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Introduction
One of the methods of producing materials with special properties 
is, in addition to alloying, the formation in these materials of the 
ultrafine-grained (UFG) and nanocrystalline (NC) microstructure. A 
special feature of these structures is the small size of the crystals 
(0.1–1 µm for the UFG materials and less than 100 nm for NC) and, 
consequently, the higher fraction of intercrystalline (intergranular and 
interface) boundaries. The grain boundaries in these materials begin to 
play an important role and they significantly change the properties of 
the materials in comparison with the coarse-grained state.

There are at least ten processes [1–6] taking place in polycrystalline 
materials in which the grain boundaries (GB) play a controlling role. 
This role is especially evident and varied in deformation processes. In 
the case of small deformation, the grain boundaries act as dislocations 
sinks, and the kinetics of dissociation of the dislocations at the grain 
boundaries has the controlling role as it is the process with the lowest 
rate. The role of the grain boundaries is more active in high-temperature 
deformation, especially in the superplastic conditions. In this case 
another deformation mechanism (grain boundary sliding, GBS) begins 
to operate and this results in elongation of the material to hundreds 
or even thousands of percent, and the accommodation processes in 
which the grain boundaries also take part, actually determinate the 
kinetics of the superplasticity process (SP). In this case, in the context 
of the investigated problems [7] it has been established the grain 
boundaries can interact resulting in the merger of the boundaries into 
stable formation (clusters). Specifically these clusters determine the 
appearance of the new deformation mode – cooperative grain boundary 
sliding (CGBS). The diffusion processes in polycrystalline materials 
[5], especially at low temperatures and in materials with ultrafine-
grained and nanocrystalline structures, also take place mostly in the 
network of the grain boundaries whose properties determine the kinetics 
of the diffusion process [8]. The increase of the effective diffusion 
coefficient in the ultrafine-grained and nanocrystalline materials may 
reach values several orders of magnitude higher in comparison with the 
coarse-crystalline state [5]. The variation of the thermal and magnetic 
properties (experimentally recorded displacement of Debye temperature 
and Curie point in the UFG and NC materials), which are regarded 
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as structure-insensitive parameters, is evidently also determined by 
the increase of the concentration of intercrystalline boundaries. In all 
likelihood, the changes in the phonon spectrum are caused by the nature 
of interaction of the phonons with the atoms distributed directly in the 
boundary region, and the changes in the magnetic characteristics may 
be associated with the disruption of exchange interaction at the grain 
boundaries. 

These facts which have been known now for a long period of time 
represent a strong stimulus for the development of the methods of 
formation of the nanocrystalline structures in bulk materials with the 
hope of developing new properties in the materials with customary 
composition and of finding qualitatively new processes which can take 
place in these materials. Undoubtedly, this hope is supported by the fact 
that the transition from the coarse-grained materials with the grain size 
of tens of micrometres to the materials with the grain size represented 
by units of micron is accompanied by a qualitatively new phenomenon 
– superplastic deformation (SPD). Are these expectations justified if we 
are able to reduce the grain size by an order of magnitude or more? At 
present, there is no answer to this question. We also have no answer. 
However, it is hoped that the experience, obtained in the investigations 
of superplasticity and the grain boundaries, can be useful. We would 
like to present these results to readers.

The book discusses a number of issues associated with the problems 
of description and experimental verification of the individual boundaries 
and grain boundary ensembles in polycrystals, and also investigations 
of processes such as grain boundary diffusion, relaxation and grain 
growth. This process is also an inseparable attribute of superplastic 
deformation. Our task is to explain what is specific in that grain size 
reduced from course grain one, at which superplastic regime becomes 
possible. Is this size unique or a new one, even smaller size can be 
achieved and it would result in a new phenomenon? The answer to this 
question can be provided only if a sufficiently general superplasticity 
model is available. Therefore, the investigations of the grain boundaries 
are accompanied by the construction of such a model based on the 
experimentally determined relationships and concerned with the bands 
of cooperative grain boundary sliding. In addition, attention will be 
given to the processes of formation and evolution of the microstructure, 
texture and grain boundary ensembles in the materials produced by 
the methods of severe plastic deformation (SPD) which include equal 
channel angular pressing (ECAP) and high-pressure torsion (HPT).

Since the main task is the problem of the existence (or absence) of 
the hierarchy of the scales and the associated fractal dimension, we 
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begin with explanation of the most general considerations regarding 
the relationship of the structural levels of deformation with the 
characteristic spatial scales. These questions are discussed in Chapter 
1. The ambiguous nature of the classification of declaratively defined 
spatial scales is noted and it is proposed to use the concept of the 'level 
of description' (determined by the set of collective variables) used for 
formulating the given task. The spatial scales should be treated as the 
characteristic lengths of the produced structures. In this context, the 
history of the formation of considerations regarding the mechanism of 
superplastic deformation is briefly discussed and the main problems in 
describing the superplastic deformation process are formulated.

Chapter 2 discusses the methods of geometrical description of the 
crystallographic structure of individual boundaries and divides the 
methods into the main classes: low-angle, high-angle, arbitrary and 
special. The algorithm of constructing the basis of the coincident-site 
lattice is described. Possible special boundaries in the monoclinic lattice 
are calculated using  ZrO2 as an example.

Chapter 3 presents the mathematical description of the orientation 
characteristics of the polycrystal,  such as the grain boundary 
misorientation distribution (GBMD) and the orientation distribution 
function (ODF). The essential and sufficient conditions for the 
unambiguous restoration of the spectra of the grain boundaries with 
respect to the crystallographic texture are formulated. The final part 
of the chapter deals with the main considerations regarding the spatial 
correlation in the orientation of the adjacent grains. The spectra of the 
grain boundaries for polycrystals with a modelled texture are calculated.

Chapter 4 is concerned with the main methods of experimental 
measurement of the misorientation of the adjacent grains. The accuracy 
of measurement of the crystallographic orientation of the grains and 
the misorientation of two grains is verified by experiments. The results 
of numerical simulation of the GBMD in the cubic polycrystals, 
susceptible and not susceptible to twinning in annealing, are presented. 
The calculated spectra of the grain boundaries are compared with the 
experimentally measured values. It is shown that the proposed model 
describes adequately the grain boundary misorientation distribution in 
the FCC polycrystals.

Determining the parameters characterising the boundary (and the 
set of the boundaries) and methods of direct measurement of these 
quantities, it is attempted to understand how these characteristics 
behave in the description of the process of grain boundary sliding 
at the grain boundaries in a bicrystal. For this purpose, Chapter 5 
contains experimental results confirming the dislocation nature of GBS 
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in metallic bicrystals. On the basis of the analysis of the experimental 
results obtained in the measurement of grain boundary sliding in 
cadmium and zinc, it is concluded that the density of the grain boundary 
dislocations (GBD) controls  the rate of stimulated grain boundary 
sliding. A system of equations for the density of the grain boundary 
dislocations is derived, solved, and the results are compared with the 
experimental data. A set of the processes with participation of the lattice 
and grain boundary dislocations for describing grain boundary sliding is 
proposed. The minimum expansion of the investigated system together 
with the model in which the grain boundaries interact is the triple 
junction. The experiments are described in which the reorganisation of 
triple junctions in the superplastic deformation conditions was observed. 
The mechanism of this reorganisation is proposed, the conditions 
in which the energy parameters of the process are favourable are 
determined, and the number of reorganised triple junctions in the given 
loading conditions and the size distribution of the grains is estimated. 
The factors capable of correcting the results are discussed.

Chapter 6 presents the experimental results which can be used to 
investigate the formation of the band of cooperative grain boundary 
sliding by the percolation transition mechanism when the number 
of the reorganised triple junctions in the material is greater than 
the percolation threshold. The number of the bands of cooperative 
grain boundary sliding is estimated, and the superplastic deformation 
conditions are analysed as the conditions of formation of the bands. 
The shear rate along a band is estimated. On the basis of the rate field 
formed in a macrospecimen in shear deformation along the CGBS the 
strain rate is expressed through the characteristics of the bands. The 
theoretical stress–strain rate dependence is compared with the results 
of experimental investigations.

Chapter 7 describes the investigations of the effect of the statistics of 
the grain boundaries on the processes of grain growth and diffusion in 
nanocrystalline films of zirconium and nickel oxides. The experiments 
show the self-organisation of the grain boundary ensemble in the ZrO2 
films resulting in the formation of clusters consisting only of the special 
type boundaries. The differences in the oxidation kinetics of the nickel 
single crystals are explained by the formation of different types of 
grain boundary misorientation distribution. The type of grain boundary 
misorientation distribution is determined by the crystallographic 
orientation of the substrate. The results show that cerium additions 
reduce the rate of grain boundary diffusion but do not affect the nature 
of formation of the grain boundary misorientation distribution.

Chapter 8 depicts in detail the effect of the parameters of severe 
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plastic deformation on the evolution of the microstructure and the 
grain boundary ensemble in ultrafine-grained nickel. The possibility of 
formation of a homogeneous ultrafine-grained structure by the method 
of high-pressure torsion is indicated for the first time. The results 
show that the grain boundary ensemble in ultrafine-grained materials 
is statistically uniform over the entire volume of the specimen.

Chapter 9 presents the results of experimental investigations of 
the relaxation processes in ultrafine-grained nickel, produced by both 
the methods of severe plastic deformation and electrodeposition. The 
kinetics of grain growth in ultrafine-grained nickel, produced by 
equal channel angular pressing, is investigated. The results show that 
the activation energy of grain growth coincides with the activation 
energy of grain boundary self-diffusion. The results of experimental 
investigations and simulation of the grain boundary misorientation 
distribution in ultrafine-grained nickel, produced by torsion with 
annealing, are described. Differential scanning calorimetry is used 
to measure the activation energy and stored enthalpy for ultrafine-
grained nickel. The results are presented of investigations of low-
temperature superplasticity detected in nanocrystalline nickel produced 
by electrodeposition.

The two final chapters are concerned with the problem of transfer 
of the relationships from the mesolevel to the upper structural level – 
the level of the specimen as a whole (macrolevel). For this purpose, 
the model of superplastic deformation, constructed in Chapter 10, is 
used for calculating the superplastic capacity. The limiting deformation 
is regarded as the formation of a difference in the thickness of the 
specimen in which the sections of the material characterised by the 
largest thickness difference in comparison with the average section of 
the specimen do not fit (as regards of stress) the range of superplastic 
deformation. Some properties of limiting deformation, in particular its 
dependence on characteristic lengths of the specimens, are analysed.

Chapter 11 solves the problem of transition from the deformation 
mechanism to the appropriate constitutive equations, which determine 
this mechanism. Analysis is based on the description of the movement 
of polycrystalline continuum, restricted by the continuity condition. The 
force characteristics of the deformation process and the geometrical 
characteristics of the appropriate flow pattern at separated. The 
orientation of slip systems is calculated for an arbitrary stress state. 
The variants of the coaxiality of the stresses deviator and the strain 
rate tensor are investigated.

In the Conclusion, the results presented in the monograph are 
generalised and the main problems of advanced materials science are 

Introduction



xiv Contents

listed taking into account new achievements in the area of formation of 
ultrafine-grained structures for producing the improved (and completely 
new) mechanical and physical properties.

We are grateful to our colleagues – co-authors of joint publications 
which form the basis of this book. We are also grateful to the scientific 
community which has been around for the last 20 years and exerted a 
positive effect on our work. We are especially grateful to our families 
(wives and children), whose support and understanding helped us not 
only in the work on this book but also in all our scientific activities. 
We devote this book to them.
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Conclusion
We shall not present the results in the form of a brief description of the 
study – it is sufficient to refer to the Introduction for this purpose. We 
shall better hypothesise over the following subject: how would what 
we already know help us in analysis of new situations?

The highly promising directions of scientific research grouped under 
the term ‘nanotechnology’, are reduced within the framework of our 
subject to two main tasks: production of nanocrystalline materials 
with a homogeneous structure and analysis of the properties of these 
materials. If we discuss the mechanical properties of nanocrystalline 
materials, it  is above all essential to describe and analyse the 
deformation mechanisms of these materials. The first task has been 
fulfilled by the application of methods developed for the production of 
ultrafine-grained materials. In other words, this is some variant of the 
method of severe plastic deformation. However, we do not yet know 
the minimum grain size, which can be produced by this prcessing. Of 
course, we cannot know this at the moment because we do not yet 
know the deformation mechanisms as these mechanisms determine 
the dynamics of formation of the structure of the material, including 
the grain structure. The two tasks (1 – processing and 2 – properties) 
represent a single inseparable problem. How the studies carried out so 
far could help us in analysing this problem or at least some aspects 
of this problem?

When analysing superplastic deformation we concluded that this 
phenomenon is characteristic of greatly differing materials: metals, 
ceramics, intermetallics. The point is that the deformation mechanism 
is based on shear on planes of cooperative grain boundary sliding, 
and the bands themselves form by the merger of the grain boundaries, 
i.e., the types of crystal lattices of the grains (intragranular properties) 
play some role which, however, is minimal. If we consider the grain 
sizes so small that the initiation of plastic flow in these grains requires 
the stress level close to the theoretical strength, we not only ‘shift’ 
all the deformation processes to the boundaries (and the appropriate 
analogues of the bands of cooperative grain boundary sliding) but on 
the level of the high acting stresses we no longer see the difference 
in the properties of the grain boundaries of different types. Saying the 
words ‘the grain boundary' we no longer ask what the misorientation 
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and the plane in which they are situated are. It is not surprising that the 
flow pattern of the material produced in this manner should resemble 
the flow pattern of the granulated materials. It is interesting to note 
that in the examination of superplasticity we have ignored to a large 
degree the lattice properties of the materials and obtained a sort of 
universal behaviour because in the case of nanocrystalline materials 
we can expect even greater unification. The network of the grain 
boundaries is an independent and only active phase. The properties of 
the materials in the nanocrystalline condition are determined by the 
sizes of the grains-granules (absolutely rigid in the first approximation) 
and by the properties of the grain boundary phase (at the moment, this 
phase has not been sufficiently defined and is relatively mysterious). 
It is highly likely that the rheology of these materials can be restored 
in the model of rheology of suspensions on the basis of ‘soft’ glasses.

We hope that thoughtful readers will also detect other useful 
properties of the proposed approach which can be used in solving 
new problems.

 Conclusion
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1

STRUCTURAL SUPERPLASTICITY OF 
POLYCRYSTALLINE MATERIALS

1.1. Structural levels, spatial scales and description levels

The physical  processes accompanying plast ic  deformation of 
polycrystalline materials are reduced to the nucleation, propagation and 
interaction of point (vacancies, impurity atoms), linear (dislocations, 
disclinations), planar (grain boundaries, interfacial boundaries) 
and volume (cracks, pores) defects of the crystal structure [1]. The 
attempts for the classification of different physical processes taking 
place with the participation of the above defects lead unavoidably 
to the considerations of the structural levels of  deformation [2] and 
the characteristic spatial scales [3]. In the classification proposed 
by V.I. Vladimirov [4] there are spatial scales, defining micro-                                     
(ℓ2 < 10–7–10–6	 cm),	 meso-	 (ℓ1 ~10–6–10–3 cm) and macrolevels                       
(ℓ0 > 10–3–10–1 cm). Accepting that this classification is conditional 
and incomplete, Vladimirov proposes to define for polycrystals an 
additional scale given by the mean grain size. In a later study [5], 
Vladimirov introduces a five-level model whose characteristic scales 
are determined by the quantities divisible by the previously introduced 
scale	 ℓ2 and the mean grain size. However, even this classification is 
not universal: for the given conditions, some scale levels are absorbed 
by others. As mentioned justifiably in a study by Khannanov [6], in a 
general case there is an entire set of scales li (i = 1, 2,..., n).

Better results were obtained using the classification based on the 
concept of the representative volume which determines the size of the 
spatial averaging region in which the structural special features of the 
objects of the lower scale level are characterised by a specific set of 
integral characteristics and the objects themselves are structureless 
formations [7]. This approach automatically assumes that every 
description level has its own set of collective variables which are 
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2 Superplasticity and grain boundaries

defined unambiguously by the resultant structural formations. The 
spatial scales are not specified a priori and they form the characteristic 
lengths of the resultant structures. Thus, the main priority is the concept 
of the description level and the scales are determined by the content 
of a specific investigation.

The investigation of the physical processes taking place with 
participation of defects are carried out on three description levels, 
depending on the given task. The microlevel is characterised by the 
determination of the individual properties and special features of 
the behaviour of every defect: appropriate collective variables – the 
coordinates and atomic momenta. The interaction of the atoms is 
defined by the interatomic potential. Undoubtedly, this description is 
unnecessary in the investigation of the mechanical properties of solids 
because its response to the external mechanical effect is determined by 
the collective behaviour of the previously mentioned crystal structure 
defects, i.e., by interactions in ensembles of defects and their individual 
response to the external effect. However, the laws of interaction of 
defects (roughly speaking, the paired potential) can be determined only 
on the basis of analysis of their atomic configuration. For example, the 
molecular static methods can be used to determine the perturbation of 
the lattice in the vicinity of a vacancy, an impurity atom, a dislocation 
core or a grain boundary. The calculated displacements of the atom from 
the equilibrium positions corresponding to the nodes of a regular lattice 
can be used to determine the excess energy and the characteristic length 
of the field of elastic perturbations in the lattice for any type of defect. 
The molecular dynamic methods can be used to calculate the vibrational 
spectra of new lattice configurations and, consequently, determine the 
special features of their behaviour at different temperatures. After 
fulfilling this program, we transfer to the next description level.

The evolution of an ensemble of defects in the field of external 
stresses is investigated on the mesolevel using the characteristics 
of the defects determined on the microlevel. Instead of indicating 
the position of every vacancy and the appropriate dilation field, the 
spatial distribution of vacancies and the appropriate elastic fields are 
introduced. Their kinetic properties are determined by the diffusion 
coefficient derived on the lower structural level. The impurity atoms are 
also described in a similar manner. The dislocation on this description 
level can be treated as an elastic string with a specific energy of unit 
length and appropriate field of elastic perturbations, defining the 
interaction of the dislocation with other defects. The kinetic properties 
of the dislocations in the field of external stresses are determined by 
the sliding and climbing speeds. The ensembles of the dislocations can 
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be investigated in discrete or continuous formalism in relation to the 
specific content of the investigation. If the previous description level 
requires operation with a small number of defects (the number of atoms 
of different type) and with the astronomically large number of variables 
(the coordinates and atomic momenta), we now have a slightly larger 
number of objects (defects of all types) and an incomparably smaller 
number of collective variables: spatial–time densities of vacancy 
distribution, dislocations (generally speaking, tensor distribution), grains 
(according to size), grain boundaries (with respect to disorientation). 
Complete information on these quantities enables us to determine the 
deformation response of the microvolume to the external effect. On 
this description level, the material is still principally structural and is 
characterised by steep spatial gradients of the deformation response.

The spatial scale of the macrolevel is determined as the minimum 
size of the averaging region starting at which the deformation response 
is given only by the external loading conditions. This description is 
principally structureless and is characterised by the classic tensors of 
the mechanics of deformed solids.

At present, the investigations of the characteristics of the crystal 
structure defects on the microlevel can be regarded as almost completed 
to the extent sufficient for the requirements of plasticity physics. The 
main difficulty is the presence of considerable non-linearities and of 
self-organisation processes, determined by these non-linearities, in 
the ensembles of the defects. For example, the intrinsic energy of a 
dislocation ensemble at the given dislocation density is proportional 
to the first degree of density, and the interaction energy with the long-
range effect taken into account is proportional to the second degree 
of density. The latter circumstance results in a faster transition to the 
non-linear regime in comparison with, for example, dense gases for 
which the interaction energy increases with increase of the density at 
a considerably lower rate because of the short range of their potential. 
The interaction of the dislocations of different slip systems at low 
dislocation densities can be ignored with a high degree of accuracy 
and it is sufficient to examine only their interaction with other crystal 
structure defects (mostly with grain boundaries and with forming 
dislocation clusters). At high temperatures the structure of the grain 
boundary can change as a result of the spreading of lattice dislocations. 
Beginning at some level of dislocation density, the interactions in the 
ensemble become controlling and the system is converted to a highly 
non-linear system. This results in the formation of greatly differing 
spatial dislocation structures (dipoles, polygonisation walls, dislocation 
networks, clusters, substructures, etc). This field in materials science 
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4 Superplasticity and grain boundaries

is referred to as physical mesomechanics and is being developed 
by the Tomsk scientific school [8]. These processes are detected in 
loading of the materials with a large mean grain size and determine 
the wide range of different physical situations (from the stages of 
strain hardening to recrystallisation processes). Although these most 
complicated processes are difficult to formalise, so that we still have 
no physical theory of plasticity (and dynamic recrystallisation), the 
transition to the macrolevel of description for materials with a large 
mean grain size without additional attempts is ensured using the                                                                          
so-called Taylor model. The efficiency of the model in the investigated 
situation is determined by the frequently verified experimental fact: 
in deformation of the material with a large mean grain size the 
deformation of the grains repeats the deformation of the specimen as 
a whole. In other words, the representative volume is given by the mean 
grain size and the transition to the macrolevel is ensured by averaging 
of the accurately determined region. In fact, the problem of developing 
the physical theory of plasticity of coarse-grained materials is reduced 
to the correct description of the processes on the mesolevel [9].

A slightly different situation is encountered when investigating the 
superplasticity phenomenon. It is well known that one of the conditions 
of realisation of this phenomenon is the application of the material 
with a relatively small mean grain size. The density of the lattice 
dislocations in the volume of the grain does not reach high values, 
deformation processes are not accompanied by the transition to the 
non-linear evolution regime and it is sufficient to examine only the 
interaction of lattice dislocations with the grain boundaries. In addition, 
the experiments show that intragranular deformation during superplastic 
deformation is an accommodation process which accompanies the main 
deformation mechanism – grain boundary sliding. Thus, in comparison 
with the classic plasticity of coarse-grained materials, the mesolevel 
of superplastic deformation is characterised by a considerably smaller 
set of structures in the volume of the grains and by the transfer of the 
main processes to the interface (interphase, intergranular). In this case, 
the Taylor model cannot be used for the transfer of the relationships of 
the mesolevel to the macrolevel: in deformation of the specimens by 
thousands of percent the grains remain almost completely equiaxed, i.e., 
the size of the averaging region becomes indeterminate. In particular, 
this is the main reason for having a large number of physical models of 
superplasticity which reproduce on average the behaviour of the well-
known sigma-shaped curve (dependence of flow stress on strain rate 
in the stable yielding stage), and we have no examples of application 
of these models for describing the relationships on the macrolevel 

�� �� �� �� ��



5Structural superplasticity of polycrystalline materials

(deformation to fracture, construction of the controlling relationships, 
etc).

In recent years, experimental investigations have resulted in new 
concepts characterising the mesolevel of superplastic deformation. 
It has been found that grain boundary sliding during superplastic 
deformation does not take place independently on different interfaces 
of the polycrystalline material and includes in a single process the 
macroscopically elongated system of conjugate boundaries in which the 
self-consistent shear also takes place. This system of the boundaries 
boundaries is referred to as the bands of cooperative grain boundary 
sliding (CGBS); it is a macro-object, and according to general 
considerations should determine the representative volume essential 
for the transfer of the mesolevel relationships to the macrolevel.

Superplasticity is not only the interesting physical phenomenon 
but also the basis of a number of unique technological processes 
operating by not micro- but rather by macroparameters. The existing 
situation with the physical models of superplasticity can not be regarded 
as satisfactory until it is possible to carry out the self-consistent 
(within the framework of a single concept) description of the meso- 
and macrolevels.

1.2. Structural superplasticity: from the combination of 
mechanisms to cooperative grain boundaries sliding

Detailed reviews of the experimental and theoretical investigations 
in the area of superplasticity have been published in well known 
monographs, dissertation and reviews by Kaibyshev [10–13], Grabskii 
[14], Novikov and Portnoi [15], Smirnov [16], Astanin [17], Faizova 
[18], Perevezentsev [19], Chuvil'deev [20], Eddington [212], Mukerjee 
[22] and many others. Therefore, we shall discuss only briefly the 
history of development of considerations regarding the superplasticity 
mechanisms and the experimental results obtained in recent years which 
are used as a basis for the proposed physical model of superplasticity.

At the start of purposeful investigation of superplasticity the 
researchers quickly found that: 1) superplasticity is detected in the 
strain rate range 10–4–10–2 s–1 (in classic eutectoid alloys investigated 
in the initial stage) at temperatures of T > 0.4 Tm, where Tm is the 
melting point of the material; 2) for the superplasticity regime to form, 
the material should have relatively small grains (<10 µm); 3) during 
deformation, the grains do not repeat the deformation of the specimen 
as a whole and the extent of elongation of the grains along the tensile 
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6 Superplasticity and grain boundaries

loading axis is negligible in comparison with the elongation of the 
specimen. The latter fact indicates unambiguously that the grain is no 
longer the representative volume; in contrast to the plasticity of coarse-
grained materials, in the superplasticity condition the main processes 
are transferred from the grain interior (the extent of these processes in 
the grains appears to be very small) to the periphery of the grain – the 
boundary. The system of the internal interfaces (the grain boundaries 
or interfacial boundaries) should create suitable conditions for these 
processes. This is also assured by the small grain size which increases 
the specific area of the grain boundaries. It was the beginning  of 
intensive investigations of the process of grain boundary sliding (GBS).

The GBS mechanism can be comprehended by explaining first of 
all what the grain boundary is. Therefore, the investigations of the 
grain boundaries have been accompanied by permanent discussions 
of the nature of grain boundaries in polycrystals. Variants ranging 
from the amorphous (which is often incorrectly regarded as identical 
with the liquid structure and is referred to by the poorly defined 
term ‘liquid-like’) to the crystal structure have been discussed. The 
history of development of these considerations, starting with the island 
model proposed by Mott and ending with the current views, based on 
the concept of the lattice of coincident sites, developed by Ballman, 
which specifies the zero approximation for calculating the structure 
of the grain boundaries by the molecular static mechanics, has been 
described in a large number of reviews and monographs [23, 24]. A 
brief summary of this stage of investigations may be formulated as 
follows. The grain boundary is a two-dimensional crystal structure 
whose characteristics are determined by the disorientation of the 
adjacent crystals and by the definition of the plane of positioning of the 
boundary. On the background of the regular structure we can specify 
some minimum disorder of the regularity, or a defect which in complete 
analogy with the defects of the volume crystal structure is referred to 
as the grain boundary dislocation. It should be stressed that this holds 
for the grain boundaries in metallic materials. At a high temperature 
the grain boundaries of ceramic materials can show the formation of a 
liquid phase which is determined by the deviation from stoichiometry 
in the vicinity of the grain boundary [25, 26]. The crystal nature of 
the grain boundary has been confirmed in the experiments concerned 
with the investigations of grain boundary sliding.

The grain boundaries sliding process is studied on specially prepared 
simulation objects – bicrystals. The experimentally detected shear  
along the grain boundary plane is accompanied in a general case by 
volume deformation of the crystals and this complicates interpretation 
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7Structural superplasticity of polycrystalline materials

of the results. In [27] the authors reported on a method which can be 
used both to separate the effects of grain boundary and intergranular 
sliding and also investigate their interaction. This is achieved by 
selecting zinc bicrystals with the 90° symmetric inclination boundary 
(Fig. 1.1) as the experimental object, 

The hexagonal zinc lattice has a distinctive easy slip system given 
by the distribution of the most closely packed (basal) atomic plane. 
Such a bicrystal can always be oriented in relation to the tensile loading 
axis in such a manner that the shear stresses on the basal planes of both 
crystals are zero and intragranular deformation is almost completely 
suppressed. In this case, the plane of the boundary coincides with 
the plane of the maximum shear stresses. The type of grain boundary 
sliding, referred to as pure, takes place in a similar situation. With 
any other orientation of the bicrystal in relation to the tensile loading 
axis the shear stresses on the basal planes of the crystals differ from 
zero and loading is accompanied by intragranular sliding. It has been 
shown that this accelerates grain boundary sliding. This grain boundary 
sliding variant is referred to as stimulated. Later, detailed experiments 
using this scheme were carried out on cadmium bicrystals (the crystal 
lattice with the same symmetry) [28] and zinc [29]. Measurements 
were taken of the time dependence of shear along the boundary plane 
at different temperatures and tensile forces. The results show that the 
rate of pure grain boundary sliding during remains almost constant for 
a long period of time, and its dependence on temperature T and shear 
stress s in the grain boundary plane has the form 0 ·exp( / )GBS E RT∝ s -

where E 
GB is the activation energy of grain boundary diffusion. In the 

case of stimulated grain boundary sliding the rate depends strongly on 

Fig. 1.1. Zinc bicrystals with the 90° inclination boundary [1120], used for investigating 
pure (a) and stimulated (b) grain boundary sliding [27].

¯
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8 Superplasticity and grain boundaries

time. At the initial moment of time, the sliding rate is considerably 
higher than the rate of pure grain boundary sliding and has the form 

2
0 ·exp( / )VS E kT∝ s - where EV is the activation energy of lattice self-

diffusion. With time, the effect of stimulation monotonically decreases 
and at some moment the rate of stimulated grain boundary sliding 
decreases to the pure sliding rate. The dislocation mechanism of grain 
boundary sliding has been confirmed by the following experimental 
facts: 1) spatial inhomogeneity of shear along the sliding direction; 2) 
the linear relationship between sliding and migration; 3) anisotropy of 
the sliding rate in the grain boundary plane.

For polycrystals, the development of grain boundary sliding is 
complicated by the inherent structural element – triple junctions. At 
the triple junctions, the planes of the adjacent grain boundaries form a 
diheral	angle	close	to	2π/3.	The	solution	of	the	problem	of	the	possible	
methods of transfer of shear deformation through a triple junction was 
the subject of theoretical analysis for a long period of time. At least 20 
mechanisms of shear accommodation at the triple junctions, which often 
differed in small details, were proposed. Every mechanism pretended 
to play the role of the mechanism of superplastic deformation. A 
relatively complete collection of these methods is presented in a review 
in [21]. It is surprising that irrespective of the method assumed to be 
the method controlling the deformation rate, all the models led to the 
same equation for the strain rate in the stable yielding stage (when the 
dependence on strain disappears) 

( )
1/1/

0 exp / .
mn

th bDbC E kT
d kT

s - s µ  e = -   µ   
  (1.1)

Here b is the modulus of the Burgers vector; d is the mean grain 
size; s is the external stress; sth is the threshold stress; µ is the shear 
modulus; k is the Boltzmann constant; T is test temperature; D0 is the 
pre-exponent of the diffusion coefficient; E is the activation energy of 
superplasticity (in a general case it is the mean weighted value of the 
activation energies of grain boundary and lattice diffusion) and n and m 
are the parameters inherited from the phenomenological form and they 
determine the dependence on the grain size and stress; C is a constant 
and it is the only value by which the available superplasticity models 
differ. Some differences were detected only in the evaluation of the 
numerical value of the dimensionless constant C. Its value depending 
on the model and changes from 0.6 to 200. It is well known that these 
models are incomplete.
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9Structural superplasticity of polycrystalline materials

1. Equation (1.1) does not describe the S-shaped curve. In the 
best case, it is a tangent to the curve at the inflection point (in 
the appropriate coordinates), and only under the condition that the 
maximum value of the parameter of rate sensitivity (i.e., the value 
of the logarithmic derivative of s with respect to e  at the inflection 
point) is equal to 1/2 (all the models lead to the value m = 1/2). 
The introduction of the threshold stresses does not save the situation 
because the value of s in the superplasticity range is considerably 
higher than sth.

2 .  The exper imentators  have known for  a  long t ime that 
superplasticity is detected only in some strain rate range (or a 
corresponding stress range because the strain rate and stress in the 
stable yielding stage are mutually linked unambiguously by the 
S-shaped curve). The models of type of (1.1) do not make it possible 
to determine the required interval: threshold stresses in equation (1.1) 
are not linked with the lower boundary of the stress range and are 
considerably lower than this boundary.

3. The set of the parameters characterising the material (the mean 
grain size made dimensionless with respect to the modulus of the 
Burgers vector, the shear modulus and the activation energy of grain 
boundary diffusion, or some effective diffusion in the Gittus model 
[30]) is not completely determined because many essentially different 
materials are defined by this set as identical. Adding to the set the 
parameter m which differs from 1/2 (i.e., from the value determined by 
the models) not only transforms the model to a phenomenological one, 
and this is done without arguments, but also directly contradicts the 
characteristics of the micromechanisms used as the basis of the model.

It should be mentioned that this incomplete success was associated 
with the following circumstance. The models implicitly describe some 
'typical' triple junction. The erroneous nature of these considerations 
became evident after carrying out experiments to investigate structural 
changes during deformation. As established, the grains change their 
neighbours during deformation; in addition, larger grain groups are 
displaced in the specimen as an integral unit with the variation of 
orientation (Fig. 1.2) [31]. The first factor was used as a basis for 
formulating a large number of geometrical models of superplastic 
deformation systematised by Zelin (Table 1.1) [32]. The best known is 
the Ashby–Verrall model [33] in which the mechanism of rearrangement 
of the grains was speculatively formulated whilst retaining the integrity 
of the material. However, regardless of the attractive original nature of 
this mechanism, subsequent analysis showed that this model does not 
apply to three-dimensional polycrystals [34]. The models based on the 
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10 Superplasticity and grain boundaries

mechanism of switching of the grains were discussed for a long time 
in the literature [35].

The second fact appears to be simply very unusual: on the one side, 
the grain size should be smaller and, on the other side, large groups 
of grains move as an integral unit. A large number of problems arise 
immediately. Firstly, why should the small grains be required if large 
conglomerates move as an integral unit? Why not consider the grain 
size equal to the size of the conglomerate? Secondly, what type of 
triple junction is discussed in the superplastic deformation models? Is 
it the junction belonging to this type of conglomerate so nothing takes 
place in it. How does one junction differ from another and what type of 
junction was considered by the authors of the models? The only answer 
is as follows: the triple junction is not the representative element of the 
structure. It became clear only later that this was the first confirmation 
of the action of the co-operative deformation mechanism.

Analysis of the physical mechanisms of superplasticity was 
accompanied by a more successful process of expansion of the range 
of the materials and the conditions in which superplastic deformation 
takes place. In ceramics and in composites superplasticity was detected 
at rates (in inverse seconds) approximately 3–4 orders of magnitude 
higher than the rates typical of the classic eutectoids. In the case 

Fig. 1.2. Diagram of displacement of a group of grains during superplastic deformation.
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11Structural superplasticity of polycrystalline materials

Table 1.1. Geometrical models of superplastic deformation [32]

Deformation
mechanism. 

Authors
Schematic representation  Comment

1. Individual GBS

Accommodation 
by grain boundary 
migration
Lee (1970) [48]

Diffusion accom-
modation
Ashby, Verral
(1973) [33]

Dislocation
accommodation
Matsuki et al.
(1977) [49]

Grain entry
Gifkins (1978) 
[50,51], modi-
fication	Langdon
(1981) [52]

Geckinly (1983)
[53]

It is assumed 
that GB migra-
tion is interrupted 
after deformation.                 
Further deforma-
tion not explained

Deformation 
rearrangement of 
surrounding grains 
not explained

Grain rotation takes 
place in addition to 
sliding. Continua-
tion of deformation 
not explained.

Model can explain 
only 110% strain

Further deforma-
tion explained by a 
change of trajectory 
of grain movement

of superfine-grained crystalline materials it was possible to reduce 
greatly the superplasticity temperature (low-temperature superplasticity). 
Investigations of nanocrystalline materials started. The hopes for the 
existence of a general micromechanism applicable to all materials and 
the conditions and responsible for the realisation of the superplasticity 
conditions have not been fulfilled. Studies appeared in which it was 
shown that the mechanisms controlling the strain rate can differ at low 
and high temperatures even for the same material [36].

The problem of the nature of superplasticity was transferred to 
another aspect: what is the common feature of greatly differing 
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12 Superplasticity and grain boundaries

materials, tested at greatly different conditions, in such a manner that 
they show the same behaviour. Generally speaking, the answer is clear: 
they are united by the absence of conditions for fracture. This would 
appear to be dull tautology. However, it leads to new experiments and 
the formation of new views on superplasticity as a whole.

The absence of the conditions for fracture is reduced to the absence 
of the conditions for the localisation of deformation (leading to ductile 

Table 1.1. (Continued)

Deformation
mechanism. 

Authors
Schematic representation  Comment

2. Cooperative GBS. Rigid shear

Cannon, Nix (1973) 
[54]

Patridge et al.
(1985) [56]

Newbury, Hazzledine 
(1973) [57]

Macroscopic 
deformation caused 
by movement of 
a group of grains. 
Expected simulta-
neous sliding of all 
grains not realistic

Rigid shear in 
two-phase mae-
rial with different 
shear values along 
interphase boundar-
ies of different type 
taken into account

Model assumes 
specific	trajectories	
of movement of 
grains. Entry of 
grain from parallel 
sections is taken 
into account
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13Structural superplasticity of polycrystalline materials

fracture) and the stress concentration (leading, at the appropriate 
loading rates, to the propagation of cracks and brittle fracture surface), 
or, in other words, to the requirements for the homogeneity of the flow 
within the limits of the specimen (it should be mentioned that here we 
are not discussing the homogeneity of deformation on the mesolevel) 
of a relatively long period of time. The required homogeneity can be 
achieved only by specific organisation of the large-scale flow pattern: 
it should not look as the superposition of independent processes, 
taking place in different areas of the deformed specimen, but rather 
should be represented by a single process coherent on the macrolevel. 
In particular, investigation of the organisation of the large-scale flow 
pattern have also resulted in new views regarding superplasticity.

The investigations of the special features of the deformation 
mechanisms on the meso- and macrolevel are carried out using specially 
prepared specimens. A thin carbon film is sprayed on the surface of 
the specimen. The carbon layer fractures in tensile loading in the area 
of the highest intensity of deformation. The low-voltage regime of 
scanning electron microscopy (SEM) results in a contrast determined 
by the thickness of the oxide film. Consequently, it is possible to 
distinguish the surface, formed during deformation, from the initial 
surface. Precise snap-shots of the same region of the surface prior 
to and after deformation can be used to investigate the movement 
of the individual structural elements. As a result of the investigation 
of the deformation of relief, formed on the surface of the specimen 
during superplastic deformation, it was concluded that the flow on the 
mesolevel is not uniform: deformation is localised along the surfaces 
passing through the entire cross-section of the specimen and separated 
by the sections of the material not included in deformation. Examination 
of the fine structure of the strain bands shows that the position of these 
bands can be linked with the structural elements of the polycrystal. 
It was also shown that the shear surface unites the grain boundaries 
oriented closest to the planes with the maximum shear stresses. Under 
unfavourable conditions the shear surface is forced to intersect with 
the body of the grain.

The relationship of the structural changes in the process of 
deformation with the deformation stages determined by the special 
features of the loading curves has been used to draw conclusions 
regarding the dynamics of formation of the shear bands. It was 
established [37–39] that the stage of transfer of the loading curves 
to the stable flow regime is characterised by the formation in the 
material of individual independent flow sections represented either by 
nonuniform shear along the favourably oriented grain boundaries or the 
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14 Superplasticity and grain boundaries

manifestation of the dislocation activity in relatively large grains. On 
reaching the stable flow stage which is already the feature of transition 
to the superplasticity regime [1], the individual flow sections merge and 
deformation takes place by means of matched shear along the surfaces 
passing through the entire cross–section of the specimen and situated in 
the immediate vicinity of the planes with the maximum shear stresses 
[37–43]. These surfaces are referred to as the band of cooperative grain 
boundary sliding (CGBS) [40]. The flow pattern, formed by the effect 
of the CGBS bands, ensures the maximum homogeneity of deformation 
within the limits of the specimen.

What is the mechanism of merger of the independent flow sections 
into a coherently acting shear band? Experiments were carried out to 
determine the distribution of the dihedral angles at triple junctions 
belonging to the shear band and situated outside the band [39]. The 
results show that the dihedral angles outside the band are equal to 
approximately 2p/3, i.e., they are close to equilibrium configurations. 
The triple junctions, belonging to the band, are ‘straightened’, i.e. 
their dihedral angles show a distinctive tendency to increasing (equal 
to p). In addition to this, in investigating grain boundary sliding 
in tricrystals [44] it was found that the ‘straightening’ of the triple 
junctions takes place as a result of local migration (buckling) of one 
of the boundaries (with the maximum shear stresses acting in the 
plane of the boundary) to the rearrangement of the configuration of 
the triple junctions which ensures compatibility of shear at two out of 
three boundaries forming the given junction. Finally, in some especially 
unfavourable configurations (relatively rare) the band is forced to 
intersect the body of the grain. The flow pattern, formed by the effect 
of the CGBS bands, ensures the maximum uniformity of deformation 
within the entire specimen.

Thus, the problem of historical development of superplasticity is 
regarded as the problem of recurring detailization of the representative 
volume reproducing the main special feature of the phenomenon  – high 
strains to fracture. The change of the investigated object in the grain–
grain boundary–triple junction–the band of cooperative grain boundary 
sliding is quite evident. At the same time, this sequence defines the 
relationship of the processes on the mesolevel with the formation of 
the macroobject and determines the experimental tasks.

1.3. Structural superplasticity: from meso-description to 
macrocharacteristics

Experimental investigations have formulated the essential basis 
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for theoretical considerations regarding the nature of superplastic 
deformation.  The previously proposed theoret ical  models  of 
superplasticity can be regarded only as the models of accommodation 
of shear in the isolated triple junctions. In particular, it should be 
mentioned that there are at least three studies in which it was attempted 
to investigate the self-consistent shear along the system of conjugate 
grain boundaries. These are the studies by Spingarn and Nix [45], 
Khannanov [46] and Baudelet [47]. The first two of these studies 
preceded the investigations by the authors of this book, the third study 
was published later. However, since the authors of these studies did 
not know the experimental results obtained in the investigation of the 
special features of triple junctions belonging to the CGBS band and 
situated outside the band, the investigations were reduced to studying 
a chain of equilibrium and isolated triple junctions. Nevertheless, this 
was still the theoretical precursor of the band.

Thus, the construction of the theoretical model of superplasticity is 
reduced to constructing a method of formal description of the structural 
level given successively by the grain boundaries, triple junctions, and 
the band of cooperative grain boundary sliding. This determines the 
formulation of specific experimental tasks.

Grain boundary sliding on the flat boundary of a bicrystal is regarded 
as the basis of the deformation mechanism of superplastic deformation: 
although the dislocation nature of the phenomenon is confirmed quite 
convincingly by experimental investigations, there is still no verbal 
description of the scenario with the participation of lattice and grain 
by the dislocations, not mentioning the mathematical formalism, 
which would make it possible to reproduce in the calculations the 
experimentally recorded dependence of the sliding on the loading time. 
This leads to the first task: construction of the model of stimulated 
grain boundary sliding in the bicrystal.

According to the experimental data, the natural obstacle to the 
development of grain boundary sliding in a polycrystal – a triple 
junction – undergoes configuration rearrangement ensuring the 
compatibility of shear on two out of three boundaries forming the 
given junction (Fig. 1.3). The driving force for this rearrangement 
is not known. This determines the second task of the investigations: 
construction of a model of the reorganisation of isolated triple junction 
in the stress state conditions. The absence of uniformity of the 
deformation on the mesolevel indicates convincingly that rearrangement 
takes place only at some of the junctions. This formulates the problem 
of the distributed parameters with calculation of the number of 
reorganised junctions in the polycrystal in the given loading conditions.
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(a)

(b)

(c)

Fig. 1.3. Reorganisation of a triple junction in an aluminium tricrystal: (a) initial 
position; (b) after deformation; (c) after deformation and repolishing the surface [44].
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The experiments also show that in the stage of the stable flow (the 
indication of transition to the superplastic condition) the independent 
shear sections merge into shear surfaces – CGBS bands. The conditions 
of formation of these bands and calculation of their number in the 
polycrystal in the given welding conditions are the content of the third 
task. The final characteristic, determined by the dislocation activity of 
the mesolevel, is the shear rate in the CGBS band. This completes the 
verification of the band as an independent object on the macrolevel.

The next three tasks relate to the macrolevel onto which the 
characteristics of the bands as independent object, determined in the 
solution of the first three tasks, are transferred from the mesolevel.

The section of the dependence of the strain rate on stress in 
the stable flow stage – the standard test of any physical model of 
superplastic deformation –  is the content of the fourth task. Its solution 
includes the development of formalism which would make it possible 
to link the macroscopic strain rate with the characteristics of the CGBS 
bands.

The presence of a relationship between meso- and macrodescriptions 
enables us to formulate the task to calculate the limiting strains or the 
duration of the stable flow stage. This calculation and investigation of 
its dependence on the strain rate and the dimensions of the specimen 
is the fifth task.

Knowing the special features of the large scale orientation of the 
flow it is possible to propose a reliable approach to constructing the 
constitutive relationships and carrying out preliminary analysis of the 
condition of coaxiality of the stress deviator and the strain rate tensor 
in superplastic deformation. This is our sixth and final task.

All these tasks will be investigated in this book.
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20 Superplasticity and grain boundaries

2

CHARACTERISTICS OF GRAIN 
BOUNDARY ENSEMBLES

2.1. Crystal geometry and structure of intercrystalline boundaries

2.1.1. Methods for describing the structure of the grain boundaries

The polycrystalline solid as a statistical ensemble of the grains forming 
the solid is described by a large number of statistical characteristics. 
A special position in this set is occupied by the characteristics of the 
network of intercrystalline boundaries. They include the distribution 
function of the grain boundaries with respect to the crystal geometry 
parameters and primarily with respect to misorientation. Special 
attention will be given to the mathematical methods of describing the 
crystal geometry of intercrystalline boundaries which represent the basis 
of the algorithms for calculating the required parameters in processing 
the experimental data and modelling the spectra of misorientation of 
the grains in the polycrystals.

The structure and position in space of the boundary of two grains 
(Fig. 2.1) can be defined by five macroscopic parameters, three of 
which (angle and axis) describe the mutual rotation of neighbours 
around some axis, and two of them is the plane in which the interface is 
situated. The parameters of the boundary determine the crystal geometry 
and represent the basis for describing their structure.

The misorientation of the grains is a vector quantity and, therefore, 
it is necessary to solve the problem of the efficient representation of 
the grain boundary misorientation distribution (GBMD). This problem 
will be discussed in detail later, here it is accepted that the GBMD is 
represented by three distributions. The first of them is the distribution 
of the grain boundaries with respect to the misorientation angles 
and axis. As a result of the symmetry of the lattice there are several 
equivalent rotations coinciding the sites of the lattice of the adjacent 
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grains (for example, in the case of the cubic lattice there are 24 
equivalent rotations). For unambiguous selection, all the misorientations 
are reduced to the minimum angles qmin and the directions ápqrñ in 
the standard stereographic angle. The third distribution is based on 
the classification of the boundaries using the model of the lattices of 
the coincident sites. This is the distribution of the grain boundaries 
with	 respect	 to	 the	 reciprocal	 density	 of	 the	 coincident	 sites	 (Σ)	
characterising the fraction in the general spectrum of the boundaries 
with	 low	values	of	Σ	which	usually	have	unique	properties.

The mutual rotation of two lattices can be described using the 
rotating matrix [1]:

(2.1)

The elements of this matrix include the directing cosines between the 
coordinate axes of the first and second grain. The following equality 
applies to any two parallel directions into adjacent grains defined by 
the unit vectors A and B

(2.2)

Of the nine elements of the matrix R


 only three are linearly 
independent quantities. The physical meaning of the matrix is that 
its elements represent the coordinates of the crystallographic basis of 
the lattice of one grain in the lattice of another grain. Knowing the 

Fig. 2.1  

 q 

HKL 

Grain 2 

GB plane 

Grain 1 

[u v w] 

                       Fig. 2.1. Rotation of two adjacent grains.
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 =  
  


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

�� �� �� �� ��



22 Superplasticity and grain boundaries

rotational matrix, it is easy to determine the misorientation angle and 
axis. The rotation angle is determined by the trace of the matrix R



:

3

1

1arccos 1
2 ii

i
R

=

  
q = -  

  
∑  (2.3)

The components of the axis of rotation C for the cubic system have 
the form

1 32 23

2 13 31

3 21 12

( ) / (2sin );
( ) / (2sin );
( ) / (2sin );

C R R
C R R
C R R

= - q
= - q
= - q

 (2.4)

The misorientation of the same boundary can have several equivalent 
values because as a result of crystal symmetry the selection of the 
system of crystallographic coo0rdinates in each grain is ambiguous. 
The set of the equivalent matrices, describing the same rotation, can 
be obtained as follows

,i jR M RM′ =
   

 (2.5)

Here the matrices iM


 describe the operations of transition from the 
given system of coordinates to the crystallographically equivalent one. 
For the cubic system there are 24 such matrices. Thus, for n equivalent 
transformations of the crystal lattice there are n2 equivalent descriptions 
of the misorientation of two grains. In practice, it is however sufficient 
to find only n descriptions using the equation

.jR M R′ =
  

 (2.6)

The description of the misorientation of the grains as the angle–axis 
pair and as the rotating matrix has been used most widely because of 
its simple form in the form of the three-dimensional Rodriguez vector 
(referred to usually as the Gibbs vector) [2]. The latter includes only 
three elements, i.e., in the explicit form the vector contains three 
independent crystallographic misorientation parameters:

 (2.7)

In addition, the vector description of the misorientation is linked 
directly with quaternionic description which is more suitable for 

.

G	=	tg	(θ	/2)[C1, C2, C3].
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determining special misorientations [3].
In analysis of the crystal geometry of the grain boundary structure 

it is sometimes not rational to use the crystal lattices of the adjacent 
grains as the reference lattices. It is therefore important to investigate 
the different auxiliary lattices, common for both grains: the coincident-
site lattice (CSL), the '0' lattice, the displacement shift complete (DSC) 
lattice [4], the grain boundary shear (GBS) lattice [5, 6].

Since the theory of the coincident-site lattice is the basis of the 
classification separation of the grain boundaries into special and general 
ones, this problem will be investigated in detail. The assumptions on 
the coincident-site lattice, introduced for the first time by Kronberg and 
Wilson [7] and developed further subsequently by many authors (the 
appropriate references can be found in [4, 8]; study [9]] should also 
be mentioned), proved to be extremely fruitful in the crystal geometry 
description of the grain boundaries. They are still used at the present 
time. The authors of [9] found that in the rotation of two identical 
lattices around the common crystallographic axis through a specific 
angle, part of the sites of the one lattice coincides with the sites of 
the other lattice, forming its three-dimensional lattice in space, i.e. 
the coincident-site lattice. This lattice is characterised by the inverse 
density	 of	 the	 coincident	 sites	 Σ,	 equal	 to	 the	 number	 of	 sites	 of	 one	
of the lattices in the elementary cell of the lattice of coincident sites. 
The concept of the coincident-site lattice enables us to construct any 
periodic boundary, both symmetric and non-symmetric. The division 
into symmetric and non-symmetric boundaries was proposed in [10] 
in which a general classification of the boundaries was also suggested. 
The boundary which contains only coincident sites is referred to as 
symmetric if its plane coincides with one of the planes of symmetry 
of the coincident-site lattice, and quasi-symmetric in the opposite case. 
The boundaries which contain, in addition to the coincident sites, also 
non-coincident sites of one or both lattices, are referred to as non-
symmetric. Figure 2.1 shows an example of the projection of the (001) 
planes of two superposed primitive lattices disoriented by the angle 
of 36.7° around the [001] axis. It can be seen that every fifth node of 
the lattices 1 and 2 coincides, forming a spatial coincident-site lattice 
with	the	inverse	density	of	 the	coincident	sites	Σ	=	5	(the	period	of	 the	
coincident-site lattice in the [100] direction is equal to the period of the 
atomic-crystalline lattice). The graph indicates that the coincident-site 
lattice of the cubic lattices contains two crystallographic planes forming 
symmetric grain boundaries. The period of the boundary is equal to 
the other coincident-site lattice in the appropriate plane. Regardless 
of the fact that the coincident-site lattice can be constructed for the 
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denumerable set of the angles of rotation and not for a continuous 
number any boundary with the given misorientation can be calculated 
with satisfactory accuracy as the boundary with a high but finite period. 
The theory of the coincident-site lattice has made it possible to explain 
qualitatively the existence of special grain boundaries with special 
properties. Evidently, there is a superposition with their minimum value 
of	angle	Σ	for	any	misorientation	axis.	The	appropriate	periods	of	 the	
symmetric grain boundaries are small in comparison with the areas 
of the remaining grain boundaries. As a result of the high density of 
the general sites in these grain boundaries, the excess energy should 
be minimum, and the dependence of the energy of the boundary of 
the misorientation angle shows dips which were also detected in 
experiments [11, 12].

Mathematical description of the coincident-site lattice in a simple 
cubic lattice was proposed in [9]. It is based on the construction of 
the rotational matrix generating the given coincident-site lattice. This 
matrix can be presented in the form

11 12 13

CSL 21 22 23

31 32 33

1R
r r r 

 = r r r S
 r r r 



 (2.8)

Here	 Σ	 and	 ρii are the coprime numbers (for the cubic crystals is an 
odd number), satisfying the relationships

2 2; ,ik kj ij ik jk ijr r = S d r r = S d  (2.9)

where summation is carried out with respect to the same indexes. Using 
this method, Grimmer, Ballmann and Warrington constructed basic 
sectors of the coincident-site lattice and calculated a table of special 
misorientations	with	Σ	<	50	for	simple	cubic	 lattices.	The	matrices	of	
the basis of the coincident-site lattice and special misorientations for 
the FCC and BCC lattices were published in [10]. Tables of special 
misorientations for almost all metal lattices are also available.

The next important lattice which is used widely in analysis of the 
structure of the grain boundaries is the total superposition lattice, 
introduced for the first time by Ballmann [13]. In superposition of two 
lattices forming the coincident-site lattice, there is a set of the vectors 
∆r = r1 – r2. The spatial pattern of the set does not change in mutual 
displacements (Fig. 2.2).

The total superposition lattice is defined by every possible 

.

�� �� �� �� ��



25Characteristics of grain boundary ensembles

translations Dr, representing the linear combinations of the vectors of 
two crystal lattices. In displacement on the vectors CSL, DSC and '0'- 
lattice remain unchanged, although they can be displaced as a whole. 
The total superposition lattice has a special physical meaning: its 
basic vectors determine the Burgers vector of the total grain boundary 
dislocations.

The rearrangement of the structure of the grain boundaries which 
takes place during the mutual displacements of the boundaries and 
depends on the orientation of the plane in which the interface is situated 
is analysed using the GBS lattice (Fig. 2.2), introduced by the authors 
of [6]. The GBS vectors are the projections of the DSC vector on the 
planes parallel and perpendicular to the grain boundary plane, and the 
two planes normal to the boundary should have the highest reticular 
atomic density. In a general case, the GBS is the lattice with the finest 
cells and contains as sublattices CSL, DSC and the crystal lattices of 
the adjacent grains. In a partial case when the grain boundary plane 
coincides with the close-packed plane of the coincident-site lattice, the 
GBS coincides with DSC. The GBS vectors form all possible partial 
and total shears on the special boundary with the given misorientation 
and the orientation of the plane. It should be mentioned that the size 
of	 the	elementary	cells	of	DSC	and	GBS	decreases	with	 increasing	Σ,	
and	at	higher	values	of	Σ	 it	 is	no	 longer	physically	 justified	for	use	 in	
the analysis of the structure of the grain boundaries.

The authors of [14] proposed the following criterion for for the 
applicability  of DSC and GBS. These lattices determine the periodicity 
of the energy relief along the grain boundary which should not be 
smaller than the period of thermal oscillations of the atoms. Otherwise, 

 

B А 

C 

CSL 
DSC 

‘0’ - lattice 

Fig. 2.2 Fig. 2.2.	Auxiliary	 lattices	 for	 the	 boundary	 Σ5;	AB	 and	AC	 are	 the	 planes	with	 the	
highest density of the coincident sites; crosses indicate the zero lattice.
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26 Superplasticity and grain boundaries

the interface would have no special properties and should be regarded 
as arbitrary.

In conclusion, it should be mentioned that the model of the 
coincident-site lattice does not generate any efficient criterion for 
separating the boundaries to special and arbitrary i.e., the problem 
of	 the	maximum	 value	 of	 Σ	 at	 which	 the	 special	 boundary	 differs	 in	
the properties from the general type of the boundary has not yet been 
solved. The authors of [15] assumed that the special boundaries with 
Σ	< 25 should exist up to the melting point, and for the majority of 
metals	 the	 special	 grain	 boundaries	 with	 Σ	> 65 can be regarded as 
arbitrary. In this book, following this conclusion, all the boundaries 
with	 greater	 than	 Σ	 >	 65	 are	 general	 type	 boundaries.	 However,	 for	
analysis of the effect of the ensemble of the grain boundaries on the 
macroscopic properties of the polycrystals, we propose to use a more 
generalised criterion of ‘speciality’ for individual grain boundaries (see 
later), and for the ensemble of the grain boundaries it is proposed to 
define three types: LAB (the given ensemble contains mainly low-angle 
grain boundaries), HAB (the main part of the ensemble of the grain 
boundaries is represented by high-angle grain boundaries of arbitrary 
type), and CSL (with the largest fraction of the boundaries of the 
special type in the general spectrum).

2.1.2. Analytical representation of the basis of the coincident-site 
lattice for cubic lattices

The practical application of the concept of the coincident-site lattice  
is restricted by the absence of analytical description of its basis which 
must be carried out numerically for every specific misorientation 
using the methods discussed in [17] which can be used only in a 
computer. Here, we propose a method of analytical representation of the 
coincident-site lattice which can be used for almost any misorientation 
of cubic crystals.

We examine a primitive cubic lattice with a basis (e1, e2, e3). The set 
of the vectors (sites) of the coincident-site lattice is given by solutions 
x of the equation

1( ) ,I A-- =x b


 (2.10)

whose basis (e1, e2, e3) contains whole components, i.e., they are 
lattice vectors [17]. In (2.8) Î  is the unit matrix, and b is the set of 
all the translational vectors of the initial lattice. The transformation 
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of Â   takes place by right rotation around the axis c through the angle 
q. The rank of the matrix 1ˆÎ A--  is less than three and this creates 
certain problems when examining equation (2.10) as the system of 
linear equations. For this reason, in [17] 1Â-  is represented by the 
transformation 1ˆ ˆUR- , where R̂  is the rotational transformation, and 
Û  is the unimodular transformation, determined by the following 
condition: rank 1( ) 3.I UR-- =

  

The formalism in which (2.10) is regarded as some vector equation 
is more adequate and makes it possible to avoid artificial introduction 
of the transformation Û . It is well known [1] that

0 0 0 0 0
ˆ ( ) ( )cos sin ,R = + × × q + × ϑx c xc c x c c x  (2.11)

where

0 =
cc
c  (2.12)

The equation (2.10) using (2.11) has the form

0 0 0( )(1 cos ) sin .b× × - q + × q =c x c x c  (2.13)

Since the left-hand part of the equation (2.13) contains only the vectors 
normal to the axis c, the set of the vectors b narrows down to the set 
of the translational vectors of the initial lattice, determined by the 
condition

0.=cb  (2.14)

Using the well-known procedures of vector algebra, from (2.13) we 
obtain

0 0 0( ) / 2 ctg( / 2)( ) / 2.× × = + q ×c x c b c b

Since any vector x is identically expanded into a sum

0 0 0 0( ) ( ).= + × ×x c xc c x c

and the projection of the lattice vector x to the direction of the c axis 
is divisible by the planar spacings in this direction, all the solutions 
of the equation (2.10) have the form:

.
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2
1 ctg ,
2 2 2

n q ×
= + +

c c bx b
cc  (2.15)

where n is an arbitrary integer. The problem of recalculating the vectors 
of the coincident-site lattice has been reduced to separating the lattice 
vectors from the set of the vectors (2.15). In this case, the equation 
(2.15) should not contain irrational quantities, i.e., q and |c| should be 
linked by, for example, the relationship

tg ,
2

p
q

q
= c

p and q are coprime numbers.
We obtain sufficient conditions for the vector (2.15) to be an integer 

number in the basis (e1, e2, e3). Because of the symmetry of the crystal 
lattice there are several equivalent descriptions for every misorientation. 
It can be shown that up to the inverse density of the concident sites 
of	 Σ	 =	 221	 the	 group	 of	 these	 equivalent	 notations	 must	 contain	 at	
least one rotation around the axis of the type áuv1ñ. Undoubtedly, the 
value	 Σ	 =	 221	 is	 sufficient	 for	 any	 practical	 purpose	 because	 high	
values can hardly have any physical meaning. Therefore, we restrict 
our considerations to the class of the axes c= [uv1]. In this case, any 
vector b, satisfying the condition (2.14), can be expanded on the flat 
basis given by the vectors

1 1 3 2 2 3; .u v= - = -b e e b e e

Substituting the values b = Kb1+Lb2 (where K and L are any integers), 
in equation (2.15) we obtain

12

22

3.2

1 2 ( )
2

1 2 ( )
2

1 1 2 ( )
2

q u qx K L n Lu Kv
p c p

q v qL K n Lu Kv
p c p

qKu Lv n Lu Kv
c p

  
= - + + - +  

  
  

+ + + + - +  
  

  
+ - - + + -  

  

e

e

e

Analysing the vector c × x, it can be shown that K and L should be 
divisible by p, i.e., K = kp and L = lp. Consequently
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1 2 32 2 2

1 ( ) ( ) ( ) .
2

m m mkp lq u lp kq v kpu lqv
c c c

 = - + + + + + - +  
x e e e  (2.16)

Here m = 2n + q (lu–kv). The arbitrary number n can always be 
selected to ensure that m is divisible by c2. It is now necessary to 
write integers k, l and m/c2 in such a manner as to remove the common 
multiplier 1/2 in equation (2.16). This selection is determined by the 
parity of the quantities p, q, u, v. Selecting subsequently from (2.16) 
three non-complanar vectors (such that the elementary cell constructed 
using these vectors has the minimum volume) we obtain the following 
variants of the basis of the coincident-site lattice in the matrix form 
(the vector of the basis – the matrix column):

1. At odd p, q, u and v

( ) / 2 ( ) / 2
( ) / 2 ( ) / 2 ;

1 (1 ) / 2 (1 ) / 2

u p u u q
c v q v v p

pu pv

+ - 
 = + + 
 - - 



 (2.17a)

2. At odd p, q and even u, v

( ) / 2
( ) / 2 ;

1 ( ) / 2

u p p q
c v q p q

pu p u v

- 
 = + 
 - - + 



                                           (2.17b)

3. At odd p, u and even q, v

( ) / 2
( ) / 2 ;

1 (1 ) / 2

u p u q
c v q v p

pu pu

+ - 
 = + 
 - - 



 (2.17c)

4. At odd p, v and even q, u

( ) / 2
( ) / 2 ;

1 (1 ) / 2

u p u q
c v q v p

pu pu

- 
 = + 
 - - 



 (2.17d)

5. At all other q, p, u and v
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;
1

u p q
c v q p

pu pu

- 
 =  
 - - 



 (2.17e)

The volume of the elementary cell of the lattice of collected and 
sites is equal to the determinant of the matrix and according to the 
definition	 is	 equal	 to	Σ.	Consequently,	 in	case	1

2 2 2( ) / 4;p c qS = +  (2.18a)

in the cases 2, 3 and 4

2 2 2( ) / 2;p c qS = +  (2.18b)

and in the case 5

2 2 2.p c qS = +  (2.18c)

The matrix c  defines one of the infinite number of equivalent variants 
of the selection of the basis of the coincident-site lattice. The equivalent 
description is obtained from this description by constructing different 
linear combinations of lines and columns of the matrix c . The most 
suitable description can be selected only for the specific values of the 
misorientation parameters.

The matrices of the basis of the coincident-site lattice for the centred 
lattices are determined from the matrix c  for the primitive cubic lattice 
using the simple rules presented in [1].

We examine a specific example of construction of the basis of 
the coincident-site lattice. Let the misorientation of 60.77° á332ñ be 
given. The equivalent description with the axis of the type áuv1ñ can 
be obtained in the quaternionic form. If the rotation is described by 
the quaternion [18]

(A, B, C, D), (2.19a)

where A, B, C and D are coprime integers, the equivalent description 
of this quaternion in the cubic lattice is

( , , , );A B A B C D C D+ - + -  (2.19b)

( , , , );A C A C B D B D+ - + -  (2.19c)
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( , , , );A D A D B C B C+ - + -  (2.19d)

( , , , );A B C D A B C D A B C D A B C D+ + + + - - - - + - + -  (2.19e)

The ‘axis–angle’ description is obtained from the quaternion form as 
follows:

2 2 2
2

2tg , ,
2

x y z xyz
T

q + +
= c

where T, x, y z are the elements of the quaternion (2.19).
In this case, the misorientation is described by the quaternion (8, 

3, 3, 2). From (2.19c) we obtain the equivalent description: (11, 5, 5, 
1), i.e. c = [551), tg / 2 51 /11.q =  Consequently p = 1; q = 11; u = 
v = 5. From (2.17a) and (2.18a) we obtain

5 3 3
5 8 3 , 43
1 2 2

c
- 

 = S = 
 - - 



 (2.20)

The elementary cell is represented by the cell of the coincident-site 
lattice constructed  on the shortest non-complanar vectors. The column 
vectors of the matrix (2.20) are denoted by 0 0 0

1 2 3, ,e e e . Its equivalent 
matrix with the columns is 0 0 0 0 0 0 0

1 2 3 1 2 3 33 2 2 , ,- + - + -e e e e e e e :

3 1 3
5 0 3 ,
3 1 2

c
- 

 =  
 - 



 (2.21)

and defines the basis of the coincident-site lattice with the shortest 
vectors.

The following matrix is presented in [17] for the misorientation                      
Σ=	43c:

3 1 5
3 0 3 ,
2 1 3

c
- 

 =  
 - 



which is fully equivalent to the matrix (2.21) and is obtained from 
this matrix by the cyclic rearrangement of the columns and the 

.
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rearrangement of the lines with the appropriate change of the sign of 
the coefficients.

