaques or disc samples (Xia et al., 1995; Karger-Kocsis, 
1993; Spahr et al., 1990; Harmia and Friedrich, 1995). In the core layer the 
fi bres have a distinct FOD and are distributed uniformly; while in the skin 
layers the fi bres have a different FOD and are also distributed uniformly.

The fl exural stiffness of a SFRP composite plate with given fi bre orienta-
tion and fi bre length distribution is discussed in this chapter. The fl exural 
modulus of a unidirectional SFRP composite will be fi rst evaluated to 
provide a benchmark. Second, the fl exural stiffness of the SFRP composite 
with a uniform fi bre orientation distribution will be estimated. Third, SFRP 
composite with a continuous fi bre orientation distribution will be studied. 
Fourth and last, the SFRP composite with a layered structure and fi bre 
orientation will be considered. Planar fi bre orientation distribution is con-
sidered for estimating the fl exural modulus of SFRP composites. When 
there is a three-dimensional fi bre orientation distribution, the out-of-plane 
fi bres can be projected onto one plane so that all the fi bres in the SFRP 
composite lie in the same plane and hence an approximate estimation of 
the fl exural modulus can be similarly performed.

7.2 Flexural modulus of short fi bre reinforced 

polymer (SFRP) composites

7.2.1 Unidirectional SFRP composites

Here, the unidirectional case is considered fi rst as shown in Fig. 7.1, where 
the short fi bres are aligned with an angle θ to the reference direction ‘1’. 

�� �� �� �� ��



166 Engineering of short fi bre reinforced polymer composites

The fl exural modulus of such a SFRP composite plate containing aligned 
short fi bres is analysed. The constitutive relations for the bending of a plate 
of thickness h as shown in Fig. 7.2 are given by:
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,  7.1

where M1, M2 and M6 are resultant bending and twisting moments per unit 
width, k1, k2 and k6 are bending and twisting curvatures of the plate, and Dij 
are plate bending stiffnesses so that:

D Q z z
h

h

ij ij d=
−
∫ 2

2

2

,  7.2

1

3

2

Fibre

θ

7.1 Schematic drawing of a unidirectional SFRP composite.

L

P

7.2 Schematic drawing of three-point bend testing for a SFRP 
composite beam with a span length of L under the applied load P 
at the mid-span.
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where z is the axis along the thickness direction and varies from −h/2 to 
h/2. Qij (i, j = 1, 2, 6) are the tensile stiffness constants in the off-axis system 
(Tsai, 1980). Inverting the moment-curvature relation (eqn [7.1]) we obtain 
the following in terms of fl exural compliances:
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where dij are fl exural compliances which can be evaluated from Dij. d11 is 
given by:

d D D D D D D D D D D

D D D D

11 26
2

22 66 16
2

22 12 16 26 11 26
2

12
2

66 11 2

2= −( ) − + +(
− 22 66D ).

 7.4

Under simple pure bending by M, for example, in a three-point bending 
test (Fig. 7.2), when a load is applied at mid-span, and the beam longitudinal 
direction is assumed in the reference direction ‘1’ (see Fig. 7.1), for a beam 
with width b, we have:

M M b1 =  7.5

M M2 6 0= = .  7.6

The resulting moment-curvature relation is:

k d M d M b1 11 1 11= = .  7.7

The rigidity of beam is given by:

E I M k b dflex = =1 11,  7.8

where Efl ex is the fl exural modulus of the SFRP composite plate. I is the 
moment of inertia of the cross section of plate about the centroidal axis:

I
bh

=
3

12
,  7.9

so that, we obtain:

E
h d I d

flex
*

= =
12 1
3

11 11

,  7.10

where I* = I/b. Finally, the expression for the fl exural modulus of the SFRP 
composite plate is obtained by:
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7.11

where Dij can be expressed as:
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D U I U V U V11 1 2 1 3 2= + +*  7.12

D U I U V U V22 1 2 1 3 2= − +*  7.13

D U I U V12 4 3 2= −*  7.14

D U I U V66 5 3 2= −*  7.15
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where Vi are:
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and Ui are functions of the tensile stiffness constants (Qxx, Qyy, Qxy and Qss) 
in the on-axis system and can be expressed by (Tsai, 1980):

U Q Q Q Q1
1
8

3 3 2 4= + + +( )xx yy xy ss
 7.22

U Q Q2
1
2

= −( )xx yy
 7.23

U Q Q Q Qyy3
1
8

2 4= + − −( )xx xy ss
 7.24

U Q Q Q Qyy4
1
8

6 4= + + −( )xx xy ss
 7.25

U Q Q Q Qyy5
1
8

2 4= + − +( )xx xy ss ,  7.26

and Qxx, Qxy, Qyy and Qss are (Fu and Lauke, 1998c,d):

Q E v vxx c x y= −( )1  7.27

Q v Qyxy xx=  7.28

Q E v vyy cy x y= −( )1  7.29

Q Gss s= ,  7.30
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where Ec, Ecy, Gs, νx and νy are longitudinal and transverse tensile modulus, 
shear modulus, longitudinal and transverse Poisson’s ratio, respectively, of 
a unidirectional SFRP composite with fi bres of length l. They can be 
expressed as functions of fi bre modulus (Ef) and matrix modulus (Em), 
matrix shear modulus (Gm), Poisson’s ratio of fi bre (νf) and matrix (νm), 
and fi bre volume fraction (v) (Fu and Lauke, 1998c,d).

When a FLD exists in the unidirectional SFRP composite, Dij in eqns 
[7.12]–[7.17] should be integrated to obtain the overall plate fl exural stiff-
ness matrix, Aij, so that:

A D f l l i j
l

l

ij ij d= ( ) =∫
min

max

, , , ;1 2 6  7.31

where f has been defi ned in Chapter 3 (see eqn [3.9]) as the fi bre length 
probability density function, in which a and b are size and shape parame-
ters, respectively. Consequently, the effective fl exural modulus of SFRP 
composites can be evaluated using eqn [7.11] by replacing Dij with Aij.

7.2.2 SFRP composite with a uniform fi bre 
orientation distribution

When both FLD and FOD exist in a SFRP composite and the fi bres are 
distributed uniformly through the composite thickness, Dij must be inte-
grated to obtain the fl exural stiffness matrix:

A D f l g l i j
l

l

ij ij d d= ( ) ( ) =∫∫ θ θ
θ

θ

. , , , ;
min

max

min

max

1 2 6  7.32

where g(θ) has been defi ned in Chapter 3 (see eqn [3.24]) as the fi bre 
operation distribution function. The fl exural modulus of the SFRP compos-
ite can be evaluated using eqn [7.11] by replacing Dij with Aij. It can be 
shown that when θ = θmin = θmax, the uniform case becomes one limiting case 
of unidirectional fi bre alignment; and when g(θ) = 2/π, the uniform FOD 
becomes another limiting case of 2D random fi bre alignment.

Comparison of theoretical results with available experimental data for a 
random, in-plane, short glass fi bre reinforced polypropylene composite 
(Thomason and Vlug, 1996) is given in Fig. 7.3 for different fi bre length and 
fi bre weight fraction (Fu et al., 1999), where Ef = 75 GPa, νf = 0.25, Gf = Ef/(2(1 
+ νf)) = 30 GPa, Em = 1.6 GPa, νm = 0.35, Gm = Em/(2(1 + νm)) = 0.59 GPa and 
rf = 6.5 μm. For transformation between volume fraction and weight fraction, 
the following densities of fi bre and matrix are used: density of glass fi bres = 
2.620 g cm−3, density of polypropylene resin = 0.905 g cm−3. It can be seen from 
Fig. 7.3 that the theoretical predictions by theory agree well with existing 
experimental data. These results show that the composite fl exural modulus 
increases with fi bre weight fraction (fi bre volume fraction) (Fig. 7.3(a)). It also 
increases with the mean fi bre length when it is small; but becomes insensitive 
to fi bre length (or aspect ratio) when it is large enough (e.g. ≥~100) (Fig. 7.3(b)).
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The fl exural modulus of composites based on acrylonitrile butadiene 
styrene (ABS) reinforced with short glass fi bres (SGF) and glass beads 
(GB) as a function of fi ller content is shown in Fig. 7.4 (Hashemi, 2008), 
where it increases with increasing fi ller volume fraction. Further, SGF 
reinforced composites possess a higher fl exural modulus than glass bead 
fi lled composites since SGF has an aspect ratio much larger than unity 
for glass beads (Hashemi, 2008), which is also why the SGF composite 
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7.3 Comparison between predicted results and existing experimental 
data for a random, in-plane, short glass fi bre reinforced polypropylene 
composite (Thomason and Vlug, 1996): (a) composite fl exural 
modulus (Efl ex) vs fi bre weight fraction, (b) Efl ex vs fi bre length (Fu et 
al., 1999).
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fl exural modulus increases dramatically with increasing fi bre volume 
fraction.

7.2.3 SFRP composite with a continuous fi bre 
orientation distribution

Assume fi bre orientation of a SFRP composite changes continuously 
from centre to surface. The fi bre orientation angle is assumed minimum 
at the surface (z = h/2) and maximum at the centre (z = 0) of the speci-
men. The relationships of Dij with Vi can be obtained and are the same 
as those (eqns [7.12]–[7.17]) for the unidirectional composite but Vi (i = 
1–4) are different since Qij vary with θ. Thus, we evaluate Vi fi rst and we 
have:
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7.4 Composite fl exural modulus based on acrylonitrile butadiene 
styrene (ABS) reinforced with short glass fi bres and glass beads. 
Adapted from Hashemi (2008).
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Therefore, we obtain:
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 7.36

Dij can be obtained by inserting eqn [7.36] into eqns [7.12]–[7.17], and Aij 
evaluated from eqn [7.32]. Finally, the fl exural modulus of SFRP composites 
can be determined from eqn [7.11] by replacing Dij with Aij.

The following parametric data are used except otherwise given: 
Ef = 82.7 GPa, Gf = 27.6 GPa, νf = 0.22, Em = 2.18 GPa, Gm = 1.03 GPa, 
νm = 0.35, d = 10 μm and v = 0.30. The effect of mean fi bre orientation 
angle, θmean, on composite fl exural modulus is shown in Fig. 7.5 for the cases 
of uniform and continuous fi bre orientation distributions (Fu et al., 1999), 
where p = 0.5 and various q. In the continuous case, the fi bre orientation 
angle changes continuously from the surface (minimum) to the core 
(maximum). Figure 7.5 shows that composite fl exural modulus decreases 
with increasing mean fi bre orientation angle for the two cases. This indicates 
that the unidirectional SFRP composite containing short fi bres having an 
angle of zero degrees with the reference direction ‘1’ corresponds to the 
maximum composite fl exural modulus. The larger the deviation in the mean 
fi bre orientation angle with the reference direction, the lower is the com-
posite fl exural modulus. Also, the fl exural modulus for SFRP composite 
with a continuous fi bre orientation distribution is larger than that with a 
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7.5 Effect of mean fi bre orientation angle on fl exural modulus of SFRP 
composites for cases of uniform and continuous fi bre alignments for 
lmean = 3.198 mm (a = 0.15, b = 1.5) and lmean = 0.466 mm (a = 5, b = 2.5), 
for the meaning of a and b see eqn [3.9]. Adapted from Fu et al., 1999.
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uniform fi bre orientation distribution. This is because, in the continuous 
case, the fi bre orientation angle is assumed to change continuously from the 
sample surfaces (minimum: 0°) to the core (maximum: 90°) and, thus short 
fi bres having a small fi bre orientation angle near the surfaces for the con-
tinuous case would make a bigger contribution to the composite fl exural 
strength than that by short fi bres with a mean fi bre orientation angle near 
the sample surfaces for the uniform case, leading to a higher composite 
fl exural modulus for the continuous case than the uniform case. The con-
tinuous case is well known for bamboos that evolve for many years to 
withstand fl exural forces from the wind.

The effect of mode fi bre orientation angle on fl exural modulus of SFRP 
composites is presented in Fig. 7.6 for the two cases of uniform and continu-
ous fi bre alignments (Fu et al., 1999), where lmean = 3.198 mm (a = 0.15, b = 
1.5), and θmean = 12.95° (both p and q vary, see eqn [3.24]). It is clear that 
the composite fl exural modulus decreases with increasing mode fi bre ori-
entation angle for these two cases. However, this effect is more remarkable 
for the continuous case than the uniform case. This is because the mean 
fi bre orientation angle near the surface layers does not change for the 
uniform case but it increases with the mode fi bre orientation angle for the 
continuous case (for example, within the one-quarter surface layers, θmean = 
0.8133° for θmod = 6.59° (p = 6 and q = 8); and θmean = 2.761° for θmod = 12.866° 
(p = 18 and q = 336.3)), so that fi bres near the surface layers play a more 
important part in controlling the composite fl exural modulus.

Similar to the Young’s modulus of SFRP composites via the paper physics 
approach (PPA), the modifi ed rule-of-mixtures is also employed for estima-
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7.6 Effect of mode fi bre orientation angle on the fl exural modulus 
of SFRP composites for cases of uniform and continuous fi bre 
alignments. Adapted from Fu et al., 1999.
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tion of the fl exural modulus of short glass fi bre reinforced polyoxymeth-
ylene composites by considering the fi bre length and orientation factors 
(Hashemi et al., 1997). Thus, we have:

E E v E vflex l f m m= +η ηθ ,  7.37

where ηl   and ηθ are, respectively, the fi bre length and orientation factors for 
the composite fl exural modulus and they are given by:

l
m

f f f

with= − =
( )

1
2

2
2

2

tanh
,

ln
,

l
l

G
E r R r

 7.38

where Gm is matrix shear modulus, Ef is fi bre Young’s modulus, and R is 
mean separation of fi bres normal to their length. The fi bre orientation 
factor ηθ is determined from experiments. It is noted that eqn [7.38] is only 
an approximate expression to estimate the fl exural modulus of SFRP com-
posites, since strictly speaking, both ηl and ηθ are in general dependent on 
each other and cannot be separately evaluated.

7.2.4 SFRP composite with a layered structure

This case is shown in Fig. 7.7 (Friedrich, 1998) where the SFRP composite 
plate has two skin layers, hs, and one core layer, hc, across the thickness h. 
The fi bre orientation distributions in the skin and core are different. In the 
skin layers, there is one fi bre orientation distribution (FOD) and fi bres are 
distributed uniformly; while in the core layer, there is another FOD and 
fi bres are also distributed uniformly.

To derive the expression for the fl exural modulus of the SFRP with a 
layered structure, we consider fi rst the case of fi bres in the core layer having 
one orientation angle θ1 and those fi bres in the skin layers having another 
orientation angle θ2, then, we can obtain:

V V V ii i i= + = −1 2 1 4  7.39

Core layer Skin layerSkin layer

7.7 SEM micrograph of the layered structure of an injection moulded 
45 wt% short glass fi bre reinforced polyethyleneterephthalate (PET) 
composite. Adapted from Friedrich (1998).
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and

V I1 2 3 4
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* cos , cos , sin , sin[ ] = [ ]c θ θ θ θ  7.40

V I I1 2 3 4
2

2 2 2 22 4 2 4, , , ( *) cos , cos , sin , sin*[ ] = − [ ]c θ θ θ θ  7.41
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 7.42

Thus, we have:

D D D i jij ij ij= + =1 2 1 2 6, , , ,  7.43

where D1
ij as a function of I*c and θ1, and D2

ij as a function of (I* − I*c ) and θ2 
are the same as eqns [7.12]–[7.17]. The integration of Dij should be carried 
out, respectively, for the core layer and the surface layers. Therefore, we 
obtain:
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.∫∫  7.44

Finally, the fl exural modulus of SFRP composites can be evaluated using 
eqn [7.11] by replacing Dij with Aij.

The effect of mean fi bre orientation angle on composite fl exural modulus 
for the case of layered structure is displayed in Fig. 7.8 (Fu et al., 1999), 
where lmean = 3.198 mm (a = 0.15, b = 1.5), p = 0.6 and various q except at 
θmean = 0° (p = 0.5 and q = ∞) and at θmean = 45° (p = 0.5 and q = 0.5) when 
θmean varies and (a) θmean = 12.95° (p = 0.6 and q = 8) in the skin layers and 
(b) θmean = 0° (p = 0.5 and q = ∞) in the core layer. The core thickness is 
assumed to be half the whole thickness of the composite plate. The com-
posite fl exural modulus is contributed from both the core layer and the skin 
layers. h vanishes fi nally, so the value of hc/h is suffi cient and their individual 
values are not needed for the calculations. Other parameters are the same 
as in Fig. 7.5 and this is also true for other fi gures unless otherwise stated. 
Figure 7.8 reveals again that the composite fl exural modulus decreases with 
increasing mean fi bre orientation angle. Moreover, when the fi bre orienta-
tion distribution changes only in the skin layers (see curve b), the mean 
fi bre orientation angle has a larger infl uence on the composite fl exural 
modulus than when the fi bre orientation distribution changes only in the 
core layer (see curve a). This result indicates that fi bres in the skin layers 
play a more important role in determining the composite fl exural modulus 
than those fi bres in the core layer. This can be used to explain the above 
observation in Fig. 7.5 in which the composite fl exural modulus for the 
continuous case is higher than that for the uniform case, since for the con-
tinuous case there are more fi bres of small fi bre orientation angle than 
those for the uniform case near their skin layers and the fi bres near the skin 
layers are more important in governing the composite fl exural modulus.
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Figure 7.9 shows the effect of mode fi bre orientation angle on the fl exural 
modulus of SFRP composites for the case with a layered structure (Fu 
et al., 1999), where a, b, p and q are the same as in Fig. 7.5; and (a) θmean = 
12.95° (p and q vary) in the core layer and θmean = 25.81° (p = 0.6 and q = 
2.0) in the skin layers, and (b) θmean = 25.81° (p = 0.6 and q = 2.0) in the core 
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7.8 Effect of mean fi bre orientation angle on the fl exural modulus of 
SFRP composites for the case of layered structure: (a) θmean varies only 
in the core layer; (b) θmean varies only in the skin layers. Adapted from 
Fu et al., 1999.
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7.9 Effect of mode fi bre orientation angle on the fl exural modulus of 
SFRP for the case of layered structure: (a) θmod varies only in the core 
layer; and (b) θmod varies only in the skin layers. Adapted from Fu 
et al., 1999.
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layer and θmean = 12.95° (p and q vary) in the skin layers. It can be seen that 
the mode fi bre orientation angle has a small infl uence on the composite 
fl exural modulus. This is easily understood since the fi bres in the core and 
skin layers are assumed to be distributed uniformly as for the uniform case.

The fl exural modulus of SFRP composites vs core layer thickness for the 
case of a layered structure is shown in Fig. 7.10 (Fu et al., 1999), where lmean 
= 3.198 mm (a = 0.15, b = 1.5); and (a) θmean = 12.95° (p = 0.6 and q = 8) in 
the core layer and θmean = 0° (p = 0.5 and q = ∞) in the skin layers, and (b) 
θmean = 45° (p = 0.5 and q = 0.5) in the core layer and θmean = 12.95° (p = 0.6 
and q = 8) in the skin layers (where a smaller mean fi bre orientation angle 
in the skin layers than that in the core layer is assumed since this is consis-
tent with experimental observations (Xia et al., 1995; Friedrich, 1985, 1998)). 
Figure 7.10 reveals that the composite fl exural modulus decreases slowly 
with increase of core thickness when the core is small (e.g. <0.4 h), but it 
decreases markedly with increasing normalised core thickness when the 
core is large (e.g. > 0.4 h). Moreover, the composite fl exural modulus of (a) 
is higher than that of (b) because the mean fi bre orientation angles of (a) 
are smaller than those of (b).

The effect of mean fi bre length and, hence mean fi bre aspect ratio, on the 
composite fl exural modulus is shown in Fig. 7.11 (Fu et al., 1999), where 
θmean = 12.95° (p = 0.6, q = 8), and a = 0.15 and different b for lmean ≥ 1.0 mm 
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7.10 The fl exural modulus of SFRP composites vs the core layer 
thickness for the case of layered structure: (a) θmean = 12.95° (p = 0.6 
and q = 8) in the core layer and θmean = 0° (p = 0.5 and q = ∞) in the 
skin layers; and (b) θmean = 45° (p = 0.5 and q = 0.5) in the core layer 
and θmean = 12.95° (p = 0.6 and q = 8) in the skin layers. Adapted from 
Fu et al., 1999.
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(or mean aspect ratio ≥ 100) and a = 5 and different b for lmean < 1.0 mm 
(or mean aspect ratio < 100); and moreover, θmean = 25.81° (p = 0.6 and q = 
2.0) in the skin layers for the case of a layered structure. Obviously, the 
fl exural modulus of SFRP composites increases dramatically with increas-
ing mean fi bre length or mean aspect ratio when lmean ≤ 1 mm (or mean 
aspect ratio ≤ 100); but it is insensitive to mean fi bre length (or mean fi bre 
aspect ratio) when lmean > 1 mm (or mean aspect ratio > 100). In addition, 
the composite fl exural modulus for the case of continuous FOD is the 
highest since it has more fi bres of small orientation angle in the skin layers 
than the other two cases while the fl exural modulus for the layered struc-
ture case is the lowest as its mean fi bre orientation angle (= 25.81°) in the 
skin layers is assumed less than that (=12.95°) of the uniform case.

The effect of mode fi bre length and therefore mode fi bre aspect ratio on 
the composite fl exural modulus is shown in Fig. 7.12 for the two cases of a 
large and a small mean fi bre length (or mean fi bre aspect ratio) (Fu et al., 
1999), where the parameters are the same as in Fig. 7.11 except a and b. The 
composite fl exural modulus increases slightly with the increase of mode 
fi bre length or mode fi bre aspect ratio when mean fi bre length (or mean 
fi bre aspect ratio) is large (see Fig. 7.12(a)). However, when lmean (or lmean/d) 
is small, the effect of mode fi bre length (or mode fi bre aspect ratio) on the 
composite fl exural modulus is noticeable (see Fig. 7.12(b)) and the compos-
ite fl exural modulus increases with increasing mode fi bre length (or mode 
fi bre aspect ratio).
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7.11 Effect of mean fi bre length (or mean fi bre aspect ratio) on the 
fl exural modulus of SFRP for the cases of: (a) continuous FOD, 
(b) uniform FOD and (c) layered structure. Adapted from Fu et al., 
1999.
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Xia et al. (1995) proposed a model for prediction of the fl exural modulus 
of SFRP composites in which the composite is treated as a sandwich beam. 
First, the elastic moduli for the skin and core layers are obtained. Then, the 
composite fl exural modulus is obtained from the composite beam theory. 
Depending on the fi bre orientation in the skin layer, its elastic modulus can 
be obtained from:
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7.12 Effect of mode fi bre length (or mode fi bre aspect ratio) on the 
fl exural modulus of SFRP for: (a) a large mean fi bre length with a 
value of 3.198 mm (or a large mean fi bre aspect ratio with a value of 
319.8); and (b) a small mean fi bre length with a value of 0.2 mm (or a 
small mean fi bre aspect ratio with a value of 20). Adapted from Fu 
et al., 1999.
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E E l f l l
l

l

c
s d= ( ) ( )∫ 11

min

max

.  7.45

Similarly, based on the fi bre orientation in the core layer, the elastic modulus 
Ec

c of the core layer can be obtained using the modifi ed Halpin–Tsai equa-
tion and eqn [7.45]. Finally, the fl exural modulus of SFRP composites is 
determined from:

E E I E I IFlex c
s

s c
c

c= +( ) ,  7.46

where Is, Ic and I are, respectively, the moments of inertia of the cross section 
of the skin layer, the core layer and the injection moulded composite part, 
and are given by:

I b h h h hs s s c s= + +( )( )3 26 2  7.47

I b hc s= ( )3 12  7.48

I b h= ( )3 12 ,  7.49

where hs and hc are, respectively, thickness of the skin and core layers, and 
b and h are the width and thickness of the injection moulded composite 
part.

Experimental results of fl exural modulus in the 90° (fl ow direction) and 
0° (transverse to resin fl ow direction) for long fi bre reinforced polyamide 
(PAL) and short fi bre reinforced polyamide (PAS) materials and the cal-
culated results using eqn [7.46] are listed in Table 7.1 (Xia et al., 1995). PAL 
shows about the same fl exural modulus values as those of PAS. The theo-
retical results coincide with the experimental data. This is explained by the 
fi bre orientation in the skin and core layers and fi bre orientation is regarded 
as the most important factor infl uencing the fl exural modulus of moulded 
composites. Moreover, since the fi bres in the surface layers are well oriented 
along the fl ow direction, the anisotropy of the fl exural modulus occurs in 
both the moulded PAL and PAS composites. Thus, the transverse composite 

Table 7.1 Comparisons of experimental and theoretical results for fl exural 
modulus of SFRP composites; all units in GPa. Adapted from Xia et al., 1995

Material type 90° direction (main fl ow 
direction, MFD)

0° direction (transverse 
to MFD)

Experiment Theory Experiment Theory

PAS 7.533 7.703 4.402 5.041
PAL 7.221 7.713 4.107 4.940
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modulus is quite different from and much lower than the longitudinal com-
posite fl exural modulus.

Results for the fl exural modulus of injection moulded discontinuous long 
glass fi bre reinforced polypropylene composites are plotted in Fig. 7.13 
(Thomason, 2005). It is seen that the composite fl exural modulus increases 
almost linearly with increasing glass fi bre content. In general, the composite 
fl exural modulus increases with fi bre content and fi bre length but decreases 
with fi bre orientation angle. It is shown that the mean fi bre length decreases 
while the fi bre orientation angle parallel to the fl ow direction increases with 
increasing fi bre content (Thomason, 2005). Therefore, the effects of both 
fi bre length and fi bre orientation balance each other out as the fi bre content 
increases. Consequently, the composite fl exural modulus increases linearly 
with the increase of fi bre content.
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8
Thermal conductivity and expansion of 

short fi bre reinforced polymer composites

Abstract: Polymers are added with inorganic short fi bres such as short 
glass and short carbon fi bres with relatively high thermal conductivity 
to fabricate composites that can meet high thermal conductivity 
requirements for applications where highly thermally conductive 
materials are required. Further, dimensional stability is also important 
for polymers that are used in areas where temperature changes often 
occur. In this chapter, theoretical models for the thermal conductivity 
and thermal expansion of SFRPs are presented and their thermal 
properties are discussed as a function of the component properties, 
fi bre length distribution and fi bre orientation distribution for 
the cases of unidirectional, misaligned and randomly distributed 
fi bres.

Key words: thermal conductivity, thermal expansion, unidirectional, 
misaligned, random distribution.

8.1 Introduction

Polymer materials are often used as thermal insulators because of their 
low thermal conductivity. However, when they are used in electronic pack-
aging applications, for example, where highly thermally conductive materi-
als are required, polymers are added with inorganic fi llers with high 
thermal conductivity to fabricate composites that can meet the high 
thermal conductivity requirement. In designing such fi lled polymers, the 
prediction of thermal conductivity of the fi nal composite products is essen-
tial. Moreover, dimensional stability is important for polymers that are 
used in areas where temperature changes would occur. Polymers usually 
have a relatively high thermal expansion and therefore their thermal 
expansion should be decreased to increase dimensional stability for such 
applications in which temperature often changes. Hence, inorganic fi llers 
such as short glass fi bres and short carbon fi bres are introduced to polymer 
matrices to signifi cantly reduce thermal expansion. Thermal expansion of 
short fi bre reinforced polymer (SFRP) composites is dependent on fi bre 
length and orientation distributions and its prediction is addressed in this 
chapter.

184
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8.2 Thermal conductivity

Many reports have been published on the improvement of thermal conduc-
tivity of polymers by fi lling with thermally conductive fi llers. The thermal 
conductivity of composites is known to increase exponentially with increase 
of fi ller content. SFRP composites are attractive materials for electronic 
packaging applications where the combination of reinforcement with high 
thermal conductivity embedded in a resin matrix with low thermal conduc-
tivity is desirable to maintain a low temperature environment for thermally 
sensitive electronic packaging components. A number of analytical models 
have been proposed to predict thermal conductivity of short fi bre rein-
forced polymer composites (Halpin, 1984; Nielsen, 1973; Willis, 1977; 
Normura and Chou, 1980; Chou and Nomura, 1981; Hatta and Taya, 1985; 
Chen and Wang, 1996). They are, however, focused on either aligned short 
fi bre composites (Halpin, 1984; Normura and Chou, 1980) or completely 
random short fi bre composites (Nielsen, 1973; Willis, 1977) or short fi bre 
composites with fi bres of a constant fi bre length (Chou and Nomura, 1981; 
Hatta and Taya, 1985; Chen and Wang, 1996). Fibre length distribution 
(FLD) always exists in injection moulded SFRP composites. However, all 
the above models did not consider the effect of FLD on thermal conductiv-
ity of SFRP composites. It has been shown that FLD plays an important 
role in determining the thermal conductivity (Fu and Mai, 2003). Moreover, 
due to partial fi bre alignment, the fi bre orientation distribution (FOD) also 
has a signifi cant effect on the thermal conductivity of SFRP composites.

In this chapter, the unidirectional SFRP case is fi rst considered. The 
thermal conductivity of partially aligned SFRP composites with a FLD and 
a FOD is next discussed. Finally, the two-dimensional (2D) and three-
dimensional (3D) random cases are considered.

8.2.1 Thermal conductivity of unidirectional 
SFRP composites

Thermal conductivity is a bulk property, analogous to elastic modulus. It is 
well accepted that a mathematical analogy exists between thermal conduc-
tion and elasticity of fi bre composites. Similar to the predictions of the 
elastic modulus using the laminate analogy approach (LAA) (Fu and 
Lauke, 1998a) to evaluate the thermal conductivity of SFRP composite in 
the ‘1’ direction as shown in Fig. 8.1, which depends on the orientation 
distribution of the angle (θ) that the fi bres make with the ‘1’ direction, we 
need to fi rst evaluate the thermal conductivity of the corresponding unidi-
rectional short fi bre composites by assuming all the fi bres lie in the 1–2 
plane. It has been shown by Choy et al. (1992, 1994), Progelhof et al. (1976), 
Nielsen (1974), Bigg (1986) and Agari et al. (1991) that the Halpin–Tsai 
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equation can be used to describe the thermal conduction of unidirectional 
short fi bre composites. For a unidirectional lamina, the thermal conductivi-
ties parallel (K1) and perpendicular (K2) to the fi bre direction are given by 
(Halpin, 1984):

K
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where l is fi bre length and d is fi bre diameter, and v is fi bre volume fraction. 
Km is the thermal conductivity of matrix, and μ1 and μ2 are obtained from:
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where Kf1 and Kf2 are thermal conductivity of the fi bre in the direction 
parallel and transverse to the fi bre axis direction, respectively.

When the fi bres in the lamina are oriented at an angle θ with respect to 
the 1-axis, the composite thermal conductivities along the 1-axis and 2-axis 
are given by Choy et al. (1994):

′ = +K K K1 1
2

2
2cos sinθ θ  8.5

′ = +K K K2 1
2

2
2sin cos .θ θ  8.6

The linear fl ux along a given direction through a lamina of a multidirec-
tional laminate can be obtained by the temperature gradient. The total heat 
fl ux through the laminate can be obtained by integrating along it thickness. 
The thermal conductivity of a laminate can thus be integrated through its 
thickness since temperative gradient is continuous. By assuming the heat 

2

Fibre
1

3

θ

φ

8.1 Defi nitions of spatial fi bre orientation angles θ and φ.
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fl ux through all the laminae, the composite thermal conductivities are 
determined by (Choy et al., 1992, 1994):

K K K V K K1 1 2 1 2
1
2

1
2

c = +( ) + −( )  8.7

K K K V K K2 1 2 1 2
1
2

1
2

c = +( ) − −( ),  8.8

where V is given by:
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and λ is a parameter characterising the degree of fi bre orientation to be 
given later. On the contrary, it has been shown (Bigg, 1986) that the thermal 
conductivity of unidirectional SFRP composites can also be predicted accu-
rately by Nielsen’s model (1973):
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where vmax is the maximum fi bre fraction possible while still maintaining a 
continuous matrix phase, and is referred to as the maximum packing frac-
tion. The maximum fi ller packing volume fraction is dependent on the 
dispersion state and the fi ller shape as shown in Table 8.1 (Nielsen, 1974; 
Okamoto and Ishida, 1999).

