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Libre de Bruxelles, Brussels, Belgium

THOMAS P. RUSSELL, Department of Polymer Science, University of Massachusetts,
Amherst, Massachusetts

DONALD G. TRUHLAR, Department of Chemistry, University of Minnesota,
Minneapolis, Minnesota, U.S.A.

JOHN D. WEEKS, Institute for Physical Science and Technology and Department
of Chemistry, University of Maryland, College Park, Maryland, U.S.A.

PETER G. WOLYNES, Department of Chemistry, University of California, San Diego,
California, U.S.A.



Adventures in
CHEMICAL PHYSICS

ADVANCES IN CHEMICAL PHYSICS
VOLUME 132

Edited by

R. STEPHEN BERRY and JOSHUA JORTNER

Series Editor

STUART A. RICE

Department of Chemistry

and

The James Franck Institute

The University of Chicago

Chicago, Illinois

AN INTERSCIENCE PUBLICATION

JOHN WILEY & SONS, INC.



Copyright # 2006 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,

except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without

either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley &

Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best

efforts in preparing this book, they make no representations or warranties with respect to the

accuracy or completeness of the contents of this book and specifically disclaim any implied

warranties of merchantability or fitness for a particular purpose. No warranty may be created or

extended by sales representatives or written sales materials. The advice and strategies contained

herein may not be suitable for your situation. You should consult with a professional where

appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other

commercial damages, including but not limited to special, incidental, consequential, or other

damages.

For general information on our other products and services or for technical support, please contact

our Customer Care Department within the United States at (800) 762-2974, outside the United States

at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic formats. For more information about Wiley products, visits our

Library of Congress Catalog Number: 58-9935

ISBN-13 978-0-471-73842-8

ISBN-10 0-471-73842-5

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

web site at www.wiley.com.

http://www.wiley.com/go/permission.

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


CONTRIBUTORS

R. STEPHEN BERRY, Department of Chemistry, The University of Chicago,

Chicago, Illinois 60637, USA

THORSTEN M. BERNHARDT, Institut für Experimentalphysik, Freie Universität

Berlin, D-14195 Berlin, Germany
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LUDGER WÖSTE, Institut für Experimentalphysik, Freie Universität Berlin,

D-14195 Berlin, Germany

v





INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

STUART A. RICE
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STUART ALAN RICE: SCIENTIST

WITHOUT BOUNDS

We, the editors of this volume, have had the remarkably good fortune to be
close friends and scientific associates of Stuart Rice almost ‘‘from the days
when dinosaurs roamed the earth.’’ One of us met Stuart in 1952 on the first
day of graduate school at Harvard. The other began working with Stuart ten
years later in 1962, five years after Stuart had joined the faculty of the
University of Chicago. Stuart came to Harvard from Bronx Science High
School and then Brooklyn College. In 1952, when he arrived as a graduate
student at Harvard, he joined the research group of Paul Doty, working on
biopolymers, including the unwinding of the strands of the DNA helix.
Characteristically, that work did not keep him completely occupied, so he
simultaneously worked on several other problems such as polyelectrolytes
and the folding of proteins, among other things. He became a Junior Fellow
at Harvard and switched to doing high-temperature infrared spectroscopy of
gaseous molecules, in collaboration with William Klemperer. After a year he
moved to Yale, where he spent his second year of the Fellowship in the
group of John Kirkwood.
Stuart came to the University of Chicago in 1957, and has been a major

figure in physical chemistry and other areas of science for almost 50 years.
He made central contributions to the intellectual environment, to the
highest-quality scientific endeavor, to the remarkable interdisciplinary
scientific collaboration, and to the intense focus on excellence at the
University of Chicago. In an admirable way he promoted and perpetuated
the unique culture of the University. In 2005, the University of Chicago
Alumni Association awarded him its Faculty Achievement Medal, in
recognition of what his teaching and guidance meant to many, many
students over the years.
Stuart’s contributions to science have ranged across virtually the entire

domain of modern physical chemistry. His research uses state-of-the-art
experimental methods and fundamental theoretical approaches, spanning
from isolated molecules to the condensed phase. His work has consistently
been pioneering, often constituting the first attack on a new subject

ix



and, most characteristically, always addressing an important research area.
Stuart as a scientist is universal, deep and demanding of the highest
intellectual standards. His work has had, and continues to have, great
influence on the development of chemistry and other related areas of
science.

Stuart has taught us new fundamental concepts in fields ranging from the
nature of liquids through the puzzling subject of liquid metal surfaces to
coherent quantum control of chemical reactions. His studies of active
control of molecular dynamics can be seen as evolving through a long series
of contributions to predecessor forefront areas of physical chemistry. He
made seminal advances to the theory of electronic states of molecular solids,
polymers, and liquids, including theoretical studies of singlet and triplet
exciton band structure, exciton–exciton annihilation reactions, hole and
electron mobility and band structure, and exciton states in liquids. Although
now 40 years old, these calculations have not been superseded, and recent
experimental data testify to their accuracy. The studies of condensed matter
electronic structure led to theoretical and experimental studies of
radiationless transitions, including landmark experimental and theoretical
studies of the vibrational state dependence of the decay of optically excited
molecules under collision-free conditions and the generalization of the
theory to describe unimolecular reactions. In turn, these studies led to the
examination of vibrational energy flow in polyatomic molecules. He was a
pioneer in the study of the influence of deterministic classical mechanical
chaos on the classical theory of the unimolecular reaction rate, and he has
published seminal studies of quantum chaos and its relevance to chemical
reactions. These diverse studies laid the foundation for Stuart’s development
of the theory of optical control of molecular dynamics as applied to
controlling product selection in a chemical reaction, introducing the
concepts of multiple pulse timing control. Stuart studied the conditions
for the existence of the optimal control field for a system with a spectrum
that is typical of a reacting molecule. Recently, Stuart has focused his
attention on adiabatic transfer processes that can be used to control
molecular dynamics and has started to develop the theory of control of
molecular dynamics in a liquid, the medium in which the vast majority of
chemical reactions take place.

Stuart’s studies of the structure of the liquid–vapor interfaces of metals
and alloys can also be related to his previous research. He developed the first
theory of transport in dense simple fluids that explicitly recognizes, and
accounts for, the different dynamics associated with short-range repulsion
and longer-ranged attraction. He has contributed to the theory of the three-
molecule distribution function in a liquid and the theory of melting, and he
developed the Random Network Model of water and the first consistent
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description of the amorphous solid phase of water. His work provided the
first evidence for the existence of a high-density form of amorphous solid
water, opening the study of polymorphism in disordered phases. Concur-
rently, he initiated studies of the structures of the liquid–vapor interfaces of
metals and alloys. This work showed that the character of the interaction
between the atoms in a liquid metal (e.g., a ‘‘pool of mercury’’) is
fundamentally different from that between the atoms in a dielectric liquid.
Consequently, it is reasonable to expect that their respective interfaces have
different structures. The theoretical challenge is that in the inhomogeneous
region the various length scales associated with the width, the depth over
which the excess concentration of a segregated component is distributed, the
range of positional correlations, the range of the effective ion–ion
interactions, and the distances over which the electrons undergo a transition
from delocalized states (in the bulk liquid) to localized states (e.g., in the
vapor) are all of comparable magnitude. He developed the modern
theoretical description of the liquid–vapor interfaces of pure metals and
alloys that correctly accounts for the electronic structure of the metal and its
dependence on the atomic distribution and composition across the interface,
and he advanced the first prediction that the liquid–vapor interface of a
metal is stratified and that in a dilute alloy the solute segregates to form a
complete monolayer at the interface. These predictions have now been
multiply verified in experimental studies. Some recent, fascinating
experimental work led to the discovery that some solutes can form a
crystalline monolayer in the liquid–vapor interface, a finding that was not
anticipated by theory and which does not yet have a theoretical
interpretation.
Stuart has held many responsible administrative posts at the University of

Chicago, ranging from the Director of the James Franck Institute to the
Chairman of the Chemistry Department. Subsequently he became the
longest-serving Dean of Physical Sciences in the Division’s history. Through
all that, Stuart’s research continued at full speed and productivity. He served
on the National Science Board and received the Presidential Medal of
Science of the United States. And he still continues his research program,
working closely with his students and postdoctorals, even when he changed
roles to Professor Emeritus at Chicago and became Special Advisor to the
Director at Argonne National Laboratory.
Stuart has been a major contributor to building and maintaining the

strength of the Chemical Sciences in Chicago, in the United States, and
throughout the world. The more than 100 Ph.D. research students and many
postdoctoral fellows who worked with him have become important figures
in the field of physical chemistry and in other areas of science. Stuart has
been an advocate for chemistry and for science generally, both nationally
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and internationally, and has helped to shape the direction of science for the
future.

We both want to take this opportunity to express the great pleasure and
honor it has been and still is to be Stuart’s colleagues and collaborators, and
we look forward to many new explorations with him into the mysteries that
science can unravel.

R. STEPHEN BERRY

JOSHUA JORTNER

xii stuart alan rice: scientist without bounds



CONTENTS

Dynamical Models for Two-Dimensional Infrared

Spectroscopy of Peptides 1

By Robin M. Hochstrasser

Energy Transfer and Photosynthetic Light Harvesting 57

By Gregory D. Scholes and Graham R. Fleming

Second- and First-Order Phase Transitions in Molecular

Nanoclusters 131

By A. Proykova, I. P. Daykov, and R. Stephen Berry

A Calculus for Relating the Dynamics and Structure of

Complex Biological Networks 151

By R. Edwards and L. Glass

Analysis and Control of Ultrafast Dynamics in Clusters:

Theory and Experiment 179
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I. INTRODUCTION

The development of methods that can determine the time dependence of

structural changes in complex systems, particularly biological systems,

represents an exciting challenge for chemical physics. The new multidimen-

sional infrared spectroscopies, 2D- and 3D-IR [1–19], which have essentially

unlimited time resolution on the scale of large structural changes, can be

expected to contribute significantly to this goal. Such approaches are expected to

complement the vast knowledge of average structures obtained by the established

methods of structural biology and their time dependent variants.

Decades of theoretical and experimental research on nonlinear optical and

infrared spectroscopy have established the concepts underlying the operational

aspects of multidimensional infrared experiments. However, the principles now

used for the manipulation of the multidimensional IR data sets in time or

frequency domains, phase manipulation, properties of multidimensional Fourier

transforms, and many other procedures, often of significant complexity, are

closely related to textbook material in NMR [20] even though the practical

aspects of the two types of experiment are quite different. Analogous to NMR,

the signal generation in 2D-IR is based on the interaction of successive phase-

locked pulses with a sample followed by detection of the field generated after

the last pulse. For experiments in the IR or the optical regime, which are at much

higher frequencies than most detectors can respond, heterodyne methods must

be used to obtain the generated field. Heterodyning, which permits the

measurement of optical electric fields by mixing on a slow square law detector,

has been employed since the earliest days of optical nonlinear spectroscopy

[21]. In the higher-frequency regimes of optical and IR fields, in contrast to

radio and microwaves, the detected field is generally in the weak signal limit

and therefore chosen from a particular order of nonlinearity. On the other hand,

NMR and EPR are generally conducted near the saturation limit. The optical

and IR approaches have mainly been third-order susceptibility measurements

with the exception of some recent Raman spectroscopy experiments on liquids

which were in the fifth order [22].

2 robin m. hochstrasser



The earliest 2D-IR experiments used a versatile pump-probe technique [1],

but the first 2D-IR photon-echo results were reported soon after that [3]. The

spectral line narrowing or optimization aspect of 2D-IR arises from the

contribution of the photon echo to the signal. These echoes are part of the pump-

probe signal also, but they can be examined free from other influences by means

of photon-echo spectroscopic methods. Since the announcement of the first

photon-echo experiment with two incident visible light pulses on ruby crystals

[23], it has been well known that the echo signal separates inhomogeneous and

homogeneous contributions to the spectral line width in the optical spectrum in

analogy with what already had been clear for radio-frequency and microwave

spin echoes of two-level systems. However, the work of Mukamel and co-

workers [24] has shown that the dynamics of optically prepared states cannot

generally be considered in terms of Bloch parameters, so the echo responses in

the optical and IR spectral regions are indeed considerably different and often

more difficult to model than those in NMR. The first high-frequency two-pulse

photon echoes on individual molecules, rather than solid-state materials, were

actually carried out in the infrared around 10.6 mm on SF6 by Patel and co-

workers [25] and at 3 mm by Brewer and Shoemaker [26] who demonstrated that

most of the pulsed RF responses could be reproduced in the infrared with

vibrational modes of methyl fluoride acting as the two-level systems. This work

was a landmark achievement in quantum optics and led to many other infrared

photon echo studies of the dephasing of vibrational transitions. In 1974

Wiersma and Aartsma reported two-pulse photon echoes of two-level electronic

transitions of molecules in mixed molecular crystals at low temperatures on

nanosecond time scales, in work that gave birth to a new dimension in the field

of time-dependent spectroscopy of molecular solids [27]. With the advent of

reliable, shorter, laser pulses these optical measurements were naturally

extended to the available pulse time scales and to a range of media such as

liquids and glasses in which the motions were faster, matching the available

time resolution. For example, in 1991, Shank and co-workers [28] reported two-

pulse photon echoes in the optical spectrum with 6-fs time resolution, the then

shortest available pulses. Many variants of the photon echo at a variety of time

scales including heterodyning, gating, three-pulse methods (see, for example,

Ref. 29), and more recent two-dimensional techniques [30] were developed for

optical pulse experiments along with methods for deducing the time correlation

functions of the frequency fluctuations [31]. On the theoretical side, predictions

of the form and possible importance of multidimensional optical spectroscopies

had been predicted already in 1993 [32]. Although various femtosecond-time-

scale IR experiments had been carried out on a variety of proteins and aqueous

systems in this early period [33–38], suitably short, sufficiently stable, and

tunable pulses were not so readily available in the infrared region until the

titanium sapphire laser and modern nonlinear optical materials for infrared

dynamical models for two-dimensional infrared spectroscopy 3



frequency generation became more established. Nevertheless, the two-pulse

echo technique with infrared radiation was extended to the picosecond regime in

experiments of Fayer and co-workers, who used an infrared free electron laser

source to determine the two-level system dynamics of vibrators in solutions and

glasses [39]. Femtosecond-time-scale three-pulse echoes of vibrations in the

infrared were first accomplished in 1998 for ions in liquid water [40] and later

for peptides [41] and proteins [41, 42]. In 2000, three-pulse phase-locked echo

experiments with heterodyne detection on peptides [3] finally enabled the

assembly of multidimensional vibrational spectra in the mid-infrared. The 2D-IR

spectra had also been constructed from pump-probe experiments on peptides

and proteins [1]: the spectra obtained in this approach are closely related to the

real part of the heterodyned 2D-IR experiment [43]. The theory of two-

dimensional vibrational spectroscopy is also in place [44]. The field of

multidimensional IR spectroscopy of vibrators is now very active and is replete

with recent important technical and scientific advances from many different

laboratories and diverse areas of application [43, 45, 46], including liquids

[47, 48], which attests to the outstanding potential of such methods for the

study of structure and molecular dynamics in liquids, glasses, and biological

systems.

The backbones of protein structures are the polypeptides whose amide units,

-NHCH(R)CO-, have infrared spectra that are ultrasensitive to the details of the

many possible secondary structures that exist in proteins. The 2D-IR method

exposes much more information regarding the potential surfaces of polypetides

than conventional FTIR spectroscopy because it accesses anharmonic contri-

butions directly, but the interpretation of the results depends on having a deeper

understanding of the dynamics of vibrational states than can be obtained from

pump-probe experiments. Already a few nonlinear IR spectroscopic investiga-

tions have been carried out on the amide-I and amide-II transitions of

polypeptides and peptides: These transitions involve mainly the carbonyl

stretching mode and in-plane CNH bending modes. Another structure sensitive

vibration of the peptide group is the amide-A mode that is mainly the N–H

stretching motion. Recently the first series of experiments using dual

frequencies in 2D-IR were used to examine the coupling between the amide-I

and amide-A modes [18].

Nonlinear infrared spectroscopy can in principle provide knowledge of all

the relaxation processes of oscillators, including those that do not manifest

themselves in the linear spectral line shapes. The v ¼ 0! v ¼ 1 transition line

shape is determined by the overall rotation of the molecule, population

relaxation time T1 and by the vibrational frequency correlation function. The

experimental line-shape is not a very useful determinant of this correlation

function [40, 49] because it provides experimental data only along one axis,

either frequency or time, and the line-shape function is usually too complex to
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be described by a few parameters. The third-order nonlinear IR experiments

provide data along three axes in principle, and even 2D-IR obtains a square grid

of data points. These factors result in the correlation function being much better

determined than by linear methods simply because of the increase in the number

of observables dependent on the same set of parameters. The nonlinear

experiments probe levels beyond v ¼ 0 and v ¼ 1 and so generate relaxation

properties that are not part of the IR line shape. Furthermore, by judicious

choice of phase-matching conditions and pulse sequences, the nonlinear signal

can be chosen to emphasize different characteristics of the dynamics and of the

correlation function by means of the pump-probe, transient grating and two- or

three-pulse photon echo experimental arrangements [6, 40, 42, 47, 50–54].

Furthermore, the methods allow the determination of key parameters of the

anharmonic potential surfaces of peptides and hence provide important tests of

theoretical calculations of molecular structure and dynamics. These coherent

nonlinear infrared techniques permit experimental determination of the

coupling and angular relations of vibrators using experimental protocols that

are analogous to those developed for NMR. The first such experiments

concerned the amide-I modes of peptides, which are mainly C����O vibrators. In

that case all the relevant frequencies of an interacting ensemble of modes could

readily be bracketed by the spectral bandwidth of 120-fs infrared laser pulses.

The response of such a system to sequences of three pulses, each with the same

center frequency in the amide-I region, gave rise to coherent signals whose two-

and three-dimensional correlation spectra yielded the relevant structural and

dynamical information. We have recently carried out dual-frequency phase-

locked 2D-IR experiments in which the coupling of different modes can be

examined, free from the contributions of the fundamentals themselves [15, 16,

18].

In the present chapter we discuss the signal processing of heterodyned three-

pulse echo experiments in the infrared using single and dual frequencies. The

basic approaches to understanding these experiments have long been part of

nonlinear spectroscopy on which subject there have been many reviews [8, 11,

43, 55–62] and textbooks [21]; the underlying theory of nonlinear spectroscopic

experiments with special focus on pulsed laser responses is unified in the recent

book by Mukamel [29]. An important part of all nonlinear experiments,

including 2D-IR, is the processing and engineering of the signals. All of the

procedures used are common in other fields such as radio-frequency

communications, acoustics, and nuclear magnetic resonance. However, until

recently, such approaches have not been widely used for high-frequency signals

as in the optical and mid-IR regimes. Therefore a very brief review is given of

elementary properties of electromagnetic fields and the way they enter into

nonlinear experiments. Different types of interferometry are then briefly

introduced with reference to model pulses. There are a number of recent, useful

dynamical models for two-dimensional infrared spectroscopy 5



accounts of the technical aspects of nonlinear spectroscopy using short pulses

that focus on multidimensional methods. But the current activity in multi-

dimensional methods derives from basic nonlinear optical spectroscopy

developed for molecules mainly in the 1970s and 1980s, the vast literature on

signal processing and spectral analysis (see, for example, the Prentice-Hall

Signal Processing Series), and gradual enlightenments on the relationships

between nonlinear spectroscopy and NMR [63].

In the 2D-IR experiments there exists a useful simplification of the

description of the spectra when the vibrational dynamics is in the separation

of time-scales limit of the so-called Bloch dynamics. Then the correlations of

the fluctuations of the various quasi-degenerate amide modes dominate the

signals and the interpretations are quite straightforward and analytic. On the

basis of experimental determinations of the correlation functions, we explore

some of the sensitivities of the 2D-IR signals to the dynamic approximations. In

addition, we discuss some of the important possible manipulations of the 2D-IR

spectra that permit the display of essentially all possible third-order nonlinear

responses from a single data set.

II. RELEVANT ASPECTS OF THE GENERATED FIELDS

AND LINEAR RESPONSE

In order to introduce some notation, we first recall a few of the well-known

properties of the interaction of light pulses with molecules in the linear

approximation. Frequently, the signals in nonlinear optical experiments are

expressed in terms of the polarization induced in the medium by the incident

pulses. The complex linear polarization P(t) vector for a distribution of identical

two-level systems is obtained from an elementary calculation of the density

matrix using the Liouville equation of a system perturbed by an electric field and

proceeding as follows:

PðtÞ ¼ m10r01ðtÞ ¼ �
i

2�h

� �
m10m01 � êe

ð1
0

dTEðt � TÞe�ðio01þgÞT ð1Þ

where �ho01 ¼ �hðo0 � o1Þ, r01ðtÞ is the coherence in the two-level system, EðtÞ
is the applied field in the rotating wave approximation (i.e., the envelope times

exp(-iot)), m10 is the 1!0 transition moment dipole vector, êe is the field

polarization vector, and g is the relaxation rate of the coherent state. More

generally, the dynamics is not representable by a distribution of homogeneously

broadened transitions but requires more elaborate types of frequency correlation

functions. However, this so-called Bloch model is useful to demonstrate the

character of the interaction of light and molecules.
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A delta-pulse field of unit area and angular frequency o is obtained from a

Gaussian pulse by tending its time width to 0:

Eðt � TÞ ¼ Lims�>0

1

s
ffiffiffi
p
p

� �
e�ðt�TÞ

2=s2þioðt�TÞ ¼ dðt � TÞeioðt�TÞ ð2Þ

The complex polarization [Eq. (1)] becomes

PdðtÞ ¼ � i

2�h

� �
m10m01 � êee�ðio01þgÞt ¼ Rðo01; tÞ ð3Þ

which defines a linear response function for a single oscillator from a distribution

of oscillators undergoing spontaneous decay with rate g. In a very weakly

absorbing medium where the probability distribution of frequencies is Gðo01Þ,
the corresponding ensemble polarization is obtained as

Rðo01; tÞh i ¼
ð
Rðo01; tÞGðo01Þ do01 ð4Þ

If the deviation from the mean frequency, �oo01, is Gaussian with standard deviation

s, the complex polarization response to a delta function excitation becomes

� i

2�h

� �
m10m01 � êee�ði�oo01þgÞt�s2t2=2 ð5Þ

This polarization generates the so-called free decay field of the sample which,

when dominated by the inhomogeneous contribution, exhibits a Gaussian decay

of the oscillations at �oo01. This emission trails behind the excitation pulse and its

peak amplitude is related to the absorption coefficient of the sample. The Fourier

transform of this signal is the Voigt profile. In a conventional linear experiment,

this free induction decay (FID) of the sample is collinear with the driving field, as

specified by Maxwell’s equations. In the next paragraph we imagine that the FID

is measured independently of the driving field, which can be arranged in a variety

of different experimental arrangements, one of which is by combining the signal

on the detector with a variably delayed ultra-short pulse excitation.

In any experiment the generated signal after the sample is actually a real field

that is generated by the oscillating polarization in the sample over the path

length l. This complex electric field is ð2piol=cÞPðtÞ, so that the envelope of

the cosine part of the polarization is the envelope of the sine part of the

electric field, and vice versa. If we carry out a heterodyne measurement on

this field with a very short pulse, we measure a real signal SðtÞ which is

proportional to RefiPðtÞg, so that for the homogeneous system the signal is
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SðtÞ ¼ e�gt coso01t. The half-Fourier transform (HFT) of this signal is the

complex spectrum. We take the HFT because there is no signal prior to the

excitation time t ¼ 0:

SðoÞ ¼
ð1
0

dtSðtÞe�iot ¼ ðgþ ioÞ
ðgþ ioÞ2 þ o2

01

ð6Þ

There are identical spectra at positive and negative frequency in this cosine

transform. If we assume the delta pulse probing time to be shifted by an amount

t, we get a phase shift f ¼ o01t and the real and imaginary parts of the spectrum

become mixed illustrating how important is the choice of time zero in

experiments. It is also important to avoid timing fluctuations dt in such

experiments since they give rise to phase fluctuations o01dt. A brief discussion

of some elementary aspects of signal processing that need to be considered in IR

experiments is presented in Section III.

The polarization induced in a molecule by n successive interactions with a

field EðtÞ is termed the nth order polarization. Each interaction involves the field

coupling to a transition dipole m. The 2D IR involves a calculation of the third

order polarization, Trfrð3ÞðtÞmg, which requires a quantum dynamics derivation

of the third order term, rð3ÞðtÞ, in the expansion of the density operator as a

function of the field. The quantum dynamics is accomplished by solving the

Liouville equation for the density matrix: _rrðtÞ ¼ i=�h½mðtÞ � EðtÞ; rðtÞ�, which is

often done by some type of iterative procedure. In the experimental methods

described herein the field EðtÞ is composed of up to three light pulses that can

be separated in time and direction by the experimenter. But always there will be

three interactions: either all interactions from one pulse; two from one and one

from the other; or one from each of three pulses. Mukamel’s book [29] contains

a full account of the theoretical methods of nonlinear spectroscopy which will

not be dealt with further in this article.

III. TIME-DEPENDENT AND SPECTRAL PHASE

The subject of phase and phase retrieval with pulsed optical signals, although it is

textbook material and involves well-known signal processing concepts [64, 65],

has impacted on molecular spectroscopy only recently [66] through considera-

tion of optical control experiments. As we shall see the phase is a consideration

in heterodyne laser experiments because it influences the mixing of fields

incident on a square-law detector. It is well known that a quadratic phase alters

the spectrum, the time envelope and the time–frequency bandwidth of a pulse.

Consider a pulse:

EðtÞ ¼ e�at
2

eiðo0tþbt2Þ ¼ eðtÞeifðtÞ ð7Þ
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and its Fourier transform:

EðoÞ ¼
ð1
�1

EðtÞe�iotdt ¼ ðp=ða� ibÞÞ1=2e�ðo0�oÞ2=4ða�ibÞ ¼ eðoÞeijðoÞ ð8Þ

with fðtÞ the time-dependent phase, a real spectrum amplitude eðoÞ, and a

spectral phase jðoÞ which includes a constant part. The power spectrum

EðoÞE�ðoÞ of the field is e2ðoÞ whose time–frequency bandwidth is 0:44ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb=aÞ2p

. All signal fields representing input or output fields of nonlinear

optical experiments can be written in the equivalent forms in the last steps of Eqs.

(7) and (8), and we can discuss them either in terms of the time-dependent or

spectral phase. Although fðtÞ and jðoÞ are often awkwardly related, there is an

exact connecting relationship between them [67]:ð
tf0ðtÞe2ðtÞ dt ¼

ð
oj0ðoÞe2ðoÞ do ð9Þ

where j0ðoÞ ¼ djðoÞ=do and f0ðtÞ ¼ dfðtÞ=dt is the instantaneous frequency.
The interpretation of fðtÞ is straightforward: The phase gives the variations of

frequency across the pulse.Changes in the spectrumenter throughjðoÞ, whichmay

cause shifts in themean frequency of thefield.Thesedefinitions are easily illustrated

for a Gaussian pulse having both quadratic and cubic phase, which would be

approximately the situation if the phase were determined by passing the beam

through standard optical materials [68] as occurs in our 2D-IR experiments:

EðtÞ ¼ e�at
2=2eijðtÞ ¼ e�at

2=2eiðo0tþbt2=2þct3=3Þ ð10Þ

for which f0ðtÞis o0 þ bt þ ct2, manifesting both linear and quadratic chirp. Its

mean frequency of ðo0 þ c=2aÞ is calculated from the average over the envelope

squared as
Ð1
�1 f0ðtÞe�at2dt, illustrating that the cubic phase shifts the mean

frequency. The frequency bandwidth is computed from hf0ðtÞ2i� f0ðtÞh i2, and
only if there is no chirp do we get the expected variance of a=2. The complex

spectrum of a linearly chirped pulse ðc ¼ 0Þ is readily obtained analytically from
Eq. (10) to illustrate some important aspects. Apart from constant phase and

amplitude terms, it is

EðoÞ ¼ e�aðo�o0Þ2=2ða2þb2Þe�ibðo�o0Þ2=2ða2þb2Þ ð11Þ
from which it is seen that the spectral phase is also Gaussian and it can cause

the real part of the field to change its sign at certain frequencies, depending on the

magnitudes of the factors a and b. The spectral phase at the 1=e points of the

power spectrum of the pulse is b=2a. Although well known from conventional

signal theory, these are important considerations for spectroscopies such as
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2D-IR where the complex field is measured and where representations of the real

and imaginary parts of a spectrum might be desired. A comparison of the result

(11) to the time-dependent phase through expressions (10) and (9) is a useful

exercise. In nonlinear spectroscopy the generated field may have a time-

dependent frequency that manifests itself in much the same manner as these

simple examples of chirp.

IV. THE EFFECT OF OPTICAL DENSITY

In many of the nonlinear IR experiments the samples might have to be optically

dense. This presents challenges to the interpretation of multi dimensional

spectroscopy as the following example describing the propagation of a Gaussian

pulse through an absorbing medium shows. This question was treated sometime

ago [69] for an input Gaussian pulse spectrum with spectral width s:

Eðo; 0Þ ¼ 1

2ps2

� �1=2

e�ð$�oÞ
2=2s2 ð12Þ

The output pulse after distance z is

Eðo; zÞ ¼ Eðo; 0ÞeioznðoÞ=c ð13Þ
where nðoÞ is the complex refractive index through the resonance given by

nðoÞ ¼ n1 � cgaðo0Þ
2oðo� o0 þ igÞ ð14Þ

where o0 is the resonance frequency and g is the resonance half-width ( i.e.,

1=T2, in angular frequency units). We assume that no other resonances need to be

considered, which would be good approximation for an isolated vibrational

transition. The field suffers loss with absorption coefficient aðoÞ=2 as a result of the
imaginary part of nðoÞ. The outgoing pulse in the time domain is then given by

Eðz; tÞ ¼ 1

2ps2

� �1=2ð1
�1

doeiotfe�ð$�oÞ2=2s2e�aðoÞz=2gei
�
on1z=c�gðo�o0Þaðo0Þz=2

ðo�o0Þ2þg2
�

�
ð1
�1

doeioteðoÞ eijðoÞ ¼
ð1
�1

doeiotEðo; zÞ ð15Þ

where we have used the curly brackets to clarify our definition of the field

amplitude eðoÞ and the spectral phase jðoÞ, where both e and j are real and t is

now a reduced time ðt � n1z=cÞ. In this case the spectral phase is a Lorentzian

having a different sign on either side of the resonance. An important point about

the integral in Eq. (15), according to Garrett and McCumber, is that a correct

description is not obtained by expanding the Lorenzian phase and absorption
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factors about o0 up to quadratic or cubic terms except when the spectral width of

the light pulse is much less than the resonance width. This limit is not useful

when we use femtosecond pulses and vibrational resonances having dephasing

times comparable or longer than the pulse widths—which are the only cases of

much modern interest. Thus the integral must be evaluated numerically. When

the optical density of the sample at the peak, given by aðo0Þz=2:303, is large and
the peak is relatively narrow compared with the bandwidth of the pulse, the

integrand only has value on either side of the pulse. Eðz; tÞ, as shown in Fig. 1(b).
The Wigner spectrogram, Wðo; tÞ, offers a useful representation of the time-

dependent frequency of this signal. It is convenient to use the frequency
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Figure 1. The effect of coherent excitation on light transmission. (a) The incident and

transmitted pulses through a sample having an optical density of 1.0. (b) The free induction decay

created by the coherent excitations by the pulse in (a). (c) The Wigner distribution (see text) of the

FID shown in (b).
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definition of the spectrogram:

Wðo; tÞ ¼
ð1
�1

dyE� oþ y
2
; z

� �
E o� y

2
; z

� �
e�iyt ð16Þ

which is shown in Fig. 1(c) for a pulse passing through a sample with an optical

density of 1.0. These are results for liquid acetone, illustrating the pulse

reshaping that occurs because the sample has finite optical density. Of course this

effect is related to continued reemissions of the type illustrated at first order in

Eq. (5). The generated field measured by heterodyne detection is shown in

Fig. 1(b). The effects of high optical density on heterodyned 2D spectroscopy

have recently been discussed [70, 71].

V. HETERODYNE SPECTROSCOPY

In order to obtain multidimensional spectra, it is necessary to measure the

amplitude and the phase of the signal generated by a sample in response to some

incident fields. Directing the generated field to a square law detector such as a

photomultiplier or photodiode measures only the amplitude squared of the

generated field. However, if the generated field is combined collinearly with a

reference field and both are incident on the detector, the current in the detector

circuit has a component that depends on the product of the two fields and it

determines the signal field if the reference is known. This procedure is termed

heterodyning and the principle has been employed in nonlinear spectroscopy,

particularly in Kerr effect measurements [21]. There are two principal methods

of obtaining heterodyned spectra in the IR region: time domain and spectral

interferometry.

VI. SPECTRAL INTERFEROMETRY

In spectral interferometry, two IR pulses separated by time t are sent to a

monochromator and the total spectrum is measured. By definition the two fields

are the Fourier transforms:

E1ðoÞ ¼
ð1
�1

e1ðtÞeif1ðtÞ�iotdt and

E2ðoÞ ¼ e�iot
ð1
�1

e2ðt � tÞeif2ðt�tÞ�ioðt�tÞdðt � tÞ ð17Þ

so that E1ðoÞ ¼ e1ðoÞeijðoÞ and E2ðoÞ ¼ e2ðoÞeij2ðoÞ�iot. The latter form is a

general way of expressing a field in the frequency domain having a particular

time shift. The total field incident on a detector at setting o of the

monochromator is the sum of these two fields, and the current in the detector
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circuit SðoÞ is proportional to the absolute square of that sum:

SðoÞ ¼ e1ðoÞeij1ðoÞ þ e2ðoÞeij2ðoÞ�iot
�� ��2

¼ e1ðoÞ2 þ e2ðoÞ2 þ 2e1ðoÞe2ðoÞ cos j21ðoÞ � ot½ � ð18Þ

Often in an experiment it is possible to eliminate the contributions from the two

power spectra leaving only the interference term. It is only this interference term

that is dependent on phase and phase fluctuations. Note that for two identical

pulses the signal is simply proportional to 2 cos2 ot=2½ �, which is a series of peaks
in the frequency domain separated by 2=ct cm�1. Thus a t ¼ 1 ps delay yields a

peak separation of 67 cm�1. In general the peak separations in the frequency

domain are not independent of frequency and instead depend on the spectral

phase difference at each frequency. Therefore spectral interferometry presents a

method by which to determine the phase differences of two pulses. When the

pulses are the same, we can use spectral interferometry to determine their time

separations. The inverse Fourier transforms of the first two contributions to the

spectrogram in Eq. (18) peak at t ¼ 0 whereas the cross term peaks at t ¼ �t.
Therefore Fourier transformation of SðoÞ can permit a separation of the cross

term from the power spectra of the signal and reference fields [72].

VII. TIME-DOMAIN INTERFEROMETRY

In time-domain interferometry the two pulses are sent collinearly to a square law

detector which responds equally to all the frequencies in the pulses. The current

in the slow detector circuit SðtÞ is measured as a function of the delay, t, between
the two pulses. A common but not necessary situation in heterodyning is that one

field, E1ðt0Þ is very weak so that its square can be neglected while the other, the

local oscillator field, E2ðt0 � tÞ is much larger. The signal is time integrated by

the slow detector:

SðtÞ ¼
ð1
�1

dt0 E1ðt0Þ þ E2ðt0 � tÞj j2 ð19Þ

By intermittent chopping of the beams, the constant local oscillator background

signal can be eliminated and a Fourier transform along t yields a spectrum that by

the convolution theorem is the product of the spectra of the local oscillator and

the signal:

SðotÞ ¼ e2ðotÞe1ðotÞ cosj21ðotÞ ð20Þ

which is the same as the result, Eq. (18), obtained by spectral interferometry at

t ¼ 0. Thus the two methods of spectral and time-domain interferometry are

equally suitable for obtaining the spectra of pulsed fields.
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VIII. THE PHOTON ECHO EXPERIMENT

Traditionally the two-pulse photon-echo of a two-level system is described

in terms of dynamics where there is a separation of the frequency fluctuations

into two widely separated time scales, one of which is much faster and the other

much slower than the time that characterizes the inhomogeneous distribution of

frequencies. This gives rise to a fixed distribution of homogeneously broadened

transitions for each spectral transition of the solute. The echo electric field

generated from two very short pulses interacting with a molecule but separated

by an interval t is, apart from constant factors, given by

eðio10�gÞteð�io10�gÞt ð21Þ
where g is the homogeneous width, t is the time between the excitation and

detected fields, and �ho10 is the energy of the molecular transition. The radiating

polarization is induced by a single interaction with the field of the first pulse and

two field interactions with the second, coherence transferring pulse. In

relationship (21) the generated signal field is presented as a complex function.

The real field generated in the laboratory is the real part of this function, apart

from multiplicative factors. The conventional echo signal from an ensemble is

detected on a square law detector and therefore involves the integral over the

detection time t of the squared average over the distribution of frequencies, namely,ð1
0

eio10ðt�tÞe�gðtþtÞ
D E��� ���2dt ð22Þ

By assuming a Gaussian frequency distribution with fluctuations d about a mean,

along with standard deviation s, the echo signal becomes

ð1
0

dt e�2gðtþtÞ 1=s
ffiffiffiffiffiffi
2p
p ð1

�1
ddeidðt�tÞe�d

2=2s2

����
����
2

¼
ð1
0

dt e�2gðtþtÞ�s
2ðt�tÞ2 ¼ ffiffiffi

p
p

=2s egðg=s
2�4tÞ erf

g
s
� st

� �
� 1

� �
ð23Þ

As is well known, when the fixed inhomogeneous distribution is very large

compared with the homogeneous width, this echo signal occurs around t ¼ t and
decays with a time constant 1

4
g. However, as s approaches zero the time constant

becomes 1
2
g and the signal then peaks at t ¼ 0. The limits are most readily seen

from the second integral in (23) since exp½�s2ðt � tÞ2� only exists for t � t in
the limit of large s, while for very small s/g the integral is an exponential decay
with time constant 1

2
g. For many vibrational systems the dynamics are more

complex than assumed in this simple example as discussed later. The spectrum of

the conventional echo is obtained by recording the absolute square of each

frequency component in the frequency average of (21), obtained by Fourier
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transforming the emitted signal with a monochromator followed by square law

detection of each frequency component.

IX. THE THREE-PULSE HETERODYNED ECHO

In the three-pulse heterodyned echo the generated fields are measured directly, so

the signal is not given by expression (22). The amplitude and phase of the

generated field depends on the amplitude and phase of the three pulses that

induce the third-order polarization in the sample and on the local oscillator pulse.

Thus the directions and timing of these pulses are important in the experiment.

The physical interpretation of the experiment in Eq. (23) is also inappropriate for

systems that have more than two levels. We will see that the rephasing process

causing the echo to appear at t � t in Eq. (23) may or may not act to rephase the

polarization in a multilevel system, depending on the relationships between the

distributions of frequencies of the various levels that fall within the bandwidth of

the pulses.

In a three-pulse heterodyned echo measurement we obtain Sðt; t; TÞ, where t,
T, and t are the time intervals between the first and second fields, between the

second and third fields, and between the third field and the detected field. These

experimentally controllable intervals are often referred to as the coherence

evolution time, the waiting time, and the detection time, respectively. For

convenience we assume in the following that the driving fields are much shorter

than all the dynamical processes. For the infrared spectra of nearly degenerate

groups of modes, such as the amide modes of peptides, the pulses would have to

be around 100 fs. This spectral bandwidth brackets the complete distribution of

amide-I modes found in the majority of secondary structures. The time-domain

signal Sðt; t; TÞ can be obtained directly in a time-domain interferometry

experiment in which, for a given waiting time, the time t becomes the interval

between the third pulse and a short local oscillator pulse. A scan of the

separation between the third and local oscillator pulses completes the data set

Sðt; t; TÞ. Alternatively, one can carry out spectral interferometry in which the

generated field is sent to a monochromator along with a local oscillator with a

flat spectrum which is advanced on the signal by a time interval d. The

heterodyne signal is a real oscillatory signal that is related to Sðt; t; TÞ through

Re e�idot

ð1
0

dteiot tSðt; t; TÞ
	 


ð24Þ

X. SELECTION OF PATHWAYS AND PHASE-MATCHING

The direction of the outgoing wave in a nonlinear experiment is determined by

the wave vector kp of the induced polarization, which depends on the directions
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and frequencies of the driving fields. In all experiments the outgoing signal field

with wave vector ks propagates along the vector sum of the ingoing wave vectors

responsible for the nonlinear effect, and it is maximized in intensity when

ks � kp
�� �� ¼ 0. The situation with pulses having different frequencies

requires care because the phase mismatch ks � kp
�� �� depends on which

frequencies are observed. This analysis implies that during interferometric

experiments the generated field intensity from certain diagrams is phase-

mismatched. These effects can be computed from standard nonlinear optical

considerations. For example, the two pulse echo (22) is in direction 2k2 � k1. A

useful approach involves the double-sided Liouville path diagrams that track

the evolution of both sides of the density operator through the successive

interactions of the system with electric fields. Particular Liouville paths that

are involved in the responses that determine Sðt; t; TÞ can be selected by the

phase-matching conditions [29]. This procedure corresponds to a selection of the

phases of the input pulses by selecting particular directions of the signal field.

In our experiments we have mainly chosen a signal propagation direction of

�k1 þ k2 þ k3, where the indices specify the three incident pulses. Usually we

examine signals at only four time orderings of these pulses: (1, 2, 3), (1, 3, 2), (2,

1, 3), and (2, 3, 1) all generated in the direction �k1 þ k2 þ k3. Ippen and

co-workers [73] have presented an insightful analysis of the directional

properties of these signals. When these choices are combined with the rotating

wave approximation that eliminates from consideration severely nonresonant

processes, many of the theoretically possible pathways giving rise to the

generated fields in the third order are eliminated. The (1, 2, 3) and (1, 3, 2)

sequences generate the rephasing signal, while the others contribute the

nonrephasing signal. When two frequencies are employed, other diagrams

disappear because of phase mismatching. These considerations indicate that

different diagrams may be accessed by using combinations of frequencies

and phase-matching conditions. The pathways that need to be considered are

shown in Fig. 2. In this figure the lowercase k’s are used to index vibrational

states in the one quantum regime and the uppercase K refers to two-quantum

vibrational states. For T > 0, the diagrams R4 to R6 would be omitted. When

summed over all the relevant complete sets of system vibrational states the total

nonrephasing (diagrams R7 to R11) and rephasing (diagrams R1 to R6)

contributions generate equal integrated signals in different quadrants of the

frequency space.

Diagrams R9 and R11 in the nonrephasing configuration are interesting

because in a two-pulse experiment where k2 an k3 arrive first, the coherence

during the interval prior to the third pulse oscillates at roughly twice the

frequency of the vibrational mode. Studies of these diagrams permit

direct measurements of the total dephasing dynamics of the two-quantum

states.
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XI. PUMP-PROBE 2D-IR SPECTRA

The pump-probe configuration provides the classic approach to 2D spectroscopy

since it involves two independently tunable frequencies [1]. In NMR the

analogous approach is double resonance Fourier spectroscopy. In fact the method
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Figure 2. The Liouville pathway diagrams for third-order phase-matched signals (i.e.,

ks ¼ signal wavevector ¼ polarization wavevector) into the direction�k1 þ k2 þ k3. The lower- and

uppercase k and K symbols represent one- and two-quantum states of a molecule, respectively.
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is analogous to any of the many double resonance techniques used in

spectroscopy: One example is dynamic hole-burning spectroscopy. The pump

pulse requires to be centered at a particular frequency. Its spectral bandwidth is

narrowed by means of a tunable Fabry–Perot filter. This narrowing is optimal in

the sense that the time bandwidth is chosen to be shorter than the dynamical

response of the system. The spectrally broad probe pulse is delayed by a time

interval T and dispersed by a monochromator after the sample to generate the

second frequency axis. A contour plot of the optical density as a function of the

two frequencies provides the 2D-IR spectrum at each value of T. The attenuation

or gain of the probe field is directly measured in such an experiment by self-

heterodyning of the generated third-order probe field with the incident field, as is

also the case in any linear absorption experiment. Therefore it is only the part of

the generated field that is in phase with the incident field that appears in the

signal. Thus the signal corresponds exclusively to the real part of the generated

third-order field. In many situations involving molecular vibrations and their

dynamics the real part of the generated field may be all that is required to

completely characterize the response. Therefore this pump-probe approach is

extremely powerful especially when the spectra being examined are diffuse. The

pump-probe signal, while similar to the real part of the echo spectrum, actually

incorporates an average of echo spectra over a range of t values within the

time bandwidth of the frequency-narrowed pump pulse. This will be discussed

later.

XII. TWO-DIMENSIONAL INFRARED ECHO SPECTRA

The two-dimensional spectrum is defined as the complex 2D Fourier transform

of the time-domain signal Sðt; t; TÞ or as the single Fourier transform of (24), the

spectral interferogram S0ðt;ot; TÞ:

Sðot;ot; TÞ ¼
ð1
0

ð1
0

dtdteiottþiot tSðt; t; TÞ ¼
ð1
0

eiottS0ðt;ot; TÞ ð25Þ

For a given setting of the input pulses specified by the time intervals ðt; TÞ
between the pulses generating the signal, the sample emits a field Esðt;o; TÞ ¼
esðt;o; TÞeijsðoÞ and the local oscillator pulse is ELðoÞ ¼ eLðoÞeijLðoÞ�iot, where
t is the delay between the LO and emitted field. In the time-domain interferom-

etry we scan a complete range of t while detecting the signal at all frequencies in

a square law detector. So the detector signal is equivalently written as

Stotalðt; t; TÞ ¼
ð1
�1
ðesðt;o; TÞeijSðoÞ þ eLðoÞeijLðoÞ�iot
�� ��2do ð26Þ
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Usually the detection procedure is arranged so that the signal is free from the

separate local oscillator, so that the remaining real signal is

Sðt; t; TÞ ¼
ð1
�1

esðt;o; TÞeLðoÞ cos½jLSðoÞ � ot� do ð27Þ

If we now assume that the local oscillator spectrum is very broad, corresponding

to a very short pulse in the time domain, we can take it out of the integral and

divide throughout by the square root of the power spectrum of the local oscillator

giving the two definitions of Sðt; t; TÞ:

Sðt; t; TÞ ¼
ð1
�1

esðt;o; TÞ cos½�jLSðoÞ � ot� do ¼ Re½Esðt; t; TÞei�jLSðtÞ�
ð28Þ

where the analysis is appropriate at each value of T. Both time-domain and spectral

interferometry methods of obtaining 2D-IR spectra have been documented as

indicated in the introduction.Figure3 shows the 2D-IR spectra of dialanine obtained

from time-domain and spectral-domain interferometry on the same apparatus.

A wide variety of signal manipulations analogous to those that are known

from NMR [20], and field polarization conditions that are better known from

multiple-pulse high-frequency spectroscopy [74–76] have been explored with

IR pulse configurations. The basic concepts of 2D-IR spectroscopy have been

frequently reviewed [11, 19, 43], and very recently there was another excellent

survey of the methodology of 2D spectroscopy [77].

XIII. COMPARISONS WITH OTHER
NONLINEAR EXPERIMENTS

We now we summarize some of the procedures that are used in analyzing

multidimensional IR data. Constants factors are often omitted from the formulas

as are the transition dipole factors which are easily incorporated [74] when the

modes are a collection of coupled harmonic oscillators. More generally the

variations of transition dipole with nuclear displacement should be incorporated.

It is often useful to compare the 2D-IR results with the results of other nonlinear

experiments because it turns out that various manipulations of these multi-

dimensional signals provide all of the common nonlinear results such as echoes,

gratings, degenerate four wave effects, and pump-probe spectroscopy.

The 3D-IR data set consisting of a cube of time, frequency or mixed time/

frequency points encodes the information obtained from all other third-order

nonlinear resonant experiments. When the time t is chosen as zero, the variation
of the signal with T is a heterodyned transient grating experiment. The detection

on a slow detector of the generated field is a conventional transient grating in

that case. When T ¼ 0 the generated signal with sequence (1, 2, 3) is a
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conventional two-pulse photon echo or reverse photon echo when the sequence

(2, 1, 3) is used. We often use the terms rephasing or nonrephasing spectra for

these two signals. The projection of the heterodyned signal Sðot;ot; TÞ onto the

ot axis [20], Eq. (30), is defined as

ð1
�1

dotSðot;ot; TÞ ¼ S0ðt ¼ 0;ot; TÞ ð29Þ

the real part of which is the broad-band pump/broad-band probe spectrum in

which two counterrotating pulses arrive at time zero and the free decay spectrum

is measured after time T. In NMR the projections are defined generally for any

skew axis, not just the ot axis [20], and this has been emulated in other

multidimensional spectroscopies. The comparison of such projections with
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time-domain interferometry and (b) spectral interferometry. The spectra are the same with the signal

to noise available, although the spectral resolution is slightly better for the spectral interferometry in

our arrangement.
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independent measurements of pump-probe spectra can be very useful. A narrow-

band pump/broad-band probe experiment comparable with the earliest of the

2D-IR spectra to be reported is obtained from the data set as the real part of

ð1
�1

dotSðot;ot; TÞðGðo0 þ otÞ þ Gðo0 � otÞÞ ð30Þ

where GðoÞ is the power spectrum of the hypothesized narrow-band pulse

centered at o0. In this case the signal must be obtained in two of the quadrants

ðot;otÞ and ð�ot;otÞ. This corresponds to incorporation of a range of t values
around zero, implying the use of two narrow-frequency bandwidth excitation

pulses. This hole-burning experiment is very useful for measurements of the

angular parts of the response and for identifying clearly the presence of spectral

diffusion. If the spectral bandwidth of the pulses is kept less than the motionally

narrowed part of the linewidth, there is no significant loss of information

introduced by the averaging over the coherence evolution time. The vibrational

frequency correlation function can be real or complex and may need to be

described in terms of a number of parameters. Therefore the linear spectroscopy

does not have sufficient information to determine this function. The set of 2D

data contains much more information. For example, the spectra Sðt;ot; TÞ yield
a set of signal versus t curves, one for each value of T, that can be fitted to sets of
parameters. Of course these signals also can be obtained directly from the time-

domain set of data by obvious manipulations. The echo peak shift experiment in

the IR was carried out previously by integrating the echo signal over the

detection time t by detecting it on a slow-response square law detector:

Spepsðt; TÞ ¼
ð1
0

dt S2ðt; T ; tÞ ð31Þ

but the same information can be obtained directly from the multidimensional

data set from, for example, S0ðt;ot; TÞj j at each detection frequency ot. This

function provides a complete set of T-dependent data at each frequency and

hence for each emitting oscillator. One main point of this measurement is to

provide as many independent observables as possible at each T with which to

determine the parameters needed to obtain an accurate representation of the

frequency correlation function.

XIV. THE NONRESONANT RESPONSE

When the pulses used in the experiment have finite spectral width the induced

polarization in a third-order experiment is the convolution of the system
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responses discussed above with the three inducing fields. Therefore, if the overall

system response is completed much more rapidly than the time width of the pulse

envelopes, then the polarization is no longer dependent on the response but is

determined by the envelopes and phases of the input pulses. For example, in most

of the 2D-IR experiments the solvent generates an ‘‘instantaneous’’ signal of this

type even when it appears to be transparent. This response is nonresonant and is

in reality essentially instantaneous because its time response is roughly the

inverse of the gap between vibrational and electronic transitions. Fortunately, this

signal is very small for water and D2O in which media most of the biological

applications of 2D-IR are carried out. Nevertheless, because these signals are

instantaneous, they are useful in determining phase properties of the excitation

pulses and for timing the pulses at the sample and relative to the local oscillator.

An example of this is shown in Figure 4, which is the signal in the echo direction

�k1 þ k2 þ k3 for a transparent liquid CCl4 driven by a three-pulse sequence,

each with a center wavelength of 3 mm: in the case of solvents like CCl4 the

nonresonant signals in the infrared are not small, but they are very useful.

Figure 4 also shows the spectrum and phase of the signal, relative to that of the

local oscillator, determined directly from this experiment. The analysis of the
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pulses by this method proved to be very useful in our work on heterodyned

photon echoes of pyrrole [78].

XV. SYSTEM RESPONSES IN THE VIBRATIONAL SPECTRUM

The standard approach to nonlinear spectroscopy is to write the polarization

generating the signal field in terms of a sum of response functions. In a third-

order nonlinear response a molecule interacts with three fields, each of which

drives the system into a coherence or population state that depends on what was

created by the previous interaction. The sequence of three molecular coherences

or populations is usually called a pathway. The diagrams of Fig. 2 help in

counting of the number of possible pathways and in deducing their formulas.

Other diagrammatic methods based on conventional representations of transi-

tions between states can also be useful [79].

There are a number of differences between the vibrational and the electronic

spectrum that are important in considering the response functions. One is the

relative magnitudes of pulse widths and linewidths. In the vibrational spectrum

a typical linewidth corresponds to a dephasing time of 0.3 to 1 ps, whereas in

the electronic spectrum the dephasing times are much shorter and only the

shortest pulses known can bracket the complete electronic transition in the

optical regime. In vibrational experiments where the spectra of individual

modes are evident, a 100-fs pulse brackets the region of the response of one

mode quite effectively. Exceptions to this are found in associated liquids, such

as water, where vibrational spectra tend to be very diffuse representing the broad

dynamical inhomogeneous distribution of structures that contribute to the

spectra. Another important difference lies in the role of the population times

which in the optical regime are usually much longer than the pure dephasing

processes. This is not the case for vibrational transitions, which are frequently

dominated by T1 relaxation processes.

The signals referred to above can be calculated from theory in terms of

the responses corresponding to the various Liouville pathways mapped out

by the field interactions. A given signal can consist of many such pathways, but

there are considerable simplifications introduced by adopting the rotating wave

approximation and selecting particular terms by phase-matching as mentioned

above [29]. The simplest types of two-level generated fields are those on the

diagonal of the 2D IR spectrum having the form

e�io10t�g1te�T=T1e�io10t�g1t
D E

ð32Þ

where o10 is the transition frequency, g1 is the motionally narrowed dephasing

time, and T1 is the population relaxation time. This field corresponds to either (a)
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R1 of Figure 2 for a two-level system where the pathway is through a ground-

state depletion or (b) R2, which passes through a v ¼ 1 population. Note that the

location of the rephasing spectrum in the ot;ot plane is evident from the signs of

the frequency exponents in a complex response function such as Eq. (29). The

nonrephasing spectrum is found in the other two quadrants. The real part of a

typical 2D-IR spectrum of a pair of oscillators is depicted in Fig. 5. All the

transitions are elongated along the diagonal because of inhomogeneous line

broadening. This is a feature common to all the responses discussed below when

the static inhomogeneous distribution of frequencies is included. Basically this

elongation arises because each diagonal point represents the peak of a linear IR

transition with its characteristic homogeneous width, has its own 2D-IR

spectrum of four other similarly shaped transitions displaced along the ot axis.

When there is a distribution of frequencies there are many diagonal points. The

approximately elliptical shapes become nearly circular for purely homoge-

neously broadened transitions. The spectral line narrowing, intrinsic to the

photon echo, is dramatized by the difference between the diagonal and

antidiagonal widths of the transitions. The transitions along the ot ¼ o1 line
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Figure 5. A typical 2D-IR real part of the rephasing spectrum for a pair of coupled oscillators.

Shown at the bottom is the projection of this spectrum onto the ot axis obtained by summing

contributions from all values of ot at a particular ot.
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correspond to oscillation frequencies in the FID of ot ¼ o1 ��; o1;o2�
�12;o2, and 2o2 � o1 ��, respectively. These signals correspond respectively

to the Fig. 2 diagrams: R3 and R6 with k ¼ 1;K ¼ 1þ 1;R1;R2;R4, and R5 with

k ¼ 1 and k0 ¼ 1;R3 and R6 with k ¼ 1;K ¼ 1þ 2;R1;R2;R4, and R5 with k ¼ 1

and k0 ¼ 2; and R3 and R6 with k ¼ 1;K ¼ 2þ 2. The signals at 2o2 � o1 ��2

and 2o1 � o2 ��1 are forbidden in the harmonic approximation since they

involve 1! 2þ 2 and 2! 1þ 1 transitions, respectively, and they need not

have the same dipole strength. Also sketched in Fig. 5 is what would be expected

for the projection [20] of this real 2D-IR spectrum onto the ot axis,ð1
�1

Sðot;otÞ dot ¼ Sðt ¼ 0;otÞ
2

ð33Þ

which is by definition the pump-probe spectrum: in other words [20], it is ‘‘the

Fourier transform along t of a single FID signal obtained with t ¼ 0.’’ This

establishes a relationship between the pump-probe and the 2D-IR spectra that is

discussed in a number of the reviews given earlier. In most of our experiments the

phase is not precisely known because of timing inaccuracies, so that this

projection is useful in finding which linear combination of real and imaginary

parts of the observed spectrum, including its timing uncertainty, corresponds to

the true real and imaginary parts of the phase selected 2D-IR spectrum.

Responses of the type (32) becomes inaccurate when there is spectral diffusion or

when relaxation can occur between different modes as discussed later. The

averaging in (32) is over any distribution of motionally narrowed frequencies.

Apart from the evolution during the waiting time T, this is the same response as

presented earlier for the conventional photon-echo. The upper sign is the

rephasing response whose spectrum is in the quadrant ð�ot;otÞ and the lower

sign gives the so-called nonrephasing response in the ðot;otÞ quadrant obtainable
by interchanging the ordering of the first and second pulses used in the echo. The

character of the 2D spectra of the homogeneous part of this echo response, which

would correspond to a diagonal peak, is described in detail in books on NMR.

The 2D-IR signal Sðt; t; TÞ defined by the time-domain interferogram is the real

part of the echo field generated when the third pulse creates a coherence that is

conjugate to the initial coherence that exists during the evolution time:

Re½eþio10t�g1te�T=T1e�io10t�g1t�
D E
¼ ðcoso10t coso10t þ sino10t sino10tÞh ie�g1ðtþtÞ�T=T1 ð34Þ

It is easy to discover by plots of (34) that the shape of this signal is not actually

circular or elliptical, especially because of the presence of the sine term. The

double Fourier transform of the signal (34) according the procedure (25) and
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the result in (6) is a 2D spectrum in the second and fourth quadrants of fot;otg.
The real part of the sum of the responses (32), with different signs in o10, is the

absorptive diagonal 2D-IR response, now free from the sine term:

coso10t coso10th ie�g1ðtþtÞ�T=T1 ð35Þ
A full discussion of the types of spectra obtained by adding the rephasing and

nonrephasing parts was recently published [45]. For some applications it may be

useful to display both rephasing and nonrephasing parts, especially when there

are overlapping unresolved transitions, which will always be the situation for

peptides and proteins [14, 43].

We now return to the cross peaks of the 2D-IR spectrum of a system having

two coupled modes. The various Liouville paths that contribute to the signal in

this case were discussed in regard to Fig. 5. One of the cross-peak responses is

of the form

eio10t�g1t½e�T=T1 þ eio21T �e�io20t�g2t
D E

ð36Þ

where o20 represents the frequency of a second mode, g2 its dephasing time, and

o21 ¼ o01 � o02 is the difference in frequency between the two modes. In that

case the static average involves the joint distribution of the two frequencies [14].

The two terms involving T correspond to the two Liouville pathways that lead to

the same coherence transfer. Using the result of Eq. (6) and (25), the 2D-IR

spectrum corresponding to the field (36) can immediately expressed as follows:

ðe�T=T1 þ e�io21TÞðg1 þ iotÞðg1 þ iotÞ
½ðg1 þ iotÞ2 þ o2

01�½ðgþ iotÞ2 þ o2
01�

* +
ð37Þ

Since both frequencies are chosen to have the same sign in the absorptive

spectrum, (37) becomes

ðe�T=T1 þ e�io21TÞðg1 þ iðo10 � otÞÞðg1 þ iðo20 � otÞÞ
½g21 þ ðo10 � otÞ2�½g22 þ ðo20 � otÞ2�

* +
ð38Þ

This is the 2D-IR spectrum cross peak apart from transition dipole factors. The

real part consists of a peak in the first quadrant at ot ¼ o10;ot ¼ o20. When d,
the mixed mode anharmonicity, is small, this cross term may be almost canceled

by one involving the combination band of the two modes:

� eio10t�g1t½e�T=T1 þ eio21T �e�iðo20�dÞt�g1þ2t
D E

ð39Þ
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where g1þ2 is the dephasing time of the combination tone. The spectrum then

becomes (38) with o20 replaced by o20 � d, which is similar to (38) but with the

peak shifted along ot by the off-diagonal anharmonicity. These two terms

together constitute the dual frequency signal in the approximation where there is

a distribution of motionally narrowed transitions. The first involves field-induced

coherence transfer between the two modes, and the second involves transfer to a

(1þ 2, 1) coherence. Again the 2D-IR signal Sðt; t; TÞ is the sum of the real parts

of these responses. As shown previously, the 2D-IR spectra of the cross peaks

strongly depend on the correlations of the frequency distributions.

The absorptive cross-peak signal is

coso10te�g1t½e�T=T1 þ eio21T �ðe�io20t�g2t � e�iðo20�dÞt�g1þ2tÞ
D E

ð40Þ

which leads to the equation given in our article [17] on dual frequency 2D-IR

when the average over the joint distribution of frequencies is carried out as

described below.

XVI. SIMPLE MODEL OF THE 2D-IR SPECTRUM OF A PAIR

OF RESONANCES

The previous discussions of the signal are nicely illustrated by an extremely

simple model analysis using real fields and signals for two Lorenzian resonances

at frequencies a and b. The sample is irradiated with two very short pulses whose

spectra are flat. The real generated field from the sample is the real part of

Eq. (21) or Eq. (33) with T set equal to zero for convenience since e�T=T1 is in any
case a multiplicative factor. In time-domain interferometry, this is measured

directly along the indicated time axes as described above. In spectral

interferometry the real generated field along with a real local oscillator field,

delayed by time d, is dispersed (i.e., Fourier-transformed) by a monochromator,

then squared by the detection to yield a spectrum on the array detector at each

value of t:

Sðt;otÞ ¼ I þ 2 signðRÞe�gat cos½oat� otd � tan�1ð�=gÞ�
ð�2 þ g2bÞ1=2

ð41Þ

where d is the delay of the local oscillator, � ¼ ob � ot, and I is the sum of the

intensity spectra of the generated and local oscillator fields. The second term,

up to a constant factor, is the interference of the flat local oscillator and the

generated field, which shows oscillations along both ot and t. The resonance

pairs may have different signs, sign (R), which can be read off from the Liouville

pathway diagram for the signal. The signs originate from the commutator in
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the Liouville equation and are negative when there is an odd number of

interactions on one side, either bra or ket, of the density operator. Interference

spectral components are obtained as per Eq. (38) for each pair of resonances of

the sample, and they are additive since they correspond to the field amplitudes.

The denominator of the cross peak in (40) is the square root of the power

spectrum of the generated field. All resonances contribute a term of this type to

add up to a two-dimensional spectrum once the I term is removed. Additional

phase differences can easily be incorporated into the cosine. The Fourier

transform of the cross term in (40) consists of two one-sided exponential decays,

one extending from t ¼ d to infinity and the other from t ¼ �d to �infinity:

Sðt; tÞ ¼ 2 signðRÞ½e�ðgþioaÞte�iobðt�dÞ�ðt � dÞe�gðt�dÞ
þ eð�gþioaÞte�iobðdþtÞ�ð�d � tÞe�gðdþtÞ� ð42Þ

There is also a part at zero time from the terms represented by I and from the

noise. Everything is discarded except the component at t ¼ d, which when back

Fourier-transformed yields

S0ðt;otÞ ¼ 2 sign ðRÞe�ðgaþioaÞte�iotd=ðgb þ iðob � otÞÞ ð43Þ

which is the complex spectrum of the generated fields at each value of t. The
absolute maximum of this spectrum decays along the t axis with time constant

2ga. No peak shift along the t axis is predicted by this simple example because

no inhomogeneous broadening was incorporated.

XVII. THE EFFECT OF CORRELATION OF VIBRATIONAL

FREQUENCY DISTRIBUTIONS

Equation (32) can be rewritten as

e�io
0
10
t�g1te�T=T1e�io

0
10
t�g1t e�ixt�ixt

� � ¼ e�io
0
10
t�g1te�T=T1eio

0
10
t�g1te�s

2ðt�tÞ2=2

ð44Þ

where the mean frequencies o0
10 are taken out of the average which now involves

the frequency deviations x from the mean of the equilibrium distribution with

standard deviation s. Simple forms are obtainable for the responses when the

distribution of frequencies being averaged over is static [14]. A Gaussian

distribution is assumed in the last step of Eq. (44). The results given below are

obtained by inspection by assuming the frequency deviations (i.e., the x, y or

their finite time integrals) are Gaussian variables and employing the well-known

relationship between the average of the exponential and the exponential of the
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average obtained by integration over a multivariate Gaussian distribution:

e
P

i
aixi

D E
¼ e

1=2
P

i;j
aiaj xixjh i ð45Þ

We used this relationship to obtain the results of our first article on the spectra of

the vibrational photon echo [80, 81] of the azide ion and hemoglobin.

If in Equation (44) we replace ixt by iyt to account for different resonant

frequencies being involved in the t and t evolutions, we can immediately carry

out the Gaussian average:

e�ixt�iyt
� � ¼ e�s

2
xt

2=2�s2
y t

2=2�fsxsytt ð46Þ

where f is the correlation coefficient of the two frequency distributions:

f ¼ xyh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h i y2h ip ð47Þ

The result (46) for correlated Gaussian variables was used in our three-pulse-

echo spectral study of hemoglobin [80, 81], where f was found to be close to

unity.

When the distribution being averaged over is dynamic [29] but classical with

Gaussian fluctuations x(t), the gammas representing the homogeneous widths of

different components should be omitted from the formulas and the average in

Eq. (44) must be replaced by

e
�i
Ð t

0
xðt0Þdt0�i

Ð tþTþt
Tþt xðt0Þ dt0

 �
¼ e�gðtÞ�gðTÞ�gðtÞ�gðtþTÞ�gðtþTÞ�gðtþTþtÞ ð48Þ

which reduces to Eq. (44) when x is time-independent. The dynamics is now

described in terms of the correlation function of the frequency fluctuations,

defined in

gxyðtÞ ¼
ðt
0

dt1

ðt1
0

dt2 xðt1Þyðt2Þh i; gxxðtÞ � gðtÞ ð49Þ

When the correlation function for Bloch dynamics, xðtÞxð0Þh i ¼ dðtÞgþ s2, is

used to obtain g (t), Eq. (44) is recovered. This development is easily generalized

to pairs of correlated variables in the t and t domains as occur in Eq. (46) by

replacing the x(t) in the second integral of Eq. (48) by another fluctuation y(t)

occurring in the detection time domain. The cross correlation xð0ÞyðtÞh i, which
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gives the time dependence of the correlation between the variables, is then

measured as part of the experiment:

e
�i
Ð t

0
xðt0Þ dt0�i

Ð tþTþt
Tþt yðt0Þdt0

 �

¼ e�gxxðtÞ� gxyðTÞ�gxyðtÞ�gyyðtþTÞþð02ÞgxyðtþTÞ�gxyðtþTÞ�gyyðtþTþtÞþð20ÞgxyðtþTþtÞ ð50Þ

which goes over to Eq. (48) when x and y correspond to the same variable and to

(46) when both x and y define fixed distributions. Again the upper and lower signs

and prefactors correspond to the rephasing and nonrephasing responses,

respectively. In the two-pulse echo where T ¼ 0, these results simplify

considerably. Results for vibrational relaxation dynamics more general than

the foregoing approaches, particularly for cases where g is complex and where

noncommuting properties are important, have been given by Mukamel employ-

ing a cumulant expansion, which does not in general require the variables to be

Gaussian, but implicitly does so when the expansion is terminated at second

order. Results comparable to the above were also given in Ge et al. [14], where

the correlation functions were written in terms of the anharmonicity fluctuations.

An essential feature of these results is that the correlation function of the

frequency fluctuations influences the evolution of the system during the waiting

time T. The physical interpretation of this result is that the system maintains

memory of the frequency imprinted on the original inhomogeneous distribution

and that this can be rephased after the waiting period only if the spectral diffusion

determined by the frequency correlation function is incomplete.

XVIII. DUAL-FREQUENCY 2D-IR

The use of two frequencies is a useful alternative to ultrashort pulse shaping and

impulsive limit experiments. It can permit avoidance of pulse distortion that

might arise in regions of strong solvent or solute absorption (see, for example,

Fig. 1) when broad-band pulses were used. It also enables a broad selection of

anharmonic couplings and an increased number of structural constraints to be

obtained in a single measurement. Of course it may be convenient in some cases

to use employ ultrashort pulses that cover the whole spectral range of all the

modes of interest. In order to access both amide-I and N–H modes in proteins, a

pulse having a bandwidth of greater than 1800 cm�1 would be needed. For a

Gaussian pulse centered at 4 mm, this criterion implies a time width less than

10 fs. The 2D-IR spectrum is simplified considerably by the use of two

frequencies as shown in our work on N-methylacetamide (NMA) [17]. In other

work, joint nonlinear responses were stimulated from both the amide-A (N–H)

and either the amide or ester carbonyl transitions or from amide-I and amide-II
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transitions [15]. When two center frequencies are employed, the signal may be

interpreted by the cross-peak responses typified by Eq. (50). The x and y

parameters then correspond to the correlated fluctuations in the frequencies the

two resonances. From the foregoing analysis the absorptive cross-peak response

in the Bloch approximation, which represents the complete dual frequency

signal, is predicted to be [17]

Sðt; tÞ ¼ ½coshðfsIsIIttÞ cosoIItðcosoIt � e�t=T
ðIIÞ
1 cosðoI ��I;IIÞtÞ

þ sinhð fsIsIIttÞ sinoIItðsinoIt � e�t=T
ðIIÞ
1 sinðoI ��I;IIÞtÞ�G0ðt; tÞe�2DðtþtÞ

ð51Þ
where the uncorrelated Bloch line shape function is G0ðt; tÞ obtained from

Eq. (46) with f ¼ 0. The parameters oI and oII are the angular frequencies and

sI and sII the inhomogeneous widths of the amide-I and amide-II transitions, the

T1’s are the population relaxation times of the indicated states, D is the rotational

diffusion coefficient, and the total homogeneous dephasing rates of the amide-I

and amide-II fundamental transitions are included in G0. The off-diagonal

anharmonicity is �I;II, chosen so that the frequency of the transition between II

and Iþ II is oI ��I;II. By inspection, the dual frequency 2D-IR spectrum,

obtained from the double Fourier transform of Sðt; tÞ, displays peaks

ðoII;oIÞ and ðoII;oI ��I;IIÞ. When f ¼ 0, the case of uncorrelated distribu-

tions, the signal reduces to the difference between two components having

opposite signs that are slightly displaced (by �I;II) along the ot axis. The node

separating the positive and negative parts of the 2D spectrum is then parallel to

the ot axis in the region of ot ¼ oII. The effect of finite f is to tilt this node one

way or the other depending on the sign of f. Thereby, f is easily measured in this

dynamic approximation.

The use of dual frequencies significantly enlarges the scope of 2D-IR

vibrational spectroscopy. Interesting qualitative models of the anharmonic

potential surfaces of peptides emerge from dual frequency results from which

we find the amide-I (C����O mode) and amide II (C–N mode) frequency

distributions having f-values significantly less than zero. We think of this in

terms of solvent-induced mixing of valence bond structures where an increase in

the zwitterionic form of NMA, as might occur for NMA molecules associated

with particular solvent configurations that bind effectively to that form, causes a

reduction in the C����O frequency and an increase of the C-N frequency.

XIX. POLARIZATION DEPENDENCE

The signals in 2D-IR experiments are fourth-rank tensor properties with indices

corresponding to the four polar vector components of the incident and detected

electric fields. In an isotropic medium there are only three independent fourth
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rank tensor components and they satisfy the relationship

xxxxh i ¼ xxyyh i þ xyxyh i þ xyyxh i ð52Þ

where x and y are any two orthogonal directions in space. This result holds for all

third-order nonlinear signals in isotropic media. The signal for a given set of

fields chosen by the experimenter, say xyxyh i, is proportional to the ensemble

average of the product of four direction cosines taken at each of the times that the

pulses interact with the system, namely m̂myðt4Þm̂mxðt3Þm̂myðt2Þm̂mxðt1Þ
� �

, where m̂mxðt1Þ
is the projection onto the x axis of the unit transition dipole interacting at time t1.

The time dependences of the signals are readily obtained by standard methods

when the evolution of the system between the pulses obeys the diffusion

equations for rigid bodies [74, 76]. Each of the diagrams in Fig. 2 is associated

with a transition dipole factor of this type for any calculation of the 2D-IR

signals. It is possible to find polarization conditions that enable the measurement

of various linear combinations of the three independent tensors [73]. For

example, when we choose the four polarizations as xþ y; x� y; x; yh i, the echo
measures the linear combination ð xyxyh i � xyyxh iÞ, which is free from the often

dominant, intense diagonal contributions to the 2D-IR spectrum [75]. Figure 6

shows some examples of the use of different polarization conditions for the 2D-

IR spectra of acylproline. The diagonal peaks in the bottom panel arise because

the polarizers used in the experiment are imperfect. Some of the cross peaks are

evident only in certain polarization conditions because of the angles between the

transition dipoles of the coupled states and the distributions of these angles. For

example, peaks A and C (Fig. 6a) correspond to the amide-I and amide-II

transitions that have nearly perpendicular transition dipoles. The pump-probe

method, in its traditional form, does not measure all the tensor components;

rather it is confined to xxxxh i and xxyyh i. The angular averages all decay with

orientational relaxation dynamics and contain averages over angle distributions

and the first and second Legendre polynomials of the cosines of the angles

between the various transition dipole moments involved in the process. In order

to increase the extent of the angular information available from 2D-IR,

experiments would need to be carried out in anisotropic media, such as crystals

and oriented films.

XX. PROJECTION ANALYSIS OF COMPLEX SPECTRA

When infrared spectra are diffuse and have overlapping bands, the 2D-IR method

can be invaluable in characterizing the underlying structure and homogeneous

dynamics. Equation (22) shows how the temporal decay of a photon-echo yields

a homogeneous decay parameter in the presence of a broad frequency

distribution. Therefore it is not surprising that the 2D-IR spectrum exposes the
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homogeneous width of the individual transitions, even when the spectrum is

dominated by their inhomogeneous broadening. In a qualititative sense, this is

shown already in Fig. 5, where the 2D-IR transitions are shown to be elongated

along the diagonal. Correspondingly, these transitions are narrowed when traces

are taken perpendicular to the diagonal; this is a manifestation of the line-

narrowing capability of the photon-echo experiment. However, these antidiagonal

Figure 6. The 2D-IR spectrum of acylproline for three polarization conditions. These three

measurements represent all possible orientational information on this isotropic system. This figure is

adapted from published data (see References. 7 and 43). See color insert.
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widths do not give the homogeneous widths directly because of the contribution

of the anharmonically shifted transitions. A formal way to generate traces of this

type is by means of skew projections, which allow different aspects of the 2D-IR

spectra to be emphasized.

We already discussed the projection onto the ot axis as being the pump-

probe spectrum. The �45	 projections can also be quite useful for analyzing the

correlations in the inhomogeneous distributions. It is useful to note that Eq. (47)

can be rewritten as

e�ixt�iyt
� � ¼ e�½ðsxþsyÞðtþtÞþðsx�syÞðt�tÞ�2=4þð1�f Þsxsytt ð53Þ

Assuming for discussion that sx and sy are very similar, this average in the

rephasing spectrum does not involve the inhomogeneous distribution if t þ t ¼ 0

and f ¼ 1, but it does when f ¼ �1. The opposite is the case in the nonrephasing
spectrum. This implies that the Fourier transform of the projection of the time-

domain data onto the line t þ t ¼ 0, which is equivalent to projecting the

rephasing frequency-domain data onto the antidiagonal line ot þ ot ¼ 0, will

show peaks that are very sensitive to the correlation. When the frequency

dependences are incorporated, it is easy to see that the projected spectrum will

display negative peaks at zero frequency and �2�1=2 o21 and will show positive

peaks at 2�1=2ð�12 � o21Þ and �2�1=2�. The spectrum obtained from the

projection onto the line t � t ¼ 0 or directly from the projection onto ot�
ot ¼ 0 has the full inhomogeneous width for f ¼ 1 in the rephasing diagram.

This is as expected because the signal at t ¼ t emphasizes the echo part of the

free decay rather than the echo delay: If the inhomogeneous broadening is very

large, a very short time spike is emitted at t ¼ t.

XXI. WAITING TIME DEPENDENCE OF THE SIGNALS

After the second pulse of a 2D-IR experiment, either the system is put into a

population state or an interstate coherence is developed, after which the

coherence implanted during the first period is stored. During this storage period,

the time T, the signal decays with the population or interstate coherence

relaxation time. In the presence of an inhomogeneous distribution, this

coherence can be rephased by the third pulse, which finally brings about the

coherence transfer to a state that radiates near the vibrational transition

frequencies. The variation of the signal with T therefore permits dynamical

properties of the inhomogeneous distribution to be measured. The concepts

behind this measurement have been well documented in the optical regime [82].

The forms of the responses given above simplify considerably when T ¼ 0 as is

the condition of a two-pulse echo. But for finite values of T, there are no
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simplifications in general and the evolution through the time period t is different
for every value of T and it depends on the choice of the vibrational frequency

correlation function. A plot of S0ðt;ot; TÞj j for a single oscillator with an

exponentially decaying correlation function is given in Fig. 7 as a function of t
for a few values of T. To produce that plot, some form for the correlation function

has to be assumed. We have assumed simple phenomenological models for the

correlation function:

CðtÞ ¼
X
n

s2
ne
�t=tn ð54Þ

Thus from (49) g(t) is given by a linear combination of Kubo functions:

gðtÞ ¼
X
n

s2
nt

2
nðt=tn þ e�t=tn � 1Þ ð55Þ
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Figure 7. A comparison of a peak shift experiment by means of (a) the stimulated or integrated

echo and (b) the heterodyned signal as discussed in the text. Note that the waiting time (T )

dependence of the peak shift is the same in the two measurements, although the total signal decays

faster in the integrated echo as a function of T.
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Another possible two-parameter fitting function that has a fast decay followed by

a slower decay [83] is

CðtÞ ¼ s2 coshðbtÞ= coshðatÞ; a > b ð56Þ

A common simplification of Eq. (54) is that one of the correlation times, say t1, is
very short and gives a motionally narrowed contribution of s2

1t1t ¼ gt to gðtÞ,
and one other exponential is included, leading to

gðtÞ ¼ gt þ s2t2cðt=tc þ e�t=tc � 1Þ ð57Þ

This tends to a Bloch dynamics picture for large correlation times tc. A static

inhomogeneous distribution of width ss can easily be added as s2
s t
2=2 where

ss >> 1=texp, with texp the experimental time scale. The plots on Fig. 5 show that

the peak in the S0ðt;ot; TÞj j versus t signal does not occur at t ¼ 0 for such

correlation functions and that it gradually shifts to zero as T increases in analogy

with what occurs in a 3PEPS [82] experiment. The 2D-IR experiment contains

all this information about the equilibrium dynamics, and separate experiments

such as the integrated three-pulse echo are an intrinsic part of it. In fact it is easy

to show that for a separate resonance S0ðt;ot; TÞj j at the point ot ¼ o10 is just the

t-integrated absolute time-dependent signal, whereas the three pulse integrated

echo, Eq. (31), is the t integrated absolute square of the signal. Therefore the two

signals are simply scaled on the t axis. As shown in Fig. 5, the magnitude of the

integrated echo signal decays more rapidly than the heterodyne signal, but the

peak shift dynamics are comparable in the two cases. The first application of

these types of correlation functions to vibrational spectra concerned the

asymmetric stretching mode of the azide ion [40]. In that example the gðtÞ
had the form of Eq. (55) with an additional constant term. Recently there was a

discussion of the applicability of separated time-scale models [84].