2.2. Special grain boundaries in the monoclinic lattice

As already mentioned, types of special boundaries have been 
calculated for almost all types of lattice. However, because of the 
mathematical difficulties, a large class of polycrystalline materials with 
the monoclinic lattice does not have such classification. Therefore, 
analysis of the ensemble of the grain boundaries in similar materials 
was associated with difficulties. Since the general method of calculating 
the coincident-site lattice for the lattice of arbitrary type has not been 
developed, numerical modelling was used for producing tables of 
special boundaries in these materials [19]. Previously, it was assumed 
that the materials with a low symmetry crystal lattice cannot have 
special misorientations. However, as shown in [20, 21], special type 
boundaries can exist in these lattices. If the parameters of the crystal 
lattice correspond to some specific conditions, then the number of the 
coincident-site lattices and, consequently, of the ‘special’ boundaries 
may prove to be quite large.

Zirconia, ZrO2, exists in three crystalline phases, monoclinic, 
tetragonal and cubic. The monoclinic lattice is characterised by the 
lowest temperature and highest stability of the three phases. If the 
calculations of the types of ‘special’ boundaries and for the tetragonal 
and cubic phases are not very difficult, no data of this type are available 
for the monoclinic phase. The experimental data, obtained by electron 
microscopy, indicate the existence of straight grain boundaries whose 
external morphology indicates that they may have special properties. 
The crystal geometry of the coincident-site lattices in the monoclinic 
lattice of zirconia will now be discussed in more detail.

The monoclinic lattice of ZrO2 belongs to the crystallographic group 
P21/c and has the following parameters of the elementary cell: a = 
5.1490 Å; b = 5.2133 Å; c = 5.3161 Å; the angle b between the axes 
a and c is 99.228o. The elementary lattice of ZrO2 is shown in Fig. 2.3.

Prior to investigating possible types of ‘special’ grain boundaries, 
attention will be given to the geometry of the elementary cell. In the 
monoclinic lattice with any parameters, two symmetric boundaries with 
the planes (001) and (100) should have a close-packed atomic structure. 
This misorientation is described by rotation through 180° around the 
[100] axis or the normal to the plane (001) for the first symmetric 
grain boundary and rotation through 180° around the axis [001] or the 
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normal to the (100 plane) for the other symmetric grain boundary. It is 
clear that the three-dimensional coincident-site lattice can exist if the 
parameter (c/a)	cos	β	is	an	integer.	Thus,	we	do	not	calculate	accurately	
the special boundaries but calculate accurately the boundaries close 
to them, using the approximation a = b = c	 and	 cos	 β	 =	 –1/6	 (i.e.,																																																																																					
β	=	99.594°)	 for	 the	given	 lattice.	We	consider	a	prismatic	cell	 in	 the	
monoclinic lattice ([101] [1̄01], [010]), which is orthogonal, with the 
ratio of the squares of the length 5:7:3. In this case, we can use the 
algorithm of calculating the coincident-site lattice for orthorhombic 
lattices with the rational ratio of the squares of the lattice spacing 
values [22]. However, in this case the lattice is also base-centred, i.e., 
there is an additional atom inside the calculation cell. In practice, this 
means	 that	 the	 value	 Σ	 of	 the	 inverse	 density	 of	 the	 coincident	 sites	
can be calculated with the accuracy to the coefficient k (according to 
the	 conclusions	made	 in	 [22]).	This	 study	 shows	 that	ΣP	 (the	 value	Σ	
of	 	 for	 the	primitive	orthorhombic	 lattice)	 is	connected	with	ΣB	 (Σ	for	
the	base-centred	orthorhombic	 lattice)	by	 the	relation	ΣP = kΣB, where 
k has the values 1, 1/2 or 2.

The orthonormal basis e = a [e1, e2, e3], linked with the basis of the 
monoclinic lattice e = [a, b, c,	β]	by	 the	 relationship

· ,S ee =


 (2.22)

will now be examined. Here is the transformation matrix has the form

Oxygen 

Zirconium 

a 

b 

b 

c 

Fig. 2.3 Fig. 2.3. The elementary cell of the monoclinic lattice of ZrO2.
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1 0 ( / )cos
0 / 0 .
0 0 ( / )sin

c a
S b a

c a

b 
 =  
 b 



 (2.23)

Taking into account the given approximation (a = b = c	 and	 cos	 β	 =	
–1/6), equation (2.23) acquires the following form:

1 0 1/ 6
0 1 0 .

0 0 35 / 6

S
 -
 

=  
 
 



 (2.24)

It is assumed that using the algorithm described previously for the 
case of the orthorhombic lattice, we obtain the misorientation of the 
coincident-site	lattice	in	the	form	of	the	‘angle–axis’’	pair	(θ,	c = [uvw], 
|c| = 1). Consequently, the misorientation axes can be expressed in the 
orthonormal basis as c0 = [u0v0w0] = Sc



.	 Using	 the	 angle	 θ	 and	 the	
given axis, we construct the misorientation matrix [1]:

0 0 0 0
2
0 0 0

0 0 0 0
0 2

0 0 0

0 0 0 0
2

0 0 0

cos (1 cos ) (1 cos )

(1 cos ) (sin ) (sin )
(1 cos ) cos (1 cos )

(sin ) (1 cos ) (sin )
(1 cos ) (1 cos ) cos

(sin ) (sin ) (1 cos )

u v u w
u w

u v v w
R

w v u
u w v w

v u w

q + - q - - q 
 

+ - q - q - q υ 
 - q + q + - q -

 + q + - q - q


- q - - q + q +
 - q + q + - q 



.





 (2.25)

Consequently, the misorientation matrix in the monoclinic lattice can 
be determined by means of the transformation

1
0 .R SR S -=

  

 (2.26)

Using	 this	 equation,	 we	 can	 determine	 Σ	 as	 the	 so-called	 Σ-theorem	
which is valid for lattices of any symmetry [23]. The theorem shows 
that	 Σ	 is	 the	 positive	 smallest	 co-multiplier	 which	 is	 such	 that	 the	
matrices	 ΣR	 and	 ΣR–1 containing only rational numbers. Using the 
previously described algorithm, the misorientation of the coincident-site 
lattice	was	calculated	to	Σ	=	33,	 inclusive.	Table	2.1	shows	the	data	on	
special	misorientations	only	up	to	Σ	=	25.	The	misorientations	with	the	
same	value	of	Σ,	shown	in	Table	2.1,	are	not	equivalent.	The	columns	
1 and 2 contain equivalent misorientations having however different 
representation. This also refers to the columns 3 and 4. At the same 
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S
1 2 3 4

q, deg u v w q, deg u v w q, deg u v w q, deg u v w

1 180.0 1 0 1 180.0 1 0 –1

3 180.0 1 0 0 180.0 1 0 6 180.0 0 0 1 180.0 6 0 1

3 80.4 0 1 0 99.6 0 1 0

6 90.0 1 0 6 180.0 1 1 0

6 114.6 6 5 6 125.7 6 7 –6

8 75.5 1 0 –1 180.0 3 5 3

8 104.5 1 0 –1 180.0 1 1 1

9 19.2 0 1 0 160.8 0 1 0

9 180.0 3 0 4 180.0 3 0 –2 180.0 4 0 3 180.0 2 0 –3
10 66.4 1 0 1 180.0 3 7 –3

10 87.1 2 5 2 104.5 2 7 –2

10 113.6 1 0 1 180.0 1 1 –1

10 143.1 1 0 6 180.0 3 1 0 143.1 6 0 1 180.0 0 1 3

11 53.8 0 1 0 126.2 0 1 0

11 180.0 2 0 5 180.0 4 0 –1 180.0 5 0 2 180.0 1 0 –4

13 43.0 0 1 0 137.0 0 1 0

13 101.1 4 5 4 115.0 4 7 –4

13 112.6 1 0 6 180.0 3 2 0 112.6 6 0 1 180.0 0 2 3

13 180.0 2 0 1 180.0 4 0 11 180.0 1 0 2 180.0 11 0 –4

15 53.1 6 0 1 180.0 0 2 1

15 93.8 3 5 3 109.5 3 7 –3
15 126.9 1 0 6 180.0 2 1 0 126.9 6 0 1 180.0 0 1 2
15 140.1 12 5 12 146.4 12 7 –12

16 29.0 1 0 –1 180.0 1 5 1

16 66.0 6 7 –6 141.4 2 5 2

16 128.7 4 0 –11 180.0 2 1 1 128.7 11 0 –4 180.0 1 1 2

Table 2.1.  CSL (S < 25) for the monoclinic ZrO2 lattice
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S
1 2 3 4

q, deg u v w q, deg u v w q, deg u v w q, deg u v w

16 151.0 1 0 –1 180.0 3 1 3

17 31.5 0 1 0 148.5 0 1 0

17 65.7 1 0 –1 180.0 1 2 1

17 114.3 1 0 –1 180.0 6 5 6

17 180.0 8 0 13 180.0 2 0 –1 180.0 13 0 8 180.0 1 0 –2

18 91.6 6 1 0 166.5 6 35 36 91.6 0 1 6 166.5 36 35 6

18 114.6 6 5 –4 125.7 6 7 8 114.6 4 5 –6 125.7 8 7 6

19 54.6 1 0 –1 180.0 2 5 2

19 74.7 1 0 1 180.0 1 2 –1

19 105.3 1 0 1 180.0 6 7 –6

19 125.4 1 0 –1 180.0 3 2 3

20 54.9 6 5 6 151.0 2 7 –2

20 97.2 2 1 0 140.8 6 35 36 97.2 0 1 2 140.8 36 35 6

20 118.4 8 5 –2 128.7 4 7 10 118.4 2 5 –8 128.7 10 7 4

20 134.4 8 0 13 180.0 2 1 –1 134.4 13 0 8 189.0 1 1 –2

22 24.6 1 0 1 180.0 1 7 –1

22 155.4 1 0 1 180.0 3 1 –3

23 42.3 1 0 –1 180.0 3 10 3

23 137.7 1 0 –1 180.0 2 1 2
24 75.5 3 0 4 180.0 3 5 –2 75.5 4 0 3 180.0 2 5 –3

24 105.7 6 1 6 168.3 6 7 –6

24 124.2 2 1 0 133.4 2 7 12 124.2 0 1 2 133,4 12 7 2

25 47.2 1 0 1 180.0 2 7 –2

25 73.7 1 0 6 180.0 3 4 0 73.7 6 0 1 180.0 2 2 1
25 92.3 11 0 –4 180.0 1 2 2 73.7 6 0 1 180.0 0 4 3

25 95.7 12 7 –12 134.4 8 7 –8

25 125.5 8 5 8 134.4 8 7 –8

Table 2.1 (Continued)
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time, the pairs of the misorientations 1, 2 are not equivalent to the pairs 
3, 4; they represent different coincident-site lattices. Two equivalent 
misorientations of the coincident-site lattices are connected together 
by rotation through 180° around the [010] angle. This direction is the 
only axis of symmetry of the second order in the monoclinic lattice. 
All other descriptions can be obtained by rearrangement of the indexes 
of the axes in accordance with the rule [ ] [ ] [ ]uvw uvw u v w⇒ ⇒ . The 
first	 line	of	Table	2.1	shows	the	misorientation	with	Σ	=	1.	Usually,	 in	
the	coincident-site	 lattice	 theory	Σ1	 is	used	 to	denote	a	single	crystal,	
i.e., rotation through 0° (360°) around any axis or rotation around the 
axis of symmetry through the appropriate angle (in the case of the 
monoclinic lattice it is the rotation through 180° around the [010] 
axis).	 In	 the	 present	 case,	 we	 consider	 the	 misorientations	 Σ1	 180°	
[101]	 and	 Σ1	 180° [101]  because of the following reasons. In the 
approximation in which a = 2b,	 the	misorientation	 Σ1	would	 lead	 to	
the complete coincidence of the lattices; however, in the actual case, 
a ≠ b and the [101] and [101]  axes are not the second order axes of 
symmetry. Therefore, there is a low-angle interface between the crystals 
rotated through 180° around these axes. For the monoclinic lattice, 
there are also two symmetric boundaries (101) and (101) . In joining 
of two adjacent grains, rotated through 180° around the [101] or [101]  
axis we obtain ideal coincidence so that the appropriate boundaries 
are similar to the coherent grain boundaries. The atomic structure 
of these boundaries is almost identical with the ideal single crystal. 
Consequently, these grain boundaries should be of the low-energy type 
and detected in the experiments. This question will be discussed in a 
separate section. 

2.3. Description of the grain boundary misorientation distribution 
(GBMD)

In most cases, in the graphical description of the GBMD, all the 
misorientations are represented by the minimum angles and the 
directions of the axes of misorientation, situated in the standard 
stereographic triangle (SST) and this is followed by the construction 
of the distribution of the angles and the axes of misorientation of 
the grain boundaries. In some cases, the standard triangle is divided 
into zones (Fig. 2.4) and the distribution of the misorientations with 
respect to the axes is presented in the form of the function of the 
density of probability of the axes lying in one of the zones of the 
standard stereographic angle. In this representation, the distributions 
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Fig. 2.4. Standard stereographic triangle divided into zones.

of misorientation with respect to the angles and axes are integral 
characteristics, i.e., the characteristics averaged out in the first case 
with respect to all misorientation axes and in the second case with 
respect to all angles.

As a result of using the model of the coincident-site lattice for 
describing the structure of the grain boundaries, it was necessary to 
define special or close to special misorientations in the spectrum of 
misorientation of the grain boundaries. In this case, another distribution 
was introduced – the distribution of the grain boundaries with respect 
to	 the	 inverse	 density	 of	 the	 coincident	 sites	 (Σ).	 The	 boundary	 is	
classified	 in	 a	 specific	 class	with	 respect	 to	 Σ	 if	 the	 deviation	 of	 the	
misorientation of the boundary satisfies the Brandon criterion [24]. 
Formally, the Brandon criterion was introduced on the basis of the 
analogy with the description of low-angle grain boundaries as some flat 
distribution of the dislocations. In this case, the total Burgers vector 
of such a wall is described by the Frank equation [25]:

 (2.27)

here B is the total Burgers vector of the dislocations, intersected by 
the arbitrary vector ρ, situated in the grain boundary plane. For the 
low-angle grain boundaries, the dislocation description has not only 
geometrical but also physical meaning. This model has been used to 
calculate	 the	dependence	γ(θ)	of	specific	energy	on	 the	misorientation	
angle. Reed and Shockley calculated for the first time the stress fields 
and specific energy of the grain boundaries for the cases of uniform 
and nonuniform distribution of the dislocations. It is assumed that the 

2sin [ ],
2
q

= ×B ur

�� �� �� �� ��



39Characteristics of grain boundary ensembles

dislocation model describes efficiently the low-angle boundaries to 
misorientation angles equal to 15°. At high angles, the dislocations are 
so close to each other that the cores of the dislocations start to merge 
and the continual theory of dislocations is no longer valid in this case. 
For the high-angle arbitrary grain boundaries the initial structure is 
represented by the special boundary described by the coincident-site 
lattice with a low value of S. Consequently, the high-angle boundaries 
are presented in the form of a combination of a special boundary with 
a dislocation network superposed on the boundary, with the network 
rotating	additionally	through	the	angle	∆θ	=	θ	–	θ0. It is evident that, as 
in the case of the low-angle grain boundaries, the maximum additional 
misorientation cannot exceed 15°. According to Brandon [24], the high-
angle grain boundary is regarded as special if its the deviation from 
the nearest special grain boundary satisfies the conditions

o

1/2
15 .Dq ≤
S  (2.28)

There are also other criteria for evaluating the ‘special nature’ of the 
high-angle boundaries. However, this criterion is generally recognised 
and will be used in our future considerations. In addition, in the case 
of high values of S it is no longer rational to talk about the ‘special’ 
nature of the grain boundaries because the period of the coincident-
site	 lattice	 becomes	 too	 large.	All	 the	 boundaries	with	Σ	>	65	belong	
in the group of arbitrary boundaries [16]. The low-angle boundaries, 
denoted	by	Σ1,	 are	considered	 separately.

In [26], the authors presented a concept of representation of 
the misorientation of the grain boundaries by three Euler angles                                    
(φ1,	Φ,	φ2) by analogy with the description of the orientation distribution 
function of the grains. The definition region of this function for cubic 
crystals (the point symmetry group Oh) is an asymmetric region, whose 
boundaries are described by the equations

1 2
1 2 1 2

1 2

sin sin0; ; / 2 ; cos .
1 cos

j j
F = j = j j = p - j F =

+ j j
 (2.29)

In this representation, the points in the definition region, situated on 
the boundary surfaces, correspond to the special grain boundaries. In 
[26]	Euler	angles	(φ1,	Φ,	φ2), were determined for all special boundaries 
for	 the	 cubic	 lattice	with	Σ	<	50.	This	 description	of	 the	 spectrum	of	
misorientation of the grain boundaries has not been used widely. It 
provides more information but it is more difficult to understand.
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If the misorientation is regarded as the Rodriguez vector [27], fixed 
at the origin of the coordinates, the misorientation distribution has the 
form of the distribution of vectors in a trihedral angle with the tip in 
the starting point restricted by two surfaces from the opposite side. The 
appropriate region of the variation of the misorientation of vectors for 
the cubic lattice is shown in Fig. 2.5 [28] which shows the limiting 
values of the misorientation angle for several directions of the axes. 
The figure indicates that by extending the faces of the trihedral angle 
a triangle is 'cutout' from the more distant spherical surface and this 
triangle is one of the 48 equivalent triangles into which the sphere is 
divided by cubic symmetry elements. As in the representation of the 
misorientation spectrum of the grain boundaries by the Euler angles, 
all	 the	 special	misorientations	 (with	 the	exception	of	Σ=	39b : 50.31° 
[321]) have the Rodriguez vectors, situated on the faces and edges of 
the trihedral angle.

It should be mentioned that the previously described representations 
of the misorientation spectrum of the grain boundaries are in fact 
equivalent and their selection is dictated only by convenience in solving 
the specific task. The representation of the misorientation of other types 
of lattice (for example, monoclinic) is not suitable for perception and 
analysis. In this book, we used the first of the previously mentioned 
representations, i.e., the spectrum of the misorientation of the grain 
boundaries is presented in the form of three distributions: with respect 
to the angles and axes, and also with respect to the inverse density of 
the	coincident	angles	Σ.

In order to analyse efficiently the spectra of the grain boundaries, it 
is desirable to have a detailed picture for the accurately defined basic 

Fig. 2.5 
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Fig. 2.5. The region of variation of the misorientation of vectors of the grain boundaries 
[28].
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model of the polycrystals, for example, the misorientation spectrum of 
the grain boundaries in a polycrystal with randomly oriented grains. 
In the majority of investigations [29–32], the chaotically disoriented 
ensemble was represented by a set of chaotically disorientated grains 
not bonded in a polycrystal, i.e., in fact, the spectrum of the chaotically 
disorientated bicrystals [33, 34]. Mackenzie derived an analytical 
expression for the distribution function of misorientation angles 
[29] and axes [30] for chaotically disoriented grains. The principle 
of determination of the spectrum of the misorientation of the grain 
boundaries of the chaotically disoriented ensemble may be described 
as	 follows.	Let	 us	 consider	 a	 sphere	with	 a	 radius	 θ	=	 180°	 (where	 θ	
is the misorientation angle). The misorientation axis is the vector with 
the spherical coordinates ν and ρ:

(sin sin ,cos sin ,cos ),C = j n j n n  (2.30)

where 0 < ν <	π	and	0	< ρ <	2π.	In	the	case	of	 the	chaotic	distribution,	
the radial density of the points, corresponding to the ends of the vectors 
θ	=	 (θ,	 ν,	j) is determined by the formula [31]

1( , , ) (1 cos ) sin .
4

v d dv d d v dv dr q j q j = - q q j
p

 (2.31)

Consequently, the probability of the misorientation angle lying in the 
interval	 (θ,	θ+∆θ)	 is:

2
2

2
0 0

1 1 cos 2( ) sin sin ( / 2).
4

nP v dv d
n

p pD - q
q = = j = q

Dq p p∫ ∫  (2.32)

The introduction of the spectrum of the minimum misorientations, 
obtained taking into account the rotational symmetry of the lattice, 
leads to a change of the type of dependence P(θ).	For	 a	 cubic	crystal																																																																																										
0 <	θ	< 62.7° (Fig. 2.6). In addition to this, the lattice symmetry results 
in the redistribution of the outputs of the axes to the spherical surface 
(Table 2.2). In a polycrystal having the form of a bonded aggregate of 
grains, the topologically essential conditions of the content of the grains 
impose additional restrictions on the misorientation spectrum of the 
grain boundaries [35]. However, for a chaotically oriented polycrystals 
these restrictions do not change the type of distribution of the grain 
boundaries with respect to misorientation.
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2.4. Computer model of a polycrystal: a calculation algorithm

One of the simple and convenient models of the grain structure of 
the polycrystal is the volume model consisting of cubic polyhedra. 
The volume model of the polycrystal, developed in [36], and used in 
modelling of the spectrum of the misorientation of the grain boundaries 
[35, 37] will be described. The computer model of the polycrystal has 
the following form: firstly, the grain structure – aggregate of ideal 
polyhedra, filling the space without pores. Secondly, the crystal basis 
is defined for every grain and determines the orientation of the grain 
in relation to the laboratory coordinate system. Of the polyhedra 
filling the space of the polycrystal, the cubic polyhedron and the 
Williams tetrahedron are closest to the ideal polyhedron [36]. In this 
book, the polycrystal grains are represented by the cubic octahedron 
shown in Fig. 2.7. The polycrystal itself has the form of a cube with 
different numbers of the grains along the axes x, y and z. The aggregate 
contains 3375 grains and 21 671 boundaries between them. The basis 
of the crystal lattice is specified for each grain in accordance with 
the texture of the material. The algorithm of definition of the basis in 
the polycrystal with the chaotically oriented grains has the following 

Table 2.2. Distribution of the misorientation axes in a standard stereographic angle 
[29, 33, 34]

Zone I II III IV V VI VII VIII
Mackenzie 0.70 2.10 3.60 22.70 53.40 9.10 2.10 6.00

Garbach and 
Grabskii 0.75 2.27 3.78 23.32 55.38 6.47 2.14 5.89

Fig. 2.6. Distribution of the misorientation angles in modelling spectra of the chaotically 
oriented cubic crystals [29, 33, 34]
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43Characteristics of grain boundary ensembles

form. The basis in each grain is defined by the trio of the vectors e1, 
e2, e3, which determines the orientation of the grains in the laboratory 
coordinate system. For the chaotic definition of the orientation, the 
basis in each grain is calculated using the generator of random numbers. 
The	 pair	 of	 the	 random	numbers	 (β1,	 β2), uniformly distributed in the 
interval [0, 1], is used to construct the unit vector e1, whose direction 
is	uniformly	distributed	 in	 the	 solid	angle	4π	 [38]:

2
1 1 1 1 1 2

2
1 1 1 2

2 1; 2 sin (2 );

2 cos(2 ).

x y

z

e e

e

= b - = b -b pb

= b -b pb  (2.33)

Subsequently, in the plane normal to the vector e1 we construct the 
vector e2 which forms the angle F = 2pb3, with the vector (for example, 
[–e1y, e1x, 0]) situated in the same plane. Here b3 is the third random 
number	 (β3 ∈ [0, 1]). If the vector e2 is expanded with respect to two 
mutually perpendicular unit vectors:

[ ]1 1
12 2

1 1

, ,0
and ,y x

x y

e e

e e

 - x = ×x
+

e  (2.34)

then the vector can be expressed in the following form:

[ ]2 1cos sin .= x F + ×x Fe e  (2.35)

The last vector, e3, is additionally constructed in the orthogonal 
direction in relation to the first two vectors so that all three vectors 
form a regular trio. The procedure used for defining the basis in 
the case of the simulated axial texture is the same as that discussed 

 

Fig. 2.7 
Fig. 2.7. Cubic octahedron used as the crystal forming the aggregate.
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44 Superplasticity and grain boundaries

previously but here we select only the trio for which the deviation of 
the given crystallographic direction [hkl] from the texture axes in the 
laboratory system does not exceed the given angle j.

The model was tested in the calculations of the spectra of 
misorientations in a textureless polycrystal. At that time, it had not 
been shown or confirmed by analytical or direct measurements that the 
experimentally determined distribution functions of the misorientations 
of the grain boundary, measured in thin foils, are representative of the 
entire volume. For the numerical verification of this hypothesis we 
calculated the misorientation distribution of the grain boundaries in the 
volume polycrystal with a chaotic texture and with a modelling axial 
texture of a different type, and also the misorientation distributions of 
the grains in arbitrary cross-section of the given modelling polycrystal. 
Three types of axial texture were selected: á100ñ, á110ñ, and á111ñ. The 
misorientation distribution in the flat cross-section was simulated using 
four types of cross-section: the cross-section normal to the axis of the 
texture; the cross-section containing the given axis of the texture; two 
cross-sections forming the angles of 45° and 54.7° with the texture 
axis. (If we use the index system of notation of the axes and planes 
for the laboratory coordinate system, these sections will be denoted by 
(100)L, (010)L, (110)L and (111)L).

The orientations of the individual grains were used to calculate the 
misorientation of all the grains with the common boundaries. From 
the group of the crystallographically equivalent descriptions of each 
misorientation we selected the description with a minimum angle and 
the axis situated in the standard stereographic angle. The boundary 
was	 related	 to	 the	 specific	 type	with	 respect	 to	 Σ,	 if	 the	 deviation	 of	
its misorientation from the ideal misorientation did not exceed the 
maximum permissible deviation according to the Brandon criterion. 
All	 the	boundaries	with	Σ	>	65	were	regarded	as	arbitrary	boundaries.

The misorientation distributions were determined for both the 
polycrystal with chaotically oriented grains and for all three cases 
of the axial texture. In all cases of the axial texture the angle j of 
deviation from the given direction did not exceed 15°. Figure 2.8 shows 
the distribution with respect to the misorientation angles for the chaotic 
and texturised polycrystals. The appropriate distributions with respect to 
the	axes	and	Σ	are	presented	 in	Tables	2.3	and	2.4.	The	resultant	data	
coincide (within the limits of the statistical error) with the analytical 
results obtained by Mackenzie and computer calculations by Garbach 
and Grabskii. Misorientation distributions in the four types of flat 
cross-section were constructed for the textures and for the textureless 
case. The results obtained for them were identical. As an example, we 
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45Characteristics of grain boundary ensembles

selected the distribution for the texture á100ñ (Fig. 2.9). The solid line 
in the figure corresponds to the volume distribution and the symbols to 
the distribution in the flat cross sections. The appropriate distributions 
with respect to the axes and  are shown in Tables 2.5 and 2.6. As 
indicated by Fig. 2.9, the distributions in all flat cross sections fit quite 
closely the curve corresponding to the volume distribution, and the 
scatter of the values is the same for the types of cross-section. The same 
follows from the comparison of the distributions with respect to the 
axes	Σ	for	 the	volume	case	and	flat	cross-section	(Tables	2.5	and	2.6).	

Fig. 2.8. Distribution of the grain boundaries with respect to the misorientation angles 
obtained for the entire volume of the crystal with the textures: 1) chaotic; 2) á100ñ; 
3) á110ñ; 4) á111ñ.

Fig. 2.9. Distribution of the grain boundaries with respect to the angles in the polycrystal 
with the axial texture á100ñ in the entire volume and in the individual cross-sections: 
1) (100)L; 2) (110)L; 3) (111)L. The solid line corresponds to the volume distribution.
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46 Superplasticity and grain boundaries

Texture 
type

Zone
I II III IV V VI VII VIII

Chaotic 0.77 2.14 3.56 22.74 53.53 9.36 2.12 5.79

á100ñ 2.26 6.44 9.23 38.31 36.55 3.99 0.80 2.41

á110ñ 0.47 1.28 2.19 16.13 36.03 12.21 3.17 8.40

á111ñ 0.56 1.65 2.45 18.22 52.83 11.01 3.80 9.32

Table 2.3. Distribution of the grain boundaries with respect to the axes, determined 
for the entire volume for a textureless polycrystal and a polycrystal with three types 
of texture

Table 2.4. Distribution of the grain boundaries with respect to ∑ obtained from the 
entire volume in the chaotic polycrystal and the polycrystal with three types of texture

Table 2.5. Distribution of the grain boundaries with respect to the axes in the polycrystal 
with the á001ñ texture, obtained for the entire volume and for individual cross-sections

Texture 
type

Zone

I II III IV V VI VII VIII

Volume 2.256 6.444 9.232 38.308 36.551 3.993 0.804 2.412

(100)L 2.034 6.339 8.231 39.688 37.134 3.974 0.663 1.940

(001)L 2.247 6.867 9.272 37.583 36.732 3.934 0.797 2.571

(110)L 2.229 6.625 8.965 37.805 36.987 3.936 0.791 2.663

(111)L 2.195 6.540 8.833 38.031 36.970 4.048 0.779 2.706

∑ Chaotic
Texture

∑ Chaotic
Texture

á100ñ á110ñ á111ñ á100ñ á110ñ á111ñ

1 2.12 13.04 6.77 10.33 17a 0.18 0.49 0.14 0.16
3 1.63 0.00 3.47 2.50 17b 0.31 0.00 0.60 0.27
5 1.19 3.22 0.29 0.24 19a 0.34 0.54 0.36 0.51
7 0.92 0.06 0.76 1.48 19b 0.22 0.00 0.21 0.27
9 0.98 0.28 0.88 0.62 21a 0.18 0.47 0.27 0.49
11 0.74 0.00 0.79 0.32 25a 0.08 0.43 0.18 0.23
13a 0.27 0.93 0.33 0.60 25b 0.44 0.00 0.60 0.29
13b 0.31 0.49 0.34 0.63 * 3.84 4.24 4.12 4.45
15 0.68 0.48 0.37 0.08 ** 85.57 75.33 79.52 76.67

*: 25 < ∑ < 65; **: ∑ > 65
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47Characteristics of grain boundary ensembles

∑ Chaotic
Texture

∑ Chaotic
Texture

á100ñ á110ñ á111ñ á100ñ á110ñ á111ñ

1 2.12 13.04 6.77 10.33 17a 0.18 0.49 0.14 0.16
3 1.63 0.00 3.47 2.50 17b 0.31 0.00 0.60 0.27
5 1.19 3.22 0.29 0.24 19a 0.34 0.54 0.36 0.51
7 0.92 0.06 0.76 1.48 19b 0.22 0.00 0.21 0.27
9 0.98 0.28 0.88 0.62 21a 0.18 0.47 0.27 0.49
11 0.74 0.00 0.79 0.32 25a 0.08 0.43 0.18 0.23
13a 0.27 0.93 0.33 0.60 25b 0.44 0.00 0.60 0.29
13b 0.31 0.49 0.34 0.63 * 3.84 4.24 4.12 4.45
15 0.68 0.48 0.37 0.08 ** 85.57 75.33 79.52 76.67

*: 25 < ∑ < 65; **: ∑ > 65

Table 2.6. Distribution of the misorientation of the grain boundaries with respect 
to ∑ in the polycrystal with the texture á100ñ, obtained for the entire volume and in 
individual cross-sections.

∑ Volume
Cross section

∑ Volume
Cross section

(100)L (110)L (111)L (100)L (110)L (111)L

1 13.04 12.58 12.65 12.80 17a 0.49 0.62 0.60 0.65
3 0.00 0.00 0.00 0.00 17b 0.00 0.00 0.00 0.00
5 3.22 2.60 3.42 3.45 19a 0.54 0.62 0.53 0.54
7 0.06 0.14 0.05 0.06 19b 0.00 0.00 0.00 0.00
9 0.28 0.38 0.28 0.29 21a 0.47 0.47 0.62 0.66
11 0.00 0.00 0.00 0.00 25a 0.43 0.52 0.44 0.41
13a 0.93 1.37 0.96 0.89 25b 0.00 0.00 0.00 0.00
13b 0.49 0.43 0.56 0.57 * 4.24 3.31 4.26 4.24
15 0.48 0.39 0.36 0.41 ** 75.33 76.57 75.27 75.21

*: 25 < ∑ < 65; **: ∑ > 65

Consequently, it can be concluded that the experimental distribution, 
determined for a relatively large set of the grain boundaries in the 
flat cross-section of the specimen, corresponds to the misorientation 
spectra of the grain boundaries in the entire volume of the polycrystal, 
regardless of crystallographic anisotropy. It should be mentioned that 
in this case we are concerned only with the crystallographic anisotropy 
for the equiaxed grain structure. It is clear that for the anisotropic 
form of the grains, the misorientation spectra of the grain boundaries 
in different cross-sections will differ.
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49Orientation-distributed parameters

3

ORIENTATION-DISTRIBUTED 
PARAMETERS OF THE POLYCRYSTALLINE 

STRUCTURE

3.1. The distribution function of the grains with respect to 
crystallographic orientations: calculation methods

Let us determine a rigorous description of the distribution function of 
the grains with respect to crystallographic orientations, i.e. orientation 
distribution function (ODF). Let all the rotations form the space of 
rotations G, and the Euler angles define the coordinate system in G. 
Consequently, g	=	 [α,	 β,	 γ]	 determines	 the	 rotation	 in	 this	 space.	The	
function f (g) (where g ∈ G) of the distribution of the grains with 
respect to the orientations is determined on the space of rotations G 
and is characterised by the following property. Let U{[α,	β,	γ]}	be	 the	
region in G. Consequently, the number of the elementary cells with 
the orientation belonging to U, related to the total number of the cells 
in the specimen, is:

[ ]( ) / ( , , ) sin .U
U

p U N N f d d d= = a b γ a b b γ∫
 

(3.1)

The value p (U) is often interpreted as the probability of the elementary 
cell, randomly selected in the specimen as the orientation belonging 
to U. For the direct calculation of the function f (g) it is necessary to 
measure the volume dV for each orientation g	=	 [α,	β,	γ].	 In	practice,	
these measurements cannot be taken. Therefore, function f(α,	 β,	 γ)	
can be determined only by indirect methods. In this case, the ODF is 
reconstructed from the pole figures (PF) plotted by x-ray photography. 
Further mathematical processing of the PF taking into account the 
crystallographic symmetry of the crystal lattice and the symmetry of 
the specimen itself makes it possible to determine the three-dimensional 
distribution function of the grains with respect to the crystallographic 
orientations. This leads to the main task of quantitative texture analysis: 
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50 Superplasticity and grain boundaries

restoration of the ODF on the basis of the finite number of the PF. 
The mathematical methods of calculation of the ODF on the basis 
of PF, proposed by the Russian scientist Viglin [1] and subsequently 
developed further by Bunge [2] and Roe [3], have been used widely 
not only abroad [4–7] but also in Russia (see, for example, [8–10]). In 
addition to this, work is now being carried out to develop and use new 
methods of calculating the ODF on the basis of the pole figures, but in 
this work we use the classic methods which will be described briefly.

The pole figure is defined as follows. Let S2 be the set of the unit 
vectors, i.e., a sphere. It is assumed that we select a crystallographic 
plane in the lattice, and the normal to this plane in the crystallographic 
coordinates system is denoted by n. The pole figure Ph(y) (where                          
y ∈ S2) for the vector h ∈ S2 is the positive function, characterised 
by the following properties. It is assumed that the V-shaped region 
is situated in S2. Consequently, the number of the elementary cells 
whose direction h is located in the region V ∪ (–V), divided by the 
total number of such cells, is

( )( ) / ( ) ( , )sin .V V h h
V V

P V N N P y dy P d d-= = = j q q q j∫ ∫  
(3.2)

The number P(V) is usually interpreted as the probability of the cell 
randomly selected in the specimen having direction h, situated in the 
region V ∪ (–V). In other words, Ph(y) is the density of probability 
of the elementary cell, randomly selected in the specimen, having 
the vector h parallel to the vector y. This leads to equality Ph (y) =              
Ph(–y). The experiments usually yield the finite number of the PF: 
Ph1(y), Ph2(y),…,PhN (y).

The distribution functions of the grains with respect to the 
orientations and the PF are linked together as follows. Let y be 
the	 unit	 vector	 with	 the	 spherical	 coordinates	 θ	 and	 φ,	 i.e.,	 y =                           
(cos	φ	 sin	 θ,	 sin	φ	 sin	 θ,	 cos	 θ).	 It	 is	 assumed	 that	 some	number	γ is 
determined in the interval [0, 2p]. Consequently, [y,	γ]	 is	 the	 rotation	
with	 the	Euler	angles	[φ,	θ,	γ].	All	 the	rotations	g transforming y to h 
(hi = gyi) are described by the formula

[ ] [ ]1, ,0 .g h y-= j

The following integral relationship can be written
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[ ] [ ]( ) [ ][ ]{ }11( ) , ,0 ( , ,0 ) .
4hiP y f h y f h y d-′ ′ ′= j + - j j

p ∫  
(3.3)

This relationship was used to develop several methods of restoration 
of the function f(g) with respect to the pole figures.

Ruero and Barro [7] proposed to divide the space of rotations G into 
Ngr cells with the volume Vgr and regard the function f(g) as a constant 
inside the i-th cell and equal to fi. Similarly, the spherical region of 
determination of the PF, S2, is divided into NP cells with the same area. 
The function Ph (y) is also regarded as constant within the limits of 
each cell. Thus, the functions f (g) and Ph(y) are replaced by Ngr and Np-
dimensional vectors, respectively. The advantage of the vector method 
is the simple mathematical procedure. In addition, incomplete PF can 
be used in these cases. A shortcoming is that the ODF, calculated by 
the given method (as shown by Matthies [11–15]) may have ‘ghosts’. 
However, the vector method has been recently adopted and is used 
widely in calculations.

Another method was developed by Matthies [11–15] who proposed to 
find a solution in the form of the sum of some standard ODF. The task 
of restoration of the ODF can be solved unambiguously if we introduce 
apriori assumptions regarding the type of orientation distribution 
function of the grains. Matthies proposed to expand the orientation 
distribution function of the grains as the sum of the functions of the 
type

2

0 0 0 0
0

( , , ) ( , ) exp ,wf g g f w s
 

e = e = - e   
(3.4)

where

0

0 0 1
0

2( ) ,
(1 exp( / 4))

s p
e =

e - -e
 

(3.5)

and e0 and w is the radius and angular distance between g0 and g, 
respectively. The function f(e0, w) is efficiently approximated by the 
function which is more suitable for calculations:

0
0 1

exp( cos )( , ) ( , ) ,
( ) ( )

s wf g bg f s w
I s I s

= =
-  

(3.6)
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where 02

1 2ln ; 2 2ln ;
2 sin ( / 2)

s b
b

= = e   I0 and I1 are the Bessell functions.

The function (3.6) was proposed on the basis of the purely external 
analogy with the three-dimensional Gaussian normal distribution. The 
application of the Gaussian distribution must be determined by the 
effect of the central limiting theorem of the probability theory which 
gives the statistical substantiation to this distribution. In the studies by 
Saveleva [16, 17] it is shown that the central limiting theorem on the 
group of rotation leads to a different type of distribution:

{ }
{ }

2 2 2

0 , 0
( ) (2 1)exp ( 1)

exp ( ) (cos ).
l m n

mn
l

f g l l l m

i n m P

∞ ∞

= =

 = + -e + - - e × 

× - a + γ b

∑ ∑

 

(3.7)

In some partial cases, the PF have relatively large regions in which 
they convert to zero. This simplifying circumstance can be used in the 
construction of the ODF, specially when using the discrete method. 
For the polycrystals consisting of a small number of crystals (coarse-
grained material), the PF and ODF are simply the sum of d-functions. 
In this exclusive case the problem of determination of the ODF has a 
unique solution.

In the book, we use the method of calculating the ODF on the basis 
of the incomplete pole figures proposed in [4, 9, 10]. When calculating 
the three-dimensional distribution of the crystals with respect to the 
orientation is it is necessary to consider the fact that the required 
ODF and the function A(h, y) of the distribution of the density of 
the poles (the PF are flat cross sections of the given function) can 
be represented in the form of series of spherical functions with the 
expansion coefficient Cl

µv [4]

( ) ( )

0 1 1

4( , ) ( ) ( );
2 1

M l N l

l l l
l

A h y C k h k y
l

∞
µn µ µ

= µ= n=

p =  + 
∑ ∑ ∑  

(3.8)

( ) ( )

0 1 1
( ) ( ).

M l N l

l l
l

f g C T g
∞

µn µn

= µ= n=

= ∑ ∑ ∑
 

(3.9)

The symmetric spherical functions form the total orthogonal systems. 
The experimental results are used to determine the finite number of 
the pole figures Phi (y) and not the function A(h, y). For example, for 
the metals with the cubic lattice only three or four pole figures can be 
measured with sufficient accuracy. The coefficients Cl

µv in this case are 
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determined by the method of mean quadratic approximation:

2( ) ( )

0 1 1

4( , ) ( ) ( )
2 1

min,

M l N lL

i i l l l
l Bi

R Nh P h y C k h k y dy
l

µn µ n

= µ= n=

 p = - →  +  
→

∑ ∑ ∑∫

 

(3.10)

Here L is the number of the pole figures, Bi is the integration region of 
the PF, Nhi are the normalisation coefficients for the measured values 
of the pole figures. In this book, we use the incomplete pole figures 
and the integration region is determined by the condition Bi = B(α	 <	
65°), where a is the angle of inclination of the specimen. From the 
condition of the minimum of the functional (3.10), taking into account 
that according to the normalisation condition C0

11 = 1, we obtain the 
system Nmax of the linear equations in relation to the coefficients Cl

µv. 
For the cubic symmetry of the lattice and the rhombic symmetry of the 
pole figures the number of equations of the system with the restriction 
of the series to 22 terms is equal to 124.

A large number of programs have been developed for calculating the 
ODF on the basis of the experimentally measured pole figures. In this 
book, we use the programs described in [10] which can be employed 
to determine the ODF on the basis of incomplete pole figures and are 
the further development of the Bunge–Roe method.

3.2. Relationship between the grain boundary misorientation 
distribution and the ODF

Generally speaking, the relationship between the distributions of 
the crystallographic orientation and the misorientation spectrum of 
the grain boundaries is ambiguous [18, 19] since the distribution 
function of the orientations does not contain any information on the 
neighbourhood of the grains and the misorientations are determined 
by the nearest neighbours in particular. According to the definition, as 
already mentioned previously, the ODF is the analogue of the single-
particle distribution function – the fraction of the grains with the given 
orientation of the basis of the crystal lattice, whereas the spectrum of 
the misorientation of the grain boundaries is an analog of the two-
particle function, i.e., the fraction of the pairs of neighbouring grains, 
with the given misorientation between them. In a general case, these 
two distribution functions contain different physical information, and 
from the general physical considerations the two-particle function 
is reduced to the single-particle function only if the superposition 
principle is fulfilled, i.e., in this context this means that the orientations 
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54 Superplasticity and grain boundaries

of the adjacent grains are independent random functions. Therefore, it is 
interesting to investigate the extent to which the spectrum of the grain 
boundaries is determined by the texture and the effect of the correlation 
in the orientations of the adjacent grains on the misorientation spectrum 
of the grain boundaries.

We determine the essential and sufficient conditions for the 
unambiguous restoration of the spectrum of the misorientation of the 
grain boundaries on the basis of the texture. It is assumed that the 
orientation Ea of the basis of the crystal lattice of each grain is known, 
where a is the number of the grain. The basis Ea can be represented 
either as a matrix (3 × 3), with each column of the matrix specifying 
the coordinates of the corresponding basis vector in some laboratory 
coordinate system, or it is parametrised by the system of the Euler 
angles. Subsequently, for all grain pairs which are in fact neighbours, 
we calculate the misorientation R which transforms the basis Ea to the 
basis Ea+1:

1
1 1 1 1, from which .E R E R E Ea a -

a+ a+ a a+ a+ a= =
     

                          (3.11)

It is generally accepted to characterise the rotational matrix in 
terms of the axis–angle variables (C,	 θ).	 In	 this	 case,	 the	 crystal	
lattice of the grain a, rotated through the angle q around the axis 
C, coincides with the crystal lattice of the grain a + 1. From the set                                                                                                              
(Ca, qa), determined by this procedure (where a = 1, 2,..., N, and N is 
the number of the boundaries in the investigated section) we construct 
the frequency function P(C,	 θ)	 in	 such	 a	 manner	 that	 the	 quantity													
P(C,	 θ)	ΔCDθ	 determines	 the	 fraction	 of	 the	 misorientations	 in	 the	
given element of the phase volume in relation to the total number NB 
of the misorientations in the system. The frequency function, obtained 
by this procedure is regarded as identical with the probability density 
of the appropriate event and is referred to as the grain boundary 
misorientation distribution (GBMD). It is assumed that this spectrum 
characterises not only the section in which it was determined but 
also the entire specimen of the material as a whole provided that it 
is spatially uniform. Another section has the same frequency function 
within the limits of the statistical errors determined by the volume of 
the sample (i.e., the number of tested boundaries in the section). In 
turn, this means that the given section is a specific representative of 
the ensemble and all the statistical characteristics of the material can 
be determined by averaging with respect to the ensemble, and this 
procedure is equivalent to the application of the frequency function - 
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GBMD. The concept of the ensemble makes it possible to introduce 
immediately the frequency density of probability N which contains 
also the shortened description: one-particle (ODF) and two-particle 
(GBMD) functions. Let the ensemble be prepared in such a manner 
as each its representative contains Ngr grains. For the unambiguous 
definition of the probability density it is necessary to determine the 
procedure for numbering the grains which, after all, can be carried 
out by several methods. For numeration it is necessary to fulfil the 
following condition: it is assumed that the grains with the number a 
must have as its neighbours grains with the numbers a–1 and a+1, 
i.e., the line connecting the grains in the order of increase of their 
numbers, is continuous and does not split. Two examples of such 
numeration for a planar case are shown in Fig. 3.1. Let F (E1, E2,..., 
EN) be the combined density which determines the probability of the 
given orientation of each grain. The one-particle function – the density 
of orientation of the basis of the a-grain – is given by the expression

1 1 1

1 1 1

( ) ( ,... , ,... )

,... , ,... ,

N

N

f E F E E E E

E E E E
a a- a+

a- a+

= ×

× d d d d

∫ ∫
    

     
(3.12)

where integration with respect to the basis should be perceived as the 
integration with respect to the three Euler angles. In averaging of (3.4) 
with respect to a we obtain the ODF:

0
1

1( ) ( ).
orN

or

P E f E
N a=

= a∑
 

 
(3.13)

Naturally, this is another form of the equation (3.12). We now examine 
the restrictions for the misorientation of the grain boundaries, forming 
the junction (for better understanding, we select a triple junction, Fig. 
3.2). The numbers denote the grain boundaries and the appropriate 
misorientation matrices. If we go completely around the junction and 
return to the initial point, the crystallographic basis of the grain A will 
be expressed by the following equation:

3 3 2 3 2 1 3 2 1, .A R C R R B R R R A R R R I= = = =
            

 (3.14)

Thus, knowing the misorientation of the two boundaries in the 
triple junction, we can calculate the third misorientation. We examine 
details of the packing shown in Fig. 3.1. Knowing the misorientation 
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of the grain boundaries which intersect the packing lines, and using 
the relationship (3.14), it is quite easy to calculate all the other 
misorientations on the mesh (inserts in Fig. 3.1). In accordance with the 
accepted type of numeration of the grains all the boundaries are divided 
into two classes: the boundaries distributed along the numeration line 
are referred to as the given boundaries, and all the other boundaries are 
referred to as calculated ones. According to this definition, we can also 
introduce two types of misorientation subspectra: GBMD on the ‘given’ 
boundaries – PD(R) – and GBMD on the ‘calculated boundaries’ – 
PC(R). The principal difference between them is that the misorientations 
on the ‘given’ boundaries can be specified completely independently of 
each other, whereas the misorientations on the ‘calculated’ boundaries 
are unambiguously restored from the misorientations at the ‘given’ 
boundaries, and also on the basis of the method of packing the 
numeration lines [19].

According to the general rules of the probability theory [20] PD(R) 
is determined by the equation

 

Fig. 3.1  

 

A 

B 

 

Fig. 3.1. Two possible methods of numeration for the two-dimensional system of the 
grains. The inserts on the left shows the ‘given’ and ‘calculated’ (indicated by the 
thick line) misorientations of the grain boundaries.
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1
1 1
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(3.15)

If the orientations of the basis of the two adjacent grains are 
independent quantities and the distribution of each of them is given 
by the ODF, then

, 1 1 0 0 1( , ) ( ) ( ).f E E P E P Ea a+ a a+ a a+=  (3.16)

Consequently, the quantity

1
1 2 0 1 0 2 1 2( ) ( ) ( ) ( )DP R R E E P E P E dE dE∗ -= d -∫ ∫  

(3.17)

will be referred to as the non-correlated GBMD. In a general case, 
the following more general equation should be used instead of (3.16):

, 1 1 1, 1( , ) ( ) ( , ),f E E f E f E Ea a+ a a+ a a a+ a a+ a=  (3.18)

where fa is determined by expression (3.12) and f α,α +1 is the appropriate 
conditional density of probability. It is not justify to expect that the last 
probability is determined in particular by the orientations of the basis 
of the grain a and a+1 since the physical properties of the boundary 
of the grains are given only by their misorientation and not by the 

 

Grain А 

Grain B 

Grain С 

R1 

R2 R3 

Fig. 3.2 Fig. 3.2. The scheme of the triple junction.
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orientation of the grains in the space. Consequently

1
, 1 1 1, 1( , ) ( , ).f E E g E E-

a a+ a+ a a+ a a+ a=  (3.19)

With the natural assumption according to which the function g is 
independent of the position of the boundary in the chain, we come 
to the conclusion that the function gives the probability of detection 
of the given misorientation, i.e., it is the spectrum of misorientations 
PD(R). Substituting (3.18) and (3.19) into (3.16) gives

1 1
1 2 0 1 1 2 1 2( ) ( ) ( ) ( ) .D DP R R E E P E P E E dE dE∗ - -= d -∫ ∫  

(3.20)

Utilising the properties of the d-function and the unit normalisation                
P0(E), it is evident that (3.20) is an identity. This shows that the 
misorientation spectrum on the numeration line PD(R) and the texture                       
P0(E) can be specified independently of each other. However, the 
actual spectrum P(R) is mean-weighted with respect to the spectra                        
PD(R) and PC(R). The weight coefficients are the partial fractions of 
the ‘given’ and ‘calculated’ boundaries, respectively. It is quite easy 
to estimate the characteristic values of these weights. The well-known 
Euler relationship between the number of the grains Ngr, the number of 
boundaries NB and the number of junctions of the grains NT is fulfilled 
on the flat network of the boundaries:

grain 1.T BN N N- + =  (3.21)

In most cases, the junctions of the grains are triple junctions. In this 
case, three boundaries converge to each junction, and each boundary 
connects two triple junctions, i.e.

3 2 .T BN N=  (3.22)

The weight coefficient qD of the ‘given’ boundaries is equal to the ratio 
of the number of the boundaries in the numeration line (Ngr –1) is the 
total number of the boundaries (NB).

From (3.21) and (3.22) we obtain

3 1 1 21 .
3 3

ep
D C D

B

N
q and q q

N
-

= = = - =
 

(3.23)
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Thus, in the proposed method of calculating the misorientation 
spectrum of the grain boundaries with respect to the texture there 
are two independent parameters which determine the total spectrum 
of misorientation of the grains in the polycrystals. This is the texture 
of the material which determines the type of the spectrum of the 
misorientation of the grain boundaries on the ‘given’ boundaries and the 
nature of packing of these boundaries in the section of the polycrystals.

3.3. Correlation orientation of adjacent grains: the concept of the 
basis spectra of misorientation of the grain boundaries

In the previous section, attention was given to the presence of two 
parameters which do not depend on the texture and which can be 
changed. In this case, it is the way of packing of the ‘given’ spectrum 
of the grain boundary and the method of defining the spectrum along 
the numeration line. Attention will now be given to the effect of the 
variation of these parameters on the type of resultant misorientation 
spectrum of the grain boundaries by simulation of the spectrum of the 
misorientation of the grain boundaries in polycrystals with different 
modelling textures [19, 21].

Since it  was shown in section 2.4 that the flat section is a 
representative section for the volume specimen, further modelling 
will be carried out on two-dimensional systems. The calculation of the 
spectrum of the misorientation of the grain boundaries in the simulation 
polycrystals has the following algorithm.

1. The modelling structure is given, i.e., ODF, in accordance 
with which we determine the number Ngr of the random orientations 
(realisations) of the basis. The procedure for pertaining the random 
orientation of the basis for the modelling axial textures was described 
in section 2.2.

2. The section of the polycrystalline given – the two-dimensional 
system consisting of Ngr grains. The type of filling of the section by the 
set of bases, determining the previous stage, is determined. To verify 
the effect of this parameter, attention will be given to two variants, 
shown in Fig. 3.1.

3. The sequence of selection of the bases from the Ngr realisations 
in filling of the mesh along the numeration line is determined. This 
is equivalent to the definition of the type of the spectrum of the 
misorientation of the grain boundaries on the line of the ‘given’ grain 
boundaries. The following variants of the selection and their physical 
meaning will be discussed:

– the first grain along the numeration line is allocated any of the 
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Ngr bases, for example, the first one. The misorientations between this 
basis and all other bases are calculated. From the results we select 
the basis for which the angle of misorientation with the basis of the 
first grain is minimum. The selected basis is attributed to the second 
grain. The procedure is repeated for the basis of the second grain 
and all remaining grains up to complete filling of the section of the 
polycrystals. In this procedure, the fraction of the low-angle boundaries 
in PD(R) is increased to the maximum extent;

– the procedure is identical with the first one but a basis with the 
minimum misorientation is chosen. The GBMD gives the upper limit 
of the high-angle random boundaries;

– the procedure is again repeated but now we select the basis with 
the minimum possible value of the inverse density of the coincident 
nodes S (within the limits of the Brandon deviation). The appropriate 
spectrum PD(R) gives the upper estimate of the fraction of the special 
grain boundaries;

– it is assumed that the orientations of the bases are not correlated 
along the filling line, i.e., PD(R) is described by the equation (1.40). 
This variant is described in section 2.4. Thus, for the same set of the 
basises, i.e. for the same texture of the specimen, we find four different 
misorientation spectra of the ‘given’ boundaries.

In the fully determined polycrystal we calculate the misorientations 
on the ‘calculated’ boundaries and construct the complete spectrum of 
the misorientation of the grain boundaries corresponding to the given 
texture and the numeration line, and the spectrum of the misorientations 
the grain boundaries at the ‘given’ boundaries.

As previously, all the misorientations are reduced to the description 
with the minimum angle and the axis situated in the standard 
stereographic angle. The modelling system has the form of a square 
filled with cubic lattice grains. The grains are represented by regular 
hexagons. On the whole, the calculation block contains 625 grains 
and 1776 boundaries between them. The third of all the boundaries is 
related to the ‘given’ boundaries. On these boundaries we specify the 
misorientation spectrum which forms when the previously described 
procedure is applied, i.e., the set of bases corresponding to the given 
texture, is ordered in accordance with one of the previously mentioned 
variants (A, B and C).

In the case of the chaotically disoriented ensemble (CDE) of the 
grains for the three types of the axial texture (á100ñ, á110ñ, á111ñ) 
we obtain three sets of ordered bases in accordance with the variants 
A, B and C. Using this procedure, we calculate the spectrum of the 
misorientation of the grain boundaries for 12 sets of the ordered bases 
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in the structure of the polycrystals. Figure 3.3 and Tables 3.1 and 3.2 
show as an example the distribution with respect to the angles, axes 
and S for the CDE for two packing variants shown in Fig. 3.1. The 
distributions correspond to the three types of ordering of the set of the 
basis for the CDE (A, B, C). Identical results for the texture á100ñ are 
shown in Fig. 3.4 and also in Tables 3.3 and 3.4.  The solid line on the 
histograms shows the ‘non-correlated’ spectra of the grain boundaries 
for the chaotic polycrystals and the texture á100ñ (Fig. 2.6) with the 
weight coefficient 2/3. The non-correlated spectrum is taken with this 
weight since the contribution of the ‘calculated’ boundaries to the total 
spectrum is proportional to the number of the boundaries and they 
equal 2/3 of the total number of the boundaries for the given method 
of packing of the ‘given’ boundaries. Detailed analysis of the results 
indicates that for any type of simulation texture the total spectrum of 
misorientation of the grain boundaries does not depend, within the 
limits of the statistical error, on the type of packing of the ‘given’ 
boundaries. The type of correlation has a controlling effect on the 
calculated spectrum of the misorientation of the grain boundaries and 
greatly increases the fraction of the boundaries of the appropriate type.

Thus, it has been established that for the given texture we can 
unambiguously restore four types of the spectrum of the misorientation 
of the grain boundaries which differ from each other by the correlation 
in the orientation of the axes along the packing line of the ‘given’ 
boundaries. In the case of the correlation of type A in the GBMD the 
fraction of the low-angle boundaries is increased with the maximum 
extent, in the case of the correlation of type B – the fraction of high-
angle arbitrary grain boundaries, and in the case of the correlation 
of type C – the fraction of the special (or close to special) grain 
boundaries. The fourth spectrum (type D) corresponds to the absence 
of any correlation the orientations of the adjacent grains along the 
packing line of the ‘given’ boundaries.

All four spectra are the boundary distributions in the region of 
determination of the actual spectrum of misorientation of the grain 
boundaries and can be referred to as the basis spectra of the grain 
boundaries. The actual GBMD can be represented as the mean-weighted 
sum of the basis spectra:

4

1
( ) ( ),i i

i
P q P

=

q = q∑
 

(3.24)

where { }, , ,i A B C DP P P P P= are basic GBMD; qi are the expansion 
coefficients satisfying the normalisation condition.
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Table 3.1. Distribution of the axes in the textureless crystal for three types of ordering 
of the bases (A, B, C) and two packing methods (a, b)

Table 3.2. Distribution with respect to S in a textureless polycrystal for three types 
of ordering of the basis (A, B, C) and two packing methods (a, b)

Zone I II III IV V VI VII VIII

A
a 1.24 3.15 4.45 26.85 50.23 7.15 1.86 5.07

b 1.01 2.93 4.22 27.53 49.10 8.62 1.97 4.62

B
a 0.34 1.13 2.37 14.47 38.74 32.10 2.42 8.45

b 0.34 1.30 2.08 16.50 38.12 32.26 1.69 7.71

C
a 0.79 2.20 2.53 15.65 35.64 4.90 13.96 24.32

b 0.79 2.14 1.91 14.13 37.00 4.26 13.75 23.03

Σ A B C
a b a b a b

1 34.29 35.70 1.80 0.85 2.20 1.52
3 1.01 1.46 4.39 3.89 32.43 32.49
5 1.01 0.56 0.51 0.51 1.97 1.86
7 0.34 0.23 0.73 0.39 0.90 0.79
9 0.85 0.56 0.73 1.01 0.85 0.73

11 0.56 0.39 0.23 0.39 0.51 0.62
13a 0.11 0.39 0.17 0.11 0.34 0.17
13b 0.17 0.23 0.45 0.34 0.45 0.28
15 0.34 0.29 0.34 0.56 0.62 0.51
17a 0.11 0.06 0.28 0.11 0.11 0.17
17b 0.23 0.34 11.60 11.60 0.17 0.28
19b 0.11 0.17 0.28 0.28 0.28 0.23
21a 0.06 0.00 0.11 0.00 0.11 0.23
25a 0.06 0.06 0.00 0.00 0.00 0.00
25b 0.00 0.51 0.28 0.28 0.11 0.11

* 3.32 3.44 2.93 2.59 2.76 2.31
** 57.26 55.52 75.28 76.96 56.14 57.49

*:	25	<	Σ	<	65;	**:	Σ	>	65

The texture of the polycrystals determines the type of basic 
spectra Pi(θ).	 The	 coefficients	 qi describe the contribution of each 
of the basic GBMDs to the total spectrum and depend on the prior 
history of the thermomechanical effect on the material. The values 
of the weight fractions can be determined only by comparing the 
experimental spectrum with the expansion (3.24). If the considerations 
are based on the mean quadratic approximation, the coefficient qi can 
be determined by minimising the sum of the mean quadratic deviations 
of the calculation spectrum from the experimental one, i.e., minimising 
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the equation

2( ) ( ( ) ) .i i eqF q P q P= -∑  (3.25)

Taking into account the normalisation condition, qi is the solution of 
the system of linear equations:
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Fig. 3.3. Distribution of the misorientation angles in a textureless polycrystal for three 
types of correlation in the orientation of the adjacent grains and two packing methods: 
a (left) and b (right), see Fig. 3.1.

∂F(qi)/∂qk = 0,   where  k = 1, 2, 3.
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Table 3.3. Distribution of the axes in the polycrystals with the texture á100ñfor three 
types of ordering of the basis (A, B, C) and two packing methods (a, b)

Table 3.4. Distribution with respect to for S a polycrystal with a texture á100ñ for 
three types of ordering of the basis (A, B, C) and two packing methods (a, b)

Zone I II III IV V VI VII VIII

A
a 1.07 3.38 4.84 27.31 48.76 8.45 1.80 4.39

b 1.35 4.00 6.87 29.67 44.26 6.64 1.91 5.29

B
a 2.98 5.63 8.56 43.98 33.84 32.53 0.96 1.52

b 2.82 6.59 9.63 46.06 30.41 32.14 0.56 1.80

C
a 11.37 22.97 6.59 25.85 28.38 2.14 10.85 21.86

b 12.22 23.99 7.77 26.69 24.27 3.15 10.56 21.35

Σ
A B C

a b a b a b
1 42.57 59.57 9.97 13.63 8.22 8.50

3 0.00 0.00 0.00 0.00 0.00 0.00

5 0.62 0.34 2.59 3.38 33.11 33.39

7 0.11 0.00 0.00 0.00 0.17 0.17

9 0.23 0.00 0.28 0.17 0.73 0.51

11 0.00 0.00 0.00 0.00 0.00 0.00

13a 0.34 0.73 0.68 0.34 0.79 1.30

13b 0.90 1.07 0.51 0.45 0.68 0.45

15 0.06 0.11 2.20 2.42 0.56 0.45

17a 0.17 0.17 0.79 0.23 0.00 0.56

17b 0.00 0.00 0.00 0.00 0.00 0.00

19b 1,30 0.06 0.23 0.23 0.85 0.56

21a 1.13 0.73 0.73 0.17 0.39 0.28

25a 0.11 0.34 0.34 0.11 0.23 0.23

25b 0.00 0.00 0.00 0.00 0.00 0.00

* 2.65 2.87 3.72 3.60 2.93 2.76

** 49.83 33.78 77.98 75.28 51.35 50.85

*:	25	<	Σ	<	65;	**:	Σ	>	65
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3.4. Modelling the misorientation spectra of the grain boundaries 
in the FCC crystals with modelling ODF

As shown in the previous section, the calculation spectra for the axial 
textures, corresponding to different correlation types, are characterised 
by considerable differences. It is now necessary to verify this conclusion 
for the modelling textures similar to the actual texture [22]. At the same 
time, the orientation distribution function of such a texture should 
be less difficult to analyse than the ODF for the real polycrystals. 
The investigations were carried out on two types of texture, greatly 
differing from each other. The first type of texture corresponds to the 
texture of pure metals, rolled at room temperature. This is the so-
called copper texture. The second term corresponds to the sharp cubic 
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Fig. 3.4. Distribution of the misorientation angles in the polycrystals of the modelling 
texture á100ñ for the three types of correlation in the orientation of the adjacent grains 
and two packing methods: a (left) and b (right) (see Fig. 3.1).
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texture formed in pure FCC metals during recrystallisation annealing. 
In further sections, these types of the texture state will be referred to as 
DEF and RX, respectively. Both types of texture are represented by the 
orientation distribution functions. The quantitative characteristic of the 
texture was determined using the approach briefly described in section 
3.1. We now examine in greater detail the algorithm of modelling of 
the ODF for the two structural states. The orientation of any grain can 
be	described	by	means	of	 three	parameters	–	Euler	 angles	 (φ1,	φ,	φ2), 
and the rotational matrix g	 (φ1,	φ,	φ2) defines all possible rotations of 
the crystal basis of each grain in space. Thus, the three-dimensional 
orientation distribution function f(φ1,	φ,	φ2) is described as follows

2
1 2 1 2( ) ( , , )(sin / 8 ) / .f q dg f d d d dV V= j j j j p j j j =  (3.26)

Here dV is the volume of the grains with the orientation in the interval

[ ]1 1 2 2, , ,d d dj + j j + j j + j
 (3.27)

and V is the volume of the entire polycrystal.
The Euler angles and ideal orientations (hkl) [uvw], describing 

the planes (hkl) situated parallel to the rolling plane, and the 
crystallographic directions [uvw], coinciding with the rolling direction, 
are connected by the relationships

( )
( )
( )

2 2 2 2 2 2 2 2
1

2 2 2

2 2 2
2

arcsin / ( )( ) ;

arccos / ;

arccos / .

w u v w h k l h k

l h k l

k h k l

j = + + + + +

j = + +

j = + +  

(3.28)

To obtain the modelling ODF of the rolled state, it is necessary to 
solve the inverse problem – construct the distribution function on the 
basis of the ideal orientations. For this purpose, the ODF is regarded 
as a set of N textural components with the given Euler angles (j1i, 
j i, j2i, where i = 1, 2,..., N),	 having	 the	 total	 width	 Ψ0i have the 
half of the maximum and the normalisation coefficients Mi. Part 
of the grains of the polycrystal may have an arbitrary orientation 
(the so-called background). These orientations are selected with the 
normalisation multiplier. The total normalisation condition gives the 

equality 
1

1
N

i
i

M F
=

+ =∑ . In practice, it is convenient to calculate initially 
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the coefficient of expansion of the ODF into a series:

[ ]{ }22
0 0

0 2
1 0

1 2

exp ( ) / 4 exp ( 1) / 4

1 exp( )

( , , ),

N i iuv
l l i

i i
uv

l

l l
C F M

T
=

 - ψ - - + ψ 
= + ×

- -ψ

× j j j

∑

 

(3.29)

where F0l = Fδ0l; δ0l is the Kronecker symbol. Consequently, the 
orientation distribution function of the grains is calculated from the 
formula (3.29), presented in a slightly different form:

( ) ( )

1 2 1 2
0 1 1

( , , ) ( , , ),
M l N lL

l l
l

f C Tµn µn

= µ= n=

j j j = j j j∑ ∑ ∑
 

(3.30)

where the truncation radius of the polynomials L is selected equal 
to 22. The appropriate values of (hkl) [uvw] for the recrystallisation 
texture are equal to (100) [001]. Consequently, we can use formally the 
same procedure of modelling of the ODF as in the case of the rolling 
texture. The values of the positions of the textural components, their 
half width and the weight multipliers are presented in Table 3.5. All the 
parameters were selected similar to those detected in the experiments 
[23, 24]. Figures 3.5 and 3.6 show the cross-section of the calculated 
ODF for the texture of the type of copper and recrystallisation texture. 
The intensity and shape of the peaks correspond to the well-known 
experimental data [23–25].

