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P r e f a c e  

There exist many books on the theory and analysis of beams 
and plates. Most of the books deal with the classical (Euler- 
Bernoulli/Kirchhoff) theories but few include shear deformation theories 
in detail. The classical beam/plate theory is not adequate in providing 
accurate bending, buckling, and vibration results when the thickness- 
to-length ratio of the beam/plate is relatively large. This is because 
the effect of transverse shear strains, neglected in the classical theory, 
becomes significant in deep beams and thick plates. In such cases, shear 
deformation theories provide accurate solutions compared to the classical 
theory. 

Equations governing shear deformation theories are typically more 
complicated than those of the classical theory. Hence it is desirable to 
have exact relationships between solutions of the classical theory and 
shear deformation theories so that whenever classical theory solutions 
are available, the corresponding solutions of shear deformation theories 
can be readily obtained. Such relationships not only furnish benchmark 
solutions of shear deformation theories but also provide insight into the 
significance of shear deformation on the response. The relationships 
for beams and plates have been developed by the authors and their 
colleagues over the last several years. However, this valuable information 
is dispersed in the literature. Therefore, the goal of this monograph is 
to bring together these relationships for beams and plates in a single 
volume. 

The book is divided into two parts. Following the introduction, Part 
1 consists of Chapters 2 to 5 dealing with beams, and Part 2 consists of 
Chapters 6 to 13 covering plates. Problems are included at the end of 
each chapter to use, extend, and develop new relationships. The book 
is suitable as a reference by engineers and scientists working in industry 
and academia. An introductory course on mechanics of materials and 
elasticity should prove to be helpful but not necessary because a review 
of the basics is included in the relevant chapters. 
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Chapter 1 

Introduction 

1.1 Preliminary Comments 

The primary objective of this book is to study the relationships 
between the solutions of classical theories of beams and plates with those 
of the shear deformation theories. Shear deformation theories are those 
in which the effect of transverse shear strains is included. Relationships 
are developed for bending, buckling, and free vibration solutions. 

A plate is a structural element with plane form dimensions that are 
large compared to its thickness and is subjected to loads that cause 
bending deformation in addition to stretching. In most cases, the 
thickness is no greater than one-tenth of the smallest in-plane dimension. 
Because of the smallness of the thickness dimension, it is often not 
necessary to model the plate using 3D elasticity equations. Beams are 
one-dimensional counterparts of plates. 

The governing equations of beams and plates can be derived using 
either vector mechanics or energy and variational principles. In vector 
mechanics, the forces and moments on a typical element of the plate are 
summed to obtain the equations of equilibrium or motion. In energy 
methods, the principles of virtual work or their derivatives, such as 
the principles of minimum potential energy or complementary energy, 
are used to obtain the equations. While both methods can give the 
same equations, the energy methods have the advantage of providmg 
information on the form of the boundary conditions. 

Beam and plate theories are developed by assuming the form of the 
displacement or stress field as a linear combination of unknown functions 
and the thickness coordinate. For example, in plate theories we assume 

where fi is the ith component of displacement or stress, (rc,y) are the 
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in-plane coordinates, z is the thickness coordinate, i denotes the time, 
and (^ are functions to be determined. 

When (pi are displacements, the equations governing <^^ are 
determined by the principle of virtual displacements 

(5VF = <5f/ + (5F = 0 (1.1.2a) 

or its dynamic version, i.e., Hamilton's principle 

[\6K-6U- 6V) dt = 0 (1.1.2b) 

where {6U^6V^6W^6K) denote the virtual internal (strain) energy, 
virtual potential energy due to applied loads, the total virtual work done, 
and virtual kinetic energy, respectively. These quantities are determined 
in terms of the actual stresses and virtual strains, which depend on 
the assumed displacement functions ^i and their variations. For plate 
structures, the integration over the domain of the plate is represented 
as the product of integration over the plane of the plate and integration 
over the thickness of the plate (volume integral=integral over the plane 
X integral over the thickness). This is possible due to the explicit nature 
of the assumed displacement field in the thickness coordinate. Thus, we 
can write 

/ {^)dV= r f i')dQdz (1.1.3) 
J Vol. J-^ JQQ 

where h denotes the thickness of the plate and QQ denotes the 
undeformed mid-plane of the plate, which is assumed to coincide with 
the a:y—plane. Since all undetermined variables are explicit functions of 
the thickness coordinate, the integration over plate thickness is carried 
out explicitly, reducing the problem to a two-dimensional one. Hence, 
the Euler-Lagrange equations associated with Eq. (1.1.2a,b) consist of 
differential equations involving the dependent variables (fl(x,y,t) and 
the thickness-averaged stress resultants R\J per unit length: 

R^^ = l'\{zr<riidz (1.1.4) 

The stress resultants can be written in terms of ^i with the help of the 
assumed constitutive equations and strain-displacement relations. More 
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complete development of this procedure is presented in the forthcoming 
chapters. 

The same approach is used when ^pi denote stress components, 
except that the basis of the derivation of the governing equations is the 
principle of virtual forces. In the present book, stress-based theories will 
receive very little attention. Readers interested in stress-based theories 
may consult the book by Pane (1975). 

1.2 An Overview of Plate Theories 

The simplest piate theory of bending is the classical plate theory 
(CPT). In the case of pure bending, the displacement of the CPT is 
given by (see Reddy 19846, 1997a, 1999a) 

u[x,y,z,t) = - ^ ^ 

v{x,y,z,t) = -z-Q-

w{x, y, z, t) = wo{x, y, t) (1-2.1) 

where {u^v^w) are the displacement components along the (x,y,^) 
coordinate directions, respectively, and WQ is the transverse deflection 
of a point on the mid-plane (i.e., z = 0). The displacement field (1.2.1) 
implies that straight lines normal to the xy—plane before deformation 
remain straight and normal to the mid-surface after deformation. The 
KirchhofF assumption amounts to neglecting both transverse shear and 
transverse normal strain eflfects, i.e., deformation is due entirely to 
bending. 

The next theory in the hierarchy of refined theories is the first-order 
shear deformation theory (or FSDT) (Mindlin 1951 and Reddy 19846, 
1999 a), which is based on the displacement field 

u{x,y,z,t) = z(t)x{x,y,t) 

v{x,y,z,t) = z(j)y{x,y,t) 

w{x, y, ^, t) = wo{x, y, t) (1-2.2) 

where (()x and —0^ denote rotations about the y and x aixes, respectively. 
The FSDT extends the kinematics of the classical plate theory 
by including a gross transverse shear deformation in its kinematic 
assumptions, i.e., the transverse shear strain is assumed to be constant 
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with respect to the thickness coordinate. In the first-order shear 
deformation theory, shear correction factors are introduced to correct for 
the discrepancy between the actual transverse shear force distributions 
and those computed using the kinematics relations of the FSDT. The 
shear correction factors depend not only on the geometric parameters, 
but also on the loading and boundary conditions of the plate. In both 
the CPT and FSDT, the plane-stress state assumption is used and the 
plane-stress reduced form of the constitutive law is used. 

Second- and higher-order plate bending theories employ higher-
order polynomials in the expansion of the displacement components 
through the thickness of the plate. The higher-order theories introduce 
additional unknowns that are often difficult to interpret in physical 
terms. The second-order theory with transverse inextensibility is based 
on the displacement field 

u{x, y, z, t) = z(f)x{x, y, t) + z'^ipxi^, y, t) 

v{x, y, ^, t) = z(t)y{x, y, t) + z'^2py{x, y, t) 

w{x, y, ^, t) = wo{x, y, t) (1.2.3) 

There are a number of third-order theories in the literature, and a 
review of these theories is given by Reddy (1997a). The third-order 
shear deformation plate theory (TSDT) of Reddy (1984a, 19846, 1997a, 
1999a) is based on the displacement field 

u{x,y,z,t) =^z(l)x{x,y,t) + z^ \3h^) V ^ "̂  ^ j 

v{x,y,z,t) = z(i)y{x,y,t) + z^ l^-:^j V ^ "̂  ^ / 

w{x, y, z, t) = WQ{X, y, t) (1-2.4) 

The displacement field accommodates a quadratic variation of transverse 
shear strains (and hence stresses) and the vanishing of transverse shear 
stresses at the top and bottom surfaces of a plate. Thus there is no 
need to use shear correction factors in a third-order theory. Third-
order theories provide a slight increase in accuracy relative to the FSDT 
solution, at the expense of an increase in computational effort. 

In addition to its inherent simplicity and low computational cost, 
the FSDT often provides sufficiently accurate description of the global 
response for thin to moderately thick plates, e.g., maximum deflections, 
critical buckling loads, and free vibration frequencies and associated 



I N T R O D U C T I O N O 

mode shapes. Therefore, it is of interest to determine the deflections, 
buckHng loads, and natural frequencies of plates using the FSDT. 

1,3 Present Study 

Often, the higher-order beam/plate theories require solutions of 
more complicated governing equations. In view of the fact that solutions 
of classical beam and plate theories are available for a vast number 
of problems and the familiarity of engineers with these solutions, it is 
desirable to have relationships between solutions of higher-order theories 
and those of the classical theories. This book presents relationships 
between the solutions of the classical and shear deformation theories 
of beams and plates. The relationships for deflections, buckling loads 
and natural frequencies enable one to obtain the solutions of the shear 
deformation plate theories for specific problems and thereby reduce the 
effort of solving the complicated equations of shear deformation theories. 

The book is divided into two major parts. Part 1 deals with beams 
and Part 2 is devoted to plates. Part 1 contains four chapters namely 
Chapters 2 to 5, and Part 2 covers Chapters 6 to 13. 

Following this introduction, a review of beam theories and 
the relationships between the Euler-Bernoulli beam theory (EBT), 
Timoshenko beam theory (TBT) and Reddy-Bickford beam theory 
(RBT) are presented in Chapter 2. The relationships are used to 
develop the shear-flexural stiffness matrix in Chapter 3, which allows 
the analysis of shear deformable continuous beams and frames. Chapter 
4 is devoted to the development of buckling load and vibration frequency 
relationships. Bending relationships for tapered beams are presented in 
Chapter 5. 

A derivation of the governing equations of the classical, first-
order, and third-order plate theories for static bending is presented in 
Chapter 6. Bending relationships are presented in Chapter 7 for simply 
supported polygonal plates. Chapter 8 for rectangular Levy plates, 
Chapter 9 for circular and annular plates, and Chapter 10 for sectorial 
and annular sectorial plates. Chapter 11 is devoted to buckling load 
relationships, while Chapter 12 covers frequency relationships for free 
vibration. Finally, Chapter 13 contains bending, buckling, and vibration 
relationships of sandwich and functionally graded plates. Exercise 
problems are included at the end of each chapter, and references cited in 
these chapters are placed in alphabetical order at the end of the book. 
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Problems 

1.1 Starting with a linear distribution of the displacements through the beam 
thickness in terms of unknown functions {WQ^ F I , F2) 

u{x,z) = zFi{x) , w{x,z) =WQ{X) + zF2{x) (i) 

determine the functions (Fi , F2) in terms of WQ such that the following 
Euler-Bernoulli hypothesis holds: 

1.2 Starting with the displacement field 

u{x, z) = z(j){x) + z'^'il){x) + z'^Oix) , w{x, z) = wo{x) (i) 

determine the functions (-0,9) in terms of WQ and 0 such that the 
transverse shear stress vanishes at 2: = ± 2 • 

c^xzix, --) = 0 , axz(x, 2) = 0 [ii) 

where h is the thickness of the beam. 

1.3 Consider the following equations of equilibrium of 2-D (x2-plane) 
elasticity in the absence of body forces \(Jxx ~ ^xx 
(^xz{x,z)]: 

^ + ^ = 0 {i) 
OX OZ 

^ + ^ = 0 (n) 
dx dz 

Integrate the above equations with respect to z over the interval 
( - / i / 2 , /i/2) and express the result in terms of the forces Nxx and Qx 

Nxx = b \axxdz, Qx = bJ_^axzdz (m) 
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where b is the width and h is the thickness of the beam. Use the following 
boundary conditions: 

aa:z{x,y,--) = 0, (Txz{x,y,-) = 0 

(^zz{x,y,--)=qb, crzz{x,y,-) = qt (iv) 

Next, multiply equations (i) and (ii) with z, integrate with respect to 
z over the interval (—/i/2, h/2), and express the result in terms of the 
moment Mxx and shear force Qx 

Mxx = b zoxx dz (^) 

Eliminate Qx from the final equations. 
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Chapter 2 

Bending of Beams 

Presented in this chapter are the various beam theories, progressing 
from the simple Euler-Bemoulli beam theory to the first-order shear 
deformation beam theory of Timoshenko and finally to the third-order 
beam theory of Reddy and Bickford. The latter two beam theories 
allow for the effect of transverse shear deformation which has been 
neglected in the Euler-Bemoulli beam theory. Using the principle of 
minimum potential energy, the governing equilibrium equations and 
boundary conditions have been derived for transversely loaded, uniform 
beams on the basis of the kinematic assumptions of the aforementioned 
beam theories. In view of the mathematical similarity of the governing 
equations and on the basis of load equivalence, exact relationships 
between the bending solutions of these three beam theories are derived. 
These relationships enable the conversion of the well-known Euler-
Bemoulli beam solutions to their shear deformable beam counterparts. 
Examples are given to illustrate the use of these relationships. 

2.1 Beam Theories 
2.1.1 Introduction 

There axe a number of beam theories that are used to represent the 
kinematics of deformation. To describe the various beam theories, we 
introduce the following coordinate system. The x-coordinate is taken 
along the length of the beam, ^-coordinate along the thickness (the 
height) of the beam, and the y-coordinate is taken along the width of 
the beam. In a general beam theory, all applied loads and geometry are 
such that the displacements {u,v,w) along the coordinates {x,y,z) are 
only functions of the x and z coordinates. Here it is further assumed 
that the displacement v is identically zero. 
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The simplest beam theory is the Euler-Bemoulli beam theory 
(EBT), which is based on the displacement field 

ax 
w^{x,z) = WQ{X) 

(2.1.1a) 

(2.1.1b) 

where WQ is the transverse deflection of the point {x, 0) of a point on 
the mid-plane (i.e., 2: = 0) of the beam and the superscipt '£" denotes 
the quantities in the Euler-Bernoulli beam theory. The displacement 
field in Eq. (2.1.1) implies that straight lines normal to the mid-plane 
before deformation remain straight and normal to the mid-plane after 
deformation, as shown in Figure 2.1.1a. These assumptions amount to 
neglecting both transverse shear and transverse normal strains. 

(wc^o) 

Figure 2.1.1. Deformation of a typical transverse normal line in various 
beam theories (t̂ o denotes displacement due to in-plane 
stretching, which is not considered here). 
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The next theory in the hierarchy of beam theories is the Timoshenko 
beam theory (TBT) [e.g., Timoshenko (1921)], which is based on the 
displacement field 

u^{x,z) = z(t>'^{x) (2.1.2a) 

w^{x,z) = w'^{x) (2.1.2b) 

where (j) denotes the rotation of the cross section (see Figure 2.1.1b) 
and the superscript 'T' denotes the quantities in the Timoshenko beam 
theory. In the Timoshenko beam theory the normality assumption of 
the Euler-Bernoulli beam theory is relaxed and a constant state of 
transverse shear strain (and thus constant shear stress computed from 
the constitutive equation) with respect to the thickness coordinate is 
included. The Timoshenko beam theory requires shear correction factors 
to compensate for the error due to this constant shear stress assumption. 
As stated earlier, the shear correction factors depend not only on the 
material and geometric parameters but also on the loading and boundary 
conditions. 

In higher-order theories, the Euler-Bernoulli hypothesis is further 
relaxed by removing the straightness assumption. Theories higher than 
third order are seldom used because the accuracy gained is so little that 
the effort required to solve the equations is not justified. 

A second-order theory with transverse inextensibility is based on 
the displacement field 

u{x, z) = z(t)[x) + z^^{x) (2.1.3a) 

w{x^ z) = WQ{X) (2.1.3b) 

where 0 now represents the slope du/dx at ^ = 0 (see Figure 2.1.1c) of 
the deformed line that was straight in the undeformed beam, and 0 and 
ijj together define the quadratic nature of the deformed Une. Similarly, a 
third-order beam theory [see Jemielita (1975), Levinson (1981), Bickford 
(1982), Reddy (1984a,6), Heyliger and Reddy (1988)] is based on the 
displacement field 

u^{x, z) = z(t)\x) + ^V^(^) + z^e^{x) (2.1.4a) 

w^{x,z) = w^{x) (2.1.4b) 

where the superscript R denotes the quantities in the Reddy beam 
theory. 
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The following displacement field can be found in the works of 
Jemielita (1975), and a similar displacement field was used by Levinson 
(1980, 1981), Bickford (1982), Reddy (1984a,6), and Heyliger and Reddy 
(1988): 

u^(x, z) = zcf>^{x) - az^ U"^ + ^ ] (2.1.5a) 

w^{x,z)=w§{x) (2.1.5b) 

where a = 4/(3/i^). The displacement field accommodates a quadratic 
variation of the transverse shear strain (and hence shear stress) and 
the vanishing of transverse shear strain (and hence shear stress) 
on the top and bottom planes of a beam. Thus, there is no 
need to use shear correction factors in the third-order beam theory. 
Levinson (1981) used a vector approach to derive the equations of 
equilibrium, which are essentially the same as those of the Timoshenko 
beam theory. Bickford (1982) and Reddy (1984a,6) independently 
derived variationally consistent equations of motion associated with the 
displacement field (2.1.5a,b). Bickford's work was hmited to isotropic 
beams, while Reddy's study considered laminated composite plates. The 
third-order laminated plate theory of Reddy (1984a, 6) was speciahzed 
by Heyliger and Reddy (1988) to study linear and nonhnear bending and 
vibrations of isotropic beams. For other pertinent works on third-order 
theory of beams, the reader may consult the textbooks of Reddy (19846, 
1997a, 1999a) and references therein. 

2.1.2 Euler-Bernoulli Beam Theory (EBT) 

The virtual strain energy 6U of a beam is given by 

6U / / (Jxx^^xx dAdx (2.1.6) 
Vo JA 

where 8 is the variational symbol, A the cross-sectional area of the 
uniform beam, L the length of the beam, GXX the axial stress, and Sxx the 
normal strain. Note that the strain energy associated with the shearing 
strain is zero in the Euler-BernouUi beam theory. 

Using the Unear strain-displacement relation [see Eq. (2.1.1a)] 
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in Eq. (2.1.6), we obtain 

6U = - f 
Jo 

' M f ^ 
dx2 

dx (2.1.8) 

where M ^ is the bending moment 

-L Mf^ = / ôr̂ x dA 
IA 

(2.1.9) 

Assuming that the transverse load q{x) acts at the centroidal axis of 
the beam and that there are no other appHed loads, the virtual potential 
energy of the load q is given by 

6V = - [ qSwi 
Jo 

dx (2.1.10) 

The principle of virtual displacements states that if a body is in 
equilibrium^ then the total virtual work done, 6W =^ 6U -\- 6V, is zero. 
Thus, we have 

6W i:{ Ml^^+qSwAdx^Q (2.1.11) 

Integration by parts of the first term in Eq. (2.1.11) twice leads to 

^0 
- q SWQCIX + M. 

d6w^ dMEr E ^^^0 

dx dx ̂
(̂5 f̂ - 0 (2.1.12) 

Since 6wo is arbitrary in (0 < a: < L), we obtain the equilibrium equation 

(2.1.13) •—rf^ =Q for 0 < X < L 

It is useful to introduce the shear force Q^ and rewrite the equilibrium 
equation (2.1.13) in the following form 

dQ. 
dx 

(2.1.14) 
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The form of the boundary conditions of the Euler-BernouUi theory 
is provided by the boundary expression in Eq. (2.1.12). It is clear that 
either the displacement w^ is known or the shear force Q^ = dM^^/dx 
is specified at a point on the boundary. In addition, either the slope 
dwQ/dx is specified or the bending moment M ^ is known at a boundary 
point. Thus, we have 

spear. { ^ ) . { ^^ ) , . . . , 

Note that specifying WQ or dw^/dx is known as an essential boundary 
condition while specifying Qf or Mxx is known as the natural boundary 
condition. In mechanics, an essential boundary condition is known as the 
kinematic or geometric boundary condition while the natural boundary 
condition is known as the statical or force boundary condition. 

Using Hooke's law, we can write 

Oxx — ExSxx = —ExZ 2 (2.1.16) 

where Ex is the modulus of elasticity. Thus, we have 

d^w^ 
^^^xx = I zGxx dA = -Dxx-^ (2.1.17) 

where Dxx = Exiyy is the flexural rigidity of the beam and lyy = /^ z^dA 
the second moment of area about the j/-axis. The substitution of Eq. 
(2.1.17) into Eqs. (2.1.13) and (2.1.15) yields 

• ^ [ D x . ^ \ = q ioTO<x<L (2.1.18) 

m Qx — dx I "^a;x~5^ 

d ^ ^ K M^x = - ^ x x ^ 

Specify: \ z:, / or , } (2.1.19) 

Some standard boundary conditions associated with the Euler-
BernouUi beam theory are given below: 

Simple support: The transverse displacement w^ is prescribed 
as zero and the transverse shear force Q^ = dM^^/dx is unknown. In 
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addition, the bending moment M ^ should be specified while the slope 
dwQ /dx is not specified. 

Clamped: The transverse deflection WQ as well as the slope 
dw^/dx are specified to be zero. The shear force Qf and bending 
moment M ^ are unknown. 

Free: The transverse deflection WQ as well as the slope dw^ /dx are 
not specified. The shear force Qf and bending moment M ^ should be 
specified. 

Elastically supported: The shear force is given by Q^ = -kiw^ 
at the support, where ki is the spring constant of the elastic support 
(assumed to be linear). If, in addition, a rotational spring is there, the 
bending moment is then M ^ = k2{dw^/dx), where k2 is the torsional 
spring constant. 

The bending solutions for the Euler-Bernoulli beam under the 
transverse load q may be readily obtained by integrating the fourth-order 
differential equation (2.1.18) and using two boundary conditions from 
(2.1.19) at each end of the beam to evaluate the integration constants. 

2.1.3 T i m o s h e n k o B e a m T h e o r y ( T B T ) 

In view of the displacement field given in Eq. (2.1.2), the strain-
displacement relations are given by 

Note that the transverse shear strain is nonzero. Hence, the virtual 
strain energy 6U includes the virtual energy associated with the shearing 
strain, i.e. 

^U = / {axxS€a:x + (^xz^jxz) dAdx 
Jo JA 
f^ f \ dbf f^^T d6w'S\ 

-I 
L 

0 

dAdx 

^ - " ^ + ^^1^^ + " ^ 1 1 ^ " 2̂.1.21) 
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Here, a^^, is the normal stress, cjxz the transverse shear stress, and M ^ 
and Q^ are the bending moment and shear force, respectively 

JA JA 
dA (2.1.22) 

As before, assuming that the transverse load q{x) acts at the centroidal 
axis of the Timoshenko beam, the virtual potential energy of the 
transverse load q is given by 

6V = - q{x)6wn dx 
Jo 

(2.1.23) 

Substituting the expressions for 6U and 6V into 6W = 6U + 6V, 
and carrying out integration by parts to relieve SW'Q and Scf)^ of any 
differentiation, we obtain 

-i: 

d6w'^\ T 

dx dx 
-q\8wQ 

dx 

dx 

+ [M'^J<f + Ql6wl (2.1.24) 

Setting the coefficients of SIUQ and 6^'^ in 0 < x < L to zero, the 
following equilibrium equations are obtained [c.f. Eq. (2.1.14)] : 

dx + Qi=o, - dx 
(2.1.25) 

The boundary conditions of the Timoshenko beam theory are of the 
form 

Specify: { ) or { \ (2.1.26) 
0̂ 1 UJ, 

Using the constitutive relations 

^xx ^^ J^x^xx) ^xz ^̂  ^xzlxz (2.1.27) 
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we can express the bending moment and shear force in terms of the 
generaUzed displacements {WQ.CJ)^) 

4. = f 
JA 

Ql = Ksj a, 

A CLX 

,̂ dA = KsAx, if + ^ 

(2.1.28) 

(2.1.2^) 

where 

Dxx = / ExZ dA = Exlyy^ Axz = / Gxz dA — Gxz^ (2.1.30) 

and Ks is the shear correction factor that has been introduced to 
compensate for the error caused by assuming a constant transverse 
shear stress distribution through the beam depth. The usual approaches 
for estimating the shear correction factors are either by matching 
the high frequency spectrum of vibrating beams (e.g., Mindhn and 
Deresiewicz 1954, Stephen 1982) or by using approximation procedures 
and simplifying assumptions within the Hnear theory of elasticity (e.g., 
Cowper 1966 and Bert 1973). 

Substituting for M^^ and Ql from Eqs. (2.1.28) and (2.1.29) into 
(2.1.25) and (2.1.26), we obtain the governing equations and boundary 
conditions in terms of the generalized displacements: 

dx 
^z ,̂̂ ^Uir.̂ .J^^ + ^̂^̂  

dx 

A. 
dx 

KsAxz f + 

dx 

dwE} 
dx I 

= 0 

= 9 

(2.1.31) 

(2.1.32) 

or < 
n ^ 
l^XX fix 

(2.1.33) 

at the boundary. 

The common boundary conditions associated with the Timoshenko 
beam theory are given below: 
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Simple support: The transverse displacement WQ is prescribed as 
zero and the transverse shear force Q^ is unknown. In addition, the 
bending moment M ^ should be specified while the rotation (f^ is not 
specified. 

Clamped: The transverse deflection WQ as well as the rotation (fy^ 
are specified to be zero. The shear force Q^ and bending moment M ^ 
are unknown. 

Free: The transverse deflection IVQ as well as the rotation (p^ are 
not specified. The shear force Q^ and bending moment M ^ should be 
specified. 

Elastically supported: The shear force is given by Q^ = -kiw'^ 
at the support, where ki is the spring constant of the elastic support 
(assumed to be hnear). If, in addition, a rotational spring is there, the 
bending moment is equal to M ^ = -^20^ , where ^2 is the torsional 
spring constant. 

The equilibrium equations (2.1.25) of the Timoshenko beam theory 
may be combined to obtain 

These equations can be readily integrated to determine (p^ first and WQ 
next. 

2.1.4 R e d d y - B i c k f o r d B e a m T h e o r y ( R B T ) 

The strain-displacement relations of the Reddy-Bickford beam 
theory are given by [see Eqs. (2.1.5a,b)] 

SxX — r\ — ^ 

Txz — 

dx 

dz dx 

^ _ , , 3 / ! ^ + ^ J (2.1.36a) 

^^s + M - ^ . ^ L s + M j (2.1.36b) 

where . 
a=— /3 = 3a = 4 (2.1.37) 
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Hence, the virtual strain energy dU becomes 

^U = / {axxSsxx + cTxzSjxz) dAdx 
Jo JA 

Jo JA dx \ dx dx'^ 

Jo 

>dAdx 

+ 
dSw^\ 

(«?-"««) (^*"-^j dx (2.1.38) 

where M ^ and Q^ are the usual bending moment and shear force 

M^^ = / zaxx dA, Q^= [ ax 
JA JA 

dA 

and Pxx and Rx are the higher-order stress resultants 

z'^a^z dA ~-L Z Or dA 5 -t^c — / '̂  ^xz 
JA 

(2.1.39) 

(2.1.40) 

It is important to note that unlike the Timoshenko beam theory, there 
is no need to use a shear correction factor in the Reddy-Bickford beam 
theory. This is due to the fact that the transverse shear strain is 
quadratic through the thickness of the beam. The virtual potential 
energy of the transverse load q is given by 

rL 
6V = - q{x)6w§ dx (2.1.41) 

Jo 
Applying the principle of virtual displacements, 6W =z SU + 6V = 0, 

we obtain 

0 = ^ UM^,--aPxx) OLXXX 
dx dx2 

+ 

/ ' 
Jo dx^ 

dx 

dQl 
dx 

rR..R, iJP^^ 'QASW^ + \M^J<(>^+ a 
dx 

+ 1 
dSwl 

ax 

qiuujQ 

L 

6WQ' dx 

(2.1.42) 
0 
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where 
M. R M R . . ocPxx. Q^=^Q^-pRx (2.1.43) 

Setting the expressions associated with the arbitrary 6w§ and (50^ in 
0 < X < L to zero, we obtain the following equilibrium equations for the 
Reddy-Bickford beam theory: 

dx 

cPP. 

(2.1.44) 

The form of the boundary conditions for the Reddy-Bickford theory is 

( w^ 

Specify : < dx 

I 0^ 

or OLPXX 

M^. 

(2.1.46) 

where the V^ is the eflFective shear force. For the Reddy-Bickford 
beam theory, it can be seen that the boundary conditions require the 
specification of the primary (or kinematic) variables w^, dw§/dx, 0^ 
or else the secondary (force) variables t^^, Pxx, ^xx ^^^ equal to 
zero. Note that the Reddy-Bickford beam theory has three boundary 
conditions at each end of the beam, unlike both Euler-Bernoulli and 
Timoshenko beam theories which have only two boundary conditions at 
each end of the beam. The total of six boundary conditions are required 
because the Reddy-Bickford beam theory is a sixth-order theory while 
the other two beam theories are fourth-order theories. 

by 
The stress resultant-displacement relations for the RBT are given 

M^^ -L 
-L 

zcTxx dA = Dxx-j-— ^Pxx 

XX — I '^ ^xx 
lA 

Z Gxx dA = Fxx 

dx 
d(f)^ 
dx 

- aHx 

dx^ 

i?a 

(2.1.47) 

(2.1.48) 

(2.1.49) 

(2.1.50) 
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where 

Dxx = Dxx - otFxx, Fxx = Fxx - OiHxx (2.1.51a) 

Axz = Axz - f3Dxz, Dxz = Dxz - pFxz (2.1.51b) 

{Axx, Dxx, Fxx, Hxx) = j (1, ^^ z\ z^)Ex dA (2.1.52a) 

{Axz,Dxz,Fxz) = I {l,z^z')Gxz dA (2.1.52b) 
JA 

Expressing the equations of equihbrium in terms of the displacements 
Wo and 4>, we have 

d (- d(j>^ -

d2 # ^ 
"^dx^ 1̂ =̂ ^ dx "'"''̂ ^^ 

(2.1.53) 

(fw^\ _d_ 
dx^ j dx Kz ( 0^ + dx 

(2.1.54) 

where 

^xz =̂  ^xz "^ nDxzt Dxx — Dxx ~ <^-fxxj -^xx =̂  -^xx "~ OiHxx (2-1 .55; 

The common boundary conditions associated with the Reddy-
Bickford beam theory are given below: 

Simple support: The transverse displacement WQ' is prescribed 
as zero and the transverse shear force Q^ is unknown. In addition, 
the bending moment M ^ and the higher-order stress resultant aPxx 
should be specified while the rotation </>̂  and the slope dwQ-fdx are not 
specified. 

Clamped: The transverse deflection WQ' as well as the rotation 0^ 
and the slope dw^/dx are specified to be zero. The shear force Q^, 
bending moment M ^ , and the higher-order stress resultant aPxx are 
unknown. 

Free: The transverse deflection WQ-, the rotation (f)^, and the slope 
dwQ-fdx are not specified. The shear force Q^, bending moment M ^ , 
and the higher-order stress resultant aP^x should be specified. 



2 4 SHEAR DEFORMABLE BEAMS A N D PLATES 

Elastically suppor ted: The shear force is given by Q^ = -kiWQ' 
at the support, where fci is the spring constant of the elastic support 
(assumed to be hnear). If a rotational spring is also there, the bending 
moment is then M ^ = -^20^ , where fc2 is the torsional spring constant. 
In addition, the higher-order stress resultant aPxx is zero. 

2.2 Relationships Between EBT and T B T 
2.2.1 General C o m m e n t s 

The objective of this section is to establish relationships between 
the bending solutions (i.e., deflection, rotation, bending moment, and 
shear force) of the Timoshenko beam theory (TBT) in terms of the 
corresponding quantities of the Euler-Bernoulli beam theory (EBT). 
The relationships are established using the load equivalence, as shown 
below (see Wang 1995 a). 

It is clear from Eqs. (2.1.14), (2.1.17), (2.1.25), and (2.1.28) that 
the shear forces, bending moments and the slopes of the two beams are 
related by 

Ql = Q^ + C^ (2.2.1) 

ML = Mg + Cix + C2 (2.2.2) 

dw^ X 
2 

^^ = - ^ + C i - ^ + C 2 - f - + C 3 - ^ (2.2.3) 
ax ^^xx ^xx ^xx 

Substitution of Eq. (2.2.3) into Eq. (2.1.29), using Eqs. (2.1.25) 
and (2.2.2), and then integrating with respect to x yields the following 
deflection relationship: 

XX 

(2.2.4) 
where C\,C2,Cz,C\ are constants of integration. These constants are 
to be determined using the boundary conditions of the particular beam. 
For free (F), simply supported (S) and clamped (C) ends, the boundary 
conditions are given by 

F : Ml = Ml = Q^ = Ql = 0 (2.2.5) 

S: w§ = wl = Mg = Ml = 0 (2.2.6) 

C : u,§ = w^ = ^ = <!>''= 0 (2.2.7) 
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In the following subsections, the evaluation of the constants d 
is illustrated for single-span beams of various combinations of end 
conditions. For brevity, the beams will be designated by two letters. 
The first letter indicates the type of end condition at the left end 
{x = 0) and the second letter refers to the end condition at the right end 
{x = L). Also, for convenience, the non-dimensional shear parameter fi 
is introduced, as follows: 

^ ^ Dxx ^ _^x (rS^ ^2.2,8) 
KsAxz^ KsGxz \LJ 

where r = Jlyy/A is the radius of gyration and L/r denotes the 
slenderness ratio of the beam. 

2.2.2 Simply Supported (SS) Beams 

The boundary conditions for simply supported beams are given by 
Eq. (2.2.6) for X = 0 and x = L. The substitution of these boundary 
conditions into Eqs. (2.2.2) and (2.2.4) gives the following values of the 
constants: 

Ci = C2 = C3 = C4 = 0 (2.2.9) 

2.2.3 Clamped-Free (CF) Beams 

The boundary conditions for clamped-free beams are given by Eq. 
(2.2.7) for X = 0 and by Eq. (2.2.5) for x = L. The substitution of 
these boundary conditions into Eqs. (2.2.1) to (2.2.4) gives the following 
values of the constants: 

Ci = C2 = C3 = 0 and CA = Mg{0)nL^ (2.2.10) 

2.2.4 Free-Clamped (FC) Beams 

The boundary conditions for free-clamped beams are given by Eq. 
(2.2.5) for a; = 0 and by Eq. (2.2.7) for x = L. The substitution of these 
boundary conditions into Eqs. (2.2.1) to (2.2.4) gives the following: 

Ci = C2 = C3 = 0 and C4 = Mg{L)rtL'^ (2.2.11) 
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2.2.5 C l a m p e d - S i m p l y S u p p o r t e d (CS) B e a m s 

The boundary conditions for clamped-simply supported beams are 
given by Eq. (2.2.7) for 2: = 0 and by Eq. (2.2.6) for x = L. The 
substitution of these boundary conditions into Eqs. (2.2.2) to (2.2.4) 
gives the following: 

30 

(2.2.12) 

2.2.6 S i m p l y S u p p o r t e d - C l a m p e d (SC) B e a m s 

The boundary conditions for simply supported-clamped beams are 
given by Eq. (2.2.6) for x = 0 and by Eq. (2.2.7) for a: = L. The 
substitution of these boundary conditions into Eqs. (2.2.2) to (2.2.4) 
gives the following: 

QQ 

Ci = ~ ( i + 3^)^^x^xW. C2 = 0, C3 = - C i , C, = 0 (2.2.13) 

2.2.7 C l a m p e d ( C C ) B e a m s 

The boundary conditions for clamped beams are given by Eq. (2.2.7) 
for X = 0 and x = L. The substitution of these boundary conditions 
into Eqs. (2.2.3) and (2.2.4) gives the following: 

(1 + 12Q)L 

(1 + 12fi) '̂^ = 7rT^K(i)-^"H 
C3 = 0, C,:=Mg{0)nL' (2.2.14) 

The results show that for statically determinate beams, the shear 
force, bending moment, and slope in the two theories remain the 
same, while the deflection differs. For statically indeterminate beams, 
the solutions for shear force, bending moment, slope, and deflection 
predicted by the two theries are not the same. 
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2.2.8 S u m m a r y of Re la t ionsh ips 

In view of the foregoing expressions for the constants Q , i = 1,..., 4, 
the relationships of the slope, the bending moment, the shear force and 
the deflection may be obtained respectively from Eqs. (2.2.1) to (2.2.4). 
The relationships are summarized in Table 2.2.1. 

Table 2.2.1 Generalized deflection and force relationships between 
Timoshenko and Euler-BernouUi beams. 

B. C. Relationships 

SS wl{x)=w^{x) + ^^Mg{x) 

Ql{x) = Qf (x) 

CF wUx) = w§ix) + g [M^lix) - Mg{0)] 

Mj,(a;) = M^,{x) 

Ql{x) = Q^{x) 

FC .̂0̂ (0:) = w^ix) + g g [Mf,(x) - Mf,(L)] 

MUx) = Mg{x) 

Qljx) = Qg(x) 

CS w^{x) = w§{x) + § g [Mg{x) - Mg{0)] 

MUX) = Mg{x) _ ^ (1 - I ) Mg{0) 

Qlix) = Qf (x) + ^ i ^ M , ^ ( 0 ) 

(Table 2.2.1 is continued on the next page) 
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(Table 2.2.1 is continued from the previous page) 

SC ..o^(x) = w§{x) + g M f , ( : r ) 

MUX) = Mg{x) - ^^MgiL) 

Q^{x) = Qf (x) - ^^^MgiL) 

Cct t.J'(x) = ^iix) + ^ [Mf,(x) - Mg{0)] 
0..T2 _ / r . _2 . „ \ r_ r-1 - _ 

+ ^ I ( i ^ - 40 - f) [Mf,(L) - Mf,(0)] 

^ (̂̂ ) = - ^ - l ^ f (i - 1) K^xW - Mf.(0)] 
MUx) = Mf,(a:) - 6/x (2f - 1) [Mf,(L) - Mf,(0)] 

Qr(x) = g f (x) - i|^ [Mf,(L) - M,^,(0)] 

It can be seen from Table 2.2.1 that the bending moments and shear 
forces are the same for statically determinate Timoshenko and Euler-
BernouUi beams, i.e. SS, CF and FC beams. Also for these beams, 
the rotation of the Timoshenko beam is equal to the slope of the Euler-
BernouUi beam. For statically indeterminate CS, SC and CC beams, the 
stress-resultants are not the same, because the compatibility equation 
involving the effect of transverse shear deformation is required for the 
solution. The deflection relationships show clearly the effect of shear 
deformation. The shear-deflection component increases with increasing 
magnitude of the Euler-Bernoulli moment (or transverse load) and shear 
parameter. 

2.3 Relationships Between EBT and RET 

Here, we develop the relationships between the bending solutions of 
the Euler-BernouUi beam theory (EBT) and the Reddy-Bickford beam 
theory (RBT). At the outset, we note that both EBT and TBT are 
fourth-order theories whereas the RBT is a sixth-order theory. The order 
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referred to here is the total order of all equations of equihbrium expressed 
in terms of the generalized displacements. The refined beam theory is 
governed by a fourth-order equation in WQ and a second-order equation 
in </). Therefore, the relationships between the solutions of two different 
order theories can only be established by solving an additional second-
order equation. The relationships are developed between deflections, 
rotations and stress resultants of the EBT and RBT for an easy 
comparison between theories. 

First we note that Eqs. (2.1.44) and (2.1.45) together yield 

^ ^̂ -̂̂ ^ = q (2.3.1) •^xx 

Equating the loads in Eqs. (2.1.13) and (2.3.1), and after integration 
twice, we obtain 

M^^ = Mg + Cix + C2 (2.3.2) 

The stress resultant-displacement relationships in Eqs. (2.1.47) and 
(2.1.50) can be expressed as 

R. = ^Q§ (2.3.4) 

^ ) MiL (2.3.5) 

where the stiffness coefficients with hats and bars were defined in Eqs. 
(2.1.51a,b) and (2.1.55), and a and /? are defined in Eq. (2.1.37). 

Replacing Pxx and Rx in Eq. (2.1.44) with the expressions in Eqs. 
(2.3.4) and (2.3.5), we obtain 

/ ^xx \ d^xx ^xz r\R I FxxDxx Fxx 

Using Eq. (2.3.2) and simpHfying the coefficients, we arrive at 

^XX^XX ^XX \ ^ Qx -^XZ ^R I ^'. 
a £j^-£Qf.m(Q?-^.)=o(^-") 
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Thus, a second-order diflFerential equation must be solved to determine 
Q^ in terms of Qf. Once Q^ is known, M^.cf)^, and WQ' can be 
determined as will be shown shortly. 

The effective shear force V^ in the Reddy-Bickford beam theory 
can be computed from 

= g f (x ) + Ci (2.3.8) 

where Eqs. (2.1.44) and (2.3.2) are used to derive the last equahty. 

To determine <p^, we use Eq. (2.1.47): 

= M^^ + Cix + C2 + 
Ar.. dx 

= _p . , fM+c,x + ft + f ^ ^ (2.3.9) 
^xz 

or 

i)xx^^(x) = - D x x ^ + ^ Q ^ + Ci^ + C2X + Cz (2.3.10) 
dx Axz 2 

where Eqs. (2.1.17) and (2.3.2) are used in arriving at the last equation. 

Lastly, we derive the relation between w^ and WQ . Using Eqs. 
(2.1.49) and (2.3.10), we can write 

i > x x ^ = -Z?xx0^(x) + ^Q^ 
dx Axz 

= i ^ x x ^ + 2 ^ Q ? - C : y - C2X - Cs (2.3.11) 

and integrating with respect to x, we obtain 

D,,w§{x) = D,,w^ix) + ̂  (^jQ^iv)dv)-Cij-C2\-Csx-C, 

(2.3.12) 
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This completes the derivation of the relationships between the 
solutions of the Euler-Bernoulli beam theory and the Reddy-Bickford 
beam theory. The constants of integration, Ci,C2,C3,C4 appearing in 
Eqs. (2.3.2), (2.3.8), (2.3.11) and (2.3.12) are determined using the 
boundary conditions. Since there are six boundary conditions in the 
Reddy-Bickford theory [see Eq. (2.1.46)], the remaining two boundary 
conditions are used in the solving of the second-order differential 
equation (2.3.7). Boundary conditions for various types of supports are 
defined below, consistent with the kinematic and natural variables [see 
Eq. (2.1.46)] of the theory: 

HP 
F : Q^-(3R^ + a—^ = 0, M^^ - aP^^ = 0, P^x = 0 (2.3.13) 

ax 
S : w§ = 0, M^^ - aP:cx = 0, Pxx = 0 (2.3.14) 

C : t/;^ = 0, .^« = 0, ^ = 0 (2.3.15) 
ax 

Since the second-order equation (2.3.7) requires boundary conditions on 
Q^, we reduce the force boundary conditions in Eqs. (2.3.13) to (2.3.15) 
to one in terms of Q^: 

Free (F) : Equations (2.3.13) and (2.3.15) imply 

^ = 0 (2.3.16) 
dx 

Simply supported (S): Equation (2.3.14) implies 

^ = 0 (2.3.17) 
dx 

Clamped (C): Equations (2.3.15) and (2.1.49) imply 

Q^ = 0 (2.3.18) 

2.4 Examples 

Here, we present two examples to derive the solutions of TBT and 
of RBT using the relationships derived in Sections 2.2 and 2.3 and the 
solutions of EBT. 
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2.4.1 S imply Suppor ted B e a m 

Consider a simply supported beam under uniformly distributed load 
of intensity QQ. Using the equilibrium equation (2.1.13) and boundary 
conditions in Eq. (2.1.19), the stress-resultants and the deflection of the 
Euler-BernouUi beam are found to be 

Qf(x) = | ( L - 2 x ) 

<{x) = 
X 2x^ a;"" 

L3 + L4 , 

(2.4.1) 

(2.4.2) 

(2.4.3) 

Using the relationship for simply supported (SS) beams in Table 2.2.1, 
the corresponding bending solutions for the Timoshenko beam are 

Qi{x) = Q^{x) = 

Ml{x) = Mg{x) = 

WQ{X) = W^{x) + 

2 
qoL"^ X 

X 

2 L\ L 

-Mg{x) 
K.,A. 

qoL'' ' X •!? X^\ 

24D^^ \L~ l 3 "̂  Z4 j "̂  2KsA^, 
qoL^ 

(2.4.4) 

(2.4.5) 

1 - 1 , ( 2 . 4 . 6 ) 

In the case of the Reddy-Bickford beam, we need to first solve the 
second-order differential for the transverse shear force. Prom Eq. (2.3.8) 
and Eq. (2.4.6), we have 

dx2 - A^Q^ = - / i | ( L - 2 a ; ) + Ci (2.4.7) 

where 

A2 = M 
X 

0^{FxxDxx - FxxDxx) ' "̂  Oc{FxxDxx - FxxDxx 

The solution to this differential equation is 

) (2.4.8) 

M Q^{x) = C5 sinh Ax + Ce cosh Xx + --^ f ( L - 2 x ) + Ci (2.4.9) 
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where C5 and Ce are constants to be determined, along with 
C":, C2, C3, C4, using the boundary conditions. 

The boundary conditions for the problem at hand are 

w^iO) = wi{L) = Mf̂ (O) = Mg{L) = 0 (2.4.10) 
w§{0) = w^{L) = M^M = M^,{L) = P,,(0) = PUL) = 0 

(2.4.11) 

We note from Eq. (2.3.5) that 

dQ^, M^M = P,,(0) imply - ^ ( 0 ) = 0 (2.4.12a) 

Mg{L) = P,,{L) = 0 imply - ^ ( L ) = 0 (2.4.126) 

Using the boundary conditions (2.4.10)-(2.4.12), we find that 

C, = ^ , Ce = - f ^ t a „ h ( f ) (2.4.13) 

and the solution becomes 

Qri^) = ( ^ 
90M sinh Ax — tanh ( -— 1 cosh \x VT) 

+ ^{L-2x) 

go. Mg{x) = Mg{x) = fx{L-x) 

<i-) = wi{x)+(S^) 
V AV \A^zD^ 

A2 

— tanh iry 

(2.4.14) 

(2.4.15) 

sinh Ax 

+ cosh Ax + —x(L - x) — 1 (2.4.16) 

For a rectangular cross-section beam, it can be shown that 

•^xz ̂ xx ^xx 5A, ^xzJ^x 5A, 
(2.4.17) 
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A close examination of Eq. (2.4.16) shows that the Reddy-Bickford 
beam solution has an effective shear coefficient, based on the coefficient 
in the expression for w^ix), of Ks = 5/6. Of course, the refined third-
order beam theory does not require a shear correction factor. Also the 
shear correction factor for the Timoshenko beam theory can be obtained, 
for example, by comparing the maximum deflections of the Timoshenko 
beams with those of the Reddy-Bickford beams. 

2.4.2 Cantilever Beam 

For a cantilever beam under uniformly distributed load of intensity 
qo, the stress-resultants and the deflection of the Euler-Bernoulli beam 
are found to be 

Q^{x) = qoL(^l-j^ (2.4.18) 

Mf.(x) = - ^ ( l - | ) ' (2.4.19) 

<(^)=2C(4-44) ^̂•̂•̂°) 
Using the relationship for clamped-free (CF) beams in Table 2.2.1, the 
corresponding bending solutions for the Timoshenko beam are 

Qlix) = Q^{x) = qoL (l - I ) (2.4.21) 

Mlix) = Mg{x) = - ^ (l - l)' (2-4.22) 

w^x) = w§ + - ^ [Mg{x) - Mgm] 

- 9oL̂  fQ^_^^ + ̂ ]+ loL' £(2-^1(2.4.23) 
24D. 

In the case of the Reddy-Bickford beam, we need to first solve the 
second-order differential equation for the transverse shear force. The 
general solution of Eq. (2.3.7) with Qf as defined in Eq. (2.4.18) is 

M Q^{x) = Cs sinh Xx + Ce cosh Ax + ^ [qoiL - x) + Ci] (2.4.24) 

where A and /x are defined by Eq. (2.4.8). 
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The boundary conditions for the cantilever beam are 

^1^(0) = ^ ( 0 ) = g f (L) = Mg{L) = 0 (2.4.25) 

(2.4.26) 

We note from Eq. (2.3.5) that 

Mi^,(L)-P,,(L) = 0 imply ^ ( L ) = 0 (2.4.27) 

and from Eqs. (2.3.10) and (2.3.12) 

^ ( 0 ) = ^^(0) = ^ ( 0 ) = 0 imply Q^(0) = 0 (2.4.28) 

Although Q^{0) obtained from the constitutive relations is zero at the 
clamped edge, the effective shear force of the theory Vj^ at a: = 0 is 
indeed not zero. It is given by Eq. (2.3.8). 

Using the boundary conditions (2.4.10)-(2.4.12), we find that 

A. 
c.=c. = C3 = o, a. = (^)( i± | |^) 

and the solution becomes 

Q^{x) = [ T Z ^ ^ [sinhAx - AIcoshA(L -x)] + ^{L- x) 

(2.4.30) 
.2 ^2^ 

M^,{x) = Mg{x) = qJLx-^- y 1 (2.4.31) 

. o ^ ( x ) - o ^ ( x ) . ( g ) ( £ ^ ) ( 2 . . - . 0 

^XZ-l-^XX , 

_ fOolA I Dxx \ /^l + ALsinhAL\ 
^')[AZ5Z [ coshAL ' '̂-'- '̂̂  
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Prom Eqs. (2.4.30)-(2.4.32), it can be shown that the effective shear 
correction factor of the Reddy-Bickford beam theory is Kg = 5/6. 

2.5 Summary 

In this chapter, exact relationships between the bending solutions 
of the Euler-BernouUi beam theory and those of the Timoshenko beam 
theory and the Reddy-Bickford beam theory are presented. For the 
bending relationships hnking Timoshenko and Euler-Bernoulli beam 
solutions, they are explicit. However, the relationships between Reddy-
Bickford beams and Euler-Bernoulli beams require solving an additional 
second-order differential equation. This arises because the Reddy-
Bickford beam theory is a sixth-order beam theory while the Euler-
Bernoulli and Timoshenko beam theories are fourth-order ones. 

The relationships can be used to generate bending solutions of the 
Timoshenko and Reddy-Bickford theories whenever the Euler-Bernoulli 
beam solutions are available. Since solutions of the Euler-Bernoulli 
beam theory are easily determined or are available in most textbooks 
on mechanics of materials for a variety of boundary conditions, the 
correspondence presented herein between the various theories makes it 
easier to compute the solutions of the Timoshenko beam theory and the 
Reddy-Bickford beam theory directly from the known Euler-Bernoulli 
beam solutions. In the next chapter we show how these relationships 
may be used to develop finite element models of Timoshenko and Reddy-
Bickford theories using the finite element model of Euler-Bernoulli beam 
theory. The stiffness matrix of the shear deformable elements are also 
4 X 4 for the pure bending case, and the finite elements are free from 
the shear locking phenomenon experienced by the conventional shear 
deformable finite elements. 

The present relationships can be easily extended to symmetrically 
laminated beams. Indeed the relationships developed herein hold for 
symmetrically laminated beams in which the Poisson effect is neglected 
and the transverse deflection is assumed to be only a function of x. The 
only difference lies in the calculation of the beam stiffnesses, Dxx, ^xz, 
and so on, which depend on individual layer stiffnesses and thicknesses. 

Further the relationships may be readily modified to link the 
bending solutions of linear viscoelastic Timoshenko beams and linear 
viscoelastic Euler-Bernoulli beams under quasi-static loads (see Wang, 
Yang, and Lam 1997). To do this, one can use the elastic-
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viscoelastic correspondence principle (Fliigge 1975). This principle 
involves replacing the elastic moduli and the elastic field variables in 
the elastic solution by the Laplace transformed viscoelastic moduli and 
viscoelastic field variables. Then, the transformed field variables are 
converted back to the physical domain. 

