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Preface

There exist many books on the theory and analysis of beams
and plates. Most of the books deal with the classical (Euler-
Bernoulli/Kirchhoff) theories but few include shear deformation theories
in detail. The classical beam/plate theory is not adequate in providing
accurate bending, buckling, and vibration results when the thickness-
to-length ratio of the beam/plate is relatively large. This is because
the effect of transverse shear strains, neglected in the classical theory,
becomes significant in deep beams and thick plates. In such cases, shear
deformation theories provide accurate solutions compared to the classical
theory.

Equations governing shear deformation theories are typically more
complicated than those of the classical theory. Hence it is desirable to
have exact relationships between solutions of the classical theory and
shear deformation theories so that whenever classical theory solutions
are available, the corresponding solutions of shear deformation theories
can be readily obtained. Such relationships not only furnish benchmark
solutions of shear deformation theories but also provide insight into the
significance of shear deformation on the response. The relationships
for beams and plates have been developed by the authors and their
colleagues over the last several years. However, this valuable information
is dispersed in the literature. Therefore, the goal of this monograph is
to bring together these relationships for beams and plates in a single
volume.

The book is divided into two parts. Following the introduction, Part
1 consists of Chapters 2 to 5 dealing with beams, and Part 2 consists of
Chapters 6 to 13 covering plates. Problems are included at the end of
each chapter to use, extend, and develop new relationships. The book
is suitable as a reference by engineers and scientists working in industry
and academia. An introductory course on mechanics of materials and
elasticity should prove to be helpful but not necessary because a review
of the basics is included in the relevant chapters.
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Chapter 1

Introduction

1.1 Preliminary Comments

The primary objective of this book is to study the relationships
between the solutions of classical theories of beams and plates with those
of the shear deformation theories. Shear deformation theories are those
in which the effect of transverse shear strains is included. Relationships
are developed for bending, buckling, and free vibration solutions.

A plate is a structural element with plane form dimensions that are
large compared to its thickness and is subjected to loads that cause
bending deformation in addition to stretching. In most cases, the
thickness is no greater than one-tenth of the smallest in-plane dimension.
Because of the smallness of the thickness dimension, it is often not
necessary to model the plate using 3D elasticity equations. Beams are
one-dimensional counterparts of plates.

The governing equations of beams and plates can be derived using
either vector mechanics or energy and variational principles. In vector
mechanics, the forces and moments on a typical element of the plate are
summed to obtain the equations of equilibrium or motion. In energy
methods, the principles of virtual work or their derivatives, such as
the principles of minimum potential energy or complementary energy,
are used to obtain the equations. While both methods can give the
same equations, the energy methods have the advantage of providing
information on the form of the boundary conditions.

Beam and plate theories are developed by assuming the form of the
displacement or stress field as a linear combination of unknown functions
and the thickness coordinate. For example, in plate theories we assume

N

0i(@,y,2,t) = > _(2) ¢l (z,9,1) (1.1.1)

Jj=0

where ; is the ith component of displacement or stress, (z,y) are the
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in-plane coordinates, z is the thickness coordinate, t denotes the time,
and ! are functions to be determined.

When ¢; are displacements, the equations governing (,D'Z are
determined by the principle of virtual displacements

5W = 6U +6V =0 (1.1.2a)

or its dynamic version, i.e., Hamilton’s principle

t
/2(6K—6U-6V)dt=0 (1.1.2b)
t

1

where (§U,6V,6W,6K) denote the virtual internal (strain) energy,
virtual potential energy due to applied loads, the total virtual work done,
and virtual kinetic energy, respectively. These quantities are determined
in terms of the actual stresses and virtual strains, which depend on
the assumed displacement functions ¢; and their variations. For plate
structures, the integration over the domain of the plate is represented
as the product of integration over the plane of the plate and integration
over the thickness of the plate (volume integral=integral over the plane
x integral over the thickness). This is possible due to the explicit nature
of the assumed displacement field in the thickness coordinate. Thus, we

can write .

/Vol_(->dV=/_; /Q (-)dQ dz (1.1.3)

where h denotes the thickness of the plate and g denotes the
undeformed mid-plane of the plate, which is assumed to coincide with
the zy—plane. Since all undetermined variables are explicit functions of
the thickness coordinate, the integration over plate thickness is carried
out explicitly, reducing the problem to a two-dimensional one. Hence,
the Euler-Lagrange equations associated with Eq. (1.1.2a,b) consist of
differential equations involving the dependent variables ¢](z,y,t) and

(m)

the thickness-averaged stress resultants R;;" per unit length:

h
RI™ = /Zh (2)™03;dz (1.1.4)
-2

The stress resultants can be written in terms of ¢; with the help of the
assumed constitutive equations and strain-displacement relations. More
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complete development of this procedure is presented in the forthcoming
chapters.

The same approach is used when ¢; denote stress components,
except that the basis of the derivation of the governing equations is the
principle of virtual forces. In the present book, stress-based theories will
receive very little attention. Readers interested in stress-based theories
may consult the book by Panc (1975).

1.2 An Overview of Plate Theories
The simplest plate theory of bending is the classical plate theory

(CPT). In the case of pure bending, the displacement of the CPT is
given by (see Reddy 1984b, 1997a, 1999a)

awo

t) = —2 20

u(x,y,z, ) z oz

v(x>y>2,t) = —Z_aalvyg
w(z,y, 2,t) = wo(z, ¥, 1) (1.2.1)

where (u,v,w) are the displacement components along the (z,y,z)
coordinate directions, respectively, and wq is the transverse deflection
of a point on the mid-plane (i.e., z = 0). The displacement field (1.2.1)
implies that straight lines normal to the xy—plane before deformation
remain straight and normal to the mid-surface after deformation. The
Kirchhoft assumption amounts to neglecting both transverse shear and
transverse normal strain effects, i.e., deformation is due entirely to
bending.

The next theory in the hierarchy of refined theories is the first-order
shear deformation theory (or FSDT) (Mindlin 1951 and Reddy 19840,
1999a), which is based on the displacement field

u(:z:, y’ Z, t) = Z¢I(mv y) t)
'U(J?, y’ Z, t) = Z¢y($, y7 t)
w(xayvz’t) =w0(-’E,y,t) (122)

where ¢, and —¢, denote rotations about the y and z axes, respectively.
The FSDT extends the kinematics of the classical plate theory
by including a gross transverse shear deformation in its kinematic
assumptions, i.e., the transverse shear strain is assumed to be constant
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with respect to the thickness coordinate. In the first-order shear
deformation theory, shear correction factors are introduced to correct for
the discrepancy between the actual transverse shear force distributions
and those computed using the kinematics relations of the FSDT. The
shear correction factors depend not only on the geometric parameters,
but also on the loading and boundary conditions of the plate. In both
the CPT and FSDT, the plane-stress state assumption is used and the
plane-stress reduced form of the constitutive law is used.

Second- and higher-order plate bending theories employ higher-
order polynomials in the expansion of the displacement components
through the thickness of the plate. The higher-order theories introduce
additional unknowns that are often difficult to interpret in physical
terms. The second-order theory with transverse inextensibility is based
on the displacement field

u(z,y,2,t) = 2¢:(z,y,t) + 2%z (z, 9, 1)
v(z,y,2,t) = 2¢y (2,9, t) + 22Uy (2, Y, 1)
w(x,y, Z)t) =2U0(£L‘,y,t) (123)

There are a number of third-order theories in the literature, and a
review of these theories is given by Reddy (1997a). The third-order
shear deformation plate theory (TSDT) of Reddy (1984a, 19845, 19974,
1999a) is based on the displacement field

4 0
v(z,y, 2, 1) = 20y (2,9, 1) + 2° <_3-h—2> (% + _6%)
’IU(CL', Y, <2, t) = wo(x,y,t) (124)

The displacement field accommodates a quadratic variation of transverse
shear strains (and hence stresses) and the vanishing of transverse shear
stresses at the top and bottom surfaces of a plate. Thus there is no
need to use shear correction factors in a third-order theory. Third-
order theories provide a slight increase in accuracy relative to the FSDT
solution, at the expense of an increase in computational effort.

In addition to its inherent simplicity and low computational cost,
the FSDT often provides sufficiently accurate description of the global
response for thin to moderately thick plates, e.g., maximum deflections,
critical buckling loads, and free vibration frequencies and associated
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mode shapes. Therefore, it is of interest to determine the deflections,
buckling loads, and natural frequencies of plates using the FSDT.

1.3 Present Study

Often, the higher-order beam/plate theories require solutions of
more complicated governing equations. In view of the fact that solutions
of classical beam and plate theories are available for a vast number
of problems and the familiarity of engineers with these solutions, it is
desirable to have relationships between solutions of higher-order theories
and those of the classical theories. This book presents relationships
between the solutions of the classical and shear deformation theories
of beams and plates. The relationships for deflections, buckling loads
and natural frequencies enable one to obtain the solutions of the shear
deformation plate theories for specific problems and thereby reduce the
effort of solving the complicated equations of shear deformation theories.

The book is divided into two major parts. Part 1 deals with beams
and Part 2 is devoted to plates. Part 1 contains four chapters namely
Chapters 2 to 5, and Part 2 covers Chapters 6 to 13.

Following this introduction, a review of beam theories and
the relationships between the Euler-Bernoulli beam theory (EBT),
Timoshenko beam theory (TBT) and Reddy-Bickford beam theory
(RBT) are presented in Chapter 2. The relationships are used to
develop the shear-flexural stiffness matrix in Chapter 3, which allows
the analysis of shear deformable continuous beams and frames. Chapter
4 is devoted to the development of buckling load and vibration frequency
relationships. Bending relationships for tapered beams are presented in
Chapter 5.

A derivation of the governing equations of the classical, first-
order, and third-order plate theories for static bending is presented in
Chapter 6. Bending relationships are presented in Chapter 7 for simply
supported polygonal plates, Chapter 8 for rectangular Lévy plates,
Chapter 9 for circular and annular plates, and Chapter 10 for sectorial
and annular sectorial plates. Chapter 11 is devoted to buckling load
relationships, while Chapter 12 covers frequency relationships for free
vibration. Finally, Chapter 13 contains bending, buckling, and vibration
relationships of sandwich and functionally graded plates. Exercise
problems are included at the end of each chapter, and references cited in
these chapters are placed in alphabetical order at the end of the book.
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Problems

11

1.2

1.3

Starting with a linear distribution of the displacements through the beam
thickness in terms of unknown functions (wyq, F1, F»)

u(z,2) = 2F(z), w(z,z)=wo(z)+ zF(z) (1)

determine the functions (F}, F3) in terms of wp such that the following
Euler-Bernoulli hypothesis holds:

ow ou Jw g
2" % m )

Starting with the displacement field

u(z, z) = 2¢(x) + 22Y(z) + 230(z) , w(z,2) =wolz)  (3)

determine the functions (¢,0) in terms of wg and ¢ such that the
transverse shear stress vanishes at z = +3:

h h ..
Uz:z(l', -'2‘) =0, Uzz(z, ) =0 (”)

where h is the thickness of the beam.

Consider the following equations of equilibrium of 2-D (Tz-plane)
elasticity in the absence of body forces [0zz = 0zz(Z,2), Ozz =
azz(a:, Z)]:
do Jdo .
Tz TIzz _ (2)
Oz 0z
6012 + aozz — 0 (’L'L)
Oz 0z

Integrate the above equations with respect to z over the interval
(=h/2,h/2) and express the result in terms of the forces Nzz and Q2

k h
Nm::b/zhaz:rdzy Qz=1b ’
~& .

A Ozz A2 (7’”)
2
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where b is the width and h is the thickness of the beam. Use the following
boundary conditions:

h h
Uzz(m,y,—’i) =0’ sz(-’lf)y>§) =0

h h .
UZZ(J:) Y, _5) = gb Uzz(.'ll, Y, 5) = qt (’l'U)

Next, multiply equations (i) and (ii) with z, integrate with respect to
z over the interval (—h/2,h/2), and express the result in terms of the
moment M, and shear force Q)

1
Myz = b/2 202z dz (v)

h
2

Eliminate @)z from the final equations.
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Chapter 2

Bending of Beams

Presented in this chapter are the various beam theories, progressing
from the simple Euler-Bernoulli beam theory to the first-order shear
deformation beam theory of Timoshenko and finally to the third-order
beam theory of Reddy and Bickford. The latter two beam theories
allow for the effect of transverse shear deformation which has been
neglected in the Euler-Bernoulli beam theory. Using the principle of
minimum potential energy, the governing equilibrium equations and
boundary conditions have been derived for transversely loaded, uniform
beams on the basis of the kinematic assumptions of the aforementioned
beam theories. In view of the mathematical similarity of the governing
equations and on the basis of load equivalence, ezact relationships
between the bending solutions of these three beam theories are derived.
These relationships enable the conversion of the well-known Euler-
Bernoulli beam solutions to their shear deformable beam counterparts.
Ezamples are given to illustrate the use of these relationships.

2.1 Beam Theories
2.1.1 Introduction

There are a number of beam theories that are used to represent the
kinematics of deformation. To describe the various beam theories, we
introduce the following coordinate system. The z-coordinate is taken
along the length of the beam, z-coordinate along the thickness (the
height) of the beam, and the y-coordinate is taken along the width of
the beam. In a general beam theory, all applied loads and geometry are
such that the displacements (u,v,w) along the coordinates (z,y, z) are
only functions of the z and z coordinates. Here it is further assumed
that the displacement v is identically zero.
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The simplest beam theory is the Fuler-Bernoulli beam theory
(EBT), which is based on the displacement field

uF(z,z) = —zgg (2.1.1a)
w8 (z,2) = wf(z) (2.1.1b)

where wg is the transverse deflection of the point (z,0) of a point on
the mid-plane (i.e., z = 0) of the beam and the superscipt ‘E’ denotes
the quantities in the Euler-Bernoulli beam theory. The displacement
field in Eq. (2.1.1) implies that straight lines normal to the mid-plane
before deformation remain straight and normal to the mid-plane after
deformation, as shown in Figure 2.1.1a. These assumptions amount to
neglecting both transverse shear and transverse normal strains.

X Ugp

(Mg . wp)

Figure 2.1.1. Deformation of a typical transverse normal line in various
beam theories (up denotes displacement due to in-plane
stretching, which is not considered here).
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The next theory in the hierarchy of beam theories is the Timoshenko
beam theory (TBT) [e.g., Timoshenko (1921)], which is based on the
displacement field

ul(z,2) = 2¢7 (z) (2.1.2a)
wT (z, z) = wl (z) (2.1.2b)
where ¢ denotes the rotation of the cross section (see Figure 2.1.1b)
and the superscript ‘T denotes the quantities in the Timoshenko beam
theory. In the Timoshenko beam theory the normality assumption of
the Euler-Bernoulli beam theory is relaxed and a constant state of
transverse shear strain (and thus constant shear stress computed from
the constitutive equation) with respect to the thickness coordinate is
included. The Timoshenko beam theory requires shear correction factors
to compensate for the error due to this constant shear stress assumption.
As stated earlier, the shear correction factors depend not only on the
material and geometric parameters but also on the loading and boundary
conditions.

In higher-order theories, the Euler-Bernoulli hypothesis is further
relaxed by removing the straightness assumption. Theories higher than
third order are seldom used because the accuracy gained is so little that
the effort required to solve the equations is not justified.

A second-order theory with transverse inextensibility is based on
the displacement field

u(z, 2) = z¢(z) + 2%9(z) (2.1.3a)
w(z, z) = wo(z) (2.1.3b)

where ¢ now represents the slope du/0z at z = 0 (see Figure 2.1.1¢c) of
the deformed line that was straight in the undeformed beam, and ¢ and
% together define the quadratic nature of the deformed line. Similarly, a
third-order beam theory [see Jemielita (1975), Levinson (1981), Bickford
(1982), Reddy (1984a,b), Heyliger and Reddy (1988)] is based on the
displacement field

uf(z, 2) = 208 (z) + 22YF(z) + 220%(2) (2.1.4a)

wh(z, 2) = wl(z) (2.1.4b)

where the superscript R denotes the quantities in the Reddy beam
theory.
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The following displacement field can be found in the works of
Jemielita (1975), and a similar displacement field was used by Levinson

(1980, 1981), Bickford (1982), Reddy (1984a,b), and Heyliger and Reddy
(1988):

ul(z, z) = 26%(2) - a2® (d)R + d_;uﬁ) (2.1.5a)

wh(z, 2) = wli(z) (2.1.5b)
where a = 4/(3h?). The displacement field accommodates a quadratic
variation of the transverse shear strain (and hence shear stress) and
the vanishing of transverse shear strain (and hence shear stress)
on the top and bottom planes of a beam. Thus, there is no
need to use shear correction factors in the third-order beam theory.
Levinson (1981) used a vector approach to derive the equations of
equilibrium, which are essentially the same as those of the Timoshenko
beam theory. Bickford (1982) and Reddy (1984a,b) independently
derived variationally consistent equations of motion associated with the
displacement field (2.1.5a,b). Bickford’s work was limited to isotropic
beams, while Reddy’s study considered laminated composite plates. The
third-order laminated plate theory of Reddy (1984a,b) was specialized
by Heyliger and Reddy (1988) to study linear and nonlinear bending and
vibrations of isotropic beams. For other pertinent works on third-order
theory of beams, the reader may consult the textbooks of Reddy (1984b,
1997a, 1999a) and references therein.

2.1.2 Euler-Bernoulli Beam Theory (EBT)

The virtual strain energy 6U of a beam is given by

L
§U = / / 0 rebtrs dAdT (2.1.6)
0 JA

where § is the variational symbol, A the cross-sectional area of the
uniform beam, L the length of the beam, o, the axial stress, and £;; the
normal strain. Note that the strain energy associated with the shearing
strain is zero in the Euler-Bernoulli beam theory.

Using the linear strain-displacement relation [see Eq. (2.1.1a)]

ouf d*w§

€pg = ——— = —2
=T oz dz?

(2.1.7)
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in Eq. (2.1.6), we obtain

L 2 E
U = —/ MmE SO 4, (2.1.8)
0

Tz dl‘2

where MZE is the bending moment

ME = / 204p dA (2.1.9)
A

Assuming that the transverse load ¢(z) acts at the centroidal axis of
the beam and that there are no other applied loads, the virtual potential
energy of the load g is given by

L
8V = —/ gbwf dzx (2.1.10)
0

The principle of virtual displacements states that if a body is in
equilibrium, then the total virtual work done, §W = U + 6V, is zero.
Thus, we have

L gd*ouf E
W = —/ Mgp——— +qbwy | dz =0 (2.1.11)
0 dz

Integration by parts of the first term in Eq. (2.1.11) twice leads to

L{ @ME dswE  aME 1"
- —q | 6wfd MEZ0 _ ==l =0 (21.12
/0 ( a2 1) oweert | Me— dz 9 0 ( )

Since dwy is arbitrary in (0 < z < L), we obtain the equilibrium equation

_ dszj;
dz?

=q for0<z<L (2.1.13)

It is useful to introduce the shear force @ and rewrite the equilibrium
equation (2.1.13) in the following form

szb; E szE
-2 L0 _Zxz 2.1.14
dx = =0, dz 7 ( )
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The form of the boundary conditions of the Euler-Bernoulli theory
is provided by the boundary expression in Eq. (2.1.12). It is clear that
either the displacement w(‘? is known or the shear force QF = dMZE, /dx
is specified at a point on the boundary. In addition, either the slope
dw§ /dz is specified or the bending moment ME, is known at a boundary
point. Thus, we have

| wf QF = 4=
Specify : IuF or (2.1.15)
dug ME
dc zz

Note that specifying w§ or dwf /dz is known as an essential boundary
condition while specifying QF or M,, is known as the natural boundary
condition. In mechanics, an essential boundary condition is known as the
kinematic or geometric boundary condition while the natural boundary
condition is known as the statical or force boundary condition.

Using Hooke’s law, we can write

dwf
Ogz = Ez€qr = _E:Ez'dm—go (2116)
where E, is the modulus of elasticity. Thus, we have
d*wf
ME — /Azau dA=-Di 2% (2.1.17)

where Dy, = E, I, is the flexural rigidity of the beam and I, = [, 2°dA
the second moment of area about the y-axis. The substitution of Eq.
(2.1.17) into Eqgs. (2.1.13) and (2.1.15) yields

d? ( dwf

12 m_d—a_:Q—) =q forO<z<L (2.1.18)

(2.1.19)

o {4) o =2 (0.2F)
Specify : or

dwf 2,,E
=20 d“w
dz lei = "'D::J:'E'?'

Some standard boundary conditions associated with the Euler-
Bernoulli beam theory are given below:

Simple support: The transverse displacement w{f is prescribed
as zero and the transverse shear force Q¥ = dME /dx is unknown. In
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addition, the bending moment ME, should be specified while the slope
dw§ /dz is not specified.

Clamped: The transverse deflection wf as well as the slope

dwf /dz are specified to be zero. The shear force QF and bending
moment MZ are unknown.

Free: The transverse deflection wg as well as the slope dw{ /dz are

not specified. The shear force QF and bending moment MZ, should be
specified.

Elastically supported: The shear force is given by Q2 = —klw{f
at the support, where k; is the spring constant of the elastic support
(assumed to be linear). If, in addition, a rotational spring is there, the
bending moment is then ME = ko(dwf /dz), where k; is the torsional
spring constant.

The bending solutions for the Euler-Bernoulli beam under the
transverse load ¢ may be readily obtained by integrating the fourth-order
differential equation (2.1.18) and using two boundary conditions from
(2.1.19) at each end of the beam to evaluate the integration constants.

2.1.3 Timoshenko Beam Theory (TBT)

In view of the displacement field given in Eq. (2.1.2), the strain-
displacement relations are given by

ouT deT
L= e 2.1.20
¢ dr  ° dz ( %)
T T o dwl
2 = "~ —— = e 2.1.2
¥ Oz + oz ¢ dz ( 08)

Note that the transverse shear strain is nonzero. Hence, the virtual

strain energy 6U includes the virtual energy associated with the shearing
strain, i.e.

L
6U=/ /(auésu—%au&'yu)dAda:
0 JA

L T T
= / / [amz@— + Oz (5¢T + éé_wo_ﬂ dAdr
0 JA dz dr

LT pdogT dbuf
= ["|mz T (547 + 900 12
JA { L+ <5¢ + 2 >]dz (2.1.21)
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Here, 0, is the normal stress, 0., the transverse shear stress, and M;’;B
and QT are the bending moment and shear force, respectively

MT = / 20z dA, QT = / Oee dA (2.1.22)
A A

As before, assuming that the transverse load ¢(z) acts at the centroidal
axis of the Timoshenko beam, the virtual potential energy of the
transverse load q is given by

L
oV = —/ g(z)bwt dz (2.1.23)
0

Substituting the expressions for U and 6V into W = 6U + 6V,
and carrying out integration by parts to relieve 5wg and 64T of any
differentiation, we obtain

0= / [ MZT d5¢ +Q7T <6¢>T d&w{) - 6wgq} dz
d
=/L K dMT +QT> 60T + ( QT—q) 5w0]da:
0 Tdr
+ [ML6¢" + QTowg ]0 (2.1.24)

Setting the coefficients of 6wl and 6¢7 in 0 < z < L to zero, the
following equilibrium equations are obtained [c.f. Eq. (2.1.14)] :

dMZ | r dQT
_ 49 _ 9.1.25
& T9:=0 - = (2.1.25)

The boundary conditions of the Timoshenko beam theory are of the

form T
wf Qz
Specify : or (2.1.26)
o7 Mg,

Using the constitutive relations

Ozz = Liz€zz, Orz = Gzz')’zz (2127)
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we can express the bending moment and shear force in terms of the
generalized displacements (w{, ¢7)

T d¢T
ML = /A 200 dA = Doy (2.1.28)
T T dwg
Q7 = Ks/ Ope A = KoAg, | 67 + 20 (2.1.29)
A dr

where
Dyr = / Ea:22 dA = EzIyy) Azz = / Gz, dA = G A (2-1-30)
A A

and K is the shear correction factor that has been introduced to
compensate for the error caused by assuming a constant transverse
shear stress distribution through the beam depth. The usual approaches
for estimating the shear correction factors are either by matching
the high frequency spectrum of vibrating beams (e.g., Mindlin and
Deresiewicz 1954, Stephen 1982) or by using approximation procedures
and simplifying assumptions within the linear theory of elasticity (e.g.,
Cowper 1966 and Bert 1973).

Substituting for M7, and QT from Egs. (2.1.28) and (2.1.29) into
(2.1.25) and (2.1.26), we obtain the governing equations and boundary
conditions in terms of the generalized displacements:

T T
_i <D:cz%'> + KsAqz. <¢T + ‘dw—o)

#

2.1.31
dr dz dzx 0 (2.1.31)

T
K, Az, <¢T + d%")] =q¢ (2132

for0 <z < L and

wf Kodzs (47 + 4 )
or (2.1.33)

Specify : {
¢T

at the boundary.

The common boundary conditions associated with the Timoshenko
beam theory are given below:
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Simple support: The transverse displacement w{ is prescribed as
zero and the transverse shear force Qg is unknown. In addition, the

bending moment ML should be specified while the rotation ¢7 is not
specified.

Clamped: The transverse deflection w{ as well as the rotation ¢7
are specified to be zero. The shear force Q7 and bending moment M2,
are unknown.

Free: The transverse deflection wj as well as the rotation ¢7 are
not specified. The shear force QI and bending moment MZ, should be
specified.

Elastically supported: The shear force is given by QI = —kywd
at the support, where k; is the spring constant of the elastic support
(assumed to be linear). If, in addition, a rotational spring is there, the
bending moment is equal to MI = —ko¢T, where kg is the torsional
spring constant.

The equilibrium equations (2.1.25) of the Timoshenko beam theory
may be combined to obtain

&ML dQT d? dg”

- - 4 Y )l=- 2.1.34

2 a1 @\ P ! (2.1.34)
d dwg' d T
ad ) =g = 2.1.35
= (KsAm - ) g — (KuAzT) (2.1.35)

These equations can be readily integrated to determine #T first and w
next.

2.1.4 Reddy-Bickford Beam Theory (RBT)

The strain-displacement relations of the Reddy-Bickford beam
theory are given by [see Egs. (2.1.5a,b)]

oult  deof 5 (dof  d*wf
v _ e @ 2.1.36a
f2 = 5r T 2\ dz + dz? ( )

R R R R
ou™  Ow® _ oft + dwy _ g2 <¢R + 999-) (2.1.36b)

Yoz = 5, T o dr dz

where 4 4

a=— B=3a=1y (2.1.37)
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Hence, the virtual strain energy §U becomes

L
§U = / / (0z2b6ns + 0sb72s) dAdT
0 A
L dépft 4 (dse® | d*suf
”/o /A{""[‘Z iz Y\ T
R
(1 - 5z2) <5¢R + % )} }dAdx
dx

L dégF d?5wft
= /0 [(Maﬁ - aPm> _— apxz’—dzr

+ 0z

dz
+ (Qf - BR;) (6¢R + g‘z—gﬂdx (2.1.38)
where ME and QF are the usual bending moment and shear force
ME — /A 2005 dA, QF = /A Ope dA (2.1.39)
and P, and R, are the higher-order stress resultants
Py = /A B0 dA, Ry = /A 20y, dA (2.1.40)

It is important to note that unlike the Timoshenko beam theory, there
is no need to use a shear correction factor in the Reddy-Bickford beam
theory. This is due to the fact that the transverse shear strain is
quadratic through the thickness of the beam. The virtual potential
energy of the transverse load q is given by

L
5V = — / q(2)6wl dz (2.1.41)
0

Applying the principle of virtual displacements, W = §U +6V = 0,
we obtain

L d6pR 26wk
— R _ we 4 oWy
0= J, | (M —ep) T - ap
déwi
R _ R 0 _ R
+<Q1’ BRz) (5¢ +— ) qéwo]dm
L d Az}i AR R dZP:cz de R
= [ e oon (ol - 2 o) ]
dP, dswl "
I8 5ot ez | AR R _ 0
+{Mm§¢ +<a 7 +Qz>6w0 aPry _ ]0 (2.1.42)
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where )
ME =ME - aP,,, QR =QF -8R, (2.1.43)

Setting the expressions associated with the arbitrary éwf and 6¢% in

0 < z < L to zero, we obtain the following equilibrium equations for the
Reddy-Bickford beam theory:

dM R
== 2 L QR=0 (2.1.44)
d*P, de

oy T =4 (2.1.45)
The form of the boundary conditions for the Reddy-Bickford theory is

wff Vi = oz + QF

. dwh
Specify : { —2- or aPy, (2.1.46)
o? ME

where the V.2 is the effective shear force. For the Reddy-Bickford
beam theory, it can be seen that the boundary condltlons requlre the
specification of the primary (or kinematic) variables wo , dwft/dz, ¢*
or else the secondary (force) variables V%, Py, sz_fz are equal to
zero. Note that the Reddy-Bickford beam theory has three boundary
conditions at each end of the beam, unlike both Euler-Bernoulli and
Timoshenko beam theories which have only two boundary conditions at
each end of the beam. The total of six boundary conditions are required
because the Reddy-Bickford beam theory is a sixth-order theory while
the other two beam theories are fourth-order theories.

The stress resultant-displacement relations for the RBT are given
by

do® d*wft

Mer = /Azau dA = bzg; dz anIF (2147)
. doft 2wl
P = Azaamm dA = Frz—— ;.’L' aHzxd_ng_ (2'1'48)
. R
QF = / Oz.dz = Ag; (¢R + —-d:;:): > (2.1.49)
A

2 e r, duwf
R, = / 2°07; dz2 = Dgz | @7 + ——- (2.1.50)
A dz
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where
Dyy = Dyg — aFya, Fag = Fag — @Hye (2.1.51a)
sz = Azz - ﬁD:z:z, Dz:z =Dy, — ﬁF:cz (2'1~51b)

(Azz,Dxx,me,sz):/(]. z z y % )E dA (2‘1.523.)
A
(Agz, Dy, Fiy) = / (1,22, 24Gas dA (2.1.52b)
A

Expressing the equations of equilibrium in terms of the displacements
wg and ¢, we have

d [~ dof o Pul\ ;[ dwf) _
_% <D1xH—QFE¢—$2— +Azz ¢ +—;‘ =0

where

Azz = Azz - IBsza Dzz = Da::c - apz:t; Fzm = F:cz: - aI:I:r,z (2'1'55)

The common boundary conditions associated with the Reddy-
Bickford beam theory are given below:

Simple support: The transverse displacement wé is prescribed
as zero and the transverse shear force QF is unknown. In addition,

the bending moment Mf; and the higher-order stress resultant a P,
should be specified while the rotation ¢ and the slope dwo /dx are not
specified.

Clamped: The transverse deflection wg as well as the rotation d)R
and the slope dwfl/dz are specified to be zero. The shear force QZ,

bending moment Maﬁ, and the higher-order stress resultant aFP,; are
unknown.

Free: The transverse deflection wo , the rotation ¢, and the slope

dwft/dzx are not specified. The shear force Qz, bending moment Mg,
and the higher-order stress resultant aP,; should be specified.
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Elastically supported: The shear force is given by Q§ = -klwé{
at the support, where k; is the spring constant of the elastic support
(assumed to be linear). If a rotational spring is also there, the bending
moment is then Mxﬁ = —koo®, where k; is the torsional spring constant.
In addition, the higher-order stress resultant aP,; is zero.

2.2 Relationships Between EBT and TBT

2.2.1 General Comments

The objective of this section is to establish relationships between
the bending solutions (i.e., deflection, rotation, bending moment, and
shear force) of the Timoshenko beam theory (TBT) in terms of the
corresponding quantities of the Euler-Bernoulli beam theory (EBT).
The relationships are established using the load equivalence, as shown
below (see Wang 1995a).

It is clear from Eqgs. (2.1.14), (2.1.17), (2.1.25), and (2.1.28) that
the shear forces, bending moments and the slopes of the two beams are
related by

ML = ME + Ciz + C (2.2.2)
dwf x? z 1
T 0
__ C C 9.2.3
¢ 2 TOap. TCp . TG, (2:2.3)

Substitution of Eq. (2.2.3) into Eq. (2.1.29), using Egs. (2.1.25)
and (2.2.2), and then integrating with respect to z yields the following
deflection relationship:

ME T 3 z? z 1
T_,.E zZ_ o End -C -C -C.
RO W I(KSAIZ 6Dm) s Dz D
(2.2.4)

where C1,Cq, C3,Cy are constants of integration. These constants are
to be determined using the boundary conditions of the particular beam.
For free (F), simply supported (S) and clamped (C) ends, the boundary
conditions are given by

F: ME=ML=QF=QT =0 (2.2.5)
S: wf=uwl =ME =ML =0 (2.2.6)
dwf

L= ¢T =0 (2.2.7)

C: w(f:wg:
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In the following subsections, the evaluation of the constants C;
is illustrated for single-span beams of various combinations of end
conditions. For brevity, the beams will be designated by two letters.
The first letter indicates the type of end condition at the left end
(z = 0) and the second letter refers to the end condition at the right end
(z = L). Also, for convenience, the non-dimensional shear parameter Q2
is introduced, as follows:

Dy E, (r )2
= - — 2.2.8
@ K Az, L?  K,Gz, \L ( )

where r = /I, /A is the radius of gyration and L/r denotes the
slenderness ratio of the beam.

2.2.2 Simply Supported (SS) Beams

The boundary conditions for simply supported beams are given by
Eq. (2.2.6) for z = 0 and z = L. The substitution of these boundary
conditions into Egs. (2.2.2) and (2.2.4) gives the following values of the
constants:

Ci=Cy=C3=C4=0 (2.2.9)

2.2.3 Clamped-Free (CF) Beams

The boundary conditions for clamped-free beams are given by Eq.
(2.2.7) for £ = 0 and by Eq. (2.2.5) for z = L. The substitution of
these boundary conditions into Eqs. (2.2.1) to (2.2.4) gives the following
values of the constants:

C1=Cy=C3=0 and Cq=ME(0)QL? (2.2.10)

2.2.4 Free-Clamped (FC) Beams

The boundary conditions for free-clamped beams are given by Eq.
(2.2.5) for £ = 0 and by Eq. (2.2.7) for z = L. The substitution of these
boundary conditions into Eqgs. (2.2.1) to (2.2.4) gives the following:

Ci=Cy=C3=0 and C;=ME(L)QL? (2.2.11)
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2.2.5 Clamped-Simply Supported (CS) Beams

The boundary conditions for clamped-simply supported beams are
given by Eq. (2.2.7) for £ = 0 and by Eq. (2.2.6) for z = L. The
substitution of these boundary conditions into Eqgs. (2.2.2) to (2.2.4)
gives the following:

3Q

Cp=—""
T39I

ME(0), C;=-C), C3,=0, Cq=ME(0)QL
(2.2.12)

2.2.6 Simply Supported-Clamped (SC) Beams

The boundary conditions for simply supported-clamped beams are
given by Eq. (2.2.6) for z = 0 and by Eq. (2.2.7) for z = L. The
substitution of these boundary conditions into Egs. (2.2.2) to (2.2.4)
gives the following:

3,
O30 = =- = 2.2.
C1 (1+3Q)LMI$(L)) Cy =0, C3 Cy, Cy=0 ( 2 13)

2.2.7 Clamped (CC) Beams

The boundary conditions for clamped beams are given by Eq. (2.2.7)
for £ = 0 and z = L. The substitution of these boundary conditions
into Egs. (2.2.3) and (2.2.4) gives the following:

120
G = ATl [M:Ez(L) - MzEx(O)]
60
Cy = RESTI) [Msz(L) - ij;(O)}
C3=0, Cq= ME(0)QL? (2.2.14)

The results show that for statically determinate beams, the shear
force, bending moment, and slope in the two theories remain the
same, while the deflection differs. For statically indeterminate beams,
the solutions for shear force, bending moment, slope, and deflection
predicted by the two theries are not the same.
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2.2.8 Summary of Relationships

In view of the foregoing expressions for the constants C;, i =1, ..., 4,
the relationships of the slope, the bending moment, the shear force and
the deflection may be obtained respectively from Eqs. (2.2.1) to (2.2.4).
The relationships are summarized in Table 2.2.1.

Table 2.2.1 Generalized deflection and force relationships between
Timoshenko and Euler-Bernoulli beams.

B. C. Relationships
SS wl (z) = wf (z) + G ME (2)
d E
o7 z) = wdQ:c(x)

CF wf (@) = wf () + B [ME(z) - ME(0)]
¢T($) = 'dwd( )

M (z) = M ()
Q% (z) = Q7 (z)

FC wf (@) = wf(z) + B [ME (z) - ME(L)]
¢’ (z) = dwd =2
M (z) = ME(z)
QI(z) = Q% (a)

cs w (z) = wf (z) + Y& [ME (z) - ME(0)]

+Dﬁf%L (Q"' 2L ~ = )MEC(O)

#(@) =~ + 5§ (1 ) MEO)
ML (x) = ME(2) ~ rigey (1 - §) ME(0)

Q (z) = Qf(z) + mg—QrME(O)

(Table 2.2.1 is continued on the next page)
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(Table 2.2.1 is continued from the previous page)

SC wl(z) = wf(z) + PEME (z)
2 2
~ et (Q +3- @) Mz (L)
dwf 2
T (z) = ~ 242 4 AL (2 - 1) ME(L)

ML (2) = ME(2) - 132y EME(L)
QT(z) = QF(z) - iy ME(L)

cct wf(z) = wf(z) + 3£ [ME(z) - ME(0)]

R ¢
Tl‘— a1z -

It can be seen from Table 2.2.1 that the bending moments and shear
forces are the same for statically determinate Timoshenko and Euler-
Bernoulli beams, i.e. SS, CF and FC beams. Also for these beams,
the rotation of the Timoshenko beam is equal to the slope of the Euler-
Bernoulli beam. For statically indeterminate CS, SC and CC beams, the
stress-resultants are not the same, because the compatibility equation
involving the effect of transverse shear deformation is required for the
solution. The deflection relationships show clearly the effect of shear
deformation. The shear-deflection component increases with increasing
magnitude of the Euler-Bernoulli moment (or transverse load) and shear
parameter.

2.3 Relationships Between EBT and RBT

Here, we develop the relationships between the bending solutions of
the Euler-Bernoulli beam theory (EBT) and the Reddy-Bickford beam
theory (RBT). At the outset, we note that both EBT and TBT are
fourth-order theories whereas the RBT is a sixth-order theory. The order
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referred to here is the total order of all equations of equilibrium expressed
in terms of the generalized displacements. The refined beam theory is
governed by a fourth-order equation in wg and a second-order equation
in ¢. Therefore, the relationships between the solutions of two different
order theories can only be established by solving an additional second-
order equation. The relationships are developed between deflections,
rotations and stress resultants of the EBT and RBT for an easy
comparison between theories.

First we note that Egs. (2.1.44) and (2.1.45) together yield

d*ME
da::’u =gq (2.3.1)

Equating the loads in Egs. (2.1.13) and (2.3.1), and after integration
twice, we obtain
ME = ME 4+ Ciz+ C2 (2.3.2)
The stress resultant-displacement relationships in Egs. (2.1.47) and
(2.1.50) can be expressed as

= 3:: df; - ud—g’zﬁ (2.3.3)
R, = i?: QE (2.3.4)
Pz = Qs _p vl

, , 2 R
(- TE) - (F)me ees

where the stiffness coefficients with hats and bars were defined in Egs.
(2.1.51a,b) and (2.1.55), and « and 3 are defined in Eq. (2.1.37).

Replacing P, and Ry in Eq. (2.1.44) with the expressions in Egs.
(2.3.4) and (2.3.5), we obtain

Doz dMz; _ A 2R _ o FeeDez _ Foo sz; (2.3.6)
Dyy dz Az, Dy A, Az, dz
Using Eq. (2.3.2) and simplifying the coefficients, we arrive at

a <Fzzézz _ Fzm) szﬁ /—1;” R+ (bm;

E
= - — +C1) =0 (2.3.7
Dardn:  Am) @@ 4, %" Du> (02 + @) =0 237)
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Thus, a second-order differential equation must be solved to determine
QF in terms of QF. Once QF is known, MR, ¢%, and w§ can be
determined as will be shown shortly.

The effective shear force V7! in the Reddy-Bickford beam theory
can be computed from

dP, dME
R —_ Nk _ T _ Iz

=QE)+ 0, (2.3.8)

where Eqs. (2.1.44) and (2.3.2) are used to derive the last equality.
To determine ¢, we use Eq. (2.1.47):
doR d2w§>

=MR +aF,, (E + =

doft

DI:B d.’l)

aFy, sz
sz dz

2 E F d
zzdd 2 +Ciz +Cy + —— = Qz

_ME+01.’E+C2+

=-D (2.3.9)

Tz

or

Dz:cqu(x) = -

dwf aF,
oz dl? Ax: QR + cl— +Coz+Cs  (2.3.10)

where Eqs. (2.1.17) and (2.3.2) are used in arriving at the last equation.

Lastly, we derive the relation between wéi and wé3 . Using Eqgs.
(2.1.49) and (2.3.10), we can write

dwf Dgz
Dgs d:l,‘-o - _Dzz¢R($) + Am Q:r
E 2
= szfiﬂ)’ + l?m:Qf — le— —Coz —C3 (2.3.11)
dr Azz 2

and integrating with respect to z, we obtain

3
D$$w§(z) = D:m.’on(.'B)-{- /i (/ Qr dﬂ) 01'6— —02— —C3z—Cy
(2.3.12)
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This completes the derivation of the relationships between the
solutions of the Euler-Bernoulli beam theory and the Reddy-Bickford
beam theory. The constants of integration, C), Cs, C3, Cy appearing in
Egs. (2.3.2), (2.3.8), (2.3.11) and (2.3.12) are determined using the
boundary conditions. Since there are six boundary conditions in the
Reddy-Bickford theory [see Eq. (2.1.46)], the remaining two boundary
conditions are used in the solving of the second-order differential
equation (2.3.7). Boundary conditions for various types of supports are
defined below, consistent with the kinematic and natural variables [see
Eq. (2.1.46)] of the theory:

F: QF PR, + adif“” =0, ME —aP;, =0, P;; =0 (2.3.13)

S: wll=0, ME —aP,; =0, Pz =0 (2.3.14)
R R dw(})2

C:wp=0¢"=0 —==0 (2.3.15)

Since the second-order equation (2.3.7) requires boundary conditions on
QE, we reduce the force boundary conditions in Egs. (2.3.13) to (2.3.15)
to one in terms of Qf:

Free (F): Equations (2.3.13) and (2.3.15) imply

dQF
¥z _ 2.3.16
—> =0 (2.3.16)

Simply supported (S): Equation (2.3.14) implies

dQR
_m g 2. .1

£ =0 (2.3.17)
Clamped (C): Equations (2.3.15) and (2.1.49) imply

RE =0 (2.3.18)

2.4 Examples

Here, we present two examples to derive the solutions of TBT and
of RBT using the relationships derived in Sections 2.2 and 2.3 and the
solutions of EBT.
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2.4.1 Simply Supported Beam

Consider a simply supported beam under uniformly distributed load
of intensity go. Using the equilibrium equation (2.1.13) and boundary
conditions in Eq. (2.1.19), the stress-resultants and the deflection of the
Euler-Bernoulli beam are found to be

QE(z) = %(L - 2z) (2.4.1)
Mz (z) = (L z) (2.4.2)

4 3 4
wf(z) = 2%’" (% - 2Li3 + {—4) (2.4.3)

Using the relationship for simply supported (SS) beams in Table 2.2.1,
the corresponding bending solutions for the Timoshenko beam are

@F(@) = QF(0) = 2= (1-27) (2.4.4)

MZ(z) = ME(z) = q"f 2 (1-2) (2.45)

uf (@) = uf (z) + 7 ME()
(5o %)+ o (- B )eso

In the case of the Reddy-Bickford beam, we need to first solve the
second-order differential for the transverse shear force. From Eq. (2.3.8)
and Eq. (2.4.6), we have

d2 R
sz _ X2QR = [%(L —9z) + cl] (2.4.7)
where
A2 = Az Daz peAuDs o4
a(Fzsz: - szDzz)’ a(F:czD:cm — Fre Dz

The solution to this differential equation is

Dip-2)+C1| (24.9)

QE(x) = Cssinh Az + Cg cosh Az + — )\2 5
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where Cs and Cg are constants to be determined, along with
C1, Cs, Cs, Cy, using the boundary conditions.

The boundary conditions for the problem at hand are

wF(0) = wf(L) = ME(0) = ME(L) =0 (2.4.10)
w(i)i(o) = w(})z(L) = Mﬁz(O) = MQ(L) = Prz(0) = Ppr(L) =0
(2.4.11)
We note from Eq. (2.3.5) that
R L dQF
M,.(0) = P;.(0) imply Iz (0)=0 (2.4.12a)
R dQf
M;.(L) = Pyy(L) =0 imply d; (L)y=0 (2.4.12b)
Using the boundary conditions (2.4.10)—(2.4.12), we find that
_ _ _ _ g(_)ﬁ f)x:r
mtmcres e (3) (2
gou ok AL
C5 = ‘)\—3, CG = ——/\? tanh <—2'> (2413)
and the solution becomes
QE(z) = (?—:) [sinh Az — tanh (/\—2L> cosh Az
A
+5(@ - 21:)} (2.4.14)
ME (z) = ME () = %Qx(L - z) (2.4.15)
wi(z) = wf () + (%) -Dn [— tanh (&> sinh Az
A AIDZD.Tl 2
)\2
+cosh Az + —2—:v(L -z) - ljl (2.4.16)
For a rectangular cross-section beam, it can be shown that
DzzDez 6 Doz _ 6 (2.4.17)
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A close examination of Eq. (2.4.16) shows that the Reddy-Bickford
beam solution has an effective shear coefficient, based on the coefficient
in the expression for wf(z), of K, = 5/6. Of course, the refined third-
order beam theory does not require a shear correction factor. Also the
shear correction factor for the Timoshenko beam theory can be obtained,
for example, by comparing the maximum deflections of the Timoshenko
beams with those of the Reddy-Bickford beams.

2.4.2 Cantilever Beam

For a cantilever beam under uniformly distributed load of intensity
qQo, the stress-resultants and the deflection of the Euler—Bernoulli beam
are found to be

T
Q2 (z) = qoL (1 - Z) (2.4.18)
2 2
MZ(z) = ——QOQL (1 - %) (2.4.19)
q0L4 72 3 4t
wE(z) = 24D <6ﬁ —45+ (2.4.20)

Using the relationship for clamped-free (CF) beams in Table 2.2.1, the
corresponding bending solutions for the Timoshenko beam are

Q7 (z) = Q7 (z) = gL (1 - E) (2.4.21)
2 2
M, (z) = M7 (z) = —@QL (1 - %) (2.4.22)
1
TN _ . E E(.\_ aE
wf () = wf + —— [ME(e) - M (0)]
gLt [ 22 3 ot @l? =z ( )
= L s 2-=)(24.23
24D,, <6L2 ‘BT YA 0T n) )

In the case of the Reddy-Bickford beam, we need to first solve the
second-order differential equation for the transverse shear force. The
general solution of Eq. (2.3.7) with QZ as defined in Eq. (2.4.18) is

QE(z) = Cssinh Az + Cscosh Az + 5 [go(L — z) + Ci] (2.4.24)

A2 [
where A and y are defined by Eq. (2.4.8).
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The boundary conditions for the cantilever beam are

wE(0) = 28 (0) = QF(1) = ME(L) =0 (2.4.25)
R R
wi(0) = d—;"f(m = ¢R(0) = %\%(L) = MR(L) = Pux(L) =0
(2.4.26)
We note from Eq. (2.3.5) that
R : dQf
M;.(L) — Pez(L) =0 imply Iz (L)y=0 (2.4.27)

and from Eqs. (2.3.10) and (2.3.12)
dwé‘j
dz

Although QZ(0) obtained from the constitutive relations is zero at the
clamped edge, the effective shear force of the theory V at £ = 0 is
indeed not zero. It is given by Eq. (2.3.8).

Using the boundary conditions (2.4.10)—(2.4.12), we find that

inh AL\ [ Dyr
Cr=CymCs =0, C4:((]0__;1,><1+>\L81n >( )

A4 cosh AL Az,
gop (14 ALsinh AL qoLp
C _— = - 2.4.29
ST < cosh AL ) » Co A3 ( )

and the solution becomes

QR(z) = (/\—3(:%0%) [sinh Az — AL cosh A(L — z)] + 92_2”(11 - x)
(2.4.30)

R E 2 L2
Mz (z) = Mz (z) = qo | Lz - PR (2.4.31)

o=t (38) () (aee- )
T2 TT
qok Dz, _
+ ()\4 cosh ,\L> ( A..D > [cosh Az + ALsinh A(L — z)]

qojt /\Lsmh/\L>
2.4.32
< (A ) cosh AL (2.4.32)
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From Eqs. (2.4.30)-(2.4.32), it can be shown that the effective shear
correction factor of the Reddy-Bickford beam theory is K = 5/6.

2.5 Summary

In this chapter, exact relationships between the bending solutions
of the Euler-Bernoulli beam theory and those of the Timoshenko beam
theory and the Reddy-Bickford beam theory are presented. For the
bending relationships linking Timoshenko and Euler-Bernoulli beam
solutions, they are explicit. However, the relationships between Reddy-
Bickford beams and Euler-Bernoulli beams require solving an additional
second-order differential equation. This arises because the Reddy-
Bickford beam theory is a sixth-order beam theory while the Euler-
Bernoulli and Timoshenko beam theories are fourth-order ones.

The relationships can be used to generate bending solutions of the
Timoshenko and Reddy-Bickford theories whenever the Euler-Bernoulli
beam solutions are available. Since solutions of the Euler-Bernoulli
beam theory are easily determined or are available in most textbooks
on mechanics of materials for a variety of boundary conditions, the
correspondence presented herein between the various theories makes it
easier to compute the solutions of the Timoshenko beam theory and the
Reddy-Bickford beam theory directly from the known Euler-Bernoulli
beam solutions. In the next chapter we show how these relationships
may be used to develop finite element models of Timoshenko and Reddy-
Bickford theories using the finite element model of Euler-Bernoulli beam
theory. The stiffness matrix of the shear deformable elements are also
4 x 4 for the pure bending case, and the finite elements are free from
the shear locking phenomenon experienced by the conventional shear
deformable finite elements.