The response functions given above given here may be applicable to many

vibrational problems. However, in all the foregoing examples the instantaneous

frequencies along t and t are simply the resonant frequencies. This is just

another way of saying that the dynamical parameters are all real quantities, and

that phase is only accumulated by the mean resonance frequencies. There are

many circumstances when one would want to incorporate specific time-

dependent frequencies. One is when there is strong coupling between low- and

high-frequency modes [85]. In general the spectral density of the modes

interacting with the driven mode may have detailed structure corresponding to

a more discrete mode distribution, which will show up in the relaxation of

the system.
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Most vibrational excitations do not exhibit dynamic shifts having magnitudes

that are remotely comparable with the large Stokes shifts of electronic spectra.

However, if there is a change in the frequency with time as would occur if the

system were undergoing relaxation into lower levels having altered anharmo-

nicity, the signal could be processed as a time-dependent phase modeled from

knowledge of the kinetics of the relaxation. This situation is discussed again

later. Another example where there would be time-dependent frequencies is

when the driven molecule is undergoing energy transfer into modes of other

molecules having different frequencies. The small change of electric moment

that may occur as a result of vibrational excitation will also generate time-

dependent frequencies if the vibrational excited-state lifetime is sufficiently

long. In these cases there is a need to incorporate the effect of the driven mode

on the mode involved in the relaxation and hence generate a time-dependent

oscillator frequency. The Brownian oscillator model of nonlinear optical

spectroscopy [24] developed for electronic transitions has the correct form to

account for both spectral diffusion and phase evolution. The line-shape

parameter gðtÞ then would incorporate an additional pure imaginary term:

gbðtÞ ¼ gðtÞ þ iB

ðt
0

dt0 xð0Þxðt0Þh i ð58Þ

where the parameter B will be related to the anharmonic coupling between the

high- and low-frequency modes. This modeling predicts an instantaneous

frequency equal to the resonance frequency plus B oð0ÞoðtÞh i.

XXII. TRANSIENT GRATINGS

The four-wave mixing signals observed in 2D-IR echo experiments of the type

outlined here can be described alternatively in the language of grating diffraction

[29] using Bragg diffraction formulas instead of phase-matching conditions. This

way of visualizing the signals could be quite useful in certain examples, and

there is by now a vast literature on grating experiments on molecular systems

[86–94]. Two pulses arriving at different times impress onto the sample a grating,

which has a macroscopic spacing that depends on the geometry of the beams, and

a well-defined frequency grating, dependent on the pulse delay; the third pulse

can diffract from this grating into the signal direction to generate an echo that

carries information regarding the phase. Complementary phase information is

stored in the excited or ground vibrational states. This is important for vibrational

echo experiments because the population relaxation times can be extremely fast,

and gratings can be created during the standard evolution periods. The grating
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induced by the combined intensity of pulses �k1 and k2 could be impressed

either on the solvent or on the probed molecule. For example, in water or D2O the

infrared pulses heat the solvent slightly, causing a grating to develop from the

different absorption spectra (dichroism) of the solvent at different temperatures.

There are also differences in the index of refraction of pumped and unpumped

water. These gratings can be produced directly from the field interactions or

indirectly by there first being light absorption by the molecule of interest

followed by transfer of energy to the solvent. Also, the population of levels

of the probed molecule that are not directly driven by the fields have spatial

gratings impressed on them by the joint intensity of the first two pulses. These

gratings, which are due to populations of low-frequency modes of the molecule,

will diffract a pulse into the Bragg directions, but the spectral character of

the diffracted light depends on the correlations of the nonradiatively coupled

modes. When the grating is probed by resonant processes of the molecule, the

resonance frequencies will be impressed on the generated field because

these specific coherences are generated by the probing pulse. Characterizing

these signals is an important experimental challenge in each of the examples we

have studied. Fortunately, the thermal grating signal from D2O is relatively small

compared with the resonant signals from peptides so it does not present a

barrier to applications of 2D-IR in aqueous biological systems. However,

the thermal grating contributions grow in with increasing T and do persist

for very long periods compared with the lifetimes of vibrationally excited

states, and so they may ultimately dominate the signals when T becomes large

enough.

The heterodyned transient grating analysis proceeds in the same fashion as

just described. The pulses k1 and k2 create the grating from which k3 is scattered

into the direction �k1 þ k2 þ k3. In a conventional transient grating, t ¼ 0 so

that Sð0;ot; TÞj j gives the transient grating at any detected frequency. The real

part of the heterodyned signal can be examined directly; thus if the phases are

known, there is no need to take absolute values, which introduce cross terms

between the component responses oscillating at different resonance frequencies.

As t increases from zero, these gratings are still formed but they now store

frequency information from the first interaction that is lost on the time scale of

spectral diffusion.

XXIII. ULTRAFAST POPULATION DECAYS

In the case of vibrational responses the population relaxation times may be

dominating the coherence decays. In addition, it can be essential to incorporate

the multilevel nature of molecular vibrators into the response. The rate of

repopulation of the ground state is seldom equal to the decay of the fundamental

v ¼ 1 state, so there can be bottlenecks in the ground state recovery. Following
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the coherence time, t, the second pulse, k2, may place the system into a ground

v ¼ 0 population state. A two-level system with hn=kBT >> 1 would evolve as

exp½�T=T1� during the waiting time since the ground state recovers at the rate of

decay of the excited state. However, if there is a bottleneck in the relaxation, the

evolution of the system during the waiting time will depend on the lifetime of

the intermediate state: The evolution of the density matrix element r00 during the
time T must be obtained from the master equations for the populations of the

system. If the spontaneous exchange of populations and coherences is neglected,

the T dependence for the population propagator for any state should be written as

its survival probability that a system having population r00 at time 0 will retain

this population after time T , Pð00; 0 00; TÞj , where

Pð00; 0j00; TÞ ¼ e
�
Ð T

0
kðt0Þ dt0 ¼ n0ðTÞ

n0ð0Þ ð59Þ

where kðtÞ, defined as _PPð00; 0 00; TÞ=Pð00; 0 00; TÞjj , can be obtained by solving

kinetic equations for the populations. For example, for a system of three levels

v ¼ 0; v ¼ 1 and a third state, rj i, with level spacings larger than kBT the

response function must contain the T-dependent factor:

Pð00; 0j00; TÞ ¼ e
log

ðk10�kr0Þe�k1Tþk1r e�kr0T
k1�kr0

h i
ð60Þ

where kij is the rate constant for relaxation from state ij i to state jj i and k1 is the

inverse lifetime of the v ¼ 1 state. This example could be a common model in

vibrational dynamics where relaxation of the ground-state depletion occurs via a

state or states lying between the driven state and the ground state. The T

dependence of the density matrix elements of the excited state r11 also contains

terms that switch the population to other excited states; for the three-state model

they involve Pð11; 0 rr; TÞj , the probability that a system in state 1 at time zero

will be in state rj i at time t, where

Pð11; 0 rr; TÞ ¼ ðk1r=k1Þð1� e�k1TÞ�� ð61Þ

whereas Pð11; 0 11; TÞj is simply e�k1T ¼ e�T=T1 as was assumed in the response

function given in Eq. (31) and would be the only term needed in a two-level

system. If the relaxation switches the system to state rj i, it is rj i that interacts
with the third pulse k3. But it may or may not be possible for the pulse to cause

the transition rj i ! 0j i, so diagrams of the type R1;R2;R4; and R5 in Fig. 2 may

be absent in this pathway. On the other hand, the responses of type R3 and R6 are

always present because in all cases the mode r can form a combination band
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r þ 1j i with the originally excited vibrational state of the molecule. In this case

the frequency information from the coherence period becomes stored in the r

state population. In the 2D-IR spectrum a peak appears at ot ¼ orþ1;r instead of

o10. These considerations are not specific to the point t ¼ 0. One can also think

about the effects of these relaxation processes in terms of the frequency gratings

induced by the first two fields as discussed earlier. The phase of the grating along

the direction k2 � k1 induced by pulses k1 and k2 separated by t is simply o01t.
The population relaxation into lower-frequency vibrational states or the ground

state during the waiting time may preserve this phase. This means that the echo

signals from the scattering of k3 into the direction�k1 þ k2 þ k3 may continue to

appear long after the primary population state shown in the diagrams of Fig. 2

has gone. On the other hand the relaxation may cause a scrambling of the phase

information when the coupled mode distributions are uncorrelated. Intermediate

cases are readily dealt with using the dynamics approximations discussed

earlier.

It will be very common in vibrational 2D-IR that vibrational relaxation will

result in a frequency shift for the reasons given above. A very simple model for

the phase that develops as a system evolves between two frequencies as a result

of relaxation to modes with weaker anharmonicity is

fðtÞ ¼
ðt
0

oðt0Þ dt0 ¼ ðo1ð1� egtÞ þ o2ðgt þ e�gt � 1ÞÞ=g ð62Þ

in which the instantaneous frequency dfðtÞ=dt moves from o1 to o2 on the scale

of the overdamped relaxation time 1=g. It will not be clear a priori which of the

two frequencies will be larger, but if the mixed mode anharmonicity is smaller

than the diagonal anharmonicity, the FID frequency should increase with time as

the two-quantum transition frequency approaches that of the fundamental. These

relaxations give rise to peak shape changes in broad-band spectra because the

spectrum moves along the t axis as the time T increases.

XXIV. SPONTANEOUS INTERCHANGES OF COHERENCE

Additional features arise from spontaneous transfers of coherence particularly,

but not exclusively, when the population relaxations are very fast. The coherence

equations, which are effectively the Redfield relations without interchanges of

population with coherence, must be solved during each time interval and

probabilities worked out for the appearance of coherences other than those that

are driven by the excitation pulses. This procedure is particularly important for

vibrational systems, where there are often a significant number of transitions

having nearly the same frequency. For example, the coherence rvi;viþ1j oscillates
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at almost the same frequency, o0j, for all numbers of quanta, vi, of all of the

modes, i, when the anharmonic coupling is small. Furthermore, transitions

between these coherences can be induced by spontaneous population relaxation.

This implies that when a particular coherence is achieved by interaction of the

system with a pulse, say the third pulse of the sequence that always generates a

coherence, by the time the signal is detected it may have switched to a new

coherence oscillating at a different frequency. The frequencies cannot differ

significantly; otherwise the coherence transfer efficiency will vanish: they are

then termed nonsecular in second-order perturbation theory. But in 2D-IR the

frequency changes may be related to coupling or to anharmonicities, which are

generally small. By small we mean that the period of the difference frequency is

large or comparable with the time scale of the experiment. In this case each

Liouville pathway divides spontaneously into a number of others so that

the observed frequencies and/or the signal strengths become determined by the

coherence transfer kinetics. In general the probabilities Pðij; 0 kl; tÞj should be

found from Redfield or kinetic models and introduced formally into the system

evolution during each period. In the example below we consider the effect of

spontaneous coherence transfer in introducing cross peaks in to the 2D-IR

spectrum of a dipeptide considered as a system with two oscillators with nearby

frequencies coupled to a bath.

XXV. EXAMPLES OF SPONTANEOUS

COHERENCE TRANSFER

We consider an oscillator having two frequencies o1;o2 which could represent

the amide-I modes of a dipeptide. The difference frequency o1 � o2 is large

compared with the bandwidth of each oscillator but small compared with the

relaxation rates of the system. In other words the oscillation period 2p= o1 � o2j j
is comparable or larger than the relaxation times of the system. The situation is

depicted in Fig. 2. The diagram R1 describes the usual diagonal peak of the

2D-IR spectrum. Its appearance in the spectrum depends on the probability that

the created coherences persist throughout the t and t periods. However, if the

coherence r10ðtÞ can spontaneously interchange with the coherence r20, the
cross peaks in the spectrum will appear. The coupling peaks in the spectrum

then arise from the interactions of the oscillators with a bath having modes

p; q; . . . , because the coherences are exchanging in the equilibrium distribution

according to

_rr01 ¼ g01r01 þ R0102r02e
�io12t

_rr02 ¼ R0201r01e
io12t þ g02r02 ð63Þ
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where

R10;20 ¼ 2p=�h
X
p;q

Pp q1h jV p2j i p0h jV q0j idðep � eq þ e2 � e1Þ ð64Þ

is a second-order (Redfield) coupling element. The lowest-order interaction

potential V in Eq. (56) is bilinear in the molecular coordinates if the system is

nearly harmonic. In that event, V destroys an excitation of one mode and creates

the other one. Again we have assumed that coherences don’t evolve into

populations on the experimental time scale, although this latter assumption may

not always be adequate for vibrational states covering a wide frequency range. It

is also assumed that coherence transfers between conjugates vanish because they

are highly nonsecular, meaning that they oscillate at about 2o. The solutions to
the Eq. (63) allow the calculation of the probabilities Pðij; 0 kl; tÞj .

One further example is found in experiments associated with the combination

bands of two-mode systems. The coherences r1;1þ2 and r2;2þ2 (equivalently

r1;1þ1 and r2;2þ1) are strongly mixed when the population relaxation between

the two states is rapid. Their oscillation frequencies are both approximately o20

adjusted by the slowly varying diagonal or off-diagonal anharmonicity, which

for convenience are omitted in the following but are straightforward to

incorporate. In the equilibrium distribution these coherences are dephasing and

exchanging through the population relaxation g1!2, and they can be found by

solving the equations

_rr1;1þ2 ¼ g12r1;1þ2 þ g2!1r02
_rr2;2þ2 ¼ g1!2r1;1þ2 � g2þ2;2r2;2þ2 ð65Þ

where gij is the total dephasing rate of the level pair ij and g1!2 ¼
g2!1e

��ho21=KBT . A case of this type was evaluated by Wiersma and co-workers

many years ago [95]. For peptides, these types of transfers can be very efficient

because population relaxation times might dominate the relaxation in many

cases. The relaxation time of amide modes are extremely fast and involve

transfers to other internal modes of the molecules. There is also the strong

likelihood that the 2D-IR active frequencies are time-dependent, being subject to

coupling to lower-frequency modes having a range of anharmonic coupling

constants. In terms of the response functions, such effects may be modeled in the

frequency domain as spectral phase or in the time domain with time-dependent

factors analogous to those used to describe dynamic Stokes shifts.

XXVI. 2D-IR OF MORE COMPLEX STRUCTURES

The 2D-IR of more complex structures such as helices consisting of many amide

units require numerical simulations. Such systems are highly degenerate, and
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exciton models would seem to be appropriate to estimate their 2D-IR spectra.

There are a number of simple direct approaches to this problem, one of which we

shall discuss here. Mukamel and co-workers have introduced other approaches

that save considerable computational time by solving the exciton equations of

motion [44, 96–99].

The 2D-IR spectra Sð�ot;ot; TÞ again correspond to the rephasing

ðwith� otÞ and nonrephasing ðwithþ otÞ Liouville pathways shown in

Fig. 2, where now the lowercase k indices correspond to the whole set of N

one-exciton states while uppercase K indices correspond to the set of

NðN þ 1Þ=2 two-exciton states. Therefore the overtone and combinations are

labeled by K (K ¼ k þ k0). The use of the simulation results is made transparent

if the frequency-domain responses are used. The overall profile of a 2D-IR

spectrum is determined by contributions from the orientational prefactor of the

vibrators and the signal strength. The simulation based on the diagrams of Fig. 2

and the choice T ¼ 0 incorporates a dephasing and a fixed inhomogeneous

distribution. General expressions for 2D-IR spectra in this Bloch limit [cf.

Eq. (38)] can be written as

Sð�ot;otÞ ¼ 4
X
k;k0

~mm0k � âa~mm0k0 � b̂b~mmk0 � ĉc~mmk00 � d̂d
� �

�ið�ok0 � otÞ � gk0½ � iðok00 � otÞ þ gk00½ �

*

�2
X
k;k0;K

~mm0k � âa~mm0k0 � b̂b~mmk0K � ĉc~mmKk � d̂d
� �

�ið�ok0 � otÞ � gk0½ � iðoKk � otÞ þ gKk½ �

+
ð66Þ

Sðþot;otÞ ¼
X
k;k0

~mm0k0 � âa~mm0k � b̂b~mmk00 � ĉc~mmk0 � d̂d
� �

�iðok0 � otÞ � gk0½ � iðok0 � otÞ þ gk0½ �

*

þ
X
k;k0

~mmk0 � âa~mm0k � b̂b~mm0k0 � ĉc~mmk00 � d̂d
� �þX

K

~mmKk0 � âa~mm0k � b̂b~mmkK � ĉc~mmk00 � d̂d
� �

�iðok0 � otÞ � gk0� iðok00 � otÞ þ gk00½ �½

�2
X
k;k0;K

~mm0k0 � âa~mm0k � b̂b~mmkK � ĉc~mmKk0 � d̂d
� �

�iðok0 � otÞ � gk0½ � iðoKk0 � otÞ þ gKk0½ �

+
ð67Þ

where the numerators are the orientation factors, written for a given sequence of

laboratory-fixed pulse polarizations âa to d̂d and molecule frame transition dipole

directions. Each of the terms in (66) and (67) can readily be seen to be the Fourier

transform of one of the generated field functions given earlier in the time domain.

The gKk are the homogeneous widths of the individual transitions at oKk. An

overall ensemble average of Eqs. (66) and (67) over the resonance frequencies

can be carried out to simulate the inhomogeneous broadening and accompanying

localization as manifest in the Hamiltonians given below. The total 2D-IR

rephasing signal has two parts: One includes only the 0j i ! kj i transitions of
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pathways R1; R2; R4; and R5, and the other includes both 0j i ! kj i and
kj i ! Kj i transitions, diagrams R3 and R6. The first term contributes to the

positive peaks on the diagonal (when k0 ¼ k) and off the diagonal (when k0 6¼ k),

and the second term contributes to all the negative peaks. The total 2D-IR

nonrephasing signal in Eq. (60) has three parts: The first includes only the

0j i ! kj i and 0j i ! k
0�� � transitions (R7 and R8), which contribute to the positive

diagonal peaks; the second term contributes to the positive peaks on the diagonal

(when k0 ¼ k) and off the diagonal (when k0 6¼ k); the third term, R10 and R11,

contributes to all the negative peaks. Finally, as in 2D-NMR, the projected 2D-IR

spectra can be constructed by adding the rephasing and nonrephasing terms.

The one-exciton Hamiltonian for a particular polypeptide, n in a distribution

of structures, was chosen as M coupled harmonic oscillators:

Hð1Þn ¼
XM
m

�
em þ xðnÞm

�
mj i mh j þ

XM
m 6¼l

V
ðnÞ
ml mj i lh j ð68Þ

where em is the vibrational frequency of the relevant transition of the mth amide

unit; this frequency could be dependent on the location of the residue in the

structure or whether it is hydrogen-bonded to solvent or to other residues. The set

of site energy fluctuations
�
xðnÞm

�
for a given Hn chosen to represent the energy

disorder can be randomly selected from distribution functions, such as a

Gaussian or special distributions that account for correlated energy fluctuations.

The inter-site interaction terms V
ðnÞ
ml involve through-bond and through-space

interactions between the sites. Models for the fluctuations of the interaction

terms can also be included. The eigenstates of Hn for the nth polypeptide are

labeled by the index k with their corresponding eigenvalues E
ðnÞ
k , and ensemble

properties can be obtained by averaging over n.

The transitions between the 0j i ! kj i and kj i ! Kj i manifold of vibrational

states can be obtained by diagonalization of the two-quantum Hamiltonian in

the site basis:

Hð2Þn ¼
XM
l;m

�
em þ el þ xðnÞl þ xðnÞm � dlm�

�
lmj i lmh j

þ
XM
l;m

0 ffiffiffi
2
p

V
ðnÞ
lm lmj i mmh j þ mmj i lmh jð Þ þ

XM
l;m;p

0
V ðnÞmp lmj i lph j ð69Þ

where
P0

omits terms with equal indices. The site anharmonicity, �, only

appears in the site overtone states, signified here as mmj i. The transition dipole

moments ~mmkK between one-exciton state kj i and two-exciton states Kj i can be
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calculated by invoking a harmonic approximation:

~mmð mj i ! mlj iÞ ¼ k~mmðlÞ01 ð70Þ

where k ¼ 1ðm 6¼ lÞ or k ¼ ffiffiffi
2
p ðm ¼ lÞ. In the exciton picture, essentially all the

interband transitions become allowed as a result of the anharmonicity that induces

a redistribution of the transition dipole strengths amongst the excitonic states.

XXVII. COUPLING BETWEEN AMIDE UNITS

The shapes of the 2D-IR spectra provide signatures of the through space and

through bond interactions amongst the amide units. These same interactions

cause the vibrational excitations to jump from site to site and give rise to

the exciton-state distributions typical of helical and other secondary structures.

The lowest order of the through-space potential that exchanges excitations is the

bilinear part of the expansion in terms of the normal mode displacements of

the sites. When the spatial extent of the site normal mode is small compared with

the distance between sites undergoing coupling, the bilinear coupling is often

represented by a dipole–dipole interaction. The chemical bond network of the

helix represents an anisotropic polarizable dielectric medium that must influence

the interactions between transitions charge distributions on different units.

Immersing the coupled charge distributions in an anisotropic dielectric would

have the effect of reducing the interaction between them [100]. However, the

coupling of two charge distributions in vacuo but having an anisotropic dielectric

medium in the region between them will also modify their interactions. These

effects require further theoretical input; however, no exact approaches for

interactions at intermediate distances have yet been introduced [100–106]. This

is partly due to the lack of experimental measurements of specific, pairwise

interactions as opposed to ensemble dielectric properties.

To compute transition charge interactions the transition charge density can be

approximated by a distribution of charges and charge fluxes [2, 107–109]. In our

recent work [110] we have used Mulliken charges and transition charge fluxes

from ab initio density functional theory (DFT) calculations on model

compounds. The charges and fluxes are sensitive to basis set [111] so their

reliability is called into question, but the charges and charge fluxes we obtained

corresponded to a transition dipole magnitude of 0.38D having an orientation of


20	 to the C����O bond axis toward the nitrogen atom in the amide plane.

Various values of this angle between �19	 and 20	 have been obtained when

using different force fields even for the same model compounds. The issue of

charge distributions of vibrational modes that form highly degenerate sets of

almost independent motions would seem to present some interesting theoretical

questions with a significant practical impact.
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The 2D-IR spectrum is very sensitive to the couplings between the amide

groups of the helix. Obviously, through-space coupling is important, but so are

the through-bond interactions: couplings frequently referred to as ‘‘mechanical,’’

but better termed through-bond couplings, because they are not incorporated in

a multipole expansion of the intersite electrostatic potential. The overall

coupling energy for two adjacent amides, evaluated from ab initio DFT

calculations of a dipeptide Ac-Gly-NMe with its (f;j) dihedral angles at a-
helical values, yields two amide-I normal modes split by 15.0 cm-1. Equally

weighted linear combinations of these calculated modes produce two degenerate

localized modes. The coupling energy from the transition charge interaction

alone is þ10.2 cm�1 for the same configuration, so the nearest-neighbor

coupling is not simply a through-space effect. The computation of the transition

charge interactions—or, equivalently, at larger distances, the dipole–dipole

interactions—must give only approximate results because neither the dipoles or

charge distributions are known exactly and the effects of the polarizability of the

helix and solvent are unknown. However, the large transition dipoles of

the amide-I modes appear to be transferable from structure to structure and the

magnitudes and directions can be chosen empirically in order to match the

results of experimental splittings and anisotropies. Coupling constants chosen

by these methods enable the simulation of 2D-IR spectra using the procedures

outlined above.

An essential point about the 2D-IR of complex systems is that its goal is to

find 2D-IR signatures of anharmonicities and, hence, of conformations. The

experiment measures anharmonic coupling constants. The very existence of

these parameters implies that the modes are coupled, which means that

excitation of one of them is dependent on whether the other is excited. The

actual mode coupling may be obtained from the anharmonicity under certain

conditions. For example, if the exciton model is valid for both the one- and two-

quantum states the off-diagonal anharmonicities may be expressed in terms of

intermode coupling constants [11, 107]. In many applications of 2D-IR to

complex biological systems the precise value of the coupling constant may not

be so important to obtain as is the demonstration of coupling which would

imply proximity. This ‘‘top down’’ approach to peptide structure determination

is already very useful and hopefully will make contact with and be given a much

firmer basis by ‘‘bottom up’’ approaches involving detailed theories of anhar-

monicity and high-resolution experiments on peptides of ever-increasing size.

XXVIII. THE 2D-IR SPECTRA OF HELICES WITH

INHOMOGENEOUS BROADENING

The simulated rephasing 2D-IR spectra are shown in Fig. 8 for the a- and 310-

helices including inhomogeneous broadening. Obviously they are very different.
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These spectra now show the well-known elongation of the diagonal peaks,

including the positive diagonal peaks at ot ¼ o0k;ot ¼ ok0ð Þ due to the

0j i ! kj i coherences on both axes as in diagrams R1 and R2 of Fig. 2 and the

negative diagonal peaks at o0k;oKkð Þ from pathways R3. The negative peaks near

the diagonal at o0k;oKkð Þ are not so line-narrowed, because in the calculation the
fluctuations in oKk are uncorrelated with those in ok0. The remaining peaks at

o0k;ok00ð Þ from R1 and R2 and o0k;oKk0ð Þ from pathway R3 are also uncorrelated

and are very much scattered in the ot;otð Þ space. We can see that the overall

shape and intensity of the 2D-IR stick spectra is determined by the intrinsic

properties specified in the helix Hamiltonian, including the coupling energies,

anharmonicities, and correlations.

The 2D-IR spectra of simple molecules having a few resolvable modes

usually display the anharmonicity very clearly along the ot axis. However, in an

aggregate the number of two-particle states, which correspond approximately to

combination bands of modes on different sites, is roughly N times the number of

overtone states. All the two-quantum states are mixed by the diagonal

anharmonicity, which results in the anharmonic shift of any given level being

effectively diluted by roughly N. Nevertheless, the site anharmonicity is

still manifested in the 2D-IR spectra. The separation between the positive

diagonal peaks at o0k;ok0ð Þ and the negative diagonal peaks at ð�o0k;oKkÞ
increases toward the bottom of the helix exiton band. The overtone of the
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Figure 8. The calculated 2D-IR rephasing spectra of the amide-I mode for (a) a 20-unit

310-helix with dihedral angles of ff ¼ �50	;c ¼ �25	g and (b) an a-helix ff ¼ �58	;
c ¼ �47	g. The Gaussian random frequency fluctuation has s ¼ 12 cm�1 and g ¼ 5 cm�1. Some

coupling constants are þ1:0;�7:1;�0:4;�0:8; and �0:7 cm�1 for the 310-helix and þ7:5;�4:7;
�6:1;�0:5; and �0:7 cm�1 for the a-helix, corresponding to the coupling between the nearest

neighbors, next nearest neighbors, and so on. The two major components on the diagonal for the

310-helix are the A-mode centered at 
1633 cm�1 and the E-mode at 
1655 cm�1. The site

anharmonicity is 15 cm�1 (see Ref. 110).
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state at the bottom of the band resembles that of the local anharmonic state,

whereas the states at the higher-energy side of the exciton band appear more

harmonic. The two diagonal dashed lines in Fig. 8 represent the local

anharmonic shift.

XXIX. ISOTOPICALLY LABELED HELICES

As an approach to using 2D-IR for the examination of the structures and

dynamics of individual residues of extended structures, it is natural to turn to

isotopic substitution. The use of isotopic replacements has been essential in the

interpretation of vibrational spectra and their relationship to structure. Iso-

topomers have frequencies, force fields, and anharmonicities that are different

from one another. Of particular interest in applications of 2D-IR is the use of

isotopes to shift frequencies into regions where their couplings can be measured,

free from interference by other modes of the system. For the amide-I mode,

which is mainly a C����O stretching coordinate, the shifts by 13C����16O and
13C����18O substitution are large enough to displace the substituted amide group

frequencies beyond the range of the natural distribution of frequencies found in

most secondary structures.

Our strategy [112] is to insert both 13C����16O and 13C����18O labels into the

helix. Since their isotope shifts are different, a pair of isotopic peaks will be

created, separated by approximately 25 cm�1, and 2D-IR spectroscopic methods

can then be used to analyze the coupling between that specific pair of molecular

transitions. If 13C����16O is substituted for one of the residues of a 25-residue

helix, a 13C����16O diagonal peak will appear to the lower frequency of a much

stronger and broad 12C����16O diagonal peak, corresponding to the set of helical

exciton states of the remaining 24 residues. The couplings within the band and

between the 13C����16O label and the band states will also show up in the off-

diagonal regions of the 2D-IR spectrum. If we insert an additional 13C����18O

label into the helix, another vibrator will be shifted out of the exciton band and

appear at even lower frequency. The cross peaks between these two isotopic

allies labeled amide-I modes assist in the measurement of the vibrational

coupling between the two labeled vibrators. Because those labels can be

inserted into various positions of the helix chain, the 3D structure of the

molecule can be revealed, as reflected in the distances between the modes and

relative orientations of the pairs of transition dipoles. In addition, the population

relaxation times, the inhomogeneous distributions, and the correlation function

of the fluctuations of the vibrational frequencies at the various sites can be

measured as described above. However, the 2D-IR signals from different levels

interfere with one another. So we need to develop efficient simulation methods

to process and manipulate the data.
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Figure 8 shows a cartoon of the zero order and delocalized energy levels

involved in the 2D-IR experiments. The shaded regions represent the one- and

two-exciton bands of the tagged helix, and the isotopomer levels are located

below these bands. The band states and the trap states are mixed and shifted

from their zero-order positions by the interactions between the residues. The

two isotopomer levels below the one-exciton band are those seen in the linear-

IR spectrum. A typical Liouville pathway, R3, to the echo signal is depicted by

the dashed and solid arrows using the diagrammatic method of Ref. 79. The first

pulse creates a coherence with one of the isotopomer transitions and the second

two pulses transfer this vibrational coherence via the other isotope to a two

quantum coherence. In this example, k represents a state of one isotope and k0

that of the other. The free induction decay initiates from the combination band

of the isotopomers. The five upper levels are the two isotopomer overtones and

their combination band whose energies are again determined by their coupling

to each other and to the helix band states. In addition, the combination bands of

the isotopomers with the remaining band states must be considered. The levels

are identified by their zero-order energies, and the signal is formed by the sum

of contributions from many pathways involving all the one- and two-quantum

states arising from the isotopomers and their couplings to the band states as

implicit in the spectra given as Eqs. (62) and (63). The experimental and

calculated rephasing spectra are shown in Fig. 8.

The simulation of the isotopically substituted linear and 2D-IR spectra of

helices is based on one- and two-exciton Hamiltonians, Eq. (61), which describe

the frequencies and delocalization of amide-I modes of a helix with N ¼ 25

coupled harmonic oscillators and two isotpomers. The zero-order isotope shifts

were incorporated into the energy of the residues of the isotopomer modes em
and the naturally abundant 13C����16O modes also included by sampling

techniques. A comparison between the calculated and observed 2D-IR spectra

of these helices having 13C����16O and 13C����18O substitutions at the residues

indicated, is shown in Fig. 9. The general features of the spectra are captured by

the simulation, which provides a reasonable description of the results. For

example, it is possible to show that the vibrational frequency of a residue is

changed by placing a vibrational excitation on the other isotopomer. This off-

diagonal anharmonicity depends mainly on the direct coupling of the two

residues rather than on their coupling to the exciton band states of the helix.

These beautiful 2D-IR spectra [113] in the first column of Fig. 9 demonstrate all

the power of this method. The main helix bands are in the region of

(ot ¼ 1625;ot ¼ 1625). One can see the strong inhomogeneous broadening

through the elongation of these peaks along the diagonals. The couplings

between the isotopomer modes are evident as cross peaks in the 2D-IR.

Furthermore, the coupling between the isotopomers and the exciton band states

is evident in the spectra.
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Such measurements as this are enabling the determination of the magnitudes

and signs of the coupling between different amide units in helices. The 2D-IR

spectra proved that the amide vibrations of the a-helix are delocalized. Cross

peaks, originating from the isotopomer pairs, are in good agreement with a set

of couplings that were derived from the transition charge-transition charge

interactions. The magnitudes of the three largest coupling constants b12 (nearest
neighbor), b13, and b14 were found to be b12j j ¼ 8:5� 1:8; b13j j ¼ 5:4� 1:0;
and b14j j ¼ 6:6� 0:8 cm�1. The signs were independently indicated to be

b12 > 0 while b13 < 0 and b14 < 0. The signs follow expectations from the

dipole–dipole interaction between amide-I modes of a helix of this structure.

One can read the signs of these coupling constants directly from the relative

strengths of the two isotopomer transitions in the 2D-IR spectra shown in

Fig. 10.
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Figure 9. An overview of the energy levels of the helix containing two isotopically substituted

residues. The zero-order isotope shifts are da (for
13C����18O) and db (for

13C¼16O) while �a and �b

are their unperturbed diagonal anharmonicities. The shaded areas represent the helix one- and two-

exciton bands that become perturbed by the two isotopomer levels. (After Ref. 112.)
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XXX. CONCLUSIONS

There is a twofold purpose in the ongoing 3D-IR research on biological

structures. First, there is the goal of simplifying the broadband IR spectra of

complex systems by stretching them into multiple dimensions. This permits the

determination of underlying structure distributions, angular and distance

constraints, and the measurement of anharmonic contributions to the potential

surfaces of peptides and proteins. Second, there is the intrinsic time resolution of

the method, which can permit kinetic studies on essentially any time scale from

femtoseconds to minutes. These same methods are ideal for exploring the effects

of interaction between peptides and water. They enable determinations of the

frequency correlation functions for particular chemical bonds and correlations in

the solvent dynamics—for example, through hydrogen bonding, occurring at

different bonds. Multifrequency 3D-IR experiments will be a powerful
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Figure 10. The absolute magnitudes of the experimental 2D-IR spectra of a 25-residue a-helix
with carbonyl isotopic substitution at residue positions numbers [13C����16O, 13C����18O]. Simulated

spectra are shown to the right of each spectrum. (After Refs. 112 and 113.) See color insert.
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alternative to ultrashort pulse shaping and impulsive limit experiments. Through

the development of these methods, measurements of the correlations of

frequency distributions of different modes in different spatial regions of the

molecule have already been made, and the main parameters of the equilibrium

dynamics have been determined in a number of cases.

As a comment on the applications of 3D-IR, femtosecond pulse methods are

complementary to more conventional FTIR methods if the spectral lines are

sharp and resolvable in the sense that their separations are all large compared

with their linewidths. Double resonance experiments with narrower spectral

bandwidth infrared lasers could easily be set up that measure anharmonicities of

such systems to as high accuracy as would be required. In many sharp line

examples, where assignments in the two-quantum region are straightforward,

narrow-band spectroscopy is entirely adequate to obtain anharmonicities to high

accuracy. The grand challenge, as stated at the beginning of the summary, is to

unravel underlying structure from broad spectra involving overlapping

vibrational states in the one- and two-quantum regions and that are undergoing

fast dynamics. This is precisely the situation presented by the spectra of

vibrators in biological systems, in which useful features are obscured by the

complexity of the eigenstates, by the dynamical processes, and by the exchange

of excitations between modes. Nonlinear spectroscopy with designed ultrashort

pulses is a promising approach to see more sharply these underlying structures.

This summary is an introductory approach to a form of nonlinear

spectroscopy growing rapidly in its applications. The object was to describe

the principles behind the methodology rather than the experimental results,

which can be found in the references. However, it is worth mentioning again the

results for the helix. For an a-helix having as many residues as a small protein,

Figure 10 demonstrates the promise that applications combining linear and

nonlinear infrared spectroscopy hold for discovery in structural biology. In that

example the intermode potential was proven to be approximately a dipole–

dipole type. If such a potential had been assumed, the 2D-IR spectra could have

been used to measure distances to a fraction of an Angstrom across about one

helix turn. The promise is that measurements of this type will enable useful

measurements of distances and angles within a range of 
8–10 Å between

amide units that are either chemically connected or simply nearby to one another.

There were significant advances in the rapidly growing field of 2D IR since

this chapter has been written. A comprehensive update has not been provided.
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I. INTRODUCTION

The collection of solar energy by photosynthetic plants, algae, and bacteria and

the subsequent transfer of that energy to reaction centers is known as light

harvesting. The pigment–protein complexes responsible for light harvesting are

often collectively referred to as antennae [1–4]. Despite the variety of structures

and diversity of pigment cofactors used through the plant and bacterial

kingdoms, light harvesting is universally almost 100% efficient at low light

levels. A further ubiquitous feature is the implementation of protective

mechanisms to guard against damage that would result from singlet oxygen

sensitization. One obvious key to the efficacy of light-harvesting antennae, which

have large spatial cross sections for light absorption, is to ensure that the

elementary energy transfer processes that transport excitation to the reaction

center (RC) are ultrafast. For example, typically there are about 200

(bacterio)chlorophyll pigments associated with each reaction center. Then, if

energy simply hops randomly from pigment to pigment until reaching the RC

trap, we can estimate that on average ð0:72� 200 log 200þ 0:26� 200Þ ¼
363 hops are required prior to trapping. Given the fluorescence lifetime of

(bacterio)chlorophyll, this simple picture tells us that the average time for each

hop must be < tflu=ð9� 363Þ � 300 fs in order to achieve a quantum yield of

excitation trapping greater than 90%. Thus over the past years there has been a

happy conjunction between femtosecond spectroscopy and high-resolution

structural models [2, 5, 6] which has enabled some systems—in particular the

peripheral light harvesting antenna (LH2) [7–11] and the RC of purple bacteria

[12–17] and Photosystem I of cyanobacteria and green plants [6] to be modeled

at a reasonable level of sophistication. Likewise, the availability of detailed
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structural and dynamical information has spurred the development of improved

methods for calculating molecular interactions and energy transfer mechanisms.

To survey in detail the current state of knowledge of photosynthetic light

harvesting would require an encyclopedic article. In this article we focus on the

general principles that have been learned from studies of the purple bacterial

and cyanobacterial systems. We discuss briefly the implications for green plant

photosystems. We conclude with a discussion of questions that highlight areas

that we feel are currently in need of investigation or resolution.

II. DYNAMICSOF ENERGYTRANSFER IN PHOTOSYNTHESIS

A. Structure and Dynamics

Light-harvesting pigment–protein complexes are employed by photosynthetic

organisms to increase the spatial and spectral cross section per RC for collection

of solar energy. In Fig. 1, we show structures of the peripheral light-harvesting

complex LH2 of Rps. acidophila determined from X-ray crystallography [18]. In

Fig. 2 we show the structure of the core light-harvesting complex LH1 of

Rps. rubrum measured by low-resolution electron diffraction and a model based

on the LH2 structure [19]. Recent studies have shown that LH1 may not always

form a closed ring and may exist in a dimeric form. Figure 3 captures the layout

of the antenna in purple bacteria, but should not be taken as a detailed model of

the morphology of the entire photosynthetic unit. When grown under low light

conditions the entire system contains about 250 bacteriochlorophyll (BChl)

molecules RC. A stoichiometry of one LH1 per RC has been noted, the

remaining BChl being contained in multiple LH2 complexes.

The structure of LH2 is known to 2.5 Å and 2.4 Å for Rps. Acidophila [18, 20]

and Rs. molischianum [21, 22], respectively. The Rps. acidophila structure is

based on subunits consisting of two trans-membrane a-helices (labeled a and b),
which are arranged in a highly symmetric ring motif (C9 symmetry in Rps.

acidophila and C8 symmetry in Rps. molischianum). This antenna complex

contains a number of bound cofactors: two distinct rings of BChl a pigments,

labeled B800 and B850, and at least one carotenoid per subunit, which makes a

close approach to chromophores from each of these rings. In Rps. acidophila the

B800 ring contains nine BChl a molecules while the B850 ring contains 18

BChl a. In Rps. molischianum the symmetry is eightfold, so the number of

BChls is correspondingly reduced to 24 in total. LH1 is believed to be very

similar in structure to LH2, but lacks an equivalent of the B800 ring, containing

of single ring of 32 BChl a molecules known as B870 or B875 [23].

The overall timescale for trapping an excitation in the reaction center (and

thereby initiating charge separation from the special pair) is 50–60 ps. The

slowest step in this process is the final step from LH1 to the RC which takes
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about 35 ps [24–26]. Transfer between LH2 complexes and from LH2 to LH1

takes 1.5–5 ps [27–29] and the transfers within each complex are much faster.

For example, the transfer time between B800 and B850 in LH2 is about 700 fs at

room temperature, [10, 30–35] while transfer between B800 molecules occurs

on an average time scale of about 500 fs [35–38]. The dynamical time scale

associated with the excited states in B850 and B875 is around 100 fs [39, 40],

although the close proximity and strong electronic coupling (vide infra) of the

Figure 1. Illustration of the structure of the peripheral light-harvesting complex LH2 of the

purple bacterium Rps. acidiphila strain 10050 [18]. The top view with a-helices represented as

ribbons is shown at the top of the figure. The same view, but without the protein, leaving just the

bacteriochlorophyll and carotenoid pigments, is shown at the lower left. On the lower right, this

structure is shown tilted on its side, revealing the upper B850 ring of 18 Bchl pigments, the lower

B800 ring of 9 Bchl pigments, and the carotenoids that weave their way between these rings. See

color insert.
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monomers comprising B850 and B875 make it far from clear that this process

can be thought of as simple ‘‘hopping’’ of excitation between sites. Before

attempting to provide a detailed picture of the energy transfer with B850 and

B875, we need to understand the complex interplay between electronic

coupling, electron–phonon coupling, and disorder.

The carotenoid molecules play dual roles as both light-harvesting and

photoprotective pigments. We will briefly address the photoprotective role in

Section VII.B. The overall efficiency of light harvesting from carotenoids (Cars)

varies substantially from species to species [39–42]. In Rb. sphaeroides more

than 95% of the photons absorbed by the Cars are transferred as excitation

energy to the RC, while in strain 7050 of Rps. acidophila the overall efficiency

is about 70%. Two electronic states of the Cars are involved in the energy

transfer to the BChls. Energy transfer from the S2 state of the Car is extremely

rapid (50–100 fs) in all species studied so far, whereas the Car S1 to BChl

energy transfer time scale varies from 
3 ps in Rb. sphaeroides to >25 ps and

occurring with negligible quantum yield in Rps. acidophila.

Energy transfer processes have also been observed within the RC of purple

bacteria [43–54]. The RC has 10 cofactors bound in a twofold symmetric

arrangement: two closely spaced BChl a molecules (PL and PM) that comprise

Figure 2. An illustration of the proposed structure of the LH1 ring of purple bacteria based on

the LH2 structure [19, 22]. The protein has been removed from part of the ring to expose the B875

Bchl pigments and the carotenoids.
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the special pair or primary electron donor, two monomeric ‘‘accessory’’ BChl a

molecules (BL and BM), two bacteriopheophytins (HL and HM), two

ubiquinones (QA and QB), a carotenoid, and a nonheme iron as shown in

Fig. 4 [55–58]. As early as 1972, Slooten [59] proposed that electronic energy

transfer occurs from H and B to P in the Rb. sphaeroides RC. In the mid-1980s,

ultrafast spectroscopy demonstrated that B to P energy transfer occurred in

about 100 fs at both 300 and 10 K [43, 44]. More recently, it was shown that the

appearance of P following excitation of H was 50% slower, than when B was

excited directly, suggesting that B is a real intermediate in the H to P transfer

process.

Many of the time scales described above have proven difficult, or impossible

to obtain, using the standard Förster model [3, 60–64] of resonance energy

transfer (coupling between point dipoles in donor and acceptor, overlap of

measured donor emission spectrum with acceptor absorption spectrum, separation

distance and mutual orientations specifiable by a simple parameter). Examples

of processes where conventional calculations do not agree well with experiment

are Car S1 to BChl Qy (the calculated rate would be zero!), B800 to B850 in

LH2, and B to P in the RC, where calculated rates are always significantly

Figure 3. A schematic picture of the light-harvesting funnel in purple bacteria (left) and an

illustration of how this corresponds to the layout of pigment–protein complexes (right). The

approximate time scales of the various energy transfer processes are indicated.
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slower than their measured values. In addition, the temperature dependence of

these later two processes is strikingly weak and not predicted by simple

calculations. Such discrepancies between theory and experiment have led to

much speculation that new mechanisms are required to understand photosyn-

thetic energy transfer. In this review, we will attempt to show that each of

‘‘troublesome’’ processes described above can be explained quantitatively

by generalizing the conventional Förster description to include the effects of

(a) multiple donors and acceptors, possibly with strong coupling between

members of each group, (b) closely spaced donors and acceptors, and (c)

energetic disorder among the donors and acceptors. We find that very weak or

even normally forbidden transitions in a molecular aggregate may participate in

efficient energy transfer via the Coulombic coupling mechanism, rather than by

orbital overlap (e.g., the exchange or Dexter mechanism) [4] as it is often

supposed. The remarkable efficiency of energy transfer in photosynthetic

pigment–protein complexes of both plants and bacteria seems likely to be

understandable in this context. A primary implication of our work is that optical

spectroscopy is limited as a tool to determine electronic couplings in molecular

aggregates. This means that, at the present time, general design principles for

Figure 4. Left: Structural model of the photosynthetic reaction center of Rps. viridis from

crystal structure data. Right: Arrangement of the special pair (dark gray), accessory bacterio-

chlorophyll (black), and the bacteriopheophytin (light gray) pigments.
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light-harvesting structures can only be revealed by a combination of experiment

and theory.

More complex dynamics underlie the energy transfer processes that have

been observed within the B850 and B875 rings of LH2 and LH1. In this case, an

excitonic theory is required in order to relate linear and nonlinear spectroscopic

observables to the underlying dynamics. Finally, in the case of Photosystem I

from a cyanobacterium, both weak and strong coupling cases exist within the set

of 96 nonequivalent Chls comprising the core antenna/RC complex.

B. Spectra of Purple Bacterial LH Complexes

Before turning to a description of electronic coupling in the LH complexes of

purple bacteria, it is appropriate to review briefly the mechanisms used in the

natural system to shift the absorption frequencies of the various components,

such as B800, B850, and so on (Fig. 5).

In relative isolation the BChl-a molecules absorb at 772 nm (the Qy band),

575 nm (the Qx band), and 360 and 390 nm (the B bands). The carotenoids have

a strong S0 ! S2 absorption in the region 450–550 nm, while their S0 ! S1
transition is dipole-forbidden and it is not found in the one-photon absorption

spectrum.

However, each of these states plays a role in gathering light. The operation of

the light-harvesting antenna of purple bacteria is based on an energy funnel to

focus excitation energy to the reaction center. There are two obvious ways to

construct such a funnel: (1) Select different chemical species that absorb at the

Figure 5. The absorption spectra of LH2 of Rps. acidophila (solid line) and LH1 (dash–dotted

line).
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required wavelength or (2) use exciton (and solvation) interactions to

progressively red shift the spectra of the same chemical species. In purple

bacteria, nature has adopted the second strategy for the BChl components: They

use both interactions between the pigments (‘‘excitonic coupling’’) and

interactions between individual pigments, along with the protein environment

to modify the spectroscopy of antenna components. In LH2, the BChl a

absorption bands are located at 800 nm (B800) and at 850 nm (B850), while in

LH1 the BChl a absorption has a maximum at 875 nm (B875). The B800

molecules interact weakly with each other and with the B850 molecules. In

contrast, the B850 and B875 molecules are fairly strongly coupled amongst

themselves to produce at least a significant portion of the red shift. However, the

role of the protein is also evident here, as demonstrated by Fowler et al., who

showed that site specific mutants of LH2 that removed specific hydrogen-bond

interactions between the protein and the B850 chromophores, produced

significant blue shifts of the absorption band [65–67]. One of the most

intriguing questions in the study of light harvesting is whether there is an

intrinsic advantage to the excitonic coupling strategy, which necessarily brings

with it some degree of delocalization of the electronic states. In many other

systems, chemical modification is also used to expand spectral coverage. For

example, the binding of both chlorophyll a and chlorophyll b in LHC II [2].

The carotenoid constituents of the antenna systems also expand the spectral

coverage of the antenna, although the efficiency of carotenoid to chlorophyll

transfer varies significantly between species. The strongly allowed S0–S2
transition of carotenoid in the 450- to 550-nm spectral region significantly

enhances absorption in this wavelength range and can transfer excitation to

BChl or Chl molecules via the conventional Coulombic coupling mechanism.

However, upper excited states are very short lived and rapid internal conversion

to the S1 state will occur in parallel with the energy transfer. The efficiency of S1
to BChl or Chl energy transfer seems to vary significantly from complex to

complex and species to species.

In addition to the systematic variations in transition frequencies of specific

classes of pigments such as B800 or B850, there is significant disorder in the

excitation energies from site to site and from complex to complex [10, 68–71].

This distribution of monomer energies can arise from (a) side-chain disorder in

the protein, (b) deformation of the BChl macrocycle, (c) binding of ions, (d)

ionizable side chains being near their pKa values and thus existing in both

neutral and ionized forms, (d) local or global distortions of the structure, and (e)

the limited statistical sampling of full distribution of site energies possible in a

complex of, for example, 9 or 18 monomer units. In addition to these types of

disorder (generally referred to as diagonal disorder) in the excitonically coupled

systems, variations in the electronic coupling between monomers (off-diagonal

disorder) can also occur [72].
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The fundamental question arising from the structure–function–dynamics

relationships within a light-harvesting antenna is simply stated: What is the

mechanism by which excitation moves in the antenna, and why is the overall

process so wonderfully efficient? In this review we explore our knowledge of

the ingredients required to formulate an answer to this question. We will

describe our present understanding of the electronic interactions between the

pigments, the line-broadening processes arising from electron–phonon coupling

and disorder, and the implications of multiple, closely spaced chromophores for

the dynamics. Finally, we will attempt to describe how the interplay between all

these phenomena determines the dynamics of light-harvesting and funneling.

III. ELECTRONIC COUPLING AMONG

THE CHROMOPHORES

A. Preface

When Förster [60] initially formulated his theory of energy transfer via the

inductive resonance mechanism, he considered the interaction of single pairs of

chromophores spaced by distances that are large compared to the size of the

molecules. The situation in light-harvesting complexes is often rather different:

Molecules are spaced by distances that are small compared to the overall

molecular dimensions, making the definition of donor–acceptor separation and

relative orientation ambiguous at best. In addition, there are often several or even

many donor and acceptor molecules in close proximity, and these interactions

may perturb the monomer spectral line-shape significantly. As we will describe

in detail below, if any of the electronic couplings are strong enough to perturb

significantly the spectral line shape or radiative rates, the standard Förster

formulation of energy transfer becomes inadequate. An important example of

this effect is the strong interaction between the two BChls of the special pair of

the purple bacterial reaction center, which alter and shift the absorption spectrum

dramatically compared to that of the monomer.

When the energy transfer involves one forbidden transition, it has been

conventional to invoke mechanisms of electronic interaction other than

Coulombic coupling, such as electron exchange via orbital overlap as originally

formulated by Dexter [4]. Here an important general issue arises which relates

to the length scale on which the molecular transition density is characterized by

optical spectroscopy. In essence, the photon characterizes the molecular

transition density in the far field, thus averaging over the entire molecular

dimension. In the confined geometry of molecular aggregates, such as light-

harvesting complexes, neighboring molecules may sense the shape of each

other’s transition density on a much finer scale [73]. It is clear that this effect

will produce quantitative errors if the transition densities are approximated as
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point dipoles, but it is perhaps less obvious that qualitative mechanistic errors

can arise if forbidden transitions are assumed to be incapable of Coulombic

coupling to allowed transitions of molecules separated by distances smaller than

the overall donor molecular dimensions. This type of symmetry breaking is

important in, for example, the S1 to Qy transitions of carotenoids to BChls, and

we will describe it in detail below. Both qualitative and quantitative aspects of

this issue can be handled by explicitly calculating the Coulombic interaction

between the transition densities of donor and acceptor, but now these must be

obtained from electronic structure calculations, thus breaking the reliance on

only experimentally determined quantities, which is the great strength of the

Förster theory.

Our ab initio quantum chemical study of electronic interactions in LH2 [74]

provides a starting point for the discussion. The calculated highest occupied

molecular orbital (HOMO) for the intrapolypeptide BChl dimer in LH2 is

shown in Fig. 6. It was anticipated that there would be significant orbital overlap

between these two BChls, and this may assist delocalization of energy about the

B850 ring. The calculated overlap density between the monomer BChl HOMOs

is shown also in Fig. 6. The corresponding overlap integral was determined to

be 1:72� 10�3 (HF/3-21G*). Is overlap of this magnitude between two BChls

significant for calculations of EET? According to a simple analysis based on the

calculated overlap, it is not, unless the closest approach of the BChls is 3 Å or

less. Note that there is only overlap between one of the four pyrrole rings of

each macrocycle. If the BChl molecules were to be arranged in a more

sandwich-like geometry, rather than being offset as in LH2, this overlap would

increase owing to more orbital density being able to overlap. We can model this

only by considering the distance-dependence of the overlap with respect to the

spatial distribution of orbital density on each molecule. This is different from

pushing the dimer together, which would increase the V short coupling according

to a simple exponential distance-dependence. Doubling the overlap would

quadruple Vshort, consequently having a significant effect of the EET rate at

larger separations.

We have quantified the orbital overlap-dependent coupling for the BChl

dimers in the B850 ring of LH2 [74]. Nonetheless, at closest approach

separations of 4 Å or more, it seems reasonable to ignore the V short contribution

to the coupling. However, we have found that at typical interchromophore

separations identified in light-harvesting complexes, the dipole approximation is

unreliable for quantifying the Coulombic interactions. The dipole approxima-

tion completely ignores the shape of the interacting molecules—which turns out

to be important in many cases. To overcome this barrier, we have developed the

transition density cube method for calculating Coulombic interactions between

electronic transitions, as we describe below. In addition, in multichromophoric

systems, use of the dipole approximation can mask the way that energy transfer
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dynamics are dictated by the arrangement of molecules in an aggregate. This

latter point is rather subtle, and we will describe it further by way of the theory

and examples in Section VI.

B. The Transition Density Cube Method

It is straightforward to show [75] that the Coulombic interaction that promotes

excitation transfer between two two-level systems is given by the integral

VCoul ¼ 2

ð
dt d0ð1Það2Þr�112 dð1Þa0ð2Þ

� 2ðd0d j aa0Þ
ð1Þ

Figure 6. Top: A HOMO calculated for a B850 dimer of LH2 (HF/3-21G*). Bottom: The

overlap density between the two Bchl chromophores is plotted.
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where d (d0) is the HOMO (LUMO) of the donor, etc. d and a are doubly

occupied in the ground state, while the excited state is represented as a single

excitation from the ground state.

We have found it useful to express this Coulombic interaction in terms of

transition densities (TDs) [73]. It has thereby been possible to calculate quite

accurately, and with moderate computational effort, Coulombic interactions and

energy transfer dynamics in rather complex light-harvesting assemblies.

Furthermore, we have thus been able to gather several new physical insights

into the mechanism of light harvesting. For example, we will describe here the

physical, as well as practical, meaning of the dipole approximation with respect

to energy transfer. We will show how and why the shape of molecules is just as

important as their separation and orientation. Finally, we will show that the

degree to which a transition is allowed or forbidden does not necessarily have

direct implications for light-harvesting efficiency.

In general, the Coulombic interaction can be written in terms of the two-

particle spinless transition density �KL;RS that connects the states K and L on the

donor (D) and connects the states R and S on the acceptor (A):

VCoul ¼ e2

4pe0

ð
�KL;RSðr1; r2Þ

r1 � r2j j dr1dr2 ð2Þ

Usually two-particle densities can only be written in terms of one-particle

densities for single-configuration wavefunctions. However, because electron 1

and states K and L are localized on molecule D, whereas electron 2 and states R

and S are localized on A, it is possible to factorize �KL;RSðr1; r2Þ when

nonorthogonality effects resulting from interpenetration of donor and acceptor

electron densities are negligible. Thus we obtain:

VCoul ¼ e2

4pe0

ð
PD
KLðr1ÞPA

RSðr2Þ
r1 � r2j j dr1dr2 ð3Þ

The single-particle transition density matrix connecting states K and L of

molecule D is defined as usual [76]:

PM
KLðr1Þ¼ N

ð
�K x1; x2; . . . ; xNð Þ��L x01; x02; . . . ; x0Nð Þdx2 . . . dxNdx02 . . . dx0Nds1

ð4Þ

where N is a normalization constant, xi are the spatial and spin coordinates of

electron i, and s1 is the spin of electron 1.

Owing to the orthogonality between states K and L, PKLðr1Þ integrates to

zero. Physically, this is because no net charge is gained or lost during an
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electronic transition. A plot of the transition density, as shown in Fig. 7, reveals

the manner in which the electron density of molecule D is polarized by

interaction with light, in such a way as to induce a transition from L to K.

Since the wavelength of light is typically much larger than the physical size

of a molecule, in optical spectroscopy it is usual to condense the information in

the transition density of an allowed transition to its dipole moment,

mLKa ¼
ð
ðraÞ1PM

KLðr1Þ dr1; ð5Þ

where the index a denotes the x, y, and z components of the vector. It is this

quantity mLKa that determines the strength of electric dipole-allowed electronic

transitions between states L and K according to the dipole approximation.

Figure 7. Transition densities calculated for a Bchl molecule and a carotenoid. Density

elements, containing charge qi, qj, and so on, are depicted together with their corresponding

separation rij. Summing the Coulombic interaction between all such elements gives the total

Coulombic interaction, which, according to the TDC method, promotes energy transfer. See color

insert.
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Similarly, if we assume that the donor and acceptor electronic transitions are

electric dipole-allowed, and the condition jr1 � r2j � the spatial extent of D

and A is satisfied, then Eq. (3) can be written in terms of transition multipoles

(dipole, quadrupole, etc.) and a corresponding power series in 1=R, where R is

the center-to-center separation of the molecules [4, 75, 77]. Förster was the first

to propose a connection between electronic spectra and the electronic coupling

based on these arguments, so this is the approximation normally used in

conjunction with Förster theory [60]. We note that this dipole approximation in

the Coulombic coupling is a different kind of dipole approximation than that

relating to the interaction between a molecule and light [77–80].

When the donor and acceptor molecules are nearby to each other, as is

typically the arrangement in photosynthetic light-harvesting antenna complexes,

the shape of the transition densities is very important in determining the electronic

coupling. In that case, the correct physical picture is lost when the shape

information in the transition density is averaged away by applying the dipole

approximation. This idea was recognized by London in connection to van der

Waals forces [81]:

. . . it is clear that even the dipole terms of this power series must turn out to be

quite inappropriate if one has to consider oscillators of some length extended

over a large region of a chain molecule. Another molecule would interact chiefly

with one end of such a long virtual oscillator, and this situation would be

completely distorted if one were to represent the oscillator by a decomposition

into point-form multipoles, all located in the center of the molecule. It would

obviously be much more appropriate in this case to represent each oscillator by

several distinct poles, ‘‘monopoles,’’ of different sign, suitably located in the

molecule, thus directly taking account of the actual extension of the oscillator in

question.

This idea is illustrated in Fig. 7, where we show the calculated (CI-singles/

3-21G*) transition densities for the BChl-a Qy transition and the Car (rhodopin

glucoside) S2 transition. The Coulombic interaction between these transition

densities is the sum over all the interactions between charge ‘‘cells’’ on each

transition density matrix, qiqj=rij. From inspection of this figure, it is evident

that the topology of the transition densities cannot be ignored—for instance, rij
is significantly different from rik. The only time that it is useful to calculate the

interaction from mulipole moments of the transition densities and one average

donor–acceptor separation is when the two molecules are sufficiently far apart

that all the rij are similar. We suggest that a useful rule of thumb is to check

whether or not the value of R is insensitive to the exact positions on the donor

and acceptor molecules that are deemed to be the molecular centers. This will

indicate that a multipolar expansion of the interaction potential provides a

useful route to evaluation of Eq. (3).
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We conclude that when the donor and acceptor molecules are closely located

relative to molecular dimensions, the analogy between synergistic absorption

and emission processes and the VCoul interaction breaks down. We now need to

think about VCoul in terms of ‘‘local interactions’’ between the donor and

acceptor transition densities because there is a distinct and important difference

between (a) averaging over wavefunctions and then coupling them [Eq. (6a)]

and (b) averaging over the coupling between wavefunctions [Eq. (6b)].

P
i qi~rri

�� �� P
j qj~rrj

��� ���
R3
DA

ð6aÞ
X
i;j

qiqj

rij
ð6bÞ

Here we consider discrete charges qi at position ri on donor molecule D and

charges qj at position rj on acceptor A. rij ¼ ri � rj and RDA is the center-to-

center separation between D and A, and kDA is the orientation factor between

transition moments ~mmD ¼
P

i qiri and ~mmA ¼
P

j qjrj.

The key is that a single-center expansion of the transition density, implicit in

a multipolar expansion of the Coulombic interaction potential, cannot capture

the complicated spatial patterns of phased electron density that arise because

molecules have shape. The reason is obvious if one considers that, according to

the LCAO method, the basis set for calculating molecular wavefunctions is the

set of atomic orbital basis functions localized at atomic centers; a set of basis

functions localized at one point in a molecule is unsatisfactory.

To execute Eq. (3) numerically, we have used ab initio quantum chemical

methods to calculate transition density cubes (TDCs) for the donor and acceptor

from CI-singles or time-dependent density functional theory wavefunctions. A

TDC is simply a discretized transition density,

~PPM
KLðx; y; zÞ ¼ Vd

ðzþdz
z

ðyþdy
y

ðxþdx
x

PM
KL r1ð Þ ð7Þ

where the da denote the grid size of the transition density cube and Vd ¼ dxdydz is
the element volume. In the TDC method the donor and acceptor transition

densities are each represented in a 3D grid. Charge density in each cell of the

donor qi is coupled with that in each cell of the acceptor qj via,

VCoul ffi
X
i;j;k

X
l;m;n

~PPD
KLði; j; kÞ~PPA

RSðl;m; nÞ
4pe0 rijk � rlmn

�� �� : ð8Þ
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Typically we use TDCs consisting of
106 elements, each of volume
0.23 bohr3.
The shape of a ‘‘cube’’ is chosen to contain best the shape of the molecule (it

does not have to be a cube). Using Eq. (8), the donor–acceptor interaction

topology is accounted for to a fine level of detail.

The accuracy of Eq. (8) is limited by the number of elements in the TDC, the

size of each element, and the accuracy of the quantum chemical wavefunctions.

A consequence of the first two factors is the problem of residual charge. That is,

the sum of the charge over all cube elements is not zero, as it should be, but can

be 
0.01 e. This residual charge can significantly affect the calculated coupling

because, reverting to the language of the multipole expansion, it provides

spurious charge–charge and charge–dipole interactions between the transition

densities. To compensate for this residual charge qR in a TDC with N elements,

we subtract a quantity qR=N from each element in the TDC, such that the

residual charge is reduced to 
10�14 e. Upon evaluating Eq. (8), one must also

remove singularities that arise when cube elements of the donor TDC overlap

with those of the acceptor TDC. We simply ignore these contributions to VCoul,

which is justified because the overlap density (i.e., the significance of

overlapping transition density) must be small anyway when VCoul dominates

the electronic coupling.

A challenge for calculating the magnitude of electronic couplings accurately

via the TDC method is to determine the ground- and excited-state

wavefunctions as precisely as possible. However, this is generally an easier

task than might be anticipated, for the reason that the most important result of

the calculation is the shape of the TD. The shape of the TD is, of course,

constrained by the shape of the molecule, and thus is easily obtained. Electronic

couplings are overestimated by CI-singles TDCs, for the same reasons that

transition dipole moments—for example, mcalc from Eq. (5)—are overestimated.

However, because the shape of the TD is well-calculated, it is possible to scale

uniformly the TDC in such a way that Eq. (8) gives the experimental result for

the transition dipole moment mexp. We do this by multiplying each element in

the cube by mexp=mcalc (or equivalently post-processing the calculated coupling).

This method does not work for forbidden transitions, of course. If TDs are

calculated using time-dependent density functional theory or semiempirical

methods like INDO [82], no scaling is necessary [83].

If wavefunctions are calculated using semiempirical methods that assume

zero overlap between atomic orbitals (AOs) on different atomic centers, then a

Mulliken population analysis [84, 85] can be applied to the calculated TD to

yield transition monopoles distributed over each atomic center. Such an

approach has proven to be effective [82] an advantage being that the interaction

between distributed monopoles can be computed considerably faster then that

between TDCs. At the same time, the basic topology of the donor–acceptor
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interaction is preserved. Here we describe this method in more detail for the

more general case wherein differential overlap is preserved.

A general TD calculated in terms of a CI expansion of molecular orbitals

(MOs) may be transformed to an AO basis PKL
ij in terms of fwiðrÞg such that

[76],

PKLðrÞ ¼
X
i; j

PKL
ij wiðrÞwjðrÞ: ð9Þ

The TD can then be analyzed in terms of the normalized orbital and overlap

densities

diðrÞ ¼ wiðrÞð Þ2; dijðrÞ ¼
wiðrÞwjðrÞ

Sij
; ð10Þ

where Sij ¼ wjjwi
� �

and the associated transition charges are

qi ¼ PKL
ii ; qij ¼ 2SijP

KL
ij ; ð11Þ

leading to

PKLðrÞ ¼
X
i

qidiðrÞ þ
X
i< j

qijdijðrÞ: ð12Þ

By summing over the AOs localized at each atomic center and integrating

these over r, we can reduce Eq. (12) to a distribution of TD monopoles located

at each atomic center, and a distribution of overlap-densities from the second

term on the right-hand side of Eq. (12). When the overlap densities arise from

overlap of AOs on different atomic centers, the resulting TD monopole can

arbitrarily be placed halfway between the two atomic centers. More

sophisticated reductions of Eq. (12) represent each TD monopole as a multipole

expansion about the atomic center.

C. Coulombic Couplings in LH2

The availability of high-resolution structural data on various light-harvesting

complexes has made it possible to relate spectroscopic observations of dynamics

and their time scales to a detailed physical picture. An important link connecting

the structural model to the dynamical information is the electronic Hamiltonian,

containing the site transition energies for each chromophore and the electronic

couplings between the chromophores. This information can be obtained from

quantumchemical calculations, as hasbeen describedpreviously [9, 11, 13, 29, 74].
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In Fig. 8 we depict part of the structure of LH2 from Rps. acidophila (strain

10050) showing four Bchls from the B850 ring and two from the B800 ring

[18]. The associated rhodopin glucoside carotenoid threads its way past each of

these rings. It is known that energy is transferred efficiently from the dipole-

allowed S2 state of the carotenoid to the Bchls—primarily via their Qx states

[21, 23, 25, 73]. Here we summarize electronic couplings we have calculated

between the S2 state of the rhodopin glucoside and the Qx state of each Bchl for

this complex using the TDC method, based on CIS/3-21G* wavefunctions,

compared to electronic couplings estimated using the dipole approximation with

respect to the same transition densities. It is immediately apparent that the

dipole approximation will be problematic because it is not clear how best to

define the interchomophore separations. We used the centers of each transition

density, and we provide these distances in the figure. Quantitatively, we see that

the results of the dipole approximation can, at best, be described as

unpredictable compared to the TDC method and may not even predict correctly

the sign of the coupling. This is because, for example, the Bchls in the B850

interact chiefly with just the top of the carotenoid transition density, but interact

Figure 8. A summary of couplings calculated between the Bchl Qy transition and the

carotenoid S2 transition for LH2. VTDC are those calculated by the TDC method for Rps. acidophila

[73], the Vdd provide a comparison with the dipole–dipole method, and VCEO are those calculated for

Rs. molischianum using the CEO method [11].
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comparatively little with its other end. Apparently, the electronic coupling is

determined by the shape and position of the carotenoid and the Bchl, which in

turn dictates how their transition densities interact.

In Fig. 8 we also provide electronic couplings reported by Tretiak et al. [11]

for the LH2 of Rs. molischianum. These couplings were calculated using the

collective electronic oscillators (CEO) method [86, 87]. Note that the B800-

carotenoid couplings differ between the two species, owing to the 90	 difference
in orientation of the B800 Bchls.

D. Carotenoid S1 State and Electronic Coupling

The mechanism of electronic coupling that promotes Car S1 ! BChl EET has

generally been rather mysterious, and is usually discussed in light of the relative

merits of Förster versus Dexter energy transfer theories. The conventional

wisdom is that, because Förster theory cannot be applied when the donor or

acceptor transition is optically forbidden, Car S1 to BChl coupling must be

mediated by Dexter EET—and hence be dictated by the degree of orbital overlap

between donor and acceptor states. Our recent ab initio calculations of B850

couplings in LH2 evince the possibility that Vshort contributions to the Car S2 to

BChl coupling could reasonably have magnitudes of between 1 and 10 cm�1

[74]. However, according to our previous analysis of the microscopic

mechanisms operative in Car S1 to BChl coupling, Vshort is likely to be much

smaller than for Car S2 to BChl coupling [77].

Considering that the shape and arrangement of transition densities of donor

and acceptor were found to be so important for the carotenoid S2 state

interacting with the Bchl transitions in LH2 [73], the overall symmetry of the

electronic transition may not be as restricting as might be supposed from the

optical spectroscopy. In other words, there could likely be a significant

Coulombic coupling between the carotenoid S1 state and the Bchl transitions in

LH2. By reasoning that the transition densities are mostly determined by the

shape of the molecules, Walla et al. [83] estimated the approximate rhodopin

glucoside to B850 Bchl couplings by scaling the S2 to Bchl couplings uniformly

such that the modified Förster theory for molecular aggregates (see Section VI.

B) predicted their measured S2-B850 EET rates. Very soon after this, Hsu et al.

calculated these couplings using the TDC method (based on TD-DFT methods)

and found remarkable agreement [1]. These results are collected in Table I,

where they are also compared to Tretiak et al.’s [11] results for Rs.

molischianum, determined from CEO calculations.

Hsu et al. [1] investigated the origin of the substantial Coulombic coupling

between the carotenoid S1 state and Bchls in LH2. They found that a significant

contribution could be attributed to mixing of the 2Ag and the Bu carotenoid

states, induced by distortion of the carotenoid structure. However, even for a

completely planar carotenoid molecule, with a forbidden S0!S1 transition, the
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couplings were still found to be significant. The transition densities calculated

for the rhodopin glucoside S1 and S2 transitions are plotted in Fig. 9. It can be

conjectured that the Coulombic interaction with, for example a B850 Bchl, will

be reasonable favorable for each of these states, given that the Bchl interacts

principally with just the top end of the molecule. On the other had, it is evident

that, overall, the symmetry of the transition densities differ: The S1 state has a

Figure 9. A comparison of transition densities for rhodopin glucoside calculated using TDDFT

(6-31þþg** basis set). On the right the S0 ! S2 transition is shown, with its large dipole transition

moment being evidenced by the change in sign of this TD from one end of the molecule to the other.

On the left the S0 ! S1 transition is shown. The symmetry of the TD causes the transition to be

optically forbidden. See color insert.

TABLE I

Calculated Electronic Couplings (cm�1) Between the Carotenoid S1 State and Bchl Qy State in LH2

B800A B800B aB850B bB850B aB850C bB850C

a 26 �7 �5 7 16 �12
b 31 �10 �5 9 32 �18
c 39 �0.4 3 �4 �4 �41
aEstimated by scaling the rhodopin glucoside S1–Bchl Qy electronic couplings in LH2 of Rps.

acidophila calculated by the TDC method [83].
bCalculated (Rps. acidophila) by the TDDFT method [161].
cCalculated (Rs. molischianum) by the CEO method [11].
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symmetrically phased transition density relative to the middle of the backbone,

whereas the S2 state is antisymmetric and hence dipole-allowed.

E. Doublet States and Electronic Coupling

In isolated reaction centers, RCs, of photosynthetic purple bacteria, the primary

electron donor P* can quench excitation by rapid EET from higher-energy RC

pigments, either from the monomeric ‘‘accessory’’ bacteriochlorophyll-a

molecules (BL and BM) or from the bacteriopheophytins (HL and HM). The

photoexcited dimer P* then transfers an electron to HL within three picoseconds

with a quantum yield of nearly unity to form the radical dimer Pþ [88, 89]. If,

however, the primary electron donor is oxidized (either chemically or under high

light intensity) [90] to form Pþ before photoexcitation, electron transfer and thus
photosynthesis are blocked. After excitation of B at 800 nm, the absorption of B

recovers in 
130 fs in the neutral RC and in 
150 fs in the oxidized RC. In both
cases, the ground-state recovery of B has been interpreted as energy transfer from

B to P within the RC. Remarkably, EET to the oxidized primary electron donor

(from the accessory bacteriochlorophyll or from the antenna) apparently still

occurs [45, 46, 59, 91] even though the strong absorption band P has disappeared.

Why the wild-type RC and oxidized RC primary electron donors are equally

efficient quenchers of the excitation has been an unanswered question for the last

30 years. Recently, however, we have been able to explain this observation

[17, 92].

We summarize below how we went about modeling EET in the neutral RC

based on our model for EET in molecular aggregates. The most significant

feature that differentiates the oxidized RC from the neutral reaction center, and

any previously reported energy transfer systems we are aware of, is that the

acceptor is a dimeric radical. Therefore, the focus of the problem was to

determine the electronic energies and origins of the electronic transitions of the

oxidized special pair acceptor and to quantify the electronic coupling between

each of these relevant transitions and the donor transitions.

After recognizing that EET between a singlet state and a doublet state is

spin-allowed, since no spin flips are necessary ð2ð1B� 2PþÞ ! 2ð1B2Pþ�ÞÞ, it
was apparent that we could employ the TDC method to calculate the electronic

coupling between B and Pþ. Still, the acceptor states needed to be identified

before calculating their transition densities. This was not a trivial problem,

owing to (a) the complex internal spin structure in the Pþ electronic transitions

and (b) the difficulty identifying the Pþ absorption bands in the experimental

spectrum. It was possible to undertake these calculations using the method of

Reimers and Hush [93]. A second challenge is that the first four excited states of

Pþ borrow significant intensity from the fifth excited state, by vibronic coupling.

Vibronic coupling mixes transition density from a more strongly allowed

transition into that of the acceptor state with sufficient spectral overlap to
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acceptor excitation from B*, hence increasing the electronic coupling. In

general, the Coulombic interaction between state i of molecule M and state k of

molecule N, where i is vibronically mixed with state j according to the vibronic

coupling parameter �, is written as

V 0 ¼ VCoul
ik þ �VCoul

jk ð13Þ

where the normalization factor can be ignored when � is small.

IV. THE PROTEIN ENVIRONMENT

A. Dielectric Screening

For a molecular aggregate, the dielectric screening must be incorporated at the

level of the individual inter-site couplings. Each coupling V is multiplied by the

screening factorD. Thus, for the modified Förster theory described in Section VI,

dielectric screening cannot be simply incorporated in the final rate expression as

can be done for a donor–acceptor system. Usually dielectric screening is

assumed to have the form D ¼ n�2, where n ¼ e1=2R is the refractive index of the

medium at optical frequencies [94]. This limiting expression for D is justified

when the disturbances induced in the medium are of much greater wavelength

than the donor–acceptor separation. It is appropriate only when V is a dipole–

dipole coupling and the two chromophores are separated by a distance large

compared to their sizes in a nondispersive, isotropic host medium, and local field

corrections are negligible [95]. If these conditions hold, then it is likely that the

system cannot be a confined molecular aggregate.

In general we suggest that the corrections introduced by the dielectric

medium will be fairly small, though certain specific interactions—for example,

in a protein host—may be significant. A model for medium effects on closely

spaced molecules has been developed recently in our laboratory. It is suggested

that for molecules that are distant from one another we can enclose each in a

cavity such that the two cavities are separated by the dielectric medium.

Solution of this problem leads essentially to the result D ¼ n�2. However, when
the molecules are closely spaced relative to their sizes, we need to reconsider

such a treatment. Hsu et al. [96] enclosed the pair of molecules in a cavity. They

then found that the electronic coupling could be either decreased or increased,

depending upon the orientation of the molecules and their positions within the

cavity. In any case, because the dielectric medium is now confined to the outside

of the cavity containing the dimer, the screening is smaller than for the case of

well-separated molecules.

A model for large complexes in which particular pairs of chromophores may

be separated by transmembrane helices has been developed by Damjanovic and
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co-workers [97]. The model is best illustrated by reference to Fig. 10, which

shows the distribution of transmembrance helices in Photosystem I, represented

as cylinders. The heterogeneity of the protein environment is accounted for

crudely by defining the site-dependent refractive index, nnm, relevant for the

Coulombic coupling between chlorophyll molecules n and m as follows. If the

line connecting the Mg atoms of Chls n and m intercepts one of the cylinders,

then nnm ¼ 1:2; otherwise nnm ¼ 1 in line with the arguments presented above.

This model neglects possible screening by the Chl phytyl chains, and it clearly

treats the protein in a highly simplified way. However, for a complex system

such as PSI, it seems preferable to the standard approach of assigning a single

value (usually ranging between 1.2 and 1.6) to nnm.

B. Specific Interactions

Studies of the spectra and of energy transfer of site-directed mutant strains of the

LH2 of Rb. sphaeroides have suggested that the influence of the H-bonding

residues aTyr44, aTyr45 (aTyr44, aTrp45 in Rps. acidophila) from the adjacent

a protein to the C3-acetyl group of B850 Bchl a contributes significantly to the

Figure 10. Dielectric model of the protein. Within this model, the protein medium (i.e., the

medium with the refractive index of n ¼ 1:2) is represented with a set of cylinders. The cross section

of these cylinders is shown with white circles. The real location of the transmembrane part of

a-helices in PSI are indicated by coiled structures. Chlorophylls are presented as Mg-chlorin rings,

lacking the phytyl tail. Chlorophyll Mg atoms are shown in van der Waals representation. See color

insert.

80 gregory d. scholes and graham r. fleming



spectral shift (compared to B800 or to 777 nm in organic solvent). It was found

that single (aTyr44, aTyr45! PheTyr) and double (aTyr44, aTyr45! PheLeu)

site-specific mutations produced blue shifts of 11 and 24 nm, respectively (at

77K) of the B850 absorption band. It has also been reported that changing the

charged residue bLys23 ! Gln produces an 18-nm blue shift in the B850

absorption maximum. A similar situation has been found for the B800 absorption

band. Furthermore, it is the hydrogen bond from the aTyr44 to the acetyl group

of bB850 which is associated with the significant distortion of this BChl a. The

consequence of the resultant saddle conformation is a further red shift of the

absorption spectrum. It is also well known that the central Mg of BChl (or Chl)

should be described by a coordination number of greater than 4; that is, the Mg is

typically coordinated to a Lewis base. In the case of the B850 BChls a of LH2,

the central Mg coordinates to a His ligand. Hence it is clear that specific

interactions between the BChls and certain residues play an important role in

tuning the absorption spectra and, therefore, for example, in the rate of B800 to

B850 energy transfer via the resultant effect on the spectral overlap integral.

In our recent ab initio MO studies of LH2, we found that the calculated

excitation energies of B800 and the aB850 BChls (i.e., those with planar

structures) are approximately the same, whereas that of the bB850 BChl were

noticeably lower, presumably owing to its distorted structure. It is interesting to

note that this His residue red-shifts the spectra of each monomer significantly,

whereas the H-bonding ligands (aTrp and aTyr) have a lesser effect.

V. ROBUSTNESS WITH RESPECT TO DISORDER

A. Disorder in Photosynthetic Proteins

It is well known that there is significant disorder in the excitation energies from

site to site and from complex to complex. This distribution of monomer energies

can arise from (a) side-chain disorder in the protein, (b) deformation of the BChl

macrocycle, (c) binding of ions, (d) ionizable side chains being near their pK

values and thus existing in both neutral and ionized forms, (e) local or global

distortions of the structure, and (f) the limited statistical sampling of full

distribution of site energies possible in a complex of, for example, 9 or 18

monomer units.