It is easy to ascertain that the Halpin–Tsai and Nielsen equations give 
similar predictions. Comparison between these two models for the predic-
tion of the thermal conductivities of SFRP composites is given in Fig. 8.2, 
where vmax = 0.907 for uniaxial hexagonal alignment (vmax = 0.785 for simple 
cubic alignment, similar results can be obtained), d = 10 μm, l = 0.5 mm, Kf1 
= Kf2 = 10.4 mW cm−1 K−1, and Km = 2.0 mW cm−1 K−1. From Fig. 8.2, it can 
be seen that the two models give similar (very close) predictions, except 
there is a small difference in the transverse thermal conductivity. Thus, it is 
more convenient to use the Halpin–Tsai equation for prediction of thermal 
conductivity of unidirectional SFRP composites since it does not need the 
parameter, vmax, which depends on fi bre alignment (or packing geometry).
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Nomura and Chou (1980) presented bounds of the effective thermal 
conductivities for unidirectional short fi bre composites based on an 
approach originally developed by them for the composite effective elastic 
modulus. For a binary system, the bounds of thermal conductivity are given 
by the following explicit forms:

Table 8.1 Maximum fi ller packing fractions (Nielsen, 1974; Okamoto and Ishida, 
1999)

Shape of 
fi llers

Type of packing Maximum packing 
fraction

Spheres Hexagonal close packed 0.741
Spheres Face centered cubic 0.741
Spheres Body centered cubic 0.600
Spheres Simple cubic 0.524
Spheres Random close packed 0.637
Spheres Random loose packed 0.601
Rods or fi bres Uniaxial hexagonal close packed 0.907
Rods or fi bres Uniaxial simple cubic 0.785
Rods or fi bres Uniaxial random 0.820
Rods or fi bres Three-dimensional random 0.520

From Okamoto and Ishida (1999) (Journal of Applied Polymer Science, Vol. 72, 
No. 13, 1999, p. 1692. Copyright 1999 John Wiley & Sons Inc. Reprinted with 
permission of John Wiley & Sons Inc.).
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8.2 Predicted thermal conductivity of unidirectional short fi bre 
composites by Halpin–Tsai equation (Halpin, 1984) and Nielsen 
equation (1974). Adapted from Fu and Mai (2003) (Journal of Applied 
Polymer Science, Vol. 88, No. 6, 2003, p. 1500. Copyright 2003, John 
Wiley & Sons Inc. Reprinted with permission of John Wiley & Sons 
Inc.).
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where h(t) is:
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and t is the fi bre aspect ratio (l/d). In the case of spherical inclusion, h(t) = 
2/3 for t = 1. And for the special case of continuous fi bres, h(t) = 1 for t = ∞, 
eqn [8.15] becomes:

K vK v K1 = +f m m.  8.17

8.2.2 Thermal conductivity of misaligned 
SFRP composites

As mentioned above, thermal conductivity is a bulk property analogous to 
modulus. The elastic modulus of misaligned SFRP composites has been 
successfully predicted using the laminate analogy approach (LAA) (Fu and 
Lauke, 1998a). Therefore, here, the LAA is used to derive an expression for 
the thermal conductivity of SFRP composites including effects of fi bre 
volume fraction, FLD and FOD.

In the LAA, the SFRP composites can be simulated as a sequence of 
a stack of various laminae with different fi bre orientations and different 
fi bre lengths. Successive development of the laminated plate model of a 
three-dimensionally (3D) misaligned SFRP composite is shown in Fig. 8.3. 
The SFRP composite with a 3D spatial FOD function g(θ,φ) = g(θ)g(φ)/
sinθ having fi bre ends in the three visible planes (see Fig. 8.3(a)) is fi rst 
replaced by a SFRP composite with the same g(θ) but φ = 0, having no 
fi bre ends in the 1–2 plane or no fi bres in the out-of-plane direction 
(represented by the 3-axis) (see Fig. 8.3(b)). Then, according to the FLD, 
this composite is regarded as a combination of laminates, each comprising 
fi bres having the same fi bre length (see Fig. 8.3(c); ‘L(li), i = 1, 2,  .  .  .  , n’ 
denotes the ith laminate containing fi bres of the same length li). Each 
laminate with the same fi bre length is then treated as a stacked sequence 
of laminae; each lamina consists of fi bres having the same fi bre length 
and the same fi bre orientation (see Fig. 8.3(d), ‘L(li,θj), j = 1, 2,  .  .  .  , m’ 
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denotes the jth lamina containing fi bres having the same length li and 
the same angle θj).

In a unidirectional lamina, a linear relationship between heat fl ux and 
temperature gradient in the directions parallel and perpendicular to the 
fi bre direction (namely, in the local coordinate system) is given by:

q K T ii i i= − ∇ =, , .1 2  8.18

In the global coordinate system, the fi bres of the lamina are oriented at an 
angle θ (θ ≠ 0) relative to the measured direction; the linear relationship 
between heat fl ux and temperature gradient is:

(a) (b)

(c)

L(l1) L(l2) … L(ln) L(li , θ1 = 0°) L(li , θm = 90°)L(li , θ2)…

(d)

2

3

1

θ

φ

8.3 Simulations of the laminated plate model of a 3D misaligned SFRP 
composite: (a) real 3D SFRP; (b) supposed SFRP; (c) supposed SFRP is 
considered as combination of laminates – each laminate has the same 
fi bre length; and (d) each laminate is treated as a stacked sequence of 
laminae – each lamina has the same fi bre length and the same fi bre 
orientation. Adapted from Fu and Mai (2003) (Journal of Applied 
Polymer Science, Vol. 88, No. 6, 2003, p. 1499. Copyright 2003, John 
Wiley & Sons Inc. Reprinted with permission of John Wiley & Sons 
Inc.).
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′ = − ′∇ ′ =q K T ii i i , , .1 2  8.19

Let us introduce a transformation tensor Xij defi ned by:

Y X Yi ij j= ′,  8.20

where Yi and Y′j are the components of a vector Y in the local and global 
coordinate systems, respectively. Then, we have:

X q K X Tij i i ij j
− ′ = − ∇ ′1 .  8.21

So,

′= −K X K Xi ij i ij
1 ,  8.22

where the coordinate transformation tensor Xij is given by:

X ij = −{ }cos sin
sin cos

.
θ θ

θ θ  8.23

Finally, we obtain:

′ = +K K K1 1
2

2
2cos sin .θ θ  8.24

The total heat fl ux along the 1′-axis in the global coordinate system for a 
multi-laminate then becomes:

′ = ′ = − ′ ∇ ′
= =

∑ ∑Q q h K T h1 1
1

1
1

1k
k

M

k

M

k,  8.25

where M represents the number of plies in the laminate, k is the serial index 
of the ply in the laminate, and hk is the thickness fraction of the kth ply. 
Since the temperature gradient is continuous across the thickness, eqn [8.25] 
is reduced to:

′ = − ∇ ′Q K T1 1c ,  8.26

where the thermal conductivity of the composite laminae is:

K K h K f l g l
l l

l

c
k

M

k d d= ′ = ′
= ==

∑ ∫∫1
1

1 ( ) ( ) .
min

max

min

max

 8.27

The thermal conductivity of the SFRP composite with a FLD and a FOD 
can be evaluated using eqn [8.27]. However, if it is used to predict the com-
posite thermal conductivity, no interaction between short fi bres with differ-
ent orientation angles and different fi bre lengths can be included. Thus, to 
consider the effect of fi bre interaction on composite thermal conductivity, 
the fi bres with a volume fraction v are divided into two equal halves 
having the same FLD and FOD. The fi rst half of the fi bres is incorporated 
into the pure polymer matrix. The thermal conductivity can then be 
evaluated using eqn [8.27]. The fi lled polymer matrix is considered as the 
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effective matrix for the second half of the fi bres. It should be noted that the 
effective fi bre volume fraction is v/(2 − v) and the obtained thermal con-
ductivity is taken as Km for the second half of the fi bres. Now, the second 
half of the fi bres is incorporated into this effective matrix. The interaction 
between short fi bres of different orientation angles and different lengths 
can then be incarnated in a manner such that the second half of the fi bres 
is incorporated into the effective matrix containing the fi rst half of the 
fi bres. Finally, the overall composite thermal conductivity can be predicted 
using eqn [8.27] and the fi bre volume fraction is equal to v/2 for the second 
half of the fi bres.

Figure 8.4 shows the effect of mean aspect ratio on the thermal conduc-
tivity of short glass and short carbon fi bre reinforced poly(phenylene 
sulfi de) (PPS) composites (Choy et al., 1992), where v is fi xed at 0.3, θmean = 
36° (p = 0.6 and q = 1 for fi bre orientation distribution), for short carbon 
fi bres (SCF), d = 7 μm, the thermal conductivities of carbon fi bre are: Kf1 = 
94 mW cm−1 K−1, Kf2 = 6.7 mW cm−1 K−1 27 and lmean/d varies by changing a 
(b is fi xed at 1.2) and other parameters are the same as in Fig. 8.2. It can 
be seen that the thermal conductivity of short glass fi bre reinforced polymer 
composites increases very slightly with the increase of mean fi bre aspect 
ratio when it is small (<∼10) and becomes insensitive to fi bre aspect ratio 
when the fi bre aspect ratio is large (>∼10). However, the thermal conductiv-
ity of short carbon fi bre reinforced polymer composites increases dramati-
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8.4 Effect of mean fi bre aspect ratio on thermal conductivity of SFRP 
composites. Adapted from Fu and Mai (2003) (Journal of Applied 
Polymer Science, Vol. 88, No. 6, 2003, p. 1502. Copyright 2003, John 
Wiley & Sons Inc. Reprinted with permission of John Wiley & Sons 
Inc.).
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cally with increase of mean fi bre aspect ratio, especially when the fi bre 
aspect ratio is less ∼100. Moreover, the thermal conductivity of the glass 
fi bre composite is much lower than the thermal conductivity of the carbon 
fi bre composite. This is because the thermal conductivity of carbon fi bre is 
much higher than that of glass fi bre in the fi bre axis direction (Kf1/Km = 5.2 
for glass fi bre and Kf1/Km = 47 for carbon fi bre), and hence the thermal 
conductivity of the glass fi bre composite will be much lower than that of 
the carbon fi bre composite at a similar fi bre content (e.g., by a factor of ∼3.8 
at v = 0.3 and fi bre aspect ratio = 80). The thermal conductivity of the glass 
fi bre composite is also much less sensitive to the fi bre length than the 
thermal conductivity of the carbon fi bre composite.

Figure 8.5 shows the effect of mean fi bre orientation angle on the thermal 
conductivity of SFRP composites, where the parameters are the same as in 
Fig. 8.4 except lmean = 424 μm (a = 2.6 and b = 1.2) and θmean varies by chang-
ing p (q is fi xed at 1). It is observed that the thermal conductivity of short 
glass fi bre reinforced polymer composites decreases slowly with increase of 
mean fi bre orientation angle. But, the thermal conductivity of short carbon 
fi bre reinforced polymer composites decreases signifi cantly with increasing 
mean fi bre orientation angle θmean. This indicates that the thermal conduc-
tivity of the carbon fi bre composite is more sensitive to fi bre orientation 
than the thermal conductivity of the glass fi bre composite. This is because 
on one hand, glass fi bres are isotropic, and on the other, the thermal 
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8.5 Effect of mean fi bre orientation angle on thermal conductivity of 
SFRP composites. Adapted from Fu and Mai (2003) (Journal of 
Applied Polymer Science, Vol. 88, No. 6, 2003, p. 1502. Copyright 
2003, John Wiley & Sons Inc. Reproduced with permission of John 
Wiley & Sons Inc.).
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conductivity of carbon fi bre is much higher than that of glass fi bres in the 
fi bre axis direction.

Also, eqn [8.27] can be used to evaluate the thermal conductivity of the 
SFRP composite in any given direction (Θ,Φ), but the angle θ must be 
replaced by the angle δ, where the angle δ is that between the fi bre axial 
direction (θ,φ) and the direction (Θ,Φ), given by (Fu and Lauke, 1998b), 
see eqn [6.89]:

cos cos cos sin sin cosδ θ θ φ= + −( )Θ Θ Φ .  8.28

Combining eqns [8.27] with [8.28] gives predictions of the anisotropic 
thermal conductivity of SFRP composites.

The above theory is applied to published experimental results as shown 
in Table 8.2 for the thermal conductivity of short glass fi bre and short 
carbon fi bre reinforced poly(phenylene sulfi de) (PPS) composites (Choy 
et al., 1992) and poly(ether ether ketone) (PEEK) composites (Choy et al., 
1994). The thermal conductivities of the surface and skin layers were mea-
sured separately. The data for the parameters used are as follows: Km = 
2.43 mW cm−1 K−1 for PEEK, Km = 2 mW cm−1 K−1 for PPS; Kf1 = Kf2 = 
10.4 mW cm−1 K−1 for glass fi bre; Kf1 = 94 mW cm−1 K−1 for the carbon fi bre 
used in PPS and Kf1 = 80 mW cm−1 K−1 for the carbon fi bre used in PEEK 
and Kf2 = 6.7 mW cm−1 K−1. An alternative expression for the FOD density 
function is given by Choy et al. (1992, 1994):

g θ λ λθ λπ( ) = − ⋅ −( ) − −( )[ ]exp exp1 2  8.29

and values of λ are given in Table 8.2. The average fi bre aspect ratios for 
the four composites of PEEK30cf, PPS30cf, PPS40cf and PPS40gf are, 
respectively, 17 (a = 55.4 and b = 2), 21 (a = 36.3 and b = 2), 16 (a = 62.7 and 

Table 8.2 Comparison between theoretical predictions and experimental results 
(Choy et al., 1992, 1994) for thermal conductivity Kc (mW cm−1 K−1) of four composites

Composites Volume 
fraction

λ Kc

Surface layer Middle layer

Surface 
layer

Middle 
layer

Exp. Theo.b1 Theo.b2 Exp. Theo.b1 Theo.b2

PEEK30cfa 0.214 3.3 2.4 11.6 9.96 11.87 10.8 9.45 11.16
PPS30cfa 0.243 4.1 1.9 15.2 12.50 14.96 12.4 10.97 12.88
PPS40cfa 0.335 4.7 2.1 17.2 15.89 19.76 15.6 13.92 16.96
PPS40gfa 0.264 5.3 2.9 4.08 3.93 3.96 3.99 3.84 3.89

Notes: 
a: 30cf, 40cf, and 40gf denote 30 wt% carbon fi bre, 40 wt% carbon fi bre, and 40 wt% 
glass fi bre, respectively. Theo.b1 and Theo.b2 denote the theoretical values before and 
after taking into account the effect of fi bre interaction, respectively.

�� �� �� �� ��



 Expansion of short fi bre reinforced polymer composites 195

b = 2), and 17 (a = 27 and b = 2). Clearly, the theoretical results are in good 
agreement with experimental data when considering the effect of the fi bre 
interaction. When the effect of fi bre interaction is not included, the pre-
dicted results are lower than the experimental values.

Chen and Wang (1996) also studied the effective thermal conductivity of 
composites containing misoriented short fi bres. The thermal conductivity of 
planar orientation distribution, namely, transversely isotropic distribution 
of fi bres, was considered. A symmetrical angular fi bre distribution function 
around the major alignment direction was assumed and a single parameter 
of an exponential function was used to describe the fi bre orientation distri-
bution in the SFRP composites. Fibre length distribution was not described 
and constant length was assumed implicitly in SFRP composites. A rela-
tively complicated method based on the idea of Mori–Tanaka’s mean fi eld 
theory (1973) in conjunction with Eshelby’s equivalent inclusion method 
(1957) for steady-state heat conduction in a composite including the effects 
of fi bre length and orientation to predict the thermal conductivity of 
SFRP composites was presented. The theory was also used to examine the 
thermal conductivity of injection moulded tensile bars of poly(pheylene 
sulfi de) reinforced with 30% and 40% by weight of carbon or glass fi bres 
(Choy et al., 1992). While their reported theoretical values are also close to 
the experimental data, their analytical expressions are quite complicated 
and diffi cult to use for the prediction of injection moulded SFRP 
composites.

8.2.3 Thermal conductivity of 2D and 3D random 
SFRP composites

For a two-dimensionally (2D) random short fi bre composite, g(θ) = 2/π, the 
expression for the composite thermal conductivity can be obtained from 
eqns [8.24] and [8.27] for 0 ≤ θ ≤ π/2 as follows:

K K f l l K f l l
l l

l

l l

l

c d d= +
⎛

⎝
⎜

⎞

⎠
⎟

= =
∫ ∫

1
2

1 2( ) ( ) .
min

max

min

max

 8.30

Similarly, for a 3D random short fi bre composite, g(θ,φ) = g(θ)g(φ)/sinθ = 
1/2π, and g(θ) = sinθ. So, the expression for the composite thermal conduc-
tivity can be obtained from eqns [8.24] and [8.27] for 0 ≤ θ ≤ π/2, so that:

K K f l l K f l l
l l

l

l l

l

c d d= +
= =
∫ ∫

1
3

2
3

1 2( ) ( ) .
min

max

min

max

 8.31

When the fi bre length has a constant value, eqns [8.30] and [8.31] can be 
simplifi ed to:

K K Kc for D random case= +( )1
2

21 2  8.32
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K K Kc for D random case.= +1
3

2
3

31 2  8.33

The above equations, [8.32] and [8.33], are employed to predict the thermal 
conductivity of 2D and 3D random short fi bre composites, respectively. 
The predicted results are, respectively, shown in Figs 8.6(a) and 8.6(b), 
where the following values of the parameters are used: l/d = 100, Kf1/Km = 
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8.6 Thermal conductivity of (a) 2D and (b) 3D random SFRP composite 
as a function of v with Kf1/Km = Kf2/Km = 20 and l/d = 100 (Journal of 
Applied Polymer Science, Vol. 88, No. 6, 2003, p. 1503. Copyright 
2003, John Wiley & Sons Inc. Reproduced with permission of John 
Wiley & Sons Inc.).
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Kf2/Km = 20. The predicted results by other theories (Chou and Nomura, 
1981; Hatta and Taya, 1985) are also displayed in these two fi gures. It is seen 
that when the fi bre interaction is taken into account, the predicted values 
by the present theory, eqns [8.32] and [8.33], lie between those by the 
bounding model (Chou and Nomura, 1981) and are close to those by the 
Hatta and Taya model (1985) which also considers the effect of fi bre inter-
action. Although the Hatta and Taya model can give accurate prediction of 
the thermal conductivity of short fi bre composites having a constant fi bre 
length, it is not suitable for the prediction of the thermal conductivity of 
injection moulded SFRP composites having a FLD. When the fi bre interac-
tion is not considered, the predicted values by the present model become 
lower and are close to the lower values predicted by the bounding model 
(Chou and Nomura, 1981). The composite thermal conductivity increases 
dramatically with increasing fi bre volume fraction, indicating that the fi bre 
content plays an important role in infl uencing the thermal conductivity of 
SFRP composites (see Fig. 8.6).

Comparison of the electrical and thermal conductivities of polyethyl-
ene composites fi lled with randomly dispersed and disoriented carbon 
fi bres is made by Agari et al. (1991), in which the fi bre aspect ratio 
changes from 1 to 21.8 (far less than 100). The composites show virtually 
the same level of electric conductivity as that of the polymer matrix until 
the fi ller fraction reaches the percolation threshold where a rapid increase 
in electric conductivity starts. After this critical volume fraction, the com-
posite electric conductivity gradually approaches a plateau. It is noted 
that the critical volume fraction decreases dramatically with increasing 
fi bre aspect ratio from 30.1% for powdery particles to 1.6% for short 
fi bres with an aspect ratio of 21.8. Conversely, the thermal conductivity 
of short carbon fi bre reinforced polyethylene composites consistently 
increases with increasing fi ller content. In the isotropic composite (namely, 
short carbon fi bres are randomly dispersed and oriented), the longer the 
fi bre length, the larger is the composite thermal conductivity. These 
observations are consistent with the theoretical results shown in Figs 8.4 
and 8.6.

Dunn et al. (1991) presented a combined analytical and experimental 
study to study the effective thermal conductivity of hybrid Kerimid com-
posite materials containing Al2O3 short fi bres and Si3N4 whiskers. The analy-
sis utilises the equivalent inclusion approach for steady-state heat conduction 
(Hatta and Taya, 1986) through which the interaction between various 
reinforcing phases at fi nite concentrations is approximately considered by 
Mori–Tanaka’s (1973) mean fi eld approach. The results show that the com-
posite thermal conductivity increases markedly with increasing fi bre volume 
fraction for 2D and 3D random cases. This observation is consistent with 
that shown in Fig. 8.6.
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8.3 Thermal expansion

When a body undergoes a temperature change, there will be a change in its 
dimensions relative to its original dimensions proportional to the tempera-
ture change. The coeffi cient of thermal expansion is defi ned as the change 
in the linear dimension of the body per unit change of temperature. In this 
section, thermal expansions of SFRP composites are discussed, respectively, 
for the unidirectional case, the partially misaligned case, and the 2D and 
3D random cases.

8.3.1 Thermal expansion of unidirectional SFRP composites

For a unidirectional lamina, the linear coeffi cients (α0
1 and α 0

2) of thermal 
expansion parallel (1-direction) and transverse (2-direction) to the fi bres 
are given by Schapery (1968):

α α α
1
0 =

+
+

E v E v
E v E v

f f m m m

f m m

 8.34

α ν α ν α α ν ν2
0

1
01 1= +( ) + +( ) − +( )f f m m m f m mv v v v ,  8.35

where αf is the thermal expansion coeffi cient of the fi bres, αm the thermal 
expansion coeffi cient of the matrix. νf and νm are the Poisson’s ratio of the 
fi bres and the matrix, respectively.

Equations [8.34] and [8.35] for α 0
1 and α 0

2 are derived using the mechanics 
of materials approach. Assume only a temperature ΔT is applied, the unidirec-
tional lamina has zero overall load in the unidirectional direction, then we have:

σ σF M mv v+ = 0.  8.36

The stresses in the fi bre and matrix (σF and σM) caused by the thermal 
expansion mismatch between fi bre and matrix are:

σ ε αF f F f= − ΔE T( ),  8.37

σ ε αM m M m= − Δ( )E T .  8.38

Substitution of the above two equations in eqn [8.36] and realisation of 
iso-strains in the fi bre and the matrix yield:

ε α α
F

f f m m m

f m m

=
+
+

Δ
E v E v
E v E v

T .  8.39

For free expansion in the longitudinal direction in the composite, the lon-
gitudinal strain is:

ε αC = Δ1
0 T .  8.40

Since the composite strain is approximately equal to that in the fi bre and 
matrix, combination of the above two equations gives α0

1 (eqn [8.34]).
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Moreover, the fi bre stress in the longitudinal direction is:

σ ε ε α αF f F f C f f( ) = ( ) = = −( )Δ1 1
1

1
0E E E T .  8.41

And the matrix stress in the longitudinal direction is:

σ ε ε α αM m M m C m m( ) = ( ) = = −( )Δ
1 1

1
1
0E E E T.  8.42

The strains in the fi bre and in the matrix in the transverse direction are, 
respectively, given by:

ε α
ν σ

F f
f F

f

( ) = Δ −
( )

2
1T

E
,  8.43

ε α
ν σ

M m
m M

m

( ) = Δ −
( )

2
1T

E
.  8.44

The transverse strain in the composite is given by the rule of mixtures as:

ε ε εC F M( ) = ( ) + ( )2 2 2v vm .  8.45

Substitution of eqns [8.43] and [8.44] in eqn [8.45] gives:

ε α
ν α α

α
ν α α

C f
f f f

f

m
m m m

m

( ) = Δ −
−( )Δ⎡

⎣
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1
0

1
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8.46

Since (εC)2 = α2ΔT, then we obtain:

α α ν α α α ν α α2
0

1
0

1
0= − −( )⎡⎣ ⎤⎦ + + −( )⎡⎣ ⎤⎦f f f m m m mv v ,  8.47

and because v12 = vfv + vmvm, in which v + vm = 1, we have:

α ν α ν α α ν2
0

1
0

121 1= +( ) + +( ) −f f m m mv v .  8.48

When short fi bres of length l are used in the SFRP composite, the effec-
tive fi bre modulus Ef is reduced in the ratio (Cox, 1952):

λ
η

η
= − ( )

1
2

2
tanh

,
l

l
 8.49

where η has been defi ned in Chapter 6. Thus, for SFRP composites, α0
1 is 

given by:

α
λ α α

λ1
0 1

1
=

+ −( )
+ −( )

E v E v

E v E v
f f m m

f m

.  8.50

Assumed that the packing of fi bres is hexagonal as shown in Fig. 6.2(b) and 
the short fi bres are uniformly distributed in the SFRP composite, the fi bre 
volume fraction can be obtained as:
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v
r l

R l
=

+( )
π

δ
f
2

0
22 3

,  8.51

where δ is the fi bre end gap. If δ = 0, eqn [8.51] becomes eqn [6.14].
If the fi bres in the SFRP composite are oriented at an angle θ relative to 

the 1-direction as shown in Fig. 8.1, the thermal expansion coeffi cients in 
the 1-direction and in the 2-direction, respectively, become:

α α θ α θ1 1
0 2

2
0 2= +cos sin  8.52

α α θ α θ2 1
0 2

2
0 2= +sin cos  8.53

8.3.2 Thermal expansion of misaligned SFRP composites

Short fi bre reinforced polymer (SFRP) composites are developed to fi ll the 
mechanical property gap between continuous fi bre laminates and unrein-
forced polymers. SFRP composites are frequently fabricated using conven-
tional techniques for making plastic materials such as extrusion compounding 
and injection moulding (Fu and Lauke, 1997a, 1998c,d; Fu et al., 1999c; 
Ulrych et al., 1993; Takahashi and Choi, 1991; Gupta et al., 1989; Xia et al., 
1995; Chin et al., 1988; Hine et al., 1995). During processing, considerable 
shear-induced fi bre breakage results in a fi bre length distribution (FLD), 
and progressive and continuous changes in fi bre orientation lead to a fi bre 
orientation distribution (FOD) in fi nal injection moulded composite parts. 
The FLD and the FOD affect both the mechanical and the thermal proper-
ties of SFRP composites. The mechanical properties of SFRP composites 
have been extensively studied by taking into account the effects of FLD 
and FOD (Fu and Lauke, 1996, 1997b, 1998a,b; Fu et al., 1999a; Lauke and 
Fu, 1999) and discussed in other chapters of this book. In the following, the 
effects of FLD and FOD on the thermal expansion of misaligned SFRP 
composites are addressed.

The FLD and the FOD can be modelled by proper probability density 
functions (Fu and Lauke, 1996, 1997b, 1998a,b; Fu et al., 1999b; Lauke and 
Fu, 1999); see also Chapter 3. The thermal expansion coeffi cients of a SFRP 
composite with an FLD and an FOD are derived as functions of FLD, FOD, 
fi bre volume fraction and elastic properties of the fi bres and the matrix 
based on Schapery’s theory (1968). For the general case, i.e., when there are 
FLD, f(l) and FOD, g(θ) in the composite, the thermal expansion coeffi -
cients are obtained from:

α α θ α θ θ θ
θ

π

1 1
0 2

2
0 2

0

2

= +( ) ( ) ( )
==
∫∫ cos sin
min

max

f l g l
l l

l

d d  8.54

α α θ α θ θ θ
θ

π

2 1
0 2

2
0 2

0

2

= +( ) ( ) ( )∫∫
=

sin cos .
min

max

f l g l
l

l

d d  8.55
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The following values of the parameters, except otherwise specifi ed, are 
used for all the fi gures in this section: d = 10 μm, θmean = 12.95° (p = 0.6 
and q = 8), Ef = 72 GPa, Em = 2 GPa, νf = 0.25, νm = 0.4, v = 30%, αf = 
0.54 ppm/°C and αm = 50 ppm/°C. A hexagonal packing of fi bres and 
a uniform fi bre distribution are assumed in the SFRP composites. 
The effect of FLD on the thermal expansion coeffi cients of SFRP compos-
ites is shown in Figs 8.7 and 8.8, respectively, for the cases of fi bre 
aspect ratio larger and less than 100. Figure 8.7 reveals that the thermal 
expansion coeffi cients are nearly independent of the mean fi bre 
aspect ratio for the case of lmean/d > 100. Figure 8.8 shows α1 increases 
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8.7 Effects of FLD on thermal expansion coeffi cients (α1 and α2) of 
SFRP composites, where a = 5 and various b.
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8.8 Effects of FLD on thermal expansion coeffi cients (α1 and α2) of 
SFRP composites, where a = 0.15 and various b.
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with decreasing lmean/d when lmean/d is very small (<∼40) while it is insensi-
tive to lmean/d when lmean/d is > ∼40. Further, α2 is almost insensitive to mean 
fi bre aspect ratio except when lmean/d < ∼25, α2 increases slowly with the 
increase of lmean/d. The insensitivity of the transverse expansion on mean 
fi bre aspect ratio was also reported for oriented short fi bre composites by 
Halpin (1969).

The effect of the FOD on the thermal expansion coeffi cients is shown in 
Fig. 8.9. It can be seen that the infl uence of the mean fi bre orientation angle 
on the thermal expansion coeffi cients is signifi cant. The thermal expansion 
α1 increases dramatically while α2 decreases signifi cantly as the mean fi bre 
orientation angle increases. That is, when the fi bres in the composites are 
misaligned and deviate from the measuring direction, the fi bres give less 
constraint to the thermal expansion of the SFRP composites in the ‘1’ direc-
tion but they provide more constraint to the composite thermal expansion 
in the transverse direction ‘2’.

The effect of fi bre volume fraction on the thermal expansion coeffi cients 
is shown in Fig. 8.10. It shows that fi bre volume fraction has a signifi cant 
infl uence on the thermal expansion coeffi cients. As the fi bre volume frac-
tion increases, both α1 and α2 decrease. This is because the fi bres have a 
much lower thermal expansion coeffi cient than the matrix. Thus, it is an 
effective way to incorporate a suffi cient amount of short fi bres into a poly-
meric matrix to reduce thermal expansion.

In summary, the effects of FLD, FOD and fi bre volume fraction on the 
thermal expansion coeffi cients of SFRP composites are discussed in detail. 
It is shown that FLD has a relatively small infl uence on the thermal expan-
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8.9 Effects of FOD on thermal expansion coeffi cients (α1 and α2) of 
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sion coeffi cients while FOD and fi bre volume fraction have signifi cant 
effects on the thermal expansion coeffi cients.

8.3.3 Thermal expansion of 2D and 3D random 
SFRP composites

The addition of short fi bres to a polymer matrix will reduce the coeffi cient 
of thermal expansion (CTE). If the fi bre orientation is truly random, the 
CTE will be the same in all directions in the 2D planar space or the 3D 
spatial space. Halpin and Pagano (1969) have proposed the following equa-
tion for the case of a 2D random fi bre orientation:

α
α α α α

ν
C = + +

−( ) −( )
+ +( )[ ]

1
0

2
0

11 22 1
0

2
0

11 12 222 2 1 2

E E

E E
,  8.56

where α 0
1 and α 0

2 are longitudinal and transverse thermal expansion coef-
fi cients, respectively, of a unidirectional fi bre composite and are given by 
eqns [8.34] and [8.35]. E11 and E22 are the longitudinal and transverse elastic 
modulus, respectively, of a unidirectional SFRP composite that was given 
in Chapter 6.

Further, for a 2D random short fi bre composite, g(θ) = 2/π, the composite 
thermal expansion coeffi cients can be obtained from eqns [8.54] and [8.55] 
by integration of θ for 0 ≤ θ ≤ π/2. Similarly, for a 3D random short fi bre 
composite, g(θ,φ) = g(θ)g(φ)/sinθ = 1/2π, and g(θ) = sinθ. So, the composite 
thermal coeffi cients can also be obtained from eqns [8.54] and [8.55] by 
integration of θ for 0 ≤ θ ≤ π/2.
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9
Non-linear stress–strain behaviour

Abstract: Composites show deviations of the stress–strain curve from 
a straight line with increasing load. Localised failure mechanisms are 
responsible for the decrease of load-bearing capability leading to 
reductions of stiffness. In this chapter, fi bre–matrix debonding and 
subsequent sliding as well as matrix plasticity are considered and their 
infl uence on composite stiffness is discussed. A viscoelastic, plastic or 
viscoplastic interface causes energy dissipation during cyclic loading. This 
energy loss is coupled with damping of the excited oscillations. Another 
remarkable effect is the strain rate dependence of the polymer matrix, 
which is described in this chapter. The behaviour is modelled and 
compared to published experimental results.

Key words: fi bre–matrix debonding, sliding, viscoplastic interface, 
damping, energy loss, viscoelastic matrix.