Problems 

2.1 Consider a beam with a rectangular cross section with width b and 
thickness h. The equilibrium shear stress distribution through the 
thickness of the beam under a transverse point load Qo is given by 

^^ 2bh -'I - 2 < - < 2 W 

The transverse shear stress computed using the constitutive equation in 
the Timoshenko beam theory is constant and is given by a^^ = Qo/bh. 
Compute the strain energies due to transverse shear stresses in the two 
theories and then determine the shear correction factor as the ratio of 
[7/ to Ul 

2.2 Verify the expressions in Table 2.2.1 for (a) simply supported (SS) beams, 
(b) clamped-free (CF) beams, (c) clamped-simply supported (CS) beams, 
and (d) clamped (CC) beams. 

2 .3 Verify the relations in Eqs. (2.3.3)-(2.3.5). 

2.4 Use the deflection relationships to determine {W'Q , (jF) and {w^^ (f) ) of a 
clamped-simply supported beam subjected to uniformly distributed load 
intensity QQ. 

2.5 Starting with a linear distribution of the displacements through the beam 
thickness in terms of unknown functions (F, G) 

u{x,z) = zF{x), w{x,z) = wo{x) + zG{x) (i) 

determine the functions F and G such that the following conditions hold: 

dw du 
^ = 0 , ^ = ^ (n) 

2.6 Starting with a cubic distribution of the displacements through the beam 
thickness in terms of unknown functions (F, G, H) 

u{x,z) = zF{x) + z^G{x) + z^H{x), w{x,z) =wo{x) (i) 
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determine the functions (F^G.H) in terms of {wo^cf)) such that the 
following conditions are satisfied: 

(n) 

2.7 T h e Lev inson B e a m Theory . The Levinson beam theory is based 
on the same displacement field, Eqs. {2.15a,b), as the Reddy-Bickford 
beam theory. As opposed to using the variationally-derived equations of 
equilibrium, Levinson (1981) used the thickness-integrated equations of 
elasticity which axe exactly the same as those of the Timoshenko beam 
theory: 

The stress resultant-displax:ement relations for the Levinson beam theory 
are the same as those in Reddy-Bickford beam theory and they are 

^XX 1 ^^XX 1 9 

dx dx^ 
ML = ^XX ̂  - C î̂ rx -TTT- (^0 

«'=^-(*^+^) ( • " ' 

where the stiffnesses JDn, Fxx, and Axz are defined in Eqs. (2.151a,b) 
and (2.1.52a,b). Show that [cf. Eqs. (2.2.1)-(2.2.4)] 

*' = -^-7^(«.^-^0 dx DxxA: XX-^XZ 

+ - ^ ( C i y + C2a: + C3J {yii) 

w^ 
-^XZ ^XX 

1 (^ x^ ^ x^ 
C " + C 2 ^ + Cax + C4 iviii) 

D.r.\ Q 2 



Chapter 3 

Shear-Flexural 
Stiffness Matrix 

Presented in this chapter is a unified element stiffness matrix 
that incorporates the element stiffness matrices of the Euler-Bemoullij 
Timoshenko and the simplified Reddy-Bickford third-order beam theories. 
The beam element has only four degrees of freedom^ namely^ deflection 
and rotation at each of its two nodes. Depending on the choice of the 
element type, the general stiffness matrix can be specialized to any of the 
three theories by merely assigning proper values to parameters introduced 
in the development. The element does not experience shear locking, 
and gives exact generalized nodal displacements for Euler-Bemoulli and 
Timoshenko beam theories when the beam is uniform and homogeneous. 
While the Timoshenko beam theory requires a shear correction factorj 
the third-order beam theory does not require the specification of such a 
factor. 

3.1 Introduction 

The finite element models of the Euler-Bernoulli beam theory and 
the Timoshenko beam theory are now standard (see Reddy 1993). A 
number of Timoshenko beam finite elements have appeared in the 
literature. They differ from each other in the choice of interpolation 
functions used for the transverse defiection WQ and rotation cj). Some are 
based on equal interpolation and others on unequal interpolation of WQ 
and (j). 

The Timoshenko beam finite element with linear interpolation of 
both WQ and 0 is the simplest element. However, it behaves in a very 
stiff manner in the thin beam limit, i.e. as the length-to-thickness 
ratio becomes very large (say, 100). Such behaviour is known as shear 
locking (see Nickell and Secor 1972, Tessler and Dong 1981, Prathap and 
Bhashyam 1982, and Averill and Reddy 1990). The locking is due to 
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the inconsistency of the interpolation used for WQ and 0. To overcome 
the locking, one may use equal interpolation for both WQ and (f) but 
use a lower-order polynomial for the shear strain, ê ^ = {dwo/dx) + 0. 
This is often realized by using selective integration, in which reduced-
order integration is used to evaluate the stiffness coefficients associated 
with the transverse shear strain, and all other coefficients of the stiffness 
matrix are evaluated using full integration. The selective integration 
Timoshenko beam element is known to exhibit spurious energy modes 
(see Prathap and Bhashyam 1982 and Averill and Reddy 1990). Prathap 
and Bhashyam (1982) used a consistent interpolation of the variables to 
alleviate locking. 

The transverse shear strain in the Timoshenko beam theory 
(Timoshenko 1921, 1922) is represented as a constant through the 
beam thickness, and a shear correction factor is thus introduced to 
calculate the transverse shear force that would be equal in magnitude 
to the actual shear force. Since the actual shear stress distribution 
through beam thickness is quadratic, Jemielita (1975), Levinson (1981), 
Bickford (1982) and Reddy (1984a) developed third-order beam theories 
to capture the true variation of the shear stress. The displacement field 
of these third-order theories accommodates a quadratic variation of the 
transverse shear strain and stresses, and there is no need to use shear 
correction factors in a third-order theory. The Levinson third-order 
beam theory has the same equations of equilibrium as the Timoshenko 
beam theory but the force and moment resultants contain higher-order 
strain terms. Bickford (1982) used Levinson's displacement field and 
developed variationally consistent equations of motion of isotropic beams 
while Reddy (1984) developed a variationally consistent third-order 
theory of laminated composite plates. 

Heyliger and Reddy (1988) used the third-order laminate theory 
of Reddy to develop a beam finite element and studied bending and 
vibrations of isotropic beams. The element is based on Lagrange linear 
interpolation of the rotation 0 and Hermite cubic interpolation of WQ, 
as they are the minimum requirements imposed by the weak form of the 
third-order theory (also see Phan and Reddy 1985 and Reddy 1997a). 

In this chapter, we present the development of a unified beam 
finite element that contains the finite element models of the Euler-
Bernoulli, Timoshenko and the refined third-order beam theory. The 
derivation of the unified element is based on the exact relationships 
between the various theories presented in Chapter 2. The relationships 
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allow interdependent interpolation of t̂ o ^^^ 0 ^^^ the rank deficiency is 
removed, resulting in an efficient and accurate locking-free finite element 
for the analysis of beams according to classical as well as refined beam 
theories. 

3.2 Summary of Relationships 
3.2 .1 Re la t ionsh ips B e t w e e n T B T and E B T 

As discussed in Chapter 2, the shear force, bending moment, slope 
and deflection of Timoshenko beam theory can be expressed in terms of 
the corresponding quantities of the Euler-BernouUi beam theory. These 
relationships are summarized below [see Eqs. (2.2.1)-(2.2.4)]: 

Ql = Q^ + Ci (3.2.1) 

Mj^ = Mg + Cix + C2 (3.2.2) 

jC>,,^r ^ _ £ > ^ ^ M + C i ^ + C2X + Cz (3.2.3) 
ax 

- C 2 y - C 3 X - ^ C 4 (3.2.4) 

where Axz and Dxx are defined in Eqs. (2.1.52a,b), and Ci, C2, C3, C4 are 
constants of integration, which are to be determined using the boundary 
conditions of the particular beam. 

3.2.2 Re la t ionsh ips B e t w e e n R B T and E B T 

Equations for the force and moment resultants, and the rotation and 
defiection of the Reddy-Bickford beam theory in terms of the Euler-
BernouUi beam theory are given by [see Eqs. (2.3.2), (2.3.8), (2.3.10), 
and (2.3.12)] 

= Q^{x) + Ci (3.2.5) 

Mg{x) = Mg + Cix + C2 (3.2.6) 

Dx.cl>^{x) = ^Dxx^ + ^ Q ^ + C i ^ + C2X + Cs (3.2.7) 
ax An>. 2. 
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D:,,w^{x) = D^^w§{x) + ^ (^lQ^{r))dr) 
XZ 

- Cij - C2Y - Csx - C4 (3.2.8) 

where a = 4/(3/i^) and p = 4//i^. In addition, a second-order equation 
must be solved to determine Qx in terms of Q^ [see Eq. (2.3.7)]. This 
solution requires another two constants C5 and CQ. The six constants Ci 
through CQ are determined using the six boundary conditions available 
in the third-order theory. 

3.2.3 Re la t ionsh ips B e t w e e n Simplif ied R B T and E B T 

As stated earlier, the Reddy-Bickford third-order theory requires, 
unlike in the Timoshenko beam theory, the solution of an additional 
second-order equation to establish the relationships. The reason is that 
both the Euler-Bernoulli beam theory and the Timoshenko beam theory 
are fourth-order theories, whereas the Reddy-Bickford beam theory is a 
sixth-order beam theory. The second-order equation can be in terms of 
Q^^ M ^ j 4^^^ ^^d WQ. In this section we develop relationships between a 
simphfied Reddy-Bickford beam theory and the Euler-Bernoulli beam 
theory. The term simplified Reddy-Bickford beam theory refers to the 
fourth-order Reddy-Bickford beam theory obtained by dropping the 
second-derivative term in the additional differential equation for WQ. 
While this is an approximation of the original Reddy-Bickford beam 
theory, it is as simple and as accurate as the Timoshenko beam theory 
while not requiring a shear correction factor. 

For the simplified Reddy-Bickford beam theory, we first derive the 
second-order equation in terms of WQ, Substituting Eqs. (2.1.17) and 
(2.1.47) into Eq. (3.2.6), we obtain 

Dxx^ - aFxx^ = -Dxx^ + C,x + C2 (3.2.9) 
ax dx^ dx^ 

Integrating the above equation gives 

D,,<j>^ - ocF^x^ = -Dxx^ + Ci^+C2X + Cz (3.2.10) 

From Eqs. (2.1.43), (2.1.44), (2.1.49), and (2.1.50), we have 

dx dx dx \ dx I 
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SO that 
^R^J_dM^_dwl 

^ X 2 dx dx 
(3.2.12) 

where Axz and so on are defined in Eqs. (2.1.51a,b) and (2.1.55). 
Substituting Eq. (3.2.12) into Eq. (3.2.10), we obtain 

'D..\ dM:?. 
dx 

dw^ 

dx 
^" - i ? x x ^ ^ = - £ > x x ^ + C i ^ + C2X + Cz (3.2.13) 

which on integration yields 

.3 2.2 

M^^ + D^^w§{x) - C i ^ - C2— - Czx - C4 D,,w§{x) = (5?- ^ - « • - - ^ ' ^ ~ "̂̂  " "̂  

Prom Eq. (2.1.47), we have 

M^^ = D^^ 
dx dx^ 

(3.2.14) 

(3.2.15) 

M £ = Mi l - aPxx = -D x̂ •'•XX XX 

EUminating dcp^/dx from Eqs. (3.2.15) and (3.2.16), we obtain 

D^^M^^ - ^xxMfx = " {-FxxD^x + F^xDxx) - ^ (3.2.17) 

and using Eq. (3.2.6), we can write 

M^x = jr^ {Mg + Cix + C2) + - ^ (-Fxx^xx + Fa.xf>xx) ^ 

(3.2.18) 
Finally, substituting Eq. (3.2.18) into Eq. (3.2.14), we obtain 

Dxx'^Q (^) T— [FxxDxx " FxxDxxj 
d?w^ 
1 ^ 

= DxxW(^) + 
"^xz 

"2 V_c, 
i ' "'̂ ^ 

- C 2 - Czx - C4 

6 I A, 

(3.2.19) 
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Now, we wish to simplify the Reddy-Bickford beam theory by neglecting 
the second-order derivative term in Eq. (3.2.19). This amounts to 
reducing the order of the theory from six to four. We obtain 

DxxW^ix) = DXXWQ{X) + 
D. 

-C2 
X'- D, 

Mg - Ci 

- C3X - C4 

x-' i?. 
X 

(3.2.20) 

In summary, we have the following relations from Eqs. (3.2.5), 
(3.2.6), (3.2.10), and (3.2.20): 

Vi{x) = Q^{x) + C, 

Miix)^Mg{x) + Cix + C2 
dw^ X * 

Dxxrix) = -Dxx^ +Ci^ + C2X + Cz 
ax 2 

DXXWQ{X) = Dxxw^{x) + 
D. 

Mxl-Crl^-— 
^ 

Dr 
-X 

- C3X - C4 

(3.2.21) 

(3.2.22) 

(3.2.23) 

(3.2.24) 

where we have introduced the following equivalent slope: 

Da:x(t>^{x) = b:,x(j)^ - aF;, 
dx 

(3.2.25) 

and the superscript ^5' denotes the quantities in the simplified theory. 
Note that the relationships for the shear force and bending moment 
remain unchanged between the original and simplified theories. 

3.3 Stiffness Matr ix 

Next we develop the stiffness matrix of a beam finite element that 
incorporates the stiffness matrices of all three theories. The development 
utilizes the relationships between the solutions of the three theories (see 
Section 3.2). 

The relationships (3.2.1)-(3.2.4) between the Timoshenko and 
Euler-Bernoulh beam theories as well as the relationships (3.2.21)-
(3.2.24) between the simplified Reddy-Bickford and Euler-BernouUi 
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beam theories can now be expressed in one set by introducing tracers A 
and B: 

Vf(x) = Qf(a;) + Ci (3.3.1) 

Mg{x) = Mg{x) + Cix + C2 (3.3.2) 
fill) T* 

D^J^{x) = -D^^-^ + Cx— + C2X + Cs (3.3.3) 
ax I 

^ C 2 \ ^ - B \ - C Z X ^ C ^ (3.3.4) 

where the quantities with superscript 'C/' belong to either the 
Timoshenko beam theory (a = 0) or the Reddy-Bickford beam theory 
(a ^ 0), 

Dxx/{^-xzKs) for Timoshenko beam theory 
A={ ^ _ (3.3.5a) 

Dxx/^xz for simphfied Reddy-Bickford beam theory 

0 for Timoshenko beam theory 
B={ _ (3.3.5b) 

Dxx/Axz for simphfied Reddy-Bickford beam theory 

and 9^{x) denotes the sfope, which has a different meaning in different 
theories, as defined below: 

{ (j>^{x) for Timoshenko beam theory 

4>^{x) for simplified Reddy-Bickford beam theory 
(3.3.6) 

Clearly, 9^ = <f>^ = <i>^ when a = 0. When Cj = 0 and >1 = 0, the 
relationships in Eqs. (3.3.1)-(3.3.4) degenerate to the trivial statements 

V^{x) = g f (x) (3.3.7) 

Mf^(x) = Mf,(x) 

O'^ix) = - ^ (3.3.8) 

WQ{X) = w§{x) 
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Based on the foregoing unified relationships, we now derive the 
stiffness matrix for the unified beam element (UBE). Consider a 
(Hermite cubic) beam element of length and element-wise uniform 
material and geometric properties. Let the generalized displacements 
at nodes 1 and 2 of a typical element associated with any of the three 
beam theories be defined as (see Figure 3.3.1a) 

^o(0) = Ai, 0(0) = A2 

wo{L) = A3, e{L) = A4 (3.3.9) 

where L denotes the length of the element, and 6{x) denotes the slope, 
which has a different meaning in different theories, as defined below: 

e{x) = { 

dx for Euler-BernouUi beam theory 

0^(x) for Timoshenko beam theory 

I 0^(x) for simplified Reddy-Bickford beam theory 
(3.3.10) 

where x denotes the element coordinate whose origin is located at node 
1 of the element. Next, let Qi and Q3 denote the shear forces (i.e. 
values of V^) at nodes 1 and 2, respectively; similarly, let Q2 £̂ nd 
Q4 denote the bending moments (i.e. values of M ^ ) at nodes 1 and 
2, respectively. Figure 3.3.1 shows the sign convention used for the 
generaUzed displacements and forces. 

'Q 

1̂+ 

?>2 

G 2 > ^ 2> V2 

Qi^g 

QA'Q 4, HA 

(a) Nodal displacements (b) Nodal forces 

Figure 3.3.1. A typical unified beam finite element with the generalized 
displacements and forces for the derivation of the stiffness 
matrix. 
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The stiffness matrix for the unified element is derived using the 
traditional method to calculate stiflFnesses in structural analysis. The 
method involves imposing a unit generalized displacement, while all 
other generalized displacements are kept zero, and determining the 
generalized forces required to keep the beam in equilibrium (i.e., 
equivalent to using the unit-dummy-displacement method). The 
formulation utilizes the relationships between the Euler-Bernoulli beam 
theory, the Timoshenko beam theory and the simplified Reddy-Bickford 
beam theory. This amounts to using Hermite cubic interpolation for the 
transverse deflection and a dependent interpolation for the slope. The 
procedure is outfined briefly here. 

To obtain the first column of the element stiflFness matrix, we set 
(see Figure 3.3.1b) 

at X = 0 : ii;|^ = t/;Ĵ  = ii;^ = Ai, M = 0^ ^ ^H ^ 0(3.3.11a) 
ax 

ditx = L:w^ = w'^ = w§ = 0, 4 ^ = (/)̂  = 0^ = 0 (3.3.11b) 
ax 

and determine the constants Ci through C4 from Eqs. (3.3.13)-(3.3.16). 
We obtain 

Ci = -
12D^ 12A 

L^ [ L 2 + 12 ( ^ - \B) 
Ai 

C2 = ^ C i 

(3.3.12a) 

(3.3.12b) 

C4 = - ( - ^ ^ ) Ai (3.3.12d) 

The substitution of these constants into Eqs. (3.3.1)-(3.3.4) gives 

Qi = -yi^(O) = ( ^ ^ ) Ai = fcnAi (3.3.13a) 

Q2 = -M^M = ( ^ ) Ai = fc2iAi (3.3.13b) 
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Q3 = -V^^iL) = ( ^ ) Ai = fcaiA 

Q4 = M!^,{0) = -( 6D. 

H = l + 12f2, n = 

^^ > Ai = A;4iAi 

A 
L^-QB 

(3.3.13c) 

(3.3.13d) 

(3.3.14) 

This completes the derivation of the stiffness coefficients of the 
first column of the stiffness matrix. The same procedure can be 
repeated, with different generalized displacements set to unity, to obtain 
the remaining stiffness coefficients. The complete unified beam finite 
element model is given by 

2D. 
liL^ 

6 - 3 L - 6 
- 3 L 2L2A 3 L 

- 6 ZL 6 
- 3 1 

- 3 L 1 
LH 
3L 

lt^\\ 

fAn 
) A2 
1 A3 

U4J 

> = < 

\qx] 
92 
93 

. 9 4 J 

> + < 

[Qi] 
Q2 

[QA) 

A = 1 + sn, ^ = 1 - 6Q 

and is the load vector due to the distributed load q{x) 

Qi = / q{x)ipi[x)dx 
Jo 

(3.3.15) 

(3.3.16) 

(3.3.17) 

Here ^i{x) denote the Hermite interpolation functions implied by Eqs. 
(3.3.1)-(3.3.4) (see Problem 3.2 at the end of the chapter). The stiffness 
matrix in Eq. (3.3.15) is also reported by Gere and Weaver (1965), 
Przemieniecki (1968), and Meek (1971), among others (see Reddy 19996 
for additional references). 

3.4 Frame Structure - An Example 

Consider the two-member frame structure shown in Figure 3.4.1a. 
The following geometric and material parameters are used in the 
analysis: 

Member 1: L = 144 in., A = 10 in^., / = 10 i n l , E = 10^ psi., u = 0.3 
Member 2: L = 180 in., >1 = 10 in^., / = 10 in l , E = 10^ psi., v = 0.3 

The shear correction coefficient for the Timoshenko beam element is 
taken to be Kg — 5/6. 
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The structure is analyzed using the aforementioned stiffness method 
according to the Euler-BernouUi theory and the Timoshenko beam 
theory. The simpUfied Reddy beam element essentially gives the same 
results as the Timoshenko beam element, and hence is not included. The 
exact Timoshenko beam element [A = Dxx/{KsAxz) = EI/{GAKs) 
and iB = 0] is denoted by UBE. The results are also compared with 
those predicted by two other commonly used Timoshenko beam finite 
elements, namely the linear equal-interpolation reduced-integration 
element (RIE) and the consistent interpolation element (CIE) [see Reddy 
1993, (19976,19996)]. Figures 3.4.1 shows the two, four and eight 
element meshes of the structure. Note that all these elements are 
extended to include the axial displacement degrees of freedom (i.e., 
Hnear interpolation of the axial displacement is used), and each element 
stiffness matrix is of the order 6 x 6 . 

-12 ft 

(a) 

(b) (c) (d) 

F i g u r e 3 . 4 . 1 . Analysis of a frame structure, (a) Frame structure analyzed, 
(b) Meshes of 2, 4, and 8 elements. 
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Table 3.4.1 contains the displacements at point B obtained using 
various types of elements. Note that one Euler-BernouUi element (EBE) 
or unified beam element (UBE) per member of a structure gives exact 
displacements, whereas at least two RIE or CIE per member are needed 
to obtain acceptable results. The forces in each element are included in 
Table 3.4.2. The forces calculated from the element equations are also 
exact for EBE and UBE. 

Table 3.4.1. Comparison of the generalized displacements [v = [v/P) x 
10 where t; is a typical displacement] at point A of the 
frame structure shown in Figure 3.4.1. 

Displ. RIE(1)*RIE (2) RIE (4) CIE (1) CIE (2) CIE (4) UBfit EBfit 

UB 0.2709 0.8477 0.8411 0.2844 0.8415 0.8396 0.8390 0.8390 

WB 0.4661 0.6806 0.6811 0.4432 0.6808 0.6811 0.6812 0.6812 

0B -0.0016 0.8665 0.9450 0.0004 0.7703 0.9164 0.9621 0.9610 

* Number in the parenthesis denotes the number of elements per member. 

' Values independent of the number of elements (and coincide with the exact 
values predicated by the respective beam theories). 

3.5 Concluding Remarks 

In this chapter, a unified finite element model of the Euler-Bernoulh, 
Timoshenko, and simplified Reddy-Bickford third-order beam theories 
is developed. Bending stiffness coefficients of the unified element 
are derived. The development is based on the exact relationships 
between the bending solutions of the Euler-Bernoulli beam theory, 
Timoshenko beam theory and the simplified Reddy-Bickford third-order 
beam theory. The relationships provide an interdependent interpolation 
of the deflection and rotation of the form (for more details, see Problem 
3.2 at the end of the chapter) 

^o^(x) = X : A , ^ f )(x), e^{x) = J:Aj^f\x) (3.5.1) 

where cpf^ are quadratic interpolation functions related to (pj . Hence, 
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Table 3.4.2« Comparison of the generalized forces (divided by P) at the 
nodes of each member of the frame structure shown in Figure 
3.4.1. 

Element* 

RIE(l) 

RIE(2) 

RIE(4) 

CIE(l) 

CIE(2) 

CIE(4) 

UBEt 

EBEt 

Fi 

3.237 
0.850 

4.723 
2.699 

4.730 
2.668 

3.007 
0.987 

4.728 
2.670 

4.730 
2.661 

4.731 
2.658 

4.731 
2.658 

F2 

1.865 
0.908 

0.671 
1.384 

0.713 
1.411 

1.575 
0.607 

0.708 
1.407 

0.721 
1.417 

0.725 
1.420 

0.725 
1.420 

^3 

-62.24 
62.26 

-0.332 
-47.70 

-8.362 
-49.76 

-65.39 
17.38 

-8.327 
-50.37 

-10.30 
-50.43 

-10.92 
-50.45 

-10.90 
-50.45 

F4 

-3.237 
1.550 

-4.723 
-0.299 

-4.730 
-0.268 

-3.077 
1.413 

-4.728 
-0.270 

-4.730 
-0.261 

-4.731 
-0.258 

-4.731 
-0.258 

F5 

0.136 
2.292 

1.329 
1.816 

1.288 
1.789 

0.425 
2.593 

1.292 
1.793 

1.279 
1.783 

1.275 
1.780 

1.275 
1.780 

Fe 

-62.26 
62.28 

47.70 
86.67 

49.76 
83.74 

-17.38 
161.4 

50.37 
85.07 

50.43 
83.39 

50.45 
82.87 

50.45 
82.87 

* Number in the parenthesis denotes the number of elements per member, 
and the two rows correspond to the two members of the structure. 

' Values independent of the number of elements (and coincide with the exact 
values predicated by the respective beam theories). 

the element stiffness matrix is of the order 4 x 4 , and it gives exact 
nodal values of the generalized displacements (i.e., WQ and 0) for 
Euler-BernouUi and Timoshenko beams with uniform cross-section and 
homogeneous material properties. An independent interpolation of the 
form 

w^{x) = J2^J^ji^)^ ^^(x) = ^e,-*,(x) (3.5.2) 
3=1 j=l 

would result in a 7 x 7 stiffness matrix for the same accuracy as the 
element derived here. This shear deformable finite element based on 
the Timoshenko and third-order beam theories can be included in any 
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computer program by simply replacing the stiffness matrix of the existing 
Euler-Bernoulli beam finite element with that given in Eq. (3.3.25). 
Note that conventional Timoshenko beam elements are not completely 
shear locking free and one-element discretization per member using 
such elements in the analysis of a frame structure will yield erroneous 
displacements as well as member forces as demonstrated by the given 
two-member frame example. 

The element stiffness matrix developed herein can be applied to 
beams with element-wise constant geometric and material properties. 
The element can also be extended to symmetrically laminated 
beams under appropriate assumptions (see Reddy 1997a, Chapter 6). 
Extension to buckling is also straightforward. However, extension of the 
unified beam element to dynamic problems is not possible because of 
the mass inertia terms [see Reddy (19996)]. 

Problems 

3.1 Verify the relations in Eqs. (3.3.22)-(3.3.24). 

3.2 Consider the following equilibrium equations of the Timoshenko beam 
theory in the absence of distributed load q: 

ax V ax J \ ax 

dx 
4„jf.i*+5 

= 0 

= 0 

(0 

(n) 

The exact solution of Eqs. (i) and (ii) is of the form 

'"'̂ ' = -^rT+'^^l+'''^+'''rAis: 

Dxx(l>{x) = Ci— + C2X + C3 

(Cix) 

{Hi) 

(iv) 

where Ci through C4 are the constants of integration. Note that the 
constants Ci,C2, and C3 appearing in (iv) are the same as those in 
Eq. (iii). Equations (iii) and (iv) suggest that one may use cubic 
approximation of WQ and an interdependent quadratic approximation 
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of (f). Use Eqs. (iii) and (iv) to express the constants Ci through C4 in 
terms of the nodal variables 

Ai=u;o(0), A2 = 4>{0), A3 = wo{L), A4 = 0(L) {v) 

where L denotes the length of the beam element and X is the element 
coordinate with its origin at node 1, 0 < X < L, and express Wo(x) and 
(t>{x) in the form 

4 4 

j=l j=l 

In particular, show that (f^ and (p\ are given by 

(̂ (̂ ) = - L - 12f̂ r7 - (3 - 27/)r/2l 

V̂ '̂  = - ^ [ ( l - ^ ) S + 6J7(l-r/)77] 

<̂ (̂ ) = - [(3 - 2r})r]'^ + 12QT]^ 

rf^ = - [(1 - r])r]^ + 6f2 (1 - 77) 7/] (wi) 

Here 77 is the non-dimensional local coordinate 

3 .3 (Continuation of Problem 3,2) The displacement finite element model 
of the Timoshenko beam theory is constructed using the principle of 
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minimum total potential energy, or equivalently, using the weak form 

- / q{x)6w dx - Vx6w{Q) - V26w{L) - Mi(50(O) - M26<i>{L) 
Jo 

(i) 

where 

Vi = -Qx(0) = 

Ml = -Mxx(O) = -

V2 = Qx{L) = 

M2 = M^^{L) = 

AxzK, {^ + <P 
J 1 = 0 

Dr 
d^ 

' dx c=0 

A . . / ^ . ( ^ + 0 
x=L 

d(j) 
J-yxx J 

dx Jx=L 
(«) 

Substitute the approximation (vi) of Problem 3.2 into the weaJc form and 
show that the finite element model is of the form 

[X]{A} = M + {Q} {in) 

where 

'^«=L ,„,.i,«,^)f,..,<' 
dx dx 

I Uxx 
dx dx 

dx 

Qi = J ^\^^Q{X) dx 

{iv) 

{v) 

{vi) 

3.4 {Continuation of Problem 3.3) Show that Eq. (iii) of Problem 3.3 has 
the explicit form given in Eq. (3.3.25). 

3.5 Develop the beam finite element based on the Levinson beam theory (see 
Problem 2.7). 



Chapter 4 

Buckling of Columns 

This chapter presents an approach by means of an analogy for 
deriving the exact relationship between the elastic buckling loads of 
columns based on the Euler-Bemoulli beam theory^ the Timoshenko 
beam theory and the Reddy-Bickford beam theory. The exact relationship 
applies to axially loaded columns with boundary conditions that result in 
zero lateral force in the members. The resulting Reddy-Bickford buckling 
solutions are found to be higher than the Timoshenko buckling solutions. 
For the cases of pinned-pinned and fixed-free columnsj the buckling loads 
are practically the same for the two types of columns. However^ in the 
case of fixed-fixed columns^ the buckling loads are somewhat different, 
especially when the columns have relatively large values of the shear 
parameter ft = Dxx/{KsAxzLP')' It is worth noting that the advantage 
of the Bickford-Reddy theory over the Timoshenko theory is that the 
former does not require a shear correction factor. 

4.1 Introduction 

When the column is stocky, or of a built-up or of a composite-type 
construction, the application of the Euler-Bemoulli (classical) beam 
theory will overestimate the buckling loads. This is due to the neglect 
of transverse shear deformation in the Euler-Bemoulli beam theory. A 
refined beam theory, known as the first-order shear deformation theory 
or Timoshenko beam theory, that incorporates the shear deformation 
effect was proposed by Engesser (1891) and Timoshenko (1921). This 
first-order shear deformation theory relaxes the normality assumption 
of the Euler-BernouUi beam theory but assumes a constant transverse 
shear strain (and thus constant shear stress when computed using 
the constitutive equations) through the beam thickness. In order to 
compensate for the parabolic distribution of the transverse shear stress 
through the thickness, a shear correction factor is introduced to calculate 
the effective shear modulus. The usual approaches for estimating 
the shear correction factor are either by matching the high frequency 
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spectrum of vibrating beams (e.g., Mindlin and Deresiewicz 1954) or by 
using approximation procedures and simplifying assumptions within the 
Hnear theory of elasticity (e.g., Cowper 1966). However, the third-order 
beam theory derived independently by Bickford (1982) and Heyliger 
and Reddy (1988) does away with the need for a shear correction factor 
because the assumed third-order displacement field gives a parabolic 
distribution of the transverse shear stress and satisfies the zero shear 
stress condition at the free surfaces. 

4.2 Relationship Between Euler-BernouUi and 
Timoshenko Columns 

4.2.1 Genera l Re la t ionsh ip 

Consider a column of fiexural rigidity Dxx, shear rigidity Axz, length 
L which is subjected to a compressive axial load JV. The stress resultant-
displacement relations according to the Euler-BernouUi beam theory are 
given by 

^ - = - ^ - ^ (4.2.1) 

Qf = - D . . ^ (4.2.2) 

while those according to the Engesser-Timoshenko beam theory are 
given by 

M 4 = Dxx— (4.2.3) 
df 

-- -" "^^^ dx 

Ql = KsAxJ<P^ + - ^ \ (4.2.4) 

in which x is the longitudinal coordinate measured from the column 
base, Mxx the bending moment, Qx the transverse shear force, (p the 
rotation in the Engesser-Timoshenko column and w the transverse 
deflection, measured from the onset of buckling. The superscripts '£" 
and T ' denote quantities belonging to the Euler-BernouUi column and 
the Engesser-Timoshenko column, respectively. The shear correction 
coefficient Kg in Eq. (4.2.4) is introduced to account for the difference 
in the constant state of shear stress in the Engesser-Timoshenko column 
theory and the parabolic variation of the actual shear stress through the 
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depth of the cross-section. The values of Kg for various cross-sections 
and built-up columns are given in standard texts such as Timoshenko 
and Gere (1959). 

For both kinds of columns, it can be readily shown that the 
equilibrium equations are 

^ = Ox (4.2.5) 
ax 
^ = N ^ (4.2.6) 
dx dx^ 

Substituting Eq. (4.2.2) into Eq. (4.2.6) yields the following equation 
governing the buckling of Euler-Bernoulli columns: 

By substituting Eqs. (4.2.3) and (4.2.4) into Eqs. (4.2.5) and (4.2.6), 
the equilibrium equations of the Engesser-Timoshenko column may be 
written as 

^d?vF ,, , (df (P w ,r' W - ^ = i ^ , A , . ^ ^ + ^ j (4.2.9) 

By differentiating Eq. (4.2.8) and then using Eq. (4.2.9), we obtain 

dx^ dx'^ 
D . . " - ^ - N - ^ (4.2.10) 

Equation (4.2.9) can be solved for dcf)^ jdx 

' ' * ^ = - f i - ^ l ^ (4.2.n, dx \ KgAxz) dx^ 

Substituting Eq. (4.2.11) into Eq. (4.2.10) yields 

N-r T 

dx* + 1 _ rLL. <te2 " " ^ ' 
\ KsAxz / 
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By differentiating Eq. (4.2.8) and using Eq. (4.2.10), we can also obtain 

In view of the similarity of Eqs. (4.2.7), (4.2.11), (4.2.12) and 
(4.2.13), and provided the boundary conditions are of the same form, it 
can be deduced that 

N^ = - J ^ or iV^ = - J ^ (4.2.14) 
KsAxz Ks-Axz 

and 

*'-{^-£ry^--' (--' 
w'^ = C2W^ + C3X + d (4.2.16) 

where Ci,C2,C3, and C4 are constants. 

It is clear that the Euler-Bernoulli buckling load and the Engesser-
Timoshenko buckling load are linked together through the relationship 
in Eq. (4.2.14), provided the boundary conditions of the two theories 
are also linked together by Eqs. (4.2.15)-(4.2.17). Considering various 
combinations of free, pinned and fixed end conditions, it will be 
shown below that the foregoing requirements were met for pinned-ended 
columns, fixed-ended columns and fixed-free columns but not for fixed-
pinned columns. Figure 4.2.1 shows columns with various boundary 
conditions. 

4.2.2 P i n n e d - P i n n e d C o l u m n s 

The boundary conditions for the pin-ended Euler-Bernoulli column 
are given by 

w^ = M^=^-^=0 a t x = 0 andx = L (4.2.18a) 
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r 
n 
n 

r 

w; 
(a) Pinned-Pinned (b) Pinned-Fixed (c) Fixed-Fixed (c) Fixed-Free 

Figure 4.2.1. Columns with various boundary conditions. 

where L is the column length. In the case of the Engesser-Timoshenko 
column, the boundary conditions are 

w'^ = M J ^ = - ^ = 0 at X = 0 and X = L 
ax 

Prom Eqs. (4.2.11) and (4.2.18b), it is clear that 

= 0, at X = 0 and x = L 
dx^ 

(4.2.18b) 

(4.2.18c) 

Thus the boundary conditions for the Engesser-Timoshenko beam can 
be written as 

w"^ = ML = 
dx'^ 

= 0 at X = 0 and x = L (4.2.18d) 

In view of the similarity of Eqs. (4.2.18a) and (4.2.18d), it is concluded 
that the boundary conditions for the pinned-pinned Euler-BernouUi and 



6 0 S H E A R DEFORMABLE BEAMS A N D PLATES 

Engesser-Timoshenko columns are of the same form, and that Eqs. 
(4.2.14)-(4.2.17) are vahd. 

To determine the constants Ci,C2,C3, and C4, Eq. (4.2.16) is used 
together with the boundary conditions in Eqs. (4.2.18a) and (4.2.18b) 
to give 

C3 = C4 = 0 (4.2.19) 

Next, it is observed that for a pinned-pinned column under a compressive 
axial load, there is no lateral shear force at the ends so that 

Q^ = 0^ + 4 ^ = 0 at X = 0 and X = L (4.2.20) 
ax 

Combining Eqs. (4.2.17) and (4.2.20), we obtain 

-(¥)„-(->£)<¥)...-' '"••' 
Using the above equation with Eq. (4.2.16) results in 

C, = -Jf^ C, C-f] (4.2.22) 

Therefore, the relationships between the eigen functions of the pinned-
pinned Euler-BernouUi and Engesser-Timoshenko columns are 

w^ = C2W^ (4.2.23) 

4.T (f>' = ~C2 
^ KsAxz) dx KsAxz \ dx j ^ ^ ^ j 

(4.2.24) 

where C2 is an arbitrary constant. 

4,2 .3 F i x e d - F i x e d C o l u m n s 

For fixed-fixed columns, the boundary conditions for the Euler-
Bernoulli columns are given by 

^ ^ 3= ^ = 0 at a: = 0 and a: = L (4.2.25a) 
dx 
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In the case of the Engesser-Timoshenko column, the boundary 
conditions are 

w'^ = (f = 0 at a; = 0 and x = L (4.2.25b) 

As in the case of the pinned-pinned column, the absence of a lateral 
shear force at the ends implies [see Eq. (4.2.20)] 

^T T dw 
Qi =(f)^ + —— = 0 at x = 0 and x = L 

dx 

Due to this condition, Eq. (4.2.25b) can be rewritten as 

w'^ = - ^ = 0 at X = 0 and X = L (4.2.25c) 
ax 

By comparing Eqs. (4.2.25a) and (4.2.25c), it is seen that the boundary 
conditions for both columns are of the same form. Thus, Eqs. (4.2.14)-
(4.2.17) are valid. 

Substituting Eq. (4.2.25a) and (4.2.25b) into Eqs. (4.2.16) and 
(4.2.17) yields 

Ci = C3 = C4 = 0 (4.2.26) 

Thus, the relationships between the eigenfunctions of the two columns 
are given by 

w^ = C2W^ (4.2.27) 

with C2 is an arbitrary constant. 

4.2.4 Fixed-Free Columns 

The boundary conditions for the fixed-free Euler-BernouUi columns 
are given by 

TP dw^ 
w^ = —— = 0 at X = 0 (4.2.29a) 

dx 

Mg = ^ = 0 and Qf = iV^ ^ at a: = L (4.2.29b) 
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In the case of the Engesser-Timoshenko column, the boundary 
conditions are 

'uF = (tF = Q at x = 0 (4.2.30a) 

Mj^ = ^ = 0, and Q^ = AT̂  ^ at x = L (4.3.30b) 
ax ax 

As shown in the previous case, the absence of a lateral shear force at 
the fixed end allows (4.2.30a) to be expressed as 

nF = ^ = 0 at X = 0 (4.2.30c) 
ax 

In order to show that the second of the boundary conditions in Eqs. 
(4.2.29b) and (4.2.30b) are of the same form, Eq. (4.2.2) is used to 
rewrite the condition for the Euler-Bernoulli column as 

dx-^ dx dx'^ Dxx dx 
(4.2.31) 

In the same way, for the Timoshenko column, Eqs. (4.2.3), (4.2.5), and 
(4.2.11) are used to rewrite the condition as 

or 

(4.2.32) 
/ n.T. 

A comparison of Eq. (4.2.29a) with Eq. (4.2.30c), and Eq. (4.2.31) with 
Eq. (4.2.32) shows clearly that the boundary conditions are of the same 
form and are consistent with Eq. (4.2.14)-(4.2.17). 

Finally, by substituting Eqs. (4.2.29a), (4.2.30a), and (4.2.30c) into 
Eqs. (4.2.16) and (4.2.17), the constants are found to be 

Ci = C3 = C4 = 0 (4.2.33) 

and the relationships between the eigen functions are the same as those 
given in Eqs. (4.2.27) and (4.2.28). 



BUCKLING OF COLUMNS 6 3 

It is interesting to note that the deflections of the Euler-BernouUi 
and Engesser-Timoshenko columns are proportional to each other for 
the pinned-pinned, fixed-fixed, and fixed-free columns. Also, the 
rotation of the Engesser-Timoshenko column is related to the slope of 
the deflection of the Euler-BernouUi columns. 

It should be noted that the buckling load relationship given by 
Eq. (4.2.14) does not apply to flxed-pinned columns because the 
boundary conditions do not match exactly. The Engesser-Timoshenko 
buckling load for such columns is to be determined from solving the 
transcendental equation 

1 — -r---— = tan 
•L^xx \ -t*^s-^rr 

Dxx 

\ [^ KsA:,z) 

(4.2.34) 

Figure 4.2.2 shows a comparison of the exact Engesser-Timoshenko 
buckling load from Eq. (4.2.34) for the fixed-pinned column with the 
approximate solutions predicted by Eq. (4.2.14). It can be seen that 
as the shear parameter fi = DXX/{KSAXZLP') increases, the difference 
in solutions increases. Considering the range of values of the shear 
parameter Q. between 0 and 0.01, the buckling load relationship in Eq. 
(4.2.14) can be made more accurate by modifying it to 

l + L l ^ ^ ^ 
'KsA^ 

, N^ = {A.mf(^\ (4.2.35) 

Thus for this particular case of fixed-pinned columns, the buckhng load 
relationship (4.2.35) should be used while Eq. (4.2.14) is to be taken for 
the pinned-pinned columns, fixed-fixed columns, and fixed-free columns. 

Ziegler (1982) established that the relationship in Eq. (4.2.14) is 
also valid for columns with fixed ends and fixed ends with top sway. 
Moreover, he gave the modified form of the relationship for the effect 
of pre-buckhng shortening. Banerjee and Williams (1994) showed that 
the buckling relationship applies as well to hinged-hinged columns with 
rotational springs of equal stiffness added to their ends. 
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Figure 4.2.2. A comparison of the approximate Engesser-Timoshenko 
buckling loads with the exact buckling loads of a fixed-
pinned column. 

It is clear from Eq. (4.2.14) that the eflPect of transverse shear 
deformation leads to a reduction in the Euler-Bernoulli buckling load by 
the factor found in the denominator of the buckling load relationship. 
This reduction of the Euler-Bernoulli load thus increases with respect 
to a higher value of Euler-BernoulH load (especially for columns with 
highly restrained ends or internal restraints) and also with a lower value 
of shear rigidity. 

4.3 Relationship Between Euler-Bernoulli and 
Reddy-Bickford Columns 

4.3.1 General Relationship 

Consider an elastic column of length L, area of cross section A, 
Young's modulus E, and shear modulus Gxz, and subjected to an axial 
compressive load N^, The axial displacement u^ of the Reddy-Bickford 
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beam is given by [see Eq. (2.1.5a)] 

u^{x,z) = z(t)^-az^ 10^ + 
dw R^ 

dx 
(4.3.1) 

where a = 4/(3/i^), x is the longitudinal coordinate measured from 
the bottom end of the column, w^ the transverse deflection of the 
centerline of the column at the onset of buckling, (f)^ the rotation of 
the cross-section of the column, and h the thickness of the column in 
the ^-direction. Given w^, it is clear that the axial strain e^^, and shear 
strain 7 ^ can be computed as given in Eqs. (2.1.36a,b). The axial stress 
cr^ and shear stress a^^ are given by 

ĉ TT — ExS^^ = Ex 
d(t)^ 

'XX -^x^xx ~" -^x^ 7 - ErOLZ^ 

<^xz = Gxzi^, = Gxz (1 - Pz^) U"" 

df^ ^w^ 
dx dx'^ 

dw^\ 
+ dx 

(4.3.2a) 

(4.3.26) 

where /? = 4//i^. 

Following the procedure presented in section 2.1.4 for the derivation 
of the equilibrium equations of the Reddy-Bickford theory, we apply the 
principle of virtual work to the column at the onset of buckling 

which, on integrating by parts, gives the governing equations 

6w^ : - a 

dx 
^ -^xx ^^ + N^-Jz- = 0 

dx dx^ 
where 

The boundary conditions of the theory are of the form 

dx 

(4.3.3) 

(4.3.4) 

(4.3.5) 

( w 

Specify : < 

R \ 

dx 

\ (t>-R 

or aPx: 

MSX 

(4.3.6) 
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The moment and force resultants are given by [see Eqs. (2.1.47)-
(2.1.52)] 

P. 

XX — / ^^xx ^^ — -^xx"~J Otrxx i 2 
^̂^ J A 

XX ^^ I ^ O'xx 
JA dx dx^ 

R^ = J z'^a^, dz = D^, U « + ^ J 

(4.3.7) 

(4.3.8) 

(4.3.9) 

(4.3.10) 

where [a = 4/{3h?) and /3 = 4/h^] 

•^XX — -^XX ^-^XX) ^XX — ^XX Otllxx 

^XZ ~ A-xz ~~ H^XZ) ^XZ ^ J^XZ ~~ H^XZ 

\-^XX^ •^XX'i -^XX) 
JA 

(Axz, £>xz, Fx.) = j (1, ^^ 2^)Gxz dA 

(4.3.11a) 

(4.3.11b) 

(4.3.11c) 

(4.3.11d) 

By manipulating the expressions in Eqs. (4.3.4) to (4.3.6), it is 
possible to write the governing equations and boundary conditions as 

dx*^ dx'^ 
d'^Pxx ^dQl_^^ d V ^ ^ 
dx'^ dx dx'^ 

Specify : < 

w 
R 

dx 

[ 0 ^ J 

> or < 

( ^^Sr ATRdw^ 

' dx ~ -^^ dx 

Oil XX 

Mil 

(4.3.12) 

(4.3.13) 

(4.3.14) 

In order to obtain differential equations for buckling in terms of a 

single variable, it is useful to express P^x, ^ and ^ in terms of M ^ 
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and ^ by using Eqs. (4.3.7) to (4.3.10). First, from Eq. (4.3.7), it is 
seen that 

dx D. dx^ 

which, on substitution into Eqs. (4.3.8) to (4.3.10) yields 

^xx 

dQ^ 
dx 

dR, 

1 

•LJXX 

_ ^xz 1 

~ Dxz ^ 

Dxz 

F^^M^^ - a [D^XH^TX - i^xx) 
d2 w 
dx^ 

""̂  dx"^ M^, + a F s i ^ ^ W 1 +Axz 

Mil + a F ^ x ^ ^ I + D^ 

'd^ 

d'^w 

dx I)xx V'"^'' • "'• '• ' dx-^ I ' ^""dx2 

(4.3.15) 

(4.3.16) 

(4.3.17) 

(4.3.18) 

By using the foregoing expressions for Pxx, - ^ and -^ in the 
governing Eqs. (4.3.12) and (4.3.13), the following buckhng equation in 
terms of M^^ can be derived: 

dx"^ 

where 

+ 
•LJxx^^ J-^xx-^or 

a^D^ dx^ 

A^.N^ 

a 
2 ^ . 

Mg = 0 (4.3.19) 

I>ii = I>ii - aFxx = Dxx - 2aFxx + a'^Hxx 

Axz = Kz - I^Dxz = Axz - WDxz + 0^Fxz 

•L^XX ^^ J-^XX-^XX -^TT 

(4.3.20a) 

(4.3.20b) 

(4.3.20c) 

Buckhng equations in terms of (p^ and w^ can also be derived in a 
similar manner. These are 

d^<P^ 
dx^ + 

J-^xx-^^ -L^xx-^x 

a^Dx 

A...N^ d(j> R 

dx 
= 0 

dx^ + 

a^Dxx 

L)xx^ ~ iJxx-^-xz 

o?Dx 

d ^ 
dx^ 

dx^ 

'AxzN^' 

ofiDxx 

d?w^ 
da;2 

= 0 

(4.3.21) 

(4.3.22) 
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Equation (4.3.22) shows that the Reddy-Bickford theory is a sixth-order 
theory in comparison to the fourth-order theories of Euler-BernoulU and 
Timoshenko. 

Equation (4.3.19) may be factored to give 

where 

Af = (-1)' 
\ 

+ 
^xx^ ^xx-^xz 

+ a^Dxx 

with j = 1,2. 

By letting 

/ .= ( ^ + Af)Mi». 

Eq. (4.3.23) may be written as 

^ + Afj/ii = 0, J = lo r 2, ji^i 

(4.3.24) 

(4.3.25) 

(4.3.26) 

In the case of the buckling of Euler-Bernoulli columns, it can be 
shown that Eq. (4.2.7) may be written as (Timoshenko and Gere 1961) 

'̂  + ̂ i<=° (4.3.27) 

where M ^ is the bending moment in the Euler-BernouUi column and 

X^ = 
D:, 

(4.3.28) 

It can be seen that Eqs. (4.3.26) and (4.3.27) are similar in form. 
Thus, one may relate the buckling loads between the Reddy-Bickford 
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columns and the Euler-Bernoulli columns based on this analogous 
second-order governing equation as 

Xf = A^ (4.3.29) 

The substitution of Eqs. (4.3.24) and (4.3.28) into Eq. (4.3.29) furnishes 
the buckling load relationship given by 

1 . AT fo iD^ 
I X Z A ^ X X J 

l + M D ^ 
(4.3.30) 

However, the foregoing relationship in Eq. (4.3.30) is only valid provided 
the two boundary conditions, required for solving the second-order 
differential equations [(4.3.26) or (4.3.27)], for both types of columns 
must also have the same form. Below, we proved that this is true for 
the cases of (a) pinned-pinned, (b) fixed-fixed, (c) fixed-free, and (d) 
pinned-pinned columns with rotational springs of equal stiffness added 
to their ends. 

4,3.2 Pinned-Pinned Columns 

Consider the case of pinned-pinned columns. The two boundary 
conditions for the Euler-Bernoulli column, to be solved with Eq. 
(4.3.27), are given by 

M ^ = 0 at x = 0 and x = L (4.3.31) 

Thus it must be shown that in the Reddy-Bickford column, /i = 0 at 
X = 0 and x = L. Now the boundary conditions of such a column are 
given by 

M ^ - aPxx = 0 and aPxx = 0 at x = 0 and x = L 

or M ^ = 0 at x = 0 and x = L (4.3.32) 

In view of Eqs. (4.3.7), (4.3.8) and (4.3.32), it may be deduced that 

- ^ = ——=0 at x = 0 and x = L 4.3.33) 
ax ax 

It follows from Eq. (4.3.12) that 

*xx 
dx2 

= 0 at X = 0 and x = L (4.3.34) 
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It is clear from Eqs. (4.3.25), (4.3.32), and (4.3.34) that 

fii =0 at X = 0 and x = L (4.3.35) 

Equations (4.3.31) and (4.3.35) show an exact matching of form for the 
boundary conditions and the thus the buckUng load relationship is valid 
for the pinned-pinned case. A comparison of the numerical results will 
be presented later. 