The present relationships can be easily extended to symmetrically
laminated beams. Indeed the relationships developed herein hold for
symmetrically laminated beams in which the Poisson effect is neglected
and the transverse deflection is assumed to be only a function of z. The
only difference lies in the calculation of the beam stiffnesses, Dzz, Azz,
and so on, which depend on individual layer stiffnesses and thicknesses.

Further the relationships may be readily modified to link the
bending solutions of linear viscoelastic Timoshenko beams and linear
viscoelastic Euler-Bernoulli beams under quasi-static loads (see Wang,
Yang, and Lam 1997). To do this, one can use the elastic-
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viscoelastic correspondence principle (Fligge 1975). This principle
involves replacing the elastic moduli and the elastic field variables in
the elastic solution by the Laplace transformed viscoelastic moduli and
viscoelastic field variables. Then, the transformed field variables are
converted back to the physical domain.

Problems

2.1

2.2

2.3
2.4

2.5

2.6

Consider a beam with a rectangular cross section with width b and
thickness h. The equilibrium shear stress distribution through the
thickness of the beam under a transverse point load (g is given by

3 222 h h :
022:%[1‘-(7)}’—5st§ (%)

The transverse shear stress computed using the constitutive equation in
the Timoshenko beam theory is constant and is given by Oiz = Qo/bh.
Compute the strain energies due to transverse shear stresses in the two
theories and then determine the shear correction factor as the ratio of

Uf to US.

Verify the expressions in Table 2.2.1 for (a) simply supported (SS) beams,
(b) clamped-free (CF) beams, (c) clamped-simply supported (CS) beams,
and (d) clamped (CC) beams.

Verify the relations in Egs. (2.3.3)—(2.3.5).

Use the deflection relationships to determine (wg , ¢T) and (wé?, ¢R) ofa
clamped-simply supported beam subjected to uniformly distributed load
intensity ¢p.

Starting with a linear distribution of the displacements through the beam
thickness in terms of unknown functions (F, G)

u(z, 2) = zF(z), w(z,z)=wp(z)+ 2G(x) (2)

determine the functions F' and G such that the following conditions hold:

ow ou .
E—O, 5;—-¢ (i)

Starting with a cubic distribution of the displacements through the beam
thickness in terms of unknown functions (F,G, H)

u(z,z) = 2F(z) + 22G(z) + 2°H(z), w(z,2) =wo(z) ()
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determine the functions (F,G, H) in terms of (wg, @) such that the
following conditions are satisfied:

2.7 The Levinson Beam Theory. The Levinson beam theory is based
on the same displacement field, Eqs. (2.15a,b), as the Reddy-Bickford
beam theory. As opposed to using the variationally-derived equations of
equilibrium, Levinson (1981) used the thickness-integrated equations of
elasticity, which are exactly the same as those of the Timoshenko beam
theory:

dML dQE

+QL= — 0 =9 (¥)

The stress resultant-dlsplacement relations for the Levinson beam theory
are the same as those in Reddy-Bickford beam theory and they are

. dot d*w§ y

Mg = an; - anzagi (44)

QL= 4 (¢L d“’O) (iid)
.’L'

where the stiffnesses bm, F.., and A“ are defined in Egs. (2.151a,b)
and (2.1.52a,b). Show that [cf. Eqgs. (2.2.1)-(2.2.4)]

Q=07 +C (v)
ME =ME + Ciz+Cy (v1)
dwE aF
L 0 Tz E
= - - +C
¢ dr Dzz Tz (Qz 1>
( 15 + Coz + Cg) (vii)
Dzz
L __ _ E E
Wy = Wy + - A (M:L' +Cl$)

3 2
- Dlm (cli”ﬁ- +Cr5 +Caz+ c4> (vidd)




Chapter 8

Shear-Flexural
Stiffness Matrix

Presented in this chapter is a unified element stiffness matriz
that incorporates the element stiffness matrices of the Euler-Bernoulli,
Timoshenko and the simplified Reddy- Bickford third-order beam theories.
The beamn element has only four degrees of freedom, namely, deflection
and rotation at each of its two nodes. Depending on the choice of the
element type, the general stiffness matriz can be specialized to any of the
three theories by merely assigning proper values to parameters introduced
in the development. The element does not experience shear locking,
and gives exact generalized nodal displacements for Euler—Bernoulli and
Timoshenko beam theories when the beam is uniform and homogeneous.
While the Timoshenko beam theory requires a shear correction factor,
the third-order beam theory does not require the specification of such a
factor.

3.1 Introduction

The finite element models of the Euler-Bernoulli beam theory and
the Timoshenko beam theory are now standard (see Reddy 1993). A
number of Timoshenko beam finite elements have appeared in the
literature. They differ from each other in the choice of interpolation
functions used for the transverse deflection wg and rotation ¢. Some are

based on equal interpolation and others on unequal interpolation of wq
and ¢.

The Timoshenko beam finite element with linear interpolation of
both wg and ¢ is the simplest element. However, it behaves in a very
stiff manner in the thin beam limit, i.e. as the length-to-thickness
ratio becomes very large (say, 100). Such behaviour is known as shear
locking (see Nickell and Secor 1972, Tessler and Dong 1981, Prathap and
Bhashyam 1982, and Averill and Reddy 1990). The locking is due to
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the inconsistency of the interpolation used for wy and ¢. To overcome
the locking, one may use equal interpolation for both wg and ¢ but
use a lower-order polynomial for the shear strain, €5, = (dwo/dz) + ¢.
This is often realized by using selective integration, in which reduced-
order integration is used to evaluate the stiffness coefficients associated
with the transverse shear strain, and all other coefficients of the stiffness
matrix are evaluated using full integration. The selective integration
Timoshenko beam element is known to exhibit spurious energy modes
(see Prathap and Bhashyam 1982 and Averill and Reddy 1990). Prathap
and Bhashyam (1982) used a consistent interpolation of the variables to
alleviate locking.

The transverse shear strain in the Timoshenko beam theory
(Timoshenko 1921, 1922) is represented as a constant through the
beam thickness, and a shear correction factor is thus introduced to
calculate the transverse shear force that would be equal in magnitude
to the actual shear force. Since the actual shear stress distribution
through beam thickness is quadratic, Jemielita (1975), Levinson (1981),
Bickford (1982) and Reddy (1984a) developed third-order beam theories
to capture the true variation of the shear stress. The displacement field
of these third-order theories accommodates a quadratic variation of the
transverse shear strain and stresses, and there is no need to use shear
correction factors in a third-order theory. The Levinson third-order
beam theory has the same equations of equilibrium as the Timoshenko
beam theory but the force and moment resultants contain higher-order
strain terms. Bickford (1982) used Levinson’s displacement field and
developed variationally consistent equations of motion of isotropic beams
while Reddy (1984) developed a variationally consistent third-order
theory of laminated composite plates.

Heyliger and Reddy (1988) used the third-order laminate theory
of Reddy to develop a beam finite element and studied bending and
vibrations of isotropic beams. The element is based on Lagrange linear
interpolation of the rotation ¢ and Hermite cubic interpolation of wp,

as they are the minimum requirements imposed by the weak form of the
third-order theory (also see Phan and Reddy 1985 and Reddy 1997a).

In this chapter, we present the development of a unified beam
finite element that contains the finite element models of the Euler-
Bernoulli, Timoshenko and the refined third-order beam theory. The
derivation of the unified element is based on the exact relationships
between the various theories presented in Chapter 2. The relationships



SHEAR-FLEXURAL STIFFNESS MATRIX 41

allow interdependent interpolation of wg and ¢ and the rank deficiency is
removed, resulting in an efficient and accurate locking-free finite element
for the analysis of beams according to classical as well as refined beam
theories.

3.2 Summary of Relationships
3.2.1 Relationships Between TBT and EBT

As discussed in Chapter 2, the shear force, bending moment, slope
and deflection of Timoshenko beam theory can be expressed in terms of
the corresponding quantities of the Euler-Bernoulli beam theory. These
relationships are summarized below [see Egs. (2.2.1)—(2.2.4)):

QT=Qf+¢4 (3.2.1)
ML = ME + Ciz + C, (3.2.2)
dw E
Da:z¢T = —D:t:tﬁo + 01_2" + Coz + C3 (323)
D z3 D
T _ E T E £ T
Destiy = Deowty + gy~ Maz =1 ( 6~ KiAc ‘”)
$2
- 027 —Ciz —Cy (3.2.4)

where Az, and D, are defined in Egs. (2.1.52a,b), and C1,C2,C3,C4 are
constants of integration, which are to be determined using the boundary
conditions of the particular beam.

3.2.2 Relationships Between RBT and EBT

Equations for the force and moment resultants, and the rotation and
deflection of the Reddy-Bickford beam theory in terms of the Euler—
Bernoulli beam theory are given by [see Egs. (2.3.2), (2.3.8), (2.3.10),
and (2.3.12)]

R dP,;, dME
Vz(‘”):Qf—ﬁRfaﬁ—adx =0
=QEx)+ (3.2.5)
ME(z)=ME + Ciz + C;y (3.2.6)
dwf L2

Dyz ¢ () = —Dga— qum + C1—— + Coz + C3 (3.2.7)

T2

dx
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meé{(a:) = me(})g(x) + l?m (/ Q?(n)dn)

Az,
3 2
- Cl% - 02% - Csz - C4 (3.2.8)

where o = 4/(3h%) and 8 = 4/h%. In addition, a second-order equation
must be solved to determine Q2 in terms of QF [see Eq. (2.3.7)]. This
solution requires another two constants Cs and Cg. The six constants C;
through Cg are determined using the six boundary conditions available
in the third-order theory.

3.2.3 Relationships Between Simplified RBT and EBT

As stated earlier, the Reddy-Bickford third-order theory requires,
unlike in the Timoshenko beam theory, the solution of an additional
second-order equation to establish the relationships. The reason is that
both the Euler-Bernouili beam theory and the Timoshenko beam theory
are fourth-order theories, whereas the Reddy~-Bickford beam theory is a
sixth-order beam theory. The second-order equation can be in terms of
Qf, JVIfI, #f, and wp. In this section we develop relationships between a
simplified Reddy-Bickford beam theory and the Euler-Bernoulli beam
theory. The term simplified Reddy-Bickford beam theory refers to the
fourth-order Reddy-Bickford beam theory obtained by dropping the
second-derivative term in the additional differential equation for w.
While this is an approximation of the original Reddy-Bickford beam
theory, it is as simple and as accurate as the Timoshenko beam theory
while not requiring a shear correction factor.

For the simplified Reddy-Bickford beam theory, we first derive the
second-order equation in terms of w§. Substituting Eqs. (2.1.17) and
(2.1.47) into Eq. (3.2.6), we obtain

. dott d*wf d*wf

0
Dmm—d—m— - anxW = _Dxxzva_ + Clz" + C’2 (3'2'9)
Integrating the above equation gives
) R E 2
D11¢R - ana:%“ = —Dzz—dwo + Clz— + C2.’L‘ + C3 (3210)
dz dz 2

From Egs. (2.1.43), (2.1.44), (2.1.49), and (2.1.50), we have

TR R R R
dM;. _ dM:z:z _ asz:t - Azz <¢R + M) (3211)

dz =~ dz dz dx
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so that .

oF = 1 dME  dwf
Az, dz dzx

where A;, and so on are defined in Eqs. (2.1.51a,b) and (2.1.55).

Substituting Eq. (3.2.12) into Eq. (3.2.10), we obtain

(3.2.12)

<Au> iz —Dzzd.’l,‘ = ~Dg, 4z +Cl-—+02x+03 (3.2.13)

which on integration yields

R sz ~ R E 1133 (L‘2
D wy'(z) = I M;. + Dygwg (z) — 01'6- — 027 —Caz — Cy
(3.2.14)
From Eq. (2.1.47), we have
. R d?

ME = D, % — aFy, d;"g (3.2.15)

R _  doR . d2 R
MR = MR — aP,, = D, =2 ;; aFm—d-i”To (3.2.16)

Eliminating d¢®/dz from Egs. (3.2.15) and (3.2.16), we obtain

_ . _ .. d2w
DusMf, = Daslf = & (=FuaDao + FuoDas) = (3:2.17)
and using Eq. (3.2.6), we can write
N D _ PN 2wl
R Tx E 0
sz N (M + Clx + 02) - (—Fmexx + 21‘DI$) d$2
(3.2.18)
Finally, substituting Eq. (3.2.18) into Eq. (3.2.14), we obtain
R (04 2 ~ d2w0
szwo (:ZI) - Azz (Fsz D )
.3 .
E _ Jzz
_Dzwo(m)+<A M. C’l[ (A">x]
- C2 |:— - ):‘ - C31L‘ had C4 (3.2.19)
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Now, we wish to simplify the Reddy-Bickford beam theory by neglecting
the second-order derivative term in Eq. (3.2.19). This amounts to
reducing the order of the theory from six to four. We obtain

el = Do) + (32 ) - 0r [ 5 - (B2

AIZ AIZ

22 (D,
~Cy |:E' - (Azz )} - Ciz - Cy (3.2.20)

In summary, we have the following relations from Egs. (3.2.5),
(3.2.6), (3.2.10), and (3.2.20):

V() = QE(z) + Oy (3.2.21)
M3 (z) = ME(z)+ Ciz + G (3.2.22)
S dwf z?
D¢ (z) = ‘Dmﬁ‘ + 017 + Coz + C3 (3.2.23)
bzz 1‘3 ljz
Dzz‘wg(x) = D:txwg:(x) + Azz Mi “ <.—6— B /1:: z)
2 P,

~Cy (% - A:z) — Caz — Cy (3.2.24)

where we have introduced the following equivalent slope:

duwft
dz
and the superscript ‘S’ denotes the quantities in the simplified theory.

Note that the relationships for the shear force and bending moment
remain unchanged between the original and simplified theories.

D2:¢°(2) = Dyad® — aFa (3.2.25)

3.3 Stiffness Matrix

Next we develop the stiffness matrix of a beam finite element that
incorporates the stiffness matrices of all three theories. The development
utilizes the relationships between the solutions of the three theories (see
Section 3.2).

The relationships (3.2.1)-(3.2.4) between the Timoshenko and
Euler-Bernoulli beam theories as well as the relationships (3.2.21)—‘
(3.2.24) between the simplified Reddy-Bickford and Euler-Bernoulli
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beam theories can now be expressed in one set by introducing tracers A
and B:

V() =QE=) +C (3.3.1)
MY(z) = ME(z) + Ciz + Cy (3.3.2)
2
D8V (z) = =D, d;“; + 01-— +Chz +Cs (3.3.3)
3
D w§ (z) = DypwE(2) + AME - € <? - Ax)
m?

- (? - B) — Csx — C4 (3.3.4)

where the quantities with superscript ‘U’ belong to either the
Timoshenko beam theory (a = 0) or the Reddy-Bickford beam theory

(a #0),

D.,/(Az:K;s) for Timoshenko beam theory
A= o (3.3.5a)
Dy /Az, for simplified Reddy-Bickford beam theory

0 for Timoshenko beam theory
B= (3.3.5b)

Dq2/A,, for simplified Reddy-Bickford beam theory

and 6Y(Z) denotes the slope, which has a different meaning in different
theories, as defined below:
¢T(z) for Timoshenko beam theory
8Y(z) =
¢°(z) for simplified Reddy-Bickford beam theory

(3.3.6)

Clearly, ¥ = ¢° = ¢ when a = 0. When C; = 0 and A = 0, the

relationships in Eqgs. (3.3.1)—(3.3.4) degenerate to the trivial statements

VE(x) = QE(x) (3.3.7)
ME (z) = ME(z)
05 (z) = 400 (3.358)

wf () = wf (z)



46 SHEAR DEFORMABLE BEAMS AND PLATES

Based on the foregoing unified relationships, we now derive the
stiffness matrix for the unified beam element (UBE). Consider a
(Hermite cubic) beam element of length and element-wise uniform
material and geometric properties. Let the generalized displacements
at nodes 1 and 2 of a typical element associated with any of the three
beam theories be defined as (see Figure 3.3.1a)

wo(O) = Al, 9(0) = Az
wo(L) = A3, Q(L) = A4 (3.3.9)

where L denotes the length of the element, and 6(Z) denotes the slope,
which has a different meaning in different theories, as defined below:

—dd“; for Euler—Bernoulli beam theory

6(z) = { ¢7(z) for Timoshenko beam theory

¢%(z) for simplified Reddy-Bickford beam theory

(3.3.10)
where T denotes the element coordinate whose origin is located at node
1 of the element. Next, let Q; and Q3 denote the shear forces (i.e.
values of VmU) at nodes 1 and 2, respectively; similarly, let Q2 and
Q4 denote the bending moments (i.e. values of MZ,) at nodes 1 and
2, respectively. Figure 3.3.1 shows the sign convention used for the
generalized displacements and forces.

! Aq Q2.9 Q4. 94
N O\ N\ £\
02 1 2
le I E L ! )
Y 0.9, 19345
119 Ay '
(a) Nodal displacements (b) Nodal forces

Figure 3.3.1. A typical unified beam finite element with the generalized
displacements and forces for the derivation of the stiffness
matrix.



SHEAR-FLEXURAL STIFFNESS MATRIX 47

The stiffness matrix for the unified element is derived using the
traditional method to calculate stiffnesses in structural analysis. The
method involves imposing a unit generalized displacement, while all
other generalized displacements are kept zero, and determining the
generalized forces required to keep the beam in equilibrium (i.e.,
equivalent to using the unit-dummy-displacement method).  The
formulation utilizes the relationships between the Euler-Bernoulli beam
theory, the Timoshenko beam theory and the simplified Reddy-Bickford
beam theory. This amounts to using Hermite cubic interpolation for the
transverse deflection and a dependent interpolation for the slope. The
procedure is outlined briefly here.

To obtain the first column of the element stiffness matrix, we set
(see Figure 3.3.1b)

E
at =0:wf =wl =wf = A, d—:—f—=¢T=¢R:0(3.3.11a)
= E T R dw§ T R
atT=L:wy =wy =wy =0, E=¢ =¢" =0 (3.3.11b)

and determine the constants C; through Cy from Egs. (3.3.13)-(3.3.16).
We obtain

12D 124
O = 2z A (3.3.12a
: {12 +12(A-1B) ' )
Cy = gcl (3.3.12b)
6Daq L2
03=< > A)Al— F—A)Cl
L B 1
- <§ - E) Cg - 2_:04 (3.3.120)
6D,
Co= - (- = A) A (3.3.12d)

The substitution of these constants into Egs. (3.3.1)-(3.3.4) gives

Q1 =-VY(0) = <—_—1i€§z) Ay = kudy (3.3.13a)
- U 6Dz4
Qo= -MLO) = (7 ) A1 = kni (3.3.13b)
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12D,,

Qs = -VY(L < - ) = ka1 A (3.3.13¢)

Q4 = ( = (GD:B:':) 41A1 (3.3.13d)
=1+120, Q=57 63 (3.3.14)

This completes the derivation of the stiffness coefficients of the
first column of the stiffness matrix. The same procedure can be
repeated, with different generalized displacements set to unity, to obtain
the remaining stiffness coefficients. The complete unified beam finite
element model is given by

6 -3L -6 -3L A1 q1 Ql

2Da::z: —-3L 2L2/\ 3L L2§ Az _ ) q Qz
5| 6 30 6 3L |Yas{ =Ygt Qs B3P

-3L L% 3L 2L°)] | A4 qa Q4
A=1+30, €£=1-69 (3.3.16)

and is the load vector due to the distributed load g(z)

- /0 ¥ d@)oilz)dz (3.3.17)

Here ;(x) denote the Hermite interpolation functions implied by Egs.
(3.3.1)-(3.3.4) (see Problem 3.2 at the end of the chapter). The stiffness
matrix in Eq. (3.3.15) is also reported by Gere and Weaver (1965),
Przemieniecki (1968), and Meek (1971), among others (see Reddy 1999b
for additional references).

3.4 Frame Structure - An Example

Consider the two-member frame structure shown in Figure 3.4.1a.
The following geometric and material parameters are used in the
analysis:

Member 1: L =144 in., A= 10 in?,, I = 10 in%., E = 108 psi., v = 0.3
Member 2: L =180 in., A=10in%2, I = 10 in?, E = 108 psi., v = 0.3

The shear correction coefficient for the Timoshenko beam element is
taken to be K = 5/6.



SHEAR-FLEXURAL STIFFNESS MATRIX 40

The structure is analyzed using the aforementioned stiffness method
according to the Euler-Bernoulli theory and the Timoshenko beam
theory. The simplified Reddy beam element essentially gives the same
results as the Timoshenko beam element, and hence is not included. The
exact Timoshenko beam element [A = D.;/(K,Az;) = EI/(GAK,)
and B = 0] is denoted by UBE. The results are also compared with
those predicted by two other commonly used Timoshenko beam finite
elements, namely the linear equal-interpolation reduced-integration
element (RIE) and the consistent interpolation element (CIE) [see Reddy
1993, (19975,1999b)]. Figures 3.4.1 shows the two, four and eight
element meshes of the structure. Note that all these elements are
extended to include the axial displacement degrees of freedom (i.e.,
linear interpolation of the axial displacement is used), and each element
stiffness matrix is of the order 6 x 6.

Joo -

1

[}

[}

[}

'
P LD

@

Figure 3.4.1. Analysis of a frame structure. (a) Frame structure analyzed.
{(b) Meshes of 2, 4, and 8 elements.
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Table 3.4.1 contains the displacements at point B obtained using
various types of elements. Note that one Euler-Bernoulli element (EBE)
or unified beam element (UBE) per member of a structure gives exact
displacements, whereas at least two RIE or CIE per member are needed
to obtain acceptable results. The forces in each element are included in

Table 3.4.2. The forces calculated from the element equations are also
exact for EBE and UBE.

Table 3.4.1. Comparison of the generalized displacements [0 = (v/P) X
10* where v is a typical displacement| at point A of the
frame structure shown in Figure 3.4.1.

Displ. RIE(1)*RIE (2) RIE (4) CIE (1) CIE (2) CIE (4) UBE! EBE!

up 0.2709 0.8477 0.8411 0.2844 0.8415 0.8396 0.8390 0.8390
wg  0.4661 0.6806 0.6811 0.4432 0.6808 0.6811 0.6812 0.6812
gZ)B -0.0016 0.8665 0.9450 0.0004 0.7703 0.9164 0.9621 0.9610

* Number in the parenthesis denotes the number of elements per member.

T Values independent of the number of elements (and coincide with the exact
values predicated by the respective beam theories).

3.5 Concluding Remarks

In this chapter, a unified finite element model of the Euler-Bernoulli,
Timoshenko, and simplified Reddy-Bickford third-order beam theories
is developed. Bending stiffness coefficients of the unified element
are derived. The development is based on the exact relationships
between the bending solutions of the Euler-Bernoulli beam theory,
Timoshenko beam theory and the simplified Reddy-Bickford third-order
beam theory. The relationships provide an interdependent interpolation
of the deflection and rotation of the form (for more details, see Problem
3.2 at the end of the chapter)

z Aﬂpgl) )s Z AJgogz) (3.5.1)

. 1
where <p( ) are quadratic interpolation functions related to (p§- ), Hence,



SHEAR-FLEXURAL STIFFNESS MATRIX 51

Table 3.4.2. Comparison of the generalized forces (divided by P) at the
nodes of each member of the frame structure shown in Figure

34.1.
Element* F I 2 F; Fy Fy Fy
RIE(1) 3937 1865 -62.24 -3.237 0136 -62.26
0850 0908  62.26 1550 2.202  62.28
RIE(2) 4723 0671 -0.332 -4723 1329  47.70
2699 1384 -47.70 -0.299 1816  86.67
RIE(4) 4730 0713 -8.362 -4.730 1.288  49.76
2668 1411 -49.76 -0.268 1789  83.74
CIE(1) 3.007 1575 -65.39 -3.077 0425 -17.38
0.987 0607 17.38 1413 2593 1614
CIE(2) 4728 0708 -8.327 -4728 1202  50.37
2670 1407 -50.37 -0.270 1.793  85.07
CIE(4) 4730 0721 -10.30 -4730 1.279  50.43
2661 1417 -50.43 -0.261 1.783  83.39
uBef 4731 0725 -10.92 -4731 1275  50.45
2658 1420 -50.45 -0.258 1.780  82.87
EBET 4731 0725  -10.90 -4.731 1275  50.45

2.658 1.420 -50.45 -0.258 1.780 82.87

* Number in the parenthesis denotes the number of elements per member,
and the two rows correspond to the two members of the structure.

t Values independent of the number of elements (and coincide with the exact
values predicated by the respective beam theories).

the element stiffness matrix is of the order 4 x 4, and it gives exact
nodal values of the generalized displacements (i.e., wp and ¢) for
Euler-Bernoulli and Timoshenko beams with uniform cross-section and
homogeneous material properties. An independent interpolation of the
form

4 3
wg (z) =Y 0;®;(x), V(z) =3 6,¥;() (3.5.2)
j=1 j=1

would result in a 7 x 7 stiffness matrix for the same accuracy as the
element derived here. This shear deformable finite element based on
the Timoshenko and third-order beam theories can be included in any
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computer program by simply replacing the stiffness matrix of the existing
Euler-Bernoulli beam finite element with that given in Eq. (3.3.25).
Note that conventional Timoshenko beam elements are not completely
shear locking free and one-element discretization per member using
such elements in the analysis of a frame structure will yield erroneous
displacements as well as member forces as demonstrated by the given
two-member frame example.

The element stiffness matrix developed herein can be applied to
beams with element-wise constant geometric and material properties.
The element can also be extended to symmetrically laminated
beams under appropriate assumptions (see Reddy 1997a, Chapter 6).
Extension to buckling is also straightforward. However, extension of the
unified beam element to dynamic problems is not possible because of
the mass inertia terms [see Reddy (1999b)].

Problems

3.1 Verify the relations in Egs. (3.3.22)-(3.3.24).

3.2 Consider the following equilibrium equations of the Timoshenko beam
theory in the absence of distributed load g:

dd (Dmid’) + Az K <¢+ %") =0 (%)
T

The exact solution of Eqgs. (i) and (ii) is of the form

:L'S $2
w(z) = “ Do (013 + 027 + C3x + 04) AuK (Ciz)
(i4d)
12 .
Dzzd(z) = Cr-2— + Coz + C3 (1v)

where C) through Cy are the constants of integration. Note that the
constants Cy,Cs, and C3 appearing in (iv) are the same as those in
Eq. (iii). Equations (iii) and (iv) suggest that one may use cubic
approximation of wp and an interdependent quadratic approximation
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of @¢. Use Egs. (iii) and (iv) to express the constants C; through Cj in
terms of the nodal variables

=wp(0), Ag=¢(0), Az=wo(L), Aa=¢(L) (v)

where L denotes the length of the beam element and T is the element
coordinate with its origin at node 1, 0 < Z < L, and express wo(Z) and
&(Z) in the form

4
wo(Z) ~ Y (P§1)Aj, #(z) = E ¢(2)A (vi)
i=1

n

In particular, show that ¢; (2)

and ;" are given by

AU = G [ — 120 — (3 — 2)n’]

o) =—=la-n’n+6201-n) |
o) = _1
" [(3 m)n? + 12977}
L 5
o) = P [(1 =) +62.(1 - )] (vid)
@ _ 6
=—(1-
2 L“( mn
1
0y = S (n—an+ 3n% — 12Qn)

@ _ _i B
vy = L#(l mn

o) = —(:sn2 ~ 21+ 12Qn) (vits)

Here 77 is the non-dimensional local coordinate

n=2 p=1+120, Q:ID-% (iz)
¥4

i&

3.3 (Continuation of Problem 3.2) The displacement finite element model

of the Timoshenko beam theory is constructed using the principle of
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minimum total potential energy, or equivalently, using the weak form

0= / [ Iz‘?f‘;¢+Az,K (5¢+5‘1—Z—“’—°> <¢+ %)}dm

- /0 g()bw dz - Vi6w(0) — Vabw(L) — My64(0) — MaSe(L)
(@)

where

Vi = -Q(0) = - [A“Ks ('d_lg + ¢>L=o

d

My = ~M(0) = - {ij—i]: i

Va=Qu(L) = [Aa:sz <(f1—wq * ¢)L=L

My = Myo(L) = [Du Zﬂz:L (22)

Substitute the approximation (vi) of Problem 3.2 into the weak form and
show that the finite element model is of the form

[K{A} = {¢} +{Q} (44)
where
dot)
Ky = ) (W?) * ”%)
(2)

+ Dyy o }d ()
¢ = /0 o\q(z) dz (v)
Q=Vi, Q2=M,;, Qs=Vo, Qa=M; (vi)

4 (Continuation of Problem 3.3) Show that Eq. (iii) of Problem 3.3 has
the explicit form given in Eq. (3.3.25).

3.5 Develop the beam finite element based on the Levinson beam theory (see
Problem 2.7).



Chapter 4

Buckling of Columns

This chapter presents an approach by means of an analogy for
deriving the eract relationship between the elastic buckling loads of
columns based on the FEuler-Bernoulli beam theory, the Timoshenko
beam theory and the Reddy-Bickford beam theory. The ezact relationship
applies to azxially loaded columns with boundary conditions that result in
zero lateral force in the members. The resulting Reddy-Bickford buckling
solutions are found to be higher than the Timoshenko buckling solutions.
For the cases of pinned-pinned and fived-free columns, the buckling loads
are practically the same for the two types of columns. However, in the
case of fized-fized columns, the buckling loads are somewhat different,
especially when the columns have relatively large values of the shear
parameter Q@ = Dgg/(KsAz.L?). It is worth noting that the advantage
of the Bickford-Reddy theory over the Timoshenko theory is that the
former does not require a shear correction factor.

4.1 Introduction

When the column is stocky, or of a built-up or of a composite-type
construction, the application of the Euler-Bernoulli (classical) beam
theory will overestimate the buckling loads. This is due to the neglect
of transverse shear deformation in the Euler-Bernoulli beam theory. A
refined beam theory, known as the first-order shear deformation theory
or Timoshenko beam theory, that incorporates the shear deformation
effect was proposed by Engesser (1891) and Timoshenko (1921). This
first-order shear deformation theory relaxes the normality assumption
of the Euler-Bernoulli beam theory but assumes a constant transverse
shear strain (and thus constant shear stress when computed using
the constitutive equations) through the beam thickness. In order to
compensate for the parabolic distribution of the transverse shear stress
through the thickness, a shear correction factor is introduced to calculate
the effective shear modulus. The usual approaches for estimating
the shear correction factor are either by matching the high frequency
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spectrum of vibrating beams (e.g., Mindlin and Deresiewicz 1954) or by
using approximation procedures and simplifying assumptions within the
linear theory of elasticity (e.g., Cowper 1966). However, the third-order
beam theory derived independently by Bickford (1982) and Heyliger
and Reddy (1988) does away with the need for a shear correction factor
because the assumed third-order displacement field gives a parabolic
distribution of the transverse shear stress and satisfies the zero shear
stress condition at the free surfaces.

4.2 Relationship Between Euler—Bernoulli and
Timoshenko Columns

4.2.1 General Relationship

Consider a column of flexural rigidity D,., shear rigidity A, length
L which is subjected to a compressive axial load N. The stress resultant-
displacement relations according to the Euler-Bernoulli beam theory are
given by

d*w®

ME = _D"_da:_2 (4.2.1)
d3 E

QF = - Dm_d;"T (4.2.2)

while those according to the Engesser-Timoshenko beam theory are
given by

T
ML = Du‘% (4.2.3)
d T
QF = KoAu: (¢T + —%) (4.2.4)

in which z is the longitudinal coordinate measured from the column
base, M., the bending moment, @, the transverse shear force, ¢ the
rotation in the Engesser-Timoshenko column and w the transverse
deflection, measured from the onset of buckling. The superscripts ‘E’
and ‘T’ denote quantities belonging to the Euler-Bernoulli column and
the Engesser-Timoshenko column, respectively. The shear correction
coefficient K in Eq. (4.2.4) is introduced to account for the difference
in the constant state of shear stress in the Engesser-Timoshenko column
theory and the parabolic variation of the actual shear stress through the
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depth of the cross-section. The values of K, for various cross-sections
and built-up columns are given in standard texts such as Timoshenko
and Gere (1959).

For both kinds of columns, it can be readily shown that the
equilibrium equations are

Maz _ . (4.2.5)
dzx
dQ. d*w
=N— 4.2.6
dz N dz? ( )

Substituting Eq. (4.2.2) into Eq. (4.2.6) yields the following equation
governing the buckling of Euler-Bernoulli columns:

d4,wE NE d2wE
=0 4.2.7
dzt + D,, dz? ( )

By substituting Egs. (4.2.3) and (4.2.4) into Egs. (4.2.5) and (4.2.6),
the equilibrium equations of the Engesser—Timoshenko column may be
written as

d2 T dwT

Dn_dg;_ = K, Az, <¢T + —d—x—> (4.2.8)
dZwT d T d2,wT

N = KA, (T‘i- +55 (4.2.9)

By differentiating Eq. (4.2.8) and then using Eq. (4.2.9), we obtain

d3 ¢T T d2,wT
Dm:‘d_xs = dr2 (4.2.10)
Equation (4.2.9) can be solved for d¢T /dx
deT NT '\ q2wT
a _ _[{_ N _)ew 42.11
dz (1 KsAu) dz? ( )

Substituting Eq. (4.2.11) into Eq. (4.2.10) yields

4, T NT 2, T
dw +( De= )dw =0 (4.2.12)

dzt
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By differentiating Eq. (4.2.8) and using Eq. (4.2.10), we can also obtain

BT A\ de?
Iz = 421
dzt + (1 _ KI,VAT,, dz 0 ( 3)

In view of the similarity of Eqs. (4.2.7), (4.2.11), (4.2.12) and
(4.2.13), and provided the boundary conditions are of the same form, it
can be deduced that

T E
1 - %, 1+ 27
and
NT \ dwT
T
= — — —_— 4.2.15
¢ <1 KsAzz) e +Cy ( )
NT dw¥f
T_ _[1_ il C 4.2.17
¢ <1 KsA:z:z) <C2 Frs Cs) +C ( )

where C1, Cs, C3, and Cy4 are constants.

It is clear that the Euler-Bernoulli buckling load and the Engesser—
Timoshenko buckling load are linked together through the relationship
in Eq. (4.2.14), provided the boundary conditions of the two theories
are also linked together by Egs. (4.2.15)-(4.2.17). Considering various
combinations of free, pinned and fixed end conditions, it will be
shown below that the foregoing requirements were met for pinned-ended
columns, fixed-ended columns and fixed-free columns but not for fixed-
pinned columns. Figure 4.2.1 shows columns with various boundary
conditions.

4.2.2 Pinned-Pinned Columns

The boundary conditions for the pin-ended Euler-Bernoulli column
are given by

d2,wE'

E E
wE=ME =2 2_
Iz dz?

=0 atz=0 andz =1L (4.2.18a)
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(a) Pinned-Pinned  (b) Pinned-Fixed (c) Fixed-Fixed (c) Fixed-Free
Figure 4.2.1. Columns with various boundary conditions.

where L is the column length. In the case of the Engesser-Timoshenko
column, the boundary conditions are

T 7 _ dg”
w =Mm=79:_=0 at =0 and z=1L (4.2.18b)

From Egs. (4.2.11) and (4.2.18b), it is clear that

dPuwT

—de =0, at =0 and z=1L (4.2.180)

Thus the boundary conditions for the Engesser-Timoshenko beam can
be written as

T dsz
w =M§;=E2—=0 at =0 and z=1 (4.2.18d)
In view of the similarity of Egs. (4.2.18a) and (4.2.18d), it is concluded

that the boundary conditions for the pinned-pinned Euler-Bernoulli and
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Engesser-Timoshenko columns are of the same form, and that Eqgs.
(4.2.14)-(4.2.17) are valid.

To determine the constants Cy,Cs, Cs, and Cy, Eq. (4.2.16) is used
together with the boundary conditions in Eqs. (4.2.18a) and (4.2.18b)
to give

C3=Cy=0 (4.2.19)

Next, it is observed that for a pinned-pinned column under a compressive
axial load, there is no lateral shear force at the ends so that

r_ o, dw’
Q;=¢ +——=0atz=0and z=1 (4.2.20)

Combining Egs. (4.2.17) and (4.2.20), we obtain

dwT NT dw?
== = — —_——— —_ 42.21
( dz ) (1 KSA,) Cz( dr ) _ G )
=0 =0

Using the above equation with Eq. (4.2.16) results in

NT dwF
= — _— 4.2.22
2 K A,, CQ( dx )x=0 ( )

Therefore, the relationships between the eigen functions of the pinned-
pinned Euler-Bernoulli and Engesser-Timoshenko columns are

NT dw® NT dw®
T_ _ _ 4.2.24
¢ =-C Kl KsAu> iz K.A. ( iz | _, (4224)

where C5 is an arbitrary constant.

4.2.3 Fixed-Fixed Columns

For fixed-fixed columns, the boundary conditions for the Euler-
Bernoulli columns are given by

E d'LUE
w =d_=0 at =0 and z=1L (4.2.25a)
z
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In the case of the Engesser-Timoshenko column, the boundary
conditions are

wl=¢T=0 at =0 and z=1 (4.2.25D)

As in the case of the pinned-pinned column, the absence of a lateral
shear force at the ends implies [see Eq. (4.2.20))

T
Q£=¢T+dd%=0 at =0 and z=1L

Due to this condition, Eq. (4.2.25b) can be rewritten as

T - dwT
dx

w =0 at =0 and z=1 (4.2.25¢)

By comparing Eqs. (4.2.25a) and (4.2.25c), it is seen that the boundary
conditions for both columns are of the same form. Thus, Egs. (4.2.14)-
(4.2.17) are valid.

Substituting Eq. (4.2.25a) and (4.2.25b) into Egs. (4.2.16) and
(4.2.17) yields
Ci=C3=C4=0 (4.2.26)

Thus, the relationships between the eigenfunctions of the two columns
are given by

wl = Cow® (4.2.27)

T E
¢T=-—C2<1— N )dw

—_ 4.2.28
KA., | dz ( )

with Cy is an arbitrary constant.

4.2.4 Fixed-Free Columns

The boundary conditions for the fixed-free Euler—Bernoulli columns
are given by

dw¥
E = = = v
= I 0 at =0 (4.2.29a)
d2 E E
Mg, = dj;; =0 and QF = NE ddim at z=L (4.2.29b)
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In the case of the Engesser-Timoshenko column, the boundary
conditions are

wl=¢T =0 at z=0 (4.2.30a)
doT dwT

ME =2 = T = NT —— =L (4.3.30b

2 = - 0, and Q; =N T at ( )

As shown in the previous case, the absence of a lateral shear force at
the fixed end allows (4.2.30a) to be expressed as

dwT
wTl =

dr

In order to show that the second of the boundary conditions in Eqgs.
(4.2.29b) and (4.2.30b) are of the same form, Eq. (4.2.2) is used to
rewrite the condition for the Euler-Bernoulli column as

dB3wF pdwf Bwf  NF dwF
Daoegg =N =0 o0 o5 +5—0 ab e
(4.2.31)

In the same way, for the Timoshenko column, Egs. (4.2.3), (4.2.5), and
(4.2.11) are used to rewrite the condition as

T 3,,,T T
_Dm<1 N )dw _ T

" KgAg, | dz3 dr
or )
3, T N T
dw + Doz _ W _ o oatz=L (4.2.32)
dz® 1- N dz
KSAzz

A comparison of Eq. (4.2.29a) with Eq. (4.2.30c), and Eq. (4.2.31) with
Eq. (4.2.32) shows clearly that the boundary conditions are of the same
form and are consistent with Eq. (4.2.14)-(4.2.17).

Finally, by substituting Eqs. (4.2.29a), (4.2.30a), and (4.2.30c) into
Egs. (4.2.16) and (4.2.17), the constants are found to be

Ci1=C3=Cs4=0 (4.2.33)

and the relationships between the eigen functions are the same as those
given in Eqs. (4.2.27) and (4.2.28).
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It is interesting to note that the deflections of the Euler-Bernoulli
and Engesser-Timoshenko columns are proportional to each other for
the pinned-pinned, fixed-fixed, and fixed-free columns. Also, the
rotation of the Engesser—Timoshenko column is related to the slope of
the deflection of the Euler-Bernoulli columns.

It should be noted that the buckling load relationship given by
Eq. (4.2.14) does not apply to fixed-pinned columns because the
boundary conditions do not match exactly. The Engesser-Timoshenko
buckling load for such columns is to be determined from solving the
transcendental equation

\/ NTL2 LT
- = tan
DIZ} ( KSsz)

Figure 4.2.2 shows a comparison of the exact Engesser-Timoshenko
buckling load from Eq. (4.2.34) for the fixed-pinned column with the
approximate solutions predicted by Eq. (4.2.14). It can be seen that
as the shear parameter Q = D,,/(K;Az,L?) increases, the difference
in solutions increases. Considering the range of values of the shear
parameter 2 between 0 and 0.01, the buckling load relationship in Eq.
(4.2.14) can be made more accurate by modifying it to

(4.2.34)

NT =N
-
1+ L1

D,
, NE = (4.493)? ( L;) (4.2.35)
Thus for this particular case of fixed-pinned columns, the buckling load
relationship (4.2.35) should be used while Eq. (4.2.14) is to be taken for
the pinned-pinned columns, fixed-fixed columns, and fixed-free columns.

Ziegler (1982) established that the relationship in Eq. (4.2.14) is
also valid for columns with fixed ends and fixed ends with top sway.
Moreover, he gave the modified form of the relationship for the effect
of pre-buckling shortening. Banerjee and Williams (1994) showed that
the buckling relationship applies as well to hinged-hinged columns with
rotational springs of equal stiffness added to their ends.
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Figure 4.2.2. A comparison of the approximate Engesser-Timoshenko
buckling loads with the exact buckling loads of a fixed-
pinned column.

It is clear from Eq. (4.2.14) that the effect of transverse shear
deformation leads to a reduction in the Euler-Bernoulli buckling load by
the factor found in the denominator of the buckling load relationship.
This reduction of the Euler-Bernoulli load thus increases with respect
to a higher value of Euler-Bernoulli load (especially for columns with
highly restrained ends or internal restraints) and also with a lower value
of shear rigidity.

4.3 Relationship Between Euler—Bernoulli and
Reddy-Bickford Columns

4.3.1 General Relationship

Consider an elastic column of length L, area of cross section A,
Young’s modulus F, and shear modulus G,, and subjected to an axial
compressive load N®. The axial displacement uft of the Reddy-Bickford
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beam is given by [see Eq. (2.1.5a)]
R
uB(x, z) = 29" — @2® <¢>R + %) (4.3.1)

where @ = 4/(3h?), z is the longitudinal coordinate measured from
the bottom end of the column, w® the transverse deflection of the
centerline of the column at the onset of buckling, ¢¥ the rotation of
the cross-section of the column, and h the thickness of the column in
the z-direction. Given w¥, it is clear that the axial strain ef, and shear
strain 7%, can be computed as given in Eqs. (2.1.36a,b). The axial stress

o and shear stress o are given by

do® doft  d2wh
J:f:{z = xeﬁz = EzZ—g;— — E’xaza (—:z;— -+ dz? (4.3.28.)
dwh
Ug = G:tz'Yf; = Gg, (1 - ﬂzz) <¢R + —d—m-> (4.3.2b)

where 8 = 4/h2.

Following the procedure presented in section 2.1.4 for the derivation
of the equilibrium equations of the Reddy-Bickford theory, we apply the
principle of virtual work to the column at the onset of buckling

L dw? dswh
Ca R s R R g R -~ NR—_
W =0= /(; I:A (O’Iz(Ssz + szé'yxz) dA~- N dr dz J de

which, on integrating by parts, gives the governing equations

ME
s+ — %;—x +QE=0 (4.3.3)
d*pP,, dQF 2wk
6 R B _m - £ R = (1 2
e e dr dz? 0 (4.3.4)
where ik )
MIZ‘:E: = Mz}:fc - aPJ:I) Qf = Qf - ﬂRx (435)
'The boundary conditions of the theory are of the form
w” adie +Qf - NS
Specify : { 4¥% 3 or aPys (4.3.6)

ot ) ME
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The moment and force resultants are given by [see Egs. (2.1.47)-

(2.1.52)]

M£=/ 2025 dA = Dypp——
A

Py = / By, dA =
A
Qf = / Oz.dz = A:z:z <¢R +
A
R R
R, = / 2204, dz = Dy, <¢>R + dL)
A dz

where [a = 4/(3h?) and 8 = 4/h?

Dzz
AIZ

By manipulating the expressions in Egs.

= Dx:c
= A:cz

_aF:EI)
"ﬂsz)
(AzzaDzzszz)Hz$)=A(1 z Z 4 )E dA

(Aa:zaDzz,F:cz) =/(1’z2
A

d R d2wR
¢ aFm———-—dx2 (4.3.7)
d R d2wR
zz ;}; —aHxx_d?— (4.3.8)
dwk
—_ 4.3.
dr ) (4.3.9)
(4.3.10)
Fx:z: = Fa:a: - aHzx (4.3.11&)
Dz:z = D:z:z - ,BFQ:Z (4.3.11b)
(4.3.11c)
2YG,. dA (4.3.11d)

(4.3.4) to (4.3.6), it is

possible to write the governing equations and boundary conditions as

Specify :

d P, G Iz
d:r2

¢R

d?ME

dz?

dQR
dz

or

2,,R
dd":z =0 (4.3.12)
2., R
dd;“z =0 (4.3.13)

aml NE dw®
dz dz

aP,, (4.3.14)

TR
M:a:

In order to obtain differential equations for buckling in terms of a

single variable, it is useful to express Fry, <3

Lo and dR in terms of M R
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and LY by using Eqs. (4.3.7) to (4.3.10). First, from Eq. (4.3.7), it is

seen that & . R
d¢ 1 R d“w
< = = —_— 4.3.15
dzr D, (Mz:c +aFis dz? ) ( )
which, on substitution into Eqgs. (4.3.8) to (4.3.10) yields
P = — | MR - o (D H F2)d“’ (4.3.16)
TT -D:m: zxi¥igg TT4oTT dx? :
dQR Az, R d2wh . d*w
LT O il 4.3.17
da D, M z + aFpr——> dr? + Az, dz2 ( )
dR; Dy, R d2uwh . d*w
= = - —_— 4.3.18
dx Dz-;z: <MIBI * aFIz d$2 sz d:l?2 ( )

R .
By using the foregoing expressions for Pr., % and d—d—iﬂ in the

governing Eqs. (4.3.12) and (4.3.13), the following buckling equation in
terms of MZ can be derived:

dz aZDzz dz 012sz

where
Dag = Dyg — aFyg = Doy — 20F ;s + 0*Hye  (4.3.202)

Agy = Azy — BDyo = Ay — 28Dzz + F*Fz; (4.3.20b)
Dyy = DygHyp — F2, (4.3.20c)

Buckling equations in terms of ¢® and w® can also be derived in a
similar manner. These are

d5¢R + [Dm:NR - D:ca:fizz] d3¢R

dz® 2Dy, dz3
| Az NE| dgR

a2Dg, | dz
DeeNE - Dy A, | dAw?
2Dy drt

B A:z:z NR d2 R
a2Dy, | dz?

=0 (4.3.21)

dSwh
dz$

+

=0 (4.3.22)
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Equation (4.3.22) shows that the Reddy-Bickford theory is a sixth-order
theory in comparison to the fourth-order theories of Euler—-Bernoulli and
Timoshenko.

Equation (4.3.19) may be factored to give

d? d?
<d2+AR) <d2+A2)Mﬁ=o (4.3.23)
where
/\R — (_1) Da::rN - D:c:zA:cz + Azz{v
’ 202Dy, 02Dy,
+ DazN" = Doz Aa (4.3.24)
202D,
with j = 1,2.
By letting
d? R R
Wi = (d 5+ A )Mu (4.3.25)
Eq. (4.3.23) may be written as
& g , . 43.9
d2+/\ W =0, j=lor2, j#i (4.3.26)

In the case of the buckling of Euler-Bernoulli columns, it can be
shown that Eq. (4.2.7) may be written as (Timoshenko and Gere 1961)

d2
(d s+ ,\E> ME =0 (4.3.27)

where MZ is the bending moment in the Euler-Bernoulli column and

NE
D$I

\E = (4.3.28)

It can be seen that Eqs. (4.3.26) and (4.3.27) are similar in form.
Thus, one may relate the buckling loads between the Reddy-Bickford
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columns and the Euler-Bernoulli columns based on this analogous
second-order governing equation as

P (4.3.29)

The substitution of Egs. (4.3.24) and (4.3.28) into Eq. (4.3.29) furnishes
the buckling load relationship given by

Eg2f
NB[1 4 MretBex |
NR= ddd
14 NEDzz
DZ:AzZ

(4.3.30)

However, the foregoing relationship in Eq. (4.3.30) is only valid provided
the two boundary conditions, required for solving the second-order
differential equations [(4.3.26) or (4.3.27)], for both types of columns
must also have the same form. Below, we proved that this is true for
the cases of (a) pinned-pinned, (b) fixed-fixed, (c) fixed-free, and (d)
pinned-pinned columns with rotational springs of equal stiffness added
to their ends.

4.3.2 Pinned-Pinned Columns

Consider the case of pinned-pinned columns. The two boundary
conditions for the Euler-Bernoulli column, to be solved with Eq.
(4.3.27), are given by

ME =0 at =0 and z=1L (4.3.31)

Thus it must be shown that in the Reddy-Bickford column, p = 0 at
z =0 and z = L. Now the boundary conditions of such a column are
given by

ME -aP;; =0 and aP;r=0 at 2=0 and z=1L

or ME =0 at z=0 and z=1 (4.3.32)

In view of Eqgs. (4.3.7), (4.3.8) and (4.3.32), it may be deduced that

do®  dPuwh
i =0 at =0 and z=1L (4.3.33)

It follows from Eq. (4.3.12) that

d*ME
dz?

=0 at z=0 and z=1L (4.3.34)
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It is clear from Eqs. (4.3.25), (4.3.32), and (4.3.34) that
i =0 at z=0 and z=1L (4.3.35)

Equations (4.3.31) and (4.3.35) show an exact matching of form for the
boundary conditions and the thus the buckling load relationship is valid
for the pinned-pinned case. A comparison of the numerical results will
be presented later.