9.1 Introduction

For calculation of the effective thermomechanical properties and the full 
macroscopic stress–strain relation of heterogeneous materials, a variety of 
techniques have been developed. Which kind of modelling should be used 
depends mainly on the objective target, that is, whether it is the effective 
macroscopic thermomechanical behaviour or internal stresses in the compo-
nents which are of interest. Kreher and Pompe (1989) provided a compre-
hensive survey of the calculation of internal stresses in heterogeneous solids.

In the micromechanical approaches different length scales must be con-
sidered. On the macroscopic level, the composite shows effective properties. 
These properties are caused by the geometry, the interactions and the 
mechanical properties of the different components. In short fi bre reinforced 
polymer (SFRP) composites only the fi bres, interphases and matrix mate-
rials are distinct phases, where the matrix is the continuous phase which 
contains the others. On condition that the composite does not have large 
gradients of stresses, strains or structure, a so-called localisation can be 
performed for the local stresses σ(x→) and deformations ε(x→) by:

σ σ ε εx A x x B xi i i iand( ) = ( ) ( ) = ( )
where <σ > and <ε> are the mean macroscopic composite stress and strain, 
respectively. The local fi elds within the components may depend on the 
location xi.
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Another relation is obtained by expressing the macroscopic behaviour 
by the local behaviour; this provides the so-called homogenisation relation, 
which is:

σ σ ε ε= ( ) = ( )∫ ∫x V x V
V V

i id and d .

It is an important task to fi nd the local stresses so as to understand the 
composite behaviour. Especially, for interpretation of failure processes, it is 
necessary to know the local situation, since stress concentrates around the 
inclusions. However, considering the complex structure of most composite 
materials, it is hard to determine the functions, A(xi) and B(xi).

A basic survey of the different approaches that have been applied to fi bre 
(and particle) reinforced composites was published by Böhm (1998). He 
discussed modelling of effective thermomechanical properties in the frame-
work of the following techniques:

• mean fi eld and related approaches,
• periodic micro-fi eld approaches or unit cell methods,
• embedded cell approaches, and
• multi-scale models.

These techniques are capable of classifying a huge amount of publications 
concerning the general stress–strain response of composite materials. 
However, if plastic deformation of components also plays a role, other 
approaches have been developed that may not fi t into this framework, 
such as empirical or semi-empirical models, see for example Dvorak and 
Bahei-el-Din (1987).

The mean fi eld approach assumes the local stress and strain within the 
components are constants, i.e. A(xi) = A and B(xi) = B. The often-used ‘rules 
of mixtures’ accounts for this type of approximation. They have been 
applied successfully to evaluate the thermomechanical properties of SFRP 
composites in the linear range, and the approach described in Chapter 6 is 
based on this kind of assumption.

Unit cell methods are especially appropriate for evaluation of local 
non-linearities, such as plasticity of one component or the interaction of 
a component with a crack. Embedded cell methods or self-consistent 
methods use the fi ctive knowledge of the macroscopic material law within 
which the cell is embedded; subsequent averaging about the embedded 
cell provides the boundary conditions (self-consistently) for the macro-
scopic law.

Multi-scale models use the hierarchical structure of some composites that 
consist of a special kind of sub-composite for which one of the above aver-
aging techniques is applicable, i.e., a former component is now replaced, for 
example, by a unit cell or embedded cell.
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For short fi bre reinforced composites one of the fi rst applied theories for 
elliptical inclusions was developed by Eshelby (1957), the so-called equiva-
lent inclusion approach, which is one of the mean fi eld approaches. This 
approach has the advantage that the geometry of the reinforcing compo-
nent is taken into account.

In the elastic case, as for the calculation of modulus in Chapter 6, and in 
the following section we use the unit cell method, where a representative 
unit cell replaces the composite. The fi rst aim is to describe the local varia-
tions of stress and strain within the fi bres and matrix and the interphase. 
Then, with the subsequent application of the homogenisation equation, the 
macroscopic behaviour is calculated.

9.2 Macroscopic stress–strain relationship

In previous chapters composites with linear elastic components and ideal 
bonding at the fi bre–matrix interface were considered. This necessarily 
provides linear relations between composite stress and strain. However, for 
higher loads the stress–strain curve will deviate more and more from a 
straight line due to the initiation of failure mechanisms (see Fig. 9.1). In 
the early stage damage may be restricted to local redistribution of stress 
concentrations. With increasing external load, the cracks cannot be stabi-
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9.1 Stress–strain curves for short glass fi bre reinforced polyethylene 
composites. Adapted from Lauke (1992).
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lised and the accumulation of localised failure turns to macroscopic fracture 
(see Chapters 5 and 10).

In the present discussion of deformation behaviour we are interested 
only in the stage of stable structural weakening leading to a successively 
decreasing stiffness of the composite. Several failure mechanisms have been 
proposed in the literature, which are summarised in Fig. 9.2:

• interfacial debonding (Outwater and Murphy, 1969; Piggott, 1980; Lauke 
and Schultrich, 1983);

• interfacial cracking within the matrix (Sato et al., 1982); crack growth into 
the matrix (Curtis et al., 1978; Taya and Chou, 1982; Takao et al., 1982);

• fi bre breakage (Steif, 1984); and
• plastic instability of the matrix (Kelly and Tyson, 1965; Agarwal et al., 

1974; Pompe and Schultrich, 1974).

In general, these mechanisms may act in combination in a loaded composite. 
In this chapter, the fi bre–matrix debonding and subsequent sliding and 
matrix plasticity are discussed in more detail. But at fi rst the elastic case 
without damage is concisely given below.

9.2.1 Perfectly bonded fi bre–matrix interface

Most studies on the macroscopic stress–strain relations of short fi bre rein-
forced polymers are concerned with the deformation behaviour at small 
stresses, for example, stresses below critical values as debonding limits or 
stresses, which are able to cause matrix plasticity. This case of strictly linear 

9.2 Failure mechanisms responsible for stiffness reduction.
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stress–strain relation corresponds to the problem of effective elastic modulus 
of SFRP composites (see Chapter 6). Therefore, the theory of heteroge-
neous elastic materials can be applied with success. General rules of the 
effective elastic constants can be derived, see for example Kreher and 
Pompe (1989), independent of the special composite structure. The exis-
tence of upper and lower bounds allows model evaluation.

The macroscopic deformation behaviour for such weakly loaded com-
posites with elastic components and ideal bonding was considered in 
Chapter 6. Here, only the elastic stiffness along the fi bre axis on the basis 
of the shear-lag model, described in Chapter 4, is given. In the subsequent 
section these considerations are extended to higher loadings where failure 
mechanisms or matrix plasticity is initiated.

Due to the load-carrying effi ciency of short fi bres, the effective modulus 
is reduced compared to those composites with continuous fi bres. Within the 
framework of the single-fi bre model discussed in Chapter 4, the macro-
scopic deformation can be derived by assuming that the elongation of the 
composite is equal to that of the matrix, averaged over the cross section 
and along the fi bre:

ε ε ε σ σc M M
m

c
Fd d= = ( ) =

−
−

−
⎛
⎝⎜

⎞
⎠⎟∫ ∫

1
2

1
2 1 10
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2

l
z z

E l
z

v
v

v

l l

.  9.1

Inserting the rule of mixtures, eqn [4.4] together with relations [4.6], the 
stress–strain relation becomes linear as given below:

ε σ σ

η

c c c c c m
f

with
2

( ) = = −

− −⎛
⎝⎜

⎞
⎠⎟

E E E
v

v
l

l
E
E

0 0 1

1 1
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tanh( )
,  9.2

where ε was given in eqn [4.10]. In the limiting case of Em → 0, the shear-
lag model by Cox (1952), where fi bres carry tensile stresses only, is obtained.

The infl uence of the surrounding region can be considered with self-
consistent methods by embedding the components in an effective medium. 
Notwithstanding the higher complexity of such a calculation, a relative 
simple expression for E0

c, was derived by Halpin and Tsai (1967):

E E
l d v
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= −⎛
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⎞
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+ ( )( )η
η

η .  9.3

Self-consistent methods of another kind were developed by Hill (1965), 
which have been adopted and applied, for example by Chou et al. (1980), 
to analyse the stiffness of short fi bre reinforced composites. In this, the short 
fi bres were treated as ellipsoidal inclusions. Bounds for elastic moduli were 
given by Nomura and Chou (1984) by using variational principles. With low 
fi bre volume fractions the self-consistent model yields elastic moduli close 
to the lower bound, and the bounds narrow for increasing aspect ratio; for 
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example, the infl uence of the arrangement of the oriented fi bres vanishes 
for long fi bres. For more discussions of stiffness as a function of fi bre volume 
fraction and geometry, and the elastic properties of the constituents under 
low applied strain, see Chapter 6.

9.2.2 Interface debonding and sliding

In this section, the implications of the failure processes on the deformation 
resistance are demonstrated in more detail for debonding at the fi bre–
matrix interface and the subsequent sliding of fi bres against the matrix 
material.

When the applied load reaches the critical value, σ d
c, debonding starts at 

the interface. At this critical stress the shear stress attains the adhesion shear 
strength, τd. It follows from the shear stress distribution, eqn [4.14]:

σ
τ
η

η
τ
η

ηc
d d

f f

d

f f

 = ≈ <<2
2

2
1

E
r E

l
E

r E
lcoth( ) .  9.4

Debonding is followed either by complete or by incomplete sliding depend-
ing on conditions for the relations between the material constants of the 
composite. Detailed equations have been derived by Lauke and Schultrich 
(1983) and Lauke et al. (1990).

Herein, only the expressions for the debonding and sliding lengths and 
the mean shear stress in the sliding region are given because they play a 
decisive role for the deformation and fracture (mechanical) behaviour.

After solving the differential equations for the elastic problem under 
consideration of all boundary and continuity conditions, the following for-
mulae are obtained. The sliding length on one side of the fi bre, ls, and the 
mean shear stress are given by:
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9.5

and the debonding length on one side of the fi bre, ld,

l ld s g d= + ( )1
η

τ τln ,  9.6

where the parameters as functions of the material constants become:

a v v v b v= + −( ) −( ) = −( ) = + ′μ ν ν ν τ μσ τ( , ,1 2 11 1 1 s n
T

ν ν ν ν ν ν1 21 1= +( ) = +( )( )m m m f f mE E ,
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where σ n
T is thermal stress, τ′ is physical-chemical interaction stress at the 

interface, μ is fi bre–matrix friction coeffi cient, and τg is shear stress at the 
transition point: z = g = (l/2 − ls) of the debonding to the sliding region:

τ
σ τ
ηg

f c s

f

=
−( ) +

− ( )
b aE E

a r1 2
.

The macroscopic stress–strain relation can be determined by using the 
calculated stresses for the fi bre σF in the debonded and sliding regions via 
integration along the fi bre axis according to eqn [9.1]. For the case of com-
plete sliding the following relation is obtained:
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9.7

By means of the explicit stress dependence of the macroscopic deformation 
εc and the stress dependence of ls (eqn [9.5]), the stress–strain relation 
becomes non-linear.

In Fig. 9.1, the theoretical results are compared to the experimental 
curves of short glass fi bre reinforced polyethylene. The dependence of such 
curves on the variation of different material parameters such as aspect ratio, 
thermal stress, and frictional coeffi cient is discussed in detail by Piggott 
(1980) and Lauke and Schultrich (1983).

Figure 9.3 shows the variation of longitudinal stiffness, Ec = σc/εc (nor-
malised by the composite modulus for the undamaged system E0

c) as a 
function of applied stress, revealing the two stages of the stress–strain rela-
tion. For small loads (σc ≤ σ sc) no sliding exists and the material behaves 
elastically. In the second stage, sliding starts and diminishes the modulus.

9.2.3 Matrix plasticity

A further possible cause of onset of non-linear deformation behaviour may 
be the plasticity of the matrix material (see Fig. 9.3). As already mentioned 
in Section 4.1, Kelly–Tyson’s model (1965) was the fi rst to consider matrix 
plasticity. Constant shear stresses at the interface due to matrix or interface 
plasticity are assumed. Force balance on the representative element (see 
Fig. 4.2) gives:

σ π π τ τ πF f f y y fr r dz r z
l z

l
2

2

2

2 2= =
−
∫ ,  9.8

where τy is matrix yield shear stress. Thus, force equilibrium of a fi bre end 
yields the linear increase of fi bre stress σF = 2zτy/rf as shown in Fig. 4.1(b). 
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With the additional assumption εF ≈ εc, the fi bre transfer length for this 
case of elastic fi bre and plastic matrix is given by: lc/d = Efεc/2τy. The 
fi bre stress is limited by its tensile strength σ uF leading to the critical fi bre 
length:

l dc F
u

y= σ τ2 .  9.9

However, in general, plastic yielding of the matrix will be restricted to the 
fi bre end regions, whereas along the inner fi bre region the matrix remains 
elastic. This situation is related to the sliding case discussed above for the 
single-fi bre model.

Bowyer and Bader (1972) used this model to explain the stress–strain 
relation of short fi bre reinforced polymers. The main assumption is a 
constant shear stress along the interface. Thus, it does not differentiate 
τ = τy with τy as matrix yield shear stress and τ = τf with τf as a frictional 
shear stress, which has already been discussed in the preceding section. 
They considered the dependence of the critical fi bre length (eqn [9.9]) 
on composite deformation and on fi bre length distribution. From eqn 
[9.8] the following average (over the fi bre length) fi bre stresses are 
obtained:

σ τF,i i i cfor= ≤l d l l  9.10

σ ε ε
τF,j c f

c f

j
j cfor= − ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ≥E

E
l d

l l1
4

.  9.11

9.3 Stiffness reductions due to fi bre–matrix debonding of short glass 
fi bre reinforced polyethylene. Adapted from Lauke (1992).
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With knowledge of the fi bre length distribution it is possible to sum up 
separately over the fi bres with lengths below or above the critical value. 
With the load-bearing contribution of the matrix, σM = (1 − v)Emεc, they 
obtained:

σ τ ε ε
τc i i j c f

c f

ji ci c

= + − ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟

><
∑∑C v l d v E

E
l dl ll l

0 1
4 ⎟⎟ + −( )1 v Em cε .  9.12

The factor C0 takes into account the fi bre orientation distribution. The 
stress–strain curve becomes non-linear, similar to the variation shown in 
Fig. 9.1 where debonding and sliding are considered.

Jiang et al. (1998, 2004) have used a modifi ed shear lag model to study 
the elastic-plastic stress transfer in short fi bre reinforced metal composites. 
The basis is an extended expression for the shear stress distribution at the 
interface. The elastic-plastic deformation of the matrix is considered as in 
eqn [4.7] for the debonding mechanism. The misfi t in displacements Δu 
caused by debonding is replaced by the plastic displacement. Also, the case 
of pure plastic stress transfer was considered. The basic ideas are very 
similar to the model published by Pompe and Schultrich (1974). Jiang et al. 
(2004), in addition, considered the infl uence of thermal residual stresses. 
The calculated non-linear stress–strain curves were compared for tensile 
and compressive loadings with experimental results for metal matrix 
composites.

Since the fi bre ends and their mutual positions are of special importance 
for local plasticity, the multi-fi bre model (see Section 4.3) with an elastic-
plastic matrix provides a more realistic result.

For simplifi cation, the case of low modulus ratio only is considered. Then, 
the decay length 1/η′ (cf. eqn [4.19]) is nearly the size of the distance of fi bres, 
1/k being even smaller than 1/η′. Further, it is assumed that the matrix 
axial tensile stress is predominant. Plastic fl ow will be initiated where the 
matrix tensile stress achieves the matrix fl ow stress. In these regions, the 
matrix tensile stress remains constant at σM,y and the interface shear stress 
cannot exceed τ ≤ τy = σM,y/2. For simplicity, τ is equal to τy. In the elastic 
region, τ decreases rapidly along the fi bre, and for this reason it is made equal 
to zero. The force redistribution between the components is expressed by:

∂σ
∂

τ ∂σ
∂

τ τ σ εF1 M
F f F

2
z d z D

E= − = − =1
1 2 ,  9.13

where D is the fi bre to fi bre spacing. In the elastic region:

σ ε τ ε εM m M M F= = =E 0 ,  9.14

and in the plastic matrix region:

σ σ τ τ σM M,y y M,y= = ± = 2.  9.15
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The index numbers (1,2) refer to individual fi bres, as shown in Fig. 4.3. The 
equilibrium equations have to be completed by the boundary conditions 
[4.4] and [4.5]. σM, as before, denotes the cross-sectional average of matrix 
tensile stress and varies along the z-axis so that:

σ
δ

σ
δ

εM M,y m M= ( ) +
− ( )z

D

D z

D
E ,  9.16

δ(z) being the lateral extent of the plastic region at the site z. The balance 
of forces at an elastic cross section, say, at z = l/4 in Fig. 9.4, relates εM to 
the overall composite stress:

ε σM cE = .  9.17

Since σM,y is constant, and εM and (d/dz)σM are independent of z in the 
approximation (eqn [9.14]), differentiation of eqn [9.17] provides the result 
that (d/dz) δ(z) is independent of z. That is,

d
d

y

M,y c mz
z

E E
δ

τ
σ σ

( ) =
−

.  9.18

Thus, the boundaries between elastic and plastic regions are straight lines 
in this simple model (see Fig. 9.4). The process of plasticity passes through 
several stages: plastic zones originate at the fi bre ends and spread in each 
direction, meeting neighbouring fi bres. They grow along the fi bres until the 
whole matrix is plastic. This can be described quantitatively as follows. The 
length λ0 of Fig. 9.4, which determines the transfer of the load difference 
between elastic and plastic matrix cross sections, is derived from eqn [9.18], 
which is:

λ σ σ τ0 = −( )D E EM,y c m y.  9.19

Load transfer between neighbouring fi bres is affected by the length λ0. Thus, 
in the middle of the fi bre, at z = 0, the stress:

σ τ λ λF, ymax = +( )2 20 d  9.20

0 l/4 l/2 zλ λ + λ0

P2

P1

δ(z)

9.4 Plastic regions growing at fi bre ends. Adapted from Lauke et al. 
(1990).
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has been built up. (For simplicity, the reason is due to the special case of a 
maximum overlap, a = l/2.) The balance of forces at z = 0 relates to the 
effective composite stress, σc, where:

σ
σ τ λ

c
M,y y

m

=
−( ) +

+ −( )
1

1 1

v v d

v E E
.  9.21

Remember that v = d/(d + D) in the multi-fi bre model. To set up a stress–
strain relation, the corresponding effective strain has to be calculated as the 
next step.

The composite strain εc is equal to the mean fi bre strain between its mid-
point at z = 0 and z = l/4:

ε ε εc F Fd= = ( )∫
4

0

4

l
z z

l

.  9.22

The points P1 and P2 in Fig. 9.4 on the neighbouring fi bres, being opposite 
to each other at σc = 0, stay exactly opposite if the composite is loaded. For 
λ < z < l/2 − λ − λ0, εF is constant and equals the elastic matrix strain. From 
eqn [9.17] we obtain in this region, εF = σc/E

−
. At z < λ, the fi bre strain varies 

linearly with z due to matrix shear stress so that:

ε σ
τ λ

c c
y

f

= +E
E ld

4 2

.  9.23

Elimination of λ from eqns [9.21] and [9.23] gives the following stress–strain 
relation:

ε σ
σ
τ

σ
σc c

M,y

y f

c

c

= +
−⎛

⎝⎜
⎞
⎠⎟ −⎛

⎝⎜
⎞
⎠⎟

E
d
l

v
v E

4
1

1
2

0

2

.  9.24

Here, σc0 stands for the combination of symbols in eqn [9.21] with λ = 0, 
which is that stress where the plastic region spreading from the fi bre end 
has just reached the neighbouring fi bre. At lower stress, σc ≤ σc0, the 
plastic regions are small areas embedded in the elastic material. Their 
infl uence on the mechanical behaviour is neglected in this simplifi ed 
approach, which means that the material shows linear elasticity for 
smaller loads:

ε σ σ σc c c cif= ≤E 0 .  9.25

Figure 9.5 shows how composite stress at given strain is reduced if continu-
ous reinforcement is replaced by shorter and shorter fi bres, according to 
eqns [9.24] and [9.25]. The results show clearly the consequences of local 
matrix fl ow, which begins far below the proper matrix strain, εM,y.

There is still a lack in modelling of fi bre–fi bre interaction of polymer 
composites with plastic matrix behaviour. But much more research in this 
regard was done for metal matrix composites, and further research on SFRP 
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should be focused on fi bre–fi bre interactions with non-linear polymer 
matrix behaviour.

Yang and Qin (2001) used the fi nite element method with a similar micro-
mechanical model as described above to calculate the local stress state 
between neighbouring fi bres and macroscopic stress–strain response of 
metal matrix composites. Calculations were conducted for boron fi bres 
within aluminium matrix, with a ratio between the moduli of Ef/Em = 5.5. 
In polymer matrix composites, this ratio is usually much higher; but the 
main mechanical mechanisms for stress transfer are very similar. Their 
result of interfacial shear stress at several overall strain levels is shown 
in Fig. 9.6. As a major difference to the elastic case, it becomes clear by 
comparison to the variations shown in Fig. 4.10 that the shear stresses 
remain fi nite for plastic matrix deformations. With increasing applied 
load, the effi ciency of shear stress transfer to the fi bre along the interfaces 
increases. The calculated macroscopic stress–strain curves for a boron 
fi bre/aluminium matrix show the same trend as that given in Fig. 9.5.

Up to the present, cylindrical fi bres have been well considered. However, 
if tapered fi bres are applied as reinforcement in polymer matrices a differ-
ent local stress distribution is obtained. Goh et al. (2000) used fi nite element 
analysis to calculate axial and radial stress distributions for fi bres with dif-
ferent cross sections along the axial direction. For the tapered case with 
the thickness increase from the fi bre end to the middle of the fi bre they 
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9.5 Stress–strain relationship according to eqns [9.23] and [9.24] and 
its dependence on fi bre aspect ratio l/d. Adapted from Lauke et al. 
(1990). 
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calculated a uniform axial and radial stress within the fi bre. Consequently, 
the tapered fi bre shape leads to a reduction of maximum stresses in the 
fi bre centre.

After these discussions we have to answer the following question: what 
should a materials engineer know, if he has to design a short fi bre composite 
of this kind with certain stiffness? Initially, he must know the range of the 
applied load and the demands on the deformations. Then, he must decide, 
taking into account economic considerations, which materials can be 
applied. As a fi rst evaluation of the stiffness that should be expected, he 
should use one of the simple formulae, for example, eqns [9.2] and [9.3] 
(more analytical equations of stiffness are given in Chapter 6). Afterwards, 
he must realise that at higher loads, failure mechanisms initiate and cause 
stiffness reduction. He can then use one of the previously summarised 
models to quantify these effects.

Thus, it is necessary to know the failure phenomena for the specifi ed 
composite. For larger amounts of misoriented fi bres with certain fi bre length 
distribution, the orientation and length distributions must be taken into 
consideration (see Chapter 6).
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9.6 Shear stress at fi bre–matrix interface for different strain levels of 
boron/aluminium composites. Adapted from Yang and Qin (2001).
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9.3 Damping behaviour by interface non-elasticity

Non-elastic behaviour of the interface leads to deviations from the elastic 
stress–strain relation as discussed in Section 9.1. Besides these non-linear 
effects, certain irreversibility occurs. This is clearly revealed under cyclic 
loading, where the area surrounded by the path is proportional to the 
energy dissipation ΔU per cycle. This energy loss is coupled with damping 
of the excited oscillations, usually characterised by the quantity, Q−l, the 
‘inverse quality factor’ of the oscillating system, which is given by:

Q
U
U

U V E V E− = = = ( )1 2
0
2

2
2

Δ
π

σ σwith c c c ,  9.26

where U
−
 describes the mean energy of the sample, V is sample volume, and 

σ0 amplitude of the external stress σc.
For oscillating loading with a frequency, ω, a stress σc = σ0 exp(iωt) devel-

ops and lags behind the deformation, εc = ε0 expi(ωt − δ), where δ is the 
phase angle. The damping energy or the inverse quality factor is given in 
this case, by Q−1 = ΔU/(2πU

−
) = tan δ. The value of tan δ is related to the 

complex modulus E* = E′ + iE″ = σ(t)/ε(t) = (σ0/ε0)expiδ by the relation 
tan δ = E″/E′. This relation is the most important in the experimental deter-
mination of the damping energy during oscillating loading.

In this section the infl uence of a plastic, viscous and viscoplastic interface 
on damping behaviour is discussed for a cyclic stress (loading–unloading). 
For this, the basic model given in Section 4.2 is used. Consideration of 
energy loss follows the derivations shown in Pompe and Schultrich (1974) 
and Lauke et al. (1990).

The model allows consideration of a misfi t in displacements at the fi bre–
matrix interface. That is,

Δu u u u u u u u= = − = − ≈ −p m f i f i F ,  9.27

which covers all three above-mentioned interface properties. The time vari-
ation of this displacement misfi t is dependent on the interface shear stress 
via a general function:

∂
∂ t

u Fp = [ ]τ .  9.28

9.3.1 Ideal plastic interface

For the case of an ‘ideal plastic interface’, there is no interface sliding for 
interface shear stress τ below a certain critical value τy, which leads to:

∂
∂ t

up yfor= <0 τ τ .  9.29
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If this value is achieved, interface sliding proceeds in such a manner that 
τ = τy always holds. Such interface behaviour may be realised by plastic 
processes within a thin boundary layer along the fi bre–matrix interface or 
by friction effects at the debonded interface, as discussed in Section 9.1.2.

For the fi rst loading, starting from the no sliding case, up = 0, the solu-
tions for the stresses are given in eqn [4.14]. They hold in a slightly modi-
fi ed version for the present case of cyclic loading. For this, considering the 
linearity of the basic equations, the values at the foregoing maximum 
stress amplitude, σ0, must be replaced by the corresponding differences; 
especially τy transforms to Δτy = τy − (−τy) = 2τy. Thus, interface sliding is 
directly obtained from the solution for non-cyclic load. It should also be 
considered that during cyclic loading all values must be interpreted as the 
difference values while τy must be replaced by 2τy (Pompe and Schultrich, 
1974).

The value of Δup for a closed hysteresis loop is consequently given by:

Δ
Δ

u
E v r

lE

E E v
z g

r

E

E E v
p

c

m f

y

f m f

y

f m

=
−( ) −

−( )
⎛
⎝⎜

⎞
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−( ) +
−( )

σ τ τ
1

2
1

2
1

zz g2 2−( )  9.30

where g is defi ned as the point where sliding starts z = g = l/2 − ls, with ls 
given in eqn [9.5].

These relations describe closed hysteresis loops in the stress–strain 
diagram. From this follows the energy loss:

ΔU r N dz du= ∫∫2
0

2

π τ
λ

f y p� ,  9.31

where N is number of fi bres in the sample. Hence, after integration and 
using eqn [9.26], the hysteresis damping is obtained as:
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with A
r lE

V N v E
=

( ) −( )
2

1

2
f f

m

 and the sliding point, g(σ0) = l/2 + 1/η − 

rfEfσ0/(2E
−τy).

By inserting g and considering that damping provides essential contribu-
tions only for higher stresses, the following approximate equations are 
obtained:

Q A
A

− = ( ) ( ) ≤
= −( ) ≥

1
0 0

0 0
2

0

1 3
2

σ σ σ σ
σ σ σ σ σ σ

** for **
** ** 3 for **.

 
9.33

Herein, σ** = (1/rf)(E
−

/Ef)τy denotes the stress value for which interface 
sliding has nearly spread along the whole fi bre length. According to the 
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assumptions made about the interface behaviour, this kind of damping 
is independent of the stress rate but shows marked stress dependence 
(Fig. 9.7). For not too large amplitudes, it increases linearly where the 

slope is proportional to 1/τy. Damping becomes a maximum Q Amax
− =1 3

8
 

at σ0,max = (4/3)σ**.
In this way, experimental investigation of the amplitude-dependent hys-

teresis damping offers several possibilities for determination of the critical 
interface stress τy:

• from the slope of the initial part of the damping curve,
• from the position of the damping peak, and
• from slope (∼τy) and intersection (∼(τy)2) of the straight line in the plot 

of σ 20Q−1 vs σ0 beyond the maximum.

9.3.2 Viscous interface

Time-dependent viscous effects at the interface can be described by a mate-
rial law:

∂
∂ t

u Kp = 0τ .  9.34
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9.7 Dependence of hysteresis damping on stress amplitude at an 
ideal-plastic interface.
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Because of the linearity of all equations for periodic external loading, 
σc = σ0 exp(iωt), all quantities show the same time dependence. The material 

law [9.34] transforms to u
K
i

p =
τ

ω
0 . Hence the interface displacement, up, 

can be eliminated, leading to the solutions of a perfectly bonded composite 
(eqn [4.14]) where η is replaced by η(t) = η/(1 − iβ)1/2 and β = (G

−
/h)(K0/ω). 

The energy loss ΔU is given by:

ΔU N r z t
t

u r K z T
l

l l

= =∫∫ ∫
−

2 4 2
02

2

0
2

0

2

π τ π τf

T

p fd d dRe
Re

,
∂

∂
 9.35

with T = 2π/ω. By inserting the shear stress of eqn [4.14] and replacing 
η → η(t) from this relation, eqn [9.26] follows viscous damping as:
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Damping is independent of stress amplitude but shows a characteristic 
frequency dependence with a damping maximum shown in Fig. 9.8 near 
ω0 = 8K0(1 − ν)rfEfEm/(l2E

−
). An approximated evaluation yields the well-

known expression of a simple relaxation process:

Q− = + ( )( )1 21Δωτ ωτˆ ˆ ,  9.37
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9.8 Dependence of damping on frequency for a viscous interface.
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with the relaxation strength Δ = 6.64A and relaxation time τ̂  = 1.63/ω0. The 
height of the damping peak Q−1

max is (within approximation) independent of 
interface parameters (the same was stated for the ideal plastic interface); 
its position ωmax = 1/τ̂  ∼ K0/l2 is proportional to the relaxation constant K0. 
With K0 = K ′0 exp(−ΔH/kT), the activation enthalpy ΔH of the underlying 
process can be determined from the frequency or the temperature depen-
dence of the position of the damping maximum.

9.3.3 Viscoplastic interface

In general, non-linear stress effects and rate dependence act simultaneously 
and superpose to more complex interface behaviour. It may be character-
ised by a material law:

∂
∂ t

u

K

p y

y y

=  0 for

=  for  

τ τ

τ τ τ τ

≤

−( ) ≥  9.38

The resulting damping depends on both factors: stress amplitude and 
frequency.

In principle, the dependence of damping on each of these quantities 
agrees with that observed in the limiting cases of hysteresis damping and 
viscous damping, respectively. In both cases, a maximum occurs in the 
damping curve, but position and height of this maximum are modifi ed (see 
Fig. 9.9).

The maximum dependence on stress amplitude for a given frequency 
shifts towards smaller stresses with increasing frequency. It rises with 

2

1

1 5 10

Normalised stress amplitude, σ0/2σ**

ω0/ω =
1.5

H
y
s
te

re
s
is

 d
a
m

p
in

g
, 
Q

–
1
/A

0.6

3

0.3

5

0 (hysteresis)

15

9.9 Dependence of damping on stress amplitude for a viscous 
interface at different frequencies.
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increasing frequency and achieves a four-fold value at about ω ≈ 1.5ω0 com-
pared with the static hysteresis damping. For larger frequencies, damping 
diminishes since the interface cannot follow the fast stress oscillations as 
shown in Fig. 9.10. The limiting case for viscous behaviour corresponds to 
large stress amplitudes when sliding occurs over the whole fi bre length.

9.4 Relaxation effects caused by viscoelastic 

matrix behaviour

9.4.1 Viscoelastic behaviour of bulk matrix

In the foregoing section the thermoplastic matrix was considered as an 
elastic or elasto-plastic material and all time dependencies are neglected. 
In reality, there is a remarkable effect of strain rate and the matrix material 
should be described by viscoelastic deformation behaviour. This means that 
the strain εM(t) depends on the loading history apart from the instantaneous 
stress. According to Boltzmann’s superposition principle (see, for example, 
Findley et al. (1976)) this yields:

ε σ σM m
u

M

t

Mt M t dt g t t t( ) = ( ) + ′ − ′( ) ′( )⎛

⎝
⎜

⎞

⎠
⎟

−∞
∫Δ ,  9.39

with Mu
m as the unrelaxed compliance of the matrix and Δ the relaxation 

strength.
For simplicity, the problem is treated as a unidirectional one without 

considering any tensorial complications. The function g(t), normalised 
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9.10 Dependence of location and value of damping maximum on 
frequency according to the stress given in Fig. 9.9.