Figure 11 shows the mean energy of 9-mer aggregates (bars) selected from a

Gaussian distribution of otherwise identical monomer energies with width �.

Clearly the distribution of 9-mer energies can be characterized by a width � and

the relation�2 ¼ �2 þ s2 holds, where s is the width of the energy distribution

within a complex. Thus for pigment problem complexes with relatively small

numbers of chromophores, the static site energy distribution within a complex

does not cover the entire distribution, but rather samples a subportion of the
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total disorder. As the upper panel of Fig. 11 shows, the value of s approaches

zero for large values of the total number of pigments, N. In fact

s=� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þp
for N > 1. An absorption spectrum is only sensitive to the

total value of the disorder, � and not the way it is partitioned between s and �.
Energy transfer or exciton relaxation processes within individual complexes

depends only on s, whereas � influences the energy transfer rate between

Figure 11. Top: Comparison of s and the distribution width of the means, �, within an N-mer

as a function of N. See text. Bottom: The mean energy of 9-mer aggregates (bars) compared to the

momomer energies (circles) of distribution width s.
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complexes. If these processes occur on different timescales, photon-echo

measurements of the decay of the memory of the transition frequency can be

exploited to separately determine intra- and inter-complex energy transfer

dynamics as was demonstrated by Agarwal et al. [98]. The discussion above is

most pertinent to complexes constructed from repeat units of one or a small

number of chromophore structure ‘‘types’’ and environments such as LH2 based

on an eight- or ninefold repeat of a structural element containing one B800

BChl and two B850 BChls. Photosystem I (PSI) of green plants and

cyanobacteria provides a striking contrast to such a symmetric structure. In

PSI, there are 96 nonequivalent Chla molecules, each in a different protein

environment and with no obvious symmetry elements in the structure (Fig. 12).

In addition, in contrast to LH2, the absorption spectrum of the complex is much

broader than that of a dilute solution of Chla. In other words, PSI is both

spatially and spectrally disordered. An additional difference between PSI and

LH2 is that PSI is effectively a three-dimensional energy transfer system

whereas LH2 is quasi-one-dimensional and one might expect that the disruptive

effect of energy disorder on energy transfer may be different in the two cases.

This is indeed the case as the two histograms in Fig. 13 show [97]. The

histograms are plots of overall excitation trapping times for 1000 different

realizations of the transition energies of the Chla molecules. The transition

Figure 12. The organization of pigments in PS-I from the crystal structure data of Ref. 162.

The reaction center is centrally located (the special pair is seen side-on). The darkest 8 Chls

represent the six reaction center Chls and the two linker Chls. The linkers are the uppermost and

lowermost dark Chls, respectively.
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energies are taken as those obtained by Damjanovic et al. [99] via quantum

chemical calculations for each individual Chla molecule. The arrow marks the

calculated trapping time when the energies are assigned according to the

calculation (which reproduces the absorption spectrum at both low and ambient

temperatures). In the left panel, the transition energies of all Chls except P700

(the primary electron donor) are randomly shuffled. The mean value of the

trapping time is 59.4 ps with a standard deviation of 18.9 ps. The distribution is

asymmetric, and the energy configuration obtained by Damjanovic et al. is near

the lowest bound of the distribution, suggesting that the PSI energy landscape is

highly optimized for the given distribution of static energies.

A second distribution of 1000 replicas was obtained by random shuffling of

the energies of the antenna Chls while the energies of the reaction center (RC)

and linker Chls (see Fig. 12 and the caption) are fixed at the values calculated by

Damjanovic et al. [99]. The resulting histogram of trapping times is shown in

the right panel of Fig. 13. The distribution is much more symmetric and

significantly narrower than the left panel. The mean and standard deviations are,

respectively, 38.8 ps and 3.7 ps. From these results, we conclude that the

calculated energy configuration of the reaction center and linker Chls is highly

optimized and the energy configuration of the antenna Chls is highly tolerant of

energy disorder because of the high connectivity of the structure. The optimality

associated with the RC and the linker Chls seems to result from a quasi-energy

funnel structure around the RC [97].

Of course, there must be a limit to the distribution of site energies that any

given structure can tolerate at a given temperature, which relates to the ratio of

Figure 13. Distributions of trapping times (1000 samples) calculated by (left) a model that

includes random shuffling of excitation energies in all the pigments except those of P700 and (right)

random shuffling of excitation energies except those of the six RC pigments and the two linker Chls.
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the homogeneous width of the individual transitions and the energy disorder. In

fact, disorder in the antenna Chls of PSI does influence the energy transfer

kinetics. A trapping time of 25.4 ps is obtained when the energies of the antenna

Chls are set identical at their mean value, and the quasi-funnel structure around

the RC remains as calculated. However, against the increased trapping time in

the actual system (35.9 ps) the system gains total absorption cross section by

extending the absorption region. The reason that the homogeneous system is so

effective lies in the very small reorganization energy of Chl/protein systems,

and in the next section we briefly turn to a discussion of the Stokes shift and

reorganization energy of Chl molecules in protein systems.

B. Stokes Shift and Reorganization Energy

Measurement of absorption and emission spectra of the pigments in photo-

synthetic antenna complexes has shown that Stokes shifts are typically small [2].

Presumably this is a consequence of the solvent environment of the protein that

surrounds the pigments. However, it is somewhat surprising that coupling

between the pigment electronic transitions and fluctuations of the protein are so

small given the key role specific pigment–protein interactions can have, such as

dictating the redox potentials of pigment sin the reaction center. There are two

important consequences of the small reorganization energy associated with the

Stokes shift. First, the spectral overlap between like pigments is large, meaning

that energy migration among the pigments in an antenna complex is very

efficient. Second, excitation can be more effectively delocalized among strongly

coupled pigments—for example, in the B850 ring of LH2—since excitation is

localized by spectral line broadening mechanisms.

Charge transfer interactions arise in closely spaced Chl pairs. Such pairs

usually exhibit strong Coulombic coupling and in addition to heterogeneity in

the Coulombic coupling, the magnitudes of the electron–phonon couplings

(reorganization energies) have been shown to be heterogeneous. For example,

Small and co-workers [100] have shown that there are at least two types of Chla

molecules in the PSI complex which are characterized by larger electron–

phonon couplings than the bulk Chla because of charge transfer character in

their electronic excited states. Such a variation in electron–phonon coupling

strength was taken into account in the calculations of energy transfer in PSI

described below [97].

Most of the information about the electron–phonon coupling comes from

low-temperature spectroscopy such as hole-burning. Extrapolating these low-

temperature spectral densities to room temperature can be difficult, but no

determination of a room temperature spectral density for Chla has been made as

far as we aware. An alternative approach is to calculate the spectral density via

combined quantum mechanical/molecular mechanics calculations [99, 101],

although the quantitative reliability of such an approach is not yet adequate for
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detailed energy transfer calculations. At present, the best approach appears to be

to use the low-temperature spectral density and make appropriate modification

to fit the room temperature spectrum as described by Zucchelli et al. [102] for

Chla.

C. Diagonal Disorder and Energy Transfer

To apply the Förster equation, the emission and absorption line shapes must be

identical for all donors and acceptors, respectively. However, in many types of

condensed-phase media (e.g., glasses, crystals, proteins, surfaces), each of the

donors and acceptors lie in a different local environment, which leads to a

distribution of static offsets of the excitation energies relative to the average,

which persists longer than the time scale for EET. When such ‘‘inhomogeneous’’

contributions to the line broadening become significant, Förster theory cannot be

used in an unmodified form [16, 63].

If there is just a single donor–acceptor pair, then we must ensemble average

the nuclear spectral overlap—for example, using a Pauli master equation. One

needs to think in terms of the inhomogeneous line broadening present in the

donor emission spectrum and that present in the acceptor absorption spectrum

leading to individually ensemble-averaged quantities. The spectral overlap is

also an ensemble average quantity, and it is not related in a simple way to the

overlap of the ensemble-averaged emission and absorption spectra.

In a chromophore aggregate, where there are couplings among the donor and/

or acceptor chromophores, the site energy disorder affects both the electronic

and the nuclear factors simultaneously. As we have described in Ref. 63, if there

are m molecules that together make up the donor and n molecules that comprise

the acceptor, then the EET dynamics must be determined by m� n electronic

couplings. To introduce disorder properly into the EET rate calculation, each of

the m� n electronic couplings Vda must be associated a corresponding spectral

overlap factor Jd aðeÞ. This provides us with the dimensionless coupling-

weighted spectral overlap for each interaction, ud aðeÞ ¼ Vd aj j2Jd aðeÞ. This

quantity governs the mechanism by which EET is promoted in complex

aggregates. For example, we can ascertain which electronic states most

significantly mediate the EET by comparing the values of each of theÐ
deudaðeÞ, which are directly proportional to the rate for each pathway.

We incorporate disorder into the calculation by ensemble-averaging the set

of coupling-weighted spectral overlaps for many aggregates using a Monte

Carlo method [38]. In this way the effect of disorder on both electronic

couplings and spectral overlap is properly accounted for by ensemble averaging

�d;audaðeÞ.
Energy migration among a number of chromophores with inhomogeneously

broadened spectra can be modeled using a Pauli master equation approach [10,

27, 70, 71, 103–107] as long as the excitation is localized as it hops from

86 gregory d. scholes and graham r. fleming



molecule to molecule. In such a model the probability of finding the excitation

on site i in the aggregate PiðtÞ is determined by solving the coupled differential

equations,

dPiðtÞ
dt
¼
X
j

kijPjðtÞ � kji þ t�1i

� �
PiðtÞ

� � ð14Þ

where the excited state lifetime is ti and uphill RET rates are calculated via

detailed balance, kji ¼ kij expð��Eij=kTÞ, with �Eij equal to the energy

difference between donor and acceptor absorption maxima. The site–site rates

are calculated according to a spectral overlap involving homogeneous line

shapes. A Monte Carlo sampling procedure is used to account for disorder,

typically with 
2000 iterations. At each iteration the site energy offsets for each
molecule in the aggregate di are chosen randomly from a Gaussian distribution of

standard deviation s, w dið Þ ¼ exp �d2i =2s2
� �

= s
ffiffiffiffiffiffi
2p
p� �

. A Gaussian distribution

is in accord with the Central Limit Theorem. It is useful to note that the FWHM

of the distribution � ¼ sð8 ln 2Þ1=2. If the electronic coupling varies from

aggregate to aggregate, because for example the molecules are oriented

differently, then this can also be included.

The Pauli Master equation approach to calculating RET rates is particularly

useful for simulating time-resolved anisotropy decay that results from RET

within aggregates of molecules. In that case the orientation of the aggregate in

the laboratory frame is also randomly selected at each Monte Carlo iteration in

order to account for the rotational averaging properly.

D. Off-Diagonal (Coupling) Disorder

Disorder that affects electronic couplings is also present in chromophore

aggregates. Such disorder arises from distributions of orientations and separa-

tions of the chromophores. One expects off-diagonal disorder to be most

significant among closely coupled chromophores, such as those comprising

B850, since orientation and distance dependencies of the coupling are most

pronounced at close interchromophore separations. Once again, for EETwithin a

chromophores aggregate, both the electronic couplings and the spectral overlaps

will be by off-diagonal disorder. It is therefore rather difficult to differentiate the

manifestation of diagonal from off-diagonal disorder.

Jang et al. [72] have systematically studied the effects of diagonal versus

off-diagonal disorder in the B850 ring of LH2. They conclude that the diagonal

disorder could be similar in magnitude to that in the B800 ring. In that case,

the total disorder, observed spectroscopically to be significantly larger than that

in the B800 ring, could be achieved through the addition of off-diagonal

disorder.
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VI. CALCULATIONS OF ENERGY TRANSFER RATES

A. Preface

Typically, light-harvesting complexes contain many chromophores in close

proximity, among which energy is funneled. To relate the structures of

photosynthetic antennae to a functional model requires a theoretical framework

that is able to capture the essential physics. Förster theory for EET is very

appealing because it is compact and simple and has few adjustable parameters.

Förster theory has proven to be enormously successful for calculating EET rates

between donor–acceptor pairs, but it has been observed numerous times that

Förster theory cannot rationalize EET dynamics observed in chromophore

aggregates. In recent work we have shown that the theory must actually be

modified in order to model EET in chromophore assemblies. Photosynthetic

light-harvesting proteins provided the inspiration for this work and have been a

valuable testing ground to prove the quantitative utility and robustness of the

theory.

B. Rate Expression for Singlet–Singlet Energy Transfer in an Aggregate

We have generalized Förster theory so that it is possible to calculate rates of

energy transfer in molecular aggregates. The Generalized Förster Theory (GFT)

was inspired by the ideas that (i) often weak coupling interactions promote

energy transfer—because intramolecular reorganization tends to trap and

localize excitation on a donor, simultaneously destroying memory effects—

and (ii) in a molecular aggregate it is not necessarily clear what entities really are

the energy donors and acceptors. We reasoned that there can be a mixture of

weak and strong electronic couplings in a molecular aggregate. The strongly

coupled molecules will exhibit collective spectroscopic properties, and the

eigenstates of these coupled molecules thus collectively constitute energy donor

or acceptor states. We refer to these collective states as the effective donor and

acceptor states, d and a respectively. By partitioning the Hamiltonian of the

aggregate in this way, we find that the electronic couplings connecting the

effective donor and acceptor states are indeed weak. Thus energy transfer from d
to amay be estimated by a Fermi Golden Rule expression, in the spirit of Förster

theory. The GFT reveals that the donor emission and acceptor absorption spectra

cannot be used to directly to quantify the rate of energy transfer in molecular

aggregates, which has helped to explain much of the confusion in the literature

regarding the explanation of observed energy transfer rates in photosynthetic

proteins, as we describe in the following sections. Instead, we must turn to a

‘‘electronic coupling-weighted spectral overlap’’ between effective donors and

acceptors, as we describe below. A fundamental feature of the GFT is that the

organization of the molecules in the aggregate is explicitly accounted for in the
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Hamiltonian. The final ingredient in the GFT is to include a correct ensemble

averaging procedure to account for static disorder in the donor and acceptor

transition frequencies; we implement this in the site representation.

We showed that for an aggregate consisting of m donor molecules and n

acceptor molecules, we can divide the problem into interactions between

effective donor and acceptor eigenstates, so that at least m� n energy transfer

pathways must be considered [16, 63]. In the limit that the interactions between

each pair of molecules is very weak, such that the donor and acceptor absorption

spectra are unperturbed from that of the monomers, then the energy transfer rate

is a sum of Förster rates. Otherwise we consider electronic couplings and

spectral overlaps for each pair of eigenstates. We still think in the Förster

picture, but we explicitly account for each donor emission and acceptor

absorption process. For example, in B800! B850 energy transfer, the donor is

a single B800 bacteriochlorophyll, and the acceptor is the ground state of the

B850 ring of 18 bacteriochlorophylls. Thus we must consider the de-excitation

of B800 and excitation into each of the 18 B850 eigenstates. We note that this

energy transfer involves transfer into the B850 eigenstates, so discussion of

delocalization length with respect to this process is redundant. However, as

described by Kühn and Sundström [108], this transfer process does involve most

of the B850 ring. Dynamic relaxation processes follow the energy transfer

event. An expression for the rate of energy transfer from donor states d to

acceptor states a that incorporates all these concepts given by,

k ¼ 2p
h

ð1
0

de
X
d;a

Pd Vda ed; eað Þj j2 Jda e; ed; eað Þ
* +

ed;ea

ð15Þ

where Vda are the electronic couplings between the effective donors and

acceptors, as described in Refs. 17, 63, and 64, and ed and ea represent static

offsets from the mean of the donor and acceptor excitation energies as described

in the previous section. Thus it is emphasized that both the couplings and the

spectral overlaps depend upon disorder. It is assumed that each Vda ed; eað Þ does
not vary across the energy spectrum of its corresponding Jda e; ed; eað Þ. Pd is a

normalized Boltzmann weighting factor for the contribution of d to the

thermalized donor state,

Pd ¼ exp ed¼1 � edð Þ=kT½ �=
X
d

exp ed¼1 � edð Þ=kT½ �:

The angle brackets denote that an ensemble average is taken over many

aggregate units (e.g., RC complexes) so as to account for static disorder in the
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monomer site energies. The spectral overlap between bands d and a is defined in

terms of donor and acceptor densities of states as in Eq. (6):

Jda e; ed; eað Þ ¼ Naa
hom
a e; eað ÞNd f homd e; edð Þ ð16Þ

Note that each Jda e; eað Þ is associated with an electronic coupling factor

Vda ed; eað Þ within the ensemble average. The f homd e; eað Þ and ahoma e; edð Þ specify
the donor and acceptor densities of states (D.O.S.), as described in Ref. 63. The

dependence upon disorder is assumed to introduce a static offset of the origin, as

is usually assumed. These D.O.S. represent the emission (absorption) line shape

of the donor (acceptor), calculated without disorder (hence the superscript

‘‘hom’’) and without dipole strength. Nd and Na are area normalization constants

such that 1=Nd ¼
Ð1
0

def homd ðeÞ and 1=Na ¼
Ð1
0

deahoma ðeÞ.
Our procedure requires as input a site representation of the electronic

Hamiltonian that we can modify by adding disorder to the site energies. Using

this ‘‘disordered’’ Hamiltonian, we find the set of effective donor states d,
effective acceptor states a, and the couplings between them Vda ed; eað Þ. We can

think of the {d} as collectively comprising the donor emission spectrum, and we

can regard the {a} as collectively comprising the acceptor absorption spectrum.

For each d and a we wish to calculate Vda ed; eað Þj j2Jd a e; ed; eað Þ, the

dimensionless quantity that defines the rate of d! a EET. For this strategy

to work, the Vd a must be classified as ‘‘weak.’’ To determine Jda e; ed; eað Þ, we
need electron–phonon coupling information together with intramolecular

vibrational information in terms of a line-shape function or spectral density

that relates to the eigenstate representation. We can input this information using

explicit equations, as we do in Refs. 16, 17, and 63, but since the line-shape

information is contained in experimental emission and absorption spectra (in the

absence of significant inhomogeneous line broadening), experimental spectra

may also be used in some cases (e.g., see Refs. 17 and 83).

C. Energy Transfer in a Complex with Heterogeneous

Coulombic Coupling

Calculations of energy transfer rates and mechanisms are generally based on

perturbation theory. In a dimer system with weak coupling, Forster theory can be

successfully applied. However, when the Coulombic coupling is stronger than

the electron–phonon coupling strength, Redfield theory [109–120] is more

appropriate. In this case, the energy transfer (or exciton relaxation) is induced by

the electron–phonon coupling. Yang and Fleming have shown how the Redfield

and Forster theories can be combined to reasonably describe energy transfer

dynamics over a wide range of parameters [121]. Based on these ideas, we

describe below a strategy for calculating energy transfer dynamics in systems

with a wide range of Coulombic couplings.
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We begin with an overall molecular Hamiltonian H ¼ Hel þ HCoulþ
Hel�ph þ Hph where Hel and Hel�ph describe the static electronic excitations

and the electron–phonon coupling respectively. HCoul is the Coulombic coupling

and Hph is the phonon Hamiltonian.

Hel ¼
XN
n¼1

enj ien enh j; Hel�ph ¼
XN
n¼1

enj iun enh j ð17Þ

where enj i represents the excited electronic states of the nth monomer. Within

the monomer n, en is its excited state energy and un is the electron–phonon

coupling.

HCoul ¼
XN
n¼1

XN
m>n

Jnm enj i emh j þ emj i enh jð Þ ð18Þ

where Jnm is the Coulombic coupling between enj i and emj i. Our strategy is to

split the Coulombic Hamiltonian into two groups of pairwise interactions: the

strong Coulombic Hamiltonian, HCoul; S, and the weak Coulombic Hamiltonian,

HCoul;W ,

Hcoul ¼ Hcoul;S þ Hcoul;W

where if Jnm � Jcutoff , we have HCoul;S
nm ¼ Jnm, and Hcoul;W

nm ¼ 0, and if Jnm <
Jcutoff , we have HCoul;S

nm ¼ 0 and HCoul;W
nm ¼ Jnm. Thus the total Hamiltonian is

rewritten as

H ¼ Hel þ HCoul;S þ Hph þ Hel�ph þ HCoul;W ð19Þ

Next this Hamiltonian is expressed in the basis set of exciton states obtained by

numerical diagonalization of Hel þ HCoul; S.

jmi ¼
XN
n¼1

fmnjni for m ¼ 1; . . . . . . ;N ð20Þ

where jni ¼ enj i�N
M¼1; M 6¼n gmj i represents a state where only the nth molecule is

excited and all others are in their ground ðjgiÞ states. fmn is the amplitude of the

nth Chl molecule’s contribution to the mth exciton state. For example, if an

exciton state m is completely localized on one molecule, say M, then fmm ¼ dnm.
This is the case for all Chls with HCoul;S ¼ 0. If the state is equally delocalized

over two Chls, k and m, fmn ¼ dnm þ dnkð Þ= ffiffiffi
2
p

. In the new representation we
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have diagonal
�
H0 ¼PN

m¼1 mj iH0
m mh j and off-diagonal

�
H0 ¼Pm;m0m 6¼m0 mj i

H0mm0 m
0h j Hamiltonians:

H0
m ¼ Em þ Hph þ hmj Hel�ph þ Hcoul;W

� �jmi ð21Þ
H0mm0 ¼ hmj Hel�ph þ Hcoul;W

� �
m0j i ð22Þ

In the diagonal term mh jHel�phjmi and mh jHcoul;Wjmi are responsible, respectively,
for the energy fluctuation and energy shift of the state m. These diagonal parts are
treated nonpertubatively. The off-diagonal term is responsible for energy transfer

between exciton states. The magnitude of the off-diagonal Hamiltonian involves

the strengths of the electron–phonon mnð Þ and Coulombic Jnmð Þ couplings and
also the overlap of the exciton wavefunctions fmnfu0n. A perturbative approach

to the energy transfer calculation is justified even when mnand Jnm are large,

provided that the overlap of the two exciton wavefunctions is small. Thus, the

energy transfer rate from a state m0 to a state m, km m0 , can be calculated via the

Golden Rule.

km m0 ¼ 2Re

ð1
0

dtTrq e
iH0

m0 tH0m0me
�iH0

mtH0mm0 ; r
eq
m0

� �
ð23Þ

where Trq denotes a trace over the nuclear degrees of freedom and reqm0 ¼
e
�bH0

m0=Trq
�
e
�bH0

m0
�
with b the Boltzmann factor. Yang derived an expression for

km m0 in terms of standard line-broadening functions of the Chl molecules [121].

The resulting expression satisfies detailed balance. The full expression is given in

Ref. 121.

When the exciton states are localized on individual Chls, the expression

reduces to the well-known Förster formula. If Jcutoff !1 this holds for all

transfer rates. On the other hand, when Jcutoff ! 0, the expression reduces to

that derived from modified Redfield theory. It can be shown analytically that the

forward and backward rates satisfy the detailed balance condition

km0 m

km m0
¼ e

�b
�
E0

m0�E0
m

�
ð24Þ

where E0
m ¼ Em þ HCoul;W

mm � lmm;mm corresponds to the 0� 0 transition energy of

the state m. Thus once downhill rates are calculated via numerical integration, the

corresponding uphill rate can be calculated from the detailed balance expression.

The precise value of the cutoff interaction energy might be considered

problematical. However, as Fig. 14 shows, for a model dimer system, the

modified Redfield theory and Forster theory rates are very similar over a wide

range of energy gaps (degrees of delocalization); and provided that Jcutoff
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corresponds to reasonably weak coupling, the precise value of Jcutoff is not

critical.

This theory connects with the modified Förster theory for molecular

aggregates as follows. The Jcutoff procedure partitions the system into the set of

effective donors d and the effective acceptors a. Whether a state is designated d
or a is determined by the excitation conditions. Energy transfer from d to a
occurs as described by Eq. (15). However, the Redfield theory can account for

more complex dynamics that arise owing to competition between relaxation in

the d manifold and d-to-a energy hopping. In other words, the multistep

evolution of the excited-state population subsequent to excitation can be

followed in an arbitrarily large molecular aggregate.

D. Energy Transfer to a Dimeric Acceptor: Bacterial Reaction Centers

The photosynthetic reaction center (RC) of purple bacteria is a pigment–protein

complex present in the thylakoid membrane that efficiently accepts excitation

energy from antenna complexes to initiate light-induced charge separation from

the primary electron donor (P); this is the first step in photosynthesis. Excitation

of the primary electron donor, a bacteriochlorophyll dimer, to form the lowest

excited singlet state (P*) usually occurs by energy transfer from the antenna. In

isolated RCs, P* can quench excitation by rapid EET from higher-energy RC

pigments, either from the monomeric ‘‘accessory’’ bacteriochlorophyll-a

molecules (BL and BM) or from the bacteriopheophytins (HL and HM). The
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Figure 14. Downhill exciton relaxation rates as a function of energy gap between two

monomers, predicted by the Förster model (open triangles), the traditional Redfield model (open

circles), and the modified Redfield model (filled circles). In ðaÞ the electronic coupling,

J12j j ¼ 100 cm�1 and in ðbÞ J12j j ¼ 20 cm�1. The reorganization energy, l ¼ 100 cm�1 and the

spectral density is represented by a Gaussian correlation function with tg ¼ 100 fs [163].

energy transfer and photosynthetic light harvesting 93



arrangement of these pigments and the absorption spectrum of the RC are shown

in Fig. 15.

As early as 1972, Slooten, using absorption measurements, proposed that

electronic energy transfer (EET) from H and B to P occurs in the Rb.

sphaeroides RC [59]. In 1986 such energy transfer was shown to occur from B

to P for the RC of Rps. viridis in less than 100 fs at 298K. Two years later,

Breton et al. [44] demonstrated a similar result at 10K for the same species.

Within the time resolution of these experiments, the energy transfer time was

insensitive to temperature.

A consensus exists that the usual application of Förster theory is deficient by

as much as an order of magnitude in accounting for the rate of EET between the

Figure 15. Top: Arrangement of pigments in the reaction center Rb. Sphaeroides. Bottom: Plot

of the absorption spectrum of this RC, with absorption features attributed to the pigments H, B, and

P indicated.
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RC cofactors. This comes about because the lower exciton state of P, P�, carries
88% of the dipole strength and is therefore strongly coupled to B according to

the dipole approximation, but has only a small overlap with the B emission, as

shown in Fig. 16. The net effect is that P� is not predicted to be an effective

acceptor for B. On the other hand, the upper exciton state Pþ overlaps

significantly with B emission (see Fig. 16), but since it carries only 12% of

the total dipole strength, this state is predicted to be too weakly coupled to

B to be an effective acceptor. The answer to the conundrum lies in the idea

that the absorption spectra of the P acceptor states do not contain the

Figure 16. Top: The absorption spectra of the special pair acceptor states Pþ and P� plotted

over the fluorescence of the donor B. Although Pþ has superior spectral overlap with B, it has a

small intensity because it is dipole-forbidden. Bottom: The density of states calculated for the donors

and acceptors in B-to-P energy transfer. See Ref. 17.
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relevant information for predicting the electronic coupling between B and Pþ
or P�.

Recently the theory for EET in molecular aggregates was applied to wild-

type and mutant photosynthetic reaction centers (RCs) from Rb. sphaeroides, as

well as to the wild-type RC from Rps. viridis. Calculations of EET in two

mutants, (M)L214H or the beta mutant and (M)H202L or the heterodimer, were

also reported. Experimental information from the X-ray crystallographic

structure, resonance Raman excitation profiles, and hole-burning measurements

were integrated with calculated electronic couplings to model the EET

dynamics within the RC complex. To check the model, which contains no

adjustable parameters, optical absorption and circular dichroism spectra were

calculated at various temperatures between 10K and room temperature and

compared well with the experimentally observed spectra. The rise time of the

lower exciton state of P, P�, population, subsequent to the excitation of the

accessory bacteriochlorophyll, B, in Rb. sphaeroides (Rps. viridis) wild-type at

298K was calculated to be 193 fs (239 fs), which is in satisfactory agreement

with experimental results. The calculations suggest that the upper exciton state

of P, Pþ, plays a central role in trapping excitation from B. Our ability to predict

the experimental rates was partly attributed to a proper calculation of the

spectral overlap JdaðeÞ using the vibronic progressions.

That work provided the following answers: (1) The EET dynamics in the RC

are promoted via a weak-coupling mechanism. Most importantly, we had to

adapt Förster theory so that it could be applied to molecular aggregates like the

RC. Our model employed only Coulombic couplings (aside from the coupling

between PM and PL), and we conclude that short-range interactions, depending

explicitly on orbital overlap between the pigments, are relatively unimportant

for promoting EET. Crucially, we had to calculate correctly the effective donor–

acceptor couplings and their associated spectral overlaps. Simple application of

Förster theory blurs the details of the aggregate and leads to physically incorrect

results. (2) Energy is transferred according to the following scheme:

H! B! Pþ ! P�ð Þ. (3) Our calculations suggest that Pþ is the principal

acceptor state involved in energy transfer from B to P in the wild-type RC.

(4) The temperature independence of EET can be understood now that we have

correctly calculated the spectral overlap between B and Pþ. This overlap

governs the rate, and we have found it to be insensitive to temperature. The

overlap between the B emission and P�, where P� is peaked at 865 nm at 298 K

and at 890 nm at 10 K, is significantly affected by temperature, but is relatively

unimportant in the overall dynamic process. (5) The large displacements of the

vibrational modes of P make an important contribution to the EET by increasing

the spectral overlap between B and Pþ, which, in turn, increases the rate and

plays a role in the temperature independence. (6) The same weak-coupling

mechanism (i.e, the generalized Förster theory presented here) provides an
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adequate description of EET in both the beta and heterodimer mutant, although

in the case of the heterodimer, it is dependent on diminished electronic coupling

between DM and the rest of the RC pigments. In the beta mutant, where the

weakly coupled HM chromophore is replaced with a BChla, energy transfer is

both quantitatively and mechanistically similar to the wild-type. However, in the

heterodimer mutant, where the mutated pigment is part of a strongly coupled

special pair, the energy transfer proceeds at a quite different rate along each

branch. This leads to a biexponential rise of population of the P state.

The main advance that was made, however, was to calculate the electronic

couplings Vda in terms of the molecular composition of donor and/or acceptor

aggregates, rather than treating the acceptors Pþ and P� as point dipoles

associated with each spectroscopic band. It can be seen in Table II that the

effective electronic couplings Vd að Þ calculated for B to Pþ and B to P� are

approximately equal in magnitude. These couplings were determined from the

full Hamiltonian of the RC, but compare closely with the ‘‘monomer B to P’’

couplings, which are effective electronic couplings calculated for the system

consisting only of one B and the special pair. These latter electronic couplings

may be compared directly with analogous dipole–dipole couplings calculated

for B to Pþ and B to P�, showing that the dipole approximation fails completely,

thus explaining why Förster theory cannot predict the rate of B to P EET for the

RC. But, why precisely does the dipole approximation fail in this case?

In Fig. 17 we compare transition densities calculated for the special pair

upper exciton state Pþ (lower panel) and lower exciton state P� (upper panel).

The Pþ transition density has many alternating positive and negative phase

regions that are averaged away by the dipole operator to give a small transition

dipole moment. The P� transition density has one region of negative phase and

another region of positive phase, indicative of a dipole-allowed transition, that

are averaged by the dipole operator to give a large transition dipole moment.

Such an averaging over the topology of the transition density is carried out by

light, which has a wavelength large compared to molecular dimensions and

separations, and is therefore manifest in the absorption and emission spectra.

However, if one imagines the B chromophore located near the right-hand side of

TABLE II

Calculated Electronic Couplings (cm�1) Between the Accessory Bchls and the Exciton States of the

Special Pair in the RC of Rb. sphaeroides (see Text and Ref. 17)

Effective Couplings Monomer B to P Dipole–Dipole

BM–P� �67 �55 198

BL–P� 69 76 �182
BM–Pþ 67 78 �6
BL–Pþ 83 72 �29
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P in Fig. 17, then it can be seen that the local Pþ and P� transition densities that

interact most significantly with the B transition are almost identical. Thus, from

the viewpoint of the B donor, the electronic coupling to either Pþ or P� should

be similar, as indeed the calculations reveal.

We can summarize by stating that the averaging imposed on electronic

couplings in a molecular aggregate by the dipole approximation is implemented

on two levels. First, it is implemented with respect to the coupling between

sites. This is the difference between panels a and b of Fig. 18, which depicts the

special pair and one accessory bacteriochlorophyll of the photosynthetic RC of

a purple bacterium. Panel a of Fig. 18 depicts an essentially exact calculation of

the Coulombic coupling between a monomeric bacteriochlorophyll molecule k

and the upper exciton state of a dimer formed by molecules m and n. This is

accomplished by performing separate quantum chemical calculations of the

Figure 17. Transition densities calculated for the special pair. Top: Transition densities for

P�, Bottom: Transition density for Pþ. See color insert.

98 gregory d. scholes and graham r. fleming



ground and relevant excited states of k and the m-n dimer in order to obtain the

corresponding transition densities, Pk
0 dðr1Þ and Pm�n

a 0 ðr2Þ respectively, which are
plotted in the figure. These transition densities interact via the Coulomb

potential to give the Coulombic interaction as described earlier in this review.

Figure 18b depicts a simplification of this method, which we see as the minimal

representation of this aggregate. Here the transition densities have been reduced

to transition dipoles on each molecular center, according to Eq. (5). For the

dimer, we need to ascertain the coefficients describing the admixture of

monomer wavefunctions that comprise the dimer wavefunction, lm and ln.
Then we can write ma 0& ¼ lmmm 0

& þ lnmn 0& .

Second, an averaging can be implemented with respect to the coupling

within the donor or acceptor supermolecules (panel c of Fig. 18). In this case we

would couple m0 d& and ma 0& directly. Such an averaging is invoked in analyses of

RC energy transfer when, for example, either the P� or Pþ special pair states are

taken to be the energy acceptor in the Förster model, where donors and

acceptors are treated as point dipoles associated with each spectroscopic band

(i.e., Pþ and P�). This approach fails to account for the true interactions within a
multichromophoric assembly, as we have already described.

The Förster spectral overlap is an incredibly useful quantity for under-

standing EET in donor-acceptor pairs, but unfortunately it turns out to be useless

for describing molecular aggregates and disordered systems. However, in the

Figure 18. An illustration of the levels of approximation used in estimating the B to Pþ
electronic coupling. ðaÞ An essentially ‘‘exact’’ calculation can be made using the TDC method. ðbÞ
Distributed dipoles used in the GFT method (see Section VI.B) represent the minimal acceptable

approximation. ðcÞ The harsh dipole approximation, in which the correct physical picture of the

system is completely washed away. See color insert.

energy transfer and photosynthetic light harvesting 99



spirit of the Förster spectral overlap, we have introduced the electronic

coupling-weighted spectral overlap between effective donor and acceptor states:

ud aðeÞ ¼ Vd a ed; eað Þj j2Jd a ed; eað Þ
D E

ed;ea
: ð25Þ

This quantity allows us (1) to quantify the rate of EET, according to the

summation of the area of each ud aðeÞ, as in Eq. (15), (2) identify the dominant

states that mediate energy transfer in a complex system, and (3) work in terms of

correctly ensemble-averaged quantities. The spectrum of the quantity ud aðeÞ
derives from overlap of the donor emission density of states with that of the

acceptor, Jd aðeÞ. This can be nonintuitive in a disordered molecular aggregate

owing to the interdependence of electronic couplings and site energies, as we

describe in the following section. The intensity of each spectrum is adjusted by

the donor–acceptor electronic couplings. This occurs within the ensemble

average over static disorder in the transition frequencies, ed and ea. Now the
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Figure 19. Top: Coupling-weighted spectral overlaps calculated using the GFT for all four

interactions between B and P (see Ref. 17). Bottom: The average B to Pþ/P� picture of these

coupling-weighted spectral overlaps. It is now evident that B to Pþ energy transfer dominates

deactivation of initially excited B pigments.
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overall area of each ud aðeÞ is proportional to the rate of EET via the

corresponding d–a pathway. The ensemble average coupling-weighted spectral

overlaps for each of the four B to P EET pathways are plotted in Fig. 19.

Inspection of the relative intensities of the ud aðeÞ for each pathway leads us to

conclude that B to Pþ is the dominant EET channel, most likely as a consequence

of better spectral overlap Jd aðeÞ.
E. Energy Transfer in LH2

1. B800 to B850 Energy Transfer

In the introduction to this review we have described in detail the structure and

function of the peripheral light-harvesting antenna LH2 of purple bacteria. Light

absorbed by the B800 ring is transferred rapidly to the B850 ring on a time scale

of 800 fs in Rps. acidophila and 650 fs in Rb. sphaeroides at room temperature,

increasing to just 1.2 ps at 77K for both Rps. acidophila and Rb. sphaeroides.

Förster theory, however, provides an unsatisfactory estimate of this time scale

and, in particular, fails to elucidate the reasons for the remarkable insensitivity to

temperature.

The donor molecule of the B800 ring is approximately monomer-like and is

located 
18 Å away from the acceptor. The acceptor consists of the 18

bacteriochlorophylls of the B850 ring, part of which is shown in Fig. 20. The

Figure 20. A depiction of part of the B850 ring from LH2 showing the a-helices as ribbons,
labeled as a and b according to their position on the inside and the outside of the ring, respectively.

The pigments are labeled A, B, C according to the a,b-subunit they belong to, and they are labeled

individually as a or b according to whether they are coordinated to the a-helix labeled a and b. The
close interaction (3–4 Å) between these Bchl chromophores is evident.
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Bchl molecules that comprise the B850 ring are relatively strongly coupled to

each other (
300 cm�1), which has a significant impact on the nature and

operation of the acceptor states. This also means that there are not just one or

two acceptor states: There are 18 acceptor states that must be individually

considered. Moreover, each LH2 complex is slightly different spectroscopically,

owing to significant inhomogeneity in the site energies of each Bchl. The effect

of this static disorder on the absorption is shown by the absorption spectra

calculated for individual LH2 complexes (Fig. 21). These spectra are similar to

the striking experimental observations reported by van Oijen et al. [16]. Any

model for predicting the EET dynamics in this complex system must capture

these essential features.

In order to model realistically the effective acceptor states of the B850 ring,

it was first necessary to calculate the electronic couplings on the basis of the

crystal structure data. Owing to the close approach of the Bchls in B850

(cf. Figs. 6 and 20), we decided to ascertain the significance of contributions to

the electronic coupling that depend on orbital overlap, Vshort. Vshort mostly

derives from interactions indicative of mixing of donor–acceptor wavefunctions

Figure 21. Left: Absorption spectra calculated for a random selection of single LH2 complexes

(Rps. acidophila, 77K). Right: The corresponding calculated circular dichroism spectra. Only

diagonal disorder is included in the site energies of the monomers, but note the dramatic effects it

has on state energies and intensities.
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owing to their interpenetration (exchange effects related to the Coulombic

interactions make a very minor contribution for molecules). There has been

considerable speculation regarding the role of V short in photosynthetic light

harvesting since if this coupling becomes significant relative to VCoul at close

separations, then the EET rate could increase over that estimated from the

Förster rate by a factor VCoul þ V short
�� ��2= VCoul

�� ��2. However, evaluation of the

significance of the Vshort component of the coupling by quantum chemical

calculation poses a difficult problem.

We attempted to quantify the total V short for the closely interacting BChl

pigments in LH2 of Rps. acidophila using CI-singles calculations (6-31G*

level) of the excited states of Bchl dimers within the B850 ring, as well as

individual Bchl molecules. The dimer calculations provided an estimate of the

total electronic coupling V short þ VCoul
� �

, but where VCoul was overestimated,

just as for the TDC calculations based on CI-singles TDs. We could use TDC

calculations, then, to determine the (overestimated) VCoul and hence retrieve

V short (which is not similarly overestimated). The usual scaling procedure

provided a reasonable estimate of VCoul. We summarize our results in Table III,

where we collect the scaled VCoul, calculated by the TDC method, Vshort derived

from the ab initio supermolecule calculations once VCoul had been determined,

and the total electronic coupling, equal to V short þ VCoul (where this is the scaled

Coulombic interaction).

Combining the calculated electronic couplings with various experimental

data, we have simulated the energy transfer dynamics in the wild-type Rps.

acidophila B800–B850 complex, as well as in four reconstituted complexes in

which the B800 band lies at 765, 753, 694, and 670 nm (which we refer to as

B765, B753, etc.). There are no adjustable parameters in these calculations,

since the mean Bchl site energies in the B800 and B850 rings are set in order

to simulate the absorption and circular dichroism spectra. The mutant and

TABLE III

Nearest-Neighbor Electronic Couplings V (cm�1) Calculated Between the Bchl Qy Transitions in

the B850 Ring of the LH2a of Rps. acidophila Using the CI-singles/6-31G* Method (see Text and

Ref. 74), Along with Next-to-Nearest Neighbor Couplings Calculated Using the CI-Singles/3-21G*/

TDC Method [73]

Separationb (Å) Total Coupling VCoul Part Vshort Part Vdipole–dipole

aB850A–bB850A 9 320 265 55 415

bB850A–aB850B 9.5 255 195 60 330

aB850A–aB850B 18 �46 �46 0 �48
bB850A–bB850B 19 �37 �37 0 �37
aSee Fig. 20 for the labeling convention.
bCenter-to-center.
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temperature dependence of the B800–B850 EET rates provides a convincing

test of the theory for energy transfer in molecular aggregates, Eq. (15).

In Table IV we summarize the results of these calculations for both 77 K and

300 K. Note that here it is assumed that each of the substituted chlorophylls has

the same transition moment magnitude and orientation, and therefore coupling

to the B850 BChls, as the wild-type B800s. We see from the results collected in

Table IV that (i) the calculated energy transfer times for B800–B850 and B753–

B850 correspond closely to the experimental values reported by Herek et al.

[122]; (ii) the calculated B800-B694 and B800-B670 energy transfer times are

much slower than revealed by experiment, suggesting that the carotenoid S1
state may be mediating the energy transfer for these donors; (iii) While the

‘‘B800’’-type donor has appreciable overlap with the B850 density of states,

which spans 720–870 nm, the ‘B800’–B850 energy transfer time is rapid and is

sensitive (i.e., can be tuned by a factor of two in magnitude) to the exact

location of the donor emission spectrum; (iv) The EET rate is insensitive to

temperature, which is a well-known characteristic of the wild type LH2

complex.

In Fig. 22 the spectral overlaps calculated for seven individual LH2

complexes (Rps. acidophila) are shown and compared to the corresponding

coupling-weighted spectral overlaps, calculated according to the GFT. First we

note that the spectral overlaps do not correspond to the Förster spectral overlaps,

since we have correctly calculated the overlap between the donor emission and

the absorption density of states (not absorption spectrum) of each acceptor

eigenstate according to Eq. (16), rather than as the overlap between the donor

emission and total B850 absorption spectrum. Second, it is evident that a proper

ensemble average over the individual complexes is crucial because of the

significant static disorder, as seen in the single complex absorption spectra

shown in Fig. 21. However, comparison of the calculated spectral overlaps with

TABLE IV

Calculated B800–B850 Energy Transfer Times (ps) in LH2 of Rps. acidophila and Reconstituted

Complexes (See Text and Refs. 16 and 22)

GFTa (77 K) GFTa (300 K) Experimentb FTc (300 K)

B800–B850 0.96 0.91 0.9 6

B765–B850 0.76 0.75 1.4 9

B753–B850 1.90 1.34 1.8 11

B694–B850 17.3 13.8 4.4 18

B670–B850 49.6 43.7 8.3 37

aGeneralized Förster Theory for molecular aggregates (see Section VI.A and Ref. 63).
bResults reported by Herek et al. [122] (300 K).
cFörster Theory predictions [122].
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the calculated coupling-weighted spectral overlaps immediately reveals

significant differences. For example, from the spectral overlap calculations,

the B800–B850 EET times for complex 4 and 5 are expected to be similar.

However, a calculation according to the GFT reveals via the coupling-weighted

spectral overlaps that the EET times in these two complexes actually differ by a

factor of 4! Such observations emphasize the importance of keeping the

electronic coupling and corresponding spectral overlap factor associated.

LH2 typifies a complex donor–acceptor system for which EET rates cannot

be understood according to Förster theory. To elucidate B800–B50 EET rates, it

was crucial to understand the nested averages in a microscopic picture of the

dynamics that are important even at the level of single complexes. Thus, the

summations over effective donor and acceptor states, and the ensemble average

over disorder must be carefully treated. These subtleties are all contained in

Eq. (15), the GFT, and cannot be ignored for the sake of an expedient solution.

The key quantity for characterizing EET in molecular aggregates is the

coupling-weighted spectral overlap, ud aðeÞ, Eq. (25).

Figure 22. Left: Spectral overlaps calculated using the GFT model for B800–B850 energy

transfer within each of the single LH2 complexes shown in Fig. 21. The dashed and dashed–dot lines

for spectra 2 and 4, respectively, are simply meant to guide the eye in the right-hand panel of the

figure. Right: Coupling-weighted spectral overlaps and energy transfer times calculated for these

systems. See text.
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2. Exciton Dynamics in B850

In the case of the B850 molecules of LH2 or the B875 molecules of LH1, the

situation is more complex. Now the excitonic interactions are at least similar to

the site energy disorder, kBT , and the electron–phonon coupling and the

electronic (and perhaps vibrational) state are not localized on individual

molecules. This delocalization leads to the phenomenon of exchange narrowing

[123] whereby the distribution of site energies is apparently narrowed by the

averaging effect of the delocalized states. Thus the intracomplex disorder, s,
and, therefore, the total disorder, becomes dependent on the electronic coupling.

The intercomplex disorder �, however, remains independent of the coupling.

In such a system the initially prepared state can evolve very rapidly via

electron–phonon coupling. This rapid relaxation among exciton levels gives rise

to a kind of lifetime broadening, which competes against the exchange narrowing.

The two effects cannot be separated by analysis of the linear absorption spec-

trum, but can be resolved by analysis of photon-echo signals [124]. Thus in

order to properly characterize a system such as the B850 ring of LH2 or the

B875 ring of LH1, it is necessary to be able to have a formalism with which one

is able calculate both linear and nonlinear optical signals from the same approach.

Energy disorder (both diagonal and off-diagonal) plays a major role in

determining the electronic structure and consequent dynamics of such a system.

As before, averaging over the ensemble must be done after the microscopic

dynamics are calculated. Figure 23 shows the exciton levels and associated

Figure 23. Exciton wavefunctions calculated for the B850 band of LH2. Left: For a completely

ordered model with Jintra ¼ Jinter ¼ 320 cm�1. Right: For a statically disordered model, with

Jintra ¼ 320 cm�1, Jinter ¼ 255 cm�1, sðdisorderÞ ¼ 150 cm�1 and an energy offset between a and b
Bchls (see Fig. 20) of 530 cm�1. See Ref. 40.
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wavefunctions for the B850 either as completely ordered or for a particular

complex selected from a distribution with s ¼ 150 cm�1. In the perfectly

ordered case, the lowest state is optically dark and all the oscillator strength is

concentrated in the next two (degenerate) levels. The wavefunctions are

completely delocalized for all levels. In the disordered case, the oscillator

strength is distributed over multiple levels; in particular, the lowest state is no

longer dark, and the wavefunction is ‘‘broken up’’ such that it has amplitude on

typically 2–4 molecules. Figure 23 is useful for visualizing the system but does

not allow calculation of the dynamics or nonlinear optical response. For this, we

turn to a formalism based on the density matrix and calculate the dynamics

using Redfield theory [124]. The formal approach has been described in detail in

Refs. 124 and 121. Here we give a brief overview of the approach beginning

with theory for the linear absorption and third-order response of a simple model

system for molecular aggregates which consist of monomers with two electronic

states. The standard description of the electronic states of molecular aggregates

is based on the Frenkel-exciton Hamiltonian.

H ¼ Hel þ Hel�ph þ Eph ð26Þ

Hel ¼
XN
n¼1
jnienhnj þ

XN
m;n
m 6¼n

Jmnjmihnj ð27Þ

Hel�ph ¼
XN
n¼1
jniunhnj ð28Þ

where jni is the electronic excited state of the monomer n and en is the static

energy of the electronic excited state of the nth monomer. un describes the

fluctuation of the transition energy due to the electron–phonon coupling. Eph is

the Hamiltonian of the phonon bath. The interaction between monomers n and m

is given by Jmn, which is assumed to be homogeneous. We also assume that each

monomer is coupled to its own bath and that the baths belonging to different

monomers are uncorrelated.

For the one-exciton state, the eigenstates and eigenenergies of the Frenkel

excitons are obtained by numerical diagonalization of the electronic part of the

exciton Hamiltonian [Eq. (27)]. The exciton wavefunctions and exciton energies

for the two exciton band can be constructed from those of the one exciton band

by use of Bethe’s Ansatz [125]. The electron–phonon coupling Hamiltonian

Hel�ph is responsible for pure dephasing of the exciton states (diagonal in

exciton basis) and population transfer between the exciton states (off-diagonal

in exciton basis).

The linear and third-order response functions of the molecular aggregates are

described by a density matrix formalism in the exciton basis. The evolution of
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the density matrix is given by

d

dt
rðtÞ ¼ �i L0 þ L0ð ÞrðtÞ ð29Þ

where L0 is a diagonal Liouville operator governing the exciton dynamics in the

absence of any exciton transfer process. The off-diagonal term, L0, is responsible
for the population transfer process between the exciton states. The usual method

to obtain the time evolution of the exciton state is to reduce the full density

matrix [Eq. (29)] to the excitonic space by taking an average over the bath. In

this case, we lose detailed information of the dynamics of the bath. However,

the photon-echo peak shift method [124] is sensitive to the non-Markovian

behavior of the bath, and thus we need to keep the dynamics of the bath to

accurately describe the experimental data. As a first approximation, the operator

of the second term of the right-hand side of Eq. (29) is replaced with a rate

equation.

d

dt
rðtÞ � �iL0rðtÞ � KrðtÞ ð30Þ

where K is the Redfield tensor which is based on a second-order approximation

with respect to the off-diagonal Hamiltonian in the exciton representation [124].

Equation (30) is a kind of mean-field description of the population transfer since

the phonon-dependent operator has been replaced by a phonon-averaged rate

equation. We note, however, that the fast phonon dynamics is correctly described

by the first term of Eq. (30) in contrast with the usual reduced density matrix

approach. As usual, we introduce the so-called secular approximation in which

the nonsecular elements of the Redfield tensor are assumed to be zero:

Kab;a0b0 ¼ 0 when oab � oa0b0
�� �� 6¼ 0 ð31Þ

where oab is the energy difference between the states a and b. The contributions
of the nonsecular terms are averaged out on a time scale of oab � oa0b0

�� ���1. By
this approximation, contributions for the population and coherence elements are

not likely to be coupled to each other in the presence of static disorder. The

Redfield tensors then consist of three terms: (a) population transfer from a to g
ða 6¼ gÞ, Kaa;gg, (b) population decay from a, Kaa;aa, and (c) decay of the

coherence (dephasing) due to population transfer, Kaa0;aa0 .

For the linear absorption spectrum, the system evolves in a coherence

between the ground and one-exciton states after the interaction with the first

pulse. Exciton relaxation occurs during the coherence period and influences the
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broadening of the absorption spectrum. The linear absorption spectrum of an

aggregate in the presence of population transfer is given by

IðoÞ ¼ Re

ð1
0

dt expðiotÞ
XN
k¼1

dgk
�� ��2 exp �iEkt � gkkðtÞ � Kkk;kkt

� � ð32Þ

where Kkk;kk is the population decay rate from the kth level of the one exciton

state and Ek is the static energy of the kth exciton state and gkkðtÞ is the exchange
narrowed line-shape function which is given by

gkkðtÞ ¼ CkgðtÞ ð33Þ

For completely localized states, we have Ck ¼ 1. Therefore the line broadening

function for the aggregate is the same as that for monomer. In the absence of

static disorder, we have Ck 
 1
N
. In other words, the width of absorption spectrum

of the aggregate becomes significantly narrower. The narrowing results from the

fact that delocalized exciton states average over the disorder in the transition

frequency of the individual molecules. Due to the presence of the disorder in the

system, the degree of the delocalization of the exciton in the aggregates is

smaller than the actual size of the aggregates.

The procedure for calculating both the linear absorption spectrum and

the third-order nonlinear signals is shown schematically in Fig. 24. After

diagonalizing the Hamiltonian, we construct the exciton wavefunctions and

energies and calculate the transition dipole moments. Then we calculate the

exciton population transfer rates from the expression for the Redfield tensor

with the spectral density of the phonon. Inserting the solution of Eq. (30) into

the linear and third-order response functions and taking into account the finite

laser pulse duration, we calculate the third-order nonlinear signals. These

procedures are repeated over different sets of static energies of the monomer

until our calculated result converges.

The width of the absorption spectrum for the aggregate is significantly

narrower than that for monomer as a result of the exchange narrowing. As the

value of the static disorder decreases, the exciton becomes more delocalized in

the aggregates and the width of the absorption spectrum decreases when we

only consider the exciton structure and the exchange narrowing mechanism.

Now exciton population transfer contributes to the width of the absorption

spectrum via lifetime broadening, and the width of the absorption spectrum no

longer depends on the degree of the delocalization. The fast nuclear fluctuations

of the monomers appear as exciton energy fluctuation and population transfer in

the exciton basis. The energy fluctuations are subject to the exchange

narrowing, and the population relaxation produces lifetime broadening. Because
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of this, in contrast with static disorder (which is completely exchange-

narrowed), the dynamical disorder is not completely subject to the exchange

narrowing. Knoester and co-workers [126, 127] investigated the effect of the

dynamic disorder in the optical line shapes for circular aggregates and arrived at

a similar conclusion. For small aggregates, they found that the exchange

narrowing factor is equal the number of molecules in the aggregate, while for

large aggregates it saturates. The number of molecules at which it saturates

depends on the amplitude of the fast fluctuation and the intermolecular

coupling.

Figure 25 summarizes the processes included in the calculation in a pictorial

fashion. The procedure outlined in Figs. 24 and 25 is combined with the

calculated electronic couplings for B850 (Sections III.C and VI.E), a line-shape

function obtained by fitting photon-echo peak shift data and static disorder

from hole-burning and other experimental methods; the absorption spectrum

and photon-echo peak shift decay are calculated for B850, without adjustable

parameters [40] (Fig. 26). The agreement with both experimental measures is

rather good, including the slow decay of the echo peak shift evident from

200 fs to 1 ps. What do the timescales evident in the peak shift decay of

Monte Carlo Sampling over  Static Site Energies
Construction of Exciton States (Energies and Wavefunctions)
Calculation of Transition Dipole Moments

Evaluation of Population Transfer Rates
Construction of Linear and Nonlinear Response Functions

Convolution Integral of the Response Function and Laser Pulse
Creation and Evolution of Electronic and Nuclear Superposition 
Wavefunctions

Convolution Integral of the Response Function and Laser Pulse
Creation and Evolution of Electronic and Nuclear Superposition
Wavefunctions
Calculate Linear and Nonlinear Polarization

Lineshape Function for Fast Phonon Modes

Laser Pulse Shape

Ensemble
Average

Figure 24. Schematic diagram of the procedure used to calculate the linear absorption and

third-order nonlinear signals in molecular exciton systems. See Ref. 124.
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Fig. 26 represent? To investigate this, we consider the following ansatz: The peak

shift decay (t�ðTÞ versus T) can be approximated as a product of a term describing

the exchange narrowing effect and a term describing population relaxation:

dt�ðTÞ � t�exchangeðTÞ
t�exchangeð0Þ � dxðTÞ ð34Þ

where

dAðTÞ � AðTÞ � Að1Þ
Að0Þ � Að0Þ

is a normalized peak shift on population term and

xðTÞ � PDðTÞ
PDðTÞ þ PAðTÞ ð35Þ

where t�exchangeðTÞ is the echo peak shift of the exchange narrowed system when

exciton relaxation is turned off, PDðTÞ is the weighted (by the oscillator strength

and the laser spectrum) sum of population remaining on the initially prepared

states, and PAðTÞ is the (similarly) weighted sum of the population on states

transferred to that are within the laser bandwidth.

The points in Fig. 27 are calculated exactly from the full theory for two

different values of the diagonal disorder. The solid lines are calculated

according to the ansatz of Eq. (34). For a large value of the disorder, the
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Figure 26. Comparison for the absorption spectrum and three-pulse-echo peak shift

determined from experiment for the B850 band of LH2 with that calculated using the model

described in the text. Parameters are the same as in Fig. 23 (right panel), plus a spectral density (see

Ref. 40).
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agreement between the exact result and the factored form is quantitative. For the

small disorder, the two results deviate slightly, because the disorder is not large

enough to entirely decorrelate the energy levels, but still the agreement is very

good. The insets show the population relaxation contribution showing that both

fact and slow exciton relaxation can be captured by the photon-echo peak shift

method.

Finally, it is possible to make a pictorial representation of the exciton

dynamics in B850 of LH2. Figure 28 shows the density matrix at 0 fs, 50 fs, and

100 fs in both the exciton basis (upper) and the site basis (lower). In interpreting

Fig. 28, it is important to recall that two levels of ensemble averaging are

involved in generating the microscopic observable. First, the density matrix

approach averages over the fluctuations induced by the phonon modes, and,

second, after the phonon-averaged molecular response is calculated, an average

over the static disorder is required. The plots in Fig. 28 contain only the first

average. Turning to the plots themselves, note that the initial excitation is highly

delocalized with two nodes evident in the site basis at the position of monomers

whose transition dipoles lie perpendicular to the excitation polarization. Within

50 fs, the excitation becomes localized on groups of 2–4 molecules (site basis),

and the coherence evident in the off-diagonal ðk 6¼ k0Þ amplitudes in the exciton

basis has almost disappeared. By 100 fs, the exciton representation is almost

fully diagonal and the exciton populations (diagonal terms) have redistributed.

The clear localization to 2–4 molecules in the site representation suggests that a

reasonable physical image of the dynamics can be visualized via Fig. 23. Noting

that the Redfield equations for the population relaxation contain the overlap of

the wavefunctions of the initial and final states, the picture emerges of excitation

Figure 27. Illustration of the ansatz described by Eq. (34). The points represent the exact

calculated photon-echo peak shift, while the solid line is calculated via Eq. (34). The insert shows

the population term [Eq. (35)]. The Left panel is for a disorder (s) of 160 cm�1, and the right panel

is for s ¼ 320 cm�1. Other parameters are as in Figs 23 and 26.
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‘‘hopping’’ from one set of 2–4 molecules to an adjacent set of similar size. To

what an extent is the hopping description justified. This can be quantified by

considering the ratio of the hopping and dephasing rates. In the delocalized

exciton picture, electron–phonon coupling is responsible for both the exciton

hopping and dephasing processes. While the hopping rate between a pair of

exciton states is proportional to spatial overlap of the states, the dephasing rate

of an exciton state is proportional to the self-overlap of the spatial distribution

of the state. Figure 29 shows the ratios of the two quantities as a function of J=s
for a 18-Chl ring when s is fixed at 150 cm�1. For a given value of J=s, we take
an average of the ratio over many realizations of static energies which determine

spatial distributions of the partially delocalized exciton states. The black

symbols are for the case when the mean energy of 18 Chls is identical, and the

red symbols are the case when two Chls with an energy difference of 530 cm�1

are arrayed alternately. In both cases, the hopping rate is less than half of the

dephasing rate when J � 300 cm�1, which corresponds to the case of LH2. In

other words, in the partially delocalized exciton picture, we can ignore

coherence transfer, and the incoherent hopping process over the partially

delocalized exciton states seems to be a reasonable description of the energy

transfer dynamics in LH2.

F. Energy Transfer in PS-I

Figure 30 shows the results of global fits to the fluorescence decay of

Photosystem I obtained by Kennis et al. [128] using the upconversion technique.

0.1
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Figure 29. Ratio of exciton population relaxation rate Sð Þ to the exciton pure dephasing rate

�ð Þ as a function of J=s, where J is the electronic coupling and s is the disorder. s ¼ 150 cm�1 for
B850 of LH2. The upper curve is for eab ¼ 0, and the lower curve is for eab ¼ 550 cm�1. As S=�
increases, energy transfer becomes more coherent.
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The global fit of data recorded throughout the PSI fluorescence spectrum yielded

four exponential components: 360 fs, 3.6 ps, 9.8 ps, and 38 ps. The longest time

scale corresponds to the overall trapping time by the reaction center in PSI. A

major difficulty of such fitting attempts is knowing whether the other time scales

can be ascribed to specific physical processes or result from complex averages of

microscopic time scales. In Ref. 128 the 360 fs was assigned to equilibration

among Chla pigments in the bulk antenna, while the 3.6-ps component was

associated with equilibration between bulk Chla and the red-shifted Chls, which

seem unique to PSI. The 9.8 ps may relate to interactions between monomeric

PSI units in the naturally occurring trimer.

Using calculated transition frequencies for all 96 Chls, spectral densities

from experiment that reflect the inhomogeneity in electron–phonon coupling

discussed in Section V.B, and the theoretical formalism described in Section

VI.C, Yang et al. calculated the time scales of fluorescence decay in a PSI

0 2000 4000 6000

F
lu

or
es

ce
nc

e

727 nm

Time (fs)

705 nm

687 nm

668 nm

Figure 30. Fluorescence upconversion data from PS-I as a function of emission wavelength.

Global fits to the data are also shown. See Ref. 139 for details.
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monomer following excitation of a subset of Chls on the blue side of the

spectrum (640–660 nm). Figure 31 shows the amplitudes and time scales

(inverse of the rate matrix eigenvalue) for four different detection windows.

Negative amplitudes correspond to a rising, and positive to a decaying,

component. The plots in Fig. 31 reveal a small number of clusters of time

constants which we divide into four groups: sub-100 fs, 0.3 ps, 2–3 ps, and 35–

40 ps. Given that the fluorescence up-conversion study of Kennis et al. most

likely did not have the time resolution to obtain the sub-100-fs components, the

correspondence with the experimental data is striking. The 9.8-ps component

does not appear strongly in the calculated result, suggesting that it is indeed

associated with trimer formation.

Analysis of the decay associated spectra (DAS) with 10-nm resolution

confirms the physical picture of the various time scales. The shortest time scales

correspond to energy flow out of highest-energy Chls. The 0.3-ps component

appears as a decay in the 650- to 670-nm windows and as a major rise at 680–

700 nm (680 nm is the maximum of the absorption spectrum). The 2- to 3-ps

Figure 31. Calculated time scales of fluorescence decay in a PS-I monomer as a function of

emission wavelength [97]. Excitation is at 640–660 nm, and the panels show the amplitudes of

eigenvalues of the rate matrix for four different detection wavelengths. The amplitudes clearly

cluster into four groups: <100 fs, 
300 fs, 2–3 ps, and 38 ps, with the latter representing the overall
trapping time.
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component appears as a rise only in the 690- to 710-nm window and

corresponds to a steady flow of excitation from the blue to red via the 660- to

690-nm region during this time period. Finally, the 35- to 40-ps component is

obtained as a major decay component at all wavelengths above 670 nm. This

demonstrates that a steady state in the spectral distribution is reached before the

longest time scale; in this steady state, excitation energy has been depleted in

the blue region of the spectrum.

The remarkable consistency of the calculated and experimental time scales

suggests that the calculations can be utilized to explore the microscopic details

of the energy transfer processes. Such an analysis leads to the following

conclusions:

1. The overall trapping time scale in PSI (
40 ps) has two main

contributions: (a) Excitation energy diffusion in the antenna and transfer

from the antenna to the RC Chls for the first time, which we refer to as the

primary rate-determining step (RDS). This process contributes about 54%

of the total time scale. (b) Subsequent processes that lead to the arrival of

the excitation at P700 after the excitation has arrived at the RC. We call

this the secondary RDS, and it includes energy transfer back to the

antenna. The secondary RDS contributes the remaining 46% of the total

trapping timescale, and it distinguishes PSI from the LHI/purple bacterial

RC system where the equivalent of the primary RDS accounts for

essentially the entire trapping time scale. This difference arises from

(a) the energetic difference of the primary electron donor (P860) from the

remaining RC components, which means that the antenna transfers only to

the P860 and that P860 cannot transfer to the other RC components;

(b) the lower dimensionality of the purple bacterial system; and (c) the

absence of linker Chls in the bacterial system making the final step from

LHI to P860 by far the slowest (
35 ps) in the overall trapping time scale

of 
50 ps.
2. Spectral equilibration occurs within the antenna in less than 5 ps and leads

to a state characterized as a transfer equilibrium state, rather than a

thermodynamic equilibrium state. By this we mean that single exponential

fluorescence decay kinetics are observed at all detection wavelength on

timescales longer than 5 ps.

3. As described in Section V.A, the energy configuration of the six RC Chls

and two ‘‘linker’’ Chls is highly optimized for efficient trapping at P700

by forming a quasi-funnel structure.

4. The energy configuration of the remaining 88 Chls of PSI does not (at

room temperature) influence the overall trapping time greatly. This arises

from the high connectivity (dimensionality) of the PSI antenna, which

mitigates against trapping of excitation on energetically unfavorable sites.

118 gregory d. scholes and graham r. fleming



This makes the system very robust with respect to energetic disorder,

again in contrast to the purple bacterial system which is quasi-

one-dimensional.

5. The orientations of the antenna pigments (via their influence on the

Coulombic couplings) do influence the efficiency of trapping to a

moderate extent. The model suggests an electron transfer time scale in the

range 0.87–1.7 ps from P700 to the primary electron acceptor, and this

time scale does not have a strong influence on the overall trapping time

scale.

VII PROTECTION AGAINST PHOTOCHEMICAL DAMAGE

Highly reactive, photo-oxidative species are inevitable byproducts of photo-

synthesis, and plants, cyanobacteria, and photosynthetic bacteria have evolved

various mechanisms to deal with this problem. By far the most sophisticated

mechanisms exist in green plants. An excess photon flux can exacerbate the

damage caused by these intermediates, leading to problems ranging from

reversible decreases in photosynthetic efficiency, to, in the worst case, death of

the plant. Carotenoid molecules (Cars) constitute a key component of the

protection system in all photosynthetic systems. In addition, carotenoids also act

as light-harvesting pigments, providing spectral coverage between the Chl Qy/Qx

and Soret bands. In some species, at least 95% of the excitation absorbed by the

carotenoids is transferred to the B(Chls), while in other species significantly

lower efficiencies are reported.

A crucial aspect of the photoprotective role of Cars is their ability to

efficiently quench chlorophyll triplet states, thereby preventing the formation of

excited, singlet oxygen by triplet–triplet energy transfer from its 3
P�

g ground

state:

3 1Car 3Chl�
� �! 3 3Car� 1Chl

� �
1 3O2

3Chl�
� �! 1 1O�2

1Chl
� � ð36Þ

The mechanism of the efficient Chl-Car TT-EET has been investigated by

Damjanovic et al. [129], but quantitatively accurate calculations of the electronic

coupling have not yet been possible. Both triplet–triplet energy transfer and

sensitization of singlet oxygen are mediated by interactions that depend on

orbital overlap. Calculations are therefore highly sensitive to the accuracy of the

wavefunctions. We note that a purely exchange-mediated interaction only

operates when the wavefunctions are orthogonal and do not interpenetrate. The

most significant orbital overlap-dependent coupling involves exchange of

electrons by coupled, screened one-electron matrix elements [75, 130]. It is
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straightforward to write down and compare the matrix elements corresponding to

the EET processes of scheme (36), but this seems to be of limited practical use

until it is possible to quantify such electronic couplings for realistic systems.

The mechanism of the efficient Chl-Car triplet–triplet transfer has been

investigated by Damjanovic et al. [131], but quantitatively accurate calculations

of the electronic couplings have yet not been possible.

In the singlet manifold, carotenoids have, like all polyenes, an unusual

electronic structure: The first excited state S1ð Þ has the same symmetry, A�g , as
the ground state, and thus one-photon transitions from S0 to S1 are forbidden. In

other words, the S1 state does not appear in the absorption (or emission)

spectrum of carotenoids (with more than 9 double bonds), which is dominated

by the very strong S0 ! S2 Bþu
� �

transition. Carotenoids also possess a state of

B�u symmetry, which may lie near S2, though evidence for the spectroscopic

observation of this state remains controversial [132–135]. Finally, some unusual

carotenoids with polar substituents, such as peridinin, may also have low-lying

charge transfer states [42, 136, 137].

A decade ago it was considered that all carotenoid (B) Chl energy transfer

was mediated through the S1 state of the carotenoid because S2 ! S1 internal

conversion would be too fast (100–200 fs) to allow significant transfer from S2.

More recently, it was concluded that a significant fraction, up to 100%, of the

Car-Chl energy transfer does, in fact, take place from S2. Although neither the

Dexter nor Forster theories provide satisfactory predictions, we showed in

Section III.D that Car S1 states can have significant Coulombic coupling with

Chl molecules despite the forbidden nature of the S0 ! S1 transition. Thus

whether or not Car S1 states play a role in energy transfer depends on the

location of the S1 state with respect to the (B) Chl Qx and Qy states. In the next

section, we briefly describe recent experiments to determine the energies of S1
states of photosynthetic carotenoids.

A. Carotenoids: Energy of the S1 State

Two different methods have been used recently to determine the S0–S1 spectrum

of carotenoids. Our group has utilized the two-photon allowed character of the

S0–S1 transition to populate S1, followed by subsequent detection of either S1–Sn
absorption or (B) Chl fluorescence resulting from S1–Qy energy transfer to

determine the spectrum. Figure 32 shows both the energy level scheme and the

excitation spectrum result for sphaeroidene, the carotenoid in the LH2 complex

of Rb. sphaeroides. Note that the S1 state lies in the region of negligible one-

photon absorption between the strongly allowed B800/B850 (Qy) bands and the

Car S0–S2 band (Fig. 32). The fact that the S1 lifetime of sphaeroidene is reduced

from a solution value of 9 ps to 1.9 ps in LH2 is clear evidence for efficient

S1 ! BChl energy transfer. In contrast, the S1 state of rhodopin glucoside the

carotenoid present in LH2 of Rps. Acidophila lies at too low an energy for
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efficient S1 ! Qy transfer and the S1 lifetime in the complex is essentially

unchanged from solution. Table V summarizes the energy transfer time constants

and efficiencies for these two species. Such variations in the effectiveness of Car

to Chl transfer seem quite common even for the same carotenoid in different

contents. For example, the efficiency of b-carotene to Chla transfer is

significantly higher in Photosystem I of plants and cyanobacteria than it is in

the various light-harvesting complexes associated with Photosystem II in the

same species [138–142].

The second method of obtaining the energy of the S1 state was developed by

Polivka, Zigmantis, Sundstrom and co-workers. It involves populating S2 with

an ultrashort laser pulse, allowing S2–S1 internal conversion to proceed and then

scanning the S1–S2 absorption in their near-infrared [143]. The S1 state energy

is then obtained by subtraction. For reasons that are not entirely clear, the two-

photon and near-IR probe methods do not always agree precisely on the S1 state

energies, although differences are quite small in most cases. For some
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Figure 32. Left: Level scheme, excitation, and probing steps for carotenoid–chlorophyll

interactions. Right: Two-photon excitation spectrum of sphaeroidene obtained by detecting

fluorescence from Bchl in LH2 of Rb. Sphaeroides. See Ref. 156.

TABLE V

Calculated Car S1–BChl Energy Transfer Time Constants and Efficiencies

Species tS1=ps tET1=ps fET1 fOAð9;11Þ fET2 fET1f21 f21

Rb. sphaeroides 1:9� 0:5 2:4� 0:5 80% >95% >75% <20% <25%

Rps. acidophila 6:5� 0:5 >25 <28% 
70% >60% <10% <40%

fOA ¼ fET2 þ fET1f21
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carotenoids, fluorescence and resonance Raman methods have been used to

obtain S0–S1 energies, but these are extremely difficult to apply in intact

photosynthetic complexes.

B. Regulation of Energy Transfer Efficiency

Photosystem II of plants [144] (specifically the D1 protein) is damaged

sufficiently to require dismantling and repair in about 30 minutes in bright

sunlight. To achieve even this degree of robustness, light harvesting in

Photosystem II is highly regulated on both long and short time scales, by which

in this context we mean hours versus minutes. The short-term regulation process

is called nonphotochemical quenching (NPQ), which involves thermal dissipa-

tion of excitation energy-absorbed in PSII that exceeds a plant’s capacity for CO2

fixation [145]. Feedback de-excitation or energy-dependent quenching ðqEÞ
[146, 147] is the major rapidly reversible component of NPQ in a variety of

plants. qE is characterized by a light-induced absorbance change at 535 nm

[148], the shortening of the overall chlorophyll fluorescence lifetime (or

equivalent reduction in fluorescence yield) [149]. It requires the buildup of a

pH gradient across the thylakoid membrane, under conditions of excess light.

The pH gradient, in turn, triggers the enzymatic conversion of the carotenoid

vioaxanthin (Vio) to zeaxanthin (Zea) via the xanthophylls cycle [150]. In

addition, the presence of a specific pigment-binding protein, Psbs (CP22) is

essential for qE [151].

Currently, two hypotheses concerning the mechanism of qE exist, one in

which the effect of Zea is solely structural (called indirect quenching) and the

other in which Zea acts as an energy acceptor for excitation transfer from the

Chl Qy state (called direct quenching). Clearly, the direct quenching mechanism

depends strongly on the relative Qy–S1 energies levels of the Chl and Car

molecules. Using the near-IR probing method, Polivka et al. found that in

solution both Vio and Zea S1 states lie below the Chl Qy energy and could both

act as quenchers in principle, although Vio does not [143]. Very recently, Ma

et al. [152] found strong evidence for the formation of the Zea S1 state following

Chl excitation, only under conditions of maximum qE. This result appears to

strongly support the direct quenching mechanism, but much remains to be

clarified before a molecular mechanism for NPQ is at hand.

VIII. SUMMARY AND CONCLUSIONS

Early studies—for example, the work of Arnold and co-workers [153, 154] and

Duysens [155]—exposed the role of energy transfer in the capture of light by

chlorophyll pigments and subsequent transfer to a trap. Such studies were

considerably aided by Förster theory, which provided a means to predict energy

transfer rates based on simple experimental observables.
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In recent years, ultrafast spectroscopies revealed the most rapid energy

transfer events in photosynthetic proteins, which could not be readily explained

by predictions from Förster theory. As high-resolution structural models became

available and more realistic models for light harvesting were explored, it

became clear that conventional Förster theory was missing some essential

element of the problem. A number of possibilities were discussed, including the

possibility that orbital overlap effects were important. Finally, we realized that

(i) we needed to think about molecular aggregates differently than molecular

pairs—we needed to retain structural information in the model for EET as in the

GFT model; (ii) we had to learn how to calculate Coulombic couplings between

molecules which led to the development of the TDC method; (iii) we needed to

incorporate such ideas into dynamical models for large, complex aggregates in

order to simulate various ultrafast spectroscopies, including photon echoes.

At this point, we can suggest some open questions:

1. The Exact Nature of the Protein as a Phonon Bath and Dielectric

Environment. At this point there exists no satisfactory quantitative

description of dielectric screening and local field effects in energy

transfer, except in the limit of large donor–acceptor separations (the 1=n4

factor). This appears to be an important point to resolve, since the effect

on the rate can amount to a factor of 
 4. A particular challenge will be to

calculate or measure medium effects in a protein as opposed to a dielectric

continuum.

2. The Time Scales and Mechanism of ‘‘Quasi-coherent’’ Excitation Hopping

Within B850/B875 Rings. This appears to be an area where simple theory

cannot apply. It will be a challenge for experimentalists and theorists to

address this issue collaboratively. For example, it is not clear whether

linear coupling to a harmonic bath is adequate to describe such systems.

For example, it may be necessary to include multiphonon and Duschinsky

effects on the dynamics in order to describe the influence of temperature

on such systems.

3. The Signatures of Interactions Between Carotenoids and Chlorophylls in

Ultrafast Experiments. These interactions are not well-characterized at

present. The influence of orbital mixing [156] and the potential formation

of low-lying charge transfer states between carotenoid and chlorophyll

molecules [157] should be detectable spectroscopically. An understanding

of these interactions will help to elucidate the role of carotenoids in

mediating long-range Chl–Chl energy transfer and in the poorly

understood phenomenon of nonphotochemical quenching described in

Section VII.B.

4. The Mechanism of Energy Flow in Photosystem II. Partly because of the

lack of atomic-level structural information and partly because the energy
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landscape of Photosystem II is nearly flat, giving no time-scale separation

between energy and electron transfer dynamics, the overall energy flow

within the Photosystem II supercomplex is not understood in detail.

Because of the size and complexity of the entire system—in particular, the

need to incorporate regulatory systems—some kind of coarse-graining

will almost certainly be necessary. Yang and Fleming [158] have

developed a ‘‘domain’’ model that enables the identification of bottle-

necks and key time scales in any disordered antenna system. The model

requires a rate matrix for the system, but given this, the method provides a

systematic way to define compartment models of the type often used

intuitively to describe energy transfer in multicomponent systems. Energy

flow in PSII will require modeling of EET between pigment–protein

complexes. Here questions of excitation delocalization become critical

since they define ‘‘short’’- and ‘‘long’’-range interactions. It will be

interesting to ascertain the role, if any, of molecular aggregates (i.e.,

Generalized Forster Theory) in this process.

5. The Experimental Characterization of Spatially and Energetically

Disordered (in Both the Diagonal and Off-Diagonal Senses) Energy

Transfer Systems. Despite the great advances in ultrafast spectroscopy,

characterizing multicomponent systems where both electronic and

electron–phonon couplings are distributed remains a challenge. Multi-

dimensional spectroscopy [159]—in particular, the two-color photon echo

[160]—holds promise for significantly more incisive studies of such

systems, but considerable development work, both experimentally and

theoretically, remains to be done.
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I. INTRODUCTION

Small finite systems exhibit solid- and liquid-like behavior much like that of bulk

matter and, on the other hand, exhibit specific, quite interesting properties that

distinguish them from the bulk [1–3]. ‘‘Small’’ is defined here with respect to the
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range of the interaction potential: A system is small if its linear size is of the

order of the potential range. In molecular clusters with Coulomb interaction

included, most of the sizes amenable to computer simulations are small.

To define a phase in a cluster is not a straightforward task [4]. We speak

about phase-like forms, with specific pair-distribution functions [5], that help to

distinguish between different thermodynamic states in small systems. In what

follows we use terms ‘‘phase change’’ and ‘‘phase transformations’’ for small

systems, preserving the term ‘‘phase transitions’’ for bulk matter.

A first-order transition is characterized in the mean field theory or the

Ehrenfest scheme by a discontinuity in a suitable order parameter and the

specific heat has a d-function singularity. However, the mean field theory is

inaccurate in the vicinity of phase transitions, because it neglects the role of

thermodynamic fluctuations. For instance, it predicts a finite discontinuity in the

heat capacity at the ferromagnetic transition, which is implied by Ehrenfest’s

definition of ‘‘second-order’’ transitions. In real ferromagnets, the heat capacity

diverges to infinity at the transition. In the modern classification scheme, which

we think is correct for finite-size systems as well, the first-order phase

transitions are those that involve a latent heat. During such a transition, a

system either absorbs or releases a fixed (and typically large) amount of

energy. Because energy cannot be instantaneously transferred between the

system and its environment, first-order transitions are associated with

‘‘mixed-phase regimes’’ in which some parts of the system have completed

the transition and others have not. Hence, an important indication of a first-order

transition is the presence of metastable states in the transition region where

the free energy has two local minima and the system may be trapped in the

upper metastable state for a time shorter than the relaxation time of that

metastable state. When the system is perturbed in a metastable state (e.g., by a

temperature change), it may exhibit a two-step relaxation, a feature typical of a

first-order transition. It is important that the relaxation time of the new

metastable state, at a new temperature, could be so long that the state may

mistakenly be considered as a stable one (the true equilibrium state). The

macroscopic manifestation of trapping in metastable states is hysteresis in the

cooling and heating branches of the internal energy [6], that is, the system’s

behavior in the transition region depends on its thermal history. Some systems

may have several local minima in their free energy [7], which can give rise

to the stable coexistence of three or even more phases-for small systems, of

course.