4.3.3 Fixed-Fixed Columns

For a fixed-fixed column, the lateral shearing force is zero along the
column length. This means that the two boundary conditions for the
Euler-Bernoulli column to be solved with Eq. (4.3.27) are

dME

=0 at z=0 and z=1L (4.3.36)
dz

This means that one has to prove that % =0atz=0andz=Lin
the fixed-fixed Reddy-Bickford columns. To do this, Eq. (4.3.12) is first
integrated with respect to x to give

R R
My _ NRWT o (4.3.37)
dz dx

where C is a constant. Since the effective shear force is zero for the
fixed-fixed Reddy—Bickford column,

C=0 (4.3.38)

Moreover, by using the fact that for a fixed end, % = 0, it can be
deduced from Egs. (4.3.37) and (4.3.38) that

R
di;/fu =0 at z=0 and z=1L (4.3.39)
T

The substitution of Eqs. (4.3.9) and (4.3.10) into Eq. (4.3.4) leads to

dwt

dz

APy
dx

a +A:vz<¢R+ >=O at =0 and z=L (43.40)
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Using the fact that ¢F = dw® _ 0 at a fixed end, Eq. (4.3.40)

dz
reduces to
dPyy

dz
In view of Eqgs. (4.3.39) and (4.3.41), Eqs. (4.3.7) and (4.3.8) furnish

=0 at z=0 and z=1 (4.3.41)

d2¢R d3,wR
dz?  dz3

and together with Eq. (4.3.12), we have

=0 at z=0 and z=1L (4.3.42)

3afR
ddj;%z =0 at z=0 and z=1L (4.3.43)

Thus in view of Egs. (4.3.39) and (4.3.43), we have

. 3rsR R

As in the case of pinned-pinned columns, we have a matching in the form
of the boundary conditions [c.f., Egs. (4.3.36) and (4.3.44)] and therefore
the buckling load relationship holds for the fixed-fixed columns.

4.3.4 Fixed-¥ree Columns

For the fixed end at z = 0, the boundary conditions of the Reddy-
Bickford and the Euler-Bernoulli columns have already been shown to
match in form. Now for the free end at z = L, the boundary condition
of the Euler-Bernoulli column, to be solved with Eq. (4.3.27), is

ME =0 at z=1L (4.3.45)

It is thus necessary to show that in the Reddy-Bickford column, =0
at £ = L. First it is noted that for the free end, the boundary conditions
are given by

Mf;—aPu=0 and aP,; =0 at z=1L
or ME =0 at =1 (4.3.46)

Next, from Egs. (4.3.7), (4.3.8), and (4.3.46), it can be shown that

dor_

dz = 71:7 =0 at z=1L (4347)
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It follows from Eq. (4.3.12) that

MR
e 0 at z=1 (4.3.48)
Thus, in view of Egs. (4.3.25), (4.3.46), and (4.3.48), one obtains
d*ME
p=—= 24 Mf=0 at z=1L (4.3.49)

As before there is a matching in the form of the boundary conditions for
the fixed-free columns and thus the buckling load relationship is valid.

4.3.5 Pinned-Pinned Columns with End Rotational
Springs of Equal Stiffness

In view of the fact that the buckling load relationship is valid for
the pinned-pinned columns and the fixed-fixed columns, it can be readily
proved that it also holds for the case of pinned-pinned columns with ends
having additional elastic rotational springs of equal stiffness.

Here we simplify the form of the buckling load relationship for
columns with square or circular cross-section. Noting the definition of
the rigidities in Eqs. (4.3.11) and (4.3.20), it can be readily shown that
the buckling load relationships reduce to

_ N® <1+ 70A,,)

NE = N for square cross-section (4.3.50)
1+ 1.,
NE(1+ NE
NB = ( - 03%2) for circular cross-section  (4.3.51)
1+ S04..

It is worth noting that the relationship obtained for columns of square
cross-section has a similar form to the buckling load relationship
developed for circular plates under uniform in-plane loading (Wang and
Lee 1998).

Tables 4.3.1-4.3.3 show the comparison of the buckling load
parameters A = NL?/D.. between the Engesser-Timoshenko and
Reddy-Bickford columns for different end conditions and shear
parameter ! = D;;/(A;;L?). Note that the Engesser-Timoshenko
buckling load results are computed from Eq. (4.2.14) with K; = 5/6
for a square bar and K, = 9/10 for a circular bar.
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Table 4.3.1. Comparison of buckling load parameters of pinned-pinned

columns between the Engesser—-Timoshenko and Reddy-
Bickford column theories.

Pinned-pinned  Column of square Column of circular
column cross section cross section
Q AT AR AT AR
0.0 9.8696 9.8696 9.8696 9.8696
0.1 4.5183 4.5526 4.7074 4.7342
0.2 2.9298 2.9874 3.0908 3.1370

Table 4.3.2. Comparison of buckling load parameters of fixed-fixed

columns between the Engesser-Timoshenko and Reddy-
Bickford column theories.

Fixed-fixed Column of square Column of circular
column cross section cross section
Q AT AR AT A
0.0 39.4784 39.4784 39.4784 39.4784
0.1 6.8809 7.1982 7.3292 7.5888
0.2 3.7689 4.1498 4.0395 4.3549

Table 4.3.3. Comparison of buckling load parameters of fixed-free

columns between Engesser-Timoshenko and Reddy-Bickford
column theories.

Fixed-free Column of square Column of circular
column cross section cross section
Q AT AR AT AR
0.0 2.4674 2.4674 2.4674 2.4674
0.1 1.9037 1.9053 1.9365 1.9376

0.2 1.5497 1.55837 1.5936 1.5967
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It can be seen that the buckling load parameters predicted by
the Reddy-Bickford theory are higher than their Engesser-Timoshenko
counterparts due to the factor found in the numerator of the buckling
load relationship. The buckling load parameters are, however, in
somewhat close agreement but there is a larger difference for the case of
fixed-fixed columns as the latter has a higher Euler-Bernoulli buckling
load value which magnifies the factor in the numerator. It is also
clear that the difference between the Reddy-Bickford and Engesser—
Timoshenko buckling solutions increases with higher modes of buckling.
These higher modes of buckling become important when dealing with
columns with internal restraints. As shown by Rozvany and Mroz
(1977) and Olhoff and Akesson (1991), the optimal locations of internal
supports for maximizing the buckling load of a column are found at the
nodal points of an appropriate higher-order buckling mode.

4.4 Concluding Remarks

This chapter presents exact relationships between the buckling loads
of the Engesser-Timoshenko columns, Reddy-Bickford columns, and
Euler-Bernoulli columns with the following end conditions:

¢ Pinned-pinned

e Fixed-fixed

¢ Fixed-free

e Pinned-pinned with equal rotational stiffnesses at both ends

Using these relationships, buckling solutions of the Engesser-
Timoshenko columns and Reddy-Bickford columns can be readily
obtained from the corresponding Euler-Bernoulli solutions. It has been
found that the Reddy—-Bickford column theory predicts a higher buckling
load when compared to the corresponding value from the Engesser—
Timoshenko column theory. Although the buckling loads are close to
those of the Engesser-Timoshenko columns for the cases of pinned-
pinned and fixed-free columns, the results are slightly different due to a
much higher value of the Euler-Bernoulli buckling load when the column
ends are fixed. The differences in the buckling loads of the Engesser—
Timoshenko and Reddy-Bickford columns become more significant at
higher modes of buckling. The advantage of the Reddy-Bickford beam
theory over the Engesser-Timoshenko beam theory is that it does not
require shear correction factors.
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Problems

4.1

4.2

4.3
4.5

Use the relationship in Eq. (4.2.14) to determine the buckling load A =
NT[?2 / Dzz of a fixed-free column when the parameter {2 = Dy, /Az, L?
is equal to 0.1 and 0.2.

Use the relationship in Eq. (4.2.35) to determine the buckling load
AT = NTL2 /Dgz of a fixed-pinned column when the parameter {2 =
Dyy/Ayz.L? is equal to 0.1 and 0.2.

Verify the relation in Eq. (4.3.19).

Establish the buckling load relationship between the Euler-Bernoulli
beam theory and the Levinson beam theory (see Problem 2.7 for the
governing equilibrium equations, which must be modified for the buckling
case).
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Chapter 5

Tapered Beams

The similarity between the equations of the Euler-Bernoulli beam
theory and the Timoshenko beam theory for isotropic, variable cross-
section, single span beams is used to develop expressions for deflection,
slope, bending moment and shear force of the Timoshenko beam theory
in terms of the same quantities of the Fuler-Bernoulli beam theory.
This new set of general relationships derived herein are illustrated for
statically determinate and statically indeterminate, single span tapered
beams. Exztension of the results to laminated beams is also discussed.

5.1 Introduction

The exact relationships for deflections, slopes, shear forces and
bending moments between single-span, uniform Timoshenko beams
and the corresponding Euler-Bernoulli beams under general transverse
loading and end conditions were presented in Chapter 2. These explicit
and exact relationships are useful in elucidating the effect of transverse
shear deformation on the bending of beams of uniform cross-section.
For example, they show clearly that the stress-resultants and the
slopes of Timoshenko beams are exactly equal to their Euler—-Bernoulli
counterparts for statically determinate beams. Further, they allow easy
conversion of the well-known Euler-Bernoulli beam solutions to those
for Timoshenko beams. They can be used to check numerical solutions
to Timoshenko beam problems and even to verify the solutions obtained
from other Timoshenko beam formulations such as the w® —w* deflection
component formulation (see Reddy, 19996). In fact, Lee and Wang
(1997) , while using these relationships, detected erroneous solutions
from the common practice of setting w® = w® = 0 at simply supported
and clamped ends for statically indeterminate Timoshenko beams.

Hitherto, these relationships are restricted to beams of uniform
cross-section. In practice, it is common to utilize tapered beams due
to the more efficient use of materials. It is thus the aim of this chapter
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to present more general relationships between the bending solutions of
Timoshenko beams and Euler-Bernoulli beams of arbitrary taper. The
extension of the results to laminated beams is also discussed.

5.2 Stress Resultant-Displacement Relations

Consider a tapered beam of length L, area of cross-section A(z),
second moment of area I(x), modulus of elasticity Fr, and shear modulus
of rigidity G, under any transverse loading condition g(z). According
to the Euler-Bernoulli beam theory, the stress resultant-displacement
relations are given by:

2wl
ME = -Dn—dw; (5.2.1)
dME d d?wf
QF = d;w =-—= (Du—dm—g) (5.2.2)

where wf, MZ and QF are the deflection, bending moment and
shear force, respectively, D;; = E.I the flexural rigidity, and z the
longitudinal coordinate measured along the beam. The superscript F
denotes quantities belonging to the Euler-Bernoulli beam theory.

According to the Timoshenko beam theory, the stress-resultant-
displacement relations are given by:

d T
MT = Dm—% (5.2.3)

dwT
Qg‘ = Az K (d’T + %) (5.2.4)

where the superscript T denotes quantities belonging to the Timoshenko
beam, d)T and K, are the rotation of the cross section and the shear
correction factor, respectively, and A;, = Gz, A the shear stiffness.

5.3 Equilibrium Equations

For both beams, the equilibrium equations are given by:

dM.

Q. (5.3.1)
i _ _, (5.3.2)

dzr
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Substituting Eqs. (5.2.2) and (5.3.1) into Eq. (5.3.2) yields the Euler-
Bernoulli beam equation:

d? < d2w53) _d?ME dQF

= = 5.3.3
dz? T dx? dz? dz ( )

By substituting Eqgs. (5.2.3) and (5.2.4) into Egs. (5.3.1) and (5.3.2),
one obtains the following two equilibrium equations for the Timoshenko

beam: T
dw d do
T 20 ) = - —_ 3.4
and
i i:A:csz (¢T dwo ):\ =—q (535)
dz dr

Differentiating Eq. (5.3.4) with respect to z, and using Eqgs. (5.2.3) and
(5.3.5) lead to

L _ __ 5.3.6
dz2 dz g (5.3.6)

@ (o dgT\ _ Mg _ dQF
© dx? dz

5.4 Deflection and Force Relationships
5.4.1 General Relationships

From the mathematical similarity of Egs. (5.3.3) and (5.3.6), it can
be deduced that

doT d2wE
Dm:_C_lZIT = sz a2 ‘{"Clx'{'O?
or
ML = ME + Ciz + C; (5.4.1)
and
QT =QF + ¢ (5.4.2)

Assuming that D;; # 0 anywhere along the length of the beam, the
integration of Eq.(5.4.1) yields
¢T = dw + / ‘ M
0

5.4.3
Iz Do dz + Cs ( )
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The substitution of Eq. (5.4.3) into Eq. (5.3.4) followed by integration
with respect to z yield

wd = wf + A Qj +Kcl / / Clm+02dmda:—03z—04 (5.4.4)

The integration constants C;, Cq,C3, and C; can be evaluated from
the boundary conditions given by:

Free(F): ME =ML =QF=QT =0 (545)
Simple support(S): wf =w} = ME =ML =0 (54.6)

Clamped(C): wf =wl = @_0_ =¢T =0 (54.7)

Below, the constants C; are evaluated for single-span beams of various
combinations of end conditions.

5.4.2 Simply Supported (SS) Beams

The boundary conditions for simply supported beams are given by
Eq. (5.4.6) for z = 0 and z = L. The substitution of these boundary
conditions into Egs. (5.4.1) and (5.4.4) gives the following:

Lt Q@ (5.4.8)

Ci1=Cy=C4=0, C3= I . ALK,

In view of these constants, Eqs. (5.4.1) to (5.4.4) for simply supported
beams read as:

Mg;, —_ le:i: (5.4.9&)
QT = QF (5.4.9b)
¢7 =— d;‘;f 7 / (5.4.9¢c)

T Z LQfd 5.4.9d
of =uf+ [ Auxd"zoz::ﬁ;x (5499
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5.4.3 Clamped-Free (CF) Beams

The boundary conditions for clamped-free beams are given by Eq.
(5.4.7) for z = 0 and by Eq. (5.4.5) for z = L. The substitution of these
boundary conditions into Egs. (5.4.1) to (5.4.4) gives the following:

Ci=Cr=C3=Cs4=0 (5.4.10)

In view of these constant values, the relationships given by Egs. (5.4.1)
to (5.4.4) for clamped free beams read as:

ME = ME (5.4.11a)
QT = QF (5.4.11b)
E
o7 =~ (5.4.11c)
dz
wi = wf + /L H dz (5.4.11d)
0 0 0 AJ:sz

5.4.4 Free-Clamped (FC) Beams

The boundary conditions for free-clamped beams are given by Eq.
(5.4.5) for £ = 0 and by Eq. (5.4.7) for z = L. The substitution of these
boundary conditions into Egs. (5.4.1) to (5.4.4) gives the following:

Cry=Cy =C: C - Qf d
=(Cy = C3 = 0; = / T 5.4.12
! 2 3 4 0 A:::sz ( )

In view of these constant values, the relationships given by Eqs. (5.4.1)
to (5.4.4) for clamped free beams read as:

ML = ME (5.4.13a)
Q =Qf (5.4.13b)
E
o7 = 2 (5.4.13¢)
dz
wg =wf - L Q7 dx (5.4.13d)
o= ¢] A:rsz -
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5.4.5 Clamped (CC) Beams

The boundary conditions for clamped beams are given by Eq. (5.4.7)
for z = 0 and = = L. The substitution of these boundary conditions
into Egs. (5.4.3) and (5.4.4) gives the following:

I (A,,IK,, Jo —da:> dz + (i"z—“—> (fo o D dzdz)
DIZ
k&
Cp = —Cy %P
2 IJ.OL bi—zdm
Cs=Cy = (5.4.14)

In view of these constants, the relationships given by Eqgs. (5.4.1) to
(5.4.4) for clamped beams read as

MZ; = ME + Ciz + Co (5.4.15a)
RT =0+ (5.4.15b)
dwf z Ciz +C
T _ _ %% bt b 5.4.15¢
¢ =T [ e (5.4.15¢)
E
wl = wf + T+l —// Md (5.4.15d)
0 Aa:zK

5.4.6 Clamped-Simply Supported (CS) Beams

The boundary conditions for clamped-simply supported beams are
given by Eq. (5.4.7) for z = 0 and by Eq. (5.4.6) for £ = L. The
substitution of these boundary conditions into Egs. (5.4.1), (5.4.3) and
(5.4.4) gives the following:

Iy A_'“ux,dx
Cl = T z—L
Iy {AZ,K, Jo P d‘”}
Co=-CiL, C3=C4=0 (5.4.16)

In view of these constants, the relationships given by Egs. (5.4.1) to
(5.4.4) for clamped-simply supported beams read as:

MZ, = Mg, — Ci(L - x) (5.4.17a)
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QI =Q7 +C (5.4.17b)
dwf Zrx—-L

T 0 5.4.17¢

é T 01/0 b dr ( )

da:dac (5.4.17d)

“’°=w°+/ 4 K dx_c//

5.4.7 Simply Supported-Clamped (SC) Beams

The boundary conditions for clamped-simply supported beams are
given by Eq. (5.4.6) for x = 0 and by Eq. (5.4.7) for z = L. The
substitution of these boundary conditions into Egs. (5.4.1), (5.4.3) and
(5.4.4) gives the following:

L _QF
f A:zK.a
Ly pdz + fy {AHK, I Dz:dx}d

Lz
Co=Cy=0, Cs=—C'1/O

Cr=-

dz (5.4.18)

fa ke

In view of these constants, the relationships given by Egs. (5.4.1) to
(5.4.4) for simply supported-clamped beams read as:

ML =ME + Ciz (5.4.19a)
Al =Qf+¢ (5.4.19b)
dw L g
T=_-20 4.

) T + Cy ; Dmda: (5.4.19¢)

Qm + Cl T T

~wf+ / -C / /

0 0 Aa:sz ! 0 JO sz
+Ciz / dz (5.4.194)
0 D:cz

All the foregoing relationships reduce to the same ones as derived in
Chapter 2 when the beam has a uniform cross-section, i.e. A and I are
constants. Wang, Chen, and Kitipornchai (1998) have also developed
relationships for non-uniform beams with elastic end restraints.
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5.4.8 An Example

Consider the use of the relationships in determining the deflections
of a simply supported, tapered Timoshenko beam under a uniformly
distributed load gg. The width b and depth h of the tapered beam are
assumed to vary linearly along the z—direction

b=bo(l+3), h=ho(l+i), z:% (5.4.20)
where by and hg are the width and depth, respectively, of the beam cross

section at z =0, and L is the length of the beam.

By solving directly the governing Euler-Bernoulli beam equations
(5.3.3) together with the boundary conditions in Eq. (5.4.6), and noting
D, (0) = Ely, the deflection is found to be

wE = goL*
0 T 12EI(1 + £)2

+61n(2L) (2 +22° + i3)

[2:2 + 2% - 3z% +61n(L) (1 4+~ 5:2)

~ 6lln(L) + In(1 +2)] (1+ 22 + x2)] (5.4.21)

where Iy = bgh/12. From Eq. (5.3.3), the transverse shear force of the
Euler-Bernoulli beam is given by

L z

QF = %—(1 -2), z=7 (5.4.22)

To determine the Timoshenko beam solutions using the

relationships, we substitute the width and depth expressions from

Eq. (5.4.20), the Euler-Bernoulli deflection (5.4.21) and the shear

force (5.4.22) into Eq. (5.4.9d). The deflection corresponding to the
Timoshenko tapered beam, noting A;,(0) = G Ay, is given by

wT — q0L2 {_ 18
0 T 12K,GAg| (1+1%)

+6(3+2In(L)) + A(7 + 61n(L))

_ [In(L) + In(1 + 2)](12 + 6A)]

@l 2 9

+ 12EIy [(1 +z)2 (1+%)
- 6:5(1 +30-2In(2)(1 + 29))] (5.4.23)
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where Ag = bghg and

Elo A= (5.4.24)

2= K,GAgL? "’ Q

5.5 Symmetrically Laminated Beams

The governing equations of symmetrically laminated beams have
the same form as those given in Egs. (5.2.1) to (5.2.4) for isotropic
beams. Therefore, the results presented in this paper are also valid for
symmetrically laminated beams. The difference between symmetrically
laminated beams and isotropic beams is reflected in the flexural and
shear stiffnesses, D,, and K ;A;,. For a laminated beam, they are
computed from the following equations (Reddy 1997a)

b 1

El=—, GAK,=——
DII * h’ASS

(5.5.1)

where the superscript C denotes quantities of the composite beam, h is
the total thickness and b is the width of the laminate, and

D = D22Des — DasDos A= Ay (5.5.2)
i Dy11D1y + Di2D12 + DD Agq
D1y = DyoDeg — DogDgs, Di2 = D1gD2s — D12Des  (5.5.3a)

D16 = D13Dog — DyyDi1g, Asa = AsaAss — AssAss  (5.5.3b)

Here A;; and D;; denote the extensional and bending stiffnesses,
respectively, of a laminate

o

(Ai]',D,'j) = / N Qij (1, 22) dz (554)

L

and @;; denote the plane stress-reduced elastic stiffnesses of a layer
referred to laminate coordinates.

It is rare that laminated beams have variable cross sections due
to variable thicknesses of individual layers because these layers are
generally made of uniform thickness. Variable cross-section beams,
either piece-wise constant (but multiple segments) or linearly varying
cross-section laminates are constructed by ply drop-off and chopping-
off a constant thickness laminate. The present results hold for the
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latter case directly. In the former case, Eqs. (5.4.1)—(5.4.4) hold within
each segment, and the constants of integration C; in each segment are
evaluated using the continuity of deflection, slope, bending moment, and
shear force between segments and the boundary conditions of the beam.

5.6 Concluding Remarks

The deflection, slope, and stress-resultant relationships for single-
span Timoshenko and Euler-Bernoulli tapered beams under any
transverse loads and end conditions are derived. These relationships
may be used to readily convert tapered Euler-Bernoulli beam bending
solutions to those for Timoshenko beams, thereby bypassing the need
for a more complicated shear deformable beam analysis. The exact
relationships should also prove useful when checks are needed for
numerical results of tapered Timoshenko beams. The results also
hold for symmetrically laminated beams with the stiffnesses modified
accordingly, as pointed out earlier.

An interesting point to note is that in uniform and statically
determinate beams, the slope of the Timoshenko beam is equal to that of
the corresponding Euler-Bernoulli beam. This study shows that in the
case of tapered beams, while this slope condition holds for cantilevered
beams, the condition is not valid for simply supported beams in general.
In the latter simply supported case, the equal slope condition only

applies to tapered beams when fo y: i( dz = 0; an example being the
beam which is tapered and loaded symmetrlcally about its mid-span.

Problems

5.1 Determine the deflection of the tapered Timoshenko beam defined in
section 5.4.8 by solving directly the governing equations (5.3.4) and
(5.3.5) together with the boundary conditions given by Eq. (5.4.6).
Check the answer against that given in Eq. (5.4.23).

5.2 Derive the bending relationships for tapered beams with ends that are
simply supported and constrained by elastic springs with rotational
stiffness constants kg and k; at ends = 0 and £ = L, respectively.



PART 2
PLATES
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Chapter 6

Theories of Plate Bending

Presented in this chapter are the various plate theories, progressing
from the Kirchhoff (classical thin) plate theory to the first-order shear
deformation plate theory of Mindlin, and finally, to the third-order plate
theory of Reddy. The latter two plate theories allow for the effect of
transverse shear deformation which has been neglected in the Kirchhoff
plate theory. Using the principle of virtual displacements, the governing
equations and boundary conditions are derived for uniform thickness
plates on the basis of the kinematic assumptions of the aforementioned
plate theories.

6.1 Overview of Plate Theories

The two-dimensional plate theories can be classified into two types:
(1) classical plate theory, in which the transverse shear deformation
effects are neglected, and (2) shear deformation plate theories. The
Kirchhoff (classical) plate theory (CPT) for the pure bending case is
based on the displacement field

u(z,y,2) = —z%;g (6.1.1a)
311)0

= 20 1.1b

v(z,y,2) zay (6.1.1b)

w(xvyﬂz) = wO(m)y) (6110)

where (u,v,w) are the displacement components along the (z,y,2)
coordinate directions, respectively, and wp is the transverse deflection
of a point on the mid-plane (i.e., 2 = 0). The displacement field (6.1.1)
implies that straight lines normal to the xy-plane before deformation
remain straight and normal to the mid-surface after deformation. The
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Kirchhoff assumption amounts to neglecting both transverse shear and
transverse normal effects, i.e. deformation is due entirely to bending
and in-plane stretching.

There are a number of shear deformation plate theories. The
simplest is the first-order shear deformation plate theory {or FSDT),
also known as the Mindlin plate theory (Mindlin 1951), and it is based
on the displacement field

u(z,y, 2) = 2¢z(z,y) (6.1.2a)
v(z,y, 2) = 2¢y(z,y) (6.1.2b)
w(z,y, z) = wo(z,y) (6.1.2¢)

where ¢, and —¢, denote rotations about the y and z axes, respectively.
The FSDT extends the kinematics of the CPT by including a gross
transverse shear deformation in its kinematic assumptions, i.e. the
transverse shear strain is assumed to be constant with respect to
the thickness coordinate. In the FSDT, shear correction factors are
introduced to correct the discrepancy between the actual transverse
shear force distributions and those computed using the kinematic
relations of the FSDT. The shear correction factors depend not only
on the geometric parameters, but also on the loading and boundary
conditions of the plate.

In both the CPT and FSDT, the plane-stress state assumption
is used and the plane-stress-reduced form of the constitutive law is
used. In both theories, the inextensibility of a transverse normal can be
removed by assuming that the transverse deflection also varies through
the thickness. This allows the use of full three-dimensional constitutive
equations.

Second- and higher-order shear deformation plate theories use
higher-order polynomials in the expansion of the displacement
components through the thickness of the plate. The higher-order
theories introduce additional unknowns that are often difficult to
interpret in physical terms. The second-order theory with transverse
inextensibility is based on the displacement field

w(z,y,2) = 2¢2(T,y) + 292 (2, Y) (6.1.3q)
v(z,y,2) = 2¢y(2,y) + 2%y (2, 9) (6.1.30)
w(z,y,2) = we(z,y) (6.1.3¢)

There are a number of third-order theories in the literature, and a review
of these theories is given by Reddy (1984a). The third-order shear
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deformation plate theory (TSDT) of Reddy (19844, 19974, 19990a) with
transverse inextensibility is based on the displacement field

u(z,y, 2) = 2¢.(z,y) — a2’ (d)x + %%) (6.1.4a)
v(z,y,2) = 2¢,(z,y) — a2’ (¢y + %U;).) (6.1.4b)
w($7y7 Z) = wO(may) (6146)

where a = 4/(3h%). Note that by setting @ = 0, we recover the
displacement field of the FSDT. The displacement field accommodates
a quadratic variation of the transverse shear strains (and hence shear
stresses) through the thickness and the vanishing of transverse shear
stresses on the top and bottom surfaces of the plate (see Figure 6.1.1).
Unlike the FSDT, the TSDT requires no shear correction factors.

-
g lz ‘é X, U

l ug &~ (m i}
z L) : cx
i
1 ar®

(ug,wp)

Figure 6.1.1. Undeformed and deformed geometries of an edge of a plate
in various plate theories. Here ug denotes the in-plane
displacement, which is not included in the present study.
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In addition to its inherent simplicity and low computational cost, the
first-order plate theory often provides a sufficiently accurate description
of the global response (e.g., deflections, buckling loads, and natural
vibration frequencies) for thin to moderately thick plates. Therefore,
it is of interest to determine the global response using FSDT. Third-
order theories provide a small increase in accuracy relative to the FSDT
solution, at the expense of a significant increase in computational effort.

6.2 Classical (Kirchhoff) Plate Theory (CPT)
6.2.1 Equations of Equilibrium

The principle of virtual displacements has been adopted in the
derivation of the equilibrium equations and the boundary conditions for
the various plate theories. In the subsections that follow, the equations
of equilibrium for the CPT, FSDT, and TSDT are derived.

The non-zero linear strains associated with the displacement field
in Egs. (6.1.1a-c) are

Ou 0wy
== = 6.2.1
ou 62’on
= =2 6.2.1b
Eyy ay Z ayz ( )
Ou v 8wy
=([Z=Z422) =~ 6.2.1
T2y (8y + 8:5) 2 0z0y ( °)

where (€24, ¢€yy) are the normal strains and -,y is the shear strain.

The virtual strain energy U of the Kirchhoff plate theory is given
by

-

2

82511)0 62511)0 825100
- 00U ) drdy (6.2.2
/Q 0 (Mu Gt + My Tt 4 2May | dody (622

A
sU = A [ / * (0gz0€ss + Oyyb€yy + Ozyd¥zy) dz] dzdy
0

where 0 denotes the domain occupied by the mid-plane of the plate, h
the thickness of the plate, (044, 0yy) the normal stresses, ozy the s.hear
stress, and (Mg, Myy, My,) the moments per unit length (see Figure
6.2.1)
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Figure 6.2.1. Forces and moments on a plate element. The in-plane force
resultants Nyz, Ny, and Ny, do not enter the equations
in the pure bending case, and they are the specified forces
in a buckling problem.

My, % Oz
My, $ = / oy pzdz (6.2.3)
Mzy "7 \ogy

Note that the virtual strain energy associated with the transverse shear
strains is zero as gz = 7y, = 0 in the Kirchhoff plate theory.

The virtual potential energy 6V due to the transverse load g¢(z,y)
is given by

5V = — /Q oz, y)6wo dedy (6.2.4)
0
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If there are any nonzero edge forces and moments, the virtual potential
energy V should be added to the expression in Eq. (6.2.4).

The principle of virtual displacements requires that §W = U +
0V = 0. We obtain, using the divergence theorem,

¥ Bzdy
N _/Q (Mzz,zz + 2May,ay + Myyyy + ) bwo dzdy
Q

Obw Obwo
—fi: [(anz + Mxyny) 32:0 —ay—:l ds

+ fi: [(sz,a: + sz,y) nr + (Myy,y + Mxy,;,;) ny] bwyp ds (6.2.5)

825200 325’1110 62(5
+ (Mzynz + Myyny)

where a comma followed by subscripts denotes differentiation with
respect to the subscripts, i.e., Myy, = OM;,/0z, and so on, (nz,ny)
denote the direction cosines of the unit normal n on the boundary I', and
a circle on the integral sign signifies integration over the total boundary.
Also, s is the coordinate measured along I'. If the unit normal vector i
is oriented at an angle ¢ from the positive z-axis, then ng; = cosf and

ny = sinf. Since dwy is arbitrary in €, and it is independent of Qg—‘;:’ﬂ,

and g—g—;"l on the boundary T, it follows that

PMoz | ,0*May | My

O0z? Ozdy Oy 2

Y4qg=0 in Q (6.2.6)

which represents the equilibrium equation of the Kirchhoff plate theory.
6.2.2 Boundary Conditions

To determine the form of the boundary conditions, we consider the
boundary integrals in Eq. (6.2.5). On an edge parallel to the z or y

coordinate, the boundary expression in (6.2.5) implies that

either fwg=0 or Qzng + Qyny =0 (6.2.7a)

either 621:0 =0 or Mgang+ Mgyny =0 (6.2.7b)
either Obwo =0 or Mgng+ Myn, =0 (6.2.7¢)

Oy
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where
QZZI = ZI z + sz Y Qy = Myy,y + Mxy,;p (628)

are the shear forces (see Figure 6.2.1). Note that Q, and Q, are defined
by Eq. (6.2.8). Equations (6.2.7a-c) indicate that (wy, a‘;" 6—’”‘1) are
the primary variables and specification of any of them constltutes an
essential (or geometric) boundary condition. The associated secondary
variables are

Qznz + Qyny, Mzzng + szny, Mzyns + Myyny

The specification of any of the secondary variables constitutes a natural
(or force) boundary condition.

In general, not every edge of a plate will be parallel to a coordinate
axis. Therefore, it is useful to express the boundary conditions in terms
of slopes and moments that are referred to the normal and tangential
coordinates (n,s) of an edge (see Figure 6.2.2). The slopes (%“’il %%Q)
in the (z,y) coordinate system can be expressed in terms of the slopes
(%"7—3 Jug %2} in the (n, s) system by the relations

6w0 _ 6’&00 awo
oz "“on ¥ os (6.2.92)
8’(1)0 6w0 awo

2.
5y~ " on + ng 95 (6.2.9b)

Figure 6.2.2. Plate element with a curved boundary and coordinate
system (n, s, z).
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The boundary expression in Eq. (6.2.5) can be expressed in terms
of the normal and tangential derivatives of wyq:

fi; [(anx + Qyny) dwp

— (Maanz + Mayny) <65wo Bbwg ny)

on "t Bs
65’(00 35100
— (M:,_-ynz + Myyny) (W'fby + Wﬂg)] ds
= fi: (Qznz + Qyny) dwo

déwy

— (Muni + 2Mgyneny + Myyng) Bn
abw

- [(Myy ~ Mez)ngny + Mgy (n2 — nz)] Eg] ds (6.2.10)

The secondary variables are the coefficients of dwg, %"Q and %T‘;’Q onl.
From Eq. (6.2.10), it is clear that the primary variables (i.e., generalized
displacements) and secondary variables (i.e., generalized forces) of the
theory are:

Oug - Owg

primary variables: wg, , (6.2.11a)
on 0s
secondary variables: Qn, Mp,, Mg, (6.2.11Db)
where
Qn = Qznz + Qyny (6.2.12a)
Mpn = Mgzn? + 2Mgyngny + Myyn? (6.2.12b)
Mps = (Myy — Mez)ngny, + Mgy(n2 - nz) (6.2.12¢)

We note that the equation of equilibrium (6.2.6), when expressed
in terms of wp, as will be shown shortly, has a total spatial differential
order of four. This implies that there should be only four (two geometric
and two force) boundary conditions at a boundary point. However,
Eq. (6.2.11) shows three geometric and three force boundary conditions,
giving a total of six boundary conditions. To eliminate this discrepancy,
one may integrate the tangential derivative term in Eq. (6.2.10) by parts
to obtain

- f M, 220 4o — ]{ OMns 5110 ds — [MnsSwol (6.2.13)
r Os r Os
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The term [Mps6wo)p is zero when the end points of a closed smooth
curve coincide or when M,,s = 0. If M, = 0 is not specified at corners
of the boundary T of a polygonal plate, concentrated forces of magnitude

FC = —'2A{ns (6.2.14)

will be produced at the corners of rectangular plates. The factor of 2
appears because M, from two sides of the corner are added there.

The remaining boundary term in Eq. (6.2.10), being the coefficient
of dwg on T, is added to the shear force @, to obtain the effective shear

force
oM, ns
Os

The specification of this effective shear force V,, is known as the Kirchhoff
free-edge condition. Finally, the correct boundary conditions of the
Kirchhoff plate theory involve specifying the following quantities:

Vo= Qn+ (6.2.15)

0
generalized displacements: wy, 8_117?
generalized forces: V,, Mpn (6.2.16)

Thus, at every boundary point one must know wq or V5, and Gwp/0n or
Myyn. On an edge parallel to the z—axis at y = 0 (i.e., n = —y and
s = ), for example, the above boundary conditions involve specifying
one quantity in each pair

611)0 _ 8’11)0

(’LU(),Vy) and (—a—n- = *@, Mnn = Myy) (6217)

Next we discuss some common types of boundary conditions for
the bending of rectangular plates with edges parallel to the z and y
coordinates. Here we use the edge at y = 0 (ny = 0 and ny = 1)
to discuss the boundary conditions. It should be noted that only one
element of each of the three pairs may (and should) be specified on
an edge of a plate. The force boundary conditions may be expressed
in terms of the generalized displacements using the plate constitutive
equations discussed in the sequel (see Section 6.2.3).

Free edge, y = 0: A free edge is one which is geometrically not
restrained in any way. Hence, we have

6’(1.)()

wo £0, — #0 (6.2.18a)
Oy
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However, the edge may have applied forces and/or moments

OMy,
oz

Vy=Qy+ =V, My, =M, (6.2.18b)

where quantities with a hat are specified forces/moments. For free
rectangular plates, M, = 0; hence no corner forces are developed.

Fixed (or clamped) edge, y = 0: A fixed edge is one that is
geometrically fully restrained so that

wy=0, — =0 (6.2.19)

Therefore, the forces and moments on a fixed edge are not known a priori
(i.e., they are reactions to be determined as a part of the analysis).
For clamped rectangular plates, Mz, = 0, hence no corner forces are
developed.

Simply supported edge y = 0: Here we define simply supported
boundary conditions as specifying

wp =0, My, = My, (6.2.20)
where Myy is the applied normal bending moment on the edge. For
simply supported rectangular plates, a reacting force of 2Mgy is
developed at each corner of the plate.

6.2.3 Governing Equations in Terms of the Deflection

Suppose that the material of the plate is isotropic and obeys Hooke’s
law. Then the stress-strain relations are given by

E

s = T3 (€zz + VEyy) (6.2.21a)
E

Ozy = G’Y:cy = ‘_"_2(1 T U)’)’g;y (62210)

where E denotes Young’s modulus, G shear modulus, and v Poisson’s
ratio. Using Egs. (6.2.2la-c) in Eq. (6.2.3) and carrying out the
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indicated integration over the plate thickness, we arrive at

E
Mx:c—/;%O'z:z:Z d2=——(1_1/2)/

(ST
B

 (Eqz + veyy) 2 d2
2

82wy 8wy
=-D (3:57 + Vc’)‘_y"’ (6.2.22a)
h h
7 E 2
My, = / ; Oyyz dz = = 1/2) —/—% (Eyy + VEzz) 2 d2
62w0 32100
=-Dlyv—m— + —— 6.2.22b
(u 52 T g ( )
: :
Mxyz/_ﬁazyz dz—G/ﬁ%yz dz
2 2
8w
—(1 - 6.2.22
(1-)Dg5 (62220)
where D is the flexural rigidity
ER3
R 6.2.23
b 12(1 - v?) ( )

Substituting the expressions for (Mgg, Myy, Mzy) into Eq. (6.2.6)
we obtain the biharmonic equation governing plate bending

D (64100 49 (941110 64w0> —

6.2.24
ozt 920y + ot ( )

In terms of the Laplace operator V2, we have
DV*Viwy=q or DViwy=gq (6.2.25)

The boundary conditions involve specifying

Wo Vo =Qn QM“’
{ } or { } (6.2.26)
G M,

This completes the development of the governing equations of

the Kirchhoff plate theory. We shall make use of these equations in
subsequent chapters.
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6.3 First-Order Shear Deformation Plate
Theory (FSDT)

6.3.1 Equations of Equilibrium

In view of the displacement field given in Eqs. (6.1.2a-c), the
components of the linear strains are given by

€ac = 2 (6.3.1a)
Eyy = z%% (6.3.1b)
Yoy = 2 (%iz + %) (6.3.1c)
Yoz = @z + -aa% (6.3.1d)
Yyz = Py + %ﬂ’y_q (6.3.1¢)

Note that the strains (ezgz,€yy,7oy) are linear through the plate
thickness, while the transverse shear strains (7z,,7y.) are constant.

The equations of equilibrium of the first-order plate theory are
derived, once again, using the principle of virtual displacements

§W = 6U + 6V =0 (6.3.2)

where the virtual strain energy 6U, and virtual potential energy 6V due
to the transverse load g(z,y) are given by

h
0

-h
2

+ 05,675z + Oyz 01y, ) dz|dzdy (6.3.3a)
5V = — / g(z, y)6wo dedy (6.3.3b)
o

Substituting for 6U and 6V from Egs. (6.3.3a,b) into the virtual work
statement in Eq. (6.3.2), expressing the virtual strains in terms of
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the virtual displacements (6wp,6¢;,8¢4,) using Egs. (6.3.1a-e), and
integrating through the thickness of the plate, we obtain

_ 96¢- 95¢y (Q‘i‘l’z %)_
0—/00 [M:m: oz +Myy ay +M:cy By + 5z q5w0

+Qq (% + 5%) +Q, (‘%w" + 6¢y)}dzdy (6.3.4)

where (Myz, My, Mzy) are the moments defined in Eq. (6.2.3), and the
transverse shear forces per unit length (Qz, Q) are defined by

{3§ } B /_i {gz } dz (6.3.5)

Since the transverse shear strains are represented as constant
through the plate thickness, the transverse shear stresses will also be
constant through the thickness. This contradicts the well known fact
that the transverse shear stresses are parabolic (i.e. quadratic) through
the plate thickness. While this discrepancy between the parabolic
variation of transverse shear stresses and the constant state of shear
stresses predicted by the first-order plate theory cannot be corrected
within the limitations of the kinematics of FSDT, the shear forces
(Qz,Qy) may be corrected by multiplying the integrals in Eq. (6.3.5)
with a parameter K, called the shear correction factor:

Glonhlize o

This amounts to modifying the transverse shear stiffnesses of the plate.
The factor K, is computed such that the strain energy due to the
transverse shear stresses of the FSDT equals the strain energy due to the
transverse shear stresses predicted by the three-dimensional elasticity
theory or its equivalent.

Returning to the virtual work statement in Eq. (6.3.4), we integrate
by parts to relieve the virtual generalized displacements (wg, 6¢¢, 6¢y)
in )y of any differentiation. We obtain, using the divergence theorem,

0= 0 [ - (sz,x + Ma:y y Qz) 6¢x - ( TY,x + Myyy Qy) 5¢y
0
- (Qz,x + Qy,y + q) 6'(1)0 ] dmdy
+ fr (@nbdwo + Mpnbon + Mys665) ds (6.3.7)
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where the boundary expressions were arrived by expressing ¢, and ¢,
in terms of the normal and tangential rotations, (¢n, ¢s):

¢z = NzPn — Ny@Ps , Py = ny5¢n + nzdds (6.3.8)

The equations of equilibrium are

. (0Qz | 8Qy\ _
dwp : ( e + N > =q (6.3.9a)
0z - <8M" + %) +Q:=0 (6.3.9b)
oz oy
. _ (OMgy aMyy> _
8¢y : <__6z + oy +Qy=0 (6.3.9¢)

The primary and secondary variables of the theory are

primary variables: wWo, On, Ps
secondary variables: Qn, Mpn, Mps (6.3.10)
where
@n = Qzng + Qyny (6'3'11)

The boundary conditions involve specifying one element of each of the
following pairs:

(wo, Qn), (d’m Mnn); (¢s, Mns)

6.3.2 Plate Constitutive Equations

Assuming the plate material is isotropic and obeys Hooke’s law

aen s 0 0 07 (e
Ozz Q1 g) (1-v2) zT
Tyy oy mon 0 0 01w
ey =10 0 G 0 0[fm (6.3.12)
Oz 0 0 0 G 0 Yoz
Oyz 0 0 0 0 G Tyz

where E is the Young’s modulus and v Poisson’s ratio. The shear
modulus G is related to E and v by G = E/2(1 + v).
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The plate constitutive equations are given by

My, = /%h Ozz2dz = D <36¢x + %) (6.3.13a)
-2

M,, = /%h Oyyzdz = D ( %"5—1 + %’) (6.3.13b)
)

Mgy = /%h Ooy2dz = D(IQ' v) (‘Z’” + %‘i") (6.3.13¢)
-2

Q. = K, /_ %% 0aadz = 2535};) <¢x 81:‘20) (6.3.13d)

Q, = K, /_ i Oyadz = ;g f’; ) (qsy a“;") (6.3.13¢)

:

6.3.3 Governing Equations in Terms of Displacements

The equations of equilibrium (6.3.9a-c) can be expressed in terms
of displacements (wq, ¢z, ¢y) by substituting for the force and moment
resultants from Egs. (6.3.13a-e). We have

Ks Eh 82100 62100 c‘9¢z ngy _
" 30 17) < 522 52 + 5 + B ) q(z,y) (6.3.14)
_ D1 -v) [#*¢. N ¢\ D(1+wv) 8 <6¢x 4 a¢y>
2 dr2 9y 2 9z \0z Oy
K,Eh [(Buyg _
+ 5 <E+¢ ) =0 (6.3.15)
SDU=) T4y, Poy)_DULN D (38 o)
2 0r? = 9y? 2 Oy\odzr Oy
KsEh a’wo _
5T (7 + ) =0 (6:3:10)

Introducing the moment sum

M

Moz + My _ ) <a¢,,. N %>
8

— e (6.3.17)
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and using the Laplace operator, the equilibrium equations (6.3.14)-
(6.3.16) can be expressed in the form

K,Eh (o . MY
0 K.Eh (0
- D=1V~ (1+1) 50 + 0] (52 +e) =0 (6319

— D(1 - )y — (14 1) KeER (3“’0

ot s (5 +¢y> —~ 0 (6.3.20)

The common edge conditions for the Mindlin plate theory are given
below.

Free edge (F): For this type of edge condition

Qn = KsGh (¢n + E;%?) =0 (6.3.213)
My, =D (% + U8¢s) =0 (6.3.21b)
on Js
_ DA -v) (O¢n  O¢s\ _
Mns - 2 < 65 + 6”) = 0 (63210)

Simply supported edge (S and S*) There are two kinds of simply
supported edges. The first kind (S), which is referred to as the hard
type simple support, requires

wo=0, Mp,=0, ¢s=0 (6.3.22)

The second kind (S*), commonly referred to as the soft type simple
support, requires

wp =0, Mp,=0, Mp,=0 (6'3'23)

Clamped edge (C) This type of edge condition requires

wp = Oa ¢TL = O) d)s = O (6324)



THEORIES OF PLATE BENDING 105

6.4 Third-Order Shear Deformation Plate
Theory (TSDT)

6.4.1 Equations of Equilibrium

The displacement field in Eq. (6.1.4a-c) results in the following
linear strains:

€zz = 3(251; - <8¢I 0 wo> (6.4.1a)

€y = 6¢y (a% L2 w°> (6.4.1b)
_ % i _ Oz 8¢y wO

Exy = <8y e ) az <8y +t 5 +26 5 ) (6.4.1c)

Yoz 1 - ﬂz < _810_) (6.4.1d)
- (1 - Bz ) < + %12_0) (6.4.1e)

where o = 4/(3h?) and 3 = 4/h%.

The substitution of the virtual strains associated with the strains in
Egs. (6.4.1a-¢) into Eq. (6.3.3a) and the result, along with 6V from Eq.
(6.3.3b), into the statement of the principle of virtual displacements, Eq.
(6.3.2) gives

/Q [M 060, \p 080y <a<s¢,,. .\ g&iy_>

Tor Oy Oy oz
86¢z 82611)0 35(}53/ 62(511)0

_ Dby, Bbpy 06wy
aP$y< By + 97 +286y

+(Qs - BRy) <6¢$ + Qg%‘l)
85w0
Oy

+ (Qz — BR:) (5¢y + > - q&’wo:l dA =0 (6.4.2)

where the moments (Mg, My, Mz,) and transverse shear forces
(Qqz, Qy) are the same as defined in Egs. (6.2.3) and (6.3.5), respectively,



106 SHEAR DEFORMABLE BEAMS AND PLATES

and the higher-order stress resultants (Prz, Pyy, Pry) and (Rz, Ry) are

defined by
Py, !2‘- Ozzx
Py 3 = / Oyy § 2> dz (6.4.3a)
P -

zy Oy
{ ﬁ? } = /___ { o }2’2 dz (6.4.3b)

Integrating the expressions in Eq. (6.4.2) by parts, and collecting
the coefficients of 8¢, 8¢y, Swp, one obtains the following equilibrium
equations of the third-order plate theory:

NI o

OMzy | OMsyy
- = 6.4.4

OMzy My
[ =y = 6.4.5
0z , 99y P Py  FPw\ _  (cae
(a ay) “(aﬁ *may T o ) =9 049

where

Mgy = Mg, — aPpy (6.4.7a)
Qe = Q¢ — BR; (6.4.7b)

and £, = z,y. The boundary conditions involve specifying

wg or Qn (6.4.8a)
O P (6.4.8b)
an
¢n or Mnn (6493)
$ns Or Mp, (6.4.9b)
where
My = Mg cos®6 — 2sz sin @ cos 6 + Myy sin® @ (6.4.10a)
Prs
Qn = Qzsin — Qycosf — 4 OB (6.4.10c)
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Like in the CPT, corner forces exist in this theory as well.
6.4.2 Plate Constitutive Equations

Using the stress-strain relations (6.3.12) in Eqgs. (6.2.3), (6.3.5),
and (6.4.3a,b), and using the strain-displacement relations (6.4.1a-e),
we obtain

0%z ., 3¢y>

3211)0 32'&)0
Mzz = — ( . 9y ( A (6.4.11a)

02 Oy?

4h%D (0¢, Oy h2D { 8%wq 0wy
= - 4.11
Foz = =55 ( oz oy ) 58 \ a2 TV ) (B4110)
_ 4D ( 0¢:  0¢y\ D[ Bwy  8*wo
My, = 3 (V p + N ) s (V_8x2 + B (6.4.11c)
4hD [ B¢, O¢,\ h2D [ 8wy | *wy
_ 0Py \ _ 4.11
Pyy 35 (V 0z + 6y> 28 \Y oy? t Ay? (6.4.11d)

My = (1—;—”> l . (%";x + %) - % (2221(‘9’;)} (6.4.11e)
o (59) (22 40) 22 (25} o
Q. = 2¢ < + aw") (6.4.11g)
Ry = hsG < = + ) (6.4.11h)
Q, = th ( ) (6.4.11i)
R, = h;)G <¢y aw0> (6.4.115)

These moment/force-deflection relationships can be substituted into
Eqgs. (6.4.4)-(6.4.6) to express the equilibrium equations in terms of the
generalized displacements (wp, ¢z, ¢,). We will return to these equations
in the following chapters.
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Problems

6.1

6.2

6.3

6.4

Starting with a linear distribution of the displacements through the plate
thickness in terms of unknown functions (f1, fo, f3)

U(.’B,y, Z) = Zf](l',y), v(:c,y,z) = Zf?(xay)

w(x,%z) ='U)0($,y) +zf3($1y) (7’)
determine the functions (f, f2, f3) such that the Kirchhoff hypothesis
holds:

ow Ou ow Ov Jw .
—-—:O, T =-F7T, T =-=F (“’)
0z 0z Or ' 0z Oy

Repeat Problem 6.1 for the Mindlin plate theory and determine the
functions (f1, fo, f3) such that the following conditions hold:

Oow 0 Ou Ov

5, = ,—a;=¢z,a=¢y (1)

Starting with a cubic distribution of the displacements through the plate
thickness in terms of unknown functions (fi, f2, g1, g2, b1, h2)

U(.’B, Y, Z) = zfl(ma y) + Z2g1(.’1,‘, y) + zahl(m, y)

’U(J?, Y, Z) = ZfQ(IL', y) + 2292(1") y) + z3h2($) y)

U)(IL',y,Z) =w0(1',y) (1’)

determine the functions ( f;, g;, k) in terms of (wg, @z, Py) such that the
following conditions are satisfied:

ou Ov .
(b—z)z=0 B ¢1' ' <-8_Z)2=0 - ¢y (u)
U-’tz(w$y’ —E) = 0) azz(x)ya —2') =0 (7’“’)
h h .
ayz(a:ay?—g) =07 Uyz(%y,E) =0 (’I,’U)

Consider the following equations of equilibrium of 3-D elasticity in the
absence of body forces:

00z  00gy 00z, _ ;
Ox + 0y + oz 0 )
00zy Ooyy OOy .
L+ 5 + 5 =0 (%)
0o + 00y, + 00,2 ~0 (i)

oz Oy 0z



6.5

6.6

THEORIES OF PLATE BENDING 109

subject to the following boundary conditions:

h h h .
Uzz(x»y, _5) = Oa Ulz(x,y) 5) = Oa Uyz(l':y,—§) =0 (ZU)

h h h
Uyz(x,y,i) = O> Uzz(fl,‘,y,-—§) = Qb UZZ(may, 5) =qt (’U)

Integrate equations (i)—(iii) with respect to 2 over the interval
(—h/2,h/2) and express the results in terms of the stress resultants
(Ngz, Nyy, Nzy). Next, multiply the equations of motion with z,
integrate with respect to z over the interval (—h/2,h/2), and express
the results in terms of the moments (Mzg, Myy, Mzy). Be sure that the
boundary conditions (iv) and (v) on the stresses are satisfied.