4.3.3 Fixed-Fixed Columns 

For a fixed-fixed column, the lateral shearing force is zero along the 
column length. This means that the two boundary conditions for the 
Euler-BernouUi column to be solved with Eq. (4.3.27) are 

^ ^ = 0 at x = 0 and x = L (4.3.36) 
ax 

This means that one has to prove that ^ = 0 at x = 0 and x ^ L m 
the fixed-fixed Reddy-Bickford columns. To do this, Eq. (4.3.12) is first 
integrated with respect to x to give 

^ _ N ^ ^ = C (4.3.37) 
dx dx 

where C is a constant. Since the effective shear force is zero for the 
fixed-fixed Reddy-Bickford column, 

C = 0 (4.3.38) 

Moreover, by using the fact that for a fixed end, ^ ^ = 0, it can be 
deduced from Eqs. (4.3.37) and (4.3.38) that 

^ ^ = 0 at x = 0 and x = L (4.3.39) 
dx 

The substitution of Eqs. (4.3.9) and (4.3.10) into Eq. (4.3.4) leads to 

^ ^ + ^ , ( 0 ^ + ^ ^ = 0 at x = 0 and x = L (4.3.40) 
dx Y dx J 
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Using the fact that 0^ = ^ = 0 at a fixed end, Eq. (4.3.40) 
reduces to 

dP 
—^ = 0 at x = 0 and x = L (4.3.41) 

ax 

In view of Eqs. (4.3.39) and (4.3.41), Eqs. (4.3.7) and (4.3.8) furnish 

—-~- = — 3 - = 0 at x = Q and x = L (4.3.42) 

and together with Eq. (4.3.12), we have 

'XX = 0 at x = 0 and x = L (4.3.43) 

Thus in view of Eqs. (4.3.39) and (4.3.43), we have 

^ = ^ + A f ^ = 0 at :. = 0 and x = L (4.3.44) 
ax dx^ dx 

As in the case of pinned-pinned columns, we have a matching in the form 
of the boundary conditions [c.f., Eqs. (4.3.36) and (4.3.44)] and therefore 
the buckhng load relationship holds for the fixed-fixed columns. 

4.3-4 Fixed-Free Columns 

For the fixed end at x = 0, the boundary conditions of the Reddy-
Bickford and the Euler-Bernoulli columns have already been shown to 
match in form. Now for the free end at a: = L, the boundary condition 
of the Euler-BernouUi column, to be solved with Eq. (4.3.27), is 

M ^ = 0 at x = L (4.3.45) 

It is thus necessary to show that in the Reddy-Bickford column, /i = 0 
at a: = L. First it is noted that for the free end, the boundary conditions 
are given by 

M ^ - aPxx = 0 and aPxx = 0 at x = L 
or M ^ = 0 at X = L (4.3.46) 

Next, from Eqs. (4.3.7), (4.3.8), and (4.3.46), it can be shown that 

i r = ^ = ° at x = Z, (4.3.47) 
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It follows from Eq. (4.3.12) that 

~ ^ = 0 at x = L (4.3.48) 

Thus, in view of Eqs. (4.3.25), (4.3.46), and (4.3.48), one obtains 

^ = _ | £ + Af = 0 at x^L (4.3.49) 

As before there is a matching in the form of the boundary conditions for 
the fixed-free columns and thus the buckling load relationship is valid. 

4.3.5 Pinned-Pinned Columns with End Rotational 
Springs of Equal Stiffness 

In view of the fact that the buckling load relationship is valid for 
the pinned-pinned columns and the fixed-fixed columns, it can be readily 
proved that it also holds for the case of pinned-pinned columns with ends 
having additional elastic rotational springs of equal stiffness. 

Here we simplify the form of the buckling load relationship for 
columns with square or circular cross-section. Noting the definition of 
the rigidities in Eqs. (4.3.11) and (4.3.20), it can be readily shown that 
the buckling load relationships reduce to 

N^ = ĵ ^—iTN '̂' ^^^ square cross-section (4.3.50) 
1 + UAx 

N^ = .n-.^^/ ^ov clrcular cross-section (4.3.51) 
^ "^ 90Axz 

It is worth noting that the relationship obtained for columns of square 
cross-section has a similar form to the buckling load relationship 
developed for circular plates under uniform in-plane loading (Wang and 
Lee 1998). 

Tables 4.3.1-4.3.3 show the comparison of the buckling load 
parameters A = NL^/Dxx between the Engesser-Timoshenko and 
Reddy-Bickford columns for different end conditions and shear 
parameter fi = ^^^/(^xz^^)- Note that the Engesser-Timoshenko 
buckUng load results are computed from Eq. (4.2.14) with Ks = 5/6 
for a square bar and Kg = 9/10 for a circular bar. 



BUCKLING OF COLUMNS 73 

Table 4 . 3 . 1 . Comparison of buckling load parameters of pinned-pinned 
columns between the Engesser-Timoshenko and Reddy-
Bickford column theories. 

Pinned-pinned 
column 

Column of square 
cross section 

Column of circular 
cross section 

n \^ x^ A^ A^ 

0.0 
0.1 
0.2 

9.8696 
4.5183 
2.9298 

9.8696 
4.5526 
2.9874 

9.8696 
4.7074 
3.0908 

9.8696 
4.7342 
3.1370 

Table 4 .3 .2 . Comparison of buckling load parameters of fixed-fixed 
columns between the Engesser-Timoshenko and Reddy-
Bickford column theories. 

Fixed-fixed 
column 

0 

0.0 
0.1 
0.2 

Column of square 
cross 

Â  

39.4784 
6.8809 
3.7689 

section 

X^ 

39.4784 
7.1982 
4.1498 

Column of circular 
cross 

Â  

39.4784 
7.3292 
4.0395 

section 

A« 

39.4784 
7.5888 
4.3549 

Table 4 .3 .3 . Comparison of buckling load parameters of fixed-free 
columns between Engesser-Timoshenko and Reddy-Bickford 
column theories. 

Fixed-free 
column 

n 
0.0 
0.1 
0.2 

Column of square 
cross section 

Â  

2.4674 
1.9037 
1.5497 

A^ 

2.4674 
1.9053 
1.5537 

Column of circular 
cross 

Â  

2.4674 
1.9365 
1.5936 

section 

A« 

2.4674 
1.9376 
1.5967 
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It can be seen that the buckling load parameters predicted by 
the Reddy-Bickford theory are higher than their Engesser-Timoshenko 
counterparts due to the factor found in the numerator of the buckling 
load relationship. The buckling load parameters are, however, in 
somewhat close agreement but there is a larger difference for the case of 
fixed-fixed columns as the latter has a higher Euler-Bernoulli buckling 
load value which magnifies the factor in the numerator. It is also 
clear that the difference between the Reddy-Bickford and Engesser-
Timoshenko buckling solutions increases with higher modes of buckling. 
These higher modes of buckling become important when dealing with 
columns with internal restraints. As shown by Rozvany and Mroz 
(1977) and Olhoff and Akesson (1991), the optimal locations of internal 
supports for maximizing the buckling load of a column are found at the 
nodal points of an appropriate higher-order buckling mode. 

4.4 Concluding Remarks 

This chapter presents exact relationships between the buckling loads 
of the Engesser-Timoshenko columns, Reddy-Bickford columns, and 
Euler-Bernoulli columns with the following end conditions: 

• Pinned-pinned 

• Fixed-fixed 

• Fixed-free 

• Pinned-pinned with equal rotational stiffnesses at both ends 

Using these relationships, buckling solutions of the Engesser-
Timoshenko columns and Reddy-Bickford columns can be readily 
obtained from the corresponding Euler-Bernoulli solutions. It has been 
found that the Reddy-Bickford column theory predicts a higher buckling 
load when compared to the corresponding value from the Engesser-
Timoshenko column theory. Although the buckhng loads are close to 
those of the Engesser-Timoshenko columns for the cases of pinned-
pinned and fixed-free columns, the results are slightly different due to a 
much higher value of the Euler-Bernoulli buckling load when the column 
ends are fixed. The differences in the buckling loads of the Engesser-
Timoshenko and Reddy-Bickford columns become more significant at 
higher modes of buckling. The advantage of the Reddy-Bickford beam 
theory over the Engesser-Timoshenko beam theory is that it does not 
require shear correction factors. 
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Problems 

4.1 Use the relationship in Eq. (4.2.14) to determine the buckhng load A^ = 
N-^ L / Dxx of a fixed-free column when the parameter ft = Dxx/^xzL 
is equal to 0.1 and 0.2. 

4.2 Use the relationship in Eq. (4.2.35) to determine the buckling load 
A = N L? /Dxx of a fixed-pinned column when the parameter fi = 
DXX/'A^XZL'^ is equal to 0.1 and 0.2. 

4 .3 Verify the relation in Eq. (4.3.19). 

4 .5 Establish the buckling load relationship between the Euler-BernouUi 
beam theory and the Levinson beam theory (see Problem 2.7 for the 
governing equilibrium equations, which must be modified for the buckling 
case). 
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Chapter 5 

Tapered Beams 

The similarity between the equations of the Euler-Bemoulli beam 
theory and the Timoshenko beam theory for isotropic, variable cross-
section, single span beams is used to develop expressions for deflection, 
slope, bending moment and shear force of the Timoshenko beam theory 
in terms of the same quantities of the Euler-Bemoulli beam theory. 
This new set of general relationships derived herein are illustrated for 
statically determinate and statically indeterminate, single span tapered 
beams. Extension of the results to laminated beams is also discussed. 

5.1 Introduction 

The exact relationships for deflections, slopes, shear forces and 
bending moments between single-span, uniform Timoshenko beams 
and the corresponding Euler-Bemoulli beams under general transverse 
loading and end conditions were presented in Chapter 2. These exphcit 
and exact relationships are useful in elucidating the effect of transverse 
shear deformation on the bending of beams of uniform cross-section. 
For example, they show clearly that the stress-resultants and the 
slopes of Timoshenko beams are exactly equal to their Euler-Bernoulli 
counterparts for statically determinate beams. Further, they allow easy 
conversion of the well-known Euler-Bernoulh beam solutions to those 
for Timoshenko beams. They can be used to check numerical solutions 
to Timoshenko beam problems and even to verify the solutions obtained 
from other Timoshenko beam formulations such as the w^-w^ deflection 
component formulation (see Reddy, 19996). In fact, Lee and Wang 
(1997) , while using these relationships, detected erroneous solutions 
from the common practice of setting w^ = w^ =^ 0 Sit simply supported 
and clamped ends for statically indeterminate Timoshenko beams. 

Hitherto, these relationships are restricted to beams of uniform 
cross-section. In practice, it is common to utilize tapered beams due 
to the more eflicient use of materials. It is thus the aim of this chapter 



7 8 SHE AR DEFORMABLE BEAMS A N D PLATES 

to present more general relationships between the bending solutions of 
Timoshenko beams and Euler-BernouUi beams of arbitrary taper. The 
extension of the results to laminated beams is also discussed. 

6.2 Stress Resultant-Displacement Relations 

Consider a tapered beam of length L, area of cross-section A{x), 
second moment of area /(x) , modulus of elasticity Ex, and shear modulus 
of rigidity Gxz under any transverse loading condition q{x). According 
to the Euler-BernouUi beam theory, the stress resultant-displacement 
relations are given by: 

^xx = -Dxx^^:B- (5-2.1) 

(5.2.2) 

where w^, M ^ and Qf are the deflection, bending moment and 
shear force, respectively, Dxx = ExI the flexural rigidity, and x the 
longitudinal coordinate measured along the beam. The superscript E 
denotes quantities belonging to the Euler-BernouUi beam theory. 

According to the Timoshenko beam theory, the stress-resultant-
displacement relations are given by: 

Ml = D . . ^ (5.2.3) 

QI = A..KA4>'' + ^ \ (5.2.4) 

where the superscript T denotes quantities belonging to the Timoshenko 
beam, (f)^ and Ks are the rotation of the cross section and the shear 
correction factor, respectively, and Axz = GxzA the shear stiffness. 

5.3 Equilibrium Equations 

For both beams, the equiUbrium equations are given by: 

^ = Q, (5.3.1) 
ax 
^^"^ = -q (5.3.2) 
dx 
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Substituting Eqs. (5.2.2) and (5.3.1) into Eq. (5.3.2) yields the Euler-
Bernoulli beam equation: 

d? d'w§\ d'M^, dQ^ 
dx^ l^^^ dx2 1 dx^'^ dx ^ 

(5.3.3) 

By substituting Eqs. (5.2.3) and (5.2.4) into Eqs. (5.3.1) and (5.3.2), 
one obtains the following two equilibrium equations for the Timoshenko 
beam: 

AMf-^'^^-^iDj-f] (5.3.4) 

and 

dx 

dx J dx 

dwT 

dx 

Aa:zKs r + 
dx 

(5.3.5) 

Differentiating Eq. (5.3.4) with respect to x, and using Eqs. (5.2.3) and 
(5.3.5) lead to 

d^ d'Ml dQl 
dx'^ \ ^^ dx I dx'^ dx 

(5.3.6) 

5.4 Deflection and Force Relationships 
5.4.1 Genera l Re lat ionships 

Prom the mathematical similarity of Eqs. (5.3.3) and (5.3.6), it can 
be deduced that 

dx'^ dx 

or 

and 

M^^ = Mg + Cix + C2 

Ql = Q^ + Ci 

(5.4.1) 

(5.4.2) 

Assuming that Dxx 7̂  0 anywhere along the length of the beam, the 
integration of Eq.(5.4.1) yields 

.T ^^dwl^ /-̂  Cix + C2 
dx Jo D, 

-dx + C3 (5.4.3) 
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The substitution of Eq. (5.4.3) into Eq. (5.3.4) followed by integration 
with respect to x yield 

^0 = ^ 0 + / A T^ dx- / / --^ -dxdx-C3X-C4 (5.4.4) 
Jo AxzJ^s Jo Jo l^xx 

The integration constants Ci, C2, C3, and C4 can be evaluated from 
the boundary conditions given by: 

fVee(F): Mg ^ M^ = Q^ ^ Q^ = 0 (5.4.5) 
Simple support(S) : w^^w^^ Mg = MĴ  = 0 (5.4.6) 

Clamped(C) : w^ ^ w^ = ^ = (f>^ ^ 0 (5.4.7) 

Below, the constants Q are evaluated for single-span beams of various 
combinations of end conditions. 

5.4.2 Simply Supported (SS) Beams 

The boundary conditions for simply supported beams are given by 
Eq. (5.4.6) for X = 0 and x = L. The substitution of these boundary 
conditions into Eqs. (5.4.1) and (5.4.4) gives the following: 

Ci=C2 = C4 = 0, Cs^jf'^'^dx (5.4.8) 
^ Jo ^xzJ^s 

In view of these constants, Eqs. (5.4.1) to (5.4.4) for simply supported 
beams read as: 

Ml = Mg (5.4.9a) 
Ql = Qf (5.4.9b) 
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5.4.3 Clamped-Free (CF) B e a m s 

The boundary conditions for clamped-free beams are given by Eq. 
(5.4.7) for X = 0 and by Eq. (5.4.5) for x = L. The substitution of these 
boundary conditions into Eqs. (5.4.1) to (5.4.4) gives the following: 

Ci = C2 = C3 = C4=0 (5.4.10) 

In view of these constant values, the relationships given by Eqs. (5.4.1) 
to (5.4.4) for clamped free beams read as: 

•'• -^xx -^xx 

Ql = Q^ 

-^ = -^^IoS<-/' 

(5.4.11a) 

(5.4.11b) 

(5.4.11c) 

(5.4.11d) 

5.4.4 Free -Clamped (FC) B e a m s 

The boundary conditions for free-clamped beams are given by Eq. 
(5.4.5) for a: = 0 and by Eq. (5.4.7) for x = L. The substitution of these 
boundary conditions into Eqs. (5.4.1) to (5.4.4) gives the following: 

Ci = C2 = C3 = 0; C4 = / -:r^dx (5.4.12) 
Jo Axzi^s 

In view of these constant values, the relationships given by Eqs. (5.4.1) 
to (5.4.4) for clamped free beams read as: 

M^, = Mg (5.4.13a) 

Q^ = Qf (5.4.13b) 

0^ = - ^ (5.4.13c) 
ax 

wl = w^- r ^ ^ d x (5.4.13d) 
JO ^xzJ^s 
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5.4-5 C l a m p e d (CC) B e a m s 

The boundary conditions for clamped beams are given by Eq. (5.4.7) 
for a; = 0 and x = L. The substitution of these boundary conditions 
into Eqs. (5.4.3) and (5.4.4) gives the following: 

fo'&dx 

lo ( A i : - Jo ^ M dx + ( 4 ^ ) (/o" /o^ -^dxdx) 
So ob'^ . 

C2 = -C. 
/o '^dx 

/o ^^dx 

C3 = C4 = 0 (5.4.14) 

In view of these constants, the relationships given by Eqs. (5.4.1) to 
(5.4.4) for clamped beams read as 

Ml^Mg + Cix + C2 (5.4.15a) 
Ql = Q^ + Ci (5.4.15b) 

f = Jj}f^r9l^dx (5.4.15C) 
ax Jo Dxx 

t̂̂ o = W + / A i^ d^- / / —fS ^^ (5.4.15d) 
Jo -rixzJ^s Jo Jo ^xx 

5*4.6 C l a m p e d - S i m p l y Supported (CS) B e a m s 

The boundary conditions for clamped-simply supported beams are 
given by Eq. (5.4.7) for x = 0 and by Eq. (5.4.6) for x = L. The 
substitution of these boundary conditions into Eqs. (5.4.1), (5.4.3) and 
(5.4.4) gives the following: 

C2 = -C iL , C3 = C4 = 0 (5.4.16) 

In view of these constants, the relationships given by Eqs. (5.4.1) to 
(5.4.4) for clamped-simply supported beams read as: 

Ml = Mg - C,{L - X) (5.4.17a) 
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Q^ = Qf + Ci (5.4.17b) 

f = - ^ + C,r'^dx (5.4.17c) 
ax Jo Vxx 

E^ rQl±Ci^^_C, r r^LJldxdx (5.4.17d) 

5.4.7 Simply Supported-Clamped (SC) Beams 

The boundary conditions for clamped-simply supported beams are 
given by Eq. (5.4.6) for x = 0 and by Eq. (5.4.7) for x = L, The 
substitution of these boundary conditions into Eqs. (5.4.1), (5.4.3) and 
(5.4.4) gives the following: 

f^JS^dx 

LJo ±dx + /o^ { ^ ^ - /cf ±dx} dx 

Cz = C4 = 0, C3 = -Ci [ -^dx (5.4.18) 
Jo J^xx 

In view of these constants, the relationships given by Eqs. (5.4.1) to 
(5.4.4) for simply supported-clamped beams read as: 

M^^Mg + Cix 

Ql = Qx+Ci 

I 

+ C\x I 77—dx 
J-yxx 

Jo AxzJ^s Jo Jo J^xx 

CiX / 
^0 

dxdx 

(5.4 
(5.4 

(5.^ 

(5.4 

:.19a) 
.19b) 

L19c) 

:.19d) 

All the foregoing relationships reduce to the same ones as derived in 
Chapter 2 when the beam has a uniform cross-section, i.e. A and / are 
constants. Wang, Chen, and Kitipornchai (1998) have also developed 
relationships for non-uniform beams with elastic end restraints. 
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5.4.8 A n E x a m p l e 

Consider the use of the relationships in determining the deflections 
of a simply supported, tapered Timoshenko beam under a uniformly 
distributed load QQ. The width b and depth h of the tapered beam are 
assumed to vary linearly along the a;—direction 

6 = 60(1 + ^)5 h = ho{l + x), x = (5.4.20) 

where 60 and ho are the width and depth, respectively, of the beam cross 
section at x = 0, and L is the length of the beam. 

By solving directly the governing Euler-BernouUi beam equations 
(5.3.3) together with the boundary conditions in Eq. (5.4.6), and noting 
^a:x(0) = JS/o, the deflection is found to be 

w^ = % L^ 

12EIoil + x) ^\2 

+ 

2x + x^ - 3x^ + 61n(L) ( l + x ~ x^) 

61n(2L)(x + 2x2 + x^) 

- 6[ln(L) + ln(l + x)] ( l + 2x + x^) | (5.4.21) 

where /Q = bohl/12. Prom Eq. (5.3.3), the transverse shear force of the 
Euler-BernouUi beam is given by 

Q^ = fil-2x), X 
X = — 

L 
(5.4.22) 

To determine the Timoshenko beam solutions using the 
relationships, we substitute the width and depth expressions from 
Eq. (5.4.20), the Euler-BernouUi deflection (5.4.21) and the shear 
force (5.4.22) into Eq. (5.4.9d). The deflection corresponding to the 
Timoshenko tapered beam, noting Axzi'^) = GAQ, is given by 

T 9oî 2 
\2KSGAQ 

18 + 6(3 + 21n(I)) + A(7 + 61n(L)) 

+ 

(1 + x) 

[ln(L) + ln(l + x)](12 + 6A) 

12EIo (1+X)2 {1 + x) 

- 6 s ( l + 3n -21n(2 ) ( l + 2fi)')j (5.4.23) 
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where ^o = ô'̂ 'O and 

5.5 Symmetrically Laminated Beams 

The governing equations of symmetrically laminated beams have 
the same form as those given in Eqs. (5.2.1) to (5.2.4) for isotropic 
beams. Therefore, the results presented in this paper are also valid for 
symmetrically laminated beams. The difference between symmetrically 
laminated beams and isotropic beams is reflected in the flexural and 
shear stiffnesses, Dxx and KgAxz- For a laminated beam, they are 
computed from the following equations (Reddy 1997a) 

where the superscript C denotes quantities of the composite beam, h is 
the total thickness and b is the width of the laminate, and 

D22D66-D2eD2e ^ Al, = i^ (5.5.2) 
DuDu + DnDn + Di^Du Au 

Dn = D22DeQ - 2^26^26, ^12 = i?i6^26 - ^12^66 (5.5.3a) 

DiQ = D12D2Q - D22D1G, A44 = ^44^55 - ^45^45 (5.5.3b) 

Here Aij and A j denote the extensional and bending stiffnesses, 
respectively, of a laminate 

r-
{Aij,Dij)= \Qij{l,z^)dz (5.5.4) 

and Qij denote the plane stress-reduced elastic stiffnesses of a layer 
referred to laminate coordinates. 

It is rare that laminated beams have variable cross sections due 
to variable thicknesses of individual layers because these layers are 
generally made of uniform thickness. Variable cross-section beams, 
either piece-wise constant (but multiple segments) or linearly varying 
cross-section laminates are constructed by ply drop-off and chopping-
off a constant thickness laminate. The present results hold for the 
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latter case directly. In the former case, Eqs. (5.4.1)-(5.4.4) hold within 
each segment, and the constants of integration Ci in each segment are 
evaluated using the continuity of deflection, slope, bending moment, and 
shear force between segments and the boundary conditions of the beam. 

5.6 Concluding Remarks 

The deflection, slope, and stress-resultant relationships for single-
span Timoshenko and Euler-BernouUi tapered beams under any 
transverse loads and end conditions are derived. These relationships 
may be used to readily convert tapered Euler-BernouUi beam bending 
solutions to those for Timoshenko beams, thereby bypassing the need 
for a more complicated shear deformable beam analysis. The exact 
relationships should also prove useful when checks are needed for 
numerical results of tapered Timoshenko beams. The results also 
hold for symmetrically laminated beams with the stiffnesses modified 
accordingly, as pointed out earlier. 

An interesting point to note is that in uniform and statically 
determinate beams, the slope of the Timoshenko beam is equal to that of 
the corresponding Euler-Bernoulli beam. This study shows that in the 
case of tapered beams, while this slope condition holds for cantilevered 
beams, the condition is not valid for simply supported beams in general. 
In the latter simply supported case, the equal slope condition only 
applies to tapered beams when J^ ^ \ dx = 0; an example being the 
beam which is tapered and loaded symmetrically about its mid-span. 

Problems 

5.1 Determine the deflection of the tapered Timoshenko beam defined in 
section 5.4.8 by solving directly the governing equations (5.3.4) and 
(5.3.5) together with the boundary conditions given by Eq. (5.4.6). 
Check the answer against that given in Eq. (5.4.23). 

5.2 Derive the bending relationships for tapered beams with ends that are 
simply supported and constrained by elastic springs with rotational 
stiffness constants fco and fci at ends x = 0 and x = L, respectively. 
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Chapter 6 

Theories of Plate Bending 

Presented in this chapter are the various plate theories, progressing 
from the Kirchhoff (classical thin) plate theory to the first-order shear 
deformation plate theory of Mindlin, and finally, to the third-order plate 
theory of Reddy. The latter two plate theories allow for the effect of 
transverse shear deformation which has been neglected in the Kirchhoff 
plate theory. Using the principle of virtual displacements, the governing 
equations and boundary conditions are derived for uniform thickness 
plates on the basis of the kinematic assumptions of the aforementioned 
plate theories. 

6.1 Overview of Plate Theories 

The two-dimensional plate theories can be classified into two types: 
(1) classical plate theory, in which the transverse shear deformation 
effects are neglected, and (2) shear deformation plate theories. The 
Kirchhoff (classical) plate theory (CPT) for the pure bending case is 
based on the displacement field 

u (x, y, z) = -z-^ (6.1.1a) 

v{x,y,z) = ^ z ^ (6.1.16) 

w (x, y, z) = WQ{X, y) (6.1.1c) 

where [u^v^w) are the displacement components along the [x^y^z) 
coordinate directions, respectively, and WQ is the transverse defiection 
of a point on the mid-plane (i.e., ^ = 0). The displacement field (6.1.1) 
implies that straight lines normal to the xy-plane before deformation 
remain straight and normal to the mid-surface after deformation. The 
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Kirchhoff assumption amounts to neglecting both transverse shear and 
transverse normal effects, i.e. deformation is due entirely to bending 
and in-plane stretching. 

There are a number of shear deformation plate theories. The 
simplest is the first-order shear deformation plate theory (or FSDT), 
also known as the MindUn plate theory (Mindlin 1951), and it is based 
on the displacement field 

u{x, y, z) = >̂ (̂ !>x(x, y) (6.1.2a) 

v{x, y, z) = z(t)y{x, y) (6.1.26) 

w{x, y, z) = w^{x, y) (6.1.2c) 

where (f)x and —(j)y denote rotations about the y and x axes, respectively. 
The FSDT extends the kinematics of the CPT by including a gross 
transverse shear deformation in its kinematic assumptions, i.e. the 
transverse shear strain is assumed to be constant with respect to 
the thickness coordinate. In the FSDT, shear correction factors are 
introduced to correct the discrepancy between the actual transverse 
shear force distributions and those computed using the kinematic 
relations of the FSDT. The shear correction factors depend not only 
on the geometric parameters, but also on the loading and boundary 
conditions of the plate. 

In both the CPT and FSDT, the plane-stress state assumption 
is used and the plane-stress-reduced form of the constitutive law is 
used. In both theories, the inextensibility of a transverse normal can be 
removed by assuming that the transverse deflection also varies through 
the thickness. This allows the use of full three-dimensional constitutive 
equations. 

Second- and higher-order shear deformation plate theories use 
higher-order polynomials in the expansion of the displacement 
components through the thickness of the plate. The higher-order 
theories introduce additional unknowns that are often difficult to 
interpret in physical terms. The second-order theory with transverse 
inextensibility is based on the displacement field 

u{x, y, z) = z(t>x{x, y) + z^i)x{x, y) (6.1.3a) 

v{x, y, z) = z(j)y{x, y) + ^Vy(^> v) (6.1.36) 
'^{x, y, z) = WQ{X, y) (6.1.3c) 

There are a number of third-order theories in the literature, and a review 
of these theories is given by Reddy (1984a). The third-order shear 
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deformation plate theory (TSDT) of Reddy (1984a, 1997a, 1999a) with 
transverse inextensibihty is based on the displacement field 

u{x,y,z) = z(t)x{x,y) - az^ (^^ + " ^ ) 

v{x, 2/, z) = z(j)y[x, y) - az^ (^i/ + ^ ) 

w{x,y,z) = wo{x,y) 

(6.1.4a) 

(6.1.4b) 

(6.1.4c) 

where a = 4/(3/1^). Note that by setting a = 0, we recover the 
displacement field of the FSDT. The displacement field accommodates 
a quadratic variation of the transverse shear strains (and hence shear 
stresses) through the thickness and the vanishing of transverse shear 
stresses on the top and bottom surfaces of the plate (see Figure 6.1.1). 
Unlike the FSDT, the TSDT requires no shear correction factors. 

JC,ttO 

(«o»wo) 

Figure 6.1.1. Undeformed and deformed geometries of an edge of a plate 
in various plate theories. Here UQ denotes the in-plane 
displacement, which is not included in the present study. 
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In addition to its inherent simplicity and low computational cost, the 
first-order plate theory often provides a sufficiently accurate description 
of the global response (e.g., deflections, buckhng loads, and natural 
vibration frequencies) for thin to moderately thick plates. Therefore, 
it is of interest to determine the global response using FSDT. Third-
order theories provide a small increase in accuracy relative to the FSDT 
solution, at the expense of a significant increase in computational effort. 

6.2 Classical (Kirchhoff) Plate Theory (CPT) 
6.2.1 Equat ions of Equi l ibrium 

The principle of virtual displacements has been adopted in the 
derivation of the equilibrium equations and the boundary conditions for 
the various plate theories. In the subsections that follow, the equations 
of equilibrium for the CPT, FSDT, and TSDT are derived. 

The non-zero linear strains associated with the displacement field 
in Eqs. (6.1.1a-c) are 

. „ = * ; = - . ^ (6.2.1a) 
ax ox^ 

dy 9y2 

where {Sxx^^yy) are the normal strains and 7xy is the shear strain. 

The virtual strain energy U of the Kirchhoff plate theory is given 
by 

dxdy 

where flo denotes the domain occupied by the mid-plane of the plate, h 
the thickness of the plate, [axx^cfyy) the normal stresses, Gxy the shear 
stress, and {Mxx,Myy,Mxy) the moments per unit length (see Figure 
6.2.1) 
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Figure 6.2.1. Forces and moments on a plate element. The in-plane force 
resultants Nxxi Nyy, and Nxy do not enter the equations 
in the pure bending case, and they are the specified forces 
in a buckling problem. 

yy 

xy 2 I a. 
yy 
xy 

z dz (6.2.3) 

Note that the virtual strain energy associated with the transverse shear 
strains is zero as ^yxz = 7^^ = 0 in the Kirchhoff plate theory. 

The virtual potential energy 6V due to the transverse load q{x,y) 
is given by 

(5y = - / q{Xjy)6wQ dxdy (6.2.4) 
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If there are any nonzero edge forces and moments, the virtual potential 
energy V should be added to the expression in Eq. (6.2.4). 

The principle of virtual displacements requires that 8W = 6U -i-
6V = 0. We obtain, using the divergence theorem, 

= - / {Mxx,xx + "^Mxy^xy + Myy^yy + Q) SWQ dxdy 
JQQ 

/ [/w ,^ . dSwo , , ^ ,^ . dSwo] . 
- f [Mxxrix + MxyUy) —— + [MxyUx + MyyUy) —— (is 

+ f [{Mxx,x + Mxy^y) Ux + {Myy^y + Mxy,x) %] ^'^0 ds (6.2.5) 

where a comma followed by subscripts denotes differentiation with 
respect to the subscripts, i.e., Mxxx = dMxx/dx, and so on, 
denote the direction cosines of the unit normal n on the boundary F, and 
a circle on the integral sign signifies integration over the total boundary. 
Also, s is the coordinate measured along F. If the unit normal vector n 
is oriented at an angle 6 from the positive x-axis, then Ux — cos 6 and 
riy = sin^. Since SWQ is arbitrary in QQ^ and it is independent of - ^ , 
and ^ ^ on the boundary F, it follows that 

ox^ dxdy oy^ 

which represents the equilibrium equation of the Kirchhoff plate theory. 

6.2.2 Boundary Conditions 

To determine the form of the boundary conditions, we consider the 
boundary integrals in Eq. (6.2.5). On an edge parallel to the x or y 
coordinate, the boundary expression in (6.2.5) implies that 

either SWQ = 0 or Qxrix + Qy^iy = 0 (6.2.7a) 

either ^^=Q or Mxxrix + MxyUy = Q (6.2.7b) 
ox 

either - ^ = 0 or MxyUx + MyyUy = 0 (6.2.7c) 
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where 
Qx = Mj:a:,X + Mxy^y, Qy = Myy^y + M xy,x (6.2.8) 

are the shear forces (see Figure 6.2.1). Note that Qx and Qy are defined 
by Eq. (6.2.8). Equations (6.2.7a-c) indicate that ( t / ; o , ^ , ^ ) are 
the primary variables and specification of any of them constitutes an 
essential (or geometric) boundary condition. The associated secondary 
variables are 

Qxrix + QyUy, MxxTlx + MxyUy, MxyTlx + MyyUy 

The specification of any of the secondary variables constitutes a natural 
(or force) boundary condition. 

In general, not every edge of a plate will be parallel to a coordinate 
axis. Therefore, it is useful to express the boundary conditions in terms 
of slopes and moments that are referred to the normal and tangential 
coordinates [n,s) of an edge (see Figure 6.2.2). The slopes ( ^ , ^ ) 
in the (x, y) coordinate system can be expressed in terms of the slopes 
( ^ , ^ ) in the (n, s) system by the relations 

dx 
dwp 
dy = riy 

dwp 
' dn 
dwp 
dn 

Ur 

+ na 

ds 
dwp 
ds 

(6.2.9a) 

(6.2.9b) 

Figure 6.2.2. Plate element with a curved boundary cind coordinate 
system (n,5,2:). 
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The boundary expression in Eq. (6.2.5) can be expressed in terms 
of the normal and tangential derivatives of WQ: 

f [{Qx^x + QyTly) 6wo 

[Mxxrix + MxyTiy) I —^—rix ::;—n, 
dn ds 

/7i^ n^ \ fdSwo dSwo 
- [MxyTlx + MyyUy) ( — Uy + " o — ^ X ds 

d6wQ 

= f [{Qxrix + QyUy) 6wo 

- [Mxxnl + 2Mxynxny + Myyulj 

- [{Myy - MxxhxTly + Mxy{nl " T l J ) ] ^^ 
ds 

ds (6.2.10) 

The secondary variables are the coefficients of SWQ, ^ ^ and ^ ^ on F. 
Prom Eq. (6.2.10), it is clear that the primary variables (i.e., generahzed 
displacements) and secondary variables (i.e., generalized forces) of the 
theory are: 

dwo dwo 
^ ° ' a n ' ds 

where 

primary variables: 

secondary variables: 

^n = v^x^x I Wy^y 

Mnn = Mxxnl + 2Mxynxny + Myynl 

Mns = {Myy - Mxx)nxny + Mxy{nl - n^) 

(6.2.11a) 

(6.2.11b) 

(6.2.12a) 

(6.2.12b) 

(6.2.12c) 

We note that the equation of equilibrium (6.2.6), when expressed 
in terms of K;O, as will be shown shortly, has a total spatial differential 
order of four. This implies that there should be only four (two geometric 
and two force) boundary conditions at a boundary point. However, 
Eq. (6.2.11) shows three geometric and three force boundary conditions, 
giving a total of six boundary conditions. To eliminate this discrepancy, 
one may integrate the tangential derivative term in Eq. (6.2.10) by parts 
to obtain 

- f Mns^ ds = j ^ S m ds - [Mr^sSwo]^ (6.2.13) 
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The term [MnsSwoli^ is zero when the end points of a closed smooth 
curve coincide or when Mns = 0. If Mns = 0 is not specified at corners 
of the boundary F of a polygonal plate, concentrated forces of magnitude 

Fc = -2Mns (6.2.14) 

will be produced at the corners of rectangular plates. The factor of 2 
appears because Mns from two sides of the corner are added there. 

The remaining boundary term in Eq. (6.2.10), being the coeflftcient 
of 6wo on r , is added to the shear force Qn, to obtain the effective shear 
force 

Vn^Qn + ^ (6.2.15) 

The specification of this effective shear force Vn is known as the Kirchhoff 
free-edge condition. Finally, the correct boundary conditions of the 
Kirchhoff plate theory involve specifying the following quantities: 

generalized displacements: WQ, -r— 
an 

generalized forces: V ,̂ Mnn (6.2.16) 

Thus, at every boundary point one must know WQ or Vn and dwo/dn or 
Mnn- On an edge parallel to the x-axis at y = 0 (i.e., n = —y and 
s = x), for example, the above boundary conditions involve specifying 
one quantity in each pair 

(^0, Vy) and ( ^ = - ^ , Mnn = Myy) (6.2.17) 

Next we discuss some common types of boundary conditions for 
the bending of rectangular plates with edges parallel to the x and y 
coordinates. Here we use the edge at y = 0 (n^ = 0 and ny = —I) 
to discuss the boundary conditions. It should be noted that only one 
element of each of the three pairs may (and should) be specified on 
an edge of a plate. The force boundary conditions may be expressed 
in terms of the generalized displacements using the plate constitutive 
equations discussed in the sequel (see Section 6.2.3). 

Free edge, y = 0: A free edge is one which is geometrically not 
restrained in any way. Hence, we have 

woj^O, ^ 7 ^ 0 (6.2.18a) 
oy 
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However, the edge may have appHed forces and/or moments 

Vy=Qv + ^ = Vy, Myy = Myy (6.2.18b) 

where quantities with a hat are specified forces/moments. For free 
rectangular plates, Mxy = 0; hence no corner forces are developed. 

Fixed (or clamped) edge, y = 0: A fixed edge is one that is 
geometrically fully restrained so that 

^0 = 0, ^ = 0 (6.2.19) 
dy 

Therefore, the forces and moments on a fixed edge are not known a priori 
(i.e., they are reactions to be determined as a part of the analysis). 
For clamped rectangular plates, Mxy = 0, hence no corner forces are 
developed. 

Simply supported edge y = 0: Here we define simply supported 
boundary conditions as specifying 

wo = 0, Myy = Myy (6.2.20) 

where Myy is the applied normal bending moment on the edge. For 
simply supported rectangular plates, a reacting force of 2Mxy is 
developed at each corner of the plate. 

6.2.3 Govern ing Equat ions in Terms of t h e Def lect ion 

Suppose that the material of the plate is isotropic and obeys Hooke's 
law. Then the stress-strain relations are given by 

(Txx = -;—79 i^xx + ^eyy) (6.2.21a) 

E 
^yy — Y ^ {Syy + t/£xx) (6.2.21b) 

^.v = Gj.y = ^ ^ f ^ y (6-2.21C) 

where E denotes Young's modulus, G shear modulus, and i' Poisson's 
ratio. Using Eqs. (6.2.21a-c) in Eq. (6.2.3) and carrying out the 



THEORIES OF PLATE BENDING 99 

indicated integration over the plate thickness, we arrive at 

/•I E fi 
Mxx = J t, ̂ xxz dz = _ ^^ J ^ {sxx + ^eyy) z dz 

^y^ ^ jlk '^^^^ ^^" {\ - u^) y_l ^̂ ^̂ "'' ̂ ^̂ '̂ '̂  ̂  ^̂  (1 - t/2) 

Mxy = / (TxyZ dz = G ^ ^xyZ dz 
2 2 

= - ( 1 - . ) D | | (6.2.22C) 

where D is the flexural rigidity 

^=i2(fb) '•'•'•''^ 

Substituting the expressions for {Mxx,Myy,Mxy) into Eq. (6.2.6), 
we obtain the biharmonic equation governing plate bending: 

In terms of the Laplace operator V^, we have 

DV'^V^wo = q or DV'^wo = q (6.2.25) 

The boundary conditions involve specifying 

V or { \ (6.2.26) 
^ J [ Mnn I 

This completes the development of the governing equations of 
the Kirchhoff plate theory. We shall make use of these equations in 
subsequent chapters. 
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6.3 First-Order Shear Deformation Plate 
Theory (FSDT) 

6.3.1 Equat ions of Equi l ibr ium 

In view of the displacement field given in Eqs. (6.1.2a-c), the 
components of the linear strains are given by 

e.. = z ^ (6.3.1a) 
dx 

dy 
Syy = . ^ (6.3.1b) 

dwQ 

dx 
dwQ 

dy 

Ixz = (t>x + - ^ (6.3.1d) 

^yz = <t>y + ^ (6.3.1e) 

Note that the strains {sxx^^yynxy) are Hnear through the plate 
thickness, while the transverse shear strains ijxzilyz) are constant. 

The equations of equilibrium of the first-order plate theory are 
derived, once again, using the principle of virtual displacements 

6W = 6U + 8V ^{^ (6.3.2) 

where the virtual strain energy dU, and virtual potential energy 6V due 
to the transverse load q{x,y) are given by 

6U = \ {Cxx^^xx + ^yy^^yy + ^xy^lxy 
2 

+ CFxzhxz + <yyzhyz ) dz dxdy (6.3.3a) 

SV = — q{x,y)6wQ dxdy (6.3.3b) 
JQQ 

Substituting for 6U and 6V from Eqs. (6.3.3a,b) into the virtual work 
statement in Eq. (6.3.2), expressing the virtual strains in terms of 
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the virtual displacements {dw{^,d(l>x^^(l>y) using Eqs. (6.3.1a-e), and 
integrating through the thickness of the plate, we obtain 

+ « x ( ^ + « * . ) + « v ( ^ + % dxdy (6.3.4) 

where {Mxx-, Myy^ Mxy) are the moments defined in Eq. (6.2.3), and the 
transverse shear forces per unit length (Qx^Qy) a.re defined by 

Since the transverse shear strains are represented as constant 
through the plate thickness, the transverse shear stresses will also be 
constant through the thickness. This contradicts the well known fact 
that the transverse shear stresses are parabolic (i.e. quadratic) through 
the plate thickness. While this discrepancy between the parabohc 
variation of transverse shear stresses and the constant state of shear 
stresses predicted by the first-order plate theory cannot be corrected 
within the limitations of the kinematics of FSDT, the shear forces 
{Qx)Qy) inay be corrected by multiplying the integrals in Eq. (6.3.5) 
with a parameter Kg, called the shear correction factor: 

This amounts to modifying the transverse shear stiffnesses of the plate. 
The factor Ks is computed such that the strain energy due to the 
transverse shear stresses of the FSDT equals the strain energy due to the 
transverse shear stresses predicted by the three-dimensional elasticity 
theory or its equivalent. 

Returning to the virtual work statement in Eq. (6.3.4), we integrate 
by parts to relieve the virtual generalized displacements {6WQ^ 6(I>X^ 6(t)y) 
in QQ of any differentiation. We obtain, using the divergence theorem, 

0 = / [ ~ ( M x x , X + Mxy^y - Qx) S4>x ~ {Mxy,x + Myy^y - Qy) 6(py 

- {Qx,x + Qy,y + q) Swo ] dxdy 

+ i {QnSwo + Mnn6(t>n + M^^60^) ds (6.3.7) 
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where the boundary expressions were arrived by expressing (px and (py 
in terms of the normal and tangential rotations, {(f)n, (ps)-

(px = ^ x 0 n — nyCps , (py = tlydcpn + Tlx^Cps (6.3.8) 

The equations of equilibrium are 

8WQ : 
dQx ^ dQy 

6(px : 

Spy : 

dx dy 
_ ^dMxx dMxy 

\ dx dy ) + Q x = 0 

dM:,y dM, j-xy 

+ 
yy + Qy = 0 

dx dy 

The primary and secondary variables of the theory are 

primary variables: WQ, 0n, (ps 

secondary variables: Qn^ Mnu) Mns 

where 
(ejn = (tjx'^x ""• ^y'^y 

(6.3.9a) 

(6.3.9b) 

(6.3.9c) 

(6.3.10) 

(6.3.11) 

The boundary conditions involve specifying one element of each of the 
following pairs: 

{wQ,Qn), (</'n,M„„), {(ps,Mns) 

6.3.2 Plate Constitutive Equations 

Assuming the plate material is isotropic and obeys Hooke's law 

r (^x 
'yy 

I CTxy > 

(Jyz ) 

lA) JiS^ 0 0 0 
XT^ ( T ^ 0 0 0 

0 0 G 0 0 
0 0 0 G 0 
0 0 0 0 G 

j ^xx I 

^yy I 
< Ixy > 

Ifxz 

lyz 

(6.3.12) 

where E is the Young's modulus and v Poisson's ratio. The shear 
modulus G is related to £' and i/ by G = E/2{1 + v). 
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The plate constitutive equations are given by 

Mxx 

Myy 

= /_>„... = D(f+.^) (6.3.13a) 

= /%„.* = Z>(.f+ ̂ ) (6.3.13b) 

M., = />,.„. = ̂ ( l^(^ + f ) (6.3.13c) 

«.=^.4.„.. = |f^(*. + ̂ ) (6.3.13d) 

0 . = i . , / ^ . . d . = ^ { * , + ̂ ) (6.3.13e) 

6.3.3 Governing Equations in Terms of Displacements 

The equations of equilibrium (6.3.9a-c) can be expressed in terms 
of displacements {wo,(f>x,<Py) by substituting for the force and moment 
resultants from Eqs. (6.3.13a-e). We have 

_ D{1 - v) fd^ d ^ \ _ £>(! + :/) d (d<t>x d^\ 
2 \dx^ dy^ ) 2 dx[dx dy ) 

_ D( i -z / ) (d% d^\ _ £>(i + t/) d (d^ d^\ 
2 \dx^ dy^ ) 2 dy\dx dy ) 

KsEh /dwQ \ , , 

Introducing the moment sum 

M^ME^±J^^D(^ + ̂ ) (6.3.17) 
1 + 1/ \dx dy J ^ ' 
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and using the Laplace operator, the equihbrium equations (6.3.14)-
(6.3.16) can be expressed in the form 

- Z , ( l - . , W . - a . . ) ^ . ^ ( ^ . * . ) =0,6.3.19) 

- i , ( l - . , V V , - ( l . . ) f . ^ ( ^ . * . ) = 0(6.3.20) 

The common edge conditions for the Mindlin plate theory axe given 
below. 

Free edge (F): For this type of edge condition 

Qn = KsGh ((/.„ + ^ ) = 0 (6.3.21a) 

M „ „ = D ( ^ + . ^ ) = 0 (6.3.21b) 

M . = ^ ( ^ . ^ ) = 0 (6.3.21C) 

Simply supported edge (S and S*) There are two kinds of simply 
supported edges. The first kind (S), which is referred to as the hard 
type simple support, requires 

wo = 0, Mnn = 0, (Ps = 0 (6.3.22) 

The second kind (S*), commonly referred to as the soft type simple 
support, requires 

^0 = 0, Mnn = 0, Mns = 0 (6.3.23) 

Clamped edge (C) This type of edge condition requires 

wo = 0, 0n = O, 0, = 0 (6.3.24) 
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6.4 Third-Order Shear Deformation Plate 
Theory (TSDT) 

6.4.1 Equations of Equilibrium 

The displacement field in Eq. (6.1.4a-c) results in the following 
linear strains: 

7x.= ( l - / 3 . ^ ) ( * , + ^ ) (6.4.1d) 

7,. = ( l - /?^=) (* . + ^ ) (M.le) 

where a = 4/{3h^) and P = 4/h?. 

The substitution of the virtual strains associated with the strains in 
Eqs. (6.4.1a-e) into Eq. (6.3.3a) and the result, along with 6V from Eq. 
(6.3.3b), into the statement of the principle of virtual displacements, Eq. 
(6.3.2) gives 

Jcio L 

-aP f96^_^d6^^^d^6wo\ 
^y y dy dx dxdy J 

+ (Qx - PR.) [6(f>y + ^ ) - qdwQ dA = Q (6.4.2) 

where the moments {Mxx,Myy,Mxy) and transverse shear forces 
(Qi) Qy) are the same as defined in Eqs. (6.2.3) and (6.3.5), respectively, 
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and the higher-order stress resultants {Pxx,Pyy,Pxy) and (Rx.Ry) are 
defined by 

-Txy 

= / ' J ayy \z^ dz (6.4.3a) 

Integrating the expressions in Eq. (6.4.2) by parts, and collecting 
the coefficients of 6(f)x, Scpy, SWQ, one obtains the following equilibrium 
equations of the third-order plate theory: 

_ | ^ ^ + ̂ j + Q , = 0 (6.4.4) 

fdQ.^dQy\Jd^^^d^_^d^\^ (6.4.6) 
dx dy I \ dx^ dxdy dy 

where 

M^r, = M^r, - ocP^n (6.4.7a) 

Q^ = Q^- pRi (6-4.7b) 

and ^, 77 = x, y. The boundary conditions involve specifying 

(6.4.8a) 

(6.4.8b) 

(6.4.9a) 
(6.4.9b) 

where 

Mnn = Mtx cos^ 0 - 2Mxy sin ̂  cos ̂  + Myy sin^ 6 (6.4.10a) 

Mns = - (M^X - Myy) sin ̂  cos ̂  + M^y (cos^ 6 - sin^ O) (6.4.10b) 

Qn = Qxsine - Qycose - 3 ^ ^ (6.4.10c) 

WQ 

dwo 
dn 

<t>n 

(t>ns 

or 

or 

or 
or 

Qn 

^nn 

Mnn 

Mns 
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Like in the CPT, corner forces exist in this theory as well. 

6.4.2 P l a t e Const i tu t ive Equat ions 

Using the stress-strain relations (6.3.12) in Eqs. (6.2.3), (6.3.5), 
and (6.4.3a,b), and using the strain-displacement relations (6.4.1a-e), 
we obtain 

4.D (d(t)x d(t)y\ Dfd'^WQ d'^WQ\ r. A . . ^ 

Ah?D 
35 (t-t)-ir(^-^) '--) 

0 \ OX ay ^yy 
D f ^m_ S ^ \ 
5 \ dx^ ^ dy^ J 

^yy "" 
Ah'^D ( d(t); 

Mxy = 

-^xy — 

35 

1 - 1 / 

/ 5 ^ d4^\ _ 
\ dx dy ) 

4D (d(t>:c 
2 + 

28 

d(t>y 

2hG ( dwQ\ 

n _ h'G ( dwo\ 

5 \ dy dx 

35 \dy ^ dx 

dwo\ 

dy^ 

D (^d^wo\ 
dxdy } 

28 \ dxdy) 

(6.4.11c) 

(6.4.11d) 

(6.4.11e) 

(6.4.11f) 

(6.4.11g) 

(6.4.11h) 

(6.4.11i) 

(6.4.11J) 

These moment/force-deflection relationships can be substituted into 
Eqs. (6.4.4)-(6.4.6) to express the equilibrium equations in terms of the 
generalized displacements {WQ, (px^ (py)- We will return to these equations 
in the following chapters. 
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Problems 

6.1 Starting with a linear distribution of the displacements through the plate 
thickness in terms of unknown functions ( / i , 72, /a) 

u{x,y,z) = zfi{x,y), v{x,y,z) = zf2{x,y) 

w{x, y, z) = wo{x, y) -f zh{x, y) {%) 

determine the functions {fi^f2^f3) such that the Kirchhoff hypothesis 
holds: 

dw _ du ^ dw dv ^ dw .... 

6.2 Repeat Problem 6.1 for the Mindlin plate theory and determine the 
functions ( / i , /2 , / s ) such that the following conditions hold: 

^ = ° ' d-z='^^^ Fz^"^^ ^'^ 

6.3 Starting with a cubic distribution of the displacements through the plate 
thickness in terms of unknown functions ( / i , /2j 5l j 52 j ̂ 1 j ̂ 2) 

u{x, y, z) = zfi{x, y) + z^gi{x, y) + z^hi{x, y) 

v{x, y, z) = zf2{x, y) + z^g2{x, y) + z^h2{x, y) 

w{x,y,z) =wo{x,y) (i) 

determine the functions (/ j , gi, hi) in terms of (WQ, (pxi <t^y) such that the 
following conditions are satisfied: 

(!)„„=*" {l)„o=*" <"' 
h h 

(^xz{x,y,--) = 0, (Txz{x,y,-) = 0 {in) 
h h 

6.4 Consider the following equations of equilibrium of 3-D elasticity in the 
absence of body forces: 

^ + ^ + ^ = 0 ii) 
ox ay oz 

dx dy dz 

^ + ^ + ^ = 0 iiii) 
dx dy dz 
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subject to the following boundary conditions: 

(^xz{x,y,--) = 0, aa:z{x,y,-) = 0, ayz{x,y,--) = 0 {iv) 

h h h 
^yz{x,y,-) = {), crzz{x,y,---) = -qt, (Jzz{x,y,-) = qt iv) 

Integrate equations (i)-(iii) with respect to z over the interval 
(—/i/2, h/2) and express the results in terms of the stress resultants 
(Nxx^Nyy^Nxy). Next, multiply the equations of motion with z^ 
integrate with respect to z over the interval (—/i/2, h/2), and express 
the results in terms of the moments (M^xj ^yyj ^xy)- Be sure that the 
boundary conditions (iv) and (v) on the stresses are satisfied. 