�� �� �� �� ��



 Non-linear stress–strain behaviour 225

according to dtg t( ) =
−∞

+∞

∫ 1, describes the decaying infl uence of the former 

stress states and has therefore been called the ‘memory function’. The rel-
evant timescale can be estimated from the ‘relaxation time’:

ˆ .τ = ( )
−∞

+∞

∫ dtg t t

The importance of the after-effects is expressed by the ‘relaxation strength’ 
Δ.

To elucidate its physical meaning, a sudden loading with constant stress: 
σM(t) = 0 for t < 0; and σM(t) = σM for t ≥ 0 is assumed. Then from eqn [9.39] 
it follows that:

ε σ σM m
u

M m Mt M dt g t M t
t

( ) = + ′ ′( )⎛

⎝
⎜

⎞

⎠
⎟ = ( )

−∞
∫1 Δ .  9.40

The function Mm(t) is called the creep compliance, and its reciprocal cor-
responds to the time-dependent Young’s modulus, Em(t) = 1/Mm(t). As 
shown in Fig. 9.11, the strain relaxes by restricted viscous processes from a 
lower initial value, εM(0) = Mu

mσM, to a fi nal value, εM(∞) = M r
mσM. Thus, the 

modulus decreases from its unrelaxed value, Eu
m = 1/Mu

m to the relaxed value, 
Er

m = 1/M r
m = 1/(Mu

m(1 + Δ)). So, the relaxation strength is simply the relative 
difference of these quantities:

Δ = −( ) = −( )M M M E E Em
r

m
u

m
u

m
u

m
r

m
r .  9.41

The usual integral formulation of eqn [9.39] for linear viscoelastic mate-
rial behaviour is equivalent to the description as differential equations. In 
many cases the viscoelastic effects can be described by springs and dashpots, 
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9.11 Retarded deformation of a polymer at sudden stress changes due 
to viscoelastic effects.
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connected in series and parallel. One example is the so-called linear stan-
dard solid with a spring in series with an element consisting of another 
spring and a dashpot. This leads to the generalisation of Hooke’s law by 
adding terms with time derivatives:

ˆ ˆ .τ σ σ τ ε εm
M

M m m
u M

m
r

M
∂

∂
∂
∂t

M
t

M+ = +

A survey about possible superpositions of such elements and their charac-
teristic differential equations is given by Findley et al. (1976) and Backhaus 
(1983).

9.4.2 Composites with viscoelastic matrix

The extension of the single-fi bre model with elastic matrix properties, 
as given in Section 4.2, to a fi bre embedded within a viscoelastic material 
is presented herein. The derivation follows considerations in Lauke and 
Schultrich (1983) and Schultrich (1990).

Similar to the bulk matrix material, for the case of sudden loading, the 
resulting relaxation strength of the composite is:

Δc c
r

c
u

m
u

c
u

c
r

c
r= −( ) = −( )M M M E E E  9.42

following the deformation behaviour at very short and very long times, 
respectively.

In these limiting cases the matrix modulus can be considered as constant 
in time. Hence, eqn [9.2] for the composite modulus in the purely elastic 
case can be used where 1/Em must be replaced by the unrelaxed (u) and 
relaxed (r) matrix compliance, respectively:

M
E

v
v

E M
l

s u rc
s

s f m
s

s

= +
−

⎛
⎝⎜

⎞
⎠⎟

=( )1
1

1
2

η
, ,  9.43

with E
−s = (1 − v)/M s

m + vEf and ηs is according to eqn [4.10] where E
−

 is 
replaced by E

−s.
Inserting [9.43] into [9.42] provides the relaxation strength of the com-

posite for the sudden loading:

Δ
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Δ
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Δ
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+ +
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m
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⎥
,  9.44

where m = (1 − v)/(vMu
mEf), λ = 2/(ηul) and Δ is according to eqn [9.41]. As 

seen from Fig. 9.12, the relaxation strength increases markedly with decreas-
ing fi bre length especially for weaker matrices (m << 1).

To investigate the dependency of fi bre and matrix stresses on time and 
coordinate along the fi bre axis under these loading conditions, the matrix 
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9.12 Dependence of relaxation strength of composite on aspect ratio 
(proportional to lηu/2) and modulus ratio (proportional to m) for 
Δ = 0.1.

material law [9.40] is inserted in the basic equations of the fi bre reinforced 
composite, yielding a modifi ed version of eqn [4.9] in the form of an integral 
differential equation. Details about an approximate solution were provided 
by Lauke et al. (1990).

The large effect of the fi nite fi bre length points to an interesting applica-
tion fi eld of short fi bre reinforced composites as structural components with 
improved damping behaviour in comparison to continuous fi bre strengthen-
ing. This possibility was fi rst elaborated by McLean and Read (1975), who 
proved experimentally, for a special polymer composite with 10% volume 
fraction carbon fi bres, the increase of the damping part (i.e., the imaginary 
part) of the composite modulus from ∼33 MPa for continuous reinforcement 
to ∼8 GPa for fi nite fi bres with an aspect ratio of ∼100. Their damping cal-
culations are based on the relation E″c /E′c = (E″m/E′m)(Um/Uc), which assumes 
that the energy loss ΔU can be likewise expressed by ΔU/U

−
 = E″/E′ for the 

composite and matrix. Herein, the energies Um and Uc elastically stored in 
the matrix and the composite were calculated by the usual elastic stress 
fi elds. This energy approach was improved by Gibson et al. (1982), Suarez 
et al. (1986) and Gibson (1992) by taking into account the strain energy in 
the matrix. In an alternative approach, these authors used the fact that for 
oscillatory loading, it is suffi cient to consider the moduli, which depend on 
frequency. Accord ing to the elastic-viscoelastic correspondence principle 
they are formally identical with the effective moduli in the purely elastic case 
where the matrix modulus is complex. The essential result is the striking 
increase of the extensional loss modulus E″c  with decreasing fi bre aspect ratio 
l/d below ∼100, thus achieving a maximum at low aspect ratios between 3 
and 10. Typical experimental results from Suarez et al. (1986) and model 
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predictions by Finegan and Gibson (1999) are shown in Fig. 9.13. These 
results are also confi rmed by numerical calculations using the fi nite element 
(FE) method of Sun et al. (1985a,b).

On the basis of FE analysis, Brinson and Knauss (1992) calculated the 
loss modulus of viscoelastic fi ller and viscoelastic matrix composites with 
difference in behaviour of softer or stiffer components. They found that the 
composite behaviour is more affected by stiff inclusions in a soft matrix 
compared to the case of a stiff matrix and a soft inclusion.

Experimental investigation with dynamic mechanical thermo-analysis 
(DMTA) on fi bre reinforced polypropylene composites was carried out by 
Amash and Zugenmaier (1997). They observed a decrease of damping with 
increasing fi bre volume fraction. The infl uences of other parameters of 
short fi bre composites, such as fi bre–matrix interface quality or coating 
effects and fi bre interactions, were discussed by Finegan and Gibson (1999, 
2000).

Recent developments of nano-fi bre materials lay the basis to produce 
composites with short fi bre reinforcements of very low aspect ratios. 
Finegan et al. (2003) reported damping behaviour of carbon nano-fi bre 
(aspect ratio l/d = 19) reinforced polypropylene. DMTA was used to analyse 
the damping and stiffness of the composite. The analytical prediction of the 
dynamic loss factor (tan δ = E″c /E′c) shows a decrease as the fi bre aspect ratio 
increases.

Most of the simple phenomenological models, such as superposition of 
springs and dashpots, do not allow adequate description of the loading and 
unloading characteristics of polymers and their composites. To overcome 
this, Reymond (2005) proposed the introduction of additional dissipation 
potentials to take into account the recovery behaviour more exactly.
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from Finegan and Gibson (1999).
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10
Fracture mechanics

Abstract: The crack resistance of composites is characterised. Composite 
materials show extended damage zones in front of the crack tip 
comparable to plastic zones of homogeneous materials. The energy 
dissipation processes within these damage zones are qualitatively and 
quantitatively described. These include fi bre breakage, interface 
debonding and sliding, local matrix plasticity and matrix fracture. On the 
basis of this knowledge, different fracture mechanics parameters are 
discussed, including critical stress intensity factor, critical energy release 
rate, work of fracture and essential work of fracture. All these quantities 
are given as functions of the fi bre, interface and matrix properties, and 
structural parameters such as volume fraction and/or fi bre orientation.

Key words: stress intensity factor, energy release rate, essential work of 
fracture (EWF), energy dissipation, dissipation zone, process zone.

10.1 Introduction

Over recent decades toughness parameters in addition to the conventional 
strength have become more and more important in the characterisation of 
the mechanical behaviours of homogeneous and heterogeneous materials. 
What are the special advantages of these quantities?

The strength of composite materials depends on the fl aw size distribution 
and, consequently, on sample shape and size; and hence it is not really a 
property of the material. But given the sample shape and fl aw size, we can 
proceed from strength to a critical stress intensity factor, Kc, or to a critical 
energy release rate, Gc, which represents an inherent material property. For 
this purpose, samples with notches of defi nite length instead of natural fl aws 
are used. All the different defi nitions of fracture toughness have in common 
that they characterise the crack resistance of the material. They can be 
divided corresponding to the different stages of crack growth:

• crack initiation,
• slow crack growth,
• transition to unstable crack growth,
• unstable crack growth, and
• crack arrest.

It is the main purpose of fracture mechanics to characterise the physical 
situation near the crack tip in an adequate way, thus providing means for 
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predicting the progress of damage depending on the properties of the mate-
rial and on the external load. According to fracture mechanics, strength is 
governed by two things, namely, the properties of a fl awless (assumed) 
sample and presence of pre-existing fl aws. The origin of the latter is beyond 
the scope of fracture mechanics, and therefore this chapter deals with the 
crack stages listed above.

For general references about fracture and particularly fracture mechanics 
see, for example, Liebowitz (1968), Broek (1974), Cherepanov (1979), 
Blumenauer and Pusch (1987), Pompe et al. (1985), Atkins and Mai (1985) 
and Anderson (1995). Special attention to fracture behaviour of polymers 
is given by Kausch (1978), Kinloch and Young (1983), Williams (1984) and 
Grellmann and Seidler (1998). Fracture characterisation and fracture 
mechanics of composite interfaces are given by Kim and Mai (1998). There 
is also a research monograph on fracture mechanics of cementitious matri-
ces and their fi bre composites written by Cotterell and Mai (1996).

Elaborate linear elastic fracture mechanics (LEFM) deals with unstable 
propagation of sharp cracks under brittle fracture behaviour; that is, the 
surrounding material deforms purely elastically except for a small plastic 
region around the crack tip. In this case, the transition to unstable crack 
growth is described by critical toughness parameters such as the critical 
stress intensity factor (Kc) and critical energy release rate (Gc). For simplic-
ity, we use the shorter denotation ‘fracture toughness’ for Kc and Gc bearing 
in mind their different characteristics.

Composite materials, however, show extended damage zones in front of 
crack tips comparable to plastic zones of homogeneous materials. These 
zones change the elastic stress fi elds around the crack, necessitating the tran-
sition from LEFM to extended concepts such as J-integral, crack-opening 
displacement (COD) or essential work of fracture (EWF) concepts.

The great majority of works concerning fracture toughness of fi bre-
reinforced materials use the concepts of LEFM. However, in the last few 
years, more and more publications have appeared which consider the non-
linearity of stress-crack opening displacement behaviour. Major efforts in 
developing the fracture mechanics of composites have been summarised, 
for example, in the books edited by Friedrich (1989), Williams and Pavan 
(1995, 2000), Moore et al. (2001), Moore (2004) and Blackman (2006).

The determination of fracture toughness parameters happens on two 
levels, macroscopic and microscopic:

1. The heterogeneous, anisotropic material is approximated by a homoge-
neous, anisotropic material with effective elastic properties. This method 
allows the application of the concepts developed for homogeneous 
materials, which are modifi ed according to the anisotropy.

2. The microscopic processes within the heterogeneous materials are con-
sidered. This allows insight into the special failure processes and into 
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the role of characteristic material parameters such as structural proper-
ties (e.g., fi bre length, orientation, volume fraction) and mechanical 
properties of the components, and interface between fi bre and matrix.

The above two concepts require both experimental and theoretical research, 
which will be described in the following sections for short fi bre reinforced 
polymers.

10.2 Basic concepts for homogeneous materials

10.2.1 Stress fi eld near the crack tip

Consider a sample under uniaxial tensile stress σA due to an external 
applied load. Local stresses near notches or pores or crack tips present 
within the solid may be much higher than the nominal stress σA. In linear 
elastic materials the local stress fi elds at a point (r, θ) in a plane of the 
material are proportional to σA, which is:

σ θ θ σij ij Ar k r, , .( ) = ( )  10.1

The stress enhancement factors kij depend on all relevant details such as 
size, shape, and orientation of crack and sample. Near the tip of a sharp 
crack, that is, at distances much smaller than the crack length c, this function 
of position can be factorised, with one factor depending only on the distance 
from the crack tip r, and another factor describing an angular 
dependence:

σ θ π σij ij Aforr Kg r E r c( ) = ( ) ( ) ( ) << <<2 11 2 2 .  10.2

K may depend weakly on a third coordinate which runs along the crack 
front. For larger distances r away from the crack tip, additional terms must 
be considered and this approximation is no longer valid. The stress fi eld at 
the crack tip of an elastic isotropic material can be expressed as a power 
series, such as that shown by Williams (1957). The region, as shown in Fig. 
10.1, where the fi rst term is the dominating one is usually called the ‘singu-
larity dominating region’.

A crack tip can be conceived as a singularity of the continuum. This 
becomes apparent when extrapolating eqn [10.2] to r → 0. It should be 
mentioned that the exclusion of very small r in [10.2] refl ects the fact that 
this result is derived from the mechanics of small deformation, that is, under 
the condition: ε2 ≈ (σA/E)2c/r << 1.

There are three essentially different ways of propagating a crack by dis-
placing the two crack surfaces relative to each other: pulling them apart 
(mode I) or shearing them along the crack (mode II) or perpendicular to 
it (mode III). Corresponding to these three modes of crack propagation 
there are three (and only three) sets of functions gij. In general, cracks are 
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of the mixed type. Those of mainly mode I type, however, are considered 
to be the most important in materials without macroscopic plasticity. So 
here considerations are restricted to pure mode I type cracks. Curved cracks 
do not represent a different type since small sections of them appear 
approximately straight. Thus, the stress fi eld near the tip of any elastic crack 
is known. Its spatial structure is given by the universal expression, gij(θ)/r1/2, 
whereas K represents its ‘intensity’.

Various crack confi gurations and sample shapes differ only by their stress 
intensity K whereas the type of the stress fi eld near the crack tip is the same 
in all cases. According to eqn [10.2] the stress intensity factor K has the 
dimension of stress times square root of length. The only length by which 
K can be determined is the crack length itself, provided the boundaries of 
the sample are so far away that they do not interfere. The only stress that 
can enter a formula for K is the applied stress σA. So, we have:

K Y cI A= 1 2 .  10.3

The dimensionless factor Y depends on specimen confi gurations and loading 
mode. We have restricted our considerations to the simple case of uniaxial 
tension because in more complex situations of cracks within tri-axial or 
localised stress fi elds, the basic relation eqn [10.1] is still valid while [10.2] 
is not universal.

Transforming stresses into strains via Hooke’s tensor, the displacements 
are obtained. The latter, taken at the position of the crack plane, can be 
regarded as representing the shape of the crack tip, with the above restric-

Singularity dominated
zone

r

KI

2πr√

θ = 0

σ∞

σyy

10.1 Stress perpendicular to the crack plane for mode I loading, θ = 0. 
Adapted from Anderson (1995).
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tion that a tiny region at the very tip has to be excluded. Strictly speaking, 
only mode I crack tips have a shape. It is described by the one displacement 
component s, which is perpendicular to the crack plane:

s K E r E r c≈ ( )( ) ( ) << <<I Afor2 11 2 2π σ .  10.4

There is no exact solution very close to the crack tip in linear elastic 
material, but then no real material remains linearly elastic up to large 
deformations. So, often some corrections are made to adjust the result to 
the properties of real materials. According to eqn [10.2] it becomes clear 
that at the crack tip very high stresses would be produced. In reality, stress 
does not increase with strain ad infi nitum but drops after passing a maximum. 
It was shown by Barenblatt (1962) that this behaviour of the elastic forces 
created a pointed crack tip with stresses remaining fi nite.

Clearly plastic fl ow will occur at the crack tip, reducing the infi nite stress 
of the elastic solution [10.2] to the level of yield stress σy. The size rp of the 
plastic zone may be estimated by inserting σy into [10.2]:

r Kp I
2

y= ( )⎡
⎣

⎤
⎦2

2π σ .  10.5

The shape of the plastic zone under plane strain, which is realised in the 
bulk of the sample, is shown in Fig. 10.2. This small-scale yielding affects 

Crack

K I
2

2σy

rp = 
2π
1

Plastic
zone

10.2 Shape of plastic zone in the vicinity of crack tip under plane 
strain conditions, σy is yield stress.
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the proximate elastic fi eld only slightly so that stress in medium distances, 
rp << r << c, may still be described by the stress intensity factor, K, according 
to eqn [10.2]. Though the situation in the vicinity of the crack tip is not 
much altered by the presence of a small plastic zone, the structure of the 
very tip is essentially changed.

The crack opening displacement (COD) of the crack at its tip: sc = 2s now 
becomes:

s r E K Ec y p I
2

y≈ ≈ ( )σ σ .  10.6

Within polymeric materials we see not only spherical plastic zones but 
linear structures called ‘crazes’. For this special geometry the extension rp 
of that zone was calculated by Williams (1973) on the basis of the Dugdale 
(1960) model, to be:

r Kp I
2

y=
8

( )π σ 2
.  10.7

10.2.2 Energetics of cracks

As is well known from other fi elds of physics, much of a phenomenon can 
be understood already by analysing the redistribution of energy connected 
with it. For this reason, we shall discuss the redistribution of energy within 
a stressed body along with crack growth. First, an infi nite body loaded by 
a tensile stress σA is considered. Its strain energy per volume is: σ 2

A/(2E). 
Now a plane cut is introduced into the body, which is allowed to open quasi-
statically until a new equilibrium has established itself. This relaxed cut is 
what is called a sharp crack. Obviously, mechanical work is done in the 
relaxation process against the forces applied to the cut to prevent it from 
snapping open suddenly. That is, a certain amount of energy is released at 
the site of the crack.

The applied tensile loading may contribute work in addition to the change 
of elastic energy within the body. In either case we obtain for the decrease 
−ΔUpot of the total potential energy (which is the sum of strain energy Ue 
and potential energy Up of the loading system):

− = − +( ) =Δ Δ ΔU U U Wpot e p .  10.8

This means the energy W released on the crack surfaces after making the 
cut is equal to the loss of total potential energy of the sample including the 
loading system. Two extreme forms of the problem are commonly consid-
ered: (a) fi xed grip and (b) fi xed load.

In (a) no work is done at the remote boundary, and the released energy 
W is completely supplied by a decrease −ΔUe of the elastic strain energy:

− = ( )ΔU We fixed grip .  10.9
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In case (b) it can be shown that an amount equal to 2W is supplied by 
the external forces. Usually this amount is described as loss of potential 
energy of the loading force −ΔUp so the above statement can be written as:

− = ( )ΔU Wp fixed load2 .  10.10

However, contrary to case (a), the total elastic strain energy increases by 
an amount W:

ΔU We fixed load= ( ).  10.11

It is concentrated near the crack tip whereas the elastic energy stored far 
away is not changed. In connection with the analysis of crack growth, the 
rate of change of potential energy with crack size is of special interest, since 
it has to be equal, according to eqn [10.8], to the rate of change of the energy 
W released at the site of the crack. This quantity is called ‘energy release 
rate’ and is usually denoted by G:

G U A W A= − =d d d dpot .  10.12

Here, dA stands for incremental crack area. In simple cases, such as the one 
discussed above, the incremental area may be replaced by an incremental 
length dc: dA = Bdc, with B as the sample thickness.

Instead of comparing energies of two cracks of sizes A and A + dA which 
were cut independently and left to relax, as was considered so far, we could 
relate dW = GdA to the energy released during quasistatic crack growth, 
A → A + dA.

By using the stress and strain fi elds around the crack tip, we obtain for 
plane stress the relation:

G K E= I
2 .  10.13

This result relates the energy release rate as a global parameter to the stress 
intensities at the crack tip, which is a local parameter; and in the elastic case 
they are equivalent.

There is another possibility for relating the energy release rate to the 
stress and strain fi elds around the crack. It is the J-integral provided by 
Eshelby (1951), Cherepanov (1968) and Rice (1968). That is,

G J x
u
x

n s= = − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∫∫ η σ η σ εe
i

i
ij k e ij ijd d with d2 .

Γ
 10.14

Integration has to be performed along an arbitrary path Γ around the crack 
tip (Fig. 10.3). The J-integral describes the fl ux of that part of energy through 
the closed (by Γ) area around the crack tip, which is not absorbed but dis-
sipated during crack growth.

J does not depend on the path of integration, which is a major advantage 
since the path may be chosen in a convenient way. As another advantage J 
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applies to any elastic material, whether linear or non-linear, while eqn 
[10.13] is restricted to linear elasticity.

The J-integral and results derived from it apply to general elastic behav-
iour. It is worth noting that the results obtained for non-linear elastic mate-
rials provide useful approximations for non-elastic materials.

The calculation of K or G for special confi gurations of cracks within 
samples of given shape and loading is the crucial problem of theoretical 
fracture mechanics. It requires sophisticated analysis in every single case. 
We can approach the problem experimentally to avoid the trouble, at least 
in principle, by carefully measuring the compliance of the specimen con-
sidered for different crack size. The compliance is defi ned by: C = δ/F, 
where F is external load and δ is the load-point displacement. The elastic 
energy stored in the material is then, Ue = Fδ/2 = δ 2/2C. For fi xed boundar-
ies of the specimen according to [10.9], all released energy is drawn from 

elastic energy: G A U Cd d de= − = − 1
2

1δ 2 ( / ). This leads to:

G F
C
A

=
1
2

2 d
d

.  10.15

Thus, the energy release rate and corresponding stress intensity may be 
derived from the change of compliance with crack size. The condition of 
fi xed grip is not relevant for this result since it is valid for all other cases of 
load and displacement variations.

ds

n

X2

X1

→

10.3 Integration path of J-integral.
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Many polymers show large plastic deformations during loading, espe-
cially ahead of notches or cracks where large plastic zones are developing. 
There have been many efforts to take this into account for the determina-
tion of fracture toughness. In recent years the essential work of fracture 
(EWF) concept has been developed to evaluate the toughness of polymers. 
For details readers may refer to the European Structural Integrity Society 
(ESIS) Test Protocol on Essential Work of Fracture, Version 5 (October 
1997).

Broberg (1975) proposed a specifi c essential work of fracture, we, for 
cases where the fracture of a polymer specimen is preceded by extensive 
yielding. The basic idea behind this approach is that the failure mechanisms 
in front of a crack are contained within a process zone which is sub-
divided, respectively, into a process plane where the crack propagates 
and a surrounding dissipation zone where the plastic deformations are 
concentrated.

Introducing the specifi c fracture energy, we, the specifi c volume energy, 
ηp, and the surface and volume quantities (cf. Mai and Cotterell, 1986), the 
work of fracture, Wf, is given by:

W w LB Vf e p p= + η ,  10.16

where L is ligament length, B specimen thickness and Vp volume of plastic 
zone. With the assumption that Vp is proportional to BL2 with the shape 
factor β: Vp = βBL2, the specifi c total work of fracture becomes:

w
W
LB

w Lf
f

e p= = + βη .  10.17

This provides the basis for the determination of the specifi c essential 
work of fracture, we, from the intercept of the linear regression curve 
of experimentally determined wf vs L-curve, where L is given by 
notching and Wf by the integral under the load (F)-displacement 
(u)-curve.

While examining the deformation rate and thickness dependence of 
the work of fracture, Karger-Kocsis et al. (1997, 1998) have discovered 
from the shape of the load-displacement curve that it is possible to dis-
tinguish between fracture energies for yielding and necking with sub-
sequent fracture. It is noted that recently the EWF has been used to 
analyse the toughness behaviour of polymer nanocomposites containing 
clay (Yoo et al., 2007), multi-walled carbon nanotubes (Satapathy et al., 
2007) and Mg-Al layered double hydroxide (Costa et al., 2006). Interested 
readers may refer to these papers. More relevant to this book and most 
recently, the EWF method has been applied to SFRP composites and 
particulate reinforced polymers; this topic will be discussed in detail in 
Section 10.6.7.
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10.2.3 Crack propagation criteria

The question whether a crack will remain at rest or will start propagating 
in a given situation can be decided by crack propagation criteria. There are 
several of these, based on different notions. Since they all describe the same 
phenomenon, they are equivalent to a certain extent. Their differences lie 
mainly in being adapted to special problems or materials. Below, we will 
discuss only a criterion based on energy variation since it proves most useful 
in linear elastic fracture mechanics. (It should be noted that the energy 
criterion is equally applicable to non-linear elastic and plastic fracture 
mechanics. See, for example, Atkins and Mai (1985). But these specialised 
topics will not be covered in this book.)

The phenomenon of crack propagation may be separated, in thought, into 
two simpler phenomena occurring simultaneously: fi rst, energy release as 
discussed in the preceding subsection; second, energy consumption in creat-
ing the cut which enlarges the crack. The former refl ects geometrical prop-
erties such as crack length, sample shape, and mode of stressing, whereas 
the latter is considered to be a property of the material. This is a kind of 
separation generally aimed at in materials science.

As usual, we denote the specifi c fracture surface energy by γ (energy per 
unit area of crack surface). Then, the total energy of the loaded sample may 
be written as potential energy of the sample including the loading system, 
cf. eqn [10.8], plus the energy consumed by the two crack surfaces of area 
A. That is,

U U At pot d= + ∫2 γ .  10.18

With the previous defi nition of energy release rate in eqn [10.12] its deriva-
tive provides:

d dtU A G= − + 2γ .  10.19

Crack propagation (i.e. dA > 0) is only possible if the total energy Ut 
decreases:

d dtU A ≤ 0.  10.20

Combining [10.19] and [10.20] provides the following crack propagation 
criterion:

G G R≥ ≡ ≡c 2γ .  10.21

This means that the crack can propagate only if the release of energy 
surpasses its consumption, that is, if G is larger than a critical value Gc 
specifi c to the material. This is a necessary condition for crack extension. 
The left and right side of the above equation are quite different: G is a 
function of geometry, mechanical properties and applied load; and R or Gc, 
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respectively, is a material property. However, the crack may propagate in a 
stable or unstable manner, as will be discussed below.

The consumption of energy, or the energy necessary for crack growth, is 
also called the crack resistance R of a material. The critical energy release 
rate Gc is usually called ‘fracture toughness’. In nearly all real materials, 
phenomena other than pure surface energy contribute to Gc (or R), among 
which energy consumed in plastic fl ow (and thereby mostly transformed 
into heat) is most important. Despite this complication Gc justifi es its exis-
tence by proving itself a material constant, which it is intended to be, with 
tolerable accuracy in the majority of cases. By means of eqn [10.13] a critical 
stress intensity factor Kc is related to Gc.

For polymeric materials where a craze-like plastic zone is developed in 
front of a notch, Williams (1972) showed that the following relation between 
the critical energy release rate and the crack opening displacement (COD), 
sc, exists:

G sIc c y= ,  10.22

where σy is yield stress.
This relation makes it clear that the critical crack opening displace-

ment sc is appropriate for estimation of unstable crack propagation of 
polymers. The advantage of this method in comparison to the fracture 
toughness, Kc, is the same as that of the J-integral, namely that these 
values can be determined without any requirements of the sample 
geometry.

Consideration of crack growth in terms of variable G(c) and constant Gc 
provides useful results to many crack problems. However, if we need to 
follow the cracks in heterogeneous materials from microscopic to macro-
scopic size, we also have to allow for changing Gc. The crack starts inside 
one component and moves fi nally through the effective material. This 
change in Gc or γ is usually called the ‘crack growth resistance’ R(c). 
R often does not depend on c but rather Δc, the increase in crack length 
with respect to a given initial length. This indicates that the structure of the 
moving crack tip differs in some way from that of the initial crack tip, and 
the initial crack needs some distance of growth to obtain the stationary 
structure of its tip.

The average value of R for the whole crack growth process is called the 
‘work of fracture’ and the specifi c work of fracture is given by:

w
c

R c d c
c

= ( )∫
1

0Δ
Δ Δ

Δ

max

max

,  10.23

where Δcmax is defi ned as the maximal crack path through the sample.
For large crack increments, the work of fracture approaches the station-

ary value of R, if there is any.
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The work of fracture approach, similar to J-integral, has an advantage 
compared to the critical stress intensity factor in that it allows the change 
of energy; that is, it contains stress and strain. If R(c) is curved downward 
(see Fig. 10.4), initial cracks grow stably at fi rst until they become unstable 
at c̃. Initial cracks larger than c̃ grow unstably from the start and they cannot 
be stabilised again. The critical length, c̃, which is decisive for the behaviour 
of the initial cracks after the start, is determined by the condition of equal 
tangents of G(c) and R(c), as becomes evident in Fig. 10.4:

G R G c R c c c= = =and d d d d for �.  10.24

10.2.4 Dynamic fracture toughness

Methods to determine the dynamic fracture toughness are mainly exten-
sions of the previously described methods for static loading conditions. 
Reviews on the theoretical concepts and test methods were given, for 
example, by Kanninen (1978), Blumenauer and Pusch (1987) and Grellmann 
(1985).

For interpretation of the dynamic fracture toughness it becomes neces-
sary to distinguish between the resistance of the material against crack 
initiation (critical point) and against crack propagation with crack speed, 
dc/dt = c·. Analogous to static methods the energy and stress concepts are 

Crack length, c (mm)

(1) ~

Stable
crack

growth

R
G~σAc

G
, 
R

 (
k
J
/m

2
)

(2)
c0

c c0

σA

σcr

2

10.4 Schematic showing crack propagation in the presence of curved 
R(c) under increasing load σA. Loading below σcr: stable growth if c0 < 
c̃; unstable propagation if c0 ≥ c̃. Unstable propagation above a certain 
load σcr regardless of initial fl aw size c0.
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applicable. The equivalence of both methods was proposed by Kanninen 
(1978). The critical conditions are now changed to:

K c t K c, , ,σA c d( ) = ( )�  10.25a

and

G c t G c, , ,,σ A c d( ) = ( )�  10.25b

where t is time.
Again, the values on the left-hand side represent the stress and energy 

available for crack propagation with crack speed, c·; and the values on the 
right-hand side, the crack resistance of the material. The dynamic toughness 
parameters are mainly determined by such test methods as impact bending 
(Charpy and Izod), drop weight, and impact tension. If these methods are 
applied without instrumented equipment, the direct determination of frac-
ture toughness is impossible since the force-displacement curves are not 
known.

Marshall et al. (1973) and Brown (1973) showed that under the supposi-
tion of elastic deformations, it is possible to calculate the fracture toughness 
directly from the elastic energy, Ue, stored in the material. This is achieved 
by rearranging the relations [10.15] in the form:

G U
C

C A= e d d
1

.  10.26

With the critical condition [10.21], this provides:

U G B Te c= Φ ,  10.27

with Φ = 1
T

C
C cd d/

 and T as the width of the specimen.

After measuring the elastic energy, Ue, as the deformation energy until 
fracture of the sample, and the function Φ, Gc can be calculated. Φ is 
determined under static loading conditions. Yet, this is somewhat ques-
tionable because it is not proven if the result is applicable to impact 
loads.

For many relatively brittle thermoplastics, relation [10.27] is linear with 
Gc as the slope. However, if tougher polymers are tested, non-linearities 
may occur because of the plastic deformations of the material. This diffi -
culty was overcome by Birch and Williams (1978) by the incorporation of 
a plastic zone correction of the crack length.

Further problems associated with this method arise from the measure-
ment of Ue. This energy also involves kinematic energies of the sample and 
the test device. These effects were considered, for example, by Plati 
and Williams (1975) and by Newmann and Williams (1980). Nezbedova and 
Turcic (1984) considered these corrections to determine the condition 
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under which this method can be used to determine the fracture toughness 
of brittle PMMA and tough PP and ABS thermoplastics.

10.3 Application of fracture mechanics to fi bre 

reinforced composites

10.3.1 Theoretical and experimental bases

The crack resistance of fi bre reinforced composites can be characterised by 
the concepts described above, which were developed for homogeneous 
materials. Thus, we must realise the assumptions and hence limitations in 
transferring the concepts to heterogeneous, anisotropic materials.