Use Egs. (6.3.13a-c) in Egs. (6.3.9b,c) to establish the shear force-
rotation relations

crmofg (34 2) A2 (%) o

Oz \ Oz Oy 2 ;95 dy Oz
_p[2 (U By 1w D (06 3]
Qy—D{ay(Ba: + 8y>_ 2 0z \ Oy Ox (2)

and in terms of the Marcus moment defined in Eq. (6.3.17)

_oM (1-9)D 0 (08, 08,
Qo= 57+ 8y(8y 81:) )
_OM _(1-v)D 8 (8¢, 09, .
@y = Oy 2 oz ( Oy or ) ()

Use Egs. (6.3.13d,e) and Eqgs. (iii) and (iv) of Problem 6.5 to establish
the following relationship:

20y _ 2 2 2K,Gh 12K, )
Vo =0, c-(l—u)D_ 7z (%)
where 96 96
_ z J9y ..
Q_<3y 8.1:) (12)
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Chapter 7

Bending Relationships
for Simply Supported Plates

In this chapter the differential relationships between the deflections
of the classical Kirchhoff plate theory and first- and third-order plate
theories are developed for simply supported, polygonal plates. As
examples, the deflections of simply supported triangular and rectangular
plates are obtained using these relationships.

7.1 Introduction

The subject of plate bending based on the Kirchhoff and Mindlin
plate theories for a variety of transverse loading and boundary conditions
has been studied by numerous investigators. The works have been
compiled in standard texts on plates such as the ones by Timoshenko
and Woinowsky-Krieger (1970), Szilard (1974), Roark and Young (1975),
Reismann (1988), Huang (1988), and Reddy (1999a). Closed-form
solutions for the stress resultants and deflections have been derived for
some plate cases. Where these exact solutions cannot be obtained,
the analysts can draw on very general finite element software, such
as ABAQUS and COSMOS, to solve their plate bending problems.
These software packages for plate analysis usually provide classical
(or Kirchhoff) plate theory (CPT) elements and first-order shear
deformation (or Mindlin) plate theory (FSDT) elements. The latter
type of elements allows for the effect of transverse shear deformation. In
this chapter, we present exact relationships linking the stress-resultants
and deflections of the first-order shear deformation theory to those of
the classical plate theory for simply supported polygonal plates.
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7.2 Relationships Between CPT and FSDT

The governing equations of static equilibrium of plates according to
the Kirchhoff [Eq. (6.2.25)] and Mindlin [Egs. (6.3.18)—(6.3.20)] plate
theories can be expressed in terms of the deflection wy and the moment
sum (or Marcus moment) M as (see Problem 7.9)

V2MK = —q, Vzw(l){ = ___D— (7213,b)
MM MM
V2MM = —q, V2 <w(l)\’f - % Gh) = _—5— (722&, b)
s

where the superscripts K and M refer to quantities of the Kirchhoff and
Mindlin plate theories, respectively, D is the flexural rigidity, and the
moment sum is related to the generalized displacements by the relations

MK+MK a2wK 82wK
K_ Tz Py _p(Z2¥ 79 )\ - _pyuX (723
M T+v D<3$2 % Pyue (123
MM 4+ MM dp, 0o
M _ Tz vy _ T4y 7.2.3b
M 1+v D < oz + Oy ) ( )

From Eqgs. (7.2.1a) and (7.2.2a), in view of the load equivalence, it
follows that
MM = MK 4 DV?® (7.2.4)

where @ is a function such that it satisfies the biharmonic equation
Ve =0 (7.2.5)

Using this result in Egs. (7.2.1b) and (7.2.2b), one may arrive at the
relationship

ok ME (7.2.6a)

wy = wy +K3Gh+q,—q> .2.6a
h2

7 N v 777 (U Y 7.2.6b

Wy +6K3(1—I/)V Wy + ( )

where ¥ is a harmonic function that satisfies the Laplace equation

ViU =0 (7.2.7)
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Note that the relationship (7.2.6b) is valid for all plates with arbitrary
boundary conditions and transverse load. One must determine ¢ and
U from Egs. (7.2.5) and (7.2.7), respectively, subject to the boundary
conditions of the plate. It is worth noting that Barrett and Ellis (1988)
also obtained a form similar to Eq. (7.2.6a,b) but they have assumed &
to be a constant.

In cases where w{! = w{ on the boundaries and M¥ is either zero

or equal to a constant M*¥ (which can be zero) over the boundaries,
U — @ simply takes on the value of —M*¥ /(K,Gh). However, if M¥
varies over the boundaries, the functions ¥ and ® must be determined
separately. Restricting the analysis to the former case allows Eq.
(7.2.6a) to be written as

M MK _ M*K

Using Eq. (7.2.8), it can be readily shown that the relationships
between deflection gradients, bending moments, twisting moment and
shear forces of the Kirchhoff and Mindlin plate theories are given by

dulf _ ouf QX
oz or K,Gh
owl!  ouwf . QY
Oy dy K,Gh

mf = v+ DO 2 (o ox) - 2 (0l - 5]

=M+ o (@ - QK)+V—(Qy—QK)]

(7.2.9a)

(7.2.9b)

= M + D—I((la—)a (@3 - Qi) (7.2.10a)
Ml =+ S [ (@ —e) - 5 (@ -]
D
= M+ o [ay(QM QK)+V—(Qx-QK)]

ﬁ'*'%a_y(Qy ‘Qy)

MM = ME ggs;,’f L% (@4 - @) - o (@4 - @F)]
(7.2.10¢)

(7.2.10b)
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Note that there are a few variations in presenting the above relationships
of the bending moments because of the shear force relationship given by

QM  o0Qy  8QkK | 9Qk
e+ 5~ oz + 5y = ¢ (7.2.11)

Also, it is interesting to note that

_ D(1 -v)

G =+ S V(Y - Q) (212
_ D(1-v)

Q' =Qf + S e v2 (@M - QF) (7.2.12b)

The foregoing relationships are exact if wd! = w{l at the boundaries and
the Marcus moments at the boundaries are equal to the same constant
in the Kirchhoff and Mindlin plate theories.

Consider the case of simply supported, polygonal plates with
straight edges. In the Kirchhoff plate theory, it is well known that
in addition to the deflection being zero along the simply supported
edges, the Marcus moment is also zero (see Timoshenko and Woinowsky-
Krieger 1970). That is,

w{f = MX = 0 along the straight simply supported edges (7.2.13)

In the Mindlin plate theory, the simply supported boundary condition
considered is of the “hard” type such that w}! = 0, M¥ =0 and ¢, =0
where n is the direction normal to the simply supported edge and s
the direction tangential to the edge. Owing to the latter two conditions,
d¢s/0s = 0 and the Marcus moment is thus equal to zero. The boundary
conditions of the FSDT for the simply supported plate are therefore

w)! = MM =0 along the straight simply supported edges (7.2.14)

Since the Marcus moments at the boundaries of plates with any
polygonal shape and simply supported edges are equal to zero, Egs.
(7.2.8) to (7.2.12) apply to such plates. As the Marcus moments are
zero at the boundaries, M*X = 0 and the deflection relationship is
simply given by

MK
K,Gh

M

w) = wl + (7.2.15)
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Equation (7.2.15) furnishes an important relationship between the
deflections of a simply supported polygonal Mindlin plate and the
corresponding simply supported polygonal Kirchhoff plate. This means
that the deflection of simply supported Mindlin plate can be readily
calculated from Eq. (7.2.15) upon supplying the deflection of the
Kirchhoff plate and the Marcus moment, thus bypassing the necessity
for a shear-deformable plate bending analysis.

Using the same reasoning, one may readily deduce that Eq. (7.2. )
holds for simply supported plates under a constant distributed moment
M*K along their edges.

Remarks:

e For “soft” simply supported condition, the Marcus moment is
nonzero and thus the foregoing derived relationship does not apply.
There are important differences between “soft” and “hard” simply
supported conditions which are discussed in Arnold and Falk (1990)
and Haggblad and Bathe (1990).

e Donnell (1976) has derived an apparently similar result to that of
Eq. (7.2.15) [see Eq. (5.84e) in Donnell (1976)]. However, Donnell’s
result is misleading. A reader would be led to believe that Donnell’s
result is independent of boundary conditions and plate shape. It
can be readily shown that this is not the case. Donnell’s deflection
component wj due to the transverse shear deformation is given by

ah?®

_ R g2, K

wg =

where a is a shear correction factor. On a simply supported
boundary, V?w{ would not be equal to zero in general, thus
violating the null displacement requirement for w§ + wf on the
boundary. As mentioned above, V2w5{ is zero for the special
case of simply supported polygonal-shaped plates. The reason
for the incompleteness of Donnell’s derivation is that he has
developed the relevant relations on an augmentation basis without a
comprehensive treatment of the governing conditions. Consequently,
a harmonic function has been left out from the right hand side of
Eq. (7.2.16).

e Equation (7.2.15) has been derived by disregarding the stress
singularity at the corners of simply supported edges. The stress
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singularity is significant in the case of obtuse corners and hence the
relationship will not yield good results for simply supported plates
with large obtuse corners.

o Interestingly, a conjugate plate analogy can be observed from
Egs. (7.2.1a), (7.2.1b) and (7.2.13). The equilibrium problem
expressed by these equations is analogous to the compatibility
problem expressed by Eqs. (7.2.1b) and (7.2.13). The kinematics
of the plate can be determined by solving the equilibrium equation
of a conjugate plate loaded by the Marcus curvature M¥ /D and
interpreting the conjugate Marcus moment as the actual deflection
wff. In the case of the Mindlin plate theory, the additional shear-
deflection component can also be determined as in the case of
the conjugate beam/frame analogy. As with a simply supported
beam, the conjugate plate for shear deflection is the original plate
itself with the original load/reactions factored by 1/(K,Gh). The
conjugate Marcus moment would then become the shear-deflection
component. Note that because the load/reactions are factored, the
shear deflection component is given by w§ = M/(K,Gh).

7.3 Examples

7.3.1 Simply Supported, Uniformly Loaded, Equilateral
Triangular Plate

Consider a simply supported, equilateral triangular plate of side
length 2L//3 as shown in Figure 7.3.1. The plate is subjected to a
uniformly distributed load go. The deflection of this Kirchhoff plate is
given by [see Woinowsky-Krieger (1933) and Reddy (1999a))

K_‘IoL4 =3 o2~ (=2, -2 i] (E_-z_-z) 7.3.1
wO———64D[x 3y°x (:1: +y>+27 9 ] (7.3.1)

where Z = z/L and § = y/L. In view of Eq. (7.2.3a), the Marcus
moment is given by

4

to7

L2
ME = DVl = _q°4 [5;3 - 3z7% - (5:2 —~ g2)

] (7.3.2)
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Figure 7.3.1. Simply supported equilateral triangular plate.

Using Eq. (7.2.15), the deflection w of the uniformly distributed
loaded equilateral triangular plate according to the FSDT is given by

L 478 -22-¢° D
wit = B [1:3—3g2—(i2+g2)+2—7H9 L.

4D 16 K,GL?
(7.3.3)

7.3.2 Simply Supported, Uniformly Loaded, Rectangular
Plate

Consider a simply supported, rectangular plate of side lengths a x b
as shown in Figure 7.3.2. The plate is subjected to a distributed
load ¢(z,y). The deflection of this Kirchhoff plate is given by (see
Timoshenko and Woinowsky-Krieger 1970 and Reddy 1999a)

oo [o o]
w = Z Z dmn 7 | sin T2 sin n7bry (7.34)
n=1m=1 | 74D (’—Z;— + %;) @
where
4 b ra
Grn = — g(z,y) sin sin =¥ dzdy (7.3.5)
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wo=M, =0
_— -
£
i_._____.-__.!_r‘ *
—— |
Ny - {
1 z~._
1_‘____—_"__‘; . Hq:f*fﬂ_ﬂ
L}
~ Mn:,‘;/fﬁ =0

Figure 7.3.2. Simply supported rectangular plate.

In view of Eq. (7.2.3a), the Marcus moment is given by

o oo
ME = DVl = - >3 q;'m S5 | sin T7% sin n;)ry
n=lm=1 | T2 (%2‘ + %T) a
(7.3.6)

Using Eq. (7.2.15), the deflection w{! of the simply supported
rectangular plate under distributed load is given by the Navier solution
(see Reddy 1999a)

o0 oo
wf = oy @ 5 | sin T Gin 7Y (7.3.7)

where

(7.3.8)

7.4 Relationships Between CPT and TSDT
7.4.1 Introduction

In this section, we develop the differential deflection relationship
between the CPT and third-order shear deformation theory (TSDT) of
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Reddy (1984a) for polygonal plates. Based on this general differential
relationship, the relation between the deflections of simply supported
polygonal plates is derived. Since the FSDT can be deduced as a special
case of the TSDT, the relationship derived herein includes that of Section
7.2. As the TSDT is algebraically complicated, analytical solutions are
more difficult to obtain than for the CPT. The relationship between the
deflections of the CPT and the TSDT for simply supported polygonal
plates enables one to obtain the deflection, and hence the moments and
stresses in the TSDT in terms of the deflection of the CPT.

7.4.2 Governing Equations

The equations governing the static bending of an isotropic elastic
plate under a transverse load q(z,y) are given by

OM,, c’“)M;,y _
B +—=—2_0Q,=0 (7.4.1)
asz 6Myy A
A + vl Qy,=0 (7.4.2)
an 8Qy 82P TT 82P Ty aZP yy)
=y = 4.
5z T oy +0‘< 522 T gmoy T ) T170 (143
where B )
an = Mf”l - aPE,], Qf = Qf - ,BRE (744)
4 4
5,77=13»y, a=§m 3 lgz—ﬁf (745)

(Mgg, Myy, Mzy) are the moments, (Q;,Qy) the transverse shear
forces, and (Pyz, Py, Pry) and (Rg, Ry) denote the higher-order stress
resultants as defined below

My h/2 | Ozz h/2
My, » = / Oyy ¢ 2 dz, {Qm } = / {Gyz } dz (7.4.6)
My, H/2 | g, Qy —n/2 \ Ozz
Py h/2 | Ozz h/2
Py ¢ = / Oyy ¢ 2° dz, {R’} = / {Uyz } 22 dz (7.4.7)
By ) 72 | oy Bo b S Loes

and h is the thickness of the plate. We note again that we recover the

governing equations of the first-order shear deformation theory (FSDT)
from equations (7.4.1)-(7.4.3) by setting o = 0.
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The primary (i.e., geometric) and secondary (i.e., force) variables of
the theory are

Primary Variables : wy, %1%, Gn, Os (7.4.8)

Secondary Variables : V,, Ppn, Mnn, Mnps (7.4.9)

where

Va

[(apu . ap,,.y) . (apzy . aPyy) . }
Wbz "8y )™ \az "oy )

A A 0Py,
+ (Qznz + Qyny) +

—ns 7.4.10
5 (7.4.10)

and the relations between the components in the (z,y) and (n,s)
coordinate systems are given by

¢2 = n$¢‘fl - nyd)s b] ¢y = nm¢s + ny¢n (7.4113)

Owyg Owg Owg  Owy Owyg Owy
= - = 7.4.11b
9z " on ™ hs dy ™ on + e Os ( )

In the above equations, (n, s) are the local coordinates on the boundary
with n being the in-plane normal and s being the in-plane tangential
coordinate, and (ng,ny) are the direction cosines of the unit normal n.
The normal and tangential components of M’s, @’s, P’s, and R’s are
related to the corresponding quantities in the plate coordinates (z,y) by
the tensor transformations

Mpn T nd n  2ngny | ( Mgy

{ M;s } =| nl nZ  —2ngn, { Myy } (7.4.12q)
Mns L —TNgNy Tgly ng - 7'1,!2/ J zy
Pan [ n:?: ng 2nzny | ( Poz

{ Pys } = TL§ nZ  —2ngn, { Pyy } (7.4.12b)
P L —Ngny  ngny n? — ng J \ Pay

The plate constitutive equations (i.e., relations between the
resultants and the displacement gradients) are given by

Od. 0 Pwy  B%wp
Myr =D [(1 — ao) (—6?;— + Ugy—y> - Qp (T??L’T + V—a‘y“z"
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0 O, O*w d%w
My, =D [(1 ~ ap) (8%’ +v ad; ) — ag <—3y20 + u_aﬂoﬂ

My, =020 [( ~ ap) <%+ 8¢y) ~ 90p2 “’0}

2 Oy Gxé)y

B Bqﬁz 3¢y 0w
sz—Dl:,BO(a ) 7(61‘2 V
oo 0z 0%w
Pyy'D[ﬁ"( S ) 7(ayo )}
P =(_11)_ (% _if’_)
T 2 ) axay
Qr =(1 - )Gh(¢ +6—“’9> Q=(1- )Gh(gb +6—“’9)
= H T dz ) Yy ay
Ry =AGh <¢x 6“’°> R, = \Gh <¢>y ‘9“;0) (7.4.13)
where
3 4h? h? h? ah? 1
00:2—0ah—_, ﬁozﬁ—,’y:é—g, A=§6’u=_:§
(7.4.14)
D is the flexural rigidity, G the shear modulus
ER3 E
= ,—— = — . .1
b 12(1 — 12)’ G 2(1+v) (7.4.15)

v Poisson’s ratio, and E the Young’s modulus of the plate.

Eliminating @, and @y from equation (7.4.3) by using equations
(7.4.1) and (7.4.2), one obtains

PM,, M, &M,
oz? +2 Ozxdy + dy?

= —q (7.4.16)

Next, we introduce the moment sum M and the higher-order moment
sum P as

ezt My T (2 08

) - aov2w0](7.4.17)

1+v) Jr = Oy
PIT P T
P =TI_V% - [50 (6‘7’ a@?) - wlwo] (7.4.18)
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where V2 is the Laplace operator, V2 = 3%/9x2+8%/0y?. In view of the
definition of the moment sum and the expressions for Mz, My,, and
M, in equation (7.4.13), equation (7.4.16) takes the form

VIME = ¢ (7.4.19)

where the superscript ‘R’ indicates that the variable belongs to the
Reddy third-order shear deformation theory (TSDT).

Using expressions for the moment and shear force resultants from
equation (7.4.13), equation (7.4.3) can be expressed as

(1= - sanen (52 + 52) 4 agnv (G2 + 3)

—(1 = p— 3aX\)GhV2wp + ayDViwg ~ ¢ (7.4.20)

Next, we use equation (7.4.17) to write

oz Yoy oy’ YT D —ag)

ME (7.4.21)

and substitute the result into equation (7.4.20) and obtain

-y — a0 2 __,U,__ﬂ) MR
(== NS enviu + (FTEE)
Ty [(ﬂﬂi> DVwp + ( bo ) VZMR]
1—ap 1—-ag
—(1 = p — BAGhVuwy + ayDV*wy — g (7.4.22)
or
MR = — DV + -élh o (C1DV*wo - CVIMPT) - C’gq] (7.4.23a)
=~ DV?uo + 5 (aClDV4wo + CaVIMR) (7.4.23b)
where
_1-a(fo+7) _ 3K _ B 3R o oa
G1= l—p—Br  280° Ca = 1-p—-pBr 14 (7.4.23¢)
— 17
C3 = 1o _ 3 Ci=C5—alCy =— (7.4.23d)

1—p—pBr 27 14
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and equation (7.4.19) was used in arriving at equation (7.4.23b). The
substitution of equation (7.4.23b) into equation (7.4.19) furnishes the
following governing differential equation (aC; = 1/70):

L

4
DV Gh

g

(aC’lezwé2 + C4MR)] =q (7.4.24)

7.4.3. The Kirchhoff Plate Theory (CPT)

The equation governing static bending of isotropic plates according
to the CPT is

K 27K
PME N 232Mxy PML
Ox? Ozby Ay?
where the superscript ‘K’ indicates that the variable belongs to the
Kirchhoff plate theory. The primary (i.e., geometric) and secondary
(i.e., force) variables of the theory are

=g (7.4.25)

K
Primary Variables : w§, ?g)ni (7.4.26)
Secondary Variables : VX MK (7.4.27)
where
K aszg+asz§ - 6M,{§+6M;§ | o OMas
n Or Oy ‘ oz Jy v Os
(7.4.28)

The moment-deflection relationships for the Kirchhoff plate theory
are given by

ME=-D (8;;"25{ + 1/6;1:25()

ME=-D (822’5’{ + ua;:;}){)

ME =(1- V)D?;xuéé; (7.4.29)
Using the definition of the moment sum

MK = Mg+ My, _ -DVi (7.4.30)

(1+v)
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we can rewrite equation (7.4.25) in the form [see Egs. (7.2.1a,b)]
VIME = ¢ (7.4.31)
Also, the substitution of equations (7.4.29) in (7.4.25) yields

DVl =4 (7.4.32)

7.4.4 Relationships Between the Theories

The simply supported boundary conditions for the two theories are
given by
wit =0, ME =0, P;pn=0, ¢;=0 (7.4.33)
and

wlf =0, MK =0 (7.4.34)

The condition wf = 0 implies that 8?w{/0s? = 0 and ¢, = 0 implies
that O¢s/8s = 0. Then together with the conditions Mf, = 0 and
P, =0, we have

*wf O¢ R
52 =0 ELE =0, ME=0, Ps=0 (7.4.35)
Hence we have
wit=0, ME=0, Viuf=0 (7.4.36)

on a simply supported edge. For simply supported Kirchhoff plates, the
boundary conditions reduce to

wi =0, ME¥=0, V2w =0 (7.4.37)
on the boundary.

From equations (7.4.24) and (7.4.32) it follows that

wl = wlt - —G'lﬁ ( C1DV*uwf + C4MR) (7.4.38)

Comparing equations (7.4.19) and (7.4.31), one may conclude that

VIME = V2P MKE (7.4.39)
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which does not necessarily imply, in general, that ME = M¥. However,
for simply supported boundary conditions, we have shown the equality.
Thus equation (7.4.38) can be written as

1

o an (aclpv%g + C4MK) (7.4.40a)
or

Vg — Mwgt = =23 <wé{ + %M‘K ) (7.4.40b)
where

Gh  T0Gh
2 _ _ T0Gh 7.4.4
N=3eD- D (7.4.40c)

For a given CPT solution, the right hand side of equation (7.4.40b) is
known. Thus from equation (7.4.40b), one needs to solve only a second-
order partial differential equation for the deflection of the corresponding
Reddy plate theory. This means that one may bypass solving a sixth-
order differential equation in terms of w§. The second-order differential
equation (7.4.40b), together with the boundary condition along the
simply supported edges, may be solved using the finite difference method
or the finite element method. In Section 7.4.6, we illustrate this with a
simply supported rectangular plate.

Equation (7.4.40a) can be specialized to the Mindlin plate theory
by setting = 0 and replacing Gh with K;Gh, where K is the shear
correction factor. We have (o =0,u =0,C4 = C3 = 1)

1
wl =w - KsGhMK (7.4.41)
or
1
w! = wlf + 8 GhMK (7.4.42)

as shown in Section 7.2.
7.4.5 An Accurate Simplified Relationship

If one were to avoid solving the second order equation (7.4.40b) for
wf, the term involving V2w{ may be dropped. This approximation
may be justified as discussed below.
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Eliminating (0¢,/0z+0¢,/0y) from equations (7.4.17) and (7.4.18),
we obtain

l-a Bo C3 Bo
DVl = 0 ( MR —P) < MR~P>
"o ¥—oao(Bo+v) \1 - Ci\1-a
(7.4.43)

Substituting equation (7.4.43) into (7.4.40b) and noting that ME =
MX  we obtain

wft =wl + - . [(C + ﬂoaC:;) ME — an'P] (7.4.44a)

Gh 1 Qg
3 2
— K K _ _“_ 7.4.44b
wo' + 2GhM Gh3p ( )

Examining equations (7.4.17) and (7.4.18), we note that P is a
higher-order function compared to M. From the first expression of
equations (7.4.17) and (7.4.18), we see that

Po_ pqm h?

P = = MPE =0.14286K° ME (7.4.45)
1—ap 7

From the second expression of the same two equations, we have

Y . r_ 5P 2 A 4R
P=LMR=2" MR =0.17857Th° M (7.4.46)
(671 28

On the other hand, if we assume (8¢, /8z + Oy /Oy) = —V2wyp, then we
have

?

= (Bo + ) ME= 5 ME =0.152 MR (7.4.47)

Thus, we obtain different expressions from equation (7.4.44b) for
different choices of P in terms of ME = M¥_ For the choice of P given
by equation (7.4.45), we have V2w0 = (), and the deflection relationship
in equation (7.4.40a) becomes

C4MK wl + 1 omx (7.4.48)

-R_ . K
Wo =wWo t gy K.Gh

Note that equation (7.4.48) is similar to equation (7.4.42) with the shear
correction factor K, = 1/C4 = 14/17. If we choose the relationship
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in equation (7.4.47), we obtain again equation (7.4.48) with the shear
correction factor Ky = 5/6.

7.4.6 An Example

Here we illustrate the use of the exact relationship in equation
(7.4.40b) and the simplified relationship (7.4.48) in obtaining the
deflection of a simply supported rectangular plate under sinusoidally
distributed transverse load

L . TY

= —sin — 7.4.49
g(z,y) = qo sin " sin 3 ( )
The CPT plate solution is given by
4o ™ Ty
§ (z,y) = Deg g Sy (7.4.502)
where
72 2
Qo = pol + '65 (7.4.50b)

and a and b are the dimensions of the plate along the z and y directions.
The moment sum M¥ is given by

MK = DVl = D (7.4.51)

The solution of the simplified Reddy plate theory is given by
equation (7.4.48)

Wi (e,y) = (1 + I?g"h) % si nffsm”—f (7.4.52)

where the shear correction factor is Ky = 14/17. On the other hand, the
exact Reddy plate solution is obtained by solving equation (7.4.40b)

17D§2 . T, TY
V? R__,\Z R=_/\2( 0) 90 4.53
wy — AjW ol1+ 14Gh ) DB sin —sm—-b (7.4.53)

The solution is of the form

wi = Asin % sin w_l;y (7.4.54)
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where the amplitude A is obtained by substituting equation (54) into
(563). We obtain

17DQQ q0
~AQp — A2A = —)\2 <1 + > —
0 0 14Gh ) DQ3

or
A ’\3(14_117‘%}»)5%3 7.4.55
- Qo + N3 (7.4.85)
Thus the exact Reddy plate solution for a simply supported rectangular
plate under sinusoidally distributed transverse load is

R 1 ( 17DQO> Qo L . TY
Y) = — sin — 7.4.5
wp (z,Y) (1+%§1 1+ 14Gh DQ2 sin smb ( 6)
0

Comparing the simplified solution (7.4.52) and exact solution (7.4.56)
of the Reddy plate theory, we note the following relationship

o (z,y) = (1 + ?2> wi(z,y) (7.4.57)

To see the error in the simplified solution, consider a square plate (a = b).
We have

32 T0Gh _420(1-v) Qo _ 2 <h>2
2 = n

= 7.4.58
D h? AR 21001 —-v) ( )
For v = 0.3 and a/h = 10, we have w{ = 1.0007w§. Thus the simplified
solution is very close to the exact solution. Even for a/h = 5, the
simplified solution is in error by only 0.6% !

7.5 Closure

In this chapter a differential relationship between the Kirchhoff
and Mindlin plate theories and Kirchhoff and Reddy plate theories for
isotropic elastic plates is developed. In the case of the third-order plate
theory, the relationship is a second-order differential equation for the
deflection and requires the moment sum to be known. To avoid solving
the second order equation, a simplified relationship that is very accurate
is presented. The accuracy of the simplified solution is illustrated
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through the Navier solution of a simply supported rectangular plate
under sinusoidally distributed transverse load, although the procedure
is valid for a general transverse load. The simplified relationship for
deflection is valid for any plate for which one has the knowledge of the
Marcus moment of the Reddy plate theory in terms of the same for the
Kirchhoft plate theory.

Problems

7.1

7.2

The solution of Eqgs.(7.2.1a,b) {or Eq.(6.2.24)] for rectangular plates with
simply supported boundary conditions can be obtained using Navier’s
method. In Navier’s method, the displacement wp is expanded in
trigonometric series such that the boundary conditions of the problem
are satisfied. Substitution of the expansion for the deflection into the
governing equation (6.2.24) will dictate the choice of the expansion used
for the load. The simply supported boundary conditions are met by the
expansion (see Reddy 1999a)

o0 o0
= Z Z mn SIN mne sinﬁ;2 (7)
n: :

a

where Wi, are coefficients to be determined such that Eq. (6.2.24) is
satisfied everywhere in the domain of the plate and a X b denote the plate
dimensions along the z and y axes. The coordinates (z,y, 2) are taken at
the upper left corner of the plate with the z axis downward positive (see
Figure P7.1). Assuming that the load can also be expanded in double
sine series

2= 7T |, nmy .
z,y) = Z Z Gmn sin = L sin—= (4)
n: m=1

determine the coefficients W,,, in terms of ¢, and flexural rigidity D.

Use the constitutive equations to compute the stresses (0zz, Oyy, Ozy)
in an isotropic plate based on the CPT for the pure bending. Then
use the equilibrium equations of the three-dimensional elasticity theory
to determine the transverse stresses (0zz,0yz,0zz) as a function of the
thickness coordinate.
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Figure P7.1

7.3 Repeat Problem 7.1 for Egs. (6.3.14)-(6.3.16). Assume the following
expansion for ¢, and ¢, (see Figure P7.3 for the boundary conditions):

Z Z Xmn cos 22 sinzl—:-g (2)

n—lm—
nmwy .
W(Z,y) = Z Z Yinn sin = cos—b— (i1)
n=1m=1
=$=0
My, =0 Y
W, T =
1
L T e e T T i x
b E E'\____ wo=g,=0
' : Mo=0
“‘0";'0__/"‘: i
M,=0 ¢ [ceeecooseocins s 1
1
\ wo=¢,=0
; M, =0

Figure P7.3

7.4 Repeat Problem 7.2 for the Mindlin plate theory.
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7.5 Determine the deflection of a simply supported plate when the plate is
subjected to a load of the type

. 7T
q9(z,y) = gosin o
where ¢ is a constant.

7.6 Determine the deflection of a simply supported plate when the plate is
subjected to a line load of the type

. T
q(z,y) = qisin — 5(y — vo)

where ¢ is a constant and §(y) is the Dirac delta function.

7.7 Verify that w{f of Eq. (7.3.1) and w{)w of Eq. (7.3.3) the solutions of the
respective plates.

7.8 Consider a clamped, isotropic elliptic plate with major and minor axes
2a and 2b, respectively. Assume a solution of the form

2
2 2
K z Y .
wy =c|l-—=—-% 3
0 ( a2 b2> ( )
and determine the constant ¢ such the wé{ satisfies the governing

equation.

7.9 Use Egs. (6.3.18)—(6.3.20) to show that

MM I pmM
24M _ 2, M — -
VMY = —q, Viuwy + D K.Gh (2)
Then establish the equation
D
DV4uw = (1 - KsGhV2> q (¢12)

Hint: Differentiate Eq. (6.3.19) with respect to z and Eq. (6.3.20) with
respect to ¥ and add the resulting equations.

7.10 Use the results of Problem 6.6 and Problem 7.9 to show that

am_ 10g o8 6¢y_6¢.{/n :
Vi = Dbam o\ o @)

4M___1_§2_2?_ %_B%W .
Viey = D oy ¢ oz dy Oz (i)
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12K, /h2.

where ¢ =

7.11 Show that the governing equations of static equilibrium of plates
according to the Levinson plate theory can be expressed in terms of the

moment sum (or Marcus moment) ML

ML + ME
ML=_2_;+TW (3)
L jaL L
0o @ 1 S5M .
2a4L _ _ z v _ 2 {92,
VEM™ = —q, 8x+—3y 4(Vw0+ D) (¢1)

7.12 Establish the following relationships between the Levinson plate theory

and Kirchhoff plate theory:

K

ME = MK 4+ DV20, w5=w§+%-¢>+w (1)
[
K K 2
T oz 10Gh Oz 6z 10 dy
V" 9y 10Gh 0z 8y 100z
8 (A 2Rr?2OQ .
L _ agK _ _ 2
Mz =Mz, — D(1 u)ay (6y 75 3z> + DV*®  (iv)
8 (8A 2h?09
L K _ D 2(1)
M M -D(1 l/)a (3:6 3y) + DV (v)
92A h 02 5? .
K
Mé’szzy-{'—D(l'—I/) '5—-8—y-+—<:9—y§—-6—$2-> Q:l (’U’L)
0 2 N .
QL =@k -i-D6 VP + - D(l—u)ay (vit)
0 2 o0
Q Qy + D6 VP — gD(l - V)= . (viiz)
where
3D _, D _, .
= +—Vo+P-V¥ 1T
ZG’hV d4+0-T, A= 5Gh (iz)
and @, ¥, and §2 are functions such that
10
Ve =0 VU=0 -VQ+50=0 (z)

h2



Chapter 8

Bending Relationships
for Lévy Solutions

In this chapter, the ezact relationships are obtained between the
Mindlin and Kirchhoff solutions for the bending of rectangular plates
with two opposite edges simply supported and the other two edges
under general boundary conditions. These relationships enable the
deflections, rotations, and stress-resultants of the Mindlin plate theory
to be determined readily from the corresponding solutions of the
Kirchhoff plate theory for any combination of boundary conditions on
the remaining two edges.

8.1 Introduction

In Chapter 7, an exact deflection relationship between the Kirchhoff
(CPT) and Mindlin (FSDT) polygonal plates was presented. All the
straight edges of the plates must, however, be simply supported but the
transverse loading can be of arbitrary distribution. The derivation of
the relationship was based on an analogy approach and the assumption
that the moment sum vanishes along the edges including the corner
points. When using the relationship, Mindlin solutions obtained for
plates with obtuse and re-entrant corners are somewhat less accurate
due to the moment singularities at such corner points. Nevertheless,
the relationship allows easy and exact determination of the more
complicated Mindlin plate solutions from the simpler Kirchhoff plate
solutions for scalene triangular plates and rectangular plates or near
rectangular shaped plates. Such Kirchhoff plate solutions abound in the
open literature for use in the relationship.

In the present chapter, we treat the bending problem of rectangular
plates with two opposite edges simply supported while the other two
edges are supported in an arbitrary manner. In using Lévy’s method
of analysis, the load distribution is restricted to be constant with
respect to the coordinate parallel to the direction of the two simply
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supported edges. In this chapter, the exact relationships between the
Lévy solutions of Kirchhoff plate theory (or CPT) and the Mindlin
plate theory (or FSDT) are derived. These relationships, hitherto
not available, enable engineers to determine the Lévy solutions of the
Mindlin plate theory from the corresponding solutions of the Kirchhoff
plate theory. The solutions of the Kirchhoff plate theory are available
in standard textbooks on plates (see, for example, Timoshenko and
Woinowsky-Krieger 1970, Mansfield 1989, and Reddy 1984b, 1997a, and
1999a). Using these relationships, it was discovered that the Lévy
solutions of the FSDT developed by Cooke and Levinson (1983) are
erroneous. Furthermore, the exact FSDT solutions furnished by the
relationships (and the corresponding exact CPT solutions) should be
useful to researchers for checking the validity, convergence and accuracy
of their numerical methods for the bending analysis of plates based on
FSDT (see Khdeir and his colleagues, 1987). Some examples of these
numerical methods include the segmentation method proposed by Kant
and Hinton (1983), and the finite element method by Reddy and Chao
(1981), Huang and Hinton (1984), and Hinton and Huang (1986).

8.2 Governing Equations
8.2.1 Introduction

Consider an isotropic plate with uniform thickness h, length a,
width b, Young’s modulus E, Poisson’s ratio v, and shear modulus
G = E/[2(1+v)]. Adopting the rectangular Cartesian coordinate system
as shown in Figure 8.2.1 with its origin at the mid-left side of the plate,
the plate is simply supported along the edges £ = 0 and z = a while
the other two edges y = b/2 and y = —b/2 may be clamped, simply
supported, or free. The transverse loading on the plate is characterized
by

= . MmL
g(z,y) = Z gm(y) sin " (8.2.1a)
m=1
where the coefficients ¢, are determined from
a
am(y) = z/ q(z,y) sin LU (8.2.1b)
a Jjo a
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simply supported
wo=M .. =0

. ~
b2 |

-

Pl e - x
| |

b/2 i ‘
|

Figure 8.2.1. A rectangular plate with two opposite edges simply
supported (for the Lévy solution).

8.2.2 Stress Resultant-Displacement Relations

Based on the Kirchhoff plate theory, the transverse deflection wy of
the Lévy solution may be written as

— mr
wi (z,y) = Z WX (y)sin — (8.2.2)

where the superscript ‘K’ denotes quantities in the Kirchhoff plate
theory. In view of Eq. (8.2.2), the stress resultant-displacement relations
are given by [see Egs. (6.2.22a-c) and (6.2.8))

LPWE 2
-D Z [ W (ﬂ) W,I,‘;} sin m;m: (8.2.3a)

a
ad d2WK m\ 2 mnz
ME_- _p mo_ (_> K1 s 2.
b 2 [ i vi— Wi | sin 2 (8.2.3b)
ad dwk mrz
ME - _(1- m) m 2.
<y (1-v)D nf\_;:l {( . ay cos — (8.2.3¢c)
o0 d2wK 3
Qk=-DY [? s (ﬂa’l> W,,’f] cos m;”” (8.2.3d)
m=1

2 | dBWE mn\? dWkK MAT
K m m |
=—D Zm [ 2.
@y E 1 [ 3 < ) sin (8.2.3¢)
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where (Myy, My, Mg,) are the bending moments per unit length,

(Qz,Qy), the shear forces per unit length, D = E
flexural rigidity, and A is the thickness of the plate.

For the Mindlin plate theory, the transverse
rotations (¢z, ¢y )are assumed to be of the form

Yz, y) = Z WM (y)sin ﬁ;ﬁn—
(T,y) = Z @, (y) cos mre

mnz
y(T,y) = Z ®ym(y) sin —

where the superscript ‘M’ denotes quantities in

h3/[12(1 — v2)] the

deflection w! and

(8.2.4)
(8.2.5)

(8.2.6)

the Mindlin plate

theory. In view of Egs. (8.2.4)—(8.2.6), the stress resultant-displacement
relations (6.3.13a-e) take the form (here K denotes the shear correction

factor)
d®,m MTT
M=-bD Z [ L. (n:r) me} sm—d—-—
= M,Ifu sin m;r:z: (8.2.7a)
-D Z [d@zm B (mﬂ) @Im} sin mnx
o a a
= M},‘gy sin = (8.2.7b)
1 _ l/)D Z [d@zm (m) (I)me cos mnT
m=1 a
= M,I,‘fxy cos _7%:5 (8.2.7¢)
mm mnz
QM = KsGhrf\; {@m + (T) W,ﬂ,’} cos
= QM cos TZ (8.2.7d)
e dwM mnzT
M _ m ;
QY = K.Gh g__jl & ] sin —
= QM sin L”gﬁ (8.2.7¢)
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8.2.3 Equilibrium Equations

For the classical (Kirchhoff) as well as the first-order (Mindlin) plate
theories, the equilibrium equations have the same form, as given below:

00Q: 8Qy>
— — = 8-2.8
(83: + dy 9 ( )
OMzy OMy,
Ty - 8.2.9
Oz + Oy @z =0 ( )
OM,,  OM,
Y _Q, = 2.1
Oy + Oz y=0 (8.2.10)

However, in the Kirchhoff plate theory, Eqs. (8.2.9) and (8.2.10) define
the shear forces @, and Q, of Eq. (8.2.8) in terms of the bending
moments, while in the Mindlin plate theory, Eqs. (8.2.9) and (8.2.10)
provide additional moment equilibrium equations, and @M and Q?}J"I are

dependent variables much like M2 and M}

8.3 Bending Relationships
8.3.1 General Relationships

On the basis of load equivalence using Egs. (8.2.8) to (8.2.10), one
can write the following relationships

00y |, 09, _9Qf | 99y

Oz oy ~ Or dy

K K

621\?1 + 262M°£‘g FMyy _ Mg + zaszy & My, (8.3.2)
oz 0zdy Oy? y? dzdy Oy?

(8.3.1)

By substituting the stress resultants given in Egs. (8.2.3a-¢) and (8.2.7a-
e) into Egs. (8.3.1) and (8.3.2), the two load-equivalence relationships
may be expressed as

MM
K,Gh (-ﬂ + AWM ) = AMEK (8.3.3)

D
MM ME
A (—D ) =A (-—D ) (8.3.4)
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where the components of the moment sums (or Marcus moments) M in
the two theories are defined by

MM + MM
ME .+ MK d,2WK m K
ME = Lmaz T Mmyy _ [ <_> — —DAWX
1+v a
(8.3.6)

and the operator A is defined as

2/ 2
A() = %157) - (%—) () (8.3.7)

By solving Eq. (8.3.4), the relationship between the moment sums of
Kirchhoff and Mindlin plates is given by

MM MmE
ITm _ T m 2 — 8.3.8
D D + Cim sinh °7Y | Com cosh % - ( )
To solve for w{! in terms of w{, we use Eq. (8.3.3) to obtain
ME
M- M_—m 8.3.9
Mg DA (Wm KsGh) ( )

The substitution of Egs. (8.3.6) and (8.3.9) into Eq. (8.3.8) yields
a differential equation, the solution of which leads to the following
deflection relationship

ME ay mmy
M m _ et mry
W, = K.Gh + (Csm Cim 2m7r> cosh .
+ (a;m - sz—“y—) sinh ¢ (8.3.10)
2mnw a

where C;m, i = 1,2, 3, 4 are constants to be evaluated from the boundary
conditions.

It now remains to determine the Mindlin rotation relationships in
terms of the Kirchhoff solution. The equilibrium equations (8.2.9) and
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(8.2.10) and the stress resultant-displacement relations (8.2.3a-e) and
(8.2.7a-¢) are used to give

Oy + (ﬂ) wM - D [(1 — V) d®®Pom 4 (1+v) (mw) d®Pym

™~ K,Gh 2 dy? 2 a dy
2
- (T-nf) @m} (8.3.11)
a
and
dwM D [d*®,, (1-v) /mnr\?
m__ m _ — ) &
Pym + dy K.Gh | dy? - 2 < a ) ym
(1+v) <m7r> d@zm]
- =) == 8.3.12
2 a dy ( )

The transverse deflection may be eliminated from Eqs. (8.3.11) and
(8.3.12) by first differentiating Eq. (8.3.11) with respect to y, and then
substituting the expression for the derivative of the deflection into Eq.
(8.3.12). By doing so, one obtains

dQzm (m) o — D1-v) | (mﬂ') d2®ym N (Tz)sq)
dy a ™ 9K,Gh a dy? a ym

d*®zm mn\? d®sm
(= 3.13
T <a> dy (8319)
By letting
2
2 _ (MW 2K,Gh
A2 = ( . ) * 5=y (8.3.14)
Eq. (8.3.13) may be written as
BOrm Ao M [(LPOym
Solving Eq. (8.3.15), gives
d®
d;m = %Qym + Csm sinh Ay + Com cosh Ay (8.3.16)
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Before proceeding further, it is noted that the substitution of Egs.
(8.3.5) and (8.3.6) into Eq. (8.3.8) yields

<d<1>ym _mm <I>m) _ <d2WK m2n2 WK)

dy a dy? a?

+ C1m sinh % + Cam cosh mry (8.3.17)
By differentiating Eq. (8.3.16) with respect to y and combining it with
Eq. (8.3.17), it is found that

d2<bxm_m27r2(b . mmw dQWK m27r2W
dy? a2 "™ a dy? a2 M

+ Am (Csm cosh A y + Com sinh A y)
+ —_— (Clm smh — + C5,n cosh Ty>
(8.3.18)

the solution of which is
D1 -v)
2K, Gh

+ (C7m + C2m§) Sinh

Oom = ———WK +Am (Csm cosh Ay + Cem sinh Ay)

VY oy ™Y
(8.3.19)

Also, by substituting Eq. (8.3.19) into Eq. (8.3.16), the corresponding
expresion for @y, is

b - dWK+m7rD(
mT o dy a 2KGh

mny

(CSm + Clm + C2m > sin h

v) (Csm sinh A + Cem cosh Apy)

(8.3.20)

a

By substituting Eqs. (8.3.10), (8.3.19), and (8.3.20) into Eq. (8.3.11),
it is deduced that

mn D
MARAM I — 8.3.21
C7m a ( Ks Gh Clm C’4m) ( )
mm D
- = - 8.3.22
CSm a ( Ks Gh C2m CSm) ( )
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In view of the foregoing deflection and rotation expressions, the
relationships between solutions of Mindlin and Kirchhoff plates may be
summarized as follows:

e Deflection relationship

M K K = Y Y
s m=1
<C4m Comyoe Y ) inh y} sin 2% (8.3.23)

e Rotation-slope relationships

dz(z,y) = 85;0 + Z [Alm (Csm cosh Ay + Cem sinh Any)

m==1

+ (Azm + szg) sinh m:y

+ <A3m + Clm%) cosh %} cos —;E (8.3.24a)

owf & _
dy(z,y) = Ty + Y | Bim (Csm sinh Amy + Com cosh Amy)
m=1
+ <B2m + szg> cosh 7Y
2 a
+ (Bgm + clm%> sinh ﬂa@] sin %’”— (8.3.24b)
D(1 -v) D mn
Alm = App———— _ 2L
im m 2K3Gh ) A2m K Gh a C'4m
D mz mm D(l -v)
Ay = —_ - = i
= K.Gh a Cam a C'am, Bim a 2K,Gh
D mr mm a
By = o _nr ol
m K;Gh a Cim a Cam + ZmWCIm
D mnw mm a
B = - - = - D
o Moment relationships
MM = MK +vD Z [Clm smh + Com cosh mTy sin ____m;rz

m=1
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- D(1-v Z {Mlm Csm cosh Ay + Cem sinh Any)

m=1

2
mm z L. m
+ ( - ) (MQm + 2megm> sinh

2
m
+ (—?ﬂ) (Mgm + fﬂ-C’m) cosh m;ry} sin r_n_gg

2mm
(8.3.26a)
MM—MK-}-DZ {Clmsm ] _nmmr
m=1
<
+D(1-v) Z [M{’m (Csm cosh Ay + Cem sinh A y)
m=1
+ (—TE> (My + ——C’zm> sinh ¢
a 2m a
+ <T—7-E) (Mgm + —Eg—Clm) y}sin mre
a 2mmw a
(8.3.26b)
a = g% ¢ PO S o (6 sinh Ay + Com cosh Amy)
oy = My 5 2 (Csmsinh Amy sm COSh Ay
m=1
mr\? [ .y, . QY mny
+2 ( - > <M2m + '2—7;1‘7'{‘02771) cosh T
mn y ay .. mmy
+ 2 ( = ) <M3m + T C’1m> sinh —
+ Cim cosh Taﬁl + Com sinh T—ng} cos %@ (8.3.26¢)
D -v) (mn D
T e T _ _
Mim = =R Gh < a > » Min = g GrOm Cam
D D(1-v) (mvr)
T __ - - L —
Mm = Ksthzm Com,  Mim = dm=eah \a
My =_Q_C1 —'Cq My =—P—02m“03m
m T g GO T UM T K Gh
2
TY _ 2 ij_ D(l - V) Ty _ C C
Mim P (a )} 2K.Gh ' om KJﬁzlm
Mg, D 77 Com — Cam (8.3.27)

m = K,Gh
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e  Shear force relationships

D(1 - X )
in = Qf + —(‘—?—V) Z (Am (Csm cosh Ay + Cem sinh Any)

m=]
2
+ (m) <C’1m sinh Ty + Copp, cosh mwy)} cos mrz
l1—-v\ a a a a
(8.3.28)

D(1-v) &
QM =Qk + %’l > [(?) (Csm sinh Ay + Com cosh Amy)

m=1
2 T . mnz
+ <_7r_> C1m cosh ng + Copm sinh ma y)] sin a

l1-v\ a
(8.3.29)

The foregoing relationships contain a total of six unknown constants
Cim, © = 1,2,...6 which are dependent on the six boundary conditions
at the two edges y = —b/2 and y = +b/2, that is, three boundary
conditions for each edge. Below, these constants are evaluated for
rectangular plates with various combinations of edge conditions for these
two edges.