For most systems, the mean temperature of a phase change shifts toward low

temperatures with the reduction of the cluster size [8]. (Recently, exceptions to

this general behavior have been observed [9–11].) The phase changes of finite-

size systems are rounded-off and occur smoothly through the points of equal

chemical potentials, even though they are sharp and effectively discontinuous in
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the bulk. (It has been predicted that, instead of discontinuities at the points of

equal chemical potentials, clusters should show discontinuities in the equili-

brium constants for two-phase equilibrium, at the temperatures at which local

minima for a phase disappears [1], analogous to the limits of spinodal curves,

but such discontinuities have not yet been observed.) Hence distinguishing

between a discontinuous transition and a continuous (no latent heat) transition

in a small system is a challenging task for both simulations and real

experiments. In fact, some phase changes of small systems that have the

characteristics that would identify them as first-order become second-order if

the system is made large enough.

In a number of publications [12], classification of phase transitions in small

systems has been presented. This scheme is based on the distribution of zeroes

of the canonical partition function in the complex temperature plane. Among

others, Gross has suggested a microcanonical treatment [13], where phase

transitions of different order are distinguished by the curvature of the entropy

S ¼ kB ln �ðEÞ. According to this scheme, a back-bending in the micro-

canonical caloric curve TðEÞ ¼ 1=dE ln ð�ðEÞÞ (i.e., the appearance of negative
heat capacities) is a mandatory criterion for a first-order transition. Caloric

curves without back-bending, where the associated specific heat shows a hump,

are classified as higher-order transitions.

In simulations, however, the observation or nonobservation of back-bending

effect might be an artifact of the computations. Hence, analytical theories are

needed to confirm any statements. Some light has been shed on the origin and

nature of the order–disorder structural phase changes on the basis of symmetry

considerations [14]. We have shown that the near-neighbor intermolecular

interactions of a cluster can be cast in terms of local molecular and site

symmetry in a manner that accounts for the multistep phase changes that these

clusters exhibit. In particular, we have shown how translation–rotation and

rotation–rotation interactions enter into the Oh–D4h–½D3d� transition of TeF6 to

yield a phase change with two local free-energy minima for the small system,

but only rotation–rotation interactions enter into the lower-temperature phase

change from partial to complete orientational ordering of the molecules on a

monoclinic lattice, a change that, according to all indications, involves only a

single local free-energy minimum.

Clusters, with their relatively short time scales, exhibit dynamic equilibrium

between different phases, with passage between phases typically in the gigahertz

range. This is how they exhibit phase coexistence [6, 7] within a temperature

interval [15] rather than at a unique temperature (for a given pressure), typical

of bulk phase transitions. Here we study the effect that width has on the

detection of coexisting phases in the case of a discontinuous transition.

Most MD studies [6,16–20] of molecular clusters have been performed at

constant energy. The current results have been obtained in canonical MD
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simulations. A question then arises: What can be learned about the

microcanonical behavior of a system that has a first-order phase transition as

revealed by its canonical solution? A general answer is well known: If a system

is infinite and extensive (i.e., the interaction is not long-range), then

microcanonical and canonical behavior are the same. However, clusters of

AF6 molecules can be considered as having infinitely long-range interaction

(due to Coulomb interaction), and of course the infinite system size limit can

hardly be applied here. Thus, it is instructive to compare the similarities and

differences of results obtained from different ensembles in the case of plastic

clusters, because the equivalence of the thermodynamic ensembles is under

question.

Section II briefly reviews some arguments about the applicability of one or

another ensemble in studying various aspects of small systems. For example,

negative heat capacities can be detected in microcanonical ensembles [21–24] if

the entropy has a convex dip. The canonical ensemble of the same system does

not show any negative heat capacity [25], which is consistent with the general

theory; for example, the heat capacity is proportional to the energy variance in

the canonical ensemble and can never be negative.

Here we address as well the question of the ergodicity of small systems

undergoing phase transformations. It can be addressed by a comparison of the

present results with those obtained from canonical Monte Carlo simulations

[26].

In Section III we present the potential used to simulate the thermal behavior

and evolution of free molecular clusters. The thermostat is described with the

Nosé–Hoover algorithm [5, 27]. Section IV describes first-order changes of the

clusters found by detection of coexisting phases for both TeF6 and SF6 clusters

of various sizes; predictions are made regarding the bulk transition temperature.

In Section V, the continuous transformation associated with the molecular

orientation is illustrated with TeF6 clusters. Finally, we draw conclusions about

how to relate the transformations observed in small systems to their bulk

counterparts.

II. ENSEMBLES

By definition, the microcanonical ensemble contains all possible configurations

in the 6N-dimensional phase space with the same energy and a constant

probability of being in each configuration; N is the number of particles in the

system under consideration. This ensemble describes an isolated system with

constant N and V, or constant N and zero external pressure [28]. Constant-energy

simulations are not recommended for equilibration because, without the energy

flow facilitated by the temperature control methods, the desired temperature

cannot be achieved. However, during the data collection phase, if one is
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interested in exploring the constant-energy surface of the conformational space,

or, for other reasons, does not want the perturbation introduced by temperature-

and pressure-bath coupling, this is a useful ensemble. This is the best ensemble

for free-surface clusters.

In contrast, a system in contact with a thermal bath (constant-temperature,

constant-volume ensemble) can be in a state of all energies, from zero to arbitrary

large energies; however, the state probability is different. The distribution of the

probabilities is obtained under the assumption that the system plus the bath

constitute a closed system. The imposed temperature varies linearly from start-

temp to end-temp. The main techniques used to keep the system at a given

temperature are: velocity rescaling, Nosé, and Nosé–Hoover-based thermostats.

In general, the Nosé–Hoover-based thermostat is known to perform better than

other temperature control schemes and produces accurate canonical distribu-

tions. The Nosé–Hoover chain thermostat has been found to perform better than

the single thermostat, since the former provides a more flexible and broader

frequency domain for the thermostat [29]. The canonical ensemble is the

appropriate choice when conformational searches of molecules are carried out

in vacuum without periodic boundary conditions.

The constant-temperature, constant-pressure ensemble (NPT) allows control

over both the temperature and pressure. The unit cell vectors are allowed to

change, and the pressure is adjusted by adjusting the volume. This is the

ensemble of choice when the correct pressure, volume, and densities are

important in the simulation. This ensemble can also be used during equilibration

to achieve the desired temperature and pressure before changing to the constant-

volume or constant-energy ensemble when data collection starts.

The constant-temperature, constant-stress ensemble (NST) is an extension of

the constant-pressure ensemble. In addition to the hydrostatic pressure that is

applied isotropically, constant-stress ensemble allows you to control the xx, yy,

zz, xy, yz, and zx components of the stress tensor (sometimes also known as the

pressure tensor). This ensemble is particularly useful if one wants to study the

stress–strain relationship in polymeric or metallic materials.

The constant-pressure, constant-enthalpy ensemble (NPH) is the analogue of

constant-volume, constant-energy ensemble. Enthalpy H ¼ E þ PV is constant

when the pressure is kept fixed without any temperature control.

Conventional molecular dynamics (MD) and Monte Carlo (MC) simulations

explore only parts of the entire phase space (MD) or configuration space (MC)

of complex systems with rugged potential energy surfaces due to the finite time

of the computations. Thus MD trajectories are usually trapped in one of the

local potential energy minima for a long time or MC samples a part of the

configuration space, eventually leading to inaccurate thermodynamic quantities.

Such a problem should be carefully solved in simulation studies of protein

folding and phase transitions.
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Several novel simulation strategies have been proposed to address such

quasi-ergodic behavior. The multicanonical ensemble, developed by Berg

and Neuhaus [30] and Lee [31] is one of the most powerful methods for

overcoming the problem of quasi-ergodicity. In the multicanonical ensemble,

the potential energy distribution covers a wide energy range. As a result, a

broad potential energy landscape can be explored by the scheme and, more

importantly, correct canonical distributions can be reproduced. In actual

implementations, the multicanonical distribution is obtained by introducing a

weighting function resulting from the conventional canonical sampling at high

temperature [32]. Usually, preparation of the weighting function is a tedious and

time-consuming process. However, once the multicanonical distribution is

established, the canonical distributions at various temperatures can be easily

obtained by a simple reweighting technique [33]. Recently, several attempts

have been made to simplify the generation of the multicanonical ensemble [34]

and to study structural transitions in biomolecules [35]. Furthermore, it has been

shown that the multicanonical ensemble could be combined with other novel

simulation methods to accelerate overall sampling efficiency [36].

III. EVOLUTION OF FREE CLUSTERS FROM

CANONICAL MOLECULAR DYNAMICS

We represent the cluster as composed of rigid molecules interacting through a

sum of pairwise atom–atom potentials of Lennard-Jones and Coulomb types

[37]:

Uði; jÞ ¼
X7
a;b¼1

4Eab
sab

r
ab
ij

 !12

� sab

r
ab
ij

 !6
2
4

3
5þ qiaqjb

4pE0r
ab
ij

2
4

3
5 ð1Þ

U ¼
Xn

i; j¼1ði< jÞ
Uði; jÞ ð2Þ

The Lennard-Jones potential parameters a, b, Eab are chosen [20] to agree

with diffraction experiments [17]. The charge q has been computed with the

help of a linear combination of plane orbitals (LCPO) [37] or of Gaussian

orbitals (LCGO). In both cases, q is significantly less than 1e; qF ¼ 0:1e in TeF6
(LCPO); qF ¼ 0:25e in TeF6 (LCGO) [38].

The constant temperature (canonical) ensemble is realized following

Hoover’s approach [5] to the Nosé algorithm [27]. An additional degree of

freedom is introduced in the system to describe the heat reservoir (bath). The
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temperature is controlled by a ‘‘friction,’’ �:

dqi
dt
¼ pi

mi

dpi
dt
¼ � qU

qpi
� �pi

d�

dt
¼

X
i

p2i
2mi

� gkbT

 !�
M

ð3Þ

where g is the number of degrees of freedom, qi and pi are the positions and

momenta respectively, mi is the molecular mass, and kb is the Boltzmann

constant.

The parameter M, which has the meaning of a bath size, governs the heat

transfer rate between the system and the reservoir. Too small M means

decoupling of the new degree of freedom from the physical system (Fig. 1),

resulting in a bimodal distribution of the kinetic energy (much like a set of very

M_bath = 20
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Figure 1. The new degree of freedom decouples from the system if its mass is too small.
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weakly coupled harmonic oscillators; Fig. 2) rather than the desired Gaussian

distribution. Likewise, it should not be too large; if it is, the heat reservoir is

‘‘too heavy’’ and one has to wait too long to establish thermal equilibrium. The

optimal bath size depends both on the system size and the interaction potential.

For the potentials studied here, a suitable bath size is M ¼ 200 for a 59-

molecule TeF6 or SF6 cluster, while M ¼ 300 is optimal for a 137-molecule

cluster. Figure 3 illustrates the mean kinetic energy of the cluster immersed in a

bath with a suitable mass. (We use mean kinetic energy to measure temperature;

in a canonical system, this choice is not controversial, as it would be for a

microcanonical system. There, the mean kinetic energy and the derivative of

energy with respect to entropy are not necessarily equivalent and the two

choices may lead to different conclusions.) The proper choice of the bath mass

becomes very important in the transition region. Our systematic study showed

that the mass plays a role similar to that of the total energy in the

microcanonical ensemble for placing the system into a state that is entropically

unfavorable.

A more extensive sampling of the phase space can be achieved by

introducing a chain of thermostats [39], rather than a single bath. Such an

Figure 2. The system and the bath behave like coupled harmonic oscillators if the bath mass is

rather small.
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approach increases the computational time about 10–15% for the smallest

clusters, without essentially improving the temperature control. However, a

chain of thermostats is extremely important for proper simulations of large,

flexible biomolecules.

IV. PHASE COEXISTENCE IN FIRST-ORDER SOLID–SOLID

TRANSFORMATION OF CLUSTERS

The clusters we study are known from constant energy simulations [6, 16, 18, 40]

and experimental data [41] to undergo at least two temperature-driven

orientational order–disorder transformations below the freezing point. The

current study confirms the finding [16] that there are two successive

transformations: First, when the cluster is cooled below its range of solidifica-

tion, it exhibits a discontinuous solid–solid transformation, involving partial

molecular orientation and lattice reconstruction. A further cooling induces

Figure 3. The proper bath size (M¼ 200 for a 59-molecule cluster) ensures the desired mean

temperature.

second- and first-order phase transitions 139



Figure 4. Phase coexistence of orientation-disordered and orientation-ordered phase in TeF6
clusters of various sizes: (a) 137 molecules (Q¼ 300, T¼ 93.3K, T0¼ 92.5K), (b) 89 molecules

(Lennard-Jones potential energy, Q¼ 300, T¼ 88K, 5-ns run), (c) 59 molecules (Q¼ 200,

T¼ 76K, T0¼ 76K).
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another change of the cluster—a continuous solid–solid transformation to a

completely oriented structure.

One way to see that a transition is discontinuous is to detect a coexistence of

two phases, in this case the orientationally ordered and disordered phases, in a

temperature interval. This is revealed by time variation of the potential energy

of the cluster. In the temperature region of phase coexistence, each cluster

dynamically transforms between the phases, and its potential energy fluctuates

around two different mean values (Fig. 4). In an ensemble of clusters, the

coexistence of different phases is observable insofar as a fraction of the clusters

(e.g., in a beam [17]) can exhibit the structure of one phase, while another

fraction takes on the structure of another phase.

Figure 4 shows the dynamical coexistence of two structures as a function of

cluster size: The examples are 137-, 89-, and 59-molecule TeF6 clusters. In

panels a–c the orientation-disordered phase has a higher potential energy (and

higher entropy) than the orientation-ordered phase. The free energy is the

same of course for both when the fractions are equal. (One more difference

between phase coexistence of bulk and small systems is that the latter may

exhibit coexistence of unequal fractions of two phases—that is, of phases

with somewhat different free energies. Likewise, ensembles of small

Figure 4. (Continued)
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homogeneous systems may exhibit coexistence of more than two phases in

equilibrium [1].)

The temperature range of dynamical coexistence is narrower for the larger

clusters than for the smaller, as seen in Table I. This compilation shows the

dependence of the mean transformation temperature and the width of the

temperature interval as a function of the cluster’s linear size L 
 N1/3 d, where N

is the number of molecules and d is the average distance between them in a

crystalline state.

The relative increase of the linear size is 
0.86, from one to the next of the

reported clusters. The transformation temperature increases in a more

complicated way and reaches a plateau at about 50d. These results allow us

to estimate the transition temperature for bulk to be about 215 K, which is 5%

less than the observed bulk transition temperature [17].

The shrinkage of the coexistence temperature interval is one factor that

makes it difficult to detect dynamical coexistence in large clusters. The other is

that the fraction of the unfavored phase decreases with the number of molecules

in the cluster. This dependence appears in the exponent of the ratio of the

amounts of the two phases—that is, in the exponent of the equilibrium ratio of

concentrations [1]. One necessarily must compute an extremely long phase

trajectory in order to distinguish between two different phases and especially to

establish the equilibrium ratio of the amounts of the two phases. This explains

why absence of coexistence was reported [42] in simulations of clusters

containing more than 500 molecules.

We have succeeded in detecting coexisting phases in clusters of SF6

molecules both in constant-energy simulations [6] and in the current, constant

temperature calculations (Fig. 5).

Just below the freezing point the solid clusters have continuous rotational

symmetry, which breaks at lower temperatures because of the spontaneous

alignment of the molecules along preferred orientations, as can be seen in Fig. 6.

This is a plot of the mutual orientations of the molecular axes of symmetry in

the disordered and ordered solid state.

We check whether the cluster is solid by computing a modification of the

Lindemann index [43] and by plotting the radial distributions of the molecular

Table I

L(Å) Tc dT (K)


591=3d ¼ 3:89d 76 3.2


891=3d ¼ 4:46d 88 1.7


1371=3d ¼ 5:16d 93.3 0.7


2271=3d ¼ 6:10d 97.8 0.2
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Figure 5. Dynamically coexisting phases in an 89-molecule SF6 cluster (T¼ 58K, 50 fs/rec).

The potential energy surface of a sulfur cluster is shallower than that of a tellurium cluster with the

same size, and the SF6 cluster spends less time in any phase.
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Figure 6. Orientational distribution of the molecular axes in a liquid and an oriented solid state

of a tellurium cluster.



centers of mass. The radial distribution of a liquid-like system should have a

typical periodic pattern [5]. To characterize a liquid-like state of a cluster and

differentiate it from a solid, we use the quantity dlin � 0:08. Here dlin is

computed from

dlin ¼ 2

NðN � 1Þ
XN

i; jð> iÞ¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iji � hriji2

q
hriji ð4Þ

where jrijj ¼ jriðtÞj � jrjðtÞj and h:i denotes time averaging. For bulk, dlin � 0:1
corresponds to a melted phase. (The original Lindemann index used displace-

ments from equilibrium, rather than interparticle distances, as the fluctuating

quantities.)

The radial distribution of the molecular centers of mass is computed from

gðrÞ ¼ NormhPN
i¼1
PN

j 6¼iðr � rijÞi. The normalization factor Norm ensures that

the integral of g(r) over r gives N. The plot in Fig. 7 shows the appearance of

structures when the cluster is cooled down.
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Figure 7. The radial distribution of a 59 TeF6 molecule cluster in coexisting region. Two

structures (up-configuration, down-configuration) are mixed and the peaks are split.
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To understand the difficulties in detecting coexisting phases in large clusters,

let us discus the ergodicity of a system. One signal for the phase transition is a

change of time scale necessary to establish global, rather than just regional

ergodicity. One can ask about a complex system, ‘‘How long does it take to

establish ergodicity?’’ The answer to this question was studied for atomic

clusters by looking at the distribution of sample values of Liapunov exponents

as a function of the length or duration of the trajectory of the system used to

evaluate the exponents [44]. It was found that in the solid–liquid coexistence

region, the distribution of Liapunov exponents was bimodal if they were

estimated from short trajectories, but the distribution became unimodal if the

trajectories were made longer. In the case of molecular clusters we observe that

long computations, due to truncation error in the number presentation, could

bring the cluster in a region of the multidimensional phase space where

coexistence cannot be observed [6]. (It is also possible that a cluster may pass

between phases so rapidly that the time spent in one phase is too brief for

thermal equilibration. This phenomenon, known for some small Lennard-Jones

clusters [45], makes it literally impossible to distinguish phase coexistence.

Instead, one can only observe a sort of dynamic ‘‘slush.’’)

The potential surface of our system is extremely rugged, with high barriers

and bottlenecks [6]. Very long trajectories develop nonzero probabilities or rates

to pass through these bottlenecks. Therefore the evolution of the system depends

on its history. The time to establish ergodicity may be too long for practical

simulations which are usually limited to the scale of nanoseconds. Even if the

system is technically ergodic, we may not be able to observe such ‘‘inhibited’’

passages, and the probability that any given system visits specific regions of its

phase space may depend sensitively on the starting configuration. This is

especially important in the vicinity of a phase change, where the time to

establish ergodicity increases.

What is important in the observation of nanosize systems is that phases that

are metastable in large systems are actually thermodynamically stable, but are

minority species, in ensembles of small systems. The metastability of a

thermodynamically unfavored bulk phase is indeed a result of a nonequilibrium

population of that phase. However, in an ensemble of small systems, an

unfavored phase can easily be not so very unfavored and, in fact, may have an

observable minority population. The smoothness of the phase change of small

systems is reflected in the continuous change—with temperature, for example—

of the ratio of (observable) amounts of the two species. Moreover, more than

two phases can be present simultaneously, in equilibrium, if the systems are

small like Ar55 [7].

The mean transition temperatures obtained in molecular dynamics simula-

tions of a canonical (Can) and a microcanonical (Mic) ensembles differ slightly
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but systematically:

Size;N TcðCanÞ, K TcðMicÞ; K

59 76 78

89 88 90

137 93.3 95

227 97.8 101

In these small systems the different ensembles do not give precisely the

same results, which is understandable: The systems are quasi-ergodic, and

thermodynamic limit is far away. The results obtained in Can and Mic

simulations converge as 1/N for clusters containing more than 100,000

molecules. The surfaces of these larger clusters contain only phase transitions

and can be neglected [46]. An illustration: In the solid–liquid coexistence range,

a microcanonical ensemble may exhibit a negative slope in the dependence of

mean kinetic energy (here used to define mean temperature) on energy, if the

entropy and potential energy of the liquid region of the potential surface are

great enough, compared with those of the solid region. A canonical ensemble

does not show this ‘‘negative heat capacity.’’

V. CONTINUOUS SOLID–SOLID TRANSFORMATION

OF CLUSTERS

In our simulations we detect the continuous solid-solid transformation for all

cluster sizes greater than 27 molecules; this corresponds to a cluster diameter

greater than about 1.5–2 nm. The caloric curves of 89-molecule clusters of TeF6
and SF6 below 50K and 35K, respectively, show changes of their slopes. One

example for a cluster of 89 TeF6 molecules is shown in Fig. 8. The heat capacity

computed from the energy fluctuations, a modified Lebowitz formula [6], shows

that the slope of the caloric curve changes at 
44K and 
37K (Fig. 9).

The orientational ordering of the molecules at low temperatures breaks the

isotropic rotational symmetry [14]. The fact that the lowest energy state has

broken orientational and translational symmetry means that the system is stiff in

both ways: Modulating the order parameter must cost some energy. The broken

rotational symmetry introduces orientational elastic stiffness and low-frequency

rotational librational waves. The higher-temperature structural transitions of

clusters of interest here break both the translational order and orientational

order. The translational aspect introduces a rigidity to shear deformations, and

low-frequency phonons (Goldstone modes) appear. Hence sound measurements

may distinguish between the two solid structures coexisting in the first-order-

like phase change.
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The rotational symmetry breaking cannot be detected in such a way; there

are no orientational Goldstone modes. One could look at Raman spectra or

neutron diffraction experiments that are sensitive to the molecular orientations.

The order parameter field for an orientation order in molecular systems can be

chosen to be a three-component field of the cosine distribution of the mutual

orientations of molecular axes. This index reveals the continuous, low-

temperature transition.

VI. CONCLUSIONS

Simulations of octahedral molecular clusters at constant temperature show two

kinds of structural phase changes, a high-temperature discontinuous transforma-

tion analogous to a first-order bulk phase transition, and a lower-temperature

continuous transformation, analogous to a second-order bulk phase transition.

The former shows a band of temperatures within which the two phases coexist

and hysteresis is likely to appear in cooling and heating cycles Fig. 10; the latter

shows no evidence of coexistence of two phases. The width of the coexistence

band depends on cluster size; an empirical relation for that dependence has been

inferred from the simulations.
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CONTENTS

I. Introduction

II. Nonlinear Differential Equations for Gene Control

III. A Differential Equation

IV. The N-Cube

A. Numerical Integration, Types of Attractors, and Decoding the N-Cube

V. Analysis

A. Linear Fractional Maps

B. Limit Cycles and Stable Foci

C. Chaotic Dynamics

VI. Combinatorics and Discrete Mathematical Approaches

A. Structural Equivalence Classes

B. Symbolic Dynamics of Bifurcations and Chaotic Dynamics

VII. The Analysis of Real Biochemical Networks

A. Sigmoidal Control of Gene Expression

B. Time Delays in Biochemical Networks

Adventures in Chemical Physics: A Special Volume in Advances in Chemical Physics, Volume 132,
edited by R. Stephen Berry and Joshua Jortner. Series editor Stuart A. Rice
Copyright # 2006 John Wiley & Sons, Inc.

{We dedicate this to Stuart Rice in honor of his 70th birthday.

151



C. Decay Rates of Compounds

D. The Thresholds for Control of Different Genes May Be Different

VIII. Conclusions

Acknowledgments

References

I. INTRODUCTION

Biological systems at the cellular level display a bewildering complexity. We are

all familiar with the charts displaying various biochemical processes such as the

citric acid cycle [1, p. 106]. These classical diagrams are now being enriched and

enhanced by results obtained using new technologies that demonstrate enormous

complexity in the organization of metabolic processes [2–4]. Scientists and

industrial concerns are interested in developing methods that can be used to

simulate such systems—including in some cases equations with hundreds, if not

thousands, of variables representing chemical concentrations of chemical species

in different subcellular compartments of the cell. Although one of the unifying

themes of science is that the real world, when understood, will be simple, there is

a growing perception that biology is complex. It is possible that biology is truly

as complex as it now appears. But we should not discount the possibility that we

are still at an early stage of understanding and that unifying simplifications will

emerge as the depth of our knowledge increases.

The current survey is based on a scheme that was conceived as a way to

relate qualitative aspects of the structure and dynamics of complex biological

sytems.

Our approach originates with an article by Jacob and Monod from the early

1960s that argued that genetic regulatory elements, which had just been

discovered as controllers of transcription of proteins in bacteria, could be strung

together to generate regulatory modules that could underly such processes as

cellular differentiation or oscillation [5]. The nonmathematical models of Jacob

and Monod were cast into a mathematical framework by several researchers

including Sugita [6], Kauffman [7, 8], and Thomas [9–11]. The main idea of this

early work was to represent genetic control circuits by Boolean switching

circuits in which time is discrete and the states of each gene at each time is also

discrete—either 1 or 0 (‘‘active’’ or ‘‘inactive’’). Kauffman proposed that

attractors of the discrete network corresponded to cell types in organisms [7].

Mathematical analysis of the properties of randomly generated Boolean

networks, often called Kauffman networks, has been an area of intense

theoretical interest [12–18].

However, since clocking devices that lead to synchronous updating of

variables are unknown in cellular biological systems, it is more natural to

develop differential equations to model the dynamics. Yet, it seems reasonable
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to preserve the connection and logic of the underlying circuit. Indeed, it is just

these interactions that are typically presented in the schematic network

diagrams of biochemists. Thus, the basic idea of the current work is to embed

the logical structure of a genetic network into a differential equation. Over the

years, differential equations in which logical or sigmoidal functions have been

embedded as a key control component have been proposed for a wide range of

different biochemical and gene networks, including networks describing

feedback inhibition [19, 20], the immune system [21], bacteriophage [22, 23],

drosophila [24, 25], and synthetic genetic regulatory networks [26, 27]. We do

not attempt a complete listing of all the relevant articles, but refer readers to

recent excellent reviews [28–31].

In the current review, we do not describe models for individual systems, but

rather we develop mathematical methods that can be used to predict and

compute the qualitative features of dynamics based on the structure of the

network. By qualitative features we mean the asymptotic dynamics of the

network including its fixed points, oscillations, or chaotic dynamics. Questions

of a qualitative nature include the patterns of change of the variables and the

ways in which the dynamics can change as the parameters describing the

equations vary. Less central to the qualitative approach is a detailed knowledge

of the parameter values describing the equations. The basic assumption, which

is unproven in general, but which has been elegantly demonstrated in a

particular genetic control network [25], is that the dynamical behavior will

emerge robustly for large sets of parameters. Indeed, it is impossible that the

detailed kinetic equations in any two cells are the same in a single individual or

species, yet cell types may be readily distinguished and classified. Moreover,

control circuits between different but related species are surely different, yet

preserve important qualitative dynamical and morphological features. Although

much current research is being driven by the vast amounts of computer power

combined with increased knowledge of biological parameters that may make

detailed quantitative models feasible, there is still the danger that the detailed

models will be fragile to small parameter changes and will in any case not yield

transparent insights into observed dynamics.

In Section II, we demonstrate this approach with an equation that

incorporates a nonlinear Hill function to model genetic control representing a

mutually inhibitory network of two elements [26], and an inhibitory loop of

three elements [27]. Although theoretical models of these types of networks

have been known for at least 30 years [20, 32, 33], they took on new life in 2000

with the construction of genetic regulatory circuits in bacteria that were well

described by the equations.

In Section III, we show that in the limit when the Hill function control

becomes infinitely steep, complex functional control can be represented by

logical functions. In this limit the continuous nonlinear differential equation
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becomes piecewise linear, and the equation can be explicitly integrated by

piecing together the linear trajectory segments. The simple two- and three-

dimensional networks can be extended to N dimensions, where N is the number

of variables. These piecewise linear equations were initially presented in

Refs. 33 and 34.

In the remainder of this review we focus on the mathematical analysis of the

piecewise linear equations largely based on earlier studies [34–48]. In Section IV

we show that the logical structure can be mapped onto a hypercube in N

dimensions, where each vertex of the hypercube represents the state of each of

the N variables, and the dynamics and logical structure in the network are

represented as directed edges on the hypercube.

We then use the hypercube representation to carry out a nonlinear dynamical

analysis of these networks. The key insight is that quantitative aspects of flows

in phase space can be computed from linear fractional maps that represent the

flows between boundaries on the hypercube. Analysis is possible because the

composition of two linear fractional maps is a linear fractional map. This

analysis is useful for analyzing steady states, limit cycles, and chaotic dynamics

in these networks.

The hypercube representation is also useful for examining problems in

discrete mathematics suggested by this work. In Section VI we count the

number of distinct networks under the symmetry of the hypercube, and we also

show how to classify chaotic dynamics.

Finally, in Section VII we discuss the applicability of these methods to study

real biochemical networks. There are many simplifications in these equations,

and there are still few rigorous results that demonstrate the applicability of these

methods to more realistic equations.

II. NONLINEAR DIFFERENTIAL EQUATIONS

FOR GENE CONTROL

A gene is a sequence of DNA bases that codes for a sequence of amino acids that

constitute a protein (see Ref. 1 for more details on molecular biology). Even

though all cells have the potential to make any protein, there are a variety of

regulatory mechanisms (still not completely understood) that determine which

proteins will be synthesized in each cell. There is also a sequence of steps

involved in translating the information contained in the DNA into the actual

synthesis of a protein. One mode of gene regulation is through a class of proteins

called transcription factors. Transcription factors bind to the DNA turning ‘‘on’’

and ‘‘off’’ the synthesis of specific mRNA molecules that carry the sequence of

target genes from the nucleus, where they are stored, to the cytoplasm, where the

mRNA sequence is translated into an amino acid sequence. We simplify this
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complex process in a schematic way by assuming that xi is the concentration of

a chemical species in a cell. Furthermore, the time rate of change of xi is

dxi

dt
¼ bihiðxÞ � gixi; i ¼ 1; . . . ;N ð1Þ

where there are N chemical species, x is a vector giving their concentrations, hi is

a function giving the control of the synthesis of the ith chemical species by the

others, and li and gi are production and decay constants. Differential equation

models of biochemical and genetic networks are often of this form (for example,

see Refs. 19–34, 37).

Recent work has constructed genetic circuits in bacteria in which there was a

loop of either two [26] or three [27] interacting genes. The transcription factor

coded by each of the genes, inhibited the synthesis of the next in the loop. The

behavior in this type of network can be modeled by the differential equation

dx1

dt
¼ b1

yn11
yn11 þ xn1N

� g1x1;
dxi

dt
¼ bi

ynii
ynii þ xnii�1

� gixi; i ¼ 2; . . . ;N ð2Þ

where xi is a concentration of a transcription factor, and yi and ni are constants

that can be determined from experimental data. The nonlinear function

regulating control is called the Hill function, and ni is called the Hill coefficient.

By including additional equations for the mRNA molecules, these equations can

be made more realistic [27]. However, this modification does not affect the

qualitative aspects of the dynamics, and therefore in this chapter we do not

include explicit equations for mRNA. These and other closely related equations

have also been considered and analyzed much earlier [32, 34, 35] as abstract

models of nonlinear chemical networks and their properties are well known in

some special cases. We summarize this analysis.

To simplify matters we assume that all the Hill coefficients are equal and are

given by n, that all the decay and production coefficients are equal to 1, and that

yi ¼ 1=2 for all values of i.

Figure 1 gives the phase plane portrait of Eq. (2) for N ¼ 2, n ¼ 6. In this

two-dimensional model there are two stable fixed points and an unstable saddle

point. At the stable fixed points, one of the transcription factors is at a high

concentration and inhibits the synthesis of the other factor. This forms the basis

for the synthesis of the toggle switch in Ref. 26. Of course, in the real systems,

there were major difficulties in constructing a system that had appropriately set

parameters. To appreciate this, notice that the eigenvalues of the fixed point at

x1 ¼ x2 ¼ 1=2 are given by l1;2 ¼ �1� n=2. Consequently for values of

n < 2, there is only a single stable fixed point and a toggle behavior would not

be predicted.
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Figure 2 shows a time trace of the dynamics for N ¼ 3, n ¼ 6. Now the

dynamics follow a stable limit cycle oscillation. This forms the basis for the

synthesis of the repressilator [27]. In this case the eigenvalues of the fixed point

at x1 ¼ x2 ¼ x3 ¼ 1=2 are l1 ¼ �1� n=2 and l2;3 ¼ �1þ n=4� ffiffiffi
3
p

ni=4 [34].
In this case there is a Hopf bifurcation when n ¼ 4 so that for values of n > 4

there is a stable limit cycle oscillation corresponding to the repressilator. If the

equations for the dynamics of mRNA are included, then oscillations are still

found, but now oscillations can be found for smaller values of the Hill

x1

x2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1. Phase portrait for the bistable toggle switch of Eq. (2) with N ¼ 2, and for i ¼ 1, 2

using ni ¼ 6, yi ¼ 1
2
; bi ¼ gi ¼ 1.

t
0 2 4 6 8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Figure 2. Time trace for the ‘‘repressilator’’ of Eq. (2) with N ¼ 3 and other parameters as in

Fig. 1 for i ¼ 1; 2; 3.
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coefficient, n [27]. If we take the limit ni !1 in Eq. (2), we generate a

piecewise linear equation that can be explicitly integrated [33, 34, 37, 38, 47].

This observation forms the basis for the generalization of this example to a

much more general class of equations.

We repeat these simple examples from earlier work since they form a major

justification for the elaborations we report below, and if they are understood

well, then much of what follows should be clear. The dynamics in the

differential equations are in qualitative agreement with the dynamics in the

synthetic genetic networks in E. coli. One important aspect of biology is to

understand the ways in which the organization and structure of the control

networks can be used to predict the dynamics. Thus, we would like to develop

methods that could be used to predict the dynamic behaviors just demonstrated

without integrating or carrying out the stability analysis of the differential

equations.

III. A DIFFERENTIAL EQUATION

A Boolean switching network with N elements is represented by

Xiðt þ 1Þ ¼ FiðXi1ðtÞ;Xi2ðtÞ; . . . ;XiK ðtÞÞ; i ¼ 1; . . . ;N ð3Þ

where FiðXi1ðtÞ;Xi2ðtÞ; . . . ;XiK ðtÞÞ 2 f0; 1g and K is the number of inputs to each

element. This is a discrete time and discrete state space system which, therefore,

must eventually reach a fixed point or cycle under iteration.

Since biological systems are not believed to have clocking devices that

simultaneously update the network, a differential equation would be a more

suitable class of mathematical model. The logical structure of Eq. (3) can be

captured by a differential equation [33, 34, 38]. To a continuous variable xiðtÞ,
we associate a discrete variable XiðtÞ,

XiðtÞ ¼ 0 if xiðtÞ < 0; otherwise XiðtÞ ¼ 1 ð4Þ

For any logical network, we define an analogous differential equation,

dxi

dt
¼ �gixi þ fiðXi1ðtÞ;Xi2ðtÞ; . . . ;XiK ðtÞÞ; i ¼ 1; . . . ;N ð5Þ

where fiðXi1ðtÞ;Xi2ðtÞ; . . . ;XiK ðtÞÞ is a scalar whose sign is negative (positive) if

the corresponding logical variable FiðXi1ðtÞ;Xi2ðtÞ; . . . ;XiK ðtÞÞ is 0 (1). Notice

that fi makes explicit the control function hi in Eq. (1). In the biochemical

context, all variables will be positive. By a change of variables, we can make all

variables positive. This would also lead to a positive value for the thresholds that

are used to define the Boolean state and that are taken to be equal to 0 in Eq. (4).
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For each variable, the temporal evolution is governed by a first-order

piecewise linear differential equation. Let ft1; t2; . . . ; tkg denote the switch times
when any variable of the network crosses 0. The solution of Eq. (5) for each

variable xi for tj < t < tjþ1, is

xiðtÞ ¼ xiðtjÞe�ðt�tjÞ þ fiðXi1ðtj� Þ;Xi2ðtj� Þ; . . . ;XiK ðtj� ÞÞð1� e�ðt�tjÞÞ ð6Þ

where tj� is any time in ðtj; tjþ1Þ. This equation has the following property. All

trajectories in a given orthant in state space are directed toward a focal point. If

the focal point lies in a different orthant from the initial condition, then, in

general, a threshold hyperplane will eventually be crossed. When the threshold

hyperplane is crossed, a new focal point will be selected based on the underlying

equations of motion. This equation is also a generalization of equations, often

called Hopfield networks, that model neural systems [39, 40, 48].

Even though Eq. (5) is more realistic than Eq. (3) as a model for biological

systems, this equation still is highly oversimplified. Yet this equation has

remarkable mathematical properties that facilitate theoretical analysis. More-

over, there is an expectation, demonstrated in some simple examples like those

discussed above, that the qualitative dynamics in the model system will be

preserved in more realistic versions, for example when the discontinuous step

functions are replaced by continuous sigmoidal functions [33, 34, 37]. As

mentioned above, synthetic gene networks have been created that show some of

the simple types of dynamical behavior found in our class of networks—in

particular, bistability (two fixed points) [26] and oscillation in an inhibitory

loop [27].

IV. THE N-CUBE

These differential equations admit striking properties that lie at the heart of our

analysis [34, 38]. In general, only one variable will cross its threshold at a given

time. As a consequence, the flows in the differential equation can be mapped

onto a Boolean hypercube, where each vertex of the hypercube represents an

orthant of phase space, and each edge of the hypercube represents the open

boundary between two neighboring orthants. Each edge is directed depending on

the orientation of the flow across that boundary. Thus a coarse-grained picture of

the allowed dynamics can be appreciated from the digraph on the N-dimensional

hypercube (the N-cube).

As an example, consider the truth tables that are appropriate for the toggle

switch with two variables, and the repressilator, shown in Table I. The associated

N-cubes are shown in Fig. 3. The orientations on edges are determined using the

following algorithm. First define the Hamming distance between two Boolean
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TABLE I

Boolean Switching network for Networks that Correspond to

the Structure of (a) Fig. 3a, and (b) Fig. 3b.a

X1 X2 ðtÞ X1 X2ðt þ 1Þ
0 0 1 1

0 1 0 1

1 0 1 0

1 1 0 0

(a)

X1 X2 X3ðtÞ X1 X2 X3ðt þ 1Þ
0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 0

0 1 1 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 1 0 1 0 0

1 1 1 0 0 0

(b)
aDifferential equations associated with these truth tables are

defined by Eqs. (4) and (5) with gi ¼ 1, where we assume that

fi ¼ 1 is associated with Fi ¼ 1 and fi ¼ �1, with Fi ¼ 0.

0001

1011

000001

010011

100101

110111

(a) (b)

Figure 3. Hypercube structures for the bistable toggle switch of Table Ia and, Ib, respectively.
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states to be the number of digits in which they differ. From each Boolean state at

time t in the left-hand column of the truth table, determine the Hamming

distance to the next state at time t þ 1 in the right-hand column of the truth

table. Now draw directed edges from each vertex to all adjacent vertices that lie

on a shortest (undirected) path from the vertex corresponding to the state at time

t to the vertex corresponding to the state at time t þ 1. This will generate a

number of directed edges corresponding to the Hamming distance between the

two states.

This construction has special properties for the situation in which the

differential equations have no self-input; that is, Xi is NOT one of the inputs of

Fi in Eq. (5) [36]. In this case, the Hamming distance from each column of the

truth table at time t to the same column at time t þ 1 is 2N�1, so that the total

Hamming distance for the whole truth table is N � 2N�1. This number is

identical to the number of edges in the N-cube. Furthermore, from the condition

of no self-input, no edge can be directed in two different orientations.

Consequently, on the N-cube, each edge is directed in a unique orientation and

there is a 1:1 correspondence between the N-cube and the truth tables of

Boolean networks with no self-input. Furthermore, the N-cube representation

that shows the allowed flows between neighboring orthants for any differential

equation of the form in Eq. (5) can be constructed. Conversely, if thresholds are

known, then by observing dynamic behavior, it should be possible to determine

the underlying logical structure of the network.

An underlying motivation for our mathematical analysis is to answer the

following questions: Once the logical structure in Eq. (3) of a network is set,

then what are the possible dynamics in the associated differential equation,

Eq. (5), for any choice of parameters? What are the dynamics for each

particular set of parameters? We are only able to answer this question in some

limited cases.

A. Numerical Integration, Types of Attractors,

and Decoding the N-Cube

Because of their simple mathematical structure, these differential equations

admit a simple method for integration. The method consists of setting an initial

condition and determining the set of times, ti, when xi ¼ 0 from Eq. (6).

However, if the system is in an orthant such that none of the variables will ever

cross 0 (i.e., the focal point coordinates fi have the sign of xi for each i), the

system will approach a steady state in that orthant. Otherwise, the system will

cross to a new orthant at the time tmin ¼ minftig. Once again, using Eq. (6), the

equations can be analytically integrated, and then the process is iterated.

These equations can display a whole range of qualititatively different types

of dynamics, including fixed points (nodes or stable foci), limit cycles, chaos,

and quasi-periodicity. In this section we briefly describe these different types of
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behavior, and in the next section we develop analytic methods to analyze

particular networks.

Nodes occur when a focal point lies in its own orthant, as described above.

Clearly they are asymptotically stable, because all trajectories in that orthant

must converge to the focal point. The signature for a stable node in the N-cube

graph is a vertex with N-edges directed toward it (e.g., the states 01 and 10 in

Fig. 3a).

Stable foci occur when two or more variables switch in some sequence but

approach zero as the number of switchings approaches infinity, while all other

variables (if any) converge to some (possibly nonzero) value. Thus, stable foci

typically have an associated cyclic sequence of orthants through which an

approaching trajectory passes. A necessary condition for a stable focus is a

cycle on the N-cube digraph. We say that a cycle has dimension k if k is the

dimension of the smallest hypercube on which the given cycle can be drawn.

Limit cycles are closed trajectories toward which at least some nearby

trajectories converge and they of course have an associated cyclic sequence of

orthants, through which the limiting trajectory passes. When the focal points

have coordinates that are all �1 [i.e., all fi ¼ �1 in Eq. (5)], it is possible for a

limit cycle to involve simultaneously switching variables, but this is a

nongeneric situation that we do not consider further here [44]. A necessary

condition for a limit cycle is once again a cycle in the N-cube. Sharper results

are available for a class of cycles called cyclic attractors. In a cyclic attractor,

each vertex on the cycle is adjacent to N � 2 vertices not on the cycle, and all

the edges from these vertices are directed toward the cycle. The cyclic attractor

in two dimensions is associated with a stable focus, whereas all cyclic attractors

in higher dimensions are associatedwith stable limit cycle oscillations (see Ref. 38

for a proof). For example, there is only one three-dimensional cyclic attractor,

and this is the cycle found for the repressilator (Fig. 3b). However, this class of

stable limit cycles represents only a very small fraction of the actual number.

Quasi-periodicity arises if there are two or more disjoint stable limit cycle

attractors in which none of the variables of one of the cycles receive inputs from

the variables involved in the other cycles, and the periods of all cycles are

noncommensurate.

Chaotic dynamics are by definition aperiodic dynamics in deterministic

systems with sensitive dependence on initial conditions. Although many refer to

chaotic dynamics in Eq. (3), this does not conform to standard nonlinear

dynamics terminology since such systems have a finite state space and must

necessarily cycle. However, in Eq. (5), chaotic dynamics are possible and have

been demonstrated numerically and analytically in some example networks [42,

46]. We have no way to predict whether any particular logical structure is

capable of generating chaotic dynamics for some set of parameters. A necessary

condition for chaotic dynamics is that there is a vertex that lies on at least two
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different cycles. In the next section, we develop mathematical techniques to

analyze the dynamics.

V. ANALYSIS

A. Linear Fractional Maps

In many cases the dynamics in Eq. (5) are amenable to theoretical analysis. The

main theoretical insight is that if all the decay constants gi are equal, the maps

that take the flows from one orthant boundary to the next have a simple form

called a linear fractional map:

MðyÞ ¼ Ay

1þ hf; yi ð7Þ

where y 2 RN is a point on the initial orthant boundary (in an N-dimensional

network), A is an N � N matrix, f 2 RN , and hf; yi represents a vector dot

product between f and y. A and f depend on the focal point coordinates fi of the

flow for the orthant being traversed. The composition of two linear fractional

maps of the same dimension is once again a linear fractional map. As a

consequence of this property, if there is a cycle, then we can analytically (usually

with the assistance of a computer) compute the return map for a given cycle of

orthants starting on a particular orthant boundary crossing (Poincaré section).

Since we start and end on the same orthant boundary, we can suppress that

coordinate in A;f, and y, so that the dimension of the return map for a cycle will

be one less than the dimension of the network. The remainder of this section

deals only with the case in which all the decay constants are equal so that we can

exploit the properties of the return map.

B. Limit Cycles and Stable Foci

Using the return map, it is possible to prove the existence and stability of limit

cycles analytically [38, 41, 44]. The linear fractional return map is defined on a

region (called a returning cone) that may be only part of the orthant boundary,

from which trajectories follow the cycle of orthants under consideration. The

returning cone is defined in terms of a set of linear inequalities, also calculated

from the focal point coordinates. Calling flig the eigenvalues of the

ðN � 1Þ � ðN � 1Þ matrix A and letting l1 be the dominant eigenvalue and v1
its corresponding eigenvector, stable periodic orbits through a given cycle of

orthants correspond exactly to the following conditions being met:

1. l1 > 1 (and real).

2. l1 � jljj, for j > 1.

3. v1 lies in the returning cone (or on its boundary).
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If l1 ¼ jl2j, then stability is only neutral. If v1 lies on the boundary of the

returning cone, then the cycle is degenerate in the sense that somewhere around

the cycle there occurs a simultaneous switching of two or more variables in the

limit t!1.

Thus, if numerical integration suggests convergence to a limit cycle, this can

be confirmed or disproved by selecting any orthant boundary crossing along that

cycle and calculating the return map and the returning cone, as well as the

eigenvalues and eigenvectors of the map. If the above conditions are met, then it

is indeed a stable limit cycle. If not, then integration should be continued as the

trajectory must eventually deviate from the purported cycle. Of course, these

calculations to verify the existence of a stable limit cycle must also generally be

done by computer and so accuracy must be considered. In the class of networks

with all focal point coordinates at �1 and no self-input, the matrix A and the

vector f in the return map have integer components and detðAÞ ¼ 1.

If a repeating sequence of orthants is checked by the above procedure and the

dominant eigenvalue, l1, is exactly 1, then the cycle corresponds to a stable

focus [44]. There must still be an eigenvector in the returning cone, but l1 ¼ 1

and detðAÞ ¼ 1 imply jljj ¼ 1 for all j, so it will often happen that l1 has an

eigenspace of dimension greater than 1, which makes it more difficult in

practice to check whether the eigenspace intersects the returning cone.

Limit cycles in networks of dimension as small as four can be surprisingly

long and complicated, even when the focal point coordinates are all �1. For
example, the network with logical structure depicted in Fig. 4 has an

asymptotically stable limit cycle in which 174 switches take place before the

cycle repeats. Projections of the phase portrait of this limit cycle attractor are

shown in Fig. 5. The existence and stability of this limit cycle were confirmed

analytically by the methods outlined above. We have found four-dimensional

networks with confirmed limit cycles involving as many as 252 switches

before repeating. Gedeon [48] has constructed four-dimensional networks with

focal point coordinates tuned so that limit cycles of arbitrary length can be

obtained.

C. Chaotic Dynamics

Numerical simulations in some networks, even some with all fi ¼ �1, seem to

show irregular behavior that persists indefinitely. However, we also know that

there are very long and complicated limit cycles such as the one in the previous

subsection. So it is not clear a priori whether the apparently irregular behavior in

such networks truly reflects chaotic attractors or whether we are seeing long

transients or very long stable periodic orbits. There are, however, analytic

methods to demonstrate in particular examples that trajectories do not approach

such long stable periodic orbits. The results for the existence and stability of limit

cycles from the previous sections are useful in this regard.
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If we look at a particular orthant boundary on such a trajectory, consider it as

a Poincaré section, and determine the cycles followed by the trajectory that pass

through this boundary, there will in general be several of them that we can label

A, B, C, and so on. The trajectory can then be represented as a sequence of these

cycles, a ‘‘word’’ made up of the symbols or letters A, B, . . . , at least as long as

the trajectory always returns to the starting boundary. We can calculate the

returning cones for each of these cycles.

It is often possible to show that either the union of these cones or some subset

of them form a ‘‘trapping region.’’ That is, there are cones TA for the A cycle, TB
for the B cycle, and so on, such that the image of T ¼ [kTk (where k ranges over
the letters of the possible cycles) is in T. We define a (convex) ‘‘cone’’
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Figure 4. Hypercube structure of a four-dimensional network with a periodic orbit following a

cycle on which 174 switches take place before repeating. The edges traversed by the cycle are

marked by bold lines.
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(following Berman and Plemmons [49, p.2]) as a set in RN closed under non-

negative linear combinations. Recall that there is a linear fractional map

describing the returning point for every point in TA, a different linear fractional

map for points in TB, and so on. The image of TA may crosscut the regions Tk,

but we are supposing that it lies completely in the region T , and similarly for the

image of each Tk. Such a region was found, for example, in the network

described by Mestl et al. [42], where only two cycles were involved. The

number of cycles may of course depend on our choice of Poincaré section. In

practice, we look for the boundary giving the fewest cycles.

Given that we have found such a trapping region involving two or more

cycles, the question of the existence of a stable limit cycle comes down to

whether or not there is a symbolic word whose corresponding mapping has a

stable fixed point. Now the crucial property of the linear fractional maps

associated with cycles, namely that their compositions are also linear fractional

maps of the same form, comes into play. The matrix in the numerator of the

map, Eq. (7), for this composite cycle is the product (in reverse order) of the

matrices for the individual component cycles, which we can also represent by

the letters A, B, C, and so on. Thus, the cycle with symbolic word C;B;A;B has

a Poincaré map with matrix BABC in the numerator. The scaling represented by

the denominator guarantees that trajectories starting on the same ray converge

under iteration (while staying on the same ray), so the dynamics are essentially

those of the matrix multiplications, modulo the radial direction. It is necessary

in the end to show that the radial convergence is not to the origin if we are to

have a true chaotic attractor. An immediate consequence of the observation that

all points on a ray must converge under iteration is that chaotic dynamics is not

possible for 3-cubes since in three dimensions, the projection of a ray onto a

surrounding 2-sphere must approach a fixed point or periodic path [41].

This identification of the dynamics on the Poincaré section with matrix

products, in the light of the result of the previous subsection, suggests an

approach to ruling out the existence of stable periodic orbits. In order for a

stable periodic orbit to exist in a trapping region, T, in an orthant boundary, there

must be a word W whose corresponding matrix has its dominant eigenvector in

T. The strategy then, is to show that dominant eigenvectors of all words in A, B,

C, etc., are confined to some region of RðN�1Þ not including T. This is made

feasible by generalizations of the Perron–Frobenius Theorem, which guarantee

that the dominant eigenvector of a matrix lies in a proper (i.e., closed, with

K [ ð�KÞ ¼ f0g and nonempty interior [49]) cone, K, if that cone is invariant

under the matrix multiplication—that is, if AK � K. Then a proper cone K that

is invariant for all our cycle matrices, A, B, C, . . . simultaneously, is invariant for

any word W composed of these matrices, and therefore the dominant

eigenvector of any such word lies in K. To ensure that the dominant eigenvector

is unique (so that we can’t have another dominant eigenvector outside of K and
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therefore possibly in T), we need words W to map K into the interior of K. If

some of the individual cycle matrices map some boundary points of K to

boundary points of K, then we require at least that words beyond some finite

length map K to its interior and then we can check short words individually for

dominant eigenvectors in T.

The method of proof of nonexistence of limit cycles in a trapping region T is

thus to look for a proper cone, K, that is invariant for all the cycles possible from

T and ensure that it does not intersect T (except at the origin). This sounds like a

difficult task, and indeed it is not trivial, but for 3 � 3 matrices and few cycles

(2 is easiest), it is often possible to construct such a common invariant cone

from eigenspaces of the matrices involved, their intersections, and their images.

An initial attempt to tackle this problem of common invariant cones in general

can be found in Ref. 50. Some specific examples of N ¼ 4 networks are shown

to have trapping regions with no stable limit cycles by the above approach in

Ref. 46.

For example, consider the four-dimensional network

_xx1 ¼ �x1 þ 2ð�XX3X4 þ X2X3Þ � 1

_xx2 ¼ �x2 þ 2ðX1
�XX3X4 þ �XX1X3X4 þ �XX1

�XX3
�XX4Þ � 1

_xx3 ¼ �x3 þ 2ð�XX1X2 þ X1X4Þ � 1

_xx4 ¼ �x4 þ 2ðX2
�XX3 þ �XX1X3Þ � 1

ð8Þ

where �XXi ¼ 1� Xi. Note that the focal point coordinates are all �1. Figure 6

shows the hypercube for this network. An example trajectory is depicted in Fig. 7.

If we consider a Poincaré section on the boundary (þ, þ, þ, 0), the trajectory in

Fig. 7 follows only two cycles of orthants, which we call A and B:

A : 1110! 1010! 0010! 0000! 0100! 0110! 0111! 1111

B : 1110! 1010! 0010! 0011! 0001! 0000! 0100! 0101

! 0111! 1111

Cycle A is marked by bold lines in Fig. 6. This pair of cycles has a trapping

region in the (þ, þ, þ, 0) boundary [46]. Furthermore, there is a proper cone, K,

invariant for both matrices A and B (for the cycles A and B above) which

therefore contains dominant eigenvectors of every word in A and B. This cone is

depicted in Fig. 8. The points marked uA; vA, and wA in the figure are the

eigenvectors of matrix A, corresponding to eigenvalues in decreasing order of

magnitude, projected onto the unit sphere. The points marked uB; vB; and wB are

the eigenvectors of the matrix B in a similar order. The points marked z1 and z2
are intersections of planes, each spanned by two eigenvectors of one of the
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matrices. The common invariant cone, K, is the one generated by the vectors

uB; z2;�Az2, and z1 (i.e., the cone of all non-negative multiples of these vectors).

Most importantly, K does not intersect the trapping region, which therefore

contains no dominant eigenvectors of words, and so no cycle composed of cycles

A and B can possibly have a corresponding stable limit cycle. Trajectories that

get into the trapping region stay there but never reach a limit cycle or a fixed

point [46].

VI. COMBINATORICS AND DISCRETE

MATHEMATICAL APPROACHES

Our approach blends discrete methods and nonlinear dynamics. The previous

sections showed how methods of nonlinear dynamics can be used to analyze

dynamics in particular networks. However, the discrete nature of the underlying
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Figure 6. Hypercube structure of a four-dimensional network with a chaotic attractor. One of

the two cycles followed by the chaotic trajectory is marked by bold lines.
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logical structure of Eq. (3), along with the coarse-graining of the state space,

suggests a variety of discrete problems dealing with the classification of the

networks and the dynamics in the networks.

A. Structural Equivalence Classes

The classification of logical network structures imposed by the hypercube

description depends on the signs of the focal point coordinates fi associated with

each orthant of phase space, which leads to the hypercube representation of the

allowed flows.We consider that two different networks are in the same dynamical

equivalence class if their directed N-cube representations can be superimiposed

under a symmetry of the N-cube. For example, in three dimensions there is only

one cyclic attractor (see Fig. 3b), but this can appear in eight different

orientations on the 3-cube. From a dynamical perspective, exactly the same

qualitative dynamics can be found in any of these networks provided the

focal points are chosen in an identical fashion. However, from a biological

x1

x3

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

uA

vA

wA

-vA

uB

vB

wB

z1

z2

Az2

Figure 8. Invariant cone for the matrices A and B corresponding to Poincaré maps for the

network of Eq. (8), projected onto the unit sphere, indicated by solid lines. Projections of the

invariant subspaces through eigenvectors are indicated by dashed lines.
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perspective, the underlying biochemistry for the networks can be different. Thus,

the cyclic loop of three inhibitory elements in the repressilator leads to a cyclic

attractor on the 3-cube (Fig. 3b). But so does a feedback inhibition loop of three

elements in which there are two sequential activating interactions and a single

inhibitory step.

Using the Polya enumeration theorem, it is possible to compute the number

of dynamical equivalence classes as a function of N [34, 45]. A lower limit on

this number can be obtained by dividing the number of different networks by the

order of the symmetry group of the N-cube. Thus, the number of dynamical

equivalence classes is greater than or equal to

2N�2
N�1

N!2N

The results using this computation are shown in Table II. Furthermore, the lower

limit is accurate to at least seven significant figures for dimensions 5 and higher.

To get an idea of the relative numbers of different types of dynamic

behaviors, we have carried out simulation of randomly selected networks with

fi ¼ �1. Out of the 11223994 structural equivalence classes in four dimensions,

about 8 out of 1000 networks have stable limit cycles, while about 1 out of 1500

appear to be chaotic. The others go to stable foci or stable nodes. Amongst the

periodic networks, a few have very long periods and complex switching

sequences as discussed above in Section V. B. Thus, surprisingly complex but

nevertheless periodic switching behavior is possible.

With networks of five units, the number of structural equivalence classes

is already astronomical. We investigated dynamical behaviors of higher-

dimensional networks by a numerical survey of networks with N ¼ 3 to 9 units

and K ¼ 1 to N � 1 inputs per unit [51]. This showed that, at least for N in this

range, the effect of increasing the network connectivity is to decrease the

probability of converging to a stable node but increasing the probability of

converging to a stable focus, while the probability of finding a limit cycle or a

chaotic attractor seems to peak at about K ¼ 2 or 3. We also surveyed networks

TABLE II

Numbers of Distinct Digraphs on the N-Cube, Considering Symmetries

N Actual Number Lower Bound

1 1 1.000

2 4 2.000

3 112 85.333

4 11 223 994 11 184 810.666

5 314 824 455 746 718 261 696 314 824 432 191 309 680 913.066
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with much larger N in the case where K ¼ 2. As the number of network units

increases, the number of stable foci and stable nodes both decrease, while the

number of limit cycles and chaotic attractors increase, though the probability of

chaos remained below 10% for N up to 200. Finally, in randomly constructed

networks where N is large, say greater than 50, and K > 8, the usual

circumstance is that either the dynamics are chaotic or there are exceedingly

long transient irregular dynamics [52].

B. Symbolic Dynamics of Bifurcations and Chaotic Dynamics

The above analysis of chaotic dynamics (Section V.C) in terms of symbol

sequences, where symbols represent hypercube cycles (or equivalently the

matrices in the cycle maps), shows that the chaotic attractors can be understood

in terms of properties of the symbol sequences. The set of possible symbol

sequences for one of these chaotic networks can be thought of as a ‘‘formal

language’’ in the sense used in computer science [47]. For example, we

investigated a chaotic network in which only two cycles were involved, A and B,

but for which the sequence BB was not possible. The symbolic dynamics is that

of the ‘‘golden mean map’’ of dynamical systems theory [44]. A bifurcation

parameter allowed us to shift the dynamical regime from chaotic to periodic, but

even within the chaotic range, changes in behavior could be identified, giving

novel types of bifurcation of chaotic dynamics. For example, we found a value of

the bifurcation parameter at which the ‘‘language’’ of the chaotic attractor

changed from a two-letter to a four-letter one. Beyond the bifurcation, symbols C

and Dwere required as two other cycles became possible from the Poincaré map.

Another bifurcation occurs when the symbol sequence BB becomes possible

[47]. These methods provide new ways to study bifurcations of the allowed

symbolic representations of chaotic dynamics and provide an area for future

mathematical research.

VII. THE ANALYSIS OF REAL BIOCHEMICAL NETWORKS

In the above, we have given a computational scheme that allows us to define the

connections and interactions between components in biochemical networks and

to determine the dynamics in the resulting networks. For an arbitrary network, it

is not possible to give a precise description of the dynamics without carrying

out numerical simulations. However, all the networks obey certain dynamic

rules that are set by the structure as embodied in the directed N-dimensional

hypercube. Moreover, for networks that show certain structural features, such

as cyclic attractors, it is possible to make precise statements about the

dynamics even without further mathematical analysis or simulation. In other

cases, analytical techniques are available to give insight into the dynamics

observed—for example, in the cases in which it is possible to prove limit cycles
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or chaotic dynamics. We expect that further development of the mathematical

techniques given here will enable even more insight into the dynamics of these

networks.

Independent of the development of a rigorous mathematical framework, a

large number of studies have been carried out modeling real biological control

networks by differential equations in which the logical structure is explicitly

considered. We do not review all such studies, but representative examples

include analysis of gene control in: the immune system [11, 21], the repressilator

[27], lambda phage [23], and the toggle switch [26]. In all these cases the

underlying logical structure of the network is capable of predicting important

qualitative features of the associated differential equations that more precisely

model the dynamics.

Since there are many important qualitative differences between real

biological systems and our model networks, it is possible that the methods

described above will be applicable to only a small range of model systems. Yet,

there are reasons to believe that the methods will be applicable to a broad class

of systems. In the remainder of this section, we discuss several different ways in

which our model equation does not capture the properties of real biological

systems, and then we give arguments why the methods may still apply.

The current equations are not realistic for many reasons: (i) Control of gene

expression is not on or off but is graded; (ii) there may be time delays associated

with synthesis or degradation of gene products, or with the transport of mRNA

or transcription factors between different cellular compartments; (iii) decay

rates of different gene products are different; (iv) although a single gene product

might control expression of many different genes, the threshold levels for

activation and/or inhibition may be different for different targets.

We wish to comment briefly on each of these factors and describe its

influence on the dynamics of complex networks.

A. Sigmoidal Control of Gene Expression

In initial studies of model gene and biochemical networks, sigmoidal functions,

such as the Hill function, were employed to model gene control. Simulations by

ourselves and others showed that provided the sigmoid was sufficiently steep, the

qualitative features of the dynamics were the same as with the step function

control [19, 20, 32, 37]. Thus, for networks in which there are stable limit cycle

oscillations, although the period of oscillations might change, there is still an

oscillation with the same pattern of activity [37]. Furthermore, for chaotic

networks, the statistical properties of the chaotic dynamics appears to be the

same for very steep continuous sigmoidal functions, or for step functions [39,

40]. As the sigmoidal functions become steep, the dynamics can pass through a

sequence of bifurcations of increasingly complex periodic behaviors before the

chaos is established [39, 40]. Mestl and co-workers [53] proved that limit cycles
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that persist in sigmoid function networks with arbitrarily steep sigmoids must

also exist in the limiting step function network. It has not been proven that limit

cycles in a step function network persist under perturbation to sufficiently steep

sigmoids. We are also not aware of any results concerning the stability of the

chaotic dynamics. This is an area ripe for further mathematical studies.

Viewed from the biochemical side, it is interesting to consider the extent to

which a logical description (usually employing sigmoids) is an appropriate

idealization for biological control. There is a large body of experimental data

that demonstrates sigmoidal control and attributes this to cooperative

interactions between molecules [1]. In addition, macroscopic kinetics of

chemical reaction networks can often generate kinetics that approximate logical

control (see, for example, Ref. 54). Furthermore, it is possible that the

cooperativity could be enhanced as a consequence of cascading biochemical

processes, or the cooperative binding to many control sites in promoter regions

of genes [55]. Many biologists still refer to genes as being switched ‘‘on’’ or

‘‘off,’’ even though the experimental determination of Hill coefficients for gene

activation or inhibition leads to a Hill coefficient of about 2, reflecting the

dimeric binding of many transcription factors to promoters (see, for example,

Chapter 7 in Ref. 1). Finally, a logical model for the control of gene expression

in sea urchin was developed based on the analysis of extensive experimental

data [56].

B. Time Delays in Biochemical Networks

Our initial studies of dynamics in biochemical networks included spatially

localized components [32]. As a consequence, there will be delays involved in

the transport between the nuclear and cytoplasmic compartments. Depending on

the spatial structure, different dynamical behaviors could be faciliated, but the

theoretical methods are useful to help understand the qualitative features. In

other (unpublished) work, computations were carried out in feedback loops with

cyclic attractors in which a delay was introduced in one of the interactions.

Although the delay led to an increase of the period, the patterns of oscillation

remained the same. However, delays in differential equations that model neural

networks and biological control systems can introduce novel dynamics that are

not present without a delay (for example, see Refs. 57 and 58).

In synthetic pathways, compounds are often sequentially transformed

through a series of small chemical changes. In the event that a compound

near the end of the pathway is controlling other pathways via nonlinear

functions, then there will be time delays introduced between the synthesis of the

first compound and the last in the pathway. Depending on the time constants for

the various steps, these time delays may be very small compared to other

significant time constants in the system. Singular perturbation theory may be

used to simplify some aspects of the analysis of these networks, but to our
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knowledge these techniques have not yet been systematically applied to the

modeling of biochemical networks.

Cascades of regulatory steps are also a significant feature of biological

control circuits and can introduce significant delays. The interplay between the

kinetics of each step, the kinetics of the entire cascade, and the introduced time

delays is a topic of current interest [55, 59].

C. Decay Rates of Compounds

If the decay constants, gi, of the variables in Eq. (5) are different, as would be

expected, then although the dynamical equations are still piecewise linear, and

thus can be numerically calculated with ease, the trajectories are no longer

straight lines in phase space. The mathematical analyses that have been

developed largely depend on the ability to analytically compute the linear

fractional Poincaré return map. This is no longer possible when the decay

constants are not equal. Although we expect that the stability of qualitative

features of the dynamics will, in general, not change under small changes of the

decay constants, formal mathematical analyses are lacking and this is an area for

further research.

D. The Thresholds for Control of Different Genes May Be Different

The hypercube structure arises as a consequence of the binary nature of the state

space assumed in Eq. (4). It is possible to modify the number of thresholds and

still have a tractable mathematical problem, though many of the simplifications

associated with the hypercube would disappear [23, 60, 61]. In principle, many

of the same notions apply, although the area is not yet very developed. Finally,

software that is capable of incorporating multiple thresholds into the piecewise

linear equations with multiple time constants and thresholds has recently been

developed by deJong et al. [62].

VIII. CONCLUSIONS

Even with a variety of modifications that would be needed in order to make these

equations more realistic, it should be possible to extend the current mathematical

approaches to help understand the connections between the structure and the

dynamics.

Certainly, in considering the dynamics in biological systems, a compelling

observation is the great apparent robustness of the networks even in different

cells, in different species, and under a variety of perturbations from

environmental factors or from mutations in the genome. Of course, we are all

familiar with the sorts of disastrous circumstances that can arise when the ‘‘the

basin of attraction’’ of normal cells is transgressed. But how can we define the

structure and dynamics of what is normal?
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Independent of the particular mathematical formalisms that might ultimately

prove to be useful to describe biochemical processes in complex organisms, it is

important to recognize that organisms that are alive at present, have emerged

following evolutionary processes at the molecular level as well as the systems

level. The resulting organisms exhibit remarkable robustness in the face of

solving multiple challenges. The underlying organizational principles that

confer this robustness are still poorly understood. An interesting and largely

unstudied question is how the structure of genetic networks has been shaped by

evolution.

In conclusion, the current formalism captures extremely rich dynamics in a

vast class of differential equations modeling biochemical systems and relates

these dynamics to the underlying structure of the biochemical networks. The

methods have the potential of lending transparency to the functioning of what

now appear to be arbitrarily complex networks.
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I. INTRODUCTION

Theoretical and experimental investigations of ultrafast processes in elemental

clusters and their control by tailored laser pulses allow us to determine how the

interplay of size, structures, and light fields can be used to manipulate optical

properties and chemical reactivity of these systems. Moreover, laser-selective

femtochemistry [1–11] can be combined with the functionalism of nanostruc-

tures, providing new perspectives for the basic research as well as for

technological applications. The size regime of clusters in which each atom

counts [12–15] is particularly important. In this case the number of atoms and the

corresponding structures determine size-selective optical and reactivity proper-

ties of clusters. The investigation of the dynamics of these systems with finite

density of states is especially attractive since the separation of time scales of

different processes is possible [14]. Joint theoretical and experimental time-

resolved ultrafast studies carried out on clusters provided findings on the nature

and the time scales of processes, such as a geometrical relaxation, internal

vibrational energy distribution (IVR), charge separation, and Coulomb explosion

[14, 16–21]. Furthermore, due to advances in laser technology, tailored laser

fields can be produced by pulse shapers that can control molecular dynamics,

guiding it to a chosen target, such as a given fragmentation channel, a particular

isomer, or a desired reaction product [11, 19, 22–43].

The role of theory has been essential from conceptual as well as from a

predictive point of view. Time-resolved observations are strongly dependent on

the experimental conditions, such as laser wavelengths, duration of pulses and

their shapes, competition between one- and many-photon processes, strength of

the electric field, and so on. Here theory has the task not only to provide

insight into the nature of time-dependent processes, but also to identify the

conditions under which they can be experimentally observed [19–21, 44–55].
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Consequently, theory can be directly involved in conceptual planning of time-

resolved experiments.

Other prominent examples are theoretical proposals for different optical

control schemes using laser field parameters for the manipulation of ultrafast

process pioneered by Rice and Tannor, Shapiro and Brumer, and Peirce, Dahleh,

and Rabitz [2, 56–61]. They stimulated control experiments that were carried

out first on simple systems such as metallic dimers and trimers [62–84], and

later on more complex systems [23–25, 43, 85–89], confirming theoretically

proposed concepts. Since tailored laser pulses have the ability to select

pathways that optimally lead to the chosen target, their analysis should allow

one to determine the mechanism of the processes and to provide the information

about the selected pathways (inversion problem). Therefore, theoretical

approaches are needed, which are capable of designing interpretable optimal

laser pulses for complex systems (e.g., clusters or biomolecules) by establishing

the connection between the underlying dynamical processes and their shapes. In

this case, the optimal control can be used as a tool for the analysis.

In this chapter we present an overview of ultrafast time-resolved pump-probe

spectroscopy and optimal control in moderately complex system. The chapter is

structured as following: In Section II, dynamics and ultrafast observables will be

addressed in the framework of negative ion-to-neutral-to-positive ion (NeNePo)

pump-probe spectroscopy advanced by some of the present authors and their

colleagues [90, 91]. This technique includes application of vertical one-photon

detachment to prepare a nonequilibrium state of clusters and subsequent

investigation of its dynamics by two-photon ionization. Since the dynamics of

the nonequilibrium states pertain to transition state spectroscopy [14, 17, 92–

103] this approach bridges the cluster dynamics with the real-time exploration

of chemical (i.e., thermal) reaction pathways. The interplay between theory and

experiment allows us to identify the time scales of different processes, to

establish the corresponding mechanisms, and to determine the scope of the

technique [19–21, 49, 104]. This will be illustrated for pure and mixed noble

metal clusters. Moreover, the example of noble metal oxides will be addressed

as a precursor for the future reactivity study. To present the scope of the

theoretical approach based on the combination of ab initio molecular dynamics

(MD) ‘‘on the fly’’ and the Wigner distribution approach, in addition to

adiabatic multistate dynamics for ground states needed for NeNePo spectro-

scopy, the nonadiabatic dynamics involving electronic ground and excited states

will also be addressed in Section II. This approach will be used to study the

photoisomerization process through the conical intersection for the example of

the Na3F2 cluster.

In Section III, a new strategy for optimal control in complex systems will be

outlined. Tailored pump-dump pulses will be used to drive the photoisomeriza-

tion process in the Na3F2 cluster, avoiding the pathway with high excess energy

analysis and control of ultrafast dynamics in clusters 181



involving the conical intersection and populating only one selected isomer [19,

51]. This is achieved by introducing a new strategy for optimal control based on

an intermediate target in the excited state corresponding to a localized ensemble

that provides a connective pathway between the initial step and the target in the

ground state. The connection between the shapes of the optimized pulses and

the underlying processes will be explored. Summary and outlook for the future

joint experimental and theoretical work on controlling the reactivity of noble

metal oxide clusters in the framework of resonant two-photon detachment

R2PD–NeNePo techniques, which are based on the concept of the intermediate

target, will be given in Section IV.

II. DYNAMICS OF ULTRAFAST PROCESSES

Femtosecond spectroscopy enables the real-time interrogation of intra- and

intercluster and molecule nuclear dynamics during the geometric transformation

along the reaction coordinate. It involves the preparation of the transition state of

a chemical reaction by optical excitation of a stable species in a nonequilibrium

nuclear configuration in the pump step, along with the probing of its time

evolution by laser-induced techniques such as fluorescence, resonant multi-

photon ionization, or photoelectron spectroscopy. This approach was pioneered

by Zewail and co-workers for bimolecular reactions [92–94]. For an elementary

reaction involving the breaking of one bond and the creation of another one,

changes in intermolecular separation of 
10 are observable on a time scale of

1–10 ps. For this purpose, the duration of the probe step must be 10–100 fs if a

resolution of 
0.1 has to be achieved. In another approach advanced by

Neumark et al. and Lineberger et al. a nonequilibrium or transition states can

also be produced by vertical photodetachment of stable negative ions. The

transition state of the neutral species can be close to the stable geometry of

anions as shown by Neumark and co-workers [17, 95–103], or it can provide the

starting point for the isomerization process in the neutral ground state as

illustrated by Lineberger and co-workers [105–107]. The vertical one-photon

detachment spectroscopy was advanced by introducing the NeNePo pump-probe

technique [90, 91], which allows to probe structural processes and isomerization

relaxation in neutral clusters as a function of the cluster size. An extension of the

NeNePo technique by two-color excitations has also been proposed [108].

Complementary, time-resolved photoelectron spectroscopy [17] became a

powerful technique that can be also applied to clusters [109]. Recent develop-

ments of time-resolved techniques such as ultrafast electron diffraction [110] and

time-domain X-ray absorption [111] allow us to reveal transient molecular

structures in chemical reactions of complex systems and in excited states of

molecules.

Å

Å
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The conceptual framework of ultrafast spectroscopy is provided by theory

and simulations allowing the determination of the time scales and the nature of

configurational changes as well as internal energy redistribution (IVR) in

vertically excited or ionized states of clusters [20, 21, 44–47, 49, 104]. The

separation of the time scales of different processes is essential for identifying

them in measured spectral features. Moreover, the distinction between coherent

and dissipative IVR in finite systems can be addressed as a function of the

cluster size. For the investigation of intra- and intercluster dynamics in fs

spectroscopy, the generation of the initial conditions and multistate dynamics

for the time evolution of the system itself and for the probe or the dump step are

needed. For this purpose, two basic requirements have to be fulfilled. The first is

the use of accurately determined electronic structure in the ground and excited

states as a function of all nuclear coordinates. In the case that the electronic

states involved are well separated, the Born–Oppenheimer approximation is

valid and the adiabatic dynamics is appropriate. In contrast, if avoided crossings

and conical intersections between electronic states are present during the

geometric and chemical transformation, breakdown of the Born–Oppenheimer

approximation occurs and nonadiabatic effects have to be taken into account.

This situation represents an additional theoretical and computational challenge.

The second basic requirement is the accurate simulation of ultrafast observables

such as pump-probe signals. This involves appropriate treatment of optical

transitions such as ultrafast creation and detection of the evolving wave packet

or classical ensemble. In the latter case, the dynamics is described by classical

mechanics, and the average over sufficiently large number of trajectories has to

be made in order to simulate the spectroscopic observables.

Accurately precalculated global ab initio energy surfaces of ground and

excited states have been limited to systems with few atoms for which quantum

dynamics of nuclei is feasible. Therefore, such ab initio energy surfaces were

used as input data for the investigations of ultrafast dynamics of metallic dimers

[62, 63, 66, 112–121]. and trimers [122–129]. In contrast, for larger systems in

general, either a few degrees of freedom can be selected for explicit treatment or

model potentials have to be used. Both situations are generally not applicable to

elemental clusters, in particular with metallic atoms [12], since usually they do

not contain a ‘‘chromophore type’’ subunit or do not obey regular growth

patterns [130]. An addition of a single atom can produce drastic changes in the

properties of their ground and excited states. Therefore, in the majority of cases,

all degrees of freedom have to be considered, and semiempirical analytic

potentials are usually not suitable since they do not properly describe structural

and electronic properties with changing cluster size. Consequently, first

principle (ab initio) molecular dynamics ‘‘on the fly’’ (AIMD), without

precalculation of the energy surfaces, represents an appropriate choice to study

ultrafast processes in elemental clusters with heavy atoms for which in the first
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approximation, the classical description of nuclear motion is acceptable. This

method, pioneered by Car and Parrinello [131], is based on the density

functional method and the plane wave basis sets and was originally introduced

for the dynamics in the electronic ground state. The basic idea is to compute

forces acting on nuclei from the electronic structure calculations that are carried

out ‘‘on the fly’’ [132]. Related AIMD methods with plane wave basis sets have

also contributed significantly to the success in applications to clusters [133].

The important starting step in introducing time into quantum chemistry was

the implementation of the analytic energy gradients for the optimization of the

geometries in the ground states pioneered by Pulay [134]. These analytic

gradients that are now available in the framework of different quantum

chemistry methods with Gaussian basis sets [134–137] can be used for fast

calculations of forces and are implemented in different MD schemes from

which classical trajectories can be computed. Advances in these techniques over

the last years provided an excellent basis for applications of ab initio ground-

state classical MD on small and large systems with controllable accuracy,

depending on the method used for calculation of the electronic structure

(e.g., different versions of density functional methods with atomic basis sets

[138, 139] or other approaches accounting for the electronic correlation effects

[140, 141]).

The situation is still very different for ab initio adiabatic and nonadiabatic

MD ‘‘on the fly’’ involving excited electronic states. In spite of recent efforts

and successes [45, 46, 142–146], further development of such theoretical

methods that combine accurate quantum chemistry methods for electronic

structure with MD adiabatic and nonadiabatic simulations ‘‘on the fly’’ has

promise to open many new possibilities for the successful investigation of fs

processes. This research area will essentially remove borders between quantum

chemistry and molecular dynamics communities, in spite of the fact that each of

them has numerous challenging tasks to be accomplished in order to provide a

conceptual frame for fs chemistry and fs physics of molecules and clusters. In

this context, very intense research is presently going on along two main

directions. One is to achieve fast calculations of forces in excited states, as well

as of nonadiabatic couplings, at the level of theory accounting for electron

correlation effects with controllable accuracy which are suitable for imple-

mentation in different adiabatic and nonadiabatic MD schemes ‘‘on the fly’’

[146]. The second is to introduce quantum effects for the motion of nuclei,

particularly in the case of nonadiabatic dynamics [147–157], in systems with a

considerable number of degrees of freedom, allowing for their identification in

spectroscopic observables such as fs signals [146, 148, 149, 152, 158, 159]. In

this contribution we deal with systems containing heavy atoms, and therefore

the quantum dynamical effects do not play an important role, as will be shown

on prototype examples.
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A. Multistate Adiabatic Nuclear Dynamics

and Simulation of NeNePo Signals

Fs–NeNePo spectroscopy is also attractive for theoretical investigation for the

following reasons: (1) It stimulates further development of accurate and efficient

methods for adiabatic ab initio MD ‘‘on the fly’’ in the ground states and their

application for simulation of femtosecond signals; (2) it provides the opportunity

to determine conditions under which different processes and their time scales can

be observed; and (3) it contributes to establish the scope of this experimental

technique [20, 49, 104, 160]. Concerning point 1, the accuracy of electronic

structure calculations—using, for example, ab initio gradient-corrected density

functional approach with Gaussian atomic basis sets for MD ‘‘on the fly’’

(AIMD-GDFT) [161–165]—and the adequacy of the semiclassical Wigner

distribution approach for simulation of fs pump-probe signals can be tested by

comparing the obtained results with experimental findings and with the full

quantum mechanical treatment of the nuclei. The latter is feasible for trimers

[44]. Point 2 involves the introduction of experimental conditions for the

simulation of fs signals, and therefore influence on revealed processes can be

examined. Point 3 is addressed by varying the size and composition of clusters.