The main assumptions to apply LEFM in the macroscopic approach to 
heterogeneous, anisotropic materials are:

• The crack growth is self-similar (no change of crack direction under 
mode I loading). This is sometimes not the case for fi bre composites. 
When a crack meets fi bres with orientation away from the crack direc-
tion it may grow along the fi bres so that the composite structure has to 
be considered.

• Stress distribution around a crack in anisotropic materials is similar to 
that of homogeneous, isotropic material. This means the prevailing sin-
gular term has the same power of singularity but may have an intensity 
that depends on the anisotropy.

• The inhomogeneity, i.e., structural parameters, for example fi bre diam-
eter or fi bre length, must be small compared to the K-dominance zone 
and continuum mechanics is applicable. Otherwise, local structure 
affects the stress fi eld and the macroscopic relation for stress intensity 
is modifi ed. For example, when the crack moves along the fi bre–
matrix interface, the fracture mechanics of a bi-material crack is 
necessary.

Consequently, when fracture mechanical concepts are applied it is impor-
tant to include details of structural heterogeneity. The problem lies in the 
resolution of even small structures by the steep stress gradients ahead of 
the crack tip (this thus violates the second assumption above). The condi-
tion for infi nitesimal crack growth, and the basic process for testing the 
crack stability in homogeneous materials, varies with the local structure. 
Hence, crack growth, which appears stable on average, may be composed 
of stable growth in one phase and sudden cracking in another. Therefore, 
part of the released energy appears as kinetic energy, whose existence is 
usually ignored in the energy balance involving a fi nite increment of crack 
length, as is required for describing heterogeneous materials. This means 
the tacit assumption that the energy carried away by elastic waves is in some 
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way re-absorbed by the crack tip moving slowly into the other component 
and becomes the crack surface energy again.

This redistribution of energy (and also the non-linear redistribution of 
stresses) is mostly promoting fracture so that the fracture toughness calcu-
lated under this assumption has the meaning of a lower bound, K−

c, respec-
tively, G−

c. In the other extreme, it is assumed that the energy released 
excessively at some place on the crack front is not fed into areas of defi cient 
energy release but is completely dissipated. Obviously this situation favours 
crack propagation the least. Thus, it represents an upper bound, K+

c, G+
c, for 

the macroscopic stress intensity and energy release rate, respectively. In 
reality, Kc is somewhere between these two bounds, depending on the mate-
rial and on specimen geometry:

K K K G G Gc c c c c cor− + − +≤ ≤ ≤ ≤ .  10.28

The basic equations for the stress intensity factor and energy release rate 
of a homogeneous, isotropic material are given by eqns [10.3], [10.15] and 
[10.27] with relation [10.13]. These equations are now applied to the inho-
mogeneous, anisotropic materials:

K Y c G F
C
A
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BT
G K EI a c I
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d
d

or with= = = =σ 1 2 2 21
2

,
Φ

 10.29

and are also used for their critical values, the fracture toughness.
Evidently, this expression for critical stress intensity factor involves dif-

fi culties in the interpretation of the right-hand side quantities of composites, 
viz. the calibration factor, Ya, critical applied load σc, and crack length, c. Ya 
now becomes a function of stiffness in different material directions Eij: Ya 
= Ya(Eij, c). In the relation between the energy release rate and the stress 
intensity factor, the effective stiffness Ea of the anisotropic material must 
be considered.

The critical stress for crack initiation in fi bre composites is diffi cult to 
identify. Further, it must be taken into account that the crack resistance of 
a heterogeneous material depends on the direction of crack propagation.

For continuous-fi bre reinforced polymers the problem of critical load and 
effective crack length was considered by Guess and Hoover (1973) and by 
Gaggar and Broutman (1975). The anisotropic calibration factor was dealt 
with by Barnby and Spencer (1976), Sweeney (1986) and Hine et al. (1988). 
The last paper also provides for three-point bending and double-cantilever-
beam tests a compliance C, which is dependent on the stiffness E11, neces-
sary for the application of the second of eqn [10.29]. A third possibility to 
determine the fracture toughness of fi bre reinforced composites is to use 
the last of eqn [10.29]. Instead of the elastic modulus of the homogeneous 
material, E, now an ‘anisotropic modulus’, Ea, must be used. For orthotropic 
properties of the composite the relation was derived by Sih et al. (1965).
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For short fi bre reinforced polymers (SFRP), this problem was tackled by 
the ESIS group and resulted in the protocol by Moore (2001), where a cali-
bration function Ya that depends only on the specimen geometry is used. 
More details are given in the next section.

In addition to these stress-fi eld concepts, the energy concept, based on 
the determination of the critical energy release rate, Gc, by compliance 
calibration has been used. Application of eqn [10.15] to composites was 
studied, for example, by Guess and Hoover (1973). Also, different J-integral 
measurements according to eqn [10.14] were performed by Grellmann 
(1985), Hoffmam et al. (1985), and Grellmann et al. (1991) for SFRP.

However, the measurement of work of fracture-like quantities as the 
impact toughness in un-instrumented dynamic tests incorporates some 
major disadvantages. Since the stress–strain curve is not known it cannot 
be concluded whether a change is caused by the change of maximal load 
or by a change in the deformation ability of the material. This drawback 
leads to the necessity of instrumented impact loading apparatus. A compre-
hensive survey about devices and methods was given by Grellmann (1985), 
who evaluated the applicability of different fracture mechanic concepts for 
homogeneous polymers and for fi bre reinforced thermoplastics. Using the 
instrumented impact device, Karger-Kocsis (1993) could distinguish between 
crack initiation and crack propagation stages.

In the micromechanical approach, which is used in theoretical consider-
ations of crack resistance, the heterogeneities of composite materials can 
be better taken into account. In this approach, a straightforward idea is to 
sum up all contributions of parts and components to an effective fracture 
energy. It corresponds to the global energy approach where the elastic 
energy released during fi nite crack growth over a structural element is 
equated to the different kinds of energy consumption, Ri, as fi bre break, 
matrix fracture, interface sliding, etc. Consequently, the crack resistance is 
given by:

R R
i

= ∑α i i ,  10.30

with αi as a weighting fraction of the mechanism (i) of the crack area.
It is not an assumption that single mechanisms must not interact, however, 

the calculation of the single contributions under consideration of the other 
ones is mostly a very complex task and that is why the dissipation energies 
are simply superimposed in most theoretical studies.

If eqn [10.30] is interpreted in the sense of work of fracture (i.e., as the 
sum of individual energy contributions of different mechanisms to the total 
energy for driving the crack through the specimen) and not in the frame-
work of fracture mechanics (as the change of energy for an infi nitesimal 
crack growth, G), then such equation can be traced back to the works of 
Cottrell (1964) and Cooper and Kelly (1967). This concept was subse-
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quently further developed by Beaumont and Harris (1972) and Harris 
(1972). This approach will be used for the derivation of the work of fracture 
in Section 10.5.

In SFRPs there appears to be a substantial amount of slow crack growth 
prior to unstable fracture under increasing load/increasing displacement 
conditions. It is therefore necessary to distinguish between crack initiation, 
crack propagation and complete failure. Crack initiation is characterised by 
the balance of available energy dW with the energy dQ that is necessary 
for crack tip propagation. That is,

d d dW Q R c≥ = .  10.31

The calculation of crack resistance and critical energy release rate will be 
shown in detail in Section 10.10.

A corresponding expression for the effective fracture toughness, Kc, in 
terms of the single values Kic for the different phases (i) and their volume 
fractions (vi) of multiphase materials was derived by Kameswara Rao 
(1983). For the special case of a two component composite, this is given by:

K K K v Kc c c c= −( ) −( ) +1 2 1
1 2

21 .  10.32

The above equation is based on the superposition principle of stresses 
which is valid in linear elastic theory, i.e., the total force in a cross 
section is equal to the sum of its parts. If this is expressed in terms of 
the stress intensity factor defi nition (eqn [10.2]) the above equation is 
obtained.

A similar approach was applied by Becher et al. (1988) and Song et al. 
(2002). They also used the stress superposition principle, for example, for 
mode I loading, all stress components in one direction of different compo-
nents (such as σyy) can be added. If the components are generalised to 
different dissipative mechanisms, the stress intensities can be summed up 
and this provides:

K K
i

composite i= ∑ ,  10.33

where Ki is the stress intensity factor of the i-mechanism. This simple super-
position is only allowed if the stresses contributing to the single mechanism 
in one direction are not disturbed by the other mechanisms. Bearing in mind 
the complex structure of a composite material it is questionable whether 
the local stress fi eld can be considered, as for example only a mode I loading 
situation. It is expected that a multi-axial loading situation exists in front 
of a crack leading locally to superposition of different modes (modes I, II 
and III). But the different modes are not allowed to add (because adding 
loads in different directions as σxx and σyy is not permitted). Hence, it seems 
more appropriate to use the formulation in terms of energy, as in eqn [10.30] 
than in terms of stresses as in eqn [10.33].
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In the work by Friedrich (1984) fracture toughness of the composite, Kc, 
was calculated by relating it to that of the matrix, Kc,m:

K MKc c m= , ,  10.34

where M is a microstructural effi ciency factor that takes into account the 
fi bre–matrix interaction energies.

Short fi bre reinforced polymers generally show a substantial amount of 
slow crack growth before crack instability, so that a single parameter like 
Kc or Gc is not appropriate to characterise the total fracture behaviour. For 
this reason the R-curve concept was used by Gaggar and Broutman (1975) 
and by Agarwal and Giare (1981). They used it for short-fi bre reinforced 
epoxy and found that the results are useful for comparing different com-
posite variants but they fail to predict the toughness as a material parameter 
because it depends on the initial crack length. Thus, the R-curve concept 
will be described in more detail in Section 10.10.5.

Another fruitful approach for considering structural aspects in fracture 
mechanics is the so-called laminate analogy. This method is based upon the 
combination of micro- and macro-mechanical considerations. A composite 
material is subdivided into different layers with varying structural param-
eters (such as fi bre orientation). After calculation of the effective elastic 
constants for each layer, LEFM is applied. Thus, subsequent superposition 
provides the fracture toughness of the composite. This approach was used 
mainly for continuous fi bre reinforced polymers (Harris, 1986). However, 
it has also been successfully applied to short fi bre reinforced composites by 
Tsanas and Kardos (1985) and Fu et al. (2002c).

The fracture toughness Kc of composites can be evaluated by a bimodal 
equation:

K
S

B
K

C
B

Kc c skin c core= +2 0
, , ,  10.35

where Kc,skin is fracture toughness of the skin layers; Kc,core is fracture tough-
ness of the core layer. Since the size (2S) of the skin layers is much larger 
than the size (C0) of the core layer (see Chapter 3), the fracture toughness 
of the skin layers will play a dominant role in determining the total com-
posite toughness.

For ductile polymers the methods of LEFM as described above and their 
extension to non-linear elastic materials, as J-integral, which also has limited 
validity for small-scale yielding, are inappropriate. For these materials the 
concept of essential work of fracture (EWF) was applied to fi nd reliable 
fracture mechanics parameters. This concept was extended to short fi bre 
reinforced polymers by Wong and Mai (1999) and Tjong et al. (2002a, 
2002b). A detailed description of the EWF method and results will be given 
in Section 10.12.
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This short review suggests clearly that the experimental determination 
of a real fracture toughness value for a heterogeneous material is a very 
complex problem.

Conversely, materials science has to answer the questions as to the nature 
of the main processes of energy dissipation during failure and how the 
material parameters must be changed to improve the crack resistance.

10.3.2 Experimental fi ndings of fracture toughness

In the following some typical experimental results are used to illustrate the 
complex variation of fracture toughness and work of fracture with material 
parameters. At fi rst, quasi-static loading with crosshead speed of ∼0.2 mm/
min is considered. Over the years, a number of different fracture mechanics 
tests have been established; overviews are given by Broek (1974), Mai and 
Atkins (1980), and Anderson (1995).

Most often, the compact tension (CT) specimen (Fig. 10.5) is used for 
SFRP. For this geometry the general equation [10.29] takes the form:

K Y c Y
c
T

F
B T

cc a c a
c= = ⎛

⎝⎜
⎞
⎠⎟
⋅

⋅
⋅σ ,  10.36

where c is crack length, B specimen thickness, T specimen width and Fc the 
critical force. For calibration factor Ya different functions are used. Broek 
(1974) and Friedrich (1985) used:
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10.5 Geometry and dimensions of a compact tension specimen.
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Y
c
T

c
T

c
T

c
T

1

2 3

29 6 185 5 655 7 1017⎛
⎝⎜

⎞
⎠⎟ = − ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ − ⎛

⎝⎜
⎞
⎠⎟. . . ++ ⎛

⎝⎜
⎞
⎠⎟639

4c
T

,  10.37

but Williams (2001) in the ESIS protocol and Anderson (1995) used the 
following relation, which corresponds to the ASTM E399 (1983) standard:
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These two functions provide very similar values in the range 0.3 ≤ c/T ≤ 
0.7. Outside of this range they are slightly different; however, in view of the 
uncertainties in determination of critical crack length and/or critical force 
Fc it may be neglected. For the critical load, it can be taken as the maximum 
load or the so-called 5% offset load, FQ. This KQ method was fi rst introduced 
in engineering fracture mechanics to consider small non-linearities in the 
stress-defl ection curves, see Broek (1974), i.e., the maximum load Fmax as 
the critical value is replaced by a modifi ed load FQ. Usually, that load is 
defi ned by a 5% reduced slope of the load-defl ection curve. More details 
and discussions about Kc testing of SFRP are found in Moore (2001). In 
particular, the condition for the application of LEFM according to speci-
men size to realise a plane strain stress state and the measurement of yield 
stress σy are given. The sample thickness (B), crack length (c) and ligament 
(T-c) shall be larger than the minimum values:

B c T c
K

min min min, , . .−( ) =
⎛
⎝⎜

⎞
⎠⎟

2 5
2

c

yσ  10.39

Similar standards exist for other specimen geometries, for example, three-
point bending specimen whose geometry is very often used in impact 
testing, e.g., Charpy impact test.

The stress concept to determine fracture toughness Kc for SFRP was 
used by Friedrich (1982, 1984, 1985). Compact tension testing geometry was 
applied and cracks were propagated both parallel and perpendicular to the 
mould fl ow direction (MFD) as shown in Fig. 10.6.

Figures 10.7 and 10.8 show the dependence of Kc on the two perpendicular 
crack propagation directions (T-perpendicular and L-parallel to the mould-
fi ll direction) for the relatively brittle polyethylene-terepthalate (PET) and 
the tough polycarbonate, respectively. Comparing both curves, it is clear that 
the tendency of toughness variation with increasing fi bre volume fraction 
depends strongly on the deformation behaviour of the matrix material. The 
initially more brittle material (PET) shows an increase of fracture toughness 
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10.6 Macrostructure of injection-moulded plaques and orientation of 
compact tension test specimen, T: crack direction transverse to the 
mould fl ow direction (MFD), L: crack direction in the MFD.
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10.7 Fracture toughness Kc vs fi bre weight fraction as a function of 
crack direction for GF-PET (I) composites with different fi bre–matrix 
bond qualities. Adapted from Friedrich (1985).
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with increasing glass fi bre content, whereas the initially more ductile poly-
carbonate (PC) shows a decrease. An improved bonding quality between 
the polymer matrix and the fi bres results in an increase of fracture toughness 
tested in both directions, as Fig. 10.7 shows. The decrease of Kc for the PC 
composite is not so sensitive to the crack propagation direction, indicating 
that the change in matrix behaviour is prevailing. The reasons for this behav-
iour will be discussed in detail in Section 10.10.

The infl uence of crack orientation relative to the mould-fi ll direction 
(MFD) for polypropylene reinforced with short glass and short carbon 
fi bres was examined by Fu et al. (2002a). For both composites, the fracture 
toughness for cracks parallel to the MFD remains unchanged while it 
decreases for the L-cracks with the increase of fi bre volume fraction, see 
Fig. 10.9.

In a comprehensive study of fracture of SFRP by Karger-Kocsis (1989) 
a huge amount of data were collected for different polymer materials and 
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10.8 Fracture toughness, Kc, vs fi bre weight fraction as a function of 
crack direction for GF-PC composites. Adapted from Friedrich (1985).
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their composites. As an example, Fig. 10.10 shows the variation of Kc with 
fi bre weight fraction where the matrix material was modifi ed and the fi bre–
matrix interface properties are improved to enhance fracture toughness.

Another important structural parameter is the aspect ratio (l/d) of the 
fi bres. The increase of Kc with increasing l/d is shown in Fig. 10.11.
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10.9 Fracture toughness, Kc, vs fi bre volume fraction: (a) short glass 
fi bre reinforced polypropylene, and (b) short carbon fi bre reinforced 
polypropylene. Adapted from Fu et al. (2002a).
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10.10 Effect of matrix and interface properties on fracture toughness 
Kc as a function of fi bre weight fraction for glass fi bre reinforced 
poly(ethyleneterepthalate) (GF-PET). Adapted from Karger-Kocsis 
(1989).
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The determination of the crack initiation point in composites is very often 
quite diffi cult; rapid photography is helpful to identify this important point. 
It improves the determination of the critical load. Using this technique, 
Akay and O’Regan (1995) found that the 5% offset force FQ is lower than 
the load at crack initiation, hence leading to an underestimation of the 
fracture toughness.

There are also external parameters that need to be considered for the 
evaluation of toughness, such as the loading rate, environmental conditions 
and mode of testing.
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10.11 Fracture toughness, Kc, in dependence on aspect ratio. Adapted 
from Friedrich (1984).
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The effect of temperature on fracture toughness was considered by Choi 
and Takahashi (1996). The variation of Kc with glass fi bre weight fraction 
in thermoplastic poly(cyano aryl-ether) (PCAE) is shown in Fig. 10.12 for 
two temperatures. The unreinforced matrix material exhibits a higher 
toughness at 100 °C than at room temperature (23 °C) because of its higher 
ductility. But it remains almost unchanged at room temperature with 
increasing fi bre weight fraction and decreases slightly at 100 °C.

The infl uence of moisture on Kc was examined by Ishiaku et al. (2005). 
For glass and carbon fi bre reinforced polyamide they observed much higher 
values for the samples that were exposed to humidity compared to dry 
material. The infl uence of water uptake, strain rate and temperature of glass 
and carbon fi bre reinforced polyarylamide owing to hygrothermal ageing 
was studied by Ishak et al. (1998).

The fracture behaviour of polypropylene (PP) composites reinforced 
with hybrid short glass fi bres (GF) and short carbon fi bres (SCF) was 
studied by Fu et al. (2002b). An interesting result was that the composite 
showed a positive hybrid (synergistic) effect. The results of Kc vs relative 
carbon fi bre volume fraction ratio, shown in Fig. 10.13, demonstrate the 
synergism.

New technology of co-injection moulding, which is working with two 
injection moulding units, was applied by Solomon et al. (2005). However, 
they found that the fracture toughness of such sandwich skin-core hybrids 
(short glass and carbon fi bre reinforced polyamide 6) could not be improved 
compared to traditional carbon fi bre composites.
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10.12 Fracture toughness, Kc, of glass fi bre reinforced PCAE as a 
function of fi bre weight fraction for two different temperatures: 23 °C 
and 100 °C. Adapted from Choi and Takahashi (1996).
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Most of the published work on impact fracture properties of reinforced 
polymers is determined on the basis of the work of fracture, as given in eqn 
[10.23]. For impact loading it is understandable to use this property as it is 
diffi cult to measure the load-displacement curve. A major drawback, 
however, is that it is not truly a material constant but depends on the speci-
men geometry. Thus, for certain defi ned geometry given in the standards 
for the determination of impact toughness, for example, DIN 53453 and ISO 
179-92, it provides a basis to compare materials. The work of fracture cal-
culation and discussion of the results will be given in Section 10.5.

However, with instrumented impact tests, the application of fracture 
mechanics concepts is possible. For short carbon fi bre reinforced nylon 
6.6, Ishak and Berry (1993) measured the load-time curve for a falling 
weight impact tester. One of their results, which were determined on the 
basis of eqn [10.29], is shown in Fig. 10.14. It reveals an increase of the 
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10.13 Fracture toughness, Kc, of PP composites reinforced with glass 
and carbon fi bres vs relative carbon fi bre volume fraction. Adapted 
from Fu et al. (2002b).
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10.14 Fracture toughness, Kc.d, of short carbon fi bre reinforced nylon 
6.6 under impact load vs fi bre volume fraction. Adapted from Ishak 
and Berry (1993).
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critical stress intensity factor with increasing carbon fi bre content. The 
same equation was used by Karger-Kocsis (1993) to determine the stress 
intensity factor, Kd, of Charpy experiments on short fi bre reinforced poly-
propylene. The increase of this property with fi bre volume fraction is 
shown in Fig. 10.15.

The correlation between the total absorbed energy during Charpy impact 
loading Gc,d determined by the instrumented testing equipment to the 
notched Charpy impact toughness, w, was shown by Karger-Kocsis (1993). 
Both quantities agree very well with each other, as shown in Fig. 10.16. 
However, the initiation fracture toughness Gc,d (initiation), which was cal-
culated with the energy absorbed until the peak load, is much smaller than 
this value. However, care must be taken in the interpretation of the mea-
sured values.

Since bulk polymers, and their fi bre composites, show plastic deforma-
tions around the crack tip, this may require the use of non-linear fracture 
mechanics. The extension of non-linear elastic J-integral, as given in eqn 
[10.14], to elastic-plastic materials is the most commonly used approxima-
tion. For the non-linear elastic case, combination of eqns [10.12] and [10.14] 
provides:

G
U

A

U

Bdc
J= − = − =

d

d

dpot pot .  10.40

This relation was extended to the elastic-plastic case by Sumpter and Turner 
(1976). The total energy is subdivided into an elastic and plastic part:
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10.15 Variation of impact toughness, Kc,d, with fi bre volume fraction 
for short glass fi bre (SGF) and long glass fi bre (LGF) reinforced 
polypropylene (PP), tested at room temperature. Adapted from 
Karger-Kocsis (1993).
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J U U= +� �η ηel e pl pl,  10.41

where the coeffi cients η̃el and η̃pl depend on specimen and loading geom-
etry, Ue and Upl are elastic and plastic energies under the measured load-
displacement curve.
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10.17 Impact toughness, Jc,d, of short carbon fi bre reinforced 
polyamide vs fi bre volume fraction. Adapted from Langer et al. (1996).
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This method was applied by Langer et al. (1996) to determine the impact 
J-integral (instrumented Charpy test) for short carbon fi bre reinforced 
polyamide. The J-integral, characteristic of unstable crack growth, passes a 
maximum with increasing fi bre content, as shown in Fig. 10.17.

The characterisation of fracture toughness of composites is not a simple 
‘one-number property’ but a complex crack growth process characterised by 
different stages. Hence, the attributes of fracture toughness, such as initiation, 
propagation, total crack growth and crack arrest, must be specifi ed during 
testing. The R-curve concept that provides the crack resistance for consid-
ered crack length can characterise all the above stages of crack propagation. 
Some explanations of the R-curve concept are given in Section 10.10.5.

10.4 Mechanisms of fracture toughness 

and energy dissipation

The fracture process of fi bre reinforced composites is characterised above all 
by the formation of different kinds of fracture surfaces across the fi bres and 
matrix, and along the interfaces. According to a model developed by Outwater 
and Murphy (1969) crack growth starts from the fi bre ends and spreads along 
the fi bre interface. However, it is also possible that the developing crack 
grows from the fi bre into the matrix (see Curtis et al., 1978; Gurney and Hunt, 
1967). This behaviour is characterised by different modes of crack propaga-
tion; either the crack causes fracture of the neighbouring fi bres, or it sur-
rounds them, or it releases debonding processes far from the main crack.

In any particular composite, the fracture mode is determined above all 
by the ductility of the matrix and whether the matrix material reacts to the 
high stress enhancement in front of the crack by brittle fracture or by plastic 
fl ow. During crack propagation energy is absorbed by the fractures of fi bres 
and matrix. But a number of other energy dissipation mechanisms have also 
been proposed, which may act in the composite other than those of the 
components, viz.

• pull-out of the fi bres (Beaumont, 1971; Piggott, 1974);
• mode I debonding remote from the crack tip (Marston et al., 1974);
• mode II debonding after matrix fracture (Gurney and Hunt, 1967; 

Outwater and Murphy, 1969);
• stress relaxation (Piggott, 1980); and
• friction after debonding (Kelly, 1970; Harris et al., 1975).

For early literature surveys, see, for example, Phillips and Tetelman (1972), 
Cooper and Piggott (1977), Pompe (1978), Harris (1980), Wells and 
Beaumont (1985a) and Kim and Mai (1991).

All these failure mechanisms may not operate simultaneously for a given 
fi bre–matrix system, and in some composites one of these toughness 
contributions may dominate the total fracture toughness of short fi bre 
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composites. Which energy dissipation mechanisms are working for a certain 
fi bre composite depends mainly on the fracture mode of the matrix and 
fi bre length. Some of these contributions do not work for short fi bres if the 
fi bres are shorter than a certain critical length, where the necessary fracture 
stresses cannot be developed.

Harris (1980) and Wells and Beaumont (1985a) gave a survey about 
failure mechanisms for continuous fi bre reinforced composites. They clari-
fi ed the complex mechanisms of the last three points above, which resulted 
in the statement that these mechanisms quantify the same energy change, 
where the differences arise from the assumptions made and the methods 
of derivation. They summarise the energy dissipation process for fi bres of 
super-critical length (i.e., fi bres are long enough to build up a tension stress 
which can reach the fi bre strength, σu

F) in three mechanisms: pull-out, 
surface energy, and one involving changes in the elastic strain energy of 
fi bres. In the above papers and in Wells and Beaumont (1985b), the dissipa-
tion energies are determined in a comprehensive manner.

In this section we focus on the theoretical and experimental consider-
ations of toughness of SFRP with fi bres of sub-critical lengths; composites 
with fi bres of super-critical lengths are only briefl y discussed.

Whether the matrix breaks in a brittle or ductile mode depends essen-
tially on the crack speed and thus also on the loading rate and temperature, 
respectively. For high loading rates a predominantly brittle matrix fracture 
mode is observed for short glass fi bre reinforced thermoplastics. For static 
(monotonic) tests, however, most polymer matrices show extensive plastic 
deformation.

A composite with predominant brittle matrix behaviour is polyamide 
reinforced by glass fi bres (GF/PA). Bader and Collins (1982) observed 
intense debonding in this material (polyamide-6, containing 10 and 25 vol% 
glass fi bres), whereas the matrix failed in an obvious brittle manner.

Some interesting insight into the initiation and propagation of cracks in 
a similar material (polyamide-6.6, containing 15 vol% E-glass fi bres) was 
obtained by Sato et al. (1983, 1985) by in-situ scanning electron microscopic 
observations of the tensile side of a sample in a bending test. The failure 
proceeded in three characteristic stages. In the fi rst, separation of the fi bre 
ends from the matrix occurred. The second fracture mechanism was char-
acterised by the appearance of interfacial cracks; in the last stage, bands of 
microcracks developed within the matrix, joining debonded regions of the 
neighbouring fi bres. This corresponds to the predominantly brittle behav-
iour of the polyamide matrix (only some limited regions show ductile frac-
ture). Similar results were obtained by Mandell et al. (1982), Lhymn and 
Schultz (1983) and Friedrich (1985, 1989). The failure development in short 
glass fi bre reinforced polyethylene terephthalate (PET) is shown in 
Fig. 10.18. Typical mechanisms are recognised.
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Inspection of the cracked surfaces and examinations under in-situ condi-
tions reveal that the fracture process is not limited to a crack plane but 
fracture happens within an extended dissipation zone around the crack tip. 
For instance, the matrix in glass fi bre reinforced (high density) polyethylene 
shows clear plastic deformation. On the fracture surface (Fig. 10.19) 
extended matrix tongues (fl ow regions) can be seen with lengths of the 
order of the fi bre separation, together with clean fi bres from which the 
matrix is completely debonded.

From these observations, we may conclude that the matrix plastic defor-
mation provides a substantial contribution to the fracture work, whereas 
matrix plasticity and limited interfacial strength restrict the role of fi bre 
pull-out, if it occurs at all. Due to the complex microstructure of the com-
posite, a crack may propagate with different speeds through the cross section, 
resulting in zones with prevailing brittle or ductile matrix fracture.

Another helpful method to evaluate the failure mechanism of composites 
is acoustic emission (AE). This method enables the determination of critical 
stresses responsible for micro fracture initiation via measurements of 
acoustic signals. Different failure processes release different amounts of 

Crack

10 μm
10 μm

10 μm 20 μm

Fibre

Matrix

A B
C D

C

D

A

B

10.18 Typical failure modes in short fi bre reinforced polymer, A: fi bre 
fracture, B: fi bre pull-out, C: fi bre–matrix debonding, D: plastic 
deformation and fracture of the polymer matrix. Adapted from 
Friedrich (1989).
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energy as stress waves, and therefore conclusions concerning such processes 
are possible. The advantage of this technique to characterise the failure 
processes of fi bre reinforced thermoplastics was proven, for example, by 
Sato et al. (1984) and Leps and Bohse (1985).

On the basis of the above-summarised experimental observations, it is 
concluded that the relevant failure mechanisms are:

• debonding (mode I and mode II);
• sliding of fi bres against matrix within the debonded region;
• pull-out of fi bres;
• brittle matrix fracture;
• ductile matrix fracture; and
• brittle or ductile fi bre fracture.

As already mentioned, the failure processes will not be limited to the 
fracture surface but will take place within a certain damage zone in front 

20 μm

10.19 Fracture surface of high-density polyethylene reinforced with 20 
vol% glass fi bres; SEM observation. Adapted from Lauke et al. (1990).
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of the notch. This has led to an extension of the work of fracture and 
fracture toughness concepts (see Lauke et al., 1985, 1986a,b, 1990).

To assess the effects of different structural changes on the crack resis-
tance it is necessary to analyse the failure processes near the crack tip in 
further detail. Thus, it is useful to divide the deformation mechanisms into 
two groups. The fi rst comprises those mechanisms that are acting directly 
on the crack surfaces. This zone of material situated immediately near the 
crack surfaces is called the ‘process zone’. The second is made up of more 
extended structural damage around the crack path that can also increase 
the crack resistance. Hence, it is convenient to introduce a second charac-
teristic region, the ‘dissipation zone’, whereby any additional components 
of energy dissipation can be included. The ideas of such an enlarged interac-
tion zone have been introduced in other models by means of a ‘damage 
parameter’.

In the following subsections, the energy dissipation processes are sepa-
rately discussed for predominantly brittle and ductile matrix fractures.

10.4.1 Brittle matrix fracture

Even if the polymer is not intrinsically brittle, still brittle matrix fracture 
may be initiated by high loading rates (e.g., impact loading) or at low 
temperatures.

Dissipation zone

Based on previous examinations, the initial stage of failure is characterised 
by debonding of the fi bre–matrix interface (Wd = debonding energy of one 
fi bre) along the debonding length, ld, and sliding (Ws = sliding energy of one 
fi bre) along the sliding length, ls at the fi bre end regions.

Process zone

As a consequence of high crack speed, no matrix yielding may be initiated, 
and hence brittle matrix fracture dominates the failure mode just ahead of 
the notch tip providing a contribution to the specifi c process zone energy, 
qpz. However, there is a second important mechanism, namely, the pull-out 
of fi bres with pull-out energy of one fi bre, Wpo, or the restricted pull-out of 
one fi bre, WΔ

po. This restriction means that the fi bre is not completely pulled 
out of the matrix but only over a distance, Δ. In papers concerning the work 
of fracture, this contribution is related to the crack propagation energy (cf. 
Miwa et al., 1979). In contrast, however, it is also assumed characteristic for 
crack initiation and is thus used for fracture toughness calculations (Lhymn 
and Schultz, 1983). These different approaches are discussed in more detail 
in Section 10.10.
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In agreement with experiments, the energy of totally pulled out fi bres 
describes the main part of the crack propagation energy. This means that 
when the work of fracture is considered, the energy for a totally pulled out 
fi bre, Wpo, has to be used. However, when considering the point of crack 
instability it must be realised that the pull-out length will be restricted to a 
certain length, Δ, since the crack opening displacement limits the pull-out 
process; that is, WΔ

po should be used.
The energy dissipation processes are shown in Fig. 10.20 for brittle fi bre 

composites. If ductile fi bres are used in the composite, their plastic deforma-
tion potential must also be considered.