6.5 Use Eqs. (6.3.13a-c) in Eqs. (6.3.9b,c) to establish the shear force-
rotation relations 

Qx = D d fd(t)x d(t>y\ I-yd (d(t)x d(py 
[dx \ dx dy J 2 dy \ dy dx 

O =n\— [^ 4- ^ \ _ Iz.^ A (^ _ ^ 
^^ [dy \dx dy ) 2 dx\dy dx 

(i) 

(u) 

and in terms of the Marcus moment defined in Eq. (6.3.17) 

^"^ dx 2 dy\ dy dx ) ^ ' 
^ _dM (1 - u)D d (d4>^ d4>y\ .. . 
^''~ dy 2 ^ \d^ ~ ~d^) ^'""^ 

6.6 Use Eqs. (6.3.13d,e) and Eqs. (iii) and (iv) of Problem 6.5 to establish 
the following relationship: 

where 

"=(t -1) («) 
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Chapter 7 

Bending Relationships 
for Simply Supported Plates 

In this chapter the differential relationships between the deflections 
of the classical Kirchhoff plate theory and first- and third-order plate 
theories are developed for simply supported, polygonal plates. As 
examples J the deflections of simply supported triangular and rectangular 
plates are obtained using these relationships. 

7.1 Introduction 

The subject of plate bending based on the Kirchhoff and Mindlin 
plate theories for a variety of transverse loading and boundary conditions 
has been studied by numerous investigators. The works have been 
compiled in standard texts on plates such as the ones by Timoshenko 
and Woinowsky-Krieger (1970), Szilard (1974), Roark and Young (1975), 
Reismann (1988), Huang (1988), and Reddy (1999a). Closed-form 
solutions for the stress resultants and deflections have been derived for 
some plate cases. Where these exact solutions cannot be obtained, 
the analysts can draw on very general finite element software, such 
as ABAQUS and COSMOS, to solve their plate bending problems. 
These software packages for plate analysis usually provide classical 
(or Kirchhoflf) plate theory (CPT) elements and first-order shear 
deformation (or Mindhn) plate theory (FSDT) elements. The latter 
type of elements allows for the effect of transverse shear deformation. In 
this chapter, we present exact relationships linking the stress-resultants 
and deflections of the first-order shear deformation theory to those of 
the classical plate theory for simply supported polygonal plates. 
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7.2 Relationships Between C P T and FSDT 

The governing equations of static equilibrium of plates according to 
the Kirchhoff [Eq. (6.2.25)] and Mindlin [Eqs. (6.3.18)-(6.3.20)] plate 
theories can be expressed in terms of the deflection WQ and the moment 
sum (or Marcus moment) M as (see Problem 7.9) 

V^A('^ = - 5 , V 2 „ f = _ : ^ (7.2.1a,b) 

V ^ > . « = - , . V ^ ( . « - ^ ) = . ^ (r.2.2a,b) 

where the superscripts K and M refer to quantities of the Kirchhoff and 
Mindhn plate theories, respectively, D is the flexural rigidity, and the 
moment sum is related to the generalized displacements by the relations 

M-' = % ^ _ o ( ^ + « ^ U -DV^^S (7.2.3a) 

j^M ^ ^^x + M,̂  =j^(d^ + 9^\ (7.2.3b) 
1 + iy \ dx dy J 

Prom Eqs. (7.2.1a) and (7.2.2a), in view of the load equivalence, it 
follows that 

M^ = M^ + DV^^ (7.2.4) 

where $ is a function such that it satisfies the biharmonic equation 

V^$ = 0 (7.2.5) 

Using this result in Eqs. (7.2.1b) and (7.2.2b), one may arrive at the 
relationship 

^o' ' = < + ; ^ + ^ - ^ (7.2.6a) 

where ^ is a harmonic function that satisfies the Laplace equation 

V^* = 0 (7.2.7) 
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Note that the relationship (7.2.6b) is vahd for all plates with arbitrary 
boundary conditions and transverse load. One must determine $ and 
* from Eqs. (7.2.5) and (7.2.7), respectively, subject to the boundary 
conditions of the plate. It is worth noting that Barrett and Ellis (1988) 
also obtained a form similar to Eq. (7.2.6a,b) but they have assumed $ 
to be a constant. 

In cases where WQ^ = WQ^ on the boundaries and A^^ is either zero 
or equal to a constant M*^ (which can be zero) over the boundaries, 
* - $ simply takes on the value of -M*^/{KsGh). However, if M^ 
varies over the boundaries, the functions ^ and $ must be determined 
separately. Restricting the analysis to the former case allows Eq. 
(7.2.6a) to be written as 

^M^^K^M K M *K 

K,Gh 
(7.2.8) 

Using Eq. (7.2.8), it can be readily shown that the relationships 
between deflection gradients, bending moments, twisting moment and 
shear forces of the KirchhofF and Mindlin plate theories are given by 

dx 
dw^ , Q. 
dx + 

dy dy + 

+ 

= M^^ + K 

KsGh 

_Ql_ 
KsGh 

^ ( 1 - ^) 
2KsGh 
D 

(7.2.9a) 

(7.2.9b) 

d /^M ^t^\ d 

KsGh ^(af-<?f)+.£(or-af) 
dy 

dy 

= M-^ + 
K D{l^u) d 

rM fK 
IVlyy IVlyy "T 

KsGh dx 

2KsGh [dy 
^M 

(7.2.10a) 

D 
""> ' KsGh {dy 

= M" + 

rM M^y=M- + 

K , D{\ -u)d 
KsGh dy 

D{i -1^) r_a 
2KsGh [dy 

fK 

(Q^-of) 

)? 

(7.2.10b) 

(7.2.10c) 
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Note that there are a few variations in presenting the above relationships 
of the bending moments because of the shear force relationship given by 

dx ^ dy - dx ^ dy - '^ ^^•^•^^' 

Also, it is interesting to note that 

Q^ = Q? + ^ ^ ^ ' (Qf - Q?) (7.2.12b) 

The foregoing relationships are exact if w^^ = w^ at the boundaries and 
the Marcus moments at the boundaries are equal to the same constant 
in the Kirchhoff and MindUn plate theories. 

Consider the case of simply supported, polygonal plates with 
straight edges. In the Kirchhoff plate theory, it is well known that 
in addition to the deflection being zero along the simply supported 
edges, the Marcus moment is also zero (see Timoshenko and Woinowsky-
Krieger 1970). That is, 

w^ = M^ = 0 along the straight simply supported edges (7.2.13) 

In the MindUn plate theory, the simply supported boundary condition 
considered is of the "hard" type such that w^f = 0, M^ = 0 and <̂5 = 0 
where n is the direction normal to the simply supported edge and s 
the direction tangential to the edge. Owing to the latter two conditions, 
d(f)3/ds = 0 and the Marcus moment is thus equal to zero. The boundary 
conditions of the FSDT for the simply supported plate are therefore 

w^ = M^ = 0 along the straight simply supported edges (7.2.14) 

Since the Marcus moments at the boundaries of plates with any 
polygonal shape and simply supported edges are equal to zero, Eqs. 
(7.2.8) to (7.2.12) apply to such plates. As the Marcus moments are 
zero at the boundaries, M*^ = 0 and the deflection relationship is 
simply given by 
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Equation (7.2.15) furnishes an important relationship between the 
deflections of a simply supported polygonal Mindlin plate and the 
corresponding simply supported polygonal Kirchhoff plate. This means 
that the deflection of simply supported Mindlin plate can be readily 
calculated from Eq. (7.2.15) upon supplying the deflection of the 
Kirchhoff plate and the Marcus moment, thus bypassing the necessity 
for a shear-deformable plate bending analysis. 

Using the same reasoning, one may readily deduce that Eq. (7.2. "1 
holds for simply supported plates under a constant distributed moment 
M*^ along their edges. 

Remarks: 

• For "soft" simply supported condition, the Marcus moment is 
nonzero and thus the foregoing derived relationship does not apply. 
There are important differences between "soft" and "hard" simply 
supported conditions which are discussed in Arnold and Falk (1990) 
and Haggblad and Bathe (1990). 

• Donnell (1976) has derived an apparently similar result to that of 
Eq. (7.2.15) [seeEq. (5.84e) in Donnell (1976)]. However, DonnelPs 
result is misleading. A reader would be led to believe that Donnell's 
result is independent of boundary conditions and plate shape. It 
can be readily shown that this is not the case. Donnell's deflection 
component w^ due to the transverse shear deformation is given by 

where a is a shear correction factor. On a simply supported 
boundary, V'^w^ would not be equal to zero in general, thus 
violating the null displacement requirement for WQ + WQ^ on the 
boundary. As mentioned above, V'^WQ^ is zero for the special 
case of simply supported polygonal-shaped plates. The reason 
for the incompleteness of DonnelPs derivation is that he has 
developed the relevant relations on an augmentation basis without a 
comprehensive treatment of the governing conditions. Consequently, 
a harmonic function has been left out from the right hand side of 
Eq. (7.2.16). 

• Equation (7.2.15) has been derived by disregarding the stress 
singularity at the corners of simply supported edges. The stress 
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singularity is significant in the case of obtuse corners and hence the 
relationship will not yield good results for simply supported plates 
with large obtuse corners. 

• Interestingly, a conjugate plate analogy can be observed from 
Eqs. (7.2.1a), (7.2.1b) and (7.2.13). The equilibrium problem 
expressed by these equations is analogous to the compatibility 
problem expressed by Eqs. (7.2.1b) and (7.2.13). The kinematics 
of the plate can be determined by solving the equilibrium equation 
of a conjugate plate loaded by the Marcus curvature M^/D and 
interpreting the conjugate Marcus moment as the actual deflection 
w^, In the case of the Mindlin plate theory, the additional shear-
deflection component can also be determined as in the case of 
the conjugate beam/frame analogy. As with a simply supported 
beam, the conjugate plate for shear deflection is the original plate 
itself with the original load/reactions factored by l/{KsGh). The 
conjugate Marcus moment would then become the shear-deflection 
component. Note that because the load/reactions are factored, the 
shear deflection component is given by WQ = M/{KsGh). 

7.3 Examples 
7.3-1 S imply S u p p o r t e d , Uni formly Loaded , Equi lateral 

Triangular P l a t e 

Consider a simply supported, equilateral triangular plate of side 
length 2L/\ /3 as shown in Figure 7.3.1. The plate is subjected to a 
uniformly distributed load go- The deflection of this Kirchhoff plate is 
given by [see Woinowsky-Krieger (1933) and Reddy (1999a)] 

K 90 L' 

6AD 
'x' - 3y'x - {x' + f) + 1 ] ( 1 - x^ - f) (7.3.1) 

where x = xfL and y = j / /L. In view of Eq. (7.2.3a), the Marcus 
moment is given by 

4K _ nT72..,/C _ 90i^^ T o o / o o\ 4 
X ^ = ^DV^w^ = x^ - 3xf - {x^ - y )̂ + ^ (7.3.2) 
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i"kr 
^ ^ ^ ^ ^ t v . 
1 ^ » * ? ' ' " ^ 

V3" ffi f l ^ ^ ^ ^ 

LcW 
y 

^F5 

Figure 7.3.1. Simply supported equilatereil triangular plate. 

Using Eq. (7.2.15), the deflection WQ' of the uniformly distributed 
loaded equilateral triangular plate according to the FSDT is given by 

M _ 90 L 4 
WQ = 

4D 
x'-Sy'-(x'+f) + ± l-x'-f 

16 + 
D 

KsGL^ 
(7.3.3) 

7.3.2 Simply Supported, Uniformly Loaded, Rectangulcir 
Plate 

Consider a simply supported, rectangular plate of side lengths axb 
as shown in Figure 7.3.2. The plate is subjected to a distributed 
load q{x,y). The deflection of this Kirchhoff plate is given by (see 
Timoshenko and Woinowsky-Krieger 1970 and Reddy 1999a) 

n = l 771=1 ^'D (^ + f ) J 
. mirx . UTry 

sin sm—r- (7.3.4) 

where 

4: r^ f^ . , . mirx . nny , , /̂ r o r\ 
qmn = -T / / Qi^^y) sm sm—— dxdy (7.3.5) 

ab Jo Jo a b 
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Wo=Myy=0 

y^ 

± 
I h'!.:4lif' ^ u 
•. j>v^^-4 ̂  

wo = A f « = 0 

H'0 = A/yy=0 

Figure 7.3.2. Simply supported rectangular plate. 

In view of Eq. (7.2.3a), the Marcus moment is given by 

Qmn 

n = l 771=1 
^2 fm^ _[_ ri^\ 

. rmrx . UTry 
sm sm—r-

(7.3.6) 
Using Eq. (7.2.15), the deflection WQ^ of the simply supported 
rectangular plate under distributed load is given by the Navier solution 
(see Reddy 1999a) 

Wi 'ô  = E E 
n = l 771=1 

Q. . rriTrx . nny 
sm sm —;— 

where 

Qmn — Qi 
QKsGh 

(7.3.7) 

(7.3.8) 

7.4 Relationships Between CPT and TSDT 
7.4.1 Introduction 

In this section, we develop the differential deflection relationship 
between the CPT and third-order shear deformation theory (TSDT) of 



B E N D I N G RELATIONSHIPS FOR SIMPLY SUPPORTED PLATES 1 1 9 

Reddy (1984a) for polygonal plates. Based on this general differential 
relationship, the relation between the deflections of simply supported 
polygonal plates is derived. Since the FSDT can be deduced as a special 
case of the TSDT, the relationship derived herein includes that of Section 
7.2. As the TSDT is algebraically complicated, analytical solutions are 
more difficult to obtain than for the CPT. The relationship between the 
deflections of the CPT and the TSDT for simply supported polygonal 
plates enables one to obtain the deflection, and hence the moments and 
stresses in the TSDT in terms of the deflection of the CPT. 

7,4.2 Governing Equations 

The equations governing the static bending of an isotropic elastic 
plate under a transverse load q{x^ y) are given by 

2§..f.-g. = o ,7.4.) 

^ - f ^ - « . = 0 (7.4.2, 

where 
M^rj = M^rj ^ aP^rj. Q^ = Q^ - pR^ (7.4.4) 

4 4 

(MxxjMyyjMxy) are the moments, {QxiQy) the transverse shear 
forces, and {Pxx^Pyy^Pxy) and (Rx^Ry) denote the higher-order stress 
resultants as defined below: 

i^L.!^::}"^ '""* 

-•{^}=/::{s}^^-<-^' 'yy 
7xy 

and h is the thickness of the plate. We note again that we recover the 
governing equations of the first-order shear deformation theory (FSDT) 
from equations (7.4.1)-(7.4.3) by setting a = 0. 
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The primary (i.e., geometric) and secondary (i.e., force) variables of 
the theory are 

Primary Variables 1^0, -o—) 0n , (Ps 

Secondary Variables : Vn, Pnn, Mnn, Mn 

(7.4.8) 

(7.4.9) 

where 

Vn = a 
dP.. 

+ 
dP, 

xy jnx + r dPa:y . ^P^ 

dx dy 

+ [Qxrix + QyTly) + a 

xy 

dx 

ds 

+ 
yy 

dy 
Ut 

(7.4.10) 

and the relations between the components in the (x,y) and (n, 5) 
coordinate systems are given by 

(t>x = ^a:0n — ^ y ^ s j <Py = ^ x 0 s + ^ y ^ n 

dx = n. 
dwo 

'̂  dn ""̂  ds 
dwo dwQ dwo dwo 

dy = n. "^ dn 
+ nj 

ds 

(7.4.11a) 

(7.4.11b) 

In the above equations, (n, s) are the local coordinates on the boundary 
with n being the in-plane normal and 5 being the in-plane tangential 
coordinate, and (nx,ny) are the direction cosines of the unit normal n. 
The normal and tangential components of M's, Q's, P's, and R's are 
related to the corresponding quantities in the plate coordinates {x, y) by 
the tensor transformations 

Mnn\ 
Mss > = 
Mns) 

^nn 1 
Pss 1 = 

I PflS ) 

r ni 
ni 

- ^xTly 

\ nl 
n2 

L Tix^y 

nl 
^2 

^xTly 

nl 
ni 

TlxTly 

ZdTix'i/ij 1 

^ '*'X '^V 1 

nl-nl\ 
Z/Ttxlvy 

ZTlx'^y 

nl-nl\ 

M, yy 
M, 

xy 

yy 

xy 

(7.4.12a) 

(7.4.126) 

The plate constitutive equations (i.e., relations between the 
resultants and the displacement gradients) are given by 

Mxx =D (--)(^-t)- dx^ dy^ 
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Myy=D ( l - « o ) ( 
d<py , d(j}x 

dy dx V ^ y ' ax2 j\ 

Mxy = 
{l-u)D 'dcpx d(t)y d'^wo 

^xx —-^ 

^yy "~-^ - 7 1 -rr^ + î -9y2 5x2 

-fxy —' 
( i - i / ) i ? . dcpx , d(l)y 

27 
5 ^ 
5x5y 

Q. =(1 - /x)G/i ( 0 , + ^ ) . <5y = (1 - /^)G/i (^y + ^ ) 

i?x =AG/i (.^x + ^ ) , i?j, = AG/i (^j, + ^ ) (7.4.13) 

where 

3 ,2 1 o 4/i2 
7 28 ' 30 

/ i = 

D is the flexural rigidity, G the shear modulus 

E/i^ „ E 
D = G = 

4 ~ 3 
(7.4.14) 

(7.4.15) 
12(1-1/2)' -- 2(1 + 1/) 

1/ Poisson's ratio, and E the Young's modulus of the plate. 

EUminating Qx and Qy from equation (7.4.3) by using equations 
(7.4.1) and (7.4.2), one obtains 

5x2 + 2 
d'^Mxy 52M i x y 

+ 5x5y dy F = -̂  (7.4.16) 

Next, we introduce the moment sum M and the higher-order moment 
sum V as 

J^^MxX±Myy^^ 

(1 + ^) (--)(t-t)-^^-
P = 

i l l + Jyy _ ^ 

(! + >') 
ft|^,|.).,V^.„ 

(7.4.17) 

(7.4.18) 
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where V^ is the Laplace operator, V^ = d'^/dx^ + d'^ jdy^. In view of the 
definition of the moment sum and the expressions for M^x, ^yy^ stnd 
Mxy in equation (7.4.13), equation (7.4.16) takes the form 

V^At^ = - q (7.4.19) 

where the superscript 'R' indicates that the variable belongs to the 
Reddy third-order shear deformation theory (TSDT). 

Using expressions for the moment and shear force resultants from 
equation (7.4.13), equation (7.4.3) can be expressed as 

= - ( 1 - ^ - 3aA)GW2u;o + a^iDV'^wo - q (7.4.20) 

Next, we use equation (7.4.17) to write 

^ + ^ = oo ^ 2 ^ ^ —L^M^ (7.4.21) 
OX ay (1 - ao) ^ ( 1 - ^o) 

and substitute the result into equation (7.4.20) and obtain 

( l - / x - / ? A ) ( - ^ ) 
1 - ao J 

+ a 

V 1 ~ ao J D 

V l - a o / J I V l - a o . 
= - ( 1 - /i - 0\)GhV'^WQ + a-fDV'^wo - q (7.4.22) 

or 

M^ = - DV'^WQ + ^ [a (CiDV^WQ - CaV^AI^) - Cz^ (7.4.23a) 

= - DV'^WQ + ^ (aCiDV'^WQ + CA'^'^M^) (7.4.23b) 

where 

^ ^ - 1 -M- /3A = 2 8 0 ' ^ ^ = l - M - / ? A - l 4 " ^^-^-^^"^ 

3̂ = Y 4 ^ - i C. = C3-aC. = lI (7.4.23d) 



B E N D I N G RELATIONSHIPS FOR SIMPLY S U P P O R T E D PLATES 1 2 3 

and equation (7.4.19) was used in arriving at equation (7.4.23b). The 
substitution of equation (7.4.23b) into equation (7.4.19) furnishes the 
following governing differential equation {aCi = 1/70): 

i^V^ < - ^ [aCiDV^w^ + C^M"") (7.4.24) 

7.4 .3 . T h e Kirchhoff P l a t e Theory ( C P T ) 

The equation governing static bending of isotropic plates according 
to the CPT is 

a2M£ . 5 2 M £ a^M^ 
+ 2- ^xy 

+ 
^yy 

-q (7.4.25) 
dx'^ dxdy dy^ 

where the superscript 'K' indicates that the variable belongs to the 
KirchhoflF plate theory. The primary (i.e., geometric) and secondary 
(i.e., force) variables of the theory are 

Primary Variables : w^ ̂  
dw^ 

Secondary Variables : V^ ,̂ M^ 
dn 

nn 

(7.4.26) 

(7.4.27) 

where 

( m l dMg\ (dM^y dMy^A 

[[ dx + dy j^'^'^V ^̂  ~9y~) n,, + 
dM^, 

ds 
(7.4.28) 

The moment-deflection relationships for the Kirchhoff plate theory 
are given by 

M^^=-D 
'd^wff 

dx^ 
0 ^J^^f 

dy^ 

'""'yy "^y Qy2 + ^ Q^2 j 

M^y =(1 - u)D 
d^w^ 

^^ ''* ' ' dxdy 

Using the definition of the moment sum 

. .ft- M^x + M^ 9 ft-

(1 +1/) ° 

(7.4.29) 

(7.4.30) 
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we can rewrite equation (7.4.25) in the form [see Eqs. (7.2.1a,b)] 

V^M^ = -q (7.4.31) 

Also, the substitution of equations (7.4.29) in (7.4.25) yields 

DV'^w^ = q (7.4.32) 

7.4.4 Relationships Between the Theories 

The simply supported boundary conditions for the two theories are 
given by 

w^ = 0, M^, = 0, Pnn = 0, 0, = O (7.4.33) 

and 
w^ = 0, Mf, = 0 (7.4.34) 

The condition w^ = 0 implies that d'^w^/ds^ = 0 and (ps = ^ implies 
that d(l)s/ds = 0. Then together with the conditions M ^ = 0 and 
Pnn = 0, we have 

^ = 0 . ^ = 0 , M.1=0, i'„ = 0 (7.4.35) 

Hence we have 
w^ = 0, M^ = 0, V2i/;^ = 0 (7.4.36) 

on a simply supported edge. For simply supported Kirchhoff plates, the 
boundary conditions reduce to 

w^ = 0, M^ = 0, V2«;f = 0 (7.4.37) 

on the boundary. 

Prom equations (7.4.24) and (7.4.32) it follows that 

w^ = < - ^ {c^CiDV^w^ + C^M"") (7.4.38) 

Comparing equations (7.4.19) and (7.4.31), one may conclude that 

T7^M^ = V^M^ (7.4.39) 
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which does not necessarily imply, in general, that M^ = M^. However, 
for simply supported boundary conditions, we have shown the equality. 
Thus equation (7.4.38) can be written as 

yj^ = w^-2^ (aCiDV'^w^ + C^M^) (7.4.40a) 

V'w§ - Xlw§ = -Xl (w^ + ̂ M^) (7.4.40b) 
or 

where 
Gh _ 70Gh 

aCiD " D 
Ag = _ ^ = ^ (7.4.40c) 

For a given CPT solution, the right hand side of equation (7.4.40b) is 
known. Thus from equation (7.4.40b), one needs to solve only a second-
order partial differential equation for the deflection of the corresponding 
Reddy plate theory. This means that one may bypass solving a sixth-
order differential equation in terms of WQ-. The second-order differential 
equation (7.4.40b), together with the boundary condition along the 
simply supported edges, may be solved using the finite difference method 
or the finite element method. In Section 7.4.6, we illustrate this with a 
simply supported rectangular plate. 

Equation (7.4.40a) can be speciaUzed to the Mindhn plate theory 
by setting a = 0 and replacing Gh with KsGh, where Ks is the shear 
correction factor. We have (ao = 0, // = 0, C4 = C3 = 1) 

'"^ = <--I^^'' (7.4.41) 

or 

< - ' " ^ + -I^-^'' (7.4.42) 

as shown in Section 7.2. 

7.4.5 An Accurate Simplified Relationship 

If one were to avoid solving the second order equation (7.4.40b) for 
U)^, the term involving V'^w^- may be dropped. This approximation 
may be justified as discussed below. 
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Eliminating {d(t)x/dx+d(j)yldy) from equations (7.4.17) and (7.4.18), 
we obtain 

" 7 - a o ( / 3 o + 7 ) V l - a o / C i V l - a o ) 
(7.4.43) 

Substituting equation (7.4.43) into (7.4.40b) and noting that M^ = 
M^, we obtain 

.S=<^^,[{C.^^)M'<-OC.V] (7.4.44a) 

Examining equations (7.4.17) and (7.4.18), we note that 7̂  is a 
higher-order function compared to M. Prom the first expression of 
equations (7.4.17) and (7.4.18), we see that 

V = - ^ M ^ = —M^ = 0 . 1 4 2 8 6 / I 2 M ^ (7.4.45) 
1 - ao 7 

Prom the second expression of the same two equations, we have 

V = ^M^ = ^M^ = 0 .17857/ I2A^^ (7.4.46) 
ao 28 

On the other hand, if we assume {d4)x/dx + d(t)y/dy) = -V'^WQ, then we 
have 

V = {(3o + 7) M^ = ^ - ^ ^ = O.lbh^M^ (7.4.47) 

Thus, we obtain different expressions from equation (7.4.44b) for 
different choices of V in terms of M^ = M^. For the choice of V given 
by equation (7.4.45), we have V^w§ = 0, and the deflection relationship 
in equation (7.4.40a) becomes 

Note that equation (7.4.48) is similar to equation (7.4.42) with the shear 
correction factor Ks = I/C4 = 14/17. If we choose the relationship 
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in equation (7.4.47), we obtain again equation (7.4.48) with the shear 
correction factor Ks = 5/6. 

7.4-6 A n E x a m p l e 

Here we illustrate the use of the exact relationship in equation 
(7.4.40b) and the simphfied relationship (7.4.48) in obtaining the 
deflection of a simply supported rectangular plate under sinusoidally 
distributed transverse load 

Q{^^ y) = 90 sin — sin -— (7.4.49) 
a 0 

The CPT plate solution is given by 

w„-(x,v) = ^ s i „ ^ s i „ ^ (T.4.50a, 

where 
7r2 7r2 

Oo = ^ + ^ (7.4.50b) 

and a and h are the dimensions of the plate along the x and y directions. 
The moment sum M^ is given by 

M^ = -DV^w^ = D^ow^ (7.4.51) 

The solution of the simplified Reddy plate theory is given by 
equation (7.4.48) 

where the shear correction factor is Ks = 14/17. On the other hand, the 
exact Reddy plate solution is obtained by solving equation (7.4.40b) 

W - Ag.f = - . § ( : . 2 ^ ) » . „ ^ 3in ̂  ,7.4.53) 

The solution is of the form 

w^ = A sin — sin ^ (7.4.54) 
a b 
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where the ampHtude A is obtained by substituting equation (54) into 
(53). We obtain 

AUo XoA- A o ^ l + ^^(.^) jj^ DQ^l 

or 

^i(i+^U! 

Thus the exact Reddy plate solution for a simply supported rectangular 
plate under sinusoidally distributed transverse load is 

17£)fio\ 90 .„ 'TTx ._ Try 
'"«V.)= TTW ^-T^^^ ' -V-T (̂ -̂ ' 

Comparing the simplified solution (7.4.52) and exact solution (7.4.56) 
of the Reddy plate theory, we note the following relationship 

iv^{x, y)={\ + ̂ ) w^{x, y) (7.4.57) 

To see the error in the simplified solution, consider a square plate (a = 6). 
We have 

2 70G/1 420(1 - u) ^0 TT̂  fh\^ 
^° ~ D ~ = h^ ' Ag = 210(1 - ^) [a) ^^-^-^^^ 

For u = 0.3 and a/h = 10, we have w§ = 1.0007if;^. Thus the simplified 
solution is very close to the exact solution. Even for a/h = 5, the 
simpHfied solution is in error by only 0.6% ! 

7.5 Closure 

In this chapter a differential relationship between the Kirchhoff 
and Mindlin plate theories and Kirchhoff and Reddy plate theories for 
isotropic elastic plates is developed. In the case of the third-order plate 
theory, the relationship is a second-order differential equation for the 
deflection and requires the moment sum to be known. To avoid solving 
the second order equation, a simplified relationship that is very accurate 
is presented. The accuracy of the simplified solution is illustrated 
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through the Navier solution of a simply supported rectangular plate 
under sinusoidally distributed transverse load, although the procedure 
is valid for a general transverse load. The simplified relationship for 
deflection is valid for any plate for which one has the knowledge of the 
Marcus moment of the Reddy plate theory in terms of the same for the 
Kirchhoff plate theory. 

Problems 

7.1 The solution of Eqs.(7.2.1a,b) [or Eq.(6.2.24)] for rectangular plates with 
simply supported boundary conditions can be obtained using Navier's 
method. In Navier's method, the displaicement WQ is expanded in 
trigonometric series such that the boundary conditions of the problem 
are satisfied. Substitution of the expansion for the deflection into the 
governing equation (6.2.24) will dictate the choice of the expansion used 
for the load. The simply supported boundgiry conditions are met by the 
expansion (see Reddy 1999a) 

^0(2^,2/) = 2 ^ 2 ^ Wmn sm s m - 7 - (^) 
1 - CL U 

m=l 

where Wmn are coefficients to be determined such that Eq. (6.2.24) is 
satisfied everywhere in the domain of the plate and axb denote the plate 
dimensions along the x and y axes. The coordinates (x, y, z) are taken at 
the upper left corner of the plate with the z axis downward positive (see 
Figure P7.1). Assuming that the load can also be expanded in double 
sine series 

00 00 

n=l m=l 

determine the coefficients Wmn in terms of qmn ^^^ flexural rigidity D, 

7.2 Use the constitutive equations to compute the stresses {cTxxi^^yyi^^xy) 
in an isotropic plate based on the CPT for the pure bending. Then 
use the equilibrium equations of the three-dimensional elasticity theory 
to determine the transverse stresses {crxz^^^yz^^^zz) as a function of the 
thickness coordinate. 
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^ WQSZ Myy SS 0 

M̂  SI M„ = 0 

Figure P7.1 

7.3 Repeat Problem 7.1 for Eqs. (6.3.14)-(6.3.16). Assume the following 
expansion for (j)x and (j)y (see Figure P7.3 for the boundary conditions): 

oo oo 

rmrx ._̂  mry 
a 

<t>x{x,y) = X ! X ! Xmn COS sin • 
m=\ 

9v{x,y) = 2 ^ 2 ^ ymn sin c°s~jr 

(0 

n = l 771=1 

A/xr-0 _L 

V wo-4^-0 

Figure P7.3 

7.4 Repeat Problem 7.2 for the Mindlin plate theory. 
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7.5 Determine the deflection of a simply supported plate when the plate is 
subjected to a load of the type 

TTX 

q{x,y) = 90 sin — 

where qo is a constant. 

7.6 Determine the deflection of a simply supported plate when the plate is 
subjected to a line load of the type 

TTX 

9(^) y) = 91 sin — 6{y - yo) 

where qi is a constant and 6{y) is the Dirac delta function. 

7.7 Verify that w^ of Eq. (7.3.1) and w^ of Eq. (7.3.3) the solutions of the 
respective plates. 

7.8 Consider a clamped, isotropic elliptic plate with major and minor axes 
2a and 26, respectively. Assume a solution of the form 

and determine the constant c such the WQ satisfies the governing 
equation. 

7.9 Use Eqs. (6.3.18)-(6.3.20) to show that 

Then establish the equation 

Hint: DiflPerentiate Eq. (6.3.19) with respect to x and Eq. (6.3.20) with 
respect to y and add the resulting equations. 

7.10 Use the results of Problem 6.6 and Problem 7.9 to show that 
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where (? = UKs/h?. 

7.11 Show that the governing equations of static equihbrium of plates 
according to the Levinson plate theory can be expressed in terms of the 
moment sum (or Marcus moment) M 

ML + Mk L __ "-"^xx M"- = yy 

as 

V^M^ = -q, 

l + iy 

dx ^^-iV<^ D 

(0 

(n) 

7.12 Establish the following relationships between the Levinson plate theory 
and Kirchhoff plate theory: 

K 
M^ = M^ + £>V2$, w^ = w^ + ^ - $ + * 

iGh 

<!>'. = -

'Py = 

+ 

+ 

3 dM^ de h?dn 
+ + TT:-

dwl 
dx 

dwl_ 
' dy ' lOGh dx ' dy 10 5x 

lOG/i dx dx 10 dy 
3 dM^ de h?dn 

+ 

M^=Mg-\-Dil-u) 
d^A /i2 f Q2 Q2 

+ ^ _ J 1 _ U 2 
dxdy 25 \ 5t/2 dx"^ 

where 

e = i £ v 2 $ + $ - * , A = T^v2$ + $ - * 
2Gh 

and $ , ^, and fJ are functions such that 

\Gh 

10. 
V^$ = 0, V^* = 0, -V^fi + -^Q = 0 

(«) 

(m) 

{iv) 

(v) 

{vi) 

{vii) 

(viii) 

{ix) 

(x) 



Chapter 8 

Bending Relationships 
for Levy Solutions 

In this chapter, the exact relationships are obtained between the 
Mindlin and Kirchhoff solutions for the bending of rectangular plates 
with two opposite edges simply supported and the other two edges 
under general boundary conditions. These relationships enable the 
deflections, rotations, and stress-resultants of the Mindlin plate theory 
to be determined readily from the corresponding solutions of the 
Kirchhoff plate theory for any combination of boundary conditions on 
the remaining two edges. 

8.1 Introduction 

In Chapter 7, an exact deflection relationship between the Kirchhoff 
(CPT) and Mindlin (FSDT) polygonal plates was presented. All the 
straight edges of the plates must, however, be simply supported but the 
transverse loading can be of arbitrary distribution. The derivation of 
the relationship was based on an analogy approach and the assumption 
that the moment sum vanishes along the edges including the corner 
points. When using the relationship, Mindlin solutions obtained for 
plates with obtuse and re-entrant corners are somewhat less accurate 
due to the moment singularities at such corner points. Nevertheless, 
the relationship allows easy and exact determination of the more 
compUcated Mindlin plate solutions from the simpler Kirchhoff plate 
solutions for scalene triangular plates and rectangular plates or near 
rectangular shaped plates. Such Kirchhoff plate solutions abound in the 
open Uterature for use in the relationship. 

In the present chapter, we treat the bending problem of rectangular 
plates with two opposite edges simply supported while the other two 
edges are supported in an arbitrary manner. In using Levy's method 
of analysis, the load distribution is restricted to be constant with 
respect to the coordinate parallel to the direction of the two simply 
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supported edges. In this chapter, the exact relationships between the 
Levy solutions of Kirchhoff plate theory (or CPT) and the Mindlin 
plate theory (or FSDT) are derived. These relationships, hitherto 
not available, enable engineers to determine the Levy solutions of the 
Mindhn plate theory from the corresponding solutions of the Kirchhoff 
plate theory. The solutions of the Kirchhoff plate theory are available 
in standard textbooks on plates (see, for example, Timoshenko and 
Woinowsky-Krieger 1970, Mansfield 1989, and Reddy 19846, 1997a, and 
1999a). Using these relationships, it was discovered that the Levy 
solutions of the FSDT developed by Cooke and Levinson (1983) are 
erroneous. Furthermore, the exact FSDT solutions furnished by the 
relationships (and the corresponding exact CPT solutions) should be 
useful to researchers for checking the validity, convergence and accuracy 
of their numerical methods for the bending analysis of plates based on 
FSDT (see Khdeir and his colleagues, 1987). Some examples of these 
numerical methods include the segmentation method proposed by Kant 
and Hinton (1983), and the finite element method by Reddy and Chao 
(1981), Huang and Hinton (1984), and Hinton and Huang (1986). 

8.2 Governing Equations 
8.2.1 Introduction 

Consider an isotropic plate with uniform thickness /i, length a, 
width 6, Young's modulus E, Poisson's ratio z/, and shear modulus 
G = E/[2{l+u)]. Adopting the rectangular Cartesian coordinate system 
as shown in Figure 8.2.1 with its origin at the mid-left side of the plate, 
the plate is simply supported along the edges x = 0 and x = a while 
the other two edges y = 6/2 and y = - 6 / 2 may be clamped, simply 
supported, or free. The transverse loading on the plate is characterized 
by 

g{x, y) = S Qm{y) sin —— (8.2.1a) 
7 7 1 = 1 

where the coefficients qm are determined from 

qm{y) = - rQi^,y)^^^^^dx (8.2.1b) 
a Jo GL 
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T 

\ 
bll 

1 

simply supported 

Wo = A/xc = 0 

» ^ ^ 
^ii^^:-^\ 

Figure 8.2.1. A rectangular plate with two opposite edges simply 
supported (for the Levy solution). 

8.2.2 Stress Resu l tan t -D i sp lacement Re la t ions 

Based on the Kirchhoff plate theory, the transverse deflection IUQ of 
the Levy solution may be written as 

< ( a ; , j / ) = j ; H ^ ^ ( y ) s i n 
mTTX 

(8.2.2) 
m = l 

where the superscript 'K' denotes quantities in the Kirchhoff plate 
theory. In view of Eq. (8.2.2), the stress resultant-displacement relations 
are given by [see Eqs. (6.2.22a-c) and (6.2.8)] 

m = l 

oo 

771=] 

M%=-(1 - u)D Y: 

CX) 

Tn=l 
oo 

m-KX 
sm 

a ) 

a 

mTTX 

sm-
a 

m = l 

/m7r\ dW^ 
\ a J dy 

mirx 
cos 

a 

a dy'^ \ a J "" 
mTTX 

7 7 1 = 1 
\ a J dy dy^ sm 

cos 
a 

mnx 

a 

(8.2.3a) 

(8.2.3b) 

(8.2.3c) 

(8.2.3d) 

(8.2.3e) 
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where [Mxx^Myy^Mxy) are the bending moments per unit length, 
{Qx.Qy), the shear forces per unit length, D = Eh^/[12{1 - u'^)] the 
flexural rigidity, and h is the thickness of the plate. 

For the Mindlin plate theory, the transverse deflection WQ^ and 
rotations {(f)x, 0y)are assumed to be of the form 

w^{x,y)=J2w^{y) sin 
Tn=l 

oo 

(f>x{x,y) = "^ ^xm{y) cos 
771=1 

OO 

<i>y{x^y)= Yl *ym(?/)sin 
Tn=l 

rmxx 
a 

mTTX 

a 

mnx 
a 

(8.2.4) 

(8.2.5) 

(8.2.6) 

where the superscript ^M' denotes quantities in the Mindlin plate 
theory. In view of Eqs. (8.2.4)-(8.2.6), the stress resultant-displacement 
relations (6.3.13a-e) take the form (here Kg denotes the shear correction 
factor) 

771=1 

— AyfM 

r d^yrn _ frnn\ ^ 

M^xx sm 

dy 
mTTX 

a 

a ) 

TTITTX 
Sin-

< = ̂ E r\ L rfy \ a J sm 
mTTX 

= Mii^yy sm 
a 
oo 

(8.2.7a) 

(8.2.7b) 

m—l 

= MZy COS 

d^xm , fmn\ 
COS 

rmxx 

a 

a 

Qf = KsGh £ 
m=\ 

^xm + 

- nM Q'^ cos 
mTTX 

Qf = KsGh £ %m + 
m = l 

(v) 

dy 

W^lcos mTTX 

a 

m-KX 

sm 

- nM = QZv sin mnx 
imy 

(8.2.7c) 

(8.2.7d) 

(8.2.7e) 
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8.2.3 Equi l ibrium Equat ions 

For the classical (Kirchhoff) as well as the first-order (Mindlin) plate 
theories, the equilibrium equations have the same form, as given below: 

« ^ + « ^ _ ( 5 . = 0 (8.2.9) 
OX ay 

^ + ^ . Q ^ = 0 (8.2.10) 
ay ax 

However, in the Kirchhoff plate theory, Eqs. (8.2.9) and (8.2.10) define 
the shear forces Qx and Qy of Eq. (8.2.8) in terms of the bending 
moments, while in the Mindhn plate theory, Eqs. (8.2.9) and (8.2.10) 
provide additional moment equilibrium equations, and Q^ and Qy are 
dependent variables much like M^ and M^. 

8.3 Bending Relationships 
8.3.1 General Relat ionships 

On the basis of load equivalence using Eqs. (8.2.8) to (8.2.10), one 
can write the following relationships 

dOl^dOl^dOl^dQl 
dx dy dx dy 

Q2J^M d'^M^ d^M^ d'^M^ d'^M^ d'^M^ 

dx'^ dxdy dy'^ dy'^ dxdy dy'^ 

By substituting the stress resultants given in Eqs. (8.2.3a-e) and (8.2.7a-
e) into Eqs. (8.3.1) and (8.3.2), the two load-equivalence relationships 
may be expressed as 

KsGh (^^ + AW A = AMi^ (8.3.3) 

= A[^] (8.3.4) 
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where the components of the moment sums (or Marcus moments) M in 
the two theories are defined by 

1 + U 
d%m _ (rrm\ ^ 

I dy \ a J 

l + V 

d^W^ fmn\'^ 

dy' - -
\ a J 

] w!l 

(8.3.5) 

(8.3.6) 

and the operator A is defined as 

"̂=f-(vr<-' (8.3.7) 

By solving Eq. (8.3.4), the relationship between the moment sums of 
Kirchhoff and Mindlin plates is given by 

iK 
-~pf- = - 7 f +CimSmh ^ +C2mC0Sh ^ 

D D a a 

To solve for WQ^ in terms of w^, we use Eq. (8.3.3) to obtain 

(8.3.8) 

4M M^ = -DA W^ -M M K 

KsGh 
(8.3.9) 

The substitution of Eqs. (8.3.6) and (8.3.9) into Eq. (8.3.8) yields 
a differential equation, the solution of which leads to the following 
deflection relationship 

KAK / ay \ - rmry 
* cosh 

'2m7r 

+ ( C4m ~ C2m^ 1 sinh "^""^ 
2m7T a 

(8.3.10) 

where Cim, i = 1,2,3,4 are constants to be evaluated from the boundary 
conditions. 

It now remains to determine the Mindlin rotation relationships in 
terms of the Kirchhoff solution. The equilibrium equations (8.2.9) and 
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(8.2.10) and the stress resultant-displacement relations (8.2.3a-e) and 
(8.2.7a-e) are used to give 

m7r\ rM $xm+(—JW^^ = 
D 

KsGh dy^ 2 [ a J dy 2 
2 fmnY (8.3.11) 

and 

D 

K,Gh ~~d^' 2 U ; "̂̂  
(1 + u) ^m'K\ d^a 

2 \ a J dy 
(8.3.12) 

The transverse deflection may be ehminated from Eqs. (8.3.11) and 
(8.3.12) by first differentiating Eq. (8.3.11) with respect to y, and then 
substituting the expression for the derivative of the deflection into Eq. 
(8.3.12). By doing so, one obtains 

d^ EIILf!I^).^£gzJil 
dy \ a J ^"^ 2KsGh 

mn 
- — 

\ d?^ ym + 
/mTrV 

$ . 
a J dy'^ ' \ a J '^^ 

+%i-f!^y^l (8.3.13) 
dy^ \ a J dy \ 

By letting 
/m7r\2 2KsGh 

A i - ( — 1 + 
\ a J D{l-v) 

Eq. (8.3.13) may be written as 

d3$ xm __ > 2 

dy3 
d $ . miT fd?^ 

2 ^m^ym 
dy ^ \ ^y 

Solving Eq. (8.3.15), gives 

— 1 — = — ^ y m + C^m siuh Xmy + Cem cosh A^y ay a 

(8.3.14) 

(8.3.15) 

(8.3.16) 



1 4 0 SHEAR DEFORMABLE BEAMS A N D PLATES 

Before proceeding further, it is noted that the substitution of Eqs. 
(8.3.5) and (8.3.6) into Eq. (8.3.8) yields 

\ dy a "="") ~ [ dy^ a^ ^"^ V dy^ 

+ Cim sinh ^̂ ^̂ ^ + C2m cosh ^̂ ^̂ ^ (8.3.17) 
o a 

By differentiating Eq. (8.3.16) with respect to y and combining it with 
Eq. (8.3.17), it is found that 

xm 
2-^=="^ - - - — - 7 - 2 7 2 - ^ A / J 9 9 •CTTl I I o 

â  
+ Am {C^m cosh Amy + C^m sinh Amy) 

+ CimSmh ^+C2mC0Sh ^ 
a \ a a J 

(8.3.18) 

the solution of which is 

^xm = - — W ^ m + Am-lTb-TTT^ (Csm COSh Amy + C^m s i nh Amy) 

+ (C,m + C,y) sinh = + (Csm + C i . | ) cosh " " ^ 
2 J a V ^ ' " 2 7 a 

(8.3.19) 

Also, by substituting Eq. (8.3.19) into Eq. (8.3.16), the corresponding 
expresion for ^ym is 

^ym = T^ + ' ^ , (Csm Sinh A + Cem cosh Amy) 
ay a ZKsLrti 

+ fCzm + C 2 m | + < ^ l m 2 ^ ) COSh ^ 

+ (Cgn. + C i ^ l + <^2m2^) Sinh ̂  (8.3.20) 

By substituting Eqs. (8.3.10), (8.3.19), and (8.3.20) into Eq. (8.3.11), 
it is deduced that 
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In view of the foregoing deflection and rotation expressions, the 
relationships between solutions of Mindhn and KirchhofF plates may be 
summarized as follows: 

Deflection relationship 

^0^(^.2/) =^o^(^.y) + 
M K 

K.Gh + E 
m = l 

+ ( CATU - C2 
ay 

2m7r 
sinh 

rmry 

ay 
27n7r 

mTTX 

cosh rmxy 

sm 
a 

(8.3.23) 

• Rotation-slope relationships 

- ^ + Y^ Aim {C5m cosh A^y + CQm siuh Amy) 

+ ('A2m + C 2 m | ) s i n h ^ 

+ (Asm + C,m{) cosh = 1 COS ^ (8.3.24a) 
V 2y a \ a 

0y (̂ , y) = — o ^ + Yl ^1^ (^5^ ̂ ^̂ ^ ̂ ^y + ^^^ ^̂ ^̂  '̂ ^̂ ) 
^ m = l '• 771= i 

+ (B2m + C 2 m | ) c O S h ^ 

sin (8.3.24b) + rB3rr. + C i m | ) s i n h ^ 
a 
mTT 

X5G/1 a a 
Im 

^ 3 m = 

-82771 = 

; ^ ^ — C 2 m - — C a m , ^ 1 - = V 2i^,G/i 

KsGn a a zmn 
D rmr ̂  mir _ D _ m 7 r mTT , a 

KsGa a a zmrc 

• Moment relationships 

00 r 

M,^ = Mf, + I.D 5 : \C,msinh^^ + C 2 ^ c o s h ^ ^ 
7 7 1 = 1 ^ 

(8.3.25) 

sm 
m-KX 

a 
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CX) r 

-D{l-v)Y,\ ^im (<̂ 5m cosh Amy + C^m sinh Amy) 
7 7 1 = 1 *• 

+ 

M. •M 
J/V 

nvj 
= M«+DX; 

sin-
mTTX 

a 
(8.3.26a) 

mnx rmrv ^ , rriTryl . mTr 
Cim sinh - ^ + C2m cosh - ^ J sm — 

OO r 

D ( l -U)Y,\ ^im (<^5m cosh Amy + C&m s iuh Amy) 
T n = l ' -

(8.3.26b) 

A^fm (<^5m sinh Amy + CQ^ COsh Amy) 

m=i'-

:^)^K^^c^™)co^''=? 
'»^^\2 / nil \ mTT? 

+ 

+ 

+ 

m=l 

+ 2 

+ 2 

+ 

\ a / \ ^111,11 / " 

(v)^K-2^'^-)-^'? 
;,„ e o s h = + C . „ sinh = ? ] cos r̂  

rmry 
a 

rrtTcy 
a 
rmrx 

Ml 

Cim cosh — ^ + C2m smh — -
a a J 

(8.3.26c) 

A/f̂  ^ r r M« - A ^ ( ^ " " - ' f 

7-^ 

M^, 

D{1 - u) /Tmr\ 

" "̂  2KsGh \ a ) 

A^ + 
/m7r\ 

IvJJ 
£•(1 - I/) ^xy ^ _ £ _ 
- 2 K : G ^ ' ^ " ^ KsGh = -E^-?^^!"^ ~ ^''"^ 

M^m = ^ GhP^"^ ~ ^^"^ 
(8.3.27) 
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• Shear force relationships 

Q^ = Qx+ ^ ^ \ - ^ E l^rn {Csm COSh A^y + Csm sinh XmV) 

m=l 
mTTX 2 /m7r\ / ^ . , mny ^ , miry 

+- Cim sinh -f C2m cosh 
1 — V \ a J \ a a 

cos 
a 

(8.3.28) 

m = l 

• — ^ (Csm sinh Amy + Cem cosh A^y) 

1 — V \ a 
+:; T ( — I ( C'lm cosh — + C2m sinh — ^ I 

(8.3.29) 

. m-KX 
sin 

a 

The foregoing relationships contain a total of six unknown constants 
Cim^ ^ = 1)2, ...6 which are dependent on the six boundary conditions 
at the two edges y = —6/2 and y = +6/2? that is, three boundary 
conditions for each edge. Below, these constants are evaluated for 
rectangular plates with various combinations of edge conditions for these 
two edges. 

8.3.2 SSSS P l a t e s 

When all four edges x = 0, y = 6/2, x = a, and y = —6/2 are 
simply supported, the Levy solution reduces to the Navier solution with 
the following conditions at the edges y = -6 /2 and y = 6/2: 

^^y = Ky = 0' w^ = w^ = 0, 0^ = 0 (8.3.30) 

In view of Eqs. (8.3.8), (8.3.23), (8.3.24) and (8.3.31), it can be 
shown that 

Clm = C 2̂m = C^m — C^rn ~ Cbm = C'em = 0 (8.3.31) 

Thus, for simply supported plates, the relationships are given by 

^^'<^KM 

XX -^^-^xx^ yy yy -^ -^xy 

Ql' = Q^, Q^ = Q^ 

xt/ 

(8.3.32) 

(8.3.33) 

(8.3.34) 

(8.3.35) 
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It can be shown that the above deflection relationship (8.3.32) is also 
valid for even other than Levy-type loading conditions (see Wang and 
Alwis 1995). 

8.3.3 SCSC Plates 

For the clamped edges at y = -6 /2 and y = +6/2, the boundary 
conditions are (see Figure 8.3.1) 

w^^w^ = Q, cp, = 4>y = ^ = 0 (8.3.36) 

Clamped 

Simply 
supported 

Figure 8.3.1. The SCSC plate and the coordinate system. 

The substitution of the boundary conditions given in Eq. (8.3.36) into 
Eqs. (8.3.23) to (8.3.25) gives 

Cim = T::— I coth --— smh —r :̂— cosh 
Bim \ 2a aXn 

. Xmb TTITT 
cosh--7-

^ a6 rmrb . 
^3m = ^2m~ tanh —z ilZ, sech 

CiXm 
mnb 

sinh 

2 
Xmb 

CATR = C] Im 

Amir 2a 
ab . rmrb ^_ . 

coth SZ^csch 
Amn "~ 2a 
2 (mir 

1 — V \aX. 
sech 

Xmb 

2a 
mnb 
"2^ 

(8.3.37a) 

(8.3.37b) 

(8.3.37c) 

(8.3.37d) 

C2m cosh -::^ 1 ^^—Q.'t 
2a D 

(8.3.37e) 
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2 fm7r\ Xmb 
^Qm = -: ; —r— I csch-

1 — ly \aX 

Cim sinh — h 
rriTrb . KgGh 
2a ' D """} 

(8.3.37f) 

where 

^ _ Mi<,{b/2) + Miii-b/2) _ M^{bl2)-M^{-h/2) 

2i^,G/i 2KsGh 

5im = Ai^ sinh —— cosh — A2m cosh —— sinh — -
2a 2 2a 2 
Tn7r6 . , Xmb 
2a" 

+ Azm csch^^;^ sinh ' ^ 

B2m = Aim cosh --— sinh 
Za 2 
mnb Xmb 

~ Asm sech—— cosh -—-
za 2 

TUTrb . , Xmb , . , ..^,.v, , 
A2m sinh —— cosh 

mrcb , Xmb 
rosh — 

2a 

Aim — 
rrtTT D ^ D 1 / a V . 
T^IFT^^ -Asm = -77^=77 + o 5 ^3771 = 

(8.3.38a) 

(8.3.38b) 

(8.3.38c) 

ab 

aXm KcGh KsGh 2\m7rJ Armr 
(8.3.38d) 

8-3.4 S F S F P la te s 

Consider a rectangular plate where the edges at y = - 6 / 2 and 
y = 6/2 are free. The boundary conditions on these edges are 

M^ = M^ = 0 O^ = y ^ = 0 M^ = 0 yy yy ' ^y y ' ^ xy (8.3.39) 

where V^ = Qy + dM^y/dx is the effective Kirchhoff shear force. 