This makes it possible to identify different processes, such as geometric

relaxation, intracluster collisions, IVR, structural information based on vibronic

patterns, and isomerization processes, as well as fragmentation dynamics in the

pump-probe signals, providing the conceptual frame for the NeNePo spectro-

scopy. All of these aspects will be illustrated with examples of silver, gold, mixed

silver–gold clusters, and silver oxide clusters.

To accomplish this goals, the electronic and structural properties of noble

metal clusters will be addressed first. Then the attention will be paid to MD ‘‘on

the fly’’ and to the simulation of signals. Furthermore, the analysis of the signals

and the comparison with the experimental findings will be presented allowing

for the identification of processes and conditions under which they can be

observed. Finally, cluster reactivity aspects and the scope of NeNePo

spectroscopy will be addressed.

1. Electronic Structure

Structural, reactivity, and optical properties of noble metal clusters attracted

theoretical [47, 49, 104, 166–179] and experimental studies [178–192] over the

years because of their relatively simple electronic nature in comparison with

transition metals and their similarity to s-shell alkali metals. This is particularly

the case for the Ag atom with a large s–d gap in contrast to the Au atom. In the

latter case, the s–d gap is considerably smaller, because the relativistic effects

play an essential role—for example, strongly influencing the energy of an

s-orbital. These differences in electronic structure are also reflected in the
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structural properties of small silver and gold clusters. Recent theoretical and

experimental investigations showed that gold clusters remain planar for larger

sizes than do the silver clusters [170, 171, 178, 179]. Increasing interest in gold

and silver clusters is due to their newly discovered size-selective reactivity

properties toward molecular oxygen and carbon monoxide [172–175, 193–196].

In this context, the mixed silver–gold clusters have also attracted the attention of

researchers due to the electronegativity difference between Ag and Au atoms

[171, 192] giving rise to charge transfer from Ag to Au. All together, the noble

metal clusters represent an attractive research direction for fs chemistry.

Relativistic effective core potentials (RECP) are mandatory for a description

of these species. In general, effective core potential (ECP) methods allow one to

eliminate core electrons (close to nuclei) from explicit electron correlation

treatment which then involves only electrons directly participating in bonding.

Usually they were developed in the literature for the Hartree–Fock wavefunc-

tions, and therefore they had to be revisited and carefully tested in connection

with the gradient corrected density functional method (GDFT) [173]. GDFT is

presently the method of choice for the ground state properties of metallic

clusters provided that the use of correlation and exchange functionals allow for

the accurate determination of binding energies and structural properties, which

is not always the case [173]. This is particularly important for a reliable

calculation of the energy ordering of different isomers which can assume related

or very different structures with close-lying energies. The presence of a number

of isomers for a given cluster size is an important but not always pleasant

characteristic of metal clusters (alkali- as well as noble-metal clusters).

Therefore the determination of the lowest energy structure is not always an easy

task. Consequently, the temperature is a crucial parameter that has to be

considered in experiment and theory. Note that only at low temperatures can the

mixture of different isomers be avoided, in contrast to the cases at higher

temperatures.

In the early work on structural and optical properties of neutral and charged

silver clusters, one- and eleven-electron relativistic effective core potentials

(1e-RECP and 11e-RECP) with corresponding AO basis sets were developed

[166–168]. The first one, which was later revisited in connection with the DFT

method [49] employing Becke and Lee, Yang, Parr (BLYP) functionals [197,

198] for exchange and correlation, respectively, is suitable for the description of

the ground-state properties. The second one is inevitable for the determination

of the excited states of pure silver clusters. Since the d electrons are localized at

the nuclei of the silver atoms, they almost do not participate in bonding. Their

role is only important for the quantitative determination of the energies of the

excited states in silver clusters. Recent DFT calculations on structural properties

using 19e-RECP and ion mobility experiments carried out on Agþn [179]

clusters have confirmed the early findings [166, 167]. The 1e-RECP for the Au
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atom is less reliable for studying structural properties of Au clusters because the

d electrons participate directly in bonding. The use of 1e-RECP for gold clusters

might be useful only if the results agree with those obtained from 19e-RECP,

due to the fact that the former one is computationally considerably less

demanding (for details see Ref. 171). Moreover, for reactivity studies involving

oxidized clusters, 19e-RECP is mandatory also for silver clusters due to the

activation of d electrons by p electrons of the oxygen atom [173–175].

2. Semiclassical Dynamics and Signals

Semiclassical methods for dynamics combine classical mechanics and quantum

mechanics. They are particularly attractive for obtaining insight into complex

systems with heavy atoms for which full quantum mechanical treatment of

dynamics is not mandatory and is usually prohibitive due to the size of the atoms.

Semiclassical methods for dynamics, which make use of classical trajectories

with quantized initial conditions, are suitable for applications to such systems.

However, the approaches that are able to include approximately the quantum

coherence [147] and tunneling effects [148, 199, 200] in the classical MD are

very valuable and inevitable for the description of some processes (e.g., motion

of light atoms such as proton transfer). Moreover, all the processes that involve

transitions between different electronic states require quantum mechanics for the

adiabatic or the nonadiabatic dynamics of electrons and should in some manner

be incorporated consistently with the dynamics of the nuclei. Semiclassical

methods, which contain the superposition of probability amplitudes, are

therefore capable of providing an approximate description of quantum effects

(e.g., interference, tunneling, etc.) in molecular dynamics [152]. Classical MD in

different forms, including ab initio MD ‘‘on the fly,’’ are now applicable to

relatively large systems, and classical trajectories can be used as input in

semiclassical approaches for the simulations of the observables. Moreover, in

principle, it is also possible to add quantum effects to classical MD simulations

‘‘on the fly’’ [199, 200]. Therefore, we focus on the approaches that are able to

make use of classical adiabatic and nonadiabatic AIMD and time-dependent

quantum chemistry.

The time evolution of the density operator %̂%ðtÞ is given by the quantum

mechanical Liouville equation

i�h
q%̂%
qt
¼ ĤH; %̂%
� � ð1Þ

where ĤH is the Hamiltonian of the system. This offers an appropriate starting

point for establishing semiclassical approaches. Equation (1) has the well-known

classical limit in the case of the nuclear dynamics on a single electronic surface,
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corresponding to the classical Liouville equation of nonequilibrium statistical

mechanics:

q%
qt
¼ fH; %g ð2Þ

Here % ¼ %ðq; p; tÞ and H ¼ Hðq; p; tÞ are functions of classical phase space

variables ðq; pÞ, and

fH; %g ¼ qH
qq

q%
qp
� q%
qq

qH
qp

ð3Þ

is the Poisson bracket. The classical limit can be derived from Eq. (1) by means

of a Wigner–Moyal expansion [201–203] of the quantum mechanical Liouville

equation in terms of �h, which emerges from the replacement of the commutator

by the Poisson bracket if the expansion is terminated to the lowest order of �h:

ÂA; B̂B
� �! i�hfA;Bg þ Oð�h3Þ ð4Þ

Higher-order terms in �h serve for the introduction of quantum effects in the

dynamics.

The semiclassical limit of the Liouville formulation of quantum mechanics,

based on Wigner–Moyal representation of the vibronic density matrix, offers a

methodological approach suited for the accurate treatment of ultrafast multistate

molecular dynamics and the pump-probe spectroscopy using classical trajectory

simulations [20, 21, 45, 46, 204]. This approach is characterized by the

conceptual simplicity of classical mechanics and by the ability to approximately

describe quantum phenomena such as optical transitions by means of the

averaged ensemble over the classical trajectories. Moreover, the introduction of

quantum corrections can be made in a systematic manner. The method requires

drastically less computational effort than full quantum mechanical calculations

and provides physical insight into ultrafast processes, being applicable to

complex systems. In addition, it can be combined directly with quantum

chemistry methods for the electronic structure to carry out the multistate

dynamics at different levels of accuracy including precalculated energy surfaces

as well as the ab initioMD ‘‘on the fly.’’ The approach is related to the Liouville

space theory of nonlinear spectroscopy in the density matrix representation

developed by Mukamel and his colleagues (cf. Ref. 205). Following the

proposal by Martens and co-workers [204] and our own formulation [20, 21, 45,

46], the method is briefly outlined in connection with its application to

simulations of the time-resolved pump-probe or pump-dump signals, involving

first adiabatic and then nonadiabatic dynamics ‘‘on the fly.’’

For the simulation of NeNePo signals, a combination of the ab initio

molecular dynamics ‘‘on the fly’’ with the vibronic density matrix approach in
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classical Wigner–Moyal representation offers an adequate approach. This

involves (i) the densities of the anionic state forming the initial ensemble, (ii)

the densities of the neutral state reached after photodetachment by the pump,

(iii) the densities of the cationic state after photoionization of the probe, and (iv)

the laser-induced transition probabilities between the latter two states. Densities

and transition probabilities can be calculated in the framework of the classical

approximation to the Wigner–Moyal transformed Liouville equation for the

vibronic matrix by restricting the expansion to the lowest order in �h, as outlined
below. In addition, only the first-order optical transition processes can be taken

into account, which is justified for the low laser intensities, as is the case in the

NeNePo technique. Assuming zero kinetic energy conditions (ZEKE) for the

photodetached electron and for the cation, as well as short laser pulses, which

can be well-described with Gaussian pulse envelopes, the analytic expression

for time-resolved NeNePo signals can be formulated in a straightforward

manner (cf. Ref. 20):

S½td� ¼ lim
t!1P

ð2Þ
22 ðtÞ

�
ð
dq0 dp0

ð1
0

dt1 exp � ðt1 � tdÞ2
s2
pu þ s2

pr

( )

� exp �s2
pr

�h2
½�hopr � VIPðq1ðt1; q0; p0ÞÞ�2

( )

� exp �s2
pu

�h2
½�hopu � VVDEðq0Þ�2

( )
P00ðq0; p0Þ ð5Þ

Here spuðsprÞ and Epu ¼ �hopuðEpr ¼ �hoprÞ are the pulse durations and

excitation energies for the pump and the probe step with the time delay td.

The quantity VIPðq1ðt1; q0; p0ÞÞ labels the time-dependent energy gaps between

neutral and cationic ground states calculated at coordinates q1ðt1Þ on the neutral
ground state with initial coordinates and momenta q0 and p0 given by the anionic
thermal Wigner distribution P00ðq0; p0Þ, and VVDEðq0Þ are the vertical detach-

ment energies of the initial anionic ensemble. Therefore, the first step for the

simulation of signals involves the generation of P00ðq0; p0Þ, which can be

calculated either for individual vibronic states or for the thermal ensemble

assuming the harmonic approximation in the case of low or moderate initial

temperatures for which the anharmonicities of nuclei are negligible. Then, the

Wigner distribution for each normal mode is given by

Pðq; pÞ ¼ a
p�h

exp � 2a
�ho
ðp2 þ o2p2Þ

	 

ð6Þ
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with a ¼ tanhð�ho=2kbTÞ and the normal-mode frequency o, corresponding to

the full quantum mechanical density distributions. The ensemble of initial

conditions needed for the MD on the neutral ground state energies emerges from

sampling of the phase space distribution given by expression (6). For the case of

high temperatures for which anharmonicities are important but quantum effects

of the initial distribution are not, the phase space distribution can be obtained

from a sufficiently long classical trajectory. The analytical expression for

NeNePo signals given by Eq. (5) is easy to understand. The last exponential in

(5) gives the Franck–Condon transition probability after the initial ensemble is

photodetached. Then, the propagation occurs on the neutral state in terms of MD

‘‘on the fly,’’ giving rise to the time-dependent ionization energies VIP. The

transition to the cationic ground state involves the probe step with a window

function given by the second exponential of (5). The signal is obtained by the

summation over the entire ensemble, and its time resolution is determined by the

pump-probe correlation function with the probe window located around the time

delay between two pulses given by the first exponential of Eq. (5). The spectral

resolution depends on the duration of both pulses.

However, expression (5) has to be modified if the emitted electrons carry

away some amount of kinetic energy. Consequently, for the simulation of the

transient photoionization NeNePo signal, the integrations of the populations of

the anionic and cationic states over the entire range of possible excess energies

E0 and E2 have to be carried out in order to provide an approximate treatment of

continuum. This leads to the following expression of the NeNePo signals:

S½td� ¼ lim
t!1P

ð2Þ
22 ðtÞ

�
ð
dq0dp0

ð1
0

dt1 exp � ðt1 � tdÞ2
s2
pu þ s2

pr

( )ð1
0

dE2

� exp �s2
pr

�h2
½�hopr � V21ðq1ðt1; q0; p0ÞÞ�2

( )ð1
0

dE0

� exp �s2
pu

�h2
½�hopu � V10ðq0Þ�2

( )
P00ðq0; p0Þ ð7Þ

The modification of Eq. (7) allows one to use this formulation for the

simulation of the fs pump-probe or pump-dump signals involving the ground

and excited electronic states for the pump step and the cationic or the ground

state for the probing of dynamics in the excited states. Moreover, the expression

for the signals can be extended to treat, in addition to adiabatic dynamics, also

nonadiabatic dynamics, which will be addressed in Section II.H.3.
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To study fs dynamics and to simulate fs signals of metallic clusters as a

function of their size using the Wigner distribution approach outlined above, the

precalculation of energy surfaces is not practicable (although feasible for

trimers). Therefore the ab initio MD approach ‘‘on the fly’’ is the method of

choice. Ab initio molecular dynamics codes, which utilize a Gaussian atomic

basis set and gradient-corrected density functional (AIMD-GDF) [161–163,

206, 207], are, in the meantime, implemented in standard programs such as

Gaussian [208] or Turbomole [209]. The investigation of the dynamics of atoms

is carried out by the integration of the classical equations of motion using the

Verlet algorithm [210]. The SCF Kohn–Sham and the accurate calculations of

Pulay forces are needed at each time step in order to achieve a satisfactory

conservation of the total energy. It is important that all this occurs at low

computational demand, because the simulation of pump-probe signal requires,

in addition to the calculation of an ensemble of trajectories for the ground state

of the neutral species, calculations of the energy gaps between neutral and

cationic ground states. The accurate numerical evaluation of the exchange-

correlation energy parts of the Kohn–Sham matrix and the exchange-correlation

energy derivatives are the most computationally demanding steps if the number

of AO basis functions is not extremely large. Therefore, effort has been made to

reach a good accuracy at relatively low cost (cf. Refs. 161–163, 206 and 207).

The application of the above-outlined combination of methods will be first

illustrated for adiabatic and then for nonadiabatic dynamics. Particular attention

will be devoted to demonstrate the importance of the interplay between theory

and experiment in the case of NeNePo spectroscopy. In our early theoretical

work on NeNePo spectroscopy on the silver trimer [20], it has been shown that

the geometric relaxation as well as IVR can be identified in NeNePo signals

only under zero-kinetic energy electron conditions (ZEKE). In fact, these

conditions have not been achieved in the early experimental work, and therefore

the inclusion of a continuum according to Eq. (7) reproduced the experimental

signals in which the distinction between geometric relaxation and IVR was

smeared out. These findings initiated new NeNePo experiments on mixed

Ag2Au trimers for which ZEKE-like conditions have been achieved and which

will be described below.

B. Experimental Setup for NeNePo Spectroscopy

The importance of precise temperature control of the initial cluster ensemble in

the NeNePo experiment has been emphasized [104]. Only through the

experimental knowledge of the temperature parameter, a detailed comparison

with theoretically obtained NeNePo signals becomes possible, and different

contributions to the observed nuclear dynamics can be distinguished. Therefore,

the original NeNePo experimental setup [90, 211] has been extended to enable

the control of cluster temperature in the range between 20 and 300 K [212]. The
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NeNePo experiment was carried out in a helium-filled, temperature-variable

radio-frequency (rf)-octopole ion trap. The complete experimental setup is

depicted in Fig. 1a [104]. The metal cluster ions are generated by sputtering of

metal targets with accelerated xenon ion beams (CORDIS source [213]). The

clusters are subsequently mass-filtered and guided into the octopole ion trap (cf.

upper part of Fig. 1a). Inside the ion trap the cluster ions rapidly lose energy by

collisions with the helium buffer gas (cf. lower part of Fig. 1a), and perfect

thermalization is accomplished within a few milliseconds. The ions are spatially

confined by the rf field and the electrostatic potential of octopole entrance and

exit lenses. The average residence time of the cluster anions in the octopole ion

trap before interaction with a laser pulse is on the order of a few hundred

milliseconds. The femtosecond laser beams enter the rf-ion trap collinearly with

the axis of the apparatus from the opposite side as the cluster ions. The first

ultrafast laser pulse (pump) then detaches the excess electron of the anion,

resulting in a neutral cluster in the geometry of the anion. This leads to nuclear

relaxation dynamics that can be probed in real time by femtosecond time-

delayed ionization of the cluster to the cationic state (probe). As soon as cations

are prepared inside the ion trap, they will be extracted by the electrostatic field of

the octopole entrance and exit lenses and can be mass-analyzed with the final

quadrupole mass filter. The recorded ion current at the detector as a function of

the pump-probe delay time �t gives rise to the transient NeNePo signal that

reflects the time-dependent ionization probability of the neutral clusters due to

the nuclear dynamics initiated by the initial photodetachment. However, only by

comparison of transient NeNePo signal with theoretically simulated signals can

the conditions be identified, under which a ZEKE-like situation can be achieved

as illustrated below.

C. The Trimer: Ag2Au

We have chosen the example of a mixed silver–gold trimer Ag2Au
�=Ag2Au=

Ag2Au
þ to demonstrate the ability of our ab initioWigner distribution approach

to accurately predict the NeNePo signals, to interpret them, and to identify

conditions under which the separation of time scales of processes such as

geometric relaxation and IVR can be achieved. This has been realized using the

experimental setup at low temperature and close to the zero-kinetic energy

3
Figure 1. (a) Schematic representation of the setup for the temperature-controlled NeNePo

pump-probe experiment. The upper part illustrates the arrangement of the cluster source, the

quadrupole mass filter, and ion guides and of the octupole ion trap with entrance lens L1 and L2. The

process of cluster cooling and trapping inside the octupole ion trap, as well as the laser-induced

NeNePo charge reversal process, is schematically depicted in the lower part of the figure [104]. (b)

Scheme of the multistate, fs dynamics for NeNePo pump-probe spectroscopy of Ag2Au
�=

Ag2Au=Ag2Au
þ with structures and energy intervals for pump and probe steps [49, 104].
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electron (ZEKE) conditions described above. Furthermore, the aim was to study

the influence of the heavy atom on the time scale of fs processes since a

comparison with the ‘‘light’’ Ag3 trimer [20] can be made. The simulations of the

NeNePo pump-probe spectra have been performed by using our ab initioWigner

distribution approach combined with the ab initio MD ‘‘on the fly’’ in the

framework of the density functional theory [49, 104] as described above. The

mixed Ag2Au trimer has the following structural properties: The anionic

Ag2Au
� trimer assumes a linear structure with one Au–Ag heterobond. The

symmetric isomer with two hetero Ag–Au bonds lies 0.36 eV higher in energy. In

the neutral state of Ag2Au, both linear structures are transition states (with two

imaginary frequencies along the degenerate bending mode) between the two

equivalent triangular geometries which correspond to the most stable structure.

In the cationic state the obtuse triangle is the minimum. It is important to notice

that the structural properties of mixed trimers are sensitive to the details of the

methodological treatment (choice of RECP and of functionals in DFT

procedure). Therefore the inclusion of d electrons in RECP is necessary for

quantitative considerations. The energetic scheme relevant for NeNePo together

with the structural properties of the neutral and the charged Ag2Au is shown in

Fig. 1b.

Since for the simulations the initial temperature of 20 K has been chosen in

correspondence with the experimental conditions (Section II.D.), it can be

assumed that only the most stable structure is populated in the anionic state.

Under these conditions, the harmonic approximation is valid, and therefore the

initial conditions for the MD simulations have been sampled from the canonical

Wigner distribution for each normal mode independently using Eq. (6). Due to

the low temperature, the histograms of the vertical detachment energies (VDE)

(or Franck–Condon transition probabilities) assume an almost Gaussian shape

centered around 2.78 eV. The experimentally determined adiabatic detachment

energy of Ag2Au
� amounts also to 2.78 eV [192]. The first excited neutral state

is separated from the anion by about 4 eV [192]. Pump photon energies of

2.78 eV and 4.00 eV should therefore be suitable to prepare the neutral Ag2Au

in the electronic ground state. The transient NeNePo signals do indeed show the

same temporal evolution independent of the pump wavelength in this range.

As already described in the Section II.C, in order to simulate the NeNePo

signals, an ensemble of trajectories (e.g., 
500) has to be propagated in the

neutral state, and the time-dependent energy gaps to the cationic state have to be

calculated along the trajectories to simulate the signals according to the scheme

given on the left-hand side of Fig. 2. The energy gaps are presented on the right-

hand side of Fig. 2 since they provide visual information about the time

evolution of individual processes such as the onset of geometrical changes and

of IVR. Within the first 2 ps after the photodetachment, the swarm of energy

gaps decreases from 7.5 eV to 6.5 eV, and subsequently all energy gaps exhibit
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oscillations in the energy interval between 6.1 and 6.5 eV. This allows us to

distinguish two different types of processes: (i) the geometric relaxation from

the linear toward the triangular structure, taking place within the first 2 ps and

(ii) subsequent IVR process within the triangular structure. The minimum

energy gap value of 
6:1 eV corresponds to the structure with the closest

approach of the terminal silver and gold atoms, which is referred to as an

internal collision within the cluster. Therefore the adjustment of the pump-probe

energies experimentally allows to probe that processes. Since the highest value

of the IP is 7.5 eV, choosing higher probe pulse energy will lead to the signal

that is rising very rapidly and that subsequently remains constant due to the

contribution of the continuum. Pulse energies between 6.5 eV and 7.5 eV probe

the onset of the geometric relaxation processes. Therefore, it is expected that the

signals exhibit maxima at delay times when the probe energy is resonant with

energy gaps and decrease to zero at later times. Pulse energies below 6.5 eV

probe the arrival and the dynamics at the triangular structure. It is to be expected

that at 
6:1-eV pulse energies, the signal will rise after 
2 ps and remain

constant at later times. This is illustrated also in Fig. 3a, in which the theoretical

NeNePo and NeNePo-ZEKE signals are compared with the experimental results

at low temperature (T
20 K) for three energies: Epr ¼ 7:7 eV, probing above

the ionization threshold of the linear structure, Epr¼ 7.09 eV, probing the

Franck–Condon region; and Epr ¼ 6:10 eV, probing the triangular geometry

region corresponding to the minimum of the neutral Ag2Au [104].

The lower trace of Fig. 3a displays the NeNePo signal for 6.1-eV two-photon

probe energy ðEpr2phÞ measured at 20 K. The measured Ag2Au
þ ion intensity is

lowest around zero time, when pump and probe pulse overlap temporally. The

Figure 2. Bunch of the cation-neutral energy gaps of Ag2Au (right-hand side). Energies of

7.09 eV (dashed line) and of 6.1 eV (full line) indicate the proximity of Franck–Condon region and

of the minimum of neutral species, respectively, and are used for simulations of signals (compare

probe window on the left-hand side).
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signal stays at the same low level for 1.1 ps, then rises gradually until it reaches

its maximum value arround 2.5 ps. It subsequently decreases again and remains

almost constant at about half of its maximal intensity from 3.5 ps on. The

ionization to the cationic state via a two-photon transition is confirmed by
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Figure 3. (a) Experimental NeNePo signals (open circles) obtained for three different probe

pulse wavelengths in comparison with the simulated time-dependent signals (solid lines) for the

different probe pulse energies. The ionization probe step is two-photonic as confirmed by power-

dependent measurements. The signals are normalized in intensity. Lower graph: The experimental

data obtained at lpr ¼ 406 nm (Epr2ph ¼ 6:1 eV) are overlaid by the simulated NeNePo–ZEKE (bold

line) and NeNePo (thin line) signals at Epr¼ 6.1 eV. Middle graph: Experimental data obtained at

lpr ¼ 350 nmðEpr2ph ¼ 7:1 eV) are overlaid by the simulated NeNePo–ZEKE signal at Epr ¼ 7:1 eV.

Upper graph: The experimental data obtained at lpr ¼ 323 nm (Epr2ph ¼ 7:7 eV) are overlaid by the

simulated NeNePo signal at Epr ¼ 7:41 eV. A common time zero between experiment and theory has

been chosen for all probe energies. The deviation in the time origin corresponds to less than 0.1 eV

in the probe energy. (b) A single-trajectory example of the evolution of the Ag–Ag–Au bond angle f
(upper panel) and of the kinetic energy in the three vibrational normal modes Qb, Qs1, and Qs2

(lower panels). In the upper panel, two functions are given for f, since for triangular geometries two

Ag–Ag–Au bond angles can be defined. The lower curve for f reflects the atom connectivities of the

initial linear geometry and therefore monitors the geometrical relaxation until the closest approach

of the terminal atoms (internal collision). The upper curve is the larger of the two Ag–Ag–Au bond

angles and indicates partial escapes from the potential well of the triangular geometry. In the second

panel from the top, the collision time tCOLL ¼ 2:36 ps, determined from the first pronounced rise and

the subsequent sharp minimum of the kinetic energy in the bending mode, is marked in the diagram.
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the quadratic power dependence of the NeNePo signal intensity [214]. Varying

the probe photon energy has a dramatic influence on the temporal evolution

of the NeNePo transient signal. The middle trace of Fig. 3a shows the signal

obtained with 3.55-eV probe pulse energy, that is, Epr2ph ¼ 7:1 eV. Again the

Ag2Au
þ ion intensity is minimal around zero time, but starts to rise already

after about 500 fs with a considerably steeper slope than in Fig. 3a to reach a

maximum already at 1.1 ps. The signal decreases again comparably fast and

stays at a constant level after 2 ps. Finally, the NeNePo signal in the upper trace

of Fig. 3a was obtained with a probe energy Epr2ph ¼ 7:7 eV. The signal displays
no peak, only a fast rise between about 700 fs and 1.5 ps to remain constant

afterwards.

The comparison between the theoretically obtained NeNePo signals (solid

lines in Fig. 3a) and the measured time-dependent NeNePo ionization

efficiencies enables the assignment of the observed pronounced probe energy

dependence to the fundamental processes of nuclear dynamics. At Epr2ph ¼
6.1 eV (Fig. 3a, lower trace) the onset of IVR and the dynamics of Ag2Au

initiated by the collision of the terminal Au and Ag atoms can be probed

exclusively. The good agreement between the experimental (open circles) and

the simulated NeNePo–ZEKE signals (bold line) in Fig. 3a is apparent,

indicating that the experimental signal starts to rise when the system approaches

the triangular potential well. The signal maximum can be assigned to the time of

intracluster collision at around 2.4 ps followed by IVR in the potential minimum

of the neutral triangular geometry. The experimental signal offset at longer

delay times is somewhat lower with respect to the maximum than expected from

the simulated NeNePo-ZEKE signal. This might be attributed to contributions

from the rather similar NeNePo-type signal (thin line in the lower trace of

Fig. 3a). This shows explicitly in which regime ZEKE conditions hold in the

experiment. The middle trace of Fig. 3a presents the comparison of simulated

and experimental transient ion signals at 7.1-eV probe energy. Because the

initial peak of the experimental transient is perfectly matched by the simulated

NeNePo–ZEKE signal (solid line) at the corresponding wavelength, the

experimental conditions in this case allow for direct exclusive probing of the

geometrical relaxation of Ag2Au. The trimer passes through bending angles of

f ¼ 166	 at the signal onset around 500 fs to f ¼ 138	 at the signal maximum

and finally up to f ¼ 96	 at 2 ps, where the terminal atoms already interact and

the intracluster collision is closely ahead (cf. upper trace of Fig. 3b). The

experimental signal offset at times later than 2 ps can again be attributed to the

imperfect NeNePo–ZEKE conditions. The possible reason for the good

agreement of the experimental transient signal with the simulated NeNePo–

ZEKE transient signal is most likely due to a particular favorable Franck–

Condon overlap in the case of 7.1-eV two-photon probe energy. Finally, at high

ionization energy Epr2ph ¼ 7:7 eV, a comparably weak experimental transient
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signal is detected. This signal is in agreement with the simulated NeNePo

transient (solid line) at a probe energy of 7.41 eV just below the highest

theoretically predicted ionization energy that corresponds to the linear transition

state structure (see top trace of Fig. 3a). Thus, the experiment at Epr2ph ¼ 7:7 eV

apparently monitors the system when it leaves this transition state region. Still

there is a considerable signal onset time of about 700 fs, which reflects the very

shallow slope of the PES around the linear transition state geometry.

In summary, experiment and theory are in excellent agreement. The

simulated signal at Epr ¼ 7:70 eV rises after 1 ps and remains constant

subsequently without allowing to identify the dynamical processes which take

place due to the contribution of the continuum. The signals at Epr = 7.1 eV

reflect geometric relaxation from linear to triangular geometry of the neutral

Ag2Au. The signals at Epr ¼ 6:10 eV are due to IVR.

For an analysis of the vibrational energy redistribution, the kinetic energy

was decomposed into normal mode contributions. This was achieved by

projecting the atomic velocities at regular time intervals on the non-

mass-weighted normal coordinates of the neutral triangular Ag2Au system.

Figure 3b shows a single-trajectory example together with the two distinct Ag–

Ag–Au bond angles f. From this representation, valuable insight into the IVR

in this model system can be gained. The bond angle f in Fig. 3b decreases from

an initial value of about 180	 at t ¼ 0 to a minimum value of 54	 at t ¼ 2:36 ps.
However, the kinetic energy begins to increase notably only at t � 2:0 ps, when
f falls short of 90	. Accordingly, within the next 360 fs, f decreases much more

rapidly and the kinetic energy in the bending mode passes a pronounced

maximum. Shortly afterward, the kinetic energy decreases to zero, as the system

passes the potential minimum and the terminal atoms subsequently further

approach each other (‘‘internal collision’’), until the kinetic energy is consumed

by running against the repulsive part of the potential. In parallel to the increase

of the kinetic energy in the bending mode Qb, intense oscillations are triggered

in the first, antisymmetric stretching mode Qs1 and to a smaller extent only in

the symmetric stretching mode Qs2. Apparently, the simultaneous gain of

kinetic energy of the Qb and of the Qs1 mode is a consequence of the fact that

both normal coordinates together make up the major components of the linear-

to-triangular geometric relaxation coordinate.

Intense kinetic energy oscillations of the stretching modes appear between

two pronounced kinetic energy maxima of the bending mode, when the system

is in the deep region of the potential, so that enough energy is available for the

stretching modes. This relation is particularly apparent for the antisymmetric

stretching mode Qs1, manifesting an extensive energy exchange and a close

coupling of these modes. Shortly after the bending mode has passed its

maximum kinetic energy, its kinetic energy drops to zero (manifesting internal

collision), which for the single trajectory of Fig. 3b occurs at 2.36 ps. Since the
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other mode energies increase at the same time, IVR is manifested; the drop of

the kinetic energy in the bending mode cannot be solely explained by a

conversion of kinetic to potential energy in the bending mode. This behavior is

also found for other trajectories, whereupon one can generally state that notable

IVR sets in at the instant of internal collision.

These results imply that the nature of IVR in Ag2Au is related to the one

found for Ag3 (cf. Refs. 20 and 21). However, two important aspects should be

emphasized. First, time scales are much longer than in the case of Ag3, due to

heavy atom effect. Second, importantly, in contrast to the Ag3, the experimental

results for Ag2Au reveal for the first time geometric relaxation separated from

an IVR process, indicating that the experimental signals are close to the ZEKE-

like conditions, which has been proposed by theory as a necessary condition for

the separation of time scales of these processes [104].

D. Tetramers: Ag4 and Au4

In order to further illustrate the scope of the NeNePo technique and the ability of

our theoretical approach to treat more complex systems, two examples, Ag4 and

Au4, have been chosen for the presentation, because they exhibit qualitatively

different structural properties in the anionic state and have common properties in

the neutral state. In the case of the silver tetramer, the global minima of the anion

and of the neutral cluster assume related rhombic structures. Therefore, after

photodetachment at low temperatures (T � 50 K), which ensures that only the

rhombic isomer is populated, the pump step reaches the nonequilibrium rhombic

configuration close to the global minimum of the neutral species, as shown on the

left-hand side of Fig. 4. Notice that the well-defined initial structure is a

necessary condition to observe the time scales of the processes involved in the

geometric relaxation of the neutral state, and therefore the experiments should be

performed at low temperatures.

For example, in order to monitor the isomerization into the T-form in the

neutral ground state of Ag4, an initial temperature of more than 700K would be

needed. Consequently, for the low-temperature T ¼ 50K initial conditions, the

probe in the Franck–Condon region with Epr ¼ 6:41 eV reveals the vibrational

structure of the rhombic configuration after photodetachment. For the probe

with, for example, Epr ¼ 6:46 eV, the dynamics in the vicinity of the neutral

rhombic structure can be monitored. The simulated NeNePo–ZEKE signal at

6.41 eV for a probe duration of 50 fs, shown in Fig. 4 exhibits oscillations with a

vibrational period of 
175 fs, which is close to the frequency of the short

diagonal stretching mode, indicating the occurrence of the geometric relaxation

along this mode toward the global minimum. The analysis of the signal also

reveals contributions from two other modes shown in Fig. 4. In summary, this

example illustrates that an identification of the structure of a gas-phase neutral

cluster in experimental NeNePo signals is possible due to its vibronic resolution
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[49]. The theoretically predicted main features of the pump-probe signals for

Ag4 have been also found experimentally.

One-color NeNePo spectra of Ag�4 measured at 385 nm and an anion

temperature of 20K are shown in Fig. 5 [212]. Trace A (top right) shows the

(uncorrected) mass selected Agþ4 yield as function of the delay time between the

pump and probe pulses from �4.9 ps to þ4.9 ps in steps of 20 fs. Trace A shows

a pronounced oscillatory structure, characterized by a period of about 740 fs.

The intensity of the maxima decreases for larger delay times and additional,

weaker structures are observed at delay times >2.8 ps overlapping the 740-fs

Figure 4. Scheme of multistate fs dynamics for NeNePo pump-probe spectroscopy of Ag�4 /
Ag4=Ag

þ
4 with structures and energy intervals for the pump and probe steps (A). Simulated

NeNePo–ZEKE signals for the 50 K initial condition ensemble (B) at the probe energy of 6.41 eV

and a pulse duration of 50 fs (C). Normal modes responsible for relaxation leading to oscillatory

behavior of the signal are also shown [49].
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beat structure. Trace B in Fig. 5 is a composite of two measurements covering

delay times from �20 ps to þ20 ps and þ20 ps to þ65 ps. The spectra have

been baseline corrected and transformed for the following fast Fourier

transformation (FFT). Trace B shows that the oscillations in the Agþ4 signal

intensity extend up to 60 ps, with decreasing intensity. Pronounced partial

recurrences are observed. The FFT analysis of this time-resolved signal reveals

as dominant feature several peaks centered around 45cm�1 [212]. Comparison

to photoelectron data of Ag�4 [106] leads to the conclusion that the oscillations

observed in the NeNePo spectra of Ag4 are due to vibrational wavepacket

dynamics in the 2ag mode of either the 3B1g or 1B1g ‘‘dark’’ electronically

excited state of rhombic Ag4, which is probed by a two-photon ionization step

to Agþ4 . Ab initio calculations of the harmonic frequencies of the low-lying

electronic states of rhombic Ag4 support this assignment and confirm the

observed pronounced anharmonicity of this vibrational mode of 2n0w0 ¼
2:65� 0:05 cm�1. The 2ag mode was not resolved in the previous anion

photoelectron spectroscopy studies, due to its low frequency of 45 cm�1 which
lies below the resolution of conventional anion photoelectron spectrometers.

The results on Ag4 demonstrate the successful application of femtosecond

NeNePo spectroscopy to study the wavepacket dynamics in real time,

manifested by a beat structure in the cation yield, in a ‘‘purely’’ bound

potential, in contrast to the transition state experiments on the noble metal

trimers which connected linear with triangular structures. The spectra of Ag4
enable the precise characterization of a selected vibrational mode with a

Figure 5. NeNePo spectrum of Ag4 recorded in a one-color experiment (385 nm) at 20 K ion

temperature. Trace A (insert) shows the uncorrected, mass-selected Agþ4 yield. Trace B is a

composite of two measurements, and the signal has been corrected for the FFT analysis. (Figure

taken from Ref. 212).
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resolution, which is superior to that of conventional frequency-domain

techniques.

In contrast to Ag4, the investigation of nuclear dynamics and simulation of

NeNePo–ZEKE signals of Au4 allows one to follow large-amplitude motions

induced by the photodetachment, which lead to isomerization because the stable

structures of Au�4 and Au4 assume very different linear (or closely related

zigzag) geometry and rhombic forms, respectively [49]. Again, as in the case of

Ag4, low-temperature initial conditions (T � 50K) ensure that only the linear

anionic structure contributes to the initial ensemble, which is photodetached by

the probe pulse, as shown in the scheme presented in Fig. 6. The two-photon

ionization or probe laser spanning the energy range between 
8.4 and 8.1 eV

monitors the initiated relaxation dynamics on the neutral state involving linear,

T-form, and rhombic isomers (cf. Fig. 6).

The relaxation dynamics is influenced by the linear local minimum of the

neutral species which is energetically reached after the photodetachment. The

signal at Epr ¼ 8:86 eV, shown in Fig. 6, reflects on dynamics within the local

linear isomer reached after photodetachment. It is characterized by oscillations

corresponding to one of the symmetric stretching modes that is responsible

for a nondephased relaxation process of the initial nonequilibrium ensemble.

The intensity of the signal decreases after 1 ps, indicating occurrence of the

relaxation process from linear to rhombic structure. Consequently, both signal

intensities at Epr ¼ 8:09 eV and Epr ¼ 8:27 eV increase, reflecting the

appearance of other isomers. A temporary identification of the rhombic

structure at Epr ¼ 8:09 eV is possible only through a small maximum.

Otherwise a structureless line shape indicates the presence of both rhombic

and T-form isomers due to a large internal vibrational energy. It is interesting to

point out that the absence of dephasing during the relaxation dynamics in the

vicinity of the nonequilibrium state reached after photodetachment is the

signature of the local minimum, whose influence on the dynamics is different

from that of the transition state—for example, in the case of Ag3 and Ag2Au

clusters.

E. Fragmentation of Ag2O2 Interrogated by NeNePo Spectroscopy:

Reactivity Aspects

Atomic metal clusters, especially clusters of the noble metals, exhibit fascinating

reactive properties [215]. This chemical reactivity toward small molecules such

as O2 often strongly depends on the charge state of the clusters. One particular

appealing example in this respect is the reactive behavior of the silver dimer

toward dioxygen in the gas phase, which has been investigated in detail by

different groups [175, 186, 216–221]. Under the conditions of our rf-ion trap

experiment, the anionic dimer adsorbs one O2 molecule in a straightforward

association reaction mechanism [175]. Photoelectron spectroscopic studies
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confirm that the oxygen is molecularly bound to Ag�2 [221]. In contrast, the

positively charged silver dimer shows a strongly temperature-dependent O2

adsorption behavior: O2 is first adsorbed molecularly on Agþ2 , but in an activated
reaction step, the O–O bond can dissociate, leading to the adsorption of atomic

oxygen at temperatures above 90 K [217]. An NeNePo experiment starting from

Figure 6. Scheme of the multistate dynamics for NeNePo pump-probe spectroscopy of Au�4 /
Au4/Au

þ
4 with structures and energy intervals for the pump and probe steps (A). Simulated NeNePo–

ZEKE signals for the 50 K initial condition ensemble (B) at different probe energies [49] (C).
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the stable Ag2O
�
2 complex is thus expected to probe the real-time nuclear

dynamics associated with the change in the reactive O2 adsorption behavior

initiated by the pump-photodetachment step. Figure 7a first displays the

experimental NeNePo spectrum of the bare silver dimer without adsorbed

oxygen obtained in a one-color pump-probe experiment (406 nm) at 100 K anion

temperature. The NeNePo trace exhibits two remarkable features: (i) a

pronounced maximum in the recorded Agþ2 signal at 190-fs pump-probe delay

time and (ii) a distinct vibrational dynamics at longer delay times (>400 fs). The

amplitude of the vibrational structure at delay times >400 fs is about a factor of

10 smaller than the maximum signal. The vibrational period of the observed

signal oscillation was determined by FFT analysis to be 180 fs (n ¼ 185 cm�1).
The femtosecond NeNePo dynamics detected in the Agþ2 signal in Fig. 7a can be

understood on the basis of the known spectroscopic properties of Ag�2 and Ag2
[189]. Through photodetachment with 406-nm (3-eV) photons, the electronic

ground state of Ag2 (X-11�g) is populated, but also the lowest excited triplet

state 13�u. This latter triplet state is, however, if at all, only very weakly bound.

Figure 7. (a) NeNePo spectrum of Ag2 recorded in a one-color experiment (406 nm) at 100K

ion temperature. (b) Pump-probe spectra of the NeNePo fragment signals Agþ2 (solid line) and AgOþ

(dashed line, magnified by a factor of 10) resulting from neutral Ag2O2 dissociation after

photodetachment of Ag2O
�
2 (406 nm, 100K).
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The system is thus populated in the repulsive part of the potential energy curve in

the dissociation continuum of this state. During the propagation along the triplet

potential curve, the wavepacket might be transferred via resonant two-photon

transitions at two close-lying locations to the cationic state for detection (via

C-23�uand B-11�u states of Ag2). The existence of these resonances explains

the strong enhancement of the Agþ2 signal at 190-fs delay time. The lack of a

periodical revival with comparable amplitude confirms the assumption that the

wavepacket further propagates freely to dissociation on the triplet state potential.

The wavepacket at the same time prepared on the X-11�g ground state of Ag2
oscillates between the inner and outer turning point of the potential, leading to

the observed periodic signal at delay times >400 fs with 180-fs oscillation

period. The localization of the wavepacket is highest at the turning points of the

potential where it can be efficiently transferred into the ground state of Agþ2 by

irradiation with the probe pulse. The ionization step requires three 406-nm

photons, but a resonant transition via the A-11�u state is possible [222]. If a small

partial pressure of O2 is added to the helium buffer gas inside the rf-ion trap, the

complex Ag2O
�
2 is formed immediately, before the silver dimer can interact with

the femtosecond laser pulses [175]. Thus, under these conditions, the NeNePo

experiment exclusively probes the dynamics of the Ag2O
�
2 cluster complex.

Figure 7b shows the result of the NeNePo experiment starting form Ag2O
�
2

performed under otherwise identical conditions as in the case of Ag�2 (Fig. 7a). It

is first interesting to note that at no delay times a signal of Ag2O
þ
2 was detected

resulting from the NeNePo process. This indicates that the neutral Ag2O2 formed

by photodetachment is unstable and rapidly dissociates, being in accordance with

gas-phase reactivity measurements which show that the neutral complex Ag2O2

is not bound [216]. Surprisingly, two fragmentation paths seems to exist, leading

to the formation of the product ions Agþ2 and AgOþ (solid and dashed lines in

Fig. 7b, respectively). The Agþ2 signal is a factor of 10 larger than the AgOþ

signal. The AgOþ signal exhibits only a peak at zero delay time with an FWHM

corresponding to the cross-correlation of the laser pulses (80 fs). Most likely,

AgOþ arises from fragmentation in the cationic state—that is, by decay of

Ag2O
þ
2 , which is generated by vertical multiphoton transition form Ag2O

�
2 . The

much more intense Agþ2 signal shows pronounced vibrational dynamics, which is

significantly different from bare Ag2 (cf. Fig. 7a). First, the amplitude of the

observed vibrations is much larger than that of the long delay time dynamics of

pure Ag2. Second, the vibration is damped, and third, the NeNePo spectra do not

show the short time scale dynamics apparent form Fig. 7a for bare Ag2. FFT

analysis of the oscillatory dynamics in Fig. 7b leads to a vibrational period of 240

fs (n ¼ 141 cm�1), which is significantly red-shifted in comparison to the 180-fs

period of bare Ag2. The amplitude of the vibration can be fitted in good

approximation by an exponentially damped sine function with a lifetime of 650

�50 fs, which gives an approximative time scale for the dephasing of the
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wavepacket. The red shift of the vibration points toward the substantial influence

of the fragmentation of the oxygen ligand on the dynamics. Qualitatively, the

fragmentation of the O2 molecule apparently leaves the silver dimer fragment

with higher vibrational levels populated. Due to the anharmonicity of the

potential, the wavepacket thus exhibits a red shift in its vibrational frequency

[222]. This observation reflects on the strong influence of the molecular

adsorbate on the metal cluster structure. Such adsorbate-induced structural

changes, geometric as well as electronic, have recently been identified as the

origin for the cooperative adsorption of multiple adsorbate molecules on small

noble metal clusters. This cooperative action is regarded essential to the catalytic

activity of the gas-phase noble metal clusters in, for example, the CO combustion

reaction [175, 220]. In the particular case of the negatively charged silver clusters

Ag�n with odd n, the joint experimental and theoretical work of some of the

present authors showed that a weakly bound first O2 cooperatively promotes the

adsorption of a second O2 molecule, which is then differently bound with the O2

bond elongated and thus activated for further oxidation reactions such as CO

combustion [175]. The potential prospects of these intriguing catalytic properties

of free noble metal clusters for real-time laser spectroscopic investigations and

photoinduced control of catalytic reactions will be discussed in the final section

of this chapter.

F. The Scope of NeNePo Spectroscopy

Finally, the question can be raised: What general information can be inferred

from simulated NeNePo–ZEKE signals on the multistate energy landscapes and

dynamics? First, our theoretical simulations allowed us to establish the

connections between three objectives: the structural relation of anionic and

neutral species, the influence of the nature of the nonequilibrium state reached

after photodetachment, and the character of subsequent dynamics in the neutral

ground state. Three different situations can be encountered in which (i) transition

state, (ii) global minimum, and (iii) local minimum can influence the dynamics

after photodetachment. Second, different types of relaxation dynamics can be

identified in NeNePo–ZEKE signals. Moreover, (iv) the fragmentation and

signature of fragments can be also identified.

(i) In cases where the anionic structure is close to a transition state of the

neutral electronic ground state (e.g., trimers), large-amplitude motion toward

the stable structure dominates the relaxation dynamics. In other words, the

dynamics is incoherent but localized in phase space. IVR can be initiated as a

consequence of the localized large-amplitude motion. Large-amplitude

structural relaxation after the transition state is responsible for a pronounced
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single peak in NeNePo–ZEKE signals at a given time delay and probe excitation

wavelengths. In addition, subsequent IVR processes can be identified but only

under ZEKE-like conditions since the integration over the continuum of

electron kinetic energies leads to the loss of the fine features in the signals.

(ii) In cases where the anionic structure is close to the global minimum (i.e.,

the stable isomer) of the neutral electronic ground state, vibrational relaxation

reflecting the structural properties of the neutral stable isomer (e.g., Ag4) takes

place. The dynamics can be dominated by a single (e.g., Ag4) or only by few

modes that are given by the geometric deviations between anionic and neutral

species. Other modes and anharmonicities weakly contribute, leading to

dephasing on a time scale up to several picoseonds (longer than 2 ps for Ag4).

Vibrational relaxation gives rise to oscillations in NeNePo signals (for different

pulse durations) which can be analyzed in terms of normal modes. This allows

us to gain indirect information about vibrational spectra of a neutral cluster and

use them as a fingerprint for the identification of the structure.

(iii) In cases where the anionic structure (the initial state) is close to a local

minimum (energetically high-lying isomer) of the neutral electronic ground

state (e.g., Au4), the local minimum governs the dynamics after the photo-

detachment. Vibrational relaxation within the local minimum is likely to

dominate the ultrashort dynamics (on a time scale of less than 1 ps for Au4).

Nondephased regular vibrational relaxation has been shown in the case of Au4,

where the pronounced activation of only one stretching mode takes place since

the normal modes of the anionic and neutral species are almost identical.

Moreover, the local minimum can act as a strong capture area for nuclear

motion with time scales up to several picoseconds. As a consequence,

isomerization processes toward other local minima and/or toward the global

minimum structure are widely spread in time. In other words, structural relaxation

dynamics is characterized as being incoherent and delocalized in phase space.

Signals exhibit (at different excitation wavelengths of the probe laser) fingerprints

of vibrational relaxation within the local minimum, providing structural

information. After systems escape from the local minima, the time scales for

the beginning of structural relaxation can be identified by the onset of signals at

given probe wavelengths (�1ps Au4), although the relatively structureless signals

of low intensity can reflect the delocalized character of the structural relaxation.

(iv) The fragmentation patterns as well as the characteristics of fragments

can also be identified in NeNePo signals. From this information we infer that the

NeNePo technique in connection with the optimal control schemes provides a

promising powerful technique to introduce the control of the chemical reactivity

of clusters, such as the oxidation of CO by noble metal oxide clusters, which is

of relevance for heterogeneous catalysis.
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G. Multistate Nonadiabatic Nuclear Dynamics in Electronically

Excited and Ground States

As already pointed out, ab initio nonadiabatic MD ‘‘on the fly’’ involving excited

states and simulation of observables is demanding from theoretical and

computational point of view and still needs further developments. Therefore,

in order to meet the requirements on high accuracy and realistic computational

demand, the choice of the systems has to be made for which the description of

electronic excited states and nonadiabatic coupling is particularly simple. This is

the case for nonstoichiometric alkali-halide clusters with one excess electron

(e.g., NanFn�1). Their structural and optical properties have attracted the

attention of many theoretical and experimental studies [54, 55, 223–252] due to

the localization of the excess electrons, which are not involved in ionic bonding.

The prototypes for a particularly simple situation concerning the description of

excited states are nonstoichiometric sodium fluoride clusters with a single excess

electron (e.g., NanFn�1). In this case, a strong absorption in the visible–infrared

energy interval occurs due to the excitations of the one excess electron placed in

a large energy gap between occupied (HOMO) and unoccupied (LUMO) one-

electron levels that resemble the ‘‘valence’’ and the ‘‘conductance’’ bands in

infinite systems. Therefore, these clusters offer the opportunity to explore the

optical properties of finite systems with some bulk characteristics such as F-color

centers. Moreover, a simple but accurate description of the excited states is

possible to achieve in the framework of the one-electron ‘‘frozen ionic bonds’’

approximation. In this method, the optical response of the single excess electron

can be explicitly considered in the field of other ðn� 1Þ valence electrons that

are involved in strongly polar ionic Na–F bonding [45].

The calculation of excited-state energies and of gradients based on the

‘‘frozen ionic bonds’’ approximation (as outlined in Ref. 45) is, from a

computational point of view, considerably less demanding in comparison with

other approaches such as RPA, CASSCF or CI, and provides comparable

accuracy. Therefore, this approach allows to carry out adiabatic molecular

dynamics in the excited state, by calculating the forces ‘‘on the fly’’ (cf. Ref. 45)

applicable to relatively large systems. This is particularly convenient for the

simulation of time-dependent transitions for which an ensemble of trajectories

is needed. Moreover, the fast computation of nonadiabatic couplings ‘‘on the

fly’’ allows one also to carry out nonadiabatic MD as outlined in Ref. 46. Of

course, the application is limited to systems for which the ‘‘frozen ionic bonds’’

approximation offers an adequate description.

Based on ab initio classical trajectories and assuming Gaussian femtosecond

envelopes for the laser fields, analytic expressions for the time-resolved pump-

probe and pump-dump signals in the framework of the Wigner distribution

approach are given by Eq. (6) (cf. Ref. 20). This ab initio Wigner distribution
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approach to adiabatic dynamics has been outlined above to illustrate the scope

of the NeNePo approach. It has been extended for nonadiabatic dynamics in

Ref. 46, which will be briefly described below. In addition to methodological

aspects, the study of the dynamics in the first excited state of Na3F2 and the

radiationless transition to the ground state allow for the prediction and

verification of the consequences of conical intersections in fs pump-probe

signals in the gas phase without the necessity to consider the environment. The

latter external medium effects complicate the issue, as, for example, in the case

of photochemistry in solution or in the case of the cis–trans photoisomerization

of the visual pigment due to the influence of the protein cavity [253, 254].

Therefore, the photoisomerization in the Na3F2 cluster through a conical

intersection will be addressed first and then in Section III the new strategy for

optimal control will be applied in order to suppress the passage through the

conical intersection and to selectively populate one of the chosen isomers.

H. Photoisomerization Through a Conical Intersection
in the Na3F2 Cluster

The goal is to show that the breaking of bonds in excited states leading to the

conical intersection can be identified in observables such as fs pump-probe

signals. Since this will be illustrated by the example of Na3F2, first (1) the optical

properties, then (2) the characterization of the conical intersection of this cluster

will be given, and subsequently (3) the nonadiabatic couplings and the

nonadiabaticity will be addressed. After the formulation of an analytic

expression for the fs signals in the framework of the ab initioWigner distribution

approach (4), the analysis of the nonadiabatic dynamics and of the signals (5)

will provide the information about the time scales of the different processes such

as bond-breaking and the passage through conical intersection which can be

identified in the pump-probe spectra.

1. Optical Response Properties

The absorption spectra obtained for both isomers of Na3F2 using the ‘‘frozen

ionic bond’’ approximation are shown in Fig. 8 and compare well with those

calculated by taking into account all valence electrons [245]. The lowest-energy

isomer I, with the ionic Na2F2 subunit to which the Na atom is bound (forming

Na–Na and Na–F bonds), gives rise to the low-energy intense transition in the

infrared. This is a common feature found for NanFn�1 clusters due to the

localized excitation of the one-excess electron, as mentioned above. In contrast,

the transition to the first excited state of isomer II (C2v) with the Na3 subunit,

which is bridged by two F atoms, has a higher energy close to the energies of

transitions usually arising from excitations in metallic subunits. After the vertical

transition at the geometry of isomer I, the geometric relaxation in the first excited
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state takes place, involving a breaking of the Na–Na bond which leads to the first

local minimum of the excited state (cf. Fig. 8) with a moderate lowering of the

energy. Afterwards, the relaxation process proceeds to the absolute minimum

with the linear geometry corresponding to the conical intersection for which a

further considerable decrease of energy takes place. The linear geometry of the

conical intersection is also reached after vertical transition to the first excited

state at the geometry of the second isomer with C2v structure. Accordingly, the

investigation of the dynamics in the first excited state involves the breaking of

metallic and ionic bonds starting from isomer I, and just metallic bonds starting

from isomer II, as well as the passage through the conical intersection.

Consequently, one expects strong thermal motions within the ensemble,

leading to phase space spreading and IVR. All processes can be monitored by a

second ionizing probe pulse with excitation energies between 
2:9 eV and


4:8 eV, as shown by the scheme given in Fig. 8. The first value is close to the

initial Franck–Condon transition region and probes the relaxation dynamics on

the potential surface of the first excited electronic state before the branching

process, which is due to the conical intersection, does occur. The ground-state

dynamics after passage through the conical intersection allows us to monitor

processes involved on the ground-state potential surface.

2. Conical Intersection

The algorithm introduced by Robb and co-workers [255] is very useful for the

determination of the lowest structure and the energy at the intersection seam as

well as for analyzing the topology of the intersection in the space spanned by the

internal degrees of freedom. The results obtained for the linear geometry of

Na3F2, which has N ¼ 10 internal degrees of freedom, show that the

displacements in eight out of the 10 directions almost do not change the

energetic separation of the surfaces, while displacements in the orthogonal plane

characterized by two directions, X1 and X2, strongly remove the energy

degeneracy. X1 is the gradient difference vector, and X2 involves the coupling

vector between the two states. In other words, the ground-state reaction pathways

starting in the plane X1X2 connect the excited-state reactants with the two

ground-state products. Thus, the intersection of the ground and the first excited

state has the shape of a double cone, with respect to X1 and X2, where the apex

spans an eight-dimensional hyperline along which the energy is degenerate. The

intersection seam is therefore ðN� 2Þ-dimensional because it is characteristic

for conical intersections.

3
Figure 8. Absorption spectra for two isomers I and II of Na3F2 obtained from one electron

‘‘frozen ionic bonds’’ approximation [46] (upper part). Scheme of the multistate fs dynamics for

NeExPo pump-probe spectroscopy of Na3F2 including conical intersection with structures and

energy intervals for the pump and probe steps [46]. See color insert.
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The analysis of the wavefunctions of the ground and the first excited state in

the close neighborhood of the conical intersection yields positive and negative

linear combinations of two ‘‘valence bond-like’’ (‘‘VB’’) structures Naþ–F�–
Naþ–F�–Na� � Na

�
–F�–Naþ–F�–Naþ. One of them contributes dominantly to

the ground, and the other one contributes to the first excited state, thus giving

rise to two states with different symmetries. The location of the excess electron

is indicated by the dot above the sodium atom. Of course, at the point of the

conical intersection, the arbitrary linear combination of the above ‘‘valence

bonds’’ structures is possibly due to degeneracy. The two ‘‘VB’’ structures differ

in the translocation of the single excess electron or of the charge from one to the

other end of the linear system. In other words, the length of the linear chain is

sufficiently long to allow for an energy gap closing, in analogy to the

dissociation limit of the Hþ2 molecule for which the degeneracy of the ground

and excited state occurs due to equal energies of H
�
–Hþ and Hþ–H

�
structures.

We conclude that the presence of the conical intersection in Na3F2 through

which the isomerization process can take place is the consequence of the

electronic structure properties. Therefore, due to general characteristics, it can

be found for other systems by designing the analogous electronic situation.

In fact, the analogy can be drawn to conical intersections found in organic

photochemistry involving biradicaloid species, which are generated by partial

breaking of double hetero bonds due to geometric relaxation in the singlet

excited states. The condition for the occurrence of conical intersections in so-

called ‘‘critical biradicals’’ has been formulated in the framework of the two-

orbital two-electron model and can be fulfilled in the case that the

electronegativity difference between the two centers is sufficient to minimize

the repulsion between the ground and the excited states [256]. In fact, it has

been confirmed experimentally that the conical intersection is responsible for

the cis–trans isomerization of the retinal chromophore in the vision process

[253, 254].

Moreover, investigation of the nonadiabatic dynamics through the conical

intersection of the Na3F2 cluster has advantages. The system has 10 degrees of

freedom and permits the calculation of an ensemble of trajectories based on the

accurate ab initio description of the excited and ground electronic states and on

corresponding MD. Thus it provides the conceptual framework for fs

observables such as fs pump-probe signals, which will be addressed below.

3. Nonadiabatic Dynamics

The breakdown of the Born–Oppenheimer approximation, due to avoided

crossings or conical intersections between two electronic states, and the

consideration of nonadiabatic couplings and nonadiabaticity will be now

outlined, and the analytic expressions for the fs signals involving nonadiabatic
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dynamics in the framework of the semiclassical Wigner distribution approach

will be presented.

In order to address nonadiabatic transitions in complex systems involving

avoided crossings and conical intersections between electronic states, semi-

classical methods based on ab initio multistate nonadiabatic dynamics are

suitable for the simulation of fs pump-probe signals. For this purpose, in

addition to the calculation of forces in the electronic ground and excited states,

the computation of coupled electronic states ‘‘on the fly’’ in the adiabatic or

diabatic representation is required. Furthermore, the choice of the approach to

nonadiabatic dynamics must be made. These ingredients can then be combined

with the Wigner–Moyal representation of the vibronic density matrix, which

allows one to determine the fs signals. The electronic part, concerning ab initio

calculations of forces in the excited states and nonadiabatic couplings, in the

framework of ‘‘frozen ionic bonds’’ approximation valid for Na3F2 are given in

Ref. 46. For review of nonadiabatic dynamics ‘‘on the fly’’ (cf. Ref. 146).

Since we consider the systems with all degrees of freedom, the most

simple choice of treatment of the nonadiabatic dynamics is limited either to

the classical-path methods or to surface hopping methods [257]. They

are characterized by problems arising from the approximations that the

trajectories propagate in the mean-potential or in the state specific potential,

respectively [258–260]. In general, nonadiabaticity involves changes in the

population of adiabatic states with changing nuclear configurations. In this way,

the electronic distribution influences the trajectories. The simplest way to

include such electron–nuclei feedback is to use the mean-field (Ehrenfest)

method. It is assumed that the system evolves on an effective potential that can

be obtained as an average over adiabatic states weighted by their state

populations. The problem with this approach is that the system, which was

prepared initially in a pure adiabatic state, will be in a mixed state after leaving

the nonadiabatic region. Therefore, the adiabatic nature of the involved states

does not prevail even in the asymptotic region [146]. Moreover, the microscopic

reversibility is not preserved (cf. Ref. 146). The improvement to the Ehrenfest

method is to include decoherence, assuming that the trajectories finish in a pure

state after leaving the region of coupled states. This is possible by introducing

the continuous surface switching procedure CSS [149].

In contrast, the basic feature of the surface-hopping methods is that the

propagation is carried out on one of the pure adiabatic states, which is selected

according to its population, and that the average over the ensemble of

trajectories is performed. The molecular dynamics with quantum transitions

(MDQT) version of the fewest-switches surface hopping method, as introduced

by Tully [257], is based on the assumption that the fraction of trajectories on

each surface is equivalent to the corresponding average quantum probability

determined by coherent propagation of quantum amplitude. Furthermore, a
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choice between adiabatic and diabatic representation has to be made. In the

former case the nonadiabatic couplings have to be calculated, and in the latter

case the overlap between the wavefunctions of two states is needed in the

framework of the method used for calculations of the electronic structure. For

example, the MD as well as nonadiabatic couplings calculated ‘‘on the fly’’ can

be directly connected with MDQT and then used to simulate fs signals. In what

follows, we briefly outline the concept involving the adiabatic representation.

The time-dependent wavefunction �ðt; r;RÞ, which describes the electronic

state at time t, is expanded in terms of the adiabatic electronic basis functions cj

of the Hamiltonian with complex-valued time-dependent coefficients

�ðt; r;RÞ ¼
XM
j¼ o

cjðtÞcjðr;RÞ ð8Þ

The adiabatic states are also time-dependent through the classical trajectory RðtÞ.
Substitution of this expansion into the time-dependent Schrödinger equation,

multiplication by ck from the left, and integration over r yields a set of linear

differential equations of the first order for the expansion coefficients, which are

equations of motion for the quantum amplitudes:

i _cckðtÞ ¼
X
j

Ejdkj � i _RRðtÞ � hckjrRjcji
� �

cjðtÞ ð9Þ

Here Ej are the eigenvalues of the Hamiltonian, and hckjrRjcji are nonadiabatic
couplings.

The system of equations (9) has to be solved simultaneously with the classical

equations of motion for the nuclei

M€RR ¼ �rREmðRÞ ð10Þ

where the force is the negative gradient of the potential energy of the ‘‘current’’

mth adiabatic state. The hopping probabilities gij between the states are

determined by

gij ¼ 2
�t

cic
�
i

½Imðc�i cjeidijÞ � Reðc�i cj _RRhcijrRjcji� ð11Þ

and can occur randomly according to the fewest-switches surface hopping

approach introduced by Tully [257]. This approach has been designed to satisfy

the statistical distribution of state populations at each time according to the

quantum probabilities j ci j2 using the minimal number of ‘‘hops’’ necessary to

achieve this condition.
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However, this internal consistency is not always maintained, as analyzed in

the literature [259]. One of the often noticed reasons for the internal

inconsistency in MDQT is the presence of classically forbidden transitions.

The energy conservation is achieved in MDQT during the transition by

adjusting the classical velocities in the direction of the nonadiabatic coupling

vector [257]. The transition is classically forbidden, if there is not enough

velocity in this direction. In this case, two alternatives are commonly used.

Either this velocity component is inversed or it remaines unchanged. The

existence of classically forbidden transitions may lead to an inconsistency

between the fraction of trajectories in each state and the averaged quantum

probability. Another reason for the internal inconsistency in MDQT is the

divergence of independent trajectories. For example, in the case that two

surfaces substantially differ, the trajectories on the lower state can diverge and

follow different pathways after leaving the nonadiabatic coupling region. Since

in standard MDQT the quantum amplitudes are propagated coherently for each

trajectory, in the case that some trajectories diverge, the coherent propagation

can lead also to an inconsistency between the fraction of trajectories in each

state and the corresponding average quantum probability. The analysis of the

reasons for these inconsistencies and the proposals for improving them can

be found in Ref. 259. The conclusion can be drawn that in order to obtain the

time evolution of the population, the fraction of trajectories is more reliable than

the averaged quantum probabilities. Thus, it is better to use the fraction of

trajectories for the simulation of the pump-probe signals. Problems with surface

hopping methods are particularly pronounced for systems involving an extended

nonadiabatic coupling region or when tunneling processes as well as a large

number of recrossings occur in this region.

4. Pump-Probe Signals

For the determination of the pump-probe signal accounting for the passage

through the conical intersection, the expression for the cationic occupation P
ð2Þ
22

given by Eq. (5) has to be modified. This is due to necessity in considering that

the propagation of the ensemble starts in the excited state but can hop to the

ground state according to the fewest-switches hopping algorithm. Therefore, not

only the common averaging over the whole ensemble of the initial conditions due

to the Wigner approach is required, but also, for a given initial condition, an

averaging over trajectories obtained from different random numbers according to

the hopping algorithm must be carried out [46]. Consequently, the coordinates

and momenta of the propagated state can be labeled qnx and pnx , where x is either

the excited or the ground state, as determined by the hopping procedure. The

quantities n numerate the set of random numbers used in the hopping algorithm,

satisfying the same initial condition. Therefore, the average over the number of
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hoppings Nhop has to be performed, and for the cationic population for

nonadiabatic dynamics the following expression yields

P
ð2Þ
22 ðtÞ ¼

ð
dqdpP

ð2Þ
22 ðq; p; tÞ



ð
dq0dp0

ðt
0

dt2

ðt�t2
0

dt1

1

Nhop

X
n

exp �s2
pr

½�hopr � Vþ1;xðqnxðt1; q0; p0ÞÞ�2
�h2

" #

� exp �s2
pu

½�hopu � V10ðq0; p0Þ�2
�h2

" #

Ipuðt � t1 � t2ÞIprðt � t2 � tdÞPð0Þ00 ðq0; p0Þ ð12Þ
which is a modification of Eq. (5) valid for the adiabatic dynamics. The quantity

Vþ1;x labels the energy gap between the propagating state and the cationic state at
the instant of time. From this expression, the pump-probe signal can be

calculated after integration over the pump-probe correlation function
Ð1
0

dt2Ipu
ðt � t1 � t2ÞIprðt � t2 � tdÞ is performed explicitly:

S½td� ¼ lim
t!1P

ð2Þ
22 ðtÞ



ð
dq0dp0

ð1
0

dt1 exp � ðt1 � tdÞ2
s2
pu þ s2

pr

( )

� 1

Nhop

X
n

exp �s2
pr

�h2
½�hopr � Vþ1;xðqnxðt1; q0; p0ÞÞ�2

( )

� exp �s2
pu

�h2
½�hopu � V10ðq0; p0Þ�2

( )
P
ð0Þ
00 ðq0; p0Þ ð13Þ

According to expression (13), the initial ground-state density P
ð0Þ
00 is promoted to

the first excited-state with the Franck–Condon transition probability given by the

last exponential of Eq. (13). The propagation, the passing through the conical

intersection, and the probe transition to the cationic state are described by the

second exponential. This expression can be generalized for more than two states

by introducing in Eq. (13) the sum of weighting factors corresponding to

transition moments between the electronic states involved, for which also time-

dependent energy gaps have to be calculated. The probe pulse window, being

located around the time delay td between the pump and the probe pulse and the

resolution of the signal determined by the square of the pulse durations, are given
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by the first exponential. Because it is required in the Wigner distribution

approach, an ensemble average over the initial conditions has to be performed.

The latter can be obtained from a sampling of the initial vibronic Wigner

distribution P
ð0Þ
00 of the ground electronic state.

Of course, the basically inherent problems of surface hopping methods can

be overcome by using other semiclassical formulations. For example,

semiclassical schemes advanced in the framework of stationary phase

approximation [261, 262] involve the linearized semiclassical initial value

representation [152–154], the semiclassical multi-surface hopping propagator

approach [263–265], the multiple spawning method [157–266], the quantum-

classical density matrix approach involving a hybrid MD–Monte Carlo

algorithm with momentum jumps [267, 268], and the semiclassical multistate

Liouville dynamics in diabatic and adiabatic representation [147, 151, 269,

270]. The majority of these methods is computationally more demanding and so

far is usually tested and applied to model systems. Regarding the connection

with time-dependent quantumchemistry through classical trajectories ‘‘on the fly,’’

it is of particular interest to mention the semiclassical multistate Liouville

dynamics in diabatic and adiabatic representation [147, 151, 269, 270] and the

multiple spawning method [157]. Both approaches allow introduction of the

quantum effects in nonadiabatic dynamics.

However, in many systems involving radiationless isomerization processes

through conical intersection from the first excited state, the quantum effects are

washed out due to a high excess of energy, resulting in the high-temperature

situation. In such cases, in spite of this limitation, the approach described above

is reliable and practicable. It provides full information about underlying

ultrafast processes from the analysis of the simulated signals, as will be shown

for the example of the Na3F2 cluster. The investigation of the nonadiabatic

dynamics at the conical intersection between the first excited state and the

ground state separating two isomers of Na3F2 (cf. Fig. 8) offers an excellent

opportunity to simulate fs pump-dump signals at a high level of accuracy. It also

allows one to identify the time scales of different ultrafast processes, including

different kinds of bond breaking as well as radiationless transitions. For this

purpose it is adequate to use the combination of the Wigner–Moyal

representation of the vibronic density matrix and ab initio multistate molecular

dynamics in the ground state and in the first excited state without precalculation

of energy surfaces including the computation of the nonadiabatic couplings ‘‘on

the fly.’’ Analogous to adiabatic dynamics, an analytic formulation of non

adiabatic coupling in the framework of the ‘‘frozen ionic bonds’’ approxima-

tion, valid for nonstoichiometric alkali-halide clusters with one excess electron,

is used for calculation of nonadiabatic couplings ‘‘on the fly’’ and is outlined in

Ref 46. In the framework of the ‘‘frozen ionic bond’’ approximation, all

requested ingredients such as gradients of energies as well as nonadiabatic
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couplings are available. They have been formulated in Ref. 45 and 46 and can

be straightforwardly inserted in Eqs. (8)–(11) and used for the nonadiabatic

dynamics ‘‘on the fly’’ (e.g., passage through the conical intersection) [46].

In order to obtain the initial conditions, a canonical thermal ensemble of 50K

can be determined by the Wigner distribution function of the electronic ground

state including all normal modes oi; i ¼ 1; . . . ; 10, of the Cs structure,

corresponding to the total minimum of energy according to Eq. (6). The set

of, for example, 100 initial conditions can be obtained by sampling the Wigner

distribution function with respect to the coordinates q0 and momenta P0, which

can be used for the classical trajectory simulations on the first excited state of

Na3F2. The finite temperature of 50K causes thermal deviations from the energy

minimum Cs structure.

5. Analysis of the Nonadiabatic Dynamics and of the Signals

Important aspects of the analysis of the nuclear dynamics will be first addressed.

The simulation of the classical trajectory ensemble, consisting of a large number

of sampled phase space points, can be started on the first excited electronic state

using initial conditions described above. The geometric relaxation (over the local

minimum) toward the linear structure corresponding to the conical intersection

and its passage through the conical intersection as well as the subsequent

relaxation dynamics on the electronic ground state can be visualized by

considering the phase space density of the cluster ensemble shown in Fig. 9

for different propagation times. Initially at t ¼ 0 fs, the phase space density is

localized corresponding to the Cs structure (cf. Fig. 9). During the subsequent


90 fs, the distance between the Na–Na atoms elongates, indicating the bond-

breaking between both sodium atoms, and corresponds to a local minimum on

the first excited state (cf. Fig. 9). Consecutive ionic bond-breaking between the

Na and the F atoms of the Na2F2 subunit can be observed after 220 fs (cf. Fig. 9)

together with a small delocalization of the phase space density. After 
400 fs,

the region of the conical intersection corresponding to the linear structure is

reached (cf. Fig. 9). This triggers the branching of the phase space density from

the excited electronic state to the ground state. At this stage, the system gains an

additional kinetic energy of 
0.67 eV. Due to this large vibrational excess

energy, strong anharmonicities between the vibrational modes are present, which

are responsible for the phase space spreading. The subsequent relaxation

dynamics on the electronic ground state is characterized by an even larger phase

space spreading, particularly after 800 fs. This is due to the fact that the

vibrational excess energy rose to 
1.3 eV, which corresponds to an equilibrium

temperature of 
3400K (cf. Fig. 9). However, in spite of increasing phase space

spreading, structural information of the cluster ensemble can be gained

up to a propagation time of 
800 fs by considering the center-of-mass

positions of the atomic phase space distributions in Fig. 9. In particular, the
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Figure 9. Snapshots of the phase space distribution (PSD) obtained from classical trajectory

simulations based on the fewest-switches surface-hopping algorithm of a 50 K initial canonical

ensemble [46]. Na atoms are indicated by black circles, and F atoms are indicated by gray crosses.

Dynamics on the first excited state starting at the Cs structure ðt ¼ 0 fs) over the structure with

broken Na–Na bond ðt ¼ 90 fs) and subsequently over broken ionic Na–F bond ðt ¼ 220 fs) toward

the conical intersection region ðt ¼ 400 fs), Dynamics on the ground state after branching of the

PSD from the first excited state leads to strong spatial delocalization ðt ¼ 600 fs). The C2v isomer

can be identified at 
800 fs in the center-of-mass distribution. See color insert.
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‘‘center of-mass-geometry’’ at 800 fs is close to the C2v structure. However, due

to the phase space spreading, there are also considerable deviations, and even

geometries close to the Cs structure are involved in the phase space distribution

of the cluster ensemble. As shown below, one can obtain detailed information

about the branching ratio between these structures as well as about energetic

distributions in the cluster ensemble from pump-probe signals. For times beyond

1 ps, no structures can be identified in the phase space distribution. The ensemble

is geometrically completely delocalized at least up to the propagation time of

2.5 ps, which is understandable due to the large vibrational excess energy.

In summary, the dynamics through the conical intersection represents an

elementary physical event for the cluster ensemble in the sense that it initiates

the transition from structurally and energetically localized pattern involving

consecutive metallic and ionic bond breaking processes to energy delocalized

pattern. Thus, the molecular dynamics might be divided into a reversible and an

irreversible part separated by the passage through the conical intersection.

Simulations of signals are based on Eq. (13), with energy gaps obtained from

the classical trajectory simulations using the fewest switching surface hopping

algorithm [Eqs. (8)–(11)] for the ensemble at an initial temperature of 50 K

[Eq. (6)]. In order to obtain comprehensive information on the dynamical

processes of Na3F2, a zero pump pulse duration (spu ¼ 0) is suitable, which

involves a complete excitation of the ground-state ensemble prepared at

the initial temperature. The ultrafast structural relaxation processes involving

the bond-breaking can be resolved using a probe pulse duration of 50 fs. The

simulated signals are shown for four different excitation energies (wavelengths) of the

probe pulse in Fig. 10, which allow us to analyze the underlying processes:

(i) Epr ¼ 2:8 eV and Epr ¼ 3.0 eV correspond to transition energy values

between the first excited and the cationic state at the time of the Na–Na

metallic and the Na–F ionic bond-breaking, respectively (cf. Fig. 8).

Thus the signals for those transition energies provide information on the

structural relaxation involving the bond-breaking processes in the first

excited state of Na3F2 before the conical intersection is reached. In fact,

they exhibit maxima at 
90 fs and 
220 fs (cf. Fig. 10), in agreement

with the time scales for the metallic and ionic bond breaking obtained

from the analysis of the phase space distribution shown in Fig. 9. Both

signal intensities decrease rapidly after 0.4–0.5 ps, indicating the

branching of the phase space density from the first excited electronic

state to the ground state due to the conical intersection.

(ii) Epr ¼ 4.3 eV and Epr ¼ 4.8 eV (cf. Fig. 10) correspond to transition

energies between the ground state and the cationic state at the Cs

geometry and the C2v geometry, respectively. In such a way, the signals

shown in Fig. 10 monitor the ratio of both isomers in the phase space
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Figure 10. Simulated NeExPo pump-probe signals for the 50 K initial temperature Na3F2
ensemble at different excitation energies of the probe laser monitoring the geometric relaxation on

the first excited state involving bond-breaking processes and passage through the conical intersection

as well as geometric relaxation and IVR processes on the ground state after the passage (left-hand

side). The isomerization through the conical intersection is schematically illustrated on the right-

hand side [46]. See color insert.
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distribution after the passage through the conical intersection up to a

time delay between pump and probe of 
1 ps. This time represents the

limit up to which structural information can be resolved in the phase

space distribution (cf. Fig. 9). For larger time delays, the signals provide

only information about the energetic redistribution, thus IVR. In fact,

both signals start to increase after an incubation time of 
 0.4 ps since

the ground state becomes populated, providing the time scale for

the passage through the conical intersection (cf. Fig. 10). Furthermore,

the signal at Epr¼ 4.8 eV exhibits a maximum at 0.8–0.9 ps, indicating

the larger ratio of the C2v structure in correspondence with the results

obtained from the phase space distribution (cf. Fig. 9). This signal drops

rapidly after 0.9 ps and the signal at Epr ¼ 4:3 eV increases, indicating

that the population of the Cs structure is larger at 0.9–1.0 ps (cf. Fig. 10).

The latter time dependence also exhibits oscillatory features beyond 1

ps, i.e. corresponding to the IVR regime. This leads to the conclusion

that a somewhat periodic energy flow is present in the cluster ensemble.

However, in view of the high vibrational excess energy, these oscillations

cannot be attributed to particular normal modes.

In summary, these results provide information about the dynamics of the

Na3F2 system in full complexity. They show that distinct ultrafast processes,

which are initiated by the Frank–Condon pump pulse transition to the first

excited electronic state, are involved in the dynamics of the Na3F2 cluster.

These include geometric relaxation, consecutive bond-breaking of metallic and

ionic bonds, passage through the conical intersection, and IVR processes [46].

Moreover, the time scales of these processes can be identified in the pump-probe

signals, and each of them can be selectively monitored by tuning the probe

excitation energy. However, in order to populate only one of the isomers, the

pathway has to be found which avoids a large excess of energy disposal through

the conical intersection. This offers the opportunity to tailor laser pulses that

will drive the system into the desired target, and it will be addressed in

Section III. Similar situations can be expected in considerably larger systems,

provided that the characteristic electronic aspects remain preserved.

III. CONTROL OF ULTRAFAST PROCESSES

The conceptual framework underlying the control of the selectivity of product

formation in a chemical reaction using ultrashort pulses rests on the proper

choice of the time duration and the delay between the pump and the probe (or

dump) step or/and their phase, which is based on the exploitation of the

coherence properties of the laser radiation due to quantum mechanical

interference effects [56, 57, 59, 60, 271]. During the genesis of this field,
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single-parameter control was proposed. Within the Brumer–Shapiro phase-

control scheme [59, 60, 271], constructive and destructive interference between

different light-induced reaction pathways is used in order to favor or to suppress

different reaction channels. The other scheme, introduced by Tannor and Rice

[56, 57], takes the advantage of differences in potential energy surfaces of

different electronic states and therefore uses the time parameter for control. The

pump pulse brings the system to nonequilibrium configurations from which

transformations such as bond stretchings take place. If the probe or dump laser is

timed properly, different pathways to dissociation of one of the stretched bonds

can be achieved. Both single-parameter control schemes were experimentally

confirmed [62–65, 120, 272–278]. Another single control parameter is a ‘‘linear

chirp’’ [279, 280] corresponding to a decrease or increase of the frequency as a

function of time under the pulse envelope. This was the first step toward shaping

the pulses in the framework of so-called many-parameter optimal control theory

(OCT). Tannor and Rice have first variationally optimized electric fields [281].