10.4.2 Ductile matrix fracture

If a composite with a ductile polymer matrix at low loading rates is exam-
ined we have to distinguish between failure processes for low and high fi bre 
concentrations. As stated above, application of LEFM to composites works 

Dissipation zone

Wd, Ws

Wp

sc
c + dc

Process zone

Le
xo

γm
0

Δmax

Δ

10.20 Failure modes for brittle matrix fracture; dissipation zone: 
debonding, Wd, sliding, Ws; process zone: brittle matrix fracture, γ 0

m, 
and pull-out, Wpo, or restricted pull-out, W Δ

po.
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only for small-scale damage; however, this condition will be fulfi lled only 
at higher fi bre volume fractions because these prevent the macroscopic 
yielding of the reinforced matrix.

Dissipation zone

The fi rst stages of failure for weak interfaces are the debonding and sliding 
processes. It is assumed that the critical stresses for initiation of these 
mechanisms are smaller than the matrix yield stress, the stress distribution 
is still elastic. A major contribution to the total energy is provided by the 
subsequent yielding of matrix bridges between the fi bres, Wm.

Process zone

Final failure will occur only just ahead of the main crack tip destroying the 
already yielded matrix bridges. The fracture energy, γm,y, of this deformed 
material is in general smaller than that of the bulk matrix. Although the 
matrix shows necking, a certain pull-out contribution, pWpo, or, pWΔ

po, 
respectively, with (p < 1), is expected. The factor p is used to account for a 
reduced fraction of fi bres being pulled out. These processes are shown in 
Fig. 10.21.

The energy dissipation mechanisms operating in the dissipation and 
process zones are summarised in Table 10.1 for brittle and ductile matrix 
fracture conditions.

Another group of short fi bre reinforced composites are those materials 
with discontinuous long fi bres, which can be processed by the pultrusion 
technique. Such composites range between the two extremes of short fi bre 
and continuous fi bre composites. A possible fracture mode of such com-
posites is given in Fig. 10.22(a). A major difference to the failure mode of 
short fi bre reinforced composites is that not all the fi bres are pulled out, 
but only those whose ends are lying at a distance relative to the crack 
plane which is shorter than the critical fi bre length, lc. The debonding 
(mode II) and sliding processes are initiated in all fi bres within the dissipa-
tion zone.

As already mentioned, the mechanisms acting in continuous fi bre rein-
forced materials are summarised by Wells and Beaumont (1985a). They are 
only typical for such fi bres whose ends are far enough away from the crack 
surface, as may be the case for discontinuous long fi bres. That is, only for 
such fi bres can mode I debonding in front of the notch and fi bre fracture 
be initiated.

If relatively ductile thermoplastics are considered under static loading, 
the toughness contribution by plastic deformation of the matrix bridges 
must be included (see Fig. 10.22(b)). The pull-out contribution is reduced 
in analogy to the short fi bre case because of the necking of matrix bridges.
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Dissipation zone

WsWd

Process zone

2
r D

Wpo
Wm

hm

γm,y

Δ

Δ

10.21 Failure modes for ductile matrix fracture; dissipation zone: 
debonding, Wd, sliding, Ws, plastic deformation of matrix bridges, Wm; 
process zone: pull-out, Wpo, restricted pull-out, W Δ

po; fracture of 
deformed matrix, γm,y.

Table 10.1 Energy absorption mechanisms in process zone and dissipation 
zone for brittle and ductile matrices

Energy absorption mechanisms for

Brittle matrix fracture Ductile matrix fracture

Dissipation zone Debonding, Wd; 
Sliding, Ws

Debonding, Wd; Sliding, Ws; 
Plastic deformation of matrix 
bridges, Wm

Process zone Pull-out, Wpo and 
restricted pull-out, 
W Δ

po; Brittle fracture 
of matrix bridges,γ 0

m

Reduced pull-out energy, pWpo 
or pW Δ

po respectively, p < 1; 
Fracture of ductile matrix 
bridges, γm,y
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10.5 Work of fracture of notched specimens

The characterisation of fracture toughness of composite materials is of 
importance for many applications. A common and approved measure is the 
work of fracture, the work required for driving the crack through the whole 
sample. It averages the various contributions from the separate compo-
nents, thus considering the fi nite process of crack propagation, necessary 
for characterisation of heterogeneous materials, instead of infi nitesimal 
steps.

The measured work of fracture differs for impact and static loading 
conditions, not only quantitatively but often also in its qualitative 
behaviour.

The impact toughness increases at fi rst with fi bre volume fraction and 
then becomes stationary or even decreases (see Fig. 10.23). This refers to 
additional energy dissipation by fi bre–matrix interactions (e.g., debonding 
and sliding of interfaces), which are very effective at low fi bre contents but 
become successively restricted by increasing constraints at higher concen-
trations of reinforcing fi bres.

In contrast to these general trends observed under impact testing, the 
work of fracture measured under static conditions depends strongly on the 
intrinsic ductility of the matrix material.

Dissipation
zone

Dissipation zone

2
r D

2
r D

Wp, o Wd
Wd

I

Wd
I

2
I dI

Wd, Ws
II I

Wd, Ws
II

γm,y

(b)(a)

10.22 Failure modes for discontinuous long fi bre reinforced 
composites: (a) brittle matrix; and (b) ductile matrix. Adapted from 
Lauke et al. (1990).

�� �� �� �� ��



268 Engineering of short fi bre reinforced polymer composites

For relatively brittle materials, such as epoxy resins, ceramics and con-
cretes, the static work of fracture increases with fi bre fraction (see for 
example, Gershon and Marom, 1975; Mai, 1979) as in the impact case. 
However, in composites with tougher matrices the fracture work is decreased 
by the addition of short fi bres. This is caused by the high deformability of 
the ductile matrix at low loading rates, which is restricted by the stiffer 
fi bres.

The different behaviour is also refl ected by the fracture toughness (cf. 
Figs 10.7 and 10.8). Thus, differences in static and impact fracture work 
behaviour correspond to the tough–brittle transition of the matrix with 
increasing loading rates. Hence, by neglecting inertial effects, the impact 
case can be approximated by static calculations by using modifi ed matrix 
properties.
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10.23 Impact toughness of different reinforced thermoplastics as a 
function of fi bre volume fraction.
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For this purpose the energy dissipation mechanisms must be checked 
due to the changing nature of the fracture process, considering the varying 
matrix deformability. A number of such mechanisms have been proposed 
in Chapter 9. But the usual methods of calculating these effects and sum-
marising various relevant contributions into a total work of fracture are 
lacking in that they do not account for the fact that the dependence on 
fi bre fraction may change in a complex manner as discussed above. The 
energies dissipated by the fi bre–matrix interactions are proportional to the 
number of fi bres involved and the length over which the energy dissipation 
proceeds, that is, pull-out length, debonding length, or sliding length. In 
many models, it is assumed that only those fi bres, which cross the crack 
plane, contribute to energy consumption. Hence, the specifi c number, n0, of 
active fi bres is linear to the fi bre volume fraction, v. For composites with 
fi bres longer than the critical fi bre length, lc, which is the case most fre-
quently assumed, the characteristic lengths for intense interfacial processes 
are proportional to the critical length, lc. Thus, they become independent 
of fi bre content, and the respective energy expressions increase linearly 
with volume fraction. These interaction terms are superimposed on the 
contributions of fi bres and matrix. The energy dissipation due to fi bre 
breaks can often be neglected by virtue of their brittleness. That of the 
matrix is usually assumed proportional to the matrix volume fraction, vm = 
(1 − v), thus again leading to a linear variation with fi bre content, but now 
in the reverse direction.

In the following, it is intended to overcome this unsatisfactory situation 
by using a modifi ed model. The proposed corrections concern the number 
of active fi bres (not only fi bres crossing the main crack plane are consid-
ered) and their dissipation lengths are considered as functions of structural 
parameters and applied load.

Starting from scanning electron microscope (SEM) observations of the 
fracture surface it is assumed that all fi bres lying within a certain damage 
zone around the crack tip contribute to energy dissipation, with the dimen-
sions of this zone depending on fi bre spacing. Furthermore, experimental 
determinations of debonding and sliding lengths show an essential variation 
instead of a constant value. By inserting these experimental lengths into the 
respective energy expressions results in a non-linear dependence on fi bre 
content (see Beaumont and Anstice, 1980).

In Section 9.2.2, different dissipation lengths (for debonding and sliding) 
are calculated as functions of composite material parameters. They repre-
sent a rational base for calculating the energy dissipation of a characteristic 
structural element consisting of a fi bre end and the surrounding matrix 
bridge.

Additionally, an attempt is made below to explain theoretically the 
impact toughness of un-notched short fi bre reinforced thermoplastics. 
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Although this fracture energy does not describe the toughness in the sense 
of fracture mechanics it is very often used to characterise the fracture 
behaviour of composites under impact loading.

The unnotched impact toughness of several short glass fi bre reinforced 
thermoplastics shows a wide spectrum of variations (see Fig. 10.24). 
Reasons for these variations may be found in the diverging ductility of 
matrix materials, different fi bre length and properties of the fi bre/matrix 
interface.

The low unnotched impact toughness of brittle thermoplastics, for 
example, polymethyl-methacrylate (PMMA) is not affected by addition 
of reinforcing fi bres (cf. Ramsteiner and Theysohn, 1979). However, 
that value of relatively ductile thermoplastics such as PE or PA is 
much more complex. Measurements of impact toughness of the bulk 
material show no fracture but the incorporation of only a few fi bres 
leads to a drastic embrittlement. These changes are much stronger 
compared to the notched case. The main reason is because the impact 
toughness of un-notched materials is a superposition of energy to 
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crack formation and crack propagation (that is, the work of fracture 
as discussed above).

10.5.1 General concept

Due to the heterogeneous nature of composite materials, several fracture 
modes are activated during crack propagation, which contribute to the 
fracture energy in their own particular way. These are contributions, wj, of 
different components, j = fi  (fi bre), m (matrix), and interaction terms, wi

fm, 
corresponding to mechanism i of interface failure between fi bre (f) and 
matrix (m). Therefore, for the transverse rupture of a unidirectionally rein-
forced fi bre composite, the specifi c work of fracture, w, of the composite is 
given by:

w w w w w w w
i i

= + + = + +( )∑ ∑fi m fm
i

fi m i .  10.42

Herein, the values are normalised to the fracture plane, that is, the specimen 
cross-sectional area in front of the pre-notch – the ligament. For simplicity, 
we omit the subscript (f, m) and replace w(i)

fm by wi with the index i describing 
the different active dissipation mechanisms.

The terms of the specifi c work of fracture can be calculated by multiply-
ing the number of active fi bres n per unit area of crack plane NA by the 
corresponding energy Wi:

w nW w nWi i fi fiand= = .  10.43

There are two approaches to calculate the specifi c number n. If it is 
assumed that only such fi bres crossing the crack plane are contributing to 
all energy dissipation processes, then it is given by:

n
N
A

v
r

n= = =A

fπ 2 0,  10.44

where the defi nition of the fi bre volume fraction in a cross section of the 
specimen has been used.

However, as already discussed above, this simple approach is inade-
quate for short fi bre composites. Because of the high density of potential 
fl aw centres, namely the fi bre ends, some energy-dissipating processes 
such as interface failure and localised matrix necking may occur in a 
region around the crack tip. It is clear that a concept of a sharp boundary 
is a crude simplifi cation for the continuously diminishing damage distri-
bution, but it may serve as a fi rst approximation. It corresponds to a 
critical distance rD from the main crack, where the stresses are just 
suffi cient to activate essential interface failure, as shown in Figs 10.20 
to 10.22.
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The number n of active fi bres in that volume per unit fracture area is 
given by:

n
N
A

r
r l

r n= = ⋅ = ⋅V
D

f
D

v
2 2

2π
�,  10.45

where the defi nition of the fi bre volume fraction in a volume of the speci-
men has been used. Consequently, the specifi c energies of [10.43] can be 
written as:

w nW r nW ri i D i D i= = =2 2� η ,  10.46

where ηi is the volume specifi c dissipation energy of the i-th process. The 
width, 2rD, of the dissipation zone depends on specimen and notch geometry 
and on the special load conditions. A reduction of notch depth delocalises 
the damage and thus increases the dissipated energy.

For composites with a small macroscopic damage region in comparison 
to the crack length and the sample dimensions, the width of the dissipation 
zone can be estimated by consideration of the stress fi eld in front of the 
notch (crack). The local stress perpendicular to the crack plane is given by 
eqn [10.2] as σ ∼ K · r−1/2, that is, in a maximum distance rD, the debonding 
stress, σ d

c, is just reached: σ d
c ∼ K · rD

−1/2. Conversely, at the neighbour fi bre, a 
distance D d v v= −( )1  away, the fi bre strength, σ u

F, is reached: σ u
F ∼ 

K · D−1/2. Combining these two expressions results in the following approxi-
mate value for rD given by:

r d r rD
F
u

c
d

= −( )[ ] ⎛
⎝
⎜

⎞
⎠
⎟1

1 2
2

/
.

Now, it is emphasised that fi bre fracture and fi bre pull-out processes are 
only possible for fi bres that cross the crack plane and consequently the 
specifi c number of contributing fi bres is n = n0. Also, the matrix may show 
brittle behaviour, w0

m, in one part of the whole crack growth process and 
ductile fracture in another part (maybe caused by a reduction of crack 
speed), wm,y = 2rDηm. The fraction of the brittle part of the crack plane is 
designated by α. Thus, the matrix contribution becomes:

w wm m for brittle matrix fracture= 0  10.47a

= −( ) = −( ) = −( )1 1 1 2α α α ηw nW rm y m D m for ductile matrix frature.,  
 10.47b

Hence, fi nally, by inserting all these expressions in eqn [10.42], the work of 
fracture in a fi bre reinforced composite is obtained. That is,

w n W n W w r i d s
i

= + + + −( ) +⎛
⎝⎜

⎞
⎠⎟

=∑0 0 2 1fi po m
0

D m i withα α η η , .  10.48
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The different models discussed in the literature can be incorporated into 
this scheme by defi nition of the parameters and energies, respectively, by 
reduction of this equation that considers the energy consumption within a 
dissipation zone to energy dissipated only on the crack plane.

10.5.2  Dissipation energies for unidirectional 
short fi bre reinforced composites

An important parameter that determines what kind of energy values must 
be used is the fi bre length relative to the critical fi bre length. The fi rst term 
in eqn [10.48] only contributes to the fracture work if the fi bres are long 
enough to break, i.e., the fi bres must be longer than the critical fi bre length, 
lc. However, if the fi bres are brittle (e.g., glass fi bres), this contribution is 
orders of magnitude lower than other contributions. And if the fi bres of 
super-critical lengths (l > lc) do not break in a brittle manner, only a fraction 
(1 − lc /l) of the fi bres crossing the crack plane can break (Piggott, 1980). If 
so, the energy of fi bre fracture, Wfi , is given by:

W rfi f fi= ⋅π γ2 2 ,  10.49

where the factor two considers the fact that there are two surfaces after 
fracture with γf as the specifi c fracture surface energy of the fi bre material. 
This leads to:

w l lf cfor= ≤0 ,  10.50a

= −( ) ≥2 1γ fi c cforv l l l l .  10.50b

For ductile fi bres their surface energy, γfi , may be replaced by the plastic 
deformation energy per volume (ωfi  = �σfi dεfi ) multiplied by the length of 
the plastic fl ow region, as will be discussed below for the matrix.

In the following we focus on short fi bre composites with fi bre lengths, 
l ≤ lc. Then, no fi bre fails, the lengths being too small to build up a suffi ciently 
high tensile stress, σ u

F, within the fi bres via the interface shear stress, τ, which 
is restricted by matrix yielding and boundary sliding. This means that Wfi  = 
0. The cases of composites with continuous and long discontinuous fi bres 
(l ≥ lc) were discussed comprehensively by Beaumont and Harris (1972) and 
Wells and Beaumont (1985a,b) and have been reviewed by Lauke et al. 
(1990) and Kim and Mai (1991).

According to experimental fi ndings summarised in Chapter 9, the follow-
ing scheme of the dominating fracture process would be expected. For a 
small applied stress, σc, below a critical value, σ d

c, ideal bonding exists along 
the fi bre–matrix interface. With increasing load the shear stress, τ, at the 
interface is also increased until debonding starts at τ = τd. Here, debonding 
means rupture of atomic bonds and displacements of atomic order, but it 
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must not result in macroscopic displacements at the interface. Thus, debond-
ing provides a contribution to the fracture energy but does not necessarily 
change the stress fi eld.

As a result of friction and adhesion, sliding at the broken interface may 
be inhibited until a higher stress, σ sc, is achieved. Then, by initiation of the 
sliding processes, that part of the external load which is transmitted to the 
fi bres is diminished, and the load sharing between matrix and fi bre will be 
changed. In the slipped regions the matrix is not restrained by the stiff 
fi bres; it is thus carrying a larger part of the load and is capable of larger 
deformations.

In accordance with this scheme, several energy dissipation mechanisms 
are activated progressing from the fi rst fl aw at the interface to the fully 
developed crack surface, viz., debonding energy, wd, and sliding energy, ws, 
at the interface and plastic work, wm, in the matrix. A schematic illustration 
of this fracture process is given in Fig. 10.25. The debonding and sliding 
processes were theoretically investigated in detail in Section 9.2.2.

The quantities necessary for the work of fracture calculations are given 
by: debonding stress in eqn [9.4], debonding and sliding lengths in eqns 
[9.5] and [9.6], respectively. The debonding and sliding stresses are restricted 
by the condition that no extended matrix fl ow occurs at the crack tip such 
that:

σ σ σ π σc c c M ywith< = −( ) +( )max max
, .1 1 2v  10.51

At larger composite stresses, σc > σ cmax, interface debonding and sliding 
cannot continue because of the plastic relaxation of the matrix.
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10.25 Fracture modes: (a) debonding; (b) sliding; (c) stable plastic fl ow 
of matrix, and (d) fractured matrix.
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For brittle matrix fracture the surface energy of the matrix is the charac-
teristic parameter that determines the contribution to the total work of 
fracture:

w vm
0

m
0= −( )1 2γ .  10.52

In case of ductile matrix fracture the following expressions are true, as 
derived in Lauke et al. (1985). At suffi ciently high fi bre volume fractions, 
v > vc, macroscopic plasticity is suppressed and intense plastic fl ow occurs 
at the debonded and slipped fi bre ends within the damage zone only. 
However, for lower fi bre volume fractions, v < vc, an extended plastic zone 
develops, depending on testing conditions. For small notch depths, it 
approaches the order of specimen width according to the fi nal failure, by 
macroscopic necking in this case.

The critical fi bre volume fraction can be determined approximately by 
the condition that extended plastic fl ow starts when the distance, D = 
d((1 − v)/v)1/2, between the neighbouring fi bres is equal to the fi bre length:

v l dc = + ( )( )1 2 1 2
.  10.53

One plastically deformed volume, see Fig. 10.25(c), is given by: Vp1 = 2hpAm1. 
With the fi bre volume fraction defi nition, the cross section of one element 
is: Am1 = πr2

f(1 − v)/v, thus leading to:

W h A h r v vm m p m m p f= ⋅ ⋅ = ⋅ ⋅ −( )ω ω π2 2 11
2 ,  10.54

where ωm is plastic fracture work per unit volume which can be expressed 
by the true matrix stress, σM (force normalised by the actual cross section), 
and strain, εM (for example, Hencky strain), below:

ω σ ε
ε

m M Md
M
u

= ∫
0

.  10.55

Assuming the length of the plastically deformed region is equal to the 
debonding lengths: hp = ld and defi nition of volume specifi c matrix energy, 
ηm within the dissipation zone, we obtain:

η ωm m m d cfor= = −( ) >�nW l v l v v2 1 .  10.56

For fi bre volume fractions lower than the critical value, the matrix shows 
large-scale yielding that is hindered only by the fi bres in the neighbourhood. 
Thus, their fracture energy should be lower than that of the bulk matrix 
material and is designated as: γm,y. Consequently, the matrix contribution to 
the total fracture energy can be expressed by:

w v v vm y m y cfor, ,= −( ) ≤2 1 γ  10.57a

= ⋅ ⋅ −( ) ≥2 2 1r l v l v vD m d cforω .  10.57b
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The critical fi bre volume fraction vc corresponds to spreading of the zone 
2rD of intensive plastic fl ow over the order of the necking length, 2hp ≈ 2ld. 
With ld = l/2 in this case and γm,y = ωmld, the two energy expressions become 
identical.

For a brittle matrix the fracture surface propagates perpendicular to the 
macroscopic tensile stress, thus leading to pull-out of fi bres which cross the 
fracture plane. The energy contribution of the pull-out of fi bres of length l 
crossing the crack plane can be calculated by the integration of the product 
of force πdτp and distance x for an embedded length Le and subsequent 
consideration that the embedded length lies between 0 ≤ Le ≤ l/2. Thus,

W dlpo p= π τ2 24,  10.58

where τp is shear stress during pull-out of the fi bre from matrix. Multiplying 
by the specifi c number n0 of eqn [10.44] provides the well-known 
expression:

w
vl

d
l lpo

p
cfor= ≤

2

6
τ

.  10.59

For fi bres with l ≥ lc a modifi ed expression is obtained. If homogeneous 
fi bre strength is assumed, the pull-out energy is obtained by the above 
equation where we have to treat the pull-out length as varying between 
zero and half the critical fi bre length lc/2. Further, the number of contribut-
ing fi bres will be reduced by the fraction lc/l because fi bres with embedded 
length greater than lc/2 will break at the matrix fracture surface. Thus, eqn 
[10.59] yields:

w
vl

d
l
l

vl

l
l lpo

c p c c
3

p
c

d
for= ⋅ = ≥

2

6 6
τ τ

.  10.60

The debonding energy of a single fi bre, as shown in Fig. 10.25(a), can be 
easily obtained by:

W d ld d d
II= ⋅ ⋅π γ2 2 ,  10.61

where the fi rst ‘2’ is for both fi bre ends and the second ‘2’ for two newly 
created surfaces after debonding between fi bre and matrix. Multiplying this 
energy of one fi bre with number n, eqn [10.45], of debonded fi bres within 
the dissipation zone provides:

w r
v l
dl

d D
d
II

d= ⋅2
4 γ

.  10.62

This is a lower bound for debonding energy dissipation because there 
may be an additional mode I debonding process directly in front of the 
notch, as sketched in Fig. 10.22(a), which is especially pronounced for 
discontinuous long fi bres. This energy is given analogously to eqn [10.61] 
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replacing the mode II debonding length and energy by the mode I 
values:

W d ld d
I

d
I= ⋅ ⋅π γ2 2 .  10.63

Different to the mode II debonding process, mode I debonding is only 
caused by high stresses normal to the interface that act mainly in the process 
zone, which is why this energy must be multiplied by n0:

w
v
r

d l vl dd
I

f
d
I

d
I

d
I

d
I= ⋅ ⋅ ⋅ =

π
π γ γ

2
2 2 16 .  10.64

Whether or not this is an important contribution to the total work of 
fracture depends on the debonding energy in mode I loading and on the 
debonding length. An upper bound for the debonding length lI

d would be 
achieved by assuming that the fi bres crossing the crack plane debond over 
their length l. But this has never been observed experimentally; this would 
mean that there is no debonding process of fi bres afterwards. More realistic 
is to consider the lower bound, which is given by debonding length of about 
a fi bre diameter providing: wI

d = 16vγ I
d. For usually low values of the fracture 

surface energy in the range of about 10 to 100 J/m2 this energy contribution 
can be neglected.

For mode II debonding given by eqn [10.62], this contribution, however, 
should not be neglected because for most material combinations the mode 
II debonding energy γ d

II is much higher than the mode I value and this 
process takes place within the whole dissipation zone and is not limited to 
the process zone around the crack tip.

As the last contribution that enters in the general eqn [10.48], the sliding 
energy within the dissipation process must be considered. The work Ws 
dissipated during sliding in the region ls = l/2 − gs (see eqn [9.5]) on both 
ends of a fi bre is given by:

W d z
u

c
g

l

s
c

d d
d
d

c
s

c

s

= ∫ ∫2
2

π σ τ
σσ

σ max

.
Δ

 10.65

Herein the maximum composite stress, σ cmax is given in eqn [10.51] and the 
difference of the displacement, Δu, at the interface is obtained by inserting 
the stress fi eld in the debonded region into differential eqn [4.9] and sub-
sequent integration. The derivation and dependence of Δu and Ws on mate-
rial parameters are given by Lauke et al. (1985). This extended expression 
can be replaced by an approximation as proposed in Lauke and Pompe 
(1986).

It is assumed that the sliding force, Fs, is constant along the sliding length, 
ls, thus: Fs = πdτ−(s)ls with τ−(s) as the mean sliding stress according to eqn [9.5] 
in the sliding zone ls. Furthermore, it was assumed that the discontinuity 
of fi bre matrix displacement, Δu, is given by: Δu ≈ Δε·ls with Δε as the 
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difference in the ultimate deformation of the matrix, ε uM, and the fi bres, 
ε uF (Δε = ε uM − ε uF). Thus, the sliding work is obtained as:

W d ls
s

s= ( )2 2π τ εΔ .  10.66

For certain material combinations or loading conditions, the approximation 
⎪Δε⎪ ≈ ε uF or ⎪Δε⎪ ≈ ε uM is true.

Inserting all the single energy contributions and the approximation for 
the radius of the dissipation zone into eqn [10.48] provides the work of 
fracture of unidirectional reinforced short fi bre composites. Experimental 
information about the kind of fracture are also essential to estimate the 
share α of brittle and ductile regions and to decide which equation for the 
matrix fracture energy, i.e., brittle fracture (eqn [10.52]) or ductile fracture 
(eqn [10.57]) must be used.

In practice, as discussed comprehensively in Chapter 3, SFRP composites 
show fi bre length and orientation distributions. Some aspects of this depen-
dence will be concisely discussed in Section 10.9.

10.6 Work of fracture of un-notched specimens

To calculate the fracture energy of un-notched composites it is necessary 
to consider this quantity as involving two kinds of energy: the energy to 
create a moving crack and the energy of crack propagation. The total 
specifi c fracture energy thus becomes:

w w wun init= + .  10.67

These values are normalised to the sample cross section. It is assumed 
that the mechanisms described in the previous section are responsible for 
crack creation and crack propagation. The main difference lies in the fact 
that the energy dissipation processes during crack creation are spread over 
a much larger volume than that of crack propagation. Crack creation occurs 
within the sample volume. With Ω denoting the specifi c volume of crack 
creation normalised by the fracture plane (A), and ωc the energy necessary 
for crack creation per volume of the composite, the crack initiation energy 
is given by:

winit c= Ωω .  10.68

The subsequent crack propagation process is characterised by energy dis-
sipation, w, given by eqn [10.48].

Now the crack initiation energy winit must be derived. For this purpose, it 
is assumed that the deformation energy released during debonding and 
sliding at the fi bre ends is completely available to meet the energy necessary 
for the fracture processes. The deformation energy of the composite until 
the moment of crack propagation is given by:
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η σ ε σ ε ε σ
ε σ

c c c c c c c
0

d d
c c

= = ′ ′ −
′ ′

∫ ∫
0

.  10.69

The local micro defects combine with each other to create a macrocrack 
when the remaining matrix bridges reach their fracture strength, σ uM, 
where σ c′  = (1 − v)σ uM. The corresponding critical strain ε c′  is given by 
inserting the above stress σ c′  into the stress–strain relation of eqn [4.7].

The deformation energy ηc of the composite consists of two contributions, 
the elastically stored energy:

η
σ

e
c

c

=
′( )

( )
2

2E
,

where Ec denotes the modulus of the damaged material, and the energy of 
crack creation, ωc, which is given therefore by:

ω η η σ ε ε σ
σσ

c c e c c c c
0

c

c

d
c

= − = ′ ′ − −
′( )

( )
′

∫
2

2E
.  10.70

This derivation is illustrated in Fig. 10.26 for loading until σ c′, where 
the damage process of microcrack coalescence reaches the level of a 
macrocrack, and upon subsequent unloading, where the elastic energy ηe is 
released. During unloading the deformation does not fall to zero because 
of the sliding process; therefore the slope is characterised by the linear 
stress–strain relation, that is, Ec = E0

c.

εc′

ηe

ηc – ηe = ωc
∧

σc′

Composite strain, εc

C
o
m
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o
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e
 s

tr
e
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10.26 Deformation energy of un-notched specimen, ηe: elastically 
stored energy, ωc: energy for crack creation.
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10.7 Discussion on the work of fracture and its 

dependence on loading rate, volume fraction 

and interface quality

The general behaviour of the energy contributions to the work of fracture 
with increasing fi bre volume fraction can be discussed without inserting the 
specifi c material parameters. The work, wm, dissipated by plastic deforma-
tion in the matrix decreases monotonically with v because of the factor 
(1 − v), and for v < vc also because of the decreasing length, ld of the slipped 
region. Conversely, the interface contributions wd and ws show a maximum.

At smaller fi bre volume fractions, the increasing number of activated 
fi bre ends prevails, and with larger volume fractions this trend is overcom-
pensated by the decreasing length of debonded and slipped regions. The 
characteristic of the total work of fracture of the composite depends on the 
relative contribution of the different parts. With ductile matrix materials 
such as polyethylene, and under static loading conditions, intense plastic 
fl ow occurs locally in the matrix. Thus, the composite work of fracture for 
static loading is mainly represented by wm decreasing monotonically with 
the fi bre volume fraction, as shown in Fig. 10.27(a). Under impact loading, 
the matrix should respond in a more brittle manner, yet with plastic necking 
suffi cient to prevent fi bre pull-out. Thus, the interface contribution (wd + 
ws) dominates, and w passes through a maximum, as shown in Fig. 10.27(b). 
If the matrix fails completely as a brittle material no necking occurs and 
pull-out must now be considered. Depending on the absolute value of the 
pull-out energy, in comparison to (wd + ws + wm), the impact toughness 
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10.27 Work of fracture dependence on volume fraction for different 
loading rates: (a) static loading; and (b) impact loading.
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shows a maximum, a saturation region, or even a steady increase, as sketched 
in Fig. 10.28.

Evaluation of the adhesion parameters is even more complex. At fi rst 
several parameters concerning this matter must be distinguished. The work 
of fracture depends on parameters which control the initiation of interface 
debonding, such as τd and γ d

II, and other parameters which are important for 
the sliding process after debonding, such as μ, τp and τ̂ (s).

 From the general eqn [10.48] with α = 1 or α = 0 for complete brittle or 
ductile matrix behaviour, respectively, the total work of fracture as a func-
tion of the interface parameters is given for impact loading by:

w w c c l c l= + + ( ) + ( ) ( )( )
m p p d d

II
d d s

s
d s dτ γ μ τ τ μ τ μ τ, , ,� 2  10.71

and for static loading by:

w c l c c l c lst
m
st

s d p p d d
II

d d s
s

d s
( ) ( ) ( )= ( ) + + ( ) + ( )μ τ τ γ μ τ τ μ τ μ, , ,� 2 ,, ,τd( )  10.72

where ci (i = m, p, s, d) denotes the multiplying factor which does not 
contain any interface parameters for ith interfacial failure mechanism 
between fi bre and matrix. For example, the second term on the right-hand 
side of eqn [10.71] is fi bre pull-out toughness contribution given by eqn 
[10.59] so that ci is vl2/6d with no interfacial properties. The dissipation zone 
width, 2rD, is assumed independent of shear strength τd because σ uc ∼ τ 
(with τ ∼ τd) and σ d

c ∼ τd. The characteristic lengths ld and ls depend on the 
friction coeffi cient μ and on the debonding shear strength τd according to 
eqns [9.4] and [9.5]. These lengths decrease when μ or τd is increased.
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10.28 Work of fracture dependence on differing pull-out energy 
contributions; wpo(1) > wpo(2).
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The sliding energy and plastic matrix energy contributions can decrease 
with increasing shear strength at the interface, τd. The behaviour of the 
debonding contribution depends on the variation of the product of γ d

II, 
which increases, and the debonding length, ld, which decreases with im-
proving adhesion. The pull-out contribution is proportional to τp. Its value 
depends not only on the structure at the interface (and hence on the friction 
coeffi cient) but also on the normal stresses acting on the fi bre surface. 
Increasing interface adhesion strength might not necessarily lead to an 
increased friction coeffi cient μ. However, it is quite certain that a correla-
tion exists. One argument may be the fact that the chemical structure and 
bonding mechanisms which determine the adhesive bond strength do not 
completely vanish after the bond has failed. Consequently, it can happen 
that the work of fracture under ductile matrix fracture conditions decreases 
with increasing adhesion strength, while the same material shows an increase 
under brittle matrix fracture conditions.

It is not possible, therefore, to give a general rule on how to change adhe-
sion to improve the toughness of short fi bre reinforced thermoplastics.