In view of Eqs. (8.3.27b), (8.3.27c), (8.3.29) and (8.3.39), the 
constants are found to be 

Am tanh >^mb ^^^tanh^]} 

Am coth -^ A^^m coth 

2a 
(8.3.40a) 

m•Kb^ 

2a 
(8.3.40b) 
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Csm = [$m - * m ^ 4 m ] ( — ) C S c h ^ 
\ rriTT J la 

+ C2m 
ah , m7r6 a \^ (\^v) 

coth — 7̂7 ^ 
4m7r 2a V̂ TZTr/ 2(\-v) 

= -*^Arn — : coth—-sech—— 
\rmT J 2 2a 

+ ^̂ 27] 
f a \'^ D ah , m7r6 
' ' + TT-TTT + ^ tanh 

I — V \m7rj KsGh Armr 2a 

faXm\ D 
\ mn J KsC 

\mh TTlTrh 
^ , coth—-—tanh--— 
Gh 2 2a 

C4m = K - ^^A^m] (—) sech 
\m7T / 

rmrh 
~2a" 

+ C, Im 
a6 

4m7r 2a V^TT/ 2(1 - u) 

= - ^ i A m ( I tanh -?-csch-•m^'rn 
KmnJ 2a 

'a\m 

(^\ + 
D 

+ 
ah 

1 — V KmnJ KsGh Armr 

D ^ , \mh ., rmrh 
tanh —-— coth 

coth 
rriTrh 
"20" 

mvr / KsGh 

C^m — "• 

Cern — 

( l - z / ) 
2 

csch 

sech 

2 

2a . 
' . , mnb ^ a KsGh] 
C2mSinh-::r- + * " 2a 

C i ^ c o s h ^ ^ + *+ 
a K,Gh 

rmr D 

(8.3.40c) 

(8.3.40d) 

(8.3.40e) 

(8.3.40f) 

where 

^ 7 7 1 

M^,Jh/2) + M^(-h/2) M^,Jb/2) - M^,J-b/2) 

2Dil-iy) ' "̂  2D{l-u) 
(8.3.41a) 

^ g^ , (6/2) + Q^, ( -6 /2) ^ g^,(&/2) - Q^ , ( -6 /2 ) 

2KsGh ' "̂  2iirsG'/i 
(8.3.41b) 

„ . . , rrnrb . , X^b , mnb . , mirb 
•Dim = -Aim sinh -^ A2m tanh —-— cosh -77-—h Asmsech-2a 2a 2a 

(8.3.41c) 
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„ . , mnb ^ , Xmb . , rmrb . rmrb 
t>2m = Aim cosh — A2m coth ——- Sinn — Azm cscn 2a 2a 2a 

(8.3.41d) 

_ 3 + 1/ /m7r\2 £) . _ . fm-K\ D 

2̂ ^ / rn7r \2 l _ m-nb 4 _ o 

Aa 2mn K + ya-) 
(8.3.41-) 

8-3-5 S C S S P l a t e s 

Next, consider a rectangular plate with edges x = 0, x = a, and 
y = —6/2 are simply supported, while the edge y = 6/2 is clamped. The 
boundary conditions are given by 

for the simply supported edge y = —6/2 and 

(8.3.42a) 

(8.3.42b) 

for the clamped edge 2/ = 6/2. In viewof Eqs. (8.3.23), (8.3.24), (8.3.25), 
(8.3.27a) and (8.3.42a,b), one obtains 

'Im 
Blm aXr, 

n + t a n h ^ + Q - c o t h ^ 
rriTT I L , Xmb 

^ 4 - , , rriTrb ^_ , m7r6\ 
fi;l;tanh—+ f ^ ^ c o t h — j ^ 

n r. 4 . 1 "̂ 7r6 , , rmrb , m7r6 
iJim = 2Aim smh -;;̂  h >l2m cosh sech-

(8.3.43a) 

2a 2a 

- A Im 
/ , 9 m7r6 , mirb , , o m7r6 , om7r6\ 
cosh"" —— csch— h smh*̂  —— sech^—— 

V 2a 2a 2a 2a / 
. . , mnb , , , 

- Asm smh —— coth Xmb 
2a 

Aim — 
ab 

Amir 
, -42m = 

D 
+ o ( — ) ' ^3m = KsGh 2\rmiJ 

C2m = Cim tanh 
mnb 
"20" 

(8.3.43b) 

2m7r D 

aXm, KsGh 

(8.3.43c) 
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Czm = right hand side of Eq. (8.3.37c) (8.3.43d) 

C4m = right hand side of Eq. (8.3.37d) (8.3.43e) 

C5m = right hand side of Eq. (8.3.37e) (8.3.43f) 

Cem = right hand side of Eq. (8.3.37f) (8.3.43g) 

where fi^ and Q:^ have the same meaning as given in Eq. (8.3.38a) 

8.3.6 S F S S P l a t e s 

Finally, consider a rectangular plate with edges x = 0, a = 0, and 
y = —6/2 simply supported and the edge y = 6/2 free. The boundary 
conditions are given by 

M^i = M^y, w^=w^=0, *x = 0 (8.3.44a) 

for the simply supported edge y = -6 /2 and 

K = Ky = ^ Qy=K = ^^ K = ^ (8.3.44b) 

for the free edge y = 6/2. 

In viewof Eqs. (8.3.23), (8.3.24), (8.3.27a), (8.3.27b), (8.3.32) and 
(8.3.44a,b), the constants are found to be 

Cim = 0, C2m = 0 (8.3.45a) 

C 3 . = - A j - ^ ) ' % ( ^ t a n h A . 6 s e c h ! ^ (8.3.45b) 
\m7ry 2KsGh 2a 

C.„ = - A „ ( ^ ) ' % < ^ t a „ h A „ 6 c s c h ^ ' (8.3.45c) 
\mnJ 2KsGh 2a 

C , ^ . _ 2 / M ^ ^ ^ 3 i , h ^ 3 e c h A . 6 (8.3.45d) 
1 - u \m7rj D 2 

C e ^ . _ 2 / M ^ ^ I ^ , , 3 h : ^ 3 e c h A ^ 6 (8.3.45e) 
1 - z/ \m7rj D 2 

8A Numerical Results 

The relationships developed herein can be used to furnish the 
deflection, rotations and stress-resultants of the Mindlin plate theory 
upon supplying the corresponding Kirchhoff plate solutions. This is 
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illustrated below for the Mindlin plate deflection using the example of 
a uniformly loaded SCSC plate. Numerical results for SFSF plates are 
also presented. 

8.4.1 S C S C P l a t e s 

Based on the Kirchhoff plate theory, the transverse deflection for 
an SCSC plate (see Figure 8.3.1) under a uniform load qo, is given by 
(Mansfield 1989) 

4 oo 

I 
where 

Tmry „ rmry . , m.'ny\ . rrnrx 
^6' = 7^4 2 ^ ± 7 1 1 + ^m cosh — + B ^ — — sinh — ) sin —^ 

(8.4.1) 
DiT* ̂  m^ \ a a a J 

q^ = ^[l- i-ir] (8.4.2a) 
1 , rmrb ^ xî  rmrb 

coshffi^ + ^ c s c h ^ 

Bm = r —^ r (8.4.2c) 
cosh ^ + 2Sib c s c h ^ 

The substitution of Eq. (8.4.1) into Eq. (8.3.6) yields the moment sum 
for the Kirchhoff plate, which is 

^_i \m7ry 
7 7 1 = 1 ^ ^ 

l - 2 B ^ c o s h ! ! ^ 
a 

sin (8.4.3) 

Under symmetric loading, the Mindlin deflection is symmetrical about 
the x—axis while the Mindhn rotation ^y must take on the form of an 
odd function. Correspondingly, the terms in Eq. (8.3.36) become 

In view of Eqs. (8.3.23), (8.3.35), (8.4.1) to (8.4.4), the deflection of the 
Mindlin plate is thus given by 

4 

»o"=Ef (;^) (i.^cosh^.B„!7si„.!r^ rmxy\ . TWKX 
sm 

a 

^^^ KsGh \m7rj 
1 - 2Bm cosh ^ ^ ^ + f 1 - 2Bm cosh ^ ^ ) X 

a \ 2a J 

(U cosh = - U ^ sinh = ) 1 sin = (8.4.5) 
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where 

^m = "s— tanh —— cosh -^ — sinh - ^ (8.4.6a) 

^m = ^mz tanh — sech—— (8.4.6b) 
4m7r 2a 2a ^ 

n A \. ^ ^ ^ • 1 ^mb . . , mTrb , Xmb 
mm = ^im cosh —— sinh — A2m sinh —— cosh —— 

Za Z 2a 2 
. . rmrb , Xmb 

- Asm s e c h - ^ cosh ^ (8.4.6c) 
A ^ ^^ D A D ^ ( ^ \^ A _ ^b 
""'"^^ aXmKsGh' ^ ' " - ^ : G ^ + 2 W j ' ^ ^ ^ - ^ ^ 

(8.4.6d) 

Table 8.4.1 contains the non-dimensionaUzed maximum deflection, 
w = WQ^{a/2,0)D/{qQa'^) of square plates with a clamped boundary 
on two sides (SCSC) for two different thickness-to-side ratios. It can be 
observed that the deflection values are in agreement with those obtained 
using ABAQUS (1997), thus confirming the correctness of the derived 
relationship. The results, however, differ from those determined by 
Cooke and Levinson (1983), which are in error. 

The non-dimensionalized stress resultants of square SCSC plates are 
presented in Table 8.4.2 for different thicknesses. The bending moments 
and shear forces are nondimensionahzed as follows: 

M = 1 0 x - ^ , 0 = - ^ (8.4.7) 
qoa^ qoa 

Table 8.4.1. Maximum deflection parameter w of uniformly loaded 
square SCSC Mindlin plates (i/ = 0.3, Ks = 5/6, and 
m = 40). 

^ Cooke and ABAQUS ^ Eq.(8.4.5) 
Levinson (1983) 

0.1 0.00213 0.00221 0.00221 
0.2 0.00276 0.00302 0.00302 

^ Solution obtained with 40 X 40 mesh of S8R shell elements. 
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Table 8.4.2. Non-dimensionalized stress resultants of uniformly loaded 
square SCSC Mindlin plates {u = 0.3 and Ks = 5/6). 

C- ^) 

(0.5, 0.0) 
(0.5, 0.0) 
(0.5, 0.5) 
(1.0, 0.0) 
(0.5, 0.5) 

Resultant 

Mxx 
Myy 
Myy 

Qx 
Qy 

CPT 

0.244 
0.332 
0.698 
0.239 
0.516 

^ = 0.02 
a 

0.244 
0.332 
0.698 
0.240 
0.513 

^ = 0 . 1 
a 

0.258 
0.333 
0.680 
0.243 
0.500 

^ = 0.2 
a 

0.292 
0.331 
0.627 
0.251 
0.475 

8.4.2 SFSF Plates 

Numerical results of the deflections and stress resultants for 
SFSF plates are included in Tables 8.4.3 and 8.4.4. The same 
nondimensionalizations used for the SCSC plates are also used here. 

Table 8.4.3. Maximum deflection parameter li) x 10 of uniformly loaded 
square SFSF Mindlin plates {u = 0.3, Kg = 5/6, and 
m = 40). 

h 
a 

0.10 
0.15 
0.20 
0.25 
0.30 

At the center of the plate 
Dong 
(1993) 

0.1346 
0.1391 
0.1454 
0.1535 
0.1633 

Dong 
(1994) 

0.1340 
0.1385 
0.1448 
0.1528 
0.1627 

Present 
Results 

0.1346 
0.1391 
0.1454 
0.1535 
0.1633 

At mid-
Dong 
(1993) 

0.1562 
0.1617 
0.1690 
0.1781 
0.1890 

-span of free 
Dong 
(1994) 

0.1549 
0.1607 
0.1679 
0.1771 
0.1879 

J edge 
Present 
Results 

0.1560 
0.1616 
0.1690 
0.1781 
0.1889 

Table 8.4.4. Non-dimensionalized stress resultants of uniformly loaded 
square SCSC Mindlin plates {u = 0.3 and Kg = 5/6). 

(f, D Resultant CPT ^ = 0.02 f = 0.1 ^ = 0.2 

(0.5, 0.0) 
(0.5, 0.0) 
(1.0, 0.0) 

Mxx 
Myy 

Qx 

0.123 
0.271 
0.464 

0.123 
0.268 
0.463 

0.122 
0.256 
0.460 

0.123 
0.237 
0.457 
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Problems 

8.1 Establish the relations in Eqs. (8.3.3) and (8.3.4). 

8.2 Verify the relation in Eqs. (8.3.10). 

8.3 Verify the relation in Eqs. (8.3.11). 

8.4 Prom Eq. (7.2.6a) we have 

w^ = w^ + ^ + ^ $ 
KsGh ' * ^ '̂̂  

where ^(a: ,y) and $(x,2/) are harmonic and biharmonic functions, 
resepctively (i.e., ^ satisfies the Laplace equation V ^ = 0 and $ 
satisfies the biharmonic equation V'*^ = 0). Suppose that Q.{x^y) = 
d(j)x/dy — d(f)y/dx is the solution of the equation [see Eq. (i) of Problem 
6.6] 

vn = c^n, c^ (n) 

Then use Eqs. (6.3.13d,e), (7.2.4), and (i) in Eqs. (iii) and (iv) of 
Problem 6.5 to show that 

^ dx dx 

dy dy 

KsGh 
D 

1 on ..... 

c^ dx 
(iv) 

8.5 Use Eqs. (i), (iii), and (iv) of Problem 8.4 in Eq. (6.3.13a-d) to establish 
the following relationships: 

' dy \dy c^ dx, 

M̂  = M£-D( l - . ) | ( f V..X 1 dQ\ nV72rTS 

^ dx (? dy J 

M^y=M^^ + D{l-u) 
d^A 1 

+ dxdy ' 2c2 \dy^ dx^ 

dy 

dy\ J 2 dx 
where fi is the function defined in Problem 8.4 and 

(n) 

{iii) 

(iv) 

(v) 

(vi) 



Chapter 9 

Bending Relationships for 
Circular and Annular Plates 

In this chapter exact relationships between the bending solutions 
of the classical plate theory (CPT) and the Mindlin (FSDT) and 
Reddy (TSDT) plate theories for circular and annular plates are 
developed. Since both the CPT and FSDT are fourth-order theories^ the 
relationships are algebraic. However^ since the TSDT is a sixth-order 
theory and the CPT is a fourth-order theory, the exact relationships 
between deflections, slopes, moments, and shear forces of the two theories 
can only be developed by solving an additional second-order differential 
equation. Here, a second-order differential equation in terms of the 
transverse shear force Qr is developed. Upon having the solution of this 
equation, the exact relationships between the deflections, slopes, bending 
moments, and shear forces of the two theories (CPT and TSDT) are 
established. 

9.1 Governing Equations 

For axisymmetric bending of circular and annular plates, it is 
expedient to formulate the problem in the polar coordinate system. The 
r coordinate is taken radially outward from the center of the plate, the 
z coordinate is taken along the thickness (or height) of the plate and 
the 9 coordinate is taken along a circumference of the plate (see Figure 
9.1.1). In a general case where the applied loads and geometric boundary 
conditions are not axisymmetric, the displacements (ur, UQ, W) along the 
coordinates {r,6,z) are functions of r, 6, and z. Here, we assume that 
the applied loads and boundary conditions are independent of the 9 
coordinate, i.e. axisymmetric, so that the displacement UQ is identically 
zero and {ur,w) are only functions of r and z. The displacement fields 
of the three theories (CPT, FSDT, and TSDT) are similar to those in 
Eqs. (6.1.1a,b), (6.1.2a-c), and (6.1.4a-c). 
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Figure 9.1.1. A circular plate with rectangular {x,y,z) and cylindrical 
(r, 0, z) coordinate systems. 

Based on the polar coordinate system (r, 0), the equations of 
equilibrium and stress resultant-displacement relations of the CPT, 
FSDT, and TSDT are summarized below (see Reddy 1999a, Reddy 
and Wang 1997) for axisymmetric bending and constant material 
and geometric properties (see Figure 9.1.2 for the meaning of the 
stress resultants per unit length of a general circular plate in polar 
coordinates). 

Figure 9.1.2. Forces and moments of a circular plate. 
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CPT: 

dr 
(rQf) = -rg, rQ^ ^ ^^[TMI^) - M^, (9.1.1) 

M^ = -D f ' ^ 
dr'^ r dr Mi'e . D ( V ^ ^ + - ^ 

dr^ r dr 

FSDT: 

^ K - ) = - . , rQ- = ±(rM-)- MU 

M^^=D(^'^^ ^ 
dr r 

M 
kM 

M^, = D ( u ^ + ^<p^ ^06 dr 

iM Qf = KsGh I (/>: dr J 

(9.1.2) 

(9.1.3) 

(9.1.4a) 

(9.1.4b) 

TSDT: 

dr 
= -rq (9.1.5b) 

(9.1.6a) 

M£ = i^(' .^ + l , « V ? f . ^ + l^^ dr dr^ r dr 

R = 1 ^ / ^ ^ ^ î ^fi'̂  / ^ /"^'^^ , ' ^ d < p ^ __ 
35 dr + 7 ^ " J - 28 dr2 + -r dr 

/? ^ 1 ^ / " . ^ ^ l^ii^ ^ ^ / " . . ^ ' ^ , 1 dw§ 
•^90 — 

35 1 dr r 28 dr2 + -r dr 
d < \ 

•̂ ^̂  dr j ' ^^-10-1,^^+^^ 

(9.1.6b) 

(9.1.6c) 

(9.1.6d) 

(9.1.6e) 
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9.2 Relationships Between CPT and FSDT 
9.2.1 General Relationships 

The deflection, bending moment and shear force of the FSDT 
can be expressed in terms of the corresponding quantities of CPT for 
axisymmetric bending of isotropic circular plates. The relationships are 
established using load equivalence (Reddy and Wang 1997). 

We introduce the moment sum 

M = MlL±^ (9.2.1) 
l + v 

Using Eqs. (9.1.2a) and (9.1.2b) in Eq. (9.2.1), we can show that 

M" = -D(i^+'-*f)=-D'4(r'^) (9.2.2) 
\ dr"^ r dr J r dr y dr J 

and 

r dr \ dr 
-g (9.2.3) 

We can establish the following equality using the definition (9.2.1) and 
Eqs. (9.1.2a) and (9.1.2b): 

Similarly, we have 

^ ; * " ) = ^ ; | K ) (̂ •̂ •" 

and 

^ dr 

1 d ( dM^ 
r-r dr V dr 

dM^ d 

-q (9.2.6) 

. ^̂  =j^{rM^)-MU = rQ^ (9.2.7) 

Prom Eqs. (9.1.1a), (9.1.1b) and (9.1.3b), it follows that 

rQ/^ = rQ^ + Ci (9.2.8) 
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and from Eqs. (9.2.4), (9.2.7) and (9.2.8), we have 

r = 1 

dr dr 
or 

+ Ci (9.2.9) 

M'^ = M^ + Cilogr + C2 (9.2.10) 

where Ci and C2 are constants of integration. 

Next, from Eqs. (9.2.4), (9.2.7) and (9.2.10), we have 

In view of Eqs. (9.1.2a), (9.1.2b), (9.1.4a), (9.1.4b) and (9.2.11), 
one can readily obtain the following bending moment relationships 

M- = M̂-J + C, (i±i; logr + i ^ ) + C,i±^ - C s l ^ 
(9.2.12a) 

Mi^ = M.? + C, (l±^ logr - i ^ ) + C , i ± i + C a i ^ 

(9.2.12b) 

Finally, from Eqs. (9.1.4c), (9.2.10) and (9.2.11), we obtain 

^ » - * " + ki'^'^v) ('•"̂ ' dr "̂ '" Ks 

and noting that Q^ = dM^/dr, we have 

M K^M^ C^r-". , . C ^ . C2r2 Cglogr , C4 

"° = ^ ° + ^ : G ^ + 1 F ( I - ^ ' ^ ^ ^ ) + ^ : G ^ ^ ° ^ ^ - 4 F — ^ + ^ 
(9.2.14) 

The four constants of integration are determined using the boundary 
conditions. The boundary conditions for various cases are given below. 

Free edge 
rQ^ = rQ^ = 0, rM^ = rMJ^ = 0 (9.2.15) 

Simply supported edge 

yjM ^^K ^ Q̂  ^^M ^ ^^K ^ Q (9.2.16) 
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Clamped edge 

t.o^ = t.o^ = 0, 0.^ = ^ = 0 (9.2.17) 

Solid circular plate at r = 0 (i.e. at the plate center) 

0 ^ = ^ = 0 , C i = 0 (9.2.18) 
dr 

Note that the first condition in Eq. (9.2.18) is due to symmetry, and 
the second condition follows directly from Eq. (9.2.8) with r = 0. 

In the sequel, the constants Ci to C4 for axisymmetric plates with 
different boundary conditions are determined. First consider statically 
determinate plate problems, i.e. (1) circular plates with (a) simply 
supported edge (S plate) and (b) clamped edge (C plate), (2) annular 
plates with (a) one edge free and the other simply supported (F-S or S-F 
plate) and (b) one edge free and the other edge clamped (F-C or C-F) 
plate. By using the appropriate boundary conditions and substituting 
into Eqs. (9.2.8), (9.2.11), (9.2.12a) and (9.2.14), it is a straightforward 
matter to show that the constants have the same form for this group of 
statically determinate problems. Thus 

Ci = C2 = C3 = 0 and C4 = ' Y ^ (9-2-19) 

where M^ is the Marcus moment at the simply supported or clamped 
edge of the Kirchhoff plate and is given as follows: 

Simply supported edge of S and F-S plates 

° 1 + 1/ Ro dr 

Simply supported edge of S-F plate 

' \ + v Ro dr 

D(l - u) d^w^ 
V dr"^ 

(9.2 

1 D{\ - v) dPw^ 
1 "" u dr"^ 

(9.2 

Ro 
20a) 

Ri 
20b) 
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Clamped edge of C find F-C plates 

dr^ 
i ^ 

Clamped edge of C-F plate 

iK K M"^ = Mf = -D 
.d? w, 

K 

dr^ 

(9.2.20c) 

(9.2.20d) 
Ri 

In the expressions for M^ given above, RQ is the radius of the circular 
plate or the outer radius of the annular plate whereas Ri is the inner 
radius of the annular plate. In order to distinguish between the F-
S and S-F plates, as well as the F-C and C-F plates (where the two 
letters denote the boundary conditions at the inner and the outer edges, 
respectively), the subscripts 'i ' and '0' are used to represent values at 
the inner and outer edges, respectively. 

Next we consider statically indeterminate problems. 

For an annular plate with simply supported inner and outer edges 
(S-S plate), the boundary conditions are given in Eqs. (9.2.16a) and 
(9.2.16b) ioT r = RQ and r = Ri. Substitution of Eqs. (9.2.12a) and 
(9.2.14) into these boundary conditions yields 

D 

^'- 8(17^;)— 
.1 ^ 

KgGh Ri 

Ci=D 

Co = Ci 

Cs = C\ 

CA = C\ 

+ 

M^ - M^ 
{Co) - 1 

KsGh 

n^logRo-B:^ log Ri 

R^-R^ 

(1 + u)R^R^ 

2(1 + u) 

] Ro 
[2(1 - ^)(iEf - /?2) log ^ 

(3 + t/)(i?? + j?g) D 

16 (1 + u) 2KsGh 

R^Rf (\^v 

\og{RoRi) 

4{Ri-R^)\l-i, 
\og{RoRi) + l]log 

R^ 

Ri\ 

(9.2.21a) 

(9.2.21b) 

(9.2.21c) 

(9.2.21d) 

M^ + Mf 
2KsGh 

(9.2.21e) 
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For an annular plate with clamped inner and outer edges (C-C 
plate), the boundary conditions are given in Eqs. (9.2.17a) and (9.2.27b) 
for r = Ro and r = Ri. Substitution of Eqs. (9.2.11) and (9.2.14) into 
these boundary conditions yields 

° 8 KsGh^Ri 2 ( i l ? - i ? 2 ) 

'M^ - Mf 
KsGh 

l o g ^ ) (9.2.22a) 

Ci = D 

C2 = Ci 

Cz = Ci 

(Co)-^ 

R'i-Bl ^2 
2 D 2 R^Ri 

Q = Ci -

, R^ 
2{R^-R^y''^R, 

(9.2.22b) 

(9.2.22c) 

(9.2.22d) 

\og{RQRi) 

+ 

16 2KsGh 

i?§i?2[l-log(i2oi?i)], RQ\ M^ + Mf 
4 (Hf _ ij2) 

log 
Ri 2KsGh 

(9.2.22e) 

For an annular plate with simply supported inner edge and clamped 
outer edge (S-C plate), the boundary conditions are given in Eq. (9.2.17) 
for r = i?o and Eq. (9.2.16) for r = Ri. The substitution of Eqs. 
(9.2.11), (9.2.12a), (9.2.14) into these boundary conditions yields 

Co=(^^^Yil-.)R^ + iS + u)R^] 

2 - ( l + t . ) l o g ^ log 
R^ 

Ri 

+ 

Ci=D 

C2 — C\ 

D 

KsGh [{l + i.)R^ + {l-i^)R^]{Cor' 

(9.2.23a) 

(9.2.23b) 

(1 - t/) (i?g - R^) - 2(1 - u)R^\ogRo - 2 {1+ i^)R^ log Ri 
2 {1+ i^)Rl +2(1-u)R^ 

(9.2.23c) 

C3 = C i ^ 
l + (l + t/)logfe 

{l + u)R^ + {l-u)R^ 
(9.2.23d) 
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^ ^ _ ^ [ {R^ + Rl) [(3 + i^) R^ + {l-u)E^]+ AuB^RJ log f 
' ^'\ 16[(l + t.)i?2 + (l-^)i?2] 

^ 2 ^ ^ ^ ^ ( ^ ^ ) - ^ 

EL l + (l + z/)logf 

x l o g ( i ? o i 2 i ) | - : ^ ^ ^ ^ ^ (9.2.23e) 

For an annular plate with clamped inner edge and simply supported 
outer edge (C-S plate), the constants Ci to C4 are the same as those 
above except for the interchange in the subscripts 'z' and '0'. 

In view of the foregoing expressions for the constants Ci to C4, the 
relationships for the shear forces, bending moments, deflection gradient 
and deflection may be obtained, respectively from Eqs. (9.2.8), (9.2.12a), 
(9.2.12b), (9.2.11) and (9.2.14). These relationships are summarized 
below: 

S, C, F-S, F-C, S-F and C-F plates: 

Q^ = Qif (9.2.24) 
M / ^ = M^^ (9.2.25) 

Mj^ = Me^o (9.2.26) 

^M ^ _dwl ĝ 2.27) 

where 
for S, C, F-S, F-C plates 

for S-F, C-F plates 

S-S, C-C, S-C, C-S plates: 

W _ r^K • ^1 Q^ =Q^+-± (9.2.29) 

Mj^ = M.̂  -F C. ( i ± ^ logr + ^ ) + C,'-±^ - Cs'-^ (9.2.30) 

Mel = M^e + C, ( l± i^ logr - i ^ j + C,^^ + C^^-^ (9.2.31) 
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- ^ - ^ * § ,,,33, 

where the constants Ci to C4 are given in Eqs. (9.2.21a-e), (9.2.22a-e) 
and (9.2.23a-e) for S-S, C-C and S-C plates, respectively. Those for C-S 
plates are obtained by interchanging the subscripts 'V and '0' in Eqs. 
(9.2.23a.e). 

It may be observed that the stress-resultants of Mindlin plates and 
the corresponding KirchhofF plates are equal to each other for statically 
determinate plates. In such plates, the deflection component Wg due to 
transverse shear deformation is given by 

where C is a constant given by the Marcus moment at the simply 
supported edge divided by KsGh. However, for the statically 
indeterminate plates, the stress-resultants of these Mindlin plates are 
obviously not equal to their Kirchhoff counterparts. Thus Eq. (9.2.34) 
no longer applies and the more comphcated form given by Eq. (9.2.33) is 
necessary. It is to be noted that Pane (1975) and Barrett and Ellis (1988) 
presented the more restrictive expression for Ws given in Eq. (9.2.34) 
for general rotationally symmetric bending of axisymmetric plates. 
Although their restrictive form is correct for statically determinate 
plates, it is not correct for statically indeterminate plates as shown by 
the foregoing derivations. 

9,2.2 E x a m p l e s 

The use of the foregoing relationships is illustrated with the 
following circular plate examples. 

Circular plates under axisymmetric partial uniform load over 
inner portion 

Consider a circular plate under a uniformly distributed load qo over 
the inner portion of the plate r < aR {0 < a < 1) as shown in Figure 
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9.2.1. The Kirchhoff solution for such loaded plates is given by (see 
Szilard 1974 and Reddy 1999). The case of uniformly distributed load 
on the entire plate is obtained by setting a = 1 in the first part of the 
solution and omitting the second. 

;?w r 

2. wo(r) 

Figure 9.2.1. Circular plate under partial uniformly distributed load. 

For 0 < r < ai? : 

v2 

+ 2 a" 
l + v -'i) 

14-50^ +4(2 + 0'^) log a] 

4 - (1 - I/) a^ - 4 (1 + z/) log a] 

(9.2.35a) 

for simply supported plate, and 

< = '' 
64D 

(~j + a 2 ( 4 - 3 a 2 + 4a2loga) 

- 2 a 2 ( - ^ ) ( a 2 - 4 1 o g a ) 

for clamped plate. 

For aR<r<R: 

K _ qoa^B^ 
Wn = 

32£> 
(2 02 + 2^ â  + 2f^V 

RJ 
log 

R 

(9.2.35b) 
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+ 
2(3 + t / ) - Q ^ ( l - t / ) '-'if (9.2.36a) 

for simply supported plate, and 

w^ = 
32D a^ + 2 ( - log(^) + (2 + a^) 

' - ' ^ 
(9.2.36b) 

for clamped plate. 

Substituting Eqs. (9.2.35a,b) and (9.2.36a,b) into Eqs. (9.2.2) and 
(9.2.28) yields the corresponding Mindlin plate deflection 

,-M^\a^{l-2loga)-(if], 0 < r < aR 

2K.Gh ' °6 r ' aR<r<R 

Note that the deflection component due to the transverse shear 
deformation given in Eq. (9.2.37) applies to both simply supported 
and clamped plates. In fact, the deflection component due to shear 
deformation is the same regardless of the supported edge being simply 
supported or clamped. 

Circular plates under axisymmetric linearly varying load 

Consider a circular plate under an axisymmetric linearly varying 
load q = qo{l-r/R) (set gi = 0 in Figure 9.2.2). The KirchhoflFsolution 
for such loaded plates is given by (see Szilard 1974 and Reddy 1999). 

° 14400/? 

+255 

3(183 + 43z/) _ 10(71 + 29t/) / r^V 
1 + i/ 1 + i/ \R) 

R -mj (9.2.38a) 

for simply supported plate, and 

K = 
14400D 

for clamped plate 

129 - 290 ( 1 ) % 2 2 5 ( 1 ) ' - 6 4 ( i ) ' (9.2.38b) 
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^1 

M 

TL t 

V/'/'V>' 

f f f t f t f f f i f t 

o 

T 

/}^}?, 

• z, Wo(r) 

Figure 9 .2 .2 . Circulair plate under axisymmetric linearly varying load. 

Substituting Eqs. (9.2.38) into Eqs. (9.2.6) and (9.2.28) yields the 
corresponding Mindlin plate deflection 

n^^ = v^^^ ^ ° ^ -̂ '̂ r-ar 
and the maximum deflection occurs at r = 0 

v^. 
M 
max ^^max 36KsGh 

(9.2.39) 

(9.2.40) 

9.3 Relationships between C P T and TSDT 
9.3.1 General Relationships 

Here we develop the relationships between the bending solutions 
of CPT and TSDT. At the outset, we note that both the classical 
and the first-order shear deformation plate theories are fourth order 
theories, whereas Reddy's third-order shear deformation plate theory-
is a sixth-order theory. The order referred to here is the total order 
of all equations of equilibrium expressed in terms of the generalized 
displacements. The third-order plate theory is governed by a fourth 
order differential equation in w^ and a second order equation in 0^. 
Therefore, the relationships between the solutions of two different order 
theories can only be established by solving an additional second-order 
equation. 
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First we note that Eqs. (9.1.5a) and (9.1.5b) together yield 

-^H^) + ̂  = ̂ ^ 
Defining the effective shear force Vj^ as 

Eq. (9.1.5a) may be written as 

3^[|K)-^-

(P 
+ dr 

+ rVJ^ = 0 

(9.3.1) 

(9.3.2) 

(9.3.3) 

Prom Eqs. (9.3.2) and (9.1.5b), we have 

Hence it follows, from Eqs. (9.2.1a), (9.2.1b) and (9.3.4) that 

rVJ^ = rQ^ + Ci 

(9.3.4) 

(9.3.5) 

Next, we introduce the moment and higher-order moment sums 

(9.3.6) 
l + u ' 1 + 1/ 

Using the definitions (9.3.6) and Eqs. (9.1.6a), (9.1.6b), (9.1.6c) and 
(9.1.6d), one can show that 

M^ = '-R'-iU^]-^'-±(M^ 
b r dr \ dr 5 r d r ( ^ ^ ' ) 

. ^ 4D^l_d / «x _ Dtf^ld_ f^dwf 
35 r dr V "̂̂  / 2S rdr\ dr ^ 

dV^ d 
dr dr {rPrfj - Pi's 

(9.3.7) 

(9.3.8) 

(9.3.9) 

(9.3.10) 
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Substituting for rcp^ from Eq. (9.1.6e) into Eqs. (9.3.7) and (9.3.8), we 
arrive at 

(9.3.11) 

(9.3.12) 

Now solving Eq. (9.3.11) for {d/dr){rdwQ/dr), we obtain 

dr \ dr J D ^ ^ 5(1 - iy)D dr V^^ J 

Substituting the result into Eq. (9.3.12), we obtain 

(9.3.13) 

3/1'' 3/̂ 2 

Prom Eqs. (9.2.4), (9.3.3), (9.3.6), and (9.3.9), we obtain the result 

M^ = M^ + Ci log r + C2 (9.3.15) 

Next we use Eqs. (9.2.2), (9.3.7), and (9.3.10) to arrive at 

4 ^Dcp^ _£.dwl^ _ ^ u ^ + hilL (2 log r - 1) + ^ + ^ (9.3.16) ^dw^ ^ Cir 
dr 4 S""^"" 5 dr 

Prom Eqs. (9.3.2) and (9.3.3), we have 

C2T- C3 

2 r 

- («? -^^)-Tr (^O - ^.V 3̂ 5 \i (̂ 5̂) - P& (9.3.17) 

Substituting Eqs. (9.3.11) and (9.3.12), and Rr = {2h'^/[lb{l - i^)]}Q? 
into Eq. (9.3.17), we obtain 

2/i2 d 
r-r 5(1 - u) V ^'^ / 5̂ " dr "̂  350(1 - i^)' dr 

and using Eq. (9.3.9), we have 

d 

\i ('«?) (9.3.18) 

dr r dr 

+ 

(rQ^) - 105(1 - 5i/)/i2 (rQ^) 

(9.3.19) 
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Thus a second-order equation must be solved to determine the shear 
force. 

Next, we derive the relationships between deflections WQ- and w^ 
and rotation 0^ and slope -dw^ /dr. Replacing M^ in terms of M^ 
by means of Eq. (9.3.15), and then using Eq. (9.2.2), Eq. (9.3.13) can 
be written as 

dr \ dr dr dr 
i(C,logr + C.) + A . l 

Integrating twice with respect to r, we obtain 

CLWQ' dvjQ 

dr dr D — (2 1ogr-l) + — + — + 

{rQf) 
(9.3.20) 

(9.3.21) 

^'o' = <--^ [ ^ (log r - 1) + ^ + C3 log r + C4 

^^jQUr (9.3.22) 

Finally, using Eq. (9.3.21) in Eq. (9.3.16) we obtain 

uR < = -
dw^ 1 
dr D 

— (2 1 o g r - l ) + — + — 
lOGh 

Qf (9.3.23) 

It is informative to discuss various types of boundary conditions in 
terms of the dependent variables for the third-order theory. Since a 
second-order equation for Q^ must be solved to determine solutions of 
the third-order theory, it is also useful to have the boundary conditions 
on Q^ for various types of edge supports. These are listed below. 

Clamped edge 

Hill 
(f>^ = 0, ^ = 0 which imply Q^ = 0 

dr 
w^ = 0 

(9.3.24a) 

(9.3.24b) 

Simply supported edge 
JQR 

M^^ = 0 , P^r = 0 which imply r-^ + uQ^ = 0 (9.3.25a) 

(9.3.25b) 
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Free edge 

M^^ = 0 , P^^ = 0 which imply r - ^ + uQ^ = 0 (9.3.26a) 

For sohd circular plates, we have the additional "boundary 
conditions" at the center of the plate (i.e., at r = 0): 

Q^ = 0, <t>^ = 0 , ^ = 0 , rV;^ = r O f + ( 3 ^ ) r ^ = 0(9.3.27) 

For annular plates, the boundary conditions at the inner edge are given 
by the type of edge support there. 

9.3.2 A n E x a m p l e 

Here we present an example to illustrate the derivation of the 
solutions of the third-order theory using the relationships developed 
between the CPT and TSDT. First note that Eq. (9.3.19) can be 
expressed in the alternative form 

dr^ r dr \r'^ 

where 

i ^ m ^ (9.3.29) 

The solution to the homogeneous differential equation 

^^l^-{h<)<^?'0 (.3.30) 

is given by 
Q?{r) = CshiV^r) + CeKi{^r) (9.3.31) 

where / i and Ki are the first-order modified Bessel functions of the first 
and second kind, respectively. 

Consider a solid circular plate under uniformly distributed load of 
intensity QQ and clamped at the edge. For this case, the boundary 
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conditions at r = i?o give Q^{RQ) = 0 and C2 = 0, and those at r = 0 
give Q^(0) = 0 and Ci = C3 = 0. Then the general solution to Eq. 
(9.3.28) is given by 

Using the boundary conditions on Q^, we obtain 

qoRo Ce = 0 , C5 = 
2/l(^/ei?o) 

Hence the solution becomes 

QoRo 

(9.3.32) 

(9.3.33) 

(9.3.34a) 

and 

/QN-(^^ 
2Io{Vlr) fry 

(9.3.34b) 

Then the exact deflection of the TSDT plate is given by 

Kir) = < (r) + 
goi?g 

5Gh 

2/o(v/|r) 
- ( ^ \ /?o/i(v^i?o)v/e \t^J 

_ C 4 
D 

(9.3.35) 
where the constant C4 is evaluated using the boundary conditions 
ti;^ = u;^ = 0 at r = i?o 

2/o(v/!i^) 
ilo/i(v^i?o)V? 

1 (9.3.36) 

Note that the deflection w^{r) of the classical plate theory for the 
problem is given by setting a = 1 in Eq. (9.2.35b). The maximum 
deflection is 

Wrrtax ^ 4 ^ + 20D{1 - u) 

64D 20Gh 

(9.3.37a) 

(9.3.37b) 
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Comparing w!^^^ with w^^^ from Eq. (9.2.37) (set a = 1 in the first 
line), we note that for Kg = 5/6 the maximum deflection predicted by 
the first-order shear deformation theory coincides with that predicted 
by the third-order plate theory. Of course, the third-order theory does 
not require a shear correction coefficient. Further, the comparison of the 
solutions of the first-order and third-order theories for different boundary 
conditions and loads may lead to different shear correction factors. 

9,4 Closure 

The relationships developed herein between the CPT and shear 
deformation theories (FSDT and TSDT) facilitate actual derivation of 
the exact solutions of the first-order and third-order theories whenever 
the corresponding CPT solutions are available. It is also possible to 
develop finite element models of circular and annular plates based on 
the FSDT and TSDT using the finite element model of the CPT, 
as was illustrated by Reddy and Wang (1998) for the FSDT. The 
stiffness matrix of the shear deformable elements are also 4 x 4 for 
the pure bending case, and the finite elements are free from shear 
locking phenomenon (see Reddy 1998 and 19996) experienced by the 
conventional shear deformable finite elements. It is also possible to 
develop the shear correction factors required in the first-order shear 
deformation theory using the relationships between CPT, FSDT, and 
TSDT. Such factors may depend on the boundary conditions as well as 
the applied transverse loads. 

Problems 

9.1 Assume the following displacement field for the classical plate theory 
(CPT) in polar coordinates (for pure bending case): 

Ur[r,e,z) = -z-^ 

u^{r,0,z) = wo{r,e) (i) 

where {Ur.,UQ,Uz) are the displeicements along the three coordinate 
directions (r,d,z), respectively. Show that the linear strains of the 
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theory are given by 

iii) 

where 

d'^WQ 

Qj.2 

+ - • 

%e 

'r\dr r 86^ J 

(1) _ 2 fd^wo Idwo' 
r \ drOe r 06 

{Hi) 

9.2 Show that the virtual work statement for the KirchhofF plate in the 
polar coordinates is given by (see Problem 9.1) 

rdrdO (i) 

where the moment resultants are defined by 

Mv = / GrrZ dz, Meo = / CFrrZ dz, MrO = / ^ ^rO^ dz (U) 

9.3 Show that the Euler-Lagrange equation associated with the virtual work 
statement of Problem 9.2 is 

a2 dMee Id^Mee ^d'^Mro 2dMre 
Q^2 i'^^rr) Q^ + r 5^2 + 2 ^^^^ + ^ ^^ 

(i) 
Introduce the transverse shear forces ax:ting on the r^—plane and 
^2:—plane as 

Qe = \ 

iii) 

{iii) 
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and express Eq. (i) in the form 
1 

-irQ) + ^ = Q {iv) 

Simplify Eqs. (i)-(iv) for the axisymmetric case. 

9.4 Show that Eqs. (9.1.1) and (9.1.2) can be combined to express them 
solely in terms of the deflection WQ (r) as 

r dr \^ dr 

Hint: Use the identity 

1 d f dw^^ 
r dr dr 

= q{r) 

d fd^wf 
dr \ dr'^ 

_ y , _ 
dr 

\d f dw^ 
r dr \ dr 

Idw^ 
r dr 

(0 

(n) 

9.5 Show that the deflection, slope, and bending moments of a simply 
supported circular plate under linearly varying load (see Figure 9.2.2) 

q{r) = go + ^ r 

are given by 

Dw^{r) = F{r)^-Ki'^+K2 (u) 

(m) 

{iv) 

[v) 

where Ki and K2 are constants to be determined using the boundary 
conditions at r = i?. In particular, show that 

F{r) = ^ + 
64 ( ^ 

90 

F'{r) = Qoj_ / 91 - go 
16 

225 
,4 

F"ir) = ^ + 
^ ^ 16 

" ( 1 + '̂ ) 
Ki 

r 

R~)45 

45 

4 + 1/ 
R 

3 + u 

16 

K2 = 
R" 

(l + t^) 

5 + 1/ 
~6A 

-90 + 

90 + ^ ^ ( 9 1 - 9 0 ) 

6 + t/ 
150 (91 - 90) 

(vi) 

(vii) 

(viii) 

(ix) 

(x) 
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9.6 Repeat Problem 9.5 for the clamped boundary condition at r = /?. 

9 .7 Consider a simply supported annular plate of inner radius Ri cind outer 
radius RQ, loaded with uniformly distributed load of intensity ^o- The 
boundary conditions are 

Atr = Ri: M^^ = 0, {rQ^) = 0 

Atr = Ro: ^ f = 0, M^ = 0 

Show that the deflections and bending moments are given by 

(0 

<(r) = '^\-
64£> I 

4a2/g^ 
1-u 

-'ir + 
2a i 

1 + 1/ '-'ir 
log i)} 

< = ̂ {(34-.)[l-( 

+4(1 + u)(3^K 

Bo) 

Ro 

-/?'(3 + ^) -'i) 
(in) 

21 

rK _ gO-Rp 
16 

M.1 = ̂ { ( 3 + )̂ -if 
4-/3^ (5.-i) + (3 + .)(-^)1} 

+ 4( l + i/);92jog( ' 

+ 4(1 + u)p^K 

2" 

1 + 

r 

Ro 
(iv) 

[v) 

where 

ax = (3 + i/)(l - ^2) _ 4(1 + z,)/?2« 

a2 = {3 + iy) + 4(1 + i/)/c 

^2 
K = 

l - / ? 2 log/3, 

(vz) 

(fii) 

9.8 Show that the deflection of a clganped (at the outer edge) circular plate 
under linearly varying load, q = go(l ~ f/Ro) is 

•"fW = TS^('^^-^^° 
/ * » ^ /p^ fr**^ 

(i) 
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The relationships presented in this chapter can be used to develop finite 
element models for axisymmetric bending of isotropic circular plates that 
contains the classical plate element as a special case. Such elements were 
developed for beeims and axisymmetric bending of circular plates by Reddy 
(1993) and Reddy, Wang, and Lam (1997). We illustrate the procedure for 
the FSDT using a set of problems. 

9.9 Show that the general solution of Eqs. (9.1.3) and (9.1.4a,b) is 

AD »."M = 3^{ In r — r ( Inr - 1) 
GAKs 

- 4 C 3 l n r - 4 C 4 | 

Ci - C2r' 

Ci + C2r^ + Ca In r + C4r'^ In r 

* ' W = 4D 
C 7 i r ( 2 1 n r - l ) + 2C2r + 4 — 

r 
Cz 

= -2C2r - — - a r ( l + 21nr) + - r 

ii) 

(iz) 

where D = Eh^/12{l - ly^), T = {4D/GAKs), and Q are constants 
of integration. The classical plate theory solution is obtained from (i) 
and (ii) by setting F = 0. 

9.10 Consider a typical finite element located between TQ < r < r^. Let the 
generalized displacements at nodes 1 and 2 of the element be defined as 

w^{n) = A3, Mrb) = A4 ii) 

where (̂ 7. denotes the slope (positive clockwise), which has different 
meanings in different theories, as defined below: 

0r = 

dwc 
dr 

0 

'• f o r C P T 

for FSDT 
(ii) 

Next, let Qi and Qa denote the shear forces (i.e., values of rQr) at 
nodes 1 and 2, respectively, and Q2 and (^4 the bending moments (i.e., 
values of rMrr) at nodes 1 and 2, respectively. 

Using Eqs. (i) and (ii) of Problem 9.9, relate the nodal degrees of 
freedom A^ defined in Eqs. (i) and (ii) to the constants Cj. In particular. 
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show that 

In ra rllnra 
~ - r a (1+ 2 In r a ) - ; ^ r 0 -2ra 

1 rl \nn rllogn 
0 -2n - ^ ~ r 6 ( l + 2 1 n r 6 ) - ^ r 

Similzurly, relate the nodal forces Qi to the constants C J : 

Qx = -27r f rQf) = %T:DCA 

\ J r=ra 

Q2 = 2n [-rMfr) 

rcii 

I C4 j 
(m) 

r=ra 

= 27rD (2(1 + u)raC2 - ^^—^Cs + 

Qs = 27r f rQf) = -87TDC4 

= -2TrD (2(1 + iy)nC2 - ^^—-^Cs + 

A a -
( 1 - ^ ) , C4 

^6 
Q 

9.11 Using the relations developed in Problem 9.10 

{Q} = [G]{C}, {A} = [H]{C} 

derive the stiffness matrix [K], defined by 

{Q} = [G]{C} = [G][H]-HA}^[K]{A} 

where 

(i) 

iii) 

Aa = [2(1 + ly) In ra + (3 + u)] ra, At = [2(1 + i^) Inn + (3 + i^)] n 
[iii) 

'0 0 0 ^ 4 ^ " 
0 2(1+ . K - ^ [ A a - ^ r ] 

, 0 0 0 -4 , 

[o -2(1+ .K i ^ - h - ^ r ] 
The stiffness matrix of the classical plate theory is obtained from [K] 
by setting F = 0. 

[G] = 2TTD {iv) 



Chapter 10 

Bending Relationships For 
Sectorial Plates 

This chapter presents exact relationships between the bending 
solutions of sectorial plates based on the Kirchhoff (or classical) thin 
plate theory and the Mindlin plate theory. The Kirchhoff plate theory 
neglects the effect of transverse shear deformation^ and the Mindlin plate 
theory allows for this effect which becomes significant when dealing with 
thick plates and sandwich plates. The considered sectorial plates have 
simply supported radial edges while the circular curved edge may be either 
simply supported^ clamped^ or free. The availability of such relationships 
allow easy conversion of the existing Kirchhoff sectorial plate solutions 
into the corresponding Mindlin solutions. The use of the relationships 
is illustrated using some sectorial plate examples and sample solutions 
obtained were checked with existing results and those computed from the 
finite element analysis software ABAQUS. 

10.1 Introduction 

This chapter focuses on the elastic bending problem of sectorial 
plates with simply supported radial edges while the circular edge may 
be either simply supported, clamped or free. The relationships between 
the bending solutions for such plates are derived herein. On the basis of 
existing exact Kirchhoff solutions for these plates, (see Timoshenko and 
Woinowsky-Krieger 1959 and Mansfield 1989), the relationships enable 
the easy deduction of the corresponding exact Mindhn plate solutions. 
These solutions and thus the relationships are verified by comparison 
with the existing results, e.g., the 3-D finite strip solutions of Cheung 
and Chan 1981, and the finite element analysis results obtained using 
the ABAQUS computer program. 
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10.2 Formulation 

Consider a sectorial plate of radius a, thickness h, and with a 
subtended angle 9^ as shown in Figure 10.1. The sectorial plate is simply 
supported along its two radial edges (^ = 0, 6 = a) while its circular 
edge can be either simply supported, clamped or free. The flexural 
rigidity of the isotropic plate is given hy D = Eh^/[12{1 - z/̂ )] where 
E is Young's modulus and i/ Poisson's ratio. The shear modulus of the 
plate is G = E/[2{1 + u)]. For analysis, it is expedient to adopt the 
polar coordinate system for such a plate shape with the origin of the 
coordinate system located at the vertex of the sectorial plate. 

Simply supported 
radial edge 

Circular edge may be either 
simply supported, or 
clamped or free 

Figure 10.2.1. Geometry and the coordinate system used for a sectorial 
plate. The circular edge may be either simply supported, 
clamped, or free. 

The form of the transverse loading on the plate is assumed to be the 
same for all sections parallel to the radial direction and is defined by 

mn 
9(̂ )̂ ) = S 9̂ (̂ ) ^̂ ^̂ '̂ ^ "̂  ~ 

7 7 1 = 1 

(10.2.1) 

10.2.1 The Kirchhoff Plate Theory (CPT) 

First consider the bending problem of a sectorial plate under the 
loading defined in Eq. (10.2.1) based on the Kirchhoff plate theory. 
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The equilibrium equations of the plate problem at hand are given by 
(Timoshenko and Woinowsky-Krieger, 1959) 

or r o9 r 

r dO r ^ dr 

dr r dd 

and the stress resultants are related to the displacement as follows 

(10.2.2a) 

(10.2.2..) 