Then the optimal control theory was applied to molecular problems by Rabitz

and co-workers [61, 282–284], and by Rice, Tannor, Kosloff, and co-workers

[285, 286]. Technological progress due to fs pulse shapers allowed the

manipulation of ultrashort laser pulses [22, 27, 28, 30, 31]. Finally, a closed-

loop learning control (CLL) was introduced by Judson and Rabitz [287], opening

the possibility to apply optimal control to more complex systems. Since potential

energy surfaces of multidimensional systems are complicated and mostly not

available, the idea was to combine an fs-laser system with a computer-controlled

pulse shaper to produce specific laser fields acting on the system initiating

photochemical processes. After detection of the product, the learning algorithm

[288, 289, 22] was used to modify the field based on information obtained from

the experiment and from the objective (the target). The shaped pulses were tested

and improved iteratively until the optimal shape for the chosen target was

reached. Such a black-box procedure is extremely efficient, but it does not

provide information about the nature of the underlying processes that are

responsible for the requested outcome. The success of the above-mentioned

schemes has been demonstrated by a multitude of control experiments [23–41,

77–82, 290]. However, any multiparameter optimization scheme has a drawback

of having a manifold of local solutions that are reachable depending on initial

conditions. Intense research activity is directed toward improvements of these

aspects, particularly in the closed-loop learning control [291, 292].

The investigation of simple systems offers a possibility to learn how to use

control as a tool for analyzing the underlying processes. Therefore, metallic

dimers [66–71, 84, 121, 292, 293] and diatomic molecules [292, 294] have been

extensively studied. This is due to the fact that they are suitable model systems

for establishing scopes of different control schemes and because they became

easily accessible to experimental pulse-shaping techniques [72–83]. In fact,
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experimental work on Na2 [113], using one-parameter-control, provided the first

confirmation of the simple Tannor–Rice control scheme [56, 57]. By varying the

time delay between the first and second pulses, Gerber and his colleagues

investigated competition between ionization and dissociative ionization of Na2
(Na2!Naþ2 þ e� versus Na2!Naþ þNaþ e�). Consequently, the ratio of

molecular to atomic ion products Na2
þ/Naþ oscillates with the change in the

time delay between the pump and probe pulses with the period determined by

the motion of the wavepacket on the 21�g state. Control over the branching

between the Naþ/Naþ2 channels was also achieved by using the given laser

wavelengths. In these experiments, a different sequence of states in Na2, which

involves double minimum potential energy surface (1�þu ), was reached [278].

Similarly, the variation of the delay time between the pulses was used by Herek,

Materny, and Zewail [64] to switch between different channels for the

photofragmentation of NaI, leading to the same product.

Encouraged by the confirmation of the control concept, two-parameter

control was considered in order to manipulate different processes in dimers and

diatomic molecules. In addition to the pump-probe time delay, the second

control parameter involved the pump [72, 73] or probe [66, 67] wavelength, the

pump-dump delay [69, 74, 75], the laser power [121], the chirp [68, 76], or the

temporal width [70] of the laser pulse. Optimal pump-dump control of K2 has

been carried out theoretically in order to maximize the population of certain

vibrational levels of the ground electronic state using one excited state as an

intermediate pathway [71, 292–294]. The maximization of the ionization yield

in mixed alkali dimers has been performed first experimentally using closed-

loop learning control [77, 78, 83] (CLL) and then theoretically in the framework

of optimal control theory (OCT) [84].

Since experimentally and theoretically optimized pulses obtained from OCT

and CCL are available for NaK [84], first, it was possible to show under which

conditions the shaped pulses are reproducible, and second, the connection

between the forms of the shaped pulses and different ionization pathways was

established. This allowed one determination of the mechanism for the

maximization of the ionization yield under the participation of several excited

states. The agreement between experimentally and theoretically optimized pulses,

which was independent from the initial guess, showed that the shapes of the pulses

can be used to deduce the mechanism of the processes underlying the optimal

control. In the case of optimization of the ionization process in NaK, this involved

a direct two-photon resonant process followed by a sequential one-photon pro-

cesses at later times. These findings obtained for the simple system are promising

for the use of shapes of tailored pulses to reveal the nature of processes involved in

the optimal control of more complex systems. This will be addressed below.

Until recently, the limitation in the theory was imposed by difficulties in

precalculating multidimensional potential surfaces of large clusters. In order to
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bypass this obstacle, ab initio adiabatic and nonadiabaticMD ‘‘on the fly’’ without

precalculation of the ground- and excited-state energy surfaces is particularly

suitable provided that an accurate description of the electronic structure is

feasible and practicable. Moreover, this approach offers the following advan-

tages. The classical–quantum mechanical correspondence between trajectory

and a wavepacket is valid for short pulses and short time propagation. MD ‘‘on

the fly’’ can be applied to relatively complex systems; moreover, it can be

implemented directly in the procedures for optimal control. This allows us to

identify properties that are necessary for assuring the controllability of complex

systems and to detect mechanisms responsible for the obtained pulse shapes. In

that context, the Liouville space formulation of optimal control theory

developed by Yan, Wilson, Mukamel, and their colleagues [294–306]–in

particular, its semiclassical limit in the Wigner representation [297, 51]—is very

suitable in spite of its intrinsic limitations. For example, quantum effects such as

interference phenomena or tunneling and zero-point vibrational energy are not

accounted for. The study of clusters with varying size offers an ideal opportunity

to test these concepts and methods as well as to investigate conditions under

which different processes can be experimentally controlled and observed.

The ultimate goal of optimal control is not only to advance maximum yield

of the desired process but also to use the shapes of the tailored pulses to

understand the processes which are responsible for driving a complex system to

the chosen target.

Optimal control theory has a broad spectrum of applications that will not be

addressed in their completeness here. This includes research directions such as

laser cooling of internal degrees of freedom of molecules and quantum

computing (cf. Refs. 307–311 for examples of metallic dimers) since they

usually require inclusion of additional methodological aspects.

A. Optimal Control and Analysis of Dynamic Processes

in Complex Systems

It is still an open, central issue if and under which conditions optimal control

involving more than one electronic state can be achieved for systems with

increasing complexity. For these systems, energy landscapes of the ground and

excited states can substantionally differ from each other or they can exhibit very

complicated features. In this context there are several open basic questions,

which should be addressed. An important question concerns the existence of a

connective pathway between the initial state and the region of the energy

lanscape (objective) which is reached via a different electronic state. In addition,

even if such connective pathway does exist, the optimal path must be found and

the method used for nuclear dynamics and for tailoring laser pulses should

involve the realistic computational demand. Therefore, the development of new

strategies for optimal control is required. An attractive possibility offers the
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concept of the intermediate target [51, 312] in the excited state. It is defined as a

localized ensemble (wavepacket) corresponding to the maximum overlap

between the forward propagating ensemble on the electronic excited state

(starting from the initial state) and the backwards propagated ensemble from the

objective in the ground state at optimal time delay between both pulses.

The classical nuclear dynamics is the only realistic approach in the case that

separation of active from passive degrees of freedom cannot be made for

complex systems and therefore a large number of them have to be treated

explicitly. Furthermore, quantum corrections can be also introduced under the

given circumstances. As will be shown below, the classical MD ‘‘on the fly’’ can

be extremely useful for realization of new strategies for optimal control such as

the construction of the intermediate target. The role of the intermediate target is

to guarantee the connective pathway between the initial state and the objective

and to select the appropriate parts of both energy surfaces involved. This issue is

directly related to the inversion problem [117, 313–316].

In the case of the pump-dump control for two-phase unlocked ultrafast fields

in the weak response regime, we have shown that the intermediate target serves

first to optimize the pump pulse. This leads to the decoupled optimization of the

pump and the dump pulses, which is very advantageous from the computational

point of view. An appropriate formalism for the realization of the strategy for

optimal control of complex systems based on the concept of the intermediate

target is the density matrix formulation of the OCT. It combines the Wigner–

Moyal representation of the vibronic density matrix with ab initio molecular

dynamics (MD) ‘‘on the fly’’ in the electronic excited and the ground states

without precalculation of both energy surfaces. This method, called the ab initio

Wigner distribution approach, was outlined in Section II, first in connection

with NeNePo spectroscopy which involves ground-state adiabatic dynamics and

then for nonadiabatic dynamics involving the excited and ground electronic

states. When adequate quantum chemical procedures can be used for dynamics

in excited states, this method is also suitable to treat complex systems. Moreover,

due to available analysis based on MD, the shapes of the optimized pulses can

be directly interpreted and connected with the underlying ultrashort processes.

After the outline of the theoretical basis for this optimal control strategy, our

new strategy for optimal control using intermediate target will be applied to

optimize the pump and dump pulses for driving the isomerization process in the

nonstoichiometric Na3F2 cluster, avoiding conical intersection between the

ground and the first excited state and maximizing the yield in the second isomer.

B. Intermediate target as a New Strategy

for Optimal Control in Complex Systems

The goal of the optimal control strategy described here is to optimize temporal

shapes of phase-unlocked pump and dump pulses (i.e., pump and dump pulses)
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and the time delay between them, which drive the system starting from the lowest

energy isomer over the first excited state to the second isomer—that is, the

objective.

The analytic form of the pump and dump pulses in the optimal phase-

unlocked pump-dump control is EPðDÞðtÞ ¼ EPðDÞðtÞ exp ð�ioegtÞ þ E�PðDÞðtÞ
exp ðioegtÞ, where EPðDÞ is a slowly varying envelope of the fields, and oeg is

the energy difference between the minima of the excited and the ground

states. The objective in the ground state is represented in the Wigner

formulation by an operator ÂA ¼ Að�Þjgihgj. Að�Þ is the Wigner transform of

the objective in the phase space � ¼ fqi; pig of coordinates and momenta, and

jgihgj is the ground electronic state projection operator. Að�Þ can be defined, for

example, as

Aðp; qÞ ¼
YN
i¼1

1ffiffiffiffiffiffi
2p
p

�qi
e
� ðqi��qqiÞ2

2ð�qiÞ2� Emin �
XN
i¼ 1

p2i
2mi

 !
ð14Þ

where �qqi represents Cartesian coordinates of the second isomer, and �qi
represents the corresponding deviations. The role of the step function � is to

insure that the kinetic energy is below the lowest isomerization barrier Emin. This

corresponds to the spatial localization of the phase space density and arbitrary

distribution of momenta. The optimized pulses can be obtained from the

functional

Jðtf Þ ¼ Aðtf Þ � lP

ðtf
0

jEPðtÞj2dt � lD

ðtf
0

jEDðtÞj2dt ð15Þ

where Aðtf Þ is the yield at the time tf , which for weak fields can be calculated in

second-order perturbation theory [295, 303, 317]. It involves the propagated

excited- and ground-state ensembles induced by the pump and dump pulses, the

time-dependent energy gaps between the two states, and the initial distribution of

the phase space in the Wigner representation. Optimal field envelopes can be

obtained by calculating the extrema from the control functional (15) by using the

variation procedure [295–298, 300–304, 317–320]. This leads to the pair of

coupled integral equations for the field envelopes:

ðtf
0

dt0MPðt; t0;EDÞEPðt0Þ ¼ lPEPðtÞ ð16Þðtf
0

dt0MDðt; t0;EPÞEDðt0Þ ¼ lDEDðtÞ ð17Þ
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The integral kernels corresponding to response functions are given by

MPðt; t0;EDÞ

¼
ðð

d2�0

ðtf
0

dt00
ðt00
0

dt000Að�gðtf�t00; �eðt000�t; �0ÞÞÞeiðoeg�Uegð�eðt000�t;�0ÞÞÞðt00�t000Þ

eiðoeg�Uegð�0ÞÞðt�t0Þrggð�0ÞEDðt000ÞE�Dðt00Þ; t � t0 ð18Þ
MDðt; t0;EPÞ

¼
ðð

d2�0

ðt0
0

dt00
ðt00
0

dt000Að�gðtf�t; �eðt0�t00; �0ÞÞÞeiðoeg�Uegð�eðt0�t00;�0ÞÞÞðt�t0Þ

eiðoeg�Uegð�0ÞÞðt00�t000Þrggð�0ÞEPðt000ÞE�Pðt00Þ; t � t0 ð19Þ

�e and �g correspond to propagated excited- and ground-state ensembles, and

Ueg is the time-dependent energy gap between the excited and the ground state.

Since both equations depend on the pump and dump pulses, they are coupled and

can, in principle, be solved iteratively yielding optimized pump and dump pulses.

However, this is computationally unrealistic even for systems of moderate

complexity because the coupled classical simulations on the ground and excited

states have to be performed. The calculation of objective A in Eqs. (18) and (19)

requires the propagation of the ensemble on the ground state �g, starting at

different initial conditions. These conditions are obtained from the propagated

ensemble �e of the excited state at each time step. Therefore, the strategy

involves decoupling of Eqs. (18) and (19), which is possible only in the short

pulse regime on the fs time scale, and the necessary steps are outlined below.

(i) In the zero-order approximation of an iterative procedure and in the

ultrafast regime, it is justified to calculate the kernel functions MP and MD with

strongly temporally localized pulse envelopes EP � dðtÞ and ED � dðt � tdÞ.
Then the zero-order response functions take the following forms:

M
ð0Þ
P ðt; t0Þ ¼

ð ð
d2�0Að�gðtf � td; �eðtd � t; �0ÞÞÞ

eiðoeg�Uegð�0ÞÞðt�t0Þrggð�0Þ; t � t0 ð20Þ
M
ð0Þ
D ðt; t0Þ ¼

ð ð
d2�0Að�gðtf � t; �eðt0; �0ÞÞÞ

eiðoeg�Uegð�eðt0;�0ÞÞÞðt�t0Þrggð�0Þ; t � t0 ð21Þ

The equations for pump and dump pulses now become decoupled. Consequently,

the pump pulse optimization involves the propagation on the excited state

�eðtd � t; �0Þ from t ¼ 0 until t ¼ td starting with �0 (initial ensemble)
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[Eq. (20)]. For the dump optimization, according to the Eq. (21), the dynamics on

the ground state has to be carried out �gðtf � t; �eðtdÞÞ for t0 ¼ td until tf with

the initial conditions given by the ensemble of the excited state �eðtdÞ at td which
corresponds to the intermediate target. �eðtdÞ at td can be determined from the

maximal overlap between a forward-propagated ensemble from the first isomer

on the excited state and a backwards-propagated ensemble on the ground state

from the second isomer.

(ii) Equations (16) and (20) yield an optimal pump pulse that localizes phase

space density at the intermediate target.

(iii) The optimized dump pulse projects the intermediate target to the ground

state and optimally localizes the phase space density into the objective (second

isomer) at a final time tf . This means that the connective pathway between the

initial state and the objective is guaranteed by the intermediate target at a time

td . For this purpose, the function Að�gðtf � tdÞ; �eðtdÞÞ must have nonvanishing

contributions as follows from Eqs. (20) and (21). This procedure can be conti-

nued iteratively, but it is most likely that the zeroth- and first-order iterations

lead to sufficient accuracy. In summary, the concept of the intermediate target

represents a new strategy that ensures the connective pathway between the

initial state and the objective, and moreover it allows to reach the objective with

maximal yield optimizing pump and dump pulses independently. This allows

the application of the optimal pump-dump control to complex systems without

restricting the number of degrees of freedom and ensures controllability,

provided that the intermediate target can be found, which is illustrated below in

the next section.

C. Optimal Control of Photoisomerization in Na3F2

The isomerization in Na3F2 through a conical intersection between the first

excited and the ground state is a nonselective process due to the high internal

energy (
0.65 eV), which populates almost equally both isomers in the ground

state and does not allow for selective population of the second isomer [46].

Therefore, the optimal control strategy described above, which is based on the

concept of the intermediate target, represents an adequate tool to find the optimal

pathway allowing one to populate isomer II with maximal yield and to suppress

of the pathway through the conical intersection [51].

For this purpose, several steps are needed. First, the initial ensemble of

isomer I has to be generated. Then the intermediate target involving excited-

and ground-state dynamics has to be determined. Finally, the pump and dump

pulses have to be optimized. For the initial ensemble a 50 K canonical ensemble

in the ground state of isomer I in the Wigner representation can be constructed

using, for example, a set of 
1000 randomly sampled coordinates and

momenta. In the pump step (photon energy of 1.33 eV), the ensemble is first

analysis and control of ultrafast dynamics in clusters 229



propagated on the excited state (e.g., for 300 fs). In order to determine the

intermediate target and the optimal time delay td, the ensemble has to be

dumped to the ground state (in steps of, e.g., 25 fs) and subsequently propagated

(e.g., 1 ps). It can be shown that isomer II is reached by the ensemble at

td ¼ 250 fs, and the residence time of 500 fs, at least, can be achieved. The

ensemble-averaged geometry that determines the coordinates of the inter-

mediate target is shown in Figs. 11 and 12. Note that the ‘‘geometry’’ of the

Figure 11. Left-hand side: Scheme for pump-dump optimal control in the Na3F2 cluster with

geometries of the two ground-state isomers and of the transition state separating them, the conical

intersection, and the intermediate target. Upper panel, right-hand side: The optimal electric field

corresponding to the pump and dump pulses [51]. The mean energy of the pump pulse is 1.20 eVand

the mean energy of the dump pulse is 0.6 eV. Middle panel, right-hand side: Fourier transforms of

the optimal pump and dump pulses and the Franck–Condon profile for the first excited state

corresponding to the excitation energy Te ¼ 1:33 eV. Bottom panel, right-hand side: Wigner

transform of the optimal pump pulse. See color insert.
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intermediate target is closely related to that of the transition state separating the

two isomers on the ground-state. The role of the intermediate target to ensure

the connective pathway from the initial state to the objective over the excited

state is evidenced by its relation to the transition state which separates both

ground-state isomers. The average kinetic energy of the intermediate target

corresponds to 
75% of the isomerization barrier in the ground state. This

guarantees that, after the dump, the ensemble will remain localized in the basin

of isomer II.

The optimization of the pump pulse leads to a localization of the phase space

density around the intermediate target. The intermediate target operator can be

represented in the Wigner representation [Eq. (20)] by a minimum uncertainty

wavepacket:

Aðpi; qiÞ ¼
Y3N¼ 15

i¼ 1

1

2p�pi�qi
e
� ðqi��qqiÞ2

2ð�qiÞ2 e
� ðpi��ppiÞ2

2ð�piÞ2 ð22Þ

The response function Mðt; t0Þ for the pump pulse [Eq. (20)] can be calculated,

for example, on a time grid of 1 fs and can be symmetrized and diagonalized

according to Eq. (16). In this case, the largest eigenvalue was obtained to be 0.82,

corresponding to the globally optimized pulse which has 82% efficiency to

localize the ensemble in the intermediate target.

The optimized pump pulse, shown in Fig. 11, consists of two portions with

durations of 
70 fs and 
10 fs, respectively. Fourier and Wigner–Ville

transforms of the pump pulse, shown also in Fig. 11, provide physical insight.

Comparison of Fourier transform with the Franck–Condon profile of isomer I

shows that the excitation of the low-lying vibrational modes at 
1.2 eV of the

initial ensemble is dominantly responsible for reaching the intermediate target.

This spectral region corresponds to lower-lying vibrational modes that open the

Cs structure of isomer I by breaking the Na–Na and one of the Na–F bonds. The

Wigner–Ville transform shows that this energetically sharp transition corre-

sponds to the first temporal portion of 
70 fs of the pump pulse. In contrast, a

very short second portion after 80–90 fs of 
10 fs is energetically much wider.

It is related to tails of the Fourier transform, which are symmetric with respect

to the 1.2-eV transition, reflecting equally distributed velocities in the initial

ensemble.

The dump pulse optimization leads to a spatial localization of the phase

space density in the objective (isomer II). For this purpose, the intermediate

target operator [Eq. (22)] can be propagated on the ground state, and the dump

pulse is obtained from Eqs. (17) and (21). The largest eigenvalue (e.g., 0.78) can

be obtained. This corresponds to 78% efficiency of localization of isomer II.

The optimized dump pulse is very short (
20 fs; cf. the part of the signal after

td ¼ 250 fs in Fig. 11). This implies that the time window around td for

232 vlasta bonačić-koutecký et al.



depopulation of the excited state is very short. Otherwise the system would

gain a large amount of energy in the excited state (leading to the conical

intersection). The Fourier transform of the dump pulse is centered around

0.6 eV, corresponding to the Franck–Condon transition at td as shown on the

left-hand side of Fig. 11. Finally, in order to illustrate the efficiency of

optimized pulses, snapshots of the ground-state ensemble propagated after the

dump process are shown in Fig. 12. It can clearly be seen that the phase space

density is localized in isomer II (the objective) after td þ 200 fs¼ 450 fs.

Using the strategy for optimal pump-dump control based on the intermediate

target, we have shown that the isomerization pathway through the conical

intersection can be suppressed and that optimized pulses can drive the iso-

merization process to the desired objective (isomer II). This means that the

complex systems are amenable to control, provided that the intermediate target

exists. Furthermore, the analysis of the MD and of the tailored pulses allows for

the identification of the mechanism responsible for the selection of appropriate

vibronic modes necessary for the optimal control.

In summary, optimal pump-dump control of fs processes, involving two

electronic states, requires the identification of the connective pathway between

the initial state and the objective. This is possible if the intermediate target in

the excited state can be found, which selects the appropriate parts of energy

surfaces for the control. This was illustrated for the example of Na3F2 for

which the optimal pump and dump pulses populate the objective (isomer II)

with maximal yield, taking the optimal pathway and avoiding the conical

intersection. The identification of the mechanism responsible for the shape of

the pulses serves as a guide toward the understanding of theoretically and

experimentally obtained tailored fields, which still represents a challenging task

for future work. In this way, the control is used not only to achieve desired goal

but also to identify and to analyze the underlying ultrafast processes responsible

for favoring one pathway and for suppressing the others. Control as a tool for

analysis of the dynamics complements the closed-loop learning (CLL) control

technique and sheds light on the nature of the ‘‘black box.’’

IV. PERSPECTIVES

Analysis and control of ultrafast processes in atomic clusters in the size

regime in which ‘‘each atom counts’’ are of particular importance from a

conceptual point of view and for opening new perspectives for many applications

in the future. Simultaneously, this research area calls for the challenging

development of theoretical and computational methods from different directions,

including quantum chemistry, molecular dynamics, and optimal control theory,

removing borders between them. Moreover, it provides stimulation for new

experiments.
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One of these proposals will be now briefly outlined. Aiming to control the

dynamics of reactive processes by designed tailored laser pulses, a new resonant

two-photon detachment R2PD–NeNePo scheme is proposed which largely

relies on the involvement of excited electronic states of the initial anionic

complex (cf. Fig. 13). Because bound excited states of anions are very rare, a

bound-free transition is expected to be reached by a first near-infrared photon.

Consequently, a rapid propagation of the nuclear ensemble on the repulsive

excited anion potential energy surface should be initiated. However, before

dissociation is completed, a second photon, appropriately shifted in time and

frequency, should transfer the wavepacket to the neutral potential surface by

photodetachment, possibly reaching the desired reactive nuclear configuration

of the neutral cluster complex. Most interestingly, this two-step photodetach-

ment process might be achieved not only through two separate or composite

pulses, but via one phase and amplitude modulated broadband ultrafast laser

pulse. The idea is based on the new strategy for optimal control using the

concept of the intermediate target. This should allow us to find a localized

ensemble (wavepacket) in excited anionic state with a maximum overlap with

Figure 13. Schematic sketch of a reactive NeNePo control experiment. Control is achieved

through two time- and frequency-shifted photodetachment laser pulses employing an anion excited

state (M��) for intermediate wavepacket propagation. The wavepacket is finally prepared on the

neutral potential energy surface in a region that corresponds to enhanced reactivity of the system.

The aim of the experiment and theory is to find optimal composite pulses, based on the concept of

the intermediate target outlined in Section III.A, that accomplish such a reactive activation of M0.

Detection is performed by ionization of the potential reaction products of M0 to the cationic state

(not shown in the graphic).

234 vlasta bonačić-koutecký et al.



the reactive structures on the neutral ground state for the given time delay.

Optimization of the pump pulse on the intermediate target should allow us to

control desired reactivity channel.

In conclusion, by changing the size of cluster, and therefore its structural and

optical properties, different ultrafast processes can be monitored, and their time

scales can be determined. These include bond-breaking, geometric relaxation of

different nature, IVR, isomerization, and other reaction channels. These

processes can be identified by the analysis of adiabatic or nonadiabatic

dynamics and from the simulated fs signals. Therefore, a precise determination

can be provided for the conditions for the experimental observation of distinct

dynamic processes. This predictive power of theory can be directly used for

conceptual planning of experiments, as illustrated by several examples in this

review. Moreover, the tailored laser fields obtained in the framework of optimal

control theory can drive selected processes, such as direct versus sequential

ionization, isomerization toward one of the isomers, or the chosen reaction

channel for which particular bond breaking or new bonding rearrangements

promote the emanation of the reaction products.

Theoretical methods that combine ab initioMD ‘‘on the fly’’ with the Wigner

distribution approach, which is based on classical treatment of nuclei and on

quantum chemical treatment of electronic structure, represent an important

theoretical tool for the analysis and control of ultrashort processes in complex

systems. Moreover, the possibility to include, in principle, quantum effects for

nuclear motion by introducing appropriate corrections makes this approach

attractive for further developments. However, for this purpose, new proposals

for improving the efficient inclusion of quantum effects for the motion of nuclei

and fast but accurate calculations of MD ‘‘on the fly’’ in the electronic excited

states are mandatory. Both aspects represent attractive and important theoretical

research areas for the future.

The strategies based on the localization of the wavepacket or its ensemble

(e.g., an intermediate target), ensuring the connective pathway between the

initial state and the target in complex systems involving at least two different

electronic states, are attractive for several reasons. They allow simplification of

optimization of pump and dump pulses for complex systems. They also permit

selection of important parts of energy surfaces, which makes the inversion

problem accessible. Finally, the analysis of the underlying dynamics makes it

possible to assign the shapes of optimized pulses to distinct processes, allowing

one to unravel the mechanisms responsible for optimal control. This also allows

the use of optimal control schemes as tools for analysis of the dynamics of complex

systems, which constitutes important conceptual issue with a promising perspective

for applications in biomolecules, clusters, or even their complexes.

Due to the structure–reactivity relationships of clusters, the reactive centers

can be identified. Furthermore, their size selectivity can be exploited for
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inducing reactions toward organic and inorganic molecules or for finding the

cooperative effects required for promoting these reactions. This research direction

opens new roads for using tailored laser fields to drive the laser-induced selective

chemical reactions involving clusters. It also takes advantage of the functional

characteristics of clusters, inducing a large impact in different application areas.

The exploration of ultrafast molecular and cluster dynamics addressed herein

unveiled novel facets of the analysis and control of ultrafast processes in

clusters, which prevail on the femtosecond time scale of nuclear motion. Have

we reached the temporal boarders of fundamental processes in chemical

physics? Ultrafast molecular and cluster dynamics is not limited on the time

scale of the motion of nuclei, but is currently extended to the realm of electron

dynamics [321]. Characteristic time scales for electron dynamics roughly

involve the period of electron motion in atomic or molecular systems, which is

characterized by t ’ 1 a.u. (of time) ¼ 24 attoseconds. Accordingly, the time

scales for molecular and cluster dynamics are reduced (again!) by about

three orders of magnitude from femtosecond nuclear dynamics to attosecond

electron dynamics. Novel developments in the realm of electron dynamics of

molecules in molecular clusters pertain to the coupling of clusters to

ultraintense laser fields (peak intensity I ¼ 1016–1020 W cm�2 [322], where

intracluster fragmentation and response of a nanoplasma occurs on the time

scale of 100 attoseconds to femtoseconds [323].

The exploration of electron dynamics in large finite systems will stem from

concurrent progress in theory and experiment, which will focus on analysis and

control of various channels of ‘‘pure’’ electron dynamics process, without the

involvement of nuclear motion, bypassing the constraints imposed by the

Franck–Condon principle [321]. Of considerable interest will be the extension

of the conceptual framework and development of experimental tools for the

exploration of control of electron dynamics in the attosecond–femtosecond time

domain. Current advances in this fascinating research area involve experi-

mental, computational, and theoretical studies of extreme cluster multielectron

inner and outer ionization and nanoplasma formation in ultraintense laser fields.

They are being interrogated by the utilization of molecular dynamics simulations

[322, 323], model calculations [322], real-time pump-probe experiments [324],

and the advent of laser pulse shaping [325], opening the new research area of

electron dynamics.
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13. A. W. Castleman, Jr. and K. H. Bowen, Jr., J. Phys. Chem. 100, 12911 (1996).

14. J. Jortner, Faraday Discuss. 108, 1 (1997).

15. U. Landman, Int. J. Mod. Phys. B6, 3623 (1992).

16. Q. Zhong and Jr. A. W. Castleman, Jr., Chem. Rev. 100, 4039 (2000).

17. A. Stolow, A. E. Bragg, and D. M. Neumark, Chem. Rev. 104, 1719 (2004).

18. T. E. Dermota, Q. Zhong, and A. W. J. Castleman, Chem. Rev. 104, 1861 (2004).
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21. M. Hartmann, J. Pittner, V. Bonačić-Koutecký, A. Heidenreich, and J. Jortner, J. Phys. Chem.

102, 4069 (1998).

22. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, Appl. Phys. B 65, 779 (1997).

23. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber,

Science 282, 919 (1998).

24. T. Hornung, R. Meier, and M. Motzkus, Chem. Phys. Lett. 326, 445 (2000).

25. S. Vajda, P. Rosendo-Francisco, C. Kaposta, M. Krenz, L. Lupulescu, and L. Wöste, Eur. Phys.
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170. H. Hakkinen, M. Moseler, and U. Landman, Phys. Rev. Lett. 89, 033401-1 (2002).
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Soc. 125, 8408 (2003).

174. M. L. Kimble, A. W. J. Castleman, R. Mitrić, C. Bürgel, and V. Bonačić-Koutecký, J. Am.

Chem. Soc. 126, 2526 (2004).

175. J. Hagen, L. D. Socaciu, J. Le Roux, D. Popolan, T. M. Bernhardt, L. Wöste, R. Mitrić, and V.
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209. R. Ahlrichs, M. Bär, M. Häser, H. Horn, and M. Kölmel, Chem. Phys. Lett. 162, 165 (1989).

210. L. Verlet, Phys. Rev. 159, 98 (1967).

211. T. Leisner, S. Vajda, S. Wolf, L. Wöste, and R. S. Berry, J. Chem. Phys. 111, 1017 (1999).

212. H. Hess, K. R. Asmis, T. Leisner, and L. Wöste, Eur. Phys. J. D 16, 145 (2001).
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I. PROLOGUE

Fascinating chemical and physical phenomena are exhibited in the realm of

ultracold, large finite systems—that is, molecules [1–5], clusters [6–11], optical

molasses [12, 13] and finite Bose–Einstein condensates [14] in the temperature

domain of T < 2.7 K (Fig. 1). We shall (arbitrarily) take the upper temperature

limit for ultracold systems ðT ¼ 2:7KÞ as the current temperature of the expand-

ing universe. The genesis of this research field originated from the exploration of

macroscopic ultracold systems (e.g., liquid 4He and 3He), where quantum effects

manifest unique features of elementary excitations in boson 4He and fermion 3He

systems. These reveal superfluidity and Bose–Einstein condensation with an

onset at T ¼ 2:17K for liquid 4He [15–27], and fermion spin pairing with the

onset of superfluidity at T ’ 3 � 10�3 K for liquid 3He [20]. Superfluidity and

Bose–Einstein condensation (e.g., in liquid 4He) are related, but distinct

phenomena, with an onset at the lambda point, Tl ¼ 2:17K, mark the singularity

of the specific heat [19–26]. Superfluidity corresponds to the response of the

system to a slow movement of its boundaries, with the normal fluid fraction

contributing to the moment of inertia of a rotating body within the liquid, while

the superfluid fraction corresponds to those atoms not affecting the rotatory

motion. Other properties of superfluid 4He are its vanishingly small viscosity,

very high heat conductivity (30 times higher than that of a metal, i.e., copper),

formation of a He fountain, and film flow and creep [15–26]. Bose–Einstein

condensation manifests the critical temperature for the macroscopic occupation

of a single quantum ground state of a boson system, with the fraction of the

condensed atoms being unity at T ¼ 0 [21–26].

Remarkable progress in the research field of macroscopic ultracold systems

was made with the advent of the methods of trapping and cooling of atomic

clouds in magnetic traps [27], magneto-optical traps [28], optical traps [29,30],

and laser cooling of atoms [28, 31–33]. Another significant development

pertains to ‘‘cold collisions’’ of atoms in magnetic fields, with Feschbach

resonances giving rise to ultracold, highly vibrationally excited diatomic

molecules [34–44], while photoassociation methods [45, 46] show promise for
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the production of ultracold, vibrationally excited [45] and ground vibrational

state [46] diatomics. These novel approaches for the production of ultracold

atomic or diatomic ensembles gave rise to Bose–Einstein condensation of atoms

[47–49] and diatomic molecules [37, 40], which were explored in the
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temperature domain of 10 nK to 100 mK (10�8–10�4 K). Accordingly, the

current low–temperature limit for ultracold systems is set at T � 10�8 K.
Concurrently, the world of ultracold systems has expanded its boundaries

during the last decade to encompass ultracold, three–dimensional, large finite

systems [e.g., ð4HeÞN clusters (N ¼ 2–107), and ð3HeÞN clusters (N ¼ 25–107)]

in the temperature range of T ¼ 0:1–2.2 K [6–11, 50–78], finite optical

molasses in laser irradiated ultracold atomic gases in the temperature range of

10–100 mK [79], as well as finite Bose–Einstein condensates in the temperature

range of 10–100 nK [14, 80].

The genesis of the exploration of ultracold finite systems can be traced

to progress in cluster science, which focuses on the energy landscapes, spatial

structures and shapes, (rounded off) phase transitions, energetics, nuclear

and electronic level structure, spectroscopy, response, dynamics and chemical

reactivity of van der Waals elemental, molecular, semiconductor, and metal large

finite systems [81–98]. Central issues in this area of cluster chemical physics

pertained to the bridging between the properties of molecular systems

and infinite condensed phase systems and the utilization of cluster size

equations as scaling laws for the nuclear and electronic response of these

finite systems [84–87], which serve as precursors of nanostructures. Another

bridge for cluster science pertains to the exploration of finite ultracold systems

(Fig. 2). The realm of finite ultracold systems in the temperature domain of

10�8–2.7 K, which involves clusters and clouds, falls into the following major

classes:

1. Elemental homonuclear clusters (droplets) of ð3HeÞN and ð4HeÞN at

T ¼ 0:1–2:2K [6–11, 50–78, 99].

2. Molecular homonuclear clusters (aggregates) of ðH2ÞN and ðD2ÞN at

T ¼ 0:1–2:2K [100–102].

3. Heteroclusters—for example, ð4HeÞN1
ð3HeÞN2

, ð4HeÞN1
ðH2ÞN2

, or ð4HeÞN1ðH2ÞN2
at T ¼ 0:1–2:2K [103, 104].

4. Ultracold laser irradiated, finite atomic clouds, referred to as optical

molasses—for example, Rb at T ¼ 10�4–10�6 K [79].

5. Finite ultracold atomic clouds of Bose–Einstein condensates—for

example, 7Li, 23Na, and 87Rb atoms at T ¼ 10�8–10�7 K [14, 47–49, 80]:

6. Finite Bose–Einstein condensates of ultracold clouds of diatomic

molecules—for example, 6Li2 or 23Na2 at T ¼ 10�8–10�7 K [45, 46].

Large ð4HeÞN ðN ¼ 104–107Þ clusters experimentally studied at T ’ 0:4K
[6–11, 50], small ð4HeÞN clusters ðN ¼ 2–50Þ [105] studied at T ¼ 0:1–1K, and
large ð3HeÞN ðN ¼ 104–107Þ clusters studied at T ¼ 0:15K [67, 104] (class 1)

are cooled by spontaneous evaporative cooling after the cluster formation in a
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free jet expansion. An identical formation mechanism applies for molecular

homonuclear clusters (class 2) and heteroclusters (class 3). The ultralow

temperature of T 
 10–100 mK for optical molasses (class 4) is obtained by

evaporative cooling, which is induced and controlled through an external rf

confining potential, which lowers the trap depth and lets the hottest atoms

escape [106]. Further cooling to extremely low temperatures of T 
 10–100 nK

for trapped Bose–Einstein atomic condensates (class 5) is achieved in optical

traps. As already pointed out, trapped Bose–Einstein molecular condensates

(class 6) can be produced by ultracold collisions in magnetic fields via

Feschbach resonances [34–44] and by photoassociation in ultracold atomic

gases [45, 46]. Finite ultracold clouds of diatomics (class 6) do not provide the

upper limit for the size of molecular constituents; also, future developments in

the production of ultracold cluster clouds, produced by ultracold collisions of

diatomics, are feasible and should be explored.

In what follows we shall focus on some unique properties and features of

finite, large ultracold systems, which can be traced to (a) quantum effects of

zero-point energy and kinetic energy for the ‘‘light’’ constituent clusters (classes

1, 2, and 3) and (b) permutation symmetry effects in all systems (classes 1–6)

considered herein.
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A. Packing and Structure of Boson ð4HeÞN Clusters

and of Ultracold Atomic Clouds

It will be instructive to compare the properties of boson ð4HeÞN clusters (class 1)

and of trapped atomic and molecular condensates (classes 4 and 5) [106]. Self-

bound ð4HeÞN clusters are energetically stable for N � 2. We shall not dwell here

on the interesting properties of small 4He2 and
4He3 quantum molecules—with

4He2 constituting the largest diatomic molecule (bond length re ’ 52 ) [107,

108]—and ð4HeÞ3, which, in addition to a ground state with re ’ 9:6 [109],

should also manifest Efimov three-boson states [110, 111]. Rather, we consider

large (N 
 103–106) clusters, where the 4He–4He largest nearest-neighbor

distance re is close to that for the condensed phase value of re ¼ 3:6 for ð4HeÞN
and ð3HeÞN clusters, which constitute a self-bound fluid, being liquid down to

0 K, and manifest quantum effects (Section I.B). For such large ð4HeÞN clusters

(N ’ 103–107) the liquid cluster density in the center of the cluster is

r ¼ 2:2� 10�2 �3
, being close to the density of the macroscopic liquid 4He

[20]. The cluster radius R0 is approximately given for a step function profile of

the density rðrÞ (i.e., rðrÞ ¼ r for r � R0 and rðrÞ ¼ 0 for r > R0) by

R0 ¼ r0N
1=3 ð1Þ

where r0 ¼ ð4pr=3Þ�1=3 is the 4He constituent mean radius, so that r0 ¼ 2:2
and rr30 ¼ 0:23. The step function description of the cluster density, which is

referred to as the liquid drop model (LDM), constitutes a crude approximation,

while in real life there is a finite-size, smooth cluster surface density profile,

which is due to the large zero-point motion of the atoms [84, 106, 112, 113]. rðrÞ
decreases from r to zero over the distance scale of (2–4)r0 ’ 6–10 Å. The

thickness of the surface region is approximately 
8pr30N
2=3, while the ratio

between the surface and volume regions is 
6N�1=3. The atom–atom scattering

length is a ’ 2:6 [106], so that ra3 ’ 0:4 for this strongly interacting boson

fluid cluster.

The trapped condensate in a magnetic and/or optical trap is not bound, but

rather produced and kept in an external harmonic confining potential

Vext ¼ mo2
HOr

2=2 [14, 106], which acts on each atom of mass m and where

oHO is the trap characteristic frequency. For noninteracting atoms in a trap of

frequency oHO the condensate corresponds to the lowest single-particle state in

a harmonic potential, with a harmonic width AHO ¼ ð�h=moHOÞ1=2. A common

situation for an atomic condensate (e.g., 7Li [49], 23Na [48, 114], or 87Rb [47,

115, 116]) involves N ¼ 105–106 atoms. The characteristic trap frequency is

oHO=2p 
 10–100Hz, while the width of the condensate is AHO 
 10–100 mm.

The atom–atom scattering length is a ’ 10–100 , so that a=AHO 
 10�4–10�3.
The average interatomic distance is r0 
 10�5 cm, while the central density is

Å

Å

Å

Å

Å

Å

Å
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r 
 1013–1015 cm�3 (i.e., 10�11–10�9 �3
), whereupon rr30 
 10�2–1, while

ra3 
 10�5–10�6 for this unbound system. The structural packing parameter

rr30 is similar for ð4HeÞN clusters and for the atomic condensate, whereas the

structure–interaction parameter ra3 is considerably higher for the self-bound

ð4HeÞN than for the unbound trapped condensate. Another significant parameter

is the healing length, which serves as an order parameter for surface recovery

processes j ¼ ð8praÞ�1=2 [106], and which is considerably smaller for the

ð4HeÞN cluster than for the atomic condensate. Table I summarizes characteristic

length scales and densities for finite ultracold systems, comparing ð4HeÞN
clusters and Bose–Einstein atomic condensates. From these data we infer the

following:

1. The length parameters r0 and R0 manifest a common scaling factor of 103

between the ð4HeÞN cluster and the atomic condensate. These length

scales move from the nanometer size domain for ð4HeÞN clusters to the

micrometer size domain for the condensate.

2. The density scales by a numerical factor of 
109 between the two classes

of systems, while the parameter rr30 is of the same order of magnitude.

3. The atom–atom scattering lengths a in the two systems are of the same

order of magnitude. Consequently the dimensionless parameter ra3 varies
by 4–6 orders of magnitude between the ð4HeÞN clusters and the atomic

condensates. This marked difference reflects on the deviations of the ideal

gas Bose condensation temperatures from the experimental transition

temperatures in these strongly interacting clusters and in weakly

interacting condensates (Section I.C).

Å

TABLE I

Length Scales for Finite Ultracold Systems

System a ð Þa r0 ð Þ
b
rM ð Þ

c
R0 ð Þ

d
r ð �3Þe rr30 ra3 j ð Þ f

ð4HeÞN cluster 
2:6 2.2 3.0 50 2:2� 10�2 0.25 0.40 �1
N ¼ 104

87Rb Bose–Einstein 
50 103--104 3:1g 5� 104 10�11--10�9 10�2--1 10�6--10�5 
103
condensate N 
 105

oHO=2p ¼ 100 Hz

AHO ¼ 104 Å

aAtom–atom scattering length.
bInteratomic radius.
cRadius of interatomic potential well.
dRadius of ultracold system R0 ¼ N1=3r0
eAverage density.
fHealing length.
gApproximated by the equilibrium radius of an Na2 molecule (G. Herzberg, Spectra of Diatomic

Molecules, Van Nostrand, New York, 1958).

Å Å Å Å Å Å
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B. Zero-Point Energy and Kinetic Energy Effects in Quantum

Clusters and Ultracold Clouds

Zero-point energy effects can be traced to the light masses of the constituents in

quantum clusters and to the extremely low temperatures in the optical molasses

and condensates. The zero-point energy effects can be described in terms of the

ratio 
 of the quantum lengths


 ¼ lDB
�rr0

ð2Þ

between the de Broglie wavelength lDB for the relative motion of the particles

and the characteristic interparticle distance �rr0. For strongly interacting particles

in homonuclear and heteronuclear quantum clusters (categories 1–3), the 6–12

interparticle potential is characterized by a well depth of 2, a distance of closest
approach of s, and a well position of rM ¼ 21=6s. Taking lDB ¼ h=ðm 2Þ1=2,
where m is the particle mass and �rr0 ¼ s, the de Boer 
 parameter [11, 113] is


 ¼ h

ðm 2Þ1=2s
ð3Þ

The de Boer parameter, Eq. (3), corresponds to the quantum length ratio,

Eq. (2), at temperature T ¼2 =3kB , where kB is the Boltzmann factor. For

weakly interacting particles in ultracold clouds (categories 4 and 5) the thermal

de Broglie wavelength

lDB ¼ h

ð3mkBTÞ1=2
ð4Þ

is expressed in terms of the cloud temperature T (Fig. 3), while �rr0 ’ r0. In this

case


 ¼ h

r0ð3mkBTÞ1=2
ð5Þ

Table II provides insight into quantum effects in clusters and in clouds. For

‘‘nearly classical’’ elemental clusters [e.g., ðXeÞN , ðKrÞN ; ðArÞN and ðNeÞN �,

 < 1 and quantum effects are moderately small. For quantum clusters [e.g.,

ð4HeÞN , ð3HeÞN , ðH2ÞN , and ðD2ÞN �, 
 > 1 and pronounced quantum effects set

in. For atomic clouds [e.g., optical molasses of Rb atoms (at T ¼ 10–100 mKÞ�
and Bose–Einstein condensates [e.g., 6Li or 23Na atoms (at T ¼ 10–100 nKÞ�,
the quantum lengths ratio parameter is huge [i.e., 
 ’ 102–103 (Table II)],

manifesting large zero-point energy quantum effects at ultralow temperatures.
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TABLE II

Quantum Zero-Point Energy Effects for Ultracold Finite Systems

System 2 ðKÞa �rr0 ð Þ
b


ðcÞ Classification

ðXeÞN 280 4.4 0.06 ‘‘Nearly

ðKrÞN 200 4.0 0.11 classical’’

ðArÞN 143 3.8 0.20 clusters

ðNeÞN 43 3.1 0.60 
 < 1

ðH2ÞN 35 3.4 2.0 Quantum

ðD2ÞN 35 3.4 1.4 clusters

ð4HeÞN 11 3.0 2.9 
 > 1

ð3HÞN 11 3.0 3.3

Optical molasses of — 104 150 Ultracold

Rb atoms T ’ 10�5 K clouds

Finite Bose–Einstein Quantum

condensates — 104 1500 clouds
7Li, 23Na atoms 
 
 102--103

T ¼ 10�7 K

aInterparticle well depth in clusters.
bInterparticle distance of closest approach in clusters and the average interparticle distance

in ultracold clouds.
c
 represents the de Boer parameter [Eq. (3)] for clusters and is expressed in terms of the thermal de

Broglie wavelength [Eq. (4)] for ultracold clouds.
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Figure 3. The temperature dependence of the thermal de Broglie wavelengths for several

atomic and molecular systems. The relevant temperature domains for Bose–Einstein condensates,

optical molasses, and ð4HeÞN clusters are marked on the figure.
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The quantum lengths ratio 
 involving the thermal de Broglie wavelength

determines the critical temperatures for noninteracting bosons (Section I.C).

Another characterization of zero-point energy effects pertains to the increase

in the actual average volume v0 occupied by a particle in the ultracold system,

relative to the reference volume vc that the particles would occupy in a classical

lattice. For ‘‘nearly classical’’ and for quantum clusters we have vc ¼ r30 [11],

while for ultracold clouds we have vc ¼ r3M (e.g., rM ¼ 1:5 for 6Li and

rM ’ 3 for 87Rb [106]). From the data for v0=vc assembled in Table III, it is

apparent that for ‘‘nearly classical’’ elemental clusters we have v0=r
3
0 
 1, for

quantum clusters we have v0=r
3
0 > 1, falling in the range v0=r

3
0 ¼ 1:3–2:8,

while for ultracold clouds v0 = r3M is huge, being in the range of 
 1012. From

these results we conclude that the increase of the ratio v0=r
3
0 above unity for

quantum clusters is due to a marked increase in the zero-point energy. For

ð4HeÞN and ð3HeÞN quantum clusters the ratio v0=r
3
0 assumes the largest values

among clusters, providing a qualitative explanation for the attainment of a liquid

state down to 0 K in macroscopic helium under its saturated vapor pressure and

in helium clusters. The huge values of v0=r
3
M for ultracold atomic clouds again

manifest the effects of the large de Broglie wavelength and of zero-point energy

quantum effects at these extremely low temperatures.

C. Bose–Einstein Condensation

The properties of an ideal Bose gas are entirely controlled by permutation

symmetry, and the resulting Bose–Einstein statistics are obeyed by the particles.

All complicating effects of interparticle interactions, which play a dominant role

in determining the properties of bulk liquid 4He and of ð4HeÞN clusters, are

Å

Å

TABLE III

Increase of the Actual Average Volume Per Particle (v0) Relative to the Reference Volume (vc) of the

Particle in a Classical solid

System v0=v
a;b
c Classification

ðXeÞN 0.94 ‘‘Nearly classical’’ clusters

ðArÞN 0.98 v0=vc ’ 1

ðNeÞN 1.06

ðH2ÞN 1.3 Quantum cluster v0=vc > 1

ð4HeÞN 1.9

ð3HeÞN 2.8

Finite optical molasses (T ’ 10�5 K) and 3� 1011–4� 1010 Ultracold quantum clouds

v0=vc 
 1011Bose–Einstein condensates (T ’ 10�7 K)

aData from J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).
bvc ¼ r30 for clusters and vc ’ r3M for ultracold clouds.
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neglected [24, 26, 117–119]. The ideal Bose gas consists of N bosons, each of

mass m, within a volume V, with a uniform density r ¼ N=V at temperature T.

For the uniform infinite system in the thermodynamic limit we have N,V !1,

with r being fixed. This idealized system consists of a collection of non-

interacting bosons in a three-dimensional box [119] whose eigenstates are plane

waves with a well-defined momentum p. The statistical description of the bosons

in a box involves the specification of the number of particles occupying each of

the single-particle eigenstates. The distribution function corresponds to the

single-particle distribution, nðpÞ, specifying the number of particles in a state of

momentum p. The particles in the gas can be characterized by the thermal de

Broglie wavelength lDB, Eq. (4). When lDB � re quantum effects are negligible

and the particles behave classically, while when lDB approaches re, there will be

an overlap between the wavefunctions for the particles and quantum effects

set in (Section I.B).

At high temperatures, when lDB � rM , the properties of the ideal Bose gas

are dominated by the thermal motion of the particles. The momenta of these

bosons will be distributed according to the classical Maxwell–Boltzmann

distribution. The momentum distribution nðpÞ is then a Gaussian with a width

that is proportional to T. At lower temperatures, lDB approaches the mean

interparticle distance re, and the effects of Bose quantum statistics result in the

deviations of nð pÞ from the classical Gaussian shape. For bosons without any

restriction on the occupation of any state, the quantum effects are manifested in

the increase of the occupation of states with small values of p. Boson

permutation effects allow for the reduction of the energy of the system by many-

particle occupation of lower energy states. The momentum distribution nð pÞ
becomes peaked at small values of p, exhibiting a non-Gaussian shape.

As the temperature is lowered further, the quantum statistical effects

dominate the properties of the system, and a transition to the Bose–Einstein

condensed phase is manifested. The Bose–Einstein transition temperature T 0
c in

the infinite, noninteracting, uniform boson system is

T 0
c ¼

2p�h2

mkB

� �
r

xð3=2Þ
� �2=3

ð6Þ

where x( �) is the Rieman zeta function—for example, x(3/2) ¼ 2.61. The

transition temperature [Eq. (6)] is determined by the condition that the thermal

de Broglie wavelength is given by some appropriate measure of the interparticle

spacing. Defining the thermal wavelength lBE ¼ h=ð2pmkBT 0
cÞ1=2, which is

proportional to the de Broglie wavelength at T 0
c [Eq. (4)], the transition

temperature is determined from the condition

rl3BE ¼ xð3=2Þ ð7Þ
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At a temperature below T 0
c a macroscopic occupation of the ground state with

p ¼ 0 develops. The macroscopic occupation implies that the number Nð0Þ of
bosons at the ground state is of the order of the total number N of particles in the

system. This is the celebrated ‘‘Bose–Einstein condensation.’’

The transition is characterized by the appearance of a sharp delta-function-

type spike in nðpÞ at p ¼ 0, which is proportional to the delta function dðpÞ,
with a weight that is given by the condensate fraction Nð0Þ=N—that is, the

fraction of bosons residing in the ground state. The condensate fraction is given

by [24, 26, 117–119]

Nð0Þ
N
¼ 1� T

T 0
c

� �3=2

ð8Þ

At T ¼ 0 all the bosons reside in the ground state and Nð0Þ=N ¼ 1.

In 1938 London proposed [120] that Bose–Einstein condensation provides a

microscopic explanation for superfluidity in liquid 4He. When Eq. (6) is naively

applied to bulk 4He, a rather reasonable estimate of T 0
c ’ 3K is obtained, which

is close to the experimental result for the lambda point temperature of

Tl ¼ 2:17K. However, this apparent agreement between the properties of the

ideal Bose gas and liquid 4He is unsatisfactory because, due to interatomic

interactions, the properties of liquid 4He significantly differ from those of

an ideal Bose gas. While in liquid helium a Bose condensate exists, the inter-

atomic interactions will significantly reduce the condensate fraction expected

for the ideal Bose gas, Eq. (8) [26]. The effects of interactions in liquid helium

are manifested in its phase diagram [121], where there is no low-density phase

at a temperature where Bose condensation might take place [26]. Another

marked difference between liquid 4He and the ideal Bose gas is the density

dependence of the transition temperature. In the ideal gas, T 0
c increases with

increasing density (i.e., T 0
c / r2=3Þ according to Eq. (6). On the other hand, the

superfluid transition temperature in liquid 4He decreases with increasing

density, as experimentally observed from pressure effects on Tl [122, 123].

Thus the ‘‘strong’’ interactions in liquid helium seem to decrease the condensate

fraction. From the point of view of methodology, it should be noted that, in

contrast with the ideal gas, the momentum is no longer a ‘‘good’’ quantum

number for the self-interacting liquid helium. However, the concept of a

condensate fraction is still valid, because one can characterize a finite fraction of

atoms with zero momentum in liquid 4He.

The basic concept of the existence of a critical temperature for the onset of

macroscopic occupation of a single quantum ground state of a boson system is

applicable both for liquid 4He and for weakly interacting low-density atomic

vapors. The phenomenon of Bose–Einstein condensation is not limited to

an ideal Bose gas and prevails also in a strongly interacting boson system.

The bridging between Bose–Einstein condensation in the low-density, weak
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interaction region (i.e., low-density vapors) and in the high density, strong

interaction region (i.e., liquid 4He) was provided by quantum path integral

Monte Carlo simulations for a hard-sphere many-boson system [124, 125]. The

interparticle interactions are characterized by the hard-core sphere diameter s,
and the bulk system is characterized by the density r. The effective

dimensionless interaction parameter rs3 was varied in the range 10�6–1,
with the variation of the critical temperature Tc, normalized to T0

c [Eq. (6)],

exhibiting three domains (Fig. 4): (i) The low-density, weak interaction region

where rs3 ¼ 10�6–10�2 and where Tc=T
0
c increases with increasing rs3 in the

range Tc=T
0
c ¼ 1–1.07. In this region the variation of the critical temperature

can be fit by the empirical relation Tc=T
0
c ’ ½1þ aðrs3Þ1=3� ’ ½1þ aðs=r0Þ�,

where a ð
2Þ is a numerical factor. (ii) The maximal value of Tc=T
0
c ’ 1:07 is

reached at rs3 
 10�2. (iii) The high-density, strong interaction region, where

Tc=T
0
c drops in the range Tc=T

0
c ¼ 1:07--0:55. The high-density, strong

interaction range rs3 ¼ 0:2--0:4, where Tc=T
0
c decreases from 
0:70 to


0:55, faithfully represents the decrease of Tl with increasing the density in

liquid 4He (Fig. 4). The striking result emerging from these quantum

simulations is the moderately weak deviation of the critical temperature in

strongly interacting boson systems, from the critical temperature T0
c [Eq. (6)] for

the ideal Bose gas. The large domain of the density-interaction parameter

rs3 ¼ 10�6–0:5 Tc=T 0
c varies only in the narrow range of 1.07–0.55.

10−6 10−5 10−4 10−2 10−1

ρσ 3

0.8
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110−3
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T
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/ T
C0

T
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Figure 4. The bridging between Bose–Einstein condensation in the low-density, weak

interaction region and in the high-density, ‘‘strong’’ interaction region [124, 125]. Data for Tc=T
0
c ,

where Tc is the critical temperature and T0
c is the critical temperature in an ideal Bose–Einstein gas,

were calculated from quantum path integral Monte-Carlo simulations for a hard-sphere many-boson

model [124, 125]. The effective dimensionless interaction parameter is rs3, where r is the density

and s is the hard-core sphere diameter. The two open circles ð�Þ represent experimental data for

bulk liquid 4He.
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For the exploration of Bose–Einstein condensation in low-density and

ultracold gases, we were concerned with the ideal, spatially uniform Bose gas.

This physical situation corresponds to particles in an infinite three-dimensional

box. It is interesting to inquire how the critical temperature and condensate

fraction are affected by the spatial confinement of the noninteracting bosons.

Such a physical situation is of considerable interest for the confinement of

ultracold gas in magnetic and optical traps [14]. This is the situation for N

noninteracting bosons confined in a harmonic spherical potential VextðrÞ ¼
ðmo2

HO=2Þr2. The thermodynamic limit is obtained for N !1 and oHO ! 0

while keeping No3
HO constant. The critical temperature for the confined

noninteracting system is given by [14]

T 0
c ¼

�hoHO

kB

� �
N

xð3Þ
� �1=3

ð9Þ

while the condensate fraction at T < Tc is [14]

Nð0Þ
N
¼ 1� T

T0
c

� �3

ð10Þ

At T ¼ 0 all the particles reside in the lowest state 20¼ ð3=2Þ�hoHO. The critical

temperature [Eq. (9)] depends on the total number of particles (with a finite value

of oHON
1=3Þ and not on the density, as is the case for the homogeneous system

[Eq. (6)]. The different temperature dependence for the condensate fraction for

the confined boson gas [Eq. (10)] and for the uniform Bose gas [Eq. (8)] can be

traced to the higher density of states for the harmonic oscillator relative to that

for a particle in a box [14, 24]. Theoretical studies for finite size effects in an

ideal finite Bose gas [80, 126] and for a Bose gas trapped in a harmonic potential

[14, 127] provided novel information on finite boson systems. These issues will

be addressed in Section I.E.

D. Order Parameter and Elementary Excitations

In a Bose fluid the macroscopic complex wavefunction �ðrÞ [130–132] is [128,
133–135]

�ðrÞ ¼ cðrÞeiSðrÞ ð11Þ
with the modulus cðrÞ representing the condensate density fraction Nð0Þ through
the superfluid number density rs,

jcj2 ¼ Nð0Þ
V

¼ rs

ð11aÞ

260 joshua jortner and michael rosenblit



while the phase SðrÞ is related to the velocity field vðrÞ through

vðrÞ ¼ �h

m

� �
rSðrÞ ð11bÞ

For 4He below the lambda point, vðrÞ represents the velocity of the superfluid.

The wavefunction [Eq. (11)] corresponds to a complex local order parameter

[130–135] associated with the macroscopic occupation of the Bose–Einstein

condensate.

A peculiar feature of Bose condensates and superfluids is that their low-

energy excitations correspond to collective modes, which can be described as

fluctuations of the order parameter [106]. For uniform dilute boson gases, with

an effective interparticle interaction potential Vðr � r0Þ ¼ gdðr � r0Þ, where

g ¼ 4p�h2a=m is the coupling constant, the excitations (characterized by

energies 2 ðkÞ) are given by the Bogoliobov spectrum [136]

2 ðkÞ2 ¼ ð�h2k2=2mÞ ½ð�h2k2=2mÞ þ 2gr� ð12Þ

where k is the wavevector of the excitation. The validity condition for this result

is [136]

ra3 � 1 ð12aÞ

which holds for ultracold gases (Section I.A and Table I), but not for liquid 4He

bulk or clusters. For large momenta the spectrum corresponds to that of a single

free particle 2 ðkÞ ¼ �h2k2=2m, while for low momenta the phonon dispersion

curve 2 ðkÞ ¼ �hck, with c being the sound velocity, is obtained. The crossover

between the collective phonon excitations and the single particle excitations

occurs when the typical excitation wavelength 
k�1 becomes comparable to the

healing length [106] j ¼ ð8praÞ�1=2 (Section I.A and Table I). When the local

order parameter [Eq. (11)] vanishes at some point (due to impurities, boundary

effects, or finite size effects), the healing length is the typical distance for

recovering the bulk value of the order parameter. In a finite, nonuniform, dilute

condensate obeying Eq. (12a), the low-momentum excitations are not plane

waves, but retain their phonon-like character involving the collective motion of

the condensate, and manifest a transition to single-particle excitations with

increasing the momentum. This theoretical framework was advanced in an

attempt to understand the properties of liquid 4He. The advent of this theory

[136] took place in 1947, long before the experimental discovery of Bose–

Einstein condensation in trapped ultracold gases, for which it is applicable.

However, for liquid 4He we obtain ra3
1 (Table I), and this theory is

inapplicable.

ultracold large finite systems 261



In liquid 4He the low k collective excitations still involve phonons [137,

138]. However, in this strongly correlated dense fluid the phonon branch does

not cross directly to single-particle excitations. The dispersion curve reaches

a maximum at kMAX ’ 1
�1
, and the excitation spectrum forms a minimum

with a nearly parabolic dispersion at kMIN ’ 1:9
�1

with 2 ðkMINÞ ¼ 8:7K
[137, 138]. The collective excitations near the minimum [17]

2 ðkÞ ¼2 ðkMINÞ þ �h2

2m

� �
ðk � kMINÞ2 ð13Þ

are called rotons [17, 18], whose wavelength is of the order of the interatomic

distance and which are related to local order on the atomic scale [17, 18, 137].

The global Hamiltonian for a Bose quantum fluid written in the

hydrodynamic form [19] is

ĤHðrÞ ¼ m

2

� � ð
v̂vðrÞr̂rðrÞv̂vðrÞd3r þ U½r� ð14Þ

where U½r� is a general functional of the one-particle density r, while the first

term represents quantum hydrodynamic kinetic energy flow [19]. Quantum

mechanical operators with appropriate commutation relations represent the

superfluid velocity v̂v [Eq. (11b)] and the one-particle density r̂r [19, 128, 138].

The potential energy in Eq. (14) was expanded to second order in density

fluctuations drðrÞ, with a plane wave expansion of dr, invoking translational

invariance of the bulk local compressibility [138]. This treatment [138] resulted

in the Feynman–Bijil spectrum [139, 140] for bulk superfluid helium

2 ðkÞ ¼ �h2k2

2mSðkÞ ð15Þ

where the structure factor SðkÞ is the Fourier transform of the two-particle

distribution function. This celebrated result established the existence of the

phonon spectrum at low k and manifested the interrelationship between

the structure and the roton dispersion (with kMIN corresponding to the maximum

in SðkÞÞ for the quantum fluid. The classical limit for the dispersion relation in

the bulk is [141]

2 ðkÞ ¼ �hk
kBT

mSðkÞ
	 
1=2

ð16Þ

which again manifests a minimum in the k domain, where SðkÞ reaches its

maximal value. From this analysis an iconoclastic conclusion emerges. The

appearance of a minimum in the dispersion curve for elementary excitations of a

Å

Å
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fluid at k > 1
�1

manifests the existence of collective excitations. However,

such a minimum in the dispersion curve [Eq. (13)] does not necessarily mark the

existence of quantum effects. Collective excitations with a minimum in the

dispersion curve at values of k � 1
�1

were also detected by neutron scattering

in classical liquids—for example, liquid 4He above the lambda point, liquid

parahydrogen, and liquid D2O [142–145]. These excitations do not manifest

superfluidity, because thermal excitations will dissipate the collective, high-k

excitations of a moving particle in a nearly classical fluid. The unique feature of

collective roton excitations in 4He, which exist in the domain specified by

Eq. (13), is their stability toward dissipation. The same situation will prevail in

ð4HeÞN clusters. ð4HeÞN clusters and other finite Bose–Einstein condensates are

characterized by the following finite size effects: (i) A sharp boundary for the

fall-off of the density. For the LDM, one takes a step function approximation

(Section I.A) for the constant density within the cluster radius R0. (ii) A discrete

spectrum of the excitations. The excited states for nuclear excitations of a

spherical cluster are classified according to the number of radial nodes, n, and the

angular momentum quantum numbers ‘ and m.

The discrete level structure is crucial for the lowest energy excitations,

whose wavelength is comparable to R0, and which represent collective

excitations of the entire cluster. The eigenmomenta kn‘ are defined by boundary

condition (i) for the LDM, with j‘ðkn‘R0Þ ¼ 0, where j‘( � ) are the spherical

Bessel functions. The compressional density fluctuations in a liquid drop give a

phonon-like discrete spectrum for all clusters sizes [84, 85, 128]

2‘n ðk‘nÞ ¼ �hck‘n ð17Þ

and are determined by the velocity of sound c. The lowest energy breathing mode

ðn ¼ 1, ‘ ¼ 0Þ is

201¼ p�hc
r0N1=3

ð17aÞ

which was adopted from the theory of nuclear excitations to the realm of

dynamic cluster size effects [84, 85]. Equation (17), with a constant value of c

(which corresponds to the bulk value), seriously overestimates the energies of the

collective breathing mode. A refined liquid drop model (which will be referred to

as LDMR) was introduced [128], accounting for the density dependence of c.

From the Lee–Yang energy density functional for the imperfect Bose gas the

relation between c and the (average) density r is [146]

c2 ¼ ð4p�h2arÞ
m2

� �
1þ 240

15

� �
ra3

p

� �1=2
" #

ð18Þ

Å

Å
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The breathing mode energies 201 calculated [128] from the cluster size

dependence of the sound velocity (Table IV) are considerably lower than the

LDM result for small clusters.

The LDM was extended [128] to incorporate quantum effects advancing a

quantum liquid drop model (QLDM). The relation between the discrete

dispersion curves for elementary excitation and the density fluctuations in

quantum clusters was established in an elegant work [128] based on the

hydrodynamic form of the Hamiltonian for a Bose quantum liquid [Eq. (14)].

The procedure [128] was based on the expansion of the Hamiltonian HðrÞ and
was second-order in density fluctuations drðrÞ setting the boundary condi-

tions drðr ¼ R0Þ ¼ 0, and on the expansion of drðrÞ, vðrÞ, and fðr; r0Þ ¼
drðrÞdrðr0Þ in spherical Bessel functions. The discrete dispersion curves for

2‘mn ðk‘nÞ were obtained in the form [128]

2‘mn ðk‘nÞ ¼ �h2k2‘n
2mS‘mðk‘nÞn‘n ð19Þ

where

n‘n ¼
ðR0

0

r2½g‘ðk‘nrÞ�2 ð19aÞ

The cluster structure function is [128]

S‘nðk‘nÞn‘n ¼ 1

r0n
2
‘n

� �ð ð
d3r1d

3r2

� j‘ðk‘nr1Þj‘ðk‘nr2ÞY�‘m
r1

r1

� �
Ym

r2

r2

� �
� hdrðr1Þdrðr2Þi ð20Þ

TABLE IV

Cluster Size Dependence of the Velocity of Sound c and the Energies 201 of the Lowest Breathing

Mode in ð4HeÞN Clustersa

201 (K)
—————————————————————-

N cðms�1Þ LDM LDMR QLDM

20 154 9.5 5.9 5.0

70 198 6.2 4.8 5.7

240 238 4.0 4.0 3.0

1 238 0 0 0

aData from M. V. Krishna and K. B. Whaley, J. Chem. Phys. 93, 746 (1990).
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which is the Fourier–Bessel transform of the ground-state fluctuation-density

correlation function drðr1Þdrðr2Þ of the cluster, which can be expressed in the form
hdrðr1Þdrðr2Þi ¼ rðr1Þd3ðr1; r2Þ þ rðr1Þrðr2Þ½g2ðr1; r2Þ � 1� ð20aÞ

where rðrjÞð j ¼ 1; 2Þ are the one-particle densities and g2ðr1; r2Þ is the two-

particle distribution function. Equations (19) and (20) constitute the finite cluster

analogue of the Feynman–Bijil relation [139, 140, 147], Eq. (15).

From the point of view of general methodology, several comments are in

order. First, the appearance of the Fourier–Bessel transform in the structure

function [Eq. (20)] reflects on the breakdown of translational invariance, which

is prevalent in the case of the bulk. Second, the different symmetries of

spherically projected structure functions for the finite system and of plane

wave structures for the bulk system are crucial for a proper representation of

the cluster excitations. Third, the discrete eigenvectors k‘n are determined by the

boundary conditions. Fourth, the energies 2‘mn ðk‘nÞ are discrete. However, the

complete spectrum for a fixed value of n containing l ¼ 0; 1; 2; . . . branches
would form a continuous smooth curve.

Detailed numerical calculations [128] (for m ¼ 0), which are shown in Fig. 5,

revealed that the structure function S‘¼0;m¼0 ðk‘¼0;nÞ for ð4HeÞN cluster sizes

N ¼ 20, 70, 240 peaks at k ’ �1, being similar in form to the structure factor

SðkÞ for the bulk liquid [128]. The excitation spectrum 2‘¼0;m¼0;n for N ¼ 240

and N ¼ 70 clearly reveals a maximum around kMAX
‘¼0;n ’ 1:2

�1
and a minimum

around kMIN
‘¼0;n ’ 1:8

�1
[128]. These k‘¼0;n values are close to the

kMAX ¼ 1
�1

and kMIN ¼ 1:9
�1

values for the bulk fluid. The low range of

k‘¼0;n in the size domain N ¼ 240; 70 exhibits a linear 2‘¼0;m¼0;n versus k‘¼0; n
dependence, exhibiting a phonon spectrum with a slope close to that of the bulk

sound velocity [128]. Thus phonon–roton collective excitations exist in ð4HeÞN
clusters for N � 70. For the smaller cluster with N ¼ 20 the initial slope of

2‘¼0;m¼0; n versus k‘¼0; n is linear and is lower than that for the larger clusters, in

accord with the cluster size dependence of the sound velocity (Table IV). In the

range of k‘¼0;n ’ 1:8
�1

the dispersion curve for N ¼ 20 reveals an inflection

point, while no roton minimum is exhibited as is the case for larger clusters.

These interesting results [128] pertain to cluster size effects for the realization

of collective roton excitations in finite quantum systems. The onset of the roton

dispersion curve and the onset of superfluidity in ð4HeÞN boson clusters occurs

in the cluster size domain of N> 70.

The classical limit of the QLDM [Eqs. (19) and (20)] results in the relation

for the LDM for a classical liquid drop [128, 141]

2CL‘mn¼ �hk‘n
kBT

mS‘mðk‘nÞn‘n

	 
1=2
ð21Þ

Å

Å

Å

Å Å

Å
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This classical result, which manifests a minimum value of 2‘mn where the

maximal value of S‘m is attained, does not correspond to elementary excitations

in a quantum cluster. Indeed, collective, large k? �1
cluster excitations will

also be manifested in classical clusters. As in the case of the bulk systems

discussed above, such collective excitations in classical clusters will be

dissipated, while the roton cluster excitations will be robust with respect to

dissipation into lower energy excitation (e.g., phonons).

E. Energetics, Thermodynamics, Response, and Dynamics

of Ultracold Finite Systems

This review will focus on some facets of the bridging between cluster science and

chemical physics of ultracold finite systems—that is, quantum clusters and finite

ultracold gases. The following problems will be addressed:

Å

1.5

1.2

0.9

0.6

0.3

0 1.0 2.0 3.0 4.0 5.0

k(Å-1)

30

24

18

12

6

0 1.0 2.0 2.51.50.5

k(Å–1)

ε(
k)

S 0(k
on

)ν
on

Figure 5. Structure factor and excitation spectrum of ð4HeÞN clusters adopted from R. Krishna

and K. B. Whaley [128]. The excitation spectrum E‘nðk‘nÞ for ‘ ¼ 0 was calculated by the QLDM

[128] for N ¼ 20ð*Þ, N ¼ 70ð&Þ, and N ¼ 240ð~Þ. The solid line represents the continuous

excitation spectrum from the Feynman–Bijil equation for bulk superfluid 4He. The spherically

projected structure factor S‘nðk‘nÞn‘n for ‘ ¼ 0 is presented in the insert for ð4HeÞN clusters with

N ¼ 20ð*Þ, N ¼ 70ð&Þ, and N ¼ 240ð~Þ, while the solid line represents the structure factor

calculated for bulk liquid 4He [128].
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1. From Finite Ultracold Systems to the Bulk. The general features of

packing, structure and thermodynamic properties, as well as the elementary

excitation spectrum of large finite systems, converge to those of the correspond-

ing bulk material for sufficiently large quantum clusters and ultracold clouds.

The convergence of the packing and structural properties of finite systems to

those of the bulk manifests some of the simplest predictions of cluster size

equations [84–86]. At this stage, two comments are in order: First, the

convergence of a specific property of large finite systems to that of the

corresponding bulk is general (within some restrictions specified in Section 3

below), but not universal [84]. The ‘‘critical’’ size, or the number NMAX of

constituents, of the system for the attainment of the bulk property (within some

margin of deviation [84]) is property-dependent [84–86]. Second, in the size

domain N < NMAX, the specific property of the finite quantum system manifests

the unique structural, thermodynamic, and response characteristics—for

example, the state of aggregation, radial distribution function onsets of Bose–

Einstein condensation, superfluidity, and elementary excitations. When the

size of the quantum system further decreases, specific size effects set in [84]

(Section 4 below). Only for rather small system sizes of N � NMAX, the unique

quantum size effects are expected to be eroded for N � NMIN, with the onset

cluster size NMIN again being property dependent (Section 5). Regarding the

structure and packing of quantum clusters, the radial pair distribution functions

for ð4HeÞNðN ¼ 20--1000Þ [52, 128, 129] clusters converge to those for bulk 4He

with increasing the cluster size. The pair distribution function approaches the

bulk value, so one can set NMAX ? 103 for this property, with the average

structure and density of ð4HeÞN clusters converging to that of liquid 4He for

N � 103. Regarding the response of ð4HeÞN clusters, the dispersion curve for

elementary excitations in ð4HeÞN clusters [128], which manifests roton-type

excitations in the energy domain of 10–20 K at a finite value of the (discrete)

momentum, becomes similar to the Feynman–Bijil dispersion curve for phonons

and rotons in macroscopic liquid 4He [139, 140, 147] with increasing the cluster

size in the range N? 240 [128], whereupon NMAX ? 240 for this central property

of a boson quantum cluster. For finite, ultracold clouds, structural information is

not available, while finite size effects on the critical temperature Tc for Bose–

Einstein condensation infer that NMAX ’ 103 (for the attainment of Tc within less

than 1% of the bulk value [14]). Regarding the bridging between the structure of

the surface of quantum clusters and of the bulk surface, the notable existence of

quite large surface profiles (with a width of t ’ 6� 10 ), which originate from

kinetic energy effects (Section I.A), is prevalent both in finite ð4HeÞN clusters

with N > 103 and in liquid helium. Similarly, zero-point energy and kinetic

energy effects in quantum clusters (Section I.B) bear a close analogy between the

large finite ultracold systems and the corresponding bulk systems. In this context,

it is important to emphasize that in an analogy between macroscopic liquid

Å
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helium under its equilibrium vapor pressure, which constitutes the only liquid

condensed phase down to T ¼ 0K, ð4HeÞN and ð3HeÞN clusters and droplets are

the only clusters that remain liquid down to 0 K [6–11, 51–60, 106, 127–129].

The lowering of the ‘‘melting’’—that is, the order–disorder (broadened)

structural transition temperature in a cluster relative to the corresponding

infinite system [148, 149]—may be beneficial for the attainment of lower-

temperature liquid quantum clusters [149]. A notable example pertains to the

search for a new Bose-condensed finite system in molecular para-H2 [66, 123,

149]. This perspective depends on the expected value of the critical temperature

for Bose–Einstein condensation in molecular hydrogen, which crystallizes at

Tm 
 14K in the bulk, while for clusters the ‘‘melting’’ temperature is expected

to be lower [149]. For Bose–Einstein condensation in an ideal uniform H2 gas,

the fictitious liquid density results in the critical temperature [Eq. (6)] of

T 0
c ¼ 6--8K [123, 149, 150], which is consistent with early theoretical estimates

[150], although a lower value of Tc ¼ 2:1K was inferred from a later analysis

[123]. The estimate of Tc ¼ 6–8 K, based on Eq. (6), is also consistent with

quantum path integral Monte Carlo simulations for finite para-H2 clusters [66,

151, 152]. The quest for Bose–Einstein condensation and superfluidity in

molecular clusters (e.g., para-H2 and ortho-D2) is of considerable interest. In this

context the exploration of Bose–Einstein condensation and of superfluidity in

many-boson systems cannot be accomplished in the bulk but may be feasible for

finite quantum clusters.

2. Bose–Einstein Condensation and Superfluidity in Finite Systems. The

two most important properties for the finite boson ð4HeÞN or ðp-H2ÞN systems

(which are well established in the corresponding homogeneous bulk system of

liquid 4He) are superfluidity and Bose–Einstein condensation [6–11, 23, 50, 65–

78, 128]. Superfluidity pertains to the hydrodynamic effects of the response to a

slow movement of the system’s boundaries [6–11, 23, 50, 65–78], while Bose–

Einstein condensation manifests off-diagonal long-range order, with the

occupation number of the ground state becoming proportional to the number

density of the atoms [23, 24, 65–78]. While the properties of superfluidity and of

Bose–Einstein condensation are distinct, both phenomena manifest the implica-

tions of boson permutation symmetry and are characterized by the same

transition temperature, at least in the infinite system [23, 66–69]. In a finite boson

system a wealth of novel finite size effects will be manifested, involving surface

and boundary effects, spatial inhomogeneity, and the breakdown of translational

symmetry. These finite size effects will unveil new facets of elementary

excitations, Bose–Einstein condensation, and superfluidity in ultracold finite

systems.

The conventional theory and quantum simulations of Bose–Einstein con-

densation [21–23, 65, 66, 151, 152] reviewed above (Section I.C) rest on the
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thermodynamic limit of an infinite boson system. Bose condensation in finite

systems was originally invoked in the exploration of the properties of nuclei, in

which pairs of nucleons bind via the strong force to produce effective bosonic

degrees of freedom [153, 154]. These concepts are applicable for nuclei, which

constitute finite systems far from the thermodynamic limit. For weakly

interacting low-density systems, finite size effects on Bose–Einstein condensa-

tion in noninteracting uniform Bose gas [80, 126] and in noninteracting confined

Bose gas in an electromagnetic trap [14, 127] were explored. For high-density,

strongly interacting 4He finite systems, quantum simulations of the lambda

transition in small ð4HeÞN clusters (N ¼ 8–128) [65, 155] and experimental

studies of the specific heat of 4He in confined geometries [156–162] provide

information on Bose–Einstein condensation in these finite boson systems.

Another important issue in this context of broadened phase changes in finite

systems pertains to the inequivalence of canonical and microcanonical

ensembles and the role of fluctuations in finite systems. This issue came out

for phase changes in nearly classical clusters [163, 164] where the caloric curves

for the canonical and microcanonical ensembles were found to be qualitatively

different, with the microcanonical ensemble manifesting a negative specific heat

in the transition region, which originates from fluctuations. Experimental

evidence for S-shaped caloric curves of nearly classical clusters was reported

[165]. Recent theoretical studies addressed the role of the specific statistical

ensemble and the effects of fluctuations in finite boson systems [166–170].

3. Size Effects in Ultracold Systems. Another aspect of the bridging between

cluster science and ultracold large finite systems involves size effects [81–89].