The misorientation spectra of the grain boundaries were calculated 
using the two-dimensional model described in previous sections and 
consisted of 625 grains and 1776 boundaries between them. The ODF 
of the data were used to determine 635 crystallographic bases using 
the following procedure. The generator of random numbers was used 
to simulate three angles j1, j and j2, corresponding to the region of 
determination of the ODF. Subsequently, the fourth random number                             
d(0 < d < fmax	 (φ1,	 φ,	 φ2)) was selected in the region of the variation 
of the orientation distribution function. If the condition d < f(φ1,	φ,	φ2) 
was fulfilled, the resultant coordinates were accepted and three angles 
were used to construct the basis corresponding to the given ODF:
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Fig. 3.5. Cross-section of the modelling of the ODF for the rolling texture (DEF).
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(3.31)
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Using all the determined bases, the  procedure described previously 
was used to calculate the basis spectra of the misorientation of the 
grain boundaries (types A–D). As already mentioned, to analyse the 
misorientation spectra of the grain boundaries, it is necessary to select 
the standard GBMD. The standard can be represented by the chaotic 
spectrum of the misorientation of the grain boundaries, for example, the 
theoretically calculated Mackenzie misorientation spectrum [18]. In this 
case, the standard spectrum was represented by the basis spectra of the 
type D determined in the previous section. The GBMD, modelled for 
the rolling texture, was compared with the D-spectrum of the chaotic 
polycrystal, and for the recrystallisation texture with the GBMD of the 

Fig. 3.6. Cross-section of the modelling ODF for the recrystallisation texture (RX). 
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Table 3.5. Values of the parameters used for modelling of the ODF

Table 3.6. Distribution of the axes in the textureless polycrystal for the four types of 
ordering of the bases (A, B, C, D) for the rolling texture (DEF) and the textureless 
state (TL)

Table 3.7. Distribution with respect to S in the textureless polycrystal for four types 
of bonding of the bases (A, B, C, D) for the rolling texture (DEF) and the textureless 
state (TL)

Texture type
Ideal  

orientations Euler angles
Half width Weight multiplier

{hkl} áuvwñ ρ1 ρ ρ2

DEF

011 211 35.3 45.0 0.0 10 0.32

123 634 59.0 36.7 63.4 10 0.32

112 111 90.0 35.3 45.0 10 0.06

Background 0.30

RX
001 100 0.0 0.0 0.0 10 0.31

Background 0.69

Zone I II III IV V VI VII VIII

A
DEF 7.1 3.8 4.5 25.8 44.0 9.5 1.1 4.2

TL 1.2 3.2 4.5 26.9 50.2 7.2 1.9 4.9

B
DEF 1.0 1.8 2.8 16.0 40.7 27.9 2.5 7.5

TL 0.3 1.1 2.4 14.5 38.3 32.3 2.4 8.5

C
DEF 1.7 5.4 2.6 17.6 33.7 6.1 12.6 20.3

TL 0.8 2.2 2.5 15.7 35.6 4.9 14.0 24.3

D
DEF 1.0 3.0 5.0 22.6 50.7 9.3 2.6 5.8

TL 0.8 2.1 3.6 22.7 53.5 9.4 2.1 5.8

Σ
A B C D

DEF TL DEF TL DEF TL DEF TL

1 33.9 34.3 4.8 1.8 2.3 2.2 3.1 2.1

3 0.6 1.0 4.6 4.4 28.3 32.4 1.8 1.6

5 2.0 1.0 0.7 0.5 5.2 2.0 2.3 1.2

7.65 9.9 7.4 23.3 18.0 13.0 8.3 14.5 9.5

>65 53.6 57.3 66.6 75.3 51.2 56.1 78.3 85.6
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Fig. 3.7  
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Fig. 3.7. Distribution of the misorientation angles for the deformation texture. The 
solid line shows the appropriate distribution, calculated for the textureless state.
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Fig. 3.8 Fig. 3.8. The distribution of the misorientation angles for the recrystallisation texture. 
Solid line indicates the appropriate distribution, calculated for the axial texture.
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72 Superplasticity and grain boundaries

Table 3.8. Distribution of the axes for four types of ordering of the bases (A, B, C, 
D) in the polycrystal with the recrystallisation texture (RX) and the modelling axial 
texture (100) AX

Zone I II III IV V VI VII VIII

A
RX 14.0 3.4 4.8 25.5 37.3 10.0 1.4 3.6

AX 1.1 3.4 4.8 27.3 48.8 8.5 1.8 4.3

B
RX 6.8 2.9 4.2 22.9 32.9 22.7 1.8 3.8

AX 3.0 5.6 8.6 14.0 33.8 32.5 1.0 1.5

C
RX 8.6 8.4 3.7 17.8 29.9 10.1 8.0 13.5

AX 11.4 23.0 6.6 15.9 28.4 2.1 10.9 21.7

D
RX 5.3 3.3 5.1 24.6 44.8 11.1 1.2 4.6

AX 2.3 6.4 9.2 38.3 36.6 4.4 0.8 3.4

Tables 3.9. Distribution with respect to S for the four types of ordering of the bases 
(A, B, C, D) in the polycrystal with the recrystallisation texture (RX) and the modelling 
axial texture á100ñ (AX)

Σ
A B C D

RX AX RX AX RX AX RX AX

1 42.9 42.6 25.6 10.0 19.5 8.2 13.3 13.0

3 0.3 0.0 2.5 0.0 17.5 0.0 1.4 0.0

5 1.5 0.6 0.8 2.6 5.6 33.1 2.0 3.2

7.65 9.5 7.0 17.8 19.4 16.7 17.3 14.0 15.5

>65 45.8 49.8 53.3 78.0 40.7 51.4 69.3 75.3

type D determined for the modelling axial texture á100ñ. The calculated 
spectra (together with the standard spectra) are shown in Fig. 3.7 and 
3.8 and also in Tables 3.6–3.9.

Detailed comparison of all the results shows that all the three types 
of basic spectrum for the rolling texture are similar to the GBMD for 
the textureless polycrystal. This relates both to the distribution of the 
angles and axes of the misorientation and to the distribution of the 
grain boundaries with respect to  (inverse density of the coincident 
angles). For example, all the basis of misorientation spectra of the 
grain boundaries for the rolling texture have a maximum in the angle 
range 45–40° which corresponds to the maximum of the Mackenzie 
distribution full of however, all the three types of the basic spectrum 
greatly differ from each other, confirming the conclusion made in the 
previous chapter. This conclusion indicated that the type of distribution 
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of the misorientation of the grain boundaries depend both on the texture 
and on the type of correlation in the orientation of the adjacent grains. 
The effect of the last factor is very strong. Only the very sharp texture 
(which is very difficult to obtain in practice) can suppress the effect of 
correlation and fully determine the type of the misorientation spectrum 
of the grain boundaries. For example, in comparison of the basic spectra 
for the two investigated types of the texture (DED and AX) shows that 
they greatly differ for different textures. This conclusion confirms the 
conclusion made in the previous section on the strong effect of the 
textural state on the misorientation spectrum of the grain boundaries 
the polycrystalline materials. Analysis of the basic GBMD for the 
recrystallisation texture show the following special feature: for all types 
of basic spectra is the typical feature is the large fraction of the low-
angle grain boundaries and the high density of the misorientation axes 
of the grain boundaries in the vicinity of the á100ñ pole. The latter is 
spent by the fact that the [100], [010] and [001] axes are equivalent 
for the cubic lattice, and the selected recrystallisation texture is sharper 
in comparison with the modelling texture á100ñ, used as the reference 
value.

In this section we described the method of calculating special 
misorientations in the crystals with the monochromatic lattice, 
and also the model and algorithm of calculating the misorientation 
spectrum of the grain boundaries on the basis of the textural analysis 
results. The results of the calculations of the coincident-site lattice 
in the monochromatic lattice were used to compile a table of special 
boundaries in crystals having the given lattice symmetry. The main 
conditions, essential for the restoration of the spectra of the grain 
boundaries with respect to the orientation distribution function 
were formulated, and the concept of the basic spectra, which can 
be used to determine the actual spectrum has the mean-weighted 
some of the basic spectra, was introduced. The results show that the 
misorientation distribution of the grain boundaries depend greatly 
on the crystallographic texture. However, the texture itself does not 
determine unambiguously the spectrum of the grain boundaries because 
the same texture may correspond to different distributions of the 
angles and axes of misorientation, depending on the correlation in 
the orientation of the adjacent grains. According to the experimental 
results, this correlation does not depend on the method of defining the 
acting lines of the ‘given’ grain boundaries but is controlled by their 
misorientation spectrum.

Using this approach it was shown for the first time that regardless 
of the type of texture, the misorientation distribution of the grains in 

�� �� �� �� ��



74 Superplasticity and grain boundaries

any flat cross-section is representative of the entire volume specimen. 
Consequently, we can draw conclusions regarding the volume fraction 
of the distribution of the angles and axes of misorientation on the 
basis of the experimentally verified statistics of the grain boundaries 
on the flat sections in scanning electron microscopy and in foils in 
transmission electron microscopy.

The report approach has been tested on a polycrystal with the given 
modelling ‘rolling’ and ‘recrystallisation’ texture. The results of the 
analysis of the calculated basic spectra of the misorientation of the 
grain boundaries for the case of the texture close to the experimental 
texture, it can be concluded that both factors – the sharpness of the 
texture and the type of correlation – fully determine the type of the 
spectrum of the grain boundaries in the investigated materials.
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4

EXPERIMENTAL INVESTIGATIONS OF 
GRAIN BOUNDARY ENSEMBLES IN 

POLYCRYSTALS

4.1. Diffraction methods of measuring misorientation

The successes in the determination of the crystal geometry parameters 
of the grain boundaries, in particular, the most important parameter 
– the misorientation of the adjacent grains – are associated with the 
development of experimental techniques [1, 2]. The efficiency of 
the experimental techniques is determined by two main parameters: 
the accuracy of measuring misorientation and the localisation of the 
procedure, i.e., the minimum size of the area from which it is still 
possible to obtain the diffraction pattern without superposition from 
the adjacent grains. Twenty years ago the application of electron 
microscopes, using auto-emission cathodes (field emission gun) and 
generating the electron beam with the size of up to 20 nm and with 
high intensity (sufficient for producing the diffraction pattern) was 
only in the initial stage [1, 2]. It was therefore necessary to develop 
conventional methods [3], in particular, the method of determination of 
the maximum error of determination of the misorientation in statistical 
investigations. It should be noted that the traditional methods are 
also used extensively at the moment. This is an essential tool for the 
precision measurement of the misorientation of the grain boundaries. 
In addition, similar methods are used when it is not possible to use the 
automated methods. Because of these circumstances, the original results 
obtained in the investigation of the experimental errors and described 
in the present chapter are still valid at the present time.

4.1.1. Methods of measuring the misorientation of two adjacent 
grains

In transmission electron microscopy, there is a relatively large number 
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of diffraction methods [3, 4] used for determining the misorientation 
of two adjacent grains. Two of these methods will be discussed as an 
example.

The first is the method using the Kikuchi lines and characterised by 
the maximum accuracy of determination of the misorientation (~0.1°). 
All the methods based on the application of the Kikuchi lines are in fact 
equivalent. They differ only in the selection of the quantities measured 
on the microdiffraction pattern. The Ryder–Pitch method [5, 6] uses 
three reflections which do not belong to the same zone, and three 
pairs of corresponding Kikuchi lines. Figure 4.1 shows the diagram 
of measurement using this procedure for a single reflection and the 
corresponding Kikuchi lines. The deviation from  the accurate Bragg 
position is represented by parameter ai. The angle between the direction 
of the beam Z and the direction to the reflection gi is determined by 
the expression

( ) 2cos ,
2

i i
i

x a
L

+
F ≈

 
(4.1)

Here L is the effective length of the diffraction chamber. For the small 
diffraction angles xi / L	 =	 λ	 |g i|,	 where	 λ	 is	 the	 wavelength	 of	 the	
electrons. Consequently

( ) 2cos ,
2

i i
i

i

x a
a
+ l

F ≈
 

(4.2)

On the other hand,

( ) ( )cos .i i
i

i i

F =
Z g
Z g  

(4.3)

Combining (4.2) and (4.3) we obtain the expression

Fig. 4.1. Measurement of distances in the Ryder–Pitch method.
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( ) 22 , where 1, 2, 3.
2

i i
i i i i

i

x a i
a

l +
= =Z g Z g

 
(4.4)

The direction of the beam Z in this case is determined by the general 
solution of the three equations of the type (4.4):

[ ] [ ] [ ]2 2 2
1 1 2 3 2 2 3 1 3 3 1 2a a a= × + × + ×Z g g g g g g g g g  (4.5)

where Z is the axis of the zone of the vectors g1 and g2, with the ends 
of the vectors situated on the Ewald sphere. In the Ball method [7] it 
is proposed to exclude the point defects and determine the vectors g 
by measurements of only of the position of the Kikuchi lines. Since 
this method is used for the determination of the experimental error 
of measurement of the misorientation of the two grains, it will be 
described in greater detail. The Kikuchi lines were discovered in 1928; 
they are named after the scientist who observed them for the first time. 
The mechanism of the formation of these lines may be described as 
follows. In inelastic and non-coherent scattering in thick foils, the 
electrons can be subjected to secondary coherent scattering, if the 
Bragg law is satisfied at a specific orientation of the reflecting planes. 
Radiation is scattered in cones. If the electron beam falls symmetrically 
on the reflecting plane scattering cones of the same intensity form on 
both sides of the plane. For the normal conditions, the traces of these 
reflections are seen on photoplates (or a screen) as straight lines (dark 
and light), corresponding to the planes (hkl) and –(hkl). The distance 
between	 the	 lines	 for	 each	 Kikuchi	 pair	 is	 proportional	 to	 2θ,	 i.e.,																
pi	 ~	 2θ,	 or	 pi ~1/dhkl. Having three pairs of the Kikuchi lines (i.e., 
knowing the width pi and angles ai between them), it is possible to 
index the diffraction pattern:

2 2 2

2 2 2

2 2 2 2 2 2
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cos .

i i i
i j

j j j

i j i j i j
ij

i i i j j j

h k l
p p

h k l

h h k k l l

h k l h k l

+ +
=

+ +

+ +
a =

+ + + +

This expression holds for cubic lattice crystals. Knowing the indexes 
of the Kikuchi lines, we can calculate the appropriate indexes of the 
Kikuchi poles and find the crystallographic coordinates of the electron 
beam.
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The methods of calculating the misorientation of the grains on the 
basis of the microdiffraction data are in fact reduced to two main 
methods. The first method uses only the directions of the beam. 
However, in this case it is necessary to record electron diffraction 
patterns at at least two positions of the goniometer. The second method 
uses electron diffraction diagrams taken from the adjacent grains only 
in one position of the goniometer but in addition to the direction of 
the beam the orientation of the grain is calculated using some direction 
situated in the plane of the electron diffraction diagram (for example, 
the edge of the photoplate). With other conditions being equal, the first 
method is characterised by an order of magnitude higher accuracy of 
calculating the orientation of the grain. The algorithm of calculating 
the misorientation using the first method may be described as follows. 
If the crystallographic direction in the grain A (direction of the beam), 
given by the vector A (A1, A2, A3), is parallel to the appropriate vector 
in the grain B (and |A| = |B| = 1), the misorientation R between the 
grains A and B corresponds to equality B = RA. Consequently, it is 
quite easy to determine the misorientation matrix: R = BA–1. Knowing 
the matrix R, it is quite easy to determine the misorientation angle 
and axis.

This method will be examined in greater detail. If the electron 
diffraction pattern shows three pairs which do not belong to the same 
zone of the Kikuchi lines, then there are three Kikuchi poles. To 
calculate the beam direction, it is necessary to know the mutual position 
of the triangle, formed by the Kikuchi lines, and the ‘trace’ of the 
primary beam. Different measurements can be used for the calculations. 
The distances a (Fig. 4.2) correspond to the angular deviations ai from 
the direction of the primary beam of the crystal planes generating the 
appropriate Kikuchi lines (g are the unit vectors of the normals to 
these planes (h,k,l)). In this case, the main system of the equations for 
calculating the direction of the electron beam Z has the following form

( ) sin .i i= aZg  (4.6)

The angles a determined from the angular scale of the electron 
diffraction pattern or using the equation

2 2
sin i

i

i L
a

a =
a +  

(4.7)

where L is the effective length of the diffraction chamber.
The beam direction can also be calculated using the distance bi as 
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to the Kikuchi poles Pj (Fig. 4.2) [8]. In this case, the equation used 
to calculate the crystallographic coordinates of the electron beam is:

( ) sin .ij ij= bZP
 

(4.8)

Like the angles ai, the angles bij are determined using the distances b 
on the angular scale or using the equation

2 2
cos ij

i

L
b L

b =
+

 
(4.9)

If the diffraction pattern contains only one Kikuchi pole, the beam 
direction can be calculated using the system consisting of the equations 
of the type (4.6) and (4.8), and the normalisation condition: |Z| = 1.

The misorientation of the two grains is calculated from the known 
orientations of both grains. These orientations can be determined either 
in the absolute form, i.e., on the basis of the ratio to the laboratory 
system of the coordinates, or in the relative form, i.e., using the 
relationship, for example, in the coordinate system connected with 
the crystallographic lattice of one of the grains. In order to determine 
unambiguously the position of the grain, it is necessary to determine 
at least two non-parallel directions in the grain. These directions can 
then be used to determine the orientation of the crystal in relation 
to the external laboratory coordinate system. However, if such pairs 
of directions are selected in the adjacent grains and their mutual 
position is known, then data on the similar orientation are sufficient 
for calculating the misorientation of these grains.

As already mentioned, the advantage of the method using the 
Kikuchi lines is a relatively simple procedure for obtaining experimental 
information and high accuracy of the method. A shortcoming is the fact 
that the electron diffraction patterns with distinctive Kikuchi lines can 

Fig. 4.2. Diagram showing the measurement of the 
distances for the determination of the crystallographic 
coordinates of the electron beam on the Kikuchi 
diagram.
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80 Superplasticity and grain boundaries

be obtained only from relatively perfect crystals (with the dislocation 
density not exceeding 109 m–2) in thick sections of the foil, and also 
with the localisation of the method, restricted to several microns [9].

The second method, characterised by high localisation (up to                                                                                                
0.1 µm), is the single reflection method [9, 10]. The method is 
based on the direct determination of the coordinates of the vector g. 
Consequently, only a single diffraction reflection can be seen clearly 
on the diffraction pattern. The method is based on the determination 
of the orientation of the individual grains in relation to the laboratory 
coordinate system. The grain orientation is determined using the 
orientation matrices which can be constructed having only three 
non-complanar reference vectors, expressed in both the laboratory 
coordinate system, connected with the diffraction pattern, and in the 
crystallographic system of the coordinates connected with the unit  
vectors of the reciprocal lattice. The reference vector is represented by 
the direction to the node of the reciprocal lattice, situated on the Ewald 
sphere. The resultant orientation matrices of two adjacent grains are 
used to calculate the misorientation matrix which is used to determine 
the minimum misorientation taking into account the operators of the 
rotational symmetry of the crystal lattice. The advantage of the single 
reflection method is the high localisation and the possibility of working 
in elastically loaded regions with the dislocation density up to 1012 m–2. 
Shortcomings of the method include the low accuracy (in comparison 
with the Kikuchi line method) of determination of the misorientation 
(~0.3–0.5°) and a high labour content of the calculations.

In addition to the previously examined diffraction methods, used 
in transmission electron microscopy, the misorientation of the grain 
boundaries was also determined using the channelling patterns of 
the electrons (in a scanning electron microscope) [11] and also the 
diffraction x-ray methods [12].

4.1.2. The experimental measurement error

The main problem in the experimental verification of the ensembles 
of the grain boundaries in polycrystalline materials is the problem 
of calculating the error of experimental  determination of the 
misorientation of two adjacent grains [13, 14]. In particular, the 
accuracy of determination of the misorientation depends on the 
accuracy of determination of the directions of the beam and the error 
of determination of the misorientation. The main sources of the errors 
in the determination of the beam orientation are [13, 14]:

– distortion of the foil as a result of thermal stresses, generated by 
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heating with the electron beam, the nonuniform compression of the foil 
in the holder, sagging of the foil and the effect of its own weight, etc;

– the blurriness of the reflection and Kikuchi lines on the electron 
diffraction pattern (the accuracy of determination of the central 
reflection, i.e., the trace of the primary beam, is especially important);

– the error of measurement of the distances on the electron 
diffraction pattern;

– the errors of the values of the wavelength of the electrons, the 
effective length of the diffraction chamber, the crystal lattice spacing 
of the investigated material.

The error of determination of the misorientation depends on the 
angle of inclination of the goniometer between two positions in which 
the electron diffraction patterns are recorded. In addition, a contribution 
to this error is also provided by the fact that the microdiffraction 
section cannot be repeated in different positions of the goniometer. 
Thus, the accuracy of determination of the misorientation depends on 
a large number of factors. Therefore, it is not possible to obtain the 
analytical expression suitable for the resultant error. Taking this into 
account, the accuracy was verified by experiments. To determine the 
accuracy of determination of the beam direction, one of the electron 
diffraction patterns is used to calculate several variants of some 
direction using different Kikuchi lines as the initial data. The angular 
scatter characterises the required accuracy. The value of the error 
of determination of the misorientation is necessary to calculate the 
misorientation of the same boundarie using, as the reference vectors, 
different pairs of beam directions into the grains determined for 
different positions of the goniometer. The scatter of the calculated 
misorientation values characterises the accuracy of determination of 
misorientation. In early studies [15, 16], the accuracy of determination 
of the beam directions was estimated using single examples without 
sufficient statistical data. The relationship of the accuracy of calculation 
of misorientation with the error of determination of the beam direction 
was not determined. To solve these problems, the following experiments 
were formulated. A JEM-2000EX microscope with the accelerating 
voltage	 of	 160	 kV	 (λ	 =	 0.00285	 nm)	 was	 used	 to	 investigate	 the	
accuracy of determination of the misorientation of a twin boundary 
(the type of the boundary was determined on the basis of the external 
morphological features) in annealed Ni–Cr alloy (lattice spacing a = 
0.3562 nm). The electron diffraction patterns were recorded at the 
effective length of the chamber of L = 610+3 mm for nine positions of 
the goniometer in the inclination angle range +60° around a constant 
axis. The calculations, starting with the indexing stage, were carried 
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out in a computer. The data on the position of the Kikuchi lines and 
the trace of the primary beam were fed into the computer memory 
using a digitiser. The mean error of measurement of the distances was                           
0.2 mm, and this accuracy was restricted by the extent of blurring of 
the Kikuchi lines and not by the accuracy of the measurements.

As an example, Fig. 4.3 shows the photographs of a typical electron 
diffraction pattern and its scheme with the indexed Kikuchi lines and 
Kikuchi poles. The presence of several Kikuchi poles makes it possible 
to use different methods for calculating the beam direction. Table 4.1 
shows the values of the beam directions, calculated using different 
procedures [6, 15, 17, 18]. 167 variants of the beam directions were 
found for 20 recorded electron diffraction patterns. The histogram in 
Fig. 4.4 shows the distribution of deviations from the mean values 
according to these calculations. It can be seen that the maximum 
distribution is found in the range 0.02–0.03°, and the majority (>75%) 
of the values belongs in the range 0–0.04°. These data are in agreement 
with the estimates of the accuracy carried out in other investigations. 
For example, in [19] the beam direction was determined with the 
accuracy of ~0.06° (at the accuracy of measurement of the distances 
of 0.5 mm). The results obtained in [16] also show the scatter in 
relation to the mean order expressed in hundredths of a degree. The 
data presented in Table 4.1 also shows that the accuracy decreases in 
the mean if the calculations are carried out using the poles far away 
from the centre of the electron diffraction pattern. The effect of the 
errors in the determination of the individual quantities, used in the 

 

Fig. 4.3 
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Fig. 4.3. Scheme (a) and photograph (b) of an electron diffraction pattern with equal 
to lines. To simplify understanding, only the mean lines for each pair of the Kikuchi 
lines are given.
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Table 4.1. Beam directions, calculated using different methods

No. Kikuchi lines Beam direction Deviation, deg

Calculated on the basis of three poles

1 (4–40) (–351) (–4–2–2) [–0.29299 –0.33245 0.89645] 0.121

2 (4–40)(–351)(–2–4–2) [–0.29362 –0.33135 0.89666] 0.139

3 (4–40)(–351)(7–31) [–0.29485 –0.33361 0.89541] 0.025

4 (–4–2–2)(7–31)(242) [–0.29530 –0.33366 0.89525] 0.044

Calculated on the basis of three lines

5 (4–40)(–351)(–4–2–2) [–0.29479 –0.33340 0.89551] 0.011

6 (4–40)(–351)(–2–4–2) [–0.29444 –0.33314 0.89572] 0.021

7 (4–40)(–351)(7–31) [–0,29506 –0,33326 0,89548] 0,018

8 (_4_2–2)(7–31)(242) [–0.29514 –0.33316 0.89549] 0.023

9 (_4_2–2)(–351)(242) [–0.29461 –0.33330 0.89561] 0.010

Calculated on the basis of two lines and a pole

10 (4–40) (–351) [–0.29383 –0.33275 0.89607] 0.066

11 (–35l)(–4–2–2) [–0.29494 –0.33331 0.89550] 0.012

12 (4–40)(–351) [–0.29474 –0.33365 0.89544] 0.026

13 (–440) (3–5–1) [–0.29331 –0.33239 0.89637] 0.106

14 (–35l)(–2–4–2) [–0.29486 –0.33316 0.89558] 0.007

15 (4–40) (242) [–0.29437 –0.33344 0.89064] 0.026

16 (4–40) (–351) [–0.29525 –0.33314 0.89546] 0.029

17 (–351)(–73–l) [–0.29534 –0.33338 0.89534] 0.037

18 (4–40) (–73–1) [–0.29499 –0.33358 0.89538] 0.027

19 (422) (–73–1) [–0.29536 –0.33303 0.89546] 0.037

20 (242) (–73–1) [–0,29568 –0.33318 0.89530] 0.055

21 (–35l)(–2–4–2) [–0.29506 –0.33353 0.89537] 0.028

22 (3–5–l)(422) [–0.29449 –0.33322 0.89568] 0.017

23 (3–5–l)(242) [–0.29462 –0.33329 0.89561] 0.009

24 (–351) (242) [–0.29462 –0.33339 0.89551] 0.011
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Table 4.1. (Continued)

No. Kikuchi lines Beam direction Deviation, deg

Calculated using the Ryder–Pitch methods

25 (4–40) (–351) (–4–2–2) [–0.29505 –0.33344 0.89541] 0.023

26 (4–40)(–351)(–2–4–2) [–0.29483 –0.33329 0.89554] 0.006

27 (–4–2–2)(–351)(242) [–0.29526 –0.33331 0.89539] 0.031

Calculated using the Pumprey–Bowkett and Ball methods

28 (4–40) (–351) [–0.29441 –0.33301 0.89578] 0.026

29 (4–40) (422) [–0.29501 –0.33362 0.89536] 0.030

30 (4–40) (242) [–0.29486 –0.83341 0.89551] 0.012

31 (–351)(–4–2–2) [–0.29515 –0.33338 0.89540] 0.027

32 (–351)(–2–4–2) [–0.29500 –0.33330 0.89548] 0.015

33 (422) (242) [–0.29530 –0.33313 0.89545] 0.032

Calculated using the Gertsman–Valiev and Skakova–Golub'–Orlova methods

34 (4–40) (–351) [–0.29435 –0.33301 0.89580] 0.029

35 (4–40) (422) [–0.29481 –0.33351 0.89547] 0.018

36 (4–40) (242) [–0.29447 –0.33347 0.89559] 0.022

37 (–351)(–4–2–2) [–0.29507 –0.33321 0.89519] 0.018

38 (–351)(–2–4–2) [–0.29490 –0.33316 0.89557] 0.009

39 (422) (242) [–0.29505 –0.33354 0.89538] 0.027

           Mean [–0.29476 –0.33322 0.89559]

calculations, on the accuracy of determination of the beam direction 
was verified by experiments. The variation of one of these quantities 
λ,	 L or a, by 1% leads to changes in the direction of the beam DZ 
by < 0.1°. Usually, the crystal lattice spacing a is determined with a 
considerably higher accuracy (at least 0.01%) and this error causes that 
the	ΔZ values are expressed in thousandths of a degree. The wavelength 
of the electrons and the effective length of the diffraction chamber in 
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every specific case can also be determined with the accuracy better 
than 1%, and the indeterminacy finding these values results in the 
error in the direction of the beam of the order of hundredths of a 
degree. Therefore, one can agree with the conclusions made in [13]: 
the accuracy of determination of the misorientations is restricted by 
indeterminacies in the measurement of the diffraction pattern and 
the error in the diffraction constant of the device. The mean values 
of the beam direction for all nine pairs of the electron diffraction 
patterns were used to calculate 45 values of the misorientation of the 
investigated twin boundary. The misorientation matrix was determined 
for each variant on the basis of the two pairs of directions, and the 
misorientation matrix was then used to calculate the misorientation axis 
and angle. All the 45 misorientation matrices were orthonormalised 
with the accuracy of at least 10–7. In Fig. 4.5 the main deviations 
of the misorientation values are plotted in relation to the difference 
in the inclination angles of the goniometer. Each point on the graph 
is related to 3–7 misorientations for which the mean misorientation 
and the mean quadratic deviations were calculated. For example, 
the	 misorientation	 at	Δφ	 =	 90°	 was	 calculated	 on	 the	 basis	 of	 the	
beam directions, determined for the goniometer positions of –60° 
and +30°, –45° and +45°, –30° and +60°, i.e., these are independent 
measurements for the same boundary. Fig. 4.5 shows the following. 
Firstly, as expected, the error depends strongly on the angle between 
the	positions	of	the	goniometer.	At	Δφ	=	45°	the	mean	square	scatter	of	
the	misorientations	 is	almost	completely	 independent	of	Δφ.	Secondly,	
the error of determination of the misorientations is almost an order of 
magnitude higher than the mean error of determination of the beam 
direction. The latter was verified for many other cases, and in all 
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Fig. 4.4. Distribution of deviations from the mean beam direction determined by 
calculations using Kikuchi lines.
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cases the accuracy of determination of the misorientation was at least 
a half an order of magnitude lower than the accuracy of determination 
of the beam directions. Figure 4.5 also shows the deviations of the 
mean	misorientations	for	every	Δφ	from	the	ideal	misorientation	S3. It 
may be seen that they are smaller than the mean quadratic deviations, 
i.e., the misorientation of the investigated boundary did not differ 
from the ideal misorientation within the range of the experimental 
error. The misorientation error obtained in the investigated example 
(approximately 0.15°) is evidently close to the maximum accuracy of 
determination of the misorientation attainable in the given experiment. 
Generally speaking, this accuracy is at the moment obtained only in 
the investigations of the individual boundaries because in investigating 
the ensemble of the boundaries it is almost impossible to realise 
simultaneously all optimum conditions ensuring this type of accuracy. 
Therefore, the accuracy of determination of the misorientation in 
statistical investigations is always at least an order of magnitude lower.

It should be mentioned that in many cases it is not possible to 
achieve the maximum accuracy because this accuracy may not simply 
correspond to the actual situation. The point is that even if the 
microdiffraction patterns for different positions of the goniometer are 
obtained strictly from the same areas of the foil in each grain (this 
is highly problematic), the calculated misorientation characterises the 
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Fig. 4.5. Dependence of the mean quadratic error of determination of misorientation on 
the position of the goniometer: deviation from the mean (1) and ideal (2) misorientation.
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misorientation of certain sections of the crystals in the vicinity of 
the boundary and not the misorientation of the boundary. In addition 
to this, there are almost always differences in the orientation of the 
crystals in different sections as a result of distortion of the foil and 
simply as a result of its sagging in the holder and of the effect of its 
own weight, not mentioning the cases in which the investigated section 
contains dislocations (even single ones). Generally, as reported in [16], 
the final error is determined mainly by the residual deformation of the 
foil and distortions of the diffraction pattern and not by the errors of 
the method of determination of orientation and misorientation.

In conclusion, we present the results of identical investigations of 
the accuracy of determination of the orientation and misorientation 
of the adjacent grains with twin orientation, in the same material, 
but with the smaller grain size. The appropriate diffraction patterns 
were obtained by diffraction in a converging beam [20]. It should 
be mentioned that when using diffraction in the converging beam 
some error sources provide a considerably smaller contribution. This 
method can be used almost in all cases to obtain efficiently resolved 
Kikuchi lines. In addition, the condition of non-repeatability of the 
diffraction section in the submicrocrystalline materials is not so strict. 
The accuracy of determination of the beam direction was evaluated 
using the previously mentioned procedure, calculating several variants 
of the beam direction on the same electron diffraction pattern and 
using different Kikuchi lines. The experiments were carried out using 
a foil of submicrocrystalline Ni–Cr alloy (d <0.1 µm), and a twin 
boundary was again tested. To obtain diffraction in the converging 
beam, experiments were carried out using a stationary non-coherent 
beam with the convergence angle a0 = 3mrad and the diameter of 
several tens of nanometres [20, 21].

The typical electron diffraction pattern, obtained by diffraction in 
the converging beam, is identical with that shown in Fig. 4.3. The 
calculation results of the beam direction are presented in Table 4.2. 
This angle scatter indicates the deviation from the mean angle for 
each calculation variant and characterises the accuracy of locating the 
beam. It can be seen that the accuracy of determination of the beam 
direction is 0.01–0.02°. Table 4.3 shows the characteristics of the 
diffraction patterns, produced in adjacent grains in two positions of 
the goniometer. The results were used to calculate the misorientation 
of the grain boundary:
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0.66683 0.33455 0.66590
0.66673 0.66699 0.33256 .
0.33289 0.66573 0.66782
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 
   

(4.10)

and also the angle of misorientation (59.95°) and the misorientation 
axis ([0.5767–0.5770–0.5784]). The determined misorientation differs 
from	 the	 special	boundary	Σ3	 (60°	 [111])	by	0.097°.

The investigated examples of the determination of the beam 
orientation and grain misorientation show that the application of 
diffraction in the converging beam makes it possible to determine 
the misorientation of two grains with the error which at least is 
not greater than the error obtained when using diffraction from the 
selected region. Thus, the method can be used to determine with high 
accuracy the crystal geometry parameters of the grain boundary in 
submicrocrystalline materials and also investigate local changes of the 
misorientation in coarse-grained materials.

Table 4.2. Calculation of the beam direction using different Kikuchi lines

No. Kikuchi lines Beam direction Deviation, deg

1 (113) (–5–1–3) (3–1 –1) [–0.10651 –0.91801 0.38199] 0.016

2 (113) (–5–13) (2–2–4) [–0.10658 –0.91782 0.38242] 0.014

3 (113) (—3—1—3) (3–1–1) [–0.10635 –0.91801 0.38202] 0.021

4 (113)(–3–l–3)(2–2–4) [–0.10656 –0.91787 0.38231] 0.007

5 (204) (4–2–4) (–422) [–0.10690 –0.91796 0.38201] 0.019

6 (424) (3–13) (20–4) [–0.10684 –0.91781 0.38238] 0.016

7 (424) (–3–15)(–1–1–5) [–0.10670 –0.91784 0.38233] 0.009
Mean from 7 measurements      [–0.10664 –0.91790 0.38221]

Table 4.3. Calculation of two parallel directions of the beam in adjacent grains

Grain Position of goniometer Beam direction

A 1 [–0.10734 –0.91873 0.380010]

A 2 [0.53992 –0.78529 0.303000]

B 1 [–0.41446 0.90163 –0.132362]

B 2 [0.82281 –0.26453 –0.503300]
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4.2. Experimental spectra of the grain boundaries in FCC 
polycrystals

We discuss the results of several experimental investigations of the 
misorientation spectra of the grain boundaries carried out in recent 
years [22–26], paying special attention to FCC metals. To summarise 
the results obtained in individual investigations they are presented in 
tables. 

In [22] the method of Laue x-ray diffraction was used to measure the 
misorientation of 22 grain boundaries in pure nickel. The microstructure 
with the mean grain size of 1000 µm was produced after annealing 
at 1573 K for 10 min with preliminary deformation of the specimens                          
(ε	=	5%).

The grade AISI 304L stainless steel [24] with the microstructure with 
the mean grain size of ~100 µm was produced by the following heat 
treatment: the specimen was subjected to treatment to a solid solution at 
T = 1093°C (30 min) and subsequently aged at T = 593°C for 1000 h.

The investigated Ni–Cr alloy specimens were produced from the 
hot rolled strip of industrial purity rolled at room temperature with 
the	 reduction	 of	 ε	 =	 70%	 followed	 by	 annealing	 at	T = 993 K (2 h). 
Consequently, the primary recrystallisation took place in the alloy. 
The mean grain size of the produced microstructure was 6 µm (or 
2 µm taking into account the annealing twins). In this condition, 
measurements were taken of the misorientation of 134 grains [26]. 
The specimens were then annealed at 1273 K (30 min). Selective 
recrystallisation resulted in the formation of a microstructure with the 
mean grain size of 13 µm (~4 µm taking into account the twins). A 
total of 162 misorientations of the grain boundaries was measured for 
this condition [27].

The stainless steel (Kh16N15M3B) investigated in [28] had a 
microstructure with the mean linear grain size of the order of 40–                         
60 µm, produced by annealing at 1150°C (30 min). The authors of this 
book measured the misorientations of 133 grain boundaries.

In [29] the specimens of AISI 304L and   s were produced by 
rolling	 at	 room	 temperature	 (ε = 90 %), followed by annealing. 
The 304L steel was annealed at T = 1123 K, and steel 316L at                                
1423 K for 1 h. This resulted in the formation of a microstructure 
with the mean grain size of 11.4 µm (304L) and 12.2 µm (316L). 172 
and 169 misorientations of the grain boundaries were measured for the 
specimens, respectively.

Analysis of the data, presented in Table 4.3, shows the obvious 
identity of the GBMD in the FCC materials, susceptible to twinning 
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in annealing. The common feature of all the materials included in the 
table is the fact that they have a recrystallised structure: fine-grained 
Ni–Cr alloy showed primary recrystallisation, whereas in the other 
materials the microstructure formed in individual stages of selective 
recrystallisation. Thus, in all the cases the structure formed under the 
effect of internal driving forces – the deformation energy, stored in 
the material, and the tendency for the decrease of the total energy of 
the grain boundaries. Consequently, on the basis of these results the 
authors of [28–30] concluded that there is some stable misorientation 
distribution of the grain boundaries in all the materials, susceptible to 
twinning in annealing. The controlling role in the spectrum of the grain 
boundaries was played by the boundaries of the type S3n formed as 
a result of multiple twinning. The length of the grain boundaries was 
also measured in [29]. The resultant distribution of the relative length 
S3n is shown in Table 4.4. Evidently, the boundaries S3 in the steels 
304L and 316L are dominant not only as regards the number but also 
the total length of the interface. The considerably smaller length of 
the grain boundaries of the types S9 and S27 shows that they are not 
advantageous from the viewpoint of energy and form in the structure 
of the polycrystals as a result of topological restrictions in contact 
of the boundaries S3. In [30, 31] it was attempted to generalise the 
observed experimental results from the viewpoint of the percolation 
theory of the ensemble of the grain boundaries. It is clear that as 
regards the macroscopic properties (for example, corrosion resistance 
of polycrystalline materials) the important factor is not only the number 

Table 4.4. Distribution of grain boundaries with respect to S in the FCC crystals

Σ Ni AISI 304L NiCrl NiCr2 Stainless 
steel AISI 304L AISI 

316L

3 41.0 42.0 34.5 34.6 34.6 35.5 33.1

9 9.0 15.0 7.5 7.4 6.0 5.2 4.7

27 6.0 4.0 5.0 3.1 5.2 2.4 2.4

81 2.0 — 3.0 — 3.8 — —

Others 42.0 39.0 50.0 54.9 50.4 56.9 59.8

ádñ, µm 1000 100 6 13 40–60 11.4 12.2

Number of 
boundaries 222 118 134 162 133 172 169

Reference [33] [35] [25] [26] [28] [29] [29]

�� �� �� �� ��



91Experimental investigations of grain boundary ensembles

of special boundaries but also the method by which they are combined 
in the ensemble, i.e., whether there is a percolation cluster of ‘weak’ 
grain boundaries spreading from one surface to another, or whether 
there are special grain boundaries distributed on the network acting 
as an obstacle in the path of propagation of corrosion. In a recent 
study [32] using an OIM automatic attachment [1, 2] experiments were 
carried out to measure GBMD in two nickel-based alloys (alloys 600) 
and iron (type AISI 304L and 316L alloys) subjected to corrosion tests. 
The spectrum of the misorientation of the grain boundaries of these 
materials is typical with the dominance of the twin grain boundaries 
Σ3.	 The	 verification	 results	 are	 presented	 in	 Table	 4.5.	Analysis	 of	
the distribution of the corrosion cracks in the network of the grain 
boundaries shows that the degree of corrosion damage in the grain 
boundaries S3 is the lowest. Other boundaries are subjected to corrosion 
failure with the probability proportional to the frequency of finding 
these boundaries in the ensemble of the grain boundaries. The low- 
angle grain boundaries are characterised by higher resistance to failure 
than the high-angle arbitrary grain boundaries. The orientation of the 
plane of the grain boundary is very important for the propagation of the 
corrosion cracks. However, in some cases, the high-angle boundaries of 

Table 4.5. Distribution of the grain boundaries with respect to S in the alloys 600 and 
AISI, subjected to the corrosion test [32]

Σ

Alloy 600-I Alloy 600-II Alloy 600-III

All 
GBs    
(527)

Corros-
ion  (64)

Rel. 
length

All GBs 
(578)

Corros-
ion (24)

Rel. 
length

All GBs 
(889)

Corros-
ion (119)

Rel. 
length

LAGB 3.2 1.6 — 2.6 — — 4.4 2.5 —

3 29.7 — 43.5 27.7 4.2 44.0 24.2 2.5 52.8

5–29 7.0 6.4 8.,9 10.1 4.2 8.4 6.3 10.1 4.2

HAGB 60.1 92.0 47.6 59.6 91.6 47.6 65.1 84.9 43.0

Σ

                AISI 304L AISI 316L

All GBs 
(161)

Corrosion 
(66)

Rel.
length

All 
GBs(204)

Corrosion 
(30)

Rel. 
length

LAGB 1.2 1.5 — 3.4 3.3 —
3 31.7 3.0 40.1 28.4 — 35.4

5–29 9.2 12.1 10.3 22.1 30.0 21.9
HAGB 57.9 83.4 49.6 46.1 66.7 42.7
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92 Superplasticity and grain boundaries

the grains did not fail even if the orientation of the grain boundaries 
was favourable for the propagation of corrosion.

The statistics of the misorientation of the grains in the materials 
with the FCC lattice not susceptible to twinning in annealing will be 
investigated. In the group of pure metals one such metal is aluminium, 
and the distribution of misorientation and aluminium has been studied 
in a large number of investigations. Only some of them will be 
mentioned [33–36]. Pure aluminium (99.999 %) was studied in these 
investigations. The specimens were annealed at T = 0.9TM (500 h). This 
was followed by measurements of 440 grain boundary misorientations. 
The verification results are presented in Table 4.6. In [34] the authors 
studied the effect of the annealing time and temperature on the changes 
in the misorientation spectrum of the grain boundaries. Pure aluminium 
was annealed at T = 0.95 TM  (50 h) and at T = 0.6 TM (500 h). 110 grain 
boundary misorientations were measured in each condition. The results 
show that the maximum fraction in the group of the special boundaries 
was represented by the S3 grain boundaries characterised by the most 
favourable energy parameters; the number of these boundaries does 
not change during heating. It should be mentioned that the fraction of 
all special boundaries in the GBMD is more than a quarter of all the 
measured boundaries. The statistics of the misorientation of the grain 
boundaries in aluminium was measured in greater detail in [35–37], 
where the attention was given to the effect on GBMD of not only 
annealing temperature and time but also purity of the material. The 
investigations were conducted on commercial purity aluminium (AO) 
and high purity aluminium (A999; 99.999 %), the experimental results 
are also presented in Table 4.6. The specimens of AO and A999 were 

Table 4.6. Statistics of the misorientation of the grain boundaries in aluminium [36, 48]

Σ Commercial aluminium Pure aluminium

1(LABG)
3–27

HAGB

26.1
7.8

66.1

17.6
5.9

76.5

14.1
2.6

83.3

16.3
7.4

76.3

12.9 
20.5 
76.6

13.7 
16.4 
69.9

5.4 
33.8 
60.8

No. of 
measured                   

boundaries
115 115 78 431 124 146 74

Annealing 
conditions

823 K,  
3 h

823 K,              
3 h +                 

853 K,         
10 h

683 K, 4 h 684 K, 
0.5 h

684 K,   
1.5 h

723 K,              
l h +                    

773 K, 
1 h

773 K, 3 h
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93Experimental investigations of grain boundary ensembles

rolled with the reduction of 90 and 60%, respectively. They were 
subjected to initial heat treatment at T = 623 K (30 min; A999) and at                                                                                                                
T = 823 K (3 h, AO). Subsequent annealing was carried out in 
accordance with the procedure shown in Table 4.6. The misorientation 
of the grains was measured by the method of local x-ray diffractometry 
[38]. The number of the measured misorientations of the grain 
boundaries for each state is also shown in the table. Aluminium is 
characterised by the strong dependence of the fraction of the grain 
boundaries	 3	 (and,	 correspondingly,	Σ9)	 on	 the	 purity	 of	 the	material	
[37]. As the purity of the material increases, the fraction of the grain 
boundaries	 Σ3	 becomes	 greater.	 It	 should	 be	 mentioned	 that	 this	
tendency was not detected in the materials susceptible to twinning in 
annealing. Another special feature by which the aluminium differs is 
the high fraction of the low-angle boundaries, reaching 20% of the 
total number of the grain boundaries. Evidently, the latter is associated 
with the fact that as a result of the small degree of splitting of the 
dislocations in aluminium deformation is accompanied by easy climb 
of the dislocations and, consequently, the formation of low-anlge sub-
boundaries which are subsequently inherited in the material during 
recrystallisation [39]. A similar phenomenon takes place in the Ni–
Cr alloy, subjected to hot deformation. Regardless of the fact that 
the spectrum of the grain boundaries after static recrystallisation 
is characterised by a high fraction of the special grain boundaries 
(especially,	 Σ3),	 after	 hot	 deformation	 with	 ε = 20%, the fraction of 
the low-angle boundaries reaches 15.4%. In this case, the fraction of 
the	 twin	boundaries	Σ3	 is	 approximately	20%	[14].

4.3. Orientation distribution function in Ni–Cr alloy: 
experimental and modelling GBMDs

4.3.1. Orientation distribution function in Ni–Cr alloy and stainless 
steels

In previous chapters, it was found that the texture in the polycrystals 
with the modelling texture does not control unambiguously the GBMD. 
Generally speaking, the same texture may be associated with different 
spectra depending on the correlation and orientation of the adjacent 
grains whose nature is determined by the type of specific material and 
its thermomechanical prior history. For analysis of the relationships 
governing the formation of the spectrum of the grain boundaries of real 
materials it is possible to determine the GBMD, using the quantitative 
characteristic of the texture – ODF – by computer modelling, with 
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94 Superplasticity and grain boundaries

the GBMD and in different types of correlation with orientation 
of the adjacent grains, and it is possible to compare them with the 
experimentally detected GBMD. This is possible as a result of the 
investigations carried out in [25–28] in which measurements were 
taken of the GBMD for a Ni–Cr alloy in two recrystallised conditions 
and for AISI 304L and 306L stainless steels. The resultant orientation 
distribution functions and the spectra of the misorientation of the grain 
boundaries calculated on the basis of these functions will be examined 
in greater detail [41].

The material for the investigation of the relationship of the 
texture and the spectrum of the grain boundaries was a Ni–Cr 
alloy(thermomechanical treatment of this material was described in 
detail in [25, 26, 41]), and grade AISI stainless steels [28, 41]. It 
should be mentioned that the initial hot-rolled Ni–Cr alloy strip of 
industrial purity was rolled at room temperature with the reduction of 
70% and this was followed by annealing at 993 K for 2 h. Primary 
recrystallisation of the alloy resulted in the formation of a fine-grain 
microstructure with the mean grain size of ~6 µm (or ~2 µm taking into 
account the annealing twins). A similar state is denoted as Ni–Cr alloy 
A. Subsequently, the specimens were subjected to additional annealing 
at 1273 K for 30 min. Selective recrystallisation increased the mean 
grain size to ~13 µm. This condition is denoted as Ni–Cr alloy B. 
Details of the experimental measurements of the grain misorientation 
were published in [25, 26] and in a dissertation by V.N. Danilenko 
[42]. It should only be mentioned that 134 boundaries were tested in 
condition A and 162 grain boundaries in condition B.

To describe and analyse the textural condition of the investigated 
steels, experiments were carried out with the standard method which 
makes it simple to determine the quantitative characteristic of the 
texture – the orientation distribution in the space of the Euler angles – 
on the basis of the experimentally determined incomplete pole figures. 
The following pole figures were selected for the Ni–Cr alloy: (200), 
(111), (220) and (311). The ODF were determined using the internal 
regions	of	the	pole	figures	restricted	by	the	radial	angle	α	=	65°.	X-ray	
diffraction investigations were carried out in a DRON-3 diffractometer 
with an automatic attachment [43]. The pole figures were recorded 
with	 the	 step	 of	 variation	 of	 the	 radial	 and	 azimuthal	 angles	 (α	 and		
β)	 of	 5°.	The	 cross	 sections	 of	 the	ODF,	 obtained	 on	 the	 basis	 of	 the	
results of calculations using the incomplete pole figures (j2 = const) are 
presented in Fig. 4.6 and 4.7. Figure 4.6 shows the ODF of Ni–Cr alloy 
A after the first annealing (993 K, 2 h), and Fig. 4.7 – after the second 
annealing treatment (1273 K, 30 min). Analysis of the ODF data shows 
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that the first specimen is characterised by the formation of relatively 
sharp	maxima	in	 the	cross	sections	φ2 = 0,..., 10°. Further annealing is 
associated with the scattering of the texture, and the form of the ODF 
is typical of the polycrystals with a weak preferential orientation of 
the crystals. The first type is connected with the rolling texture. The 
maxima	{011}á211ñ	and	{112}á111ñ were found in Fig. 4.6. However, 
the analysis of the ODF pattern is made more complicated by the 
presence of additional maxima. Additional annealing results in the 
formation	of	 the	peak	{100}á001ñin the corners of the cross sections. 

Fig. 4.6. ODF cross-sections for Ni–Cr alloy A (annealing at 993 K, 2 h).
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96 Superplasticity and grain boundaries

This peak is associated with the beginning of recrystallisation. Identical 
changes in the texture maxima were observed in [44] with the increase 
of the annealing temperature of the Fe–50% Ni alloy up to 900°C. The 
stoichiometric iron–nickel alloy shows the transition from the rolling 
texture to the recrystallisation texture, probably as a result of the 
insufficiently long holding time of the specimens of the Ni–Cr alloy. 
The recrystallisation texture did not manage to form completely and this 
was also reflected in the sharpness of the texture. Evidently, the latter 
resulted in small differences in the fraction of the special boundaries, 

Fig. 4.7. ODF cross-sections for Ni–Cr alloy B (annealing at 1273 K, 30 min).
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determined by experiments and the calculations. Even in this case, the 
application of the correlation methods results in rational agreement of 
the experimental results with the calculated data.

Figures 4.8 and 4.9 shows the cross sections of the distribution 
function of the grains in the crystallographic orientation for the AISI 
304L and AISI 316L stainless steel. In both cases, the pole figures of 
the type (200), (220) and (311) are characterised by a relatively high 
intensity maximum. The texture of the AISI 304L is characterised by 
two orientation tubes. The skeleton tube of one of them extends from 
the ideal orientation (131) [112] to the ideal orientation (110) [111]. 

Fig. 4.8. ODF cross-sections for AISI 304L stainless steel.
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98 Superplasticity and grain boundaries

The second tube is associated with the blurring of the maximum 
(011) [011]. The orientation distribution function of the AISI 316L 
steel is also characterised by two orientation tubes. The skeleton 
tube of the first of these tubes links the ideal orientation (011) [100] 
with the ideal orientation (121) [321]. The second tube extends from 
the ideal orientation (120) [001] to the orientation (110) [001]. The 
comparison of the ODF of Ni–Cr alloy and the stainless steels shows 
a large difference in the texture of these materials. The experimentally 
determined orientation distribution function is used for the analysis of 
the crystal basis in the modelling polycrystal.

Fig. 4.9. ODF cross-sections for AISI 316L steel.
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4.3.2. Modelling spectra of the misorientation of the grain 
boundaries in Ni–Cr alloy and AISI stainless steels: comparison 
with the experimental results

Figures 4.10 and 4.11 shows the calculated and experimental 
distributions with respect to the misorientation angle for the Ni–Cr 
alloy in the first and second state with different types of correlation 
neighbours. The appropriate distributions in the axes and ∑ are shown 
in Tables 4.7–4.10. The identical data for the AISI stainless steels are 
presented in Fig. 4.12 and 4.13 and also in the Tables 4.11–4.14.

Analysis of the GBMDs produced by modelling and of the 
appropriate different types of correlation in the orientation of the 

Fig. 4.10 
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Fig. 4.10. The distributions of the misorientation angles in Ni–Cr alloy A (annealing at 
993 K, 2 h), calculated on the basis of the actual ODF and experimental distributions 
[25, 42].
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Fig. 4.11. The distributions of the misorientation angles in Ni–Cr alloy B (annealing 
at 1273 K, 30 min), calculated on the basis of the actual ODF and experimental 
distributions [26, 42].

adjacent grains (type A–D) shows the large differences in GBMD for 
the same specimen. This applies to both Ni–Cr alloy and the stainless 
steels. Comparison of the distributions of the misorientation of the grain 
boundaries with respect to S shows that the spectrum modelled for the 
correlation of the neighbours of type C at which the special boundaries 
prevail in the GBMD, is closest to the experimental spectrum. The 
calculations of the weight coefficients using equation (3.24) give the 
identical results: q1 = q2 = q4 = 0; q3 = 1. It should be mentioned that 
the distributions of the same type for different investigated materials are 
in good agreement with each other. Consequently, it may be concluded 
that the twinning process is the main factor of the formation of the 
GBMD in annealing in the materials with the low stacking fault energy. 
Thus,	 the	 number	 of	 the	 boundaries	 Σ3	 in	 the	 experimental	 spectrum	

Correlation A Correlation B

Correlation C Correlation D

Experimental
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Table 4.7. Calculated and experimental distributions of the misorientation axes in 
Ni–Cr alloy A after annealing at T = 993 K (2 h)

Table 4.8. Calculated and experimental distributions of the grain boundaries with 
respect to ∑ in Ni–Cr alloy A after annealing at T = 993 K (2 h)

Zone I II III IV V VI VII VIII

Type A 12.84 3.04 4.39 26.07 40.77 8.45 1.30 3.15

Type B 1.01 1.46 3.21 18.19 40.60 26.35 1.80 7.38

Type C 2.37 5.91 1.52 17.51 37.22 5.01 19.69 20.78

Type D 0.90 2.53 4.67 23.09 51.41 10.08 1.63 5.69

Experimental 0.00 0.75 2.24 16.42 31.34 7.46 27.61 14.18

Σ A B C D Experimental
1 35.64 3.83 2.82 4.28 2.99
3 0.96 3.43 24.94 1.35 37.31
5 1.41 0.68 6.14 1.41 0.75
7 0.62 0.73 2.14 0.84 1.49
9 1.13 0.62 1.86 0.96 3.73

11 0.56 0.28 0.56 0.68 0.75
13a 0.11 0.45 0.56 0.23 0.00
13b 0.17 0.06 0.56 0.62 0.00
15 0.90 0.17 0.96 0.56 0.75

17a 0.00 0.06  0.17 0.11 0.00
17b 0.11 9.40 0.17 0.23 0.00
19a 0.06 0.11 0.23 0.17 0.75
21a 0.06 0.06 0.17 0.23 0.00
25a 0.06 0.00 0.11 0.06 0.00
25b 0.11 0.11 0.34 0.39 0.00

* 2.96 2.70 2.34 3.60 5.22
** 54.96 77.31 55.35 83.33 46.26

*:	 25	<	Σ	<	 65;	 **:	 Σ	 >	 65

is greater than the number of the boundaries of the same type in the 
modelled GBMD with the C-correlation. Other same time, in the 
experiments	 the	boundaries	Σ5	are	not	detected.	These	differences	are	
associated mainly with the fact that the simplest model of the grain 
structure of the polycrystal, consisting of regular hexagons, were 
selected in this case. Generally speaking, this representation does not 
correspond to the topology of the grain structure in the actual materials, 
subjected to twinning in annealing. In [45] it was reported that the 
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Table 4.9. Calculated and experimental distributions of the misorientation axes in 
Ni–Cr alloy B after annealing at T = 1273 K (30 min)

Zone I II III IV V VI VII VIII

Type A 12.22 3.27 4.56 24.10 43.64 8.56 0.90 2.76

Type B 1.41 1.35 2.25 18.98 41.05 26.07 2.08 6.81

Type C 2.31 4.90 2.53 16.84 35.98 7.10 10.25 20.10

Type D 1.01 2.53 3.66 23.76 52.70 8.90 2.14 5.29

Experimental 0.00 1.85 2.47 9.88 38.90 5.56 33.95 7.41

Table 4.10. Calculated and experimental distributions of the grain boundaries with 
respect to ∑ in Ni–Cr alloy B after annealing at T = 1273 K (30 min)

Σ A B C D Experimental

1 38.23 4.56 3.10 4.56 4.32

3 0.23 4.28 25.06 1.52 35.80

5 0.90 0.90 5.74 1.24 0.62

7 0.73 0.28 1.91 0.62 0.00

9 0.11 0.62 2.03 0.96 6.79

11 0.39 0.23 0.96 0.45 1.23

13a 0.17 0.23 0.56 0.34 0.00

13b 0.23 0.34 0.56 0.34 0.00

15 0.28 0.51 1.07 0.39 0.00

17a 0.06 0.06 0.11 0.11 0.00

17b 0.06 8.90 0.23 0.23 0.00

19b 0.28 0.45 0.28 0.45 0.00

21a 0.11 0.23 0.23 0.28 0.00

25a 0.28 0.11 0.11 0.06 0.00

25b 0.11 0.39 0.34 0.28 0.00

* 2.71 2.80 2.53 3.65 3.09

 ** 54.96 75.11 54.84 83.67 48.14

*:	25	<	Σ	<	65;	**:	Σ	>	65

fraction	of	the	boundaries	Σ3	in	the	GBMD	calculated	only	on	the	basis	
of the geometrical considerations corresponds to the boundaries formed 
during recrystallisation as a result of contact of two grains with twin 
orientation, whereas there are other mechanisms of the formation of 

�� �� �� �� ��



103Experimental investigations of grain boundary ensembles

twins (for example, splitting of the grain boundaries into two parts). In 
this case, the difference in the fractions of the grain boundaries of the 
type	Σ3	corresponds	to	the	part	of	the	grain	boundaries	which	formed	by	
a mechanism other than the contact of two grains with twin orientation. 
It should be mentioned that, as shown by recent EBSD investigations 
for	 Ni–Cr	 alloy	A	 in	 [46],	 the	 fraction	 of	 the	 grain	 boundaries	 Σ3	 is	
approximately 24%, which is statistically equivalent to the fraction of 
the twins obtained in our calculations (25%).
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Fig. 4.12. The distribution of the misorientation angles in the AISI 304L stainless steel 
calculated on the basis of the actual ODF and experimental values [27, 28].
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4.4. Special features of the grain boundaries in the FCC materials 
with a high stacking fault energy

4.4.1. Rolling and annealing texture of aluminium

In the previous section, for basic spectra of the misorientation of the 
grain boundaries were determined by computer modelling of GBMD on 
the basis of the actual ODF in the twinning materials. Comparison with 
the experimental GBMD values shows that the calculated spectrum, 
characterised by the type C correlation, correspond to the actual 
GBMD in the twinning FCC polycrystals. It is interesting to solve 
the identical task for the materials with a high stacking fault energy, 
i.e., not susceptible to twinning in annealing. The important problem 
is also the prediction of the GBMD in the same material but with the 
microstructure with a different grain size. These tasks have been solved 
for aluminium.

The chemical composition of the investigated material was as 
follows: Ar (argon) 0.42%; Cu (copper) 0.09%; Mn (manganese) 0.06%; 
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Fig. 4.13. The distribution of the misorientation angles in the AISI 316L stainless steel 
calculated on the basis of the actual ODF and experimental values [29, 41].
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Table 4.11. Calculated and experimental distributions of the misorientation angles in 
the AISI 304L stainless steel

Table 4.12. Calculated and experimental distributions of the grain boundaries with 
respect	 to	Σ	 in	 the	AISI	304L	stainless	 steel

Zone I II III IV V VI VII VIII
Type A 6.53 3.15 4.79 24.10 42.79 10.64 1.80 6.19

Type B 1.18 2.08 2.48 14.64 41.39 27.59 2.98 7.66

Type C 1.69 4.84 2.87 16.39 34.74 6.53 12.44 20.50

Type D 1.75 2.31 4.17 21.62 52.98 10.02 2.14 5.01

Experimental 0.59 1.17 1.17 14.62 34.50 5.85 37.42 4.67

Σ A B C D Experimental

1 33.95 2.65 2.48 3.60 2.92

3 1.46 5.24 28.94 1.58 36.84

5 0.62 1.07 4.84 1.86 1.17

7 1.24 0.73 0.96 0.90 0.58

9 0.34 0.56 1.07 0.96 5.26

11 0.45 0.28 0.84 0.62 0.58

13a 0.11 0.45 0.17 0.23 0.00

13b 0.34 0.17 0.06 0.34 1.17

15 0.79 0.28 1.06 0.79 0.00

17a 0.06 0.17 0.11 0.11 0.00

17b 0.17 11.15 0.06 0.33 1.17

19a 0.06 0.11 0.45 0.45 0.00

19b 0.11 0.00 0.11 0.00 0.00

21a 0.11 0.11 0.06 0.23 0.00

21b 0.56 0.28 0.34 0.56 1.17

23b 0.62 0.33 0.28 0.73 0.00

25a 0.11 0.17 0.11 0.23 0.00

25b 0.39 0.23 0.17 0.51 1.75

* 5.86 8.17 5.18 9.95 80.21

** 52.65 67.85 52.70 76.01 39.18

*:	 25	<	Σ	<	 65;	 **:	 Σ	 >	 65

Ni (nickel) 0.07%; Ti (titanium) 0.03%; the balance Al (aluminium). 
The materials prepared by the following procedure. After equal channel 
angular pressing (ECAP) [25], the produced cylinder was rolled at room 
temperature into a 1 mm thick strip. Blanks for further heat treatment 
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Table 4.13. Calculated and experimental distributions of the misorientation of axes 
in AISI 316L stainless steel

Zone I II III IV V VI VII VIII

Type A 7.55 3.15 3.94 24.72 43.19 11.37 1.80 4.28

Type B 0.98 1.30 3.38 16.78 40.99 26.91 1.58 8.11

Type C 2.02 4.96 3.04 15.09 34.01 6.42 11.99 22.47

Type D 1.24 2.70 4.22 21.90 53.27 19.53 2.14 4.90

Experimental 0.00 0.59 0.00 10.65 37.87 9.47 33.73 7.69

Table 4.14. Calculated and experimental distributions of the grain boundaries with 
respect	 to	Σ	 in	AISI	316L	stainless	 steel

Σ A B C D Experimental

1 33.95 2.65 2.48 3.60 2.92
3 1.46 5.24 28.94 1.58 36.84
5 0.62 1.07 4.84 1.86 1.17
7 1.24 0.73 0.96 0.90 0.58
9 0.34 0.56 1.07 0.96 5.26
11 0.45 0.28 0.84 0.62 0.58
13a 0.11 0.45 0.17 0.23 0.00
13b 0.34 0.17 0.06 0.34 1.17
15 0.79 0.28 1.06 0.79 0.00
17a 0.00 0.17 0.06 0.11 0.00
17b 0.23 11.60 0.28 0.28 0.59
19a 0.23 0.34 0.45 0.23 0.00
19b 0.06 0.11 0.28 0.06 1.18
21a 0.11 0.17 0.28 0.17 0.59
21b 0.23 0.51 0.39 0.39 0.00
23b 0.17 0.34 0.17 0.28 0.00
25a 0.00 0.11 0.00 0.11 0.00
25b 0.34 0.23 0.34 0.56 0.59
* 5.51 8.38 5.23 6.99 5.32

** 51.63 67.23 50.90 80.29 42.01

*:	25	<	Σ	<	65;	**:	Σ	>	65

were cut by electrospark cutting from the central part. Annealing at 
T = 433 K for 45 min resulted in the formation of a fine-grained 
structure with the mean grain size of approximately 1–2 µm (Fig. 4.14). 
Annealing of the initial material at T = 583 K for 1 h resulted in the 
formation of a grain structure with d ~ (20–40) µm (Fig. 4.15).
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Fig. 4.15 Fig. 4.14 

Fig. 4.15 

Incomplete pole figures were produced for these two conditions in the 
investigated material. In the case of fine-grained aluminium pole figures 
were recorded using an automatic texture attachment. The pole figures 
for coarse-crystalline aluminium were produced in the non-automatic 
regime. To average out the reflected signal, the specimens oscillated 
in the plane-parallel direction with the amplitude of approximately                                                                                      
1 mm. The step of the variation of the radial and azimuthal angle was 5° 
in both cases. The orientation distribution function was restored on the 
basis of the three incomplete pole figures: (111), (200) and (220). The 
mathematical method of determination of the grain distribution function 
on the basis of the orientations was described in detail previously. The 
ODF	 cross-sections	 φ2 = const for aluminium in the first and second 
state are shown in Fig. 4.16 and 4.17, respectively. The ODF, shown in 
the figures, are of approximately the same type with a relatively high 
intensity maximum and are characterised by two orientation tubes. The 
skeleton part of the first of them extends from the ideal orientation 
(131) [112] to the ideal orientation (230) [001]. The second skeleton 
tube forms at a point between the ideal orientations (001) [110] and 
(233) [331] and extends to the ideal orientation (113) [110] (Fig. 4.16). 
The main difference between the ODF of coarse- crystalline aluminium 
and that of fine-crystalline aluminium is the scattering of the main 
texture maxima and the formation of a new maximum in the range of 
ideal orientation (011) [111]. The appearance of the new maximum is 
associated in all likelihood with the development of recrystallisation, 
i.e., with the formation of grains with a new orientation in the material.