(10.2.2c, 

-D 

M^e 

M^e 

-D 
1 d'^wp 

r dr 

r dr r̂  dO'^ 

- D ( l - . ) | 

Of = -D^ (V^«^) 

'ldwf\ 
r ae ) 

(10.2.3a) 

(10.2.3b) 

(10.2.3c) 

(10.2.3d) 

(10.2.3e) 

where the superscript 'K' denotes the Kirchhoff plate quantities and 

a2 Id 1 ^2 
V̂  = : ^ + - + 

is the Laplacian operator in polar coordinates. 

The above transverse deflection WQ in Eqs. (10.2.3a) to (10.2.3e) 
may be assumed to take the form 

^o ' (^ ,^)=E^m(r-)s inM^ (10.2.4) 
m = l 

The bending solutions of the sectorial plate based on the KirchhoflF plate 
theory may be obtained by substituting Eq.(10.2.5) into Eqs. (10.2.3a-e) 
and then into Eqs. (10.2.2a), (10.2.2b), and (10.2.2c) and finally solving 
the governing equations together with the boundary conditions. 
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10.2.2 The Mindlin Plate Theory (FSDT) 

When using the MindUn plate theory, the equilibrium equations 
remain the same as those given in Eqs. (10.2.2) with 'K' replaced by 
'M' but the MindUn stress resultant-displacement relations are given by 

M^ = D 

MM = D 

d(t>r _^^ ( , ,d<pe\ 

M- = i.>(l-.)(l^-l,..f) 
^M Q f = KsGh (t>r + 

dw, M' 

dr 

Q^ = KsGh 

(10.2.5a) 

(10.2.5b) 

(10.2.5c) 

(10.2.5d) 

(10.2.5e) 

where (t)r and (j)e are the MindHn rotations about the circumferential and 
radial directions, respectively, the superscript 'M' denotes the Mindlin 
plate quantities, and Kg denotes the shear correction factor. Throughout 
this chapter, the shear correction factor is assumed to be 5/6. 

Under the transverse loading (10.2.1), the transverse deflection and 
the rotations for the sectorial plate are given by (Mindlin, 1951) 

^o ' ' (^>^)=i ;W^m(r)s in /x^ 
m—l 

CX) 

4>T{r,0) = Y^ (f)rmir) sin fie 

CX) 

Mr,0) = Yl <i>0m{r) cos fi9 
m=l 

Introducing the moment sum or Marcus moment 

Mrr + Mee 

(10.2.6a) 

(10.2.6b) 

(10.2.6c) 

M = (1 + )̂ 
(10.2.7) 

and using Eqs. (10.2.5a)-(10.2.5c), one may express the force 
equilibrium equations (10.2.2a) and (10.2.2b) for the Mindlin plate 
theory as 
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â  = dM M 

Qt 
M 

dr 

r de 

+ 2^"-" ' °^ 

-^(>-)4 I d . . . ld(f>r 

(10.2.8a) 

(10.2.8b) 

10.2.3 Governing Equations 

In view of Eqs. (10.2.3d), (10.2.3e) and (10.2.2a), the governing 
equation for the bending of the Kirchhoff sectorial plate can be expressed 
as 

V'^M^ = -q (10.2.9) 

and from Eqs. (10.2.8a), (10.2.8b) and (10.2.2a), one can similarly write 
the Mindlin governing equation as 

7 2 A ^ M V'M'^ = -q (10.2.10) 

Alternatively, one can obtain the above governing equation based on the 
Mindlin plate theory by substituting the constitutive shear forces given 
by Eqs. (10.2.5d) and (10.2.5e) into Eq. (10.2.2a). This yields 

KsGh V ^ < + 2...M ^ M^^ 
D 

= -Q (10.2.11) 

In view of Eqs. (10.2.5d), (10.2.5e), (10.2.8a) and (10.2.8b) and 
eUminating M^ from the equations, one may deduce that 

V2fi = c2n, c2 = 
2K,Gh UK, 

D[\-u) h? 

where 
ld(l>r I d , , 
r ad r or 

(10.2.12a) 

(10.2.12b) 
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10.3 Exact Bending Relationships 
10.3 .1 General Re la t ionsh ips 

Based on the concept of load equivalence, it follows from Eqs. 
(10.2.9) and (10.2.10) that 

V 2 ( A ^ ^ - A ^ ^ ) = : 0 (10.3.1) 

Eq. (10.2.1) yields the following Kirchhoff-Mindlin Marcus moment 
relationship 

M^ ^M^ + 'E (10.3.2) 

where E is a harmonic function of (r, 0) which satisfies V^E = 0. For 
the sectorial plates considered here, the function H is given by 

H = i ? £ ( C i ^ r ^ ) s i n / i ^ (10.3.3) 

where Cim{m = 1,2,3,...) are constants. Thus, Eq. (10.3.2) becomes 

oo 

M'^ = M^ + DY, (Cimr^) sin nO (10.3.4) 
7 7 1 = 1 

The substitution of Eqs. (10.2.9) and (10.3.4) into Eq. (10.2.11) yields 

Clm _u+2\ _:_ . . J _ V2 / - ^ 

m=l ^ 4(M + 1) 
^2-r'^+2)sin/z^ 

K,Gh 
(10.3.5) 

In view of Eq. (10.3.5), one may deduce that the Kirchhoff-Mindlin 
deflection relationship is given by 

tw^ = two + 
K 

K,Gh + E 
m = l L 

C2m ~ 
4(/x + l) 

r^'siufxe (10.3.6) 

where Cim and C^m are constants to be determined using the boundary 
conditions along the circular edge, r = a. 

To obtain the Kirchhoff-MindUn slope relationships, one has to solve 
Eq. (10.2.12). Noting the rotation functions given in Eqs. (10.2.6b) and 
(10.2.6c), the solution to Eq. (10.2.12) takes the form of 

n = 1 ^ - 1 1 {r4>e) = f ; Rm{r) cos fiO 
m=l r 86 V dr 

(10.3.7) 
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Therefore by substituting Eq. (10.3.7) into Eq. (10.2.12) and using the 
method of separation of variables, Eq. (10.2.12) may be reduced to 

2^ Rm . dRm 
dr'^ dr 

[{cr)^ + /i2] i?^ = 0 (10.3.8) 

Eq. (10.3.8) is the modified Bessel's equation of order fx and its solution 
is given by (Kresyzig, 1993) 

Rm = Csmlfiicr) + C4mK^{cr) (10.3.9a) 

where I^ and K^ are modified Bessel functions of the first and second 
kinds of order /i, respectively, while Csm and Qm are constants. 

In view of Eqs. (10.3.7) and (10.3.9a), one obtains 

" ^ ^ - | - ( ^ ^ ^ ) = E [Csml^icr) + C^mK^icr)] cos/i0 (10.3.9b) r 09 r dr 
7 7 1 = 1 

By substituting Eqs. (10.2.5d), (10.3.4) and (10.3.6) into Eq. (10.2.8a) 
and then combining with Eq. (10.3.9b), one arrives at 

0r = -
dwl_ 

dr +|j^''-^''"+''[^^'"-^-] r ^ - l 

- ( ^ ) [Csml^icr) + C4mK^{cr)]^ sin lie (10.3.10a) 

Similarly, in view of Eqs. (10.2.5e), (10.2.7b), (10.3.4), (10.3.6) and 
(10.3.9b) 

<t>e = - ImT^+'+li ^ 1 9 < ^ f /x 
r de ^£^^U{ii + ir' 

- ^ [C3„./;(cr) + CimK'^icr)] \ cos)U^ 

D 

KsGh 
C I m ~ ^21X1 

r . M - 1 

(10.3.106) 

where the prime indicates partial differentiation with respect to r. For a 
finite Mindlin rotation (pr and Kirchhoff slope dw^ /dr along the radial 
direction, the term (^ J Kfi{cr) which becomes singular as r —> 0, must 
be dropped from Eq. (10.3.10a). For its elimination, dm must be zero. 

In view of the foregoing deflection and rotation expressions, the 
relationships between solutions of Mindlin and Kirchhoff sectorial plates 
may be summarized below. 
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Deflection relationship 

w^ = w^ + 
KsGh 

m = l 
C2m — 

4(/x + l) 
r^sin/i^ (10.3.11) 

Rotation-slope relationships 

<t>r = dr 
7 7 1 = 1 ^ 4(M + 1) 

r*"̂ ^ + /i 
Z? 

~2~ ) ^imlu. (cr) > sin ij.9 

171=1 ^ 4(M + 1 ) ' 

- f-jC3T„/;.(cr) |cos/i^ 

iir.G/i 

£» 

C Im ~ ^2m 
r . M - 1 

(10.3.12a) 

K^Gh 
C\m — C'2n r - M - l 

(10.3.12b) 

Moment relationships 

°° f 1 

m = l '̂ '̂  

+ ( - ) C3„̂  
cr 

I^{cr)-I'^{cr) sin/x^ 

(10.3.13a) 

Mi^ = 

+ z / I>^ (Ci^ r ' ^ ) s in / . ^ 
7 7 1 = 1 

°° r 1 
= M^^ + £'(1. - 1) X^ j -(/z + 2)C^mr^ + /x(/i - l ) A m r ' ' 

m = l "-^ 

—/^(cr ) - / / . ( c r ) 11 sin/i^ + ( -^ ) C3^ \ c r 

+ DY, {Cimr^)smfie (10.3.13b) 
=1 7 7 1 = 1 

OO 

M,^ = M,^ + r>(l _ ^) J^ J ̂ Cin.r'^ + /i(M - 1) A^r^ 
m = l '''* 

+ 

Dim = 

1.. 
cr 

• D 
.KsGh* 

^^(cr) - Q + ( | : ) j /^(cr) Cam} cos/x^ (10.3.13c) 

'Im •" ^ 2 m C'2n (10.3.13d) 
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Shear-force relationships 

oo r n 1 

7 7 1 = 1 
KsGh c^r 

Q^ = Q^ + KsGhY^ 
oo r r) 1 

m=\ '-
KsGh 

sin fjiO 

(10.3.14a) 

cos//^ 

(10.3.14b) 

The foregoing relationships contain a total of three unknown 
constants which are dependent on the three boundary conditions at the 
circular edge {r = a). In the sequel, these constants are evaluated for 
sectorial plates with various types of boundary conditions for its circular 
edge. 

10.3.2 SSS Sectorial P l a t e s 

Consider the SSS sectorial plate where the circular edge is simply 
supported. The boundary conditions at r = a are 

w^ = w^ = 0, MJif = M,^ = 0, <f>e = 0 (10.3.15) 

By substituting Eq. (10.3.15) into Eqs. (10.3.11), (10.3.13a) and 
(10.3.12b), respectively, and solving for the constants, one obtains 

(^Im — 
HQ„ 

cal'i^{ca) 

2/z + l 

(10.3.16a) 

+ 
/̂  

2 ( ^ + 1 ) l-u{caf cal'^{ca) + 
v 

C2m — 

Csm = 

where 

4(M + 1 ) " " '"^ 

— . \ 

(10.3.16b) 

(10.3.16c) 

^ ^771 
KsGh 

(10.3.16d) 

(10.3.16e) 
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10,3.3 SSC Sectorial Plates 

Next, consider the SSC sectorial plate where the circular edge is 
clamped. The boundary conditions at r = a are 

w^ = w^ = 0, ci>r = ^ = 0 , cPe = 0 (10.3.17) 

In view of Eqs. (10.3.17), (10.3.11) and (10.3.12), the constants are 
found to be 

Wm — 

C2m = 

C'sm — 

/,M+2 / _ t L , _ 2 {ca\ ^K"') \ 1 , _i* _2_] \ 

4(^ + 1) 

lily^ica) 

C\m - ^mO '^ 

Cimai" + M-
D 

2(/z + l) ^K,Gh 
+ fJi^T 

(10.3.18a) 

(10.3.18b) 

(10.3.18c) 

where Qrn is given by Eq. (10.3.16e). 

10.3.4 SSF Sectorial Plates 

Finally, consider the SSF sectorial plate where the circular edge is 
free. The boundary conditions at r = a of a free edge are 

M,̂  = M^=0, Q^^Vj^ = 0, M^=0 (10.3.19a) 

where 

K^ = e + ; ( ^ ) (10.3.19b) 

is the Kirchhoff effective shear force. 

In view of Eqs. (10.3.19), (10.3.13a), (10.3.13c) and (10.3.14a), the 
constants are found to be 

^ r. + ̂ „(g){(,. + l)jgg-(oa)[^ + ' ^ l } 
(10.3.20a) 

C'2m ~ 

Csm = 

r ^ + "^rn ( g ) { g g - (eg) \h + i^)'] } + glma^MO 

(10.3.20b) 
a/^-2 [/.(/.-1)] 

(?a 
I^{ca) fi KsGh 

- 1 (10.3.20c) 



B E N D I N G RELATIONSHIPS FOR SECTORIAL PLATES 1 8 7 

where 

MO = < T -

•L m — 

^ m — 

{cay 2 cal^{ca) l - U 

(10.3.21) 

10.4 Examples 

The foregoing relationships can be used to furnish the MindUn 
deflection, rotations and stress-resultants of Mindlin sectorial plates 
upon supplying the corresponding Kirchhoff plate solutions. This is 
illustrated below using the examples of sectorial plates under a uniformly 
distributed load ^o-

Based on the Kirchhoff" plate theory, the transverse deflection of a 
sectorial plate under a uniform load go is given by (Mansfield 1989) 

1 °° 

771=1 
(16 - / i2)(4 - / i2 ) 

where 
^̂  = ^ [1 - (-1)-] 

which is zero for even m. 

lOA.l SSS P l a t e s 

For SSS plates, we have 

. g„a^-' '(/i + 5 + i/) 
"* 2(16-/x2)(2 + /i)(2/x + l + i/) 

qmo^-^if^ + 3 + 1/) 

sin/x^ (10.4.1) 

(10.4.2) 

(10.4.3a) 

(10.4.3b) 

The expressions for Am and Bm agree with those given by Timoshenko 
and Woinowsky-Krieger (1959). 
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10.4.2 S S C P l a t e s 

For SSC plates, we have 

and the Kirchhoff plate solution is given by Eq. (10.4.1). 

10.4 .3 S S F P l a t e s 

For SSF plates, the constants are given by 

A gmQ^~ [̂(M - 4)AoAi + 21 (̂3 + v)A2] 
"" 2/x2(16 - /z2)(4 - /.2)(1 _ ^)(1 - z.)(3 + u) 

(10.4.5a) 

' ' - - 2/z(4-^2)(4 + ^)( i + ^)(3 + ^) ^l"-4-5bj 

AQ = 8 + H{5 + I^) + z//i^ Ai = /i(l - I/) + 2(1 + u) 

A2 = 4(3 + I/) - uf? (10.4.5c) 

Note that the expressions for 1̂,71 and Bm for the SSC and SSF 
sectorial plates are not available in the open literature at the time of 
this writing. Substituting Eqs. (10.4.1) and (10.4.2) into Eq. (10.2.3a) 
and (10.2.3b) and then combining them together we obtain the Kirchhoff 
Marcus moment 

1 4. ,/ Z ^ 
1 + ^ m-1 L 

Tn=i L 

^'"' ' ' +4(/x + l)B^r'^ sin fjiO 
(4 - /.2) 

(10.4.6) 
By substituting the Kirchhoff solutions given by Eqs. (10.4.1), (10.4.2) 
and (10.4.6) into the relationships [Eqs. (10.3.11)-(10.3.14)], one can 
readily obtain the corresponding Mindlin plate results. In the next 
section, we consider several examples. The results are verified using 
the finite element method. 
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10.4,4 Numerical Results 

To verify the correctness of these relationships, Abaqus (1997) finite 
element program was used for the bending analysis. Two different shell 
elements, namely, S8R5 shell elements for thin plates and S8R elements 
for shear deformable thick plates have been used in the modeling of 
the sectorial plates. Three different - increasingly refined - uniform 
meshes designated Type A, Type B and Type C were used. Table 10.4.1 
shows the results obtained from the convergence study for the deflection 
parameter w = 10^{woD)/{qQa^) and radial moment parameter Mrr = 
10^Mrr/(9oa^) at r = 0.75a, 6 = a /6 for a uniformly loaded SSS sectorial 
plate with a subtended angle of 7r/3. It can be established from Table 
10.4.1 that Mesh C will suffice in providing converged results and thus 
will be used to generate all the numerical solutions in this study. 

Table 10.4.1. Convergence tests for SSS Sectorial plates (a = 7r/3). 

Mesh type 
(Elements) 

Type A (75) 
Type B (300) 
Type C (675) 

] 

w 

0.001 

0.9247 
0.9248 
0.9248 

Deflection 
'(0.750,7r/6) 

h/a 

0.1 

1.0215 
1.0212 
1.0210 

0.2 

1.3101 
1.3097 
1.3097 

Radial Moment 
Mrr(0.75a,7r/6) 

0.001 

2.4433 
2.4282 
2.4284 

h/a 

0.1 

2.4554 
2.4320 
2.4322 

0.2 

2.4582 
2.4422 
2.4423 

It is worth noting that there has been httle work done on the bending 
of thick sectorial plates. In the open literature, we find that Cheung 
and Chan (1981) used the three-dimensional finite strip method for the 
analysis of such plates. In Tables 10.4.2 and 10.4.3, the results 

w = l^^^, Mrr = 10^^,, Mee = lO'^, (10.4.7) 
qoci^ qod^ 90^^ 

of Cheung and Chan (1981) are compared with the present solutions 
furnished by the relationships [Eqs. (10.3.11), (10.3.13a), (10.3.13b) and 
(10.3.16)] and the numerical results generated using the finite element 
program Abaqus (1997). Prom Table 10.4.2, it can be observed that the 
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present Mindlin plate deflections furnished by the exact relationship are 
in excellent agreement with the Abaqus results. Although the present 
and the Abaqus bending moments do not exhibit the same degree of 
agreement, the difference in results is within 3%. When compared to the 
3-D results furnished by Cheung and Chan (1981), one can observe that 
the deflections obtained by Cheung and Chan are consistently slightly 
lower than the present results evaluated from the relationships. For 
bending moments as shown in Table 10.4.3, the differences are within 
10% of each other. Table 10.4.4 presents the deflection parameters 
tD = 10^{woD)/{qoa'^) of SSC and SSF sectorial plates obtained from 
the deflection relationships, [Eqs. (10.3.11), (10.3.17) and (10.3.18)] and 
from Abaqus (1997). The results are in very good agreement with each 
other. 

From the bending results, one can observe that as the plate thickness 
increases, the thick plate solutions deviate significantly from the thin 
plate results, especially for the transverse deflection. For example, in the 
case of thick SSS sectorial plates {h/a = 0.2), its maximum deflection can 
be lower by 40% when the analysis is based on the Kirchhoff (classical 
thin) plate theory, and for SSC sectorial plates, the difference can be as 
much as 75%! This shows the significant effect of transverse shear strains 
on the bending behavior of thick plates. The effect of shear deformation 
is to increase the deflection. 

Table 10.4.2. Comparison of deflection w = 10^woD/{qoa^) for SSS 
sectorial plates with a = 7r/3. 

h/a 

0.001 
0.067 
0.100 
0.133 
0.200 

Thin platet 
Results 

0.9975 
-
-
-
-

Cheung & 
Chan (1981) 

0.9840 
1.0264 
1.0839 
1.1573 
1.3547 

FEM 
(Abaqus) 

0.9974 
1.0430 
1.1000 
1.1797 
1.4076 

Present* 
results 

0.9975 
1.0430 
1.1000 
1.1797 
1.4076 

'Timoshenko and Woinowsky-Krieger (1970). 

*Prom Eqs. (10.3.11) and (10.3.16). 
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Table 10 .4 .3 . Comparison of bending moments, Mrr = lOi^Mrr/{qod^) 
and Mo0 = lO'^M0O/(qoo^)y for SSS sectorial plates with 
a = 7r/3. 

Radial moment Circumferential moment 
Mrr (0.75a, 7r/6) Mee{0.75a, 7r/6) 

h/a Thin I Cheung Abaqus Present* Thinl^ Cheung Abaqus Present** 
Plate fc Chan Results Plate fcChan Results 

0.001 2.4260 2.4944 2.4284 2.4260 2.1316 2.1452 2.1342 2.1316 
0.067 - 2.5175 2.4302 2.4276 - 2.1490 2.1332 2.1305 
0.100 - 2.5029 2.4322 2.4296 - 2.1873 2.1318 2.1291 
0.133 - 2.5533 2.4349 2.4324 - 2.2350 2.1299 2.1272 
0.200 - 2.6384 2.4423 2.4398 - 2.2678 2.1247 2.1219 

• Timoshenko and Woinowsky-Krieger (1970). 

*Prom Eqs. (10.3.13a) and (10.3.16). 

**From Eqs. (10.3.13b) and (10.3.16). 

Table 10 .4 .4 . Deflection parameters of SSC and SSF sectorial plates. 

h/a 

0.001 
0.1 
0.2 

SSC plate, a = • 

u;(0.75o,7r/6) 

Thin 

Platet 

0.4674 

Abziqus* 

0.4673 
0.5872 
0.9262 

7r/3 

1 

Present 

Results** 

0.4674 
0.5872 
0.9262 

SSF plate, a = 

'u)(a, 7r/4) 

Thin 

Platet 

63.2800 

Abaqus* 

63.2800 
64.6480 
66.9260 

TT 

Present 

Results^ 

63.2800 
64.6474 
66.9254 

' Timoshenko and Woinowsky-Krieger (1959). 

* Obtained using Mesh Type C with 675 shells elements. 

**Prom Eqs. (10.3.11) & (10.3.18). 

iprom Eqs. (10.3.11) and (10.3.20). 
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10.5 Conclusions 

In this chapter, the exact relationships between the bending 
solutions of sectorial plates based on the Kirchhoff plate theory and 
the Mindlin thick plate theory are presented. These relationships, 
unavailable in the literature, allow engineers to obtain accurate Mindlin 
plate results upon supplying the corresponding Kirchhoff plate solutions, 
which are readily available for most problems in the open literature. 
These relationships can also help to elucidate the effect of transverse 
shear deformation on the flexural behavior of thick sectorial plates. 
Moreover, the Mindlin plate solutions furnished by the bending 
relationships can serve as benchmark results to check the accuracy of 
numerical methods and software developed for thick plate analysis. 

The general relationships included in this chapter for sectorial plates 
are also valid for annular sectorial plates with outer radius a and inner 
radius 6. The edges ^ = 0 and 6 = aaie assumed to be simply supported 
while the other two edges, i.e. r = b and r = a, may be each free, simply 
supported, or clamped. The relationships given in Problems 10.3 and 
10.4 also hold for these plates. However, the expressions for plates with 
specific boundary conditions are too long, and interested readers may 
consult the paper by Lim and Wang (2000). 

Problems 

10.1 Verify Eqs. (10.2.8a,b). 

10.2 Verify Eqs. (10.2.12a,b). 

10.3 Write Eq. (10.3.2) as 

where $(r, ^) is a biharmonic function (i.e., V^^ = 0). 

(a) Use Eqs. (i) and (10.2.9) in Eq. (10.2.11) to show that 

where ^ is a harmonic function satisfying the equation V ^ = 0. 
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(b) Use Eqs. (10.2.5d,e), (10.2.8a,b), (i), and (ii) to show that 

^^ dr ^ dr 
D 

KsGh 

kM _ 1 dwj^ 1 d ^0 

+ r de rde KsGh 

(v2$) + $ - 4-

(v^*) + $ - * 

1 aQ ..... 
A — [m] 

1 ^ 
c^ dr 

iiv) 

10.4 Use Eqs. (i)-(iv) of Problem 10.3 and (10.2.3a-e) in Eq. (10.2.5a-c) to 
establish the following relationships: 

M« = M.?-Oa-.)l|(lf-if).Z,V^* « 

M^e=Ml'e + D{l-u) 
d_ndA 
dr [r 09 

'^2c'^ \r dr '^ r^ de^ dr^ ) 

D d /_o.N D{1 - t/) dn 
2 dr «" = ««" + 7 ^ (v^*)-

= ̂ ( ^ ' * ) + * -

where 

A = 

KsGh 

and J7 is the solution of Eq. (10.2.12a,b). 

10.5 Verify Eqs. (10.3.10a,b). 

* 

(m) 

(iv) 

(v) 

(vi) 
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Chapter 11 

Buckling Relationships 

This chapter presents exact relationships between the buckling loads 
of the classical Kirchhoff plate theory^ the Mindlin plate theory and 
the Reddy plate theory for simply supported polygonal plates, and 
circular and sectorial plates subjected to hydrostatic in-plane loads. The 
buckling load relationships enable one to obtain the solutions of the shear 
deformable plate theories from the known Kirchhoff plate theory for the 
same problem. As examples, some buckling loads for rectangular plates, 
regular polygonal plates, and circular and sectorial plates are determined 
using these relationships. 

11.1 Polygonal Plates 
11.1 .1 Governing Equat ions 

Here we consider buckling of polygonal plates (with straight edges) 
under uniform in-plane compressive load N (measured per unit length) 
on all edges as shown in Figure 11.1.1. The potential energy V of the 
in-plane load N must be added to the strain energy U of the plate to 
form the total potential energy functional U 

U = U + V (11.1.1) 

The strain energy functionals for the Kirchhoff (CPT), Mindlin (FSDT), 
and Reddy (TSDT) plate theories were presented in Chapter 6. The 
potential energy of the in-plane load N is given by 

2 /^..,\2-

JQQ \\dxj \dy j 
dxdy (11.1.2) 
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Figure 11.1.1. Polygonal plate under uniform compressive load N. 

Using the principle of minimum potential energy, the minimization 
of the total potential energy functional 11 with respect to the generalized 
displacements yields the equations for buckling. These equations are 
summarized below for the three theories. 

CPT: 

aM£ . dMi^,^ 
+ xy 

dx ' dy 
-gf = o 

'•xy +-*i^-«f=° dx dy 

dx + 
Kr72^..K 

dy 
N'^V^w 

(11.1.3a) 

(11.1.3b) 

(11.1.3c) 

FSDT: 

dMia dM^ 
dx + xy 

dy 
dM"^. dM/!f, 

- Q f = 0 

^xy 
dx + 

yy -Q'y 
M 

dy 

dQl^Ql^ 
dx dy 

^ M y 2 ^ M 

(11.1.4a) 

(11.1.4b) 

(11.1.4c) 



BUCKLING RELATIONSHIPS 197 

TSDT: 

« | - + « « S _ 4 = o (n.l.6a) 
OX oy 

^ + ^ _ Q ^ = . 0 (11.1.5b) 
dx oy ^ 

^ + ^ + a ( ^ + 2 ^ + ^ ] = N^W (11.1.5c) 
OX oy y ox^ oxoy oy^ J 

where 

M^r, = M^r, - aP^rj (11.1.6a) 

Qi = Qi-PR^ (11.1.6b) 

and ^, ry = x, y, and a and /? are the parameters introduced in the TSDT 

The Laplace operator V^ in the rectangular Cartesian coordinate system 
is 

and the definitions of the stress resultants of the various theories are 
given in Chapter 6. 

The relationships between the force and moment resultants (Ms and 
Qs) and the generalized displacements {w,<px)(t>y) for various theories 
were presented in Chapter 6 [see Eqs. (6.2.22a-c) for the Kirchhoff plate 
theory, Eqs. (6.3.13a-e) for the MindUn theory, and Eqs. (6.4.11a-j) for 
the Reddy theory]. These are restated here for ready reference. 

CPT: 

dxdy 
M^y = -D{1 - 1^)^ (11.1.9c) 
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FSDT: 

M^,=D 
dct>, 

dx 
f , ..9<̂  

+ v 

< - ^ ^ + 

dy 

dy 

d<f>ff' 
M^ = -D(l - ly) (^ + 

dw M' 

dx 

dy 
TSDT: 

^ \ dx ^"^ dy] 5 I 5x2 + v-

^xx — 

P — 
^yy — 

Ky = 

^xy — 

4h'D (d<p^ 5 < \ 
35 \dx dy J 

jD( d^ d^\_ 
5 I dx dy 

dy^ 

h?D (d'^w^ d'^w^^ 
28 5x2 + v 5y2 

D I d'^w^ dV^ 
5 V 5x2 + 

fi' Ah^D (d<t>^ d<f>^ 
35 y 5x dy 

1 - 1 / 

- 2 8 - ' " - ^ ^ - ^ 

Qx 

Rx 

Qy 

Ry 

2 

2 

2hG 

5y2 5t/2 

AD (d<j>^ d(l>^\ D f^d^w^\ 

3 

30 

2hG 
3 

30 

<P^ + 

<f>^ + 

5 \dy 

Ah?D fd<i>^ 
35 \dy 

dw^\ 
dx ) 

dw^\ 

dx I 5 I dxdy j \ 

+ 
d_^\ _ h?D^ /dV^ 
dx I 28 I dxdy 

dx ^ 

dw^' 

>? + 
dw^ 
dy , 

(ll.l.lOa) 

(11.1.10b) 

(11.1.10c) 

(ll.l.lOd) 

(ll.l.lOe) 

(11.1.11a) 

(11.1.11b) 

(11.1.11c) 

(11.1.lid) 

(11.1.He) 

(ll.l.llf) 

(ll.l.llg) 

(11.1.llh) 

(11.1.Hi) 

(ll.l.llj) 
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where D is the flexural rigidity of the plate 

h being the thickness, E the Young's modulus, and ly Poisson's ratio of 
the plate. 

11.1.2 Relationships Between CPT and FSDT 

In view of Eqs. (ll.l.lOa-e) and (11.1.4a-c), we obtain [see Eqs. 
(7.2.2a,b)] 

V^yw^ = iV^V^t/;^, V^w^ = - ^ (11.1.13a, b) 

V'M^ = N^V'w'', V' (w^ - ^ ] = - ^ (11.1.14a, b) 
\ KgLih, j U 

where M^ and M^ are the moment sums 

M- = ^±^=D('4^^'-p.\ (11.1.15b) 
l + v \dx ay J 

Equations (11.1.13a,b) can be combined into the single equation 

U/'^ + ^\^2^K ^Q (11.1.16) 

Similarly, Eqs. (11.1.14a,b) yield 

(V^ + A^) V^ti;^ = 0 (11.1.17) 

where 
JSJM 

A " = (11.1.18) 

For simply supported, isotropic polygonal plate the following 
boundary conditions hold: 

w^ = 0, M^ = V^w^ = 0 for the CPT (11.1.19) 
w'^ = 0, M^ = V'^w^ = 0 for the FSDT (11.1.20) 
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Comparing Eqs. (11.1.16) and (11.1.17), and in view of the 
boundary conditions (11.1.19) and (11.1.20), it follows that 

A^ = ^ (11.1.21) 

or 

N^ = .rK 11.1.22) 
y^^ KsGh) 

which provides a relationship between the buckling loads N^ and N^ 
of a simply supported Kirchhoff plate and a simply supported Mindlin 
plate. Note that Eq. (11.1.22) is similar in form to Eq. (4.2.14) for 
columns, and the effect of shear deformation is to reduce the buckling 
load. 

11.1.3 Relationships Between CPT and TSDT 

By differentiating Eq. (11.1.5a) with respect to x and Eq. (11.1.5b) 
with respect to y, and adding them and using Eq. (11.1.5c), we arrive 
at the governing buckling equation 

2 ^ + 2 ^ + ^ , ; V « V V (n.1.23) 
ox^ oxoy ay^ 

Next, we introduce the moment sum 

M" = ^ - -̂  < , jg ( M + M ) _ OyV (n.1.24) 
l + u b y ax ay J 5 

where the moment-deflection relations ( l l . l . l la ,c) are used in arriving 
at the last result. 

Using Eqs. (ll . l . l la,c,e) in Eq. (11.1.23) and noting the definition 
(11.1.24), we obtain 

V^M^ = N^V^w^ (11.1.25) 

Next, from Eqs. (11.1.5c) and (ll.l.llb,d,f-j), we have 

15 I ax a y ; v 1 5 ; 21 105 
(11.1.26) 
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Substituting for <;Zl>x,x + (l>y,y from Eq. (11.1.26) into Eq. (11.1.24), we 
obtain 

2Gh \ 15 y 7Gh 70 Gh 5 
(11.1.27) 

Finally, using Eq. (11.1.25) one can eliminate V'^w^ from Eq. (11.1.27) 

y^M^ - ^ f 1 - r^N^) V'M^ - ^ ^ A ^ ^ = 0 (11.1.28) 

which can be expressed as 

(V^ + Af) (V^ + A^) M^ = ^ (11.1.29) 

where (j = 1,2) 

Af = -ix + ( - l )V^? + 2̂ (11.1.30a) 

Since Af is negative, it does not lead to a feasible buckling solution. 
Thus, the buckling equation of Reddy polygonal plate is governed by 

(v2 4-Af)7W^ = 0 (11.1.31) 

For polygonal plates with simply supported edges, the TSDT 
requires the specification of the following boundary conditions: 

u;« = 0, M^ = ^ (11.1.32) 

In view of Eqs. (11.1.31), (11.1.32), (11.1.16), and (11.1.19), it follows 
that 

A^ = : ^ (11.1.33) 

or, in view of the expressions for A^ and A^, we obtain 

j ^ R ^ _ ^ _ ^ (11.1.34) 
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Figure 11.1.2 shows a comparison of the buckhng loads predicted by 
the two theories for a simply supported, isotropic {u = 0.3) polygonal 
plate. Both the FSDT and TSDT predict virtually the same buckling 
loads. 

1 

G 

10.0-

^ 8.0-

00 

6.0 H 

4.0 H 

2 2.0-^ 

0.0 

I I I I I I I I I I I I 

Mindlin (FSDT) 

1 I I M I M I ["I [ I I r i M I [ M M ; M I I I I M M r I ' ) I I r M I I I ! I 

0.0 2.0 4.0 6.0 8.0 10.0 

Kirchhoff buckling load 

Figure 11.1.2. Comparison of the buckling loads of a simply supported 
plate as predicted by the Mindlin and Reddy plate 
theories. 

It should be remarked that the relationships developed in this 
section are valid only for simply supported polygonal plates under 
uniform inplane forces (i.e., the same uniform load applied on all sides). 
For example, the relationships in Eqs. (11.1.22) and (11.1.34) do not 
hold for a simply supported rectangular plate subjected to biaxial loads 
(see Figure 11.1.3) 

No, iV, Nyy=jN (11.1.35) 
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Ny. 

Figure 11.1.3. Rectangular plate under biaxial compression. 

For this case, a relationship between the Kirchhoff and Mindlin plate 
can be derived using the solutions of the Kirchhoff plate theory and the 
Mindlin plate theory (see Timoshenko and Gere 1961, Herrmann and 
Armenakas 1960, and Reddy 1997a, 1999a) 

s^b'^ (75^ + rn?) 

D7r^(5^ + m^)^ 
s^h^ (75^ + w?) 1 + /C7r2(l4-^)J 

(11.1.36) 

(11.1.37) 

where m is the number of half waves in the a;—direction, and 

a h? 
* 6' " %'^Ks{\-v) 

Although N^ can be expressed in terms of N^ as 

N^{m) = N^{m) 
1 

l + «7r2(l + ^ ) 

(11.1.38) 

(11.1.39) 

they do not necessarily correspond, in general, to the same number of 
half waves m. This is because N^{m) contains an additional factor 
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involving m. In cases in which both theories yield the critical buckling 
load (i.e. the minimum buckling load) for the same half wave number 
m, it is possible to arrive at the following relationship 

N^ = _-~-^ (11.1.40) 
1 + - ^ 

2KsGh 
I I [[ 47r2(l-^)D 

iV^62 

Note that Eq. (11.1.40) is independent of the aspect ratio s and the 
half-wave number m. When 7 = 1 (i.e. uniform compression), the 
relationship in Eq. (11.1.40) reduces to the one in Eq. (11.1.22). 

For buckling of rectangular plates under uniform in-plane shear 
load, Wang, Xiang, and Kitipornchai (1994) developed an approximate 
relationship in the same form as in Eq. (11.1.22): 

^"^ = TT-in^ir-: ( i i . i .4 i ) 

The preceding form of the formula must be used with the values of 
the modification factor / given in Table 11.1.1 for various boundary 
conditions. These values were generated using a curve-fitting exercise. 
A detailed comparison study between the solutions furnished by the 
formula and the solutions obtained from the Rayleigh-Ritz method 
assured that the maximum difference is 2.5% for h/b < 0.15. 
Comprehensive sets of thin plate solutions for N^ are given in Table 
11.1.2 for ready use in conjunction with the formula (11.1.41). 

Table 11.1.1. Modification factor / for various boundary conditions of 
rectangular plates under uniform shear load. 

Boundary conditions Modification factor / 

SSSS 0.72 
CCCC 0.94/[H-0.05(b/a)] 
CCCS 0.85 
c e s s 0.82 
CSCS 0.74/[l-0.07(b/a)] 
SCSC 0.99/[l+0.17(b/a)] 
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Table 11.1.2. Critical shear load factors A = Nxyb'^/{TT'^D) for thin 
(KirchhofF) rectangular plates. 

Boundary Conditions 

a/b 

0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

SSSS 

26.18 
18.95 
14.73 
12.13 
10.46 
9.324 
8.540 
7.983 
7.581 
7.287 
7.070 
6.907 
6.784 
6.688 
6.611 
6.546 
6.033 
5.840 
5.734 
5.625 
5.582 
5.531 

CCCC 

40.99 
30.70 
23.76 
19.29 
16.47 
14.64 
13.44 
12.64 
12.10 
11.73 
11.46 
11.25 
10.94 
10.64 
10.42 
10.25 
9.859 
9.535 
9.401 
9.298 
9.264 
9.225 

CCCS 

40.38 
29.61 
23.29 
18.58 
15.47 
13.38 
11.96 
10.96 
10.27 
9.771 
9.417 
9.161 
8.973 
8.830 
8.711 
8.534 
7.890 
7.695 
7.487 
7.412 
7.323 
7.288 

cess 
33.01 
24.57 
18.88 
15.38 
13.17 
11.72 
10.75 
10.09 
9.640 
9.324 
9.100 
8.935 
8.803 
8.642 
8.431 
8.254 
7.806 
7.609 
7.453 
7.378 
7.306 
7.272 

SCSC 

40.02 
28.83 
22.51 
18.15 
14.86 
12.57 
10.95 
9.778 
8.923 
8.290 
7.816 
7.459 
7.189 
6.984 
6.829 
6.710 
6.305 
5.928 
5.793 
5.685 
5.600 
5.568 

SCSC 

26.84 
20.20 
16.61 
14.56 
13.33 
12.57 
12.08 
11.75 
11.51 
11.14 
10.78 
10.51 
10.32 
10.18 
10.08 
10.01 
9.642 
9.482 
9.339 
9.273 
9.225 
9.244 

11.2 Circular Plates 
11.2.1 Governing Equations 

Consider an elastic, isotropic circular plate of radius R, uniform 
thickness h, Young's modulus E, shear modulus G and Poisson's ratio 
u subjected to a uniform radial load Â  (see Figure 11.2.1). The 
governing equations of the classical plate theory (CPT), first-order 
shear deformation theory (FSDT), and third-order shear deformation 
theory (TSDT) for axisymmetric buckUng of isotropic circular plates 
are summarized below. 



2 0 6 S H E A R - D E F O R M A B L B BEAMS A N D PLATES 

Figure 11.2.1. Circular plate under uniform compression. 

CPT: 

^ {vQif) = vN^W, vQif = ^ (rM^K) _ M,^ (11.2.1) 

M^ = -D I \ 
''̂  V dr'^ r dr 

. ê̂  = - ^ k - z ^ + r dr"^ r dr J 
(11.2.2) 

FSDT 

dr 
± (rQf!'^ = riV^V^t^^, rQ^ = | ; (rMJ^) - MJ^ (11.2.3) 

M.^ = i ? ( ^ + ^ ^ . ^ ) , MJ^ = Z ) ( . ^ + 1^.^) (11.2.4a) 

Q^ = i<:,G/i f</.f + ^ " l (11.2.4b) 

TSDT: 

[Q^ - 0B^) = j - [rM^, - arPS) - {M^O - <^Pefj (ll-2.5a) 

iK-/^^^^^)-^4^K)-^ = rN^^^w^ (11.2.5b) 
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'•'• h \ dr ^ r^' ] 5 I (ir2 "^r dr 
(11.2.6a) 

^^R AD ( d(t>^ 1 p\ D ( d^w^ ldw^\ 
dr dr^ dr J 

(11.2.6b) 

'•'•" 35 I dr ^ r ' ^ M 28 [ dr^ ^ r dr 

^ji Ah?D ( d<t>^ 1 o\ h?D ( d^w^ Idw^^ 

35 dr 28 dr"^ r dr 
(11.2.6d) 

oH - ? ^ (s^ + ^^"^ ̂  RR - Gh' (,R , dw^ (11.2.6e) 

Here the Laplace operator V^ is understood to be in polar coordinates 
given by 

„2 d? Id 
dr"^ r dr 

(11.2.7) 

11.2.2 Relationship Between C P T and FSDT 

Equations (11.2.1) and (11.2.2) of the CPT and Eqs. (11.2.3) and 
(11.2.4a,b) of the FSDT can be reduced to 

d^i> 2 ( i> 1 .dip 1 1 
rf,3+;^ + ( A o - ; 3 ) ^ + -(Ao + ;:,)V' = o (11.2.8) 

where 

^ 
-f, for CPT 

<f)^, for FSDT 
(11.2.9) 

Ao = s 

NX 
D ' 

TV M 

< 1 - K,Gh 

for CPT 

for FSDT 
(11.2.10) 
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Equation jjj is subject to the boundary conditions 

At r = R: 

ip = 0 for clamped plates 
dip u 
——I- --0 = 0 for simply supported plates 
ar r 
dijj u 
——I- --^ = k2ib for rotational elastic restraint 
dr T 

At r = 0 : 
V̂  = 0 for all boundary conditions (11.2.11) 

where k2 is the rotational spring constant. In view of the similarity of 
the governing equations and boundary conditions, we obtain 

N^ = -^-TfK- (11.2.13) 

(1 + S l ) 
A relationship similar to Eq. (11.2.13) was obtained by Hong, Wang, 
and Tan (1993) for circular plates allowing for in-plane pre-buckling 
deformation. 

11.2.3 Re la t ionsh ip B e t w e e n C P T and T S D T 

Introducing the higher order moment sum V^ as 

dr 

we can write Eq. (11.2.5b) as 

(rQ^ - r^B^) + •^rV'^V'' = riV^V^ti;^ (11.2.15) 

The substitution of Eq. (11.2.5a) into Eq. (11.2.15) leads to 

j^R = NR^^W^ (11.2.16) 

where the moment sum A -̂'̂  is defined as 

j^R ^ M^±Ml ^ 4D 1 ^ ^ ^ _ D^.^n (11.2.17) 
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By substituting Eqs. (11.2.6e) and (11.2.14) into Eq. (11.2.15), one 
obtains 
8Gh 
15 

^li{r<t>?) + W + 
16£>, 
105 

D_ 

J 21 

Prom Eq. (11.2.17), we have the relation 

V2 
r dr AD 4 

(11.2.18) 

(11.2.19) 

In view of Eqs. (11.2.16), (11.2.17) and (11.2.19), we may express Eq. 
(11.2.18) as 

Equation (11.2.20) can be expressed in the form 

(V2 + Af)(V2 + A f ) X ^ = 0 

or 
(V2 + Af)(V2 + A|^)V2^^ = 0 

where 

A(!2 = -Ci ± v e F + 6 

(11.2.20) 

(11.2.21a) 

(11.2.21b) 

(11.2.22a) 

The general solution to Eq. (11.2.21) is of the form 

w^{r) = Ci + C2 Inr + C^M^/xfr) + CiKoiy/x^r) 

+ C,My/>^r) + CeKo{y/x§r) (11.2.23) 

where Jo and KQ are the Bessel functions, and d are constants to be 
determined using the boundary conditions. We have 

At r = R: 

w^ = kR 

dr 
= </)f = 0 for clamped plates 

w^ = M^ = p^ = 0 for simply supported plates 

w^ = P^^ = 0, M^ = k2(t>^ for rotational elastic restraint 

At r = 0 : 
dw^ 

= {] 

dr 
for all boundary conditions (11.2.24) 

dr = 0 ^ {TM^^^ - arPS) - [M^e " ocP^e) = 0 
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where ^2 is the rotational spring constant. For example, boundary 
conditions for the clamped plate yield C2 = C4 = Ce = 0 and 

0 JoCVAfi?) JoW>^§R) 

(11.2.25) 
or 

(11.2.26) 

The same type of equation holds for the Kirchhoff plate theory with 
Af = A^ = A^. Hence, by analogy, we have 

N^ = 
i V ^ ( l + NX \ 

TOUh) 

1 4- N'^ 
(11.2.27) 

17^ 

The foregoing relationship given in Eq. (11.2.27) is valid for circular 
plates with any homogeneous edge condition such as (i) simply supported 
edges, (ii) clamped edges, (iii) simply supported edges with elastic 
rotational restraints and (iv) free edges with the centre clamped. Cases 
(i) and (iv) produce identical buckling solutions. Now, the Kirchhoff 
buckling solution for these plate cases may be unified and expressed as 

INRR'^ 
D Jo 

iN^r^ 
D + 

k2R 

D 
- ( l - i . ) Ji 

IN^RA 
D 

• ) 

= 0 

(11.2.28) 
where Jo(*) and Ji(-) are Bessel functions of the first kind of order 0 and 
1, respectively, and ^2 is the rotational spring stiffness with extreme 
values covering the two ideal edges of simply supported {k2 = 0) and 
clamped (fc2 = oo). 

11 .2 .4 N u m e r i c a l R e s u l t s 

Table 11.2.1 presents the Kirchhoff, MindUn, Reddy and Ye's 
buckling factors NR^ /D for circular plates with various values of the 
thickness to radius ratio h/R, elastic rotational restraint parameter 
k2RlD and Poisson's ratio v = 0.3. Note that the Kirchhoff buckling 
factor is independent of h/R due to the neglect of transverse shear 
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deformation. Both the MindHn and Reddy results are very close to 
each other but are somewhat lower than the three-dimensional elasticity 
solution of Ye (1995). Ye (1995) derived the buckling load of circular 
plates from three-dimensional elasticity considerations. The analysis is 
based on a recursive formulation that results in the need to solve for 
only the roots of a 2 x 2 determinant for the buckling load. 

Table 11.2.1. Comparison of buckling load factors for circular plate 
based on different theories. 

h 
R 

0.05 

0.10 

0.20 

0.30 

k-jR 
D 

0 
1 
10 
oo 
0 
1 
10 
0 0 

0 
1 
10 
oo 
0 
1 
10 
0 0 

CPT 

4.1978 
6.3532 
12.173 
14.682 

4.1978 
6.3532 
12.173 
14.682 

4.1978 
6.3532 
12.173 
14.682 

4.1978 
6.3532 
12.173 
14.682 

FSDT 

4.1853 
6.3245 
12.068 
14.530 

4.1481 
6.2399 
11.764 
14.091 

4.0056 
5.9231 
10.686 
12.572 

3.7888 
5.4610 
9.2710 
10.658 

TSDT 

4.1853 
6.3245 
12.068 
14.530 

4.1481 
6.2400 
11.764 
14.091 

4.0057 
5.9235 
10.688 
12.576 

3.7893 
5.4625 
9.2792 
10.671 

Ye (1995) 

14.552 

14.177 

12.824 

11.024 

11.3. Sectorial Mindlin Plates 
11.3.1 Governing Equations 

The buckling load relationship derived in the last section also applies 
to sectorial plates with simply supported edges and may be applied to 
sectorial plates with simply supported radial edges and either a clamped 
or a free circular edge. The availability of this relationship allows easy 
and accurate deduction of buckling loads of the Mindlin plates from their 
corresponding Kirchhoff plate solutions. 
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Consider an elastic, isotropic, sectorial plate with uniform thickness 
/i, radius i?, included angle a, Young's modulus E, Poisson's ratio u, and 
shear modulus G = E/[2{l + iy)], The sectorial plate is simply supported 
along the radial edges defined by ^ = 0 and 6 = a and its circular edge 
as well. The plate is subjected to uniform in-plane compressive load N, 
as shown in Figure 11.3.1. 

N. 

1 ^ 
L —̂ 

T—1 1^ ^^ 

J 

Figure 11.3.1. Buckling of a sectorial plate under compressive force N, 

According to the MindUn plate theory, the equations for buckling 
in polar coordinates (r, 6) are given by 

dr r 89 r 

dr h r dO r 

- Q f = 0 

or r aO r 

(11.3.1) 

(11.3.2) 

(11.3.3) 

where 

Qj,2 ^ Qj* ^2 QQ2 

is the Laplacian operator, w^ is the transverse displacement, and the 
bending moments per unit length M^,M^,M^ and shear forces per 
unit length Q ^ , Q^ are given by 
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M^ = D 

MM = D 

ejl,,(,.,?^' 

^ee 

Mri 

dr r 

d4>r 

D{1 - v) fdcj)^ _ 1 M' 

2 \ dr r 

dr 

Qr=K.Gh(^^r^l'-^) 

(11.3.4) 

(11.3.5) 

(11.3.6) 

(11.3.7) 

(11.3.8) 

where (^^,(^^ axe the bending rotations, Ks is the shear correction 
factor and D = Eh^/[12{1 - i/'^)] the flexural rigidity of the plate. 

By substituting the shear forces from Eqs. (11.3.1) and (11.3.2) into 
Eq. (11.3.3), and taking note of Eqs. (11.3.4)-(11.3.6), one can rewrite 
Eq. (11.3.3) as 

^ M y 2 ^ M ^ y2_y^M (11.3.9) 

where A^^ is the moment sum defined as 

_^M^M,V + Mî  
l + i^ « i = f l i M ! + v + - * " ' dr r ae 

(11.3.10) 

In view of Eqs. (11.3.7), (11.3.8) and (11.3.10), one can also express Eq. 
(11.3.3) as 

KsGh V^w^ + 
M M' 

D 
j ^ M y 2 ^ M ^ Q (11.3.11) 

Substituting the moment sum given by Eq. (11.3.11) into Eq. (11.3.9) 
furnishes 

VMV'^+ ^Z^ U ^ = 0 (11.3.12) 
1 - KsGh^ 

The boundary conditions for the simply supported circular edge of 
the sectorial Mindlin plate are 

^ ^ {R, 9) = 0, (t)^{R, 9) = 0, Mi!^^{R, 9) = 0, (11.3.13) M( 
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and for the simply supported radial edges 

w^{r,0) = w^{r,a) = 0 (11.3.14a) 
<^^(r, 0) = 0^(r, a) = 0 (11.3.14b) 

Mi^{r,e) = M^{r,a) = 0 (11.3.14c) 

The displacement functions for the considered sectorial plates may 
be assumed to take the following forms: 

w'^ir, e) = W'^ir) sin ^ ^ (11.3.15) 
a 

<i>^{r,e) = $ i ^ ( r ) s i n ^ ^ (11.3.16) 
a 

cl>^{r,e) = ^^{r)cos^ (11.3.17) 

where n is the number of circumferential nodal diameters. In view of 
Eqs. (11.3.15)-(11.3.17) and Eqs. (11.3.3), (11.3.7), (11.3.8), (11.3.10), 
(11.3.11) and (11.3.13), the boundary conditions for the curved edge 
may be expressed as 

w^{R,9)=0 (11.3.18a) 

and 

= - —-— + —^ sm (11.3.18b) 
y dr^ T dr j a 

where C = - 1 + [N^/{KsGh)]. Also, the boundary conditions given in 
Eq. (11.3.14) for the radial edges may be expressed as 

w^{r, 0) = w^[r, a) = 0, V^w^{r, 0) = V^w{r, a) = — — = 0 
(11.3.19) 

Now, let us consider the same buckling problem using the Kirchhoff plate 
theory. Based on this theory, the governing equation is given by 

V2 iv'^ + ^ " j w"" = 0 (11.3.20) 
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where N^ and w^ axe the buckUng load and the transverse displacement 
of the CPT, respectively. 