8.3.2 SSSS Plates

When all four edges z = 0, y = b/2, £ = a, and y = —b/2 are
simply supported, the Lévy solution reduces to the Navier solution with
the following conditions at the edges y = —b/2 and y = b/2:

M;g = Mylz =(, wé\"' = wé{ =0, ¢,=0 (8.3.30)

In view of Egs. (8.3.8), (8.3.23), (8.3.24) and (8.3.31), it can be
shown that

Thus, for simply supported plates, the relationships are given by
K
wi = wl + KM—Gh (8.3.32)
owf owl
= - = —— 8.3.33
Ml =MmE  MM=ME MM =ME (8.3.34)

Q' =QF, QY =qQkF (8.3.35)
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It can be shown that the above deflection relationship (8.3.32) is also
valid for even other than Lévy-type loading conditions (see Wang and

Alwis 1995).
8.3.3 SCSC Plates

For the clamped edges at y = —b/2 and y = +b/2, the boundary
conditions are (see Figure 8.3.1)

M K owff
wyg =wp =0, ¢ =¢y= By =0 (8.3.36)
Clamped
A
/ :
/ 3
L4 : )
Simply “—je—— __/ ==l X
supported ST g
’ :

I
s

y |
Figure 8.3.1. The SCSC plate and the coordinate system.

The substitution of the boundary conditions given in Eq. (8.3.36) into
Egs. (8.3.23) to (8.3.25) gives

Q- mwb Amb  mw Ambd
m= = i - .3.37
C1 B (coth %0 sinh 5 . cosh 5 ) (8.3.37a)
Qr mmnb Amb  mm | Anb
= - h 8.3.37b
Com By (tanh 50 cosh 5 o sinh — ) ( )
Cam = C2ma_b tanh mmb _ Qf sechc—nlr-lz (8.3.37¢)
dmm 2a 2a
b
Cam = Cim-"2 coth ™™ _ 0= csch ™2 (8.3.37d)
dmm 2a 2a
2 mn Amb mrb  KsGh ]
- - mr 2m0 mro L 2sota+
Csm T2 (a )\m) sech 5 [sz cosh % + D im

(8.3.37¢)
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2 mm Amb m7rb KsGh
Com = — (E) csch—— 5 [Cnn sinh -27‘— D im
(8.3.371)
where
qF = Mub/2) + MR(=b/2) o _ Mn(b/2) - M (~b/2)
m 2KGh o 2K,Gh
(8.3.38a)
Amb
Bim = A1y sinh mmb cosh Amb Ao, cosh mmb sinh 22
2a 2 2a 2
+ Azm csch—l-) sinh i\g—b (8.3.38b)
2a
Amb
By,, = Ay cosh —Tr—b sinh u — Ao, sinh Tzl—) cosh ——
2a 2 2a 2
— Azm se:ch——7r—l2 cosh Amb (8.3.38c)
2a 2
mr D A D 1 ( a )2 A ab
T M KGR M T KGR 2\mr) 0 T amn
(8.3.38d)
8.3.4 SFSF Plates
Consider a rectangular plate where the edges at y = —b/2 and
y = b/2 are free. The boundary conditions on these edges are
M _ arK _ M _ K _ M _
My, =M,=0, Q =V, =0 M,=0 (8.3.39)

where VyK = QK + oMK /0 is the effective Kirchhoff shear force.

In view of Egs. (8.3.27b), (8.3.27c), (8.3.29) and (8.3.39), the
constants are found to be

1
Cim = {<I>+ ta h mmb + \Il"’ [/\ tanh :\—b — Ay4m tanh Eﬂ'—b]}
Blm

2 2a
(8.3.40a)
1 b
Com = {<1>- th ™0 U2, | Am coth Amb 4 coth T”—] }
Bom 2a 2a

2
(8.3.40b)

2a
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2
Cam = (O, — V., Agm) <%) csch—n;—Wb

a
ab mnb a\? (1+v)
C e AL
+ Com {4m7r coth 2a <m7r> 21 -v)
mmb

a \? Amb
= —¥_ )\ —— m- —_—
m m(mw) coth 3 sech %

1 a \? D ab mrb
+ Com {—— ( ) + K.Gh + T tanh

1—v \mr 2a
A, D Amb mmb
- 3.4
( — > E.Gh coth 5 tanh 5a ] (8.3.40c)
2 b
Cym = [®F — U+ A L) mmo
4 (@7, — U Agm] <m7r sech 5o
ab mwb a\? (1+v)
m|——tanh — - { — | —=
+G {4m7r anh 2a (mw) 21-v)
2 Amb mwb
~ gt _a_> Amb O
mAm <m7r tanh 5 csch 7
1 a \? D ab mmb
* Cim L — (%) T KGR T T P 2
aim D Amb mmb
- — —_ —_— 8.3.40d
( - ) K.Gh tanh 5 coth 5 } ( )
2 Amb . . mmb _a KsGhJ
= - —_— — 8.3.40
Csm ) csch 5 [Cgm sinh ” -}-\Ifmm7r i) ( e)
2 Amb mmb ; a KsGh]
= - —_— ——1 (8.3.40f
Cém =0 sech 5 [Clm cosh 5 T ‘Ilmmﬂ 5 ( )
where
ot = Mflrfxy(b/2) + Mrirfzy(_b/Q) - = Mrlrfzy(b/2) - Mflrfzy(—b/2)
m 2D(1 - v) r Tm 2D(1 - v)
(8.3.41a)
m 2K;Gh oom 2K,Gh
(8.3.41b)
b
B = A sinh T—7r—b — Agm tanh :\lb cosh T—b + A;;msechﬂ
2a 2 2a 2a

(8.3.41c)
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mib Amb mmb mmnb
= = _ 2m? bt h———-—
By = A cosh o Ao coth 5 sinh o — Agm csc o
(8.3.41d)
3+v mm D
A = —_
lm = 2(1—1/) ( ) K.Gh' Azm = Am ( a )KsGh
A3m = m—ﬂ-b, A4m = [ ] (8341“)
4a

8.3.5 SCSS Plates

Next, consider a rectangular plate with edges ¢ = 0, z = a, and
y = —b/2 are simply supported, while the edge y = b/2 is clamped. The
boundary conditions are given by

M% = Mlg =0, w(])\/! = w(l)( =0, U, =0 (8342&)
for the simply supported edge y = —b/2 and

K
Jwyg

wéwzwé{:O, V, =V, = By

=0 (8.3.42b)

for the clamped edge y = b/2. In view of Egs. (8.3.23), (8.3.24), (8.3.25),
(8.3.27a) and (8.3.42a,b), one obtains

1 mm Amb b
- + Zm>” m
Cim B, [a/\ (Q tanh 9 +Q coth == 9 )

mmb _ mnb
mmb

B = 241, sinh —b + Asgp, cosh __lz sech——
2a 2a

—Aim (cosh ——W-I? csch————b + sinh® 3 mmb sech? mﬂ))
2a 2a 2a 2a

— Aspsinh mz—zb coth Amb (8.3.43b)
A _ab Ao — D+1(a 2 _2mm D
m = gt T K;Gh 2 mﬂ') » Bm T Am KsGh
Cam = Cim tanh -";ib (8.3.43¢)
a
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Csm = right hand side of Eq. (8.3.37¢) (8.3.43d)
C4m = right hand side of Eq. (8.3.37d) (3.3.43e)
Csm = right hand side of Eq. (8.3.37¢) (8.3.43f)
Cem = right hand side of Eq. (8.3.37f) (8.3.43g)

where 0 and Q;, have the same meaning as given in Eq. (8.3.38a)

8.3.6 SFSS Plates

Finally, consider a rectangular plate with edges ¢ = 0, a = 0, and
y = —b/2 simply supported and the edge y = b/2 free. The boundary
conditions are given by

MM =pME WM =wf =0 ,=0 (8.3.44a)
for the simply supported edge y = —b/2 and

M _ arK _ M _ yK _ M _
Myy“Myy—O Qy “Vy =0, Mmy_o (8.3.44b)

for the free edge y = b/2.

In view of Eqs. (8.3.23), (8.3.24), (8.3.27a), (8.3.27b), (8.3.32) and
(8.3.44a,b), the constants are found to be

Cim=0, Copn=0 (8.3.45a)
2 NK
= o () Ymalb/2) bsech™™  (8.3.45b
Cam = —Am (mw) 2K.Gh tanh \,,b sec 2 (8.3.45b)
a \? Q,’fm(b/Q) mrb
- mn\ 7/ %/ _— 3.4
Cum Am (m7r> 2K.Gh tanh Ap,b csch o (8.3.45c¢)
K (b/2
Csm = — 2 (i> me( / )sinh Amb sechA,b (8.3.45d)
l—v \mnr D
K (b/2
Cém = — 2 (i) Oy (6/2) cosh Amb sechA,b (8.3.45¢)
1-v \mn D 2

8.4 Numerical Results

The relationships developed herein can be used to furnish the
deflection, rotations and stress-resultants of the Mindlin plate theory
upon supplying the corresponding Kirchhoff plate solutions. This is
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illustrated below for the Mindlin plate deflection using the example of
a uniformly loaded SCSC plate. Numerical results for SFSF plates are
also presented.

8.4.1 SCSC Plates

Based on the Kirchhoff plate theory, the transverse deflection for
an SCSC plate (see Figure 8.3.1) under a uniform load gg, is given by
(Mansﬁeld 1989)

w = D7r4 Z (1 + An cosh =

+ B,, mmy sinh mwy) sin mnZT
a a a

(8.4.1)
where
2
o = qo 1= ()7 (8.4.22)
1+ 82 m"'b coth mrb mrrb
Am = COSh mrrb + m1rb Cschmﬂ-b (842b)
Bm = : (8.4.2¢)

cosh 2x° "‘"b + "SZ" csch"é:;b
The substitution of Eq. (8.4.1) 1nto Eq. (8.3.6) yields the moment sum
for the Kirchhoff plate, which is

—~ a \? mm
=Y gm|{—) |1-2Bpcosh
— mm

a

y] sin m:lm (8.4.3)

Under symmetric loading, the Mindlin deflection is symmetrical about

the z—axis while the Mindlin rotation ¥, must take on the form of an

odd function. Correspondingly, the terms in Eq. (8.3.36) become

M (b/2)
K,Gh

In view of Eqgs. (8.3.23), (8.3.35), (8.4.1) to (8.4.4), the deflection of the
Mindlin plate is thus given by

o0 4
wé” = Z gm (i> (1 + Ap, cosh @ + Bmm;ry sinh m;ry) sin 222

Q=0 Q= (8.4.4a,b)

a

2
mmy _ mmb
+ Z K, Gh ( ) [1 — 2B, cosh—a— + (1 2B,,, cosh o ) X

mnzx

(gm cosh 7Y _ gm sinh m”y)] sin % (8.4.5)
a a
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where

1 b

m = B (tanh ";Z cosh )\;b - :;W sinh /\'an) (8.4.6a)
Im m

- b

fm = gm;n—w tanh ”;—;’b . secth—Zb (8.4.6b)

b
By = Ay cosh % sinh /\—2m—b — Asm sinh W;—Zb cosh ﬁ;—b
— Asm sech";—zb cosh % (8.4.6¢)

A_mﬂD A_D+l(a>2A_ab
T dm KGR M T KGR T 2 \mn) T i

(8.4.6d)

Table 8.4.1 contains the non-dimensionalized maximum deflection,
@ = wl(a/2,0)D/(goa*) of square plates with a clamped boundary
on two sides (SCSC) for two different thickness-to-side ratios. It can be
observed that the deflection values are in agreement with those obtained
using ABAQUS (1997), thus confirming the correctness of the derived
relationship. The results, however, differ from those determined by
Cooke and Levinson (1983), which are in error.

The non-dimensionalized stress resultants of square SCSC plates are
presented in Table 8.4.2 for different thicknesses. The bending moments
and shear forces are nondimensionalized as follows:

M=10x — =X (8.4.7)

Table 8.4.1. Maximum deflection parameter W of uniformly loaded
square SCSC Mindlin plates (v = 0.3, K; = 5/6, and

m = 40).
h Cooke and ABAQUS ! Eq.(8.4.5)
Levinson (1983)
0.1 0.00213 0.00221 0.00221
0.2 0.00276 0.00302 0.00302

! Solution obtained with 40 x 40 mesh of S8R shell elements.
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Table 8.4.2. Non-dimensionalized stress resultants of uniformly loaded
square SCSC Mindlin plates (v = 0.3 and K = 5/6).

2,4y Resultant CPT h—p02 2=01 2=02
(0.5, 0.0) My, 0.244 0.244 0.258 0.292
(05,000 My 0.332 0.332 0.333 0.331
(0.5, 0.5) My, 0.698 0.698 0.680 0.627
(1.0, 0.0) Q= 0.239 0.240 0.243 0.251
(0.5, 0.5) Qy 0.516 0.513 0.500 0.475

8.4.2 SFSF Plates

Numerical results of the deflections and stress resultants for
SFSF plates are included in Tables 8.4.3 and 8.4.4. The same
nondimensionalizations used for the SCSC plates are also used here.

Table 8.4.3. Maximum deflection parameter @ X 10 of uniformly loaded
square SFSF Mindlin plates (v = 0.3, K; = 5/6, and

m = 40).
At the center of the plate At mid-span of free edge
% Dong Dong Present Dong Dong Present
(1993) (1994) Results  (1993) (1994) Results
0.10 0.1346 0.1340 0.1346 0.1562 0.1549 0.1560
0.15 0.1391 0.1385 0.1391 0.1617 0.1607 0.1616
0.20 0.1454 0.1448 0.1454 0.1690 0.1679 0.1690
0.25 0.1535 0.1528 0.1535 0.1781 0.1771 0.1781
0.30 0.1633 0.1627 0.1633 0.1890 0.1879 0.1889

Table 8.4.4. Non-dimensionalized stress resultants of uniformly loaded
square SCSC Mindlin plates (v = 0.3 and K; = 5/6).

(£,%)  Resultant CPT b—002 2=01 2%2=02
(05,000 M 0.123 0.123 0.122 0.123
(0.5, 0.0) Myy 0.271 0.268 0.256 0.237
(10,000 Q. 0.464 0.463 0.460 0.457
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Problems

8.1 Establish the relations in Eqgs. (8.3.3) and (8.3.4).
8.2 Verify the relation in Egs. (8.3.10).
8.3 Verify the relation in Eqgs. (8.3.11).

8.4 From Eq. (7.2.6a) we have
K

M :
w{)”:wé"+KsGh+\Il—<I> (1)

where ¥(z,y) and ®(z,y) are harmonic and biharmonic functions,
resepctively (i.e., U satisfies the Laplace equation V?¥ = 0 and @
satisfies the biharmonic equation V4® = 0). Suppose that Q(z,y) =
O¢: /Oy — Oy /Ox is the solution of the equation [see Eq. (i) of Problem
6.6

2K;Gh .
V=22, = i
¢ ¢ D(1-v) (#)
Then use Egs. (6.3.13d,e), (7.2.4), and (i) in Egs. (iii) and (iv) of
Problem 6.5 to show that

_ BwE B[ D ., _ ] 100,
¢y =— B +a|:K_;Gh (V @)-}-‘I’ ¥+ 25y (141)
owk b D 189 .
M _ Y% il 2 _ S
e e [ % Gh (Vo) + o xp] S5 ()

8.5 Use Eqgs. (i), (iii), and (iv) of Problem 8.4 in Eq. (6.3.13a-d) to establish
the following relationships:

MM =ME -D(1- z/)aa (22 }5%) +DV?® (i)

MY =ME - DQ1 1/)—5% (% + 612 ‘22) +DV® (i)

MY =ME+D(1-v) [662% = (gzﬂ gi?)} (i17)

QY =QF+ DB% (Vo) + 2(—2“——2%3 ()

QY =) + pg (v2e) - 20 ®
where € is the function defined in Problem 8.4 and

A= Ks%h (v?e) +o- ¥ (vi)



Chapter 9

Bending Relationships for
Circular and Annular Plates

In this chapter exact relationships between the bending solutions
of the classical plate theory (CPT) and the Mindlin (FSDT) and
Reddy (TSDT) plate theories for circular and annular plates are
developed. Since both the CPT and FSDT are fourth-order theories, the
relationships are algebraic. However, since the TSDT is a sizth-order
theory and the CPT is a fourth-order theory, the ezact relationships
between deflections, slopes, moments, and shear forces of the two theories
can only be developed by solving an additional second-order differential
equation. Here, a second-order differential equation in terms of the
transverse shear force Q, is developed. Upon having the solution of this
equation, the ezact relationships between the deflections, slopes, bending
moments, and shear forces of the two theories (CPT and TSDT) are
established.

9.1 Governing Equations

For axisymmetric bending of circular and annular plates, it is
expedient to formulate the problem in the polar coordinate system. The
r coordinate is taken radially outward from the center of the plate, the
z coordinate is taken along the thickness (or height) of the plate and
the 6 coordinate is taken along a circumference of the plate (see Figure
9.1.1). In a general case where the applied loads and geometric boundary
conditions are not axisymmetric, the displacements (ur, ug, w) along the
coordinates (r,6, 2) are functions of r, 6, and z. Here, we assume that
the applied loads and boundary conditions are independent of the 8
coordinate, i.e. axisymmetric, so that the displacement uy is identically
zero and (u,,w) are only functions of r and 2. The displacement fields
of the three theories (CPT, FSDT, and TSDT) are similar to those in
Egs. (6.1.1a,b), (6.1.2a~c), and (6.1.4a-c).
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Figure 9.1.1. A circular plate with rectangular (z,y,z) and cylindrical
(r, 8, z) coordinate systems.

Based on the polar coordinate system (r,6), the equations of
equilibrium and stress resultant-displacement relations of the CPT,
FSDT, and TSDT are summarized below (see Reddy 1999a, Reddy
and Wang 1997) for axisymmetric bending and constant material
and geometric properties (see Figure 9.1.2 for the meaning of the
stress resultants per unit length of a general circular plate in polar
coordinates).

(STE

Figure 9.1.2. Forces and moments of a circular plate.
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CPT:
d K k_4d K K
& (rQf) = —rq, rQf = — (M) - MG (9.1.1)
d*wl  vdwk 2wl 1dwl
ME = _ 0, vawg K _ _ o, lawp
i D<dr2 T dr)’ Mo D<Ud7'2 T3 dr
(9.1.2)
FSDT:
d
s (TQ,I.W) =-rqg, QM= . (TM”.) -~ Mgd (9.1.3)
doM v doM
M _ T M M _ T M
Mrr D( dr + - ), Mgg D (V—d’l’ + r (914&)
QM = K,Gh (¢,’.” + —dfi’f ) (9.1.4b)
TSDT:
4 d 4 4
R R _ R R
'f'< r = ﬁRT) = 5 <’I'MTRT. er1§> <M09 3—h—2'ng) (9 1 53.)
d( r 4 _gn 4 1d®, o dPE
d ( » FTRT) + 37 [E (TP”.) W = —-Tq (915b)
4D (doR v D [(dPwh  vdwl
R = 7 el R _ = 0 _-_0_
" 5 < dr * r¢r> 5 ( dr? r dr (9.1.62)
4D ( d¢F 1 D ( d*uwf 1dwl
ME = 2= T4 ZeR) 2 0 L 2%
= "5 (U ar r¢r> 5 (V dr? 7 dr (9.1.6)

4h2D (doR v R?D [ dPwf v dwk
PR (¥ L TR o, Yawgy
" 35 ( ar T r¢r 28 \ drz 7 dr (9.1.6c)
4h2D [ doR 1 R?D { dPwf 1dwf
pR = ¥r o ~4RY 0 =+ 0
%~ "35 (V PR 28 dar? 't dr (9.1.6d)

2Gh dw 8 F
QF = =5 (¢§ + ﬂ) , RE= Gh* (q&f + §w70> (9.1.6e)
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9.2 Relationships Between CPT and FSDT
9.2.1 General Relationships

The deflection, bending moment and shear force of the FSDT
can be expressed in terms of the corresponding quantities of CPT for
axisymmetric bending of isotropic circular plates. The relationships are
established using load equivalence (Reddy and Wang 1997).

We introduce the moment sum

Mo + Mpg

M= 14v

(9.2.1)

Using Egs. (9.1.2a) and (9.1.2b) in Eq. (9.2.1), we can show that

dPwl 1duwk 1d dw
K _ _ 0 L 2270 ) = 0 9.2.2
M D( dr? + r dr DT dr dr ( )

1d [ dM¥E
= (r ’;’; ) — g (9.2.3)

We can establish the following equality using the definition (9.2.1) and
Egs. (9.1.2a) and (9.1.2b):

dMK d
dr dr

(rME) - Mfs = rQF (9.2.4)

Similarly, we have

MM =D (‘W + ¢M> = di (re) (9.2.5)

dr
and .
1 d
;% (r /:; ) = g (9.2.6)
dMM
re— = ( rMY) - MY = QY (9.2.7)

From Egs. (9.1.1a), (9.1.1b) and (9.1.3b), it follows that
QM =rQF +C; 028
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and from Egs. (9.2.4), (9.2.7) and (9.2.8), we have

M K
TdM _ T‘dM + Cl (929)
dr dr
or
MM = MK 4 Cilogr + C; (9.2.10)

where C; and Cy are constants of integration.

Next, from Egs. (9.2.4), (9.2.7) and (9.2.10), we have

dw¥ Cyr Cor C
M_ %W  Lr _ et A ] 9.2.11
by o + D (2logr — 1) + 2D +rD ( )

In view of Egs. (9.1.2a), (9.1.2b), (9.1.4a), (9.1.4b) and (9.2.11),
one can readily obtain the following bending moment relationships

1 1- 1+ 1-v
M};’:M,.’f—i-a( +Vlogr+ 4V)+Cz 21/—03 ]
(9.2.12a)
1 11— 1 1-
M£=M5’5+Cl( Y jogr — ”>+02 ALY, Nl
2 4 2 r
(9.2.12b)

Finally, from Egs. (9.1.4c), (9.2.10) and (9.2.11), we obtain

d'li)éw M 1 K Cl
= — _ —_— 9.2.13
dr o + K,Gh <Qr + r ) ( )
and noting that QX = dM¥X /dr, we have
MK Cr2 C C. r2 Cilogr C
Mg, ME Gt L, Gt _Cslogr Ca
wo =wo tg aptap LTt et T T

(9.2.14)

The four constants of integration are determined using the boundary
conditions. The boundary conditions for various cases are given below.

Free edge

Simply supported edge

wf =wlf =0, rMM =rMEK =0 (9.2.16)
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Clamped edge

d K
w =uwl =0, M= —;”7?— =0 (9.2.17)

Solid circular plate at r = 0 (i.e. at the plate center)

_ duf

M
= = 9.2.18
Note that the first condition in Eq. (9.2.18) is due to symmetry, and

the second condition follows directly from Eq. (9.2.8) with r = 0.

In the sequel, the constants Cy to Cy4 for axisymmetric plates with
different boundary conditions are determined. First consider statically
determinate plate problems, i.e. (1) circular plates with (a) simply
supported edge (S plate) and (b) clamped edge (C plate), (2) annular
plates with (a) one edge free and the other simply supported (F-S or S-F
plate) and (b) one edge free and the other edge clamped (F-C or C-F)
plate. By using the appropriate boundary conditions and substituting
into Egs. (9.2.8), (9.2.11), (9.2.12a) and (9.2.14), it is a straightforward
matter to show that the constants have the same form for this group of
statically determinate problems. Thus

MK

C]_=02=C3=0 and C4=—-m
8

(9.2.19)

where M¥ is the Marcus moment at the simply supported or clamped
edge of the Kirchhoff plate and is given as follows:

Simply supported edge of S and F-S plates
D(1 —v) d*uwf

v dr? R
(9.2.20a)

- ME(Ry) D(1 - v) dwl
K _ aqk _ Mgg _ 0
ME =My = 14v Ry dr

Ry

Simply supported edge of S-F plate

D(1 —v) d*uwk
v dar? |
(9.2.20b)

- ME(R) D(1 - v) dw&
K _ pqK — Mog - _ 0
ME =M, 1+v Ry dr

R;
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Clamped edge of C and F-C plates

- d?wk
ME=ME=-D y 2 (9.2.20c)
™ g
Clamped edge of C-F plate
2,,K
ME = ME = —Dddwz0 (9.2.20d)
™k,

In the expressions for M¥ given above, Ry is the radius of the circular
plate or the outer radius of the annular plate whereas R; is the inner
radius of the annular plate. In order to distinguish between the F-
S and S-F plates, as well as the F-C and C-F plates (where the two
letters denote the boundary conditions at the inner and the outer edges,
respectively), the subscripts ‘.’ and ‘0’ are used to represent values at
the inner and outer edges, respectively.

Next we consider statically indeterminate problems.

For an annular plate with simply supported inner and outer edges
(S-S plate), the boundary conditions are given in Egs. (9.2.16a) and
(9.2.16b) for r = Ry and r = R;. Substitution of Egs. (9.2.12a) and
(9.2.14) into these boundary conditions yields

o _B+W(R-FY) D R

8(1+v) K.Ch % R,

N 2(1(1_;12;1;%?2%) (log %)2 (9.2.21a)
C,=D {M—‘I’;{#} (Co)7! (9.2.21b)
Cy=C) i log gg - gg logB: _ 2((11;’2) (9.2.21¢)
Cs=Ci :2(1(1_:“/)’/()1{3?3??1{%) log %"} (9.2.21d)
Ca=C :_ 2 +1';3)((11?E ;L)Rg) - 2K13Gh log (Rof%:)

- (s oetur) + 1 e ] -

(9.2.21e)
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For an annular plate with clamped inner and outer edges (C-C
plate), the boundary conditions are given in Eqs. (9.2.17a) and (9.2.27b)
for 7 = Ry and r = R;. Substitution of Egs. (9.2.11) and (9.2.14) into
these boundary conditions yields

_(RP-R}) D Ry RIR? [ Rp\’
Co = 3 - K.0n log — E, (R2 ) (log RL) (9.2.22a)

1 R?logR; 1

LS T
R? Ry

C3 = Cl {—Eé.L—Rg—) log E:l (9222d)

_ (RE+R}) D |
Cy=Cy {— 6~ 3K.Gh log (RoR;)

2 K K

+ FRY[1 — log RORJ] log — } _ Mo + M7 (9.2.22¢)
4 (R? - R}) R; 2K.Gh

For an annular plate with simply supported inner edge and clamped

outer edge (S-C plate), the boundary conditions are given in Eq. (9.2.17)

for 7 = Rp and Eq. (9.2.16) for r = R;. The substitution of Egs.
(9.2.11), (9.2.12a), (9.2.14) into these boundary conditions yields

2 _ 2
=<R°—8Ri) [0-v) R+ (3+v) Y
RE;
-8

01=D[

(9.2.22¢)

o

[ (14+v)log };O]logﬁj
% [(1 +v) B + (1 - v) R} (9.2.23a)
Ci=D [M—[I({—'Gfl—"q [(1 +V)R:+(1-v) Rg] (Co)7! (9.2.23b)

szc[(l‘V)(Ro R}) —2(1-v)RElog R — 2(1+v) R?log R;

+ D lo
K,Gh &

2(1+v)R?+2(1 - v)RE
(9.2.23¢)
1+ (1+4v)log %

_ . B
Cs = C1 Q+v)R?+(1-v)R}

(9.2.23d)
2
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i — (R? + R?) [(3+U)R?+(1—1/)R8]+41/R§R?log%
e 16[(1+v)R2+ (1 - ) RY)
R
., RiR? 1+ (1+v)log &
T ak,n 8RR - = R -
‘ ME + MK

For an annular plate with clamped inner edge and simply supported
outer edge (C-S plate), the constants C; to C4 are the same as those
above except for the interchange in the subscripts ‘4’ and ‘0’.

In view of the foregoing expressions for the constants C; to Cy, the
relationships for the shear forces, bending moments, deflection gradient
and deflection may be obtained, respectively from Egs. (9.2.8), (9.2.12a),
(9.2.12b), (9.2.11) and (9.2.14). These relationships are summarized
below:

S, C, F-S, F-C, S-F and C-F plates:

QY =QF (9.2.24)
MM = MK (9.2.25)
MM = ME (9.2.26)
K
oM = —U%f’ (9.2.27)
MK _MK
w(])u = wé( + ——WGT- (9.2.28)

where
{Mg( for S, C, F-S, F-C plates
ME =

MK for S-F,C-F plates
S-S, C-C, S-C, C-S plates:

C
QM =@k 4+ (9.2.29)
1+v

— 1—
M};’:MTIS—FCH( logr+1__u>+C21+V—C3 T2V(9.2.30)

4 2
1+v 1-v 1+v 1—-v
logr — 1 ) + Cs 5 +C3 = (9.2.31)

M%=M9}§+C1<
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dwf Cir Cyr  C
M _ _ W 1 _ 2 3
o' =—— -+ p Qleer -1+ o5+ (9.2.32)
ME 2 C
M_ ., K 1 _ 1
wy =wg + K.Gh +h (1—logr) + K.Ch logr
Cor?  Cslogr Cy
- - = 2.3
aD "D D (6.2.33)

where the constants C; to Cy are given in Egs. (9.2.21a-e), (9.2.22a-¢)
and (9.2.23a-¢) for S-S, C-C and S-C plates, respectively. Those for C-S
plates are obtained by interchanging the subscripts ‘¢’ and ‘0’ in Egs.
(9.2.23a-¢).

It may be observed that the stress-resultants of Mindlin plates and
the corresponding Kirchhoff plates are equal to each other for statically
determinate plates. In such plates, the deflection component w; due to
transverse shear deformation is given by

MK
- K.Gh

C (9.2.34)

Ws

where C is a constant given by the Marcus moment at the simply
supported edge divided by K;Gh. However, for the statically
indeterminate plates, the stress-resultants of these Mindlin plates are
obviously not equal to their Kirchhoff counterparts. Thus Eq. (9.2.34)
no longer applies and the more complicated form given by Eq. (9.2.33) is
necessary. It is to be noted that Panc (1975) and Barrett and Ellis (1988)
presented the more restrictive expression for w, given in Eq. (9.2.34)
for general rotationally symmetric bending of axisymmetric plates.
Although their restrictive form is correct for statically determinate
plates, it is not correct for statically indeterminate plates as shown by
the foregoing derivations.

9.2.2 Examples

The use of the foregoing relationships is illustrated with the
following circular plate examples.

Circular plates under axisymmetric partial uniform load over
inner portion

Consider a circular plate under a uniformly distributed load go over
the inner portion of the plate r < aR (0 < a < 1) as shown in Figure
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9.2.1. The Kirchhoff solution for such loaded plates is given by (see
Szilard 1974 and Reddy 1999). The case of uniformly distributed load
on the entire plate is obtained by setting & = 1 in the first part of the
solution and omitting the second.

20R
do
e

Figure 9.2.1. Circular plate under partial uniformly distributed load.

For0<r<aR:

wg = QLR:{(LY +a? [4—5&2 +4 (2+a2) loga]

O T 64D |\R
22 (Y- 2 _4(1+)]
T3 (R) [ -(1-v)a*-4(1+v) oga]}
(9.2.35a)
for simply supported plate, and
x _ 9oR r Yo 2 2
Wo = 1h [(R) +a <4—3a +4a loga)
2
—2a2 (L 2 _
2a (R) (a 4loga)} (9.2.35b)

for clamped plate.
ForaR<r<R:

2 p4 2
K=QO05R 2 r r
wy 32D {2 {cx +2(R) }bgR
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N 2(3+v)—a2(1-v) [1 _ (%)QJ } (9.2.36a)

l1+v

for simply supported plate, and

2 4 2 2
L DY e Y <L> 2\ fq — (1)
wy 39D {Q[a +2(R)]Iog 7 +<2+a) 1 7
(9.2.36b)
for clamped plate.

Substituting Eqgs. (9.2.35a,b) and (9.2.36a,b) into Egs. (9.2.2) and
(9.2.28) yields the corresponding Mindlin plate deflection

M K

{ B [02(1 - 2loga) - (1%)2] , 0<r<eoR
Wg =w0+

% log 17{, aR<r<R
Note that the deflection component due to the transverse shear
deformation given in Eq. (9.2.37) applies to both simply supported
and clamped plates. In fact, the deflection component due to shear
deformation is the same regardless of the supported edge being simply
supported or clamped.

Circular plates under axisymmetric linearly varying load

Consider a circular plate under an axisymmetric linearly varying
load ¢ = qo(1—7/R) (set 1 = 0 in Figure 9.2.2). The Kirchhoff solution
for such loaded plates is given by (see Szilard 1974 and Reddy 1999).

14 v 1+v
AN AN 9.2.38
4255 (§> -64(§)] (9.2.384)

for simply supported plate, and

x _ QR _ (1)2 (:)“_ (1)“" 9.2.38b
w0—14400D[129 200( 7 ) +225( ¢ 64( % (9.2.38b)

Yo' = 144000 R

k _ QR [3(183 +43v) 1071 + 29v) (r )2
R

for clamped plate.
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Figure 9.2.2. Circular plate under axisymmetric linearly varying load.

Substituting Egs. (9.2.38) into Egs. (9.2.6) and (9.2.28) yields the
corresponding Mindlin plate deflection

w)l = wl + _DRY [5 -9 <%)2 +4 (%ﬂ (9.2.39)

and the maximum deflection occurs at r = 0

R
WM = K 590

2.4
mazx mazr + 36K3Gh (9 0)

9.3 Relationships between CPT and TSDT
9.3.1 General Relationships

Here we develop the relationships between the bending solutions
of CPT and TSDT. At the outset, we note that both the classical
and the first-order shear deformation plate theories are fourth order
theories, whereas Reddy’s third-order shear deformation plate theory
is a sixth-order theory. The order referred to here is the total order
of all equations of equilibrium expressed in terms of the generalized
displacements. The third-order plate theory is governed by a fourth
order differential equation in w§ and a second order equation in ¢Z.
Therefore, the relationships between the solutions of two different order

theories can only be established by solving an additional second-order
equation.
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First we note that Eqs. (9.1.5a) and (9.1.5b) together yield
d2 R R
____r_ (TM,,.,.) + -——-d =r71q (931)

Defining the effective shear force V. as
4 4 7d
R _ R R R R
rVit=r (Qr - ﬁ&) t3z [a; (rPrr) - Peo] (9.3.2)
Eq. (9.1.5a) may be written as
2

—_— T + ’]'[/ = 9.3-

From Egs. (9.3.2) and (9.1.5b), we have

% (rvR) =rq (9:3.4)

Hence it follows, from Eqgs. (9.2.1a), (9.2.1b) and (9.3.4) that

VR =rQ¥ + ) (9.3.5)

Next, we introduce the moment and higher-order moment sums

ME + ME PE + PR
MR = 1+V 66 pR_ e VBB (9.3.6)

Using the definitions (9.3.6) and Eqs. (9.1.6a), (9.1.6b), (9.1.6c) and
(9.1.6d), one can show that

MR ) -Tr () e
o L ) DL () s
deff (;ir( MR) ME (9.3.9)
r% = -% (TP;?) - P (9.3.10)
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Substituting for r¢F from Eq. (9.1.6e) into Eqgs. (9.3.7) and (9.3.8), we
arrive at

1d d { dw
R~ p-—(rQF)-D— 0 3.1
rM Drdr(rQr> D— ( dr) (9.3.11)
1d d { dw
R_pnitl ( AR\ _pnl 0
rPR=D-— <7‘QT> D ( dr) (9.3.12)
Now solving Eq. (9.3.11) for (d/dr)(rdw{/dr), we obtain
d [ duf 1 . & h2
Substituting the result into Eq. (9.3.12), we obtain
3ht 3h?
R _ R 3.14
= T v ar ( rQf) + 55 (M) (9:3.14)

From Egs. (9.2.4), (9.3.3), (9.3.6), and (9.3.9), we obtain the result

MBE=MX+C1logr+Co (9.3.15)
Next we use Egs. (9.2.2), (9.3.7), and (9.3.10) to arrive at
5D¢T 5 dr =-D dr + —4—" (2 log r— 1) + "'2_ + (9316)

From Eqs. (9.3.2) and (9.3.3), we have
(@ 6m) = & () - - [ () - 7B

Substituting Eqs. (9.3.11) and (9.3.12), and R, = {2h%/[15(1 — v)]}QF
into Eq. (9.3.17), we obtain

(9.3.17)

1-5v (Qr)—érdMR 2h? ; [

5(1 —v) +

ar T 30(1-0) (TQR)} (9.3.18)

and using Eq. (9.3.9), we have

jr [i j (er)] ~105(1 — 5v)h? (er)
+ @%{—”—) (ref+C1) =0 (9.3.19)
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Thus a second-order equation must be solved to determine the shear
force.

Next, we derive the relationships between deflections w§ and wf
and rotation ¢® and slope ~dw{/dr. Replacing M~ in terms of MK
by means of Eq. (9.3.15), and then using Eq. (9.2.2), Eq. (9.3.13) can
be written as

d ((dwl\ d [ dwf T 6 d R
ar (T_dr ) —3;<T &)~ p(Crloer+C + g (7QF)

Integrating twice with respect to r, we obtain

dwft  dwf 1 [Cir Cor  C3 6 g
= B e el
(9.3.21)
2 2
w{f:w{,(—% [CZT (logr—1)+gi—r+03 log r+ Cy
6 R
— 9.3.22
oo [QRar (9.3.22)
Finally, using Eq. (9.3.21) in Eq. (9.3.16) we obtain
dw¥ 1 [Cyr Cor  C 3
R 0 1 2 3 R
- _ — |z - = 4+ 4 — 9.3.23
¢ = -k +D[4 @logr—1)+ L+ ]+10thz, (9.3.23)

It is informative to discuss various types of boundary conditions in
terms of the dependent variables for the third-order theory. Since a
second-order equation for QF must be solved to determine solutions of
the third-order theory, it is also useful to have the boundary conditions
on QR for various types of edge supports. These are listed below.

Clamped edge

R
R =0, ddi: =0 whichimply QR =0  (9.3.24a)

wit =0 (9.3.24b)
Simply supported edge

R
M2 =0, PE=0 which imply r%%— +vQF =0 (9.3.25a)
wit =0 (9.3.25b)
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Free edge

R
ME =0, PR=0 whichimply r—= Q +vQF =0 (9.3.26a)

~ 4\ dPE
R _ QR 9.3.26b
rV.t=rQ7 + (th) o =0 ( )

For solid circular plates, we have the additional “boundary
conditions” at the center of the plate (i.e., at r = 0):

duwft

QF=0, ¢f=0, -

= 4 dpP
_ R _ _ AR _
=0, rV _T-Qr+<3h2)rdr =0 (9.3.27)

For annular plates, the boundary conditions at the inner edge are given
by the type of edge support there.

9.3.2 An Example

Here we present an example to illustrate the derivation of the
solutions of the third-order theory using the relationships developed
between the CPT and TSDT. First note that Eq. (9.3.19) can be
expressed in the alternative form

ngf + 1de _ (}13 n g) QFf = —¢ (Qf + _Cr_l) (9.3.28)

r dr
where
§= 320—(;2_—”) (9.3.29)
The solution to the homogeneous differential equation
d;gf + %d?f —~ (;13 + 5) QE=0 (9.3.30)
is given by
QF(r) = Csh(VEr) + Co K (vEr) (9-3.31)

where I; and K, are the first-order modified Bessel functions of the first
and second kind, respectively.

Consider a solid circular plate under uniformly distributed load of
intensity qo and clamped at the edge. For this case, the boundary
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conditions at = Ry give QF(Rp) = 0 and Cy = 0, and those at r = 0
give QF'(0) = 0 and C; = C3 = 0. Then the general solution to Eq.
(9.3.28) is given by

QF(r) = Csh(VEn) + Geka(VEN - L (9.3.32)

Using the boundary conditions on Qf, we obtain

Co=0, C5=_—20 (9.3.33)

21 (VE€Ry)

Hence the solution becomes

_ qRo [ L(VE&r) }

R
Qr (7‘) - 2 Il(\/ERO) RO

(9.3.34a)

and

_ [ 2R8 2o(VEr) [T \?
/Q,’? dr—< . )[RoIl(\/ERo)\/E (Ro)} (9.3.34b)

Then the exact deflection of the TSDT plate is given by

Riy _ K 6 (R} 2p(VEr) (L)2 _ Gy
(9.3.35)
where the constant Cj is evaluated using the boundary conditions

w§=w5(=Oatr:R0

Pk (@R} 2Io(VERo)
C“'S(l—v)( 1 )[Roh(\/fﬁo)\/f 1} (9:3:36)

Note that the deflection wi(r) of the classical plate theory for the
problem is given by setting @ = 1 in Eq. (9.2.35b). The maximum
deflection is

272
R 20 Rj + %0 8gh (9.3.37a)
mae = 54p T 20D(1 - v)

4 2
_ 0FRg + 690 R (9.3.37b)
64D ' 20Gh

w
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Comparing wf, with w?  from Eq. (9.2.37) (set @ = 1 in the first
line), we note that for K, = 5/6 the maximum deflection predicted by
the first-order shear deformation theory coincides with that predicted
by the third-order plate theory. Of course, the third-order theory does
not require a shear correction coefficient. Further, the comparison of the
solutions of the first-order and third-order theories for different boundary

conditions and loads may lead to different shear correction factors.

9.4 Closure

The relationships developed herein between the CPT and shear
deformation theories (FSDT and TSDT) facilitate actual derivation of
the exact solutions of the first-order and third-order theories whenever
the corresponding CPT solutions are available. It is also possible to
develop finite element models of circular and annular plates based on
the FSDT and TSDT using the finite element model of the CPT,
as was illustrated by Reddy and Wang (1998) for the FSDT. The
stiffness matrix of the shear deformable elements are also 4 x 4 for
the pure bending case, and the finite elements are free from shear
locking phenomenon (see Reddy 1998 and 1999b) experienced by the
conventional shear deformable finite elements. It is also possible to
develop the shear correction factors required in the first-order shear
deformation theory using the relationships between CPT, FSDT, and
TSDT. Such factors may depend on the boundary conditions as well as
the applied transverse loads.

Problems

9.1 Assume the following displacement field for the classical plate theory
(CPT) in polar coordinates (for pure bending case):

6w0
’Ur("‘, 9, Z) = _Z—a'l‘—
_ 1 Owyg
UQ(T‘,O, Z) = —Z (;—%->
uz(r, 8, 2) = wy(r, 6) (1)

where (ur,ug,u;) are the displacements along the three coordinate
directions (r, 6, ), respectively. Show that the linear strains of the
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theory are given by

Err = 261, egp = 26y, 26,9 = 24y (i)
where
) = _ %y
T 8r2

(1) 1 8’!110 + l@zwo
Fo = or ' r 002

L _ _ Fwy _10wo (1)
Tro 5ro8 T 08

9.2 Show that the virtual work statement for the Kirchhoff plate in the
polar coordinates is given by (see Problem 9.1)

06wy 10%6wp
0= /[Mgg_<8r r692>

6251.00 1 96wy .
- - db
—2M, 49— < 550 " - 50 > qéwo] rdr (1)

where the moment resultants are defined by

h
M, = /Qh orrz dz, Mpg =/

2

by
>

Orrz dz, Mr9=/ orez dz (1)

vl WV
vl W

9.3 Show that the Euler-Lagrange equation associated with the virtual work
statement of Problem 9.2 is

{62 OMaq N 182 Mg

M,y  20M,
(97‘2 (TMTT) + 28 M, ° 9} =

or ' r 062 oro0 ' r 06

(%)
Introduce the transverse shear forces acting on the rz—plane and
0z—plane as

170 OM;g
Qr = - [5; (rM:r) + 50 Mee] (47)
170 oM,
Qo = - [57 (rMyg) + —a—;g + Mre] (177)
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and express Eq. (i) in the form

T~ (iv)

1[0
7 g e+ 57
Simplify Egs. (i)-(iv) for the axisymmetric case.

9.4 Show that Eqs. (9.1.1) and (9.1.2) can be combined to express them
solely in terms of the deflection w{ (r) as

Dd( d[id [ dw .
rdr{ dar [rdr( i ﬂ}:qm (®)

Hint: Use the identity
d d2 d 1d dwff 1 dwff .
— r + - (’LZ)
dr dr2 "& \rar dr r dr

9.5 Show that the deflection, slope, and bending moments of a simply
supported circular plate under linearly varying load (see Figure 9.2.2)

QO

g(r) = go + L2 R (2)
are given by
2

Duff(r) = F(r) + K17y + Ko (i4)

dwé( ’ T

—- =F )+ K (111)

1 ' 1
ME = — (F (r) + ;F (r)) - ;VKl ()
1! ! ].
M= (vF' 0+ F ) - 5K

where K) and K are constants to be determined using the boundary
conditions at 7 = R. In particular, show that
5

4
qoT gi—q\ T .
F = —_
(") =& +( a )225 (vi)
3 _ 4
2 -
F"(T) — 3q10é' + (QI RQO> 17;5 ('U'll'l)
__ 2R? [3+1/ 4+1/( _ )] (iz)
1T T 16 BT gy T
R S5+ v 6+ v
Ky = ~
2 (1+V)[ 64 go + 150 (q1 QO)] (r)
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9.6 Repeat Problem 9.5 for the clamped boundary condition at r = R.

9.7 Consider a simply supported annular plate of inner radius R; and outer
radius Ry, loaded with uniformly distributed load of intensity gg. The
boundary conditions are

Atr=R;: ME=0 (rQF)=0 (4)
AtT=Ry: wf =0, ME=0 (43)

Show that the deflections and bending moments are given by
4 4 9 2
w(r) = @ﬁ{_ - (L) PRI P (L)
64D Ry 1+v Ro
4o B
_ df log <L) } (ziz)
1—v Ry

- )] (R

+4(1 4+ v)B%k [1 - (R0)2 +4(1 +v)B%log (F%)}
(1)
ME = q°£°{(3+ V) |1- (}%)2 +4(1+ )% |1+ (E%)Z]
+B° |(ov 1)+ (34 0) (—R;)z]} (v)

where

o1 = 3+ v)(1- 0% -4(1+v)f%
az =(3+v)+4(1+v)k (vi)
[32 R vii
ey ;logf, B= R (vid)

K=

9.8 Show that the deflection of a clamped (at the outer edge) circular plate
under linearly varying load, ¢ = qo(1 — 7/Rp) is

K qug 2 4 ,’.5 .
L 2907 +225— — 64— i
wo () = T4000 (129 Wpg +2pr —6igz ) ()
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The relationships presented in this chapter can be used to develop finite
element models for axisymmetric bending of isotropic circular plates that
contains the classical plate element as a special case. Such elements were
developed for beams and axisymmetric bending of circular plates by Reddy
(1993) and Reddy, Wang, and Lam (1997). We illustrate the procedure for
the FSDT using a set of problems.

9.9 Show that the general solution of Eqs. (9.1.3) and (9.1.4a,b) is

9.10

Iy _i{[w 2 _]C_Cz
wy (r)—4D GAKslnr r“(Inr - 1){ C1 2T
—4031117'—404}
=0 + Cor® + C’g Inr + Cyr?lnr ()
Mr) = % [Clr (2lnr — 1) + 2Cor + 49;]
A > R 1
= -2Cyr — % - Cy [r (1+2Ilnr) + ;F] (12)

where D = Eh3/12(1 — 1?), T = (4D/GAK;,), and C; are constants
of integration. The classical plate theory solution is obtained from (i)
and (ii) by setting I' = 0.

Consider a typical finite element located between r, < 7 < 7p. Let the
generalized displacements at nodes 1 and 2 of the element be defined as

wl(ra) = A1, ¢r(ra) = Ay
wy! (ry) = A3, ¢r(rs) = Ay (1)

where ¢, denotes the slope (positive clockwise), which has different
meanings in different theories, as defined below:

~%0 for CPT
¢r = (”)
¢ for FSDT

Next, let @1 and (3 denote the shear forces (i.e., values of 7Q,) at
nodes 1 and 2, respectively, and (J2 and ()4 the bending moments (i.e.,
values of 7 M;,) at nodes 1 and 2, respectively.

Using Eqs. (i) and (ii) of Problem 9.9, relate the nodal degrees of
freedom A; defined in Eqgs. (i) and (ii) to the constants C;. In particular,
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show that
Ay 1 72 lnr, rZlnr, ¢y
Ay | {0 =27, —r—la- —ra(1+21nra)—%l‘ Co
As [ |1 TZ Inry 7‘3 log 7 Q3
Ay 0 -2 —% —rp (14 2In7mp) — T—lbf‘ Cy
D)
Similarly, relate the nodal forces (J; to the constants C'i:
Q1= -2 (er ) = 8rDC,
T=Tq
Q2=2x (-—rMTI:)
T=rq
. 1=-0) - 1— .
= 27D {2(1 +1)reCa — (—T—”)cg + [Aa - (——”)r} 04}
a a

@3 =27 (er ) = —8rDC,

T=T}%

Q4 =27 (rM,f.)

_ —27rD{2(1 +u)rbC‘2 _ (17;1/)(73 + [Ab — (1 ;V)I‘] 04}

T="rp

9.11 Using the relations developed in Problem 9.10
{Q}=[GHC}, {A}=[HHCY (4)
derive the stiffness matrix [K], defined by
{Q} = [G{C} = (G)[H]{Aa} = [K]{A} (i)

where

Ao =20+ v)Inre + 3+ V)|re, Ap=[2(1+v)Inry+ (3+v)]7p

(i43)
0 0 0 4
0 21+v)re - 1-v {Aa - Q;‘—‘QF] _
(G] = 27D Te . (iv)
0 0 0 =
0 —21+v)n 2 (A, - {247

The stiffness matrix of the classical plate theory is obtained from [K]
by setting I' = 0.



Chapter 10

Bending Relationships For
Sectorial Plates

This chapter presents ezact relationships between the bending
solutions of sectorial plates based on the Kirchhoff (or classical) thin
plate theory and the Mindlin plate theory. The Kirchhoff plate theory
neglects the effect of transverse shear deformation, and the Mindlin plate
theory allows for this effect which becomes significant when dealing with
thick plates and sandwich plates. The considered sectorial plates have
simply supported radial edges while the circular curved edge may be either
simply supported, clamped, or free. The avatlability of such relationships
allow easy conversion of the existing Kirchhoff sectorial plate solutions
into the corresponding Mindlin solutions. The use of the relationships
is illustrated using some sectorial plate ezamples and sample solutions
obtained were checked with existing results and those computed from the
finite element analysis software ABAQUS.