4.4.2. Grain boundary ensembles in aluminium: experiments and 
modelling

Experimental verification was carried out on annealed aluminium with 
the mean grain size of ~20–40 µm. The foils for the investigations were 
prepared from the same specimens for which the pole figures were 

Fig.  4 .14.  Microst ructure  of 
aluminium after annealing at T = 
433 K (45 min).

Fig.  4.15.  Microstructure of 
aluminium after annealing at        
T = 583 K (1 h).
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108 Superplasticity and grain boundaries

recorded. The corresponding characteristic sections are shown in Fig. 
4.18 and 4.19 and the Tables 4.15 and 4.16 show the parameters of the 
grain boundaries in the form of the angle–axis dependence. A total of 
100 boundaries were tested. The results of experimental verification 
are presented in the standard form as three distributions (with respect 
to	 angles,	 axes	 and	 inverse	 density	 of	 the	 coincident	 angles	 Σ)	 in	
Fig. 4.20 and 4.21 and also in Tables 4.17–4.20. A large fraction of 
all the boundaries in the experimental GBMDs is represented by the 
low-angle boundaries (30%). Of the four boundaries considered which 

Fig. 4.16. ODF cross sections for aluminium (annealing at 433 K, 45 min).
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109Experimental investigations of grain boundary ensembles

are	 close	 to	 the	 special	 boundary	 Σ3	 (60°/[111]),	 only	 one	 satisfies	
the	 more	 stringent	 Brandon	 criterion:	Δθ	 <	 8Σ–1/2 deg. The majority 
of the misorientation axes (60%) are concentrated in the zone 6 (see 
Fig. 2.4), situated between the directions á110ñ and á111ñ. Further 
30% of the misorientation axes are found in the adjacent zones (5 
and 8). Thus, the distribution of both the misorientation axes and 
of the angles in coarse-grained aluminium greatly differs from the 
distributions in the textureless material. A large part of the low-angle 

Fig. 4.17. ODF cross sections for aluminium (annealing at 583 K, 1 h).
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Fig. 4.18 Fig. 4.18. Photograph of area I of coarse-grained aluminium foil (annealing at                    
T = 583 K, 1 h).

Table 4.15. Parameters of the grain boundaries tested in the area I (see Fig. 4.18)

No. Boundary Angle, deg Axis GB type

1 1–2 54.4 –0.384 –0.494  0.779 General

2 1–3 58.0 0.441 0.534 –0.722 General

3 1–4 57.6 –0.582 0.534 –0.456 General

4 2–3 10.7 –0.479 0.848 –0.228 LAB

5 3–4 7.2 0.274–0.945 0.178 LAB

boundaries (10–20%) was found in almost all experiments with the 
certification of the ensemble of the grain boundaries in aluminium, 
described in the literature [34, 35, 47]. As already mentioned, the latter 

 

Fig. 4.19 

Fig. 4.19. Photograph of area II of coarse-grained aluminium foil (annealing at                   
T = 583 K, 1 h).
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Table 4.16. Parameters of the grain boundaries, tested in the area II (Fig. 4.19)

No. Boundary Angle, deg    Axis GB type

1 1–2 44.9 0.393 –0.392 0.832 Special

Close to Σ21,	44.414°/[112]	(∆θ	= 1.257°;	∆θBr = 3.273°)

2 1–4 15.8 0.645 –0.715 –0.271 LAB

3 2–3 55.4 0.714 0.699 0.053 General

4 2–4 57.8 0.424 –0.541 –0.726 General

5 3–4 6.0 0.010 0.035 0.999 LAB

,

is associated with the fact that because of the low degree of splitting of 
the dislocations in aluminium deformation is accompanied by relatively 
easy climb and, consequently, by the formation of low-angle boundaries 
which are inherited by the material in subsequent heat treatment.

Modelling of the misorientation spectra of the grain boundaries in 
aluminium was carried out using the method described previously in 
detail and the actual ODFs. The basic spectra differing in the type of 
correlation along the packing line of the ‘given’ GBMD (chapter 3) 
were determined for both states of aluminium. Figures 4.20 and 4.21 
and Tables 4.17–4.20 show the results of numerical modelling of the 
basic spectra of the four correlation types (A–D). For aluminium in 
both states the calculated spectra of the same type are identical within 
the statistical error range. The highest fraction of the low-angle grain 
boundaries (∑1) is detected in GBMD with the type A correlation, and 
the largest number of the misorientation axes in this case is situated 
in zone 5 of the standard stereographic angle.

The true spectrum for coarse-grained aluminium was presented in 
the form of the linear combination of the basic spectra:

( ) ( )
4

i i
i l

P q P
=

q = q∑  
(4.11)

where Pi = {PA, PB, PC, PD}	are	 the	basic	GBMDs;	qi are the expansion 
coefficients satisfying the normalisation condition. The coefficients qi 
can be determined minimising the sum of the mean quadratic deviations 
of the calculated spectra from the experimental one, i.e., minimising 
the expression (2.9). Similar calculations give the following values for 
aluminium in the second state (annealing at T = 583 K, 1 h):

q1 = 0.8;  q2 = 0.1; q4 = 0.1.
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112 Superplasticity and grain boundaries

The coefficients are determined for the basic spectra A–D were used 
to determine the calculation spectrum for fine-grained aluminium. 
Figure 4.20 show the distribution of the misorientation angles of the 
calculation spectrum, and Tables 4.17 and 4.18 give the distribution 
with respect to  the misorientation axes and the inverse density of the 
coincident sites.

Comparison of the calculation and experimental spectra for coarse-
grained aluminium (Table 4.20) shows satisfactory agreement for the 
functions of the low-angle boundaries (27.4 and 30%), the fractions 
of the twin boundaries ∑3 (4 and 3.7%), and also the fractions of 
the high-angle boundaries (54 and 55.7%). Consequently, it may be 
assumed that the spectrum of the misorientation of the grain boundaries 
of fine-grained aluminium (see the column ‘calculated’ in Table 4.18) 
also contains a high number of the low-angle boundaries (26.6%).

Fig. 4.20 
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Fig. 4.20. Modelling distributions of the misorientation angles of the grain boundaries 
in aluminium (433 K, 45 min) and the calculated GBMD.
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Table 4.17. Distribution of the misorientation axes in aluminium after annealing at 
433 K (45 min)

Table 4.18. Distribution of the grain boundaries with respect to ∑ in aluminium after 
annealing at 433 K (45 min)

Zone I II III IV V VI VII VIII

Type A 7.83 3.32 4.51 25.62 42.06 9.52 2.31 4.84

Type B 0.90 1.80 3.83 17.06 40.77 27.31 1.91 6.42

Type C 2.53 7.04 3.38 17.17 32.94 5.86 10.81 20.27

Type D 1.35 2.53 4.34 22.35 51.58 10.14 1.97 5.74

Calculated 6.65 3.61 4.38 24.45 42.10 9.21 23.13 16.4

Σ A B C D Calculated

1 35.13 3.04 1.80 3.98 28.59

3 0.68 3.60 26.80 1.58 3.38

5 1.69 1.46 7.55 1.41 2.25

7 0.79 0.73 0.79 0.73 0.78

9 0.79 0.90 0.62 1.30 0.82

11 0.28 0.62 0.68 0.68 0.36

13a 0.28 0.34 0.39 0.45 0.31

13b 0.62 0.17 0.45 0.39 0.58

15 0.23 0.39 0.34 0.84 0.30

17a 0.00 0.06 0.11 0.06 0.02

17b 0.11 10.41 0.34 0.17 0.14

19a 0.11 0.23 0.51 0.28 0.17

19b 0.11 0.06 0.06 0.06 0.10

21a 0.28 0.00 0.06 0.11 0.24

21b 0.17 0.28 0.39 0.28 0.20

23 0.22 0.28 0.28 0.45 0.25

25a 0.11 0.00 0.28 0.11 0.13

25b 0.39 0.23 0.34 0.45 0.39

* 4.98 9.29 5.62 7.36 6.31

** 52.03 67.91 52.59 79.28 54.81

*:	25	<	Σ	<	65;	**:	Σ	>	65
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114 Superplasticity and grain boundaries

This chapter includes the results of experimental investigation of 
the accuracy of measurement of the direction of the electron beam on 
the diffraction pattern. These measurements were taken for the case 
of	 the	 twin	 boundary	 Σ3	 in	 the	 Ni–Cr	 alloy	 using	 both	 commercial	
diffraction and diffraction in a converging beam. The latter method, 
combined with the single reflection method, can be used to measure 
the misorientation of the grain boundaries in the materials with the 
ultrafine-grained structure. It is shown that the maximum possible 
accuracy of determination of the grain orientation in both cases is 
approximately 0.01°. This conclusion holds for almost all methods of 
calculating the direction of the electron beam in a crystal described in 
the literature [9]. The accuracy of calculation of the misorientation of 
two adjacent grains is an order of magnitude lower and equals 0.1°. 
The accuracy of determination of the misorientation of two grains in 
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Fig. 4.21. Modelling distributions of the misorientation angles of the grain boundaries 
in aluminium (433 K, 45 min) and the experimental GBMD.
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Zone I II III IV V VI VII VIII

Type A 7.54 2.37 3.60 19.99 47.75 11.88 1.69 5.18

Type B 1.13 1.24 2.59 16.84 40.09 28.77 2.31 7.04

Type C 1.69 5.69 3.04 15.54 33.45 6.81 11.99 21.79

Type D 0.85 2.20 4.79 23.87 50.39 9.91 1.24 6.76

Experimental 0.00 0.00 1.00 5.00 16.00 60.00 3.00 15.00

Calculated 6.29 2.68 3.67 19.93 46.58 11.18 2.67 7.00

Table 4.19. Distribution of misorientation axes in aluminium after annealing at                                     
583 K (1 h)

Table 4.20.  Distribution of grain boundaries with respect to ∑ in aluminium after 
annealing at 583 K (1 h)

Σ A B C D Experimental Calculated

1 33.56 3.43 2.31 2.93 30.00 27.37

3 0.84 4.17 29.00 1.24 4.00 3.70

5 0.62 0.90 5.97 1.30 0.00 1.22

7 1.07 0.79 1.30 1.24 2.00 1.11

9 1.01 0.62 0.90 1.13 0.00 1.01

11 1.30 0.56 0.56 0.68 0.00 1.16

13a 0.11 0.06 0.45 0.28 0.00 0.16

13b 0.28 0.28 0.45 0.45 0.00 0.32

15 0.17 0.56 0.56 0.56 0.00 0.25

17a 0.06 0.11 0.11 0.17 0.00 0.00

17b 0.45 11.09 0.06 0.17 0.00 0.38

19a 0.11 0.11 0.23 0.23 0.00 0.14

19b 0.00 0.06 0.00 0.00 0.00 0.00

21a 0.00 0.06 0.00 0.23 0.00 0.00

21b 0.34 0.17 0.23 0.68 2.00 0.36

23 0.11 0.28 0.28 0.39 0.00 0.16

25a 0.06 0.11 0.06 0.11 0.00 0.00

25b 0.23 0.17 0.28 0.34 0.00 0.24

* 6.36 8.73 6.24 8.70 8.00 6.74

** 53.32 67.74 51.01 79.17 54.00 55.68

*:	25	<	Σ	<	65;	**:	Σ	>	65
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statistical investigations is almost an order of magnitude lower than 
the maximum possible accuracy because it is not simple to realise 
simultaneously the optimum conditions ensuring maximum accuracy.

Analysis of the literature data obtained in the investigations of the 
ensemble of the grain boundaries in the FCC material shows a tendency 
for the formation of the stable spectrum of the misorientation of the 
grain boundaries in the materials with low and mean stacking fault 
energies. Similar materials are susceptible to twinning in annealing and 
have	 a	 high	 percentage	 of	 twin	 boundaries	 (Σ3),	 characterised	 by	 the	
lowest	 excess	 energy.	 The	 fraction	 of	 the	 boundaries	 Σ3	may	 exceed	
30%.	 In	 addition,	 the	 Σ9	 and	 Σ27	 boundaries,	 topologically	 linked	
with these boundaries, are also characterised by a higher frequency 
characteristic. At the same time, the FCC polycrystals with a high 
stacking fault energy (for example, aluminium) show the tendency for 
inheriting the ensemble of the grain boundaries formed as a result of 
the preliminary thermomechanical effect (for example, rolling). Long-
term annealing (of pure aluminium) is required to increase greatly 
the fraction of the special boundaries [37]. These special features 
of the FCC materials have been used as a test in the verification 
of the proposed procedure for calculating the spectra of the grain 
boundaries for the given texture, described in chapter 1. The twinning 
materials have the grain boundary ensemble which can be described 
with sufficient accuracy by the modelling spectrum with the type C 
correlation with the maximum possible fraction of the special grain 
boundaries. For example, for the Ni–Cr alloy annealed at 993 and                
1273 K (2 h and 30 min, respectively), the fraction of the twins in the 
experiments was 37.3 and 35.8%. The calculated fractions of the grain 
boundaries	 Σ3	 were	 equal	 to	 25%	 in	 both	 cases.	A	 small	 difference	
may be caused by the insufficient size of the experimental sample. 
It should be mentioned that 100–200 boundaries for the specimens 
were measured in the experiments (in comparison with more than 
1000 grain boundaries in modelling). In addition to this, in actual 
cases the topology did not correspond to the selected model of the 
hexagonal grains. Quaternary or even quinary junctions were found 
in the experiments and this was not included in the computer model. 
The ratio of the axes of the twin boundaries in the AISI stainless 
steels was approximately the same, although in the case of AISI 316L 
steel, the calculated fraction of the twins (29%) was very close to the 
experimental value (33%). The new data, obtained using the automatic 
methods of measuring the spectra of the grain boundaries in Ni–Cr 
alloy [48] showed excellent agreement between the experimental and 
calculated spectra.
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The misorientation of 100 grain boundaries was studied by 
experiments in ultrafine-grained aluminium. The results show that the 
rolled and subsequently annealed specimens ‘inherit’ the high fraction 
of the low-angle boundaries (30%). This is in excellent agreement 
with the data published in previous studies [33]. Comparison of the 
experimental and modelling spectra was carried out to determine the 
expansion coefficient of the real spectrum of the misorientation of 
the grain boundaries into basic spectra. Subsequently, these weight 
multipliers were used to calculate the actual spectrum of aluminium, 
produced by rolling the ECAP cylinder.

Thus, the proposed method makes it possible to model the spectra of 
the misorientation of the grain boundaries in polycrystalline materials 
and can also be used for materials with lattices other than cubic. This 
problem will be studied later on the example of zirconium oxide with 
the monoclinic lattice.
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119Grain boundary sliding

5

GRAIN BOUNDARY SLIDING IN 
METALLIC BI- AND TRICRYSTALS

After discussing the methods of verification of the individual grain 
boundaries and ensembles of the grain boundaries, we can find the 
answer to the question of how the properties of the grain boundaries 
are manifested in deformation of the materials. We begin with the basic 
element – the bicrystal.

5.1. Dislocation nature of grain boundary sliding (GBS)

In almost all experiments, the bicrystal is tested in tension under creep 
conditions. The dependence of the extent of sliding S on loading time 
t,	 applied	 force	 ~σ,	 temperature	 T and the set of the parameters R, 
specifying the misorientation of the grain boundary and orientation of 
the plane of the boundary in relation to the loading axis, is recorded in 
experiments. A large number of experiments have been carried out and 
they make it possible to describe the dependence S = S (t, σ, T, R) to 
the extent sufficient for the formulation of modelling considerations.

The characteristic time dependence of the extent of sliding is 
shown in Fig. 5.1 [1, 2]. The investigated materials (Cd, Zn) were 
characterised by the HCP lattice. Consequently, experiments can be set 
up to ensure that the bicrystal with the given misorientation is oriented 
in relation to the loading axis in such a manner that in one case the 
grain boundary sliding is accompanied by intragranular dislocation 
activity (‘stimulated’ GBS), and in the other case the shear stresses on 
the basic planes of both grains are equal to zero (‘pure’ GBS). The time 
dependences of these two types of sliding greatly differ. In the case 
of pure GBS sliding takes place in the given period with the almost 
constant rate (without hardening). The rate of stimulated GBS at the 
initial moment of time is an order of magnitude (or more) higher than 
the pure sliding rate. This rate decreases monotonically with increasing 
time and at some moment (in Cd ~600 s; in Zn ~200 s) reaches the 
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level of pure GBS.
The plots of the set of curves for different values of s and T, similar 

to those shown in Fig. 5.1, after appropriate treatment [1, 2] shows 
that the following relationships are fulfilled with satisfactory accuracy:

2
0 ~ exp( / );B VS E kTs -

 (5.1)

exp( / ),B BS E kTs -

  (5.2)

where S  is the rate of pure GBS; 0S  is the rate of stimulated GBS at 
the	 initial	moment;	σB is the shear stress in the plane of the boundary 
of the bicrystal; EB, EV is the activation energy of grain boundary and 
of volume diffusion, respectively.

The dependence on the orientation parameters is quite difficult 
to show in a suitable form because the symbol R represents in fact 
seven independent variables (two planes and rigid translation). The 
experimentally determined qualitative relationships will now be 
discussed. It was shown in [3] that the sliding rate in two mutually 
perpendicular directions, belonging to the boundary, is anisotropic. 
Depending on the misorientation, the values of anisotropy S ||/S⊥ can 
differ by an order of magnitude. There are data [2] indicating the high 
value of the sliding rate in the twisting boundaries in comparison with 
the tilted boundaries.

Combined investigations of sliding and migration have been carried 
out in a number of experiments. The results show that the ratio                                                                                                   
S(t)/M(t) (where M(t) is the time dependence of the extent of migration) 
does not depend on time. The migration direction coincides with the 
direction of the perpendicular plane of the boundary of the component 

Fig. 5.1. Time dependence of the extent of sliding in bicrystals: (a) Cd (T = 421 K; 
s = 0.36 MPa; 1) stimulated GBS; 2) pure GBS) [1]; (b) Zn (T = 323 K; 1) s  =                           
1.2 MPa; 2) s = 0.9 MPa) [2], the curves are the results of theoretical calculations.
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121Grain boundary sliding

of the Burgers vector of the mobile grain boundary dislocations (GBD). 
In addition, S/M = b ||/b⊥, where b || is the component of the Burgers 
vector parallel to the boundary plane [2, 5, 6].

It was established in almost all experiments that the sliding in the 
grain boundary plane is nonuniform. Thus, in addition to the previously 
mentioned quantities, the extent of sliding also depends on the spatial 
coordinates in the boundary plane: S = S (x). The dependences shown 
in Fig. 5.1 were determined by averaging S with respect to the length 
of the boundary along the sliding direction.

At least three of the previously mentioned experimental factors – 
nonuniformity of sliding, the linear relationship between sliding and 
migration, the anisotropy of sliding on the plane of the boundary 
–  indicate the dislocation nature of GBS. Theoretical models [7] 
based on the assumption on the ‘liquid-like’ state of the boundary 
reproducing the rheology of viscous sliding can be used in describing 
the GBS in ceramic materials where the melting of the boundary as a 
result of deviation from the stoichiometric in the vicinity of the grain 
boundary is indeed detected in a number of cases at high temperatures. 
However, in the case of the metallic materials all the results indicate 
the dislocation nature of the GBS.

Analysis of the experimental results show that the adequacy of the 
theoretical models used for the description of the grain boundary sliding 
process is not controlled by the reproduction of the individual numerical 
values characterising the process (this is quite easy to achieve in 
the conditions of high indeterminacy of the input parameters) and is 
controlled by the description of the functional dependences on time, 
applied force and temperature.

One of the first theoretical models treating the grain boundary 
sliding as the process of movement of grain boundary dislocations, 
was developed by Gates [8] who derived an equation for the speed of 
movement of structural grain boundary dislocations:

,B
B B B

DV b C
kT

d
= s

 
(5.3)

where bB is the modulus of the Burgers vector of the grain boundary 
dislocations; sB is the shear stress in the boundary plane; d is the 
effective width of the boundary; DB is the grain boundary diffusion 
coefficient; T is temperature; C is the dimensionless coefficient whose 
numerical value is determined by the nature of the sliding set of the 
grain boundary dislocations. For example, in the case of sliding GBDs 
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with short pinned sections (the points of exit of the lattice dislocations 
to the plane of the grain boundary)

( )2 2 2
0

2
cos ln /L

C
L b X r

plW
=

γ
 

(5.4)

where l is the mean distance between the pinned sections along the 
dislocations; L is the length of the pinned sections; γ is the angle 
between the plane of the grain boundary and the axis of rotation (in 
the case of a clean tilted boundary the system of structural dislocations 
does not contain the sliding set); X is the diffusion path length equal to 
half the distance between the pinned sections; W is the atomic volume; 
bL is the modulus of the Burgers vector of the lattice dislocations. If 
the pinning points of the sliding dislocations are represented by steps 
at the boundary then

2
(1 tg ctg ) ,

tg ctgB

C
b X

W + a γ
=

a γ
 

(5.5) 

where tg a is linked with the fraction of the steps in the total length 
of the dislocations. In the case of a non-conservative motion when the 
dislocation emits (or absorbs) vacancies along the entire length of the 
dislocation line:

2 2

sin .
cosB

C
b X

W γ
=

γ  
(5.6)

Evaluating the rate of grain boundary sliding on the basis of the 
Orowan ratio:

,B B BS b V= r  
(5.7)

Gates expressed the density rB (x, t) of the grain boundary dislocations 
by the density of the structural grain boundary dislocations connected 
with the misorientation at the investigated boundary. This shows that 
this model cannot be used for describing the stimulated grain boundary 
sliding because the experiments carried out on the bicrystals show 
unambiguously the strong effect of the intragranular processes on the 
density of the grain boundary dislocations and the weak relationship 
of the density with the density of the structural grain boundary 
dislocations. To describe pure grain boundary sliding, it is also 
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123Grain boundary sliding

insufficient to use only information on the sliding as on the movement 
of the structural grain boundary dislocations because this process 
would lead to the removal of screw dislocations from the boundary 
(transformation of an arbitrary boundary to the tilted boundary) and 
subsequently to the monotonic change of the misorientation. No such 
evolution was observed in the experiments. Thus, the model of the pure 
grain boundaries sliding shall be a model of the source of the grain 
boundary dislocations formed at the boundary without the participation 
of intragranular processes. 

In [9] it was attempted to describe stimulated GBS taking into 
account the intragranular dislocation activity. The model is based on 
the following assumptions. The lattice dislocations from both grains 
travel to the boundary (from the opposite side) under the effect of 
the applied stress and, remaining lattice dislocations, move along the 
boundary in the opposite directions ensuring the corresponding transfer 
of the Burgers vector to the periphery of the boundary. This also 
determines the resultant sliding. At the same time, it is well known 
that the lattice dislocation, penetrating into the boundary, forms an 
unstable state and during some period of time ts, referred to as the 
spreading time, penetrates into the system of the pure grain boundary 
dislocations, increases the density of the dislocations and accelerates 
grain boundaries sliding in accordance with the relationship (5.7). 
There are several models of the spreading of the lattice dislocations 
[10]. However, all the models estimate ts using approximately the same 
procedure:

3

,s
B

l kTt
G D

=
W d  

(5.8)

where G is the shear modulus; l ≈ 102 bB is the characteristic distance 
over which the dissociation products are distributed. 

Thus, for a realistic description, the model of the stimulated grain 
boundary sliding must take into account the increase of the density 
of the grain boundary dislocations as a result of the spreading of the 
lattice dislocations supplied by the grains of the bicrystal.

Numerical estimates relating to the experimental results, shown in 
Fig. 5.1, will now be carried out and they can be used to estimate the 
level and value of the density of the grain boundary dislocations in 
the formation of the sliding pattern. Using the diffusion and lattice 
parameters	 presented	 in	 [11]:	 for	 Cd	 δD0B = 5 · 10–14 m3/s, Q =                              
54.4 kJ/mole, bL = 2.93 · 10–10	 m;	 for	 Zn	 δD0B=1.3 · 10–14 m3/s, Q = 
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60.5  kJ/mole, bL = 2.67 · 10–10 m, according to (5.3)

[ ] [ ]2 6
Cd Zn1.4·10 m / s ; 9.2·10 m / s ,V C V C- -= =  (5.9)

where C is a constant defined by one of the relationships (5.4)–(5.6). 
Taking into account that in the case of both Cd and Zn there is an 
tilted boundary with basic slip planes in the grains misoriented by 
p/2, it should be assumed that the purely geometrical (by nature) 
dimensionless constants CCd and CZn are the quantities of the same 
order of magnitude. Consequently, the rate of grain boundary sliding 
in Cd is more than three orders of magnitude higher than that in Zn. 
This is not surprising because the activation energy in Cd is 6 kJ/mole 
lower than in Zn and the test temperature is 100 K higher. At the same 
time, the initial rate of grain boundary sliding in Cd ( 0S = 1.6 · 10–8 

m/s) is only three times higher than the initial rate of grain boundary 
sliding in Zn ( 0S  = 5.1 · 10–9 m/s). However, since the Burgers vectors 
in Cd and Zn are approximately identical, then it should be accepted, 
in accordance with the relationship (5.7), that in the case of Zn (low 
grain boundary diffusion rate) the dislocation density of the boundary 
is very high, whereas in the case of Cd (high grain boundary diffusion 
rate) some other mechanism operates during grain boundary sliding and 
removes the difference in the rates of grain boundary diffusion and 
ensures approximately the same level of the sliding rate.

Since the sliding rate reaches a constant level independent of time 
(approximately equal to the rate of pure grain boundary sliding) after 
interrupting intragranular dislocation activity, it should be assumed that 
the grain boundary diffusion rate in the test should be independent of 
time. Consequently, of the three co-multipliers in the right-hand part 
of equation (5.7), only rB can depend on time. In other words, not only 
the initial level of the rate of grain boundary sliding is determined by 
the density of grain boundary dislocations but also the dependence 
S (t) is determined by the time dependence of the density of grain 
boundary dislocations.

Thus, the problem can be formulated as follows. To construct a 
model of stimulated grain boundary sliding it is necessary to describe 
the dynamics of the density of grain boundary dislocations, including 
the mechanism of suppressing density at high rates of grain boundary 
dislocations [12].
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5.2. Formulation of the model of stimulated grain boundary 
sliding

Construction of the model is based on using the principle of minimum 
sufficiency. We postulate the simplest variant of the processes taking 
place during grain boundary sliding. The processes are described by 
the appropriate mathematical physics equations. The equations are 
solved and it is checked whether the solutions of these equations can 
reproduce the experimental dependences. If this is not so, it is necessary 
to explain which special features of the experiment are not reproduced 
and which processes should be added to the scenario in order to insure 
the required behaviour of the solution. A process is included in the 
equation, the equation is solved and the procedure is repeated until all 
the significant special features of the experiment are reproduced. This 
method of permanent correction of the experiment prevents us from 
moving towards scholastic theoretical considerations and speculative 
claims. The model does not contain any optional elements (which, on 
the basis of the general considerations, could be includes in the model), 
and the need for the elements which should be included is dictated by 
the experiments.

Taking into account the analysis results,  i t  is assumed that 
in stimulated grain boundary sliding the dislocations propagating 
on the basic sliding planes reach the boundary plane. During the 
time equal to ts each dislocation penetrates into the system of grain 
boundary dislocations, forming a specific number of sessile (generally 
speaking, changing the misorientation at the grain boundary) and 
sliding dislocations. These numbers are given by the expansion 
coefficient of the lattice Burgers vector with respect to the basis of 
the displacement shift completed (DSC) lattice, i.e., it is determined 
by the specific geometry of the bicrystal. In the simplest variant we 
do not take into account the changes of misorientation and do not 
consider sessile dislocations. Without specifying the geometry of the 
bicrystal, it is assumed that the sliding dislocations, formed from the 
lattice dislocations of different grains, have opposite signs, i.e., move 
in the plane of the boundary against each other. Finally, it is assumed 
that these two sets of the dislocations can be studied irrespective of 
each other (as indicated later, up to a certain moment).

In the proposed scheme, the source of grain boundary dislocations 
is distributed along the entire boundary plane and a sink is formed, 
depending on the sign of grain boundary dislocations, either through 
the left or right edge of the boundary. The evolution of the density 
of grain boundary dislocations in this coordinate system forms the 
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spatially heterogeneous distribution r(x, t) which can be described 
only by the differential equation in the partial derivatives. Considering, 
for determinacy, the dislocations with the same sign moving under the 
effect of applied stress with constant speed VB in the positive direction 
of the x axis (the direction of sliding in the plane of the boundary), 
the following equation is obtained

( , ) ( , ) ( , ) (0 ; 0 ),B
x t x tV I x t t x L
t x

∂r ∂r
+ = ≤ ≤ ≤

∂ ∂  
(5.10)

where L is the length of the boundary in the sliding direction, I (x, t) 
is the source, i.e., the number of grain boundary dislocations formed 
in unit time in the unit length of the boundary.

In this scheme, the source is formed by lattice dislocations. In 
HCP metals one basic slip system operates in each grain, i.e., lattice 
dislocations move on parallel planes and laminar plastic yielding 
(according to Cottrell’s terminology [13]) takes place. Under these 
conditions it may be assumed that the distances between the slip planes 
are defined by the expression 

,
8 (1 )

L

L

Gbh
v

=
p - s

where	σL is the shear stress acting in the basic plane, v is the Poisson 
coefficient.

In this case, 1/(h sin j) basic slip planes reach the unit length of 
the boundary (here j is the dihedral angle between the plane of the 
boundary and the basic slip plane). During loading the slip system 
becomes ‘harder’ and the number of actively acting planes decreases. 
The condition s/G ~10–4, i.e., the first stage of plastic flow, was 
realised in the experiments [1, 2]. The factors which determine this 
hardening are well known: a) locking of the Frank–Read sources, acting 
in the slip planes, by the reversed stress from the emitted dislocations; 
b) multipolar hardening, formed during the interaction of dislocation 
elements with the opposite signs and located in the adjacent slip plane; 
c) formation of low-angle boundaries as a result of polygonisation 
by slip. However, there is no dynamic model of the first stage of the 
plastic flow [14, 15]. We restrict our considerations to the following. 
The number of planes working at the initial moment of time in a 
grain is N0 = L/(h sin j). Let the plane with the number (1 < i < N) 
closes at time ti as a result of hardening. It is also assumed that ti is a 
random	quantity	having	 the	values	of	 the	half-line	 [0,	∞).	Finally,	 let	
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all the values ti be independent and distributed in the same manner in 
accordance with some probability density W(t). The assumption on this 
independence is obviously an approximate. For example, in the case of 
multipolar hardening the active planes are knocked out from action by 
pairs, and the values ti and ti + 1 are strictly correlated. Nevertheless, 
accepting this scheme, we can immediately write the number of active 
slip planes at the moment of time t. It is clear that at this moment the 
planes whose working time is shorter than t are closed, and the fraction 

of these planes in the total number N0 is 
0

( ') '
t

W t dt∫ . Thus, the number 
of working planes is

0 0 0
0

( ) ( ) ( )
t

t

N t N N W t dt N W t dt
∞

′ ′ ′ ′= - =∫ ∫
Assuming that the lattice dislocation penetrates into the boundary 

during time ts and this is accompanied by the formation of n mobile 
grain boundary dislocations, we can write the number of grain boundary 
dislocations appearing in unit time in the unit length of the boundary: 
nN (t)/(Lts). Introducing the notation

( )
0

8 1 )
sinL

L

v
n

b G
p - s

r = j
 

(5.11)

we determine the required source for the equation (5.10)

0( , ) ( )
s t

I x t W t dt
t

∞r ′ ′= ∫  
(5.12)

The formal solution of equation (5.10) with the source (5.20) and the 
initial	 condition	 ρ(x, 0) = 0 qualitatively reproduces the shape of the 
time dependence of the extent of sliding in Cd. However, this solution 
does not reproduce the results in Zn regardless of the parametrisation 
used. If we specify the condition of accurate parametrisation of the 
initial sliding rate, we obtain the unrealistically small total value 
of sliding at the moment of completion of the stage of stimulated 
grain boundary sliding. However, if the total value of sliding is 
parametrised, we obtain unrealistically high initial rates. Returning 
to the experimental results, it should be noted that in the case of Zn 
the sliding rate is almost completely constant in the first 600 seconds, 
i.e., the density of grain boundary dislocations is also constant. The 
model (5.10), (5.12) does not contain the mechanism of stabilisation 
of density and, therefore, does not work in situations in which the rate 

.

.
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does not decrease monotonically from the initial value. The results 
were obtained assuming that

1( ) exp( / ),W t t-= t - t  

where t is the mean time of closure of a single basic slip plane. If we 
use formally the gamma distribution with an integer exponent

1( ) exp( / ),
!

mtW t t
m

 = - t t t   

as W(t), then we may obtain a small section with constant density. 
However, it should be assumed in this case that the intragranular 
processes in Cd and Zn take place by completely different mechanisms 
and this appears to be completely unrealistic (laminar flow in the first 
stage). Thus, it is necessary to find another mechanism of stabilising 
the density of grain boundary dislocations.

During the formation of the high density of grain boundary 
dislocations the boundary acquires additional elastic fields which 
prevent the entry of lattice dislocations into the boundary. In particular, 
this circumstance must be taken into account in this stage. The 
following expression [16] is used as the approximate estimate of the 
spatial distribution of the stress field from the dislocations uniformly 
distributed in the plane of the boundary:

2
2 2exp ,

(1 )xy
Gby y
v D D

p p s - -  


 
where y is the distance from the boundary plane; D is the distance 
between the dislocations. Consequently, the equation of movement of 
the lattice dislocation in the effective stress field sL– sxy (taking into 
account only the retarding exponential tail) has the following form

( )
0

( ) 1 exp 2 ,Ly t y V
 r

= - - - pr r 


 

where VL is the speed of the lattice dislocations at a relatively large 
distance from the boundary. Solving this equation, we obtain the 
estimate of the additional time in comparison with the case of free 
propagation. This time is required by the lattice dislocation to penetrate 
into the boundary
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( )0
1 ln 1 / .s
L

t
V

D = - - r r
r

 
Thus, in the expression for the source (5.12) the spreading time should 
be replaced by some effective time

,s ef s st t t= + D  

which transforms equation (5.10) into a non-linear equation. Although 
the equation of this type can be easily solved (at the characteristics 
this equation transforms to the conventional differential equation of 
the first order with separated variables), the resultant solution contains 
an unknown number of artefacts caused by the extremely approximate 
description of both the field from the boundary (for more details see 
[16]), and of the process of propagation of the lattice dislocation in 
the field. Therefore, only the qualitative relationships resulting from 
this analysis will be used. Thus, if the actual density r tends to r0, 
quantity ts tends to infinity and the effect of the source is interrupted                                 
(I (x,t)→0). However, since the movement of the grain boundary 
dislocation in the boundary plane continues and the dislocations leave 
the plane, the density of the dislocations decreases, the source is 
activated and density again reaches the value r0. This process activates 
the mechanism of stabilisation of density and, consequently, ensures 
the constant rate of grain boundary sliding. This behaviour of the 
solution can be achieved within the framework of the linear equation, 
assuming that

0
0

( , )( , ) ( ) 1 ,x tI x t I t
 r

= - r   
(5.13)

where the following notation is introduced to shorten the equations

0
0 ( ) ( ) .

s ef t

I t W t dt
t

∞r ′ ′= ∫
 

(5.14)

In this case

 
0

1 ,s ef s
L

t t
V

= +
r

 
(5.15)
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where ts is determined by equation (5.8) and the second term in the 
right-hand part has the meaning of time during which the lattice source 
forms a single loop [17].

The solution of equation (5.10) with the source (5.30) describes 
efficiently the shape of the curve S(t) in both Zn and Cd. However, 
the absolute values of the grain boundary sliding rate in Cd are very 
high because the density r(x,t) reaches almost the same value r0 as 
in the case of Zn. However, according to preliminary estimates, the 
density of grain boundary dislocations in Cd should be orders of 
magnitude lower than the density in Zn. Thus, the model (5.10), (5.13) 
contains the mechanism of stabilisation of density and does not have 
the mechanism for suppressing density stabilisation at high speeds of 
grain boundary dislocations.

In accordance with the results, the only mechanism which produces a 
sink of grain boundary dislocations and which depends on the speed of 
the dislocations, is the annihilation of the dislocations of the opposite 
signs supplied from different grains. If the density of dislocations of 
the same sign (for example, the dislocations moving in the positive 
direction of the axis x with the speed V1) reaches r1(t), and that of 
the opposite side (i.e., moving towards these dislocations with the 
speed V2) is r2 (x,t), then the number of dislocations of both signs 
knocked out from the system during unit time from the unit length of 
the boundary will be (V1+ V2)	 ρ1ρ2. The evolution of the dislocation 
density is described by the system of differential equations

1 1 1
1 01 1 2 1 2

01

( ) 1 ( ) ;V I t V V
t x

 ∂r ∂r r
+ = - - + r r ∂ ∂ r   

(5.16a)

2 2 2
2 02 1 2 1 2

02

( ) 1 ( ) .V I t V V
t x

 ∂r ∂r r
- = - - + r r ∂ ∂ r   

(5.16b)

The solution of this equation is associated with considerable difficulties 
and will be used only for the evaluation of the limiting density of 
the grain boundary dislocations achieved at the boundary. Since the 
dislocations of the systems 1 and 2 in the accepted model differ only 
in the sign, it is not justify to assume that the speeds V1 and V2 differ. 
For qualitative evaluation it is assumed that r01 and r02 and also 
I01(t) and I02(t) are approximately the same. Consequently, substitution                      
ρ2(x,t)	 =	 ρ1(L–x,t) reduces the system to a single non-linear equation 
in the partial derivatives with the displaced argument:
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1 1 1
0 1 1

0

( , ) ( , ) ( , )( ) 1 2 ( , ) ( , ).x t x t x tV I t V x t L x t
t x

 ∂r ∂r r
+ = - - r r - ∂ ∂ r   

(5.17)

At low densities r1(x,t) (i.e., in the stage of increase of density from 
zero initial value and in the stage of decrease to 0 after interrupting 
intergranular dislocation activity) the non-linear quadratic terms can 
be ignored. The role of the non-linear term becomes important in the 
range of the density maximum and, consequently, this term determines 
the maximum itself. It is estimated as follows. Linear transformation 
transfers the range of variation of the spatial variable x∈[0, L] to the 
interval µ∈[–1,1]. Density r1(x,t) changes to r (µ,t). The dependence on 
µ is reproduced by a series using the complete set of the functions in 
the interval [–1,1]. This set is represented by the Legendre polynomials

0

2 1( , ) ( ) ( ),
2 n n

n

nt P q t
∞

=

+
r µ = µ∑

 
(5.18)

Substituting (5.18) into (5.17), multiplying the resultant equation by 
Pl(µ) and integrating with respect to µ in the interval [–1,1], using 
the composition theorem for the Legendre polynomials we obtain an 
infinite non-linear system (l = 0, 1, 2,...) the conventional differential 
equations. Splitting this system, we obtain the following equation for 
the expansion coefficient q0(t) in the rough approximation ql >1 = 0:

20
0 0 0

0

( ) ( ) 1 qq t I t Vq
 

= - - r 


 
(5.19)

When the maximum of function q0 is reached (this function is 
proportional to the density of the grain boundary dislocations, averaged 
out along the boundary), the derivative q0 with respect to t converts 
to zero. The value of qmax is estimated by equating the right-hand 
part of equation (5.19) to 0. As indicated by the estimates, the time 
required to reach the maximum is approximately equal to L/V, which 
is considerably shorter than the length of the interval of stimulated 
grain boundary sliding. Therefore, in estimating qmax we can use the 

condition 
max

( ) 1.
t

W t dt
∞

′ ′ ≈∫ Thus, from equation (5.19) we obtain

0
0 max

1 4 1
,

2
s ef
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Vt
q q
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which leads to the final form of the model. In the process of grain 
boundary	 sliding	 the	 density	 of	 the	 grain	 boundary	 dislocation	 ρ(x,t) 
is described by the differential equation

0 1 ( ) ,
*t B x

s ef t

V W t dt
t

∞ r r ′ ′r + r = - r 
∫

 
(5.20)

where	ρ0 is given by the relationship (5.11), and the effective spreading 
time ts ef is determined by spreading time ts (equation (5.8)) and by the 
mean time of formation of a single active dislocation loop (equation 
(5.15)); r* has the meaning of the limiting density of the grain 
boundary dislocations which can be obtained under the given loading 
conditions and is determined by the equation

01 4 1
,

2
s ef

s ef

Vt
Vt

∗
+ r -

r =
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t W t dt
∞

′ ′a = ∫
 

(5.21) 

defined as the dynamics of hardening in intergranular slip. The 
limiting density r* at low speeds VB tends to 0, and at high speeds to 

( )0 0/ .B s efV tr < r   

5.3. Formal solution and its analysis

The characteristics of equation (5.20) have the form of the straight lines 
x = x0 + VBt. The equation at the characteristics is the conventional 
linear differential equation. Solving this equation (taking into account 
the	 initial	 condition	 ρ(x, 0) = 0) and returning to the variables x, t, 
gives

0

max(0, / )

( , ) 1 exp ( ) .
* *
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t

s ef t x V

x t t dt
t -

 r r ′ ′= - - a 
r r  

∫
 

(5.22)

For direct comparison with the experiment we determine the mean 
value of density along the length of the boundary:

0

1( ) ( , ) .
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t x t dx
L

r = r∫
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Integrating with respect to the spatial variable, we obtain the following 
results. For the time range 0 < t < L/VB, the mean value of density is 
described by the equation

1 0
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(5.23)

and for the interval t >L/VB by the equation
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(5.24)

Differentiating (5.23) and (5.24) with respect to t, it may easily be 
established	 that	 the	 function	 ρ1(t) has a maximum in the definition 
range,	and	ρ2(t) is a non-increasing function of time. If t* is the point 
at	 which	 the	 extreme	 of	 the	 function	 ρ1(t) is reached, the maximum 
speed of the grain boundary dislocations is given by the relationship

*
0 12 ( ).B BS b V t= r

 (5.25)

The total value of the sliding rate is determined by integrating the 
speed with respect to time:

0

2 ( ) .tot B BS b V t dt
∞

= r∫
 

(5.26)

We determine the time during which the stimulated grain boundary 
sliding takes place as the interval characterised by 90% of the total 
value of the grain boundary sliding. Consequently, the required time t 
might is determined by solving the equation

0

2 ( ) 0.9
mt

B B totb V t dt Sr =∫
 

(5.27)

The values 0S , Stot and tm, like the time dependence of the extent of 
sliding,

( ) 2 ( ) ,B B
t

S t b V t dt
∞

= r∫
 

(5.28)

is recorded directly in the experiments so that direct comparison can 
be carried out.

�� �� �� �� ��



134 Superplasticity and grain boundaries

In a general case, the values defined by the equations (5.25)–(5.28) 
can be determined only numerically. However, approximate estimates, 
permitting qualitative examination, can be obtained for exponential 
density W(t).

We calculate the integral in the index of the exponent of the 
expression (5.24):

1
2 0

0
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* * s ef B
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∫

 
Although the remaining interval is expressed through the integral 
exponential function, we obtain an approximate equation which is 
however more suitable for analysis. Under the condition L/(VBt)<<1 
which is undoubtedly fulfilled for Cd, the following estimate is valid

exp 1 .
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Lx Lx
V V
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t t
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where
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0 0 *( ) exp ; .
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t LA t A A
V t
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Since A0 >>1, at a low t (t	 <	 t)	 we	 have	 ρ2(t)	 ≈	 ρ*.	A(t) decreases 
monotonically with time. When it becomes lower than unity, which 
takes place if the inequality 

0ln ,
* B s ef

Lt
V t
r

> t
r

is fulfilled, the equation (5.9) is reduced to the expression

2 0
*

( ) exp ,
* 2 B s ef

t L t
V t

r r  ≅ - r r t 

i.e., describes the exponential attenuation of density.
After determining the qualitative special features of the behaviour 

of function (5.29), it is quite easy to obtain the following approximate 
estimates of the experimentally recorded parameters (because of the 
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approximations, these estimates are quite accurate for high speeds of 
grain boundary dislocations; however, in a general case, it is necessary 
to use the exact solutions of the equations (5.25)–(5.27)):

0 0
0 * *

0

2 *; 2 * ln ; ln ,
2 ln /B B tot B B m

A AS b V S b V t
A A A

= r = r t = t
e



 
(5.30)

where A* is a constant which determines the inflection point of the 
time dependence (5.29) and is approximately equal to 1.793, e is the 
experimental error of the determination of the total extent of sliding.

The dependence of the rate of stimulated grain boundary sliding on 
stress and temperature is determined by the expression:

0
0

1 4 1
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B
s ef

V t
S b
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+ r -

≅

 
(5.31)

which defines a far more general functional form than (5.1). If the 
inequality VB tsef r0 <<1 is fulfilled, equation (5.31) determines the 
dependence of the type

2
0 exp( / ).BS E kTs -



If the reversed inequality is fulfilled, equation (5.31) has the form: 
0 02 /B B s efS b V t≅ r  and, depending on the ratio of the quantities ts and 

Dts, can lead to different forms of the dependence on s and T. If the 
process of grain boundary sliding is controlled by the spreading of the 
lattice dislocations, i.e., at a high value of ts, we have

0 exp( / ).BS E kTs -



However, if the intragranular processes are limiting, i.e., at high values 
of ts, then

2
0 exp .

2
L BE ES

kT
+ s - 

 




Thus, even the approximate analytical expression (5.31) reproduces 
qualitatively the main experimental relationships expressed by (5.1).

We calculate the time dependence S(t) of the extent of sliding using 
(5.28). Parametrisation is based on the relationships (5.30) which can be 
used to determine t, bBVBr* and A0 at the known (from the experiments)  

0S , Stot and tm. For Cd
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1 0107 s; * 0.112·10 mm / s ; 10.
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V t

- r
t = r = =

r

For Zn (curve corresponding to s = 1.2 MPa)
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and	 (σ	=	0.9	MPa)
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V t
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r
The dependences S(t), calculated from equation (5.28) (taking into 
account the correction for the contribution of pure grain boundary 
sliding, S (t) for the determined values of the parameters are presented 
in Fig. 5.1. They reproduce quite efficiently the special features of the 
experimental curves, including the section with the constant speed of 
grain boundary sliding for Zn and its monotonic decrease in Cd.

5.4. Special features of pure grain boundary sliding

When analysing the mechanisms of pure grain boundary sliding it is 
initially necessary to answer the following question: are there sources of 
grain boundaries dislocations at the boundary or, as assumed by Gates 
[8], sliding is the movement of structural grain boundary dislocations? 
The first argument in favour of the existence of sources (absence of any 
large change of misorientation during sliding) was discussed previously. 
The second argument follows from the following estimate. In pure 
grain boundary sliding in Cd the total extent of sliding S reaches 5 
µm. At bB ~ bL/10 = 3·10–4 µm it is necessary for this purpose that N =                                                                                             
S/bB ~ 104 grain boundary dislocations. At the length of the boundary 
L ~7·103 µm the distance between the dislocations is L/N ~104 bB, i.e., 
they are determined with sufficient accuracy, and the total extent of 
sliding can be explained completely by the movement of structural 
grain boundary dislocations present initially in the boundary, if the 
speed of the grain boundary sliding would not be constant over the 
entire examination period. If the initial number of the dislocations were 
~104, then at the moment of selecting the extent of sliding as 5 µm its 
speed	would	be	zero	(ρ	→	0),	whereas	 in	Cd	the	speed	remains	almost	
completely constant. It may be assumed that the remote dislocations 
form a small part of initial density which can be increased by 2–3 
orders of magnitude without any loss of the accuracy of resolution of 
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the GBD (no overlapping of the cores). However, here we obtain the 
accurate rate of grain boundary sliding at the end of the measurement 
period and a much higher rate at the start of the period. The latter can 
be easily confirmed as follows. If the pure grain boundary sliding is 
the movement of the structural grain boundary dislocations, leaving 
the plane of the boundary only at exit to its periphery, the dislocation 
density satisfies the equation

,d V
dt L
r

= - r

which leads to the following dependence of the grain boundary sliding 
rate on time:

0 exp( / ),BS b V Vt L= r -

 (5.32)

where ρ0 is the initial dislocation density. Thus, regardless of initial 
density, the grain boundary sliding rate decreases e times during the 
period L/V, which is a very small value even for Zn (and even smaller 
for Cd). As shown by experimental results, the grain boundary sliding 
rate remains constant over a considerably longer period of time which, 
in our opinion, indicate unambiguously the existence of the sources of 
grain boundary dislocations in the boundary.

Regardless of the nature of the sources, the set of the sources is 
characterised by two parameters: density rs (the number of sources per 
unit length of the boundary in the sliding direction) and time t0 of the 
generation of a single dislocation which will be regarded as the same 
for	 all	 the	 sources.	 In	 this	 case,	 if	 ρ1	 and	 ρ2 are the densities of the 
segments of the dislocation loops with the opposite signs and moving 
in the opposite direction along the sliding direction, the dynamics 
of dislocation density is described by the previously formulated 
hyperbolic system (5.16). In fact, it would be strange if the evolution 
of the dislocation ensembles, differing only in the origin (in the case 
of stimulated grain boundary sliding these are the products of the 
spreading of the lattice dislocations, and in the case of pure grain 
boundary sliding they are the segments of dislocation loops, formed 
in the plane of the boundary), would be described by the completely 
different equations because in this case the movement of the grain 
boundary dislocations is also accompanied by both the process of 
annihilation (the last term in the right-hand part of (5.16)) and by a 
decrease of the productivity of the sources by the reversed stress of the 
emitted dislocations (the second co-multipliers of the first term in the 
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right-hand part of (5.16)). The main difference in comparison with the 
case of stimulated grain boundary sliding is the re-determination  of 
the quantity (5.14) defining the productivity of the system of sources. 
Firstly, the time dependence which in the case of stimulated grain 
boundary sliding is determined by intragranular hardening, is no longer 
there. Secondly, r0 has the meaning of the density of grain boundary 
sources rs, and ts ef is replaced by the time t0 of generation of a single 
loop. The dependence of the parameters rs and t0 on the loading 
conditions is determined by the nature of the sources. This problem 
has not as yet been completely solved, although one special feature 
of the sources can be mentioned: they should form a specific family 
of dislocations with Burgers vectors belonging to the boundary plane. 
The latter circumstance follows directly from the fact that pure grain 
boundary sliding is not accompanied by the migration of the boundary, 
whereas in the case of stimulated grain boundary sliding sliding and 
migration act in parallel. An example of calculating t0 for the lattice 
dislocations was published by Barton [17]. Qualitative evaluation can 
be carried out using the approximation t0 ~ l/VB, where l is the initial 
length of the growing segment of the dislocation loops. If it is assumed 
that rs is a purely geometrical parameter proportional to the number of 
growth segments in the boundary plane, then the application of equation 
(5.31) for estimating the speed of pure grain boundary sliding leads 
directly to the dependence of type (5.2). The lower rate of pure grain 
boundary sliding in comparison with stimulated grain boundary sliding 
is explained by the low productivity of the two-dimensional source in 
comparison with the productivity of the three-dimensional one.

The following pattern of the formation of the processes taking 
place during stimulated grain boundary sliding in bicrystals with the 
HCP lattice can be proposed on the basis of these considerations. The 
lattice dislocations, propagating on the basic slip planes of two grains, 
reach the boundary of the bicrystal and as a result of dissociation 
(during some characteristic period of time) they penetrate into the 
grain boundary, forming two moving sets of the dislocations with the 
opposite Burgers vectors. At low speeds of grain boundary dislocations 
(either low temperatures or high activation energy of grain boundary 
diffusion), the dislocations of both sets move slowly against each other 
(ensuring local sliding from which the resultant sliding forms). Over 
a long period of time, essential for meeting and annihilation with a 
dislocation of the opposite sign, additional lattice dislocations can 
penetrate into the boundary and form a high density of mobile grain 
boundary dislocations. A certain level of density, determined by the 
ratio of the rate of inflow and annihilation, is established. A high level 
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of the density of grain boundary dislocations forms in the vicinity of 
the boundary additional elastic fields complicating the penetration of 
the lattice dislocations into the boundary and weakening the efficiency 
of the source. At high speeds of grain boundary dislocations (or high 
temperatures or low activation energy of grain boundary diffusion), the 
lifetime of the dislocations in the boundary becomes very short (as a 
result of a high rate of annihilation) and the lattice source does not 
manage to generate high densities. The time dependence of the density 
of grain boundary dislocations actually tracks the rate of hardening in 
intragranular slip. Thus, the boundary of the bicrystal demonstrates to 
some extent the special features of behaviour of the systems with a 
negative feedback. The formalisation of this scenario makes it possible 
to describe efficiently the results of experimental investigations of grain 
boundary sliding in Cd and Zn.

The results contain the dependence on the dimensional factor L (the 
length of the boundary in the sliding direction) so that it is possible to 
carry out additional verification by means of appropriate experiments. 
The formal dependence on L may cause temptation to extrapolate the 
results for describing grain boundary sliding in polycrystals with small 
grains. However, these attempts would not be successful because an 
additional factor operates in the polycrystal – the non-free sink of 
grain boundary dislocations through the edge of the boundary (triple 
junction) resulting in the dynamics differing completely from that 
investigated previously.

The effective verification of the model may be carried out in the 
experiments in which the factor responsible for the negative feedback, 
i.e., annihilation, is not considered. For this purpose, the bicrystal 
should be loaded to ensure that the shear stresses on the basic slip 
planes in one of the grains are equal to zero and in the other grain 
intergranular slip would be possible. Since this case is characterised 
by the formation of the grain boundary dislocations of mostly the same 
sign in the boundary, annihilation is almost completely suppressed 
and high dislocation density is made to form in the boundary even 
at a high dislocation speed. In this case, the grain boundary sliding 
rate should be higher than that in the case of operation of two grains 
at the same temperatures and identical other conditions. With the 
increase of temperature, i.e., at an even higher speed of grain boundary 
dislocations, the dislocation density reaches the maximum value which 
complicates the entry of the lattice dislocations into the boundary. 
The non-realised lattice dislocations, remaining in the grain, increase 
the degree of cold working of the grain and this is directly recorded 
by the change of the microhardness across the bicrystal boundary. 
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The microhardness of the non-working grain should not change. The 
degree of cold working should correlate strictly with the length of the 
section of the constant (time-independent) density of the grain boundary 
dislocations. This section is found in the experimental dependence 
obtained for Zn in [5]. The study also notes (according to the results of 
microhardness measurements) the higher degree of cold working of the 
near-boundary region. The indirect confirmation of the pattern observed 
here is the established fact of the higher speed of grain boundary 
sliding at the interface boundaries in comparison with intergranular 
boundaries.

Detailed analysis of the behaviour of S(t) at low values of t and low 
speeds of grain boundary dislocations may detect the special features 
associated with the increase of density from zero to its maximum 
value. The duration of this range should be determined by the length 
of the boundary. 

Analysis of the experimental results obtained for the bicrystals with 
the cubic lattice shows that the main special features are associated 
with the mechanisms of hardening by intergranular slip with a large 
variety of the lattice dislocations supplied to the boundary as a result 
of the effect of a large number of slip systems. If general formalism is 
unchanged, this may be taken into account by re-determining the values 
(5.11) and (5.12). For the parametrisation of this type it is necessary 
to carry out a more detailed examination of the dynamics of hardening 
of the first stage of the plastic flow of the cubic lattice metals [18].

The proposed formalism may be used efficiently for solving numerous 
problems: on the basis of the experimentally recorded dependence                                                                                           
S (t) it is quite easy to restore the parameters of intergranular slip and 
the speed of grain boundary dislocations. Combined processing of the of 
investigations of pure and stimulated grain boundary sliding increases 
the accuracy of determination of the parameters.

5.5. Local migration of the grain boundary as the mechanism 
of reorganisation of the triple junction: weak migration 
approximation

The model of grain boundary sliding discussed in the previous section, 
cannot be used to describe the mutual shift of two conjugate grains 
in the polycrystal. Generally speaking, the only obstacle to this is the 
given condition of the free sink of grain boundary dislocations,leaving 
the boundary plane. In the polycrystal conditions, the boundary does 
not travel to the free surface and makes contact with the boundary 
of another pair of grains along the so-called triple junction line. The 
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direct transition of the dislocation segment from one plane of the grain 
boundary to another plane which is in contact with it is forbidden 
in a general case because of crystallographic considerations. The 
propagating dislocations form a pile-up with the head dislocation, 
situated in the triple junction or in the immediate vicinity of the 
junction. The pile-ups of the grain boundary dislocations formed in the 
initial stage of plastic deformation of fine-grained materials, determined 
various important physical processes such as the development of 
cavitation in the creep conditions, the formation of a crack at high 
loading rates [19], the rearrangement of the configuration of the triple 
junction at stresses characteristic of the superplastic state [20], inelastic 
relaxation of the material after unloading [21, 22]. Depending on the 
power of the resultant pile-up and the stress field determined by the 
pile-up, further evolution may take place by different mechanisms. The 
heterogeneous stress fields activates vacancy flows and this may result 
in the formation of microporosity [23, 24]. At a high rate of formation 
of the pile-up and at low temperatures the head dislocations can merge 
together and a microcrack nucleus can form [25]. The stress from the 
pile-up may prove to be sufficient for activating slip in the contacting 
grains. In particular, this process is the basis of accommodation of grain 
boundary sliding by intergranular slip which has been accepted as the 
model of superplastic deformation. The answer to the question as what 
takes place in the conditions characteristic of superplastic deformation 
was obtained as a result of experimental investigations.

When investigating the distribution of the values of the dihedral 
angles in the triple junctions of a polycrystal it was established [26] that 
the distribution in the undeformed material is, as expected, relatively 
‘sharp’,	with	 the	mean	value	of	2π/3	characteristic	of	 the	equilibrium	
configuration of the junction. Superplastic deformation is followed by 
a	rapid	 increase	of	 the	 fraction	of	 the	angles	equal	 to	π,	 i.e.	 the	 triple	
junctions are ‘straightened’ as a result of local migration (swelling) 
of one of the boundaries (with the maximum shear stresses acting in 
the the boundary plane) to the rearrangement of the configuration of 
the triple junction ensuring compatibility of shear in two out of three 
boundaries forming the given junction. Consequently, the evolution of 
the pile-up can be investigated in the ‘frozen’ configuration of the triple 
junction, as was usually the case. As a result of the absence of the free 
sink the pile-up + grain boundary set is regarded as an independent 
dynamic object. The possibility of reorganisation, leading to changes of 
the dihedral angle in the triple junction, was also noted by Todd [22].

In a general case, any deviation of the configuration of the boundary 
from the flat boundary increases its energy by the amount proportional 
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to the increase of the area. On the other hand, the dislocation pile-up 
compressed by the acting stress in the triple junction can be distributed 
over a large length and reduce intrinsic energy (Fig. 5.2). On the whole, 
the situation is very similar to the classic Euler problem of the loss of 
stability of an elastic bar under coaxial loading. In complete analogy if 
some critical value of the capacity of the produced pile-up is exceeded 
(the analogue of elastic coaxial loading) the boundary tries to leave the 
flat configuration and release the cold working energy.

The condition of the preferred non-planar configuration will now 
be estimated on the basis of energy considerations [27]. The density 
of straight dislocations in a pile-up, determined as the number of 
dislocations per unit length of the boundary, satisfies the well-known 
equation

00

( ) ,
sx x dx

x x b
′ ′r t

= -
′ - µ∫

 
(5.33)

where µ0	=	µ/2π(1–ν); µ is the grain boundary shear modulus (generally 
speaking, it is lower than the lattice modulus [28]); ν is the Poisson 
coefficient; b is the modulus of the Burgers vector of the grain 
boundary dislocations; t is the shear stress in the boundary plane in 
the slip direction; xs is the length of the interval in which the pile-up is 
distributed. If the pile-up is formed by N dislocations, the normalisation 
of density is given by the expression

0

( ) .
sx

x dx Nr =∫
 

(5.34)

Solution of (5.33), (5.34) has the following form [29]

0
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N x x Nx x b
x x

-
r = = µ

p t  
(5.35)

The number of dislocations in a pile-up is determined by the mechanism 

 

x

y

Fig. 5.2. Local migration of a boundary.
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of formation of the dislocations in the boundary. If the boundary has 
its own source with the threshold stress τc and the coordinate x = L/2 
(where L is the length of the boundary in the sliding direction), then 
after emitting N dislocations the reversed field from the pile-up blocks 
this source. The blocking condition has the form

00

( )
/ 2

sx
cx dx

x L b
′ ′r t - t

= -
′ - µ∫

 
(5.36)

and taking into account (5.35) determines the number of dislocations 
in the pile-up:
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(5.37)

Consequently
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(5.38)

The energy of the ‘pile-up + boundary’ system (per unit length of 
the boundary in the direction of the dislocation line) is given by the 
expression
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H H x x
′ ′= + r r + a

′-∫ ∫
 

(5.39)

where a is the coefficient of surface tension of the boundary; W0 = 
µ0b

2; E0 is the intrnsic energy of the non-interacting dislocations in the 
pile-up (the constant term).

As a result of migration the initially flat boundary (y = 0) acquires 
the profile given by some function y = y (x), determined in the interval 
0 < x < xs. The number of dislocations N of the pile-up is distributed 
in the section with the length

[ ]2

0

1 ( ) .
sx

sl y x dx′= +∫
 

(5.40)
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Generally speaking, the energy of interaction between the dislocations 
on the migrating boundary changes not only as a result of the change 
of the distances between the dislocations but also as a result of mutual 
rotation of their Burgers vectors. Examining the case of weak migration 
as a preliminary estimate, we ignore this circumstance. In this case, it 
may be assumed that the new dislocation density satisfies as previously 
equation (5.33) but in this case integration should be carried out along 
the curve y = y (x). Consequently, the expression for the density has 
the following form

2( ) ,s

s

l lNl
l l

-
r =

p
 

(5.41)

where ls is determined by expression (5.40), and l is a natural parameter 
counted along the curve y = y (x) from the point of the triple junction. 
Expression (5.41) is normalised as previously with respect to the total 
number of the dislocations N but in this case ls is an independent 
parameter not linked with N by the equation of type (5.37). The energy 
of the new configuration becomes equal to
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the double integral is converted to the form
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As a result of the relationships (5.34), (5.35) we obtain
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where E/H is determined by (5.40), and N by the expression (5.41). 
Equation (5.1), regarded as the function ls, has the minimum value 
at ls = ls

* = W0 N
2/2α.	The	 inequality	 ls* > xs defines the situations in 

which migration is preferred from the energy viewpoint. The explicit 
form of this condition is:

20 016 , .c c
c

b
L l
aµ µ

t > + t t ≈

 
(5.43)

This condition determines the threshold stresses which depend on the 
length of the boundary and the surface tension coefficient. If these 
values are exceeded the rearrangement of the configuration of the 
boundary in the vicinity of the triple junction becomes possible.

The equation (5.43) holds in the case in which the capacity of the 
pile-up is formed only by the source of grain boundary origin. However, 
if the grain boundary dislocations also form as a result of the spreading 
of the lattice dislocations, the equation becomes more complicated 
and the condition of migration is formulated more efficiently in the 
variables ‘the length of the boundary–the capacity of the pile-up’. If the 
head dislocation is placed at the point of a triple junction, the density 
of the dislocations in the pile-up with the capacity N, situated in the 
interval 0 < xL < x < xR, it is defined by the relationship

( )( )
( ) ,R L

L R

x x x x
x

x x x
- -

r =
p  

(5.44)

0 0; ( 1) .
2

L R
L R

b bx xx x Nµ µ+
= = +

t t  
(5.45)

Replacing (5.36) by density (5.44) and repeating considerations for the 
condition (5.44), we obtain the migration condition

2
0

( 4) .LN N
b
a

+ >
µ  

(5.46)

In the case of the action of only the grain boundary source the capacity 
of the pile-up (taking into account the dislocation situated at the triple 
junction) is

2

2
0

1 1 .
4

cLN
b

 tt
+ = - µ t   

(5.47)
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However, if the effect of the acting stresses is sufficient to activate 
intergranular dislocations sources then, as in the case of describing the 
stimulated grain boundary sliding in the bicrystals, the power of the 
pile-up increases by the value of the order

2 2
0

2
0 0

~ 1 ,
4

cL

L L

b LN
b b

   µ tt
D -   µ µ t  

 
(5.48)

as a result of the spreading of the lattice dislocations. Here bL, µ0L, 
τcL are the intergranular lattice analogues of the previously introduced 
grain boundary quantities.

In the case of large grains (and the large length of the grain 
boundary) local migration is suppressed by a process with high intensity 
- dislocation creep. The lower limit for dislocation creep is the well-
known condition [30]

0

,
2

LKb
L

t
>

µ
 

(5.49)

where K is the dimensionless constant with the characteristic value for 
metallic materials of ~10–15.

Expressions (5.47)–(5.49) determine the range of the length of the 
grain boundaries in which local migration of the grain boundaries is 
observed and leads to the rearrangement of the configuration of the 
triple junction (the difference between the intergranular and grain 
boundary shear moduli is ignored here):
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  µ t χ

>  t µ    

(5.50)

where 2
0 0( ) ( ) / (1 / ) , 0.65L mT T b T T γχ = a µ = χ - γ ≅ [31].