The boundary conditions for the simply supported circular edge of 
the sectorial plate in CPT are 

w^{R, 6) = 0, M^{R, 6) = 0, (11.3.21) 

and for the simply supported, radial edges 

w^{r, 0) = W^{T, a) = 0, M^{T, 9) = M^{r, a) = 0 (11.3.22) 

Using the function 

t^^(r, 6) = l y^ ( r ) sin ̂  (11.3.23) 

the boundary conditions given by Eq. (11.3.22) may be written as 

w^{R,e)=0 (11.3.24a) 

and 

V^w^{R,e) = — - ^ - + -— sm (11.3.246) 
\̂  dr^ T dr j _ a 

and Eq. (11.3.22) may be expressed as 

W^{T, 0) = W^{T, a) = 0, V'^W^{T, 0) = V'^w^{r, a) = 0 (11.3.25) 

11,3.2 Buckl ing Load Re la t ionsh ip 

In view of the governing equations (11.3.12) and (11.3.20), the 
boundary equations (11.3.18), (11.3.19) and (11.3.24), (11.3.25), one 
may deduce that 

jsjM ATK 

-N^ ov N^ = ^^ (11.3.26) 
•*• KsGh ^ "*• KsGh 

This relationship, however, is not vaUd if the curved edge of the sectorial 
plate is either clamped or free because the expressions for their boundary 
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conditions according to the Mindlin and KirchhofF plate theories do not 
match exactly. 

Table 11.3.1 shows the comparison studies between the buckling 
load factors obtained by (a) the Ritz method and (b) the buckling 
load relationship in Eq. (11.3.26). For details of the Ritz method, 
the reader may refer to the papers by Wang et al. (1994) and Xiang et 
al. (1993). Prom the table, it can be seen that the buckling results are 
in excellent good agreement, thus verifying the derived buckling load 
relationship. The small differences in results are due to round-off errors 
in the numerical calculations. 

Table 11.3.1. Comparison of buckling load factors NB?/D of simply 
supported sectorial plates {u = 0.3, Kg = 5/6). 

a h/r Ritz Eq. (11.3.26) 

7r/6 

7r/4 

7r/3 

7r/2 

37r/4 

TT 

When apphed to sectorial plates with simply supported radial edges 
and either a clamped or a free circular edge, the relationship gives higher 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

96.92 
75.89 
45.97 

55.75 
48.08 
34.03 

38.85 
34.96 
26.88 

24.50 
22.89 
19.12 

16.44 
15.65 
13.78 

12.69 
12.23 
11.06 

-
75.90 
45.98 

-
48.09 
34.05 

-
34.97 
26.90 

-
22.90 
19.14 

-
15.70 
13.84 

-
12.25 
11.08 
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results. The relationship may, however, be made to give good results by 
introducing a modification factor / to the relationship as shown below 

! + /(&) 
where the proposed factor is given by 

/ = ( a i + a 2 | ) | (11.3.28) 

with 
oi = 16.39 + 0.14a, 02 = -55.44 - 0 .48Q (11.3.29a) 

Table 11.3.2. Compjirison of buckling load factors NR^/D of sectorial 
plates with simply supported radieJ edges amd cljimped 
circular edge {u — 0.3, Kg = 5/6). 

a h/R Ritz Eq. (11.3.27) 

7r/6 

7r/4 

7r/3 

7r/2 

37r/4 

7r 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

122.90 
89.28 
49.72 

76.94 
62.10 
39.69 

57.82 
48.81 
33.70 

40.71 
36.12 
27.08 

31.00 
28.18 
22.37 

26.23 
24.24 
19.83 

-
88.89 
49.24 

-
62.05 
39.69 

-
48.97 
33.88 

-
36.10 
27.14 

-
28.23 
22.41 

-
24.21 
19.78 
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for sectorial plates with clamped circular edge, and 

ai = 18.9 + 7.78a + 24.15a^ a2 = -59.28 - 53.94a - 89.57a2 
(11.3.29b) 

for sectorial plates with free circular edge. The above modification 
factors were obtained via regression analysis. Tables 11.3.2 and 11.3.3 
show the accuracy of the modified relationship for sectorial plates with 
clamped circular edge and with free circular edge, respectively. 

Table 11.3.3. Comparison of buckling load factors NB?/D of sectorial 
plates with simply supported radial edges and free circular 
edge (i/ = 0.3, ^5 = 5/6). 

a 

7r/6 

7r/4 

7r/3 

7r/2 

h/R 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

.001 
0.10 
0.20 

Ritz method 

35.77 
30.13 
22.61 

14.94 
13.53 
11.52 

7.73 
7.22 
6.51 

2.72 
2.61 
2.45 

Eq. (11.3.27) 

-
30.11 
22.54 

-
13.54 
11.57 

-
7.22 
6.50 

-
2.61 
2.45 

Problems 

11.1 The equation governing the buckUng of a biaxially loaded Kirchhoff 
plate is given by 

where Nxx < 0 and Nyy < 0 are the in-plane compressive forces on 
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the edges of a rectangular plate. Suppose that 

iV„ 
NxX = -^ 'O , Nyy = -JNO, 1 = - ^ 

Nr. 
(u) 

and the edges axe simply supported. Use the Navier solution procedure 
(see Problem 7.1) with 

where a emd 6 are the plate dimensions, to obtain the buckling load 

iVo(m,n) = -72—2—T'i 2 {iv) 

where s = b/a is the plate aspect ratio. 

11.2 Consider the buckling of uniformly compressed rectangular plates 
simply supported along two opposite edges perpendicular to the 
direction of compression (see Figiure P I 1.2) and having various edge 
conditions along the other two sides. For the case of̂  uniform 
compression along the x axis, we have Nxx = --NQ and Nyy = 0, 
and Eq. (i) of Problem 11.1 reduces to 

D\-,r^ + 2^^-7777^ + 7T-T I = - iVo^ZT W 
dx"^ dx^dy^ dy"^ dx'^ 

This equation must be solved for the buckling load NQ and mode shape 
w for any given boundary conditions. 

simply 
supported 

No 

> ' 

r 
1* 'J 

1 ; - .• 

f 

1 
n - • { \ i 

I ~ . . . . . .^ 

PI 

L ^ 0 

Figure P 1 1 . 2 
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Assume the solution of Eq. (i) in the form 

rriTT 
w{x,y) = W{y) sin amX, am = 

a 
(n) 

which satisfies the boundary conditions along the simply supported 
edges X = 0, a of the plate. Use Eq. (ii) in Eq. (i) of Problem 11.1 
£uid obtain 

4 ^0 2 A TX. o 2 d^^ d"^^ n 

Obtain the generzil solution of Eq. (iii) when 

^2 

{iii) 

(iv) 

In particular, show that 

W{y) = Ci cosh Aiy + C2 sinh Xiy + C3 cos X2y + C4 sin A2y {v) 

where Ci (i = 1,2,3,4) are constants, and 

(Ai)' = y ^ + a L (A2f = \ K 
No 

m Tj ^m {vi) 

11 .3 Consider the buckling of uniformly compressed rectangular plates with 
side y = 0 simply supported and side y = b free (see Figure PI 1.3). 
The boundary conditions on the simply supported and free edges are 

d^w d^ 
W = 0, Myy = '-D{u—^ + 

w 

Myy = 0, Vy = ^D 

dx^ dy^ 
= 0 at j/ = 0 (z) 

0 at y = 6 (ii) 

No 

simply 
supported 

free 

F igure P 1 1 . 3 
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Use the above boundary conditions to show that the constants in Eq. (v) of 
Problem 11.2 are given by Ci = C3 = 0, and 

z/a^ -X1JC2 sinh A16 + (z /a^ + A^) C4 sin A26 = 0 

(1 - i / ) a^ - A?|C2cosh A16 + A2[(1 - i^)al, + XjlC4cos A26 = 0 

{in) 

Show that the chciracteristic equation associated with these equations is 

X2^l sinh A16 cos X2b - XiVl\ cosh Xib sin X2h = 0 {iv) 

where Qi and Q2 ctre defined by 

11.4 Derive the relationship in Eq. (11.1.40) using Eqs. (11.1.36) and 
(11.1.37). 

11 .5 Derive the governing buckling equation in Eq. (11.2.8) using Eqs. 
(11.2.3) and (11.2.4a,b). 
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Chapter 12 

Free Vibration Relationships 

This chapter presents exact relationships between the natural 
frequencies of the classical Kirchhoff plate theory, the Mindlin plate 
theory and the Reddy plate theory for simply supported, polygonal 
isotropic plates, including rectangular plates. The relationship for the 
natural frequencies enables one to obtain the solutions of the shear 
deformable plate theories from the known Kirchhoff plate theory for the 
same problem. As examples, some vibration frequencies for rectangular 
and regular polygonal plates are determined using this relationship. 

12.1 Introduction 

To derive the equations of motion, Hamilton's principle is used. The 
Hamilton principle can be expressed as 

6 f \ u + V-K)dt = 0 (12.1.1) 
Jti 

where U denotes the strain energy, V the potential energy due to applied 
loads, K the kinetic energy, and ii and t2 are initial and final times. 
The strain and potential energy functionals for the CPT, FSDT, and 
TSDT are given in Chapter 6 with all the displacement components 
being functions of time as well. The kinetic energy is given by 

2 JQQ [ 7 -

h 
2 (^)^-(^r-(^)H-^(--) 

where p is the mass density of the plate, h the plate thickness, and 
{ui,U2jU^) are the displacements along the {x^y^z) coordinates. The 
assumed displacement expansions, for the pure bending case, in the 
Kirchhoff, MindUn, and Reddy plate theories are given by Eqs. (6.1.1a-
c), (6.1.2a-c), and (6.1.4a-c), respectively. Substituting the displacement 
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expansions into Eq. (12.1.2) one can obtain the total kinetic energy in 
terms of the generahzed displacements of each theory, as given below for 
uniform thickness homogeneous plates. 

CPT: 

--^uK^y-^ 'a2 Wi K' 

dxdt \dydt) 
\dxdy 
i 

(12.1.3) 

FSDT: 

.«.i /j4^U. dt ) 
d<f>A\ fd(f>y 
dt + dt 

>dxdy 

(12.1.4) 

TSDT: 

K -iu»(̂ y^^^ dt xm 
+ C4l6 [ dxdt J \ dydt J 

where a = 4/3/i^ and 

ii-J_U^y dz 

or 

h = h - 2a/4 + a^/e, U = h - ah 

T U T P^^ T P^^ T Ph^ 

Io = ph, /2 = — ' ^̂  = -80-' ^^=448 

(12.1.6) 

(12.1.7) 

(12.1.8a) 

(12.1.8b) 

Employing Hamilton's principle (or the dynamic version of the principle 
of virtual displacements), one can derive the equations of motion 
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associated with the theories [see Reddy (1999) for the details]. For free 
vibration, we assume periodic motion of the form 

wo{x,y,t) = w{x,y)e^^' (12.1.9a) 

0x(a:,y,O = V^x(x,2/)e^' (12.1.9b) 

ct>y{x,y,t) = ipy{x,y)e^' (12.1.9c) 

where u is the the angular frequency, and reduce the equations of motion 
to those governing free vibration. The equations of free vibration for 
various theories are summarized below. In the interest of simplicity, (px 
is used in place of (px^ and (py is used in place of ^py. 

CPT: 

FSDT: 

« « £ + ^ _ 0 « = 0 (12.1.10a) 
OX uy 

2 f . ? ^ - C ? - 0 (12.U0b) 

^ + ^ _ , ^ i „ - ('".IOC) 

- ^ + -g jp -«x --J2-"M*. (12.1.na) 

dx dy 
^ + ^ = -pfuo^yj^ (12.1.11c) 

TSDT: 

dx [M^x ^^2Pxxj + gy[M^y 3,^2^5) [Qx ^2^xj 

A/^M^ - —PA ^ -^ ( MR - -^PA - (nR-—pR 
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12.2 Relationship Between CPT and FSDT 
12.2.1 General Re la t ionsh ip 

One can derive an exact relationship between the natural frequencies 
of FSDT and those of the corresponding CPT. This relationship is, 
however, restricted to a class of polygonal plates in which all the straight 
edges are simply supported. 

Substituting for Q f and Q ^ from Eqs. (12.1.10a,b) into Eq. 
(12.1.10c), we obtain 

V 4 ^ ^ - ^ a ; | , ^ ^ = 0 (12.2.1) 

Similarly, from Eqs. (12.1.11a-c), we obtain 

V 2 ^ M _ KsGh ^^,^ ^ ^2^A/>| ^ .^^l^M"" (12.2.2) 

KsGh (M^ + V2u;^) = -phiJiiW^ (12.2.3) 

where M^ is the moment sum 

j^M ^ '""'xx ^ '^'yy (12.2.4) 

l + u 

Eliminating M^ from Eqs. (12.2.2) and (12.2.3), one obtains 

(12.2.5) 
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Equation (12.2.5) may be factored to give 

(V^ + Ai) (V^ + A2) w^ = 0 (12.2.6) 

where 

A,=ei + ( - l )V^i+^2 (12.2.7) 

Alternatively, Eq. (12.2.6) may be written as two second order equations 
given by [see Pnueli (1975)] 

(V^ + Ai) w^ = w, (V^ + A )̂ ^ = 0 (12.2.9) 

where z = 1 if j = 2 and vice versa. 

For the hard type of simply supported (S) polygonal plate, the 
boundary conditions are given by Eqs. (6.3.22). Since along the straight 
edge (p^ = 0 imphes that d(j)^ /ds = 0, then together with the condition 
M^ = 0, one may deduce that dcf)^/dn = 0. In view of this fact and 
Eq. (12.2.3), the boundary conditions may be given as 

w^ = 0, M^ = 0, V^w^ = 0, w = 0 (12.2.10) 

Note that the governing equation for Kirchhoff plates in vibration 
given by Eq. (12.2.1) may be obtained from Eq. (12.2.5) by setting 
Kg -^ 00 and omitting the rotary inertia term [= {ph^uP'V'^w) / (12D)]. 
Similarly, Eq. (12.2.1) of Kirchhoff plate may be factored to give 

(V^ - \\) w"" = (V^ + A;,) (V^ - A;,) w"" = 0 (12.2.11) 

Ale = ^ {UJK)' (12.2.12) 

For a simply supported polygonal Kirchhoff plate, the deflection and 
the Kirchhoff Marcus moment are zero at the boundary, i.e. 

w^ = 0, M^ = ^DV^w^ = 0 (12.2.13) 
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As pointed out by Conway (1960), and later proven by Pnueli (1975), 
the frequency solutions of the fourth order differential equation (12.2.11) 
and the boundary conditions given by Eq. (12.2.13) are the same as 
those given by solving simply the following second order differential 
equation 

( V 2 + A K ) ^ ^ = 0 (12.2.14) 

and the boundary condition w^ = 0. 

Owing to the mathematical similarity of Eqs. (12.2.9) and (12.2.10) 
with Eqs. (12.2.13) and (12.2.14), it follows that the aforementioned 
Mindlin plate vibration problem is analogous to the Kirchhoff plate 
vibration problem. Thus, for a given simply supported polygonal plate 

Xj = XK (12.2.15) 

The substitution of Eqs. (12.2.8) and (12.2.12) into Eq. (12.2.15) 
furnishes the frequency relationship between the two kinds of plates 

(-S')-^{hH(W^('- K.(l-i^) 

\ 
1 + ^ ( ' ^ K ) 

(12.2.16) 

where Â  = 1,2,..., corresponds to the mode sequence number. 

If the rotary inertia effect is neglected, it can be shown that the 
frequency relationship simplifies to 

{^'M)N = 
{^]<)N 

1 _i_ (^fr)Nfc^ / £h 
(12.2.17) 

where CJM is the frequency of MindUn plate without the rotary inertia 
effect. This frequency value COM is greater than its corresponding UJM 
but smaller than UJK-
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12.2.2 Numerical Results 

Graphical representations of the frequency relationships given by 
Eqs. (12.2.16) and (12.2.17) are shown in Figure 12.2.1, where u = 0.3 
and Ks = 5/6 have been assumed. By nondimensionalizing the circular 
frequency using p, /i, and D, the curves shown in Figure 12.2.1 become 
independent of the plate shape! Note that as one moves along the curves 
away from the origin, the plate gets thicker or the frequency value 
becomes higher. It is clear from the figure that when the frequencies 
are low (lower modes of frequency or thin plates), the FSDT solutions 
are close to the OPT solutions. When the plate thickness increases and 
for higher mode frequencies, the FSDT solutions decrease relative to 
the CPT solutions. The effect of rotary inertia is also shown in the 
same figure and it can be seen that this effect becomes significant for 
high frequency values. The effect of shear deformation is to reduce the 
magnitude of frequencies. 

10-

e 

2 

c 
3 

Kirchhof 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 8 10 

Kirchhoff frequency parameter 

Figure 12.2.1. Frequency relationship between CPT and FSDT. 
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Although the relationship given in Eq. (12.2.16) is exact only 
for polygonal plates with straight edges, it has been shown by Wang 
(1994) that the relationship provides reasonably accurate frequencies 
for the FSDT from the CPT solutions even when the simply supported 
edges are curved. This relationship enables a quick deduction of simply 
supported Mindlin plate frequencies from the abundant Kirchhoff plate 
vibration solutions. It may be used as a basic form in which approximate 
formulas may be developed for predicting the FSDT frequencies for other 
boundary conditions. Moreover, the exact relationship provides a useful 
means to check the validity, convergence and accuracy of numerical 
results and software. 

Conway (1960) pointed out the analogies between the vibration 
problem of the CPT, the buckling problem of the CPT and the 
vibration problem of uniform prestressed membranes. Owing to these 
existing analogies, one may choose to substitute into Eq. (12.2.16) the 
buckling solution for the corresponding simply supported Kirchhoff plate 
under hydrostatic inplane load, or the frequency of the corresponding 
uniformly prestressed membrane, instead of the CPT frequency. In other 
words, it may take any one of the following expressions: 

where NN is the buckling load for the iV-th mode, UN the iV-th frequency 
of the vibrating prestressed membrane, /x the mass density per unit area 
of membrane and T the uniform tension per unit length of membrane. 

Owing to the importance of having exact solutions for checking 
the convergence and accuracy of numerical results, highly accurate 
simply supported Kirchhoff (classical thin) plate frequencies for various 
polygonal shapes are presented in Tables 12.2.1-12.2.4. These Kirchhoff 
solutions when used together with Eq. (12.2.16) or Figure 12.2.1 provide 
benchmark Mindhn plate vibration results for analysts. The accurate 
results for simply supported circular plates, annular plates, sectorial 
plates and annular sectorial plates are also presented in Tables 12.2.4 to 
12.2.7, respectively, as they may be used to generate the corresponding 
FSDT results quite accurately. 
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Table 12.2.1. Frequency parameter XK of triangular and rectangular 
Kirchhoff plates with simply supported edges {XK = 

Triangle 

Liew (1993) 

y 
A 

1 
O 

i 

"A 
/i\ 

/ \ L i _ 
d 

R< 

Ur 

d/a 

1/4 

1/2 

^ . . x • W X 

a 

jctangle [see Leiss 

U — 2 _ 
\i 
-A 

^^phlD] 

h/a 

2/5 
1/2 
2/3 
1.0 
2/v/3 
2.0 

2/5 
1/2 
2/3 
1.0 
2/v/3 
2.0 

. 

1 

23.75 
27.12 
33.11 
46.70 
53.78 
101.5 

23.61 
26.91 
32.72 
45.83 
52.64 
98.57 

Mode 

2 

40.80 
49.47 
65.26 
100.2 
115.9 
195.8 

40.70 
49.33 
65.22 
102.8 
122.8 
197.4 

sequence number 

3 

60.54 
75.18 
88.68 
117.2 
134.7 
275.0 

60.55 
76.29 
87.38 
111.0 
122.8 
256.2 

4 

70.33 
78.27 
106.1 
171.8 
198.1 
315.6 

69.78 
76.30 
106.0 
177.3 
210.5 
335.4 

5 

83.39 
107.4 
141.2 
197.0 
229.2 
427.7 

83.42 
108.0 
142.5 
199.5 
228.1 
394.8 

ja(1969) and Reddy (1999)] 

where m and n sure the number of ha 

6 

101.8 
117.4 
156.4 
220.4 
252.0 
464.2 

101.5 
116.4 
154.8 
203.4 
228.1 
492.5 

tlf waves 

Note that Mindlin (1951) pointed out that for an isotropic plate, 
the shear correction factor K3 depends on Poisson's ratio v and it 
may vary from Ks = 0.76 for z/ = 0 to Ks = 0.91 for u = 0.5. 
Following Mindlin's suggestion of equating the angular frequency of the 
first antisymmetric mode of thickness-shear vibration according to the 
exact three-dimensional theory to the corresponding frequency according 
to his theory, it can be shown that the shear correction factor is given 
by the following cubic equation: 

{K.f - 8 {K^f + ^-^^Y^ " 13^ = ° ^̂ -̂̂ -̂ ^̂  
For example, if i/ = 0.3, then K^ = 0.86 and if j / = 0.176, then 
Ks = 7rVl2. 
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Table 12 .2 .2 . Frequency parameter \K of parallelogram KirchhoflF plates 
with simply supported edges [\K = Cjn\/ph/D\ see Liew, 
Kitipornchai, and Wang (1993)]. 

• /} 

K_-Z 
1-* 

'* a 

a/b 

1.0 

1.5 

y/» 
Ji 

2.0 

0 

15° 
30° 
45° 
60° 
15° 
30° 
45° 
60° 
15° 
30° 
45° 
60° 

1 

20.87 
24.96 
35.33 
66.30 
15.10 
18.17 
25.96 
48.98 
13.11 
15.90 
23.01 
44.00 

Mode 

2 

48.20 
52.63 
66.27 
105.0 
28.51 
32.49 
42.39 
70.51 
20.66 
23.95 
32.20 
56.03 

sequence number 

3 

56.12 
71.87 
100.5 
148.7 
46.96 
53.48 
64.80 
96.99 
33.08 
36.82 
46.21 
72.79 

4 

79.05 
83.86 
108.4 
196.4 
49.76 
58.02 
84.18 
127.3 
44.75 
52.64 
63.50 
92.80 

5 

104.0 
122.8 
140.8 
213.8 
61.70 
76.05 
93.31 
162.3 
50.24 
56.63 
82.08 
117.4 

6 

108.9 
122.8 
168.3 
250.7 
75.80 
78.61 
107.5 
171.1 
52.49 
63.26 
83.00 
151.7 

Table 12 .2 .3 . Frequency parameter XK of symmetrical trapezoidal 
Kirchhoff plates with simply supported edges [A/fft = 

Shape 

b 

c 

r 

[ 
a 

m— -'' 

Ur 

a/b 

1.0 

J 2.0 
• ^ 

^h^y/ph/D\ see Liew and Lim (1993)]. 

c/b 

1/5 
2/5 
3/5 
4/5 
1/5 
2/5 
3/5 
4/5 
1/5 
2/5 
3/5 
4/5 

1 

3.336 
2.198 
1.654 
1.356 
6.158 
3.703 
2.636 
2.089 
9.919 
5.351 
3.680 
2.856 

Mode 

2 

4.595 
3.479 
3.066 
2.833 
7.269 
5.175 
4.313 
3.802 
10.76 
7.575 
5.973 
5.053 

sequence number 

3 

6.860 
5.499 
3.728 
2.879 
9.507 
7.390 
5.971 
4.494 
13.17 
9.633 
8.255 
6.187 

4 

10.19 
5.789 
5.394 
4.560 
12.85 
9.272 
6.575 
6.121 
16.51 
12.83 
8.398 
7.452 

5 

10.23 
7.737 
6.037 
5.086 
17.30 
10.63 
9.787 
7.257 
20.99 
13.69 
11.41 
10.32 

6 

11.53 
9.027 
6.156 

5.192 
20.42 
14.22 
10.05 
8.000 
26.74 
17.07 
14.48 
10.64 
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Table 12 .2 .4 . Frequencies of regular polygonal and circular KirchhofF 
plates with simply supported edges. 

Shape Frequency parameter A/<'6^ = Unb y/ph/D 

No. of Mode sequence number 

sides 

52.6 
19.7 
28.9 
22.2 

122 
49.3 
73.0 
57.8 

122 
49.3 
73.2 
57.8 

210 
79.0 
130 
102 

228 228 
98.7 98.7 
130 151 
102 117 

Jn{y/X]^R) "^ /n(v/A^H) (1-^) 

where J^ eind In are the Bessel functions and 
the modified Bessel functions, respectively, 
of the first kind of order n [see Leissa (1969)] 

Table 12.2 .5 . Frequencies of annular Kirchhoff" plates with simply 
supported edges [see Vogel and Skirmer (1965)]. 

Shape Frequency parameter Xj^b^ = Unb yph/D 

Number of nodal diameters m and 
nodal circles n, (m, n) 

a/b 

0.1 
0.3 
0.5 
0.7 
0.9 

(0,0) 

14.5 
21.1 

40.0 
110 
988 

(1.0) 

16.7 

23.3 
41.8 
112 
988 

(2,0) 

25.9 
30.2 

47.1 
116 
993 

(3,0) 

40.0 
42.0 
56.0 
122 
998 

(0,1) 

51.7 
81.8 
159 
439 
3948 

(1,1) 

56.5 
84.6 
161 
441 
3948 
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T a b l e 12 .2 .6 . Frequencies of sectorial Kirchhoff plates with simply 
supported edges [see Xiang, Liew, Kitipornchai (1993)]. 

Shape Frequency parameter 

0 1 

30° 97.82 
45° 56.67 
60° 39.78 
90° 25.43 

Mode 

2 

183.7 
121.5 
94.38 
56.67 

A K 6 ' = Wn6VpV-D 

sequence number 

3 4 5 

277.9 288.2 412.0 
148.5 205.6 256.3 
97.82 168.5 177.4 
69.95 97.82 121.5 

6 

431.3 
277.9 
183.7 
134.1 

Table 12.2.7 . Frequencies of ainnular sectorial Kirchhoff plates with 
simply supported edges [see Xiang, Liew, Kitipornchad 
(1993)]. 

Shape 

^ 

' " \ >0 >7̂  "v\ 
^ \ ^ 

a/b 

0.2 

>̂  
\ 

\ 
10.4 

/ 
/ 

s / 

0.5 

Frequency parameter 

/? 

30° 
45° 
60° 
90° 

30° 
45° 
60° 
90° 

30° 
45° 
60° 
90° 

1 

97.82 
56.73 
40.16 
27.17 

98.75 
60.31 
46.28 
36.19 

103.3 
68.34 
55.97 
47.15 

Mode 

2 

183.8 
122.3 
97.48 
56.73 

195.5 
148.2 
98.75 
60.31 

228.6 
150.8 
103.3 
68.34 

AK62 = = a 'nbS /phiD 
sequence number 

3 

277.9 
148.5 
97.82 
78.68 

277.9 
148.7 
131.7 
98.75 

278.2 
189.7 
176.1 
103.3 

4 

288.5 
210.1 
177.4 
97.82 

336.3 
260.4 
177.5 
120.0 

427.0 
278.2 
178.8 
150.7 

5 

413.9 
256.3 
179.9 
122.3 

430.5 
277.8 
195.5 
148.2 

438.8 
283.5 
228.6 
166.5 

6 

431.3 
277.9 
183.8 
148.5 

529.4 
286.1 
269.7 
148.7 

539.8 
387.8 
278.3 
189.7 



FREE VIBRATION RELATIONSHIPS 2 3 5 

On the other hand, comparing the MindUn plate equations for the 
constitutive shear forces with the ones proposed by Reissner (1945), 
who assumed a parabohc variation of the shear stress distribution, the 
imphcit shear correction factor of Reissner takes the value of 

Ks = l (12.2.20) 
0 

Based on an analytical vibration solution of three-dimensional, simply 
supported, rectangular, isotropic plate, Wittrick (1987) performed a 
calibration of the Mindlin shear correction factor. He proposed that 
the shear correction factor be given by 

Ks = - ^ (12.2.21) 
6 - i/ 

Wittrick's shear correction factor gives a value of 0.877 for i/ = 0.3, 
which corresponds closely to the value of 0.88 observed earlier by Srinivas 
et al (1970) and Dawe (1978). It appears that the Wittrick shear 
correction fax:tor is the best to date as it has a simple form and allows 
for the effect of Poisson's ratio. 

12.3 Relationship Between CPT and TSDT 

By differentiating Eq. (12.1.12a) with respect to x and Eq. 
(12.1.12b) with respect to j / , summing them up and using Eq. (12.1.12c), 
the governing equation of motion for Reddy plates in vibration may be 
expressed as 

dx^ ay2 ^ ^ dxdy 

(12.3.1) 

Next, we introduce the moment sum M^ 

M" = ̂ ''- + K^i£.m^?K]. ;g W (12.3.2) 
1 + 1/ 5 \ OX oy I 5 
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In view of this moment sum and the moment expressions in Eqs. 
(6.4.11), equation (12.3.2) may be written as 

V^M^ = ̂ .^V V - .^|»« - f ^̂  ( f . f ) (>2.3.3) 
The substitution of Eqs. (6.4.11) and (12.3.3) into Eq. (12.1.12c) leads 
to 

,2,„H 

- ^ V 2 M ^ + 

where 
105 

„ SGh 4ph^ 2 

(12.3.4) 

(12.3.5) 
15 ' 315 

By substituting Eq. (12.3.4) into Eq. (12.3.3), one obtains 

n o Q ^ 

where 

£ = 

315/C' 

60 •'^fi 
_ ^ . 2 f p ^ , , 2 _ 8 G ^ ^ 

15/:'^^ 1252'^^ 15 

(12.3.6) 

(12.3.7) 

(12.3.8) 

Also by substituting Eq. (12.3.4) into Eq. (12.3.2), one obtains 

+ 

io5;c 
D 4D /ph^ 2 _ 8G/t' 

' 5 "̂  5/C V 252'^-^ ~ 15 

5/C 105 

(12.3.9) 
L \ / J 

and noting Eq. (12.3.6), equation (12.3.9) can be expressed as 

. .;, \ 4D , o 16£> .of. Ph^ , M , M« = ^ ^ M 1 - ^ ' ^ H 

_D W fph^ 2 _ 8G/i\ _ 16£>£ 
5 "̂  5K: 1̂ 252'*'̂  15 J 105/CJ 

4D_D_ 16£> D ph^ 2 
5X: 105 "*" 105/CJ 105 15^'^'^ 

w 

2„.,A V^w; 

4„.,H V'w (12.3.10) 
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The substitution of Eq. (12.3.10) into Eq. (12.3.6) furnishes the 
following sixth-order governing differential equation in terms of w"^: 

oiV^w^ + a2V^u;^ + asV^w^ + a4W^ = 0 (12.3.11) 

where 

ai = 
AD D 
5^105 

, 4 ph^ 2 
^ + 2 1 J 1 5 ^ ' ' « 

(12.3.12a) 

D 

; C \ 2 5 2 ' ^ ^ ~ 1 5 / ' ' ' 2 i ; C J 315;CJ''^'^ 

(12.3.12b) 

4Z) ^ 2 16Z) ^ 2 f. Ph^ 2 
5fC' 105ICJ' 

''' = jM'-^^\ 
15K^~-I-J ^''-'-'''^ 

(12.3.12d) 

The governing equation (12.3.11) may be factored to give 

(V^ + Ai) (V2 + A2) (V^ + A3) w^ = 0 (12.3.13) 

where 

'6 

A3 = - 2 \ / $ c o s 
9 +in 

J 3ai 

V$3 3ai \ 3 a i / 

^ = "2Q3 _ _ ^ _ / Q2 y 
6af 2ai V3ai/ 

(12.3.14a) 

(12.3.14b) 

(12.3.14c) 

(12.3.15) 

(12.3.16) 

The following boundary conditions for a simply supported edge of 
a Rfiddy plate have been assumed (Reddy and Phan 1985) 

u;« = 0, cf>f = 0, M^^ = 0, P 4 = 0 (12.3.17) 
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where the subscripts n, s denote, respectively, the normal and tangential 
directions to the edge. Since w^ - 0 implies that d^w^/ds^ = 0 and 
0f = 0 implies that d(j)f/ds = 0, then together with the conditions 
Mnn = Pun = 0, we have d'^w^/dv? = d(j)^ldn = 0 and M^, = P^, = 0. 
Also, it follows that d^w^/ds^ = d^w^/dn"^ = 0. Thus, for a simply 
supported edge of a Reddy plate 

^ = 0, M ^ = 0, V^w^^O, V^^^ = 0 (12.3.18) w 

In view of the boundary conditions given in Eq. (12.3.18), the sixth-
order governing equation (12.3.13) of the Reddy plate may be written 
as three second-order differential equations given by (see Conway 1960, 
Pnueh 1975) 

(V2 + Aj) w^ = 0, j = 1,2,3 (12.3.19) 

with the boundary condition w^ = 0 along the edges. Note that 
although Pnueli (1975) proved that the frequency solutions of the 
fourth order differential plate equation are the same as those given 
by the second order differential equation for the case of straight, 
simply supported edges, the same (Pnueh's) proof together with the 
substitution of a variable (for example, let v = V'^w^ + Xw^) can be 
used to reduce the sixth-order equation to a second-order equation. 

In view of the mathematical similarity of Eqs. (12.3.18), (12.3.19), 
(12.2.13) and (12.2.14), it may be deduced that 

A , = A K , j = 1,2,3 (12.3.20) 

Based on numerical tests, it was found that the first root j = 1 yields 
nonfeasible vibration solutions while the second root j = 2 of the Reddy 
plate solution gives the lowest frequency value when compared to the 
third root j = 3. Thus the relationship between the Reddy plate 
frequency LJR and the Kirchhoff plate frequency UK is given by 

cos ( H ^ ) - ^ <---> 
Upon supplying the Kirchhoff plate frequencies, the foregoing exact 
relationship (12.3.21) can be used to compute the Reddy plate 
frequencies. Note Eq. (12.3.21) is an exphcit equation for a;/<: as a 
function of LJR, but it is a transcendental equation (12.3.21) of 0;^ for 
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given UK' The transcendental equation may be readily solved using the 
false position method. 

Figure 12.3.1 shows a graphical representation of the relationship 
given by Eq. (12.3.21). The curve in Figure 12.3.1 applies to any 
polygonal shaped plate with straight, simply supported edges. It can 
be seen that as the frequency parameters increase (i.e., corresponding 
to increasing plate thickness or higher modes of vibration), the Reddy 
solutions decrease with respect to the Kirchhoff solutions due to the 
effects of transverse shear deformation and rotary inertia. 

5.0 

S 4.0 

5-
c 
§ 3.0 

8 2.0 
J5 

T3 I.O H 

_ l 1 1 \ I I \ I I I I I I I I L_ 

Kirchhoff plate theory ,' 

Reddy third-order plate theory 

1 — I — I — I — I — I — \ — 1 — r T 
1.0 2.0 3.0 4.0 5.0 

Kirchhoff frequency parameter 

Figure 12.3.1. Frequency relationship between CPT and TSDT. 

To illustrate the use of Eq. (12.3.21), the vibration frequencies of 
rectangular and regular polygonal plates are determined. Table 12.3.1 
presents sample vibration frequencies of square and rectangular Reddy 
plates with simply supported edges. The vibration frequencies computed 
from the relationship given by Eq. (12.3.21) are in close agreement 
with those obtained earher by Reddy and Phan (1985). It should be 
noted that Reddy and Phan (1985) determined their solutions by solving 
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directly the governing equations of motion using trigonometric series. 
Table 12.3.2 gives the fundamental frequencies of regular polygonal 
plates with different thickness-to-side length ratios. Note that the 
Kirchhoff results for the regular polygonal plates used in determining 
the Reddy solutions are taken from Leissa's monograph (Leissa 1993). 

Table 12.3.1. Natural frequencies u = u}?^phjD of square plates 
(6 = a) and rectangular plates (6 = \/2a) with hja = 0.1 
and V = 0.3. 

a / 6 = l a/6 = \|^f2 
Mode Thin 
(m, n) plate 

Reddy 
Eq.(21) 

plate 
Reddy 
&Phan 

Mode Thin 
plate 

Reddy 
Eq.(21) 

plate 
Reddy 
&:Phan 

(1,1) 
(1,2) 
(2,2) 

(1,3) 
(2,3) 

(1,4) 
(3,3) 
(2,4) 

(3,4) 

(1,5) 
(2,5) 
(4,4) 

(3,5) 

19.739 
49.348 

78.957 

98.696 

128.31 
167.78 

177.65 
197.39 
246.74 

256.61 
286.22 

315.83 

335.57 

19.065 
45.487 

69.809 

85.065 

106.74 

133.72 
140.17 

152.75 
182.57 

188.28 

204.96 
221.02 
231.41 

19.080 

45.538 
69.905 

85.214 

107.00 

134.13 

140.63 
153.31 

183.40 

189.16 
206.03 

222.30 

232.83 

(1,1) 
(1,2) 

(2,1) 

(1,3) 
(2,2) 

(2,3) 

(1,4) 
(3,1) 
(3,2) 

(2,4) 
(3,3) 

(1,5) 
(2,5) 

29.609 
59.218 

88.826 

108.57 
118.44 

167.78 
177.65 
187.52 

217.13 

236.87 
266.48 

266.48 

325.70 

28.839 
56.275 

82.485 
99.347 

107.61 

147.38 

155.05 
162.63 
184.88 

199.32 

220.44 
220.44 

260.91 

28.847 

56.309 
82.554 

99.449 
107.73 
147.61 

155.31 
162.92 

185.26 

199.76 

220.99 
220.99 

261.69 

Table 12.3.2. Natural frequencies u = ua^y/ph/D of regular polygonal 
plates with side length a and i/ = 0.3. 

Polygon 
shape 

Thin 
plate* h/a = 0.05 

Reddy plate 
h/a = 0.10 h/a = 0.15 

Equilateral 
Square 
Pentagon 
Hexagon 

Octagon 

52.638 
19.739 
10.863 
7.129 
3.624 

51.414 
19.562 
10.809 

7.106 
3.618 

48.284 

19.065 
10.653 

7.037 

3.600 

44.294 

18.330 
10.410 
6.929 
3.571 

*The CPT results are taken from Leissa's monograph (Leissa 1993). 
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12.4 Concluding Remarks 

Presented herein are exact relationships between the natural 
frequencies of Mindlin plates, Reddy plates and Kirchhoff plates. The 
relationship is valid for any general polygonal plates with simply 
supported edges. Once the Kirchhoff vibration solutions are known, 
the Mindhn and Reddy solutions may be readily calculated from these 
relationships. As examples, vibration frequencies of rectangular and 
regular polygonal plates have been determined using the relationship. 
The relationships may also be used for symmetrically, isotropic 
laminated plates by modifying appropriately the stiffnesses. UnKke 
the FSDT-CPT frequency relationship, the TSDT-CPT frequency 
relationship does not need a shear correction factor. This feature 
is advantageous when considering laminated plates where the shear 
correction factor is not available. 

Problems 

12.1 The equation of motion governing the CPT is given by 

+ j,9_^^lJ^ + ̂ ] = 0 ii) 
df^ ^ ydt'^dx'^ df^dy 

where 

/o = po/i, h = ^ ^ {ii) 

For natural vibration, the solution is assumed to be periodic 

wo{x, y, t) = w{x, y)e^^ {Hi) 

where i = v ^ and OJ is the frequency of natural vibration associated 
with mode shape w. Obtain the Navier solution to the resulting 
equation by assuming a solution of the form 

w{x, y) = Wmn sm sm —r- [iv) 

In particular, show that 

UJr, ( -mH'-\ +n' {v) 
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where 

Io = Io + h -) ^ (T ) (m) 

12.2 Use the Levy procedure described in Problems 11.2 and 11.3 to 
determine the characteristic (frequency) equation associated with the 
natural vibration of a rectangular plate with sides x = 0, a and y = 0 
simply supported and side y = 6 free. The boundary conditions on edges 
y = 0, 6 are, when neglecting the rotary inertia I2 and u'^ > QH^D/IQ 

- 3 - + ( l - t / ) 

= 0 at y = 0 (i) 

= 0 at y = b (ii) 

where otm = mm ja. In particular, show that 

\2^\^2 sinh \\h cos A26 - \\Q.2^\ cosh A16 sin A26 = 0 

where 

(Ai)̂  = A k $ + aL (Aa)̂  = J a . 2 ^ a^ 

Qi = [A? - (1 - i/)ay , ^2 = [Ai + (1 ~ ̂ )a; 

(m) 

(z?;) 

(m) 

12.3 Obtain the chaxstcteristic equation, using the Levy solution procedure, 
for a rectangular plate with X = 0, a and y = 6 simply supported and 
side y = 0 clamped. The boundary conditions on edges y = 0,6 are 

'L(; = 0, - r - = O a t y = 0 
oy 

(i) 

d^w d^ 
w = 0, Myy = - D i/-^~7r + w = 0 at y = 6 {ii) 

These boundary conditions, with a;̂  > af^D/Io, yield the frequency 
equation 

Ai cosh A16 sin A26 - A2 sinh Aife cos A26 = 0 {Hi) 

where 

{X^f = f ^ + c.L {X.f = f^-al iiv) 



Chapter 13 

Relationships for 
Inhomogeneous Plates 

In this chapteVj exact relationships are developed for (1) the 
deflection values of sandwich plates in terms of the corresponding 
Kirchhoff plates for simply supported polygonal plates under any 
transverse load or for simply supported and clamped circular plates under 
any aocisymmetric load; (2) the bending solutions of the first-order plate 
theory (FSDT) for functionally graded circular plates in terms of the 
deflections of isotropic circular plates based on the classical plate theory 
(CPT); (3) the buckling load of sandwich plates based on the FSDT in 
terms of those of the Kirchhoff plates based on the CPT under uniform 
in-plane compressive load for simply supported general polygonal plates 
and simply supported and clamped circular plates; and (4) the vibration 
frequencies of smply supported sandwich polygonal plates in terms of 
those of polygonal Kirchhoff plates with the same boundary conditions 
and loads. 

13.1 Deflection Relationships for Sandwich 
Plates 

13.1.1 Introduction 

Sandwich plates are made up of three layers, with the top and 
bottom layers (or facings) being thin although made from a high-
strength material, and the thick middle layer (or core) being made 
from a relatively light and low-strength material. In all-steel sandwich 
panels, the two steel facings are spot-welded onto a core of stiffeners, 
which may consist of ^-sections, tophats, channels, corrugated sheeting 
or honeycomb-type of construction. Owing to the thick core, the use of 
the Kirchhoff (classical thin) plate theory will lead to an underprediction 
of the deflections, since it does not allow for the effect of transverse shear 
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deformation. For global responses such as maximum deflection, buckling 
loads, or vibration frequencies, the first-order shear deformation theory 
yields reasonably accurate solutions. 

Here we present exact relationships between the deflection of 
sandwich Mindlin plates and their corresponding Kirchhoff plates. The 
sandwich plates considered here can either be (i) simply supported (S) 
plates of general polygonal shape and under any transverse loading 
or (ii) simply supported (S) and clamped (C) circular plates under 
axisymmetric loading. As the relationships are exact under the 
assumptions used in the plate theories, one may obtain exact deflection 
solutions of sandwich plates if the Kirchhoff plate solutions are also 
exact. The relationships should also be useful for the development 
of approximate formulas for plates with other shapes, boundary and 
loading conditions, and may serve to check numerical deflection values 
computed from sandwich plate analysis software. 

13,1 .2 Governing Equat ions of Kirchhoff P l a t e s 

The well-known governing equation for isotropic Kirchhoff plate 
bending problem is given by 

DV'^w^ ^q (13.1.1) 

where D = Eh^/[12{1 - z/̂ )] is the flexural rigidity of the plate, h the 
thickness, E the Young's modulus, i/ Poisson's ratio, WQ- the transverse 
deflection of the mid-plane, and q is the transverse load. The equation 
can be written in terms of the rectangular coordinates (x, y) or the radial 
coordinate r by appropriately selecting the biharmonic operator V^ or 
the Laplace operator V^ 

Q2 Q2 
V^ = TT^ + -r-^ for polygonal plates (13.1.2) 

V^ = -r-^ + -TT for axisymmetric circular plates (13.1.3) 
or^ r or 

Equation (13.1.1) can be written as a pair of Poisson equations [see 
Eqs. (7.2.1a,b)] 

V^A/l^ = ^q (13.1.4) 

V'w^ = - ^ (13.1.5) 
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where the Marcus moment M^ is defined as [see Eq. (7.2.3a) and 
(9.2.1)] 

j^K ^ M^x + M^y ^ M^ + M^s (131.6) 

where (Mx, My) and (Mr, Me) are the bending moments in the Cartesian 
coordinate and the polar coordinates, respectively. 

The boundary conditions associated with Eqs. (13.1.4) and (13.1.5) 
are given by 

w^ = M^ = Q (13.1.7) 

in the case of polygonal Kirchhoff plates with straight simply supported 
edges, and 

w^ = Q for S and C plates (13.1.8) 

^ \-D{^-''){\^)=Dit^{^) fo'S plates 
M^'^i / . ^x^ ^ ^ ^ (13.1.9) 

y^D[^^ for C plates 

at r = i? for circular plates with radius R. The expressions in 
Eqs. (13.1.8) and (13.1.9) for M^ were obtained using the boundary 
conditions Mrr = 0 for simply supported (S) plates and dw^/dr = 0 
for clamped (C) plates. Note that for a circular plate undergoing 
axisymmetric bending, the Marcus moment at the boundary takes on 
a constant value. This important feature will be used later in the 
derivation of the deflection relationship between circular sandwich plates 
and Kirchhoff plates. 

13,1 .3 Governing Equat ions for Sandwich M i n d l i n P l a t e s 

Consider a sandwich plate with isotropic core and facings, and core 
thickness he and the thickness of the facings /i/, as shown in Figure 
13.1.1. Thus, the total thickness of the sandwich plate is /i = 2hf + hc^ 
The Young's modulus of elasticity £", Poisson's i/, and shear modulus 
G = E/[2{1 + jy)] of the core and the facings will be identified with 
subscripts of c and / , respectively. The plate is either of general 
polygonal shape or of circular shape. 
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Transverse 
loading 

K 

Axisynimetric 
transverse 
loading 

Facings. Core -v 

'K 

Figure 13.1.1. Geometry of a sandwich plate. 

First consider the polygonal sandwich plate. Assuming that 
deformations are continuous across the thickness, the moment-
displacement relations for sandwich plates are given by 

M,^ = {Dc + Df)^ + {ucDc + VfDff-^ 
dx 

M 

kM 
rM_(,.r\ , ...n.^^'^x , c n i n.^"^V M^y = {ucDc + i^fDf)^ + {Dc + Df) 

dy 

dx dy 

M^y = 7. [(1 - u,)D, + (1 - vj)Df] 
, dy 

M' 

+ dx 

Qf = KsiGchc + 2Gfhf) U^ + ^ ] 

M Q^ = KsiGchc+ 2Gfhf) I <f>^ + 
dy J 

(13.1.10a) 

(13.1.10b) 

) (13.1.10c) 

(13.1.lOd) 

(13.1.lOe) 

where Dc and Df are flexural rigidities of the core and facings, 
respectively 

Dc 
Echl 

1 2 ( 1 - ^ 2 ) ' Df = 
3 ^ ^ 3 M ^ + / j 2 ) 2Efhf(-^ -1 2 + 
3(1 -1^}) 

(13.1.11) 
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and {Mxx, Myy) are the bending moments, Myx is the twisting moment, 
(Qx) Qy) the transverse shearing forces (all measured per unit thickness), 
(0X5 02/) the rotations of a transverse normal to the midsurface, and 
Kg the shear correction coefficient. The assumption of equal rotation 
for the core and the facings is valid, provided the sandwich plates are 
constructed from relatively thin facings. 

The equilibrium equations of a Mindlin plate are given by Eqs. 
(6.3.9a-c). By substituting for the moments and shear forces from Eqs. 
(13.1.10a-e) into Eqs. (6.3.9a-c), we obtain 

Ks{Gchc + 2Gfhf) L^ + ^ ] 

+ - [(1 - .e)Z>c + (1 - u,)D,] {^-^ + ^ j (13.1.12a) 

K,{Gchc + 2Gfhf) U^ + ^ ] 

+ 5 1(1 - ^c)D. + (1 - ^,)D,] {^-^ + ^ ) ( 1 3 . M 2 b ) 

{Gchc + 2Gfhf) (M^ + V^u;^) = -q (13.1.12c) 

where M^^ is the moment sum of the Mindlin plate theory 

{l + i^c)Dc + {l + i^f)Df- dx ^ dy ^^^'^'^^^ 

Equations (13.1.12a) and (13.1.12b) with respect to x and y, 
respectively, and adding the results and using Eq. (13.2.12c), we arrive 
at the result 
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The substitution of (13.1.12c) and (13.1.4) into (13.1.14) furnishes 

v^U„«+ ^^ 
KsiGchc + 2Gfhf) Dc + Df 

(13.1.15) 

For a simply supported polygonal Mindlin plate, the boundary 
condition is such that 

w. 
M _ »^M _ AM — ±M„ _ AM MZ = C = <l>^n, - <t>^ny = 0 (13.1.16) 

where n is the direction normal (in the xy—plane and with direction 
cosines rtx and riy) to the straight simply supported edge, and s the 
direction tangential to the edge. Owing to the conditions Mnn = (t>s — ^^ 
we deduce that dil)s/ds = 0. Thus from Eq. (13.1.13), the moment sum 
has the boundary condition 

A1^ = 0 (13.1.17) 

Equation (13.1.15) is also valid for axisymmetric bending of circular 
plates, except that the Lapla-ce operator is in polar form (13.1.3), and 

A ^ / ^ ^ . ^ f ^ + l M ) (13.1.18) 
Y dr^ r dr J 

M^ = ^ + -<i>^ (13.1.19) 
dr r 

where (f)r is the rotation. The boundary conditions for simply supported 
as well as clamped circular plates are given by 

Wi ̂ ^ = 0, M^ = constant, C (13.1.20) 

13.1.4 Relationship Between Sandwich and Kirchhoff 
Plates 

In view of (13.1.5), (13.1.7), and (13.1.14)-(13.1.17), we have along 
a simply supported boundary 

(13.1.21) 
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Comparing (13.1.1), (13.1.15) and (13.1.21) and the boundary conditions 
in Eqs. (13.1.16) and (13.1.17), it can be readily deduced that 

Owing to the fact that the Marcus moment does not vanish at 
the boundary for circular plates but takes on a constant value, Eq. 
(13.1.22) must be changed to include a constant C on one side of 
the equation. This constant C may be evaluated from the boundary 
conditions, w^f = WQ = 0. Thus, for a circular plate, the deflection 
relationship is given by 

""' - D, + Z ) / o + Ks{GcK + 2Gfhf) ^^^-^-^^^ 

where the Marcus moment M^{R) at the boundary is given by (13.1.9). 
Note that for axisymmetric loading q{r), the Marcus moment can be 
obtained by integrating the loading function, i.e. 

M^ = ^ f-dr [ q{r)r dr (13.1.24) 

It is also worth noting that the second term in (13.1.23) has the same 
value irrespective of whether the circular plate is simply supported or 
clamped at its edges. This conclusion can be readily proven using the 
fact that the difference between the deflections of a simply supported 
circular plate and that of its clamped counterpart is equal to the plate 
deflection due to a uniformly distributed boundary moment of the 
clamped plate. 

Equation (13.1.22) furnishes an exact relationship between the 
deflection values of the simply supported sandwich plate and the 
corresponding simply supported KirchhoflF plate, while (13.1.23) gives 
the deflection relationship for circular plates. This means that the 
deflection of simply supported sandwich plates can be calculated upon 
supplying the deflection solution of the Kirchhoff plate and the Marcus 
moment M^, thus bypassing the necessity for a shear deformable 
sandwich plate bending analysis. Note that the deflection solutions 
of simply supported polygonal and axisymmetric Kirchhoff plates are 
available in the literature. If the deflection results are not available, 
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thin plate bending analysis need only to be performed, and the sandwich 
plate solutions calculated from the derived relationships. 