Central issues in the broad, interdisciplinary research area of cluster science

pertain to the energetics, thermodynamics, spectroscopy, dynamics, and response

by the utilization of cluster size equations as scaling laws for the nuclear–

electronic response of finite systems [84–87]. When is such size-scaling partial

and incomplete? Several examples come to mind in the context of energetics,

nuclear dynamics, and cooperative effects. First, specific cluster size effects,

involving self-selection and the existence of ‘‘magic numbers’’ for moderately

sized clusters, manifest an irregular variation of structure and energetics, which

is not amenable to size scaling, with a large abundance of some sizes being due to

enhanced energetic stability [81–83, 88, 89]. An interesting recent development

in the realm of specific size effects in small ð4HeÞN clusters involves ‘‘magic

numbers.’’ These are not due to the relative energetic stability of the clusters, but

rather to effects of interior cluster collective compression modes on the growth

kinetics of these clusters [105]. Second, structural characterization and

specification of distinct phase-like forms—for example, solid (rigid) and liquid

(nonrigid), or solid (rigid) and solid (rigid) configurations—and ‘‘smeared’’

(rounded-off) phase changes between them in clusters and nanoparticles may
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differ from the corresponding feature in bulk matter [163, 164]. A related and

interesting issue pertains to rounded-off l phase changes and Bose–Einstein

condensation in finite systems of 4He clusters.

4. Specific Size Effects. An interesting question in the realm of quantum size

effects pertains to the issue of the minimal cluster size that will manifest

energetic stability, or to a specific electron level structure. This question

concerning the threshold size, which involves specific cluster size effects and

changes in the electronic level structure, was addressed in the field of the

energetics and response of molecular and metal clusters. Pertinent questions in

this context are: What is the minimal cluster size of a metal–atom cluster (HgN ,

MgN , ZnN , or SrN) which will exhibit the metal-nonmetal transition [171–173]?

What is the minimal cluster size of elemental, ionic, or molecular clusters to

support a quasi-free electron state in XeN [174, 175], an F center in ðNaClÞN
[176], or a solvated electron state in ðNH3ÞN [84]? Related questions, such as the

following, were raised in the context of cluster reactivity: What is the minimal

(or maximal) size of a metal cluster (e.g., AuN) to induce specific catalytic

reactions [177]? This issue of threshold cluster size effects is of considerable

interest for quantum clusters. Energetic and dynamic stability will govern the

threshold size of ultracold finite systems. A well-known problem involves

isotope effects on the minimal cluster size of ð4HeÞN and ð3HeÞN clusters [51–

54]. While the 4HeN diatomic molecule is stable—that is, the ð4HeÞN ‘‘cluster’’ is

formed for N ¼ 2 [107, 108]—the minimal stable cluster size of ð3HeÞN is

obtained for N ’ 25 [51–54], manifesting kinetic energy effects. Another

interesting problem involves the minimal size of a ð4HeÞN cluster that will sup-

port an excess electron surface state [178–180] or an interior excess electron

state, which is localized in a bubble in ð4HeÞN and ð3HeÞN clusters. The energetic

stability of an interior excess electron state in helium clusters has to

be supplemented by the dynamic stability, because dynamic effects involving

electron tunneling of the excess electron may result in the depletion of the

energetically stable state on the experimental time scale for the interrogation of

ðHeÞ�N clusters [99].

5. Dynamics. Cluster dynamics constitutes a rich field, which focused on

nuclear dynamics on the time scale of nuclear motion—for example, dissociation

dynamics [181], transition state spectroscopy [177, 181, 182], and vibrational

energy redistribution [182]. Recent developments pertained to cluster electron

dynamics [183], which involved electron–hole coherence of Wannier excitons

and exciton wavepacket dynamics in semiconductor clusters and quantum dots

[183], ultrafast electron-surface scattering in metallic clusters [184], and the

dissipation of plasmons into compression nuclear modes in metal clusters [185].

Another interesting facet of electron dynamics focused on nanoplasma formation

and response in extremely highly ionized molecular clusters coupled to an
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ultraintense laser field [186]. Perspectives for nuclear dynamics of ultracold

quantum clusters involved the description of bulk and surface elementary

excitations [85, 86, 128, 129]. Time-resolved nuclear dynamics on the time scale

of nuclear motion in quantum clusters involves the extreme medium dilation

accompanying the formation of excess electron bubbles in (He)N clusters in

analogy with bulk helium [187, 188]. Electron dynamics in quantum clusters

involves electron tunneling from an excess electron bubble [99]. Another

interesting development in the realm of cluster dynamics pertained to the

energetic and dynamic instability of multicharged clusters. This research area,

which was pioneered in 1882 by Lord Rayleigh [189] for the fission of

multicharged droplets and in 1939 by Bohr andWheeler [190] for nuclear fission,

was recently extended to encompass the phenomenon of Coulomb explosion of

extremely charged elemental and molecular clusters [94]. Coulomb explosion of

highly charged molecular clusters—for example, ðXeþqÞn clusters with q ¼ 1–36

and n ¼ 2000 [93, 191], or ðDþÞn clusters with n ¼ 100–2000 [96, 97]—which

is induced by extreme multielectron ionization in ultra-intense laser fields

(intensity I ¼ 1015–1020 W cm�2), being characterized by ultrafast time scales

(10–100 fs) and ultrahigh energies for nuclear motion, and with ion energies in

the range of 1 keV to 1 meV, corresponding to the energy domain of nuclear

physics. The analogy between cluster dynamics and the nuclear dynamics of

finite ultracold systems is of interest. Recently, such an analogy was established

between cluster Coulomb explosion and the expansion of optical molasses [79],

which provides a bridge between nuclear dynamics of clusters and of laser-

irradiated ultracold finite clouds.

These general problems outlined above set the cornerstones for this chapter,

which will address the energetics, thermodynamics, response, and dynamics of

ultracold finite systems. A selective review of the following issues will be

presented:

1. What information is available on the (rounded-off ) phase changes that

characterize Bose–Einstein condensation and superfluidity in ð4HeÞN
clusters and in ultracold clouds?

2. What are the size effects and scaling laws for the temperature of the l
transition to superfluidity/ Bose–Einstein condensation in finite ð4HeÞN
clusters, and how does the l temperature relate to the macroscopic

condensed phase?

3. What are the size effects and scaling laws for the onset of Bose–Einstein

condensation in finite ultracold gases?

4. How can one characterize threshold size effects for superfluidity/ Bose–

Einstein condensation in small boson systems—for example, what is the

minimal size of a ð4HeÞN cluster for the attainment of these properties?
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5. How can one use macroscopic probes (i.e., excess electron bubbles) to

interrogate superfluidity in finite ð4HeÞN clusters?

6. How can one establish threshold size effects for the energetic and

dynamic stability of excess electron bubbles in ð4HeÞN clusters?

7. How can one establish relations and correlations between the nuclear

dynamics of molecular clusters and of ultracold gases?

II. SIZE EFFECTS ON THE SUPERFLUID TRANSITION

IN ð4HeÞN FINITE SYSTEMS

Notable recent developments in the realm of low-temperature large, finite,

quantum systems pertain to the exploration of homonuclear molecular clusters

(aggregates or nanodroplets) of ð4HeÞN where the nuclear dynamics, elementary

excitations, and response are dominated by quantum effects and by permuta-

tional symmetry [50–68, 155]. Some of the features of the finite 4He boson

systems [50, 65, 66, 155–162, 192] are:

1. The Onset of the Superfluid Transition in the Finite System [50, 65, 66,

155]. This transition is referred to as the l point in the bulk system. What is the

analogy in a finite system? Pioneering quantum path integral Monte-Carlo

simulations [65, 66] established the appearance of a rounded-off (smeared) l
transition in finite (HeÞN ðN ¼ 64 and 128) clusters. This was manifested by a

maximum in the temperature dependence of the specific heat (Fig. 6), which

occurs at the temperature Tl, with �Tl ¼ T 0
l � Tl > 0 where T 0

l ¼ 2:172 K

is the temperature of the l transition in the bulk [23], while experimental values

of �Tl of 4He in confined spaces were recorded [157–162, 192] down to

�Tl � 2� 10�4 K. Early experimental studies [156] of the heat capacity of 4He

confined in microscopic bubbles (cavities) in Cu foils indicated the occurrence of

the superfluid transition with the lowering of Tl in the confined space; however,

pressure effects and size effects on the superfluid transition cannot readily be

separated. Relevant in this context of superfluidity in finite systems [157–162,

192] are several experimental studies of the superfluid transition interrogated by

the density and specific heat of 4He in confined geometries [157–162, 192]—that

is, films [157, 192], cylinders [157, 159, 192] and pores [159, 160]. These

confined geometries involve polymer membranes (nucleopore filters), with films

of 20–80 Å thickness [157, 192] and cylindrical channels of 102–103 Å diameter

[157, 192] (Fig. 1), porous gold with a pore diameter of 240 Å (Fig. 1) [159], vicor

glass involving a highly intercorrelated network of pores of an average diameter

of 70 Å [160], and confinement between sheets of Mylar [161] separated by

4600 Å and 4He between Si wafers [162]. These specific heat data manifest the

rounding-off of the transition and the shift of its maximum (Tl) to lower values, that

is, �Tl > 0. Alternatively, the onset of the appearance of a finite fraction of the
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Figure 6. The temperature dependence of the specific heat of ð4HeÞN clusters (lower panel for

N ¼ 64 and N ¼ 128) obtained from quantum simulations (Ref. 65) and from experimental data for
4He in porous gold (pore radius R0 ¼ 120 Å, upper panel, Ref. 160) and for 4He in cylindrical

channels in polymer membrane (cylinder radius r0 ¼ 400 Å, upper panel, Ref. 159). The bulk

infinite system specific heat (N ¼ 1) is presented in the lower panel.
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superfluid density can be taken as a measure of the l transition in the finite

system. From the available simulation data for ð4HeÞN (N ¼ 64; 128) clusters
[65] the maximum of the specific heat is manifested at Tl ¼ 1:58K for N ¼ 64

and at Tl ¼ 1:82K for N ¼ 128, while the onsets of the superfluid density are

Tl ¼ 1:75� 0:10K for N ¼ 64 and Tl ¼ 2:0� 0:10K for N ¼ 128. The

superfluid density rs, calculated in conjunction with the specific heat data, starts

to increase in the range of the broad maximum of the specific heat [65]. However,

the numerical uncertainty in these simulation data precludes definite conclu-

sions. An analysis of rs, based on later quantum simulation data [155] reveals a

broad transition region �Tr (e.g., �Tr ? 1K for N ¼ 64), where the superfluid

density gradually increases from low values toward unity. These data and their

analysis [155] will be discussed later (Section II.E). The experimental data for
4He confined in porous gold [150] and vicor glass [160] also reveal an

approximate coincidence of the temperatures corresponding to the maximum of

the specific heat and to the onset of the superfluid density. Both observables

characterize the rounded-off l transition in the finite system. ‘‘Smeared,’’

rounded-off phase transitions in finite systems may differ from the corresponding

features in bulk matter [193–196]. The concept of finite size scaling for phase

transitions in a confined system [193] related the lowering of Tl to the smallest

confining dimension L by the Fisher relation

�Tl=T
0
l 
 L�1=n ð22Þ

where n ¼ 0:67 is the characteristic exponent for the divergence of the corre-

lation length [134, 135, 155, 195]. Similarly, the region dTl of the rounding-off

of the specific heat curve is expected to be determined by the relation [193]

dTl 
 L�1=n, whereupon the ratio dTl=ð�Tl=T
0
lÞ is a constant, being size-

independent. When these relations for �Tl=T
0
l and dTl were originally

subjected to an experimental scrutiny [157, 192], it was found that the specific

heat data in polymers, films, and cylinders (over a small size domain) obey the

Fisher relation [153], Eq. (1); however, the scaling exponent was lower [157,

192] than the value n ¼ 0:67. A possible resolution of this finite size scaling

problem was considered [158] by replacing T0
l by a size-dependent reference

temperature. A more elaborate scrutiny of specific heat and superfluid fraction

data for finite systems over a larger size domain is called for.

2. Superfluidity in the Finite Systems. The quantum path integral simulations

[65, 66] for the ð4HeÞN ðN ¼ 64, 128) clusters indicate the onset of the superfluid

fraction fl in the vicinity of T ’ Tl, with a gradual increase of fl with

decreasing the temperature, reaching a large finite value (fl ’ 0:9) at T ¼ 0.

Even more interesting is the use of molecular spectroscopic probes for

superfluidity in large ð4HeÞN clusters ðN ¼ 104–106Þ at 0.4 K (where rl ’ 1)

[71–74]. Another microscopic probe for superfluidity in large ð4HeÞN clusters
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ðN � 105Þ at 0.4 K involves a transport probe—that is, electron tunneling from

the electron bubble (Chapter IV)—which provided evidence for vanishingly low

viscosity of the superfluid finite system.

3. Elementary Excitation in the Superfluid Clusters. The existence of a roton-

type collective excitation spectrum in large ð4HeÞN clusters ðN ¼ 104–106Þ at
0.4 K was established from electronic spectroscopy of large molecules (e.g.,

glyoxal [70]) which manifests coupled electronic–roton excitations [70].

While the characteristics of superfluidity and of the elementary excitations in

the large, cold (T ¼ 0.4 K) ð4HeÞN clusters ðN ¼ 104--106Þ were considered in

analogy to the properties of the corresponding bulk system [6, 8, 70–78, 102], the

interesting problem of size effects on the phenomena of Bose–Einstein

condensation and superfluidity in finite boson systems [8, 61, 65–67, 71, 104,

155, 157–162] is not yet fully elucidated. The available information emerges

from the path integral Monte-Carlo simulations of ð4HeÞN (N ¼ 64, 128 [65, 66]

and N ¼ 8--64 [155]) clusters and from experimental specific heat data of 4He in

confined porous systems [157–162, 192]. In this chapter we address the issue of

the size scaling of the l point in finite ð4HeÞN clusters. As a starting point, we

shall utilize the phenomenological theory of Ginzburg, Pitaevskii, and Sobyanin

[134, 135] for the l transition with proper boundary conditions for free surfaces,

to explore the cluster size dependence of Tl in ð4HeÞN clusters. The cluster size

scaling theory for superfluidity in ð4HeÞN clusters provides a satisfactory

semiquantitative account of the results of the path integral Monte-Carlo

simulations [65, 66] and of the experimental specific heat data of 4He confined

in pores [157–162, 192] for the lowering of Tl with decreasing the size of

the ð4HeÞN clusters. The phenomenological theory relates the intensive property

(Tl) of the finite system (of size L) to the correlation length xðTÞ for superfluidity
in the corresponding bulk system, with the shift ðT0

l � TlÞ depending on the

ratio L=xðTÞ. This result of the phenomenological model for the size-dependent

l transition is related to the theory of finite size scaling [152, 155, 193–197],

which is extensively used to interpret simulations of phase transitions—for

example, liquid–vapor critical point [193, 198] and Bose–Einstein condensation

in liquid 4He, in a hard-sphere gas [124, 125], and in ð4HeÞN clusters [155].

While the finite size scaling theory routinely allows to deduce the transition

point for the infinite system from simulations for finite-size samples [155, 193–

197, 199], one can invert the argument using finite size scaling for the

characterization of the ‘‘smeared’’ l transition in the finite quantum boson

system.

A. A Phenomenological Theory of the Lambda Transition

The Ginzburg–Pitaevskii theory [134] for bulk liquid 4He near the l point

rests on Landau’s theory of second-order phase transitions [133]. This theory
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was extended by Ginzburg and Sobyanin [135] for the treatment of the l
transition in finite systems (e.g., thin films, narrow channels, confined space, and

vortices) exploring size effects and confinement on the superfluid transition,

which is pertinent for the analysis of the onset of superfluidity in ð4HeÞN
clusters. This phenomenological theory [134, 135, 199] rests on the introduction

of a macroscopic complex wavefunction c, which is used as an order parameter

for the superfluid transition. The modulus of the complex order parameter c,
Eq. (11), is related to the superfluid density rs and is normalized in the

form

rs ¼ mjcj2 ð23Þ

where m is the mass of the helium-4 atom. The normal He fluid is considered to

be at rest, and the free energy density f ð0Þ (which depends on the pressure p and

temperature T ) of the homogeneous infinite fluid can be expanded in terms of

powers of jcj2, while the local free energy density f (r) for an inhomogeneous

finite system can be expressed in terms of powers of jcðrÞj2. Thus for a

homogeneous system

f ð0ÞðP; T;cÞ ¼ f1ðP; TÞ þ Ajcj2 þ ðB=2Þjcj4 þ � � � ð24Þ

where f1 is the free energy density of normal 4He, while the coefficients A and B

depend on T and P. From the equilibrium condition for the homogeneous fluid

ðqf ð0Þ=qjcj2ÞP;T ¼ 0, Ginzburg and Pitaevskii [134, 135] established the relation

Aþ Bjcj2 ¼ 0, which results in an explicit relation between the homogeneous

system superfluid density rs and the coefficients A and B, so that rs ¼ �A=B. At
this stage the phenomenological theory of Ginzburg and Sobyanin can be

adopted, representing the bulk order parameter and its superfluid density rs in
terms of a critical exponent of the macroscopic system

rs=rl ¼ tn ð25Þ

with

t ¼ ðT 0
l � TÞ=T0

l ð26Þ

where the critical exponent for the superfluid fraction is n ¼ 0:6702 ½200�—that

is, manifesting the ‘‘2/3 scaling law.’’ T0
l is the l point temperature of the infinite

system. Here the superfluid effective density is rl ¼ 0:351 g cm�3 [200], while
rðTlÞ ¼ 0:146 g cm�3 is the experimental density at T 0

l. The equilibrium

condition results in jcj2 ¼ �A=B, which from Eq. (25) implies that rs=rl ¼
�A=B / tn. In the temperature range below T 0

l—that is ðT 0
l � TlÞ > 0—the
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parameter A is negative [134, 135]. The temperature dependence of the

expansion parameters is expressed in the form

A ¼ �at2n ða > 0Þ ð27Þ
B ¼ btn ð28Þ

Eqs. (27) and (28) are consistent with the scaling relations (25). All the terms in

the expansion (24) exhibit the same t-dependence, and the parameters a and b are

temperature-independent.

The free energy density f ðrÞ of the inhomogeneous finite system with a local

order parameter cðrÞ was expressed by adding to f ð0Þ, Eq. (24), an even

expansion of the gradient term, so that

fðrÞ ¼ f1 þ �h2

2m

� �
jrcðrÞj2 þ AjcðrÞj2 þ B

2

� �
jcðrÞj4 þ � � � ð29Þ

The total free energy F ¼ Ð d3rfðrÞ is minimized with respect to the order

parameter. The minimization with respect to c� results in the Schrödinger-type

equation

� �h2

2m

� �
r2cþ Acþ Bjcj2cþ � � � ¼ 0 ð30Þ

At this stage the correlation length xðTÞ for superfluidity in the bulk is

introduced:

xðTÞ ¼ �h2

2mjAj
� �1=2

ð31Þ

which, according to Eq. (27), is

xðTÞ ¼ x0t
�n ð32Þ

where

x0 ¼
�h2

2mjaj
� �1=2

ð33Þ

The critical exponent n for the correlation length, Eq. (32), is identical to that for
the superfluid fraction [135, 155, 158, 193–197, 200], Eq. (25). x0, Eq. (33), is
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the ‘‘critical’’ amplitude for the correlation length. x0 can be related to the

superfluid density by the Josephson relation [201]

x0 ¼
kBT

0
lm

2

�h2rl
ð33aÞ

where rl is the superfluid effective density [200], Eq. (25). Equation (33a)

results in x0 ¼ 3:1 Å for bulk 4He. Note that this short ‘‘critical’’ amplitude for

the correlation length implies that x0 is comparable to the interatomic spacing

re ¼ 3:6 Å in liquid 4He (Section I.A).

The application of Eq. (30) for the order parameter in a finite system (e.g.,

clusters) requires the introduction of the appropriate boundary condition, with

the vanishing of the order parameter—that is, c ¼ 0 at the boundaries of the

cluster. This boundary condition explicitly invokes a step function approxima-

tion for the cluster surface profile, while the realistic description of ð4HeÞN
clusters involves a broadened profile with a FWHM of 6 Å [84, 106].

Introducing the reduced coordinates

r� ¼ r

xðTÞ ð34Þ

and using Eqs. (31) and (33), Eq. (30) is then expressed in the form

�r2
�cþ �1þ B

A

� �
jcj2 þ � � �

	 

c ¼ 0 ð35Þ

where r2
� is the Laplacian in the reduced coordinates [Eq. (34)].

Equation (35) was advanced by Ginzburg and Sobyanin for superfluidity in

confined finite systems [135]. This theory will be applied herein for the onset of

superfluidity of 4He confined in a sphere of radius R0. Adopting the step

function approximation, the boundary condition for the order parameter at the

free surface is taken as cðR0Þ ¼ 0. For low values of c the first-order linear

form of Eq. (30) is

1

R2�

d

dR�
R2
�
dc
dR�

� �
þ c ¼ 0 ð36Þ

where

R� ¼ R

xðTÞ ð36aÞ
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with the lowest solution cðR�Þ ¼ sinR�=R�. The free-surface boundary

condition cðR0=xÞ ¼ 0 results in R0=xðTÞ ¼ p, so that R0 ¼ px0t
�n with t given

by Eq. (26). This result implies that the order parameter in the finite system

vanishes at the boundary, marking the onset of the superfluid transition in the

cluster at the temperature Tl when

T0
l � Tl

T0
l

¼ px0
R0

� �1=n

ð37Þ

Equation (37) implies that the lowering of the l temperature Tl in the finite

clusters is given by the relation

T 0
l � Tl

T0
l

¼ ðpx0Þ
1=n

R
1=n
0

ð38aÞ

Setting R0 ¼ reN
1=3, where N is the number of the He atoms and

reð¼ ½m=rðTlÞ1=3�Þ is the constituent radius (the average interatomic distance

re ¼ 3:5 Å), results in

T 0
l � Tl

T0
l

¼ ðpx0=reÞ
1=n

N1=3n
ð38bÞ

Equations (38a) and (38b), together with n ’ 2=3, provide the size scaling of the
l point in clusters.

In the original Ginzburg–Sobyanin [135] analysis of 4He superfluidity in

confined spaces, the l transition in a cylinder of radius d0 and length ‘ð‘� rÞ
was considered by making use of Eq. (35) together with the appropriate

boundary conditionscðd0Þ ¼ 0 and ðdc=drÞd0 ¼ 0. This treatment results in [135]

T0
l � T l

T0
l

¼ ax0
d0

� �1=n

ð39Þ

where a ¼ 2:405 is the first root of the Bessel function. Equations (38a) and (39)
provide explicit expressions [with appropriate numerical coefficients p for

spherical clusters, Eqs. (38a) and (38b), and a ¼ 2:41 for cylinders, Eq. (39)] for
the relation ðT0

l � TlÞ / L�1=n, where L ¼ R0 or L ¼ d0, in accord with Eq. (22).

B. Size Scaling of the l Point in Clusters and Confined Systems

From the preceding analysis we infer that the depression�Tl ¼ T0
l � Tl of the l

point in ð4HeÞN clusters, Eqs. (38a) and (38b), size scales as �Tl=T
0
l /

R
�1=n
0 � R

�3=2
0 , and similarly in cylindrically confined systems, Eq. (39) (of

radius d0), �Tl=T
0
l / ðd0Þ�1=n � ðd0Þ�3=2. For ð4HeÞN clusters the dependence
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of dTl on the number of constituents, Eq. (38b), is given in the form

�Tl=T
0
l / N�1=3n � N�1=2. The relative depression of the l point these in

clusters provides a proper cluster size equation, that is,

�Tl

T0
l

¼ d
N1=2

ð40aÞ

¼ g

R
3=2
0

ð40bÞ

where d ¼ ðpx0=reÞ3=2 and g ¼ ðpx0Þ3=2, with �Tl ! 0 for R0 and N !1.

The scaling relation, Eqs. (40a) and (40b), with the proper critical exponent

(n ’ 2=3) will be utilized to establish the validity of this cluster size equation

over a large range of finite spherical ð4HeÞN systems ðR0 ¼ 14–400 Å,

N ¼ 64 � 1:5� 106) from isolated clusters [65, 66] to pores in metals [159]

and glasses [160] (Table V and Fig. 7). Concurrently, the scaling relation,

L/Å

14.3 18.0 35 120 400

64 128 103 4 • 104

1

10−1

10−2

10−3

10−4

10 102 103

N

SIZE EFFECT
ON THE λ TEMPERATURE

(Tλ) OF 4He IN FINITE SYSTEMS

FREE CLUSTERS
VICOR GLASS
POROUS GOLD
POLYMER MEMBRANES
NUCLEOPORE FILTERS

R0 , d0 /Å

(T
λ0

− 
T

λ 
 )/T

λ0

ν = 2/3, 0 = 1.8 Å

1000

ξ

Figure 7. Size scaling of the relative depression �Tl=T
0
l of the l point of ð4HeÞN in finite

systems, according to Eqs. (38a) and (39). * ð4HeÞN clusters of radius R0 (Ref. 65); & 4He in vicor

glass, pore radius R0 ¼ 35 Å (Ref. 159); ^ 4He in porous gold, pore radius R0 ¼ 120 Å (Ref. 160);

~ 4He confined in cylindrical pores (radius d0 ¼ 400 Å) in polymer membrane (Ref. 159); ! 4He in

cylindrical pores (radius d0 ¼ 150 Å–1000 Å) in nucleopore filters (Ref. 192). The confining

dimension is L ¼ R0 for spherical clusters or pores, or d0 for cylindrical pores. The solid line

corresponds to the size scaling with x0 ¼ 1:7 Å and n ¼ 2=3.
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Eq. (39), will be applied with the same critical exponent (n ¼ 2=3) to account

for the depression of the l point for 4He confined in cylindrical channels of

polymer membranes [159] and nucleopore filters [157, 192] (Table Vand Fig. 7).

Spherical geometry was taken for the isolated clusters [65], for pores in metals

[159] and in glasses [160], while cylindrical geometry was taken for the

polymers [157, 192]. From this analysis an estimate of the ‘‘critical’’ amplitude

x0 for the bulk correlation length will emerge. The fit of the quantum

simulations results of Sindzingre, Klein, and Ceperley [65, 66] (Table V and

Fig. 7) to Eqs. (40a) and (40b) results in d ¼ 2:17 and x0 ¼ 1:9 Å for N ¼ 64,

and d ¼ 1:82 and x0 ¼ 1:7 Å for N ¼ 128. Thus the finite size scaling law

provides a semiquantitative account of the quantum simulation data for small
4He clusters [65, 66]. The cluster size dependence of �Tl=T

0
laccording to

Eqs. (40a) and (40b) was extended over a considerably larger size domain of

spherical cavities, whose size was obtained from structural data [159], with the

analysis of the experimental specific heat data (Table V and Fig. 7) for 4He in

porous gold ðR0 ¼ 120 Å) [159] and vicor glass (R0 ¼ 35 Å) [160]. The analysis

for these porous spherical systems and, in particular, for the vicor glass, implies

complete pore filling [157, 192]. The values of d, Eq. (40a), obtained for all the

finite spherical systems, are nearly constant within a numerical spread of 30%

(Table V and Fig. 7), providing evidence for the validity of the cluster size

equations, Eqs. (38a), (38b), (40a), and (40b). The values of the ‘‘critical’’

amplitude x0 inferred from this analysis (Table V and Fig. 7) for spherical 4He

pores (R0 ¼ 35–120 Å) vary in the range of 1.3–1.8 Å, being close to the values

x0 ¼ 1:7–1.9 Å obtained for the small clusters ðR0 ¼ 14–18 Å). We have also

included in Table V and Fig. 7 the experimental specific heat data for 4He in

polymer membranes and nucleopore filters [157, 192] with cylindrical channels

(with a radius of d0 ¼ 150–1000 Å). Making use of Eq. (39) for the analysis of

the experimental data for 4He in cylindrical channels [192], we obtained x0 values
in the range x0 ¼ 1:23� 0:13 Å for d0 ¼ 150 Å to x0 ¼ 0:90� 0:08 Å for

d0 ¼ 1000 Å. These values of x0 for the cylindrical channels exhibit a

systematic variation of less than 12%, and they are lower by about 50% than

the average value of 1.7� 0.3 Å evaluated for the experimental data for

spherical finite systems (R0 ¼ 14–120 Å). When all these experimental specific

heat data are taken together, we infer that x0 ¼ 1:5� 0:6 Å. This value of

x0 � 1–2 Å obtained from the analysis of quantum simulation data ðR0 ¼ 14–

18 Å) and of experimental data for 4He spherical confined systems ðR0 ¼ 35–

120 Å) and in cylindrical channels (r0 ¼ 150–1000 Å) is lower by a numerical

factor of 
1.5–3.0 than the value of x0 ¼ 3:1 Å estimated from the Josephson

relation, Eq. (33a), for the bulk superfluid.We note in passing that a single value of

x0 was used in the analysis of the specific heat data in finite systems. This x0 value
corresponds to the infinite fluid. In the experimental papers for porous systems
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[159, 160] the values of �xx0 ¼ 8:4 Å and 17 Å are given for porous gold and
�xx0 ¼ 93 Å for vicor glass. These latter �xx0 data are based on estimates of

the actual superfluid effective densities in the confined systems. In our analysis

(Fig. 7) we use for x0 the bulk value.

From the foregoing analysis (Fig. 7) of simulation and experimental data we

infer that the size scaling relation �Tl / L�3=2 (where L ’ R0 for clusters and

nearly spherical confined spaces and L ’ r0 for cylinders) is obeyed over a wide

size domain of L ’ 14–400 Å (i.e., N ¼ 14–4� 104 for clusters and nearly

spherical confined spaces), and of L ’ 150 –1000 Å for cylindrical channels.

This broad range of size domain with the proper critical n ’ 2=3 exponent

indicates that it is unnecessary to replace T0
l by a size-independent reference

temperature, as proposed [158] to account for a lower scaling component

reported for (4He) confined in polymer films over a narrow size domain [157,

192].

C. Finite Size Scaling of the Superfluid Transition

Temperature and Density

The relation �Tl / R
�1=n
0 obtained from the Ginzburg–Pitaevskii–Sobyanin

theory for a finite system is related to the theory of second-order phase transitions

with the experimental critical parameter, n ¼ 0:67, for the superfluid fraction and
for the correlation length scaling near the critical point of infinite systems [155,

193–197, 199]. This theory implies that the intensive properties of a system of

size Lð¼ R0Þ depend on the ratio L=xðTÞ 
 Ltn, where xðTÞ ¼ x0t
�n is the bulk

correlation length.

At this stage finite-size scaling theory [155, 193–197, 199] is applicable for

the description of the specific heat maximum and of the onset of the superfluid

density (see the beginning of Section II), which characterize the rounded-off l
transition. The singular free energy density, f, of the finite system (in the

absence of external fields) can be described in terms of a universal function

ðYð ÞÞ in the form [194–197] f ¼ L�dYðKtL1=n), where K is a metric factor,

which contains all the system-dependent aspects of the critical behavior and d is

the dimensionality. Defining the parameter y ¼ KL1=nt, the free energy f ¼
L�dYðyÞ yields the specific heat C ¼ T ðq2f=qT2Þ. Accordingly, C / Y ð2ÞðyÞ,
being determined by the second derivative, Yð2Þ, of Y . The maximum of the

specific heat ðqC=qy ¼ 0Þ, which characterizes the smeared-out l transition at

Tl, is manifested at y ¼ yMAX, being exhibited at Yð3ÞðyMAXÞ ¼ 0, where Yð3Þ is
the third derivative of Y . Accordingly, the rounded-off l transition specified

by the maximum of the specific heat is exhibited for tMAX ¼ yMAXK
�1L�1=n,

with tMAX ¼ ðT0
l � TlÞ=T0

l , in accord with the results of the order parameter

analysis of Section II.B. For the sake of generality we shall rewrite this result,

ultracold large finite systems 283



setting T0
l ¼ Tc, where Tc is the critical temperature for the transition in the bulk

fluid, so that t � tMAX is given by

t ¼ Tc � Tl

Tc
ð41Þ

The peak temperature for the specific heat, marking the lambda transition, is

[155, 193]

Tl ¼ Tc � aL�1=n ð42Þ

where

a ¼ TcYMAXK
�1 ð42aÞ

Equations (41) and (42) are in accord with the results of the order parameter

analysis (Section II.A), which was used for the analysis of the experimental

results (Table V and Figure 7).

An important issue pertains to the broadening of the specific heat curve CðTÞ
in finite systems (Fig. 6). The region dTl of the rounding-off of the specific heat
curve was determined from the available quantum simulation [65, 66] and

experimental data [157–160, 192] by the (1/2)(FWHM) of CðTÞ for the range

T < Tl for clusters and T > Tl for confined spaces (Table V), which are

exhibited at CðTð1ÞÞ=CðTlÞ ¼ 1=2. The broadening of the specific heat

curve, characterized by the 1/2(FWHM) of C ðat Tð1Þ < TlÞ is given by the

1/2(FWHM) of the Y ð2ÞðyÞ function. This results in the relative width of the

specific heat curve

dT ¼ T ð1Þ � Tl

Tc
/ L�1=n ð43Þ

From Eqs. (41) and (43) one infers the same finite size scaling of dT and t, in

accord with Fisher’s analysis [193]. From this analysis, one concludes that

dT=t ¼ constant, being size-independent. Indeed, this relation is reasonably well

obeyed (within a numerical factor of 3 over the range R0 ¼ 14–400 Å) for the

quantum simulations for small clusters, for porous gold, and for the membrane

polymer (Table V). However, a marked (one order of magnitude) deviation from

this relation is exhibited for 4He confined in vicor glass (Table V), which may be

attributed to constrained randomness effects [203, 204] and which calls for

further scrutiny.

Finite size scaling of the order parameter jcj2 ¼ rs=r, Eqs. (11) and (23), for

the superfluid transition provides significant information on the size dependence
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of the superfluid density rs=r over the temperature range around Tc. The finite

size scaling is [155, 195, 196]

rs
r
¼ L�1QðL1=ntÞ ð44Þ

where t ¼ ðT � TcÞ=Tc, n is the correlation length exponent, and Qð�Þ is an

(unknown) analytic function of a finite argument. The linearization of Qð�Þ
results in

QðL1=ntÞ ¼ aþ bðL1=ntÞ ð45Þ
where a and b are numerical constants. The characteristic length scale for the

clusters is taken as L ’ R0, i.e., L ’ reN
1=3, according to Eq. (1), with re ¼ 3:6 Å

(Section II). Equation (45) assumed the form

N1=3 rs
r

� �
¼ Aþ BðN1=3tÞ ð46Þ

with

A ¼ a=re ð46aÞ
B ¼ brð1=n�1Þe ð46bÞ

Superfluid density data in ð4HeÞN clusters (N ¼ 8–64), obtained from quantum

simulation data with periodic boundary conditions [155] (Fig. 8), obey Eq. (46),

1. 2. 3.
0

0.5

T(K)

ρ s
/ρ

3.0

2.0

0 1 2
0

N
8
16
32
64

1.5 2.0 2.5 3.0

1.0

−1 0 1 2
tN1/3ν

N
1/

3 ρ
S(

t,L
)/

ρTC

1.0

Figure 8. The cluster size and temperature dependence of the superfluid relative density rs=r
for ð4HeÞN clusters (N ¼ 8; 16; 32; 64) [155]. Data obtained from quantum path integral Monte-Carlo

simulations [155]. Finite size scaling of rs=r, according to Eq. (46), is presented in the insert.
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as is apparent from the linear plot of N1=3ðrs=rÞ vs N1=3t, adopted from reference

155 (insert to Fig. 8). From the insert to Fig. 8 we estimate A ¼ 1:20 and

B ¼ 1:20–0.86. The linear fit resulted [155] in the size-independent parameters

n ¼ 0:72� 0:1 and Tc ¼ 2:17� 0:05 K. The function Qð0Þ ¼ a ¼ Are [Eq.

(46a)] assumes the value Qð0Þ ¼ 4:3 Å. The universal constant [155, 205, 206]

~XX ¼ ð�h2r=mkBTcÞQð0Þ ð47Þ

is then given by ~XX ¼ 0:54� 0:05. This result should be compared with the value
~XX ¼ 0:49� 0:01 for a 3DXY model of a classical spin system [205, 206]. The

good agreement between the ~XX values for the classical system [205, 206] and for

the quantum ð3HeÞN system implies that both systems belong to the same

universality class [155].

From the analysis of the cluster size dependence of the superfluid density (or

order parameter) the following conclusions emerge:

(i) The finite size scaling provides a confirmation of the critical exponent n,
with value n ¼ 0:72� 0:1 obtained from the analysis [155], which is in

agreement with the experimental value of n ¼ 0:6702 ½200�. n is cluster

size independent.

(ii) The transition temperature Tc ¼ 2:17� 0:05K is cluster size dependent.

This conclusion contradicts a previous conjecture [158] regarding the

size dependence of Tc.

(iii) The value of Tc ¼ 2:17� 0:05K, obtained for the superfluid density

data [155] (Fig. 8), is very close to the experimental value of

T0
l ¼ 2:172K [29] for the lambda-specific heat transition in infinite 4He.

(iv) The phase transition in the finite system is ‘‘rounded off.’’ The finite size

scaling theory accounts for the spread of the rs data over a broad

temperature domain, which spans the temperature range T > Tc as well.

The broadening of the specific heat curve near Tc is also accounted for.

(v) The size dependence of the specific heat data for Tl in a finite system

[Eq. (42)] and the superfluid density data for rs=r [Eq. (46)] are

described by the same, size-independent, critical temperature Tc. This is

an important conclusion of the finite size scaling theory, which bridges

between superfluidity and thermodynamics of finite ð4HeÞN systems.

(vi) Superfluidity features are manifested for small ð4HeÞN clusters with low

N ðN ¼ 8Þ [155]. An interesting open problem in this context is that the

quantum simulations were performed for periodic boundary conditions

[155]. The role of the boundary conditions on the superfluid and

thermodynamic properties of finite ð4HeÞN clusters and other boson

systems requires further scrutiny. A central issue in the field of
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thermodynamics, superfluidity, and elementary excitations in finite

ð4HeÞN systems is the characterization of the minimal cluster size,

which will manifest Bose–Einstein condensation and superfluidity.

D. Threshold Size Effects for Superfluidity

A surprising result emerging from the quantum simulations [65, 66] of small

ð4HeÞN clusters and the analyses in Sections II.B and II.C is the manifestation of a

well-characterized, broadened, high-order phase transition for small ð4HeÞN
clusters (i.e., N ¼ 8) for the superfluid density [155], and N ¼ 32 for the

appearance of the lambda transition [65]. An open question pertains to the

threshold size of these equations: What is the system’s smallest size for the

exhibition of superfluidity and what are the corresponding phase transitions?

The short correlation length for superfluidity in bulk 4He implies that

threshold cluster sizes are small—that is, of the order of interatomic distance.

A simple-minded argument will imply that the minimal cluster size RMIN
0 for

the realization of a superfluidity transition is RMIN
0 > x0. Using Eq. (40b),

a lower limit for RMIN
0 will be manifested for Tl ! 0, whereupon

ðpx0=RMIN
0 Þ3=2 
 1 and RMIN

0 
 px0. Taking the short correlation length x0

2 Å, we roughly estimate that RMIN

0 
 6 Å, so that the smallest 4He cluster will

consist of a central atom and its first coordination layer. Thus the threshold size

domain for the realization of the lambda transition is NMIN 
5–13. Such a low

value of NMIN is consistent with the value NMIN � 8 for the exhibition of the

superfluid density in finite systems [155]. Finally, the threshold size for the

appearance of rotons in the elementary excitation spectra of ð4HeÞN clusters

[128] is realized for 20 < NMIN < 70 (Section I.D).

In Table VI we assemble the data for NMIN for the manifestation of

superfluidity in ð4HeÞN clusters. These values of NMIN for different physical

attributes of small finite systems (Table VI) may be property-dependent. The

quantification of the size dependence of Tl and of rs (Section II.C) implies that

TABLE VI

Threshold Size of ð4HeÞN Clusters for the l Transition, Bose–Einstein Condensation and

Superfluidity in ð4HeÞN Finite Systems

Property NMIN Method

Thermodynamic lambda point 5–13 RMIN
0 
 px0 (Section II.B)

Superfluid density > 8 Quantum path integral

Monte-Carlo simulations

([155] and Section II.C)

Rotons, collective excitations 20 < NMIN < 70 Calculations of cluster

structure function

([128] and Section I.D)
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the critical temperature Tc and the critical exponent n of the correlation function

are cluster size independent (Section II.C). The results of the finite size scaling

theory provide guidelines for the description of these ‘‘smeared out’’

thermodynamic properties in small systems, establishing a thermodynamic–

superfluidity relation, which implies the identity of the broadening of the ‘high–

order transition’ for both Tl and rs. On the other hand, the interrelationship

between the onset of roton elementary excitations and the superfluid density was

not established, and threshold sizes may be different for these two classes of

observables.

III. ENERGETICS OF ELECTRON BUBBLES

IN ð4HeÞN CLUSTERS

A. Excess Electron Localization on and in Bulk Liquid Helium

and Helium Clusters

The use of electron bubbles as microscopic probes for superfluidity in bulk 4He

dates back to the pioneering 1960 studies of Meyer and Reif [207], who

determined the Landau–Feynman roton energy from the temperature dependence

of the electron mobility. In view of the fundamental importance of probing

collective excitations in finite, interacting boson quantum systems, we shall

present in this chapter a theoretical study of excess electron bubbles in ð4HeÞN
clusters [8, 208, 209]. We shall address the structure, energetics, and energetic

stability of the electron bubble in ð4HeÞN clusters. This structural and energetic

information will be utilized in Section IV for the evaluation of electron tunneling

times from electron bubbles in these clusters, elucidating the dynamic stability of

the electron bubble. The bubble transport in ð4HeÞN clusters is qualitatively and

quantitatively distinct in superfluid clusters, due to their vanishingly small

viscosity, as compared to viscous normal helium clusters (Section IV),

whereupon the dynamics of electron tunneling from bubbles in ð4HeÞN clusters

will provide microscopic probing of superfluidity in these finite quantum

systems.

The pseudopotential between an electron and a helium atom is strongly

short-range repulsive, with a very weak long-range attractive polarization

interaction [210–213]. Accordingly, the conduction band energy for an excess

quasifree electron in structurally unperturbed bulk liquid He is large and

positive—that is, V0 ¼ 1:06 eV for 4He [210–222] and V0 
 0:9 eV for 3He (at

p ¼ 1 atm) [212, 214, 215]—with the conduction band lying above the vacuum

level (Fig. 9). The direct implication of these high positive energies of the

quasi-free electron state is the exterior and interior localization of the excess

electron. Two distinct types of excess electron states in and on bulk liquid

He are manifested (Fig. 9), involving the electron exterior surface state
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[215, 223–231] and the electron interior bubble state [213, 214, 232–240]. The

excess electron surface state is stabilized by a weak image potential, which

results in an electron localized within a one-dimensional Coulomb potential

with a large barrier (Fig. 9) [215, 223–231]. The excess electron bubble state

involves local fluid dilation, leading to a localized, energetically stable state of

the electron confined in a cavity, pertaining to electron localization

accompanied by large configurational changes in bulk liquid helium (Fig. 9)

[213, 214, 232–240].

The excess electron surface state and the electron bubble state constitute two

distinct ground states and two electronic manifolds of bound electronic states,

with the surface states converging to the vacuum level, while the bubble states

converge to the liquid conduction band (Fig. 9). The two electronic manifolds

e−Vacuum

34 Å

0.7 meV

E

Two Possible States of an Electron
Attached to a He Cluster

EXTERNAL SURFACE
STATE

INTERNAL BUBBLE
STATE

V0 = 1 eV

Figure 9. A schematic representation of the energetics of an excess electron interacting

with bulk liquid helium, where it can reside either in a surface state with a binding energy

Es ¼ �0:7 meVor in an interior bubble state with a radius Rb ¼ 17 Å and a total binding energy of

0.36 eV (i.e., 0.70 eV below the conduction band energy V0). A sufficiently large ðHeÞN cluster can

attach an excess electron in an external surface state or in an internal bubble state.
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are separated by the large energy barrier V0, with weak electron tunneling from

interior bubble states located in the vicinity of the surface [239]. A similar

physical situation prevails for excess electron localization on and in (He)N
clusters. The excess electron external surface state was predicted to be realized

[178–180] above a threshold cluster size Nc and a cluster radius

Rc ðNc ¼ 3� 105 for ð4HeÞN and Nc ¼ 5:7� 105 for ð3HeÞN), above which

the image potential is sufficiently strong to support a bound ground state. The

binding energy EsðRÞ on a cluster of radius R (Fig. 10) is described by a

threshold cluster size equation with the scaling law ½EsðRÞ � Esð1Þ� /
ðR� RcÞ2, converging to the bulk value Esð1Þ ¼ �0:74 meV [178]. The

huge mean radius hri of this ‘‘halo state’’ diverges when R! Rc (Fig. 11). The

internal electron bubble state was predicted to be realized in sufficiently large

He clusters [208, 209]. The experimental genesis of this field rested on
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Figure 10. Cluster size dependence of the binding energy of an electron in a surface state

(n ¼ 1, l ¼ 0) on ð4HeÞN clusters. The localization threshold is manifested at Nc ¼ 5:7� 105 and

the binding energy increases with increasing the cluster radius R, according to the scaling law

[EsðRÞ � Esð1Þ / ðR� RcÞ2, reaching the flat surface binding energy Esð1Þ ¼ �0:7 meV

[Ref. 178–180].
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the metastable excitation of large helium clusters by electron impact, as well as

on the observation of electron attachment to helium clusters [241]. Extensive

experimental studies [8, 208, 209, 242] used electron capture to determine the

size distributions of very large ð4HeÞN clusters with an average size of �NN ¼ 105–

108. The significant observation [208, 209] that the negative ðHeÞ�N cluster ions

do not field ionize in electric fields of 103 V/cm on a time scale of 50 ms, seems

to rule out the formation of excess electron surface states on these clusters,

under current experimental conditions. On the basis of these experimental

observations, it was proposed [209] that electron bombardment of (He)N
clusters results in the formation of interior electron bubbles. Further

experimental evidence for the formation of internal electron bubbles via

electron attachment to large clusters ðN ¼ 105–108Þ was reported [243]. In

important experiments [99, 244, 245], dramatic differences were observed for

the time scale for the detachment of electrons from ð4HeÞ�N clusters at 0.37 K

and from ð3HeÞ�N clusters at 0.15 K. Electron detachment from ð4HeÞ�N clusters

in the size domain of N ¼ 105–107 was characterized by lifetimes in the range

of 10�2s to 3� 10�1s [99, 242–246], with the cluster size dependence of these

lifetimes being established [245]. These, lifetimes are shortened by the presence

of heavy rare gas impurities [244]. On the other hand, considerably longer

lifetimes were observed for electron detachment from ð3HeÞ�N clusters [99]. This

observation was interpreted in terms of the dynamics for the motion of the

300

200

100

0 2.0 4.0 6.0

1/R ( 10−3Å−1)

∞ 1012 108 107 106 2.67×105
N

(He)n
–

n =1

l = 0

<
 r

 >
(Å

)

Figure 11. The mean radius h ri of the charge distribution of the ‘‘halo’’ ground surface state

of an excess electron on ð4HeÞN clusters. h ri diverges at the localization onset Nc ¼ 5:7� 105

[Ref. 178–180].
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electron bubble in superfluid ð4HeÞ�N clusters, in contrast with the viscous

bubble dynamics in the normal ð3HeÞ�N clusters [99, 243–245]. We shall now

proceed to explore structure–dynamics–function relations for electron bubbles

(Fig. 12) in helium clusters.

B. Bubbles in Helium Clusters

We consider a cluster of N 4He atoms of mass m and radius r0, together with a

single excess electron. The subsystem of the helium atoms will be treated by the

density functional formalism [113, 247]. The excess electron will be treated

quantum mechanically. The energetics and charge distribution of the electron

were calculated within the framework of the adiabatic approximation for each

fixed nuclear configuration.

We shall first treat the structure and energetics of an empty bubble in the

center of a large neutral ð4HeÞN cluster ðN ¼ 103–107Þ using a phenomen-

ological density functional approach [247]. We express the internal energy E of

the nonuniform system by a functional of the number density nðrÞ

E½nðrÞ� ¼
ð
2 ðnðrÞÞ d3r ð48Þ

where 2 ðnðrÞÞ is the energy density of a uniform helium system, neglecting

effective interactions between different portions within the cluster, which arise

from nonuniformity. Thus zero-point renormalization effects in the density

functional, originating from the nonuniformity of the system, are disregarded

ψ2

Figure 12. Artist’s view of the excess electron bubble localized state in a ðHeÞN cluster.
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[247]. The energy density is represented as a power series in the local density,

nðrÞ, in the form

2 ðnðrÞÞ ¼ A1n
2 þ A2n

3 þ A3n
4 ð49Þ

The coefficients Aiði ¼ 1–3) are determined by the condition that the energy

density, along with the chemical potential and compressibility from Eq. (48) in

the bulk limit ðN !1Þ, corresponds to these properties for the macroscopic

liquid helium at zero temperature and pressure [20, 232, 248].

The density corresponding to the ground state of the system minimizes its

total energy and can be obtained from the Euler equation

d E½nðrÞ� � m
ð
nðrÞ d3r

� �
¼ 0 ð50Þ

where m is the chemical potential [247]. For a spherical helium droplet of radius

R we obtain from Eqs. (48)–(50)

m ¼ � �h2

2m

� � r2nðrÞ1=2
nðrÞ1=2

 !
þ 2A1nðrÞ þ 3A2n

2ðrÞ þ 4A3n
3ðrÞ ð51Þ

This result can be expressed in a dimensionless form:

r2gðxÞ ¼ gðxÞBðxÞ ð52Þ
where

BðxÞ ¼ a1g
2ðxÞ þ a2g

4ðxÞ þ a3g
6ðxÞ � m

Ev

� �
ð53Þ

The function gðxÞ is defined in terms of the normalized local density:

gðxÞ ¼ n1=2ðxÞ=n1=20 ðxÞ ð53aÞ

where x is the normalized radius

x ¼ r

rf
ð53bÞ

with

rf ¼ �h2

2mEv

� �1=2

ð53cÞ

ultracold large finite systems 293



and the coefficients ai are expressed in terms of the parameters Ai [Eq. (49)],

which are given by

ai ¼ ðiþ 1ÞAin
i
0=Ev; i ¼ 1--3 ð53dÞ

n0 is the average number density in the bulk at zero temperature and pressure and

Ev is the binding energy per atom in the bulk, which was taken from the

experimental data [106, 232, 248] as Ev ¼ 0:616 meV. The coefficients ai,

Eq. (53d), are a1 ¼ �2:2, a2 ¼ �2:4 and a3 ¼ 3:6.
The internal cluster energy Ec and the number of atoms N in the cluster are

given by

Ec ¼ 4p
ð
2 ðnðrÞÞr2 dr ð54Þ

N ¼ 4p
ð
nðrÞr2 dr ð55Þ

Equations (54) and (55) are applicable both for an ordinary cluster and for a

cluster with a bubble. To characterize the density profile for the cluster with a

bubble, we choose the helium atom density function in the form of a void at

r < Rb � t1=2, a rising profile toward a constant density with increasing r

beyond the void boundary at r > Rb � t1=2, and an onset of the cluster exterior

decreasing density profile for r > R� t2=2. Here Rb is the bubble radius, R is

the cluster radius, t1 is an effective thickness parameter for the density profile of

the bubble wall, and t2 is the thickness of the cluster surface density profile. The

explicit form of the helium density profile was taken as

nðrÞ ¼ 0; 0 < r < Rb � t1

2
ð56aÞ

nðrÞ ¼ n0½1� ð1þ brÞ expð�b3r3Þ�3; Rb � t1

2
< r < R� t2

2
ð56bÞ

nðrÞ ¼ ðcÞarctan sinh
2r

t2

� �	 
�1( )
; r > R� t2

2
ð56cÞ

The parameter b in Eq. (56b) specifies spatial saturation taking b ¼ ½Rb � t1=2��1.
For sufficiently large clusters the density in the interior of the cluster [Eq. (56b)]

converges to the bulk value n0. The parameter c in Eq. (56c) is taken as

ðcÞ ¼ ð2n0=pÞ. Equation (56b) was advanced on the basis of previous work on

nonuniform 4He near a hard wall [247]. Equation (56c) represents the surface

density profile of the cluster with a bubble in the form of the gudermannian

function [178–180].
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The density functional approach used above for the energetics of the cluster

was applied by us for the cluster with a bubble. It is assumed that t1, t2 < Rb

and t1, t2 � R, so that nonuniformity effects created by the bubble formation

are small. We employed the trial function for the density [Eqs. (56a)–(56c)] and

for the calculations of gðxÞ [Eq. (53a)] to compute BðxÞ [Eq. (53)] and then to

solve Eq. (51) numerically. The new density nðrÞ thus obtained was used to

calculate BðxÞ in a self-consistent procedure. Equations (54) and (55) were then

used to calculate the cluster internal energy EcðRÞ and the number of particles N

for the cluster with a bubble. Calculations of the cluster energy with a bubble

EcðRb, R, N) [Eq. (54)] were performed for several, fixed bubble radii Rb with a

constant number N of particles. The cluster energies also depend on the density

profile thicknesses t1 and t2, which were varied in the calculations in the range

6–10 Å. The energy of a cluster without a bubble EcðRb ¼ 0, R, N) was

calculated for Rb ¼ 0 and t1 ¼ 0, with varying the exterior density profile

thickness. The cluster reorganization energy EdðRb, R, N) of the cluster upon the

formation of a bubble of radius Rb at constant N is given by

EdðRb; R; NÞ ¼ EcðRb; R; NÞ � EcðRb ¼ 0; R; NÞ ð57Þ

Calculations of the energetics of bubble formation over a range of cluster

sizes ðN ¼ 6:5� 103 to 2� 105Þ were performed. Figure 13 portrays the

calculated binding energies Ec=N per atom for a 4He cluster without a bubble.

The cluster size dependence of Ec=N per atom for ordinary ð4HeÞN clusters in

the larger size domain ðN ¼ 6:5� 103 to 2� 105Þ is portrayed in Fig. 13.

These energies obey the cluster size equation for the LDM [51–53, 84, 106]

Ec

N
¼ Ev þ Es

r0

R

� �
ð58Þ

Ev ¼ �0:610 meV is the volume energy per atom and Es ¼ 1:60 meV is the

surface energy per atom. These energetic parameters are in agreement with the

experimental value [232] Ev ¼ �0:616 meV for the atom binding energy in bulk
4He and with the surface energy Es ¼ 1:603 meV inferred from previous

theoretical results [106] for smaller clusters ðN ¼ 128–728). An additional

contribution to Ec=N involves the cluster curvature energy Euðr0=RÞ2 with

Eu ¼ 1:034 meV [51–54, 106, 248]. The curvature energy term makes only a

small contribution to the large clusters studied by us; that is, for N ¼ 6:5� 103

the relative contributions of the curvature energy to the surface energy

ðEu=EsÞðr0=RÞ, is 3%. Our results for the larger clusters ðN ¼ 6:5� 103 to

2� 105Þ are in accord with previous quantum mechanical and density functional

[51–54, 106, 128, 129] calculations for smaller clusters ðN ¼ 128–728) for
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which the positive deviation (Fig. 13) from Eq. (58) originates from the cluster

curvature energy in this size domain.

In Fig. 13 we also present the energetics of the ð4HeÞN cluster with a bubble

at the equilibrium electron bubble radius, with Rb inferred (Section III.C) from

the electron bubble. These results manifest the marked increase of Ec=N upon

bubble formation, which is due to cluster deformation. Data were obtained on

the bubble radius Rb, the cluster deformation energy per atom Ed=N [Eq. (57)],

the cluster mean density n, and the cluster radius R for ð4HeÞN clusters. These

results reflect on the energetic implications (i.e., the increase of Ed=N) and on

the structural manifestations (i.e., cluster expansion with increasing the bubble

radius).

The density profiles for several clusters at different bubble radii are portrayed

in Fig. 14. These density profiles reflect on the formation of a ‘‘helium balloon’’

with a finite thickness ðdR ’ R� RbÞ in the cluster. The profile thicknesses for the
bubble and for the cluster surface obtained from this model are t1, t2 ffi 6–10 Å.

0.8
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Cluster + bubble
Previous calculations

Cluster

Cluster size equation
liquid drop model

Bulk–E
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102104 103 ⋅⋅ 2·102⋅⋅5·102
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Figure 13. The cluster size dependence of the calculated binding energies per atom for a

ð4HeÞN cluster (N ¼ 6:5� 103 to 1:88� 105) of radius R without a bubble (marked as cluster) and

for a cluster with a bubble at the equilibrium electron bubble radius Rb (marked as cluster þ bubble).

The experimental binding energy per atom in the bulk [232, 248], Ec=N ¼ �0:616 meV (R, N ¼ 1),

is presented (marked as bulk). Previous computational results for the lower size domain N ¼ 128–

728 [51–54, 106, 128, 129] are also included. The calculated data for the large (N ¼ 105�107)
clusters (N ¼ 6:5� 103 to 1:88� 105), as well as the bulk value of Ec=N without a bubble, follow a

linear dependence versus 1=R and are represented by the liquid drop model, with the cluster size

equation [Eq. (58)] (solid line). The dashed curve connecting the Ec=N data with a bubble was drawn

to guide the eye. The calculated data for the smaller clusters (N ¼ 128) manifest systematic positive

deviations from the liquid drop model, caused by the curvature term, which was neglected.
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Figure 14. The density profiles at different bubble radii for ð4HeÞN clusters with

N ¼ 1:88� 105 reflecting on the formation of a ‘‘helium balloon’’ with a finite thickness

(�R ¼ R� Rb) in the cluster. The profile thicknesses for the bubble and for the cluster surface

obtained from this simple model are t1, t2 ffi 6–10 Å (see text). The exterior surface profile of the

cluster was characterized by the 90–10% fall-off width w2, while the interior bubble profile was

characterized by a 10–90% rise width w1. For N ¼ 1:88� 105 clusters w1 ¼ 6:2 Å for Rb ¼ 0 (no

bubble), w2 ¼ 7:8 Å and w1 ¼ 6:2 Å for Rb ¼ 10:3 Å, while w2 ¼ 6:8 Å and w1 ¼ 12:3 Å for

Rb ¼ 19:2 Å. These results demonstrate that the cluster surface profile width w2 remains nearly

independent of the bubble size, while w1 increases with increasing the bubble radius.



These values of t2 for the finite large ð4HeÞN clusters studied herein are in

accord with the results of previous calculations for macroscopic ð4HeÞN clusters

[55, 58, 59], as well as for experimental data for macroscopic liquid 4He.

The energetics of the formation of a ‘‘helium balloon’’ (i.e., a helium cluster

with a bubble at its center) reveals high reorganization energies, which for

Rb ¼ 14:4 Å (corresponding to the value of Re
b for N ¼ 6500) fall in the range

Ed ¼ 0:72 eV for N ¼ 6:5� 103 to Ed ¼ 0:26 eV for N ¼ 1:88� 105, and

increase with decreasing N at a fixed value of Rb. These Ed values increase

with increasing the bubble radius Rb for clusters with a fixed value of N. It is

also instructive to note that for the cluster size domain studied herein the Ed

values are considerably higher than the bubble formation energy in the bulk

Edð1Þ ’ 4pgR2
b, where g is the surface tension. While the reorganization

energy in the bulk is dominated by the bubble surface energy, the reorganization

energy for bubble formation in the cluster is determined by three contributions:

the interior bubble surface energy EbðRbÞ, the exterior cluster surface energy

EcðRÞ, and the cluster energy increase due to density changes �ðnðrÞ; NÞ. All
these three energy contributions are cluster size-dependent.

For a rough estimate of the surface energy contributions we shall use a step

function density profile, so that EbðRbÞ ¼ 4pR2
bg and EcðRÞ ¼ 8pgR�R, where

�Rð�RÞ is the expansion of the cluster radius upon the formation of the

bubble, that is, �R ¼ ½RðRbÞ � RðRb ¼ 0Þ�. Within the framework of this

approximate relation, we have

EdðRb; R; NÞ ¼ 4pR2
bgþ 8pgR�Rþ�ðnðrÞ; NÞ ð59Þ

The surface term contributions to Ed in Eq. (59) are moderately small. Thus for

N ¼ 6:5� 103ðR ¼ 43:7 Å) at the equilibrium bubble radius Rb ¼ 14:4 Å, we
find from the complete simulations that Ed ¼ 0:72 eV, while �R ¼ 2:7 Å. Thus
EbðRbÞ ¼ 5:7� 10�2 eVand EcðRÞ ¼ 6:5� 10�2 eV, with Eb þ Ec ¼ 0:122 eV

providing a contribution of 
16% to the reorganization energy. The dominating

contribution to Ed [Eq. (59)] for the cluster size domain studied herein originates

from the contribution of the density changes—that is, the third term in Eq. (59).

With increasing the cluster size toward the bulk ðN !1Þ, we have EeðRÞ ! 0

and �ðnðrÞ; NÞ ! 0, with EdðRb, R!1, N !1)! EbðRbÞ.
C. The Electron Bubble

We now introduce an excess electron into the bubble, which is located in the

center of the helium cluster at a fixed nuclear configuration of the ‘‘helium

balloon.’’ The electronic energy of the excess electron will be calculated within

the Born–Oppenheimer separability approximation. We modified the nonlocal

effective potential developed by us for surface excess electron states on helium

clusters [178–180] for the case of an excess electron in a bubble of radius Rb
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located in a cluster of radius R. This potential VðrÞ at distance r from the center

of the bubble (and of the cluster) will be subdivided into interior and exterior

contributions in the form

VðrÞ ¼ V< ðrÞ; r � Rb � t1

2
ð60aÞ

VðrÞ ¼ V> ðrÞ; r � Rb � t1

2
ð60bÞ

where the thickness density profile of the bubble wall is defined by Eq. (56) and r

is the distance from the center of the cluster.

The exterior contribution V> ðrÞ to the potential in Eq. (60b) is determined

by the energy of the quasi-free electron in the finite system, being given by [213,

215, 222]

V> ðrÞ ¼ T þ VpðrÞ ð61Þ

where the repulsive short-range contribution T is represented by the Wigner–

Seitz model with a hard-core pseudo-potential with radius a, which is taken as

the e–He scattering length [210, 213, 215, 233, 249, 250]. The attractive

contribution Vp is given as the polarization energy of the cluster, which is

induced by the electron within the Wigner–Seitz cell [212, 213, 215, 222]. The

cluster polarization energy is expressed as the sum of the contribution Uin
p of

the atom inside the Wigner–Seitz cell, the contribution Uout
p of the atoms outside

the Wigner–Seitz cell in an infinite medium, and the correction term Vc
p to the

polarization energy for the finite size of the cluster, due to the excluded volume

effect.

VpðrÞ ¼ Uin
p þ Uout

p þ Vc
pðr; RÞ ð62Þ

where

Uin
p ¼

2p�h2

2me

� �
�nnap ð63aÞ

Uout
p ¼ �2p

4p
3

� �1=3

ae2�nn4=3
1þ 8p�nna

3

� ��1
ð63bÞ

and

Vc
pðr; RÞ ¼

e2

2R

� �
ð1� e�1Þ

X1
j¼0

jþ 1

ðejþ jþ 1Þðr=RÞ2j ð63cÞ
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Here ap is the e–He scattering length due to the polarization potential, which was

taken as [215] ap ¼ �0:1 Å, a is the atomic polarizability, and �nn is the average

helium density.

The interior contribution V< ðrÞ to the potential [Eq. (60a)] is given by

the superposition of electron–atom pseudopotentials exerted on the electron by

the helium atoms within the surface density profile of the bubble walls and

by the electronic polarization potential ViðrÞ induced within the region of the

bubble, which is represented in terms of a cluster image potential

V< ðrÞ ¼
ðRbþt1=2

Rb�t1=2
d3r0vpsðr0 � rÞnðr0Þ þ ViðrÞ ð64Þ

where vps is the electron–He-atom pseudopotential [210–213, 249, 250] and nðrÞ
is the bubble surface density profile [Eq. (56b)]. The first term in Eq. (64) is the

contribution of the polarization potential from the density profile of the bubble.

The second term, ViðrÞ, is the polarization potential induced within the rest of the
cluster outside the bubble, which is given by

ViðrÞ ¼ Viðr; RÞ � Viðr; RbÞ ð65Þ
where Viðr; RÞ is the image potential for a helium cluster of radius R and

Viðr; RbÞ is the image potential for the cluster region occupied by a bubble.

Equation (65) assumes the form

ViðyÞ ¼ e2

4R

� �
1

e� 1

� �
=ð1þ eÞ 2b

b2 � y2
� 2

1� y2

	

þ 1

y

� �
ln

bþ y

b� y

����
����� e ln

1þ y

1� y

����
����

� �
 ð66Þ

where e is the dielectric function (taken as that for macroscopic helium),

y ¼ r=R, and b ¼ Rb=R.
The potential VðrÞ is given by the interior contribution V< ðrÞ [Eqs. (60a),

(64–66)] and by the exterior contribution V> ðrÞ [Eqs. (60b), (61), (63a–63c)].
To obtain the ground-state electronic energy Ee of the bound excess electron in

the bubble, we solved numerically the one-electron Schrödinger equation

� �h2

2me

� �
r2 þ VðrÞ � Ee

	 

cðrÞ ¼ 0 ð67Þ

where me is the electron mass. The total energy EtðRb; R; NÞ of the electron

bubble states in a helium cluster is expressed in the form

EtðRb; R;NÞ ¼ EeðRb;R;NÞ þ EdðRb;R;NÞ ð68Þ
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where the cluster reorganization energy EdðRb;R;NÞ is given by Eq. (57). The

energies EtðRb;R;NÞ, EeðRb;R;NÞ and EdðRb;R;NÞ in Eq. (68) are determined

by the bubble radius Rb and the cluster radius R, as well as by the density profile

parameters t1 and t2, and by the number of atoms N. The potential energy

surfaces for the excess electron bubble states in 4He clusters in the ground

electronic state are portrayed in Fig. 15, where we display EtðRb;R;NÞ versus Rb

for fixed values of N. These energetic configurational diagrams exhibit the most

stable configuration at their minimal energies at Rb ¼ Re
b. The equilibrium

electron bubble radii Re
b and total energies Ee

t , corresponding to the minima of

these potential curves, are summarized in Fig. 16. The equilibrium bubble

radius increased from Re
b ¼ 13:4 at N ¼ 6:5� 103 to Re

b ¼ 16:6 for

N ¼ 1:88� 105, while the total energy Ee
t at the equilibrium configuration

decreases nearly linearly from Ee
t ¼ 0:86 eV for N ¼ 6:5� 103 to Ee

t ¼ 0:38 eV
for N ¼ 1:88� 105 (Fig. 16). The electronic energies are Ee ¼ 0:160 eV
for N ¼ 6:5� 103, Ee ¼ 0:126 eV for N ¼ 1:86� 104 and Ee ¼ 0:102 eV for

N ¼ 1:88� 105. The increase of Ee with decreasing the cluster size is due to the

increase of Re
b with increasing N. To complete the presentation of the energetic

parameters, we also present in Fig. 15 the Rb dependence of the energy of the

quasi-free electron state V0ðRe
b;R;NÞ in clusters of different sizes, which were

Å Å

Figure 15. The potential energy surfaces for the excess electron bubble states in ð4HeÞN
clusters portraying the total energy EtðRb, R, N) versus the bubble radius Rb for fixed values of N

marked on the curves. The open and full points represent the results of the computations for the

clusters using the density functional method for EdðRb, R, N) and the quantum mechanical treatment

for EeðRb, R, N), while for the bulk we took EdðRb, R!1, N !1Þ ¼ 4pgR2. The black point (�)
on each configurational diagram represents the equilibrium bubble radius. The Rb-dependence of the

energy of the quasi-free electron state V0ðRb, R, N) in the cluster of the smallest size of

N ¼ 6:5� 103 (dashed line) and the bulk value of V0 (solid line) are also presented. The V0 values

for each Rb for N ¼ 8:1� 103 to 1:88� 105 fall between these two nearly straight lines.
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obtained from the solution of Eq. (67), with the exterior potential given by Eqs.

(61) and (63a–63c). These V0 values in clusters are reduced by less than 10%

relative to the bulk value. For the smallest cluster with N ¼ 6:5� 103 studied

herein V0 ¼ 0:95 eV and for N ¼ 1:88� 105 we have V0 ¼ 1:02 eV, while the

bulk value is V0 ¼ 1:06 eV (Fig. 15). These energetic data will subsequently be

utilized for the energetic stability of the electron bubble.

D. Energetic Stability of the Electron Bubble

The energy of the excess electron bubble in the ground electronic state at its

equilibrium bubble radius Re
b, with the corresponding cluster radius Re, is

determined by the contributions of the electronic energy and the cluster

reorganization energy, with EtðRe
b;R

e;NÞ [Eq. (68)] being positive relative to

the vacuum level, while for a broad range of cluster sizes this energy is lower

than the cluster conduction band energy. The equilibrium energy of an electron

bubble increases with decreasing N; at some value of N it will become higher

than V0, marking the onset of the energetic instability of the electron bubble. A

central question is: What is the minimal cluster size for which the electron bubble

Figure 16. The cluster size dependence of the equilibrium electron bubble radii Re
b and the

total ground-state energies Ee
t , corresponding to the minima of the potential curves of Fig. 15.
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is energetically stable? The energetic stability condition for the excess electron

bubble state (i.e., an electron in a ‘‘helium balloon’’) is given by

Ee
t

�
Re
b;R

e;N
� � V0

�
Re
b;R

e;N
� ð69Þ

In Fig. 17 we present the plot of V0ðRe
b;R

e;NÞ � Ee
t ðRe

b;R
e;NÞ versus 1=Re. An

extrapolation of this linear dependence to V0 � Ee
t ¼ 0 (Fig. 17) results in the

energetic localization threshold at the cluster equilibrium radius of Re � 39 , of

a cluster which contains an electron bubble. For such a cluster, the energetic

localization threshold is N ¼ ðReÞ3 � ðRe
bÞ3

h i
=r30, where Re

b is the equilibrium

radius of the electron bubble, which assumes the value Re
b ’ 13:5 in this cluster

size domain. Accordingly, we estimate N ’ 5200 for the minimal cluster size for

which the electron bubble is energetically stable. This energetic localization

threshold constitutes an upper limit for the cluster size, which allows for the

existence of the electron bubble state. Dynamic effects, due to electronic

tunneling of the excess electron from the bubble to the vacuum, may result in the

depletion of the energetically stable excess electron bubble state on the

experimental time scale for the interrogation of ðHeÞ�N clusters (1–10�6 [243–

245]). Accordingly, the dynamic stability of the excess electron bubble state in

ð4HeÞN clusters on the experimental time scale may be realized only for cluster

sizes that exceed those dictated by the energetic stability. We now proceed to

explore the facets of dynamic stability of the excess electron bubble.

Å

Å

Figure 17. The dependence of the energy gap (V0 � Ee
t ) between the quasi-free electron

energy and the total ground-state energy at the equilibrium configuration of the electron bubble on

the reciprocal value of the cluster radius at this equilibrium configuration 1=Re for clusters in the

range N ¼ 6:5� 103 to 1:86� 104 and for the bulk. A crude extrapolation of this linear dependence

of Vo � Ee
t to zero leads to a localization threshold at R � 39 Å, which corresponds to N ffi 5� 103.
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IV. ELECTRON BUBBLES AS PROBES FOR SUPERFLUIDITY

IN ð4HeÞN CLUSTERS

It is of considerable interest to use the electron bubble as a probe for elementary

excitations in finite boson quantum systems—that is, ð4HeÞN clusters [99, 128,

208, 209, 243–245]. These clusters are definitely liquid down to 0 K [46–49] and,

on the basis of quantum path integral simulations [65, 155], were theoretically

predicted (see Chapter II) to undergo a rounded-off superfluid phase transition

already at surprising small cluster sizes [i.e., NMIN ¼ 8–70 (Table VI)], where the

threshold size for superfluidity and/or Bose–Einstein condensation can be

property-dependent (Section II.D). The size of the ð4HeÞN clusters employed in

the experiments of Toennies and co-workers [242–246] and of Northby and co-

workers [208, 209] (i.e., N ’ 104--107) are considerably larger than NMIN. In this

large cluster size domain the l point temperature depression is small [199], that

is, ðTl � T0
lÞ=T0

l ’ 2� 10�2 � 2� 10�3 for N ¼ 104--107. Thus for the current

experimentally accessible temperature of 0.4 K, the large ð4HeÞ�N clusters

ðN ¼ 104--107Þ studied by Toennies and co-workers [99, 242–246] are super-

fluid.

Electron tunneling dynamics from electron bubbles in helium clusters

strongly depends on the transport dynamics of the electron bubble within the

cluster. In normal fluid ð4HeÞN and ð3HeÞN clusters the electron bubble motion

is damped, while in ð4HeÞN superfluid clusters this motion is nondissipative

[99]. Accordingly, bubble transport dynamics in ð4HeÞN clusters dominates the

time scale for electron tunneling from the bubble, providing a benchmark for

superfluidity in finite boson systems [245, 251]. In this chapter we address (a)

the dynamics of electron tunneling from bubbles in ð4HeÞN and ð3HeÞN clusters

[99, 209, 242–245, 251] and (b) the role of intracluster bubble transport on the

lifetime of the bubble states. Our analysis provides semiquantitative information

on electron bubbles in ð4HeÞN clusters as microscopic nanoprobes for

superfluidity in finite quantum systems, in accord with the ideas underlying

the work of Toennies and co-workers [99, 242–245].

A. Dynamic Processes of Electrons in Helium Clusters

Following the injection of an excess electron into a helium cluster, a sequence of

dynamic processes is realized which involve:

1. Quasi-free electron thermalization, which for electrons in the energy

range of a kiloelectronvolt (keV) in macroscopic liquid He is

characterized by a time scale of 0.3–0.5 ps, with a characteristic spatial

range of 
50–60 Å at 1.4 K [252].

2. Localization of the quasi-free electron. The dynamics of the transition

from the quasi-free electron state to the localized bubble state in the
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cluster involves electron localization accompanied by large configura-

tional dilation. The electron bubble expansion time tb located in the

center of the cluster was estimated on the basis of our previous

calculations for electron localization in bulk liquid helium [187, 188].

For the finite size of the cluster, with the bubble energy being taken as the

cluster reorganization energy, we obtained explicit expressions for the

lifetime tb for the formation of the excess electron bubble. From the

continuity condition r2V̂V ¼ R2
bÛU, where ÛU is the velocity of the cavity

boundary and V̂V is the local radial velocity [187, 188]. In the absence of

energy dissipation [187, 188] the boundary kinetic energy equals the total

change of the free energy

�F ¼ �nn

2

� �ð
dr

4pR4
bU

2

r2
ð70Þ

where �nn is the average cluster density. �F can be expressed in the

form

�F ¼ 2p�nnR3
bU

2ð1� �bbðRb;RÞÞ ð71Þ

where �bb ¼ Rb=R. Following our previous procedure [187, 188] we obtain

the bubble formation time in the cluster from the relation

tb ¼ ð2p�nnÞ1=2
ðRb

R0

dr
r3½1� �bbðr;RÞ�
V0ðRbÞ � EtðrÞ
	 
1=2

ð72Þ

where �bbðr;RÞ ¼ r=R is a correction factor for the finite cluster size,

V0ðRbÞ is the quasi-free electron energy at the incipient cavity radius Rb

exhibited at the crossing of the potential energy surfaces for the quasi-free

electron state V0ðRbÞ, and for the localized state EtðRbÞ [Eq. (68)] at

Rb < Re
b [187]. On the basis of Eq. (72) we estimate the following values

of bubble formation times for the ð4HeÞN cluster: N ¼ 1:88� 105 at

T ¼ 0:4 K, tb ¼ 3:6 ps without dissipation and tb ¼ 7:8 ps when medium

dissipation was taken into account [188]. These dissipation effects are

negligible in superfluids [188], due to the vanishing viscosity. For a

ð3HeÞN cluster with the same N the relaxation time was calculated to be

tb ¼ 4:4 ps without dissipation and tb ¼ 9:0 ps with dissipation.

3. Electron tunneling from the bubble.

4. The motion of the electron bubble in the field of the image potential

within the cluster.
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Ultrafast processes 1 and 2 will not further be considered; rather they will be

used to set a temporal lower limit of t > 10 ps for the electron tunneling

dynamics from the bubble. In what follows we shall consider the dynamics of

electron tunneling in conjunction with the bubble motion in the cluster. This

problem is of considerable interest, because electron tunneling is expected to be

extremely sensitive to the spatial hydrodynamic motion of the bubble, providing

a microscopic nanoprobe for superfluidity in 4He clusters [245, 251], as

experimentally demonstrated by Northby and co-workers [208, 209] and by

Toennies and co-workers [99, 242–245].

B. Electron Tunneling from Bubbles in ð4HeÞN and ð3HeÞN Clusters

Electron tunneling rates from the ground state of electron bubbles through the

surface of macroscopic liquid helium were previously calculated [239]. In what

follows, an extension of these results will be provided for electron tunneling from

electron bubbles of radius Rb in helium clusters of radius R, where the center of

the bubble is located at a distance r from the cluster center, with the shortest

distance, d ¼ ðR� rÞ, between the bubble center and the cluster surface. The

tunneling process is characterized by a barrier height of V0 � Ee, which is given

by the energy gap between the quasi-free electron energy V0 and the electronic

energy of the ground electronic state Ee at the bubble equilibrium configuration,

and by a barrier width ðX � RbÞ, where the distance X from the center of the

bubbles to some point on the cluster surface is X � d. The tunneling probability

FðXÞ is approximated by the WKB expression

FðXÞ ¼ n expð�2aXÞ ð73Þ
where

a ¼ ½ð2me=�h
2ÞðV0 � EeÞ�1=2 ð74Þ

and the tunneling frequency is

n ¼ ð2V0=meÞ1=2
2Rb

ð75Þ

The tunneling transition rate through a solid angle d� is FðXð�ÞÞd�=4p, where
Xð�Þ depends on the angular coordinates, while the total tunneling transition

rate is

fðdÞ ¼ n

ð
�

FðXð�ÞÞ d�
4p

ð76Þ
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The general form of the total transition rate is expected to be

fðdÞ ¼ A expð�bdÞ ð77Þ

where b is the exponential parameter and A is the preexponential factor. Equation

(77) manifests the common exponential distance ðdÞ-dependence of electron

tunneling processes [253].

Two exact results emerge from this analysis:

1. For electron tunneling from a bubble with a perpendicular (shortest)

distance d from an infinite plane surface, Schoepe and Raydfield [239]

showed that the parameters in Eq. (77) are

b ¼ 2a ð78aÞ

and

A ¼ V0

2meR
2
b

� �1=2

expð2aRbÞ expð�1=adÞð4adÞ ð78bÞ

The preexponential factor exhibits a weak algebraic d-dependence.

2. For electron tunneling from a ‘‘helium balloon’’—i.e., from a bubble

located at the center of the cluster, where Xð�Þ ¼ ðR� RbÞ for all values
of �—Eqs. (74)–(76) result in the simple form of the parameters in

Eq. (77)

b ¼ 2a ð79aÞ

and

A ¼ V0

2meR
2
b

� �1=2

expð2aRbÞ ð79bÞ

while

d ¼ R ð79cÞ

The exponential distance dependence of the total tunneling transition rate for

the two configurations, described by cases 1 and 2 above, is identical, while the

preexponential factor for the bubble near a plane surface is smaller by a
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numerical factor of expð�1=adÞ=4ad than for the bubble located in the center

of the cluster. For 2a ’ 1
�1
, inferred from Eq. (74), one estimates that

4ad � 1, and for the inifinite plane this reduction factor is 
1=4ad. We

compare electron tunneling rates from a bubble located in the center of the

cluster with a bubble whose center is displaced from the cluster center, that is,

d < R. Both cases will be characterized by the same exponential parameter

b ¼ 2a. The preexponential factor �AA will be reduced relative to case 2,

[Eq. (79b)]. Thus for the general case of tunneling from an electron bubble in a

cluster we expect that

b ¼ 2a

�AA ¼ jðd;RÞ�V0=2meR
2
b

�1=2
expð2aRbÞ ð80Þ

where jðd; RÞ is the correction factor for the displacement of the bubble center

from the cluster center, with jðR; RÞ ¼ 1 (case 2), and jðd; 1Þ ¼
expð�1=adÞ=4ad (case 1).