The region determined by the inequalit ies (5.50) is  shown 
schematically in Fig. 5.3. If the parameters characterising the boundary 
(L, bB, aGB) would have the same value for the entire material then 
either no triple junction would be modified (both inequalities (5.50) 
are not satisfied) or all the junctions would be modified. In the 
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147Grain boundary sliding

latter case, deformation would be uniform not only on the macro- 
but also mesolevel. The experimentally detected nonuniformity of 
the deformation on the mesolevel is the direct reflection of the fact 
that the polycrystal is a system with the distributed parameters. It 
should be mentioned that in general considerations the problem of 
the distributed parameters should already arise when analysing the 
manifestation of the micromechanisms on the macrolevel. Thus, 
to count the number of modified triple junctions, it is necessary 
to know the combined distribution of the quantities L, bB and aGB. 
For an isotropic material, ignoring correlations, we can restrict 
our considerations to the size distribution of the grains and grain 
boundaries with respect to the misorientation (on the condition that 
the relationship between the misorientation on the given boundary and 
its surface tension coefficient is known). Consequently, the task of 
calculating the number of migrated triple junctions is reduced to the 
integration in space of the misorientation (axis–angle)–grain size in 
the region given by the inequality (5.50). However, if the two-particle 
distribution function of the misorientations is reduced to a single 
particle distribution (distribution of the orientations [32–38]), this task 
becomes unjustifiably complicated and, in addition to this, we do not 

s/µ10-4 10-210-310-5
103

104

105

L/bB

migration

pB

pD

dislocation
creep

diffusion
creep

Fig. 5.3. Formation of partial contributions of deformation mechanisms for the given 
size distribution of grains.

Dislocation creep

Diffusion creep Migration
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148 Superplasticity and grain boundaries

yet know the relationship between the misorientation at the boundary 
and the surface tension coefficient aGB.

In the approximation of the fixed surface tension coefficient at the 
given temperature and stress the number of the boundaries whose length 
in the sliding direction is in the interval [LLM, LD] is determined only 
by the function of distribution of the length of the grain boundaries 
in the given material (again in the absence of a correlation between 
the length of the boundary and the shear stress acting in the plane 
of the boundary; otherwise, it is necessary to consider the combined 
distribution with respect to L	 and	 τ	 which	 may	 be	 the	 case	 in	 the	
materials with a distinctive texture). Using the log–normal distribution

the probability of one randomly selected boundary taking part in the 
formation of CGBS band has the form

( )
( ) 2
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  t
t = = F -     

 t
- F    

∫

 

(5.51)

where F(x) is the error function.
Examples of the dependence of pB on the mean grain size and stress 

for two homologous temperatures and the dispersion of the grain size 
are shown in Fig. 5.4 constructed on the basis of equation (5.51). It is 
clear that in the material with a large mean grain size the conditions 
for local migration do not exist at any of the stresses. A reduction of 
the mean grain size leads to the formation of migration conditions in 
a specific stress range. When temperature is increased local migration 
takes place in wider ranges of both the grain size and stresses. The 
increase of dispersion results in a decrease of the number of the 
grain boundaries taking part in the formation of the CGBS bands. 
This reproduces one of the well known conditions of superplastic 
deformation – homogeneity of the structure.

Generally speaking, the expression (5.51) solves the given task: 

where

2
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= -   p    

=
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149Grain boundary sliding

to determine the number of triple junctions modified under the given 
loading conditions. However, a large number of approximations 
was made when deriving this relationship, with the most restricting 
approximation in our view being the following: 1) the dislocation 
density in a pile-up is determined for a flat boundary and is used in 
the analysis of the energy relationships on the migrating boundary; 
2) the interaction of the pile-ups formed at the conjugated boundaries 
of the investigated triple junction is ignored. The quality of these 
approximations will now be verified.

5.6. Variance formulation of the system of equations for the shape 
of the boundary and pile-up density

The interaction energy per unit length of two straight parallel 
dislocations is determined by the well-known Nabarro equation [18]:

Fig. 5.4. Dependence of the probability of local migration on the mean grain size and 
stress: (a) D2 = 0.1, T/Tm = 0.5; (b) D2 = 0.1, T/Tm = 0.8; (c) D2 = 0.5, T/Tm = 0.5; (d) 
D2 = 0.5, T/Tm = 0.8.

(a) (b)

(c) (d)
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For the configuration shown in Fig. 5.5, the vector defining the 
direction of dislocation is ξ = (0, 0, 1), the Burgers vector of the i-th 
dislocation bi = b(cos	 φi,	 sin	 φi, 0), and R = (x2–x1, y2–y1, 0). In the 
notations

2 1 2 1
12 122 2 2 2

2 1 2 1 2 1 2 1
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x x y y
x x y y x x y y

- -
= F = F
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we obtain
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1( , ) cos( ) ln cos( 2 ),
2

cW RE x x
HW R

≡ = j - j + j + j - F
 

(5.52)

where Rc = R0 exp (–1/2). Calculating the appropriate derivatives, we 
determine the force acting from the side of the first dislocation on 
the second dislocation. Its projections on the direction of the Burgers 
vector of the second dislocation ( (2)

nF ), and also on the normal to the 
plane given by the Burgers vector and the direction of the dislocation 
( (2)

nF ) are equal to

[ ](2)
12 1 12 2 12

0 2 1

cos cos( )cos 2( )
;F

HW x x
t F j - F j - F

=
-  

(5.53)

[ ](2)
1 12 1 12 2 12

12
0 2 1

sin( ) cos( )sin 2( )
cos .nF

HW x x
j - F + j - F j - F

= - F
-  

(5.54)
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F12

Fig. 5.5. Parameters defining the position of dislocations.
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To avoid a non-physical (integrated) singularity at the origin of the 
coordinates taking into account the expression (5.54), the pile-up 
will be investigated in the discrete-continual approximation [39] 
separating from it the head dislocation and placing it at the origin 
of the coordinates. This can be carried out on the basis of the fact 
that we consider the boundary situated in the plane of the maximum 
shear stresses, and that this boundary should actually occupy the triple 
junction. The functional of the total energy of the pile-up + boundary 
system has the form

0

2

0 0

1(0, ) ( ) ( , ) ( ) ( )
2

1 ( ) ,

R R R

L L L

x x x
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x x x
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WE E x x dx E x x x x dx dx
W H

y x dx
W

′ ′ ′≡ = r + r r +

a
+
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∫ 

 

(5.55)

where xL and xR are the abscissas of the left and right boundary of the 
pile-up, respectively; y (x) is the function which defines the form of the 
migrating boundary; the kernel E(x',x) is determined by the expression 
(5.52). It is assumed that the orientation of the Burgers vectors in the 
pile-up is determined unambiguously by the function y(x):	 	 tg	 φ(x) = 
dy(x)/dx. The equilibrium equation is written as the condition of the 
balance of tangential forces acting on each dislocation
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∫

  

(5.56)

where the right-hand side determines the Pitch–Keller force from the 
external stress s; b is the angle between the loading axis in the initial 
plane of the boundary.

In this formulation, it is necessary to determine both the density 
of the dislocations in the pile-up and the form of the migrating 
boundary, associated with this pile-up. We consider a more restricted 
task: determine the dislocation density in a pile-up concentrated at the 
boundary of the given form. In this case, the kernel of the equation 
(5.56) is determined unambiguously. Taking dimensionless variables
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which retains the normalisation of the density with respect to the 
number of dislocations in a pile-up, the following equation is obtained
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After regularisation of the integral term, it can be determined the form 
of a singular integral equation with the Cauchy kernel:
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where
2 0 2 1 2

2
0 2 0 2

2 2 2

1
1 2 2 2

1 2 1 1
2 2 2 11

( ) ( ) ( );

( , ) 1( ) ( ) ;
( , )

1 ( , ) ( , )( ) ( ) .
( , ) ( )

t t t

F tt F t
t F t t

F t t F t tt t dt
F t t t t-

w = w + w

 -D
w = - + D 

-
w = r

-∫ 

It should be noted that F (t, t) ≡	cos	ψ(t). Using the standard methods 
[40], we find out for the first node of the equation (5.57) (t2	=	–1)	λ1 
is equal to either 0 or 1, and for its second node (t2	 =	 1)	 λ2 is equal 
to either –1 or 0 (i.e., both nodes are non-singular). Fixing the class 
of	 the	 solution	 by	 selecting	 λ1	 =	 1,	 λ2 = 0 (the index of the class                                   
χ = –1), the solution and the condition of its existence can be written 
in the following form

1 12
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(5.58)
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The resultant expression is the Fredholm equation with the regular 
kernel:
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The series of the perturbation theory through the integrated kernels 
has the following form:
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The regular function f (t1,t2)/(t1–t2) is represented by a series with 
respect to Chebysheff’s polynomials
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and we introduce the matrix of the coefficients displaced by the column 

, 1 ( 0,1,2,...; 1,0,1,2,...).kn k nf k n+γ = = = -

In these notations, the integrated kernels have the following form:
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and are expressed through the arbitrary degree of the matrix γ . It may 
easily be seen that the equation (5.58) does not contain any term linear 
with respect to the migration amplitude, and expansion begins with the 
quadratic term. Thus, in the linear approximation with respect to the 
migration amplitude the density of the dislocations at the migrating 
boundary is in complete agreement with the density at the flat boundary. 
In this case, the equation for the shape of the boundary can be derived 
varying the functional (5.59) with respect to the function y (x) assuming 
that density r is independent of the function y:
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(5.60)

The accurate forms of the kernels, obtained in formal variation, are
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As regards the method of derivation, equation (5.15) has any meaning 
only as a linear equation with respect to y. Consequently
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Thus, we obtain an integro-differential equation with the Cauchy 
kernel (the logarithmic kernel is removed applying integration by 
parts, and the second degree in the denominator D is regularised). The 
resultant equation can not be solved and the form of the boundary can 
not be restored even in the approximation of weak migration. As the 
migration condition we use the qualitative estimate which does not 
make it possible to restore the form of the boundary but can be used 
to determine the states preferred from the viewpoint of energy.

5.7. The power of pile-ups of grain boundary dislocations

The effect of interaction of the pile-ups formed on the conjugate 
boundaries of the investigated triple junction will now be estimated.

Let the region |x |<x0 be an obstacle to the movement of the 
dislocations and this region be regarded as the kernel of a triple junction 
with the crystal structure differing from the structure of the boundaries. 
The equations (5.35)–(5.38) are generalised and the dislocations are 
prevented from occupying the region in the immediate vicinity of 
the triple junction. In this case, the density of the dislocations in the 
isolated one-sided pile-up, distributed in the interval x0 < x < xs, is 
given by the equation

0
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x x b
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= -

′ - µ∫
 

(5.61)

If the dislocations are emitted by a source situated at the point with the 
coordinate x = L/2 and	with	 the	 threshold	stress	τc ~µb/l, the length of 
the pile-up is determined by the condition of blocking the source by 
the inverse field of the emitted dislocations:
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Consequently
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�� �� �� �� ��



156 Superplasticity and grain boundaries

Consequently, the number of the dislocations in the pile-up is

0
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(5.64)

For a triple junction in the general position the pile-ups of grain 
boundary dislocations can form at all three boundaries and the 
interaction of the dislocations greatly modifies the derived equations. 
The problem for an arbitrary triple junction is reduced to a complicated 
system of three integral equation. As a preliminary estimate of the 
effect of interaction of the pile-up we investigate two modelling 
examples, permitting an exact analytical solution.

Let us also assume that in addition to the already mentioned pile-up 
in the vicinity of the triple junction (x = 0) there is also a second pile-
up of dislocations with the opposite sign distributed in the interval –xs < 
x < –x0, formed by the source situated at the point x = – L/2 (Fig. 5.6). 
Since according to the symmetry considerations the dislocation density 
in the two pile-ups is the same, we obtain an equation for the density:
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(5.65)

and the condition of blocking of the sources
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(5.66)

Replacing the independent variable x2 = y [39], equation (5.65) is 
reduced to the equation of type (5.61) and has the solution

2 2

1 2 2
0 0

( ) .sx xx
b x x

t -
r =

pµ -  
(5.67)

Subsequently, from (5.66) we obtain

 

x-x0

x0 L/2

-L/2 0

xs

-xs

Fig. 5.6. Pile-ups of grain boundary dislocations with opposite signs in the vicinity of 
a pseudotriple function.
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2 2
2 2 2

0 0 21 .
4

c
s

Lx x x
  t

- = - -  t    
(5.68)

The number of dislocations in the pile-up is equal to

[ ]1
0

K( ) E( ) ,sxN q q
b

t
= -

pµ  
(5.69)

where xs is determined by the relationship (5.68); 2 2
0 / ;s sx x x-  K and 

E are the total elliptical integrals of the first and second kind [41].
If L is the length of the grain boundary, then at the point x = L, 

like at the point x = 0, there is a triple junction which is an obstacle 
to the propagation of the dislocations. The source, situated at the 
point x = L/2, forms not only a dislocation pile-up in the interval                                      
x0 < x < xs but also a dislocation pile-up with the opposite sign in the 
interval L–xs < x < L–x0. The interaction of these pile-ups can both 
weaken and intensify the effect of attraction of the pile-ups investigated 
in the first example. The interaction changes the magnitude of the 
stress concentration in the region of the triple junction (|x| < x0). The 
second modelling example will be investigated to evaluate the effect.

Let there be obstacles to the movement of dislocations along the 
straight line at the points xi = +nL (where n = 0, 1, 2,…) and at 
the points xm= +mL/2 (where m = 1, 3, 5,...) sources with the same 
threshold stress. Consequently, the dislocation density in any pile-up 
satisfies the equation

0 0

2 2

0

( ) ( ) ,
s sx x

n nx x

x dx x dx
x x nL x x nL b

∞ ∞

=-∞ =-∞

′ ′ ′ ′r r t
+ = -

′ ′+ - - - µ∑ ∑∫ ∫

which, taking into account the equality [42]

1 ctg
n n

∞

=-∞

p px
=

x - a a a∑

has the following form

0

2

0

2 ( )sin(2 / )
cos(2 / ) cos(2 / )

sx

x

x x L dx
L x L x L b

′ ′p r p t′ = -
′ ′p - p µ∫

 
(5.70)

The condition of blocking of the source is determined by the equation

.
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0

0 22 ( )sin(2 / ) .
1 cos(2 / )

sx

c
x

b x x L dx
L x L

′ ′pµ r p ′t - = t
′+ p∫

 
(5.71)

As in the first example, when replacing the independent variable                   
cos	 (2πx/L) = y equation (5.70) is reduced to the equation of type 
(5.61) with the solution

2
0 0

cos(2 / ) cos(2 / )( ) .
cos(2 / ) cos(2 / )

sx L x Lx
b x L x L

t p - p
r =

pµ p - p  
(5.72)

From (5.71)

0cos cos .s cx x
L L

p t p
=

t  
(5.73)

Finally, the number of dislocations in the pile-up is

0
2 2

0 0

1 1K( ) ( / 2, , ) ,
1 1

s

s

L v vN t n t
b v v

 t - -
= - Π p p µ + -   

(5.74)

where

0 0

0 0

0

cos(2 / ), cos(2 / ),

2( ), ,
1 (1 )(1 )

s s

s s

s s

v x L v x L

v v v vn t
v v v

= p = p

- -
= =

- - +

and ∏ is the elliptical integral of the third kind.
The dependence of the capacity of the isolated one-sided pile-up 

of the grain boundary dislocations on the length of the boundary L as 
a result of the condition L >>x0 (x0 ~5b) is almost linear. The linear 
form of the dependence of N0 on  is disrupted only in the vicinity of 
the threshold stress tc. In Fig. 5.7 the dependences N1, N2 are presented 
in the unit of the power N0 of the isolated pile-up. At low stresses, the 
effect of interaction of the two pile-ups is especially strong at small 
L. With increase of both L and t the role of interaction of the pile-ups 
becomes less distinctive. However, even in this case the interacting 
pile-ups contain 5–6 times more dislocations than the isolated ones. 
The screening effect of the chain of pile-ups is also most evident at 
low stresses: in comparison with the two-sided pile-up, the power is 
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approximately halved, although its level is still four times higher than 
the power of the isolated pile-up. The increase of stress balances the 
effect of screening; the capacities of the chain of pile-ups and of the 
two-sided pile-up become quite similar.

The equations (5.67) and (5.72) leads to a considerably stronger 
stress concentration at the point of the triple junction in comparison 
with the one-sided pile-up (see (5.63)).  High strain rates are 
characterised by especially suitable conditions for crack formation.

Simple and relatively accurate estimates of the equations (5.67) and 
(5.72) are given by the main terms of the expansions with respect to 
the small parameter x0/L <<1:

2 2

1 2 2
0 0

2 2

2 2 2 2
0 0

21 ln 1 ;
2

41 ln 1 .

c c

c

c

L LN
b x

L LN
b x

 t tt
 ≅ - -
 pµ t t 
 tt t

≅ - -  p µ t p t 
Thus, the interaction of the pile-ups of the grain boundary dislocations, 
formed on the conjugate boundaries of the triple junction, can increase 
several times the capacity of the pile-up at the active boundary and, 
at the same time, improve the conditions for local migration of the 
grain boundaries. However, it must be taken into account that the 
investigated modelling examples give the upper estimate of the power; 
for the triple junction with a configuration close to the equilibrium 

Fig. 5.7. Capacity of interacting pile-ups of grain boundary dislocations in units 
of the power of the isolated pile-up: N1 (1–3), N2 (4–6); lg (L/b) =  4.5 (1, 4),                                              
lg (L/b) = 4.25 (2, 5), lg (L/b) = 4 (3, 6).
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of the interaction of the pile-ups is weaker because of the rotation of 
the slip planes. On the other hand, in superplastic deformation, the 
powers of the pile-ups are determined not only by the effect of the 
grain boundary sources. Because of the activity of the grains they 
can also be regarded as independent quantities. This weakens the role 
of the factor of interaction of the pile-ups in the formation of their 
capacity. Finally, it should be mentioned that the accuracy of the 
theoretical investigations in the conditions of high indeterminacy of 
the values of the physical parameters should not be overestimated. For 
example, when determining the condition (5.50) we already ignore the 
difference between the intragranular and grain boundary shear moduli 
because of the indeterminacy of the latter. The diffusion parameters of 
the boundaries, surface tension coefficients, and their dependence on 
misorientation are also undetermined to the same degree.
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6

PERCOLATION MECHANISM OF 
DEFORMATION PROCESSES IN 

ULTRAFINE-GRAINED POLYCRYSTALS

6.1. Percolation mechanism of the formation of a band of 
cooperative grain boundary sliding

Experiments show [1–3] that when the stable flow stage is reached 
(the indication of establishment of the superplastic deformation regime 
[4]) the independent shear sections merge together and deformation 
takes place by matched shear along the surfaces passing through 
the entire cross-section of the specimen and oriented very close to 
the planes with the maximum shear stresses. These surfaces are the 
bands of cooperative grain boundary sliding (CGBS). The transition 
from the independent processes, taking place in different sections 
of the deformed specimen, to the coherent processes on the scale 
of the entire specimen is identical to the tendency to the infinity 
of the correlation radius in the phase transitions of the second kind 
which can be described adequately by percolation models. The tasks, 
investigated in the previous chapter, make it possible to estimate 
the number of re-organised triple junction representing independent 
flow sections. The determination of the conditions of formation of 
the bands and the evaluation of the number of the bands under the 
given loading conditions are based on the assumption (to which the 
investigations of the structure combined with the analysis of special 
features of the stage of increase of the loading curves lead) according 
to which the band forms by the percolation transition mechanism. 
Determining the total number of the grain boundaries taking part in 
the formation of the CGBS bands, it is quite easy to calculate the 
number of bands which can be constructed from the given boundaries. 
To solve the problem, it is necessary to determine the active band. 
The band will be regarded as some non-smooth surface consisting of 
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n grain boundaries. If half of these boundaries locally migrate, then 
each boundary will ‘bring’ one adjacent boundary to deformation and 
the entire surface starts to operate as a coherent shear band. However, 
this is valid only in the case in which the migrating boundaries are 
distributed with the maximum uniformity along the band, i.e., when 
two migrating grain boundaries are separated by a single boundary 
included in cooperation. Otherwise, half of the migrating boundaries 
may prove to be insufficient for the formation of the active band. On 
the other hand, the experimental data indicate that the dislocation 
clusters, formed at some boundary, is capable of causing cooperation 
of more than one adjacent boundary [5, 6]. In this case, the active band 
can form when less than half of the boundaries n, forming the band, 
migrate. Taking these considerations into account, it is assumed that if 
the band consists of n grain boundaries and part of these bands, equal 
to pcn, locally migrate, then the active band of the CBGS is activated. 
The percolation threshold pc (0 < pc <1) is regarded as a free parameter.

The maximum possible number of the bands in the specimen is equal 
to M0 = l/ádñ, where l is the length of the specimen. Each band in the 
sliding direction consists of n = 21/2h /áLñ grain boundaries, where 
h is the thickness of the specimen in the sliding direction. The total 
number of the grain boundaries, situated in all the bands, is nM0. The 
probability of local migration for each boundary is equal to the known 
value pB. Since nM0 >>1, the total number of the grain boundaries, 
undergoing local migration, can be regarded as differing only slightly 
from the mean value pBnM0. The problem is reduced to the distribution 
of this number of grain boundaries in M0 bands and calculation of the 
number of bands in which the number of migrated boundaries is higher 
than nc = pcn. In the case of the uniform distribution of the migrated 
boundaries in the volume of the specimen (spatially uniform structures) 
the probability of i-th band (i = 1, 2,...,M0) containing ni aligned 
boundaries is determined by the multidimensional hypergeometrical 
distribution:

( )
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1 2

1
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1 0
01 2
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M B
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w n n n

n nMn n
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Consequently, the probability of the number of migrated boundaries in M 
bands exceeding nc is:

.
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Using the representation
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(6.2)

W(M) is the density of a discrete (M = 0, 1, 2,...,M0) random quantity: 
its positive determinacy is evident from the equation (6.1), and 
normalisation is confirmed by the following equalities:
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Substituting W (M) into the expression
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Since M0 >>1, all the physically significant cases are exhausted by 
the condition
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and the resultant expression is simplified to the following form:
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(6.3)

A more symmetric formula can be obtained for other ordering of the 
factorials
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(6.4)
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Using the Stirling equation for the non-zero factorials in the equation 
(6.3), we obtain a simple estimate:
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(6.5)

The ‘tail’ of the binomial distribution in the conditions of applicability 
of Gaussian approximation npB (1 – pB) > 9 can be easily estimated; 
we obtain the following ratio for the number of active bands:

0

1 ( )1 .
2 2 (1 )

c B

B B

M n p p
M p p

  -
≅ - F   -     

(6.6)

Regardless of the large number of the assumptions made, the quality 
of the approximation (6.6) is relatively high. Figure 6.1 compares 
calculations carried out using the equations (6.3) and (6.6) for the 
values of the parameters M0 = 10, n = 10 and pc = 1/2. The stepped 
form of the dependence, given by the equation (6.3), is associated 
with the fact that the binomial coefficients are determined only for the 
integer values nB = pBn and nc = pcn. In the case of higher values of 
M0 and n the quality of approximation (6.6) becomes obviously even 
higher: at M0 ~100 the stepped curve coincides with the smoothed 
curve. 

Examples of the dependence of the ratio M/M0 on the mean grain 

<M>/M0

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0

0.4

0.1

0.6

0.8

pB

Fig. 6.1. Comparison of calculations carried out using equation (6.3) (solid curve) and 
(6.6) (dotted curve) for the values of the parameters M0 = 10, n = 10 and pc = 1/2.
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size and stress for two homologous temperatures are shown in Fig. 6.2. 
This result determines the range of the stresses (for the given mean 
grain size) in which active CGBS bands form, i.e., in fact the range of 
superplastic deformation. Thus, equation (6.6) solves the given task.

6.2. Conditions of formation of CGBS bands as the condition of 
realisation of the superplastic deformation regime

The conditions of the formation of the CGBS bands will be determined 
as the conditions of realisation of the superplastic deformation regime. 
Factor M/M0 determines the range of superplastic deformation in the 
space of the parameters of the material and the loading conditions. 
Analysis of this interval gave the following results [7, 8].

Since in the equation (6.6) n >>1, the essential condition for                          
áMñ differing from zero is reduced to the inequality

max{ ( , )}
,

B cp L p
L

t >
t  

(6.7)

which, using approximate representation 2( ) 1 exp( 4 / )x xF ≈ - - p                        
(x > 0) has the following form

( ){ } 1
2 2 21n 2 1n 1 ,

16
L

c
B

bKD p
b

- 
< p - 

   
(6.8)

It is well known that superplastic deformation results in the formation 
of a uniform equiaxed structure in the material. As indicated by the 

Fig. 6.2. Dependence of the mean number of the CGBS bands on the mean grain size 
and stress for two homologous temperatures: (a) T/Tm = 0.5; (b) T/Tm = 0.9 (D2 = 0.5; 
pc = 0.2).

a b(a) (b)
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168 Superplasticity and grain boundaries

inequality (6.8), the uniformity condition is the necessary condition for 
the formation of the CGBS bands. The absence of bands in the case 
of a wide grain size distribution is confirmed by experiments [9]. The 
upper limit of dispersion is determined by the percolation threshold pc, 
parameter K, controlling the transition to the dislocation creep regime, 
and by the ratio of the Burgers vectors of the lattice of grain boundary 
dislocations, i.e., in fact, by the presence of a sufficiently large number 
of arbitrary grain boundaries in the material. It should be remembered 
that the initial grain distribution of the grains may have a dispersion 
greater than the upper limit, dictated by the condition (6.8). However, 
the stage of transfer to the stable flow regime should occur in the 
conditions of active and dynamic recrystallisation ensuring structural 
processing of the material. However, when the stable flow stage is 
reached, the final grain size distribution should be characterised by a 
small dispersion because this is essential for the formation of bands.

At the given test temperature any material has the maximum 
permissible value of the mean grain size (see expression (6.6) and Fig. 
6.2). The materials with the large grain size do not show the formation 
of the CGBS bands and, consequently, the superplastic deformation 
regime cannot be established in these materials. The equations (6.5) 
and (6.6) gives the explicit condition for the mean grain size

4 2
22 exp 7 ln(1 p ) .

( ) 4 2 2
LM

c
L L B

dd K b D D
b b T b

 p < = - -  χ      
(6.9)

It  is well known that the increase of temperature enables the 
superplastic deformation regime to be established in materials with 
larger grains. Reproducing this tendency, equation (6.9) can also be 
used to formulate a more convincing claim: the temperature dependence 
of the maximum permissible mean grain size is determined by the 
temperature dependence of the surface tension of the grain boundaries. 
The value ádñM under similar conditions is controlled by the values of 
dispersion and percolation threshold, i.e., the physical parameters which 
are not taken into account by the models of superplastic deformation. 
The dependence of ádñM on D and pc is shown in Fig. 6.3, constructed 
for the following values of the parameters: χ0 = 0.02; K = bL/bB = 10; 
T/Tm = 0.75.

When the conditions (6.8) and (6.9) are fulfilled, it is quite easy to 
determine the range of stresses in which the CGBS bands form:
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(1) ,th ht < t < t  (6.10)

where
3(1)

0

4 32 ( ) exp ;
4

th B

L

bt R A
b K

t    = χ +   µ      
(6.11)

3

0

4 32 ( ) exp .
4

h B

L

bt R A
b K

t    = χ -   µ      
(6.12)

To shorten the explanation, the following notations will be introduced 
here:

4 2
2 2 2

2

2

2 exp( / 2) 4In 14 ln ;
4 ( ) 3

2ln 2ln(1 ) .
2 ln (1 )

L L

B

c

c

b b K DR D
b d T

DA p
p

  = +   χ   
 
 = p - -  p - 

Quantity (1)
tht is the threshold stress. If these stresses are exceeded, 

active CGBS bands appear in the material. The right-hand boundary 
of the interval (6.10) th determines the transition from the superplastic 
deformation condition to the dislocation creep regime. It may easily be 
seen that the expressions (6.11) and (6.0) undergo the reference limiting 
transition D → 0 and degenerate in this case to the relationships (5.49) 

Fig. 6.3. Dependence of the maximum attainable mean grain size on the values of the 
percolation threshold and the dispersion of the size distribution of the grains.
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170 Superplasticity and grain boundaries

and (5.50) derived in chapter 5. In this case, th ceases to depend on 
temperature, is proportional to constant K and inversely proportional 
to the mean grain size. The threshold stresses at D → 0 depend on 
temperature as (1 – T/Tm)n/2 and on the grain size as ádñ–3/4. In a general 
case (D → 0) the temperature dependence of (1)

tht may intensify to 
∝(1 – T/Tm)v/2; the dependence on the mean grain size weakens to 
complete disappearance at relatively high values of D. The analysis 
of the temperature dependence of the experimental values of the 
threshold stresses is usually carried out assuming that sth∝exp(E/kT). 
This is often justified and leads to an accurate value of activation 
energy E [10]. However, it may be seen that the experimental results 
for high-rate superplastic deformation [11] are approximated more 
accurately by the linear (sth∝ a – bT) and not exponential dependence. 
The resultant indeterminacy of interpretation may be caused by the 
following circumstance. The strain rate in the range (6.10) is determined 
by the value of the shear rate V along the band. The mechanism, 
controlling the shear rate, may have the intrinsic threshold stress (2)

tht , 
differing from (1)

tht . If (2)
tht < (1)

tht , the range of superplastic deformation is 
determined by the condition (6.8). However, if the reversed relationship 
is fulfilled, i.e. < (1)

tht , the range of superplastic deformation becomes 
smaller and the role of threshold stresses is transferred to  (2). 
Thus, the actual form of the temperature dependence of the threshold 
stresses is determined by the temperature dependence of the maximum 
values of (1)

tht  and (2)
tht . The threshold stresses (1)

tht , responsible for 
the formation of the CGBS bands depend, in accordance with (6.11), 
exponentially on temperature, and the stresses (2)

tht associated with 
accommodation processes causing shear along the CGBS band are 
thermoactivated. Thereby, the considerations regarding superplastic 
deformation introduce the concept of threshold stresses of the first and 
second kind: threshold (1)

tht determines the transition to the formation 
of the CGBS bands, and the threshold (2)

tht specifies the conditions of 
activation of the mechanism controlling the shear rate along the band.

6.3. Shear rate along the CGBS band

The final characteristic of the CGBS band, determined on the mesolevel, 
is the shear rate along the band at the given stress level. Assuming the 
accommodation nature of slip in the grains, the Orowan relationship 
is used for preliminary estimate: V = bB árñ VB. The speed of grain 

boundary dislocations is given by the relationship .B
B B B

DV b C
kT

d
= s  

(2)
tht

(2)
tht
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The mean density of the grain boundary dislocations in the band 
is determined by the number of the dislocations formed in all the 
boundaries of the given band. At the boundary of the given length 
the number of the dislocations is characterised by the relationships 
(4.7) and (4.8) (depending on the contribution of intragranular 
activity). Transferring from the number of dislocations to the density                                            
(ρ	 =	 (N +1)/L) and averaging the realisations (4.7) and (4.8) with 
respect to random quantity L (using, as previously, the log–normal 
distribution of L) gives

( ) ( )
2

2

0 0

( ) , exp( ) , ,
4 4B B D

L

L
b p L D p L

b
 t t

r t ≈ t + t µ µ   
(6.13)

where pD describes the partial contribution from intragranular 
dislocation slip:

( )
21 1 ( )exp( / 2), 1 ln .

2 2
D

D
L Dp L

LD

  t
t = - F        

(6.14)

and the scheme of formation of this quantity of the given grain size 
distribution is shown in Fig. 5.3.

It should be mentioned that when the intragranular dislocation 
slip becomes the main mechanism (pD → 1), the speed in the band 
is determined by the cube of applied stress (two are given by the 
number of dislocations, and one by their speed). However, if pD → 1 
(strictly speaking, this is possible only at zero dispersion of the grain 
size distribution), the power of the stresses decreases to the second 
power. The actual dependence of the strain rate on the applied stress 
is determined not only by the speed in the CGBS band but also by 
the number of these bands which form the range of the permissible 
values of pB through the percolation threshold – the quantities which 
also depend on the applied stress.

All the characteristics of the CGBS bands, formed with participation 
of the processes on the mesolevel and required for investigating these 
problems, have now been determined. We now transfer to the properties 
of a large-scale flow pattern. The construction of the dependence of 
the strain rate on stress in the stable flow stage is the content of the 
standard (and probably the only one) tests of any physical model of 
superplastic deformation. In experiments, this dependence is restored 
from the results of macroexperiments, whereas calculations are always 
reduced to investigating the mechanism controlling the rate of transfer 
of strain through some triple junction – limiting local characteristic. The 
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172 Superplasticity and grain boundaries

empirically determined nonuniformity of deformation on the mesolevel 
requires development of a more substantiated formalism which would 
make it possible to link the characteristics of the macrolevel with the 
characteristics of the CGBS bands.

6.4. Kinetics of deformation in CGBS bands

Let the region (specimen) be given in the coordinates (x1, x2) by the 
inequalities |x1| < r0, |x2| < l0, at the moment of time t = 0 (here r0 is 
the half width of the specimen; l0 is the half length of the specimen). 
Movements (deformation) in the system of the centre of masses will 
be investigated in the conditions where for any t > 0 the coordinate of 
the centre of masses is x1 = x2 = 0. Deformation takes place by shear 
along two systems of the CGBS bands. The first system is defined by 
the equations x2 = zn – x1, where the index n determines the number 
of the band, and zn is the coordinate of intersection of the band with 
the axis x2. It is convenient to assume that the number of the band in 
the system is M(–) +1, where M(–) is an even number. Consequently n = 
{–M(–)/2, –M(–)/2+1,..., –1, 0, 1, ..., M(–)/2–1, M(–)/2}.	The	second	system	
of the bands is given by the equation x2 = zj + x1, where j = {M(+)/2,..., 
M(+)/2}.	 The	 conditions	 of	 formation	 of	 the	 bands	 were	 determined	
previously. However, the duration of formation of the band and the 
magnitude of shear up to blocking the given band are difficult to 
determine in experiments and by theoretical considerations. Therefore, 
it is necessary to postulate the individual considerations regarding the 
dynamics of switching over of the bands. If at some moment of time 
shear takes place along a band with the number n of the system 1, then 
in this case all the bands of the system 2 intersecting this band are 
blocked, at least for some period of time Dt after which the band of 
the system 1 becomes blocked and the bands of the transverse system 
start to operate. Consequently, the active bands of the systems 1 and 
2 at the given moment of time are distributed in space, i.e., in some 
section there are bands of one or the other system. However, other 
courses of the process are possible in which only the system of the 
bands M(–) operates during some period of time Dt, and this is followed 
by switching to the system M(+), and so on. The variant of distribution 
of the bands in time (not in space) is simpler to formalise and we shall 
refer to it.

The field of the speeds during the action of the first system of the 
bands is described by the following equation:
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( )
( )

( )

/2

1 2 2 1
/2

1
( , )= 2 1 ,

12

M
B

n
n M

Vx x x x z
-

-=-

- 
 q + - -    

 
∑V

 
(6.15)

where VB is the shear rate along the band (assuming that it is the 
same	 for	 all	 bands);	 θ(x) is the Heaviside function. Let us estimate 
the time during which shear takes place along the system 1. Since 
the grips cannot move in direction x1, deformation is accompanied by 
the change of the angle between the direction of shear along the band 
and the loading axis. This reduces the value of the Schmidt factor in 
the acting system of the bands and they are blocked. According to the 
relationship (6.15), the speeds of the upper and lower grips are equal 
to respectively

( ) ( )( ) ( )1 1
1 ; 1 .

1 12 2
B BV VM M- -- -   

+ - +   
   

Consequently, the angle between the loading axis and the shear direction 
along	 the	band	 is	ψ	=	π/4–α,	where

( )
( )
( )

( )

1
tg

2 1
B

B

M V t

l M V t

-

-

+ D
a =

+ + D

(the ratio of transverse shear to the actual base).
Since	 the	 shear	 stress	 in	 the	 band	 system	 is	 equal	 to	 (σ/2)	 sin	 2ψ,	

from the condition of the decrease of the stress to the threshold value 
sth we obtain the time during which shear takes place along the first 
system of bands:

( )

( ) 1 1 1 ,
2( 1) th th thB

l tt
M V-

 t t t
D = - - + +  t t t+  

 
(6.16)

where l (t)	 is	 the	actual	 length.	After	 time	∆t the system of the bands 
M(+) is opened. The corresponding field of the speeds is:

( )
( )

( )

/2

1 2 2 1
/2

1
( , )= 2 1 .

12

M
B

j
j M

Vx x x x z
+

+=-

   q - - -    
∑V

 
(6.17)

On the basis of the general considerations i t  is  assumed that                      
M(+) = M(–). Consequently, this system of bands acts for approximately 
the	same	period	of	time	∆t (because of a different initial length). On the 
macroscopic structural level of description, the successive effect of the 
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bands	in	the	time	period	2∆t is an elementary act of shape changes. The 
equation of movement (radial component) of some point of the region 
in the period [t0, t0	+	∆t] as a result of (6.15) has the following form

( ) ( )1
1 2

( ) 2 ( , ) 1 ,
2
Bdx t V N x x M

dt
- - = - - - 

where N (–) (x1, x2) is the number of the bands of the first system 
situated below the point (x1, x2). If this point is moved in the direction 
parallel to the bands, it is evident that the point will not intersect 
these bands and N(–)(x1, x2) does not change. In particular, N(–)(x1, x2) =                            
N(–)(0, x1+ x2). Consequently, we can introduce the function specifying 
the distribution of the bands along the specimen at time t:

( )( )( , ) .n
n

p z t z z t= d -∑
Consequently, the equations of motion in the period [t0, t0	+	∆t] have 
the following form

2 1( ) ( ) ( )
1

( ) ( )

2 1

( ) 2 ( , ) ( , ) ;
2

( ) ( ) .

x t x t l t
B

l t l t

dx t V p z t dz p z t dz
dt

dx t dx t
dt dt

-

- -

 
= - 

  

= -

∫ ∫

Similarly, for the period [t0	 +	 ∆t, t0	 +2∆t] taking into account the 
equality N(+)(x1, x2) = N(+) (0, x2–x1) we obtain

1 1( ) ( ) ( )
1

( ) ( )

2 1

( ) 2 ( , ) ( , ) ;
2

( ) ( ) .

x t x t l t
B

l t l t

dx t V p z t dz p z t dz
dt

dx t dx t
dt dt

+

- -

 
= - 

  

= -

∫ ∫

The initial point is fixed: x1(t0) = x10, x2 (t0) = x20. Since the value Dt 
is small, the following solution can be written:

in the first interval

( )

( )

1 0 2 0 0

0 0

1 0 2 0 0

0 0

( ) ( ) ( )

1 1 0 0 0 0
( ) ( )

( ) ( ) ( )

2 2 0 0 0 0
( ) ( )

( ) ( ) 2 ( , ) ( , ) ;
2

( ) ( ) 2 ( , ) ( , ) ,
2

x t x t l t
B

l t l t

x t x t l t
B

l t l t

Vx t x t p z t dz p z t dz t t

Vx t x t p z t dz p z t dz t t

+

- -

+

- -

 
= - - - 

  
 

= + - - 
  

∫ ∫

∫ ∫
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in the second interval

( )

2 0 1 0
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∫

∫

Assuming that the number of the bands in switching does not change 
and the normalised integrals are the same, we obtain

2 0 1 0

0

2 0 1 0

0

( ) ( )
1 0 1 0

0
( )

( ) ( )

0
( )
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∫ ∫

Since averaging is carried out with respect to fast time, i.e., as if M(+) 

and M(–) were forced to operate ‘simultaneously’ on the slow time scale, 
and	at	 the	 limit	∆t	→	0	we	have

2 1

2 1

( ) ( )
1

( ) ( )

( ) ( , ) ;
2

x t x t
B

x l x t

dx t V p z t dz
dt

+

-

= - ∫
 

(6.18)

�� �� �� �� ��



176 Superplasticity and grain boundaries
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∫
 

(6.19)

The last equality is obtained for the obvious condition p(z, t) =                           
p(–z, t) because of symmetry. It is interesting to note that another 
condition of the non-divergence of the flow (incompressibility) is also 
the parity p(z, t) with respect to the spatial coordinates. This is directly 
indicated by the expressions

( ) ( )

( ) ( )

1
2 1 2 1

1

2
2 1 1 2

2

, , ;
2

, , .
2

B

B

V V p x x t p x x t
x
V V p x x t p x x t
x

∂
= -  + + -  ∂

∂
=  + + -  ∂

Thus, the kinetics of the flow in deformation in which CGBS bands 
take part is described by the equations (6.18) and (6.19).

6.5. Comparison of the calculated values with the experimental 
results

Substitution x1(t) ≡ 0, x2(t) = l(t) transforms equation (6.19) into the 
following equation

( ) ( ),
2
BVdl t M t

dt
=

 
(6.20)

where M( t) is the total number of the active bands at t ime t . 
Consequently, the macroscopic strain rate ( ) / ( )l t l te =   can be easily 
expressed through the mesolevel characteristics

0

,
2

M V
M d

e =

 
(6.21)

where the number of the CGBS bands is given by the relationship

0

( )1 1 ,
2 2 (1 )

c B

B B

M n p p
M p p

  -
≅ - F   -   
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and the shear rate in the band is determined by the Orowan ratio for 
the mean density of the grain boundary dislocations on the given level 
of the shear stresses in the CGBS band:

( ) ( )
2

2

0 0

,

( ) , exp( ) , .
4 4

B D

B B D
L

V b V

L
b p L D p L

b

= r

 t t
r t ≅ t + t µ µ 

The total strain rate is additionally determined by the rate of diffusion 
or dislocation creep described by the following well-known expressions 
[12–14]:

2

0 0
0

7 , ;L L L B
dif L

B

b D b Db
L D L kT

   t
e = e + p e = µ      µ   
  

 
(6.22)

( )0
0

, .
n

L
dis L D

DA b p L
kT

 t
e = µ t µ 


 
(6.23)

Diffusion creep is regarded as the superposition of the Coble and 
Nabarro–Herring mechanisms. The expression for dislocation creep 
differs from the usual form by the presence of an additional multiplier 
characterising the partial contribution of intragranular deformation.

In the conditions of additivity of the rates, i.e., at

.tot dif CGBS dise = e + e + e   

 (6.24)

the dependence of the strain rate on stress is determined by the 
following circumstances. The ranges of the lowest and highest values of 
the stress (áMñ= 0) describe the classic behaviour of the material in the 
condition of diffusion and dislocation creep, respectively. In a coarse-
grained material, these regions merge together and the superplastic 
properties are not evident at any values of t and e . When the grain 
size is relatively small, a new region appears between these regions 
and the specific conditions on the level of the threshold stress and 
the percolation threshold, temperature, grain size and its dispersion 
are fulfilled in this new region. Fulfilment of these conditions 
ensures the formation of the active bands of CGBS (áMñ≠0) and the 
superplastic properties become evident. The diagram of formation 
of such a dependence is shown in Fig. 6.4. Although superplastic 
deformation occupies an intermediate position between diffusion and 
dislocation creep, it is not the superposition of these mechanisms 

�� �� �� �� ��



178 Superplasticity and grain boundaries

and is an independent physical phenomenon realised by the specific 
deformation mechanism – cooperative grain boundary sliding [15, 16].

The parameters required for defining the properties of the material 
can be calculated using relationship (6.24). The shear modulus, with 
its temperature dependence taken into account (linear dependence)

300
0

300( ) 1 m

m

T T dT
T dT

 - µ
µ = µ + µ 
is determined by three parameters:
   – µ300 – the shear modulus at 300 K;

– 
0

mT d
dT

µ
µ

– a numerical coefficient, characterising the angle of                 

inclination of the temperature dependence;
– Tmax – melting point of the material.
Two parameters are added by the temperature dependence

( )2
0( ) 1 / mT T T γa = a -

of the surface tension coefficient of the grain boundaries:
– a0 – the surface tension coefficient,  extrapolated to zero 

temperature;
– 2γ – an exponent.
Four parameters determine the temperature dependences of 

intragranular and grain boundary diffusion coefficients:

Fig. 6.4. Diagram of the formation of the sigmoidal dependence in superplastic 
deformation. The numbers correspond to the following ranges: I) diffusion creep                           
(m–1 = 1, áMñ = 0; II) superplastic deformation (m–1 ≈ 2, áMñ ≠ 0), and III) dislocation 
creep (m–1 > 3, áMñ= 0).
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0

0

exp( / ),
exp( / )

L L L

B B B

D D Q RT
D D Q RT

= -

= d -
 

– DL0 – the pre-exponent of the lattice diffusion coefficient;
– QL  – the activation energy of the lattice diffusion coefficient;
– dDB0 – the product of the effective width of the boundary by the 

pre-exponent of the grain boundary diffusion coefficient;
– QB – the activation energy of the grain boundary diffusion 

coefficient.
In addition:
–  v   – the Poisson coefficient;
–  bL  – the modulus of the Burgers lattice vector;
–  bB  – the modulus of the grain boundary Burgers vector;
–  K   – a parameter controlling transition to the dislocation creep 

regime.
There are also two parameters defining the dislocation creep rate 

(6.23):
– A   –  the Dorn constant;
– n   –  the creep exponent

Finally, the following parameters should also be considered:
– d   –  the mean grain size;
– D  –   the dispersion of the grain size distribution;
– pc  –  percolation threshold;
– multiplier C in the expression for the grain boundary dislocation 

rate (see (5.4)–(5.6)), considered in the form

3 3

2
1 sin 1 .

10 cos 10
L L

gr
B B

b bC
b b

   j
= ≈   j   

Of the 19 quantities mentioned here characterising the properties of 
the material, the mean grain size is determined most accurately but 
even this parameter does not remain constant during deformation. The 
modulus of the Burgers vector of the grain boundary dislocations has 
different values at all the boundaries, like the parameters defining the 
temperature dependences of the surface tension coefficients and grain 
boundary diffusion. Since the grain size is the only distributed parameter 
considered in this case and the distribution of the misorientations is 
ignored, all the quantities relating to the boundaries are characterised 
by some effective values. For example, it is always assumed that                
bL/bB = 10. The diffusion parameters were taken from handbooks [17, 
18] and are summarised in Table 6.1.
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180 Superplasticity and grain boundaries

In fact, these diffusion coefficients are self-diffusion coefficients. 
Even they are determined with a relatively low accuracy. Various 
handbooks give activation energies differing by tens of kJ/mole. 
Comparison with the experimental results is also complicated by the 
fact that the materials, used in the experiments, are never completely 
pure: they contain a large number of alloying additions and also 
dispersed particles of the second phase, simply two-phase eutectics. 
In similar conditions, the indeterminacy of all (not only diffusion) 
parameters, characterising the material, becomes even greater. Thus, 
verification of the adequacy of the model can be quite convincing if 
a set of dependences can be reproduced, a single curve in the worst 
case but not numbers. We begin comparison with a Pb–Sn eutectic 
which, together with classic Zn–Al, is used widely in the physical 
investigations of superplasticity (low temperature, stable grains). Figure 
6.5 shows the appropriate experimental dependence of strain rate on 
stress [19] obtained in a wide strain rate range so that it is possible 
to record the section with the rate sensitivity parameter m = 1 (the 
value typical of the diffusion creep) at low stresses. Since the material 
consists of two phases, it is clear that neither the parameters of lead 
nor the parameters of tin describe the properties of the eutectic. It 
is hoped that some effective parameters can be defined taking into 
account the fact that, in our view, superplasticity is determined by the 
processes in the grain boundaries and interface boundaries where the 

Table 6.1. Parameters of the materials used in comparison with the experimental results

Parameters Aluminium Lead α-titanium			 Tin

bL 2.86 · 10-10 3.49 · 10–10 2.95 · 10–10 4.12 · 10–10

TM, m 933 601 1933 505
µ300, Pa

2.54 · 1010 0.73 · 1010 4.36 ·  1010 (1.6–1.9) · 1010

–0.50 –0.76 –1.20 –

DL0, m
2/ s 1.7 · 10–4 1.4 · 10–4 8.6 · 10–10 (7.7–10.7) · 10–4 

Q
L
, kJ/mol 142 109 150 107–110

δD
b0, m

3/s 5.0 · 10–14 8.0 · 10–14  3.6 · 10–16 –

QB, kJ/mol 84 66 97 –

N 4.4 5.0 4.3 –

A 3.4 · 106 2.5 · 108 7.7 · 104 –

0

mT d
dT

µ
µ
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181Percolation mechanism of deformation processes

role of the volume characteristics is not so important. The same graph 
shows the dependence of the sum of the diffusion and dislocation creep 
rates in pure Pb and Sn (the term specifying the contribution from 
the CGBS bands is not taken into account). In the stress range up to 
1 MPa where the experimental results indicate the effect of diffusion 
creep only, the curve for the softer Pb restrict the experimental points 
at the top and for the harder Sn at the bottom. Since the dependences 
in pure materials are majorant for the experimental points shows that 
the effective parameters between the values determined for Pb and 
Sn can indeed be found. It is interesting to note that the experimental 
values of the strain rate in this stress range can be determined as mean 
geometrical values (but not mean arithmetic values) of the strain rate 
in pure Pb and Sn.

Comparison of the total strain rate, determined by the relationship 
(6.24), with the experimental results is shown in Fig. 6.6. All the 
parameters used in calculating the three theoretical curves, are presented 
in Table 6.2. The percolation threshold, ensuring good agreement 
with the experiments, is relatively low and equal to 0.2. In similar 
conditions, a small number of boundaries is quite sufficient for the 
formation of bands. It is natural to expect that these are more compliant 
boundaries with the parameters close to the parameters of pure lead. As 
seen from the plot, the threshold stresses detected at the point of the 
rapid increase of the rate from the level corresponding to the dislocation 
creep rate (the characteristic inflection point on the curve), for the 
hypothetical material with the parameters of pure lead, the material 

Fig. 6.5. Experimental dependence (points) of strain rate on stress in Pb–Sn [19] at 
d = 3.6 µm (a) and the same dependence with the same scale on the axes (b). Solid 
curves show the sum of the rates of diffusion and dislocation creep in pure Pb (1) 
and pure Sn (2).

1, s-e
1, s-e

s, MPa s, MPa(a) b(b)
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182 Superplasticity and grain boundaries

Fig. 6.6. Experimental dependence (points) of the strain rate on stress for the Pb–Sn 
eutectic [19] and the calculation of the dependence for hypothetical materials with the 
parameters of pure Pb (1), pure Sn (2) and effective parameters (3) at d = 3.6 µm (a). 
The same dependence with the same scale with respect to the axis (b).

with the effective parameters and also the experimental dependence are 
very similar and greatly differ from the threshold stress for the material 
with the pure tin parameter (this is especially clear in Fig. 6.6b with 
the same scale on the axes). This indicates the internal matching of the 
results (or at least the fact that they do not contradict each other). It 
should again be mentioned that the experimental values of the strain 
rate are very similar to the mean geometrical strain rate in pure Pb and 
Sn not only in the diffusion creep range but also in the superplasticity 
range (in the range where all three curves were plotted, i.e., above 
the threshold stress for tin). This observation requires confirmation 
because a similar fact may prove to be both a random circumstance 
or the manifestation of some important relationship. It is necessary 
to stress the ambiguity of parametrisation carried out in Table 6.2 for 
the Pb–Sn eutectic. For example, the value of the activation energy 
of grain boundary diffusion can be changed and this variation can 
be compensated by redetermining the values of the surface tension 
coefficient, shear modulus, percolation threshold, etc. A smaller number 
of degrees of freedom will be considered in the attempt to parametrise 
the family of curves. 

The results obtained for the measurement of the strain rate in a 
material of a different type will be discussed. Figure 6.7 shows the 
experimental data for Ti10Co4Al alloy in the ultrafine-grained condition 
(the grains of a-Ti with the size of 0.5 µm and approximately 23% 
(volume) of the dispersed particles of Ti2Co intermetallic compound 
with the size of 0.2 µm) [20]. The parameters of the theoretical 

1, s-e
1, s-e

s, MPas, MPa

(a) (b)
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183Percolation mechanism of deformation processes

curves were taken from Table 6.2. Instead of the dimensional quantity 
a0, the table gives the dimensionless quantities χ0 = a0/(bLµ). Thus, 
using the model, the family of the curves can also be described with 
sufficient high accuracy. It should be mentioned that the exponent, 
which determines the temperature dependence of the surface tension 
coefficient, has different values for different temperatures. This may 
indicate that the dependence is more complicated than the exponential 
one. Activation energy values have not been determined. For example, 

Table 6.2. Effective parameters of the materials and the model used in numerical 
estimates

Pb Sn Pb–Sn Ti10Co4A1 MA7075 + 10SiC

µ, Pa 0.73 · 1010 1.9·1010 0.73 
·1010 4.36 . 1010 2.54 · 1010

v 0.45 0.33 0.33 0.33 0.33

Tm/µ0/dµ/
dT –0.76 –0.76 –0.76 –1.2 –0.5

bL, m 3.49 ·10–10 4.12 
·10–10

3.5 · 
10–10 2.95.10–10 2.86 · 10–10

Tm, K 601 505 550 1933 933

χ0 0.012 0.012 0.012 0.03 0.012 0.005 0.012

2γ 1.3 1.3 1.3 1.3 2.5 3.0 1.35

T, K 300 300 300 923 973 998 733 763 793

K 30 30 30 30 40

D2 0.4 0.4 0.4 0.5 0.5

Pc 0.2 0.2 0.2 0.25 0.16 0.10 0.82 0.63 0.28

DL0, m
2/s 1.4 · 10–4 90 · 10–4 10 · 10–4 8.6 ·10–10 1.7 · 10–4

QL, kJ/m 109 · 103 110 · 103 109 · 
103 225 ·103 234 · 

103
229 · 
103

220 
· 
103

δDB0, 
m3/s 8 · 10–14 360 

·10–14
80 · 

10–14 3.6 ·10–16 5 · 10–14

QB,
kJ/m 66 · 103 86 · 103 79 · 103 200·103 195 ·103 190·103 130·103 127·103

122 
· 
103

N 5 5 5 4.3 4.4

A 2.5 ·108 2.5 · 108 2.5 · 108 7.7 · 104 3.4 · 106
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184 Superplasticity and grain boundaries

in [17] the activation energy of self-diffusion in the a-Ti lattice is 
assumed to be equal to 150 kJ/mole, and in [20] the value of 190 kJ/
mole is given for the same parameters. The activation energy for the 
strain rate is estimated in [20] as 220+10 kJ/mole. Calculations are 
carried out using the values QL = 225 kJ/mole and QB from 190 to 200 
kJ/mole, depending on temperature. Thus, in comparison with pure a-Ti 
both the experiments and theoretical estimates lead to considerably 
higher activation energy values. Naturally, this is associated with the 
dispersed particles of the second phase. However, it is difficult to 
evaluate the significance of these differences since 150 kJ/mol reported 
by Frost and Ashby, and 190 kJ/mole published by Frommayer et al, 
should be regarded as the same.

The other material – an aluminium alloy, dispersion hardened with 
silicon carbide particles, shows high-rate superplasticity. Comparison 
of the calculations with the experimental data for the alloy is shown 
in Fig. 6.8 [21]. It is important to note that the percolation threshold 
values of this alloy are higher than those of the previously examined 
variants. The decrease of the percolation threshold with increasing 
temperature is typical of both the aluminium and titanium alloys. The 
activation energy of grain boundary diffusion is 1.5 times higher than 
the appropriate value for pure aluminium and is in agreement with the 
estimates of the activation energy of the strain rate made in [21] and, 
as in the case of the titanium alloys, is determined by the presence of 
the dispersed particles of the second phase.

Since the model can be used to describe with satisfactory accuracy 

Fig. 6.7. Strain rate in the Ti10Co4Al alloy (a-Ti/Ti2Co; d = 0.5 µm). The points are 
the experimental results obtained at T = 998 K (1), 973 K (2) and 923 (3) [20]; the 
curves show the results of theoretical calculations with the parameters presented in 
Table 6.2 (a). The same dependence with the same scale on the axes (b).

a

1, s-e

s, MPas, MPa

1, s-e

a b

(a) (b)
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185Percolation mechanism of deformation processes

the relatively large and greatly differing set of the data, it may be 
assumed that the scheme of formation of the e  – s dependence is 
fully realistic. This leads to important conclusions on the threshold 
of superplastic deformation and the method used for its experimental 
evaluation. This method is based on the very well known dependence:

1/

0

.
m

ths - s e
=  e µ 





 
(6.25)

Using the relationship (6.25) and selecting the correct stress range, 
we can ‘straighten’ the experimental dependences and by extrapolating 
the resultant straight line to find the threshold stress sth. However, in 
accordance with (6.24) and Fig. 6.4 (the validity of these relationships 
is confirmed by the previously described experimental results) the 
superplasticity is ‘activated in a jump’ in accordance with the law

( )
0

th
e

q s - s
e






 
(6.26)

(where	 θ	 is	 the	Heaviside function) and not gradually in accordance 
with the law (6.25). This fact reflects the circumstance that the CGBS 
band either forms or does not form. If the band has not yet formed, 
the strain rate is determined by the diffusion creep rate; if the band 
has formed the rate rapidly increases. The strain rate inside the 
superplasticity range and the value of the threshold sth are independent 

Fig. 6.8. Dependence of the strain rate on stress for the dispersion-hardened composite 
(MA 7075+10 SiC) at T = 793 K (1), 763 K (2) and 733 K (3) (d = 0.68 µm) [21]. 
The curves show the calculated results.

1, s-e

s, MPa
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186 Superplasticity and grain boundaries

quantities. No processing of the first of these quantities makes it 
possible to estimate the independent values of the second quantity. 
Thus, the considerations regarding the percolation mechanism of the 
formation of the CGBS bands reproduce with high accuracy the set of 
the e  – s dependences in a wide strain rate range.

Attention will also be given to a slightly different aspect of the 
formation of the connected clusters, formed from the special grain 
boundaries and influencing grain boundary diffusion in ultrafine-grained 
materials.
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7

PERCOLATION PROCESSES IN A 
NETWORK OF GRAIN BOUNDARIES IN 

ULTRAFINE-GRAINED MATERIALS

7.1. Effect of grain boundaries on oxidation and diffusion 
processes in polycrystalline oxide films

Zirconium and its alloys represent the main materials in nuclear power 
engineering. For example, Zr–1%Nb, Zr–2%Nb and Zr–2.5%Nb alloys 
are used for the manufacture of pipes of nuclear reactors. Consequently, 
it is important to investigate the mechanical and corrosion properties 
of these materials. The latter are determined by the presence of a 
zirconium oxide film (ZrO2) on the surface which ensures efficient 
protection against further oxidation and also against the diffusion of 
hydrogen and its isotopes from the working environment of the reactor. 
It is generally well known that the properties of the ZrO2 protective 
layer (and also of other polycrystalline materials) depend on their 
microstructure.

The high corrosion resistance of the zirconium oxide has been the 
subject of a large number of investigations and discussions regarding 
its nature. If the diffusion mechanism (or oxidation mechanism if the 
diffusion of oxygen is considered) is explained, it would be possible 
to prepare recommendations for improving the corrosion properties 
and/or predicting the safe service life of components produced from 
materials of this type. The latter is especially important for applications 
such as nuclear power engineering and aerospace technology. Attention 
will be given to the zirconium oxide film formed on the surface of the 
Zr–2.5% Nb alloy. However, the results can also be applied to other 
zirconium alloys used in the world.

As shown by early investigations [1–3], the microstructure of the                                                                                                                
Zr–2.5%Nb alloy consists of elongated a-grains of Zr, surrounded 
by the b-phase. After thermomechanical treatment required in the 
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188 Superplasticity and grain boundaries

production of pipes (rolling and drawing), the material has a strong 
texture [4]: the majority of the a-grains of Zr are oriented in such 
a manner that the directions á11̄00ñ are situated along the axis of 
the pipe, and the directions á112̄0ñ along the radius of the pipe. 
Preliminary annealing of completed pipes leads to the formation of a 
protective zirconium oxide layer on the surface with the thickness of 
approximately 1 µm. The microstructure of the oxide consists mostly 
of grains with the monoclinic lattice, described in detail in section 
1.1.2. These grains are elongated in the direction normal to the surface, 
with the diameter of approximately 50 nm [5, 6]. In addition, there is 
also a certain amount of the ZrO2 tetragonal phase. This structure of 
the oxide film is also characteristic of other typical zirconium alloys.

X-ray diffraction and electron microscopic studies show that the 
oxide film has a strong texture consisting of two main components: 
the so-called grain growth texture and a weaker axial component. As 
shown by transmission electron microscopy, these two components form 
in different areas of the oxide film, i.e., they are separated in space. 
The first component forms mainly on the a-grains of zirconium. There 
is a correlation between the orientation of the substrate and the oxide 
film formed on the substrate. The accurate type of correlation has been 
the subject of long discussions in the literature. Various investigators 
have published different relationships between the crystallographic 
directions of the substrate and the film. For example, Lin [5], on the 
basis of the results of investigations of the interface by transmission 
electron microscopy, proposed the following relationship:

[ ]100 4510 and (100) (0001)mm aa
   

 (7.1)

The latter relationship means that the colonies of the oxide grains are 
oriented mainly along the radius of the cylinder. Consequently, the 
direction [001]m in the oxide is parallel to the direction [1120] in the 
a-grains of the zirconium. This relationship will be denoted by:

( )[ ]010 100 (0001) 1120
m a

  

 
(7.2)

It should be mentioned that other relationships between the orientations 
of the oxide film and the pure zirconium substrate [7–9] have also 
been found. However, we shall refer only to (7.1) or (7.2) since they 
correspond to the texture detected in the investigated material.

The axial component of the texture, investigated in [5], is described 
as a normal to the plane (102̄ )m. Roy and David described the axial 
texture with the axis close to the normal to the plane (104̄ )m [10]. 

–

.

.
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We believe that in this case there is no separate axis and some of 
the crystallographic orientations are distributed along the normal to 
the substrate surface. In addition, if we consider the axis c of the 
monoclinic cell, whose [001]m direction is the axis for the grain growth 
texture (see (3.2)), then this direction is also close to the normal to 
the (106̄ )m plane. Similar reflections could not be detected in the 
experiments (even if they were stronger) because they are situated 
outside the range of experimental investigations. 

From the viewpoint of the information content, high-resolution 
electron microscopy may provide an answer to many questions in 
cases in which the conventional experimental methods cannot. In this 
specific case we used high-resolution electron microscopy for obtaining 
information on the crystallographic orientation of the nanocrystalline 
grains of zirconium oxide [1].

A thin foil of the oxide film produced by ion thinning, was examined 
in Philips CM12 (120 kV) and JEOL 2010 (200 kV) microscopes. The 
brightfield image of a typical section of the microstructure and the 
appropriate microdiffraction pattern are shown in Fig. 7.1. Analysis of 
the possible coincident-site lattices in the monoclinic lattice (section 
2.2) shows [12] that the zirconium oxide and evidently other ceramics 
[13, 14] contain preferential twin orientations. Figure 7.1 shows the 
characteristic features of the twin boundaries – straight sections of 
the grain boundaries (indicated by the arrows). Similar conclusions 
were also drawn in [15] in which twins in oxide films, grown on 
Zircalloy-4 alloy, were studied. As an example, Fig. 7.2 shows a twin 
boundary. Analysis of the image and the diffraction pattern makes it 
possible to identify the planes parallel to the boundary as (011), and 
the plane intersecting these planes under the angle of almost 95° as 
(111). In the experimental error range, this value coincides with the 
value of the angle between the given planes (93.3°) at the following 
lattice parameters [16]: a = 5.1490 Å, b = 5.2133 Å, c	=	5.3162	Å,	β	=	
99.228°. The interplanar spacing (d(011)/d(111) = 1.30), calculated from the 
values of these parameters, is very close to the experimentally measured 
value (1.22). Diffraction in the converging beam (Fig. 7.2b and c) 
shows that the axis of the zone for both adjacent grains is the same 
á211ñ, but the images are mirror reflections of each other. The mirror 
reflection can be achieved either by reflection in the plane of symmetry 
(grain boundary) or by rotating through 180° around the axis, normal 
to this plane. The misorientation parameters of such a grain boundary 
can be written as 90.8° [100] = 180° [6, 35, 36]. The latter direction 
is the direction of the normal to the (011) plane. Following the formal 
theory of CSL for the monoclinic lattice [39], this twin orientation is 

–

–
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Fig. 7.1 
Fig. 7.1. Microstructure of the ZrO2 film, in the region with the axial texture.

Fig. 7.2. Twin boundary in the region with the axial texture: (a) the image obtained 
by high-resolution electron microscopy; (b) and c) the appropriate diffraction patterns 
in the converging beams.

 

Fig. 7.2  

a

b c

described	by	the	inverse	density	of	the	coincident	sites	Σ	=	71,	or	more	
accurately	Σ	=	71a	 [16],	 in	 accordance	with	 the	 approximation	of	 the	
almost coincident sites which in fact is equivalent to the theory of the  
‘restricted’ CSL developed by King [17]. In this approach, the following 
approximation is used for the monoclinic lattice of zirconium oxide:

, cos (1/ 6)a b c= = b = -  (7.3)

(i.e.,	β	=	99.594°).
In this case, the matrix of the twin misorientation has the form

71

71 12 12
1 0 1 70
71

0 72 1
aR

- 
 = - - 
 -   

(7.4)
.
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It may easily be verified that 71 [211] [211].aR × =
This example has been discussed in such a detail in order to stress 

the following facts: it is not necessary that the twin grain boundary 
(and therefore any special grain boundary) should be described by the 
three-dimensional	 coincident	 site	 lattice	 with	 the	 lowest	 value	 of	 Σ.	
This conclusion is in agreement with the assumption made by King 
[17]. In this specific case we have the complete coincidence of the sites 
of the adjacent lattices in the grain boundary plane but the spacing of 
the CSL increases in the direction normal to the grain boundary plane.