13.1,5 E x a m p l e s 

The use of the foregoing deflection relationships is illustrated using 
an equilateral triangular plate example and a circular plate example. 
First, consider a simply supported, equilateral triangular sandwich plate 
of side length 2L>/3 as shown in Figure 13.1.2 (see section 7.3.1). The 
plate is subjected to a uniformly distributed load of intensity go- The 
deflection and Marcus moment of this Kirchhoff plate are given by [see 
Eqs. (7.3.1) and (7.3.2); Timoshenko and Woinowsky-Krieger (1969) 
and Reddy (1999)] 

W^ = 
64D 

M^ = -DV^w^ = X 

(13.1.25) 

(13.1.26) 

where x = x/L and y = y/L. 

Figure 13.1.2. Simply supported equilateral triangular plate. 

Using (13.1.22), the deflection surface of the uniformly loaded 
equilateral triangular sandwich plate is given by 

Qo L^ 

64(r»c + Df) 
x^-^^x-(f+f) + ^ 
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4 , 0 16(De + Df) 
9 ^ ^ Ks{Gchc + 2Gfhf) 

(13.1.27) 

Next, consider a circular sandwich plate under an axisymmetric 
linearly varying load. The load is zero at the centre and increases 
linearly to qo at the edge as shown in Figure 13.1.3. The plate can 
be either simply supported or clamped at the edge. 

•z. wo(r) 

Figure 13.1.3. Circular plate under axisymmetric linearly varying load. 

The deflection solutions for such loaded Kirchhoff circular plates are 
determined by Markus and are given by 

\5l 

< = < 
, for S plate ( 5ojRi [3(64-1 )̂ _ 5(4+1/) / r \2 , r, / r \ 

450D[( l+ i / ) (1+:/) \R) ~^^\R) 
< 

l i S [ 3 - 5 ( ^ ) ' + 2 ( ^ ) ^ ] , for C plate 

The Marcus moment is thus given by 

[ ^ [ l ^ - - 5 ( i ) ^ l . for S plate 

(13.1.28) 

M^ = -DV^w^ = I 
l ^ [ 2 - 5 ( i ) ' ] . for C plate 

At the plate edge r = R, the Marcus moment is given by 

^ ^ y for S plate 

- ^ , for C plate 

(13.1.29) 

(13.1.30) 
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Using (13.1.23), the defelction of such loaded circular sandwich plate 
is given by 

( qpR* [3(6+1/) 5(4+1^ / r \ 2 , < , / r \ 5 ] 
I 450(DV+Df) [ T W - -fr+I^ \R) +^[R) \ 

+ i5Ks(Gltl2Grh,)[^-iif]^ for S plate 

w^ = < 
03. R* 3 - 5 ( i f + 2(̂ )̂ ] 

(13.1.31) 

A50iDc+Df) 

[ +I5KS(G!C+2C; ,M[^-(^)1 ' fo-^C plate 

Note that the deflection component due to the shear deformation is the 
same for both simply supported and clamped plates as discussed earlier. 

13.1.6 Re la t ionsh ip B e t w e e n Sandwich and Sol id M i n d l i n 
P l a t e s 

The foregoing derivation applies to solid Mindlin plates as well. By 
letting the thickness of the facings hf = 0 and he = h (i.e. Df = 0, 
Dc = D)^ the sandwich plate becomes an isotropic, sohd Mindlin plate 
of thickness /i, Poisson's ratio 2/, and Young's modulus E. Thus the key 
equations (13.1.22) and (13.1.23) reduce, respectively to 

K^Gh ' ^̂ ^ simply supported polygonal plates 

'^0 "I K 6/1 ' ^̂ ^ circular plates 

where WM is the deflection of the solid Mindlin plate. 
(13.1.32) 

In view of Eqs. (13.1.22), (13.1.23), and (13.1.32), the rela^nship 
between sandwich and solid Mindlin plate deflections is given by 

w^-
D 

Dc + Df 
WQ {Gchc + 2Gfhf) = {w^ - w^)Gh (13.1.33) 

One may obtain the sandwich plate deflection from the Kirchhoff and 
solid Mindlin plate deflections using (13.1.33) without the need of the 
Marcus moment and vice versa. 
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13.2 Deflection Relationships for Functionally 
Graded Circular Plates 

13.2.1 Introduction 

Fiber-reinforced composites have a mismatch of mechanical 
properties across an interface due to two discrete materials bonded 
together. As a result, the constituents of fiber-matrix composites are 
prone to debonding at extremely high thermal loading. Further, cracks 
are likely to initiate at the interfaces and grow into weaker material 
sections. Additional problems include the presence of residual stresses 
due to the difference in coefficients of thermal expansion of the fiber 
and matrix in the composite materials. These problems can be avoided 
or reduced by gradually varying the volume fraction of the constituents 
rather than abruptly changing them across an interface. This gradation 
in properties of the material reduces thermal stresses, residual stresses, 
and stress concentration factors. Furthermore, the gradual change 
of mechanical properties can be tailored to different applications and 
working environments. Such materials, termed functionally graded 
materials (FGMs), were first introduced by a group of scientists in 
Sendai, Japan in 1984 [1,2]. 

Functionally graded materials are inhomogeneous materials in which 
the material properties are varied continuously from point to point. For 
example, a plate structure used as a thermal barrier may be graded 
through the plate thickness from ceramic on the face of the plate that 
is exposed to high temperature to metal on the other face. This is 
achieved by varying the volume fraction of the constituents i.e., ceramic 
and metal in a predetermined manner. The ceramic constituent of the 
material provides the high temperature resistance due to its low thermal 
conductivity. The ductile metal constituent, on the other hand, prevents 
fracture caused by stresses due to high temperature gradient in a very 
short period of time. A mixture of the ceramic and a metal with a 
continuously varying volume fraction can be easily manufactured [2-6]. 
This eliminates interface problems and thus the stress distributions are 
smooth. 

In this section, axisymmetric bending of through-the-thickness 
functionally graded circular plates are studied using the Mindlin 
plate theory, i.e., account for the transverse shear strains. Due 
to nonsymmetric grading of the material through the thickness, the 
bending-stretching coupUng exists. General solution of the Mindlin 
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plate problem for arbitrary variation of the constituents is derived in 
terms of the isotropic Kirchhoff plate solution. Particular solution 
are developed for a number of boundary conditions. The effect of 
material distribution through the thickness and boundary conditions 
on deflections and stresses are presented. 

13.2.2. Formulation 

Consider a functionally graded circular plate of total thickness h 
and subjected to axisymmetric transverse load q. The r-coordinate 
is taken radially outward from the center of the plate, 2:—coordinate 
along the thickness of the plate, and the ^-coordinate is taken along a 
circumference of the plate. Suppose that the grading of the material, 
applied loads, and boundary conditions are axisymmetric so that the 
displacement UQ is identically zero and (ur.Uz) are only functions of r 
and z. At the moment, we assume that E = E[z) and u = u{z), and 
their specific variation will be discussed in the sequel. 

Because of the bending-stretching coupling present in functionally 
graded plates, we must include the in-plane displacement along with the 
bending deflection. Therefore, we will revisit the classical and first-order 
theories here. 

The complete displacement field of the classical plate theory (CPT) 
is 

Ur{r,z) = uo[r) - - 2 : — 

Uz{r,z) =wo{r) (13.2.1) 

where UQ is the radial displacement and WQ is the transverse deflection 
of the point (r,0) of a point on the mid-plane (i.e., ^ = 0) of the plate. 
The displacement field of the first order shear deformation plate theory 
(FST) is given by 

Wr(r,^) = uo{r) + zcpir) 

Uzivy z) = wo{r) (13.2.2) 

Both of the theories are governed by the equations 

-^irNrr)-Nee-^Q (13-2.3) 
ar 
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— (rMrr) - Meg = rQr 

(13.2.4) 

(13.2.5) 

where Nrr and Ngg are the rgidial and circumferential in-plane forces and 
Mrr and Me$ are the radial and circumferential moments 

{Nrr, Nge) = J ^ i^^rr, (ree)dz 

{Mrr,Mge) = / ^{Grr, (Tee) zdz 

(13.2.6) 

(13.2.7) 

The plate constitutive equations of the two theories are given below. 

C P T for isotropic plate: 

TK 

dr r 

dr r 

dr^ r dr 

e = -— (rMrr) - M00 

(13.2.8) 

(13.2.9) 

(13.2.10) 

(13.2.11) 

(13.2.12) 

FST for functionally graded plate: 

<t> I\rr — >lll-J h A12 1- Bn-J- + B\2-
ar r dr r 

MF - A ^'^0 , A "o' , n ^'P ,0 4> 
J^ee - ^12-3—V Ml 1- -0123- + •Bii-

ar r dr r dun 4> M^ = B n ^ + B^2^ + Du^ + D,2^ 
ar r dr r 

^ _ du^ ^0^ . n ^^ . n ^ J^ee - ^12-3—H ^11 h D12-T' + ^ l i -ar r dr r 

<3f = A s ( . . M ) 

(13.2.13) 

(13.2.14) 

(13.2.15) 

(13.2.16) 

(13.2.17) 
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where superscript K denotes quantities in CPT and F denotes in FST. 
Of course, (j) appears only in FST. The plate stiffnesses Aij, Bij, and 
Dij are defined by 

{Aij,Bij,Dij) = y_^ Qij{l,z,z'^)dz {i,j = 1,2) (13.2.18a) 

Qn = Q22 = 

E 
-dz 

E 

^ 2(1 + 1/) 

Q12 = t^Qn 

(13.2.18b) 

(13.2.18c) 
(1-Z.2) ' 

where E is the modulus of elasticity, i/ the Poisson ratio, and Kg the 
shear correction factor. 

The strategy is to develop relations for the deflections, forces, and 
moments of functionally graded plates based on the first-order shear 
deformation theory (FSDT) in terms of the associated quantities of 
isotropic plates based on the classical plate theory. Then the relations 
developed are speciaUzed for plates with various boundary conditions. 

13.2-3. Re la t ionsh ips B e t w e e n C P T and F S D T 

Prom Eqs. (13.2.3), (13.2.13), and (13.2.14), we obtain 

0 = --{rNrr)-Nee 
ar 

=An 
d_ / duo\ _ UQ 

dr \ dr J r 

dr \r dr 
+ Bn 

d_ fd4\ _ <P 
dr\ dr) r 

dr \r dr 

dr \r dr J\ 

Upon integration, we obtain 

Bn 
'An dr \r dr 

and 

S(''-)=-I:TI<'*'^^'^ 

An 2 r 

(13.2.19a) 

(13.2.19b) 
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from which we can compute 

duo 
dr All dr ^ ^^ 

(13.2.20) 

where Ki and K2 are integration constants. Using Eqs. (13.2.19) and 
(13.2.20), the forces and moments of Eqs. (13.2.13)-(13.2.16) can be 
expressed in terms of 0 as 

d(f> <t> , 1 . Mil = Qi-^ + Q2- + ::^3Ki + -^J^4i^2 
dr 
d(t> 

» — 
' dr 

r 

t 
r 

M[g = ^2^ + H i f + ^ Q s ^ l - -2^4i^2 

r 2 r^ 

N!'a = ^M + \n&Ki - \n^K2 
dr 2 r^ "ee 

(13.2.21) 

(13.2.22) 

(13.2.23) 

(13.2.24) 

where 

fia =Bii + B12, ^4 = B12 — 5 i i , fis = Byi — 

f i 6 = ^ l + A l 2 , ^̂ 7 = ^12 - A l l 

Based on load equivalence, we have 

I ( '«o=I {^<i^) 

A12-B11 

All 

dr 

and after integration yields 

rC?f = r g f + Ci 

(13.2.25) 

(13.2.26) 

(13.2.27) 

where C\ is a constant of integration. But from Eqs. (13.2.5), (13.2.21) 
and (13.2.22), we have 

\i (;|(̂ ^0] 
Similarly, 

1 d , dwQ , 

dr • 

(13.2.28) 

(13.2.29) 
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Using relations (13.2.28) and (13.2.29) in (13.2.27), we obtain 

d n d 
f2i 'Tr [TTM^ = -D 

dr \r dr dr \ 
+ Ci (13.2.30) 

Upon integrations, we have 

Q i ^ {r^) = _2?A { r ^ \ + CiTlogr + C2r (13.2.31a) 
dr dr \ dr J 

f2i0 = - D ^ + -C^r (21ogr - 1) + ^Csr + -C3 (13.2.316) 
or 4 Z r 

Next from Eqs. (13.2.17) and (13.2.28), we have 

, / dw^\ dM^ 1 „ 

where M^ is the moment sum 

Substituting for 0 from Eq. (13.2.31b) into Eq. (13.2.32), we obtain 

(13.2.32) 

(13.2.33) 

A-,-, — + — - r ( 2 1 o g r - l ) + - = - r + ^r—+ 
fii dr 4Qi 

d;w^ 1 
ar r 

2fti Qir dr 

(13.2.34) 

Integrating the above expression, we obtain 

F ^ K , C^ - ( l - l o g r ) + — l o g r 

_^r''-^\ogr-C,+ 
M K 

4^1 Qi A^f, 
(13.2.35) 

Prom Eq. (13.2.31b), we have 

- ( 2 1 o g r - l ) + l + ^ _ ^ (13.2.36) 
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Substituting Eqs. (13.2.31b) and (13.2.36) into Eq. (13.2.21), we obtain 

< = - ^ d r ^ 
cPw^ Ci 

+ - ( 2 1 o g r - l ) + l C2 C3 
r r^ 

+ 
Q2 -D^+C^l{2logr-l)+ 021 + 0^1 

2 r^ 

or 

Mi=Mi + ^ M ( , _ f i , ) + | 
'rr •' -Tr r dr 

^ ( l - n 2 ) + ( l + ^2) logr 

+ ^ (1 + f)2) - ^ (1 - (I2) + ^ 3 ^ + ^ 4 ^ (13.2.37) 

where D = ^^Ci = -^ and so on. Similarly, we can write 

Mis =M^9 + D ^ [v -Cl2) + ^ [-1 (1 - CI2) + (1 + ^2) logr 

C2 / , , A N , C3 / , ^ ^ _ i^i ^K2 ^^3 2 3g^ 
+ T ( l + ^2) + ^ ( l - f i 2 ) + f ) 3 f - 0 4 ^ 

Next we substitute (13.2.31b) into (13.2.23) and obtain 

Nf, = fig - ^ ^ ^ - ^ ^ ^ i ( 2 1 o g r - l ) 4 - ^ C 2 + ;^C3 

K 
+ ^6^ + ^7 

K2 
(13.2.39) 

Substituting (13.2.36) into (13.2.24), we obtain 

- 1 , 1 ^ + Ci i (21ogr + l) + 1 ( 7 2 - ^ 3 r dr 4 2 r^ 

2 r 
K2 

2 

Define 
M^^^rr + M[, ^ 0 2 

(I + Q2) ^1 

(13.2.40) 

(13.2.41) 

(13.2.42) 
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Then we have 

M^ = M^ + Ci logr + C2+ ( ^ l ) Ki (13.2.43) 

and 
Af^ = Q5 (^M^ + Ci logr + C2) + QIQQKI (13.2.44) 

This completes the development of equations for the deflections, forces, 
and moments of functionally graded plates based on the first-order shear 
deformation theory in terms of the associated quantities of isotropic 
plates based on the classical plate theory. Thus, it remains that we 
develop particular relationships for axisymmetric bending of plates with 
various boundary conditions. 

13.2.4 Relationships for Various Boundary Conditions 

Roller-supported circular plate 

Consider a solid circular plate with a roller support at r = a, a being 
the radius of the plate. The boundary conditions are 

At r = 0 : u = 0, <̂  = 0, - r ^ =0 , Qr = 0 (13.2.45a) 
ar 

Atr = o : •u; = 0, iV„. = 0, Mrr = 0 (13.2.45b) 

The above boundary conditions give 

K, = - H ^ f - I ) ^ 4 ^ + % ) , K, = 0 (13.2.46a) 

^ _2D fu-n, + ns] dj4jA (13.2.46b) 
a ^1 + ^22-^8/ dr 

A 1 ^ _ ^ C:=C3 = 0 (13.2.46c) 

where fis = i^afis/fie- Hence, we have the following relations between 
the deflections, forces, and moments of the two theories: 

< ( r ) = bv.^{r) + - ^ ^ ( O - ^ ^ C a ) ^ U^^2 _ ,2) (13.2.47) 
^55 4 
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Qf (r) = Qif{r) (13.2.48) 

< ( r ) = n,D f i M M _ l ^ ] (13.2.49) 
\a dr r dr J 

< , ) . . . ^ ( i ^ . ^ ) (13.2.50) 

1 
+ ^Ki^z (13.2.51) 

Mieir) = M^eir) + D ^ [u - Q2) + \c2 (l + ^̂ 2) 

+ ^Ki^z (13.2.52) 

Hinged circular plate 

Consider a solid circular plate with a hinged support at r = a. The 
boundary conditions are 

A t r = 0: u ^ O , (/> = 0, —r" = 0, Q,. = 0 (13.2.53a) 
or 

A t r = a: n = 0, u; = 0, Mrr = 0 (13.2.53b) 

The boundary conditions give 

if, = i | i l L D ^ ^ + % V if2 = 0 (13.2.54a) 
aAii I dr 2 1 

^ J_D l_-a^-Sk\ ^ (13.2.54b) 

C , - : i ! ^ - % ! , C,=C3 = 0 (13.2.54c) 

where fig = fiaSn/An. The relations follow the same form as those 
given in (13.2.47) to (13.2.52) but Ki, C2, and C4 take the expressions 
given in (13.2.54a) and (13.2.54b). 



2 6 2 SHEAR DEFORMABLE BEAMS A N D PLATES 

Clamped circular plate 

Consider a solid circular plate with a clamped support at r = a. 
The boundary conditions are 

At r = 0 : ^ = 0, 0 = 0, ^ = 0, Qr = 0 (13.2.55a) 
dr 

At r = a : u = 0, w = 0, <̂  = 0, —^ = 0 (13.2.55b) 
dr 

The boundary conditions give 

Ki=K2-=0, C i=C2 = C3 = 0, C4 = / ^ (13.2.56) 

Hence, we have the following relations between the deflections, forces, 
and moments of the two theories: 

.^ir) = D.^ir)^^''\f^^^ (13.2.57) 

Qf(r) = Qf(r) (13.2.58) 

N^^{r) =-£l,b^-^ (13.2.59) 
r dr 

Nfeir) = -^^D^ (13.2.60) 

Mieir) = M^eir) + D ^ [v - (l^) (13.2.62) 

Clamped-free annular plate 

Consider an annular plate with a clamped support at the inner edge 
r = b and free at the outer edge r = a. The boundary conditions are 

dw^ 
At r = b: u = Q, w = 0, (p^O, - 7 ^ = 0 (13.2.63a) 

ar 
Atr = a: Nrr^O, Mrr = 0, Qr = 0 (13.2.63b) 

The boundary conditions give 

^^ = " ^ ' mr-a^^e ' ^^ = - — ( 1 3 . 2 . 6 4 a ) 
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dr 

62Co 

^55 

di = 

d2 = 

V — CI2 - ^1562 

a? (1 + Q2) + 62 (1 _ J72) + ^5^2(0^ - 62) 

/ a2Q3-62QA 
U 2 Q 7 _ a 2 Q j 

(13.2.64b) 

(13.2.64c) 

(13.2.64d) 

(13.2.64e) 

Clamped-clamped annular plate 

Consider an annular plate with clamped inner edge r = 6 and outer 
edge r = a. The boundary conditions are 

At r = 6 : u = 0, w = 0, </» = 0, 

At r = a u = 0, w = 0, (/> = 0, 

— ^ = 0 (13.2.65a) 
dr 

dwn , , ^ 
- 7 ^ = 0 (13.2.65b) 

The boundary conditions give 

Kx = K2 = % Ci = - % - ( ' X ^ ( 6 ) - M ^ ( a ) ) (13.2.66a) 

(13.2.66b) ^-P^^^-^)^. 
C3 = 

C4 = 

"̂ '̂  log?V. 2(a2 - 62) *"6 5 

a2 + 62 f2i 
log ah + 

a262(log^-(loga6)2) 

+ 

16 2A55 

>r^(a) + X^(6) 

4(62 _ ^2) 

lA, 55 
„ a2 - 62 fii , a a262 
^' = ~ T - + I^^°^6-2(^^^6^ l o g ^ ) ' 

(13.2.66c) 

(13.2.66d) 

(13.2.66e) 



2 6 4 SHE A R DEFORMABLE BEAMS A N D PLATES 

Clamped-roUer supported annular plate 

Lastly, consider an annular plate with clamped inner edge r = b and 
roller supported at the outer edge r = a. The boundary conditions are 

At r = b: u = 0, w = 0, 0 = 0, 

At r = a : w = 0j Nrr = 0, Mrr 

The boundary conditions yield 

^ = 0 (13.2.67a) 
dr 

= 0 (13.2.67b) 

Ki 

K =-—K C =ll^±lil^ C = / i ~ ^1^1 
2 ' 6164-6263' 62 

C3 = - ^ ( 2 1 n 6 - l ) - ^ 

^ 2^55 2 
^ ( l - l n 6 ) + ^ ( l - l n a ) + 

- C2 -Cs In ab 

6̂  a^ b^ b 
ei = — (1-lnb) - — (1 - Ina) + - (21n6 - l ) l n -

4 4 4 a 

A55 a 

b\ b {b'^-a?) 

(13.i 

(13.: 

(13.: 

Qi 

^55 

(13.: 

(13.; 

(13. 

2.68a) 

>.68b) 

2.68c) 

lna& 

J.68d) 

2.68e) 

2.68f) 

'' = 2 
62 (l + n,) + _ ( l _ n , ) (13.2.68g) 

(13.2.68h) 

13.2.5 I l lustrat ive Examples 

To illustrate the usefulness of the relationships derived herein, we 
provide some examples. Consider the case of circular plates under 
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uniformly distributed transverse load of intensity QQ. The classical plate 
solutions are given by (see [27,28]) 

K,, } ^ W - 2 ( f i r ) & + f ^ ] . for simple support 
90 Q 
64D 

4 r 9 l ^ 

^ 1 - (^) , for clamped support 
(13.2.69) 

Now consider a functionally graded plate whose modulus is assumed 
to be of the form 

E^iz) = E, h-2zY 1 
h-2z 

2h 
(13.2.70) 

and v^ = V (i.e., independent of z). Here Ec and Em denote the moduli 
of two different constituents, namely ceramic and metal, n is the power-
law exponent which is related to the volume fraction of ceramic and 
metal, and h denotes the total plate thickness. 

We have 

Bij = {Qtj - Qf) - ((i+„)"2 + n) 

D • - (Q^- - 0^'\ ^ ( 3(2 + n + n^) 
^v-{^tj ^ v ; i 2 l ^ ( i + n)(2 + n)(3 + n) 

+ Q ^ ^ (13.2.71) 

or 

An = A22 = 

•455 = -^44 = 

Bu = B22 = 

h {Em + nEc) 
(l + n ) ( l - z /2 ) 

hK^ {Em + nEc) 
2(l + n)(l + i/) 

nh^ {Ec - Em) 
2(l + n)(2 + n ) ( l - i / 2 ) 

^ ^ h^ [n{ii? + 3n + 8)Ec + S{'n? +n + 2)Em] 
^^ ^^ 12(1+n)(2 + n)(3 + n) ( l -1 /2) 

Ai2 = i^An, Bu = uBn, £>i2 = z/^n (13.2.72) 

If we define 

Do = 
Ech^ 

12(1-j /2) ' 2(1 + 1/)' 
Er = ^ (13.2.73) 

Ec 
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then the expressions in (13.2.72) can be written as 

Au = 
12(n + Er)D 

h?{\+n) ' ^ 5 = 
KsGh{n + Er) 

(1 + n) ' 
Bii = 

6n(l - Er)D 
/i(l + n)(2 + n) 

r>ii = 
_ [nj'n? + 3n + 8) + 3(n^ + n + 2)^^] D 

(l + n)(2 + n)(3 + n) 

The constajits f̂ j have the following values: Jls = fig = 0 and 

(13.2.74) 

Au 

^2 =-Dl2 -

J>[(n^ + 4n3 + 7n^) + AErjn^ + 4n? + 7n + 3Er)] 
(n + £r)(3 + n)(2 + n)2 

B12B11 

111 

fia =Bii + B12 = 
6n(l - Er){l + z/)Z? 

ft(H-n)(2 + n) 
6n(l - £ r ) ( l - t^)^ 

h(l + n)(2 + n) 
12(n + Er)(l + i/)i:' 

/ i 2 ( l+n ) 
12(n + £;r)(l-i^)-D 

f̂ 4 =.Bl2 - Bii = -

f)9 = 

/i2(l + n) 

3 ( l - £ ^ r ) V ( 3 - ) - n ) ( l + J/) 
(1 + n)[7n2 + 4n3 + n^ + 4Er(3£;r + 7n + 4n2 + n^)] 

(13.2.75) 

By substituting the CPT solution given by Eq. (13.2.69) into 
(13.2.47) and (13.2.57), one obtains the deflection of the FGM plate 
as 

64u;^£>c 
Wn = 

fix 

+ \a) \Er^n 

Ar]Dc ( O9 

(l + l/c)fii Vl + l̂  + ^9 -'0' (13.2.76) 
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where 
1 = 0, 

"={=1. 
For clamped edge, we obtain 

64w^Dc 

for roller supported edge 
for simply supported edge 

(13.2.77) 

Wn = 
qoa 

1-

1 + n 

If + 
8 

3/^2(1-i/c) \aj 
'-\ 

(13.2.78) 

In the above equations Kg denotes the shear correction factor. 

Considering a Titanium-Zirconica FGM plate, i.e., u = 0.288, Er = 
0.396, and taking Kg = 5/6, the maximum deflection parameters at the 
plate center (r = 0) are tabulated in Tables 13.2.1-13.2.3 for various 
values of n and h/a ratio. The deflection parameter increases with 
increasing h/a ratios but decreases with increasing values of n. 

Prom Eqs. (13.2.48H13.2.52) and (13.2.59)-(13.2.62), the stress 
resultants for the FGM plates are (since Q^ = Q.s = C2 = Ki = 0) 

< = 0, < = 0, M,^, = M,^, Mio^M^g (13.2.79) 

Table 13.2.1. Maximum deflection WQ of functionally graded roller-
supported circular plates {v = 0.288, Er = 0.396, Ks = 
5/6). 

n 

0 
2 
4 
6 
8 

10 
15 

0.0 

10.368 
5.700 
5.210 
4.958 
4.800 
4.692 
4.527 

Thickness radius ratio, h/a 

0.05 

10.396 
5.714 
5.223 
4.970 
4.812 
4.704 
4.538 

0.1 

10.481 
5.756 
5.261 
5.007 
4.848 
4.739 
4.573 

0.15 

10.623 
5.826 
5.325 
5.069 
4.909 
4.799 
4.632 

0.2 

10.822 
5.925 
5.414 
5.155 
4.993 
4.882 
4.714 

(Table 13.2.1 is continued on the next page). 
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(Table 13.2.1 is continued from the previous page). 

n 

20 
25 
30 
35 
40 
50 

102 
103 
10^ 
10^ 

Table 13.2.2. 

n 

0 
2 
4 
6 
8 

10 
15 
20 
25 
30 
35 
40 
50 

102 
103 
10̂  
10̂  

0.0 

4.434 
4.375 
4.334 
4.303 
4.280 
4.247 
4.178 
4.113 
4.106 
4.106 

Thickness radius ratio, h/a 

0.05 

4.446 
4.386 
4.345 
4.315 
4.291 
4.258 
4.189 
4.124 
4.118 
4.117 

Maximum deflection WQ 
supported circulzir plates ( 
5/6). 

0.0 

10.368 
5.483 
5.102 
4.897 
4.761 
4.665 
4.514 
4.426 
4.370 
4.330 
4.301 
4.278 
4.246 
4.178 
4.113 
4.106 
4.106 

0.1 

4.480 
4.421 
4.379 
4.349 
4.326 
4.293 
4.223 
4.158 
4.151 
4.151 

0.15 

4.538 
4.478 
4.437 
4.406 
4.383 
4.349 
4.280 
4.214 
4.208 
4.207 

of functionedly i 
> = 0.288 ) Er — 

Thickness radius ratio, h/a 

0.05 

10.396 
5.497 
5.115 
4.909 
4.773 
4.677 
4.525 
4.438 
4.381 
4.342 
4.312 
4.289 
4.257 
4.189 
4.124 
4.118 
4.117 

0.1 

10.481 
5.539 
5.153 
4.946 
4.810 
4.712 
4.560 
4.473 
4.416 
4.376 
4.346 
4.324 
4.291 
4.223 
4.158 
4.151 
4.151 

0.15 

10.623 
5.610 
5.217 
5.007 
4.870 
4.772 
4.619 
4.531 
4.473 
4.433 
4.404 
4.381 
4.348 
4.280 
4.214 
4.208 
4.207 

0.2 

4.619 
4.559 
4.517 
4.486 
4.463 
4.429 
4.359 
4.293 
4.286 
4.285 

graded simply 

0.396, K,= 

0.2 

10.822 
5.708 
5.307 
5.094 
4.954 
4.855 
4.701 
4.612 
4.554 
4.513 
4.484 
4.461 
4.428 
4.359 
4.293 
4.286 
4.285 
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Table 13.2.3. Mciximum deflection WQ of functionally graded clamped 
circular plates {i/ = 0.288, Er = 0.396, Ks = 5/6). 

n 

0 
2 
4 
6 
8 

10 
15 
20 
25 
30 
35 
40 
50 

102 
10^ 
10^ 
10^ 

0.0 

2.525 
1.388 
1.269 
1.208 
1.169 
1.143 
1.103 
1.080 
1.066 
1.056 
1.048 
1.043 
1.034 
1.018 
1.002 
1.000 
1.000 

Thickness radius ratio, h/a 

0.05 

2.554 
1.402 
1.282 
1.220 
1.181 
1.155 
1.114 
1.092 
1.077 
1.067 
1.060 
1.054 
1.046 
1.029 
1.013 
1.011 
1.011 

0.1 

2.639 
1.444 
1.320 
1.257 
1.217 
1.190 
1.149 
1.126 
1.112 
1.101 
1.094 
1.088 
1.080 
1.063 
1.047 
1.045 
1.045 

0.15 

2.781 
1.515 
1.384 
1.318 
1.278 
1.250 
1.208 
1.184 
1.169 
1.159 
1.151 
1.145 
1.137 
1.119 
1.103 
1.101 
1.101 

0.2 

2.979 
1.613 
1.473 
1.404 
1.362 
1.333 
1.289 
1.265 
1.250 
1.239 
1.231 
1.225 
1.216 
1.199 
1.182 
1.180 
1.180 

13-3 Buckling Load Relationships for Sandwich 
Mindlin Plates 

13.3.1 Governing Equations 

Here we extend the buckling load relationships developed for 
isotropic polygonal plates in Chapter 11 to polygonal sandwich plates. 
The governing equations of the Kirchhoff and Mindlin plates are given 
by Eqs. (11.1.3a-c) and (11.1.4a-c), respectively. They are repeated for 
ready reference. The buckling equations for Kirchhoff plates are given 
by 
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^ + ^ = N^V^w"" (13.3.1c) 
OX ay 

Where the moment resultants {MxxiMyy.Mxy) are related to the 
deflection WQ by Eqs. (6.2.22a-c). 

In the case of Mindlin plates under hydrostatic in-plane loads, the 
buckling equations are 

^ ^ ^ _ Q M ^ O (13.3.2a) 

^ < . ^ - n M _ n (13.3.2b) 

^ + ^ = iV^V^u;^ (13.2.2c) 
ox ay 

The relationships between the force and moment resultants (Ms and 
Qs) and the generalized displacements {wo,^x>4>y) oi sandwich plates 
are given by Eqs. (13.1.10a-e). 

Substitution of Eqs. (13.1.10a-e) into Eqs. (13.3.2a-c) yields the 
result 

KsiGchc + 2Gfhf) U^ + ^ ] 

4 [(1 - . . )D. + (1 - . , )D,] ^ ^ + ^ ] (13.3.3a) 

Ks{Gchc + 2Gfhf)U^ + ^ \ 

4 [ ( l - . . ) P . + ( l - . , ) D , ] ( ^ + ^)(13.3.3b) 

(Gchc + 2Gfhf) (M'^ + V^u;^) = N^V^w'^ (13.3.3c) 

where A1^ is the moment sum 

(1 + Uc)Dc + (1 + Uf)Df dx dy ^ ' ' ' 
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Differentiating Eqs. (13.3.3a) and (13.3.3b) with respect to x and y, 
respectively, and adding the results and using Eq. (13.3.3c), we arrive 
at the result 

(V2 + A^) V ^ ^ ^ = 0 (13.3.5) 

where 

TyM 

^ ^ {Dc + Df) {1 - [N^/Ks{Gchc + 2Gfhf)]} ^^^'^'^^ 

The equation governing buckling of an isotropic Kirchhoff plate is 
given by [see Reddy (1999)] 

/"v^ + ^ " j V ^ ^ ^ = 0 (13.3.7) 

where w^ is the deflection of the Kirchhoff plate and N^ is the 
associated buckling load. 

13.3.2 Buckl ing Load Re la t ionsh ip 

For simply supported, isotropic polygional plate the following 
boundary conditions hold on simply supported edges: 

w^ = 0, M^ = V^w^ = 0 for the Kirchhoff plate (13.3.8) 

w^ = 0, M^ = V^w^ = 0 for the Mindlin plate (13.3.9) 

Comparing Eqs. (13.3.5) and (13.3.7), and in view of the boundary 
conditions (13.3.8) and (13.3.9), it follows that 

Â  = 1 ^ (13.3.10) 

or 

M _ {Dc + Df)N^ Dc + Df . , „ „ , , . 
D{1 + DeffN^) ' ^'^^ ~ DKsiGchc + 2Gfhf) ^''^''^•^^^ 

which provides a relationship between the buckling load A^^ of a 
simply supported, solid polygonal Kirchhoff plate and that of a simply 
supported, sandwich Mindlin plate. Equation (13.3.11) is also vahd for 
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solid Mindlin plate. By setting /i/ = 0 and omitting the subscript 'd 
on quantities, we obtain the relationship between the buckling loads of 
solid polygonal Mindlin and Kirchhoff plates 

Finally, in view of Eqs. (13.3.11) and (13.3.12), we have the 
relationship between the buckling loads of Mindlin sandwich and solid 
plates 

iV^/(i9e + i^/) ^ N'lD 
l^N^/[Ks{Gchc + 2Gfh})] l--NS/{KsGh) ^ • • ; 

13.4 Free Vibration Relationships for Sandwich 
Plates 

13.4.1 Governing Equat ions 

This section is concerned with the free vibration of general polygonal 
sandwich plates based on the first-order shear deformation plate theory. 
The polygonal plate considered is simply supported on all its straight 
edges. It will be shown herein that the vibration frequencies of such 
sandwich plates may be computed from their well-known Kirchhoff plate 
counterparts via an exact relationship. This exact relationship should 
be useful for the development of approximate vibration formulae for 
sandwich plates of other shapes, boundary and loading conditions. 

Consider an arbitrary polygonal sandwich plate with simply 
supported edges (see Figure 13.1.1). On the basis of the first-order 
plate theory and upon assuming that the deformation are continuous 
through the plate thickness, the stress-displacement relations are given 
by Eqs. (13.1.la-e). 

The equations of motion of the plate are 

^ . f = ( . . . V . . ) ^ ( 1 - 3 ) 
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where t is the time, pc and pf are the material densities of the core and 
facings, respectively, and 

Dc=^ 
Epic r _ ^ 

( 1 - ^ 1 ) ' '<^-12 
3 

h) + jhl + ^hchf 
\ 

(13.4.4) 

Note that the terms on the right side of Eqs. (13.4.1) and 
(13.4.2) account for the rotary inertia effect. The bending moments 
[Mxx.Myy^Mxy) and transverse shear forces (Qx^Qy) are known in 
terms of the generahzed deflections through Eqs. (13.1.10a-e). 

By substituting Eqs. (13.1.1a-e) into equations (13.1.1)-(13.1.3), 
the three plate equations for vibration can be written as 

+ -[{l-u,)D, + {l-Uf)Df] 
dy^ dxdyJ 

- K,{Gchc + 2Gfhf) U^ + ^ j = (pe/c + Pflf)-^ 
M 
X 

(13.4.5) 

+ ̂ [a-.....a-.)..if^.^) dx^ 

- KsiGchc + 2Gfhf) (t>^ + 
M , dw^\_,^^ . ^_^_,d'<t>'y M 

dy {Pdc + Pflf)-^ 

(13.4.6) 

d'^w M 
{Gchc + 2Gfhf) (M^ + V'^w^) = {pcic + 2pflf)-^^ (13.4.7) 

where M^ is the moment sum [see Eq. (13.1.13)] 

M M M^,+M^y d(t>^ . 5 < 
(1 + iyc)Dc + (1 + iyf)Df dx + dy 

(13.4.8) 
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For free vibration (i.e., harmonic motion), the displacement and 
rotations are assumed to be of the form 

<j>y{x,y,t) = 4>^{x,y)e^^' 

(13.4.9a) 
(13.4.9b) 
(13.4.9c) 

where WM is the circular frequency of the plate and the over bar denotes 
that the amplitudes of natural vibration and they are functions of only 
the spatial co-ordinates x and y. In the interest of brevity, in the 
following discussion, the over bar on the variables will be omitted. 

Substitution of Eqs. (13.4.9a-c) and differentiating Eqs. (13.4.6) 
and (13.4.7) with respect to x and y, respectively and adding them, and 
using Eq. (13.4.8), we obtain 

{Dc + Df)V^M^ - Ks{Gchc + 2Gfhf) (M^ + V^w^) 

= -iPcIc + PfIf)u;hM'^ (13.4.10) 

Moreover, the substitution of Eqs. (13.4.9a-c) into Eq. (13.4.8) yields 

KsiGchc + 2Gfhf) [M + V^w^) = -{pchc + 2pfhf)ulfW^ (13.4.11) 

By eliminating M^ from Eqs. (13.4.10) and (13.4.11), one obtains 

V''w^ + 
Pchc + 2pfhf , pJc + pflf 

+ 
2,..M 

Pchc + 2pfhf 
{Dc + Df) 

Ks{Gchc + 2Gfhf) {Dc + Df) 

{pchc + Pfhf)u}lt 
Ks{Gchc + 2Gfhf) 

which can be written as 

(V2 + AAf>f = 0, w'' = w^ + w^, J = 1,2 

where 

ujifV'w 

UJI^W^ = 0 (13.4.12) 

(13.4.13) 

A M i = 6 + ( - l ) V ^ i + ^ 2 

^ - ^ 

Pchc + 2pfhf , Pch + Pflf 
+ 

6 = 

Ks{Gchc + 2Gfhf) {Dc + Df) J 

Pchc + 2pfhf 
{Dc + Df) <^M 

(13.4.14a) 

UJIJ (13.4.14b) 

(13.4.14c) 
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The boundary conditions for simply supported polygonal sandwich 
plates, the boundary conditions are 

^M ^ y^M ^ y2^M ^ 0 (13.4.15) 

The equation governing free vibration of an isotropic KirchhofF plate 
is given by [see Reddy (1999)] 

{v'-X%)w^ = {V' + XK)iV'-XK)w^, Xl = ^ (13.4.16) 

where w^ is the deflection, h is the total thickness, p is the density, 
and UJK is the natural frequency of the isotropic Kirchhoff plate. Since 
the equation (V^ - Xj^)w^ = 0 produces imaginary frequencies, the 
vibration of the Kirchhoff plate is thus governed by 

iV^ + XK)w^ = 0 (13.4.17) 

For a simple supported polygonal Kirchhoff plate, the deflection and the 
moment sum axe zero at the boundary 

w^ = 0 V^w^ = 0 (13.4.18) 

13 .4 .2 Free Vibrat ion Relat ionship 

Comparing Eqs. (13.4.13) and (13.4.15) with (13.4.17) and 
(13.4.18), we note that the vibrating polygonal sandwich plate problem 
is analogous to the vibrating polygonal Kirchhoff plate problem. Thus, 
for a given simply supported polygonal plate, we have 

A^ = A^ (13.4.19) 

which yields the following relationship between the frequencies of the 
isotropic Kirchhoff polygonal plate and and the sandwich Mindlin 
polygonal plate: 

^M = (1 + aiuJK) - V (1 + aiuxf - 4a2UJ% 

ax = (l + 6 ) 6 J ^ , 02 = 

^' 2 (pcIc + Pflf) 

6̂ 1 

6 = 
{Pchc + 2pfhf) 

Ks {Gchc + 2Gfhf) 
Dc + Df 

Pch + Pflf^ 

^ pJc + Pflf 
pchc + 2pfhf 

ei (13.4.20) 

(13.4.21) 

(13.4.22a) 

(13.4.22b) 

(13.4.22c) 
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Using Eq. (13.4.20), one can readily obtain the mth frequency of a 
simply supported, polygonal sandwich plate upon supplying the mth 
mode frequency of the corresponding Kirchhoff plate. 

The foregoing derivation applies to a solid thick (Mindhn) plate 
solution as well. By letting the thickness of the facings, hf = 0 and 
hc = h (i.e., Df = 0,Dc = D = Eh^/[12{l-iy% Gc--G = E/[2{l+u)i 
Pc = p), the sandwich plate becomes a solid Mindlin plate of thickness 
/i, density p, shear modulus G, Poisson's ratio i/, and flexural rigidity 
D. Thus the Eq. (13,4.20) reduces to 

2 QKsG 
^5 = ph'^ 

h? ph / 2 
12 V -D V Ks[l - I') 

h? ph / , 2 

(13.4.23) 

where ujs is the circular frequency of the solid Mindhn plate. This 
relationship (13.4.23) was derived by Wang (1994) for rectangular plates 
and shown to give accurate vibration frequencies for other simply 
supported plate shapes. A form similar to equation (13.4.23) was 
also derived by Irschik (1985). The latter expressed it in terms of 
the alternative form of the prestressed membrane vibration solution 
instead of the Kirchhoff plate solution. Note that Conway (1960) has 
established analogies between the buckling and vibration problem of 
polygonal Kirchhoff plates and the vibration problem of prestressed 
membranes. Thus, one may use either of these solutions for Eqs. 
(13.4.20) and (13.4.23). There are abundant buckling and vibration 
solutions of polygonal Kirchhoff plates and membranes available in the 
open literature. 

13.5 Summary 

In this chapter, an exact relationship between deflections of 
sandwich plates and the corresponding Kirchhoff plates is presented. 
The relationship is valid for simply supported polygonal plates under 
any transverse load or for simply supported and clamped circular plates 
under any axisymmetric load. Thus, for the bending problem of such 
plates, it suffices to perform only the classical thin (Kirchhoff) plate 
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bending analysis, and the effect of shear deformation on the deflection 
can be readily computed. A more complicated shear deformable plate 
analysis may be avoided. It is clear that closed-form solutions can be 
obtained whenever there are closed-form solutions of the corresponding 
Kirchhoff plates, as illustrated by the two examples. A relationship 
between the deflection of sandwich plates and solid Mindlin plate is also 
given. Such relationships should be very useful to engineering designers 
and researchers working with sandwich plates. 

Exact relationships between the bending solutions of the classical 
plate theory (CPT) and the first-order plate theory (FSDT) are also 
presented for functionally graded circular plates. Exact solutions of 
functionally graded plates using the first-order theory are presented 
in terms of the solutions of the classical plate theory for a number of 
boundary conditions. Numerical solutions of functionally graded plates 
under uniformly distributed load are presented as a function of the 
thickness-to-radius ratio and ratios of the volume fraction. 

Next, exact relationships between the buckling load of sandwich 
plates and Kirchhoff plates under uniform in-plane compressive load are 
presented. The relationship applies for the simply supported general 
polygonal plate and simply supported and clamped circular plates. 
Exact solutions of sandwich plates can be obtained from existing exact 
Kirchhoff solutions. The more complicated buckhng analysis of shear 
deformable polygonal sandwich plates can be avoided because of the 
relationship presented herein. 

Lastly, an exact relationship has been presented between the 
vibration frequencies of sandwich plates and those of their Kirchhoff 
plate counterparts. The relationship applies for any general simply 
supported polygonal plate with straight edges. Exact vibration solutions 
for sandwich plates can be obtained by using existing exact Kirchhoff 
plate vibration solutions. Even buckling solutions for Kirchhoff plates 
under in-plane loads or vibration solutions for prestressed membranes 
can be used due to the analogies between these problems. The 
more complicated shear deformable buckling analysis for the considered 
sandwich plates may be bypassed because of the relationship derived. 
Vibration analysis of Kirchhoff plates can be readily performed, for 
example, by using the computerized Rayleigh-Ritz method and the 
sandwich plate solutions computer accordingly. This relationship 
between frequencies can also be used to check the convergence and 
accuracy of numerical shear deformable plate vibration solutions. 
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Annular plates: 
boundary conditions, 
clamped, 17, 20, 24, 31 
simply supported, 20, 23, 31, 98, 

114 
Axisymmetric bending, 154, 156 
Axisymmetric linearly varying load, 

164, 251 

Beam finite element: 44 
consistent, 49 
Hermite cubic, 46 
Levinson, 54 
reduced integration, 49 
unified, 48 

Beam stiffness matrix, 48 
Beam theory: 

Euler-Bernoulli, 5, 11, 12 
Levinson, 38 
Reddy-Bickford, 20-24, 28, 31, 

36, 39, 64-74 
simplified, 42, 46 

Timoshenko, 11, 13, 17-19 
Third-order, 13, 39 
see: Reddy-Bickford 

Bessel functions, 169, 183, 209, 233 
Biharmonic equation, 99, 112, 152 
Boundary conditions: 

annular plates, 174 
circular plates, 157-159, 168 
clamped, 17, 20, 24, 31, 80, 98, 

104, 158, 186, 262 
elastically supported, 17, 20, 24, 
fixed-fbced, 59 
fixed-free, 59, 262 
free, 17, 20, 24, 31, 80, 97, 104, 

157, 186, 262 

pinned-pinned, 58 
simply supported, 16, 20, 23, 31, 

80, 98, 104, 113, 157, 185, 199, 
238, 248, 261, 271 
hard type, 115, 227 
soft type, 115 

solid circular plate, 158, 208, 260 
Buckling equations 57, 192, 196, 

264, 269 
Buckling load: 

beams, 55, 58, 63, 69, 72 
circular plates, 210 
polygonal plates, 200-204 
rectangular plates, 201-205 
sandwich plates, 259 
sectorial plates, 215 

Characteristic polynomials, 221, 242 
Circular plates: 

axisymmetric bending of, 154 
boundary conditions, 157, 168 
classical theory of, 155, 171 
governing equations, 155 
first-order theory of, 155 
third-order theory of, 155 

Classical plate theory (CPT): 
circular plates, 155, 171 
displacement field, 3, 89, 171, 254 
governing equations, 94, 99, 112, 

137, 155, 179, 196, 206, 225, 
244, 255 

polygonal plates, 112-116 
sectorial plates, 178, 214 

Consistent interpolation element, 49 
Constitutive equations: 

for beams, 16, 18 
for plates, 98, 102, 107 
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Displacement field of: 
classical plate theory, 3, 89, 171, 

254 
circular plates, 155, 171, 254 
Euler-BernouUi beam, 12 
first-order plate theory, 90, 254 
Kirchhoff plate theory, 
see: Classical plate theory 
Mindlin plate theory, 
see: First-order plate theory 
Reddy-Bickford beam theory, 14 
Reddy plate theory, 
see: Third-order plate theory 
third-order beam theory, 14 
third-order plate theory, 91 
Timoshenko beam theory, 13 

Effective shear force, 22, 30, 97, 145 
Effective shear coefficient, 34 
Eigenfunctions, 60 
Elastic coefficients, 102 
Element stiffness matrix, 47, 48, 176 
EUiptical plate, 129 
Energy methods, 1 
Engesser-Timoshenko column, 56 
Equations for buckling, 57, 192, 

196, 264, 269 
Equations of equilibrium: 

beams, 15, 18-20, 22-23 
circular plates, 155, 172, 206, 255 
elasticity, 6, 108 
polygonal plates, 99, 102, 106, 

112, 119, 123, 196-198, 
225-226, 244-248, 270 

sectorial plates, 179-181, 212-213 
Equilateral triangular plate, 114 
Equivalent slope, 44 
Euler-Bernoulli hypothesis, 12-13 
Euler-Lagrange equations, 2, 172 

Finite element method, 44 
Finite element model: 44, 53 

displacement, 53 
First-order shear deformation theory 

bending solutions of, 112, 138-143, 
156-157, 184-185, 249, 257-260 

buckling analysis of, 199-200 
displacement field of, 3, 89-91, 

171, 254 
equations of equilibrium of, 102, 

155, 196, 206, 225, 255, 270 
finite element models, 44, 
Navier's solution, 117, 129 
shear correction factors, 4, 19, 56, 

101 
vibration analysis of, 226-228 

Fixed edge: see clamped edge 
Flexural rigidity: 56, 99 
Force resultants, 101, 
Free edge, 17, 20, 24, 31, 97 
Free vibration: 

see: natural vibration 
Frequency equation: 

see: characteristic equation 
Functionally graded materials, 253 

Generalized displacements, 46-48, 
96-97, 107 

GeneraUzed forces, 48, 96-97 

Hgimilton's principle, 2, 223 
Hermite cubic interpolation, 46, 47 

functions, 48 
Higher-order theories, 4 
Hooke's law, generalized, 16, 102 

Independent interpolation, 51 
Interdependent approximation, 52 
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Interdependent interpolation, 50, 51 
Interpolation functions: 

Hermite, 46-48 
interdependent, 52 

Kinetic energy, 223 
KirchhofF assumptions, 90 
KirchhofF free-edge condition, 97 
KirchhofF hypothesis, 90 
KirchhofF plate theory, 

see: Classical plate theory 

Laplace equation, 112 152 
Laplace operator, 99 
Levinson beam theory, 38, 54, 75 
Levinson plate theory, 132 
Levy solution, 133 

Marcus curvature, 110 
Marcus moment, 

see: moment sum 
Mindlin plate theory, 

see: First-order plate theory 
Modification factor, 204 
Moment resultants, 92, 119 
Moment sum, 103, 112, 116, 118, 

121, 123, 131, 138, 156, 166, 
199, 213, 226, 235, 245 

Navier's method, 129 
Navier's solution, 118, 129 

Pinned-pinned columns, 58 
Plane stress state, 4, 
Polar coordinates, 153 
Potential energy functional, 1, 18, 

21, 93, 100, 196 
Primary variables, 22, 46, 96 

Principle of virtual displacements, 
2, 15, 21, 94, 101, 105, 172 

Reddy plate theory, 
see: Third-order plate theory 

Reddy-Bickford beam theory, 
20-24, 28, 31, 36, 39, 64-74 

Reduced integration element, 49 
Rotary inertia, 227-229 
Rotatory inertia, 

also see: rotary inertia 

Secondary variable, 22, 46, 96, 
Shear correction coefficient, 4, 19, 

48, 56, 101, 231 
Shear peirameter, 25 
Shear rigidity, 56, 
Stability: see: buckling 
Stiffness matrix, 44, 47 
Strain energy functionals, 17, 21, 92, 

100, 195 

Third-order beam theory, 6, 20-23, 
65 

Third-order plate theory, 
bending solutions of, 105-107, 124, 

168 
buckling analysis of, 200, 208 
displacement field of, 4, 91, 108 
equations of equilibrium of, 106, 

119, 155, 198, 206-207, 225-226 
vibration analysis of, 236-240 

Timoshenko beam theory, 11, 13, 
17-19, 56, 78 

Total potential energy: 
see: potential energy functional 

Unified beam element, 46 
Unit-dummy-displaement method, 

47 
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Virtual displacements, 2, 15, 21, 
principle of, 15, 21, 94, 101, 105, 

172 
Virtual strain energy, 

see: Strain energy functional 
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