We now consider electron tunneling rates from a bubble in a cluster. The

origin of the coordinate axes will be taken at the cluster center and the center of

the bubble is taken at r ¼ R� d on the z axis. The distance from the center of

the bubble to a point specified by the polar coordinates ðR; y;fÞ on the cluster

surface is given by

XðyÞ ¼ ½d2 þ 2ðR2 � RdÞð1� cos yÞ�1=2 ð81Þ

The tunneling rate [Eq. (76)] is

fðd;RÞ ¼ n
2

� � ðp
0

d y sin y exp �bðXðyÞ � RbÞ½ � ð82Þ

The integration in Eq. (82) with XðyÞ given by Eq. (81) results in

fðd;RÞ ¼ n expðbRbÞ½1=b2ðR2 � RdÞ�fexpð�bdÞðbd þ 1Þ

� exp½�bðd2 þ 4R2 � 4RdÞ1=2�½bðd2 þ 4R2 � 4RdÞ1=2 þ 1�g ð83Þ

where b ¼ 2a [Eqs. (74) and (78a)]. In the limit when the bubble approaches the

cluster center, (i.e., d ¼ R� d � R), we define a parameter

�AA ¼ 2
R

d

� �2

� R

d

� �" #
ð84Þ

Å
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for the expansion near d 
 R, which in this limit corresponds to �AA ’
2ðd=RÞ � 1. Equation (83) assumes the form

fðd; RÞ ¼ n expðbRbÞ 1

b2d2�AA

� �
f½expð�bdÞðbd þ 1Þ�

� exp½�bdð2�AAþ 1Þ1=2�½bdð2�AAþ 1Þ1=2 þ 1�g ð85aÞ

The expansion of Eq. (85a) in powers of �AA results in

fðd;RÞ ¼ n expðbRbÞexpð�bRÞ þ Oð�AA2Þ ð85bÞ

which converges to the expression for electron tunneling from a bubble located at

the center of the cluster [Eqs. (77), (79a)–(79c)], corresponding to case 2 above.

Larger clusters ðN ¼ 1:88� 105 � 107 with R ¼ 127 Å–477 Å) are of interest in

the context of electron tunneling from the bubble at d � 50 Å [252], so that the

shortest barrier width is d � Rb � 35 Å, which is lower than the cluster radius;

that is, ðd � RbÞ � R and d=R ¼ 0:2–0.5. In this limit for the small d=R
expansion, it will be convenient to express Eq. (83) in the alternative form

fðd; RÞ¼ nexpðbRbÞ b2R2 1� d

R

� �	 
� ��1
expð�bdÞðbdþ1Þ�exp

"
�bR

d2

R2

� �	(

þ 4�4
d

R

� �
1=2#
bR

d2

R2

� �
þ4�4

d

R

� �	 
1=2
þ 1

" #)
ð86Þ

For the range of d=R � 0:5 and bd � 1, Eq. (86) reduces to

fðd;RÞ ¼ expð�bdÞ expðbRbÞ 1

bd

� �
d

R

� �2�
1� d

R

� �
ð86aÞ

The correction factor, jðR; dÞ [Eq. (80)] for the preexponential factor in the

tunneling process accompanying the displacement of the bubble center from the

cluster center toward the cluster surface—that is, d 
 ð0:1–0.5)R—is

jðd; RÞ ¼ 1

bd

� �
d

R

� �2�
1� d

R

� �
ð86bÞ

From this analysis, two conclusions emerge. First, the displacement of the center

of the bubble results in a reduction of the preexponential frequency factor by

a numerical factor given by Eq. (86). Taking b ’ 1
�1

and R ¼ 127 Å,

jðd; RÞ ¼ 3:4� 10�3. So, moving the bubble center to the cluster center will

Å
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increase the preexponential factor in the tunneling probability by 2–3 orders of

magnitude. Concurrently, in view of the exponential decrease of fðd;RÞ with
increasing d [Eq. (77)], the tunneling transition rate will exponentially decrease,

overwhelming the weaker algebraic-type increase of the preexponential factor.

Consequently, fðd;RÞ will decrease by moving the bubble to the bubble center.

Second, for tunneling from an electron bubble in a cluster, the correction factor

jðd; RÞ is smaller by a numerical factor of ðd=RÞ2=½1� ðd=RÞ�, relative to that

for tunneling from a bubble located near a flat surface at the same value of d. This

effect on the preexponential factor in the tunneling probability is modest,

because the major contribution to the variations of fðd;RÞ originates from its

exponential distance dependence. Accordingly, the contribution of the cluster

surface curvature to the transition rate (at a fixed value of d) is not large and does

not exceed one order of magnitude.

C. Electron Tunneling Times

The electron tunneling times t from a bubble located at the radial distance d in a

fixed spatial configuration within the cluster

t ¼ 1

fðd;RÞ ð87Þ

were calculated from Eqs. (77), (80) and (86) for the range d ¼ 33–60 Å in

clusters of sizes N ¼ 1:86� 104 ðR ¼ 58:1 Å) and 1:88� 105 ðR ¼ 127 Å), and

N ¼ 107 ðR ¼ 488 Å). At a fixed value of d the tunneling time exhibits a weak

cluster size dependence; that is, for d ¼ 39 Å we found that t, [Eq. (87)]

increases by a numerical factor of 4 between the cluster sizes N ¼ 1:86� 104

and N ¼ 107. This weak variation of t originates mainly from the dependence of

the exponential parameter b ¼ 2a [Eqs. (74), (80) and (86)] on the energy gap

(V0 � Et), which slightly decreases with increasing the cluster size (Section

III.C). The electron tunneling lifetimes are very sensitive to the shortest radial

distance d of the bubble center from the cluster boundary, exhibiting an

exponential distance dependence (Fig. 18). The phenomenological description of

the distance dependence of the rate of the tunneling probability [Eq. (77)] for

N ¼ 1:88� 105 (Fig. 18) results in the exponential parameterb ¼ 1:01
�1
, which

was calculated from Eqs. (74) and (80), with V0 � Ee ¼ 0:92 eV (Section III.C).

The preexponential factor was estimated to be A ¼ 4:1� 1020 s�1.
The relevant spatial range of the d values for the initial location of the bubble

can be inferred from the characteristic spatial range L ’ 50 Å for thermalization

of electrons in macroscopic liquid helium [252], which constitutes an upper

limit for d. The lower limit for d is due to the experimental limitations on the

time scale for electron detection of the He�N ions [104, 244, 245], which fall in

the range of t > 10�6 s. The corresponding distance for electron tunneling of

Å
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t ¼ 10�6 s inferred from Fig. 18 is dMIN ¼ 29 Å. We thus expect the d values

for the interrogation of tunneling from electron bubbles to fall in the physically

acceptable region dMIN ¼ 29 � d � L ’ 50 Å. The exponential distance

dependence of the electron tunneling times from the bubble implies that very

different physical situations will be encountered for dissipative bubble motion

in normal ð4HeÞN and ð3HeÞN clusters and in the absence of dissipative bubble

motion in superfluid ð4HeÞN clusters.

D. Motion of the Electron Bubble in the Image Potential

in Superfluuid and Normal Fluid (He)N Clusters

The electron bubble motion within the cluster is described to occur in the image

potential well VIMðrÞ [209], which is given from Eq. (66) in the form

VIMðd;RÞ ¼ ViðrÞ � Við0Þ

¼ 2�

R

� �
1� r

R

� �2� ��1
þ R

2r

� �
ln ½ðRþ rÞ=ðR� rÞ� � 1

( )
ð88Þ

where r ¼ ðR� dÞ and � ¼ e2ðe� 1Þ=4eðeþ 1Þ. For the electron bubble

located in the center of the cluster (i.e., d ¼ RÞ, we have VIMðd ¼ R;RÞ ¼ 0.

Å

Figure 18. The electron tunneling lifetime t ¼ 1=fðdÞ from the electron bubble whose center

is located at distance d ¼ R� r from the cluster surface for N ¼ 1:88� 105 and R ¼ 127 Å. The

electron tunneling times from the bubble exhibit an exponential distance dependence [Eq. (77)].
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In Fig. 19 we portray the image potential dependence for a ð4HeÞN cluster

with N ¼ 1:88� 105 on the initial distance r from the cluster center.

Approximating the image potential by a one-dimensional harmonic potential

VIMðr; RÞ ’ kr2=2, we estimate that k ’ 5� 10�3 erg cm�2. At the localization
length d ¼ R� r, where the electron bubble is initially formed, fðR; dÞ exhibits
an exponential d-dependence. In Fig. 19 we also include the electron tunneling

times at these distances. In our treatment it will be implicitly assumed that the

ground-state electronic energy, the cluster deformation energy accompanying

bubble formation, and the equilibrium bubble radius exhibit a weak dependence

on d. Then the energetic changes accompanying the displacement of the bubble

center within the cluster solely result from the image potential. Following initial

localization the electron bubble will move in the image potential well. Two

limiting cases involving distinct modes of the motion of the electron bubble,

which is dissipative in normal ð4HeÞN and in ð3HeÞN clusters and nondissipative

in superfluid ð4HeÞN clusters, will now be considered.

Figure 19. The image potential VIMðrÞ [Eq. (88)] for the motion of the electron bubble in an

ð4HeÞN cluster with N ¼ 1:88� 105 and R ¼ 127 Å (upper panel). The lower panel shows the

exponential dependence of the electron tunneling times [Eq. (87)] near the cluster boundary versus

the distance r ¼ R� d of the centers of the bubble and of the cluster. The t data calculated from

Eqs. (80) and (86) are presented in the range t ¼ 10�2 –10�6 s.
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In normal ð4HeÞN clusters at temperature T > Tl above the l point, as well

as in ð3HeÞN clusters at T > 0:03K, the bubble motion within the image

potential well is dissipative. On the other hand, the bubble motion in superfluid

ð4HeÞN clusters will be nearly undamped. The bubble translational dynamics at

distance r from the cluster center is described by an equation of motion, which

for the one-dimensional case is

Mb€rr þ dVIMðrÞ
dr

þ 4pZRb _rr ¼ 0 ð89Þ

where Mb is the effective mass of the electron bubble, which involves the first

external layer of the atoms being taken asMb ’ 200 m. k is the force constant of

the image potential [Eq. (88)], which is approximated as a harmonic potential

with a restoring force constant k, and n is the viscosity of the fluid, which varies

dramatically between the normal fluid (Z ¼ 200 mpoise) [248] and the superfluid
(Z ¼ 10�9�10�11 mpoise) [254]. The second term on the left-hand side of Eq.

(89) represents the restoring force qV1ðrÞ=qr ¼ kr. The third term on the left-

hand side of Eq. (89) represents the drag force. In the normal fluid the drag force

dominates over the restoring force (i.e., 4pZRb _rr � kr) and the time evolution is

rðtÞ ¼ exp � t

tD

� �
ð89aÞ

with the characteristic damping time for the bubble motion, inferred from

Stokes’ law [99], being

tD ¼ Mb

4pZRb

ð89bÞ

A rough estimate for the normal fluid results in tD ¼ 4� 10�12 s [99]. The

bubble oscillation time t0 in the well of the image potential can be inferred from

Eq. (87), with the third term on the left-hand side of this equation being

neglected, resulting in

RðtÞ / exp
it

t0

� �
ð89cÞ

with the oscillation time being

t0 ¼ Mb

k

� �1=2

ð89dÞ
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Using k ¼ 5� 10�3 erg cm�2, estimated fromEq. (88), results in t0 ’ 5� 10�10 s.
In the normal fluid tD � t0 and the motion of the bubble will be overdamped,

being described by Eq. (89a). The bubble will then relax to the cluster center on

the time scale of tD, which is short relative to the electron tunneling time from the

normal fluid cluster. Accordingly, electron tunneling from bubbles in normal liquid

clusters of helium will occur from a thermally equilibrated position of the bubble.

For the bubble motion in the image potential with the superfluid, one infers

that for the experimentally relevant temperature of 0.4 K [6–11, 99, 242–245]

only the superfluid component is expected to prevail in the cluster size domain

(N > 103), which is of interest to us. The drag force acting on the electron

bubble in superfluid ð4HeÞN clusters is expected to be vanishingly small due to

the negligible viscosity (i.e., Z < 10�9�10�11 micropoise [254]), whereupon

the damping time [Eq. (89b)] is tD ’ 10 s. tD is larger by 10 orders of

magnitude than the bubble oscillation time [Eq. (89d)], t0 ¼ 5� 10�10 s. The
exceedingly long damping time marks the negligible dissipation motion of the

bubble, which will undergo oscillatory motion. As t0 � tD, the separation of

time scales between fast oscillation and ultralong damping enables us to

consider electron tunneling from the bubble, which oscillates within the cluster.

E. Ultraslow Electron Tunneling Rates from Normal Fluid

Helium Clusters

From the foregoing analysis in Section IV.D we concluded that in normal fluid

ð4HeÞN or ð3HeÞN clusters the electron bubble will relax to the cluster center on

the time scale of the damping time tD 
 4� 10�12 s. Furthermore, when the

electron tunneling times are longer than the damping times (i.e., t > tD), which
is realized for the initial bubble distance of d > 26 Å (see Figs. 18 and 19), the

bubble relaxes to the minimum image potential being located in the vicinity of

r ¼ 0, without electron escape during the translational relaxation. This initial

distance of d ¼ 26 Å for the attainment of configurational damping to the cluster

center is shorter than the lower limit dMIN ¼ 29 Å for the physically acceptable d

region for experimental interrogation of the electron bubble [99] and for the

upper limit of L ’ 50 Å (Section IV.C). For the physically acceptable d domain

(Section IV.C) the motion of the electron bubble in the normal cluster fluid is

overdamped toward the equilibrium configuration in the center of the cluster, and

electron tunneling from the centrally located electron bubble, (i.e., from an

electron in the ‘‘helium balloon’’) will prevail. The electron bubble configura-

tional distribution psðrÞ in the image potential within the cluster prior to electron

tunneling was taken in the form of an equilibrium Boltzmann distribution in the

absence of tunneling, which is described by the static approximation [208, 209]

psðrÞ ¼ 1

2

� �
exp �VIMðrÞ

kBT

� �
ð90Þ
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The time-dependent electron current function IðtÞ is given by

IðtÞ ¼
Ð R
0
psðrÞexpð�fðrÞtÞ drÐ R

0
psðrÞ dr

ð91Þ

where fðrÞ is given by Eqs. (80) and (86) with r ¼ R� d. In Fig. 20 we portray

typical IðtÞ versus t curves calculated from Eqs. (90) and (91) for normal fluid

ð4HeÞN clusters at T ¼ 2:5 K and 4.0 K and for normal fluid ð3HeÞN clusters at

T ¼ 0:4 K, 1.25 K and 4.0 K, as well as for superfluid ð4HeÞN clusters at

T ¼ 0:4 K (Section IV.F). The electron tunneling lifetime tTUN was estimated

from IðtTUNÞ=Ið0Þ ¼ 1=e. The electron tunneling lifetimes from the normal fluid

ð4HeÞN and ð3HeÞN clusters involve electron escape from a bubble which is

overdamped toward an equilibrium configuration in the center of the cluster. The

IðtÞ versus t curves are exponential for ð3HeÞN clusters at T ¼ 0:4 K, while for

higher temperatures of T ¼ 3–4 K the IðtÞ versus t curves are nonexponential,

being of the form of stretched exponentials. The marked temperature dependence

of the electron current function arises from the contribution of the equilibrium

Boltzmann distribution [Eq. (90)]. A central result of this analysis involves

the extremely long values of the electron tunneling times in normal ð4HeÞN
(at T > Tl) clusters with tTUN ¼ 1022�1023 s and in ð3HeÞN clusters with

tTUN ¼ 1020�1022 s (Table VII). These dramatic results for extremely long

Figure 20. The dependence of IðtÞ on t [Eq. (91)] for normal ð3HeÞN (T ¼ 0:4 K) and normal

ð4HeÞN (T ¼ 4:0 K) clusters (N ¼ 1:88� 105). These data are compared with the IðtÞ dependence
on t [Eqs. (92) and (93)] for a superfluid ð4HeÞN (N ¼ 1:88� 105) cluster at T ¼ 0:4 K. All

calculations for d ¼ 39 Å. (N) represents normal fluid clusters while (S) represents a superfluid

cluster.
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electron escape times from normal helium clusters are in qualitative agreement

with the previous analysis of the static model [208, 209] and with recent work

[245]. These ultralong lifetimes for electron tunneling from a centrally located

electron bubble in normal ð4HeÞN and ð3HeÞN clusters approach the lifetime of

the universe. Of course, these estimates of the ultralong tunneling lifetimes from

a configurationally damped electron bubble in the normal fluid clusters are

grossly oversimplified as other dynamic processes will result in the annihilation

of the negative helium cluster on such unphysical time scales. The results of

these lifetime calculations constitute proof that electron tunneling from a bubble

in a normal fluid cluster is so long that it is not amenable to experimental

observation under any real-life conditions.

F. Fast Electron Tunneling Rates from Superfluid Helium Clusters

The negligible dissipation effects for the bubble motion in superfluid clusters,

which is characterized by exceedingly long damping times of tD ’ 10 s (Section

IV.D), induce a free oscillatory bubble motion in the image potential with a short

oscillation lifetime of t0 
 5� 10�10 s. Furthermore, the long damping time tD
is comparable to the electron tunneling times (Fig. 18) only for the distance of

d ’ 48 Å, which is exceedingly close to the upper limit L ’ 50 Å for the

physically acceptable d region introduced in Section IV.C. Electron bubbles

initially produced in this physically acceptable region in the superfluid cluster

will manifest tunneling during the oscillatory translational motion in the image

potential, without damping of the bubble motion. This physical picture was

TABLE VII

Calculated Tunneling Lifetimes tTUN of an Electron from an Electron Bubble in Normal Fluid

ð4HeÞN Clusters (at T ¼ 2:5--4 K), in ð3HeÞN Clusters (at T ¼ 0:4--2:5 K), and in

Superfluid ð4HeÞN Clusters (at T ¼ 0:4 K)a

tTUN ðsÞ tTUNðsÞ
Cluster N T ðKÞ d ¼ 39 Å d ¼ 38 Å Quantum State

ð4HeÞN 107 0.4 0:26c 0:090c Superfluid

ð4HeÞN 106 0.4 0:040c 0:018c Superfluid

ð4HeÞN 1:88� 105 0.4 0:018c 0:006c Superfluid

ðHe)N 1:88� 105 0.4 0:008c Superfluid

ð4HeÞN 1:88� 105 4.0 1022 b Normal

ð4HeÞN 1:88� 105 2.5 1023 b Normal

ð3HeÞN 1:88� 105 2.5 1020 b Normal

ð3HeÞN 1:88� 105 1.3 1020 b Normal

ð3HeÞN 1:88� 105 0.4 1022 b Normal

aThe electron bubble’s structural dissipation lifetime in the image potential is tD ¼ 4� 10�12 s for
the normal fluid and tD 
 10 s for the superfluid cluster. The initial position of the bubble is

d ¼ 39 Å.
b tTUN defined by the relation IðtTUNÞ=Ið0Þ ¼ e�1.
ctTUN from Eq. (94).
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advanced by Farnik and Toennies [245] and by the present authors [251]. We

shall now provide model calculations for this interesting problem.

For the motion of an electron bubble within the superfluid cluster the static,

harmonic approximation (Section IV.E) breaks down. Consider an electron

bubble initially located at the radial distance d from the cluster boundary. The

dynamic spatial distribution pf ðrÞ of the electron bubble in the image potential

VIM [Eq. (88)] in the absence of dissipation can be described by the probability

of the bubble location at distance �d � r � d from the cluster surface, where

the bubble moves back and forth from �d up to d in the image potential.

The dynamic spatial distribution (per unit length) of the electron bubble

pf ðrÞ ¼ Y

vðrÞ
����

���� ð92Þ

where

vðrÞ ¼ 2½E � VIMðrÞ�
MB

� �1=2

ð92aÞ

and

Y ¼
ð
dr

2½E � VIMðrÞ�
MB

� ��1=2
ð92bÞ

E is the initial potential energy in the image potential, vðrÞ is the velocity of the

bubble motion with its center at distance r from the cluster center, Y is the period

of the bubble oscillation, and VIMðrÞ is the image potential, [Eq. (88)]. In this

case the electron current IðtÞ was calculated in the form

IðtÞ ¼
ðd
�d

pf ðrÞ expð�fðrÞtÞ dr ð93Þ

where again fðrÞ is given by Eqs. (77), (78a), (80) and (86). Moreover, the major

contribution to the electron escape is from the narrow range d . . . ðd þ�dÞ,
where �d=d � 1. On the basis of the exponential distance dependence of fðdÞ
[Eq. (77)] we (arbitrarily but physically) choose �d from the reduction of f by

two orders of magnitude—that is, fðd þ�dÞ=fðdÞ ¼ 0:01—so that

�d ¼ 4:4=b � 4:4 Å. We then calculate the integral [Eq. (90)] in the limits

d . . . d þ�d

IðtÞ ¼
ðdþ�d

d

pf ðrÞ expð�fðrÞtÞ dr ð93aÞ
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In Fig. 20 we portray the results of model calculations for the time dependence of

IðtÞ, based on Eqs. (86), (92) and (93), for superfluid ð4HeÞN clusters with

N ¼ 1:88� 105 at T ¼ 0:4 K. These calculations were performed for d ¼ 39 Å,

which falls well in the physically acceptable region of d. This IðtÞ versus t curve
exhibits a near exponential decay with time, with the characteristic lifetime tTUN
for electron tunneling. Using the simple relation IðtTUNÞ=Ið0Þ ¼ e�1 we

obtained from Fig. 20 that tTUN ’ 8� 10�3s for N ¼ 1:88� 105, which is

included in Table VII.

In Fig. 20 we compare the current decay curve IðtÞ versus t for the ð4HeÞN
superfluid cluster ðN ¼ 1:88� 105Þ with IðtÞ versus t curves for normal

fluid clusters of the same size, i.e., ð3HeÞN at t ¼ 0:4 K and ð4HeÞN at t ¼ 4:0 K,
calculated by the procedure of Section IV.E, where the corresponding decay

curves manifest astronomical decay times (Table VII). The huge 22–24 orders

of magnitude difference between the electron tunneling times from electron

bubbles in the superfluid clusters and in the normal fluid clusters (Fig. 20 and

Table VII) demonstrate the role of electron bubbles to interrogate unique

differences in the superfluid and normal fluid viscosity, which are manifested in

the damping time for the bubble motion, as also noted by Farnik and Toennies

[245]. The ultralong tunneling times from electron bubbles predicted herein

seem to be consistent with the experimental results of Toennies and co-workers

[99, 243–245], who did not detect electron emission from electron bubbles in

large normal fluid ð3HeÞN clusters. One concludes that detachment of electron

bubbles cannot be observed from normal fluid large clusters and is amenable to

experimental observation only for superfluid large clusters, in accord with the

analysis of Toennies and co-workers [99, 243–245].

Further calculations of tTUN utilized the more elaborate expression for the

tunneling lifetimes

tTUN ¼ IðtÞ
ðdIðtÞ=dtÞ
����

���� at
IðtÞ
Ið0Þ ¼

1

e
ð94Þ

and provided information on the cluster size dependence of tTUN in superfluid

ð4HeÞN clusters, for d ¼ 38–39 Å, which are presented in Table VII. The

tunneling lifetimes were calculated in the range of d ¼ 38–39 Å and for a cluster

size domain of N ¼ 2� 105--107.

In Fig. 21 we portray the calculated tunneling lifetimes for cluster sizes

N ¼ 2� 105; 106, and 107 over a broad range of the initial distances d. The

exponential d dependence of tTUN, Eq. (77), causes a lengthening of the

tunneling lifetime tTUN with increasing d. tTUN increases by a numerical factor

of 2–3 from d ¼ 38 Å to d ¼ 39 Å (Table VII).

Most important is the cluster size dependence of the electron tunneling times.

The calculations of the dependence of tTUN on the cluster radius at fixed values
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of d (Table VII and Fig. 21) exhibit an increase of the tunneling lifetimes by a

numerical factor of 
15 for the cluster size domain N ¼ 2� 104--107. This

result reflects on the role of the surface curvature of the cluster on tTUN, which
shortens the lifetime in smaller clusters. The electron tunneling times

tTUN ¼ 6� 10�3 s�0:26 s in the range d ¼ 38–39 Å calculated from the

electron tunneling model advanced herein, are in very good agreement with

the experimental results of Farnik and Toennies [245] on electron detachment

lifetimes from ð4HeÞ�N clusters in the size domain N ¼ 105--107. The tunneling

times calculated from d ¼ 38:5 Å (i.e., tTUN ¼ 11ms for N ¼ 2� 105,

tTUN ¼ 32ms for N ¼ 106 and tTUN ¼ 155 ms for N ¼ 107) are in good

agreement with the experimental results [245], as is apparent from Fig. 21. The

agreement between our theory [251], as presented herein, and the experimental

reality [245] inspires confidence in the utilization of electron bubbles as a probe

for superfluidity of ð4HeÞN clusters.

Of course, our model calculations of tTUN for a superfluid cluster use the

initial distance d as a fitting parameter. Further refinements and extensions of the

theory of electron tunneling dynamics in superfluid clusters will be of interest.

These will involve the following amendments and additions: (i) a treatment of

small local changes in energetics, structure, and charge distribution of the
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Figure 21. The lifetimes for electron tunneling from the electron bubble versus the initial value

of d for superfluid ð4HeÞN clusters at T ¼ 0:4 K for cluster sizes N ¼ 1:9� 105, 106, and 107. tTUN
is calculated from Eqs. (77), (80), and (86). These theoretical results for times of electron

detachment from superfluid ð4HeÞ�N clusters are compared with the experimental data [245], which

are marked on the curves. Good agreement between theory and experiment is achieved for

d ¼ 38:5 Å.
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electron bubble, when it is dislocated from the cluster center; (ii) examination of

the implications of an inhomogeneous distribution of the initial bubble distance

d on the current decay curves; (iii) the exploration of the implications of the

intermediate thermal relaxation time falling between the slow limit and the fast

limit in ð4HeÞN clusters below the lambda point where the superfluid fraction is

finite but lower than unity, so the viscosity assumes a mean value between the

superfluid and normal fluid properties. These refinements and extensions of

the theory will be of considerable interest, however, they will not change the

general conclusions emerging from the present work.

G. Superfluidity Effects on the Formation Dynamics and on Electron

Tunneling of Electron Bubbles in ð4HeÞN Clusters

We explored the energetics, formation dynamics and dynamic instability of

electron bubbles in large ð4HeÞN and ð3HeÞN clusters ðN ¼ 6:5� 103--107Þ.
The energetics and structure of the electron bubble (Section III), which pertain

to the deformation energy for the bubble formation, the ground-state energy of

the localized excess electron, the total energy, and the equilibrium nuclear

configuration, are insensitive to the properties of the superfluid, being nearly

identical for ð4HeÞN normal fluid clusters above the lambda point ðT > TlÞ;
for normal fluid ð3HeÞN clusters and for ð4HeÞN superfluid clusters (at T < Tl).

The localization dynamics of the quasi-free electron state to the electron

bubble state in a ð4HeÞN cluster (Section IV.D), which corresponds to intra-

cluster ultrafast dynamics on the time scale of nuclear motion, exhibits weak

effects of superfluidity on the lifetime tb for the formation of the equilibrium

electron bubble configuration. These superfluidity effects originate from

medium dissipation accompanying the electron bubble expansion and depend

on the medium viscosity [188], which is drastically different for the normal

fluid cluster and for the superfluid cluster [248, 254]. When the dissipation

effect is taken into account for N ¼ 1:88� 105 clusters at 0.4 K, then for the

ð4HeÞN superfluid cluster we have tb ¼ 9:0 ps, with a 15% increase of tb
originating from the reduction of dissipation effects in the latter case. The

physical situation regarding superfluidity effects on the electron bubble dyna-

mics is drastically different for electron tunneling from bubbles in ð4HeÞN and

ð3HeÞN clusters. Electron tunneling from bubbles is grossly affected by the

distinct mode of motion of the electron bubble (Section IV.F), which is

dissipative in normal fluid ð4HeÞN and ð3HeÞN clusters and nondissipative in

superfluid ð4HeÞN clusters. The quantitative distinction in the motional damp-

ing times of the electron bubble (i.e., tD ’ 4� 10�12 s for the normal fluid

cluster and tD ’ 10 s for the superfluid cluster) will induce electron tunnel-

ing from the electron bubble located in the vicinity of the center of the normal

fluid cluster and from the electron bubble located near the bubble bound-

ary of the superfluid cluster. These distinct locations of the bubble during
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electron tunneling will result in ultralong tunneling lifetimes (tTUN 
 1020 s)

for normal fluid clusters and short lifetimes (t 
 10�2–1 s) for superfluid

clusters.

These experimental results for electron detachment from ðHeÞ�N superfluid

clusters [99, 242–245] and the present analysis reflect beautifully on the role of

electron bubbles as microscopic probes for superfluidity of finite boson quantum

clusters. The classical 1960 studies of Meyer and Reif [207] provided direct

information on the roton energy from the interrogation of the temperature

dependence of the electron mobility in bulk superfluid helium. Our analysis and

the experimental results [242–245] enable the interrogation and theoretical

exploration of the electron bubble translational motion in the image potential

within normal fluid and superfluid clusters, allowing us to infer on the dramatic

effects of superfluidity in large finite boson quantum clusters using the

techniques of electron detachment.

H. Dynamic Stability of the Electron Bubbles

In the exploration of the dynamics of electron tunneling from bubbles in

superfluid and normal fluid ð4HeÞN and ð3HeÞN clusters, we focused on large

clusters with N ¼ 105--107. An interesting question in the realm of quantum size

effects pertains to threshold size effects (Section I.D)—for example: What is

the minimal helium cluster size to support an excess electron bubble? From the

analysis of the energetic stability of the electron bubble in ðHeÞN clusters

(Section III), we concluded that the minimal cluster for which the electron

bubble is energetically stable corresponds to N ’ 5200. We have already pointed

out that dynamic effects involving electron tunneling of the electron bubble may

result in the depletion of the energetically stable electron bubble state on the

experimental time scale for the interrogation of ðHeÞ�N clusters ðtEXP ’ 1� 10�6 s)
[99, 242–245]. Accordingly, the dynamic stability criterion is governed by the

experimental conditions for the detachment of an excess electron from ðHeÞ�N
clusters.

The dynamic stability criterion is governed by the condition tTUN > tEXP,

where tEXP is the lowest limit for the time scale of experimental detection of

ðHeÞ�N ions [42–45]. Taking tEXP ’ 10�6 s, we infer that dynamic stability will

prevail for tTUN > 10�6 s. We are concerned here with electron tunneling from

moderately small ðHeÞN clusters. Therefore we shall consider electron tunneling

from a centrally located bubble (a ‘‘helium balloon’’) in these moderately small

clusters. Using Eqs. (77), (79a), (79b), and (79c) to calculate fðR;RÞ, we

can estimate tTUN ¼ 1=fðR;RÞ for this case. tTUN can then be expressed

by the relation tTUN ¼ A�1expðbdÞ, with b ¼ 1
�1
, A�1 ¼ 1:7� 10�24 s,

and d ¼ R. The minimal cluster radius for dynamic localization is inferred

from the relation A�1expðbdÞ > 10�6 s, resulting in d ¼ R � 41 Å. For this

value of R we infer that dynamic stability is ensured for N ¼ ½ðRÞ3 � ðRe
bÞ3�=r30,

Å
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where Re
b ’ 13:5 Å, as appropriate for an ‘electron balloon’ in small clusters

(Section III). The lowest cluster size for dynamic stability of the electron bubble

is N ’ 6200. This minimal cluster size, which satisfies the constraints of

dynamic stability, should be compared with the onset of energetic stability, is

estimated to be N ¼ 5200 (Section III). There is near coincidence (within the

uncertainty of the estimates) between the onsets of the energetic and dynamics

stability. We conclude that the electron bubble is amenable to experimental

observation for N ¼ 5700� 500;R ’ 40 Å, and Rb ¼ 13:5 Å. This prediction

provides an interesting avenue for the experimental search for the lowest cluster

size allowing for electron localization in a helium balloon which supports a

localized excess electron.

V. EXCURSIONS IN THE WORLD

OF FINITE, ULTRACOLD GASES

In the preceding Sections we addressed some features of energetics, thermo-

dynamics, dynamics, and function of ‘‘strongly’’ interacting ð4HeÞN and ð3HeÞN
quantum clusters, and excess electron bubbles in these finite, ultracold quantum

systems in the temperature domain T < Tc, where Tc corresponds to the critical

temperature for the transition to the superfluid state and for Bose–Einstein con-

densation in these high-density, finite quantum systems. We shall now proceed to

review some new facets of energetics, thermodynamics, and dynamics of finite,

ultracold gases, which unveil some fascinating aspects of the thermodynamics

and energetics of Bose–Einstein condensation and of the dynamics of the

expansion of optical molasses in low-density, finite quantum systems.

A. Finite Size Effects on Bose–Einstein Condensation

in Confined Systems

The realization of Bose–Einstein condensation in assemblies of ultracold atoms

in magnetic traps, optical traps, and microwave traps (briefly reviewed in

Section I) was conducted with a maximal sample size of 
107 atoms [14].

Consequently, the thermodynamic limit for the Bose–Einstein condensation is

never reached, and the high-order phase transition is broadened (Section II).

Finite size effects on the Bose–Einstein condensation temperature and other

thermodynamic attributes of the dilute gas open up new horizons in the

exploration of high-order phase changes in low-density quantum systems. It will

be appropriate to refer to this high-order phase transition in a finite system as a

‘‘high-order phase change,’’ in analogy with solid–liquid first-order phase

changes in clusters [148].

The theory of Bose–Einstein condensation of N noninteracting atoms

confined in a finite, three-dimensional cavity of size L [80, 126] starts from the
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single-particle wavefunctions for a particle in a box. The density of states in

the momentum space is [126]

gðpÞ ¼ 4pL3

h3
p2 � 3pL2

�h2
p ð95Þ

where the first term, proportional to the volume, is the Weyl term [126], which is

sufficient to describe the system in the infinite volume limit, while the second

term is the finite volume correction. This treatment led to the critical temperature

Tc for Bose–Einstein condensation in the ideal finite system, relative to the

critical temperature T 0
c [Eq. (6)] in the infinite system [126]

Tc

T 0
c

¼ ½1þ ABN�1=3 lnðBN�1=3Þ��2=3 ð96Þ

where

A ¼ 2

ð3pÞ1=2�ð3=2Þ
ð96aÞ

and

B ¼ ½ð3pÞ1=2=2��ð3=2Þ1=3 ð96bÞ

The logarithmic term ln BN�=13 on the right-hand side of Eq. (96) originates

from the boundary corrections to the density of states and is determined by the

physical boundary conditions for the vanishing of the wave function at the edges

of the box [126]. If periodic boundary conditions would be imposed, the

logarithmic term will be absent [126]. This point raises again the specific role of

boundary conditions in determining the observables for finite quantum systems

(Section II).

For sufficiently large finite systems, Eq. (96) results in

Tc

T 0
c

¼ 1� 2

3

� �
ABN�1=3 lnðBN�1=3Þ ð97Þ

which constitutes a cluster size equation. For sufficiently large clusters the

critical temperature Tc is decreased relative to the Bose–Einstein temperatures

T 0
c [Eq. (6)], assuming the form

T 0
c � Tc

T 0
c

¼ 2

3

� �
ABN�1=3 lnðBN�1=3Þ ð98Þ
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The reduction of Tc is proportional to N�1=3 / L, so that ðT0
c � TcÞ=T0

c / L�1.
The convergence to the properties of the infinite systems [i.e., ðT0

c � TcÞ ! 0]

requires the removal of the logarithmic singularity in Eq. (98) by the imposition

of periodic boundary conditions on the system.

Finite size effects on the critical temperature for Bose–Einstein condensation

of a noninteracting Bose gas confined in a harmonic trap manifests the reduction

of the condensate fraction and the lowering of the transition temperature, as

compared to the infinite system [14, 127]. For an N particle condensate, the shift

of the critical temperature Tc, relative to that for the N !1 limit T0
c , is given

by the cluster size scaling relation [14, 127]

T0
c � Tc

T0
c

¼ �oo�ð2Þ
2oh0½xð3Þ�2=3

( )
N�1=3 ð99Þ

where T 0
c [Eq. (9)] is now the Bose–Einstein condensation temperature in a

harmonic trap. oh0 is the average oscillator frequency, �oo ¼ oh0ð2þ lÞ=l1=3,
with l being the symmetry parameter of the trap and xð jÞ being the Rieman zeta

function. Alternatively, one can express the lowering of the critical temperature

as ðT 0
c � TcÞ / N�1=3, or ðT 0

c � TcÞ / L�1, where L is the characteristic length

of the three-dimensional system. Equation (99) describes a size scaling relation

for the critical temperature of the Bose–Einstein condensation of atoms with a

zero scattering length, with the convergence to the properties of the infinite

system in the thermodynamic limit—that is, ðT 0
c � TcÞ=T 0

c ! 0—whenN !1.

Both a noninteracting Bose gas in a finite volume [Eq. (96)] and a non-

interacting Bose gas confined in a harmonic trap [Eq. (99)] exhibit finite size

effects for the lowering of the critical temperature relative to the critical

temperature for the corresponding case. For the ideal Bose gas, this reduction of

Tc scales in both cases as ðT 0
c � TcÞ / N�1=3 / L�1. These results are different

from the reduction of the critical temperature for the superfluid transition and

for Bose–Einstein condensation of ð4HeÞN clusters (Section II). These scale

as ðT 0
c � TcÞ / N�1=3n or (T 0

c � TcÞ / L�1=n [Eqs. (37), (38a), (38b), and

(42)], where n ¼ 0:670 [200] is the critical exponent for the superfluid fraction

and for the correlation function in bulk liquid 4He. The different size

dependence of the critical temperature for the noninteracting, ideal, confined

Bose gas and for ‘‘strongly’’ interacting ð4HeÞN clusters raises the distinct

possibility that these systems may belong to different universality classes, being

characterized by distinct critical exponents.

B. A Molecular Description of the Bose-Einstein Condensation

An ultracold dilute gas of bosonic atoms constitutes a many-body system of

weakly interacting constituents. An attempt to bridge between the thermo-

dynamic picture of a rounded-off Bose–Einstein phase transition and molecular
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concepts was advanced [255]. Such a generalized molecular structure allows for

the introduction of a collective coordinate and of an effective potential for the

many-boson system, which allows for the characterization of the Bose–Einstein

condensate and for the assessment of its upper size limit [255]. In what follows

we provide a brief review of this work [255].

The Hamiltonian of N identical atoms of mass m, confined in a trap

approximated by a spherically symmetric harmonic oscillator of frequency r, is
given by the Schrödinger equation

H ¼ �h2

2m

X
i

r2
i þ

1

2

X
i

mo2r2i þ
X
i< j

Uintðri � rjÞ ð100Þ

where ri is the distance vector of the ith atom from the trap center, and Uint is the

pairwise interatomic potential. In treating a low-density condensate, a contact

potential [256] was introduced

Uintðrj � rjÞ ¼ 4p�h2a
m

� �
dðri � rjÞ ð101Þ

where a is the atom–atom scattering length.

To describe the Bose–Einstein condensate, a coordinate transformation was

applied, with the introduction of hyperspherical collective coordinates [255,

257–259], where one of the coordinates is the hyperradius

R̂R ¼ 1

N

X
i

r2i

 !1=2

ð102Þ

This parameterization was widely utilized in nuclear [257, 258] and atomic [259]

physics. R̂R describes the hyperradius of a 3N-dimensional space, while the

remaining (3N � 1) coordinates are given in terms of hyperangles,

X� ¼ f�1;�2; . . . ;�3N�1g, which parameterize the hypersphere. The ‘‘grand

angular momentum’’ 

2 for the system has eigenfunctions, which are called

‘‘hyperspherical harmonics’’ [260]. The construction of an approximate solution

to the Schrödinger equation [Eq. (100)] rested on the expansion of the many-

body wavefunction cðR̂R;��Þ into hyperspherical harmonics. This expansion

results in a set of coupled differential equations for the hyperradial expansion

coefficients. Such a situation is ubiquitous for the Born–Oppenheimer

approximation in molecular chemical physics [261]. At this stage, the lowest

term of the expansion is chosen, in analogy with the K–harmonic approximation

in nuclear theory [262].
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The approximate one-dimensional wavefunction FðR̂RÞ for the condensate

was obtained from the Schödinger equation

� �h2

2M

� �
d2

dR̂R
2
þ VeffðR̂RÞ

	 

FðR̂RÞ ¼ EFðR̂RÞ ð103Þ

where the effective potential is

VeffðR̂RÞ ¼ �h2

2M

ð3N � 1Þð3N � 3Þ
4R̂R

2
þ 1

2
Mo2R̂R

2 þ �

ffiffiffiffiffiffi
1

2p

r
�h2a

M

N2ðN � 1Þ
R̂R
3

ð104Þ

with M ¼ nm, emphasizing that Eq. (103) describes the quantum mechanical

motion of the system as a whole, and � ¼ 1:807. One should note that even when
all the atoms of the condensate have zero angular momentum about the center of

the trap, there remains an effective centrifugal barrier, representing the term

proportional to 1=R̂R
2
in Eq. (104). This term represents the kinetic energy cost of

confining all atoms within a small region near the center of the trap. This energy

is responsible for stabilizing an atomic condensate with a < 0 against collapse.

To assess the stability of these collective systems, it is useful to plot a

schematic representation (Fig. 22) for the effective potential, Eq. (104), where R̂R

is expressed in harmonic oscillator units ð�h=moÞ1=2 [255]. The effective

potential is portrayed for different values of the scattering length. In the

0 1 2 3
–2

0

2

4

6

HYPERRADIUS R (OSCILLATOR UNITS)

V
ef

f(
a.

u.
)

a > 0

a < 0

a = 0

Figure 22. A schematic presentation of the effective potentials VeffðRÞ [Eq. (103)] for the

collective motion of the N-boson system [255]. The effective potentials are marked on the curves by

a < 0, a ¼ 0, and a > 0.
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noninteracting limit for a ¼ 0, the system decouples to N harmonic oscillators

with the energy levels

E ¼ �ho
X

ni þ 3N

2

	 

; a ¼ 0 ð105Þ

For a nonzero scattering length, Veff is characterized by either repulsive ða > 0Þ
or attractive ða < 0Þ interaction contributions, as manifested in Fig. 22. We also

note that the effective potential [Eq. (104)] depends on the number N of particles.

For a > 0;Veff is binding for all numbers of particles N. The system is localized

within a nonharmonic binding collective potential (Fig. 22) and a ‘‘molecular

cloud’’ is formed without any constraints on the number of particles. The

situation is drastically different for a < 0. The N-dependent effective potential

changes its shape for some ‘‘critical’’ number of particles, which will be denoted

as NCR. For N < NCR, Veff exhibits a local minimum (Fig. 22), which char-

acterizes the metastable region, where the metastable condensate can exist on a

sufficiently long time scale for experimental observation. The metastable region

in Eq. (104) is stabilized by the 1=R̂R
2
effective centrifugal repulsion. At smaller R̂R

values, a potential barrier appears, separating the metastable region from the

‘‘collapse region,’’ which is dominated by the 1=R̂R
3

component of Veff

[Eq. (104)]. When N increases, this component increases as 
N3 and at

N 
 NCR the barrier vanishes and so does the metastable region. For N > NC the

potential is purely attractive and the condensate does not exist. The critical size,

NC, of a finite boson system with attractive interactions (a < 0) was estimated

from the analysis of the potential (104) in the form [255]

NC ’ 0:671
�h

mojaj
� �

ð106Þ

For 7Li atoms, with a ¼ �27 bohr [263] in a harmonic trap with an average

frequency of o ¼ 144Hz [267], Eq. (106) resulted in NC 
 1450 [254], in

excellent agreement with variational estimates [265].

The foregoing analysis [264] reflects on novel features of collective nuclear

dynamics in finite ultracold systems. This leads to the concept of macroscopic

tunneling [255, 265, 266]. The WKB approximation used [255, 265] for the

macroscopic tunneling rate � (expressed in atoms/s) is

� ¼ Nnexpð�2�Þ ð107Þ
where

� ¼
ðRout

Rin

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M

�h2
VeffðRÞ � E½ �

r
ð107aÞ
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with the integral being taken between the inner ðRinÞ and the outer ðRoutÞ turning
points, while the frequency is

n ¼ 1

2p
M�1ðd2Veff=dR

2ÞRMIN

� �1=2 ð108Þ

with RMIN being the position of the local minimum of VeffðRÞ: Numerical

estimates [255] resulted in the size dependence of the macroscopic tunneling rate

� 
 3� 105exp½1:6ðN � NcÞ� atoms/s, with Nc ¼ 1460. The rate of macro-

scopic tunneling exhibits a strong exponential dependence on N. This treatment

[255] opens up the exploration of collective, macroscopic dynamics in ultracold,

finite boson systems. It will be interesting to extend this formalism to consider

wavepacket dynamics of collective states of the macroscopic system. Removing

the K approximation will induce coupling between the zero-order K nearly

harmonic levels, inducing dynamic effects reminiscent of intramolecular

radiationless transitions [267].

C. Nuclear Dynamics of Expansion of Optical Molasses

To establish analogies and relations between the nuclear dynamics of clusters

and ultracold gases, we proceed to the nuclear dynamics of optical molasses [79].

Pruvost and her colleagues established an interesting analogy between the

expansion dynamics of ultracold ðT ¼ 10--100 mKÞ optical molasses and

Coulomb explosion of multicharged molecular clusters [93–98]. The optical

molasses involve a cloud of trapped, laser-irradiated, neutral atoms (e.g., Rb) in a

magnetic trap (Fig. 23), which is characterized by a density of r ¼ 1011--1013

atoms cm�3. When the magnetic trap is being suppressed, the cloud expands via

the radiative trapping force ~FF. This radiative trapping force ~FFij, which originates

from photon emission and reabsorption between a pair of atoms (e.g., i and j)

separated by distance rij, is given by [268]

~FFij ¼ K

4pr2ij
ð109Þ

The coefficient K is [268]

K ¼ ðsR � sLÞsLI

c
ð110Þ

where sL is the laser absorption cross section, sR is the reabsorption cross

section, I is the laser intensity, and c is the velocity of light. The radiative

trapping force~FFij, [Eqs. (109) and (110)], is proportional to r
�2
ij , being analogous
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Figure 23. Dynamics of spatial expansions of optical molasses of Rb adapted from Pruvost

et al. (data from Ref. 79). (a) A photograph of the irradiated cloud at t ¼ 0. (b) Excited atom

distribution in the irradiated cloud at t ¼ 0. (c) Time dependence of the cloud radius. (d) Time

dependence of the volume of the irradiated cloud. (e) Time dependence of the density of the

expanding cloud.



with the Coulomb law for the electrostatic force~FFe between two ions of charges q,

which is given by

~FFe;ij ¼ q2

4p 20 r2ij
ð111Þ

The isomorphism between the radiative trapping force [Eq. (109)] and the

electrostatic force [Eq. (111)] allows to characterize the coefficient K [Eq. (110)]

in terms of an effective charge for the specification of the radiative trapping force

qeff ¼ ge ð112Þ

where e is the electronic charge. The coefficient g is given by

g ¼ ðK 20Þ
1=2

e
ð113Þ

Numerical estimates for Rb atoms [79, 268] resulted in the coefficient

g ¼ 3:5� 10�5 and the effective charge qeff ¼ 3:5� 10�5e. Accordingly, the
radiative trapping force is analogous to Coulomb’s law, and the expansion of the

irradiated cloud is isomorphous to a Coulomb explosion of a multicharged

cluster with charge q on each ion. The time scale for the expansion of the optical

molasses of Rb atoms (Fig. 23) is tM ’ 1:4 ms. The translational temperature of

those expanding molasses falls in the range T ¼ 100–10 mK (Fig. 24). The
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Figure 24. The time-dependence temperature of the expanding optical molasses of Rb (data

from Ref. 79).

330 joshua jortner and michael rosenblit



isomorphism between intracloud radiative trapping and cluster Coulomb

explosion allows for the advancement of a theoretical framework for the

dynamics of cloud expansion and its time scale [79].

Coulomb explosion of highly charged homonuclear molecular clusters—for

example, ðDþÞNðN ¼ 55–7� 104Þ or ðXeqþÞNðN ¼ 55�104 and q ¼ 1–36)—is

induced by extreme multielectron ionization in ultraintense laser fields [95–98,

186, 188]. The two important features of Coulomb explosion dynamics are

the ultrashort (fs) time scales for the spatial expansion of the ions and the

production of energetic (keV–MeV) ions. When the time scales for the

compound cluster electronic ionization processes in the ultraintense laser field

are faster than the nuclear processes of Coulomb explosion, the cluster vertical

ionization (CVI) approximation becomes valid [96, 97]. The CVI decouples the

time scales for the dynamics of heavy particles (ions) from the dynamics of

electrons. Under the CVI conditions, Coulomb explosion of the highly charged

ionic cluster involves a nuclear dynamic process. The nuclear dynamics of the

ion expansion of uniformly expanding homonuclear, multicharged clusters, with

a charge q on each atom, is characterized by a time scale [96]

tEX ¼ 2:137q�1
m

r

� �1=2

ð114Þ

where r is the initial ion density—that is, r ¼ 4pr30=3
� ��1

, with r0 being the

constituent radius and m the ion mass. The following units are used in Eq. (114):

(m, amu), (q, e), (r0, Å), (r;
�3Þ and (tEX; fsÞ. tEX [Eq. (114)] represents the

time for the doubling of the initial cluster radius. The characteristic Coulomb

explosion times [Eq. (114)] reveal the following features: (i) charge dependence,

with tEX / q�1, in accordance [93, 96, 97] with analyses and simulations (Fig. 25);

(ii) mass effect, with tEX / m1=2, providing predictions for isotope effects on the

dynamics; (iii) dependence on the initial structure of the system with

tEX / ðrÞ�1=2 / ðr0Þ3=2; (iv) lack of cluster size dependence. For sufficiently

large clusters, no cluster size dependence of tEX is expected. The absence of

cluster size scaling is expected to prevail for sufficiently large clusters, where the

continuum approximation underlying the derivation of Eq. (114) holds. From

numerical simulations [93] under CVI conditions of Coulomb explosion of

ðXeqþÞN clusters ðq ¼ 1–8 and N ¼ 2–55), portrayed in Fig. 25, we inferred that

the size invariance of tEX sets in for N > 35. The Coulomb explosion lifetime of

ðXeþÞNðN > 35Þ clusters is tEX ’ 100 fs (Fig. 25), in accord with the analytic

results [Eq. (114)].

Both the cluster Coulomb explosion time tEX and the expansion time of

optical molasses tM obey the relation [Eq. (114)] tEX, tM / q�1m1=2r
3=2
0 . We

shall scale the cluster Coulomb explosion time tEX ¼ 100 fs for ðXeþÞN (with

q ¼ e, mXe ¼ 127 amu, and r0 ¼ 2:5 Å) to obtain the time scale tM for the

Å
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expansion of optical molasses of Rb presented in Fig. 23 (where

q ¼ 3:5� 10�5e, mRb ¼ 87 amu, and r0 ¼ 104 Å). Pruvost et al. [79] set

tM ¼ JtEX ð115Þ
where the scaling factor, according to Eq. (114), is J ¼ 1010. This courageous

extrapolation results in tM ’ 1 ms. This prediction is in good agreement with the

recent experimental data [79] presented in Fig. 23, where the expansion of bright

three-dimensional optical molasses of Rb is characterized by the time scale of

tM ’ 1:4 ms. This analysis builds bridges between nuclear dynamics of clusters

and of ultracold atomic clouds.

VI. EPILOGUE

At this stage it will be appropriate to quote from a ‘‘brief’’ 107-page-long review

article on the ‘‘Electronic States of Molecular Crystals Under Pressure,’’ which

was written in 1965 by Stuart Rice and Joshua Jortner [269]. That field of

chemical physics led throughout a time span of 40 years to the exploration of

conducting polymers, to the advent of molecular electronics, and to the

understanding of exciton migration in the plant photosynthetic reaction center.

In the last section of that review [269] the authors addressed the ‘‘exhausted and
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Figure 25. Molecular dynamics simulations of time-resolved Coulomb explosion of ðXeqþÞN
clusters (N ¼ 2–55; q ¼ 1–10) (data from Ref. 93). The times tc for the doubling of the radius of the
initial distribution of the Xeqþ ions scales as q�1, according to Eq. (114).
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blurry-eyed reader,’’ suggesting some new experiments ‘‘which are by no means

easy’’ and finally stating that ‘‘with a sigh of relief, we end this review.’’

We shall adhere to the Rice–Jortner recipe [269] in the concluding remarks

of the present review, which addresses structure, thermodynamics, elementary

excitations, dynamics, and function of large, finite, ultracold systems. New

developments in this field, which bridges between quantum clusters and

ultracold finite clouds, will emerge from concurrent theoretical and experi-

mental efforts, some of which will be based on the present review. The

experiments we would like to suggest for future developments are by no means

easy. However, they appear to provide new insight into collective excitations in

quantum clusters, as well as into nuclear and electron dynamics in ultracold

finite systems. We would like to suggest the following:

1. ‘‘Supersolid’’ Clusters. It was suggested [270–272] that the property of

nonclassical rotational inertia possessed by macroscopic superfluid 4He may be

shared by solid 4He (under pressure), provided that the solid is Bose-condensed.

Such a ‘‘supersolid’’ will then manifest resistance-free flow [273]. Recent

probable observation of supersolid 4He, using acoustical waves and heat pulses,

was reported [274]. A ‘‘soft’’ solid 4He is expected to possess highly mobile

lattice defects, such as vacant sites or dislocations. It is possible that the lattice

vacancies (or the atoms hopping among them) will exhibit Bose–Einstein

condensation and superfluidity. If 4He exhibits superfluidity in the solid phase, a

resistance-free transport of microscopic probes (e.g., electron bubbles) may

prevail in the supersolid. Indeed, excess electron localization in a bubble in solid

helium was proposed [240], and the theoretical description of electron bubbles in

solid 4He is supported by experimental evidence for electron mobility in the

‘‘normal’’ solid [240]. It will be extremely interesting to explore solid 4He

clusters produced under high pressure. Excess electron detachment for these

solid clusters may provide evidence for ‘‘supersolid’’ behavior.

Another rigid quantum cluster, which may exhibit ‘‘supersolid’’ properties,

involves the molecular cluster of solid para-hydrogen. The quantum simulations

of Sindzingre et al. [151] report that an ðH2Þ64 cluster at 1.0–0.5 K is an

amorphous solid. For N ¼ 33 and N ¼ 13 the radial density profile indicates

‘‘liquid’’-type behavior above TM ¼ 5 K. Below 5 K, structural sensitivity is

manifested with these clusters, revealing specific rigid structure—for example, a

pentagonal bipyramidal core for N ¼ 33 (temperature not specified) and an

icosohedral structure for N ¼ 13 (at 3 K). ‘‘Superfluidity’’ was inferred from

temperature dependence of the superfluid fraction in the clusters, with the

temperature onset (Tl) of the decrease of the normal fraction being Tl ’ 3:5 K

for N ¼ 13 and N ¼ 18 and, Tl < 1 K for N ¼ 33. These results imply

that TM > Tl, so that ordinary superfluidity cannot be claimed. Accordingly,

the original Ginzburg–Sobyanin hypothesis [149] for ðH2ÞN clusters is violated.
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Sindzingre et al. [151] proposed that these clusters correspond to a ‘‘supersolid.’’

This is an interesting speculation, supported by the finding of permutation cycles

in quantum simulations [151]. Again, the use of electron bubbles in ðp-H2ÞN
clusters, as possible probes for ‘‘supersolid’’ behavior, will be of considerable

interest. The formation of electron bubbles in liquid H2 was established [212]

and electron bubble formation in solid H2 clusters is feasible, in analogy with

electron localization in solid ð4HeÞN clusters [240]. If indeed solid ðp-H2ÞN
manifests ‘‘supersolid’’ properties, the abundant lattice vacancies in this

quantum cluster might drive coherent, nearly friction-free motion of the electron

bubble. The search for supersolid properties in solid ðp-H2ÞN (and solid ð4HeÞN)
clusters by electron tunneling from bubbles (Section IV) will be extremely

interesting.

2. Time-Resolved Dynamics of the Bose–Einstein Condensation. The nuclear

dynamics for the development of a coherent population of the global ground state

of a Bose–Einstein condensate [275, 276] pertains to collective nuclear dynamics

on the time scale of nuclear motion. A fascinating experiment will involve an

‘‘instantaneous’’ temperature decrease (a negative temperature jump) in a gas,

with the attainment of a sufficiently low temperature T < Tc. Such an

experiment can be considered for liquid ð4HeÞN clusters, or for finite cold gases,

which will be ‘‘instantaneously’’ cooled down below Tc and their nuclear

dynamics will be interrogated. Such a compound collective nuclear dynamic

process will involve several steps [275, 276], which will, in analogy with

nucleation theory, presumably involve: (i) Nucleation. The coherent population

of the global ground state in a small region of the finite system. The characteristic

nucleation time is [275] tNUC ¼ �h=kBTc. For ð4HeÞN clusters, Tc ’ Tl and

tNUC ’ 3 ps. Pursuing the analogy between the Bose–Einstein condensation and

high-order phase transitions (Section III), tNUC corresponds to local, sponta-

neous symmetry-breaking, which results in the local evolution of the order

parameter. (ii) Growth of the small nucleus of the condensate. All the states with

low momentum states, with p < �h=lDB, where lDB is the de Broglie wavelength

for energy kBTc, will cooperate in the coherent ground state of the sample. For a

quantum cluster, or finite system with an interparticle distance r0, it appears that

the characteristic time for growth of the Bose–Einstein condensate is [275]

tCOH ’ tNUCðlDB=r0Þ2, so that tNUC < tCOH. These estimates of tNUC and tCOH
imply that for ð4HeÞN clusters ‘‘instantaneous’’ cooling (or ‘‘ultracooling’’) has

to be conducted on the subpicosecond time scale. Of course, for ultracold boson

gases, where kBTc is considerably lower, the time scale for the dynamics of

Bose–Einstein condensation, which is expected to be proportional to 
ðkBTcÞ�1,
will be considerably longer; for example, for Tc 
 10�7 K one expects the time-

resolved dynamics of the Bose–Einstein condensation in a dilute gas to occur on

the msec–msec scale.
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3. Electron Dynamics. The exploration of electron dynamics in large finite

systems will stem from concurrent progress in theory and experiment, which will

focus on analysis and control of various channels of ‘‘pure’’ electron dynamics

processes, without the involvement of nuclear motion, bypassing the constraints

imposed by the Franck–Condon principle [183]. Of considerable interest is

electron tunneling from electron bubbles in superfluid and normal clusters, as the

time-resolved electron dynamics can be controlled, in principle, over a broad

range, due to the exponential dependence of the tunneling rate on the initial

bubble distance d from the cluster surface (Section IV). The ‘‘ordinary’’ electron

tunneling rates from the ground electronic state (1 s) of the electron bubble are

governed by the exponential factor exp(�2aD), where a / V0 � Ee, with Ee

being the energy of the electronic state from which electron tunneling occurs. For

the ground electronic 1s state we estimated that (V0 � EeÞ ¼ 0:92 eV and

2a ¼ 1
�1

(Section IV). A marked enhancement of the electron tunneling rate

will be manifested upon optical excitation to higher electronic states of the

electron bubble. A theoretical treatment of these electronic excitations [277]

showed that for a bubble in an ð4HeÞN ðN ¼ 2� 105Þ cluster the 1p and 2p

vertically excited states are energetically stable, with ðV0 � EeÞ ¼ 0:7 eV and

2a ¼ 0:85
�1

for the 1p state and ðV0 � EeÞ ¼ 0:1 eV and 2a ¼ 0:31
�1

for

the 2p state. The electron tunneling rate from the 1p state will be enhanced by a

numerical factor of
400 relative to the rate from the 1s state. As t1sTUN lies in the

millisecond–second time domain for the relevant experimental conditions for

tunneling from the ground 1s state, we estimate t1p to be in the microsecond–

millisecond range for the 1p state. This time scale is too long to compete with

radiationless relaxation of the 1p state. On the other hand, for the 2p electronic

excited state we estimated that the tunneling rate will be larger by a numerical

factor of 1012 relative to the rate from the 1s ground state. Accordingly, t2pTUN lies

in the picosecond–femtosecond time domain. Such ultrafast electron dynamics

will presumably overwhelm radiationless transitions from the 2p state to lower

electronic states. Optical excitations of the electron bubble provide an avenue for

ultrafast electron dynamics in these large ultracold systems.

It is fairly obvious that more theoretical and experimental developments are

called for in this fascinating research area, and some of them should be obvious

from the text of this review. With a sigh of relief, we therefore end this review.
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Bonačić-Koutecký, V., 180(12,19–21,44–52,55),

181(19–21,49,84,91,104), 182(19,51), 183

(12,20–21,44–47,49,104), 184(45–46),

185(20,44,47,49,104,161–169,171–176),

186(49,166–168,171–175), 187 (171,

173–175), 188(20–21,45–46), 189(20),

191(20,104,161–163,206–207), 193(104),

194(20,49,104), 195(104), 199(20–21,104),

200(49), 202(49,175), 203(49), 205–206

(175), 208(20,45,55,231,245–247,251),

209(245), 210–211(46), 212(256), 213(46),

215(46), 217(161–169,171–176,206–207),

221–222(46), 223–224(84), 225(51),

226(51,312), 229(46,51), 231(51),

237–240, 242–244, 246; 270(177,182),

340–341

Boo, D. W., 182(108), 240

Borden, W. T., 182(107), 240

Born, M., 325(261), 343

Borrmann, P., 133(12), 149

Bosi, P., 263(142), 340

Bouchene, M. A., 181(67), 223–224(67), 239

Boutin, A., 133(19), 142(42), 149–150

Bowen, K. H. Jr., 180(13), 237; 270(172), 340

Bowman, R. M., 181–182(94), 183(117),

226(117), 240

Boxer, S. G., 61(47,51,54), 126

Braaten, E., 252(109), 339

Bradforth, S. E., 58(10), 60(10), 61(46), 65(10),

78(46), 86(10,105), 125–126, 128;

181–182(95), 240

Bradley, C., 248(27), 249–250(49), 252(49),

336–337

Bragg, A. E., 180(17), 181–182(17,102–103),

237, 240

Brankov, J. G., 269(167), 340

Bratos, S., 5(54), 54

Brazzoli, M., 116(139), 121(139), 129

Breaux, G. A., 132(10), 149

Brechignac, C., 202(218–219), 217(218–219),

243; 250(91), 338

Bredas, J. L., 73(82), 127

Breitkreutz, B.-J., 152(2), 176

Breton, J., 61(43–44,50), 62(43–44), 94(44),

121(142), 126, 129

Brewer, R. G., 3(26), 53

Brink, D. M., 250(57), 268(57), 272(57), 337

Brixner, T., 180(11,22–23,29), 181(86),

223(22–23,290), 237, 239, 245

Broomall, J. R., 288(219), 342

Broyer, M., 208(250), 244

Bruhl, R., 250(105), 269(105), 339

Brumer, P., 181(59–60,65), 222(59–60,271),

223(59–60,65,271), 238–239, 245

Buchanan, S. K., 62(58), 126

Buchet, J. P., 134(23), 149

Buckingham, A. D., 71(80), 127

Bucksbaum, P. H., 180(38–39), 223(38–39),

238

Budzyn, F., 180(50), 181(79), 223(79), 238–239

Buehler, R. J., 71(79), 127

Buhler, B., 181(62), 183(62), 223(62), 238

Bulanov, V. A., 268(150), 274(150), 340

Bullough, P., 59(19), 61(59), 125

Burda, J., 185–187(171), 217(171), 226(312),

242, 246

Bürgel, C., 185–187(174), 217(174), 226(312),

242, 246

Burnett, S. M., 182(105), 240

Burns, M. M., 252(114), 339

Busani, R., 270(171), 340

Busch, B. D., 252(114), 339

Buttefey, S., 133(19), 149

Buttet, J., 185(176,181–183),

217(176,181–183), 242

Buyers, W. J., 263(144), 340

Buyvol-Kot, F., 250(101), 338

author index 347



Cable, A., 248(12,29), 286(29), 336

Cahuzac, P., 202(218), 217(218), 243; 250(91),

338

Caillat, J., 133(17), 136(17), 141–142(17), 149

Callegari, K., 248(9), 250(9,74), 268(9,74),

274–275(74). 314(9), 336, 338

Calvo, F., 133(19), 136(36), 149–150;

208(249–250), 244

Campbell, S. A., 174(57), 178

Cantor, C. R., 153(26), 155(26), 158(26),

173(26), 177

Cao, J. S., 225(304), 246

Car, R., 184(131), 241

Careri, G., 262(137), 267(137), 339

Carliez, F., 250(91), 338

Carlson, R. J., 8(66), 55

Carneiro, J., 263(145), 340

Carpenter, S. D., 181(85), 239

Carr, M., 134(23), 149

Casalengo, R., 37(89), 55

Casas, K., 250(60–61), 268(60–61), 275(61),

337

Castin, Y., 248(28), 336

Castlemann, A. W. Jr., 180(13,16,18),

185–187(174), 217(174), 237, 242

Ceperley, D. M., 248(21–23), 250(54,65–66),

259(124–125), 268(21–23,54,65–66,

151–152), 269(65), 270(54),

272(54,65–66), 274(65),

275(65–66,124–125,152), 281–282

(65–66), 284(65–66), 286(54), 287

(65–66), 304(66), 333–334(151), 336–337,

339–340

Cerullo, G., 120(135), 128

Cespiva, L., 185–186(166–167), 217(166–167),

242

Cha, M.-C., 286(206), 341

Chachisvilis, M., 60(28), 125

Chan, C. K., 86(106), 128

Chan, M. H. W., 269(159), 272–273(159),

275(159), 281–284(159), 333(274), 340,

343

Chang, C. H., 62(57), 126

Charnley, A. K., 48(112), 49(112), 50(113),

51(112–113), 56

Charron, E., 181(70), 223–224(70), 239

Che, J., 225(299–300,303), 227(300,303,319),

246

Cheam, T. C., 45(107), 56

Chen, C., 223(274), 245

Chen, J., 225(298), 227(298), 246

Chen, L. X., 182(111), 240

Chen, S., 4(39), 23(78), 54–55

Chen, S.-Y., 62(62), 126

Chen, T., 181(69,74–75), 223–224(69,74–75),

239

Chen, T. P., 269(157), 272(157,192), 274(157),

275(157,192), 282–284(157,192), 340–341

Chen, Z., 181(65), 223(65), 239

Cheng, E., 268(62), 272(62), 288–289(215),

299–300(215), 337, 342

Cheng, H. P., 202(218), 208(233), 217(218),

243–244

Cheng, J., 223–224(294), 225(294,305–306),

245–246

Cheng, J. X., 227(320), 246

Chergui, M., 180(3), 237

Chernyak, V., 2(22), 4(44), 43(44), 53–54;

58(11), 74(11), 76(11,87), 77(11), 125, 127

Cheshnovsky, O., 270(171,173–175), 340

Chester, G., 333(272), 343

Chevy, F., 270(185), 341

Chin, C., 248(37,40,44), 249(37,40),

251(37,40,44), 337

Chin, J. K., 248(39), 251(39), 337

Chin, S. A., 250(58), 267(129), 268(58,129),

272(58), 295–296(129), 298(58), 337, 339

Chitnis, P. R., 85(100), 127

Cho, M., 180(9), 237

Chong, D. P., 184(138), 241

Christov, I. P., 180(40), 223(40), 238

Chu, S., 248(12,29,44), 251(44), 321(44),

286(29), 336–337

Ciccotti, G., 217(267–268), 245

Cina, J. A., 8(66), 55

Cinque, G., 86(102), 127

Claussen, N. R., 248(35), 251(35), 337

Clayton, R. K., 78(89–90), 127

Coca, M., 110(127), 128

Cogdell, R. G., 58(9), 59(18,20),

60(18,30–31,39), 61(39), 65(71), 67(74),

74(9,74), 75(18), 76(74), 86(71), 104(122),

120(135), 125–128; 181(89), 239

Cohen, L., 9(67), 55

Cohen, M. H., 265(147), 267(147),

288(210,212–213,215),

289(213,215,223,233,240),

299(210,212–213,215,233),

300(210,212–213,215), 333(240),

334(212), 340–342

348 author index



Cohen-Tannoudji, C., 248(24,28,32–33), 336

Coker, D. F., 217(261), 245; 288(216), 342

Coker, G. I., 62(62), 126

Cole, M. W., 288(215), 289(215,223–225,227),

299–300(215), 342

Collins, J. J., 153(26,29), 155(26,29), 158(26),

173(26), 177

Comell, E., 249–250(47), 252(47), 337

Compagnon, L., 208(250), 244

Comparat, D., 248(13,43), 251(43), 322(43),

336–337

Cong, P., 181–182(93), 183(116), 225(300),

227(300), 240, 246

Conjusteau, A., 250(74), 268(74), 274–275(74),

338

Connors, R. E., 120(137), 128

Conover, C. W., 208(241), 244

Cornell, E. A., 325(256), 343

Cote, R., 248(3), 336

Couplet, I., 45(100), 56

Courteille, P. H., 252(115), 339

Cowen, B. R., 3(36), 54

Cox, J., 208(243), 244

Craig, D. P., 71(78), 127

Cremonesi, O., 86(102), 127

Crieland, W., 65(65), 126

Croce, R., 116(139), 121(139), 129

Cukier, R. I., 89(114), 128

Culver, J.P., 3(34–35), 54

Dahleh, M. A., 181(61), 223(61,284), 238, 245

Dalfovo, F., 248(14), 250(14,68,74), 251(106),

252(14,106,112), 253(106), 256(106),

260(14), 261(106), 267(14),

268(68,74,106), 269(14), 272(68),

274–275(74), 278(106), 294–296(106),

313(14), 322(14), 324(14), 336–339

Dalgarno, A., 248(3), 336

Dalibard, J., 248(28,32), 336

Damert, W. C., 252(111), 339

Damjanovic, A., 58(8), 59(22), 61(22), 80(97),

83(97), 84–85(97,99), 104(22), 119(129),

120(131), 125, 127–128

Damrauer, N. H., 181(86,88), 239

Daniel, C., 180(43), 181(43,87), 238–239

Dantus, M., 180(42), 181(94), 182(94),

183(117), 226(117), 238, 240

D’Ari, R., 152(10), 173(10), 176

Davidson, E. H., 153(30), 155(30), 174(55–56),

175(55), 177

Davis, A. V., 181–182(99,102–103), 240

Davis, K., 249–250(48), 252(48), 337

Daykov, I., 133(15), 134(26), 136(26), 149–150

De Boeij, W. P., 5(50,60), 54–55

De Bree, P., 42(95), 56

Decatur, S. M., 48(112), 49(112), 50(113),

51(112–113), 56

Dedonder, Lardeux, C., 181(70), 223–224(70),

239

DeGrado W. F., 2(2,4), 4(4), 41(4), 45(2), 53–54

Deisenhofer, J., 62(56), 78(88), 126–127

DeJong, H., 153(31), 155(31), 175(62), 177–178

Dekker, J. P., 58(2), 65(2), 85(2), 115(128),

116(128,139), 121(139–141), 124,

128–129

Del Fatti, N., 270(184–185), 341

DeLong, K. W., 8(64), 55

De Lucia, F. C., 248(1–2), 336

Delvs, L. M., 325(257), 343

Demirdoven, N., 2(10,19), 4(45), 5(51), 9(68),

26(45), 53–55

Dempster, S. E., 65(72), 87(72), 127

Denk, C., 89(114), 128

Dermota, T. E., 180(18), 237

Derrida, B., 152(12), 176

Der Weerd, F. L., 121(141), 129

De Souza Melo, W., 248(43), 251(43), 321(43),

337

De Tomasi, F., 248(13), 336

De Vivie–Riedle, J., 181(71,91),

183(114,121,123), 223–224

(71,121,291–293), 225(311), 239–240,

245–246

deWinter, A., 61(54), 126

Dexter, D. L., 58(4), 66(4), 71(4), 124;

289(235,238), 342

Diambra, L., 174(58), 178

Dibble, T. S., 139(41), 150

Dick, B., 5(57), 23(79), 49(79), 54–55

Dietl, C., 181(88), 239

Dietrich, O. W., 263(143), 340

Dikshit, S. N., 58(10), 60(10), 61(46), 65(10),

78(46), 86(10), 125–126

Dimicoli, I., 181(70), 223–224(70), 239

Ditmire, T., 236(324), 246

Doerr, T. P., 45(105), 56

Dohm, V., 269(158), 272(158), 274–275(158),

277(158), 283–284(158), 286(158), 340

Doll, J. D., 223(280), 245

Doltsinis, N. L., 184(146), 213(146), 241

author index 349



Donges, J., 269(165), 294(165), 340

Donley, E. A., 248(35), 251(35), 337

Donoso, A., 184(147,151), 187(147,199–200),

217(147,151,199–200,270), 241, 243

Dow, J. D., 79(95), 127

Doye, J. P. K., 131(2), 134(25), 136(36),

149–150

Dragieva, I., 134(26), 136(26), 150

Dreuw, A., 123(157), 129

Dreyer, J., 36(85), 43(96), 55–56

Du, M., 8(66), 55

Duffy, S. K., 252(111), 339

Dugourd, P., 208(250), 244

Duong, H. T., 250(79), 271(79), 328–332(271),

338

Duppen, K., 37(94), 55

Dupre, F., 263(142), 340

Durand, G., 180(54–55), 208(54–55,248–251),

238, 244
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Köppel, H., 183(124), 240

Kornilov, O., 250(101,105), 252(108), 269(105),

270(108), 338–339

Kosloff, R., 181(68), 223(68,285), 224(68),

225(307,309–310), 239, 245–246; 248(46),

249–250(46), 251(46), 337

Kosztin, I., 119(129), 131

Koutecky, J., 180(12), 183(12),

185(164,166–167), 186(166–167),

208(231,245–246), 209(245),

217(164,166–167), 237, 242, 244

author index 355



Koyama, Y., 61(41), 120(132–133), 126, 128

Kozinski, M., 5(54), 54

Kraemer, T., 248–249(37), 251(37), 337

Kramer, H. J., 60(36), 125

Krampert, G., 181(88), 239

Krause, J. L., 180(28,32), 223(28,32),

225(296–298,300,303),

227(296–298,300,303,317–318), 237–238,

246

Krauss, N., 129

Krenz, M., 180(25), 181(25,87), 223(25), 237,

239

Krimm, S., 45(107,111), 56

Krishna, R., 260(128), 262–268(128), 271(128),

287(128), 295–296(128), 304(128), 339
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Figure 6. The 2D-IR spectrum of acylproline for three polarization conditions. These three

measurements represent all possible orientational information on this isotropic system. This figure is

adapted from published data (see References. 7 and 43).



1550 1600 1650 1700

1550

1600

1650

1700
1550

1600

1650

1700
1550

1600

1650

1700

1550 1600 1650 1700

Experiment Simulation

(12,13)

(11,13)

(11,14)

w t (cm–1) w t (cm–1)

–w
t 

(c
m

–1
)

Figure 10. The absolute magnitudes of the experimental 2D-IR spectra of a 25-residue a-helix
with carbonyl isotopic substitution at residue positions numbers [13C––

16O, 13C––
18O]. Simulated

spectra are shown to the right of each spectrum. (After Refs. 112 and 113.)



Figure 1. Illustration of the structure of the peripheral light-harvesting complex LH2 of the

purple bacterium Rps. acidiphila strain 10050 [18]. The top view with a-helices represented as

ribbons is shown at the top of the figure. The same view, but without the protein, leaving just the

bacteriochlorophyll and carotenoid pigments, is shown at the lower left. On the lower right, this

structure is shown tilted on its side, revealing the upper B850 ring of 18 Bchl pigments, the lower

B800 ring of 9 Bchl pigments, and the carotenoids that weave their way between these rings.



Figure 7. Transition densities calculated for a Bchl molecule and a carotenoid. Density

elements, containing charge qi, qj, and so on, are depicted together with their corresponding

separation rij. Summing the Coulombic interaction between all such elements gives the total

Coulombic interaction, which, according to the TDC method, promotes energy transfer.



Figure 9. A comparison of transition densities for rhodopin glucoside calculated using TDDFT

(6-31þ þg** basis set). On the right the S0 ! S2 transition is shown, with its large dipole transition

moment being evidenced by the change in sign of this TD from one end of the molecule to the other.

On the left the S0 ! S1 transition is shown. The symmetry of the TD causes the transition to be

optically forbidden.

Figure 10. Dielectric model of the protein. Within this model, the protein medium (i.e., the

medium with the refractive index of n ¼ 1:2) is represented with a set of cylinders. The cross section

of these cylinders is shown with white circles. The real location of the transmembrane part of

a-helices in PSI are indicated by coiled structures. Chlorophylls are presented as Mg-chlorin rings,

lacking the phytyl tail. Chlorophyll Mg atoms are shown in van der Waals representation.



Figure 17. Transition densities calculated for the special pair. Top: Transition densities for

P� , Bottom: Transition density for Pþ .

Figure 18. An illustration of the levels of approximation used in estimating the B to Pþ
electronic coupling. ðaÞ An essentially ‘‘exact’’ calculation can be made using the TDC method. ðbÞ
Distributed dipoles used in the GFT method (see Section VI.B) represent the minimal acceptable

approximation. ðcÞ The harsh dipole approximation, in which the correct physical picture of the

system is completely washed away.
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Figure 8. Absorption spectra for two isomers I and II of Na3F2 obtained from one electron

‘‘frozen ionic bonds’’ approximation [46] (upper part). Scheme of the multistate fs dynamics for

NeExPo pump-probe spectroscopy of Na3F2 including conical intersection with structures and

energy intervals for the pump and probe steps [46].
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Figure 9. Snapshots of the phase space distribution (PSD) obtained from classical trajectory

simulations based on the fewest-switches surface-hopping algorithm of a 50 K initial canonical

ensemble [46]. Na atoms are indicated by black circles, and F atoms are indicated by gray crosses.

Dynamics on the first excited state starting at the Cs structure ðt ¼ 0 fs) over the structure with

broken Na–Na bond ðt ¼ 90 fs) and subsequently over broken ionic Na–F bond ðt ¼ 220 fs) toward

the conical intersection region ðt ¼ 400 fs), Dynamics on the ground state after branching of the

PSD from the first excited state leads to strong spatial delocalization ðt ¼ 600 fs). The C2v isomer

can be identified at 
800 fs in the center-of-mass distribution.
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Figure 10. Simulated NeExPo pump-probe signals for the 50 K initial temperature Na3F2
ensemble at different excitation energies of the probe laser monitoring the geometric relaxation on

the first excited state involving bond-breaking processes and passage through the conical intersection

as well as geometric relaxation and IVR processes on the ground state after the passage (left-hand

side). The isomerization through the conical intersection is schematically illustrated on the right-

hand side [46].



Figure 11. Left-hand side: Scheme for pump-dump optimal control in the Na3F2 cluster with

geometries of the two ground-state isomers and of the transition state separating them, the conical

intersection, and the intermediate target. Upper panel, right-hand side: The optimal electric field

corresponding to the pump and dump pulses [51]. The mean energy of the pump pulse is 1.20 eVand

the mean energy of the dump pulse is 0.6 eV. Middle panel, right-hand side: Fourier transforms of

the optimal pump and dump pulses and the Franck–Condon profile for the first excited state

corresponding to the excitation energy Te ¼ 1:33 eV. Bottom panel, right-hand side: Wigner

transform of the optimal pump pulse.
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