7.2. High-resolution electron microscopy of zirconium oxide: grain 
clusters, surrounded only by special boundaries

As already mentioned in the beginning of the chapter, regions with 
different texture (growth and axial textures) in the microstructure 
of ZrO0 are separated in space. The main component is the growth 
texture ([001]m), which forms on the grains of a-zirconium. Two 
examples of such a region are shown in Fig. 7.3. In this case, the 
microstructure greatly differs from that shown in Fig. 7.1 in the same 
manner as the diffraction pattern which represents in this case ordered 
series of reflections, with some of these reflections split (see below). 
It is interesting to note that the orientations of the crystal planes in 
the entire region of the microstructure have the same appearance. At 
the same time, the boundaries between the grains are clearly visible. 
The atom columns in the direction normal to the examination plane 
coincide with the vector [001]. Therefore, the planes perpendicular to 
this direction are the planes (100) and (010) with similar interplanar 
spacings of 5.080 and 5.213 Å, respectively. Therefore, even high-
resolution microscopy does not make it possible to separate visually 
crystallographic directions in the adjacent grains. The presence of 
the intercrystalline boundaries helps to describe the crystallographic 
orientations of the adjacent grains on the micrograph shown in Fig. 7.3. 
The rotation of the monoclinic lattice through the angle of 180° around 
the	 [001]	 axis	 leads	 to	 the	 twin	misorientation	 Σ3b	 180°	 [001]	 with	
the coherent boundary in the (100) plane for both adjacent grains [39]. 
Consequently, the sets of the planes (100) and (010) in the adjacent 
grains are parallel to each other. Another twin misorientation around the 
[001]	axis	 is	 the	grain	boundary	Σ71b	90.8°	 [001]	=	180°	 [36,	35,	6].	
The last direction ([36, 35, 6]) is normal to the (110) plane. These twins 
(Σ71b),	situated	under	 the	angle	of	45°	 to	 the	edge	of	 the	photograph,	
are clearly visible in Fig. 7.3a. For the two types of twin boundaries 
of	the	grains	(Σ3b	and	71b)	we	analyse	the	type	of	 the	grain	boundary,	
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192 Superplasticity and grain boundaries

produced in the triple junction at contact of these two boundaries. The 
misorientation of the twin grain boundaries is written in the form

3 71

3 0 0 1 72 0
1 10 3 0 ; 70 1 0 .
3 71

1 0 3 12 12 71
b bR R

- - -   
   = - = -   
   - - -   

 

(7.5)

Consequently,	the	interaction	between	the	misorientations	Σ3b	and	Σ71b	
leads to the new misorientation described by the following matrix:

[ ]o
3 71

3 216 0
1 210 3 0 , 89.2 , 001 .

213
35 36 213

b bR R
 
 = - 
 -   

(7.6)

This	misorientation	differs	 from	the	misorientation	Σ71b,	90.8°,	 [001]	
only	by	Δθ	=	1.6°.	The	 interaction	between	 the	 two	boundaries	of	 the	

 

Fig. 7.3 
Fig. 7.3. High-resolution electron images of the microstructure of the ZrO2 film in 
the region of the growth texture [001](a,b) and appropriate diffraction patterns (c, d).

a

b

c

d
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193Percolation processes in a network of grain boundaries

type	Σ71b	 leads	 to	 the	misorientation:

[ ]o
71 71

5039 144 0
1 140 5039 0 , 178.8 , 001 ,

5041
1680 24 5041

b bR R
- 

 - - 
 -   

(7.7)

which	again	differs	by	only	∆θ	=	1.6°	from	the	misorientation	3b,	180°	
[001]. In both cases, the deviation in the misorientations is only twice 
the	 deviation	 of	 the	misorientation	 angle	 of	 the	 grain	 boundary	Σ71b	
90.8° [100] from 90°. Thus, there is a unique situation in the ZrO2 film 
with the monoclinic lattice: two twin boundaries, intersecting in the 
triple junction, form a third twin grain boundary; as a result, the entire 
ensemble of the grain boundaries in these section of the microstructure 
consists only of twins. Several possible geometrical configurations of 
a similar microstructure are shown in Fig. 7.4. It is important to note 
the surprising agreement of the configurations shown in Fig. 7.3 and 
7.4.	For	example,	 the	facets	(100)	for	Σ3b	and	{110}	for	Σ71b	are	 the	
coherent	 boundaries,	 and	 the	 facets	 (010)	 for	 Σ3b	 and	 (100)	 ||	 (010)	
for	 Σ71b	 are	 non-coherent	 twins.	 It	 should	 be	mentioned	 that	 similar	
microstructures were found in corrosion films formed on monoclinic 
particles in single crystals of tetragonal zirconium, stabilised with 
yttrium [18], and also in particles of monoclinic ZrO2, precipitated 
in the rhombohedral phase of the ZrO2–ZrN system [19]. Several 
special features of the microstructure, observed by high-resolution 
electron microscopy, will be discussed. Firstly, it is a deficit in the 
misorientation	 θ	 =	 1.6°	 formed	 when	 two	 boundaries	 Σ71b	 or	 the	
boundaries	 Σ71b	 and	 Σ3b	 meet	 at	 a	 triple	 junction.	 This	 deviation	
from the total angle of 360° can be described using the model of a 
joint disclination with a power of 1.6°. This is in agreement with the 
assumption on the joint disclinations in YBa2Cu3O7-  ceramics, made 
in [17]. One can propose a careful hypothesis according to which the 
distortion of the lattice on the high-resolution electron micrograph is 
caused by joint disclinations. However, it should be remembered that 
this distortion is probably an artefact, and distortions are consequences 
of the bending of the thin foil (section 4.1.2). Another interesting 
fact is found on the magnified image of the high-resolution electron 
micrograph (Fig. 7.5). A planar defect in the form of a facet along the 
(100) crystallographic plane rotates to the left through 90° (along the 
(010) plane) and breaks up in the centre of the grain. It is possible that 
this defect is a stacking fault. At the same time, the configuration (i.e., 
the facets along the (100) and (010) planes) resembles strongly the twin 
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194 Superplasticity and grain boundaries

Σ3b.	The	stacking	fault	should	form	as	a	result	of	grain	growth	and	not	
due to the deformation of the crystal. Its energy is twice the energy 
of the twin boundary situated in the same crystallographic plane. Is 
the formation of a defect with such high energy (in comparison with 
twins) in the lattice possible? In addition, there was no faceting of 
the stacking fault, although this is possible from the crystallographic 
viewpoint. Another hypothesis regarding the origin of this defect is 
that it is in fact a disclination at the end of the twin boundary 3b, 
ruptured in the body of the grain. Formally, this may also be a wedge 
disclination	with	a	power	of	either	180°	or	≈19.2°,	 if	 it	 is	assumed	that	
the	 structure	 of	 the	 grain	 boundary	 Σ3b	 forms	 in	 the	 (010)	 plane	 by	

Fig. 7.4. Possible types of triple junctions and facets, formed in the ZrO2 only by twin 
boundaries. The grains are oriented along the [100] direction normal to the plane of 
the figure.
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195Percolation processes in a network of grain boundaries

shearing	 through	 the	 angle	 of	 2β	–180°.	 In	 the	 literature	 there	 are	 no	
experimental data on the existence of disclinations with such power. 
Another explanation may be proposed on the basis of the experimental 
observation of a small amount of the ZrO2 tetragonal phase, both 
in x-ray diffraction studies [20] and Raman spectroscopy [5]. The 
monoclinic and tetragonal lattices have relatively similar parameters, 
and the interphase boundary can be almost coherent, especially for 
small grains. Similar boundaries are practically invisible under specific 
diffraction conditions. Appropriate observations were described in 
[19] where Van Tendello did not detect any sharp boundary between 
the grains of the orthorhombic and monoclinic phases with similar 
orientations. Also, there was no visible boundary between the tetragonal 
core of ZrO2 and the surrounding monoclinic shell in the zirconium 
oxide particles [21]. It should be mentioned that these investigations 
were carried out in a high-resolution electron microscope. Thus, instead 
of the sharp interphase boundary there is a smooth transition from 
the lattice of one phase (monoclinic) to the lattice of another phase 
(tetragonal) (Fig. 7.6).

Fig. 7.4. (Continued)
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196 Superplasticity and grain boundaries

Fig. 7.5. Magnified image of the section indicated by the rectangle in Fig. 7.3a.
Fig. 7.5. 

 

Fig. 7.6.	Schematic	representation	of	the	non-coherent	twin	boundary	Σ3b	(010)	broken	
up at the coherent interphase boundary with the tetragonal phase.

7.3. Effect of the statistics of the grain boundaries on diffusion in 
zirconium oxide

The crystals in the zirconium oxide film are very small (around 50 nm) 
so that direct methods of measuring the misorientation of the grain 
boundaries cannot be used. The methods described in Chapters 2 and 3 
helped to solve this problem by computer modelling. The information 
on the microstructure, presented in the previous sections, can be used 
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197Percolation processes in a network of grain boundaries

for a more realistic interpretation of the spectra of the misorientation 
of the grain boundaries produced in this manner. In [16] similar grain 
boundary spectra were determined on the basis of available data on the 
type of texture present in the ZrO2 film and a number of hypothetical 
considerations regarding the possible types of correlations which can 
form in the microstructure of zirconium oxide., Analysis can be carried 
out using the data obtained in high-resolution electron microscopy and 
the fact that the two types of texture components (growth texture and 
axial texture) in the microstructure of the zirconium oxide film are 
separated in space. This greatly simplifies the given task. 

As already shown, in regions in which the growth component is the 
main component, i.e., in the region where the oxide film is growing 
on the surface of a-Zr, the monoclinic lattice of the oxide film is 
oriented in such a manner that the direction [001]m is parallel to the 
normal to the substrate plane. In this case, the microstructure contains 
only	the	grain	boundaries	of	 the	 types	Σ3b	and	Σ71b.	Since	they	again	
form	 boundaries	 of	 the	 type	 Σ71b	 in	 the	 triple	 junction,	 the	 fraction	
of	 these	 boundaries	 is	 equal	 to	 2/3	 and	 the	 fraction	 of	 the	 type	 Σ3b	
boundaries is equal to 1/3. In regions in which the component of the 
growth texture [100]m	can	form,	 the	boundaries	Σ3a,	Σ71a,	Σ3b,	Σ71b	
can	 form	 together	with	 non-coherent	 twins	Σ1'	 and	pseudo-twins	Σ3c	
(all these boundary types were described in section 1.1.2). Thus, 
only a limited number of the grain boundary types can be present in 
the microstructure with the growth texture. Naturally, the previously 
described grain boundaries may have parameters which differ from 
the ideal misorientation. Similar deviations depend mainly on the 
sharpness of the texture of the a-grains of the substrate, i.e. zirconium. 
It is now necessary to analyse the types of grain boundaries existing 
in regions with the axial texture and in regions in the vicinity of the 
boundary. The misorientation distribution of the grain boundaries in 
the microstructure with the axial texture can be calculated using the 
algorithm proposed in [16]. In the present case, we use the following 
types of correlation: from all possible misorientations we select initially 
the twin misorientations and subsequently low-angle (<50°) grain 
boundaries. The sharpness of the axial texture, given by the half width 
of the Gaussian distribution, is equal to 5° (strong texture) and 15° 
(weak texture). It was assumed that in addition to the texture element 
[001]m there may also be another component, [100]m, and the CGBS 
for the mixture of these components, taken at a ratio of 1:1, was 
determined. Table 7.1 shows the misorientation distribution of the grain 
boundaries	(only	the	distributions	with	respect	to	Σ	are	given).	Analysis	
shows the presence of a large fraction of special and low-angle grain 
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Type of  
boundary

Type of texture
[001]m [001]m+[100]m

Sharp Weak Sharp Weak

LAB 13.7 11.4 7.6 7.0

Σ1´ 0.0 0.0 8.4 4.8

Σ3a 0.8 5.2 3.5 3.1

Σ3b 14.6 6.9 5.1 3.3

Σ71a 0.0 0.0 9.3 4.4

Σ71b 24.3 13.6 11.0 2.9

Σ3c 0.0 0.0 1.0 2.9

Others	(Σ<	30) 1.0 2.5 0.6 1.7

HAB (arbitrary) 45.6 60.4 53.5 69.9

Table 7.1. Spectrum of the misorientation of the grain boundaries in the ZrO2 film 
for regions with the axial texture

boundaries. This is evident in particular in the case of the ‘sharp’ axial 
texture. However, these regions do not consist exclusively of the special 
boundaries, as in the case of the growth texture where all the boundaries 
had a twin or similar orientation. As expected, the blurring of the axial 
texture increases the fraction of high-angle arbitrary boundaries (to 
60.4% in the presence of only one texture component [001]m, and up 
to 69.9% in the case of a mixture). All possible orientations in the 
boundary regions (where both the growth texture and axial texture 
are present) can be calculated as the misorientations between the 
grain boundaries relating to the growth texture, and the orientations 
of the grains with the axial texture. The misorientation distribution of 
the grain boundaries, obtained by this procedure, is shown in Table 
7.2. Calculations were carried out using the same type of correlation 
– initially special and then low-angle grain boundaries. The results 
show that the main fraction of the grain boundaries for these regions 
is represented by the high-angle grain boundaries of the arbitrary 
type. Now we can estimate the total misorientation distribution of 
the grain boundaries for a ZrO2 film formed on the surface of the 
Zr–2.5% Nb alloy. As already mentioned, the microstructure of the 
zirconium alloy has been studied in detail. The microstructure consists 
of elongated grains of a-zirconium whose dimensions are expressed 
approximately by the ratio 25:5:1, and the longest side is about                                                                                                           
5 µm. X-ray diffraction studies show [20] that approximately 3/4 of 
all a-grains have a favourable orientation for the formation on them 

�� �� �� �� ��



199Percolation processes in a network of grain boundaries

of the oxide film with the growth texture. Consequently, in the total 
CGBS we should add up the twins S3b with the weight coefficient 1/4, 
and	the	grain	boundaries	Σ71b	with	the	coefficient	1/2.	If	 it	 is	assumed	
that the remaining 25% of the grain boundaries are regions with the 
axial and mixed texture in the same proportion, we can calculate the 
distribution of the grain boundaries with respect to S in the ZrO2 film 
formed on the surface of the Zr–2.5% Nb alloy during annealing. The 
results are presented in Table 7.3.

Now we can estimate the effect of the ensemble of the grain 
boundaries on the transport properties of polycrystalline materials 
(oxidation processes – diffusion of oxygen and hydrogen) on the 
example of the zirconium oxide film. The main type of diffusion at 
service temperatures in zirconium pipes is grain boundary diffusion. 
The variation of the kinetics of these processes in the ensemble of the 
grain boundaries with different misorientation distributions in the grain 
boundaries will be determined. As the model we use a two-dimensional 
system of grains consisting of regular hexagons (an example of such 
a system is shown in section 1.2.2) and use the approach described 
in Chapter 1. For the textures present in the ZrO2 film we determine 
the growth texture, the axial texture and a mixture of these textures, 
also the CGBS differing in the type of correlation and orientation 
of the adjacent grains. A similar study [16] was conducted prior to 
obtaining the experimental data on the microstructure of the ZrO2 film 
by the methods of high-resolution electron microscopy (section 3.1.1) 

Type of  
boundary

Type of texture

[001]m [001]m+ [100]m

Sharp Weak Sharp Weak

LAB 7.2 2.1 3.8 1.0
Σ1´ 0.1 0.0 0.4 0.0
Σ3a 0.0 0.1 0.3 0.1

Σ3b 0.8 0.0 0.2 0.0

Σ71a 0.0 0.0 0.5 0.1

Σ71b 0.0 0.0 0.3 0.0
Σ3c 1.5 0.1 0.4 0.1
Σ71c 0.0 0.0 0.8 0.1
Others	(Σ<	30) 2.0 2.3 2.0 2.1

HAB (arbitrary) 88.4 95.4 91.3 96.5

Table 7.2. Spectrum of the misorientation of the grain boundaries in the ZrO2 film for 
the region with the mixed texture
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200 Superplasticity and grain boundaries

and, therefore, the study used simulation considerations regarding 
the possible types of correlation in the orientation of the adjacent 
grains. However, the important feature of the results is the detection 
of the dependence of the kinetic parameters of diffusion on the type 
of spectrum of the grain boundaries in the polycrystal. Now, when the 
results obtained in high-resolution electron microscopy are available 
(see previous sections), we can evaluate with a high accuracy the type 
of ensemble of the grain boundaries in the zirconium oxide film. The 
distributions with respect to the inverse density of the coincident sites 
(Σ)	 are	 shown	 in	Table	 7.3.	They	 greatly	 differ	 for	 different	 types	 of	
texture and the types of correlation in the orientation of the adjacent 
grains.

The method of modelling diffusion in a network of the grain 
boundaries has the form of the random walk algorithm. It can be 
described as follows. On the network of the hexagonal boundaries, 
each boundary has its own index of the low-angle boundaries (LAB), 
high-angle boundaries (HAB) or S (special boundary) in accordance 
with the partial fraction in the spectrum of the grain boundaries. The 
diffusion permeability of the individual boundary corresponds to its 
index. We selected the following parameters: HAB (arbitrary) has grain 
boundary diffusion permeability; LAB – diffusion permeability of the 
dislocations; for S-boundaries diffusion permeability is equal to lattice 
permeability. Since the length of all the grain boundaries is the same 
(), we estimate that time during which the ‘test particle’ travels this 
distance is:

Type of  
boundary

Type of texture

[001]m [001]m+[100]m

Sharp Weak Sharp Weak

LAB 3.2 2.6 1.8 1.6

Σ1´ 0.0 0.0 1.9 1.1
Σ3a 0.2 1.1 13.3 13.2
Σ3b 28.2 26.5 13.6 13.2
Σ71a 0.0 0.0 27.1 26.0
Σ71b 55.3 53.0 27.4 25.6
Σ3c 0.0 0.0 0.2 0.6
Others	(Σ<	30) 0.3 0.6 0.2 0.4

HAB (arbitrary) 12.7 16.2 14.6 18.3

Table 7.3. The total misorientation distribution of the grain boundaries in the ZrO2 film
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2
0/ , where exp ,QD D D
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 t ∝ = - 
 



 
(7.8)

and D0 and Q are taken for three types of diffusion (D0V, QV is volume  
(bulk) diffusion; D0d, Qd is dislocation diffusion; D0gb, Qgb is grain 
boundary diffusion). We used the parameters of volume, dislocation 
and grain boundary diffusion of oxygen in zirconium oxide [28]. Using 
for temperature T = 673 K, we obtain the characteristic times for every 
type of grain boundary.

Subsequently, in a triple junction we select with the probability of 
1/3 a grain boundary along which the ‘test particle’ travels. The particle 
travels along the entire grain boundary during the time corresponding 
to its type. Our system consists of 25 × 25 = 625 grains. Periodic 
boundary conditions were introduced: the ‘test particle’, leaving the 
system at the boundary appeared at the equivalent point of the opposite 
side and continued to move. The distance travelled by the particle 
during a relatively large number of steps characterises the kinetics of 
these processes.

Figure 7.7 shows the logarithmic dependence of the mean path                  
áR2ñ1/2 on time (or on the number of steps) for ensembles of the grain 

Fig. 7.7. Kinetics of oxygen diffusion through ZrO2 film for CGBS.

(a) (b)

(c)
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202 Superplasticity and grain boundaries

boundaries with different types of correlation. It may be seen that the 
HAB correlation results in higher diffusion mobility of such a system 
(in fact, this was also expected). The difference in the oxidation rate 
may reach an order of magnitude. Thus, it may be predicted that the 
Zr–2.5% Nb alloy will be characterised by the nonuniform growth of 
the oxide film in boundary regions between the zones with the gross 
texture and the axial texture. Indeed, such ‘protuberances’ of the 
oxide film were detected in experiments at the boundaries between a 
columnar structure and grains with a more equiaxed structure [5, 6]. 
The columnar structure of the grains is a clear indication of the growth 
texture and the more equiaxed structure (also stretched in the growth 
direction) consists of the regions with the axial texture.

7.4. Special features of oxidation kinetics under the effect of 
stresses at the metal/oxide boundary 

In the previous section it was explained that the total kinetics of 
oxidation of the Zr–2.5% Nb alloy is determined by the fastest of 
the processes – grain boundary diffusion in the regions between the 
microstructure with the growth texture and the axial texture. However, 
the oxidation kinetics on the macrolevel is also influenced by the stress 
formed at the metal/oxide interface during the growth of the ZrO2 film 
because of differences in the lattice parameters of the substrate and 
the growing film and also the differences in their thermal expansion 
coefficient. The components of the stress tensor differ from zero in the 
substrate plane and the tensor is the function of the thickness of the 
growing film. In the approximation of the isotropic medium only its 
component syz = s(x) can be investigated in the plane normal to the 
diffusion direction. The maximum value of this stress (compressive) 
measured by different methods [20, 22, 23] should reach 1 GPa. It 
is obvious that the function s(x) is a linear function of the thickness 
of the film and disappears at the gas/oxide boundary. The critical 
value of the stresses leads to the formation of pores, cracks and other 
three-dimensional defects in the growing layer of the oxide film. The 
experiments show that the ZrO2 film consists of two parts: external 
(porous) and internal (in which no similar defects were detected) 
[20]. The internal layer protects against further oxidation in corrosive 
media and against hydrogen diffusion. To estimate the service life of 
the materials, it is very important to evaluate the kinetics of diffusion 
processes in these systems. Regardless of the fact that the diffusion 
models for zirconium alloys have been studied in a large number 
of investigations [24–26], to solve the task described in this book 
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the effect of the stress, formed at the metal/oxide boundary, on the 
oxidation kinetics of Zr–2.5% Nb alloy in the system with two moving 
boundaries was studied for the first time in this work.

The mathematical model is based on the description of the following 
physical processes taking place in the system. The oxygen molecules 
breakup into atoms at the gas/oxide interface. The O2– atoms diffuse 
through the film mostly along the grain boundaries and triple junctions. 
Reaching the metal/oxide interface surface, they are oxidise the 
metal, causing further growth of the oxide film. Growth of the film 
is accompanied by the formation of compressive stresses in the film 
reducing the diffusion rate of the oxygen atoms. To stop the stress 
from increasing, a percolation network of pores and cracks forms in 
the external part of the oxide. The effective gas/oxide interface travels 
into the thickness of the film.

The physical processes form, with certain assumptions, the basis of 
the mathematical model in which a semi-infinite specimen is separated 
by flat gas/oxide and oxide/metal interfaces. During oxidation, the 
surfaces of these boundaries move into the bulk of the metal. The 
compressive stresses form at the oxide/metal interface. Diffusion takes 
place in the field of the oxygen concentration gradient and the field of 
the compressive stresses gradient.

Figure 7.8 shows schematically the diffusion process described 
by this mathematical model. Thus, we formulate the problem of one-
dimensional diffusion for the semi-infinite space from an unlimited 
source with two moving boundary conditions. The diffusion of oxygen 
in the Zr–2.5% Nb alloy is ignored because the rate of this diffusion 
is considerably lower than that in the oxide film. Consequently, the 
diffusion equation for the pore-free ZrO2 film has the following form

2

02

0 0 01

; ( ) ( );

( ( ), ) ; ( ( ), ) ,

C C CD S t x S t
t x RT t x

C S t t C C S t t C

 ∂ ∂ W ∂ ∂s
= + ≤ ≤ ∂ ∂ ∂ ∂ 

= =  

(7.9)

where C is the concentration of the O2– atoms; D is the diffusion 
coefficient; W is the molar volume; R and T are the gas constant and 
temperature, respectively; S0(t) and S(t) are the coordinates of the 
moving gas/oxide and oxide/metal interfaces. The Stefan condition is 
satisfied for the boundary S(t)

( ) 01| .x S t
C dSD C
x dt=

∂
- =

∂  
(7.10)
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Prior to continuing investigations, it should be stressed that this model 
uses the ‘effective’ diffusion coefficient which can be calculated on the 
basis of assumptions on the spectrum of the grain boundaries, described 
in the previous section. This is a very important difference between 
this model and many other models found in the literature. We study 
two conditions which greatly simplify our task and enable an analytical 
solution of the problem. Firstly, we select a linear relationship between 
the coordinates S0 and S: S0(t)	 =	 βS(t). We also assume the linear 
dependence	of	 the	resultant	stress	on	 the	 thickness	of	 the	film:	σ(x) = 
σ0(x–S0)/(S–S0). Transferring to the dimensionless variables we obtain 
the following equation

2
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(7.11)

and the Stefan condition
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where
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Рис. 7.8 Схематическое представление модели диффузии кислорода через пленку ZrO2 с учетом 
влияния напряжения на границе металл/окисел Fig. 7.8. Schematic representation of the model of diffusion of oxygen through the 

ZrO2 film taking into account the effect of stress at the metal/oxide interface.
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Pore-free layer Metal

01 01 0

0 01 0 01

; ; ,C C CC
C C C C RT

- Ws
= a = d =

- -  
(7.13)

and a is some characteristic length. The remaining parameters are 
presented in Table 7.4.

Non-stationary diffusion
The solution of the equations (7.11)–(7.13) will be found in the form

0( / ); 2 ; ,where 0 1.C x S S S= ψ t = γt = b ≤ b ≤  (7.14)

After simple transformations, we determine the concentration profile

erf ( / 2 ) erf ( / 2 )) , where ,
erf ( / 2 ) erf ( / 2 ) 2 (1 )

A x AC A
A A

γ + - t + d
= =

γ + - b γ + γ -b  
(7.15)

and γ is the diffusion (oxidation) rate which can be determined from 
the transcendental equation 

2exp ( / 2 ) erf ( / 2 ) erf ( / 2 ) 1.
2

A A Apγ    a γ + γ + - b γ + =      
(7.16)

Substituting	 the	 values	 δ	 =	 0	 and	 β	 =	 0	 into	 equation	 (7.16)	 gives	
the well-known equation for describing the heat transfer or diffusion 
processes in the systems with the moving boundary conditions:

exp( / 2)erf ( / 2) 1.
2
pγ

a γ γ =
 

(7.17)

The following approximation can be used at high values of d:

Parameter Decoding and values

С0 Concentration at the gas/oxide interface (1511 kg/m) [25]

С01 Concentration at the metal/oxide interface (1417 kg/m) [25]

Ω Molar volume of ZrO2 (282.2 ·10–7 m3/mole)

σ0 Maximum stress at the metal/oxide interface

Table 7.4. Parameters used in equations (7.11)–(7.13)
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206 Superplasticity and grain boundaries

2exp( )erf ( ) 1 .xx
x

-
≈ -

p

Consequently,	 γ	 is	determined	by	 the	equation

exp( ) .
(1 )

d -d
γ =

a - b

Pseudo-stationary diffusion
The experiments with the measurement of the thickness of the pore-
free layer show that after some time both interfaces (gas/oxide and 
oxide/metal) start to move in self-matched manner, i.e., the thickness 
of the pore-free oxide layer remains unchanged [20]. In this case, the 
relationship S = S0 + h can be used. Consequently, diffusion is assumed 
to be independent of time and takes place in the moving layer with  
thickness h:

2

0 02 0; ( ) ( ); ( , ) 1; ( , ) 0,C C S x S C S C S
x h x

∂ d ∂
+ = t ≤ ≤ t t = t =

∂ ∂  
(7.18)

with the solution for the concentration profile

0exp ( ) / exp( )
.

1 exp( )
x S h

C
 -d - - -d =

- -d  
(7.19)

The point of transition from non-stationary to stationary diffusion can 
be determined from the relationship:

crit

2

2 .
2 (1 )

h
t =

γ - b  
(7.20)

The concentration profiles (7.15) and (7.20) should coincide.
The main task of the diffusion model is to predict the kinetic 

parameters,	 i.e.,	determine	parameter	γ	and	 the	 thickness	of	 the	oxide	
film h. For non-stationary diffusion the dependence of the numerical 
solution of equation (7.16) on parameters b and d is shown in Fig. 7.9 
and 7.10. In Fig. 7.9 the diffusion rate is shown as a function of the 
parameter b which is referred to as the coefficient of linear response of 
the system and characterises the rate of removal of the stress generated 
during the growth of the oxide film. It is clear that the diffusion rate 
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207Percolation processes in a network of grain boundaries

should decrease with increasing stress (low values of b). Figure 7.10 
shows the effect of the value of the maximum stress at the oxide/ 
metal boundary on the kinetic parameters of oxygen diffusion. The 
transcendental equation (7.16) was solved numerically for d < 3 using 
the expression for asymptotics (7.18). The diffusion rate decreases 
exponentially with increasing maximum stress.

The following numerical estimates were obtained on the basis 
of the results. Using the parameters from Table 7.4, it  can be 
seen that a ~ 15 and for s0 = 1 GPa d ~ 5. Parameter b can be 
determined using the experimental data for stationary diffusion as                                                                                                                                               
b  = 1 – h/w ~ 0.733, where h and w is the thickness of the pore-
free layer and the total thickness of the oxide film [27]. Using all 

Fig. 7.9. Dependence of the diffusion rate on the ‘feedback’ coefficient b for two 
values of parameter a: 1 (1) and 15 (2).

Fig. 7.10. Dependence of the diffusion rate on stress at the metal/oxide interface for 
two values of the parameter b: 0 (1) and 0.5 (2) (a = 15).�� �� �� �� ��



208 Superplasticity and grain boundaries

the data, the following estimate is obtained for the diffusion rate:                               
γ ~ 0.297, and from equation (7.21) we determine the point of transition 
from non-stationary to pseudo-stationary diffusion: tcrit ~15. Using the 
numerical values for the oxygen diffusion coefficient [28] we can plot 
the dependence of the total thickness of the oxide film and of its pore-
free part as a function of dimensionless time (Fig. 7.11). The equations 
are used for the times shorter than critical are S (τ)	=	 (2	 γτ)1/2 and S0 
(τ)	=	βS(τ).	In	the	case	of	stationary	diffusion	the	oxidation	kinetics	for	
both interfaces is the same. Regardless of the apparently simple form 
of the resultant solution this solution is of considerable importance. In 
the experimental investigation of the oxidation kinetics of the zirconium 
alloys many investigators found in the thickness of the oxide layer the 
transition from ‘quadratic’ (or normal) (h ~ t1/2) to ‘cubic’ dependence 
(h ~ t1/3). The large numbers of attempts to explain this behaviour have 
not been successful. If Fig. 7.11 is plotted in the logarithmic ordinates 
and the so-called cubic law of oxidation kinetics is applied on the same 
scale (Fig. 7.12) it may be seen that for the times longer than critical 
the cubic law is almost completely identical with the normal oxidation 
kinetics. Thus, switching the type of diffusion from nonstationary to 
pseudo-stationary may be used as a rational explanation of the observed 
experimental result.

7.5. Texture and spectrum of misorientation of the grain 
boundaries in an NiO film on (100) and (111) substrates: modelling 
and experiments

Another system: nickel–nickel oxide will now be investigated. Nickel 
is used in the manufacture of magnetic information carriers and is 

Fig. 7.11. Oxidation kinetics of zirconium for porous (1), pore-free (2) and whole (3) 
oxide film layers.
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209Percolation processes in a network of grain boundaries

the main component in the majority of creep-resisting alloys used in 
aerospace technology [29]. In addition, at present some of the elements 
of the blades for gas turbine engines are produced from single crystals 
of nickel alloys. Therefore, the investigation of the diffusion processes 
and, consequently, oxidation of nickel single crystals is of considerable 
importance. What is the role played by the texture and grain boundaries 
in these processes? The point is that the oxidation kinetics is determined 
by the diffusion of nickel through the oxide film to the gas/oxide 
boundary. As in the case of oxidation of zirconium considered in the 
previous section, the nickel oxide film is nanocrystalline (even on the 
single crystal substrate) but in this case the kinetics of diffusion of the 
metal (nickel) is determined by the microstructure, texture and ensemble 
of the grain boundaries of the NiO film. The results of experimental 
investigations [30–32] show that the difference in the oxidation rate 
of the nickel single crystals (100) and (111) is more than an order of 
magnitude. Examination of the microstructure shows that the mean 
grain size of the oxide films (100)–NiO and (111)–NiO is approximately 
the same. The existing difference cannot increase the volume fraction 
of the grain boundaries to the extent sufficient for explaining this 
difference in the kinetics. We attempted to use the previously developed 
approach relating to the effect of the misorientation distribution on 
the diffusion properties of the investigated material. Details of these 
investigations are presented below.

The grain boundaries in the nickel  oxide polycrystals  are 
characterised by higher diffusion permeability for nickel at elevated 

Fig. 7.12. The kinetics of oxidation of zirconium, constructed in the logarithmic 
coordinates, for porous (1) and whole oxide film layers (2). The ‘cubic’ law of oxidation 
kinetics is shown here  (h ~ t1/3) (3).
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210 Superplasticity and grain boundaries

temperatures1. Thus, they determine the appropriate corrosion properties 
[33]. In particular, it was found the diffusion of nickel is capable of 
increasing the vacancy concentration and, consequently, the volume 
diffusion coefficient. A similar mechanism may also operate at 
the grain boundaries (as shown by Atkinson and Taylor [34, 35]). 
Consequently, the control of the properties of the ensemble of the 
grain boundaries determines the shielding properties of nickel-based 
materials. The size of the crystals (grains) in the resultant nickel 
oxide film (and also in the majority of oxide films) is very small and 
it is not always possible to use the currently available experimental 
devices for direct measurements. The method of restoration of the 
misorientation distribution of the grain boundaries with respect to the 
texture data can be used in this case. Regardless of the fact that there 
is no unambiguous relationship between the orientation distribution 
function in the spectrum of the grain boundaries, it is possible to use 
some of its special features for determining the nature of correlation 
in the orientation of the adjacent grains and at the same time obtain 
statistically reliable data on the CGBS. Processes of formation of the 
NiO film on nickel single crystals with the orientation (100) and (111) 
will be discussed.

The experiments show that the textures of the oxide films, formed on 
single crystals with different orientation, greatly differ from each other. 
It is logical to assume that the appropriate grain boundary spectra also 
differ. Consequently, the NiO film on the (100) substrate also consists 
of the grain boundaries with no preferential orientation, whereas the 
oxidation of the (111) single crystal results in the formation of the 
ensemble of the grain boundaries which consists mainly of special 
grain boundaries.

The texture of the oxide was measured in a Siemens diffractometer 
in MoKa radiation. Incomplete pole figures (PF) were obtained with the 
tilt angle of up to 80° at 5° steps for the polar and azimuthal angles. 
Intensity was corrected for the absorption and defocusing conditions on 
the basis of the measurement of a PF standard – a textureless specimen 
produced from NiO powder. Figure 7.13 shows incomplete pole figures 
for the nickel oxide film grown on the (100) and (111) substrates.

The quantitative characteristic of the texture, ODF, can be determined 
by the Bunge method [17]. Figure 7.14 shows the grain orientation 
distribution functions for the NiO films on the (100) and (111) nickel 
single crystals. Analysis of the ODF shows the strong effect of the 
1Discussing the elevated temperatures (~1000°C) it should be remembered that they 
are still lower than 0.5 Tmax for NiO and diffusion takes place mainly along the nickel 
oxide grain boundaries.
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211Percolation processes in a network of grain boundaries

Fig. 7.13. Grain orientation distribution function for (100)-NiO (a) and (111)-NiO (b).

Zone I II III IV V VI VII VIII

(100) 30.9 1.8 2.1 10.7 33.4 14.0 1.6 5.5

(111) 2.5 3.4 2.2 15.6 40.0 7.4 6.9 24.1

 

Рис. 7.14 Функция распределения ориентировок зерен для (100)-NiO (a) и (111)-NiO (b).  

a b 
Fig. 7.14. Incomplete pole figures (111) and (200) for the nickel oxide film grown on 
single crystal substrate: (a) (100); (b) (111).

substrate orientation on the produced texture of the film. For example, 
NiO, grown on the (100) substrate, is characterised by a strong texture 
component (100) [001]. The formation of this texture is determined by 
the epitaxial growth of the oxide film. Comparison of these ODFs with 

(a)

(b)

(a) (b)
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212 Superplasticity and grain boundaries

the modelling distribution function, described in section 3.1, shows 
that it is related with the so-called recrystallisation texture of copper. 
The orientation distribution function of the nickel oxide, formed on the 
(111) single crystal, is more complicated and is described by numerous 
maxima. Here it is necessary to mention the strong maximum in the 
section j2 = 45° corresponding to the twin orientation. The presence 
of the maximum already indicates the existence of suitable conditions 
for	 the	 formation	of	 twin	boundaries	 (Σ3)	 in	 the	 system.

The resultant ODFs were used to calculate the misorientation 
distribution of the grain boundaries for the NiO films, grown on nickel 
single crystals with the orientation (100) and (111). Figure 7.15 shows 
the appropriate distribution function of the misorientation angles and 
axes.	The	distribution	with	respect	to	Σ	is	shown	in	Table	7.5.	Here,	we	
can divide all the boundaries into three main classes: low-angle, high-
angle arbitrary and special grain boundaries. Both the misorientation 
distribution of the grain boundaries (Fig. 7.15) and Table 7.5 show 
that the ensembles of the grain boundaries in NiO strongly depend 
on the type of substrate. The nickel oxide film, grown on the (100) 
single crystal, is characterised by a high fraction of low-angle grain 
boundaries with the misorientation axes close to the direction of the 
normal to the (100) plane. These boundaries form approximately 40% of 
all grain boundaries. The fraction of the special grain boundaries which 
includes	 only	 the	 grain	 boundaries	 with	 Σ	 =	 3,	 is	 equal	 to	 3.1.	 The	
nickel oxide on the (111) substrate is characterised by a high fraction 
of	 the	 Σ3	 boundaries	 (27.6%)	 and	 a	 small	 fraction	 of	 the	 low-angle	
grain boundaries. At approximately the same content of the high-angle 
arbitrary grain boundaries (56.6% for the (100) film, and 66% for 
the (111)) film of the oxidation kinetics is determined mainly by the 
difference in the fractions of the special and low-angle boundaries it 
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Fig. 7.15. Misorientation spectrum of the grain boundaries in the (100)–NiO (a) and 
(111)–NiO films (b).
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213Percolation processes in a network of grain boundaries

has been proposed to use these special features of the misorientation 
distributions of the grain boundaries of the NiO films in modelling of 
the oxidation kinetics.

In modelling the oxidation kinetics of the nickel single crystals with 
different orientation we can use the random walk method modified for 
the actual microstructure [36]. It is assumed that an infinite source 
of oxygen atoms is located on the surface of the oxide film. The 
microstructure of the film is formed by the Monte Carlo method and 
its size is 4000 × 224 grains (Fig. 7.16a). The magnified fragment of 
this microstructure is shown in Fig. 7.16b. The grain size is selected 
at random in accordance with the size distribution function of the 
grains. In this case we use the Gaussian distribution (Fig. 7.16c). All 
the dimensions are presented in the units of the size of the elementary 
cell used in the calculations.

In accordance with the geometrical criterion the probability of a 
diffusing atom being in the region of the grain boundaries is given by 
the expression

Table 7.5. Distribution of grain boundaries with respect to S in (100)–NiO and (111)–
NiO films

Substrate Σ3 LAB HAB (arbitrary)

(100) 3.1 40.4 56.6
(111) 27.6 6.4 66.0

Fig. 7.16. Microstructure used in modelling the oxidation process: (a) general view, 
(b) large plan; (c) the size distribution of the grains.
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214 Superplasticity and grain boundaries

/ ,p dd  (7.21)

where δ is the width of the boundary; d is the grain size. The diffusing 
atom is allowed to travel to the new site in one of the four possible 
directions. The distance over which the atom can move is determined 
by the equation

min4 ( , ) ,d D x y tD = D

where D (x, y) is the diffusion coefficient which depends on the position 
of the diffusing atom; Dtmin is the minimum time period. In turn, the 
minimal period is calculated from the equation

2

min
max

,
4

Lt
D

D =

 
(7.22)

where L is the size of the calculation cell which depend on the 
mean grain size; Dmax is the maximum diffusion coefficient along the 
investigated grain boundary. In modelling, the diffusing atom continues 
to move over a specific period of time. The final position is recorded 
and assumed to be occupied and, consequently, the next atom cannot 
occupy this position. The movement of approximately 20 million of 
diffusing atoms is calculated to obtain statistically significant results. 
This is followed by determination of the concentration profile in the 
depth of penetration and the oxidation kinetics.

To describe the system completely, it is necessary to specify the 
appropriate parameters of the individual grain boundaries and the 
diffusion coefficients for them. In this case, we use the approach 
tested for evaluation of diffusion in the ZrO2 (section 7.3), i.e., each 
boundary was allocated the diffusion coefficient in accordance with the 
type of boundary. The type of individual boundary was specified as 
random in accordance with the partial fraction of specific boundaries 
in the ensemble of the grain boundaries. It should be mentioned that 
all	 the	boundaries	were	divided	 into	 three	groups:	Σ3	(or	 twins),	 low-
angle	 (θ	 ≤	 15°),	 and	 high-angle	 arbitrary	 grain	 boundaries.	 These	
boundaries are characterised by different diffusion coefficients: the 
twins have the lattice diffusion coefficient; the low-angle boundaries 
the dislocation coefficient, and the high-angle boundaries have the grain 
boundary coefficient. The appropriate diffusion coefficients were taken 
from studies by Atkinson et al [34, 35]. For the given experimental 
conditions (temperature 1073 K and the external oxygen pressure                             
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215Percolation processes in a network of grain boundaries

1 atm) the diffusion coefficient of nickel in the oxide film is:

19 2 1

6 2 1

15 2 1

2 1

14 2 1

2 1

5.52·10 m ·s
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(7.23)

The grain boundary is assumed to be 0.7 nm wide, the size of the 
calculation cell is the same for all grains, and the grain size itself was 
determined in experiments and equals 150 nm. 

Figure 7.17 shows the concentration profile for diffusion of nickel 
atoms through the oxide film plotted for two types of CGBS shown in 
Table 7.5. The graph also shows the concentration profile for lattice 
diffusion. It is clear that the lattice diffusion shows the smallest 
penetration depth. The depth of penetration of the diffusing atoms 
for the NiO film characterised by the maximum fraction of the twin 
boundaries in the microstructure is close to lattice diffusion. The 
oxide film with the highest fraction of the low-angle grain boundaries 
is most permeable for nickel. Identical results were also obtained for 
the oxidation kinetics. Since the fraction of the arbitrary boundaries 
of the grains in the NiO films, grown on both substrates, differs by 
approximately 7%, the main difference in the oxidation kinetics (or, 

Fig. 7.17. Calculated concentration profile after 1800 s for (100)-NiO (1) and (111)-
NiO (2). The profile for purely bulk diffusion is also given (3).
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216 Superplasticity and grain boundaries

in other words, the diffusion of nickel in the oxide film) is caused by 
the low-angle boundaries and twins.

Figure 7.18 shows the results of modelling of the oxidation kinetics 
of NiO films and the appropriate experimental curves [37]. The 
(111)-NiO oxide film shows the parabolic law of oxidation (in the 
dimensionless quantities) with the equation y2 = 5.6t. In the case of 
the (100)-NiO oxide film the coefficient of the parabolic law increases 
and the kinetics is described by the equation y2 = 171.5t. In this case, 
all the modelling parameters (with the exception of the CGBS) are 
the same. Consequently, it can be assumed that the difference in the 
type of ensemble of the grain boundaries results in deviations from 
the oxidation kinetics. After all, complete agreement between the 
modelling and experimental results is not possible because in reality 
there are differences in the microstructure of the oxides, although the 
mean grain size of the oxide is approximately the same. However, 
modelling shows that the difference in the oxidation rate, detected in 
the experiments, can be explained by differences in the ensembles of 
the grain boundaries in the oxide films. In addition, if we calculate 
the ratio of the oxidation rate, using the parabolic law of oxidation 
for the (100)-NiO film (y2 = 62t) which is close to the calculated law, 
we obtain the value of approximately 11. The ratio of the oxidation 
kinetics, determined on the basis of the experimental data, is 14. 
This agreement between the calculated and experimental data can be 
regarded as a reliable confirmation of the accuracy of the proposed 
model.

Another important parameter (in addition to the CGBS) which 
determines the oxidation kinetics is the mean grain size. In a general 
case, the increase of the mean grain size of the microstructure reduces 
the oxidation rate as a result of a reduction of the volume fraction of 

Fig. 7.18. Oxidation kinetics of the (100)-NiO (1) and (111)-NiO (2) films: (a) modelling, 
(b) experimental curves [18].
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217Percolation processes in a network of grain boundaries

the	 grain	 boundaries	 of	 the	 function	 ~3δ/d. The general equation for 
the oxidation kinetics (the increase of the thickness of the oxide film 

~ 4y Dt ) gives the dependence of the growth rate: 1/2~ dyK D
dt

. It is 

well known that in the first approximation the diffusion coefficient has 
the following form:

(1 ) ,V gbD x D xD= - +  (7.24)

where DV is the lattice diffusion coefficient; Dgb is the grain boundary 
diffusion coefficient; x is the volume fraction of the grain boundaries. 
It is clear that x	~3δ	 /d <<1 and, consequently

1/21 3 , .gb
V

V

D
D D K d

d D
- d

+ 
 

 

 
(7.25)

The oxidation rate and the appropriate kinetic dependences, obtained 
by modelling for different values of the mean grain size, are presented 
in Fig. 7.19. The variation of the parameter K is governed by the law 
(7.25) which also confirms the accuracy of the selected model.

Cerium oxide (CeO2) and other active additions improve the 
corrosion properties of many metals and alloys at elevated temperatures. 
In [38, 39], the Ni–NiO system was investigated in the conditions with 
cerium additions. The results show that the efficiency of the additions 
depends strongly on the type of the surface of the given substrate and 
treatment. The experiments were described here differ from previous 

Fig. 7.19. Dependence of the oxidation rate of the NiO isotropic film on the mean 
grain size: G = 60 nm (1), 150 nm (2), 225 nm (3) and 300 nm (4).
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218 Superplasticity and grain boundaries

ones only by the presence of active cerium additions. To introduce 
additions, the surface of the specimens (a nickel single crystal with 
the orientations (100) and (111)) was coated with a CeO2 solution. 
Subsequently, the specimens were annealed at a temperature of 1573 K 
for 1 h. The thickness of the coating was approximately 40 nm, and the 
size of the cerium oxide crystals of the order of 5 nm [40]. In addition 
to the x-ray investigations and recording of the texture, attention 
was also given to the variation of the morphology of the surface of 
the oxide film using a microprobe microscope (AFM – atomic force 
microscope) manufactured by Digital Instruments Nanoscope III. The 
experimental details were described in [41].

The morphology of the surface of the oxide film with both 
orientations, formed in the absence of cerium, has distinctive 
crystallographic appearance (Fig. 7.20 a–c). After coating with cerium 
the morphology greatly changes and becomes globular (Fig. 7.20d) 
and also differs in external features. The structure of the NiO oxide 
film on the single crystal substrate (100), coated with cerium, is of the 
‘cauliflower’ type, and on the (111) + CeO2 substrate it has the form of 
spherical grains uniformly distributed on the surface. Thus, it may be 
concluded that the cerium addition changes the morphology of the NiO 

Fig. 7.20. Morphology of NiO on the surfaces: (a, b) (100) without the cerium coating; 
(c) (111) without the cerium coating; (d) (111), modified with cerium. 

a b 

c d 

Рис. 7.20 Морфология поверхности окисла никеля (NiO) на поверхности (100) (a, b) и (111) (с) без 
покрытия церием; (d) – на поверхности (111), модифицированной церием 

Zone I II III IV V VI VII VIII

(100)+CeO2 1.4 1.7 9.5 8.1 4.3 0.5 1.3 72.7

(111)+CeO2 7.6 7.8 3.8 16.1 29.6 8.8 5.9 20.4
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219Percolation processes in a network of grain boundaries

film and reduces the rate of grain growth leading to the formation of the 
nanocrystalline structure. X-ray diffraction investigations (diffraction 
patterns are shown in Fig. 7.21) show that in addition to the nickel and 
NiO peaks, there are also CeO2 peaks but there are no mixed phases, 
containing the elements Ni, O and Ce. The presence of the peaks of the 
nickel substrate indicates that the depth of penetration of x-ray radiation 
was greater than the thickness of the nickel oxide and of the cerium 
coating. The experimental pole figures were used for determining the 
orientation distribution function and consecutive modelling of the grain 
boundary distribution.

The modelling procedure used for the spectrum of the grain 
boundaries for the given case is completely identical with that 
described in the previous section. To shorten the explanation, we 
present only the distribution of the grain boundaries with respect to 
the inverse density of the coincident-site lattice, and also the results 
of investigations of the kinetics for the case of growth of a nickel 
oxide film on the single crystal substrates of the types (100) and 
(111), after preliminary modification with cerium. Table 7.6 shows 
the fractions of the boundaries of each type. The data described in 
the previous paragraph are also given for comparison. It should be 
mentioned that the type of spectrum given for the (100) substrate is 
the uncorrelated type, whereas the type C correlation was selected for 
the (111) substrates. The distribution with respect to the misorientation 
angles and axes for the nickel oxide film, formed on the single crystal 
substrate modified with Ce, is shown in Fig. 7.22a for the (100) 
orientation and in Fig. 7.22b for the (111) single crystal. It can be seen 
that the general relationships governing the formation of the spectrum 
of the grain boundaries depend strongly on the surface condition of the 
single crystal substrate, and the effect of additions greatly differs in 
relation to the orientation of the substrate. For example, for the (100) 

Fig. 7.21. Diffraction diagram of the nickel oxide on the cerium-modified substrates: 
(a) (100), (b) (111).
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220 Superplasticity and grain boundaries

surface, modified with cerium, the fraction of the low-angle boundary 
is increased in comparison with the specimens with no cerium coating 
by almost a factor of 1.7 and equals 69.1%. The fraction of the high-
angle grain boundaries decreased to 30.67. According to the model, this 
change should be reflected in the kinetics of growth of the oxide film. 
For the single crystal with the (111) orientation, coating with cerium 
resulted in a relatively increase of the fraction of the small angle 
boundaries (by approximately 20%) and a decrease of the fraction of 
twins. The number of the high-angle boundaries did not change. Table 
7.7 shows the data on the experimental measurement of the oxidation 
kinetics for the investigated materials. The tendencies, detected in the 
variation of the misorientation distribution of the grains, reflect the 
tendency for the variation of the growth rate of the oxide film on the 
nickel single crystal substrates. Thus, the deposition of cerium on the 
(100) surface of nickel single crystals reduces the oxidation rate by 
an order of magnitude which is in agreement with the decrease of the 
fraction of the high-angle boundaries, acting as the so-called conductors 
of fast diffusion. As regards the oxide film grown on the (111) substrate 
modified and not modified with cerium, it may be concluded that the 
changes of the surface had no significant effect on the spectrum of the 

Substrate Σ3 LAB HAB (arbitrary)

(100) 3.1 40.4 56.6

(100)+СеО2 0.3 69.1 30.6

(111) 27.6 6.4 66.0

(111)	+СеО2 22.2 7.6 70.2

Table 7.6.	 Distribution	 of	 the	 grain	 boundaries	 with	 respect	 to	 Σ	 in	 the	 (100)–NiO	
and (111)–NiO films

Fig. 7.22. Distribution of misorientation angles and axes in the nickel oxide films on 
the cerium-modified substrates: (a) (100); (b) (111).
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ЗОНА I II III IV V VI VII VIII 
(100)+CeO2 1.4 1.7 9.5 8.1 4.3 0.5 1.3 72.7 

(111)+CeO2 7.6 7.8 3.8 16.1 29.6 8.8 5.9 20.4 
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221Percolation processes in a network of grain boundaries

grain boundaries. Similarly, there were no changes in the oxidation rate 
of the surface (111).

To conclude this  chapter,  i t  should be mentioned that  the 
investigations of the oxidation kinetics of zirconium and nickel single 
crystals confirm convincingly the conclusions on the efficiency of 
the proposed model, made in Chapter 3. In addition, the resultant 
relationship between the kinetic parameters of growth of the oxide film 
indicates that the misorientation distribution of the grain boundaries, 
calculated on the basis of the texture data, describes adequately the 
characteristics of the grain boundary ensemble. As shown by analysis, 
information on some of the additional characteristics can be utilised 
for detailed evaluation of the grain boundary ensemble as a whole.

The experimental results also show that whole regions can form in 
the nanocrystalline zirconium oxide film – clusters of grains separated 
only by special grain boundaries. This type of organisation of the 
structure results in a decrease of the diffusion rate through these 
sections of the oxide film and improves the corrosion properties. 
In addition, the characteristics of these boundaries, i.e., the inverse 
density	of	the	coincident-site	 lattice	Σ,	 is	not	governed	by	the	generally	
accepted	 law	of	 the	minimum	value	of	Σ.	 It	may	be	concluded	 that	 to	
determine the low-energy special boundaries, it is necessary to ensure 
the confidence of the sites of the lattices of the adjacent grains at the 
interface and not the minimum volume of the coincident-site lattice. 
Thus, the criterion of the ‘speciality’ of the grain boundaries becomes 
more general and the case with the cubic polycrystals is a partial case 
of this more general criterion.

The results of crystallographic analysis of the types of grain 
boundaries, carried out using the data obtained in high-resolution 
electron microscopy, have been used to define three regions in the ZrO2 
film in which the type of grain boundary ensemble greatly differs: they 
are the regions of the so-called growth and axial textures, and also an 
intermediate region. The grain clusters in the region of the ‘growth 

Table 7.7. The oxidation rate in (100)–NiO and (111)–NiO films

Substrate Modifying additions   Oxidation rate,  kg2 m–4 s–2

(100) – 2.2·10–10

(100)+СеО2 + 2.9·10–11

(111) – 6.4·10–14

(111)	+СеО2 + 5.3·10–14
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222 Superplasticity and grain boundaries

texture’ are separated only by the twin boundaries. In the regions 
with the ‘axial texture’ there is no correlation in the orientation of the 
adjacent grains and the texture determines the type of misorientation 
distribution of the grain boundaries. The resultant spectra of the grain 
boundaries differ for different regions and define the kinetics of 
oxidation and/or diffusion through the oxide film. The diffusion layers, 
calculated for different types of grain boundary ensemble, differ by 
an order of magnitude. Theoretical analysis of the diffusion problem 
for the zirconium oxide film subjected to the effect of stress at the 
oxide/metal interface (this stress may reach 1 GPa) has been used to 
determine the relationships governing the process, in particular, the 
two-stage scheme: non-stationary diffusion in the first stage and quasi-
stationary diffusion after the formation of the porous layer. The results 
have been used to propose a possible explanation of the experimentally 
detected variation of the diffusion law from ‘parabolic’ to ‘cubic’.

Identical conclusions can be made on the basis of the investigations 
carried out for the nickel oxide formed on the surface of the single 
crystal substrates with the (100) and (111) orientations. The formation 
of the ensemble of the grain boundaries differing in the fraction of 
the low-angle, special and high-angle grain boundaries, explains 
the difference in the oxidation kinetics of the nickel single crystal 
substrates which amounts to an order of magnitude. Modification of 
the nickel surface with the additions (Ce) resulted in the changes in 
the texture and, consequently, the misorientation distribution of the 
boundaries. In the case of the (100)+CeO2 substrate the fraction of 
the low-angle boundaries increases and that of the high-angle ones 
decreases. The latter circumstance also explains the decrease, by 
an order of magnitude, of the growth rate of the oxide film on the 
(100) surface modified with Ce. In the case of the (111) orientation, 
modification did not lead to any significant changes in the spectrum 
of the grain boundaries nor in the growth kinetics of the oxide film.
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224 Superplasticity and grain boundaries

8

MICROSTRUCTURE AND GRAIN 
BOUNDARY ENSEMBLES IN 

ULTRAFINE-GRAINED MATERIALS
Prior to discussing the main subject of this chapter, it should be 
mentioned that the effect of the ensemble of the grain boundaries on 
the mechanical and physical properties is especially strong in ultrafine-
grained and nanostructured materials. The small grain size determines 
the greater length of the grain boundaries. In addition, the grains 
themselves may contain atomic defects: vacancies and complexes of 
vacancies, dislocations and disclinations whose density and distribution 
differs qualitatively from that in the coarse-grained materials. If the 
dimensions of the crystals are comparable with the characteristic 
physical parameters of length (for example, de Broglie wavelength, the 
free path of the electrons or the critical size of single-domain regions), 
then the appropriate properties are influenced by the dimensional 
effects. In this chapter, special attention is given to some aspects of 
the formation of ultrafine-grained and nanomaterials using ultrafine-
grained nickel, produced by severe plastic deformation, as an example.

8.1. Methods of producing ultrafine-grained and nanostructured 
materials by severe plastic deformation

The large number of the methods of producing ultrafine-grained and 
nanostructured materials can be subdivided into two large groups: 
preparation of nanocrystalline powders and bulk materials with 
ultrafine-grained structure and nanostructure. Isolated nanoparticles 
can be produced by gas-phase synthesis [1], plasma chemical synthesis 
[2, 3], aerosol [4] and chemical [5] synthesis, thermal dissociation and 
reduction, mechanosynthesis [6] and electric explosion [7]. In this work, 
investigations were carried out on thick specimens of ultrafine-grained 
and nanostructured nickel and, consequently, we shall discuss in greater 
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225 Microstructure and grain boundary ensembles

detail the methods of producing thick nanomaterials. The methods of 
producing ultrafine-grained materials, free from contamination and 
porosity, are based on the application of high plastic strains for the 
formation of a strongly fragmented and disoriented microstructure. To 
obtain high strength, it is necessary to use various methods: torsion 
under high quasi-hydrostatic pressure, equal-channel angular pressing, 
all-sided forging, and others. These methods are based on multiple 
plastic shear deformation of the processed material resulting in the 
true	 logarithmic	 strain	 (εtrue ~ 4–7). In addition to reducing the mean 
grain size, it is also possible to produce almost pore-free specimens. 
The torsional methods and equal-channel angular pressing will be 
investigated in greater detail.

Torsional deformation under high pressure
Equipment in which torsional deformation is carried out under high-
pressure was investigated for the first time in [8, 9]. The design of 
this equipment is a continuation of the well-known concept of the 
Bridgeman anvil [10]. In initial studies, these systems were used 
for investigating phase transformations under severe deformation 
conditions [4] and also for investigating the evolution of the structure 
and changes in recrystallisation temperature after high deformation [11]. 
The important moment was the application of this method for producing 
nanostructures with high-angle grain boundaries [5, 12] so that the 
method was regarded as a new method of producing nanostructured 
materials. In torsional deformation under high-pressure (Fig. 8.1), the 
specimens are disk-shaped. They are placed between anvils and are 
compressed by the applied pressure P of several giga pascals. The lower 
anvil rotates and the surface friction forces prevent shear deformation 
of the specimen. The geometrical shape of the specimens is such that 
the main volume of the material is deformed in the conditions of quasi-
hydrostatic pressure under the effect of applied stress and the pressure 
from the side of the external layers of the specimen. Consequently, 
regardless of the high strain, the specimen does not fracture. Various 
methods are used to calculate the strain in torsion under high pressure. 
Some of them will now be discussed, together with the applicability 
conditions. Figure 8.1b shows the calculation of the infinitely small 
shear in rotation through angle dθ.	It	 is	clear	 that	dl = rdθ	from	which

dl rdd
h h

q
γ = =

 
(8.1)
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226 Superplasticity and grain boundaries

where h is the thickness of the disk. If it is assumed that the thickness 
of the disk does not depend on the angle of rotation q, equality (8.1) 
can be formally integrated. However, since the tensile strain is linked 
with the shear strain by the relationship / 3,e = γ  the true logarithmic 
strain is expressed by the following equation:

( )ln 1 ln 1
3true

r
h

q ⋅ 
e = + e = + ⋅   

(8.2)

Since	 θ	 =	 2πN, where N is the number of revolutions, equation (8.2) 
can be transformed to

2ln 1
3true
N r

h
p ⋅ 

e = + ⋅   
(8.3)

In practice, this equation is further simplified [173]

2lntrue
N r
h

p ⋅ e =  
   

(8.4)

The equation (8.4) is identical with the relationship used for 
calculating the true strain of the specimens subjected to tensile 
loading. According to (8.3), the strain in the centre of the disk should 
be equal to 0. At the same time, as shown by the results of a large 
number of investigations, the application of this method of severe 

Fig. 8.1. Torsion under quasi-hydrostatic pressure: (a) general scheme of equipment; 
(b) geometrical parameters.Fig. 8.1. 
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227 Microstructure and grain boundary ensembles

plastic deformatyion in the central part of the specimens results in the 
formation of the ultrafine-grained structure after several revolutions. 
This is also confirmed by the results of measurements of microhardness 
in both the centre and at the periphery of the deformed specimen. To 
take into account shrinkage and pressure, it was proposed to use the 
following equation [13]

1/22
0ln 1 lntrue

hr
h h

 q ⋅ e = + +  
     

(8.5)

The equations (8.2)–(8.5) will be used to estimate the strain cumulated 
after five complete revolutions for a disk with a radius r = 10 mm, h0 = 
0.3 mm and h = 0.1 mm, and we obtain etrue ~7.5 from equation (8.3), 
~8.0 from (8.4) and ~9.1 from (8.5). Thus, the difference is less than 
20%, although in practice equation (8.5) is more accurate and does 
not give zero strain in the centre of the disk. Using this equation, we 
calculated the three-dimensional distribution of cumulated strain for       
N = 1, 5 and 7 revolutions (Fig. 8.2). Equation (8.5) is a partial case 
of a more general situation in which the equivalent strain at high shear 
strength should be calculated from the equation [14]

2

2 3 ln 1
4 2

 γ γ
e = + +  

 
The central part of the distribution is not shown in Fig. 8.2. It can 

Fig. 8.2. Three-dimensional distribution of cumulated strain, calculated using equation 
(8.5) for N = 1, 5 and 7 (from bottom to top).

.

.
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228 Superplasticity and grain boundaries

be seen that the equation (8.5) describes the gradual increase of the 
cumulated strain with increasing number of revolutions. In practice, 
the cumulated strain should be calculated using the finite element 
method. The viscoplastic model must take into account the variation 
of the friction coefficient between the anvils and the surface of the 
specimen during hardening of material in the course of deformation. 
A simplified method of calculating cumulated strain was described in 
[15]. However, the calculated data do not reflect the experimentally 
recorded facts. Two comments [16, 17] apply to the equations (8.2)–
(8.5). Firstly, the calculations carried out using these equations result 
in the conclusions according to which the value of strain should change 
linearly from zero in the centre of the specimen to the maximum 
value at the end of the diameter of the specimen. In fact, as already 
mentioned previously, this is often not the case. Secondly, during 
deformation the initial thickness of the specimen decreases under the 
effect of high compressive stresses and, therefore, the application of 
quantity h, which is usually the case in the procedure used, reduces the 
calculated values of strain in comparison with true values. Both these 
comments indicate that the strain, calculated using these equations, is 
only approximately equal to the actual strain. In addition, the formation 
of the structure in severe plastic deformation takes place under the 
effect of not only external but also internal stresses. At the same time, 
there is no rigid link between the level of the internal stresses and the 
true strain. Thus, when investigating the processes of evolution of the 
microstructure during torsional severe plastic deformation it is often 
more accurate to consider the number of revolutions and not the strain 
calculated by analytical expressions.

Recent  invest igat ions showed that  torsional  severe plast ic 
deformation can be used efficiently not only for defining the structure 
but also as a method of powder consolidation [18]. It was found that 
the high pressures, used in torsional deformation at room temperature, 
are capable of ensuring a sufficiently high density (close to 100%) of 
the produced nanostructured specimens. The specimens can be produced 
by consolidation by torsional severe plastic deformation using not only 
conventional powders but also powders processed in a ball mill. The 
specimens, produced by compacting in severe plastic deformation, have 
the form of conventional discs with a diameter of 10–20 mm and a 
thickness of 0.2–0.5 mm.
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229 Microstructure and grain boundary ensembles

Deformation by equal-channel angular pressing (ECAP)
The ECAP method, based on the deformation of the specimens of thick 
materials by simple shear, was developed in the 70s by Segal et al. 
The absence of any change in the cross-section of the specimen created 
suitable conditions for repeated deformation [19, 20] (Fig. 8.3). At the 
beginning of the 90s, the method was developed further and applied for 
the first time to produce structures with the submicrocrystalline grain 
size [12]. In ECAP, the blank is pressed is several times in a special 
device through two channels with the same cross-section, usually 
intersecting under the angle of 90°. If necessary, deformation can be 
carried out at elevated temperatures. If the external angle Y = 0o, and 
the internal angle F is arbitrary (Fig. 8.3b), the increase of the degree 
of deformation after each pass can be calculated from the following 
equation [20]:

 
(8.6)

A more general relationship which can be used to calculate the 
degree of deformation of the specimen in ECAP in N passes, has the 
following form:

2ctg cosec .
2 2 2 23N

N  F Y F Y   e = + + Y +          
(8.7)

For the partial case of Y = 0 equation (8.7) is simplified to (8.6). 
The latter equation shows that at the angles used most frequently in 

Fig. 8.3. Equal-channel angular pressing: (a) schematic; (b) geometrical parameters.Рис. 8.3. Равноканальное угловое прессование: (а) – схема, (b) – геометрические параметры.  
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230 Superplasticity and grain boundaries

practice, Y = 20 and F = 90°, each pass corresponds to the additional 
degree of deformation equal to approximately 1. Recently, another 
equation for the strain accumulated during ECAP was published in [22]

2 ctg .
2 23N

N  F Y e = ⋅ + + Y      
(8.8)

The numerical calculations, carried out in [22], show that the equations 
(8.7) and (8.8) differ not more than 5% for all the values of angle Y. 

The direction and the number of passes of the blanks in the channels 
are very important in ECAP. In [19, 20] and also in [23, 24] the authors 
studied different parts of the blanks (Fig. 8.4):

– the orientation of the blank remains unchanged in each pass (path 
A);

– after each pass the blank rotates around its longitudinal axis 
through the angle of 90° (path B);

– after each pass the blank rotates around its longitudinal axis 
through the angle of 180° (path C).

When all three paths are used, the yield and strength values of the 
processed material rapidly increase and reache saturation already after 
several passes [12]. It was shown in [25] the first three deformation 
cycles of Cu and Ni specimens in ECAP increase the deformation 
force. This is followed by the steady hardening stage and the force 
remains almost constant. Detailed investigations of the effect of the 
ECAP parameters on the microstructure and properties of aluminium 
alloys were described elsewhere [24, 26–30].

In addition to the discussed methods of severe plastic deformation, 
thick nanocrystalline materials are also produced by the electric 
deposition process [31, 32] which consists of the deposition of the 
atoms of the investigated material on a substrate from a solution. The 
electrochemical cell consists of a nickel anode, a cathode, a solution 
(Ni2+, H+, SO4

2–) and a DC current source. Instead of DC, the pulsed 

Fig. 8.4. Paths in ECAP.
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Рис. 8.4 Схема маршрутов РКУ прессования. 
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231 Microstructure and grain boundary ensembles

regime is used to produce the nanocrystalline structure. Varying the 
chemical composition of the solution and the delay time of the pulses, 
it is possible to produce strips of nanocrystalline nickel with a thickness 
of up to several millimetres.