10.1 Introduction

This chapter focuses on the elastic bending problem of sectorial
plates with simply supported radial edges while the circular edge may
be either simply supported, clamped or free. The relationships between
the bending solutions for such plates are derived herein. On the basis of
existing exact Kirchhoff solutions for these plates, (see Timoshenko and
Woinowsky-Krieger 1959 and Mansfield 1989), the relationships enable
the easy deduction of the corresponding exact Mindlin plate solutions.
These solutions and thus the relationships are verified by comparison
with the existing results, e.g., the 3-D finite strip solutions of Cheung
and Chan 1981, and the finite element analysis results obtained using
the ABAQUS computer program.
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10.2 Formulation

Consider a sectorial plate of radius a, thickness h, and with a
subtended angle 6, as shown in Figure 10.1. The sectorial plate is simply
supported along its two radial edges (§ = 0, § = «) while its circular
edge can be either simply supported, clamped or free. The flexural
rigidity of the isotropic plate is given by D = Eh3/[12(1 — v?)] where
E is Young’s modulus and v Poisson’s ratio. The shear modulus of the
plate is G = E/[2(1 + v)]. For analysis, it is expedient to adopt the
polar coordinate system for such a plate shape with the origin of the
coordinate system located at the vertex of the sectorial plate.

radial edge ’
N Circular edge may be either
simply supported, or
clamped or free

Figure 10.2.1. Geometry and the coordinate system used for a sectorial
plate. The circular edge may be either simply supported,
clamped, or free.

The form of the transverse loading on the plate is assumed to be the
same for all sections parallel to the radial direction and is defined by

mm

q(r,0) = Z Gm(r) sinuf, b= (10.2.1)

10.2.1 The Kirchhoff Plate Theory (CPT)

First consider the bending problem of a sectorial plate under the
loading defined in Eq. (10.2.1) based on the Kirchhoff plate theory.
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The equilibrium equations of the plate problem at hand are given by
(Timoshenko and Woinowsky-Krieger, 1959)

8QK 1 8@9 K
T =0 10.2.2
or t7 r 00 + Q = ( )
K K _
oMy, | 1OMj My Mee _QK=0  (10.2.2.)
or r 06
aMrG + = L aMee + 2M_’{§ - Qg{ =0 (10.2.20,

or r 00

and the stress resultants are related to the displacement as follows

52wk 1wK 1 82wk
it = o |+ (158 355 )| eoa

ME =-D uag‘:f{ + (% 8;’? + T—lz‘a;;’f )} (10.2.3b)
ME =—-D@1-v) % <%?%Ii) (10.2.3¢)
QK = —D% (v%{,‘ ) (10.2.3d)
QF = —Dl% (V2uf) (10.2.3¢)

where the superscript ‘K"’ denotes the Kirchhoff plate quantities and

8 10 182

2—_ — — — —
v T or? +r8r+r2892

is the Laplacian operator in polar coordinates.

The above transverse deflection wi in Eqs. (10.2.3a) to (10.2.3¢)
may be assumed to take the form

wif (r,0) = Z WX (r)sin uf (10.2.4)
m=1

The bending solutions of the sectorial plate based on the Kirchhoff plate
theory may be obtained by substituting Eq.(10.2.5) into Egs. (10.2.3a-e)
and then into Egs. (10.2.2a), (10.2.2b), and (10.2.2c) and finally solving
the governing equations together with the boundary conditions.
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10.2.2 The Mindlin Plate Theory (FSDT)

When using the Mindlin plate theory, the equilibrium equations
remain the same as those given in Egs. (10.2.2) with ‘K’ replaced by
‘M’ but the Mindlin stress resultant-displacement relations are given by

M __ a¢r 8¢0
MM =D { e (¢, )] (10.2.52)
M _ 6¢r _%
MY = D[ . (¢, - )] (10.2.5b)
Mr9 = §D(1 - I/) (;—éyy‘ - ; g + ‘51‘—) (1025C)
M
Q%::A;Gh(¢,+ggg) (10.2.5d)
QM = K,Gh <¢9 + iagg ) (10.2.5¢)

where ¢, and ¢y are the Mindlin rotations about the circumferential and
radial directions, respectively, the superscript ‘M’ denotes the Mindlin
plate quantities, and K, denotes the shear correction factor. Throughout
this chapter, the shear correction factor is assumed to be 5/6.

Under the transverse loading (10.2.1), the transverse deflection and
the rotations for the sectorial plate are given by (Mindlin, 1951)

M(r,0) = Z WM (r)sin ué (10.2.6a)

r(7,0) = Z Grm(r) sin uf (10.2.6b)
m=1

0) = i ®om (1) cos 6 (10.2.6¢)
m=]

Introducing the moment sum or Marcus moment

M'rr + M00

e (10.2.7)

M=
and using Egs. (10.2.5a)-(10.2.5c), one may express the force
equilibrium equations (10.2.2a) and (10.2.2b) for the Mindlin plate
theory as
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o OMM 1 4 [3¢r o } (10.2.8a)

O =5 T3l =g {3 ~ 5 %)

M_lc')MM 1. ERT —16%]
O =50 T3l 7P [,,3,,<r¢e) ~ =g | (10:2:80)

10.2.3 Governing Equations

In view of Egs. (10.2.3d), (10.2.3¢) and (10.2.2a), the governing
equation for the bending of the Kirchhoff sectorial plate can be expressed
as

VIME = ¢ (10.2.9)

and from Egs. (10.2.8a), (10.2.8b) and (10.2.2a}, one can similarly write
the Mindlin governing equation as

VMM = ¢ (10.2.10)

Alternatively, one can obtain the above governing equation based on the
Mindlin plate theory by substituting the constitutive shear forces given
by Egs. (10.2.5d) and (10.2.5¢) into Eq. (10.2.2a). This yields

MIVI
K,Gh <v2w5” + T) =—q (10.2.11)
In view of Egs. (10.2.5d), (10.2.5¢), (10.2.8a) and (10.2.8b) and

eliminating MM from the equations, one may deduce that

ViQ =22, *= ;g{;ﬁ) = 1112(3 (10.2.12a)

where 166 L8
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10.3 Exact Bending Relationships
10.3.1 General Relationships

Based on the concept of load equivalence, it follows from Egs.
(10.2.9) and (10.2.10) that

V2 (MM - M) =0 (10.3.1)

Eq. (10.2.1) yields the following Kirchhoff-Mindlin Marcus moment
relationship
MM = mE 4 = (10.3.2)

where = is a harmonic function of (r,6) which satisfies V2 = 0. For
the sectorial plates considered here, the function = is given by

o0
E=D ) (Cimr*)sinpub (10.3.3)
m=1
where Cyn(m = 1,2,3,...) are constants. Thus, Eq. (10.3.2) becomes
o0
MM = ME 4 DS (Cimr*) sin pf (10.3.4)
m=1

The substitution of Egs. (10.2.9) and (10.3.4) into Eq. (10.2.11) yields

. MK
\% [ —wlf + Z <4(M+ 1)r“+2) smpﬂ} =V? (KsGh) (10.3.5)

In view of Eq. (10.3.5), one may deduce that the Kirchhoff~-Mindlin
deflection relationship is given by

MK vl Cimr? .
’U)éw = w[}){ + K.Gh + Zl {:C2m — 4—(#];—;—]3} r# sin 6 (1036)
m=

where C},, and Co,,, are constants to be determined using the boundary
conditions along the circular edge, r = a.

To obtain the Kirchhoff-Mindlin slope relationships, one has to solve
Eq. (10.2.12). Noting the rotation functions given in Egs. (10.2.6b) and
(10.2.6c), the solution to Eq. (10.2.12) takes the form of

_10¢, 10 _\ 10.3.7
0= 15— 1 r00) = X Rnlr)cosns (103.7)



BENDING RELATIONSHIPS FOR SECTORIAL PLATES 183

Therefore by substituting Eq. (10.3.7) into Eq. (10.2.12) and using the
method of separation of variables, Eq. (10.2.12) may be reduced to

d&?Ry, ~ dRm
28" ftm | 4fim 2, 2 _
e [(cr)? + 2] R = 0 (10.3.8)
Eq. (10.3.8) is the modified Bessel’s equation of order y and its solution
is given by (Kresyzig, 1993)

Ry = C3mI#(CT) + C4mKu(CT) (10'3'93)
where I, and K|, are modified Bessel functions of the first and second
kinds of order u, respectively, while C3,, and Cy,y, are constants.

In view of Egs. (10.3.7) and (10.3.9a), one obtains

19, 10 ad
;_6_031 - ;E(ﬂbg) = mZ=1 [CamIy(cr) + CamKp(cr)] cos uf  (10.3.9b)

By substituting Egs. (10.2.5d), (10.3.4) and (10.3.6) into Eq. (10.2.8a)
and then combining with Eq. (10.3.9b), one arrives at

_ 311)(1){ o0 (L+2) 1 D -
= ,,,2{4@ Ty {Ksthlm Com |7
- (257) [CamIu(er) + C4mKu(cv‘)]} sin 6 (10.3.108)

Similarly, in view of Egs. (10.2.5¢), (10.2.7b), (10.3.4), (10.3.6) and
(10.3.9b)

_ 1 (911)6( = M u+l D pu—1
o=+ L agr O™+ 1 g Oom = O
1
= 2 [CumIL(er) + Cam ()] } cos uf (10.3.100)

where the prime indicates partial differentiation with respect to r. For a

finite Mindlin rotation ¢, and Kirchhoff slope dw{ /8r along the radial

direction, the term (%) K,,(cr) which becomes singular as 7 — 0, must

be dropped from Eq. (10.3.10a). For its elimination, Csm must be zero.
In view of the foregoing deflection and rotation expressions, the

relationships between solutions of Mindlin and Kirchhoff sectorial plates
may be summarized below.
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Deflection relationship

MK o Cron12
o' =g > — A ksingd (10311
wy” =wy + K.Gh +m=1 [C2m p+ D) r#sin p ( )
Rotation-slope relationships
dwf | X fCimp+2) 4 D } .
=5 —_— — -C B
S +mz=1{ prny T [Ksahclm 2m | T
- (*CQLT) CamIy (CT)} sin pf (10.3.12a)
1 Bw{f &0 uClim ptl D :\ -
=77 08 m — C m »
S +mz=1{4<u+ nooTH [Ksahcl |t
- (%) CSmIL(CT)} cos b (10.3.12b)

Moment relationships

AN
|
ot

™8

1 _
MrA;[ = M,{f - D( ) {Z(,u +2)Crimr* + p(p — 1)Dimr® 2

3
I}

Cam [er-z,,(cr) - IL(CT)] } sin

+
TN
g =
SN’

[o.9}
+vD Y (Cimr*)sinpb (10.3.13a)
m=1
® 1 _
MY =ME+Dw-1) {Z(p + 2)Cymr* + pu(p — 1) Dymr¥
m=1

+ e C3m ;Iu(cr) = I,(cr)| ¢sinp
+D ) (Cimr*)sin pf (10.3.13b)

m=1

MY = M% + D1 —v) Cimr® + p(p — 1) Dy =2

(18
—
=

m=1
1, 1 p\2
+ E'I#(CT)— 3 + (Er_) I,(cr) Cgm}COS/.LB (10.3.13c)
D
Dim = {mclm - Com (10.3.13(1)
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Shear-force relationships

QM = QK + K,Gh Z L [ Cimr*™ 1 = —1—Iﬁ(c7‘)03m} sin uf
m=1

K.Gh c3r
(10.3.14a)

o
Q' =QF +K.Gh Y
m=1

1
- [#K},G'hcl"‘r#_1 - ZI;/»(CT)Csm} cos pf

(10.3.14b)

The foregoing relationships contain a total of three unknown
constants which are dependent on the three boundary conditions at the
circular edge (r = a). In the sequel, these constants are evaluated for
sectorial plates with various types of boundary conditions for its circular
edge.

10.3.2 SSS Sectorial Plates

Consider the SSS sectorial plate where the circular edge is simply
supported. The boundary conditions at r = a are

wf =wff =0, MM =MEK=0, ¢ =0 (10.3.15)

By substituting Eq. (10.3.15) into Egs. (10.3.11), (10.3.13a) and
(10.3.12b), respectively, and solving for the constants, one obtains

82 ply(ca)
Cim = 1- 10.3.16
™= C [ call(ca) ( )
2u+1 2 u | pulca) v
= ghtt2 [ -1
Coo=a {2(p+ 1) 1y (ca)? {caIL(ca) 1o
(10.3.16b)
a2
— — —4 .3.16
clt D “>
m = —_— 10.3.16d
Com = (Qm+ g Cim (10.3.164)
where K
QU = Minlr=a (10.3.16e)

K,Gh
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10.3.3 SSC Sectorial Plates

Next, consider the SSC sectorial plate where the circular edge is
clamped. The boundary conditions at r = a are
M K duwff
wff =uf =0, ¢, =S8 =0, g4=0 (103.17)
In view of Egs. (10.3.17), (10.3.11) and (10.3.12), the constants are
found to be

Cim = =2 (10.3.18a)
2 p(ca) 1 2
a#t? {(ca.) I-v (%) I.(ca [2iu+15 + (ca) l—u]}
2
=2 Cim—=Qnat 10.3.18b
C2m 4(/‘ n 1) Cim Qma ( )

Cgm=——c—2—— Cima* a? + =2+ u0n b (10.3.180)
pdy(ca) 2pu+1) K,Gh

where (2, is given by Eq. (10.3.16e).
10.3.4 SSF Sectorial Plates

Finally, consider the SSF sectorial plate where the circular edge is
free. The boundary conditions at » = a of a free edge are
MM=ME=0, QM=VK=0, M¥ =0 (10.3.19a)

where

1 {OMEK
K_oK - |28 10.3.19b
V. =@, +T( 59 ) ( )

is the Kirchhoff effective shear force.

In view of Eqs. (10.3.19), (10.3.13a), (10.3.13c) and (10.3.14a), the

constants are found to be
I, (ca) 1 +1
Co 8 (5) {0+ V) - 4 et}

m = Y T, (ca)
o (o + it [& - 2] )
Tt () (H - )[4+ (8]} + Gt
m = a2 [u(p — 1)]
(10.3.20b)
¢a_[¥m D = 10.3.20
Cam = T, (ca) [7+K5thlma ] (10.3.20c)
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where

_ p 1 Ifea) | 2
Ho = {Z B l(ca)2 T3 cal}”(ca)} 1- u}
1
o = =37 Ml

U, = (Kth) QK |r=c (10.3.21)

10.4 Examples

The foregoing relationships can be used to furnish the Mindlin
deflection, rotations and stress-resultants of Mindlin sectorial plates
upon supplying the corresponding Kirchhoff plate solutions. This is
illustrated below using the examples of sectorial plates under a uniformly
distributed load ¢g.

Based on the Kirchhoff plate theory, the transverse deflection of a
sectorial plate under a uniform load gq is given by (Mansfield 1989)

4
0 -D Z (16 — z;n)r4 ) + Amr# + Bmr*2 | sin uf (10.4.1)
where )
Gm = ,,f,or -7 (10.4.2)

which is zero for even m.
10.4.1 SSS Plates

For SSS plates, we have

Gmat P (u+5+v)
2(16 uz)(2+u)(2u+l+u)
B = — gma® A (p+3+v)

T 24— )+ m)Ru+1+y)

(10.4.3a)

m

(10.4.3b)

The expressions for A, and B,, agree with those given by Timoshenko
and Woinowsky-Krieger (1959).
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10.4.2 SSC Plates

For SSC plates, we have

=~ Ay
Ap = ——2md (10.4.4a)
2(16 — p2)(2 + p)
= 2y
dma
B, = - (10.4.4b)
2(4-p*)(4+u)
and the Kirchhoff plate solution is given by Eq. (10.4.1).
10.4.3 SSF Plates
For SSF plates, the constants are given by
g ad—Pl(y —
gma’~#[(u — 4)AgA1 + 2u(3 + v) A)]
A, = 10.4.5
" W6 - - A W= n)E+e)
— 2—u
___Gma 8 + 5 + vu(l + p) (10.4.5b)

2w - )+ B (I +p)(B+v)
Ao =8+p(5+v) +vpu®, A =pu(l—v)+2(1+v)
Ay = 4(3 +v) —vp? (10.4.5¢)

Note that the expressions for A,, and B,, for the SSC and SSF
sectorial plates are not available in the open literature at the time of
this writing. Substituting Eqgs. (10.4.1) and (10.4.2) into Eq. (10.2.3a)
and (10.2.3b) and then combining them together we obtain the Kirchhoff
Marcus moment

Mg

MK
1+v

oo q /,_2
- Z = 5 H4(p+ 1)er“} sin p60
m=1 (4 —H )
(10.4.6)

By substituting the Kirchhoff solutions given by Egs. (10.4.1), (10.4.2)
and (10.4.6) into the relationships [Egs. (10.3.11)-(10.3.14)], one can
readily obtain the corresponding Mindlin plate results. In the next
section, we consider several examples. The results are verified using
the finite element method.
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10.4.4 Numerical Results

To verify the correctness of these relationships, Abaqus (1997) finite
element program was used for the bending analysis. Two different shell
elements, namely, S8R5 shell elements for thin plates and S8R elements
for shear deformable thick plates have been used in the modeling of
the sectorial plates. Three different - increasingly refined - uniform
meshes designated Type A, Type B and Type C were used. Table 10.4.1
shows the results obtained from the convergence study for the deflection
parameter @ = 10%(wyD)/(goa?) and radial moment parameter M, =
102 M.+ /(qoa?) at r = 0.75a, § = a/6 for a uniformly loaded SSS sectorial
plate with a subtended angle of w/3. It can be established from Table
10.4.1 that Mesh C will suffice in providing converged results and thus
will be used to generate all the numerical solutions in this study.

Table 10.4.1. Convergence tests for SSS Sectorial plates (@ = 7/3).

Mesh type Deflection Radial Moment
(Elements) w(0.75a, 7 /6) M,+(0.75a,7/6)
h/a h/a
0.001 0.1 0.2 0.001 0.1 0.2
Type A (75) 0.9247 1.0215 1.3101 2.4433 2.4554 2.4582

Type B (300) 0.9248 1.0212 1.3097 2.4282 2.4320 2.4422
Type C (675) 0.9248 1.0210 1.3097 24284 2.4322 2.4423

It is worth noting that there has been little work done on the bending
of thick sectorial plates. In the open literature, we find that Cheung
and Chan (1981) used the three-dimensional finite strip method for the
analysis of such plates. In Tables 10.4.2 and 10.4.3, the results

Mrr ~ 2 M90

w =103 M,, = 10° Mgg = 10 P (10.4.7)

qoat’ goat’

of Cheung and Chan (1981) are compared with the present solutions
furnished by the relationships [Egs. (10.3.11), (10.3.13a), (10.3.13b) and
(10.3.16)] and the numerical results generated using the finite element
program Abaqus (1997). From Table 10.4.2, it can be observed that the
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present Mindlin plate deflections furnished by the exact relationship are
in excellent agreement with the Abaqus results. Although the present
and the Abaqus bending moments do not exhibit the same degree of
agreement, the difference in results is within 3%. When compared to the
3-D results furnished by Cheung and Chan (1981), one can observe that
the deflections obtained by Cheung and Chan are consistently slightly
lower than the present results evaluated from the relationships. For
bending moments as shown in Table 10.4.3, the differences are within
10% of each other. Table 10.4.4 presents the deflection parameters
@ = 103(woD)/(qoa*) of SSC and SSF sectorial plates obtained from
the deflection relationships, [Eqgs. (10.3.11), (10.3.17) and (10.3.18)] and
from Abaqus (1997). The results are in very good agreement with each
other.

From the bending results, one can observe that as the plate thickness
increases, the thick plate solutions deviate significantly from the thin
plate results, especially for the transverse deflection. For example, in the
case of thick SSS sectorial plates (h/a = 0.2), its maximum deflection can
be lower by 40% when the analysis is based on the Kirchhoff (classical
thin) plate theory, and for SSC sectorial plates, the difference can be as
much as 75%! This shows the significant effect of transverse shear strains
on the bending behavior of thick plates. The effect of shear deformation
is to increase the deflection.

Table 10.4.2. Comparison of deflection w = 10%wpD/(qoa?) for SSS
sectorial plates with @ = 7/3.

h/a Thin plateT Cheung & FEM Present*
Results Chan (1981) (Abaqus) results
0.001 0.9975 0.9840 0.9974 0.9975
0.067 - 1.0264 1.0430 1.0430
0.100 - 1.0839 1.1000 1.1000
0.133 - 1.1573 1.1797 1.1797
0.200 - 1.3547 1.4076 1.4076

TTimoshenko and Woinowsky-Krieger (1970).
*From Egs. (10.3.11) and (10.3.16).
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Table 10.4.3. Comparison of bending moments, M, = 102M,/(goa*)
and Mgy = 10°Mgp/ (qoa2), for SSS sectorial plates with

a=m/3.

Radial moment Circumferential moment

M,.(0.75a, 7/6) Mpe(0.75a, /6)
h/a Thin! Cheung Abaqus Present* Thinf Cheung Abaqus Present**

Plate & Chan Results Plate &Chan Results

0.001 2.4260 2.4944 2.4284 2.4260 2.1316 2.1452 2.1342 2.1316
0.067 - 2.5175 2.4302 2.4276 - 2.1490 2.1332 2.1305
0.100 - 2.5029 2.4322 2.4296 - 2.1873 2.1318 2.1291
0.133 - 2.5533 2.4349 2.4324 - 2.2350 2.1209 2.1272
0.200 - 2.6384 2.4423 2.4398 - 2.2678 2.1247 2.1219

1.Timoshenko and Woinowsky-Krieger (1970).
*From Egs. (10.3.13a) and (10.3.16).
**From Eqs. (10.3.13b) and (10.3.16).

Table 10.4.4. Deflection parameters of SSC and SSF sectorial plates.

SSC plate, a = 7/3 SSF plate, a = 7
w(0.75a, 7/6) w(a,7/4)
h/a Thin Abaqus* Present Thin Abaqus* Present
PlateT Results** PlateT Resultsi
0.001 0.4674 0.4673 0.4674 63.2800 63.2800 63.2800
0.1 - 0.5872 0.5872 - 64.6480 64.6474
0.2 - 0.9262 0.9262 - 66.9260 66.9254

TTimoshenko and Woinowsky-Krieger (1959).
*Obtained using Mesh Type C with 675 shells elements.
**From Eqgs. (10.3.11) & (10.3.18).

}From Egs. (10.3.11) and (10.3.20).
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10.5 Conclusions

In this chapter, the exact relationships between the bending
solutions of sectorial plates based on the Kirchhoff plate theory and
the Mindlin thick plate theory are presented. These relationships,
unavailable in the literature, allow engineers to obtain accurate Mindlin
plate results upon supplying the corresponding Kirchhoff plate solutions,
which are readily available for most problems in the open literature.
These relationships can also help to elucidate the effect of transverse
shear deformation on the flexural behavior of thick sectorial plates.
Moreover, the Mindlin plate solutions furnished by the bending
relationships can serve as benchmark results to check the accuracy of
numerical methods and software developed for thick plate analysis.

The general relationships included in this chapter for sectorial plates
are also valid for annular sectorial plates with outer radius a and inner
radius b. The edges & = 0 and § = « are assumed to be simply supported
while the other two edges, i.e. 7 = b and r = a, may be each free, simply
supported, or clamped. The relationships given in Problems 10.3 and
10.4 also hold for these plates. However, the expressions for plates with
specific boundary conditions are too long, and interested readers may
consult the paper by Lim and Wang (2000).

Problems

10.1 Verify Egs. (10.2.8a,b).
10.2 Verify Eqgs. (10.2.12a,b).
10.3 Write Eq. (10.3.2) as

MM = MK 4 DV2® ()

where ®(r, 6) is a biharmonic function (i.e., V4® = 0).
(a) Use Eqgs. (i) and (10.2.9) in Eq. (10.2.11) to show that

M MK
K.Gh

wlf = wl + -+ ¥ (i1)

where V¥ is a harmonic function satisfying the equation V¥ = 0.
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(b) Use Egs. (10.2.5d,e), (10.2.8a,b), (i), and (ii) to show that

owk 8 D 1 90
= T [KsGh (v*e) +2 ‘I'} *iZeg ()
p_ _10wfl 19_{ D (o2 _ }_iQQ~
% = r 06 * r o0 | K;Gh (V @) to-v c? or ()

10.4 Use Egs. (i)-(iv) of Problem 10.3 and (10.2.3a-¢) in Eq. (10.2.5a-c) to
establish the following relationships:

ool 2 (10100 g
M,..,. = Mrr D(l —I/)Tae <;5—9- — C2 61‘ +DV 0] (Z)
0 (OA 1 69 .
MM =ME - D1 - 1/)5? (E + @55) +DV®  (i5)
8 [10A
1 (10 150 e .
2c2 \r Or 12002 Or?

M _ QK 4 D% (v2q>) + ————D(IQ" v) %%% (iv)

M_~k, DO o2 D(1-v) 90
W =0+ T () -—5—% (v)

where D

- 2 _ :
A_KsGh(v qn)+<1> v (vi)

and (2 is the solution of Eq. (10.2.12a,b).
10.5 Verify Egs. (10.3.10a,b).
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Chapter 11

Buckling Relationships

This chapter presents exact relationships between the buckling loads
of the classical Kirchhoff plate theory, the Mindlin plate theory and
the Reddy plate theory for simply supported polygonal plates, and
circular and sectorial plates subjected to hydrostatic in-plane loads. The
buckling load relationships enable one to obtain the solutions of the shear
deformable plate theories from the known Kirchhoff plate theory for the
same problem. As examples, some buckling loads for rectangular plates,
regular polygonal plates, and circular and sectorial plates are determined
using these relationships.

11.1 Polygonal Plates
11.1.1 Governing Equations

Here we consider buckling of polygonal plates (with straight edges)
under uniform in-plane compressive load N (measured per unit length)
on all edges as shown in Figure 11.1.1. The potential energy V of the
in-plane load N must be added to the strain energy U of the plate to
form the total potential energy functional II

N=U+V (11.1.1)

The strain energy functionals for the Kirchhoff (CPT), Mindlin (FSDT),
and Reddy (TSDT) plate theories were presented in Chapter 6. The
potential energy of the in-plane load N is given by

V= —/Qo N [(%1_‘:’)2 n (%%)2} dzdy (11.1.2)
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Figure 11.1.1. Polygonal plate under uniform compressive load V.

Using the principle of minimum potential energy, the minimization
of the total potential energy functional IT with respect to the generalized
displacements yields the equations for buckling. These equations are
sumimarized below for the three theories.

CPT:
K 6MK
Mgy | OMzy _ QK =0
Oz oy
K
oM, oMY QK =0
0z Oy
0QF | 0Qy _ ko2 K
be TTay VY
FSDT:
OMyg + % -QM -9
oz dy
oMM oMM M_g
oz Oy v -
Q! + Qf = NMy2M

Oz Oy

(11.1.3a)
(11.1.3b)

(11.1.3¢c)

(11.1.4a)
(11.1.4b)

(11.1.4¢)
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TSDT:
81(,;2[:” + Q]C%ﬂ — Q= (11.1.5a)
6161in + Qg‘% ~Q, = (11.1.5b)
6;% + %% + o <a;f:;x + 28;;35 + 3;533,) = NRVZwR(ll.l.Sc)
where
Mg, = Mg, — aPgy (11.1.6a)
Q¢ = Q¢ — BRe (11.1.6b)

and £, = z,y, and « and 3 are the parameters introduced in the TSDT

4 4
o=z, B=r (11.1.7)

The Laplace operator V2 in the rectangular Cartesian coordinate system
is

H° ¢
= —  —

0r?  Jy?
and the definitions of the stress resultants of the various theories are
given in Chapter 6.

v? (11.1.8)

The relationships between the force and moment resultants (Ms and
Qs) and the generalized displacements (w, ¢, ¢y) for various theories
were presented in Chapter 6 [see Eqgs. (6.2.22a-c) for the Kirchhoff plate
theory, Eqgs. (6.3.13a-e) for the Mindlin theory, and Egs. (6.4.11a-j) for
the Reddy theory]. These are restated here for ready reference.

CPT:

02wk SPwk
K = e
ME =_-D ( 5 T gy (11.1.9a)
(92’(1)K a2wK
K
Myy = —-D (V—a_.‘l)?- + ay2 (lllgb)
2,,K
ME =-D(1- u)a v (11.1.9¢)

0z0y
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FSDT:
MM =D <a§§4 8;5; ) (11.1.10a)
MY = D( 8;’; gg ) (11.1.10b)
MM = %D(l -v) <6§§4 + %) (11.1.10c)
QM = K,Gh <¢;” + M) (11.1.10d)

Ox

Q) = K,Gh <¢§” + %—) (11.1.10e)

TSDT:
ME = 1152 (‘955 %‘Zy) (‘9;;”: + 1/8221:) (11.1.11a)
o 0 (U2 8E) D (28
- D (B B D (B )y
P, = 4’;25D (ua;i; a;f) - h;é) (ﬁ;z’: 6;:’2}2) (11.1.11d)
ME = (1;1/) [gsg <_651y§_ ?;g) _ % (2(39_?1:%;” (11.1.11e)
po=(52) 52 (% +5F) - 52 (122) | oo
Q=28 <¢f aaiR) (11.1.11g)
= ’_‘g.og (¢§ + ?;”TR) (11.1.11h)
Qy =%C—; ("55*”%0—:') (11.1.113)
R, = E%G <¢5 N ?;”73) (11.1.11j)
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where D is the flexural rigidity of the plate

Eh3
= 11.1.12
b 12(1 — v2?) ( )

h being the thickness, £ the Young’s modulus, and v Poisson’s ratio of
the plate.

11.1.2 Relationships Between CPT and FSDT

In view of Egs. (11.1.10a-e) and (11.1.4a-c), we obtain [see Eqgs.
(7.2.2a,b))

MK

VIME = NEG2K Viul = -5 (11.1.13a,b)
MM MM

2 M= Mo2 M 2 M TP - 1.1

VM NMG My (wo KsGh> 5 (11.1.14a,b)

where M¥ and MM are the moment sums

MK + ME o*wl 0w
K2 W _ _p(Z2 4+ ) =-DVif (1111
M Ty D ( 5 T o wy (11.1.15a)
MY + MY O¢s O
M Tz vy z y
=——=__ N D — 11.1.15b
M 1+v ( oz + Jy ) ( )
Equations (11.1.13a,b) can be combined into the single equation
NK
(v2 + —-) ViwK =0 (11.1.16)
D
Similarly, Egs. (11.1.14a,b) yield
(V2 +AM) v2uM =0 (11.1.17)
where M
o N (11.1.18)

NM
D1 ()]
For simply supported, isotropic polygonal plate the following

boundary conditions hold:

w¥ =0, M¥ = V2K =0 for the CPT (11.1.19)
wM =0, MM =v%M =0 for the FSDT  (11.1.20)
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Comparing Eqs. (11.1.16) and (11.1.17), and in view of the
boundary conditions (11.1.19) and (11.1.20), it follows that

K
MM = ]—VD— (11.1.21)

or K
R — (11.1.22)

S
(1+ _KI\,JG_h)

which provides a relationship between the buckling loads N* and N™
of a simply supported Kirchhoff plate and a simply supported Mindlin
plate. Note that Eq. (11.1.22) is similar in form to Eq. (4.2.14) for
columns, and the effect of shear deformation is to reduce the buckling
load.

11.1.3 Relationships Between CPT and TSDT

By differentiating Eq. (11.1.5a) with respect to = and Eq. (11.1.5b)
with respect to y, and adding them and using Eq. (11.1.5c), we arrive
at the governing buckling equation

PME PME  52ME
T 4 9 IV W — NRGZyR 11.1.23
572 T dx0y Oy? v ( )

Next, we introduce the moment sum

ME Viwl  (11.1.24)

_ME+My 4D (06F 94\ D
1+v )

- Br oy 5

where the moment-deflection relations (11.1.11a,c) are used in arriving
at the last result.

Using Egs. (11.1.11a,c,e) in Eq. (11.1.23) and noting the definition
(11.1.24), we obtain
VIME = NRYZyR (11.1.25)

Next, from Egs. (11.1.5¢) and (11.1.11b,d,f-j), we have
R
SR (%24 28— (- B vt - S

15 \ oz ' oy 15 105
(11.1.26)
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Substituting for ¢z z + ¢y from Eq. (11.1.26) into Eq. (11.1.24), we
obtain

w30 (890 oy 2D aye, D Dgun Doy

2Gh 15 TGh 70 Gh 5
(11.1.27)
Finally, using Eq. (11.1.25) one can eliminate V?w! from Eq. (11.1.27)
T0Gh 17 70Gh
4\ 4R RY w2 4R _ R

- — =0 (11.1.28

vime - 22 (1 14GhN)VM M (11.1.28)
which can be expressed as

(V24 F) (V2 +2F) MR =0 (11.1.29)

where (7 = 1,2)

M= -6+ (1) /& + & (11.1.30a)

_ 35Gh 17 n 70 Gh
51_—3—(1 T ) &=5—  (111.300)

Since M is negative, it does not lead to a feasible buckling solution.
Thus, the buckling equation of Reddy polygonal plate is governed by

(V2 +2f) MR =0 (11.1.31)

For polygonal plates with simply supported edges, the TSDT
requires the specification of the following boundary conditions:

wl=0, ME=0 (11.1.32)

In view of Egs. (11.1.31), (11.1.32), (11.1.16), and (11.1.19), it follows

that
NK

R
- — 11.1.33
or, in view of the expressions for A® and AX, we obtain
NE(1+
NR = ( 7°G") (11.1.34)

1+ A Gh
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Figure 11.1.2 shows a comparison of the buckling loads predicted by
the two theories for a simply supported, isotropic (v = 0.3) polygonal
plate. Both the FSDT and TSDT predict virtually the same buckling
loads.

100 L e el bbby e bl e el ety LLred el
8 8.0—~ L
2 1 .
o0 .
£ ] Kirchhoff (CPT) g
€ 60 i
D B -
Fal - -
o]
9 . -
(3]
~ 0 -1 L
9 0— -
g 4 i
£ - L
E 1 Reddy (TSDT) —
= 20 - =
— Mindlin (FSDT) |
J L
] i
070 TTTT 1717171 'l TTI T T 7177 I T T 17—[—rv rTrrrrr ! IBAREREREE '
0.0 2.0 4.0 6.0 8.0 10.0
Kirchhoff buckling load

Figure 11.1.2. Comparison of the buckling loads of a simply supported
plate as predicted by the Mindlin and Reddy plate
theories.

It should be remarked that the relationships developed in this
section are valid only for simply supported polygonal plates under
uniform inplane forces (i.e., the same uniform load applied on all sides).
For example, the relationships in Egs. (11.1.22) and (11.1.34) do not
hold for a simply supported rectangular plate subjected to biaxial loads
(see Figure 11.1.3)

Neg =N, Ny =7N (11.1.35)
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I
]

T
L

.\' xx

]

Figure 11.1.3. Rectangular plate under biaxial compression.

For this case, a relationship between the Kirchhoff and Mindlin plate
can be derived using the solutions of the Kirchhoff plate theory and the
Mindlin plate theory (see Timoshenko and Gere 1961, Herrmann and
Armenakas 1960, and Reddy 1997a, 1999a)

_ Dn? (s2 + m?)?

N¥(m) = 11.1.36
(m) s2b% (ys? + m?) ( )
D 2 (.2 2\2 1
NM(m) = DT &+ m) ~|  (11.1.37)
$2b% (vs? +m?) {1+ k(1 + Br)
where m is the number of half waves in the z—direction, and
a h?
== = 11.1.38
Ty TR, (1-v) ( )
Although NM can be expressed in terms of N¥ as
1
NM(m) = NK(m 11.1.39
(m) ( 1+ kmw2(1 + %3) ( )

they do not necessarily correspond, in general, to the same number of
half waves m. This is because N™(m) contains an additional factor
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involving m. In cases in which both theories yield the critical buckling
load (i.e. the minimum buckling load) for the same half wave number
m, it is possible to arrive at the following relationship

NK

472(1—4)D
14‘21{(}11[1+ 1_%]

NM = (11.1.40)

Note that Eq. (11.1.40) is independent of the aspect ratio s and the
half-wave number m. When v = 1 (i.e. uniform compression), the
relationship in Eq. (11.1.40) reduces to the one in Eq. (11.1.22).

For buckling of rectangular plates under uniform in-plane shear
load, Wang, Xiang, and Kitipornchai (1994) developed an approximate
relationship in the same form as in Eq. (11.1.22):

M _ N¥

—— (11.1.41)
(1 + F2%5)

The preceding form of the formula must be used with the values of
the modification factor f given in Table 11.1.1 for various boundary
conditions. These values were generated using a curve-fitting exercise.
A detailed comparison study between the solutions furnished by the
formula and the solutions obtained from the Rayleigh-Ritz method
assured that the maximum difference is 2.5% for h/b < 0.15.
Comprehensive sets of thin plate solutions for NX are given in Table
11.1.2 for ready use in conjunction with the formula (11.1.41).

Table 11.1.1. Modification factor f for various boundary conditions of
rectangular plates under uniform shear load.

Boundary conditions Modification factor f
SSSS 0.72
ccec 0.94/[1+0.05(b/a)]
CCCS 0.85
CCSs 0.82
CSCs 0.74/[1-0.07(b/a)]

SCSC 0.99/[14+0.17(b/a)]
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Table 11.1.2. Critical shear load factors A = Ngyb%/(n2D) for thin
(Kirchhoff) rectangular plates.

Boundary Conditions

afb SSSS CCCC CCCS CCSS SCSC SCSC
0.5 26.18 40.99 40.38 33.01 40.02 26.84
0.6 18.95 30.70 29.61 24.57 28.83 20.20
0.7 14.73 23.76 23.29 18.88 22.51 16.61
0.8 12.13 19.29 18.58 15.38 18.15 14.56
0.9 10.46 16.47 15.47 13.17 14.86 13.33
1.0 9.324 14.64 13.38 11.72 12.57 12.57
1.1 8.540 13.44 11.96 10.75 10.95 12.08
1.2 7.983 12.64 10.96 10.09 9.778 11.75
1.3 7.581 12.10 10.27 9.640 8.923 11.51
1.4 7.287 11.73 9.771 9.324 8.290 11.14
1.5 7.070 11.46 9.417 9.100 7.816 10.78
1.6 6.907 11.25 9.161 8.935 7.459 10.51
1.7 6.784 10.94 8.973 8.803 7.189 10.32
1.8 6.688 10.64 8.830 8.642 6.984 10.18
1.9 6.611 10.42 8.711 8.431 6.829 10.08
2.0 6.546 10.25 8.534 8.254 6.710 10.01
2.5 6.033 9.859 7.890 7.806 6.305 9.642
3.0 5.840 9.535 7.695 7.609 5.928 9.482
3.5 5.734 9.401 7.487 7.453 5.793 9.339
4.0 5.625 9.298 7.412 7.378 5.685 9.273
4.5 5.582 9.264 7.323 7.306 5.600 9.225
5.0 5.531 9.225 7.288 7.272 5.568 9.244

11.2 Circular Plates
11.2.1 Governing Equations

Consider an elastic, isotropic circular plate of radius R, uniform
thickness h, Young’s modulus F, shear modulus G and Poisson’s ratio
v subjected to a uniform radial load N (see Figure 11.2.1). The
governing equations of the classical plate theory (CPT), first-order
shear deformation theory (FSDT), and third-order shear deformation
theory (TSDT) for axisymmetric buckling of isotropic circular plates
are summarized below.
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Figure 11.2.1. Circular plate under uniform compression.

CPT:

% (er) =rNKV2yR QK = % (TMrIf) - ME (11.2.1)

2,,K K 2, ,K 1 K
M§=—D(dw +zdwr>, M£=—D(udw +_dw

dr2 " r d dr2 r dr
(112.2)
FSDT:
2 (rQ¥) = rNMVR, QM = & (rMM) - MY (1123)

M
MM =p (dd)’ + qu) , MM =D (ufijTr + %(ﬁﬁ”) (11.2.4a)
dw
Q = K,Gh ((ﬁr + —d;—) (11.2.4b)

TSDT:

(Qi2 - BRf) = g; (TMTR; - arPrR;.) - (Mé% - an};) (11.2.5a)

dir (rQ ﬁrRR) +a

R
; (rPE) - d599}=rNRV2wR (11.2.5b)
T
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aD (d¢E® v D (dwh  vdw?
A/.[R — | 7 _ R J— N —_ 1 2
™ 5 (dr+r¢r> 5<dr2 T (11.2.6a)
4D [ doR 1 D{ dPw? 1dw?
MR - YT ARy X —_—— 2.
9~ 5 (U o t r¢r> 5 (U dr2 r dr (11.2.:65)
4h?D (d¢E v 2D [ dPwR  vdw?
PR (2 L ZgR) - 2.
" 35 ( ar r¢r> 28 ( 7 (11.2.6c)
4h?D ( doF R*D [ d*wR  1dw®
PR —_ 2~ T “4RY - 92
60 35 (V dr + r¢"> 28 <U dr? + T dr (11.2.6d)
R 2Gh R dwR R Gh3 dw
Q'r ¢ T' ) Rr - ¢'r T (11268)
Here the Laplace operator V2 is understood to be in polar coordinates
given by
d 1d
2o — 2 11.2.
v dr? + rdr ( 7
11.2.2 Relationship Between CPT and FSDT
Equations (11.2.1) and (11.2.2) of the CPT and Eqs. (11.2.3) and
(11.2.4a,b) of the FSDT can be reduced to
d3¢+2d2w+(/\ _i)dlﬁ 1)\ 1 =0 11.2.8
dr3 = rdr? 0 r2$+;(0+ﬁ)¢— (11.2.8)
where
—‘fi—’f, for CPT
¥ = (11.2.9)
M,  for FSDT
N—;—, for CPT
Ao = (11.2.10)
e, for FSDT

“KsGr
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Equation 9 is subject to the boundary conditions

At r=R:
¥ =0 for clamped plates
dy v
Ir + sz 0 for simply supported plates
((—ii% + :'d) = kqg1) for rotational elastic restraint
At r=0:
¥ =0 for all boundary conditions (11.2.11)

where k7 is the rotational spring constant. In view of the similarity of
the governing equations and boundary conditions, we obtain

K
NM = -——L (11.2.13)
1+ g, )

A relationship similar to Eq. (11.2.13) was obtained by Hong, Wang,

and Tan (1993) for circular plates allowing for in-plane pre-buckling
deformation.

11.2.3 Relationship Between CPT and TSDT

Introducing the higher order moment sum P as

PR+PE 4r?D1d hid
R 66 R 11.2.14
P 1+v 35 rdr( rér) - 8Vw ( )
we can write Eq. (11.2.5b) as
<rQ, - Rf) + W?‘Vz'PR = rNEOZyR (11.2.15)
The substitution of Eq. (11.2.5a) into Eq. (11.2.15) leads to
ME = NEYZpR (11.2.16)
where the moment sum M?® is defined as
R R
pmi o Mt Mgg _4D13d ymy D V2R (11.2.17)

1+v 5 rdr
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By substituting Egs. (11.2.6e) and (11.2.14) into Eq. (11.2.15), one
obtains

8Gh R 2, r| , 16D R] 4, R _ nRo2, R
— = N*V*w
15 [ (¢)+V } 105v [Tdr(¢) Viw
(11.2.18)
From Eq. (11.2. 17) we have the relation
v2{ (¢R)} = VMR VR (11.2.19)

In view of Egs. (11.2.16), (11.2.17) and (11.2.19), we may express Eq.
(11.2.18) as

V4MR _ <420(1 — U) 8135NR> VZMR (420( )NR> MR =0

h? h?
(11.2.20)
Equation (11.2.20) can be expressed in the form
(V24 M) (V24 MY ME =0 (11.2.21a)
or
(V24 AR (V2 L AEYyWof =0 (11.2.21b)
where
My=-6£/8+6& (11.2.22a)
210(1-v) 8 . g 410(1 —v) ..
=— - ———N 11.2.22b

The general solution to Eq. (11.2.21) is of the form
wh(r) = C1 + Calnr + CaJo(y/ ARr) + CaKo(y/ ARr)
+ CsJo(\/ MEr) + CeKo(y/MEr)  (11.2.23)

where Jy and Kj are the Bessel functions, and C; are constants to be
determined using the boundary conditions. We have
At r=R:
R _ dwh
T odr
wl =M, }3 = PR =0 for simply supported plates
B = PR =0, ME = ky¢? for rotational elastic restraint
At r=0:
dw?
dr

= ¢R =0 for clamped plates

d
=0 — (rME - arPR) - (Mf - aPf) =0
for all boundary conditions (11.2.24)
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where ko is the rotational spring constant. For example, boundary
conditions for the clamped plate yield Cy = C4 = C¢ = 0 and

1 1 1
i 0
0 Jo(y/ARR) Jo(\/ARR) gs = 8
0 —(ARRJ(/ARR) —(OB20(/ABR)]
(11.2.25)
or
Ji(y/AER) Ji(y/MER) =0 (11.2.26)

The same type of equation holds for the Kirchhoff plate theory with
M= A = XX Hence, by analogy, we have

K NK

_ N*(1+ 7em)
1+ A=
ﬁGh

NR

(11.2.27)

The foregoing relationship given in Eq. (11.2.27) is valid for circular
plates with any homogeneous edge condition such as (i) simply supported
edges, (ii) clamped edges, (iii) simply supported edges with elastic
rotational restraints and (iv) free edges with the centre clamped. Cases
(i) and (iv) produce identical buckling solutions. Now, the Kirchhoff
buckling solution for these plate cases may be unified and expressed as

Rp2 Ky TS
\/NDR T (\/FD 2)-}—[%—(1—1/)}.]1( NDR2)=O

(11.2.28)
where Jy(-) and J;(-) are Bessel functions of the first kind of order 0 and
1, respectively, and ko is the rotational spring stiffness with extreme
values covering the two ideal edges of simply supported (k; = 0) and
clamped (kg = 00).

11.2.4 Numerical Results

Table 11.2.1 presents the Kirchhoff, Mindlin, Reddy and Ye’s
buckling factors NR?/D for circular plates with various values of the
thickness to radius ratio h/R, elastic rotational restraint parameter
keR/D and Poisson’s ratio v = 0.3. Note that the Kirchhoff buckling
factor is independent of h/R due to the neglect of transverse shear
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deformation. Both the Mindlin and Reddy results are very close to
each other but are somewhat lower than the three-dimensional elasticity
solution of Ye (1995). Ye (1995) derived the buckling load of circular
plates from three-dimensional elasticity considerations. The analysis is
based on a recursive formulation that results in the need to solve for
only the roots of a 2 x 2 determinant for the buckling load.

Table 11.2.1. Comparison of buckling load factors for circular plate
based on different theories.

£ kR CPT FSDT TSDT Ye (1995)
0 41978 41853  4.1853

0.05 1 6.3532  6.3245  6.3245
10 12173 12.068 12.068
00 14682 14.530 14.530 14.552
0 41978 41481  4.1481

0.10 1 63532 62399  6.2400
10 12173 11764  11.764
00 14682  14.001 14.091 14.177
0 41978 4.0056  4.0057

0.20 1 6.3532  5.9231  5.9235
10 12173 10.686 10.688
00 14682  12.572 12.576 12.824
0 41978  3.7888  3.7893

0.30 1 6.3532 54610  5.4625
10 12173 92710  9.2792
00 14.682  10.658 10.671 11.024

11.3. Sectorial Mindlin Plates
11.3.1 Governing Equations

The buckling load relationship derived in the last section also applies
to sectorial plates with simply supported edges and may be applied to
sectorial plates with simply supported radial edges and either a clamped
or a free circular edge. The availability of this relationship allows easy
and accurate deduction of buckling loads of the Mindlin plates from their
corresponding Kirchhoff plate solutions.
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Consider an elastic, isotropic, sectorial plate with uniform thickness
h, radius R, included angle o, Young’s modulus F, Poisson’s ratio v, and
shear modulus G = E/[2(14v)). The sectorial plate is simply supported
along the radial edges defined by 6 = 0 and § = « and its circular edge
as well. The plate is subjected to uniform in-plane compressive load N,
as shown in Figure 11.3.1.

lt*l

Figure 11.3.1. Buckling of a sectorial plate under compressive force N.

According to the Mindlin plate theory, the equations for buckling
in polar coordinates (r,6) are given by

oMM 1oMM MM - MM
M M oMM
31(‘9’?9 +%51(‘9{:o +20 oM g (1132)
M M M
3(692; + %agg + er — NMy2M — (11.3.3)

where

8° 41 3 L1 *
ort " rdr 129602
is the Laplacian operator, w™ is the transverse displacement, and the

bending moments per unit length MM, MM M2 and shear forces per
unit length QM, Q{," are given by

V2=
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M v oM

M_ |9 V(M 9% 11.3.4

MM D[ar’Lr(’“Lao (11.3.4)
M_ | 08 1 o¢y" )

Mee = D [l/ 87‘ + r ¢r+ 80 ( 135)
m_ D —v) (88} 1 , 104}

Mo = 2 or r¢9 t o8 (11.3.6)

M
QM = K,Gh (q&i" + -ag’—r> (11.3.7)
QM = K,Gh <¢9 - (11.3.8)

where qbi” ,¢£” are the bending rotations, K is the shear correction
factor and D = Eh3/[12(1 - v?)] the flexural rigidity of the plate.

By substituting the shear forces from Eqgs. (11.3.1) and (11.3.2) into

Eq. (11.3.3), and taking note of Egs. (11.3.4)-(11.3.6), one can rewrite
Eq. (11.3.3) as

NM92yM = v2mM (11.3.9)

where MM is the moment sum defined as
MM + MM oM
Trr 100 p

14+v or

1005

M _ 1 M
MM = +=gt + ao) (11.3.10)

In view of Egs. (11.3.7), (11.3.8) and (11.3.10), one can also express Eq.
(11.3.3) as

M
K,Gh <V2wM + MD—) -~ NMg2yuM = (11.3.11)

Substituting the moment sum given by Eq. (11.3.11) into Eq. (11.3.9)
furnishes

2 [ o2 NM M
\Y% Ve + T NM w? =0 (11.3.12)
1~ K,Gh

The boundary conditions for the simply supported circular edge of
the sectorial Mindlin plate are

w’(R,0)=0, ¢'(R,6)=0, MY (R0 =0, (11.3.13)
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and for the simply supported radial edges

wM(r,0) = wM(r,a) =0 (11.3.14a)
M(r,0) = ¢M(r,a) =0 (11.3.14b)
MY (r,0) = MM (r,a) =0 (11.3.14c)

The displacement functions for the considered sectorial plates may
be assumed to take the following forms:

2nné

wM(r,0) = WM(r)sin (11.3.15)
oM (r,0) = ©M(r) sin 20 (11.3.16)
¢4 (r,0) = &' (r) cos 2nnf (11.3.17)

where n is the number of circumferential nodal diameters. In view of
Egs. (11.3.15)-(11.3.17) and Egs. (11.3.3), (11.3.7), (11.3.8), (11.3.10),
(11.3.11) and (11.3.13), the boundary conditions for the curved edge
may be expressed as

wM(R,0) =0 (11.3.18a)
and
MMR O 1 [ddM 1_,, . 2mnb
2 M _ ’ = T =
V*w¥(R,0) = —eD  -0C <——dr + r<I>, . sin —
M M

__(EWY 1w sn 2™ (11.3.18b)

dr? r dr -R

where C = —1+ [NM/(K,Gh)]. Also, the boundary conditions given in
Eq. (11.3.14) for the radial edges may be expressed as

MM
wM(r,0) =wM(r,a) =0, VZuM(r,0) = Viu(r,a) = -—F%-=0
(11.3.19)

Now, let us consider the same buckling problem using the Kirchhoff plate
theory. Based on this theory, the governing equation is given by

K
v2 <v2 + —J\LD_> wK =0 (11.3.20)
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where NX and w¥ are the buckling load and the transverse displacement
of the CPT, respectively.