At this point, we must remember that we have considered until now 
composites with aligned fi bres only. In reality the fi bres show an orientation 
distribution and thus debonding processes under mode I may also occur 
and become important. To evaluate the interface properties it will be neces-
sary to extend the theoretical model in this regard (cf. eqn [10.64]). Since 
the mode I debonding energy is proportional to the fracture surface energy, 
γ I

d, this contribution should cause the work of fracture to increase with 
improved adhesion strength.

We suspect that for short fi bre composites with fi bres of sub-critical 
length, where no fi bre fracture appears, the pull-out process plays an impor-
tant role also for the case of high interface toughness values. As long as the 
matrix shows brittle fracture the fi bres are being pulled out during crack 
propagation. This process will also take place even if the interface strength 
is higher than the cohesion of the matrix. Then the fi bres at the fractured 
surface may be coated with matrix material. Naturally in this case, the pull-
out energy does not necessarily increase with increasing adhesion strength 
for it is not controlled by the debonding strength but predominately by the 
sliding behaviour, and then the other mechanisms such as debonding and 
sliding within the dissipation zone are responsible for the work of fracture 
increase. On the contrary, experimental examination of post mortem mor-
phology of fractured surfaces by Fu et al. (2005) have shown that matrix 
coated fi bres do not simply give a hint to a good adhesion between matrix 
and fi bres. Strictly speaking, the amount of matrix material on the fi bre 
surface does not provide a measure of the adhesion quality as is commonly 
assumed. Additionally, it could be shown (Fu and Lauke, 1998) that when 
investigating the infl uence of the fi bre–matrix interface on the work of 
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fracture, the fi bre length distribution must be taken into consideration. This 
becomes obvious when the pull-out contributions given in eqns [10.59] for 
l ≤ lc : wpo = vl2τp/(6d) and [10.60] for l ≥ lc : wpo = vl3

cτp/(6dl) are considered 
in more detail.

For composites with fi bres of sub-critical length, the pull-out contribution 
increases with increasing fi bre length and/or decreasing fi bre diameter until 
the maximum at the critical fi bre length is reached.

If in eqn [10.60] the critical fi bre length (given by eqn [9.9] as lc/d = σ uF/2τ) 
is inserted, the following relationship is obtained:

w v d l l lpo F
u

p c= ( ) ( ) ≥σ τ
3 2 296 .  10.73

Thus, the pull-out energy of composites with fi bres of super-critical length 
increases when shorter and/or thicker fi bres are being used. The maximum 
is reached at the fi bre length l = lc. If the friction stress, τp, at the interface 
is increased (for example, by sizing at the interface or by change of the 
annealing system to induce higher normal stresses), the pull-out contribu-
tion decreases as long as the fi bres remain longer than the new (τp depen-
dent) lc. This is the opposite behaviour when compared to composites with 
fi bres of sub-critical length where wpo increases with l and τp.

The infl uence of increasing frictional stress τp on the pull-out energy is 
illustrated in Fig. 10.29. With fi bres of length l(1) the increase from τp

(1) to 
τp

(2) provides a wpo increase as demonstrated by the arrow. Fibres of length 
l(2) now become super-critical, but their energy contribution still increases. 
Fibres of length l(3), however, also become super-critical but provide a 
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lower energy. The fi bres with l(4) remain super-critical and their energy con-
tribution decreases. Thus, we conclude that a modifi cation which leads to an 
increase in pull-out shear stress, τp, provides an increase of the corresponding 
energy as long as the fi bre length is smaller than the limiting value l′, where

′ = ⋅
⎛
⎝⎜

⎞
⎠⎟( )

( )

( )l
d F

u

p

p

p

σ
τ

τ
τ2 2

2

1

1 3

.  10.74

For composites with reinforcing fi bres l > l′, increase of τp results in a loss 
of pull-out energy. (For discussions on optimisation and experimental veri-
fi cation of pull-out toughness of short fi bre polymer composites due to pull-
out shear stress and fi bre diameter, see Wagner and Lustiger (2009)). The 
pull-out contribution is, in most composites, an important one and therefore 
modifi cations of the interface quality with the aim to improve the interfacial 
shear stress may lead to a reduction of work of fracture; while at the same 
time it will improve the strength of the composite. But if the pull-out energy 
is marginal compared to mode I debonding or to the plastic matrix work, 
modifi cation of the fi bre–matrix interface may cause an improvement of 
toughness. A review of existing methodologies to achieve both high strength 
and high fracture toughness by interface control was given by Kim and Mai 
(1991). One of the most effective methods for this is to use an appropriate 
coating material of the fi bres, i.e., not only a sizing that improves the chemical 
and physical bonding but an extended material with its own mechanical 
properties. The quantifi cation of the interfacial properties between fi bre and 
matrix is a very complex problem. A number of micromechanical tests, such 
as for example, the single fi bre pull-out and micro droplet tests and the frag-
mentation test, and their theoretical evaluations have been dealt with during 
the last 30 years in a large number of publications. The fracture mechanical 
approach on the basis of analytical modelling was discussed by Nairn (2004) 
and fi nite element calculations are summarised by Lauke et al. (2004).

An intermittent bonding quality was proposed for reaching the aim of 
high strength and toughness by Mullin et al. (1968) and applied by Atkins 
(1975). It combines areas of high bonding quality, which ensure the required 
strength, and areas of low adhesion for crack bifurcation along the fi bre 
length to increase toughness of fi bre composites. For more details, refer to 
the review by Kim and Mai (1991).

10.8 Discussion of experimental and modelling results 

for short glass fi bre reinforced polyethylene

The theoretical model will be applied to calculate the work of fracture and 
to compare it with experimental data. To demonstrate the rate effect on the 
work of fracture, specimens of the same material were tested under impact 
and static loading conditions. The experimental composites consist of a 
polyethylene (PE) matrix reinforced with short glass fi bres. Compounding 
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was carried out on a twin-screw extruder and the test specimens were pre-
pared by injection moulding. Thus, a high degree of preferential fi bre ori-
entation was achieved.

The impact work of fracture or notched impact toughness was deter-
mined by means of Charpy impact tests; and the static work of fracture, w, 
by three-point bending. The fracture surfaces were studied by SEM. The 
dependence of the work of fracture on volume fraction, v, follows from the 
general trends outlined above and are given for glass fi bre PE composite 
in Fig. 10.30. The impact toughness shows a maximum at v = ∼0.15, whereas 
the static fracture work continuously decreases with increasing v. Hence, 
the difference between these two values diminishes for higher fi bre con-
tents. This behaviour is caused by the fact that different energy dissipation 
mechanisms are acting for low and high loading rates, which may show 
opposite dependence on fi bre volume fraction. This conclusion is confi rmed 
by the inspection of the fracture surfaces. Large plastic deformations of 
matrix bridges between the fi bres (which were uncoated) are typical for the 
whole cross section. In contrast, the fracture surface of an impact-tested 
sample, taken from near the notch, reveals brittle matrix fracture and holes 
that indicate extensive fi bre pull-out.
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10.30 Work of fracture for impact and static loadings as a function of 
fi bre volume fraction for short glass fi bre (l/d = 20) reinforced 
polyethylene composites.
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The general expressions given earlier for the work of fracture of uni-
directionally reinforced composites were applied to polyethylene with 
short glass fi bres (cf. Lauke and Schultrich, 1986a). The following mechan-
ical properties were used for the calculation: Ef = 70 GPa; Em = 0.5 GPa; 
v = 0.3; l/d = 20; vf = 0.3; vm = 0.4; ωm = 5.6 MPa; σM,y = 55 MPa; σ Tn = 
30 MPa; μ = 0.3; γ d

II = 40 J/m2; τd = a′σM,y (a′ = 0.5); impact loading: Em = 
0.9 GPa.

The composite strength, σ uc, is obtained from tensile tests. Figures 10.31–
10.33 summarise the results for the impact case, and Figs 10.34 and 10.35 
for static conditions. The debonding and sliding lengths increase with 
decreasing fi bre fraction (Fig. 10.31). Finally, for low concentrations the 
fi bres are completely debonded and ld and ls achieve their limiting value of 
half the fi bre length l/2. In the expressions for debonding and sliding ener-
gies, wd and ws, these lengths and the number of active fi bre ends compete, 
leading to a maximum value at a critical fi bre fraction (Fig. 10.32). Under 
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10.31 Debonding and sliding lengths as a function of fi bre volume 
fraction with τd = a′τm,y.
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impact loading, they compete with the pull-out and the matrix terms, lin-
early increasing and decreasing, respectively, with fi bre volume fraction. The 
energies, wd and ws, are only exact for v < 0.4 because of the lack of com-
posite strength values for calculating the dissipation zone width, 2rD, in 
the case of higher fi bre concentrations. The superposition of all these 
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10.32 Dissipation energies as functions of fi bre concentration for the 
impact test.
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�� �� �� �� ��



288 Engineering of short fi bre reinforced polymer composites

contributions to the composite work of fracture results in the anticipated 
non-linear variation with v (Fig. 10.33).

In the static case, wd, ws and wm show the same qualitative trends. However, 
whereas (wd + ws) is only slightly changed, the matrix contribution rises by 
a factor of about 4 at smaller fi bre concentration (Fig. 10.34). Here, the two 
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regions mentioned above for macroscopic plastic fl ow (v ≤ vc) and localised 
plastic deformation (v ≥ vc), are refl ected in a different slope of wm vs v. 
In the total work of fracture (Fig. 10.35) this leads to a weak maximum at 
a very small fi bre content followed by a general descending trend. More 
experimental work is necessary to explore the functional dependence at 
small fi bre fractions.

In another study (Lauke and Schultrich, 1986b) the un-notched impact 
toughness of the same material was examined. For the calculation, the mate-
rial constants given above have been used. The relative dissipation volume 
(normalised by the crack plane) was estimated to be Ω = 44 mm. After the 
calculation of the stress–strain curves with relation [4.7], eqn [10.68] with 
crack initiation [10.69] and propagation energies [10.48] have been used. 
The results showing the dependence on the fi bre volume fraction are illus-
trated in Fig. 10.36. The crack propagation energy, w, increases while the 
crack initiation energy decreases steadily; that is, the presence of fi bres 
tends to reduce the crack initiation energy. The dependence on the aspect 
ratio also shows opposite tendency of crack initiation and crack propaga-
tion energy. To obtain higher impact toughness values it is necessary to 
focus attention on the energy part with the greatest share. At lower fi bre 
volume fractions initiation energy prevails and at higher v crack propaga-
tion energy is more important. Comparison of experiments and theory is 
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shown in Fig. 10.37. Especially important is the result that the crack initia-
tion energy, winit, is responsible for the different fi bre volume dependences 
compared to the notched samples.

Altogether, comparison of experimental and theoretical curves shows the 
proposed model reproducing the contrasting behaviours of composites with 
matrices of different ductility in an appropriate manner. However, for quan-
titative predictions much work is needed with regard to experimental 
determination of the input parameters used, and to further verifi cation of 
the theoretical model. This concerns the effects of fi bre misalignment, 
length distribution, and especially the changing nature of the fracture 
process during crack propagation.

10.9 The infl uence of fi bre orientation, length and 

shape on the work of fracture

The great majority of theoretical investigations of fracture toughness or 
work of fracture deals with crack propagation perpendicular to aligned 
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fi bres. The consideration of fi bre orientation effects was done mainly to 
improve understanding of stiffness and strength behaviour (see Chapters 5 
and 6). But such research has been extended to clarify the crack propaga-
tion behaviour and thus the fracture toughness. Because of the strong 
anisotropy of composites, the fracture toughness and work of fracture 
depend on the crack direction relative to the fi bre angle. The change of the 
energy dissipation mechanisms with the angle was fi rst considered in the 
works of Miwa et al. (1979), Piggott (1980), Friedrich (1984, 1985), Brandt 
(1985) and Wells and Beaumont (1987).

The applicability of Piggott’s model is restricted to the case where the 
fi bres are long enough to break. For fi bres in an angle θ to the crack front 
he has obtained a reduced fi bre fracture stress σ uF and consequently also a 
reduced critical fi bre length. Application of this concept together with the 
mean fi bre orientation angle to the unidirectional case led Friedrich (1984) 
to calculate the fracture toughness of composites with fi bres of super-critical 
length.

Brandt (1985) calculated the energy due to the fi bres passing the crack 
plane at a certain angle on the basis of three main phenomena, namely, 
plastic deformation of the fi bres, matrix compression, and friction between 
matrix and fi bre due to local compression. Furthermore, the pull-out and 
debonding mechanisms are considered, where the energies are deter-
mined by measuring the area under the load-displacement curves of the 
pull-out tests. Brandt has obtained optimum fi bre angles as a function of 
aspect ratio and debonding and frictional shear stresses. For composites 
with randomly oriented fi bres, Miwa et al. (1979) proposed a simple 
modifi cation of the equations used in the aligned case. They have calcu-
lated the breaking probability of fi bres as P = (1 − lc/l) and thus the 
pull-out probability is given by Ppo = (1 − P). The contribution due to 
fi bre fracture was obtained by the superposition of fi bre debonding and 
fracture energy. Based on the discussion of Wells and Beaumont (1987), 
it seems favourable to use only the contribution resulting from the change 
in the elastic energy of the deformed fi bres, which includes both dissipa-
tion mechanisms.

As reported above, the fi bre length spectrum of reinforced thermoplas-
tics shows a certain number of fi bres of sub- and super-critical length. 
Consequently, failure modes associated with these two fi bre types will be 
activated during the dissipation processes. A main question in the solution 
of this complex problem is whether these modes can be approximated as 
being independent. If this were the case, then linear superposition (as has 
already been done for the deformation and strength behaviour) would 
provide fi rst results. (However, the distribution of fi bres with different ori-
entations and lengths may yield stress concentrations and promote interac-
tions, which lead to failure modes that cannot be described by this simple 
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superposition method.) Doing so, it would lead to a general work of fracture 
expression below:

w w w w w
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where lmax is maximum fi bre length and θmax maximum fi bre angle, as well 
as the fi bre length distribution and fi bre orientation distribution functions 
as discussed in Chapter 3.

Based on only geometrical consideration, the maximum angle may be 
θmax = π/2 for the corresponding defi nition of distribution density. But from 
physical consideration, as proposed by Piggott (1980), the strength of an 
oblique fi bre in an angle θ to the crack plane, is lower (because of bending) 
than the strength of a fi bre perpendicular to the crack plane and is called 
the inclined strength of fi bres. This leads to reduction of the maximum 
angle: θmax ≤ π /2. The number of contributing fi bres ni(l, θ) and the cor-
responding energies Wi(l, θ) must be specifi ed for the different energy 
dissipation mechanisms.

In the following, the effect of fi bre length and fi bre orientation distribu-
tion is considered fi rst for the fi bre pull-out process in more detail, because 
it is in most cases the most important energy dissipation process. The brief 
derivation is adopted from Fu and Lauke (1997) where more details can be 
found.

When there is a distribution of fi bre lengths, the fi bre pull-out energy of 
unidirectional composites can be expressed as the superposition of energy 
contributions of the sub- and super-critical fi bre length as given in eqns 
[10.59] and [10.60] and provided by Gupta et al. (1990) as follows:
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where li and lj are fi bre lengths of sub-critical and super-critical fi bres, 
respectively; vi and vj denote the sub-fractions of sub- and super-critical 
fi bres, respectively.

For non-unidirectional composites with short fi bres of a constant length, 
the fi bre pull-out energy was studied by Wetherhold and Jain (1992, 1993) 
and Jain and Wetherhold (1992). The effect of snubbing friction between 
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fi bres and matrix at the fi bre exit point was taken into account when 
the fi bres cross obliquely the fracture plane. Figure 10.38 shows the pull-out 
of a single fi bre with shorter embedded segment of length Le and 
orientation angle θ in respect to the loading direction. The pull-out 
energy as a function of fi bre orientation angle is given in Fig. 10.39, where 
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10.38 Oblique fi bre crossing the crack plane. Adapted from Jain and 
Wetherhold (1992).

10.39 Pull-out energy for aligned fi bres as a function of the fi bre 
orientation angle for different snubbing friction coeffi cients. Adapted 
from Wetherhold and Jain (1993).
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the results are normalised to the pull-out energy for sub-critical fi bres, given 
in eqn [10.59]. The variation depends on the so-called snubbing friction 
coeffi cient μ introduced by Li et al. (1990), that is, for higher snubbing 
friction an increase of pull-out energy for lower orientation angles can be 
expected.

Two probability density functions are introduced by Fu and Lauke (1997) 
for modelling the fi bre length and fi bre orientation distributions, which have 
already been used to determine the strength and stiffness in Chapters 5 
and 6, respectively.

The fi bre pull-out energy is derived as a function of fi bre length and 
orientation distributions and the interfacial properties by considering the 
snubbing friction effect and the inclined fi bre strength effect, where the 
consideration of the fi bre orientation effect is based on the derivations 
provided by Wetherhold and Jain (1992, 1993) and Jain and Wetherhold 
(1992). All the factors that infl uence the fi bre pull-out energy are discussed 
in detail, so that the necessary information is provided to achieve a high 
fi bre pull-out energy and hence a high fracture toughness of composites for 
a given fi bre–matrix system.

The general equation for a constant interfacial shear stress τp during pull-
out is derived below:
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where lcθ is the critical fi bre length for an oblique fi bre pulled out at an 
angle, θ, with the loading direction: lcθ = lc(1 − ktanθ)/exp(μsθ). The constant 
k determines the fi bre inclined strength (Piggott, 1980). The lengths lmin and 
lmax are, respectively, the minimum and maximum fi bre lengths within the 
specimen and Le is the embedded length of the fi bre.

For the unidirectional short fi bre composite this expression is reduced to:
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Based on general eqn [10.78], the fi bre pull-out energy can be predicted. 
The effects of mean fi bre length and critical fi bre transfer length on the 
fi bre pull-out energy are shown in Fig. 10.40. For a given critical fi bre length, 
the fi bre pull-out energy increases with the mean fi bre length until a certain 
value slightly less than the critical transfer length lc, at which the maximum 
of fi bre pull-out energy is reached (see Points A, B and C in the curves). 
This is because the pull-out energy is contributed by sub-critical fi bres of 
lengths less than lcθ and super-critical fi bres of lengths greater than lcθ, the 
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sum of the two parts reaches the maximum at a certain mean fi bre length 
slightly less than lcθ. Afterwards, the fi bre pull-out energy decreases with the 
mean fi bre length since more fi bres will rupture and will not contribute to 
the fi bre pull-out energy. For different critical fi bre length cases, the fi bre 
pull-out energy increases with critical fi bre length. So, a large critical fi bre 
length is very effi cient to achieve high fi bre pull-out energy. Another way 
to increase the pull-out energy contribution is to change the end structure 
of the fi bres. According to reports by Phan-Thien (1980, 1981), enlarged end 
fi bres can increase the strength and fracture toughness over those of com-
posites with straight structures. This idea was also used by Zhu et al. (1998, 
1999) and Beyerlein et al. (2001) who considered the mechanical properties 
of bone-shaped short fi bre reinforced composites; Fig. 10.41 shows such a 
kind of glass fi bre. Zhu and Beyerlein (2002) gave a survey about the 
mechanics of bone-shaped short fi bre composites and recommendations 
about future research necessary to understand the micromechanics involved.

Fracture toughness tests have shown that these fi bres can bridge the crack 
surfaces much more effectively than conventional straight fi bres leading to 
improved toughness. Thus, with the modifi cation of the fi bre structure the 
very complex problem of interface bonding quality modifi cation may be 
avoided. Very often, there exists a trade-off between strength and tough-
ness. A strong interface can transfer higher load to the fi bres but cause at 
the same time higher stress concentrations, which may lead to fi bre or 
matrix failure instead of the more effective fi bre pull-out. Typical load-
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displacement curves for the single fi bre pull-out for straight (CSS) and 
bone-shaped (BSS) fi bres are compared in Fig. 10.42. The peak loads and 
energy consumptions for bone-shaped fi bres are much higher than those of 
straight fi bres.

Shaped fi bres for improving the pull-out energy where considered 
experimentally by Wetherhold and Lee (2001) and theoretically by Tsai 
et al. (2003), where the shape of the ductile fi bres is optimised. Simulation 
of the experimental load-displacement curve was improved by the appli-
cation of a combined cohesive/friction zone interface model by Tsai 
et al. (2005).

Used end-impacted copper fi bres, whose shape depends on the strength 
of the impact that causes the shape variation, are shown in Fig. 10.43. The 
pull-out work vs embedded length for straight and end-impacted fi bres is 
shown in Fig. 10.44. For shorter embedded lengths the shaped fi bres provide 
higher energies; but depending on the friction coeffi cient between fi bre and 
matrix for higher embedded lengths, there may or may not exist a break-
even point. More experimental results concerning fracture toughening with 
copper fi bres in an epoxy matrix are reported by Bagwell and Wetherhold 
(2005).

Especially for ductile-fi bre reinforced composites it is important to use 
the potential of plastic deformation of the fi bres to increase fracture tough-
ness, i.e., the volume of fi bres that yield should be large. Possibilities to reach 
this aim are discussed by Wetherhold et al. (2007). Additional to anchoring 
fi bres in matrix with a shape variation of the fi bre ends, mechanical and 

10.41 Sketch of a bone-shaped short fi bre (length 1.5 mm) made by 
melting the ends of a glass fi bre. Adapted from Beyerlein et al. (2001).
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chemical modifi cations of the fi bre surface to improve the pull-out energy 
are discussed.

Another idea to improve the toughness was on the fractal tree structure 
of the fi bres. Fu et al. (1992) used this idea for the calculation of the pull-out 
work. The model for this kind of fi bres is shown in Fig. 10.45. The force (F) 
vs embedded length (Le) plot for the one-step branched fi bre is obtained 
by the superposition of the contributions of the straight and oblique parts 
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10.45 Model of fi bre pull-out work calculation for a one-step branched 
fi bre. Adapted from Fu et al. (1992).
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of the fi bre using the models developed above for these cases. Thus, the 
corresponding pull-out energy is derived as:

W

W
S Spo

po
S

1
2 13 4 2= + ( ) ( )exp ,μ ϕ  10.79

where Wpo is pull-out energy for a straight fi bre from eqn [10.58], and S1 
and S2 perimeters of the stem and branch of the fi bre, respectively.

The experimental and theoretical results for a special case (steel fi bres) 
are compared in Fig. 10.46. Both theoretical and experimental pull-out 
energy values of the branched fi bres increase with branching angle and are 
greater than those of the straight fi bres.

Until now only one energy dissipation mechanism, fi bre pull-out that 
enters the general expression [10.75], has been considered for its depen-
dence on fi bre length and fi bre orientation distributions. However, other 
contributions also depend on these parameters. A fi rst approach to include 
fi bre orientation for the debonding and sliding processes for a constant 
mean sub-critical fi bre length was described in Lauke and Freitag (1987) 
and later summarised in Lauke et al. (1990).

The basic idea consists in subdividing the whole crack growth process 
into propagation perpendicular and parallel to the fi bres, taking into account 
the specifi c failure processes and the fraction of fi bres which are involved 
in these two main states.

The terms wi of general eqn [10.42] can be calculated by multiplying the 
corresponding energy, Wi(θ), dissipated at one fi bre with the angle θ by the 
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specifi c number, ni(θ), of fi bres involved and by subsequent integration over 
all possible fi bre angles:

w n W g gi i i d with d= ( ) ( ) ( ) ( ) =∫ ∫θ θ θ θ θ θ
π π

0

2

0

2

1.  10.80

Distinct from eqn [10.45] where the specifi c number of fi bres is given for 
the aligned fi bre case, now this number ni(θ) is different for different pro-
cesses since the dissipation zone width 2rD is different.

For calculation of the dissipation energies, two approximations are used: 
(a) the complex loading of a fi bre under a certain angle to the applied 
load is separated into independent superposition of longitudinal and trans-
verse loading; and (b) dissipation energies are assumed to be independent 
of the fi bre angle within the two main fi bre regions θ ≤ θc and θ ≥ θc. The 
critical angle θc is defi ned as that angle where the applied load causes local 
tension at the fi bre–matrix interface high enough for mode I failure. With 
these assumptions in mind the interaction energy (eqn [10.80]) can be 
expressed for transversal (to the MFD) cracks (T) and longitudinal cracks 
(L) (see Fig. 10.6), as:
T-crack:
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L-crack:
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,  10.82

with wi(p) = ni(p)Wi(p) for cracks perpendicular (p) to the fi bres and wi(1) = 
ni(1)Wi(1) for cracks longitudinal (l) to the fi bres. The energy dissipation 
mechanisms and the corresponding expressions for crack propagation per-
pendicular to the fi bre were discussed, considering that wi(p) = ni(p)Wi(p) = wi 
= nWi.

The energy dissipation for crack propagation parallel to the fi bres is 
determined mainly by debonding at the fi bre–matrix interface in mode I, 
Wd(l) = W I

d, and brittle or ductile matrix fracture. This is sketched in Fig. 
10.47. On the basis of these assumptions the works of fracture for transver-
sal and longitudinal cracks were calculated (see Lauke et al., 1990) and they 
are shown in Fig. 10.48.

It can be concluded that consideration of fi bre orientation in the pro-
posed way provides more realistic work of fracture values for short-fi bre 
reinforced composites than the approximation based on a composite with 
parallel fi bre alignment. The comparison reveals that the fracture work of 
a parallel fi bre composite overestimates the real value for T-cracks and 
provides a lower bound for L-cracks.
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10.10 Fracture toughness

10.10.1 General remarks

Fracture toughness is a well-established parameter to characterise the 
resistance of crack initiation of a material. Its calculation requires full 
knowledge of the failure initiation processes. The failure process of short 
fi bre reinforced thermoplastics is characterised by different energy dissi-
pation mechanisms, as discussed in Section 10.4. These mechanisms are 
assumed to act within a certain zone ahead of the notch tip – the dissipa-
tion zone. The modes of energy dissipation are affected mainly by the 
matrix fracture mode (whether brittle or ductile), which is decisively deter-
mined by the loading rate or temperature conditions. On the basis of an 
energy principle and relationships regarding the different energy dissipa-
tion mechanisms, in the following, theoretical expressions for both static 
and impact fracture toughness will be proposed and compared with experi-
mental results.

In the basic studies by Beaumont and Harris (1972) and Harris (1972) 
they worked out the differences between different toughness values, point-
ing out particularly that the critical energy release rate describes the stage 
of crack initiation, and the work of fracture mainly concerns that of crack 
propagation. It is plausible that in general these two stages are governed 
by different fracture modes, which depend on the composite structure and 
loading conditions.

Fractographic or in-situ observations of crack propagation in a given 
composite material show macroscopic crack initiation preceded by a 
certain extent of microscopic structural instability. Thus, such a parameter 
as the macroscopic critical energy release rate, Gc, includes elements of 
sub-critical crack growth. This sub-critical crack growth can be modelled 
by a continuum theoretical approach considering the formation of a zone 
of energy dissipation near the crack tip for a given amount of crack 
growth, dc. Hence, a conceptual connection exists with the macroscopic 
work of fracture, which means that Gc can be understood as a ‘restricted 
work of fracture’ for a limited crack growth which is large with respect to 
the characteristic microstructural dimensions (e.g., fi bre diameter or fi bre 
separation) but small compared with crack length and sample dimensions. 
To calculate the critical energy release rate, the energy dissipation zone 
concept is used and it was qualitatively discussed already in Section 10.5.2. 
In contrast to other models, where this damage parameter is an experi-
mentally determined value, the following treatment is founded on a frac-
ture mechanical determination of the damage zone size. With this concept, 
it is possible to evaluate the infl uence of different microscopic energy 
dissipation mechanisms in short fi bre reinforced polymers on the fracture 
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toughness that depends on structure and loading conditions. For simplicity, 
the case of crack growth perpendicular to unidirectional short fi bres is 
considered.

As a fi rst approximation, a uniform and homogeneous fi bre distribution 
is assumed, although such distributions are rarely achieved in injection 
moulded composites. In particular, the infl uence of different loading rates 
is discussed. High loading rate (or low temperature) and high fi bre contents 
imply a predominantly brittle matrix fracture and hence the condition of 
small-scale damage is satisfi ed. For a ductile matrix (or static loading and 
high temperature) the model applies only if the damage zone remains 
suffi ciently small.

10.10.2 Energy criterion of fracture toughness

In the following, a connection is established between the macroscopic 
critical energy release rate, Gc, and different microscopic failure processes. 
To derive Gc the model developed for energy dissipation of ceramics and 
transformation toughened materials (Kreher and Pompe, 1981) is used. The 
fracture toughness is obtained by comparing the available energy of crack 
extension, −dUpot, with that of the energy dissipation in creating the cut 
which enlarges the crack, dQ:

− = ≡d dpotU Q Rdc  10.83

assuming throughout the following unit thickness of the considered speci-
men with a crack. This equation defi nes the so-called crack resistance R of 
the material already introduced in Section 10.2.3, which is generally a func-
tion of crack growth, Δc = (c − c0).

If we assume small-scale damage (dissipation zone width, 2rD, is very 
small compared to the crack length and sample size) the available energy 
for an infi nitesimal crack extension, dc, is given by the elastic energy release 
rate, G, according to eqn [10.12]:

− =d potU Gdc.  10.84

Combining eqns [10.83] and [10.84] provides the left-hand side of the 
crack propagation criterion of eqn [10.24]. As already discussed in Section 
10.2.3 it is a necessary condition for crack initiation. The crack becomes 
unstable if also the second condition of the criterion [10.24] is fulfi lled at 
the critical crack length c = c̃. This will be discussed in Section 10.10.5 in 
more detail.

The above concept is applicable to reinforced polymers if at high loading 
rates the matrix fails macroscopically in a predominantly brittle manner 
and thus limits the development of large plastic deformation or large 
damage zones. In the case of quasi-static loading, the extension of large 
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plastic zones will be restricted for higher fi bre concentration. For low fi bre 
volume fractions, the matrix behaves like an unreinforced material and 
shows large-scale plastic deformation, while at intermediate concentrations 
the fi bres affect the plastic matrix fl ow. The infl uence of fi bre concentration 
on the general behaviour depends mainly on the fi bre–matrix interface 
conditions. For application of the model, we have to decide whether or not 
the condition of small-scale damage is fulfi lled.

The energy consumed during crack propagation must be considered; 
and for this, as was already done for the calculation of the work of fracture 
(cf. Sections 10.5 and 10.6), the dissipation and process zone concept is 
used.

For brittle materials it is generally known that a small damage zone may 
be developed in front of the notch. We assume that for points beyond 2rD 
the material behaves elastically. By analogy with this zone, the stress 
concentration ahead of a notch in a composite material causes localised 
instabilities. These instabilities act only within the damage or dissipation 
zone of dimension 2rD. Immediately in front of the notch we have to 
consider an additional process zone caused by the interaction of the 
main crack and the dissipation zone, e.g., microcrack coalescence or fi bre 
pull-out. Within this zone the crack propagates by creation of a new 
macroscopic fracture surface, dc, consuming the specifi c energy qpz (see 
Fig. 10.49). If the total energy dissipated within 2rD is designated by dQD 
and the specifi c fracture energy of the process zone by qpz, the dissipated 
energy is given by:

dQ q dc dQ= +pz D.  10.85

From this equation together with the defi nitions of [10.21] and the criterion 
[10.24] it follows that the fracture toughness for crack initiation is given by:

G R q
dQ
dc

c pz
D= = + .  10.86

Generally, the energy dissipation process will be affected by different 
local instabilities that are initiated at different critical local stress levels, σ ic. 
This means, however, that there will also exist different extensions, ri

D, of 
the corresponding sub-zones (see Fig. 10.49).

If again the defi nition of a volume specifi c dissipation energy of the 
mechanism (i), ηi, is used, the increment dQD can be generalized as:

dQ r dcD D
i

i
i

= ∑ 2 η .  10.87

Inserting this expression into [10.86] provides the fracture toughness:

G R q rc pz D
i

i
i

= = + ∑2 η .  10.88
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For calculation of the dissipation radii, ri
D, several approximations are 

possible. In Section 10.5 a stress criterion was proposed and it provided the 
relation after eqn [10.46]. Now the basic relation of fracture mechanics is 
applied to estimate the radius of the dissipation zone.

With the small-scale damage approximation, the radius can be calculated 
similar to the plastic zone from eqn [10.5] together with the relationship 
between fracture toughness and stress intensity factor [10.13]:

r E GD
i

i c c c
i= ( )β σ 2

,  10.89

where Ec is Young’s modulus of composite, and σ ic is critical stress for the 
material instability (i). As shown by Kreher and Pompe (1981), the factor 
βi (which depends on the local deformation and the ratio of Young’s moduli 
of different components) can be approximated for a single microcrack 
dissipation mechanism in brittle materials by β ≈ 1/3, using the elastic 

c

Dissipation zone

Process
zone

2rD

i

10.49 Damage zone near the tip of the macrocrack: c, crack length; 
2r i

D, width of the dissipation zone for the mode (i); process zone of 
direct interaction of the propagating crack with the damaged material.