8.2. Effect of the parameters of quasi-hydrostatic pressure on the 
microstructure and grain boundary ensembles in nickel

A large number of investigations have been carried out to study 
the evolution of the structure during severe plastic deformation, in 
particular in torsional loading under high quasi-hydrostatic pressure. 
In early studies [33, 34] of loading with quasi-hydrostatic pressure 
in copper and nickel single crystals, special attention was given to 
the evolution of the microstructure from the monocrystal state to 
the stage of formation of the fine-grained state (with the mean grain 
size of approximately 100 nm). In subsequent studies of the structure 
of nickel and copper it was found that as the degree of deformation 
increases the dislocations become localised at the cell boundaries. 
The mean misorientation of the cells increases with increasing strain, 
forming ultrafine-grained fragments of the structure – a precursor of 
the grain structure. Deformation results in the activation of rotational 
modes of deformation simultaneously throughout the entire specimen, 
ensuring steady deformation. The decrease of the stacking fault energy 
results in a change of the mechanism of severe deformation in which 
the microstructure is refined by formation of shear bands which 
gradually affect the entire volume of the specimen. Electron microscope 
studies, carried out in [35], show that the process of formation of the 
microstructure in torsional severe plastic deformation in Armco iron 
and AISI 316L stainless steel is of a distinctive three-stage nature. 
According to the scheme proposed by the authors for the first stage 
(to complete rotation), the microstructure is characterised by a cellular 
structure with the mean size of fragments of approximately 400 nm and 
with the misorientation angle of the sub-boundaries of approximately 
2–3°. With increasing strain the dislocation clusters start to occupy 
the entire volume of the initial gratings. The second stage (one–three 
revolutions) is characterised by the formation of a transitional structures 
with features of both the subgrain and grain structure. The mean size 
of the crack and the mean misorientation become greater. The third 
stage characterises the formation of a homogeneous ultrafine-grained 
structure with the mean grain size of approximately 100 nm. In this 
case, the grains are almost completely free from dislocations and are 
greatly elastically distorted. This distortion may be caused by the elastic 
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232 Superplasticity and grain boundaries

long-range stresses generated by nonequilibrium grain boundaries.
According to the literature data, torsion under high pressure is 

a more efficient method for refining the structure than ECAP. For 
example, in an Al–3% Mg alloy quasi-hydrostatic pressure results in 
in the mean grain size of approximately 90 nm [36], whereas ECAP 
produces a microstructure with the grain size of 270 [37] on the whole, 
it may be assumed that the application of ECAP for many metals and 
alloys results in the formation of an ultrafine-grained structure with 
the grain size in the range 100–1000 nm, and the method of torsion 
under pressure – in the range 50–200 nm [38–41].

The experimental material was high purity nickel (99.99%). This 
material was selected on the basis of the following circumstances. 
In studies [42, 43] concerned with ECAP of nickel it was noted 
that nickel is an efficient modelling material because its stacking 
fault energy is lower than that of pure aluminium but higher than 
that of copper. Refining of the structure and size distribution of the 
grains are determined by the stacking fault energy. In particular, in 
aluminium recrystallisation starts at relatively low temperatures and 
it is quite difficult to produce the ultrafine-grained structure. This 
is possible in copper which, however, has a duplex structure: large 
grains are surrounded by very small grains (<100 nm). A sufficiently 
homogeneous fine-grained structure can be produced only in nickel. 
Prior to deformation the specimens were annealed in vacuum for 6 
h at 700°C and the mean grain size of the specimens was greater 
than 100 µm and the microhardness was approximately 1.4 GPa. 
Subsequently, they were subjected to torsional loading under quasi-
hydrostatic pressure with the variation of the torsion parameters. The 
data for the specimens are presented in Table 8.1. Taking into account 
the equations (8.2)–(8.5) it was proposed to monitor the dependence of 
the variation of the microstructure on the deformation parameters by 
measuring the errors of the entire surface of the specimen and also by 
electron microscopy and x-ray diffraction investigations of the centre 
and edges of the disk.

P, GPa N, rev.
1/2 1 3 5 7

1
3
6
9

Table 8.1. Torsion under quasi-hydrostatic pressure
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233 Microstructure and grain boundary ensembles

Microhardness measurements
After torsional deformation, the nickel specimens were disk-shaped with 
the diameter of approximately 10 mm, thickness approximately 0.1 mm. 
Assuming the axial symmetry in the microhardness distribution, we 
selected the measurement procedure shown in Fig. 8.5. The distances 
between the points were approximately 1.25 mm. Four microhardness 
values were measured at each point. Thus, the total number of 
measurements for the specimens was no less than 128. The three-
dimensional pattern of the variation of microhardness variation as a 
function of stored energy (number of revolutions) and apply pressure 
for ultrafine-grained nickel is shown in Fig. 8.6 and 8.7. Figure 8.6 
shows the microhardness for the applied stresses of 1, 3, 6 and 9 GPa 
and the total number of complete revolutions 5. Figure 8.7 shows the 
three-dimensional dependence of microhardness on cumulated strain, 
determined by the number of revolutions, at P = 6 GPa and N = 1/2, 1, 
3, 7. (The specimen with N = 5 is shown in Fig. 8.6). The isolines of 
microhardness indicating the absolute value are shown on the XY plane.

The analysis results show that all the measured microhardness values 
are higher than initial microhardness. Evidently, microhardness is 
nonuniform along the radius of the specimens, with the smallest values 
recorded in the centre of the disk. As shown by Fig. 8.7, increasing 
load applied during torsional deformation increases microhardness 
(in particular in the centre). The asymmetry in the distribution of 
the microhardness is associated with the nonuniform development of 
deformation on the disk.

At a pressure of 1 GPa hardening takes place mainly at the edge of 
the disk and the distribution is on the whole similar to the identical 
strain distribution calculated from equation (4.5) and shown in Fig. 
8.2. The increase of applied stress is accompanied by the formation of 

Fig. 8.5. Diagram of microhardness measurements on the disk and cutting out of blanks 
for transmission electron microscopy.

Foils
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234 Superplasticity and grain boundaries

Fig. 8.6. Three-dimensional distribution of microhardness in ultrafine-grained nickel 
after torsional loading to N = 5 revolutions at applied pressure of: 1a) 1 GPa, b)                         
3 GPa, c) 6 GPa, d) 9 GPa.

Fig. 8.7. Three-dimensional distribution of microhardness in ultrafine-grained nickel 
after torsional loading at applied pressure of P = 6  GPa and the number of revolutions: 
a) N = 1/2, b) N = 1, c) N = 3, d) N = 7.
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235 Microstructure and grain boundary ensembles

the uniform distribution of microhardness for all P >3 GPa. Identical 
conclusions can be drawn on the basis of the analysis of the dependence 
of microhardness distribution on cumulated strain (or the number of 
revolutions). At N = 1/2 there is a local increase of microhardness at 
the edge of the disk, although on the whole the level of microhardness 
is higher than the initial value as a result of upsetting of the specimen. 
With increasing number of revolutions the hardening process develops 
with propagation into the centre of the disk.

Discs with a diameter of 3 mm were taken from the central and 
peripheral parts of the disks of ultrafine-grained nickel for investigating 
the microstructure (Fig. 8.5). This was followed by a series of electron 
microscopic studies in a JEOL transmission electron microscope. 
Figure 8.8 shows a series of photographs of the microstructures 
produced in ultrafine-grained nickel after five revolutions at pressures 
of 1, 3 and 9 GPa. The upper row corresponds to the microstructure 
from the central sections, the lower – from the periphery. Analysis 
of the micrographs shows that the mean grain size at the periphery 
is smaller than in the central regions. The largest difference was 
recorded at a pressure of 1 GPa. The microstructures, produced at 
3 GPa, have a small difference in the mean grain size but they are 
morphology: the grains in the central region are elongated in the 
tangential direction, and sub-boundaries are found inside the grains. 
At the highest pressure (P = 9 GPa) the microstructure is more 
homogeneous with the mean grain size of approximately 150 nm. On 
the whole, this is in agreement with the conclusions made in early 

Fig. 8.8. Microstructure of ultrafine-grained nickel, produced by torsional loading at 
the pressure of 1 GPa (a), 3 GPa (b) and 9 GPa (c), in the centre of the disk (upper 
row) and at the edge of the disk (lower row) at N = 5.

 P=1 GPa P=3 GPa P=9 GPa 

    1 µm

      1  µm         0.2 µm

     0.5 µm       0.2 µm

      0.1  µm

(a) (b) (c)P = 1 GPa P = 3 GPa P = 9 GPa
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236 Superplasticity and grain boundaries

studies [12, 34], and also in studies concerned with the investigations 
of ultrafine-grained iron and titanium [44]. It is important to stress 
two important aspects resulting from this investigation. Firstly, the 
method of torsional loading under quasi-hydrostatic pressure produces 
in fact an ultrafine-grained microstructure in metals and alloys: in pure 
nickel a structure with the mean grain size of approximately 170 nm is 
produced. Secondly, the direct measurements show that the structure is 
in fact uniform throughout the entire surface of the deformed discs. The 
process of torsional deformation takes place in a highly nonuniform 
fashion, and the deformed zone propagates in the form of waves from 
periphery to centre. This repeating process is clearly evident on the 
three-dimensional graphs of the dependence of microhardness on the 
deformation parameters (applied pressure and stored strain).

I f  we plot  the  dependence of  the  di fference between the 
microhardness values averaged out at the edge and in the centre of the 
disk on N (Fig. 8.9), the graph shows clearly the wave-like process of 
deformation as a function of the number of revolutions. This parameter 
characterises the degree of nonuniformity. Its variations decreases with 
increasing number of revolutions.

8.3. Spectrum of misorientation of grain boundaries in ultrafine-
grained nickel

The main problem in the production of ultrafine-grained materials is the 
formation of the grain structure with mostly high-angle grain boundaries. 
It is assumed that the set of the unusual physical mechanical properties, 
detected in experiments on ultrafine-grained materials [5, 6, 34, 44], is 
determined by the presence in the structure of mostly arbitrary high-
angle grain boundaries in the metastable (or nonequilibrium) state. 

Fig. 8.9. Variation of the microhardness difference at the edge and in the centre of the 
disk as the function of the number of revolutions at P = 6 GPa.
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237 Microstructure and grain boundary ensembles

Although the literature contains a relatively large number of data 
indicating that the structure of metals and alloys after severe plastic 
deformation is in fact characterised by the presence of an ensemble 
of grain boundaries with mostly high-angle boundaries; previously 
there were no direct experimental confirmation is of this fact. Indirect 
indication of the presence of high-angle grain boundaries are found in 
almost every study concerned with materials subjected to severe plastic 
deformation (see, for example, [12, 42]). The first study in which the 
authors measured directly the spectrum of the grain boundaries was 
[45]. Almost 90% of the high-angle boundaries were detected in this 
work. However, later the authors of [45] disawoved these results [46] 
and reported that the measurements were of the sampling type and, in 
all likelihood, the data do not correspond to the actual situation. In fact, 
the results obtained for aluminium alloys subjected to ECAP showed 
a high fraction of the low-angle grain boundaries [47] which casted 
doubts on the assumption on the formation of the grain (not subgrain) 
structure in the materials subjected to severe plastic deformation. At the 
same time, the authors of [48] found the tendency for the increase of 
the fraction of the high-angle boundaries with the increase of cumulated 
strain in ECAP. According to these data, the fraction of the high-angle 
boundaries reached 79%. The formation of the ensemble of the grain 
boundaries in aluminium alloys may depend strongly on the chemical 
composition of alloys and the deformation conditions. To explain the 
situation, it is necessary to carry out investigations on pure metal, 
for example, nickel. In addition, the problem of the type of ensemble 
formed in the specimens, subjected to severe plastic deformation, was 
unsolved until recently until investigations were carried out into the 
spectrum of the grain boundaries using an attachment for automatic 
measurement of misorientation in a Philips microscope with an auto-
emission gun [17, 49].

8.4. Advanced methods of automatic measurement of the grain 
boundary parameters

Advanced scanning microscopes can be fitted with a special attachment 
for the automatic determination of the orientation of individual grains 
with a high degree of efficiency [50, 51]. The device of this type is 
referred to as orientation imaging microscopy. This method is based 
on indexing the channelling patterns or pseudo-Kikuchi lines formed 
during rocking of the electron beam falling and hitting the surface 
of the specimen. The geometry of these patterns of channelling and 
their decoding was described in detail in Chapter 4. The channelling 
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238 Superplasticity and grain boundaries

patterns are produced by focusing the electron beam followed by its 
precession around the axis of incidence under a small angle. As a result 
of beam instabilities the image is not sharp. To improve the quality 
of the pattern it is necessary to use another method. The specimen 
is tilted through approximately 70° to the horizontal plane. In this 
case, the electrons undergo initially inelastic scattering followed by 
elastic scattering, forming a diffraction pattern referred to as Kikuchi 
lines. The resultant diffraction pattern is transferred to a fluorescent 
screen and recorded using a CCD camera. The image is digitised 
and transferred into a computer for further processing. Figure 8.10 
shows schematically the process of obtaining and indexing diffraction 
patterns using an OIM attachment. After recording all the essential 
information, the specimen is moved and the beam hits the next point. 
Of course, if two points belong to the same grain, the diffraction pattern 
does not change. The localisation of the method is thus determined 
by the minimum displacement of the specimen (realised by the 
electromechanical method) and the dimensions of the electron beam. 
The advanced piezoelectric motors can be used to remove the object 
with the accuracy of several tens of nanometres and, consequently, 
the localisation of the device in this stage of development is restricted 
only by the size of the electron beam. It is now possible to produce in 
microscopes diffraction patterns from regions approximately 20 nm in 
size so that it is possible to certify the ensemble of the grain boundaries 
in ultrafine-grained materials (with the grain size of 100–1000 nm). 
In addition to the diffraction pattern, another parameter is recorded at 
each point. This parameter describes the quality of the produced pattern 

 

Fig. 8.10  Fig. 8.10. Schematic of the method of automatic measurement of the grain boundary 
misorientation [50].
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239 Microstructure and grain boundary ensembles

of electron channelling (image quality). It is determined by measuring 
the contrast of the diffraction pattern and reflects the imperfection of 
the crystal lattice. Of course, when the electron beam hits the region 
of the grain boundary, the IQ coefficient will be lower than in the 
centre of the grain. Allocating brightness values to each value of IQ 
on the grey scale, it is possible to form the image the microstructure 
as in optical microscopy. The investigations, described in this book, 
were carried out using an XL-30 FEG scanning electron microscope 
(Philips) with OIM attachment (TSL Co). This device produces both 
the pattern of the orientations for each grain and also the pseudo-
microstructure, identical to that produced in the case of secondary 
electrons. The angular resolution is approximately 1°, and the average 
confidence index exceeds 0.4.

Careful preparation of the surface of specimens is essential to 
produce high-quality channelling patterns. The specimens of ultrafine-
grained nickel were initially polished with diamond paste with gradually 
decreasing grain size and subsequently in the solution of Al2O3 particles 
with the size of 50 nm.

8.5. The misorientation distribution of the grain boundaries in 
ultrafine-grained nickel: experiments and modelling

Figure 8.11 shows the microstructure of ultrafine-grained nickel, 
produced by torsional loading under pressure P = 6 GPa, with the 
total number of revolutions of N = 5. from the central section of the 
disk and from the peripheral region. All the grains were coloured in 
accordance with the scale of orientations shown in the same figure. 

Fig. 8.11. Structure of ultrafine-grained nickel, produced by torsional loading at a 
pressure of P = 6 GPa (N = 5): (a) central part, (b) periphery.
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240 Superplasticity and grain boundaries

Both photographs indicate a relatively uniform microstructure. Figure 
8.12 shows the size distribution of the grains constructed for these 
states. The solid line indicates the log-normal distribution. The 
mean grain size in the central part is 0.27+0.04 µm, at the periphery 
0.21+0.03 µm. The latter value is in good agreement with the results 
of electron microscopic studies (0.17 µm) [42], taking into account a 
small number of statistical data in the evaluation of the grain size for 
transmission electron microscopy data. The ranges of the error of the 
mean grain size for the centre and edge of the disk also overlap so that 
it may be concluded that the microstructure is relatively homogeneous 
and is formed by torsional loading under quasi-hydrostatic pressure at 
a load of P ≥	5	GPa,	with	 the	number	of	 revolutions	N	≥	5.

The total number of the grain boundary measured for producing 
the misorientation distribution of the grain boundaries was 1145 at 
the periphery and 1155 in the centre of the specimen. The appropriate 
distribution of the misorientation angles is shown in Fig. 8.13, and the 
distribution on the basis of the type of grain boundaries is in Table 
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Fig. 8.12. The size distribution of the grains in the nickel specimens, subjected to 
quasi-hydrostatic pressure (P = 6 GPa, N = 5): (a) central part (ádñmean = 0.27+0.04 
µm); (b) periphery (ádñmean = 0.21+ 0.03 µm). 
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Fig. 8.13. Distribution of the misorientation angles in ultrafine-grained nickel after HPT 
(P = 6 GPa, N = 5), obtained from the central (a) and peripheral (b) regions of the disk.
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8.2. The grain boundaries were divided into four categories: low angle                                 
(θ	<15°,	Σ1),	 twin	(Σ3),	other	special	(Σ5–30),	and	high-angle	arbitrary	
grain boundaries. The investigated boundary related to the category then 
specified on the basis of the Brandon criterion [52]. The solid line in 
Fig. 8.13 shows the random distribution of the misorientation angles.

Comparison of the experimental data shows that the GBCD are 
identical from the statistical viewpoint. They are characterised by the 
bimodal distribution of the misorientation angles with the maximum 
in the low-angle range. The fraction of the low-angle grain boundaries 
equals 15.0% for the disk edge and 18.3% for the disk periphery of the 
disk. Statistically, these two values are very similar and, at the same 
time, they are considerably higher than the fraction of the low angle 
grain boundaries for the randomly disoriented polycrystal (2.1%). The 
fraction of the high-angle arbitrary grain boundaries (~65–67%) in both 
cases is lower than for the random polycrystal (almost 90%). The total 
number of the high-angle boundaries (including twin and other special 
boundaries) is more than 80%, which indicates the formation of the 
ultrafine-grained structure with the ensemble of the grain boundaries, 
consisting mainly of the high-angle boundaries. The experimental data 
obtained for the type of grain boundary ensemble, formed in nickel 
under severe plastic deformation, can be used for the verification of 
the proposed methods of calculating the misorientation distribution 
of the grain boundaries in ultrafine-grained and nanocrystalline 
nickel. The method of modelling GBCD was described in detail in 
previous chapters. Here, we present the results of investigation of the 
misorientation distribution of the grain boundaries in ultrafine-grained 
nickel, produced by ECAP, torsional loading under pressure and the 
combination of ECAP and loading under quasi-hydrostatic pressure. 
Figure 8.14 shows the brightfield images of the microstructure of all 
three specimens. The mean grain size, determined by transmission 
electron microscopy, is 0.35 µm in Ni processed by ECAP, 0.17 µm in 
Ni processed by quasi-hydrostatic pressure, and 0.1 µm in ECAP+HPT 
specimens. The most uniform structure and the smallest mean grain size 
were recorded in the specimens of ultrafine-grained nickel produced by 

Table 8.2.	 Distribution	 with	 respect	 to	 Σ	 for	 ultrafine-grained	 nickel,	 produced	 by	
severe plastic deformation

Region Σ1 Σ3 Σ5–30 HAB
Central 18.3 3.0 13.0 65.7

Peripheral 15.0 4.1 13.5 67.4
Random   2.1 1.6   7.0 89.3
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the combination of the two main methods of severe plastic deformation. 
This is followed by HPT nickel whose microstructure is also uniform 
but the mean grain size is larger. The mean grain size of ECAP nickel, 
determined by transmission electron microscopy, is still twice as high. 
The azimuthal blurring of the reflection on the diffraction pattern 
indicates the presence of a high internal stress. Figure 8.15 shows the 
photographs of the microstructure of all three specimens produced 
using the OIM attachment to the Philips scanning electron microscope. 
The triangle in the figure shows the inverse pole figure as the basis 
for determining the crystallographic direction in the grain (crystal), 
parallel to the normal to the surface of the specimen. The red, green 
and blue colours (in the figure – various grey tones) correspond to the 
crystallographic directions á001ñ, á110ñ and á111ñ, respectively. The 
microstructure of ECAP nickel (Fig. 8.15a), produced using the OIM 
attachment, consists of elongated grains with the mean size of more 
than 0.5 µm. The large grains are characterised by a smooth variation 
of the contrast of the light reflecting the presence of sub-boundaries. 
The mean grain size, determined in the OIM, is 0.27 µm, which is 
lower than the value obtained in transmission electron microscopy 
(0.35 µm), and also considerably lower than the initial estimate of 
the size of grains with different colour. The error of the measurement 
of the mean grain size can be estimated as half the unit displacement 
during scanning (i.e. 30 nm, or 0.03 µm). Thus, taking into account 
the error, the mean size of the subgrain structure is 0.27+0.03 µm. The 
difference in the estimate of the mean grain size is associated with the 

Fig. 8.14. Brightfield images of the microstructure of nickel: (a) ECAP, (b) HPT, (c) 
ECAP + HPT.
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presence of a developed structure in ECAP and with the existence of 
the limit of sensitivity in the determination of the misorientation in 
the OIM which in the given experiment was equal to 2°. The latter 
means that two adjacent points, having the misorientation smaller than 
2° in relation to each other, are assumed to belong to the same grain. 
In visual examination, the microstructures of ultrafine-grained nickel, 
produced by torsional loading (Fig. 8.15b) and by the ECAP +HPT 
combination (Fig. 8.15c) are more uniform. Differences in the colour 
of the adjacent grains indicate the presence of the grain structure with 
a high fraction of the high-angle grain boundaries. The mean grain size 
for these two states of ultrafine-grained nickel was 0.19+0.03 µm and 
0.17+0.03 µm, respectively. The estimate of the mean grain size in 
HPT nickel obtained in transmission electron microscopic investigations 
coincides with the resultant value, and for ECAP + HPT-nickel this 
value is slightly too high.

Figure 8.16 and Table 8.3 show the distribution of the grains 
with respect to the misorientation angles and the inverse density of 
the coincident-site lattice Σ for the ECAP-, HPT- and ECAP + HPT 

Fig. 8.15. Microstructure of nickel, produced by the OIM method: (a) ECAP, (b) HPT, 
(c) ECAP + HPT.
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specimens of nickel in which the orientations of 339, 1145 and 989 
grains were measured. Analysis of the data shows that the distribution 
with respect to the misorientation angle is bimodal for all three states 
of ultrafine-grained nickel. The first peak is situated in the range of 
low-angle misorientation, and the second one is broadened in the range 
30–60°. The bimodal nature of the relationship is more evident for 
ECAP-nickel. This is in agreement with the results of investigation 
of GBCD in pure aluminium [53]. Comparison of the distribution 
of the misorientation angles and Σ shows that in comparison with 
HPT- and ECAP + HPT states the ECAP nickel is characterised by a 
considerably larger fraction of the low-angle boundaries. At the random 
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Fig. 8.16. Experimental (histogram) and modelling (solid line) distributions of the 
misorientation angles in ultrafine-grain nickel: (a) ECAP, (b) HPT, (c) ECAP + HPT.

Table 8.3. Experimental and modelling distribution of the grain boundaries with respect 
to Σ in ultrafine-grained nickel

State

ECAP HPT ECAP+HPT

Σ1 Σ3 Σ5-30 HAB Σ1 Σ3 Σ5-30 HAB Σ1 Σ3 Σ5-30 HAB

Experiment 27.4 5.1 11.7 55.8 15.0 4.1 13.5 67.4 13.5 3.3 15.5 67.7

Model 25.6 2.6 13.0 58.8 14.0 3.5 10.0 72.5 12.0 3.1 10.1 74.8

Random 2.1 1.6 7.0 89.3 2.1 1.6 7.0 89.3 2.1 1.6 7.0 89.3

(a) (b)

(c) 
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distribution for the specimens of fine-grained nickel the fraction of 
the twins exceeds the number of the boundaries Σ3 but it is still not 
very high. This indicates that the processes of twining in the deformed 
specimens are not sufficiently extensive. Attention should be given to 
the unusually high fraction of other special boundaries ( 5–30) in all 
specimens of ultrafine-grained nickel. It is equal to 11.7%, 13.5% and 
15.5% for ECAP-, HPT- and ECAP + HPT nickel, respectively. The 
question as to what is the cause of the formation of these boundaries: 
is it associated with special features of the deformation processes of 
the given material or the process of attestetion of the grain boundary 
ensemble?

Taking into account the results of texture analysis, described 
previously, we can use the modelling program for calculating the GBCD 
in ultrafine-grained materials. As an example, we describe the results 
of calculations of the GBCD for ultrafine-grained nickel produced 
ECAP and torsional loading under high pressure. We examine two 
factors which determine the formation of the misorientation distribution 
of the grain boundaries: texture and the type of spatial correlation. 
Analysing the distribution function of the grain orientation for these 
materials (Fig. 8.14–8.16) one can see the following special features. 
The texture of ECAP nickel has a distinctive maximum, whereas the 
texture maxima in HPT nickel were distributed more uniformly in the 
space of the Euler angles. Evidently, the conditions of severe plastic 
deformation do not lead to the formation of any specific type of 
correlation in the orientation of the adjacent grains. At the same time, 
it may be concluded that the deformation by ‘pure shear’ is capable of 
increasing the fraction of the low-angle boundaries. In fact, this was 
also detected in the experiments.

In general, the modelling results demonstrate the satisfactory 
agreement with the experiments. For example, Fig. 8.16 shows the 
calculated misorientation spectra of the grain boundaries in the 
ultrafine-grain nickel produced by ECAP pressing, torsional loading 
under high-pressure and the combination of these treatments. The 
histograms in the same figure show the experimental distribution. 
Table 8.3 shows the calculated data for Σ shown in the same format 
as previously. Comparison of the modelling data with the experiment 
shows that they coincide with the statistical error range. Consequently, 
it can be concluded that the spectra of the grain boundaries in ultrafine-
grain materials, reduced by severe plastic deformation, can be modelled 
on the basis of the given texture.

In this chapter we examined in detail the effect of the parameters of 
severe plastic deformation of the formation of the microstructure and 

�� �� �� �� ��



246 Superplasticity and grain boundaries

ensembles of grain boundaries in ultrafine-grained nickel, produced 
by ECAP pressing, torsional loading under quasi-hydrostatic pressure 
and the combination of these treatments. Nickel in which the stacking 
fault energy occupies the intermediate position between aluminium and 
copper is a suitable modelling material in this respect. In nickel it is 
possible to produce the ultrafine-grained microstructure with the grain 
size of approximately 0.17 µm after HPT and approximately 100 nm 
after torsional loading under pressure of ECAP specimens.

The experimental  results  were used to determine the main 
relationships governing the evolution of the structure with the variation 
of various parameters of the HPT such as the applied pressure and the 
stored energy (number of revolutions). It has shown that the process of 
torsional deformation is highly nonuniform and the deformation zone 
develops in the form of waves from periphery to centre. The method 
of measurement of microhardness of the entire surface of the deformed 
discs was used to investigate the evolution of microhardness (and, 
consequently, the evolution of the microstructure) with the increase 
of the load and the number of revolutions. The increase of applied 
pressure (to values higher than 5 GPa) leads on the whole to the 
formation of a homogeneous structure. The increase of the number of 
revolutions at P = 6 GPa results in the rapid saturation of microhardness 
values. The homogeneity of the microstructure from the viewpoint of 
formation of the ensemble of high-angle boundaries has been confirmed 
by direct measurements of the misorientation spectrum of the grain 
boundaries. For the nickel specimens, produced at P = 6 GPa and N = 
5, the ensemble of the grain boundaries in the centre of the specimen 
and at the periphery of the specimen is statistically identical. The 
data obtained in the texture of nickel, formed in ECAP-, HPT- and 
ECAP + HPT-specimens, indicate the principal difference in the type 
and intensity of texture maxima. HPT nickel is characterised by the 
formation of the axial texture of the (100) type with the maximum three 
times higher than the maximum in the textureless state. The process 
of ECAP pressing results in the formation of a texture maximum with 
the coordinates (90°, 45°, 15°) on the orientation distribution function. 
Torsional loading of the ECAP specimens eliminates all the features 
of the ECAP texture. The special features of the texture formation 
lead to the formation of special features in the ensemble of the grain 
boundaries in ultrafine-grained nickel. For example, ECAP nickel is 
characterised by a higher fraction of the low-angle grain boundaries. 
This is in good agreement with the presence of a distinctive texture 
maximum. The highest fraction of the high-angle grain boundaries 
was recorded in the nickel specimens after combined deformation 
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(ECAP + HPT). Modelling shows the feasibility of using the method of 
calculating the spectrum of the grain boundaries in the ultrafine-grained 
materials on the basis of the texture data described in Chapters 2 and 
3. Within the error range, modelling GBCD are in agreement with the 
experimentally measured value. Another important conclusion is the 
one which shows that severe plastic deformation of the materials is not 
accompanied by the formation of special features in the correlation in 
the orientation of the adjacent grains. Naturally, this conclusion can 
be applied to the materials subjected to severe plastic deformation at 
elevated temperatures when recovery and dynamic recrystallisation 
processes may take place.
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9

GRAIN BOUNDARY PROCESSES IN 
ULTRAFINE-GRAINED NICKEL AND 

NANONICKEL

The problem of thermal stability of ultrafine-grained and nanostructured 
materials is very important because of the high degree of development 
of the ensemble of the grain boundaries. Grain growth in such materials 
starts already at temperatures 0.4Tm or even lower [1]. It is assumed 
that this is associated primarily with the reduced activation energy of 
the grain boundary processes controlled by grain boundary diffusion [2, 
3]. The estimates of the activation energy of grain growth in ultrafine-
grained copper, published in [4], give values almost 50 lower than 
the activation energy of grain boundary dislocations. This should 
accelerate the kinetic processes by several orders of magnitude. In 
[5] it is reported that the rate of grain boundary diffusion of copper 
in ultrafine-grained nickel increases by five orders of magnitude. 
However, the results of these experiments, carried out in the same 
group, have not as yet been confirmed in other investigations. In 
addition, in the studies [6, 7] of diffusion in nanocrystalline materials 
produced by gas phase synthesis there was no acceleration of the 
diffusion processes. It is therefore interesting to study the evolution 
of the microstructure and the ensemble of the grain boundaries during 
annealing. This chapter describes the results of investigations of the 
kinetics of grain growth in isothermal annealing of ultrafine-grained 
nickel [8] produced by equal-channel angular pressing (ECAP) and 
also the results of differential scanning calorimetry of ultrafine-grained 
nickel after ECAP, HPT and combination of these treatments [9]. The 
evolution of the microstructure, texture and the ensemble of the grain 
boundaries were investigated in HPT nickel [10, 11]. In addition, 
the results are presented of the investigation of the low-temperature 
superplasticity in nanocrystalline nickel produced by electrodeposition 
[12–14].
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250 Superplasticity and grain boundaries

9.1. Grain growth kinetics in ECAP specimens

To investigate the relaxation processes leading to the gradual 
transition of the ultrafine-grained structure to the conventional coarse-
grained condition, it is logical to investigate the simple single-phase 
materials. Firstly, after explaining the types of relaxation processes 
and investigating the kinetics of these processes in pure deformed 
metals, we develop a structural model to predict and explain the 
unusual physical–mechanical properties of more complicated alloys 
and composites. Secondly, the investigations of the evolution of the 
structures in heating helps to understand their complicated nature 
and examine the physical principle of the thermal instability of the 
ultrafine-grained materials. This is important for developing scientific 
fundamentals of reducing this instability. For example, the thermal 
instability of ultrafine-grained pure metals, produced by severe torsional 
plastic deformation under high pressure, was investigated in copper 
[15, 16] and nickel [15, 17]. In addition, experiments were carried 
out with nanocrystalline copper produced by electrodeposition [18]. 
These studies were concerned with the investigation of the recovery 
stage and determination of the temperature ranges corresponding to 
the recrystallisation processes. At the same time, the evolution of the 
microstructure and changes in the microhardness under the thermal 
effect on copper, deformed by ECAP, have not been explained. In 
particular, in recently published dissertations [4, 19, 20] it is claimed 
that the relaxation processes in ultrafine-grained materials have three 
stages and grain growth is characterised by a reduced activation energy. 
In this case, the activation energy is almost halved in comparison 
with the activation energy of grain boundary self-diffusion. This 
reduction should accelerate the processes associated with grain 
boundary dislocations (for example, at room temperature (300 K) by 
approximately ten orders of magnitude) which undoubtably can be 
recorded in the experiments. Although the recent studies concerned 
with the investigation of grain boundary dislocations in copper and 
ultrafine-grained nickel contain data on the acceleration of the diffusion 
processes by 5–6 orders of magnitude [5], no additional confirmation 
was presented in studies by other investigator groups. Thus, the 
relaxation processes taking place in ultrafine-grained materials during 
thermal annealing have their special features which have been studied 
insufficiently and require additional investigations. This is associated 
with the high level of the strain stored in the material. Heating of the 
deformed material is accompanied by complicated structural changes 
associated with recovery and recrystallisation processes. The nature of 
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recovery is determined primarily by the redistribution and annihilation 
of the dislocations at the grain boundaries and in the body of the grains 
leading to a decrease of internal elastic stresses. Recrystallisation 
consists of the nucleation and growth of new, perfect grains as a 
result of the deformed matrix in which recovery takes place. The 
investigations of the evolution of the structure during annealing helps to 
understand better the nature of these phenomena, their relationship with 
the lattice defects and the nonequilibrium state of the grain boundaries, 
the relationship of the formation of the crystallographic texture and 
other special features of the behaviour of ultrafine-grained structures 
during annealing. The effect of temperature and annealing time on the 
microstructure of ECAP nickel will be investigated.

The investigated material was high-purity nickel (99.99%) in which 
the ultrafine-grained state was produced by ECAP at room temperature. 
The specimens were taken from the central part of the blanks and 
annealed in air in a muffle furnace. Variations of annealing temperature 
did not exceed +5°C. The nickel produced by ECAP pressing (at 
pressures of 700–800 MPa), with the mean grain size of 0.4–0.5 µm 
and a microhardness of 2.6 GPa was annealed for 1 h at temperatures 
of 100, 200, 300, 400 and 500°C. In addition, the annealing time at 
250°C was varied from 1 to 12 hours.

Specimens for optical metallography were etched by the standard 
procedure.  The investigations were carried out in a Aksiolab 
polarisation microscope with a Vx–44 camera (PSO Inc., Germany), 
with the resolution of 756 × 591 pixels and in a JEOL transmission 
electron microscope. TEM foils were prepared by the standard method. 
Microhardness was measured by the conventional procedure.

Figure 9.1 shows the data for the variation of the microhardness 
and mean grain size as a function of annealing temperature. The 
results indicate grain growth at 300–500°C and, consequently, the 
microhardness decreases. The behaviour of microhardness and the 
evolution of the microstructure during annealing of ultrafine-grained 
nickel produced by ECAP is governed on the whole by the already 
mentioned relationships described in [17]. There are three stages of 
relaxation of the structural state with increasing temperature. The 
following temperature ranges were defined: 20–175°C, 175–250°C 
and 250–400°C (annealing time 30 min). In the temperature range 
175–250°C the microhardness rapidly decreases from 2.5 to 1.4 GPa. 
It should be mentioned that in [17] the investigations were carried out 
on ultrafine-grained nickel produced by torsion under high pressure 
(7 GPa). According to the data obtained from dark field images, the 
mean grain size in the initial condition was approximately 100 nm. 
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In this case, the mean grain size in the nickel specimens after ECAP 
was 0.4–0.5 µm. It may be assumed that at the same cumulated strain 
in severe plastic deformation the applied pressure influences the grain 
size: with increasing pressure the grain size decreases (from 0.5 µm 
up to 0.7–0.8 GPa to 0.1 µm at 7 GPa).

Figure 9.2 shows the histograms of the grain size distribution after 
annealing at 300°C, 400°C and 500°C for 1 h, obtained on the basis 
of the results of optical metallographic examination. The mean grain 
size is 4.7 µm after annealing at 300°C and increases to 6 µm after 
annealing at 400°C. In both cases, the form of the distribution is close 
to log-normal, although the maximum is displaced in the direction 
of larger dimensions. This indicates that the grain growth is normal. 
Analysis of the distribution for annealing at 500°C shows that this 
temperature is in fact the start of anomalous grain growth. This is 
confirmed by the bimodal size distribution of the grains: the first 
maximum is found in the range 20–40 µm and, in addition to this, there 
is a second small maximum in the range 120–140 µm. 

The results of electron microscopic studies can be used to investigate 
the process of variation of the microstructure of the material (Fig. 9.3). 
The microdiffraction pattern shows a large number of point reflections 
uniformly distributed around the circumference which evidently 
indicates the presence of high-angle grain boundaries. The considerable 
azimuthal diffusion of the reflections indicates the high level of elastic 
internal stresses. Transmission electron microscopy results show 
that after annealing at 100 and 200°C there is no significant grain 

Fig. 9.1. Dependence of the mean grain size and microhardness on annealing temperature.
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growth in comparison with the initial condition but the relaxation of 
microdistortions (sink of vacancies and dislocations) starts to take 
place and slightly reduces the microhardness values. Thus, in the initial 
stage in heating the dislocations found inside the grains disappear, i.e., 
recovery  takes place. Annealing at 200–250°C (1 h) is accompanied 
by a rapid decrease of microhardness (from 2.3 to 1.4 GPa) caused 
by grain growth. This is indicated by the electron microscopy results: 
on the background of the majority of the grains with the size of 0.6–                                                                       
0.7 µm there are large grains with the size of 1–4 µm. Dislocation 
pile-ups are found at the grain boundaries and in the body of small 
grains. For more detailed examination of the process taking place in 
this temperature range the nickel specimens were annealed for different 
periods of time (1, 6 and 12 h) at a temperature of 250°C. An increase 
of the annealing time from 1 h to 6 h increases the number of large 
grains and the mean size of the grains increases to 3–4 µm. In addition, 
the body of the large grains shows the formation of annealing twins 
and the boundaries of the grains contain a large number of dislocations. 
Annealing for 12 h at a temperature of 250°C is characterised by further 
grain growth, with the mean size of these grains being 4–5 µm, whereas 
the fraction of the small grains rapidly decreases (to 30%). Straight 
grain boundaries appear. At the same time the degree of azimuthal 

Fig. 9.2 
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Fig. 9.2. Size distribution of grains in ECAP nickel, annealed for 1 h at temperatures 
of: (a) 300°C (ádñdist = 3.8±0.1 µm); (b) 400°C (ádñdist = 5.0±0.2 µ); (c) 500°C                         
(ádñdist = 33±0.2 µm).
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diffusion of the reflections on the microdiffraction patterns decreases.
The specimens annealed at 300°C showed large grains with the 

size of 5 µm, with small grains are distributed along the boundaries 
of the large grains. The number of twins with straight equilibrium 
boundaries increases. After annealing at 400°C the fraction of the 
small grains (the size of approximately 2.5 µm) rapidly decreases (to 
20%) and the size of the large grains reaches 8 µm. The mean grain 
size is 5–7 µm. The number of the straight grain boundaries increases 
and many of these boundaries are characterised by a typical banded 
contrast (Fig. 9.3) indicating the recovery of the structure of the grain 
boundaries. The specimens, annealed at 500°C, showed large changes 
in the microstructure, with the mean size of these grains being 40–           
50 µm; the majority of the grain boundaries and the body of the 

Fig. 9.3. Microstructure of nickel produced by ECAP pressing and annealed for 1 h 
at different temperatures: (a) initial condition, (b) 100°C, (c) 200°C, (d) 250°C, (e) 
300°C, (f) 400°C.
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grains are free from dislocation networks, and the structure is fully 
recrystallised, and the grain size further increases. The dependence 
of the mean grain size on annealing time at T = 250°C is shown in 
Fig. 9.4. The kinetic parameters of the grain growth process will 
be evaluated taking into account the results of isothermal annealing 
investigations. The dependence of the mean grain size on the annealing 
time at the given temperature is described by the relationship

2 2
0

nd d k t- = ⋅  (9.1)

where d0 is the initial grain size; k is a constant which depends on 
the driving force of grain growth and mobility of the grain boundary; 
n is the exponent (usually equal to 0.5–1). The kinetics at n = 1 
corresponds to the parabolic law and normal grain growth. Interpolating 
the experimental points (Fig. 9.4) by equation (9.1) and using the 
method of least squares, it can be determined that the coefficient                  
k = 0.6165 µm2 · h–1 or 170 nm2 · s–1, where k is described by the 
equation

0 exp Qk k
RT

 = - 
 

Assuming that the grain growth processes in annealing at temperatures 
higher than 250°C also satisfy equation (9.1), the data obtained for iso-
chronic annealing at temperatures in the range 300–350°C can be used 
to estimate the activation energy of grain growth in ultrafine-grained 
nickel produced by ECAP. The results show that k0 = 3.9·10–6 m2 · s–1 

Fig. 9.4. Dependence of the mean grain size on annealing time at T = 250°C: 1) 
microhardness, 2) mean grain size, 3) parabola from equation (9.1).
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256 Superplasticity and grain boundaries

and Q = 103 kJ · mole–1. This value is very close to the value of grain 
boundary self-diffusion of nickel: 115 kJ · mole–1 [21], 131 kJ · mole–1 
[22], and 108.8 kJ · mole–1 [23]. Thus, it may be assumed that grain 
growth is controlled by grain boundary self-diffusion and, consequently, 
the kinetic parameter k0 can be determined from the equation:

( )0
0 2

4 bD
k

kT
d ⋅⋅ γ ⋅W

= ⋅
d  

(9.2)

where γ is the surface tension of the grain boundaries in nickel                   
(~0.7 J·m–2);	 Ω	 is	 the	 atomic	 volume	 (1.1·10–29 m3);	 δ	 is	 the	 width	
of the grain boundary (~0.7·10–9 m); d × D0b is the pre-exponential 
multiplier of grain boundary diffusion multiplied by the width of 
the grain boundary (~3.5·10–15 m3 s–1); k is the Boltzmann constant;                          
T is absolute temperature. Equation (9.2) for T = 500 K gives (k0)calc≈																				
4.6·10–5 m2 · s–1. The order of magnitude of this value is identical with 
that obtained from equation (9.1) which indicates that the estimate is 
accurate. It should be stressed that to analyse the kinetic parameters 
it is necessary to carry out more detailed investigations. However, 
here it is attempted to evaluate only the order of these parameters to 
verify the facts of the larger decrease of the activation energy in the 
ultrafine-grained materials reported in the literature. As shown by 
the experimental results, the normal grain growth is governed by the 
conventional law and is controlled by grain boundary processes. 

The following conclusions can be drawn here. Firstly, the nickel 
structure, produced by ECAP, is characterised by a high level of stored 
strain, as confirmed by high microhardness values (~2.6 GPa), a high 
dislocation density and extensive azimuthal diffusion of the reflections 
on the microdiffraction pattern. Secondly, the evolution of the 
microstructure and the variation of the microhardness of nickel under 
the thermal effect take place in three stages: 100–200°C, 200–300°C 
and 300–500°C. The first stage is characterised by the constant grain 
size, the almost complete relief of internal stresses and a monotonic 
decrease of microhardness. The second stage is characterised by the 
rapid grain growth and a large decrease of microhardness in the absence 
of internal stresses. In the third stage, the grains continue to grow and 
the microhardness monotonically decreases. Thirdly, the second stage 
for ultrafine-grained nickel, produced by torsional loading at a specific 
pressure of 7 GPa, starts at temperatures approximately 40–50°C lower 
than for ultrafine-grained nickel produced by ECAP at a pressure of 
700–800 MPa. Finally, the ultrafine-grained nickel with the mean grain 

,
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size of 0.4–0.5 µm, produced by ECAP pressing, can be regarded as 
thermally stable at temperatures up to approximately 200°C.

9.2. Activation energy and stored enthalpy in ultrafine-grained 
nickel

One of the efficient methods of investigating thermal stability (and 
generally relaxation processes) is differential scanning calorimetry 
(DSC). In this section, we present the results of DSC analysis of the 
specimens of ultrafine-grained nickel and nanonickel produced by the 
methods of severe plastic deformation. The investigated conditions 
are shown in Table 9.1. Two main states of ultrafine-grained nickel 
were selected for investigations: ECAP nickel (eight passes; mean 
grain size 0.37 µm), HPT nickel (6 GPa, five revolutions), and also 
a nickel specimen produced by cold rolling (room temperature) with 
a reduction of approximately 85% (mean grain size approximately                                
0.3 µm). Another pair of specimens was produced by torsional loading 
under high-pressure of blanks after ECAP and blanks produced by 
ECAP + rolling. To check the experimental data, experiments were also 
carried out with electrodeposited nickel with the mean grain size of                    
35 nm. The results of electron microscopic investigations show that the 
mean grain size in the ECAP + rolling nickel is approximately 0.3 µm, 

Heating rate, 
K·min–1

ECAP ECAP
+rolling HPT ECAP+

HPT

ECAP
+rolling
+HPT

eNi eNi 
[22]

Peak temperature TP, K

20 652.0 630.4 525.9 554.9 552.0 595.4 587
40 672.9 646.5 542.2 570.3 563.2 609.5 606
60 681.2 659.2 549.0 578.6 575.7 620.7 ─

d0, nm 350 [3] 300 170 [2] 140 100 35 [20] 20 [6]

∆fIC, 103 8.6 9.4 17.6 21.4 30.0 85.7 150.0

Egr, 
kJ·mole–1

107.9±
±5.4 105.8±5.3 89.2±

±4.5
98.7±
±4.9 97.9±4.9 107.8±

±5.4 131.5

∆H,
 J·mole–1 59.3 75.1 102.7 187.9 229.0 610.6 415.7

Table 9.1. Investigated specimens of nickel prepared by severe plastic deformation 
and DSC data
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258 Superplasticity and grain boundaries

Fig. 9.5. Characteristic DSC-curves for ECAP nickel for three heating rates: 1)                         
60 K/min; 2) 40 K/min; 3) 20 K/min.

in ECAP + HPT 0.14 µm, and in ECAP + rolling + HPT approximately 
100 nm.

Investigations of ultrafine-grained nickel by differential scanning 
calorimetry were carried out in equipment Perkin-Elmer DSC7 with 
the accuracy not lower than 2%. Figure 9.5 shows the typical DSC 
curves, produced for ECAP nickel at a heating rate of 20, 40 and 60 
K/min. The curves were plotted by deducting DSC signals, measured 
in the first and second pass.

The theoretical principles used in analysis of the DSC curves will be 
briefly analysed. Two main parameters are measured in the experiments 
of this type: activation energy and released (or absorbed) enthalpy (heat 
release). Activation energy can be determined by the standard Kissinger 
[24] or Ozawa [25] methods or from the Kolmogorov–Johnson–Mehl–
Avrami equations [26]. Regardless of the fact that these methods are 
based on different physical assumptions [9], they lead to identical 
results within the range of the measurement error. The Kissinger and 
Ozawa methods were developed for non-isothermal heating conditions. 
The method is based on the equation of the type of chemical reaction:

( )(1 ) expndx EA x
dt RT

 = - - 
   

(9.3)

where dx/dt is the reaction rate; x is the amount of the reacted 
substance; n is the reaction order; E is activation energy; T is absolute 
temperature. The reaction rate is maximum when d(dx/dt)/dt = 0. 
If the time dependence of temperature in heating is linear (i.e. T =                                   

Temperature (K)

H
ea

t 
flo

w
 (

W
/g

)
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259Grain boundary processes

T0	+	βt), then, differentiating (9.3), we obtain

( ) 1
2 1 exp .nd dx dx E EAn x

dt dt dt RT RT
- b   = - - -          

(9.4)

Equating (9.4) to 0, we obtain

( ) 1
2 1 exp ,n

m
m m

E EAn x
RT RT

-  b
= - - 

   
(9.5)

where Tm is the temperature of the peak on the DSC curve; 1(1 )n
mx --

is the amount of the untransformed material. It may be shown that the 
product 1(1 )n

mx --  does not depend on heating rate b and is close to 1. 
Consequently, activation energy is determined by differentiating (9.5):

2ln

1
m

d
T E

Rd
T

 b
 
  = -

 
 
   

(9.6)

In the Ozawa method, equation (9.6) has the following form

( )ln
1

d E
Rd

T

b
= -

 
 
   

(9.7)

Both equations, (9.6) and (9.7), are independent of n.
Recently, a large number of attempts have been made to increase the 

accuracy or modify the expression for the determination of activation 
energy with special reference to the recrystallisation of ultrafine-
grained and nanocrystalline materials [22 ]. However, as shown by 
the experimental results, the experimental errors are higher than the 
resultant improvement of accuracy. The suitability of using Kissinger 
analysis for determining the kinetic parameters of recrystallisation of 
nanocrystalline and ultrafine-grained materials was investigated in 
detail in [27]. The effective energy of activation, measured in DSC 
experiments, consists of two parts and can be written in the following 
form:

1
N grE mE

E
m
+

≈
+  

(9.8)

.

.
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260 Superplasticity and grain boundaries

where EN and Egr is the activation energy of nucleation and growth 
of grains, respectively; m is the integer or odd half-integer which 
depends on the mechanisms of nucleation and growth of the grains. 
For the three-dimensional case of grain growth controlled by grain 
boundary processes, m = 1. The activation energy of new nuclei in the 
investigated temperature range is negligible in comparison with the 
activation energy of grain growth (i.e., EN << Egr). In this case

2 .grE E= ⋅  (9.9)

Heating at different rates can be used to determine the displacement of 
the maximum peaks of the grain growth and find the effective activation 
energy and activation energy of grain growth from the equations 
(9.5) and (9.9). Figure 9.6 shows the Kissinger graph for analysis 
of all the investigated states of ultrafine-grained and nanostructured 
nickel. The appropriate values of the parameters are presented in 
Table 9.2. Analysis shows that in the nickel specimens subjected to 
torsional loading at a high quasi-hydrostatic pressure, grain growth 
starts at lower temperatures. In this set, the ECAP nickel has the lowest 
temperature of the start of grain growth processes. The electrodeposited 
nickel, characterised by the smallest mean grain size in the group 
of the investigated specimens, occupies an intermediate position. 
For comparison, Fig. 9.6 shows the data taken from [22]. It can be 
seen that the results of these investigations coincide with the already 

Fig. 9.6. Kissinger graph for ultrafine-grained and nanostructured nickel: 1) ECAP, 2) 
ECAP + rolling, 6) the electrodeposited nickel (eNi), 4) the same eNi by the according 
to the data in [22]; 5) ECAP + HPT; 6) ECAP + rolling + HPT; 7) PHP.
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261Grain boundary processes

published experimental data. Calculations of the activation energy give 
the values for ultrafine-grained nickel, produced by ECAP pressing, 
and nanostructured nickel, produced by electrodeposition, close to the 
activation energy of grain boundary diffusion. For the ultrafine-grained 
nickel produced by HPT or by ECAP + rolling + HPT combination, 
the activation energy is on average 10% lower (~89.2+0.5 kJ/mole). 
The latter may be used to explain the thermal stability of HPT nickel. 
Figure 9.7 shows the activation energy and heat release values as a 
function of the state or volume fraction of the grain boundaries. In the 
model of the ‘spherical’ grains, the variation of the volume, occupied 
by the grain boundaries, has the following form

33

0

1 1ICf
d d

 d d D = - - -  
     

(9.10)

where	δ	≈	 (0.8–1)	nm	 is	 the	 thickness	of	 the	grain	boundaries,	d0 and 
d is the initial and final grain size. Since the inequality d/d<<d/d0 <<1 
is fulfilled with higher accuracy, equation (9.11), can be presented in 
the following form

0

3
ICf

d
d

D =
 

(9.11)

The energy generated during a decrease of the volume fraction of the 
grain boundaries during grain growth, will be estimated. The surface 
density	 of	 energy	 in	 nickel	 γ~0.7	 J	 m–2 which corresponds to the 
volume	density	αγ/d0,	where	α	is	the	shape	coefficient.	For	the	model	of	

Fig. 9.7. Heat release () and activation energy () as a function of the grain size.
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262 Superplasticity and grain boundaries

spheres	α	=	3.	The	excess	energy	of	 the	grain	boundaries	 (in	J	mole–1) 
is expressed by the relationship

0

3gb AH N
d
γ

D = W⋅
 

(9.12)

where	 Ω	 =	 1.09·10–29 m³, NA is the Avogadro number. The enthalpy, 
measured in the DSC experiments, and the excess energy calculated 
from equation (9.12) are presented in Table 9.2. The measured and 
calculated values differ by a factor of 2. It may be assumed that the 
source of a similar difference is the elastic energy of the dislocations, 
introduced into the material during severe plastic deformation or 
electrodeposition. Using the simplifying assumption according to 
which the dislocations are uniformly distributed in the volume of the 
specimen, it will be attempted to estimate the dislocation density in 
ultrafine-grained and nanostructured nickel. The elastic energy of a 
dislocation ensemble is expressed as [28]:

2

0

ln C
EL

RE A Gb
r

∗= r
 

(9.13)

where coefficient A*	 is	 equal	 to	 1/(4π)	 for	 screw	 dislocations	 and																												
1/(4π	 (1–ν))	 for	 edge	 dislocations;	G is the shear modulus for nickel 
(7.89 · 1010	 Pa);	 ν is the Poisson coefficient; b is the modulus of the 
Burgers vector (2.49 · 10–10 m); RC is the external radius of truncation; 
r0  ≈	b is the radius of the dislocation core. In many theoretical studies 
the external radius of truncation RC is equated to the grain size for 
nanocrystalline materials. The physical meaning of this approach is 
reduced to the fact that the elastic fields of the dislocations cannot 
spread outside the limits of the nanograin. Thus, the grain boundaries 
are regarded as some sort of screening for the elastic fields of the 

Table 9.2. Heat release and density of ‘effective’ dislocations in ultrafine-grained nickel

Parameter
Grain size, nm

35 100 140 170 300 350

∆H, J/mol 610.6 229.0 187.9 102.7 75.1 59.3

∆Hgb, J/mol 265.0 92.7 66.2 54.5 30.9 26.5

EEL, J/mol 345.6 136.3 121.7 48.1 44.2 32.8

x = 4b2ρ,	10–4 6.613 2.607 2.328 0.921 0.845 0.628

ρ,	m–2 6.0·1014 2.1·1014 1.9·1014 6.8·1013 6.1·1013 4.0·1013
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263Grain boundary processes

dislocations. However, since the logarithmic function smoothly 
increases with increasing RC, this approach is also extended to the 
ultrafine-grained materials. In this case we shall try to estimate the 
external radius of truncation as the function of the dislocation density  
r. If the ensemble of the dislocations is treated as a square network 
(Fig. 9.8), then RC is described by the equation

1
2CR =

r  
(9.14)

and the energy associated with the ensemble of the dislocations is:

( )4 ln 1ELEE x x
A G

∗
∗= =  

(9.15)

where x = 4b2ρ	 is	 a	 dimensionless	 parameter.	 The	 type	 of	 function	
ln (1 / )x x  in the interval [0, 1] is shown in Fig. 9.9. The function 

has a maximum at x*= 1/e = 0.3679, and decreases with the increase 
of x at x > x*. Since the decrease of the elastic energy with increasing 
x (and, consequently, with the increase of dislocation density) has no 
physical meaning, it is assumed that the value x*= 1/e corresponds to 
the maximum possible dislocation density for a given material. For 
nickel	ρmax = 1/(4b2e) = 1.5·1018 m–2, which is a reasonable value. Now, 
the dislocation density in ultrafine-grained nickel can be estimated 
from the equation

( ) ( )04 3 /
ln 1 .AH N d

x x
A G∗

D - γW
=

 
(9.16)

Fig. 9.8. Network of ‘effective’ dislocations.Fig. 9.9 
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264 Superplasticity and grain boundaries

All the calculations carried out using this approximation are 
presented in Table 9.2. Dislocation density varies in the range from          
6·1014 m–2 for electrodeposited nickel to 4·1013 m–2 for ECAP nickel. 
These values are in good agreement with the values obtained from               
x-ray measurements carried out for nanocrystalline and ultrafine-
grained materials [29]. It should be mentioned that these dislocation 
densities lead to mean distances between them in the range from 20 
nm for electrodeposited nickel to ~60 and 80 nm for HPT and ECAP 
nickel, respectively. The distance of 20 nm is comparable with the 
mean grain size in electrodeposited nickel (35 nm) and, consequently, 
no more than one dislocation can be present inside the individual 
grains. In the case of HPT and ECAP nickel the body of the grain 
may contain on average 3–5 dislocations. These estimates are capable 
of explaining why it is not possible to observe individual dislocations 
in nanocrystalline materials (with the grain size smaller than 100 nm) 
when the grains either does not contain dislocations or it is not in the 
reflecting position.

9.3. Evolution of the microstructure and texture in HPT nickel in 
annealing

As already mentioned, the thermal stability of ultrafine-grained 
materials has been investigated quite extensively mainly owing to 
the fact that it has an important effect in the application of these 
materials. The structure was studied by the methods of electron 
microscopy and x-ray diffraction analysis to investigate the thermal 
stability in pure ultrafine-grained metals: copper [16, 30], cobalt 
[31], nickel [15], and also in some industrial alloys [32], etc. In these 

Fig. 9.9. Function x ln (1/√x).
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265Grain boundary processes

studies, special attention was given to changes in the structure on the 
microscopic level (i.e., annihilation of the vacancies and dislocations) 
on the basis of changes of the electrical resistance and by analysis of 
diffraction contrast. However, the evolution of the ensemble of the 
grain boundaries and texture in annealing of ultrafine-grained nickel, 
produced by torsional loading under quasi-hydrostatic pressure, has not 
been investigated. Recently, we also carried out investigations of this 
type [11]. These results are presented in this chapter. The investigated 
materials were pure nickel in which the microstructure formed by 
means of quasi-hydrostatic pressure with the applied pressure of 6 
GPa and the total number of revolutions of N = 6. The specimens 
were deformed at room temperature. Annealing was carried out at 
a temperature of 300°C which results, according to the data in [9, 
17], in a rapid decrease of microhardness and increase of the mean 
grain size. The annealing time was 1, 10 and 30 min, and also 5 and 
20 h. Texture measurements were taken in a Siemens diffractometer. 
The evolution of the microstructure and of the ensemble of the grain 
boundaries was investigated in a Philips scanning electron microscope. 
The pole figures and ODF of the initial specimens were described in 
chapter 4. It is well known that pure shear in FCC metals results in the 
formation	of	 the	texture	component	{001}á110ñwhich was found in the 
initial condition [33]. Annealing resulted in changes in the texture. The 
evolution of the texture can be investigated by monitoring the texture 
components (001), (111), (112) and (103) whose volume fraction was 
calculated on the basis of experimental ODFs. Figure 9.10 shows the 
variation of each components with increasing annealing temperature in 
comparison with the textureless state. It can be seen the fraction of the 

Fig. 9.10. Variation of the intensity of texture components (001) (1), (111) (2), (112) 
(3) and (103) (4) in annealing of HPT nickel.
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266 Superplasticity and grain boundaries

components (100) and (111) greatly decreases already after annealing 
for 1 min. This is followed by a small change of all components 
with increasing annealing time and the intensity of the components 
(100) and (111) continues to decrease, whereas the sharpness of other 
texture components smoothly increases. After long-term annealing the 
intensity of all the investigated texture components is approximately 
the same. The most important characteristics of the microstructure are 
the size distribution of the grains (and also the mean grain size) and 
the misorientation distribution of the grain boundaries. The variation 
of the mean grain size during annealing of ultrafine-grained materials 
has been studied in considerable detail. At the same time, there is 
only a very small number of experimental data on the size distribution 
of the grains and evolution of the ensemble of the grain boundaries 
during annealing. There are no data for the evolution of the GBCD 
in annealing of ultrafine-grained materials. Figure 9.11 shows the 
dependence of the mean grain size on annealing time. The same figure 
shows the microstructure produced by the OIM method. It can be seen 
that in the first minutes the grain growth rate is high and the mean 
size of the grains increases by an order of magnitude: from 0.17 to 
1.5 µm. It may be concluded that at a temperature of 300°C and the 
annealing time longer than 30 min the microstructure becomes almost 
completely stable. The mean grain size in annealing from 30 min to 
20 h increases from 1.5 to 2.3 µm.

It is very important to investigate the evolution of the ensemble 
of the grain boundaries in annealing by determining the variation 
of the fraction of low-angle, special and high-angle arbitrary grain 
boundaries. The variation of the fractions of the various types of the 

Fig. 9.11. Dependence of the mean grain size on annealing time at T = 300°C for 
ultrafine-grained nickel, produced by torsional loading under pressure (a), and the 
microstructure after annealing at 300°C for 1 min (b).
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267Grain boundary processes

grain boundaries for the HPT nickel, annealed at 300°C, annealing time 
1, 10 and 30 min and also 5 and 20 h, is shown in Fig. 9.12. It can be 
seen that with increasing annealing time only two components change 
greatly: the fraction of the twin boundaries ∑3 increases as a result of a 
decrease of the fraction of the high angle arbitrary boundaries. It should 
be mentioned that the fraction of the low-angle grain boundaries and the 
∑5–30 boundaries also decreases, although not so greatly as the fraction 
of the high-angle grain boundaries. The identical trend was found in 
investigating the evoluation of the microstructure of the nanocrystalline 
nickel produced by electrodeposition, which is characterised by the 
presence of a sharp (001) texture. Annealing at 300°C was accompanied 
by the nucleation and growth of the (111) texture component. This is 
a clear indication of the nucleation and growth of the twin boundaries 
∑3. Thus, the evolution of the ensemble of the grain boundaries in 
the ultrafine-grained and nanocrystalline materials takes place in the 
manner similar to the process of multiple twinning detected in FCC 
materials with low and mean stacking fault energies.

9.4. Superplasticity of nanocrystalline nickel

Superplasticity can be described by the generalised equation linking 
the flow stress s and strain rate e  [34–36]:

p nDGb bA
kT d G

s   e =    
   



 
(9.17)

where D is the appropriate diffusion coefficient (volume or grain 
boundary); G is the shear modulus; b is the Burgers vector; T is 
deformation temperature; d is the mean grain size; s is the flow 

Fig. 9.12. Variation of the fraction of the high-angle grain boundaries (1), the boundaries 
∑3 (2), ∑5–29 (3) and low-angle boundaries (4) in the general spectrum of the boundaries 
as a function of the grain size (or annealing time at 300°C) for ultrafine-grained nickel 
produced by torsional loading under pressure. 
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268 Superplasticity and grain boundaries

stress; p is the exponent of the dependence on the grain size; n = 1/m 
is a quantity inversely proportional to the rate sensitivity coefficient 
[35, 36]. The results of a large number of experiments show that 
in the metals, intermetallics and ceramics with a nanostructure the 
value of the exponent p is close to 2, if the bulk diffusion is the 
main accommodation mechanism, and equal to 3 for grain boundary 
diffusion [37]. As indicated by equation (9.18), the decrease of the 
grain size should result in a decrease of the temperature of superplastic 
deformation and/or increase of strain rate. Theoretical predictions of 
this type were made by Gleiter [38] and confirmed by experiments 
published in [6, 13, 14]. However, the nanostructured materials may 
show grain growth even at reduced temperatures and this growth leads 
to structural instability. The experiments show that in many cases the 
superplasticity of the nanostructured materials is in fact accompanied 
by grain growth. In intermetallics, grain growth has a destructive role, 
and in pure nickel it may lead to accommodation of grain boundary 
sliding by 'sweeping up' triple junctions [13, 14]. In our view, grain 
growth has a positive role only when the mean grain size is lower than 
some critical size.

In early studies of superplasticity of nickel in experiments with 
uniaxial tensile loading special attention was given to the effect of 
small grains (~4 µm) on the superplastic behaviour of the material [39]. 
For comparison, experiments were carried out with coarse-crystalline 
nickel produced by annealing at 1173 K for 1 h. The mean grain size 
after this treatment was approximately 100 µm. The strongest effect 
of the initial microstructure was found at elevated temperatures. The 
results show that at temperatures of 723 K the flow stress of fine-
grained nickel is higher than that of coarse-crystalline nickel; however, 
with a further increase of temperature in deformation the situation 
was reversed: coarse-grained nickel was stronger. In fine-grained 
nickel, plasticity increased with increasing temperature, reaching a 
maximum of approximately 180% at 1073 K. The typical diagram of 
superplastic flow was obtained in this case. For nickel with larger 
grains the behaviour of the specimens during deformation was different: 
hardening takes place up to fracture. The initial microstructure has a 
strong effect on both the rate dependence of the flow stress and relative 
elongation. For low strain rates the flow stress for fine-grained nickel 
was lower than for coarse-grained nickel. The situation changed at rates  
higher than 5·10–2 s–1. For the strain rate of 5·10–3 s–1 the coefficient 
of rate sensitivity was equal to 0.38 for fine-grained nickel and 0.22 
for coarse-grained. With increasing strain rate the plasticity of coarse-
grained nickel increased monotonically and that of fine-grained nickel 
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showed a maximum at 5·10–2 s–1 and then rapidly decreased. 
Of special interest is the investigation of the superplastic properties 

of nickel with the ultrafine-grained structure. These investigations were 
carried out on nickel specimens produced by electrodeposition [13, 14]. 
The brightfield image of the microstructure and the microdiffraction 
pattern of nanocrystalline nickel are shown in Fig. 9.13a. The mean 
grain size of the initial structure was approximately 35 nm. The mean 
size of the grains, produced on the dark field images, is in good 
agreement with the results obtained in x-ray diffraction measurements. 
Experiments with uniaxial tensile loading were carried out in a mini-
machine. The external appearance of the minispecimens prior to and 
after tensile loading is shown in Fig. 9.13b. Elongation was measured 
directly in the gauge length of the specimens (not on the basis of the 
displacement of the clamps of the machine). The shape of the gauge 
part indicates the uniform elongation without formation of a localised 
neck. Maximum elongation was recorded at 693 K and a strain rate 
of 1·10–3 s–1. The stress–strain curves, measured at a rate of 1·10–3 s–1, 
for three different temperatures (453, 623 and 693 K) are shown in 
Fig. 9.14. At temperatures higher than 453 K the flow stress rapidly 
decreases and already at 623 K the specimens of nanocrystalline nickel 
show plasticity higher than 200%. A further increase of temperature 
increases the plasticity of the specimens, with the maximum plasticity 
recorded at 693 K equalling 895%, which is the highest recorded 
elongation for pure nickel. The transition of the nickel specimens from 
the state with low plasticity to the state without plasticity coincides with 
the isothermal peak on the curve plotted in the differential scanning 
calorimeter. Figure 9.15 shows the signal from DSC at a heating rate of 

Fig. 9.13. Brightfield images and diffraction pattern of electrodeposited nickel (a). 
The external appearance of the specimen in the tensile test (b).
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270 Superplasticity and grain boundaries

40 K/min and the elongation values recorded at the given deformation 
temperature. The nanocrystalline nickel specimens were annealed to 
determine the microstructure and the start of tensile loading on the basis 
of the temperature profile of the mechanical tests. Figure 9.16a shows 
the microstructure of the specimen after heating from room temperature 
to 623 K at the same rate as in the mechanical tests (approximately 
40–50 K/min). The microstructure remained ultrafine-grained, although 
the size of the individual grains reached 0.3 µm. In heating to 693 K 
(experiments in which the highest elongation values were recorded) 
the microstructure had a more uniform grain structure with the mean 
grain size of approximately 0.5 µm (Fig. 9.16b). Annealing twins were 
found in the structure. The results of transmission electron microscopy 
of thin foils taken from the gauge part of the specimens deformed at                                                                                                   
623 K, show that the mean grain size in the gauge part was 1.3 µm 
along the tensile loading axis, and 0.6–0.7 µm in the cross-section. 