The boundary conditions for the simply supported circular edge of
the sectorial plate in CPT are

w¥(R,0)=0, MX(R,0)=0, (11.3.21)
and for the simply supported, radial edges
w¥(r,0) = w¥(r,a) =0, ME(r,0) =M (r,a)=0 (11.3.22)
Using the function

2mng

wx(r,8) = W (r)sin (11.3.23)
the boundary conditions given by Eq. (11.3.22) may be written as
w¥(R,0) =0 (11.3.24a)

and

K K
W | 1dW ) sin 2774 (11.3.24b)
=R

2, K _ 1
Ve (R,G)_.( i i

and Eq. (11.3.22) may be expressed as

wX(r,0) = wX(r,a) =0, VZuX(r,0) = V2wX(r,a) =0 (11.3.25)

11.3.2 Buckling Load Relationship

In view of the governing equations (11.3.12) and (11.3.20), the
boundary equations (11.3.18), (11.3.19) and (11.3.24), (11.3.25), one
may deduce that

NM K
——=NK o NM= N (11.3.26)
1 N NK

~ K.Ch 1+ xn

This relationship, however, is not valid if the curved edge of the sectorial
plate is either clamped or free because the expressions for their boundary
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conditions according to the Mindlin and Kirchhoff plate theories do not
match exactly.

Table 11.3.1 shows the comparison studies between the buckling
load factors obtained by (a) the Ritz method and (b) the buckling
load relationship in Eq. (11.3.26). For details of the Ritz method,
the reader may refer to the papers by Wang et al. (1994) and Xiang et
al. (1993). From the table, it can be seen that the buckling results are
in excellent good agreement, thus verifying the derived buckling load
relationship. The small differences in results are due to round-off errors
in the numerical calculations.

Table 11.3.1. Comparison of buckling load factors N R? /D of simply
supported sectorial plates (v = 0.3, K; = 5/6).

a h/r Ritz Eq. (11.3.26)
.001 96.92 -

/6 0.10 75.89 75.90
0.20 45.97 45.98
.001 55.75 -

/4 0.10 48.08 48.09
0.20 34.03 34.05
.001 38.85 -

/3 0.10 34.96 34.97
0.20 26.88 26.90
.001 24.50 -

/2 0.10 22.89 22.90
0.20 19.12 19.14
.001 16.44 -

3n/4 0.10 15.65 15.70
0.20 13.78 13.84
.001 12.69 -

s 0.10 12.23 12.25
0.20 11.06 11.08

When applied to sectorial plates with simply supported radial edges
and either a clamped or a free circular edge, the relationship gives higher
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results. The relationship may, however, be made to give good results by
introducing a modification factor f to the relationship as shown below

NK
1+f (—K;G"h)
where the proposed factor is given by
h\ h
f = (al + (12§> -R' (11328)
with
a1 = 16.39+0.14a, ag = -55.44 — 0.48c (11.3.29a)

Table 11.3.2. Comparison of buckling load factors NR?/D of sectorial
plates with simply supported radial edges and clamped
circular edge (v = 0.3, K, = 5/6).

a h/R Ritz Eq. (11.3.27)
.001 122.90 -

/6 0.10 89.28 88.89
0.20 49.72 49.24
.001 76.94 -

/4 0.10 62.10 62.05
0.20 39.69 39.69
.001 57.82 -

/3 0.10 48.81 48.97
0.20 33.70 33.88
.001 40.71 -

/2 0.10 36.12 36.10
0.20 27.08 27.14
.001 31.00 -

3 /4 0.10 28.18 28.23
0.20 22.37 22.41
.001 26.23 -

s 0.10 24.24 24.21

0.20 19.83 19.78
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for sectorial plates with clamped circular edge, and

a1 = 18.9 + 7.78a + 24.150%, a3y = —59.28 — 53.94¢ — 89.570
(11.3.29b)
for sectorial plates with free circular edge. The above modification
factors were obtained via regression analysis. Tables 11.3.2 and 11.3.3
show the accuracy of the modified relationship for sectorial plates with
clamped circular edge and with free circular edge, respectively.

Table 11.3.3. Comparison of buckling load factors NR2/D of sectorial
plates with simply supported radial edges and free circular
edge (v =0.3, K, =5/6).

a h/R Ritz method Eq. (11.3.27)
.001 35.77 -
/6 0.10 30.13 30.11
0.20 22.61 22.54
.001 . 14.94 -
/4 0.10 13.53 13.54
0.20 11.52 11.57
.001 7.73 -
/3 0.10 7.22 7.22
0.20 6.51 6.50
.001 2.72 -
/2 0.10 2.61 2.61
0.20 2.45 2.45
Problems

11.1 The equation governing the buckling of a biaxially loaded Kirchhoff
plate is given by

Guk Fuwk K . K . 0K
D( drt +28:c26y2 + Oyt ) = Neo Ox? + Nuy Oy? ®)

where Nu < 0 and Nyy < 0 are the in-plane compressive forces on
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the edges of a rectangular plate. Suppose that

~

. N N, ..
Nzz = =Ny, Nyy =—-vNy, v= Nyy (“)

Iz

and the edges are simply supported. Use the Navier solution procedure
(see Problem 7.1) with

mnr nmw
w(z,y) = Whnsinanz sinfrny, am = — Bn = > (i)

where a and b are the plate dimensions, to obtain the buckling load

72D (s*m? + n?) :
(i)
b s?m? + yn?

NO(ma 'I'L) =

where s = b/a is the plate aspect ratio.

Consider the buckling of uniformly compressed rectangular plates
simply supported along two opposite edges perpendicular to the
direction of compression (see Figure P11.2) and having various edge
conditions along the other two sides. For the case of uniform
compression along the T axis, we have Nu = —Np and Ny = 0,
and Eq. (i) of Problem 11.1 reduces to

8w Fw w &*w
b (6:64 +28:z:28y2 + 8y4) =Nz

This equation must be solved for the buckling load /Ny and mode shape
w for any given boundary conditions.

simply
_ supported _
N\

i i \\ ] =

i ! ol x
e N[
—d} | (| -
[ | g |

L » 1

No — b T No

O | | nc—
+ —f ! | | S
8 a o |

- 1 >
L ] 1

y !

Figure P11.2
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Assume the solution of Eq. (i) in the form
. mm ..
w(z,y) = W(y) sinamz, am= . (i)
which satisfies the boundary conditions along the simply supported
edges £ = 0,a of the plate. Use Eq. (ii) in Eq. (i) of Problem 11.1
and obtain

N W dtw ..
4 0 2 2 — ;
(am - 3am> W - 2am7&2— + rr 0 (7i7)
Obtain the general solution of Eq. (iii) when
N, .
-Dg > afn (Z’U)

In particular, show that
W (y) = C1cosh Ay + Casinh A1y + Cs cos Ay + Cysin gy (v)

where C; (i = 1,2, 3,4) are constants, and

N, N :
()= Jag 2 +ad, (off=fah g —ckh ()

Consider the buckling of uniformly compressed rectangular plates with
side y = 0 simply supported and side y = b free (see Figure P11.3).
The boundary conditions on the simply supported and free edges are

Pw  w .
w =0, Myy:_D<V-3?+5F)=O at y=0 (¢)
Bw 3w .
Myy-:O, ‘/y=—D %3—4-(1—1/)6?3—2; =0 at y=b (’L’L)
simpl
. su;la?sgnyed .
./,‘ \ ‘\\‘
T
— —
No —i b i-— — No
— AT —
Mree
\

Figure P11.3
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Use the above boundary conditions to show that the constants in Eq. (v) of
Problem 11.2 are given by C; = C3 =0, and

(uafn - A%) Casinh Asb + (v, + X3) Casin Agh = 0
A1 [(1 —v)a?, - )\f] Cycosh A\tb + Ap [(1 —v)al + /\%] Cicoshb=0
(112)
Show that the characteristic equation associated with these equations is
A2 sinh A1b cos Agh — A1 Q2 cosh A1b sin Agb =0 (iv)
where (1 and () are defined by

Q= (/\% - uafn) , Q= (/\% + Va,zn) (v)

11.4 Derive the relationship in Eq. (11.1.40) using Egs. (11.1.36) and
(11.1.37).

11.5 Derive the governing buckling equation in Eq. (11.2.8) using Egs.
(11.2.3) and (11.2.4a,b).
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Chapter 12

Free Vibration Relationships

This chapter presents ezact relationships between the natural
frequencies of the classical Kirchhoff plate theory, the Mindlin plate
theory and the Reddy plate theory for simply supported, polygonal
wsotropic plates, including rectangular plates. The relationship for the
natural frequencies enables one to obtain the solutions of the shear
deformable plate theories from the known Kirchhoff plate theory for the
same problem. As examples, some vibration frequencies for rectangular
and regular polygonal plates are determined using this relationship.

12.1 Introduction

To derive the equations of motion, Hamilton’s principle is used. The
Hamilton principle can be expressed as

t
s (W+V-K)dt=0 (12.1.1)
t

where U denotes the strain energy, V the potential energy due to applied
loads, K the kinetic energy, and ¢; and ty are initial and final times.
The strain and potential energy functionals for the CPT, FSDT, and
TSDT are given in Chapter 6 with all the displacement components
being functions of time as well. The kinetic energy is given by

K——/QO{/_; [(a”‘) +(%‘t—2>2+(‘95‘t3) ]dz}dmdy (12.1.2)

where p is the mass density of the plate, A the plate thickness, and
(u1,u2,u3) are the displacements along the (z,y,z) coordinates. The
assumed displacement expansions, for the pure bending case, in the
Kirchhoff, Mindlin, and Reddy plate theories are given by Egs. (6.1.1a-
c), (6.1.2a-c), and (6.1.4a-c), respectively. Substituting the displacement
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expansions into Eq. (12.1.2) one can obtain the total kinetic energy in
terms of the generalized displacements of each theory, as given below for
uniform thickness homogeneous plates.

CPT:
2 2 2
1 owl Pwk 2wl
KK = _/ 0 0 0
2 QO{IO( Bt ) +12 [(81:(‘%) +<8y6‘t) ]}d”’dy
(12.1.3)
FSDT:
1 M - 2 2
KM -5/9 {IO (%"—) + 1 (6(,‘;; ) + (%—%’i) ”dzdy
0
(12.1.4)
TSDT:

. %{IO(@%%%)"’H: G+ (3)]
(5) + (5]

2 2 R
+ 20l (ag;,, g;g‘; + ac,‘;”g m)}d dy (12.1.5)

+ Olgfs

where a = 4/3h? and

h.

Li= [ p(z)‘ dz (12.1.6)
-3
L= -2al+ Is, Iy =14 — alg (12.1.7)
or

ph? ph® ph

Ip=ph, Ir= STl I 0’ =1 ( )
I ST B

= = —— ph 12.1.8b
L=g b’ Li=15r ( )

Employing Hamilton’s principle (or the dynamic version of the principle
of virtual displacements), one can derive the equations of motion
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associated with the theories [see Reddy (1999) for the details]. For free
vibration, we assume periodic motion of the form

wo(z, y, t) = w(z, y)e™* (12.1.9a)
¢=(,9,t) = pu(z, y)e™* (12.1.9b)
¢y($,y,t) = (py(x7y)eiwt (1219C)

where w is the the angular frequency, and reduce the equations of motion
to those governing free vibration. The equations of free vibration for
various theories are summarized below. In the interest of simplicity, ¢,
is used in place of ¢, and ¢, is used in place of p,.

CPT:

QaﬂzzﬁJr?_a]‘%z_Qg:o (12.1.10a)
%&Jraaiﬁ —Q¥=0 (12.1.10b)
%QxLK + %Ii = —phwiwk (12.1.10c)

FSDT:
32?1 + ?‘247% —QM = —pl—’fwmg‘ (12.1.11a)
agi% + az;gg -QM = _”1_'5w§4¢;‘4 (12.1.11b)
3?34 + 8(,?34 = —phw?,wM (12.1.11¢)

TSDT:
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_17ph3 5 g 4ph® 28wR
= Y (12.1.12b
315 “ R0+ 315 315 R 5y ( )

4
2 (ot )« (et~ )
4 (8213,{1 62P;§+62P£,)

32\ o2 om0y T op2

k3 4ph® d ¢
gmevz B _ phu?, — :ﬁs R(;; + 6”) (12.1.12c)

12.2 Relationship Between CPT and FSDT
12.2.1 General Relationship

One can derive an exact relationship between the natural frequencies
of FSDT and those of the corresponding CPT. This relationship is,

however, restricted to a class of polygonal plates in which all the straight
edges are simply supported.

Substituting for QX and QX from Egs. (12.1.10a,b) into Eq.
(12.1.10c), we obtain

Vi — %w:‘;{wx =0 (12.2.1)

Similarly, from Egs. (12.1.11a-c), we obtain

vepM _ Ke gh (MM 4+ T2M) = -%wgl MM (122.2)
K,Gh (MM + V2uM) = —phuyw™ (12.2.3)
where MM is the moment sum
MM = Mz + My (12.2.4)
1+v

Eliminating MM from Egs. (12.2.2) and (12.2.3), one obtains

3,2
4, M ph PR\ o 2 M PR PRWY 1) 2 M g
ViwT (KsGh * 12D) WMV D (12KsGh wm
(12.2.5)
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Equation (12.2.5) may be factored to give
(V24 2) (V2 +20) wM =0 (12.2.6)

where

No=&+ (-1 + & (12.2.7)

_1( _ph R\ o _ph o
=3 (KsGh * 12D> “ar G2 =P (1228

Alternatively, Eq. (12.2.6) may be written as two second order equations
given by [see Pnueli (1975))

(V2 + X)) w =, (V2+ )@ =0 (12.2.9)

where ¢ = 1 if j = 2 and vice versa.

For the hard type of simply supported (S) polygonal plate, the
boundary conditions are given by Egs. (6.3.22). Since along the straight
edge oM = 0 implies that 0¢M /8s = 0, then together with the condition
MM = 0, one may deduce that ¢ /0n = 0. In view of this fact and
Eq. (12.2.3), the boundary conditions may be given as

wM=0, MM=0, VWM=0 w=0 (12.2.10)

Note that the governing equation for Kirchhoff plates in vibration
given by Eq. (12.2.1) may be obtained from Eq. (12.2.5) by setting
Ky — oo and omitting the rotary inertia term [= (ph%w?V?w) / (12D)].
Similarly, Eq. (12.2.1) of Kirchhoff plate may be factored to give

(V- ) wK = (v2+ k) (V2 - AK) w¥ =0 (12.2.11)
A = % (wk ) (12.2.12)

For a simply supported polygonal Kirchhoff plate, the deflection and
the Kirchhoff Marcus moment are zero at the boundary, i.e.

wl =0, ME=-DV%K =0 (12.2.13)
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As pointed out by Conway (1960), and later proven by Pnueli (1975),
the frequency solutions of the fourth order differential equation (12.2.11)
and the boundary conditions given by Eq. (12.2.13) are the same as
those given by solving simply the following second order differential
equation

(V242 )w =0 (12.2.14)

and the boundary condition w¥ = 0.

Owing to the mathematical similarity of Eqgs. (12.2.9) and (12.2.10)
with Egs. (12.2.13) and (12.2.14), it follows that the aforementioned
Mindlin plate vibration problem is analogous to the Kirchhoff plate
vibration problem. Thus, for a given simply supported polygonal plate

A=Ak (12.2.15)

The substitution of Eqs. (12.2.8) and (12.2.12) into Eq. (12.2.15)
furnishes the frequency relationship between the two kinds of plates

h? ph 2
1+ 12(“”‘)”\/—'1; (1 TR= u)):l
2
h? ph 2 ph?
_ [1 -+ 12((4)}()[\/\/; (1 + m)J 3K, G(WK)N }

(12.2.16)

) 6K,G
(wy)y = —ph"’_{

where N = 1,2, ..., corresponds to the mode sequence number.

If the rotary inertia effect is neglected, it can be shown that the
frequency relationship simplifies to

- (wi
(@3N = (12.2.17)
AR g({{)—,f)’—"x—\/—

where (s is the frequency of Mindlin plate without the rotary inertia
effect. This frequency value &y is greater than its corresponding wps
but smaller than wg.
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12.2.2 Numerical Results

Graphical representations of the frequency relationships given by
Eqgs. (12.2.16) and (12.2.17) are shown in Figure 12.2.1, where v = 0.3
and K, = 5/6 have been assumed. By nondimensionalizing the circular
frequency using p, h, and D, the curves shown in Figure 12.2.1 become
independent of the plate shape! Note that as one moves along the curves
away from the origin, the plate gets thicker or the frequency value
becomes higher. It is clear from the figure that when the frequencies
are low (lower modes of frequency or thin plates), the FSDT solutions
are close to the CPT solutions. When the plate thickness increases and
for higher mode frequencies, the FSDT solutions decrease relative to
the CPT solutions. The effect of rotary inertia is also shown in the
same figure and it can be seen that this effect becomes significant for
high frequency values. The effect of shear deformation is to reduce the
magnitude of frequencies.

10 Illll_]_]_]_)ll)llllilllJllllIILlIllllJ_l‘V llLlli_AI_Ll
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I
g 83 =
g L
5} . L
g . . L
s 4 Kirchhofi i
]
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> . T +
g J Mindlin without L
S rotary inertia_—~. = |
o 7 == 5
& 4 _ = =
B~ 7 P =
3T ] = Mindlin with L
S ] 7 rotary inertia "
= ) 2 N
0 TwlﬁllllTIIIIIIIITTTW_FT_TTIIII_TIIII"T_ITIII|I|IIT(
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Kirchhoff frequency parameter

Figure 12.2.1. Frequency relationship between CPT and FSDT.
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Although the relationship given in Eq. (12.2.16) is exact only
for polygonal plates with straight edges, it has been shown by Wang
(1994) that the relationship provides reasonably accurate frequencies
for the FSDT from the CPT solutions even when the simply supported
edges are curved. This relationship enables a quick deduction of simply
supported Mindlin plate frequencies from the abundant Kirchhoff plate
vibration solutions. It may be used as a basic form in which approximate
formulas may be developed for predicting the FSDT frequencies for other
boundary conditions. Moreover, the exact relationship provides a useful
means to check the validity, convergence and accuracy of numerical
results and software.

Conway (1960) pointed out the analogies between the vibration
problem of the CPT, the buckling problem of the CPT and the
vibration problem of uniform prestressed membranes. Owing to these
existing analogies, one may choose to substitute into Eq. (12.2.16) the
buckling solution for the corresponding simply supported Kirchhoff plate
under hydrostatic inplane load, or the frequency of the corresponding
uniformly prestressed membrane, instead of the CPT frequency. In other
words, it may take any one of the following expressions:

Ny . u |D
= 2 = 12.2.18

where N is the buckling load for the N-th mode, Wy the N-th frequency
of the vibrating prestressed membrane, y the mass density per unit area
of membrane and T the uniform tension per unit length of membrane.

Owing to the importance of having exact solutions for checking
the convergence and accuracy of numerical results, highly accurate
simply supported Kirchhoff (classical thin) plate frequencies for various
polygonal shapes are presented in Tables 12.2.1-12.2.4. These Kirchhoff
solutions when used together with Eq. (12.2.16) or Figure 12.2.1 provide
benchmark Mindlin plate vibration results for analysts. The accurate
results for simply supported circular plates, annular plates, sectorial
plates and annular sectorial plates are also presented in Tables 12.2.4 to
12.2.7, respectively, as they may be used to generate the corresponding
FSDT results quite accurately.
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Table 12.2.1. Frequency parameter Ag of triangular and rectangular
Kirchhoff plates with simply supported edges (Axy =

Wny/ ph/D).
Triangle d/a b/a Mode sequence number
Liew (1993) 1 2 3 4 5 6

1/4 2/5 23.75 40.80 60.54 70.33 83.39 101.8
1/2 27.12 4947 75.18 7827 1074 117.4
2/3 33.11 65.26 88.68 106.1 141.2 156.4

1.0 4670 100.2 117.2 171.8 197.0 2204
y 2/v/3 53.78 1159 1347 198.1 229.2 252.0
/A 20 1015 1958 275.0 315.6 427.7 464.2

2/5 2361 40.70 60.55 69.78 83.42 101.5
1/2 2691 49.33 76.29 76.30 108.0 116.4
2/3 3272 65.22 87.38 106.0 142.5 154.8
1.0  45.83 102.8 111.0 177.3 199.5 203.4
2/V/3 5264 122.8 1228 2105 228.1 228.1
2.0 9857 197.4 2562 335.4 394.8 492.5

Rectangle [see Leissa(1969) and Reddy (1999)]

IEI Ak = (%) + (5)°

|l a ll where m and n are the number of half waves

Note that Mindlin (1951) pointed out that for an isotropic plate,
the shear correction factor K, depends on Poisson’s ratio v and it
may vary from K; = 0.76 for v = 0 to Ky = 0.91 for v = 0.5.
Following Mindlin’s suggestion of equating the angular frequency of the
first antisymmetric mode of thickness-shear vibration according to the
exact three-dimensional theory to the corresponding frequency according
to his theory, it can be shown that the shear correction factor is given
by the following cubic equation:

(K,)® - 8(K )%+ 82-vkK, & _, (12.2.19)
1-v l1-v

For example, if v = 0.3, then K; = 0.86 and if v = 0.176, then

K, = n%/12.
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Table 12.2.2. Frequency parameter Ay of parallelogram Kirchhoff plates
with simply supported edges [Ax = wn/ph/D; see Liew,
Kitipornchai, and Wang (1993)].

Shape a/b B Mode sequence number

1 2 3 4 5 6

1.0 15° 20.87 4820 56.12 79.05 104.0 108.9

30° 24.96 5263 7187 83.86 122.8 12238

45° 35.33 66.27 100.5 108.4 140.8 168.3

60° 66.30 105.0 148.7 196.4 213.8 250.7

1.5 15° 15.10 28.51 46.96 49.76 61.70 75.80

30° 18.17 32.49 5348 58.02 76.05 7861

ﬁ 45° 25.96 42.39 64.80 84.18 93.31 1075
le——! 60° 48.98 70.51 96.99 1273 162.3 171.1
a 2.0 15° 13.11 20.66 33.08 44.75 50.24 52.49

30° 15.90 23.95 36.82 52.64 56.63 63.26

45° 23.01 32.20 46.21 63.50 82.08 83.00
60° 44.00 56.03 72.79 92.80 1174 151.7

Table 12.2.3. Frequency parameter Ag of symmetrical trapezoidal
Kirchhoff plates with simply supported edges [/\Kb2 =
&nb%\/ph/D; see Liew and Lim (1993)].

Shape afb  ¢/b Mode sequence number

1 2 3 4 5 6

1.0 1/5 3.336 4.595 6.860 10.19 10.23 11.53

¢ 2/5 2.198 3479 5.499 5.789 7.737 9.027
l 3/5 1.654 3.066 3.728 5.394 6.037 6.156
4/5 1.356 2.833 2.879 4.560 5.086 5.192

1.5 1/5 6.158 7.269 9.507 12.85 17.30 2042

b 2/5 3.703 5.175 7.390 9.272 10.63 14.22
3/5 2.636 4.313 5971 6.575 9.787 10.05
, 4/5 2.08% 3.802 4.494 6.121 7.257 8.000
l a 2.0 1/5 9.919 10.76 13.17 16.51 20.99 26.74
| 2/5 5351 7.575 9.633 12.83 13.69 17.07

3/5 3.680 5.973 8.255 8.398 11.41 14.48

4/5 2.856 5.053 6.187 7.452 10.32 10.64
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Table 12.2.4. Frequencies of regular polygonal and circular Kirchhoff
plates with simply supported edges.

Shape Frequency parameter Axb? = &nb®\/ph/D

No. of Mode sequence number

i ___Ib sides 1 2 3 4 5 6

52.6 122 122 210 228 228
197 493 493 79.0 987 987
289 730 732 130 130 151
222 578 578 102 102 117

Jnt1(vV2k R) In;tlEV/\KR2 _ 2)gR
Jn(VAKR) + In(VAKR) (1-v)
where J,, and I, are the Bessel functions and

the modified Bessel functions, respectively,
of the first kind of order n [see Leissa (1969)]

Table 12.2.5. Frequencies of annular Kirchhoff plates with simply
supported edges [see Vogel and Skinner (1965))].

Shape Frequency parameter Agb? = @nb®\/ph/D
Number of nodal diameters m and
nodal circles n, (m,n)

a/b (00) (1,0) (20 (30) (01) (L,1)

0.1 145 167 259 40.0 51.7 56.5
0.3 211 233 302 420 818 846
0.5 400 418 471 56.0 159 161
0.7 110 112 116 122 439 441
0.9 988 988 993 998 3948 3948
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Table 12.2.6. Frequencies of sectorial Kirchhoff plates with simply
supported edges [see Xiang, Liew, Kitipornchai (1993)].

Shape Frequency parameter Axb? = @n,b%\/ph/D

Mode sequence number

8 1 2 3 4 5 6

30° 97.82 183.7 2779 288.2 412.0 431.3
45° 56.67 121.5 148.5 205.6 256.3 277.9
b 60° 39.78 9438 97.82 1685 1774 183.7
90° 2543 56.67 69.95 97.82 121.5 134.1

Table 12.2.7. Frequencies of annular sectorial Kirchhoff plates with
simply supported edges [see Xiang, Liew, Kitipornchai

(1993)].
Shape Frequency parameter Agb? = &nb%\/ph/D
Mode sequence number
a/b B 1 2 3 4 5 6

0.2 30° 97.82 183.8 2779 288.5 413.9 431.3
45° 56.73 122.3 148.5 210.1 256.3 2779
60° 40.16 97.48 97.82 177.4 179.9 183.8

L 90° 27.17 56.73 T78.68 97.82 122.3 148.5
} 0.4 30° 98.75 195.5 2779 336.3 430.5 5294
a s 45° 60.31 148.2 148.7 2604 277.8 286.1

60° 46.28 98.75 131.7 177.5 195.5 269.7
90° 36.19 60.31 98.75 120.0 148.2 148.7

0.5 30° 103.3 228.6 278.2 427.0 4388 539.8
45° 68.34 150.8 189.7 278.2 283.5 387.8
60° 55.97 103.3 176.1 178.8 228.6 278.3
90° 47.15 68.34 103.3 150.7 166.5 189.7
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On the other hand, comparing the Mindlin plate equations for the
constitutive shear forces with the ones proposed by Reissner (1945),
who assumed a parabolic variation of the shear stress distribution, the
implicit shear correction factor of Reissner takes the value of

K, = g (12.2.20)

Based on an analytical vibration solution of three-dimensional, simply
supported, rectangular, isotropic plate, Wittrick (1987) performed a
calibration of the Mindlin shear correction factor. He proposed that
the shear correction factor be given by

K, = (12.2.21)

Wittrick’s shear correction factor gives a value of 0.877 for v = 0.3,
which corresponds closely to the value of 0.88 observed earlier by Srinivas
et al. (1970) and Dawe (1978). It appears that the Wittrick shear
correction factor is the best to date as it has a simple form and allows
for the effect of Poisson’s ratio.

12.3 Relationship Between CPT and TSDT

By differentiating Eq. (12.1.12a) with respect to z and Eq.
(12.1.12b) with respect to y, summing them up and using Eq. (12.1.12c),
the governing equation of motion for Reddy plates in vibration may be
expressed as

PME | OME | ME
Oox? dy? Ozdy

_Ph o g ZRPhSZ@Q%
= o WrY W~ PhwRwT = Towh {5t gy

(12.3.1)

Next, we introduce the moment sum MF

ME Viyph (12.3.2)

_ M+ My 4D (967 04\ D
1+v 5 \ Oz dy 5
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In view of this moment sum and the moment expressions in Eqs
(6.4.11), equation (12.3.2) may be written as

VIME =

ph3 W, (0gR  OgR

V2 R 2, R_ P17 z , Y9 3
60 “ ~ PhwRw ~ Sowh | 5 E gy | (1233)
The substitution of Eqs. (6.4.11) and (12.3.3) into Eq. (12.1.12¢) leads
to

O¢R O} ph? Wl _8Gh\ sy g 2. R
K(@z oy ) T \amh T g | VW T PR

D
— —V2MR 4 = viyf 12.3.4
21V M+ 105V w ( )
where
i = 8GR 8Gh  4ph3

12.3.5
15 ' 315 R (12.3.5)
By substituting Eq. (12.3.4) into Eq. (12.3.3), one obtains

3
IVEME = —phu} (1 - f—:,c—w2> w? - 11())5 f:IC V4wl + LV2R

(12.3.6)
where

= 12.3.7
J ~3K” ( )
ph3 ph3 ph3 ) _8Gh
12.3.8
L= ( 60 R> 5K "R\ 252°F ~ 15 (12.38)
Also by substituting Eq. (12 3.4) into Eq. (12.3.2), one obtains
MR 4D 2 _ 16D R, 4D D

2 4,,R
5k 1051CV M SIC 105V

D 4D (ph3 , 8Gh 2 R
_Z 12.3.9
5 V3K (252 15 )J Viw ( )

and noting Eq. ( 12.3.6) equation (12.3.9) can be expressed as
4D 16D ph3
R_ | 2 _ P9 R

D 4D (phd 2 8Gh 16DL | _5 g
_= - - v

5 Tk <252 15 ) o4
4D D 16D D ph® ,| 4 R
5K 105 T 105K.7 105 15KR| ¥ ¥

+

+

+

(12.3.10)
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The substitution of Eq. (12.3.10) into Eq. (12.3.6) furnishes the
following sixth-order governing differential equation in terms of wh:

a1 V8T + 0, VAR + a3 V2w + aguw® =0 (12.3.11)
where
4D D 4 phd ,
=—___ 12.3.12
1= 5K 105 [H 217 15K J ( 2)

252“R~ 15 2IKT ~ 315KJ R
(12.3.12b)

D ph32 8Gh 16 ph
=_=|1-= -
n=-3 -2 (b )

4D, . 16D b 5\ L
__4D ot (1-2502) -2 (12312
W= TEPWRT 1057 PR ( BEeR| T 7 (1231%)

3
ag = ﬁwﬁ (1 _ 2) (12.3.12d)

The governing equation (12.3.11) may be factored to give

(V2 + M) (V2 + A2) (V2 + Xs) wf =0 (12.3.13)
where
g as
__ YL %2 3.14
Al 2\/6cos<3) + 3o (12.3.14a)
A2 = ~2V® cos (0 + 2") 2 (12.3.14b)
3 3a;
A3 = —2v/® cos (9 +4 ) + 2 (12.3.14c)
3 3a1
v a3 ap )2
= — =-— 4+ (2 3.
cos 725 o 3a; + (301 (12.3.15)
2
azas3 a4 as
v=232_4 (2 3.
6a?  2a; (3a1) (12.3.16)

The following boundary conditions for a simply supported edge of
a Reddy plate have been assumed (Reddy and Phan 1985)

wf =0, ¢F=0 ME =0, PE=0 (12.3.17)
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where the subscripts n, s denote, respectively, the normal and tangential
directions to the edge. Since w® = 0 implies that 5?w?/8s* = 0 and
¢2 = 0 implies that OpR/As = 0, then together with the conditions
Mupn = Ppp =0, we have 0%w?/0n? = 9¢%/0n = 0 and ME = PR = 0.
Also, it follows that 8*w?/0s? = F*wh/dn* = 0. Thus, for a simply
supported edge of a Reddy plate

wl=0, MR=0, VZf=0 Viwf=0 (12.3.18)

In view of the boundary conditions given in Eq. (12.3.18), the sixth-
order governing equation (12.3.13) of the Reddy plate may be written
as three second-order differential equations given by (see Conway 1960,
Pnueli 1975)

(v2+ ,\,-) wf=0, j=1,2,3 (12.3.19)

with the boundary condition w® = 0 along the edges. Note that
although Pnueli (1975) proved that the frequency solutions of the
fourth order differential plate equation are the same as those given
by the second order differential equation for the case of straight,
simply supported edges, the same (Pnueli’s) proof together with the
substitution of a variable (for example, let v = V2w? + Mw?) can be
used to reduce the sixth-order equation to a second-order equation.

In view of the mathematical similarity of Eqs. (12.3.18), (12.3.19),
(12.2.13) and (12.2.14), it may be deduced that

A=Ak, j=1,2,3 (12.3.20)

Based on numerical tests, it was found that the first root 7 = 1 yields
nonfeasible vibration solutions while the second root j = 2 of the Reddy
plate solution gives the lowest frequency value when compared to the
third root 7 = 3. Thus the relationship between the Reddy plate
frequency wg and the Kirchhoff plate frequency wg is given by

Wi /%’ = -2V® cos (9 + 27’) + 22 (12.3.21)

3 30,1

Upon supplying the Kirchhoff plate frequencies, the foregoing exact
relationship (12.3.21) can be used to compute the Reddy plate
frequencies. Note Eq. (12.3.21) is an explicit equation for wx as a
function of wg, but it is a transcendental equation (12.3.21) of wg for
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given wg. The transcendental equation may be readily solved using the
false position method.

Figure 12.3.1 shows a graphical representation of the relationship
given by Eq. (12.3.21). The curve in Figure 12.3.1 applies to any
polygonal shaped plate with straight, simply supported edges. It can
be seen that as the frequency parameters increase (i.e., corresponding
to increasing plate thickness or higher modes of vibration), the Reddy
solutions decrease with respect to the Kirchhoff solutions due to the
effects of transverse shear deformation and rotary inertia.

so ~L b 1 ¢ l 1 ) 1 1 L 1 1 L 1 1 1 " B T T S §

4 L
S
8 4 L
© N -
g 4.0 — —
g N L
[=¥ - r
P 3 . P ‘ F
g 4 Kirchhoff plate theory , L
Q 30 ’ -
: ’
g :
F ;
8 20— -
= 4 L
g
A - -
Q
T . -
= . Reddy third-order plate theory |
B 0 -
e 1, »

0'0 T 1T T 7T I T 1T 1 7 ] T 7 T I T T T T ! T T LI
0.0 10 20 3.0 40 5.0

Kirchhoff frequency parameter

Figure 12.3.1. Frequency relationship between CPT and TSDT.

To illustrate the use of Eq. (12.3.21), the vibration frequencies of
rectangular and regular polygonal plates are determined. Table 12.3.1
presents sample vibration frequencies of square and rectangular Reddy
plates with simply supported edges. The vibration frequencies computed
from the relationship given by Eq. (12.3.21) are in close agreement
with those obtained earlier by Reddy and Phan (1985). It should be
noted that Reddy and Phan (1985) determined their solutions by solving
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directly the governing equations of motion using trigonometric series.
Table 12.3.2 gives the fundamental frequencies of regular polygonal
Note that the
Kirchhoff results for the regular polygonal plates used in determining
the Reddy solutions are taken from Leissa’s monograph (Leissa 1993).

plates with different thickness-to-side length ratios.

Table 12.3.1. Natural frequencies @

= wb?/ph/D of square plates
(b = a) and rectangular plates (b = v/2a) with h/a = 0.1

and v = (.3.

a/b=1 a/b=1/V2
Mode Thin Reddy plate Mode Thin Reddy plate
(m,n) plate Eq.(21) Reddy (m,n) plate Eq.(21) Reddy

&Phan &Phan

(1,1) 19.739 19.065 19.080 (1,1) 29.609 28.839 28.847
(1,2) 49.348 45487 45.538 (1,2) 59.218 56.275 56.309
(2,2) 78.957 69.809 69.905 (2,1) 88.826 82.485 82.554
(1,3) 98.696 85.065 85.214 (1,3) 108.57 99.347 99.449
(2,3) 12831 106.74 107.00 (2,2) 118.44 107.61 107.73
(1,4) 167.78 133.72 134.13 (2,3) 167.78 147.38 147.61
(3,3) 177.65 140.17 140.63 (1,4) 177.65 155.05 155.31
(2,4) 19739 152.75 153.31 (3,1) 187.52 162.63 162.92
(3,4) 246.74 182.57 183.40 (3,2) 217.13 184.88 185.26
(1,5) 256.61 188.28 189.16 (2,4) 236.87 199.32 199.76
(2,5) 286.22 204.96 206.03 (3,3) 266.48 220.44 220.99
(4,4) 315.83 221.02 222.30 (1,5) 266.48 220.44 220.99
(3,5) 335.57 231.41 232.83 (2,5) 325.70 260.91 261.69

Table 12.3.2. Natural frequencies @ = wa?y/ ph/D of regular polygonal
plates with side length a and v = 0.3.

Polygon Thin Reddy plate

shape plate* h/a=005 h/a=0.10 h/a=0.15
Equilateral 52.638 51.414 48.284 44.294
Square 19.739 19.562 19.065 18.330
Pentagon 10.863 10.809 10.653 10.410
Hexagon 7.129 7.106 7.037 6.929
Octagon 3.624 3.618 3.600 3.571

*The CPT results are taken from Leissa’s monograph (Leissa 1993).
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12.4 Concluding Remarks

Presented herein are exact relationships between the natural
frequencies of Mindlin plates, Reddy plates and Kirchhoff plates. The
relationship is valid for any general polygonal plates with simply
supported edges. Once the Kirchhoff vibration solutions are known,
the Mindlin and Reddy solutions may be readily calculated from these
relationships. As examples, vibration frequencies of rectangular and
regular polygonal plates have been determined using the relationship.
The relationships may also be used for symmetrically, isotropic
laminated plates by modifying appropriately the stiffnesses. Unlike
the FSDT-CPT frequency relationship, the TSDT-CPT frequency
relationship does not need a shear correction factor. This feature
is advantageous when considering laminated plates where the shear
correction factor is not available.

Problems

12.1 The equation of motion governing the CPT is given by

8 wg Fwy g
b < ozt + 26x26y2 + oyt

621110 (94’(110 6411)0 .

where 5
_ _ poh ..
Io = poh, Ip ="~ (12)

For natural vibration, the solution is assumed to be periodic
7 t oo
’lU()(iL', Y, t) = ’lU(w, y)ew ('lZZ)

where ¢ = v/—1 and w is the frequency of natural vibration associated
with mode shape w. Obtain the Navier solution to the resulting
equation by assuming a solution of the form
. MAT . N7¥ :
w(z,y) = Wppsin —— sin it | (iv)
a

b

In particular, show that

Wmn = zl:;\/—i% [mz (§>2 + nz] (v)
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12.2

12.3
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]
a b

Use the Lévy procedure described in Problems 11.2 and 11.3 to
determine the characteristic (frequency) equation associated with the
natural vibration of a rectangular plate with sides £ = 0,a and y = 0

simply supported and side y = b free. The boundary conditions on edges
y = 0, b are, when neglecting the rotary inertia Iy and w? > o D/

where

j0=10+12

?w 0w :
w=0, Myy=—D<U5ﬁ+a—y2)=0 at y=0 (2)
&Bw Bw

—8—3-/-5"{'(1—”)61:23!/} =0 at y=b (1)

where &y, = mm/a. In particular, show that
)\291Q2 sinh /\1b Cos /\2b - )quQl cosh )\1b sin )\Qb =0 (ZZ’L)

where
/ / N .
/\1 a-rznﬁ + ama (/\‘2 TD’ (’l’U)
- va? ) , Qo= </\2 + va ) (v)
Ql = [Al ~(1-v)ad], L=[j+1-val] @)
Obtain the characteristic equation, using the Lévy solution procedure,

for a rectangular plate with £ = 0,a and y = b simply supported and
side ¥ = 0 clamped. The boundary conditions on edges y = 0, b are

w=0, 6_w___0 aty=0 (7)
0y '

8w | &2 )
w =0, Myy=—D<u5%+5y—f>=o at y=b (i)

These boundary conditions, with w? > a D/Iy, yield the frequency
equation

A1 cosh A1b sin Agb — Agsinh A;b cosAzb =0 (241)

N, .
(0= 2 a2, (o= fe2 -0k @)

where



Chapter 13

Relationships for
Inhomogeneous Plates

In this chapter, exact relationships are developed for (1) the
deflection values of sandwich plates in terms of the corresponding
Kirchhoff plates for simply supported polygonal plates under any
transverse load or for simply supported and clamped circular plates under
any azisymmetric load; (2) the bending solutions of the first-order plate
theory (FSDT) for functionally graded circular plates in terms of the
deflections of isotropic circular plates based on the classical plate theory
(CPT); (3) the buckling load of sandwich plates based on the FSDT in
terms of those of the Kirchhoff plates based on the CPT under uniform
in-plane compressive load for simply supported general polygonal plates
and simply supported and clamped circular plates; and (4) the vibration
frequencies of smply supported sandwich polygonal plates in terms of
those of polygonal Kirchhoff plates with the same boundary conditions
and loads.

13.1 Deflection Relationships for Sandwich
Plates

13.1.1 Introduction

Sandwich plates are made up of three layers, with the top and
bottom layers (or facings) being thin although made from a high-
strength material, and the thick middle layer (or core) being made
from a relatively light and low-strength material. In all-steel sandwich
panels, the two steel facings are spot-welded onto a core of stiffeners,
which may consist of z-sections, tophats, channels, corrugated sheeting
or honeycomb-type of construction. Owing to the thick core, the use of
the Kirchhoff (classical thin) plate theory will lead to an underprediction
of the deflections, since it does not allow for the effect of transverse shear
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deformation. For global responses such as maximum deflection, buckling
loads, or vibration frequencies, the first-order shear deformation theory
yields reasonably accurate solutions.

Here we present exact relationships between the deflection of
sandwich Mindlin plates and their corresponding Kirchhoff plates. The
sandwich plates considered here can either be (i) simply supported (S)
plates of general polygonal shape and under any transverse loading
or (ii) simply supported (S) and clamped (C) circular plates under
axisymmetric loading. As the relationships are exact under the
assumptions used in the plate theories, one may obtain exact deflection
solutions of sandwich plates if the Kirchhoff plate solutions are also
exact. The relationships should also be useful for the development
of approximate formulas for plates with other shapes, boundary and
loading conditions, and may serve to check numerical deflection values
computed from sandwich plate analysis software.

13.1.2 Governing Equations of Kirchhoff Plates

The well-known governing equation for isotropic Kirchhoff plate
bending problem is given by

DVl =¢ (13.1.1)

where D = Eh3/[12(1 — v?)] is the flexural rigidity of the plate, h the
thickness, £ the Young’s modulus, v Poisson’s ratio, wé< the transverse
deflection of the mid-plane, and g is the transverse load. The equation
can be written in terms of the rectangular coordinates (z,y) or the radial
coordinate r by appropriately selecting the biharmonic operator V4 or
the Laplace operator V2

32 62

Vi= 322 + 52 for polygonal plates (13.1.2)
, 02 10 .
Ve = ) + oy for axisymmetric circular plates (13.1.3)

Equation (13.1.1) can be written as a pair of Poisson equations [see
Egs. (7.2.1a,b)]

VIMKE = ¢ (13.1.4)

K
V2wl = M (13.1.5)



RELATIONSHIPS FOR INHOMOGENEOUS PLATES 245

where the Marcus moment M¥X is defined as [see Eq. (7.2.3a) and
(9.2.1)]

=M£+M;§=M§+M£
1+v 1+v

where (M, M) and (M., Mp) are the bending moments in the Cartesian
coordinate and the polar coordinates, respectively.

The boundary conditions associated with Eqgs. (13.1.4) and (13.1.5)
are given by

MK

(13.1.6)

wl =MK =0 (13.1.7)

in the case of polygonal Kirchhoff plates with straight simply supported
edges, and

wl =0 for S and C plates (13.1.8)
~D(1 —v) <%§%ﬁ) = p&2 <£Z—1r”{1}i) for S plates
ME = (13.1.9)

d2wk
-D (#) for C plates

at » = R for circular plates with radius R. The expressions in
Egs. (13.1.8) and (13.1.9) for M* were obtained using the boundary
conditions M,, = 0 for simply supported (S) plates and dw{/dr = 0
for clamped (C) plates. Note that for a circular plate undergoing
axisymmetric bending, the Marcus moment at the boundary takes on
a constant value. This important feature will be used later in the
derivation of the deflection relationship between circular sandwich plates
and Kirchhoff plates.

13.1.3 Governing Equations for Sandwich Mindlin Plates

Consider a sandwich plate with isotropic core and facings, and core
thickness h. and the thickness of the facings hy, as shown in Figure
13.1.1. Thus, the total thickness of the sandwich plate is h = 2hs + he.
The Young’s modulus of elasticity E, Poisson’s v, and shear modulus
G = E/[2(1 + v)] of the core and the facings will be identified with
subscripts of ¢ and f, respectively. The plate is either of general
polygonal shape or of circular shape.
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YA Axisymmetric
Transverse transverse
loading loading
X
(a) (b)
hf
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M
—

Figure 13.1.1. Geometry of a sandwich plate.

First consider the polygonal sandwich plate. Assuming that
deformations are continuous across the thickness, the moment-
displacement relations for sandwich plates are given by

l\/! ¢y
+ (VeDe + v Dg)—=— By

¢y

MM = (D,

(13.1.10a)

(13.1.10b)

MM (VveDe + v D ¢M
e 1Ds) =+ (De+ Dp)— -

1 oM oM
MII‘Z =3 [(1 = ve)De + (1 ~ vf)Dy] ( By + —a;—)(13.1.10c)
QM = K,(G.he +2Gshy) (¢x + %’—) (13.1.10d)
M M, Ow
Qy = Ko(Gche +2Gfhy) ¢y + By (13.1.10e)

where D, and Dy are flexural rigidities of the core and facings,
respectively

3}12 3hc 2
E.hd _ 2Bshy (5 + =5+ RY)

B ;= T Uf) (13.1.12)

D.=
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and (Mz,, My, ) are the bending moments, My, is the twisting moment,
(Qz, Qy) the transverse shearing forces (all measured per unit thickness),
(¢z, ¢y) the rotations of a transverse normal to the midsurface, and
K the shear correction coefficient. The assumption of equal rotation
for the core and the facings is valid, provided the sandwich plates are
constructed from relatively thin facings.

The equilibrium equations of a Mindlin plate are given by Egs.
(6.3.9a-c). By substituting for the moments and shear forces from Egs.
(13.1.10a-e) into Eqgs. (6.3.9a-c), we obtain

M
Ky(Gehe + 2Gshy) <¢;‘4 + %>

Oz
_ s o9y
= (D, + Dy) or2 + (veD. + l/fo) 520y
eyt | 04y

+% (1 ~ve)De+ (1~ Vf)Df] ( dy? + axay>(l3.1.126)

M
K(Gehe + 2Gshy) <¢§,‘4 + a&)

Oy
2 M
¢ 62¢M
= Dc D 4 cl/c =
(D¢ + Dy) 392 + (v.D +Vfo)0$6y
1 62¢M 62¢M
~ (1 - _ TV z
+2[( ve)D. + (1 uf)Df]( 522 +8:1:(9y (13.1.12b)
(Gehe +2Gshys) (MM + V2ull) = —q (13.1.12¢)

where MM is the moment sum of the Mindlin plate theory

o MM+ MM _ oM oM
(1+v)De+ (1 +vf)Df Oz Oy

(13.1.13)

Equations (13.1.12a) and (13.1.12b) with respect to z and y,

respectively, and adding the results and using Eq. (13.2.12c), we arrive
at the result

VMM = T 1.
M 54D, (13.1.14)
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The substitution of (13.1.12c) and (13.1.4) into (13.1.14) furnishes

v2MM=V2 v2 _wM+ MK - _ q
O " Ky(Gehe + 2Gshy) D.+ Dy
(13.1.15)

For a simply supported polygonal Mindlin plate, the boundary
condition is such that

whf = MM = ¢} = ¢Mn, — ¢¥n, =0 (13.1.16)

where n is the direction normal (in the zy—plane and with direction
cosines n; and ny) to the straight simply supported edge, and s the
direction tangential to the edge. Owing to the conditions My, = ¢s =0,
we deduce that 8v¢;/9s = 0. Thus from Eq. (13.1.13), the moment sum
has the boundary condition

MM =0 (13.1.17)

Equation (13.1.15) is also valid for axisymmetric bending of circular
plates, except that the Laplace operator is in polar form (13.1.3), and

2, K K
ME=_D <d wo | 1dws ) (13.1.18)

dr? r dr
dg}
dr

where ¢, is the rotation. The boundary conditions for simply supported
as well as clamped circular plates are given by

MM = + %qsi” (13.1.19)

w =0, MM = constant, C (13.1.20)
13.1.4 Relationship Between Sandwich and Kirchhoff
Plates

In view of (13.1.5), (13.1.7), and (13.1.14)—(13.1.17), we have along
a simply supported boundary

ME
K _ pqK - M _ o2, K _ 2| _, M =0
wy =M M Véwg =V ( wy + Ks(Gchc+2thf)>

(13.1.21)
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Comparing (13.1.1), (13.1.15) and (13.1.21) and the boundary conditions
in Eqgs. (13.1.16) and (13.1.17), it can be readily deduced that

wf = — 2 wl + MX
® " D.+D; ° " Ks(Gohe + 2Gshy)

(13.1.22)

Owing to the fact that the Marcus moment does not vanish at
the boundary for circular plates but takes on a constant value, Eq.
(13.1.22) must be changed to include a constant C on one side of
the equation. This constant C may be evaluated from the boundary
conditions, w(’)” = wé( = (0. Thus, for a circular plate, the deflection
relationship is given by

=D ME - ME(R)
0 _Dc-i-Df 0 Ks(Gchc+2thf)

(13.1.23)

where the Marcus moment M (R) at the boundary is given by (13.1.9).
Note that for axisymmetric loading ¢(r), the Marcus moment can be
obtained by integrating the loading function, i.e.