�� �� �� �� ��



306 Engineering of short fi bre reinforced polymer composites

stress-fi eld approach. If different energy dissipation processes are consid-
ered, an interaction of various zones is possible and unloading of the 
internal zones may occur. More extended numerical calculations by 
Budiansky et al. (1983) have shown that βi is not constant but depends 
sensitively on the characteristics of the dissipation process. The micro insta-
bilities induce local unloading near the crack tip. Thus, βi ≈ 1/3 corresponds 
to an upper limit for the damage zone calculation. With increasing ηi a 
diminishing βi can be expected, particularly in the case of interacting zones 
when βi of the internal zone will decrease signifi cantly. Keeping in mind all 
these problems, we use in our approach βi = β ≥ 1/3 as a free parameter 
fi tted by experimental data.

As a result of diffi culties in determining βi and σ ic, another approach 
becomes plausible, viz., the introduction of rD as a material parameter. This 
approach was used in the ‘inherent fl aw model’ by Waddoups et al. (1971), 
the point stress and average stress criteria by Whitney and Nuismer (1974) 
and the damage parameter theory by Zhen (1983). Within the framework 
of these approaches, the radius, rD, is determined by comparison of the con-
nection between the local stress fi eld and Kc on the one hand, and the 
applied load and Kc on the other. Then, it is obtained that:

r rD
i

D
0=  10.90

as a material parameter which depends on the fracture toughness of the 
material and the local strength distribution, as well as the redistribution of 
stresses under loading of the region near the crack tip.

By inserting eqn [10.89] or [10.90] into eqn [10.88], the two expressions 
for the critical energy release rate are obtained:

G R
q

E
c

pz

c i c
i

i

= =
− ( )∑1 2

2β η σ
,  10.91

or

G R q rc pz D i
i

= = + ∑2 0 η .  10.92

Equation [10.91] is used to account approximately for the dependence of 
r i

D on the critical energy release rate, Gc, as given in eqn [10.89].

10.10.3  Micromechanical approximation of 
toughening mechanisms

In Section 9.2.2 a deformation model of short fi bre reinforced composites 
with debonding interfaces was derived. As a characteristic composite 
element, a single fi bre embedded within a matrix cylinder was considered 

�� �� �� �� ��



 Fracture mechanics 307

(without local fi bre–fi bre interaction) and where the load is applied in the 
fi bre direction.

This model provides us with the critical stresses, σ ic, and the debonding 
(ld) and sliding (ls) lengths, which are necessary for the calculation of dis-
sipation energies within the dissipation zone. With this knowledge we are 
able to determine the debonding (Wd) and sliding (Ws) energies of one fi bre. 
The volume specifi c energies, ηi, are obtained by multiplying these energies 
by the number, ñ, of activated fi bres per unit volume, as defi ned in eqns 
[10.4] and [10.5], such that:

η
πi i

f
i= =�nW

v
r l

W
2

.  10.93

The debonding and sliding energies are given by eqns [10.63] and [10.66], 
respectively. Inserting these into [10.93] yields:

η γd d d
II= ( )16vl ld  10.94

η τ εs
s

s
2= ( )( )8v l ldΔ ,  10.95

where γ d
II is specifi c debonding energy for mode II debonding of the fi bre–

matrix interface, τ−(s) is mean sliding stress and Δε is difference of the ulti-
mate deformations of fi bre and matrix. Detailed expressions for these 
values are given in Section 9.2.2.

In the case of ductile matrix fracture, matrix deformation is expected 
between the neighbouring fi bres within the whole dissipation zone. The 
following expression was derived in eqn [10.56]:

η ωm m d= −( )2 1l v l.  10.96

(ηd, ηs,ηm) describe the energies within the dissipation zone for increasing 
load. The fi nal stage of failure is characterised by the interaction of the main 
crack and the already damaged zone. Analysis of the corresponding interac-
tions (see Table 10.1 on page 266) provides the process zone energy, qpz.

Immediately in front of a crack the matrix will fracture, contributing to 
the energy dissipation. In the case of brittle matrix fracture in the crack 
plane, its contribution is, according to eqn [10.52], given by: w0

m = 2(1 − v)γ 0
m.

However, when the matrix fails in a ductile fashion the crack meets 
already stretched matrix areas. Due to that stretching, the matrix micro-
structure may have been changed (e.g., by orientation of macromolecules). 
This in general results in an embrittlement of the material.

During matrix yielding the volume of the matrix remains nearly constant 
and hence the cross section of the matrix strip becomes smaller: A → A/
(1 + ε̃M), where ε̃M corresponds to that level of deformation in the true 
stress–strain relation at which the necking process is stabilised. The matrix 
volume fraction in the process zone is therefore reduced to: vm = (1 − v)/(1 
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+ ε̃M). Consequently, the process zone energy for ductile matrix fracture, as 
may be the case for a static test, is given by:

w
v

m y
m y

M
,

, ,=
−( )
+

2 1
1

γ
ε�

 10.97

with γm,y as the fracture surface energy of the plastically deformed matrix, 
which might be different from that of the bulk matrix material that may 
even fail in a brittle manner, with the fracture surface energy γ 0

m.
One other important mechanism acting within the process zone is fi bre 

pull-out. But other than the calculation of this contribution to the work of 
fracture, where crack propagation over the whole cross section is consid-
ered, it is limited in case of crack initiation.

With the assumption of a constant shear stress during pull-out, τp, the 
energy to pull out a fi bre with embedded length Le over a distance Δ is given 
(see Fig. 10.20) by:

W d x x
d

L
L

L

po p
p

ed
e

e

= = −( )
−
∫π τ

π τ

Δ

Δ Δ
2

2 2 .  10.98

A stationary distribution of Δ is assumed for a certain distance in front of 
the notch during an infi nitesimal increment of crack growth dc. If the 
embedded length of a fi bre is smaller than Δ, this fi bre will be pulled out 
completely. Thus, we obtain the pull-out energy from:

W d L L

W d L L

po p e e

po p e e

for

for

= −( ) ≥

= ≤

π τ

π τ

2 2

2

2

2

Δ Δ Δ

Δ.  10.99

The mean energy of one fi bre becomes:

W
l

W dL
d

l
l ll

po po e
p= = − +⎛

⎝⎜
⎞
⎠⎟∫

2
3 2 40

2 3 2 2π τ Δ Δ Δ
.  10.100

When the crack opening starts, the fi bres at the crack tip are pulled out. 
The crack opening displacement sc corresponds approximately to the fi bre 
pull-out length Δ. After a certain amount of crack opening, these fi bres have 
suffered a pull-out length of Δ while the fi bres immediately at the crack tip 
show a pull-out length of Δ = 0. Thus, we obtain the mean energy of one 
fi bre within the process zone as:

W W d
d

l
l l

po po
pΔ

Δ

Δ
Δ Δ Δ Δ Δ= ( ) = − +⎛

⎝
⎜

⎞
⎠
⎟∫

1
2 6 3 40

3 2 2π τ
.  10.101

By assuming homogeneous fi bre distribution, the specifi c fracture 
energy (i.e., energy per unit area of crack growth) is given by multiplying 
this equation with the specifi c number, n0, of active fi bres, which is (i.e., 
eqn [10.44]):
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w n W
v

ld
l l

po po
pΔ Δ Δ Δ Δ= = − +⎛

⎝
⎜

⎞
⎠
⎟0

3 2 22
6 3 4

τ
.  10.102

To evaluate the maximum possible pull-out length Δ = Δmax, knowledge of 
crack opening at crack instability is used. According to this concept, the crack 
instability of ductile materials is controlled not by a critical stress intensity 
factor (as in elastic materials) but by a critical plastic deformation in front of 
the notch, that is the critical crack tip opening displacement, sc. We assume 
that the pull-out length, Δ, is approximately equal to uc. If the crack edges 
show a displacement, sc, then the fi bres suffer a movement (cf. Fig. 10.20) of

Δ Δmax max .= ≤s lc for 2  10.103

With the relationship between sc and critical energy release rate Gc (cf. 
equation [10.6] and [10.13]),

s Gc c c
d= .  10.104

(Here, we use the critical stress for the start of debonding, σ d
c, instead of 

the yield stress.) Thus, it is obtained that:

Δmax .= ≤G lc c
dσ 2  10.105

Finally, the pull-out contribution is given by the following relation:

w
v l

d
G G lpo

p

c
d c c c

dforΔ Δ= = ≤
τ
σ

α σ
2

2max  10.106

and c c
d

c c
dα σ σ=1− ( ) + ( )4

3
2

3 2

2

l
G

l
G .

According to eqn [10.105] the pull-out length, Δ, is obviously restricted 
to half the fi bre length; thus for a critical crack opening displacement sc > 
l/2 the pull-out contribution also remains restricted. Inserting Δ = l/2 into 
eqn [10.102] provides in this case:

w
v l

d
G lpo

p
c c

dforΔ Δ= = >
τ

σ
2

8
2max .  10.107

It is slightly different from eqn [10.59] for the case of completely pulled-out 
fi bres during crack propagation over the total cross section.

10.10.4  Results and discussion of fracture toughness for 
crack initiation

The fracture toughness can now be calculated by inserting the above derived 
energy contributions into the general equation [10.91], which fulfi ls the 
necessary condition for crack initiation [10.24] which is: Gc = R.
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Doing so, it must be distinguished between predominately brittle matrix 
fracture, caused intrinsically by the matrix or by impact loading and ductile 
matrix behaviour throughout the testing. The process zone energies for both 
of these cases are given for brittle matrix fracture by:

q w wpz m po= +0 Δ ,  10.108

where w0
m is given by eqn [10.52] and for ductile matrix fracture, this 

becomes:

q w wpz m y po= +,
Δ  10.109

and wm,y is given by eqn [10.97].
Inserting the corresponding energies provides the following equations for 

the fracture toughness of crack initiation:
For brittle matrix fracture:

G
v

E
v l
d

G
Gc

m

c d c
d

s c
s p

c
d c

cfor=
−( )

− +( ) −

2 1

1 2
2

0

2 2

γ

β η σ η σ τ
σ

α
σ

( ) ( ) ( )
cc
d ≤ l 2,  

 10.110a

G
v

v l
d

E
G lc
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c d c
d

s c
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8
1 2

2

0
2

2 2

γ τ

β η σ η σ
σ

( ) ( )
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 10.110b

For ductile matrix fracture:

G
v

E
vc

m y M

c d c
d

s c
s

m M y

=
−( ) +( )

− ( ) + ( ) + ( )( ) −

2 1 1

1 2
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2

2
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>G lσ

 10.111b

For the case Gc/σ d
c ≤ l/2 these equations are transcendental.

To substantiate this general model the theoretical result is compared 
with experimental data for a particular case. Experimental studies were 
conducted on a short glass fi bre fi lled polyethylene compounded in a 
twin-screw extruder and test specimens were then prepared by injection 
moulding. Impact fracture toughness was determined by an instrumented 
Charpy-impact device by Grellmann (1985), which provides the load-
defl ection curve during impact loading necessary to obtain fracture tough-
ness values. The critical energy release rate based on the J-integral (JBL) 
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proposed by Begley and Landes (1972) was used for characterisation of the 
material. The following material parameters are employed for the calcula-
tions: Ef = 70 GPa, νf = 0.3, l/d = 20, ε uF = 0.01, μ = 0.3, σ Tn = 30 MPa, τ′ = 0; 
Em = 500 MPa, νm = 0.4, σm.y = 55 MPa, τd = a′σm,y/2 (a′ = 0.4); τp = 0.8τd. The 
debonding energy γ d

II is approximated by the fracture mechanics relation 
for mode II loading, according to eqn [10.13]:

2 2 1 2 2
γ τd

II
II c d d c= ≅ ( )K E l E  10.112

and this provides for the debonding energy:

γ τ
d
II d

c

≈
2

2
l

E
d .  10.113

The composite modulus, Ec is taken from experimental results. For β two 
values were used:  β = 1/18 and β = 1/24.

The experimental and theoretical results are compared in Fig. 10.50. It 
becomes clear that the model is indeed suitable for predicting the energy 
release rate of this kind of materials. The maximum in Gc is mainly con-
nected with the infl uence of the energies and critical stresses in the denomi-
nator of eqn [10.110] and especially with the dependence of the characteristic 
lengths (ld, ls) on fi bre concentration.

The debonding and sliding lengths decrease with increasing fi bre volume 
fraction at certain applied load because the local stresses in the matrix are 
decreasing. Thus, debonding and sliding will be shifted to the fi bre end 
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10.50 Experimental and theoretical results of dynamic fracture 
toughness as a function of fi bre volume fraction (short glass fi bre 
reinforced polyethylene).
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region. An increase in Gc for higher v can be achieved by increasing the 
pull-out stress, τp, by introducing residual stresses, for example.

The qualitative behaviour of Gc for a static test with a plastic matrix is 
proposed in Fig. 10.51. It is assumed that there are different regions of crack 
resistance which depend on v and matrix ductility. For very low fi bre con-
centrations in the range (I), a damage zone near the crack tip cannot be 
formed because of the stress relaxation in the ductile matrix. Therefore, Gc 
for low fi bre volume fractions is determined by the crack resistance of the 
matrix, (1 − v)2γm,y (according to eqn [10.57]) and the interaction of the 
crack with single fi bres that may break, wfi  = v2γ fi :

G v vc m y fi for lower fibre volume fractions.= −( ) +1 2 2γ γ,  10.114

Because the fi rst term prevails over the second term for brittle fi bre frac-
ture, the fracture toughness decreases with increasing v.

For high fi bre volume fractions, however, the dense packing of the struc-
tural elements in connection with restricted matrix ductility causes the forma-
tion of a damage zone as discussed above. Thus, in this region (III) our model 
(eqn [10.111]) becomes applicable. Also, in this region the plastic deformation 
of the matrix is expected to be dominant. Thus, Gc decreases with v, because 
the matrix energy contribution, wm, decreases with increasing v.
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10.51 Qualitative behaviour of energy release rate for ductile matrix 
fracture conditions: I, undisturbed macroscopic yielding of the matrix; 
II, fi bres restrict the macroscopic yielding, energy dissipation by 
fi bre–matrix interaction; III, small-scale damage, plastic deformation 
energy dominates the energy dissipation process.
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For a matrix with intermediate ductility, it is assumed that there exists a 
region (II) where the increase of fi bre–matrix interaction by debonding 
and sliding prevails over the decrease in wm with increasing fi bre 
concentrations.

10.10.5 Calculation of crack-resistance (R) curve

To characterise the crack resistance of fi bre reinforced composites, in par-
ticular short fi bre reinforced thermoplastics, different concepts have been 
used in the above sections – the work of fracture, the critical stress intensity 
factor (Kc), and the critical energy release rate (Gc). The fi rst parameter 
describes the energy necessary for driving the crack through the whole 
sample while the last two parameters characterise the stage of crack initia-
tion. Experimental studies of crack growth kinetics in these materials have, 
however, shown that a substantial amount of slow crack growth occurs 
before crack instability. Therefore, a single parameter such as Kc or Gc is 
not fully appropriate to characterise the total fracture behaviour.

For this reason the R-curve concept is used to describe the failure process. 
Experimental studies by Karger-Kocsis (1989), Friedrich et al. (1988, 1991), 
and Grellmann and Seidler (1992) on crack growth kinetics in SFRPs 
showed that a so-called R-curve (crack-resistance curve) characterises the 
crack propagation behaviour. A typical crack-resistance curve is shown in 
Fig. 10.52 for bulk PET and a glass fi bre reinforced PET. It reveals that the 
matrix absorbs a much higher amount of energy necessary for stable crack 
growth than the composite.

Assuming the existence of such an R-curve, a model is proposed to 
calculate this function on a micromechanical basis.

In Section 10.4 the micromechanical failure mechanisms of SFRPs were 
studied. As has already been pointed out for calculation of the fracture 
toughness due to crack initiation, two dominating processes in the crack tip 
vicinity have to be distinguished. Immediately in front of the notch the 
creation of a new fracture surface is connected with the consumption of 
specifi c energy, qpz, in the process zone. A substantial part of the elastic 
energy is dissipated in a larger dissipative zone near the crack tip. Failure 
is spread over a certain region and is not limited to the crack path. 
Microstructural changes induced by the propagating crack yield an addi-
tional crack resistance. These processes are concentrated in the so-called 
dissipation zone. Starting with an initial crack of length c0, both of these 
zones are formed when the crack propagates a certain length, Δc (see 
Fig. 10.49).

The corresponding energy dissipation mechanisms have been derived in 
Section 10.10.3. Considering all the equations, it becomes clear that only 
the pull-out energy of eqn [10.101] is still dependent on the pull-out length 
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and this geometrical value is connected to the crack growth value, Δc. This 
fact provides the basis for calculation of the R-curve as the change of crack 
resistance with increasing crack length.

For this evaluation the restricted pull-out energy of eqn [10.101] is used; 
that is:

w n W
v l

d
po po

p withΔ Δ Δ Δ Δ Δ= = − +⎛
⎝
⎜

⎞
⎠
⎟ ≤0

2 3 2 22
6 3 4

1 2
τ

,  10.115

where Δ is now normalised by the fi bre length l.
In this section and in the following all characteristic lengths, such as initial 

crack length, c0, crack growth, Δc, critical crack growth, Δc̃, fi bre pull-out 
length, Δ and sample width T, are normalised by fi bre length l. The restric-
tion Δ ≤ 1/2 relates to the fact that the maximum possible pull-out length 
is given by half the fi bre length. For a pull-out length Δ ≥ 1/2, the mean 
pull-out energy in the crack region remains limited to the constant value 
given in eqn [10.107].

The pull-out length Δ during loading of a specimen is given by the cor-
responding crack opening displacement sc. In Section 10.5, the relation 
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10.52 Crack resistance curve of toughened and fi bre reinforced PET 
composites. Adapted from Lauke and Friedrich (1992).
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between crack opening displacement and energy release rate was used, 
now the relation between crack opening displacement and crack growth is 
required. It is provided by the basic relations of fracture mechanics given 
in eqns [10.3] and [10.6]. Combining these yields:

Δ
Δ Δ Δ= = ≅

( )
= =s

K
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c

E
c

E
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c
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d

c

c
d

c
d

c

c
d

c
d

2
2

σ

σ

σ
σ

ε ,  10.116

where εd can be considered a failure strain needed for debonding at the 
fi bre–matrix interface and where instead of the plastic yield strength of a 
material, the critical stress for debonding initiation σ d

c is used and the 
crack length is replaced by the change of crack length Δ = c − c0, because 
all fracture mechanics parameters of eqn [10.116] are also valid for their 
changes.

Consequently, the pull-out energy for a moving crack is given by:
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and

w
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p forΔ Δ= ≥
τ 2

8
1 2.  10.117b

Inserting this energy term and the matrix contributions (given in eqs 
[10.52] and [10.97]) into the general eqn [10.91] under consideration of eqn 
[10.108] provides fi nally the crack-resistance curve for brittle matrix frac-
ture (R-curve) as:

R c
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with Γ =
2 2

0

v l

dw

τp

m

, i = s means sliding, i = d means debonding. Because the 

maximum possible normalised pull-out length is limited to Δ = 1/2, the cor-
responding limit for crack growth follows from eqn [10.115] as Δc* = 1/(2εd). 
For crack growth higher than this value, the crack resistance becomes con-
stant so that:

R c R
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E
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c

Δ Γ Δ Δ( ) = =
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∑

0
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1 16m
0
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i

i

for *.
β η σ( )

 10.119

Figure 10.53 shows the general variation of crack resistance as a function 
of crack growth. If the considerations are extended to the problem of frac-
ture toughness, the model provides also the critical crack growth at the 

�� �� �� �� ��



316 Engineering of short fi bre reinforced polymer composites

instability point and the critical energy release rate. Considerations con-
cerning this matter will be presented in the next section.

For the case where the matrix fails predominately in a ductile manner, 
this can be discussed in a similar way and was shown by Lauke and Friedrich 
(1992); readers are referred to this paper for details.

A similar approach to calculate the R-curve was published by Qiao and 
Kong (2004); however, they considered energy dissipations only within 
the process zone, which are caused mainly by matrix fracture and fi bre 
pull-out. Rigorous fracture mechanics modelling of R-curves for cement-
based fi bre composites in which fi bre pull-out in the crack-wake zone is the 
predominant mechanism has been given by Cotterell and Mai (1996) in 
their research monograph. Based on the fi bre bridging (pull-out) law, the 
effects of specimen size, geometry and loading confi guration on R-curves 
are obtained. The same methods of analysis apply to SFRP composites with 
brittle matrices and mainly fi bre debond and pull-out mechanisms.

10.11 Relation between fracture toughness 

and the work of fracture

As in the previous section, in all equations herein, all the characteristic 
lengths such as initial crack length, c0, characteristic crack length, c0′ , crack 
growth, Δc, critical crack growth, Δc̃, fi bre pull-out length, Δ, and sample 
width, T, are normalised by fi bre length l.

In the previous two sections, the fracture toughness for crack initiation 
and the crack-resistance curve where calculated, respectively. To determine 
the fracture toughness, Gc, the criterion of critical crack opening displace-
ment at the point of instability was used (eqn [10.104]). And for the calcula-

Crack growth, Δc

R (Δc)

R0

Δc*

C
ra

c
k
 r

e
s
is

ta
n
c
e
, 
R

10.53 General behaviour of crack resistance (R) as a function of crack 
growth (Δc), where Δc* indicates the point where the pull-out energy 
has reached the maximum and constant value.
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tion of the R-curve the relation between the pull-out length Δ and the 
changed crack length Δc is crucial (see eqn [10.116]).

Now the consideration shall be extended to explain the development of 
a critical crack from sub-critical crack growth. Since Gc can be understood 
as a restricted work of fracture for limited crack growth, we show below 
the conceptual connection and the difference of Gc compared to the work 
of fracture, w.

Further, the fracture toughness at crack instability is derived distinct from 
the fracture toughness for crack initiation as provided by eqns [10.110] and 
[10.111], which fulfi ls only the necessary condition: Gc = R. But to decide if 
the crack becomes unstable, the second condition of eqn [10.24] must be 
considered.

The crack propagation resistance is generally a function of the crack 
growth, Δc = c − c0. Increasing loading brings about an increase in Δc which 
fi nally reaches the critical value, Δc̃, necessary for crack instability. The point 
of crack instability is characterised by the two conditions [10.24]. In terms 
of crack growth, Δc, they can be written as:

G c R c
G
c

R
c

c cΔ Δ
Δ Δ

Δ Δ( ) = ( ) = =and
d
d

d
d

for �.  10.120

The Δc̃ value is determined by the point of tangency of G(Δc) to R(Δc) as 
shown in Fig. 10.4. It follows that the critical energy release rate for crack 
instability is given by:

G c G R cΔ Δ� �( ) = = ( )c  10.121

together with the above derived relations R(Δc), eqns [10.118] and [10.119].
From eqns [10.120] and [10.121], we also obtain the relation:
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= =
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�

�
0

.  10.122

Solving this equation provides Δc̃.
To simplify the numerical calculation, the cubic term in R(Δc) is neglected 

because εd represents a small value. The approximation is especially good 
for small Δc. By doing so, Δc̃ can be obtained by:

Δ
Γ

�c c
c

c c c= − +⎡
⎣⎢

⎤
⎦⎥

− ≥ ′0
2

2
0

0 0 0
3 3

4ε εd d

for  10.123a

= ≤ ′0 0 0for c c ,  10.123b

which is a function of initial crack length, c0. The characteristic crack length, 
c0′ , is obtained from eqn [10.122] for Δc̃ = 0 to be: c0′  = 4/Γεd and it considers 
the fact that composites with c0 ≤ c0′  show no stable crack growth prior to 
unstable crack growth when the load is increased to σ 2

c = R(Δc̃ = 0)Ec/c0. 
Γ is already defi ned in eqn [10.118].
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Inserting Δc̃ into eqn [10.117] provides the fracture toughness Gc for 
unstable crack growth. Unlike this, the Gc derived in the foregoing section 
and given in eqns [10.110] and [10.111] characterises the initiation of crack 
growth. The main differences between the two approaches lie in the assump-
tions concerning the restricted pull-out length Δ as given in eqns [10.105] 
and [10.116], respectively; and the criterion of crack growth [10.24]: on the 
one hand, only the left equation and, on the other hand, both relations have 
been used, respectively.

A major difference between Gc results for crack initiation and unstable 
crack propagation is that the latter depends on the initial crack length, c0. 
To calculate the relation between fracture toughness and the work of frac-
ture only large propagated crack lengths are considered, that is, Δcmax >> 
Δc* = 1/2εd. This has the advantage of simplifying the integration of eqn 
[10.23], but is not a loss of basic understanding.

Under this condition the work of fracture, given in [10.23], can be 
appro ximated by:

w R≅ 0 ,  10.124

where R0 is from eqn [10.119].
Finally, the relation between fracture toughness and the work of fracture 

is obtained by combining [10.118] and [10.124] to give:
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G
w

c cc
dfor *= ≥ =1 1 2Δ Δ� ε .  10.125b

We now discuss the dependence of this ratio on the material para-
meters involved in Γ and εd. The ratio of Gc/w as a function of Γ for 
constant εd at different initial crack lengths is shown in Fig. 10.54. Two 
regions of different crack propagation modes can be distinguished. For 
low Γ values the characteristic crack length, c0′  = 4/Γεd, may result in 
c0 < c0′ . In this case Gc is equal to R at Δc̃ = 0 for the fi rst time, but with 
a slope dG/dc > dR/dΔc that results in immediate unstable crack propaga-
tion. With increasing Γ the point c0 = c0′  is reached where stable crack 
growth starts. The curves reveal, especially for small c0 that two param-
eters are necessary to characterise the failure behaviour, namely the 
fracture toughness, Gc, for crack instability or strength and the work of 
fracture, w, as the energy necessary to drive the crack through the whole 
sample.
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Figure 10.55 shows the variation of Gc/w with εd. It becomes clear that 
for high εd the work of fracture becomes nearly equal to the fracture tough-
ness, independent of c0 and Γ.

Summarising the results, it can be concluded that for the interpretation 
of toughness of short fi bre reinforced composites the conditions for the 
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10.54 Ratio between fracture toughness for unstable crack 
propagation Gc(Δc̃) and work of fracture, w, as a function of the 

parameter Γ =
2 2

0

v l
dw

τp

m
, which is proportional to the ratio of pull-out 

energy and matrix fracture energy for different initial crack lengths c0 
(c0 is normalised by the fi bre length l) and εd = 0.01.
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10.55 Ratio between fracture toughness for unstable crack 
propagation Gc(Δc̃) and work of fracture, w, as a function of εd, the 
failure strain for debonding at the fi bre–matrix interface, for different 
initial crack lengths c0 (c0 is normalised by the fi bre length l) and Γ = 
10,100.
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applicability of the work of fracture concept instead of fracture toughness 
must be clearly distinguished. For a wide range of the characteristic param-
eters c0, Γ = 2vτpl2/dw0

m, and εd = σ d
c/Ec, the work of fracture value is much 

higher than the fracture toughness counterpart.

10.12 Essential work of fracture criterion

The essential work of fracture (EWF) concept was introduced in Section 
10.2.2. A simple experimental method was developed using a deep-
edge-notched tension (DENT) geometry in which separation of the total 
work of fracture (Wf) into two components: (a) specifi c essential work (we) 
in the inner process zone, and (b) non-specifi c essential work (βηp) in the 
outer plastic zone is relatively simple. Details of the methodology, required 
testing conditions and data analysis are given by Wu and Mai (1996); and 
a European Structural Integrity Society (ESIS) Test Protocol on Essential 
Work of Fracture, Version 5 (October 1997) has since been established.

In short fi bre reinforced polymers, the basic EWF concept can still be 
applied. But in this case, the essential work of a SFRP, as shown in Fig. 10.56, 
is that required to debond, slide and pull out the fi bres, and subsequently 
to break any matrix bridges on the crack plane inside the process zone. All 
other dissipative processes are involved outside the process zone. When all 
the essential (We) and non-essential (Wp) works of fracture are contained 
in the ligament L of the DENT specimen, as shown in Fig. 10.57, eqn [10.17] 

Fibre
bridging

Fibre debonding

Matrix deformation (crazing,
voiding, shear yielding)

Crack tip

Fibre pull-out

10.56 Schematic of typical failure mechanisms in SFRP and process 
zone near crack tip. Adapted from Wong and Mai (1999).
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holds. By performing a series of fracture experiments with different L, the 
total fracture work (Wf) can be measured under the load-defl ection curve. 
Plotting the specifi c total fracture work, Wf/(LB), against the ligament 
length L, a least squares straight line can be obtained with the intercept on 
the y-axis as the specifi c essential fracture work we.

Mouzakis et al. (1998) and Wong and Mai (1999) were among the fi rst 
investigators to apply the EWF technique to characterise the fracture 
behaviour of SFRPs. Experiments were carried out on polypropylene/glass 
bead/elastomer hybrids by Mouzakis et al. and they found the specifi c 
essential work to increase with elastomer content. EWF was particularly 
useful as crack growth was diffi cult to identify. The system studied by Wong 
and Mai was a PA6,6/PP (75/25 weight ratio) blend containing SEBS (20 
wt%) grafted with different amounts of maleated anhydride (MA). Two 
major results are observed. First, the skin-core structure of the injection 
moulded samples is refl ected by the W/BL vs L plots at very short liga-

Plastic zone (Wp)

Process zone (We)

L

B

10.57 DENT specimen geometry for EWF test.
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ments, particularly for those hybrids with severe skin-core effect induced 
fi bre distribution. Second, there is a good straight line correlation between 
we and JIc for crack initiation for all the hybrids.

Later, Tjong et al. (2002a,b) conducted more intensive EWF studies on 
short glass fi bre reinforced (a) polyamide (PA)6,6/SEBS-g-MA, and (b) PP/
SEBS using DENT specimens machined from injection moulded plaques, 
as shown in Fig. 10.58. Izod impact fracture experiments were also done. In 
the PA6,6/SEBS-g-MA (80/20) blends, it is shown that adding short glass 
fi bres of different amounts (5–30 wt%) improves the specifi c essential 
fracture work we (see Fig. 10.59) but the failure mechanisms are different. 
Matrix yielding, especially near fi bre ends, fi bre debonding and pull-out 
predominate in hybrids with 5, 10 and 15 wt% fi bres. Only fi bre debonding 
and pull-out are seen in hybrids with 20 and 30 wt% glass fi bres since matrix 
plasticity is constrained. Unlike the EWF tests at relatively low rates, under 
impact loading, however, the Izod notched strength of these hybrids is not 
sensitive to glass fi bre content.

In the short glass fi bre/PP/SEBS hybrids, MA was either grafted to PP 
and/or to SEBS. It is shown that, either way, the resultant hybrids exhibit 
much lower essential fracture work we (∼7.8 kJ/m2) compared to the we 
(∼29 kJ/m2) of short glass fi bre/PP/SEBS hybrids with no compatibiliser of 
MA. These results confi rm that too strong an interfacial bond between glass 
fi bre and PP can impair the fracture toughness of the SFRP blends.

To date, theoretical studies on the EWF of SFRP composites are few and 
far between. For example, issues on skin and core effects, fi bre length and 
orientation distributions, etc., must be studied in depth. In the last few years, 
the application of the EWF concept to a range of polymer nanocomposites 
with layered and particulate nano-sized fi llers has been critically examined 
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S

S

10.58 Schematic showing fi bre orientation in DENT and Izod impact 
specimens. Adapted from Tjong et al. (2002b).
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by several groups of researchers (Costa et al., 2006; Satapathy et al., 2007; 
Yoo et al. 2007; Vu et al., 2008; Tjong and Ruan, 2008; Ganss et al., 2008; 
Bureau et al., 2006). There is much room for further rigorous research with 
EWF applied to this emerging class of nanomaterials.
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debonding, 61, 209, 211, 261, 263, 267, 307, 

313
interlayer, 71

separation, 174
shear stress, 218
stress transfer, 3, 35, 59–77, 86

fi bres, 31–3
aramid, 32–3
arrays, 65
boron, 33, 217
branched, 85–6
breakage, 200
carbon, xxi, 32, 73, 114, 227, 255, 256, 259
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cracking, 209
deformation, 3, 217, 307, 320
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shear, 112, 211, 281, 282, 283
tensile, 20, 98, 101–11, 213

see also tensile strength
ultimate, 30, 82, 83, 85, 95, 114
yield, 76, 315

stress, 224, 234
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