Fig. 9.14. True dependence of the flow stress on strain for the specimens taken from 
electrodeposited is equal, at a speed of movement of the clamps of the machine of 
10–3 s–1 and temperature T = 453 K (1), 623 K (2) and 693 K (3).
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271Grain boundary processes

For the specimens, deformed at 693 K, the mean grain size was 
approximately 2 µm in the direction of the tensile loading axis and 1 
µm across this axis. Thus, the rate of grain growth was high in heating 
to the temperature of the start of deformation and the mean size of the 
grains increased by three orders of magnitude or more (from 35 nm 
to 0.3–0.5 µm). Nevertheless, the structure of nickel just prior to the 
start of testing remained ultrafine-grained with the mean grain size 
considerably smaller than that recorded in the experiments in earlier 
studies [39].

The most important characteristic of the superplastic deformation 
process is the rate sensitivity exponent n which can be measured in 
experiments by varying the rate of superplastic deformation. The value 
n can be calculated from the equation

 

(9.18)

The rate sensitivity parameter was measured in [13]. Tests were carried 
out at two temperatures (623 and 693 K). Strain rate was changed in 
‘jumps’ from 1·10–3 s–1 to 2·10–3 s–1 for T = 623 K, and from 1 · 10–3 s–1 
to 5·10–2 s–1 for 693 K. In both cases the rate sensitivity decreases with 
increasing strain. These experimental results are very unusual because 
up to now it has not been possible to reach such high elongation 
values into pure metals because of grain growth at test temperatures. 
An exception is only pure aluminium – the highly plastic material on 
its own.

The transition of nanocrystalline nickel from the state with 
low plasticity to the one with high plasticity, detected at a test 
temperature higher than 453 K, corresponds to the transition from 
the purely dislocation mechanism of deformation of the thermally 
activated mechanism (grain boundary sliding). A similar behaviour 

Fig. 9.16. Microstructure of nickel specimens after heating to 623 K (a) and 693 K 
(b) at a rate of 40–50 K/min.
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272 Superplasticity and grain boundaries

is characteristic of nickel [39, 40] but in this case the transition 
temperature is considerably lower and the ‘jump’ in the flow stress 
is considerably greater. This is a consequence of the small grain size: 
follow temperatures (and, consequently, the dislocation mechanism of 
deformation) the high flow stress is caused by the Hall–Petch effect, 
and is the crease at elevated temperatures is caused by the small 
mean grain size (see equation (9.16)). In the materials with a small 
grain size in transition to the thermally activated deformation process 
(grain boundary sliding, diffusion and dislocation accommodation) the 
thermal energy is distributed between the processes of superplastic 
flow and grain growth. Both these processes have approximately 
the same activation energy which is equal to the activation energy 
of grain boundary diffusion. The phenomenon of grain growth in 
superplastic deformation was observed a long time ago but it has not 
been investigated for the materials with the ultrafine-grained structure. 
It would appear that only the driving force of grain growth greatly 
decreases with the increase of the mean grain size to approximately 
1 µm, including the superplasticity mechanism, and grain growth is 
accompanied by grain boundary sliding. The rate of grain growth 
decreases in this case. The rate sensitivity parameter is an indicator of 
the type of controlling mechanism. For both deformation temperatures 
the rate sensitivity coefficient tends to decrease from 4 to 2 with 
increasing strain. This is in agreement with the results published in 
[39] in which the value of n ≈ 2.5 was obtained for fine-grained nickel 
deformed at 1073 K and a strain rate of 5·10–3 s . The variation of the 
rate sensitivity parameter with increasing strain indicates the evolution 
of the microstructure which takes place parallel with the superplastic 
flow.

In conclusion, it should be mentioned that the problems of the type 
of ensemble of the grain boundaries have not been examined in the 
phenomenological theory of superplasticity. We believe that this is 
not completely correct. According to the current views, superplasticity 
is a cooperative process in which grain boundary sliding affects not 
individual grains but groups of grains (pile-ups). It may be assumed 
that the boundaries of these pile-ups are represented by high-angle 
arbitrary boundaries and the grains inside the pile-ups are separated 
by low-angle and/or special grain boundaries, with sliding along these 
grain boundaries being difficult or completely impossible [40]. This is 
discussed in Chapter 10.

In this chapter, attention was given to the phenomena directly 
associated with the ensemble of the grain boundaries in the ultrafine-
grained and nanocrystalline nickel specimens. In cases in which 
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273Grain boundary processes

the evolution of GBCD was not discussed, it was assumed that the 
investigated phenomena are caused by high-angle grain boundaries. 
Analysis of the results of investigation of the grain growth in ultrafine-
grained nickel, produced by ECAP, confirmed the assumption that this 
process is controlled by grain boundary self-diffusion. The recently 
published data on the large decrease of the activation energy for ECAP 
nickel have not been confirmed. To evaluate the activation energy, 
experiments were carried out using differential scanning calorimetry 
for a set of ultrafine-grained nickel specimens produced by different 
methods of severe plastic deformation with the mean grain size in the 
range 0.35 µm to 35 nm. In all cases DSC yielded the activation energy 
values close to the values for grain boundary diffusion. This conclusion 
is also supported by the experiments with annealing of ultrafine-
grained nickel produced by torsional loading under quasi-hydrostatic 
pressure. The evolution of the ensemble of the grain boundaries in 
ultrafine-grained nickel was investigated in the given experimental 
range. In particular, it was found that only two components of GBCD 
change greatly with increasing annealing time. The fraction of the 
twin boundaries ∑3 increases as a result of a decrease of the fraction 
of high-angle arbitrary boundaries. It should be mentioned that the 
fraction of the low-angle grain boundaries and of the ∑5–30 boundaries 
decreases, although not so greatly as the fraction of the high-angle 
boundaries. The identical situation was observed when investigating 
the evolution of the microstructure of nanocrystalline nickel produced 
by electrodeposition and characterised by the presence of the sharp 
texture (001). Annealing at 300°C was accompanied by the nucleation 
and growth of the (111) texture which is a clear indication of the 
nucleation and growth of the twin boundaries ∑3. Thus, the evolution of 
the ensemble of the grain boundaries in the ultrafine and nanocrystalline 
materials takes place by the same mechanism as the process of multiple 
twinning detected in the FCC materials with low and mean stacking 
fault energies.

In the final part of the chapter we present the results of investigations 
of the superplastic behaviour of nanocrystalline nickel. Nickel is 
nanocrystalline only in the initial condition and at the start of tensile 
loading its mean grain size was in the range 0.3–0.5 µm and in fact, 
nickel was ultrafine-grained. The highest elongation value, recorded in 
these investigations, was approximately 900%. At the moment this is 
the highest elongation known in the literature. There are two hypotheses 
regarding the mechanism of superplastic deformation of nanonickel. 
The first of them is associated with the presence of the residual 
impurity of sulphur, found in nickel produced by electrodeposition 

�� �� �� �� ��



274 Superplasticity and grain boundaries

[41]. The sulphur atoms, dissolved in the matrix, segregate in the 
vicinity of the migrating grain boundaries, reduce their mobility and, 
consequently, delay grain growth. This hypothesis is supported by the 
investigations of the effect of small sulphur additions on the high-angle 
grain boundaries in nickel. However, in our studies and also in some 
other investigations annealing at temperatures corresponding to the 
superplastic deformation temperature did not result in the precipitation 
of nickel sulphides at the grain boundaries. Similarly, no significant 
increase of the sulphur concentration along the grain boundaries in 
annealing of the electrodeposited metal was recorded in [42]. At the 
same time, in [43] the authors reported a large increase of the fraction 
of the grain boundaries in the spectrum of the grain boundaries in 
nanonickel produced by electrodeposition. It is well known that the 
twin boundaries have low mobility and may act as obstacles in the 
path of migrating grain boundaries.
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10

DURATION OF THE STABLE FLOW STAGE 
IN SUPERPLASTIC DEFORMATION

10.1. Superplastic capacity and the rate sensitivity parameter

High deformation to failure is the distinctive feature referring to 
plasticity as a physical phenomenon. Starting with a study by Hart [1], 
the magnitude of deformation to failure directly depends on the value of 
the strain rate sensitivity coefficient m = dln s/dln e . In [1], deformation 
to failure is regarded as the formation of a microscopic neck from 
the initial geometrical imperfection of the specimen – a prototype 
of the neck. At high values of m the initial nonuniformity does not 
develop into the neck for a long period of time. This results in high 
elongation of specimens. In [2] using a large number of experimental 
results it was shown that there is a correlation between the superplastic 
capacity and the value of m but the functional relationship between 
them could not be determined. The dependence cannot be described on 
the basis of the single parameter m. Formally, Hart’s analysis permits 
the introduction of further two parameters: strain hardening exponent 
n and the parameter of the geometrical defect

0

0

Af
A

d
=

where A0	 is	 the	 cross-sectional	 area	 of	 the	 specimen;	 δA0 is the 
deviation of the cross-sectional area from its value A0 in the vicinity 
of the defect. It should be mentioned that the localised geometrical 
imperfection typical of the specimen in the initial stage is difficult to 
reconcile in the experiments with tensile loading of the specimens with 
the phenomenon of the running neck. This explains the attempts for 
formal introduction of the deformation defect of the unknown nature 
instead of the geometrical one [3]. In order to estimate the role of the 

,
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277Duration of the stable flow stage

parameters f and n in the formation of the limiting elogations, we shall 
discuss several equations which improve the accuracy and develop 
further the Hart approach but do not extend outside the limits of general 
ideology. The following equations were obtained in [4]

1/1 (1 ) 1
mm

fe f
-

 = - - -   
(10.1)

/(1 )
0(1 ) 1, 67,m

fe e -γ= + η - η =  (10.2)

where	 γ	 is	 the	 strain	 hardening	 parameter	 linked	 with	 n by the 
relationship	γ	=	n/εf. Here and later ef	and	εf are two known deformation 
measures:	εf = ln (1+ ef). Using the parameters n, m and f, the following 
relationship was obtained in [6]: 

1.
n

f m
ee
f

= -                                                                 (10.3)

The generalising equation (10.1) for limiting deformation which is 
very similar to the equation derived in an early study by Ghosh, was 
published by Baudelet [3]:

1/1 (1 ) 1
mn m

fe e f
-

 = - - -   
(10.4)

1
m

n
f

me e
f

 
= - 

   
(10.5)

This expression also resembles the result of an earlier study by 
Nicholson [7]:

/(1 )
1 .

m

fe
f

-γ
 

= - γ 
   

(10.6)
 

Finally, there are two known results obtained in describing the 
dependence	 of	 εf on all these parameters in the implicit form. These 
equations were published by Hutchinson and Neale [8]
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and also Baudelet [3]:

0ln 1 exp .f
f

f

n
n m

m

  e -
e = - - -e   e     

(10.8)

The dependences of the limiting strain on the rate sensitivity parameter, 
determined using one of these relationships, are presented in Fig. 10.1. 
Regardless of the large external difference between the equations (10.4) 
and (10.5), the values determined using these equations do not differ by 
more than 1% and the curves on the graphs coincide almost completely. 
It should be mentioned that all these relationships lead to unlikely high 
strain values at high values of m.	The	value	corresponding	 to	 εf ~5 is 
f ~15 000%. Of course, such elongation have never been experienced.

The	presence	of	the	inflection	point	on	the	σ– e sigmoidal dependence 
determines the non-monotonic relationship between the rate sensitivity 
parameter and the strain rate. If we select two identical values of m on 
both sides of the maximum, these values will correspond to different 
limiting strain values. In addition, the maximum elongation is not 
obtained at the rate which corresponds to the maximum value of m [9].

The role of m  in the formation of limiting strains changed 
unexpectedly after the discovery of high-strain rate superplasticity. 
It was found that high elongation values can also be reached at low 
values of m (less than 0.3). Thus, the high (at least in the initial 
meaning) value of m is not essential for obtaining high strains. The 
results obtained in recent experiments on ceramics were even more 

Fig. 10.1. Dependence of strength and fracture on the strain rate sensitivity parameter, 
calculated from the equations: 1) (10.1); 2) (10.2); 3) (10.3); 4) (10.4). The following 
values of the parameters were used in the calculations: f = 0.005, e0	=	0.1,	 γ	=	0.01,	
n = 0.2.
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surprising [10]. It was established that even higher values (~1) of m 
do not guarantee high strains, i.e., the condition m > mc appears to 
have lost its meaning even as a sufficient condition of superplasticity. 
Although the limiting strains are determined by the formation of the 
neck, the phenomenological description of the development of the neck 
becomes unconvincing: high values of m do not guarantee high values 
of elongation. The essential and sufficient condition for superplasticity 
in the proposed model is the formation of bands of cooperative grain 
boundary sliding (CGBS). Taking these considerations into account 
leads to the task of calculating limiting strains [11].

10.2. Description of thickness differences of a flat specimen in 
tensile deformation

A flat specimen is regarded as a two-dimensional region defined at the 
initial moment of time in the coordinates x and z by the inequalities            
|x|	≤	r0, |z|	≤l0 (where r0 is the half width of the specimen, l0 is the half 
length of the specimen). The tensile deformation along the axis z takes 
place by shearing along two systems of the CGBS bands, oriented under 
the angle of 45° to the tensile loading axis. If the total number of the 
bands in the specimen at the given moment of time t is equal to M (t), 
and V is the shear rate in an individual band, then the instantaneous 
speed with which the length of the specimen increases is determined 
by the obvious relationship:

( ) ( )
2

dl t V M t
dt

=
 

(10.9)

The specimen fails in localised deformation in some cross-section and 
irreversible growth of the neck. Thus, the duration of the process is 
determined by the degree of uniformity of the profile of the cross-
section of the specimen – thickness difference. The rate of variation 
of any cross-section in complete analogy with the equation (10.9) is 
determined by the number of CGBS bands intersecting the given cross-
section. The spatial distribution of the bands along the z axis is defined 
by the function n (z,t), normalised with respect to the total number of 
the bands M (t)

( )

( )

( ) ( , )
l t

l t

M t n z t dz
-

= ∫
Let r (z,t) be the transverse dimension of the specimen in the cross-

.

.
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section with the coordinate z at the moment of time t. Consequently, 
by analogy with (10.9) we have

( , )

0
( , )

( , ) ( , ) , ( ,0)
2

z r z t
B

z r z t

Vdr z t n z t dz r z r
dt

+

-

′ ′= - =∫
 

(10.10)

Here the integral in the right-hand part also determines the number of 
bands intersecting the cross-section with the coordinate z. Equation 
(10.10) describes the correlated behaviour of closely spaced sections: 
a number of bands, intersecting such cross sections, is common in this 
case. In the uniform distribution of the bands along the length of the 
specimen the rate of variation of the transverse dimensions does not 
depend on the selected cross-section and the neck does not form. In 
this case, n (z,t) = M (t)/(2l(t)), and the equation (10.10) is reduced to 
the incompressibility condition, d[l(t)r(z,t)]/dt = 0, and describes the 
uniform variation of the cross-section. If the scale of the nonuniformity 
of the distribution of the bands is considerably smaller than the actual 
width then, since the length of the integration interval in (10.10) is 
equal to 2r (z,t), such nonuniformity will be removed by integration and 
has only a slight effect on the value of r (z,t). Significant localisation 
of the flow occurs only in the case in which the characteristic scale of 
the nonuniformity with respect to the order of magnitude is comparable 
with the actual width. Thus, at high strains (or the initial narrow 
specimen), fine-scale nonuniformities in the band distribution may 
lead to large thickness differences. In addition, with increasing length 
of the specimen the probability of the nonuniform distribution of the 
bands becomes higher (both as a result of the increase of the base in 
which the bands are distributed and as a result of the possible decrease 
of the absolute number of the bands due to the buildup of damage in 
the material) and the probability of necking increases.

10.3. Formation of thickness difference as a random process

We consider equation (10.10) as a stochastic equation determined by 
the random process n(z,t). From the incompressibility condition

( )

0 0
( )

( , ) 2
l t

l t

r z t dz r l
-

=∫

Consequently, the spatial mean of the random quantity r (z,t) is:

.

.
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( )
0

0
( )

1( ) ( , )
2 ( ) ( )

l t

l t

lr t r z t dz r
l t l t

-

= =∫

and is unambiguously determined through the tensile loading kinetics 
by the experiment conditions. At a constant speed of the grips of 
the machine l (t) = V0 (l(t) = l0 + V0t); at a constant strain rate                           
l (t)/l (t) = e  = const (l(t) = l0 exp ( e t) = l0exp	 ε(t)). On the other 
hand, the dependence l(t) is determined by the total number of acting 
bands and by the shear rate in these bands (see (10.9)). We introduce 
the probability p(t) of the formation of the band at time t. The total 
number of the bands M (t) is assumed to be a determined value which 
does not differ from the mean value. If d(t) is the grain size at time t, 
the number of potentially possible sites for the bands is 2l (t)/d(t) and 
the mean number of the bands on the entire length is

2 ( )( ) ( )
( )
l tM t p t

d t
=

We transfer from the independent variable t 	 to	 strain	 ε.	 Their	
relationship is determined by kinematics. In a general case

0 0 0
0

( ) ( ), ( ) exp[ ( ) ] exp( ( )), ( ) exp( )
( )

tl t t l t l t dt l t l l
l t

′ ′= e = e = e e = e∫


 

After	 transition	 to	variable	ε,	 the	equations	(10.9)	and	(10.8)	have	 the	
following form
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Let 
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z at the given with r (z,ε),	 i.e.,	 the	 random	quantity	with	 the	 average	
value
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2 ( , ) ( )
( )

r z p
d

e
x = e

e

Consequently, because of (10.12), the ensemble average is defined by

( , )
( , )

d r z
r z

d
e

= - e
e

  or  0( , ) exp( )r z re = -e

Thus, the mean ensembe average coincides with the spatial average. 
Generally speaking, it is necessary to determine the conditions (or the 
moment	 of	 arrest	 in	 the	 variable	 ε)	 at	 which	 the	 random	 realisation	
of the transverse size of the specimen in some cross-section differs 
so much from the spatial average that the shear stress in this section 
is outside the superplasticity range and the material is deformed in 
the conditions of classic diffusion (wide cross-section) or dislocation 
(narrow cross-section) creep. If the ensemble average and the spatial 
average coincide, it is much easier from the technical viewpoint to 
monitor the scatter of realisations in respect of the ensemble average. 
Here z is an inessential parameter and the equation with respect to the 
independent	variable	ε	which,	to	shorten	considerations,	will	be	referred	
to as time, has the final form:

[ ]( ) ( ) ( ) ,
2 ( )

dr d r
d p

e e
= - x e

e e  
(10.13)

where function d(ε)	 is	 determined	 by	 the	 grain	 growth	mechanism	 in	
deformation; p(ε)	is	the	probability	of	formation	of	a	CGBS	band	which	
depends on the buildup of damage in deformation. Random quantity x is 
determined	as	follows.	At	 time	ε	=	0	 there	 is	some	random	number	of	
bands x0 determined by the quantities r(0), d(0) and p(0); during time 
D0 the cross-section decreases at a constant rate. Correlated switching 
(taking into account the changing base r(D0)) takes place at time e = 
D0, another system of bands forms, etc. After integration of (10.13) in 
the range [ ],k k ke∈ e e + D ,	where	εk	=	∆0 +...	+	∆k–1, and after introducing 
the notation r(εk) = rk we obtain a random process

[ ]1 2
k k

k k k k
k

dr r r
p+
D

= - x ; 1k k k+e = e + D

[ ]
[ ]2

0 2 /( ) k k kk k

k k

r d
k k k kr dP r C p q -xx xx =

with	 the	binomial	distribution	ξk and the evident transition probability

.

.
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[ ]2 /

1 0 1
0

( ) ( ) .
2

k k

k

r d
k k

k k k k k k k
k

dP r r P r r r
p+ +

x =

 D
= x d - + x 

 
∑

We construct the characteristic function of the random quantity rk +1 [12]

1 1 1 1 1exp( ) exp( ( )) exp( ) exp( )
2 2
k k k k

k k k k k k k k k
k k

d diu r iu r iu r iu
p p+ + + + +
D D

= - x = - x

where the internal angular bracket denotes averaging with respect to 
the	distribution	of	 random	quantity	ξk. Consequently

[ ]

[ ]
[ ]

2 /
2 /

1 1 2 /
0

exp( ) exp( )
2 2

k k
k k

k k

r d
r d ll lk k k k

k k k k kr d
k kl

d diu iu l C p q
p p

-
+ +

=

D D
- x = - =∑

2

1exp( )
2

k
k

r
d

k k
k k k

k

dp iu q
p+

 D
= - + 

 

The characteristic function of random quantity rk+1 is linked with the 
characteristic function of quantity rk by the relationship

( ) ( )1 1exp expk k k kiu r iu r+ + =

where

1 1
2 ln( exp( ) )

2
k k

k k k k k
k k

diu u p iu q
d p+ +

D
= - - + ;

 
1 1 1

1

1 exp(
n

n
k k k

k

dr iu r
i du+ + +

+

 
=  

 
;

1 1 0 0 0
0

(1 )(1 )...(1 ) (1 )
k

k k k i
i

r r r+ -
=

= - D - D - D = - D∏ ;

 

22 2 2
1 1 1

0 2

k
i

k k k i i i
ii

qr r d r
p+ + +

=

s = - = D∑ ;

  

2 , .k
k n n

n

r
r r r k n

r
= ≥

Since r0 >>d0, the distribution of ri at small values of i is described 
with sufficient accuracy by the Gauss distribution (the well-known 
conditions of approximation of the binomial distribution are fulfilled). 

.
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284 Superplasticity and grain boundaries

It is assumed that the combined density of probability for the set                                                                                                      
{r1,r2,..., rn}	 is	defined	by	 the	n-dimensional Gauss distribution

[ ]1 2
1 1

1( , ,..., ) exp( ( )( )) / (2 ) det
2

n n
n

n ik i i k k ik
i k

P r r r r r r r
= =

= - Λ - - p l∑∑ ;

, , 1 , 1 1, , 1ik kk i k k k i k k k i k+ + - -Λ = Λ d + Λ d + Λ d ;

1 1
02

1 1

, 1,2,.., 1, ( 0)
( )( )

k k
kk

k k k k k

k n
r

+ -

+ -

a - a
Λ = = - a ≡

a - a a - a
;

, 1
1 1

1 , 1,2,..., 1
( )k k

k k k k
k n

r r+
+ +

Λ = = -
a - a

;

2

, 2 2
1

1 , , .
( )

k
n n ik ki k

n n n kr r-

s
Λ = Λ = Λ a =

a - a

The determinant of the covariance matrix is equal to

2
1 2 1 1 2 2 1 1

ˆdet [ ... ] ( )( )...( )n n n n nr r r - - -l = a - a a - a a - a a

and the sum

2
1

1, 1 1

( )( )( )
n n

i i
ik k k i i

i ii k i

r r r r -

-= =

n - n
Λ - - =

a - a∑ ∑ ,

where to shorten the equations, it is assumed that 

0/ ( 1)k k kr rn = n ≡ .

10.4. Absorption condition and the equation for limiting strain

Plotting the combined distribution of realisations ri for the arbitrary 
number of steps n, we can determine the conditions of absorption of 
the process as the conditions of formation of a thickness difference 
at which the extreme cross-sections (thinnest or widest) are no longer 
in the range of the superplasticity conditions. Consequently, the local 
regions are transferred to the classic plasticity regime with rapid failure. 
Let the range of superplasticity in the stress variable be given by the 
boundaries	τ1	<	τ	<	τ2,	 i.e.,	τ1	 is	 the	threshold	stress,	τ2 is the transition 
stress to the dislocation creep regime. The stress t  in the section rk 
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285Duration of the stable flow stage

is linked with the macroscopic stresses t (generally speaking, with             
t(e)) by the relationship tárkñ = t rk. It is assumed that if t does not fit 
in	the	range	[τ1,	τ2], absorption has taken place. Thus, the conditions of 
continuation of the process in the k-th step are reduced to fulfilling the 
inequalities restricting the difference between the random realisation 
rk and its mean value:

2 1
k k k k ka r r r bt t

≡ < < ≡
t t

It is now quite easy to write the equation for the probability of 
absorption of the random process in the k-th step:

1 11 1

1 1 1 1

1 1 1 1 1 1 1... ( , ,..., ) ... ... ( , ,..., ) ...
k k k

k k k

a b bb b

k k k k k k k k k
a a b a a

Q P r r r dr dr P r r r dr dr P P
- -

- -

∞

- - -
-∞

= + = -∫ ∫ ∫ ∫ ∫ ∫

where

1 1

1 1

1 1 1... ( , ,..., ) ...
k k

k k

b b b

k k k k
a a a

P P r r r dr dr
-

-

-= ∫ ∫ ∫

Since Qk is the normalised (taking into account the equality P0 = 1) 
density of probability of the discrete random quantity with the values 
1, 2,..., the mean number of steps to absorption is:

1
1 1 0 1

( ) 1 ,k k k k k
k k k k

k kQ k P P P P
∞ ∞ ∞ ∞

-
= = = =

= = - = = +∑ ∑ ∑ ∑

where the first equality is definition and the remaining ones are 
identical transformations. The calculation of the probabilities Pk is 
reduced to calculating the integral with respect to the k-dimensional 
cube:

1 1 2
1 1

11 1 1

( ) ...... exp( )
2 (2 ) ...

k
i i k

k k
ii k

x x dx dxP -

=- -

-
= -

γ p γ γ
∑∫ ∫

2

1
1 2

2 ( )i i it t -
 

γ = a - a + 
, 2 1

0
2 1

t tx
t t

-
=

+
, 1 2

1 2
1, 1t tt t

= - = -
t t

As a result of the evident substitution of the variables, Pk can be written 
in the form of the integral of the isotropic function:

.

.

.
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2 2 1
1 /2

...exp( ... )
k

k
k k k

dy dyP y y
W

= - - -
p∫

where the integration range is given by the inequalities

0 0
1

(1 ) 2 1 , 1,2,...,
i

l l
l

x y x i k
=

- + ≤ γ ≤ - =∑
Rotating the coordinate system with {y1},	 the	oblique	prism	Wk can be 
transformed to the form

1
10 1 1

1 1 1 11

1 ... ...
... ... ...2( ... )

k
ji i

j k
j j kj ii

x z z
-

+

+=

γ+ γ + + γ γ + + γ
- ≤ + ≤

γ + + γ γ + + γ γ + + γγ + + γ ∑

0

1

1
2( ... )i

x-
≤

γ + + γ

0 0

1 1

1 1 , 1,2,..., 1.
2( ... ) 2( ... )k

k k

x xz i k+ -
- ≤ ≤ = -

γ + + γ γ + + γ

It is now quite easy to find the maximum parallelepiped inscribed in Wk 
(considering successively the inequalities, starting with older numbers):

0 01 2 1 2

1 1

1 11 1
2 22 2

i i
i

i ii k

x xt t t tz
+ +

+ a - a+ +
- - ≤ ≤ -

a aa a

0 01 2 1 21 1 , 1,2,..., 1.
2 22 2k

k k

x xt t t tz i k+ -+ +
- ≤ ≤ = -

a a

Thus, cutting off from the oblique prism the external regions in which 
the subintegrand function is small, we split the k-fold integral into k 
independent one-dimensional integrals and the required probability can 
be easily calculated:

2 2
2 1

2 erf 1 erf 1
2 2

k kk
k

k k

r r
P -

       t t    = - + - ×    t t   s s       

2 2 2 21
1 1

2 2 2 2
2 11 11

erf 1 erf 1
2 2 2 2

k
i i i i

i i i ii

r r r r-
+ +

+ +=

       t t    × - - + - -       t ts s s s        
∏

.
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287Duration of the stable flow stage

The accurate upper estimate of ákñ for the stresses coinciding with the 
boundaries of the superplasticity range can be obtained directly from 
the last equation. Thus, at t = t1

2 21
11 1

2 22
2 21 1

2 1 1 2
2 22

k
k i ik k

k
i i ik

r r r
P erf erf

-
+- -

= +

       t t    = - - - <      t t s s   s        
∏

which shows that ákñ ≤	2.	This	also	applies	to	the	case	in	which	t = t2. 
Thus, only two switches of the system of the CGBS bands take place 
on average at the boundaries of the superplasticity range.

To calculate ákñ at arbitrary t, the equation for Pk will be simplified. 
If all the quantities which determine the random process are independent 
of the number of the step (there is no grain growth, no buildup of 
damage), it is quite easy to obtain the equality

( )
( )

2 2
0

2

1
2 1 1

i
i

i
i

r pr
qd

- D
=

Ds - - D

At low k because of the evident inequality r0 /d >>1, all the arguments 
of the erf function are high and the values Pk are almost equal to 
unity. With increasing k the values of árkñ decrease and the dispersion 
increases resulting in a decrease of Pk to 0 at k tending to infinity. The 
inflection point on the dependence of probability of the number can be 
determined as the solution of the equation

1 12 0n n nP P P+ -- + =

If n is the required solution, then in calculating ákñ it may be concluded 
with good approximation that all the values of Pk with the number                     
k < n are equal to unity and all ‘older’ probabilities are equal to 0.

Initially, we obtain the estimate of n for a simpler case: t	 =	 2τ1τ2/
(τ1+	τ2). In this case

2 21
1

2 22
11

erf erf
2 22

k
k i i

k
i iik

r r r
P t t

-
+

+=

    
    = -    s s   s     

∏

where t	=	(τ2–τ1)/(τ2+τ1). Since the argument of the multiplier standing 
inside the general product is far greater than the argument of the 
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288 Superplasticity and grain boundaries

multiplier with the number k–1, it is different from unity and can be 
ignored. Consequently, the equation for n has the form

{ } 1
2 2 2 2

1 1erf erf 2.n n n nt t
-

- - - -
+ -

   a - a + a - a =      

In the notations 2 2
1 1( ) / 2n nS - -

- += a - a , 2 2 2
1 1( 2 ) / 2n n nT - - -

- += a - a + a  we have

( ) ( ) 1
erf erf 2t S T t S T

-
 - + + = 

For constant p, d, and D, the quantities S and T are linked by an 
approximate (its accuracy improves with increasing n) relationship:                      
T = D S (i.e., T<<S). Using the approximation 2erf ( ) 1 exp( 4 / ),x x≈ - - p  
we obtain the approximate solution:

2
1

44
S L

t
p  =  D 

where L(x) is the Lambert function determined as the solution of the 
equation Lexp (L) = x. At high values of n (dispersion at saturation), 
quantity S is described by the equation

2
1 1( )n n nS -

- += D + D a

and at constant D in the form

( ) ( )
1

2

0 0

2 1 1
n

n ii i

i i

q dS
p r

-

=

 
= - D - D D 

 
∑

Thus, the equation for n has the form

( ) ( )
1

2
2

0 0

12 1 1
4 4

n
n ii i

i i

q d L
p r t

-

=

  p  - D - D D =   D  
∑                         (10.14)

and can be solved by defining the dependence pi and the law of 
grain growth di. Consequently, because of the accepted dependence 
of probability of index, ákñ = n and the problem is solved. It should 
be mentioned that at the given number ákñ of the steps to failure, the 
appropriate strain is determined as Dákñ. In this case, the equation 

.

.
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289Duration of the stable flow stage

(10.14) can be transformed immediately to strain to fracture, using 
the equality

( )1/(1 ) (1 ) exp( ) exp( )
nn n

DD- D = - D ≈ - D = -e

with the sum in the denominator of the left-hand part of the equation 
(10.6) treated as the integral sum corresponding to the integral

00

( ) ( ) exp( )
( )

q d d
p r

e ′ ′e e ′ ′-e e
′e∫

We examine the quantity S introduced into the variable e and defined 
by the equation

00

( ) ( )2exp( 2 ) / exp( )
( )

q dS d
p r

e ′ ′e e ′ ′= - e -e e
′e∫

To derive the equation for determining the strain to fracture for the 
arbitrary value of stress t, it is necessary to find the inflection point on 
the dependence Pk, taking into account the more complicated equation:

( ) ( )2 2 2 2
1 1 2 1erf / 2 erf / 2n n n nt t- - - -

+ +a - a + a - a +

( ) ( ) 1
2 2 2 2

1 1 2 12 erf erf ) 2n n n nt t
-

- - - -
- -

 + a - a + a - a =  

where the notations 1 1 2 2/ 1, 1 /t t= t t - = - t t  are used to shorten the 
equations. The solution will be determined in the form

1 2
2 2
1 2

c cS
t t

= +

where the constants c1 and c2 are determined on the basis of the already 
known solution corresponding to the condition t1 = t2, and the estimated 
solution for the edges of the superplasticity range (t1 tends to 0 –                     
S ~ c1 /

2
1t , t2 to 0 – S ~ c2/

2
2t ). Consequently, we obtain

( )2

1 1 2
11 2 2 ;

4 4 4
c c c Lp p   = - D + D + =    D   

.

.

,

.

�� �� �� �� ��
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The	equation	 for	 limiting	elongation	εf has the following form

2 2
00

1 2
1 2

( ) ( ) 2exp(2 ) exp( )
( )

( ) 1 ( ) 1

f

f
q d d
p r

c c

e

- -

′ ′e e ′ ′e -e e =
′e    t t

D - + D -   t t   

∫

where t is the stress at strain equal to e f. If the strain rate in the 
experiments is maintained constant e ,  and the hardening in the 
stable flow stage is negligible, then t can be regarded as a quantity 
independent of e and determined by the value of e (the appropriate point 
on the sigmoidal curve). However, if the experiments are carried out 
with the constant speed of movement of the grips V0, ef is determined 
by the equation

00

( ) ( )exp(2 ) exp( )
( )

f

f
q d d
p r

e
′ ′e e ′ ′e -e e =
′e∫

2 2

0 0
1 2

1 2

2

( ) ( )( ) 1 ( ) 1
f fe ec c

- --e -e
=

   t e t e
D - + D -   

t t      

 

where the initial strain rate e = V0/L0, L0 is the initial length of the 
specimen. In this case, as a result of the variation of the strain rate 
during loading the transition from one loading curve to another one 
(movement along the sigmoidal curve in the direction of lower stresses) 
takes place even in the absence of hardening in the stable flow stage. 
This greatly complicates the solution.

10.5. Some properties of limiting strain

Ignoring the grain growth at deformation (d(ε)	 =	d0) and the buildup 
of damage (p(ε)	 =	 p0), and studying the deformation variant with a 
constant rate, it is quite easy to derive an explicit equation for the 
dependence of limiting strain on applied stress:

( )ln ( ) 1/ 4 1/ 2f Re = t + +  (10.15)

where
12 2

0 0
1 2

0 0 1 2
( ) 2 ( ) 1 ( ) 1r pR c c

d q

-- -    t t t = D - + D -    t t     

The	 dependence	 (10.15)	 inside	 the	 superplasticity	 range,	 [τ1,	 τ2] is 

,

,

.

�� �� �� �� ��



291Duration of the stable flow stage

described by a curve with a maximum at the optimum stress

1 3
1 2

2 1
0 1 1 32

1 1
2

2 2

1

1

c
c

c
c

 t
+  t t = t

 t
+  

t 

determined by the boundaries of the superplasticity range and the 
rate of switching the CGBS bands (through the quantities c1, c2). The 
dependence on the grain size in the vicinity of the optimum deformation 
conditions and at the boundary of the superplasticity range is described 
by different relationships. For example, in the vicinity of the optimum 
value the limiting strain increases logarithmically with decreasing grain 
size and at the boundaries of the range ef ~ 1

0d - . This is in agreement 
with the estimate obtained in [13] in which the limiting plasticity is 
regarded as the strain restricted by the buildup of some critical damage 
– micropores.

An example of the dependence of limiting strain d = exp e f –1 
(where ef is determined by the expression (10.15)) and the acting stress 
for three values of the width of the specimen differing by an order 
of magnitude is shown in Fig. 10.2. The graph shows the role of the 
geometrical dimensions of the specimen (scale factor in the terminology 
used in [14]). Calculations were carried out for the values p0 = 0.1 
and	 ∆	 =	 0.01.	 The	 range	 of	 the	 stresses	 τ∈[τ1,	 τ2] is converted into 
the range of the reduced logarithmic stresses µ∈[–1, 1] in accordance 
with the relationship:

Fig. 10.2. Dependence of strain d on the reduced logarithm of stresses µ for three 
values of the width of the specimen: 1) r/d = 10; 2) r/d = 100; 3) r/d = 1000.
Рис.10.2.  Зависимость деформации d  от приведенного логарифма напряжений µ  для трех 

значений ширины образца. 
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1

2

1

ln
1 .

2 ln

t
+ µ t

=
t
t

Thus, the superplastic capacity can be investigated on the basis of 
considerations regarding the deformation mechanism on the mesolevel. 
The nonuniformity of the spatial distribution of the CGBS band formed 
as a fluctuation manner during the formation pistol localisation of 
the flow on the macrolevel. No initial macroheterogeneity needs 
to be defined for the specimens. The model reproduces the non-
monotonic dependence of the limiting strain on the strain rate inside the 
superplastic range. It is possible to determine the optimum deformation 
conditions for the arbitrary loading law on the basis of the input 
parameters of the model: the probability of formation of the band 
p0, the rate of switching bands D,	 the	 boundaries	 τ1 and	 τ2 of the 
superplasticity range.
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293Derivation of constitutive equations

11

DERIVATION OF CONSTITUTIVE 
EQUATIONS IN MULTICOMPONENT 

LOADING CONDITIONS

11.1. From the deformation mechanism to constitutive equations

The constitutive equations (CE) are the expressions describing the 
relationship between the measures of the stress state and the measures 
of deformation [1–3]. These relationships are required for solving 
the problem of predicting the behaviour of material in the given 
loading conditions. This may include the task of calculating structures, 
calculations and optimisation of the technological processes of treatment 
of materials, etc. The constitutive equations allow to close the dynamic 
equations and the boundary-value conditions to an unambiguously 
defined boundary-value problem. Specific methods of constructing the 
CEs have been developed in the mechanics of solids. Some of them 
use, as a prototype, the Hooke law which defines the linear relationship 
between the components of the strain tensor and the components of 
the stress tensor in the elastic deformation range. When working 
outside this range it is immediately necessary to face a large number 
of problems associated with the need to investigate the strains which 
cannot any longer be regarded as low. It is essential to develop adequate 
deformation measures and the appropriate non-linear generalisation of 
the relationship of these measures with the measures of the stress state. 
The clue which produces results in this approach is the requirement for 
maintaining the sign of the corresponding thermodynamic functionals 
which greatly reduces the number of potentially possible variants of the 
CE. These results smoothly (or not very smoothly) continue into the 
plastic deformation range. In another approach to the construction of 
the CE of the plastic deformation processes the problem is approached 
from the opposite side – using the physical models describing the 
flow of viscous fluids. The result is the construction of a non-linear-
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294 Superplasticity and grain boundaries

viscous medium with rheological characteristics restored usually from 
some set of experimental relationships. Calculation of the rheological 
characteristics from the first principles can be carried out if we have 
some microscopic model of the flow and are capable of transferring 
its properties to the macrolevel. The model of the first type describes 
the relationship between the stress and strain tensors, the models 
of the second type links the stress tensor and the strain rate tensor. 
The connecting link of these limiting variants in the linear case was 
proposed by Maxwell in the form that is not resolved with respect to 
the stress tensor components:

1 2ik ik
ik

d du
dt dt
s

+ s = µ
t

where	 σik is the stress tensor, uik is the strain tensor, µ is the shear 
modulus, t is the Maxwell relaxation time. If may easily be seen 
that for the case of slow loading this relationship is equivalent to the 
expression	for	 the	linear	fluid	with	 the	viscosity	µτ	and	reproduces	 the	
Hooke law for high loading rates. It should be mentioned that if the 
last relationship is regarded as a differential equation with respect to 
sik, and in solving this equation with some initial conditions we obtain 
the CE in the form of the functional of the loading process. In addition 
to these relationships, the structural–mechanical models of plasticity, 
which are combinations of elastic, viscous (including non-linearly 
viscous) and plastic (dry friction) elements, are used. The number of 
variants formed in this case is described in detail in [1], and the CE 
variants, formed within the framework of creep theory, and also the 
so-called CE with internal variables, are also discussed there. Studies 
have been published in which the construction of CE for high elastic 
strains in polycrystalline materials is based on assumptions regarding 
the colliding planes specified in each grain independently of others, 
i.e., it would appear they are based on the assumptions matched with 
the microscopic pattern of deformation [4]. However, the program 
cannot be realised gradually; at some stage it is necessary to introduce 
phenomenological structures describing the hardening and determine 
their characteristics using experimental results. In addition, the CE 
derived in this case cannot be used to describe superplastic deformation. 
Their main fault is that the deformation of the specimen is determined 
by the formation of the grains in the specimen and this is in direct 
contradiction with the experimental results obtained in investigations 
of superplastic deformation. These approaches were developed mainly 

,
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295Derivation of constitutive equations

in studies by main users, i.e., mechanical engineers, given the tasks to 
solve the appropriate boundary-value problems.

The structural ideology of construction of the CE can be developed 
only under the condition of understanding the processes accompanying 
deformation rearrangement, on a relatively low structural level – the 
level of special features of the crystalline structure. However, these 
formulations are the prerogative of another region of investigations – 
physics.

The physical models of superplastic deformation could not even be 
used for formulating the problem of construction of the CE because 
the models are restricted only to the structural level whose scale is 
given by the mean grain size whereas the CEs are used for macroscopic 
description. If in constructing the CE for the regime of classic plasticity 
of coarse-grained materials the transfer of the relationships from 
the level of the grain to the level of specimen is ensured using the 
assumptions forming the principle of the Taylor model, in investigating 
superplastic deformation this possibility is not at our disposal. The 
previously described model of superplastic deformation, based on the 
considerations on the cooperative mechanism of deformation uses 
the completely macroscopic formation, i.e. CGBS band. Knowing the 
special features of the large-scale organisation of the flow we can 
construct a scheme of the structural approach to the derivation of the 
CE.

The formalism, used in Chapter 10, is based on the two-dimensional 
pattern of the flow characteristics of flat specimens. We determine the 
kinematics of the flow of polycrystalline continuum, restricted by the 
condition of integrity of the material, in the conditions of a general 
multicomponent stress state.

It is not justify to assume that the mechanism of superplastic 
deformation in the conditions of uniform multiaxial loading differs from 
the mechanism described for the conditions of uniaxial loading. The 
same processes lead to the formation of CGBS bands and the formation 
of a similar large-scale flow pattern. Since the orientation of the bands 
coincides with the orientation of the planes of the maximum tangential 
stresses, the problem is reduced to calculating these orientations for an 
arbitrary given stress state and to constructing a geometrical pattern of 
the appropriate flow. Consequently, we obtain a relationship between 
the components of the stress tensor and the components of the strain 
rate tensor. A priori it is not possible to say whether the assumption 
on the coaxiality of the tensors, which is always used in applied 
calculations, is fulfilled. This circumstance is the main intrigue of the 
proposed formulation [5–7].
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296 Superplasticity and grain boundaries

11.2. Kinematics of polycrystalline continuum

We start with the description of the kinematics of a polycrystalline 
continuum restricted only by the conditions of integrity of the material. 
It should be noted that under the effect of only diffusion deformation 
mechanisms this condition was used as the basis of the formal scheme 
in the well-known study by Lifshits [8]. The investigated volume is 
regarded	as	 the	 region	Ω(t) in R3,	being	 the	union	of	 the	 regions	Ωα:

,a

a

W = W


where	 Ωα(t) is the region occupied by the grain with the number                    
α	⊂ (1,..., N) at time t. It is assumed that the union occupies the region  
without ‘holes’ i.e., if some point xi from R3	 belongs	 to	 Ω,	 then	 this	
point also belongs to some grain Wa or the general boundary of the 
adjacent grains. The total number of the grains N in the representative 
volume W should be sufficiently large to enable us to consider the co-
operative mechanism of formation of the CGBS bands. On the other 
hand, the region W should be sufficiently small to fulfil the condition of 
uniformity of the stress state. Of course, in the superplastic deformation 
conditions (small grain size) it is quite easy to satisfy these conditions. 
The kinematics in W is given by the time dependence of carriers, i.e., 
the function is determined by the condition

1, at ( )
( , )

0, at ( )

t
t

t

a
a

a

 ⊂ Wχ = 
⊄ W

x
x

x

The conditions of integrity of the material in deformation show that the 
functions χa cannot be defined arbitrarily and independently of each 
other. The instantaneous fields of speeds in the a-th grain is denoted 
by iva (x,t).	 Therefore,	 the	 field	 of	 speeds	 in	 the	 region	 Ω(t) can be 
described by the equation:

( , ) ( , ) ( , )i iv t v t ta a

a

= χ∑x x x
 

(11.1)

To calculate the field of the strain rate tensor, we determine the 
derivative of the components of the field of speed vi with respect to 
the spatial coordinates xj

.

.
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.i i
i

j j j

v v v
x x x

a a
a a

a

 ∂ ∂ ∂χ
= χ + 

∂ ∂ ∂  
∑

 
(11.2)

Taking into account the equality

( ),j
j

n
x

n

a

a
a

a
n

∂χ
= - d n

∂ ∑ x

where van is the external normal to the n-th boundary of the a-th grain; 
δ(x|nα) is the delta function with the carrier on the n-th face of the 
a-th grain, we obtain

( ).i i
i j

j j

v v v n
x x

a

a

a
na a a

a a n

∂ ∂
= χ - d n

∂ ∂∑ ∑ ∑ x

The same face is included twice in the second term of the above 
equation in summation with respect to all grains: as the face of some 
grain and as the face of the grain adjacent to the former. Since the 
external normals at the general point of two adjacent grains have 
opposite directions (the line of triple junctions is ignored), we have

( )

( )

( ) ( )i i
i i j

j j

v v v v n
x x

a
a a b b ab

a ab

∂ ∂
= χ + - d G

∂ ∂∑ ∑ x
 

(11.3)

where G(αβ) is the common face of two grains with the numbers a  and 
b, and the second summation is carried out over all grain boundaries. 
The speed at some point of the arbitrary boundary is expanded with 
respect to the orthonormalised base represented by the following 
vectors: n – the vector of the normal to the boundary, τ(1) and τ(2) – the 
vectors tangent to the boundary forming a right-handed vector with n

v = (v·n)n+(v·τ (1))τ(1) + (v·τ(2) )τ(2) tttt

According to the integrity condition, the normal components of the 
speed is continuous in transition through the boundary:
( ) 0a b- ⋅ ≡v v n

( )( )

( )

( , ) ( , ) ( , ) ( )
2

i j j i
ij ij

n n
V t V t t

b b
a a a b ab

a ab

t + t
= χ + - ⋅ t d G∑ ∑x x x v v x

  
(11.4)

where τ is the unit vector normal to the vector of the normal at the 

.
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298 Superplasticity and grain boundaries

investigated boundary and is such that the maximum shear stress acts 
along this vector. Since the shear stress for the given deviator of stress 
tensor slm, normal n which determines the area, and the direction τ 
has the form

3 3

1 1
l lm m

l m

T n
= =

= t s∑∑
 

(11.5)

the value τ should be determined from the condition of the maximum 
of this linear form. The projection of the speed difference vα – vβ  to 
the direction of the unit vector τ is in fact the speed of grain boundary 
sliding	at	 the	boundary	 (αβ).	 It	 is	denoted	by	∆V(αβ).

Since we investigated the uniform stress state, the latter should 
be characterised by the appropriate uniform macroscopic tensor of 
the strain rate and not by the field of the tensor of the strain rate  
reflecting the complicated pattern of the layers and of the grains on 
the microlevel. We determine the means as conventional spatial means:

( )
( )

1( ) ,ij ij
t

V t V t d
W

=
W ∫ x x

 
(11.6)

where	 |Ω|	 is	 the	 volume	 of	 the	 averaging	 region	 which	 can	 be	
regarded as independent of time in the incompressibility conditions. 
Strictly speaking, the volume of the a-th grain cannot be regarded as 
independent of time if deformation is accompanied by the increase of 
the mean grain size. However, this factor will be ignored. Consequently

( )

( ) 2
i j j i

ij ij
n nS

V V V
a b b

aba ab

a ab

W t + t
= + D

W W∑ ∑
 

(11.7)

where Sαβ	 is	 the	area	of	 the	 face	 (αβ).	Thus,	we	have	 removed	part	of	
the degrees of freedom of kinematics of the general type, but neither 
the set ijV a  nor even the first and second terms of the above equation 
can be defined independently of each other. At the same time, although 
formally, we have already separated the contribution from intragrain 
deformation (the first term) and from grain boundary sliding (the 
second term). In the approximation which forms the basis of the Taylor 
model (deformation of all the grains is the same and coincides with 
the deformation of the representative volume), the second term is also 
equal to 0. Thus, the Taylor model completely ignores the contribution 
of grain boundary sliding to the deformation processes and in this sense 

,

,
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299Derivation of constitutive equations

is the antipode of the models which claim to describe superplastic 
deformation. In analysis of the uniaxial experiments we formulated 
the result in the bicrystal approximation, i.e., in fact, we completely 
ignored the contribution of the first term. This is justified for describing 
the stationary flow stage. In a similar case, the CGBS bands are already 
formed, their contribution to the total deformation is large, and the 
deformation of the grains is only added to this shear. Here, we have 
the time dependence ijV a  ≈ exp (int) with the characteristic frequency                             
n ≈ V/d (where V is the shear rate along the CGBS band, d is the mean 
grain size). However, the stage of exit to the stationary flow regime 
(when the bands have not as yet been formed and the contribution of 
the second term is very small) requires an accurate examination of 
intragrain deformation. This is very important in the analysis of the 
multiaxial loading.

11.3. Strain rate tensor determined by shear along the CGBS 
bands

We used the standard notations for the macroscopic tensor is ij ijV a a= e
denoting the second term in (11.7) by GBS

ije  and introducing the tensor

( ) / 2ij i j j im n n= t + t  (11.8)

We examined the second term in (11.7). Summation is transformed 
with	 respect	 to	 the	 arbitrarily	 renumerated	 faces	 (αβ)	 in	 summation	
with	respect	 to	faces	(αβ)k, belonging to the k-th CGBS band, and with 
respect to all bands. Consequently

( ) ( )
( )

0 ( )

k k
k

k

M
GBS
ij ij

k

S
V mab ab

ab
= ab

e = D
W∑ ∑

 
(11.9)

where M is the number of the CGBS bands form under the given 
loading conditions. We shall not go outside the limits of the bicrystal 
approximation which is justified when describing the experiments with 
uniaxial tensile loading, and it will be assumed that the shear rate is 
constant ( )k

V abD along the band and the same for all bands. In addition, 
the difference in the orientation of the faces belonging to the band is 
ignored, i.e., the deviation of some number of the faces from the most 
favourable faces oriented in the plane of the effect of the maximum 
shear stresses is ignored. The latter causes that tensor mij no longer 
depends on the index of the face and is a global characteristic of the 

,

.
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300 Superplasticity and grain boundaries

geometrical pattern of the flow. This is natural for the uniform stress 
state. To calculate the remaining sum it should be mentioned that

( )
( )

k

k

kS Sab
ab

=∑

where Sk is the surface area of the k-th band. If H is the mean distance 
between the bands, then

0

M

k
k

H S
=

≅ W∑

The last equality is approximate because the surface of the CGBS is 
not a plane. Finally, since

0H M d M⋅ = ⋅

where M0 is the maximum possible number of bands in the specimen, 
we obtain

0

GBS
ij ij

M V m
M d

D
e =

 
(11.10)

.

Thus, the difference from the case of uniaxial tensile loading is reduced 
to substitution of the constant of the geometrical origin by the tensor 
mij which also characterises the flow geometry. To estimate this 
tensor, it is necessary to determine the area with the maximum shear 
stress and calculate the appropriate direction of this area. The scalar 
multiplier (M∆V)/(M0 d) in equation (11.10) can be restored from the 
experiments with uniaxial tensile loading. The multiplier is determined 
unambiguously by the same maximum shear stress.

The geometrical characteristics of the flow pattern and the 
orientation of the sliding systems will be investigated. On the area 
given by the vector of the normal n, the shear stress in direction τ is 
described by equation (11.5). The maximum is realised for vector τ  
determined by the condition

,×
t =

nw
w

 
(11.11)

where the numerator contains cross products, and

.

.

.
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ˆ= ×sn nv  (11.12)

and |ω| defines the shear stress. The term ŝ n denotes the result of 
multiplying the matrix ŝ  by the vector n (also a vector). It may easily 
be seen that the shear stress in the direction normal to the vectors τ 
and n is equal to 0. In the group of the arbitrarily oriented areas we 
select the facet with the maximum shear stress, i.e., construct the vector 
n which ensures the maximum value |ω|. n will be determined in the 
form of expansion with respect to the eigenvectors of the matrix ŝ :

*ˆˆ( ) 0Es - l ⋅ =n  (11.13)

The equation for the eigenvalues (in the present case these are the main 
stresses) has the form

3 2 2
0

1ˆ ˆ( ) det( ) 0
2

Sp Il - s ⋅ l - ⋅ l - s =
 

(11.14)

where according to the definition of the deviator, the trace is equal to 0:

11 22 33ˆ 0Sps ≡ s + s + s =

and the intensity of the deviator of the stress tensor is given by the 
expression

2 2 2 2 2 2 2
0 11 22 33 12 13 232 ( )I = s + s + s + ⋅ s + s + s  (11.15)

Taking into account the properties of the roots of the cubic equation, 
the following relationships can be written:

1 2 3 ˆSpl + l + l = s
2 2 2 2
1 2 3 0Il + l + l =

1 2 3 ˆdet Dl l l = s ≡

We consider a non-degenerate case and arrange the solution of the 
cubic equation in the following manner: 1 2 3l > l > l . We assume that 
the appropriate eigenvectors, n(1), n(2) and n(3), form a right-handed 
vector. Then

(1) (2) (3)
1 2 3= a + a + an n n n

.

.

.
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where according to the condition of unit normalisation 2 2 2
1 2 3 1.a + a + a =

Equation (11.12) is transformed to the form

(1) (2) (3)
2 3 3 2 1 3 1 3 1 2 2 1( ) ( ) ( )= a a l - l + a a l - l + a a l - ln n nϖ

from which

2 2 2 2 2 2 2 2 2 2
2 3 2 3 1 3 1 3 1 2 1 2( ) ( ) ( )= a a l - l + a a l - l + a a l - lϖ  (11.16)

The maximum value | ϖ |2 is determined by the term with the maximum 
value	(λk	–	λm)2,	and	since	λ1	>	λ2	>	λ3, we have 2 2

1 3 21/ 2, 0.a = a = a =  
Thus,	 for	 the	given	stress	 state	σij, the maximum shear stress is

1 3( ) / 2T = l - l
 (11.17)

This stress acts only on the facet given by the vector
(1) (3)

1 3= a + an n n
in the direction

(1) (3)
1 3t = a - an n

Substituting n and τ into equation (11.8), we obtain

(1) (1) (3) (3)( ) / 2ij i j i jm n n n n= -
 (11.18)

It should be mentioned that for n (and τ) we obtain two mutually 
perpendicular vectors differing in the selection of the signs a1 and a3. 
This defines two sliding systems. However, tensor mij for both systems 
is the same because it is determined by the squares of the values a1 and 
a3. The eigenvectors are represented by the normalised columns of the 
adjoint matrix of the deviator [9] which is determined unambiguously 
by the coefficients of the characteristic equation (11.14)

2 2
0 / 2ij ij ij il lj ijt I= l d + ls + s s - d

Here usual summation is carried out with respect to the repeating index. 
Because of the properties of the deviator it is quite simple to confirm 
the validity of the identity

2
0 / 2il lj ij ijI Ss s - d =  (11.19)

where Sij	 is	 the	 algebraic	 cofactor	 of	 the	 element	 σij in the deviator 
matrix. Consequently, the adjoint matrix has the form

.

.

.

.

.
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2
ij ij ij ijt S= l d + ls +

and the j-th eigenvector is in fact the j-th column (with the substitution 
λ	=	λj). This is verified by the following chain of equalities:

2 1ˆ ˆli ij li ij li ij li ijt S S D -s = l s d + ls s + s = = s =

2 2
1 2 3 1lj li ij lj lj li ij ljD= l s + ls s + d = l s + ls s + l l l d = l = l =

2
1 2 3 1 1 2 3 1 0 / 2lj lj li ij lj lj lj ljI S  = l l l d + l s + s s = l l l d + l s + d +   

When deriving the last equality we used the identity (11.19). Finally, 
because of the properties of the roots

2 2
2 3 0 1/ 2Il l + = l

we obtain

1 1 1( ) ( )li ij ijt ts l = l = l l = l

i .e. ,  the first  column of the adjoint matrix is the eigenvector 
corresponding to the first eigenvalue. The two remaining vectors 
are processed in the same manner. The squares of the norms of the 
eigenvectors are factorised as follows:

2
1 2 1 3 1 11 1 11( )( )( )Sl - l l - l l + s l +

 

2
1 2 2 3 2 22 2 22( )( )( )S- l - l l - l l + s l +

2
1 3 2 3 3 33 13 33( )( )( )Sl - l l - l l + s l +

Substituting n(1) and n(3) into the expression (11.18), and after long 
transformations we obtain

2 2
2 0 2 1 3 2

1 2 2 3 1 3

/ 2 ( 2 ) 3
2( )( )( )

ij ij ij
ij

I S
m

l d - l + l l s + l
=

l - l l - l l - l  
(11.21)

The cumbersome form of the tensor (11.21) may suggest that the 
incompressibility condition has not been fulfilled as a result of the large 
number of transformations. We calculate the trace of the tensor mij:

22
0 11 22 33

1 2 2 3 1 3

3Sp( ) 2( )
4( )( )( )ijm I S S Sl  = + + + l - l l - l l - l

(11.20)

.

.

.

.
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Substituting here I 2 0 from (11.15) and the values

2
11 22 33 23S = s s - s , 

2
22 11 33 13S = s s - s , 

2
33 11 22 12S = s s - s

we determine

[ ]22
11 22 33

1 2 2 3 1 3

3Sp( ) 0
4( )( )( )ijm l

= s + s + s ≡
l - l l - l l - l

Consequently, because of the relationship (11.18) the condition of zero 
divergence of the speed field is fulfilled.

We calculate the intensity of the tensor m̂ . Substituting into the 
determination of the intensity components (11.18)

( ) ( ) ( )
3 3 32 2 2(1) (1) (3) (3) (1) (3)

1 1 1

1 1Int( ) 1/ 2
4 4ik i k i k i i

i k i

m n n n n n n
= = =

 = - = + =  ∑∑ ∑

This shows that the root of the intensity of the strain rate is indentical 
in accuracy with the strain rate in uniaxial loading.

Direct calculations show clearly that

det( ) 0ikm =

i.e., the columns of the matrix, defining the tensor m̂  are linearly 
dependent and determine the flat flow.

11.4. Degenerate cases and variants of coaxiality of the tensors

Equation (11.21) shows that the assumption on the coaxiality of the 
stress and strain rate tensors in superplastic deformation is justified only 
in	a	number	of	partial	cases.	For	example,	for	λ2 = 0 and, consequently, 

2 2
3 1 0 1, 0, 2D Il = -l = = l , we obtain

02
ij

ijm
I

s
=

It is well known that in the degeneration case (i.e., the coincidence 
of two main stresses) the main feature is not the formation of two 
transversal sliding systems and it is the formation of a continuous set 
of planes passing through the generating lines of the cone with the apex 

.

.

.
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angle p/2. The flow pattern has special features in comparison with 
the non-degenerate case. For the degenerate root, with the exception 
of (11.14), the following equality is also fulfilled

2 2
03 / 2 0Il - =

Thus, the degenerate root is equal to either 0 / 6I  or 0 / 6I- . In the 
first case the ordered system of the rootes has the form 1 2 0 / 6,Il = l =  

3 02 / 6Il = - , and in the second case 1 0 2 3 02 / 6, / 6.I Il = l = l = -  
Since the degenerate root also satisfies the equation (11.14), we obtain 
the condition for the matrix of the deviator leading to the coincidence of 
two main stresses. For the first system of the roots 3

0ˆ3 6 det 0,Is = - <  

and for  the second system 3
0ˆ3 6 det 0Is = > .  To construct  the 

eigenvectors the conditions for the determinant and the modulus of 
the deviator are not sufficient and it is also necessary to fulfil the 
conditions for its components. Since the valuations of the appropriate 
columns of the adjoint matrix are identical zeros (see (11.20)) and, in 
the case of the real determined matrix all components of these vectors 
are also zeroes. These conditions define the relationships between the 
deviator components. The solutions of the equations determine the 
following variants.

1. All shear components – zeros; two main stresses coincide.
2. Any pair from the three shear components – zeros (it can be shown 

that the equality to zero of some shear component leads automatically 
to ‘zeroing’ of one of the remaining components). Thus, if s12=s13 = 
0, the following variants can exist: 

0

1 0 0

0 0 2 ,

0 2 1

 
 

s ± 
 ± -  , 

0

1 0 0

0 1 2

0 2 0

 
 

s - ± 
 ± 

The equality to zero of another pair results in identical matrices, 
differing from the previously mentioned ones by the permutation of 
the components.

3. All the shear components are not equal to zero. In this case, the 
diagonal components are determined unambiguously:

2 2 2 2 2
12 13 23 12 13

11
12 13 23

2 ( )
3

s s - s s + s
s =

s s s

.

.
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2 2 2 2 2
12 23 13 12 23

22
12 13 23

2 ( )
3

s s - s s + s
s =

s s s
2 2 2 2 2
13 23 12 13 23

33
12 13 23

2 ( )
3

s s - s s + s
s =

s s s

We construct the geometrical tensor for the third variant (the previous 
two variants are relatively elementary). The resultant matrix has 
eigenvalues

2 2 2 2 2 2
12 13 12 23 13 23

1
12 13 23

2 ,
3

s s + s s + s s
l =

s s s
 

2 2 2 2 2 2
12 13 12 23 13 23

2 3
12 13 233

s s + s s + s s
l = l = -

s s s
 

and eigenvectors

2
13 2312 13 23

(1) (2) (3) 2
12 23 13 23 13

2 2
13 23 12 13 23

, ,
0 ( )

 -s ss s -s        = s s = s = -s s          s s s s + s    

t t t

Equation (11.16) is maximum at

2
1 2 31 / 2, cos( ) / 2, sin( ) / 2a = a = j a = j

The arbitrary angle j  parametrises the sliding systems of the 
investigated set. The normal to the sliding plane and the sliding 
direction are determined by the vectors

n = a1τ
(1)+ a2τ

(2)+ a3τ
(3)

τ   = a1τ
(1)– a2τ

(2)+ a3τ
(3)

where τ(i) is the vector t(i) normalised with respect to unity. As a result, 
we obtain the following expression for the geometrical tensor:

(2) (2) (3) (3) (2) (2) (3) (3) (2) (3) (3) (2)
(1) (1)1 cos(2 ) sin(2 )

2 2 2 2
i k i k i k i k i k i k

ik i km
 t t + t t t t - t t t t + t t

= t t - - j - j 
 

Assuming that the sliding systems, parameterised by the angle, act 
independently, after averaging with respect to the angle we have

.

.

.

.
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3
8

ik
ikm

T
s

=

where T	 is	 the	maximum	 shear	 stress	 equal	 to	 (λ1	 –	 λ3)/2. Thus, the 
assumption on the coaxiality of the stress and strain rate tensors is 
fulfilled in the degenerate case. We have formulated the general scheme 
of constructing the CE based on the deformation mechanism given by 
shear along the CGBS bands. Using relatively general assumptions it 
has been shown that the constitutive equations, based on the Taylor 
model, cannot be used for describing superplastic deformation. The 
geometrical properties of the large-scale flow pattern and its force 
characteristics were divided for the general uniform stress state. 
To examine its characteristics, it is sufficient to carry out uniaxial 
experiments. Investigations of the flow geometry for the given stress 
state are reduced to constructing the main axes of the deviator. It has 
been shown that the assumption on the coaxiality of the stress and 
strain rate tensors are usually not fulfilled. The general form of their 
relationship was determined. A number of partial cases in which the 
tensors are coaxial have been discussed. The direct application of these 
results requires conversion of the tensor relationships and reducing the 
CEs to the canonic form.

The model must be adapted to the requirements of mechanics. At 
present, the model includes a very large number of the parameters of 
the material and the structure and this creates difficulties in practical 
application. Some of these parameters are of the phenomenological 
origin (for example, the constant controlling the transition to the 
dislocation creep regime). It is necessary to minimise the number 
of parameters by defining their stable complexes whilst maintaining 
the physical content. In addition, it is necessary to evaluate the 
possibilities of the independent experimental determination of the 
complex parameters.
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