MK = —/%dr/q(r)r dr (13.1.24)

It is also worth noting that the second term in (13.1.23) has the same
value irrespective of whether the circular plate is simply supported or
clamped at its edges. This conclusion can be readily proven using the
fact that the difference between the deflections of a simply supported
circular plate and that of its clamped counterpart is equal to the plate

deflection due to a uniformly distributed boundary moment of the
clamped plate.

Equation (13.1.22) furnishes an exact relationship between the
deflection values of the simply supported sandwich plate and the
corresponding simply supported Kirchhoff plate, while (13.1.23) gives
the deflection relationship for circular plates. This means that the
deflection of simply supported sandwich plates can be calculated upon
supplying the deflection solution of the Kirchhoff plate and the Marcus
moment MX thus bypassing the necessity for a shear deformable
sandwich plate bending analysis. Note that the deflection solutions
of simply supported polygonal and axisymmetric Kirchhoff plates are
available in the literature. If the deflection results are not available,
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thin plate bending analysis need only to be performed, and the sandwich
plate solutions calculated from the derived relationships.

13.1.5 Examples

The use of the foregoing deflection relationships is illustrated using
an equilateral triangular plate example and a circular plate example.
First, consider a simply supported, equilateral triangular sandwich plate
of side length 2L+/3 as shown in Figure 13.1.2 (see section 7.3.1). The
plate is subjected to a uniformly distributed load of intensity go. The
deflection and Marcus moment of this Kirchhoff plate are given by [see
Egs. (7.3.1) and (7.3.2); Timoshenko and Woinowsky-Krieger (1969)
and Reddy (1999)]

k_ QL[5 .o (2, - i}(f--Q_‘2> 13.1.25
“’0—64D[x e (2 47) + 55| (5~ 2 - 9°) (13129

K_ oz k_ L[ s o0 (2 oy, 4
MT = —DVuy = [a: 3zy (:I: y)+27 (13.1.26)

where Z =z /L and § = y/L.

Figure 13.1.2. Simply supported equilateral triangular plate.

Using (13.1.22), the deflection surface of the uniformly loaded
equilateral triangular sandwich plate is given by

L4 _ 4
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232 _ 13.1.27
X 9 z v+ Ks(Gehe + Qthf) ( )

Next, consider a circular sandwich plate under an axisymmetric
linearly varying load. The load is zero at the centre and increases
linearly to qo at the edge as shown in Figure 13.1.3. The plate can
be either simply supported or clamped at the edge.

e
4o

hj T Y YYYTEIT VY B B R A R
i':%‘i e
FErL . O'

R R

Yz, wo(r)

Figure 13.1.3. Circular plate under axisymmetric linearly varying load.

The deflection solutions for such loaded Kirchhoff circular plates are
determined by Markus and are given by
qoR* [3(6+v) _ 5(4 5
p s [(H:) éﬁ’% 2(%) ] , for S plate
wk = 5 (13.1.28)
£ [3 5(% ) +2(%) ] , for C plate

The Marcus moment is thus given by

q 2 2( 2 3
ME DV s [ (14::) -=5 (';?) ] , for S plate

1‘% [2 -5 (-}%)3] , for C plate

(13.1.29)
At the plate edge r = R, the Marcus moment is given by
@B (=v) g0 S pl
e plate
ME(R) = { ® (2“ ) (13.1.30)
—9%, for C plate
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Using (13.1.23), the defelction of such loaded circular sandwich plate
is given by

R? 3(6 5(4 r\2 r 5
(o [F - S () +2 ()]
R? 3
+ Rz |1~ (3)°], for S plate
wg = (13.1.31)

R4 r\2 5
wbeoy 35 (R)° +2(R)°]
R? 3

| T TRk TR [1 - (%) } , for C plate

Note that the deflection component due to the shear deformation is the
same for both simply supported and clamped plates as discussed earlier.

13.1.6 Relationship Between Sandwich and Solid Mindlin
Plates

The foregoing derivation applies to solid Mindlin plates as well. By
letting the thickness of the facings hy = 0 and h = h (i.e. Dy =0,
D. = D), the sandwich plate becomes an isotropic, solid Mindlin plate
of thickness h, Poisson’s ratio v, and Young’s modulus E. Thus the key
equations (13.1.22) and (13.1.23) reduce, respectively to

wé( + -RASL% , for simply supported polygonal plates

K_ aqK .
wg + M K_;Mh. Bl | for circular plates

where wys is the deflection of the solid Mindlin plate.

In view of Egs. (13.1.22), (13.1.23), and (13.1.32), the rela{ionship
between sandwich and solid Mindlin plate deflections is given by

wt =

(13.1.32)

D
[wé” - <m> w{,{} (Gehe +2Gshg) = (wi — wif)Gh (13.1.33)
One may obtain the sandwich plate deflection from the Kirchhoff and
solid Mindlin plate deflections using (13.1.33) without the need of the
Marcus moment and vice versa.
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13.2 Deflection Relationships for Functionally
Graded Circular Plates

13.2.1 Introduction

Fiber-reinforced composites have a mismatch of mechanical
properties across an interface due to two discrete materials bonded
together. As a result, the constituents of fiber-matrix composites are
prone to debonding at extremely high thermal loading. Further, cracks
are likely to initiate at the interfaces and grow into weaker material
sections. Additional problems include the presence of residual stresses
due to the difference in coefficients of thermal expansion of the fiber
and matrix in the composite materials. These problems can be avoided
or reduced by gradually varying the volume fraction of the constituents
rather than abruptly changing them across an interface. This gradation
in properties of the material reduces thermal stresses, residual stresses,
and stress concentration factors. Furthermore, the gradual change
of mechanical properties can be tailored to different applications and
working environments. Such materials, termed functionally graded
materials (FGMs), were first introduced by a group of scientists in
Sendai, Japan in 1984 [1,2].

Functionally graded materials are inhomogeneous materials in which
the material properties are varied continuously from point to point. For
example, a plate structure used as a thermal barrier may be graded
through the plate thickness from ceramic on the face of the plate that
is exposed to high temperature to metal on the other face. This is
achieved by varying the volume fraction of the constituents i.e., ceramic
and metal in a predetermined manner. The ceramic constituent of the
material provides the high temperature resistance due to its low thermal
conductivity. The ductile metal constituent, on the other hand, prevents
fracture caused by stresses due to high temperature gradient in a very
short period of time. A mixture of the ceramic and a metal with a
continuously varying volume fraction can be easily manufactured [2-6].
This eliminates interface problems and thus the stress distributions are
smooth.

In this section, axisymmetric bending of through-the-thickness
functionally graded circular plates are studied using the Mindlin
plate theory, i.e., account for the transverse shear strains. Due
to nonsymmetric grading of the material through the thickness, the
bending-stretching coupling exists. General solution of the Mindlin
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plate problem for arbitrary variation of the constituents is derived in
terms of the isotropic Kirchhoff plate solution. Particular solution
are developed for a number of boundary conditions. The effect of
material distribution through the thickness and boundary conditions
on deflections and stresses are presented.

13.2.2. Formulation

Consider a functionally graded circular plate of total thickness h
and subjected to axisymmetric transverse load g. The r—coordinate
is taken radially outward from the center of the plate, z—coordinate
along the thickness of the plate, and the #—coordinate is taken along a
circumference of the plate. Suppose that the grading of the material,
applied loads, and boundary conditions are axisymmetric so that the
displacement ug is identically zero and (ur,u.) are only functions of r
and z. At the moment, we assume that £ = E(z) and v = v(2), and
their specific variation will be discussed in the sequel.

Because of the bending-stretching coupling present in functionally
graded plates, we must include the in-plane displacement along with the
bending deflection. Therefore, we will revisit the classical and first-order
theories here.

The complete displacement field of the classical plate theory (CPT)
is

ur(r, 2) = up(r) — 2——

dr
u(r, 2) = wp(r) (13.2.1)

where ug is the radial displacement and wyg is the transverse deflection
of the point (r,0) of a point on the mid-plane (i.e., z = 0) of the plate.
The displacement field of the first order shear deformation plate theory
(FST) is given by

ur(r, 2) = uo(r) + 2¢(r)
uz(r, z) = wp(r) (13.2.2)

Both of the theories are governed by the equations

_dii (rNow) — Nog = 0 (13.2.3)
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—ad? (rQr)=rgq (13.2.4)

d
E (T‘Mrr) - MBG = T'Qr (1325)

where N, and Ngg are the radial and circumferential in-plane forces and
M, and My are the radial and circumferential moments

(M

(Nrr, Nog) =/ (orr,000)dz (13.2.6)

™ ol

(Mrr, Mgg) = /

(0rr,009)2dz (13.2.7)

[SE

The plate constitutive equations of the two theories are given below.

CPT for isotropic plate:

duo

NK = And— + Am— (13.2.8)
Ng = Augd? + Au? (13.2.9)
Mf = —Dud;w;§< 12%‘1;”? (13.2.10)
M = Dmdz 2K - Du%ddi: (13.2.11)
Qf =2 [ (rMer) — M (13.212)

FST for functionally graded plate:

d F d
= All :;0 + A12 + Bnd—¢ + Bm% (13.2.13)
d d
Ngg = Al?FU— + Au + Bia—- d¢ + Bu% (13.2.14)
d d
ME = B =% - L B12 + Dud—¢ + Dm? (13.2.15)
dufy d¢o ¢

Mgg = Blz—d— + Bu + Dyp— + Du; (13.2.16)

dr
F
QF = Ass <¢ + dﬂ) (13.2.17)
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where superscript K denotes quantities in CPT and F denotes in FST.

Of course, ¢ appears only in FST. The plate stiffnesses A;;, Bjj, and
D;; are defined by

IS
(Aij’Bij)Dij) = 2h Qij(17z,z2)dz (7').7 = 1)2) (132183‘)
-3
h
2 E
Ass = K /’ = 13.2.18b
55 S —% 2(1+V)dz ( )
= = E 13.2.18
Qu =Qa = T Q12 =vQn (13.2.18¢)

where E is the modulus of elasticity, v the Poisson ratio, and K the
shear correction factor.

The strategy is to develop relations for the deflections, forces, and
moments of functionally graded plates based on the first-order shear
deformation theory (FSDT) in terms of the associated quantities of
isotropic plates based on the classical plate theory. Then the relations
developed are specialized for plates with various boundary conditions.

13.2.3. Relationships Between CPT and FSDT

From Eqs. (13.2.3), (13.2.13), and (13.2.14), we obtain

d

a8 ()2 o[£ (%)-4

> 8 (L4 )] =B [ (
dr \rdr 4o T Ay | dr

Upon integration, we obtain

d By d
—_ = =1 K 13.2.19a
o (rua) = — o (rg) + Kar (13.2.192)
and
Bu T K2
=== -4 = 13.2.19b
Uug AL ¢+ K, 5 + - ( )
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from which we can compute

dug _ _Budp K. Kz (13.2.20)

where K; and K, are integration constants. Using Egs. (13.2.19) and
(13.2.20), the forces and moments of Eqs. (13.2.13)-(13.2.16) can be
expressed in terms of ¢ as

1 1
ME = @ + 929 + =K1 + S UKo (13.2.21)
d r 2 T
dé o 1 1
f = Q— 4z - S UK 13.2.22
Mgq der + =+ S K AL ( )
1
NTF;, = 959 + }-QsKl + —-Q7K2 (13223)
NOO = Q5 3¢ + =QeKy — ——Q7K2 (13.2.24)
where
— B, _ By1 B2
1 =D AL’ 2 = Dyg "
AyoB
Q3 =Bi1 + B12, Q4 =Bia— Bn, Q5= Biza— iznu
6 =A11 + A2, Q7 =A1p - An (13.2.25)
Based on load equivalence, we have
d Fy_ @ K
- (rQf) = = (rQ¥) (13.2.26)
and after integration yields
rQF =rQX + ¢ (13.2.27)

where C; is a constant of integration. But from Eqgs. (13.2.5), (13.2.21)
and (13.2.22), we have

rQf = (TMF ) - M —Ql[ : (1;,( ¢))] (13.2.28)
Similarly,

rQK = (rMK) ME=-D [r(—j— (ii( d;" ))} (13.2.29)
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Using relations (13.2.28) and (13.2.29) in (13.2.27), we obtain

d (1d d {1d dwo
— (= = — 13.2.30
= [rdr (r dr(rd)))} b [ dr (r dr( )) (13 )
Upon integrations, we have
d d { dwf
— =-D— 13.2.31
Qldr (re) Ddr ( I ) + Cirlogr + Cor ( a)
Qo= —Dd;UO + - Cl’l‘ (2 logr — 1) + = 027‘ + - C3 (13.2.31b)

Next from Egs. (13.2.17) and (13.2.28), we have

dwf dME 1
= ~ 13.2.32
Ass (¢>+ I ) = +r01 ( )
where MX is the moment sum
K K
ME = %(%g—’ﬁ (13.2.33)

Substituting for ¢ from Eq. (13.2.31b) into Eq. (13.2.32), we obtain

D dwo Cl Cz C'3 dw{
Ass ——61-77‘—+4—§21T(210g7'—1)+2017‘+er+ Ir
K
M1 (13.2.34)
dr T

Integrating the above expression, we obtain

D C1 Q
wl = ﬁl-wé" + o, [— (1—logr)+ yw Iogr}

C; o C3 MK
-z =31 —Cy+ — 13.2.35
4911' Ql ogrT 4+ . ( )

From Eq. (13.2.31b), we have

d¢ duy | G C2_ % (13236
Qld D——d—rg—-{- { (210g7’—1)+1 7 2 ( L. )



RELATIONSHIPS FOR INHOMOGENEOUS PLATES 250

Substituting Egs. (13.2.31b) and (13.2.36) into Eq. (13.2.21), we obtain

d?w¥ C’ 1 Cy; C
MF = 0 , > [_ — ] z2 _ 8
w=—D o2 T3 2(210gr ) +1] + i
Q2 dwo
+—;_— -D—2 ar +Cl—(210g7‘—1)+02—+03— +Q3 +Q4 2

or

ME =M+ 288 () + D [L (1= 25) + (14 ) o]
K»

+%(1+Qa)—%(1—92)+93—+94
D

(13.2.37)

-

where D = 0

T C;= %‘ and so on. Similarly, we can write

i <2 + DG (v =) [ 1) (1) o

dr?
K K,

2 () + S -+l a2 2

Next we substitute (13.2.31b) into (13.2.23) and obtain

1d
NE =5 |-D= Z)°+Cl—(210gr—1)+ “Cy 4 = 03]
K K
+QG__21+Q7 2 (13.2.39)

Substituting (13.2.36) into (13.2.24), we obtain

1d
NE = Qs [ D= ;UO +01 (210gr+1) + - 02 - —-03}
K K
+ Qe—l - 22 (13.2.40)
Define r
(1 + Qz) 0

NF = (NE+ NG o (13.2.42)



260 SHEAR DEFORMABLE BEAMS AND PLATES

Then we have

ME = ME + ¢ logr + Coy + Q3A K, (13.2.43)
(14 )
and
NF = (MK + Cilogr + Cz) + QK4 (13.2.44)

This completes the development of equations for the deflections, forces,
and moments of functionally graded plates based on the first-order shear
deformation theory in terms of the associated quantities of isotropic
plates based on the classical plate theory. Thus, it remains that we
develop particular relationships for axisymmetric bending of plates with
various boundary conditions.

13.2.4 Relationships for Various Boundary Conditions

Roller-supported circular plate

Consider a solid circular plate with a roller support at r = a, a being
the radius of the plate. The boundary conditions are

dw{f
Atr=0: w=0, $=0, —L =0, Q =0 (13245
Atr=a: w=0, Nepp=0, Mp,=0 (13.2.45b)

The above boundary conditions give

o
K =2k <_f)§1£9_(“_) n %) , K2=0 (13.2.462)

allg dr 2
e K
Cy= 2D (=t 0s) dug (o) (13.2.46b)
a \1+Qs—Qg dr
K A2
co=M (@) Caa Ci=C3=0 (13.2.46¢)
A55 4

where Qg = {3625 /S%. Hence, we have the following relations between
the deflections, forces, and moments of the two theories:

ME(r) = M¥(a)
Ass

. 1x
wk (r) = Dwf(r) + + ZC’g(a2 —r?2) (13.2.47)
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QF (r) = QF () (13.2.48)
K K
N7(r) = QsD 1dwg (o) _ 1 dug (13.2.49)
a dr r dr
~ (ldwl(a) d*uff
Ni(r) = el T L 13.2.50
rr(r) QSD (a dr dT‘2 ( )
F K 1 dw(})( A l N
Mrr(r) Mrr (T) + D; dr (V Q2) + 202 (1 + Q2)
+ l-’(193 (13.2.51)
2
d?wi A 1 .
F . K 0 _ 1
Mgo(r) = Mgg(r) + D 32 (u Qz) + 202 (1 + Qg)
+ lKlﬂs, (13.2.52)

2

Hinged circular plate

Consider a solid circular plate with a hinged support at r = a. The
boundary conditions are

dwf
Atr=0: u= 0, ¢ = O, _(F = O, Qr ={ (13253&)
Atr=a: u=0, w=0, M,=0 (13.2.53b)

The boundary conditions give

2By [~ duf .
K, = 2Bu (_deo (@) @) , K3=0 (13.2.54a)

aAu dr 2
2D (v -y — §
Cp= 20 (¥ S — o) dug (a) (13.2.54b)
a 14+ €+ dr
K A2
c,=M @ _Cu i =C3=0 (13.2.54c)
Ass 4

where Qg = 5223311/ Aj1. The relations follow the same form as those
given in (13.2.47) to (13.2.52) but K3, Cy, and Cy4 take the expressions
given in (13.2.54a) and (13.2.54b).
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Clamped circular plate

Consider a solid circular plate with a clamped support at r = a.
The boundary conditions are

duwff

Atr=0: u=0, $=0, —0 =0, Q- =0 (13.2.55)

dwf
Atr=a: u=0, w=0, ¢=0, 7=0 (13.2.55b)

The boundary conditions give
K

Ki=Ky=0, Ci=Cp=C3=0, Cq= MA (9) (13.2.56)

55

Hence, we have the following relations between the deflections, forces,
and moments of the two theories:

MK (r) - M¥(a)

wf (r) = Dwf (r) + (13.2.57)
Ass
QF (r) = Q7 (r) (13.2.58)
. 1 dwf
NE(@r) = —Qsp;—&r"— (13.2.59)
. d2uw
Nog(r) = ~Qs D=2 (13.2.60)
1 dwf A
Froy — pK lawy o
ME(r) = ME(r) + D==2 (v~ () (13.2.61)
d?wl .
F _ K Q
Map(r) = Map(r) + D— (l/ - Qz) (13.2.62)

Clamped-free annular plate

Consider an annular plate with a clamped support at the inner edge
r = b and free at the outer edge r = a. The boundary conditions are

dwl
Atr=b: u=0, w=0, ¢=0, ?=0 (13.2.63a)
Atr=a: Ny =0, My =0, @r=0 (13.2.63b)

The boundary conditions give

(13.2.64a)

N o e Lo ) R ¢
1 = 98¢5 b2Q7 _ (1296 ’ 2 2
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K b2
C1 =0, Co=—2ad1D d—wc(%a)-, Cy = ——QCE (13.2.64b)
K A 12
Co= 20 G 1 o 0gt) (13.2.64c)
A55 4
di = v —Osdy (13.2.64d)
a? (1+ ) + b2 (1= 2) + Qsda(a? - 82)
a293 - bZQ4
= - .2.64
da <b297_a296 (13.2.64e)

Clamped-clamped annular plate

Consider an annular plate with clamped inner edge r = b and outer
edge r = a. The boundary conditions are

dwff
Atr=b: u=0, w=0, ¢=0, = =0 (13.2.65a)
dwff
Atr=a: u=0, w=0, ¢=0, dr" =0 (13.2.65b)
The boundary conditions give
Ki=K,=0, C = U (MK(b) -~ MK(a)) (13.2.66a)
’ As5Cs
blogh—-a’loga 1
Co = ( 25 + 5 Cy (13266b)
a?v? a
Co=|—27 1502
3 (2((12 yy log 2 Ci (13.2.66¢)
a? + b2 ) a’b? (logg - (log ab)2) R
Cy = -
4 6 T34, 8%t 4062 — a?) !
MK K
(a) + M7 (b) (13.2.66d)

2 _p2 9) 212 2
C= ¥ e _ii_j (1og %) (13.2.66¢)
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Clamped-roller supported annular plate

Lastly, consider an annular plate with clamped inner edge r = b and
roller supported at the outer edge r = a. The boundary conditions are

duwff
Atr=b: U=O, ’ll)=0, ¢=0, ?IO (132673.)
Atr=a: w=0, Np=0, M,=0 (13.2.67b)

The boundary conditions yield

dwl< (a)
—2a D——D—--{-C (21na—1)+C2a +2C'3
13.2.
Qs ( b297 mpToR ) (13.2.68a)
2 _
Ky = —Q-Kl, G = M, Co= h-Ge (13.2.68b)
2 €1e4 — €3 €2
2 2

Cs = —ClTb (2Inb-1) — 0221’ (13.2.68¢)

MEB)+ ME(a) & a? 9!

- - —(1-1 —Inab
Cq s + = 4 (1 Inb) + 1 (1 na)—i—l455 na
A~ 2 2 ~
_ 02(_‘1%1’_2 _ %03 Inab (13.2.68d)

b? a? b? b

e =7 (1 -1Inbd) - T (1 -1na) +Z(2lnb— l)ln—(-z-
p S b (13.2.68¢)
A55 a

2 2 _ 2
UL ot (13.2.68f)

2 a 4

1 A 1 - b? -
=7 (1+92)1na+z (1—92) +:1—a—2 (1—92)

1 A b? -
=3 (1 + Qz) + p (1 - Qz)] (13.2.68¢g)

ME(a) — MK (b) D dwo (a)

- _Pya, 13.2.68h

fi y h, fo=- (92 V) = ( )

13.2.5 Illustrative Examples

To illustrate the usefulness of the relationships derived herein, we
provide some examples. Consider the case of circular plates under
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uniformly distributed transverse load of intensity gg. The classical plate
solutions are given by (see [27,28])

W) % [(z)“ -9 (%’) (5)2 + %‘;’] , for simple support
0 = 2

L% [1 - (L )2} , for clamped support
(13.2.69)

Now consider a functionally graded plate whose modulus is assumed
to be of the form

EF(2) = Ep, (ﬁ)" +E. [1 - (h _ QZﬂ (13.2.70)

2h 2h

and vF = v (i.e., independent of z). Here E. and E,, denote the moduli
of two different constituents, namely ceramic and metal, n is the power-
law exponent which is related to the volume fraction of ceramic and
metal, and h denotes the total plate thickness.

We have

= (- @) (5 v

1
h? n
_ C my v
B”—< “ ”) 2 ((1+n)(2+n))
h3 3(2+n+n?)
D.. ={0¢ -~ Qom) — 13.2.71
R CA) 2((1+n)(2+n)(3+n) +Q”24 (13.2.71)
or
h(Em + nE)
Ap = Agy = —~—m T e/
N8 =0y -9
hK?(E,, + nE.)
A :A — m C
T A YE R
Bi1 =By =
TR T e+ )1 -2
k3 [n(n? + 3n + 8)E. + 3(n? + n + 2)Ey]
Dy =Dy = o)
12(1 +n)(2 +n)(3+n)(1 —v?)
Ay =vAn, Bip=vBin, Di2=vDy (13.2.72)
If we define
3
Dy = B G= Ee E, = Em (13.2.73)

12(1 - 12y’ 21+ )’ E.
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then the expressions in (13.2.72) can be written as
Ay, = 12(n+E,)D Ags — K:Gh(n + E,) L= 6n(1 — E.)D
h2(1+n) ° (1+n) h(1 4+ n)(2+n)
[n(n?+3n+8) +3(n?+n+2)E.] D
(1+n)(2+n)(3+n)

Dy = (13.2.74)
The constants ; have the following values: Q5 = 23 = 0 and
B2
Q =Dy - =2
1 11 il
D[(n* + 4n3 + Tn?) + 4E,(n® + 4n?% + Tn + 3E,)]

(n+ E;)(3+n)(2+n)?

6n(l — E,)(1+v)D
h(1+n)(2+n)
6n(l — E;)(1 —v)D

h(1+ n)(2 + n)
O = 12(n+ E- )(1+v)D

ST TR +n)

12(n + E,)(1 - v)D
- R2(1+n)

3(1 - E.)n%3+n)(1+v)

1+n)[7Tn? + 4n® + nt + 4E.(3E, + Tn + 4n? + n3)]
(13.2.75)

Q4 =B1g— By = —

7 =

% =¢

By substituting the CPT solution given by Eq. (13.2.69) into

(13.2.47) and (13.2.57), one obtains the deflection of the FGM plate
as

goa*

_ D (T 4 2(3+I/) (Z>2+5+I/

--Q_l (a) 1+v/ \a 1+v

o (5
T3k~ \a

+
_ 4D ( f ) 1- (f ’ (13.2.76)
(1 +ve) \1+v+ % a
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where 0 f 11 ted ed
_ =0, or roller supported edge 13.2.77
n {= 1, for simply supported edge (13.2.77)
For clamped edge, we obtain
oF = 64w{ D,
0 qoa?

2
5[0 = O -0

1+n
13.2.78
8 (E'r“‘n) ( )

In the above equations K, denotes the shear correction factor.

Considering a Titanium-Zirconica FGM plate, i.e., v = 0.288, E, =
0.396, and taking K; = 5/6, the maximum deflection parameters at the
plate center (r = 0) are tabulated in Tables 13.2.1-13.2.3 for various
values of n and h/a ratio. The deflection parameter increases with
increasing h/a ratios but decreases with increasing values of n.

From Egs. (13.2.48)-(13.2.52) and (13.2.59)-(13.2.62), the stress
resultants for the FGM plates are (since 25 = Qg = Ca = K1 = 0)

NE =0, NG =0, ME=ME ML =M (13.2.79)

Table 13.2.1. Maximum deflection u‘)g of functionally graded roller-
supported circular plates (v = 0.288, E, =0.396, K; =
5/6).

Thickness radius ratio, h/a
n 0.0 0.05 0.1 0.15 0.2
10.368 10.396 10.481 10.623 10.822

0

2 5.700 5.714 5.756 5.826 5.925
4 5.210 5.223 5.261 5.325 5.414
6
8

4.958 4.970 5.007 5.069 5.155
4.800 4.812 4.848 4.909 4.993
10 4.692 4.704 4.739 4.799 4.882
15 4.527 4.538 4.573 4.632 4.714

(Table 13.2.1 is continued on the next page).
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(Table 13.2.1 is continued from the previous page).

Thickness radius ratio, h/a

n 0.0 0.05 0.1 0.15 0.2
20 4.434 4.446 4.480 4.538 4.619
25 4.375 4.386 4.421 4.478 4.559
30 4.334 4.345 4.379 4.437 4.517
35 4.303 4.315 4.349 4.406 4.486
40 4.280 4.291 4.326 4.383 4.463
50 4.247 4.258 4.293 4.349 4.429

102 4.178 4.189 4.223 4.280 4.359

108 4.113 4.124 4.158 4.214 4.293

104 4.106 4.118 4.151 4.208 4.286

10° 4.106 4.117 4.151 4.207 4.285

Table 13.2.2. Maximum deflection 21'15‘ of functionally graded simply
supported circular plates (v = 0.288, E, =0.396, K, =

5/6).

Thickness radius ratio, h/a
n 0.0 0.05 0.1 0.15 0.2
10.368 10.396 10.481 10.623 10.822

0

2 5.483 5.497 5.539 5.610 5.708
4 5.102 5.115 5.153 5.217 5.307
6
8

4.897 4.909 4.946 5.007 5.094
4.761 4.773 4.810 4.870 4.954

10 4.665 4.677 4.712 4.772 4.855
15 4.514 4.525 4.560 4.619 4.701
20 4.426 4.438 4.473 4.531 4.612
25 4.370 4.381 4.416 4.473 4.554
30 4.330 4.342 4.376 4.433 4.513
35 4.301 4.312 4.346 4.404 4.484
40 4.278 4.289 4.324 4.381 4.461
50 4.246 4.257 4.291 4.348 4.428
102 4.178 4.189 4.223 4.280 4.359
108 4.113 4.124 4.158 4.214 4.293
104 4.106 4.118 4.151 4.208 4.286

10° 4.106 4.117 4.151 4.207 4.285
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Table 13.2.3. Maximum deflection u')(l): of functionally graded clamped
circular plates (v = 0.288, E, =0.396, K, = 5/6).

Thickness radius ratio, h/a
n 0.0 0.05 0.1 0.15 0.2
2.525 2.554 2.639 2.781 2.979

0

2 1.388 1.402 1.444 1.515 1.613
4 1.269 1.282 1.320 1.384 1.473
6
8

1.208 1.220 1.257 1.318 1.404
1.169 1.181 1.217 1.278 1.362

10 1.143 1.155 1.190 1.250 1.333
15 1.103 1.114 1.149 1.208 1.289
20 1.080 1.092 1.126 1.184 1.265
25 1.066 1.077 1.112 1.169 1.250
30 1.056 1.067 1.101 1.159 1.239
35 1.048 1.060 1.094 1.151 1.231
40 1.043 1.054 1.088 1.145 1.225
50 1.034 1.046 1.080 1.137 1.216

102 1.018 1.029 1.063 1.119 1.199

103 1.002 1.013 1.047 1.103 1.182

104 1.000 1.011 1.045 1.101 1.180

10° 1.000 1.011 1.045 1.101 1.180

13.3 Buckling Load Relationships for Sandwich
Mindlin Plates

13.3.1 Governing Equations

Here we extend the buckling load relationships developed for
isotropic polygonal plates in Chapter 11 to polygonal sandwich plates.
The governing equations of the Kirchhoff and Mindlin plates are given
by Egs. (11.1.3a-c) and (11.1.4a-c), respectively. They are repeated for

ready reference. The buckling equations for Kirchhoff plates are given
by

oMK N oME

— K:
o 5 Q¥ =0 (13.3.1a)
0 fy; d ?ﬁ/ K
N TR -QF=o0 (13.3.1b)
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oQF | 0Qy
oz oy

Where the moment resultants (Mzg, My,, Mcy) are related to the
deflection wg by Egs. (6.2.22a-c).

= NKg2yX (13.3.1¢)

In the case of Mindlin plates under hydrostatic in-plane loads, the
buckling equations are

M 6MM
_agﬁm + __a;y QM =g (13.3.22)
M M
__agi_x_y + ___3Mw QM= (13.3.2b)
M
Q Qy = NMg2yyM (13.2.2¢)
Oor By

The relationships between the force and moment resultants (Ms and
@s) and the generalized displacements (wyg, ¢z, $y) of sandwich plates
are given by Eqs. (13.1.10a-¢).

Substitution of Eqs. (13.1.10a-e) into Egs. (13.3.2a-c) yields the
result

M au}M
Ks(Gchc + 2thf) ¢; + —51:—'

i 0%y
(UCDC + Ufo) 520y
polt ot
+§ [(1—ve)D.+ (1 - l/f)Df] (—555— + 873:; (13.3.3a)

= (D, +Df)

Ky(Gehe + 2Gshy) (qS + %“’y—)

2¢M 2 M

2 2
4211~ w)De+ (1= ) (8 o 2 )(13.3.%)

Oz? 9z0y

(Gehe +2Gshy) (MM + VPuM) = NM 9w (13.3.3¢)
where MM is the moment sum

MM+ M) _ 9¢M . o

= 13.3.4
(14 ve)D: + (1+ Vf)Df Oz Jy ( )

MM =
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Differentiating Eqs. (13.3.3a) and (13.3.3b) with respect to z and y,
respectively, and adding the results and using Eq. (13.3.3c), we arrive
at the result

(V2 +2%) V2 =0 (13.3.5)

where

NM

A\ = (De + Dy) {1 — [NM/K,(Gehe + 2G1hy))}

(13.3.6)

The equation governing buckling of an isotropic Kirchhoff plate is
given by [see Reddy (1999)]

2 NK 2, K
V +—1)— Vw =O (1337)

where w¥ is the deflection of the Kirchhoff plate and N¥ is the
associated buckling load.

13.3.2 Buckling Load Relationship

For simply supported, isotropic polygional plate the following
boundary conditions hold on simply supported edges:

w¥ =0, MK = V2" =0 for the Kirchhoff plate (13.3.8)
wM =0, MM =v?uM =0 for the Mindlin plate (13.3.9)

Comparing Egs. (13.3.5) and (13.3.7), and in view of the boundary
conditions (13.3.8) and (13.3.9), it follows that

NK

2
A D

(13.3.10)
or

D1+ Ds;NKy 71~ DK (Gche + 2Ghy)

(13.3.11)

which provides a relationship between the buckling load N¥ of a
simply supported, solid polygonal Kirchhoff plate and that of a simply
supported, sandwich Mindlin plate. Equation (13.3.11) is also valid for
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solid Mindlin plate. By setting hy = 0 and omitting the subscript ‘¢’
on quantities, we obtain the relationship between the buckling loads of
solid polygonal Mindlin and Kirchhoff plates

NK 1

NS=— " s = ———
ATD.NF) . D= %.an

(13.3.12)

Finally, in view of Egs. (13.3.11) and (13.3.12), we have the
relationship between the buckling loads of Mindlin sandwich and solid
plates

NM/(D. + Dy) 3 NS/D
1— NM/[Ks(Gche + 2Gshg)] 1 — NS/(K,Gh)

(13.3.13)

13.4 Free Vibration Relationships for Sandwich
Plates

13.4.1 Governing Equations

This section is concerned with the free vibration of general polygonal
sandwich plates based on the first-order shear deformation plate theory.
The polygonal plate considered is simply supported on all its straight
edges. It will be shown herein that the vibration frequencies of such
sandwich plates may be computed from their well-known Kirchhoff plate
counterparts via an exact relationship. This exact relationship should
be useful for the development of approximate vibration formulae for
sandwich plates of other shapes, boundary and loading conditions.

Consider an arbitrary polygonal sandwich plate with simply
supported edges (see Figure 13.1.1). On the basis of the first-order
plate theory and upon assuming that the deformation are continuous
through the plate thickness, the stress-displacement relations are given
by Eqgs. (13.1.1a-e).

The equations of motion of the plate are

oMM oMM o?eM
e ¢ R QY = (keI e (134)
oMM aMM %y
T+ — Q) = (pele + prTy) 8 (13.4.2)
M aZ,wM
gm 6(232 (pele+205Ip) =57~ (134.3)
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where ¢ is the time, p, and py are the material densities of the core and
facings, respectively, and

_ El R
Ptz 712
Efl 2 3 3
Dy = (1_fuf§)’ Iy = 3hy h}+zh§+§hchf (13.4.4)

Note that the terms on the right side of Egs. (13.4.1) and
(13.4.2) account for the rotary inertia effect. The bending moments
(Mgz, My, Myy) and transverse shear forces (Qz,Q,) are known in
terms of the generalized deflections through Egs. (13.1.10a-e).

By substituting Eqs. (13.1.1a-e) into equations (13.1.1)-(13.1.3),
the three plate equations for vibration can be written as

(De+ Df)——- ¢y + (veD, —+—1/D)2M
oz ¢ ff St ay
L] p2pM B2yt
:2- [(1 - VC)D + (1 - I/f)Df] (—-——'ayz + 3:063/

2 M

— Ks(Gehe + 2Gghy) ¢M+M = (pele + 1)‘9
s\Ucllc fif T oz Pc Pfrif 8t2

(13.4.5)

(D + Df)

2 M 2 M
3¢z
ayg (I/CD +1/fo)

Oz0y
2 /M M
(1 =ve)De + (1 — vg)Dy] (6 % %)

+ 522 T Bzoy

| —

a M 62¢M
— Ky(Gehe + 2Gshy) <¢3‘ + T?;T) = (pele + psl7) 53
(13.4.6)
2., M

i
(Gohe +2Ghy) (MM + V2M) = (pL + 2pr,«)—£—2—

(13.4.7)

where MM is the moment sum [see Eq. (13.1.13)]

MM+ M} _ oM N ooy

MM = =
(1+ve)Dc+ (1 +v5)Dy oz Oy

(13.4.8)
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For free vibration (i.e., harmonic motion), the displacement and
rotations are assumed to be of the form

wM(z,y,t) = oM (z,y) e*Mt (13.4.9a)
¢z (2,9,8) = 8 (z,y) et (13.4.9b)
by (z,y,1) = $0 (z,y) M (13.4.9¢)

where w)y is the circular frequency of the plate and the over bar denotes
that the amplitudes of natural vibration and they are functions of only
the spatial co-ordinates z and y. In the interest of brevity, in the
following discussion, the over bar on the variables will be omitted.

Substitution of Egs. (13.4.9a-c) and differentiating Egs. (13.4.6)
and (13.4.7) with respect to z and y, respectively and adding them, and
using Eq. (13.4.8), we obtain

(De + D) VEMM — Ky(Gehe + 2Gyhg) (MM + V2uM)
= —(pcle + pslf)wi MM (13.4.10)
Moreover, the substitution of Eqgs. (13.4.9a-c) into Eq. (13.4.8) yields

Ky(Gehe+2Gshy) (M + V2uwM) = ~(pche + 2pshs )iy (13.4.12)

By eliminating MM from Egs. (13.4.10) and (13.4.11), one obtains

VM 4

Kg(Gchc + 2thf) (DC + Df)

pehe +20shs | (pche + prhs)oly 2. M
- 1| wyw” =0(13.4.12
(D + Df) | Ks(Gche + 2Ghy) M ( )

pchc + 2pfhf pele + Pfjf] wﬁdvsz

which can be written as

(V24 )M =0, wM=wM+wd, j=12  (13413)
where
A =&+ (1) /€ + & (13.4.14a)

1 pche +2pghy pclec+ pgls| 2
5 wir (13.4.14b
& 2 [Ks(GchC+2thf) (DC+Df) M ( )

he +2p5h
[ﬂc__c_iﬁ_{] Wi, (13.4.14c)

& (D + Dy)
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The boundary conditions for simply supported polygonal sandwich
plates, the boundary conditions are

wM = MM = V2uM =0 (13.4.15)

The equation governing free vibration of an isotropic Kirchhoff plate
is given by [see Reddy (1999)]

<V4__)\2)wK_(v2+/\ 2 _ K 2__ph‘w%(
K = K)(VE =A™, Ag = =5~ (13.4.16)

where wX is the deflection, h is the total thickness, p is the density,
and wg is the natural frequency of the isotropic Kirchhoff plate. Since
the equation (V2 — A4 )wK = 0 produces imaginary frequencies, the
vibration of the Kirchhoff plate is thus governed by

(V24 2wk =0 (13.4.17)
For a simple supported polygonal Kirchhoff plate, the deflection and the
moment sum are zero at the boundary

w¥ =0 V=0 (13.4.18)

13.4.2 Free Vibration Relationship

Comparing Eqs.  (13.4.13) and (13.4.15) with (13.4.17) and
(13.4.18), we note that the vibrating polygonal sandwich plate problem
is analogous to the vibrating polygonal Kirchhoff plate problem. Thus,
for a given simply supported polygonal plate, we have

AM = \K (13.4.19)

which yields the following relationship between the frequencies of the
isotropic Kirchhoff polygonal plate and and the sandwich Mindlin
polygonal plate:

W, = {(1 + aywr) — /(1 + arwg)? - 4a2w§<] & (13.4.20)

a; = (1+ 62)53\/?};, ap = {26% (13.4.21)
¢ = L HalGehe + 20hy) (13.4.22a)

2 (pcde+pfIy)

(pche + 2pfRy) D. + Dy
= 13.4.22b
@ [Ks (Gehe +2Gshys) | \ pclc + pfly ( )

§3 = *——pCIC + prf

(13.4.22¢)
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Using Eq. (13.4.20), one can readily obtain the mth frequency of a
simply supported, polygonal sandwich plate upon supplying the mth
mode frequency of the corresponding Kirchhoff plate.

The foregoing derivation applies to a solid thick (Mindlin) plate
solution as well. By letting the thickness of the facings, hy = 0 and
he =h(ie, Dy =0, D, = D = Eh3/[12(1-1?)], G. = G = E/[2(1+V)],
pc = p), the sandwich plate becomes a solid Mindlin plate of thickness
h, density p, shear modulus G, Poisson’s ratio v, and flexural rigidity
D. Thus the Eq. (13.4.20) reduces to

h? [ph 2
1+w1{ﬁ —b- (1+—_—K3(1-l/))}

2
h? |ph 2 ph
B l:1+WKﬁ D <1+K5(1—1/)):l 3KgGwK

(13.4.23)

Wg =

ph?

where wg is the circular frequency of the solid Mindlin plate. This
relationship (13.4.23) was derived by Wang (1994) for rectangular plates
and shown to give accurate vibration frequencies for other simply
supported plate shapes. A form similar to equation (13.4.23) was
also derived by Irschik (1985). The latter expressed it in terms of
the alternative form of the prestressed membrane vibration solution
instead of the Kirchhoff plate solution. Note that Conway (1960) has
established analogies between the buckling and vibration problem of
polygonal Kirchhoff plates and the vibration problem of prestressed
membranes. Thus, one may use either of these solutions for Egs.
(13.4.20) and (13.4.23). There are abundant buckling and vibration
solutions of polygonal Kirchhoff plates and membranes available in the
open literature.

13.5 Summary

In this chapter, an exact relationship between deflections of
sandwich plates and the corresponding Kirchhoff plates is presented.
The relationship is valid for simply supported polygonal plates under
any transverse load or for simply supported and clamped circular plates
under any axisymmetric load. Thus, for the bending problem of such
plates, it suffices to perform only the classical thin (Kirchhoff) plate
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bending analysis, and the effect of shear deformation on the deflection
can be readily computed. A more complicated shear deformable plate
analysis may be avoided. It is clear that closed-form solutions can be
obtained whenever there are closed-form solutions of the corresponding
Kirchhoff plates, as illustrated by the two examples. A relationship
between the deflection of sandwich plates and solid Mindlin plate is also
given. Such relationships should be very useful to engineering designers
and researchers working with sandwich plates.

Exact relationships between the bending solutions of the classical
plate theory (CPT) and the first-order plate theory (FSDT) are also
presented for functionally graded circular plates. Exact solutions of
functionally graded plates using the first-order theory are presented
in terms of the solutions of the classical plate theory for a number of
boundary conditions. Numerical solutions of functionally graded plates
under uniformly distributed load are presented as a function of the
thickness-to-radius ratio and ratios of the volume fraction.

Next, exact relationships between the buckling load of sandwich
plates and Kirchhoff plates under uniform in-plane compressive load are
presented. The relationship applies for the simply supported general
polygonal plate and simply supported and clamped circular plates.
Exact solutions of sandwich plates can be obtained from existing exact
Kirchhoff solutions. The more complicated buckling analysis of shear
deformable polygonal sandwich plates can be avoided because of the
relationship presented herein.

Lastly, an exact relationship has been presented between the
vibration frequencies of sandwich plates and those of their Kirchhoff
plate counterparts. The relationship applies for any general simply
supported polygonal plate with straight edges. Exact vibration solutions
for sandwich plates can be obtained by using existing exact Kirchhoff
plate vibration solutions. Even buckling solutions for Kirchhoff plates
under in-plane loads or vibration solutions for prestressed membranes
can be used due to the analogies between these problems. The
more complicated shear deformable buckling analysis for the considered
sandwich plates may be bypassed because of the relationship derived.
Vibration analysis of Kirchhoff plates can be readily performed, for
example, by using the computerized Rayleigh-Ritz method and the
sandwich plate solutions computer accordingly. This relationship
between frequencies can also be used to check the convergence and
accuracy of numerical shear deformable plate vibration solutions.
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SUBJECT INDEX

Annular plates:
boundary conditions,
clamped, 17, 20, 24, 31
simply supported, 20, 23, 31, 98,
114
Axisymmetric bending, 154, 156
Axisymmetric linearly varying load,
164, 251

Beam finite element: 44
consistent, 49
Hermite cubic, 46
Levinson, 54
reduced integration, 49
unified, 48
Beam stiffness matrix, 48
Beam theory:
Euler-Bernoulli, 5, 11, 12
Levinson, 38
Reddy-Bickford, 20-24, 28, 31,
36, 39, 64-74
simplified, 42, 46
Timoshenko, 11, 13, 17-19
Third-order, 13, 39
see: Reddy-Bickford
Bessel functions, 169, 183, 209, 233
Biharmonic equation, 99, 112, 152
Boundary conditions:
annular plates, 174
circular plates, 157-159, 168
clamped, 17, 20, 24, 31, 80, 98,
104, 158, 186, 262
elastically supported, 17, 20, 24,
fixed-fixed, 59
fixed-free, 59, 262
free, 17, 20, 24, 31, 80, 97, 104,
157, 186, 262

pinned-pinned, 58
simply supported, 16, 20, 23, 31,
80, 98, 104, 113, 157, 185, 199,
238, 248, 261, 271
hard type, 115, 227
soft type, 115
solid circular plate, 158, 208, 260
Buckling equations 57, 192, 196,
264, 269
Buckling load:
beams, 55, 58, 63, 69, 72
circular plates, 210
polygonal plates, 200-204
rectangular plates, 201-205
sandwich plates, 259
sectorial plates, 215

Characteristic polynomials, 221, 242
Circular plates:
axisymmetric bending of, 154
boundary conditions, 157, 168
classical theory of, 155, 171
governing equations, 155
first-order theory of, 155
third-order theory of, 155
Classical plate theory (CPT):
circular plates, 155, 171
displacement field, 3, 89, 171, 254
governing equations, 94, 99, 112,
137, 155, 179, 196, 206, 225,
244, 255
polygonal plates, 112-116
sectorial plates, 178, 214
Consistent interpolation element, 49
Constitutive equations:
for beams, 16, 18
for plates, 98, 102, 107
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Displacement field of:

classical plate theory, 3, 89, 171,
254

circular plates, 155, 171, 254
Euler-Bernoulli beam, 12
first-order plate theory, 90, 254
Kirchhoff plate theory,
see: Classical plate theory
Mindlin plate theory,
see: First-order plate theory
Reddy-Bickford beam theory, 14
Reddy plate theory,
see: Third-order plate theory
third-order beam theory, 14
third-order plate theory, 91
Timoshenko beam theory, 13

Effective shear force, 22, 30, 97, 145
Effective shear coefficient, 34
Eigenfunctions, 60
Elastic coeflicients, 102
Element stiffness matrix, 47, 48, 176
Elliptical plate, 129
Energy methods, 1
Engesser-Timoshenko column, 56
Equations for buckling, 57, 192,
196, 264, 269
Equations of equilibrium:
beams, 15, 18-20, 22-23
circular plates, 155, 172, 206, 255
elasticity, 6, 108
polygonal plates, 99, 102, 106,
112, 119, 123, 196-198,
225-226, 244-248, 270
sectorial plates, 179-181, 212-213
Equilateral triangular plate, 114
Equivalent slope, 44
Euler-Bernoulli hypothesis, 12-13
Euler-Lagrange equations, 2, 172

SUBJECT INDEX

Finite element method, 44
Finite element model: 44, 53
displacement, 53
First-order shear deformation theory
bending solutions of, 112, 138-143,
156-157, 184-185, 249, 257-260
buckling analysis of, 199-200
displacement field of, 3, 89-91,
171, 254
equations of equilibrium of, 102,
155, 196, 2086, 225, 255, 270
finite element models, 44,
Navier’s solution, 117, 129
shear correction factors, 4, 19, 56,
101
vibration analysis of, 226-228
Fixed edge: see clamped edge
Flexural rigidity: 56, 99
Force resultants, 101,
Free edge, 17, 20, 24, 31, 97
Free vibration:
see: natural vibration
Frequency equation:
see: characteristic equation
Functionally graded materials, 253

Generalized displacements, 46-48,
96-97, 107
Generalized forces, 48, 96-97

Hamilton’s principle, 2, 223

Hermite cubic interpolation, 46, 47
functions, 48

Higher-order theories, 4

Hooke’s law, generalized, 16, 102

Independent interpolation, 51
Interdependent approximation, 52
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Interdependent interpolation, 50, 51
Interpolation functions:

Hermite, 46-48

interdependent, 52

Kinetic energy, 223
Kirchhoff assumptions, 90
Kirchhoff free-edge condition, 97
Kirchhoff hypothesis, 90
Kirchhoff plate theory,

see: Classical plate theory

Laplace equation, 112 152
Laplace operator, 99

Levinson beam theory, 38, 54, 75
Levinson plate theory, 132

Lévy solution, 133

Marcus curvature, 110
Marcus moment,
See: moment sum
Mindlin plate theory,
see: First-order plate theory
Modification factor, 204
Moment resultants, 92, 119
Moment sum, 103, 112, 116, 118,
121, 123, 131, 138, 156, 166,
199, 213, 226, 235, 245

Navier’s method, 129
Navier’s solution, 118, 129

Pinned-pinned columns, 58

Plane stress state, 4,

Polar coordinates, 153

Potential energy functional, 1, 18,
21, 93, 100, 196

Primary variables, 22, 46, 96
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Principle of virtual displacements,
2, 15, 21, 94, 101, 105, 172

Reddy plate theory,

see: Third-order plate theory
Reddy-Bickford beam theory,

20-24, 28, 31, 36, 39, 64-74
Reduced integration element, 49
Rotary inertia, 227-229
Rotatory inertia,

also see: rotary inertia

Secondary variable, 22, 46, 96,

Shear correction coefficient, 4, 19,
48, 56, 101, 231

Shear parameter, 25

Shear rigidity, 56,

Stability: see: buckling

Stiffness matrix, 44, 47

Strain energy functionals, 17, 21, 92,
100, 195

Third-order beam theory, 6, 20-23,
65
Third-order plate theory,
bending solutions of, 105-107, 124,
168
buckling analysis of, 200, 208
displacement field of, 4, 91, 108
equations of equilibrium of, 106,
119, 155, 198, 206-207, 225-226
vibration analysis of, 236-240
Timoshenko beam theory, 11, 13,
17-19, 56, 78
Total potential energy:
see: potential energy functional

Unified beam element, 46
Unit-dummy-displaement method,
47
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Virtual displacements, 2, 15, 21,
principle of, 15, 21, 94, 101, 105,
172
Virtual strain energy,
see: Strain energy functional
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