


Explorations in Urban and
Regional Dynamics

The task of modelling the evolution of cities – the dynamics – is one of the major
challenges of the social sciences. This book presents mathematical and computer
models of urban and regional dynamics and shows how advances in computer
visualisation provide new insights. Models of non-linear systems in general have
three characteristics: multiple equilibria, ‘path dependence’ over time and phase
transitions – that is, abrupt change at critical parameter values. These phenomena
all exhibit themselves in reality, and it is an ongoing task to match model-based
analysis with real phenomena.

There are three key features of cities and regions to be represented in models:
activities at a location – residence, health, education, work and shopping; flows
between locations – spatial interaction; and the structures that carry these activities
– buildings, transport and communications networks. Spatial interaction and many
elements of activities’ location can be modelled by statistical averaging procedures,
which are related to Boltzmann’s methods in statistical mechanics. This is while
the evolution of structure can be represented in equations that connect to the Lotka-
Volterra equations in ecology.

Within this broad framework, alternative approaches can be brought to bear.
This book uses entropy-maximising versions of spatial interaction models. The
authors explore the dynamics in more detail, using advanced visualisation
techniques. These ideas have wide potential uses, and the book illustrates this with
applications in history and archaeology.
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1 The BLV paradigm for urban
and regional dynamics

1.1 Urban and regional systems and the BLV paradigm

The task of modelling the evolution of cities – the dynamics – is one of the major
challenges of the social sciences. Cities are non-linear dynamical systems, and it
is understood that models of such systems in general have three characteristics:
multiple equilibria, ‘path dependence’ over time and phase transitions – that is,
abrupt change at critical parameter values. These phenomena all exhibit them-
selves in reality, and it is an ongoing task to match model-based analysis with
real phenomena. One real example was provided by the transition from ‘corner
shop’ food retailing to supermarkets in the late 1950s and early 1960s (Wilson
and Oulton, 1983). This was a very rapid transition almost certainly brought about
by the crossing of a threshold associated with increasing incomes and car
ownership, and therefore an ability to travel increasing distances.

There are three key features of cities and regions to be represented in models:
activities at a location – residence, health, education, work, shopping and so on;
flows between location – spatial interaction; and the structures that carry these
activities – buildings, transport and communications networks. The main elements
are shown in Figure 1.1.

It turns out that spatial interaction and many elements of activities’ loca-
tion can be modelled by statistical averaging procedures, which are related to
Boltzmann’s methods in statistical mechanics, while the evolution of structure can
be represented in equations that connect to the Lotka-Volterra equations in
ecology. The analogies are not exact, of course, and these methods have to be
combined with others in the urban and regional context – for example, the
account-based demographic and economic models – but the similarities are such
that it is appropriate to characterise these modelling approaches to dynamics as
BLV models: Boltzmann, Lotka and Volterra.

Within this broad framework, alternative approaches can be brought to bear.
We use entropy-maximising versions of spatial interaction models, for example,
though we could have easily used logit random utility methods, which are more
or less equivalent. It is currently fashionable to use a framework of agent-based
modelling or gaming models, and in later chapters we show how these approaches
relate to our framework. We use the retail model to illustrate much of our argu -
ment, and we present the core analysis below and then explore the dynamics in



more detail, using advanced visualisation techniques, in Chapters 2 and 3. We
then extend the argument to examine the dynamics of a comprehensive model
through a development of the Lowry model (Chapter 4). In Chapters 5 and 6, we
return to the retail model and show how our analysis can be presented in agent-
based and gaming forms. These ideas, of course, have wide potential uses, and
we illustrate this in Chapter 7 with applications in history and archaeology.

The conventional retail model was first presented in its dynamic form by Harris
and Wilson (1978). We build on this work – it is a useful archetype – and show
how contemporary visualisation techniques provide a much deeper understand-
ing of path dependence and phase transitions, and that this opens the possibility
of making more direct connections than hitherto in identifying the effects of
individual agents – in this specific instance, retail developers – in bringing about
these transitions.

In Section 1.2, we introduce the retail model as our core example for use in
much of the rest of the book. In Section 1.3, we build a demonstration model of
the London retail system to illustrate the argument.

1.2 The core model

We proceed with a simple aggregated model to illustrate the ideas. Realistic
disaggregation does not change the underlying argument. Define Sij as the flow
of spending power from residents of i to shops in j; let ei be spending per head
and Pi the population of i. Wj is a measure of the attractiveness of shops in j, which,
for these illustrative purposes, we take as the logarithm of ‘size’ – reflecting range
of choice and lower prices through scale economies. The vector {Wj} can then be
taken as a representation of urban structure – the configuration of Wjs. If many

2 The BLV paradigm
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Wjs are non-zero, then this represents a dispersed system. At the other extreme,
if only one is non-zero, then that is a very centralised system. There is clearly,
potentially, a measure of order in this specification of structure. The obvious ‘order
parameter’ – a concept used in physics in relation to phase transitions – would be
N(Wj > 0), the number of centres that are non-zero. In a fully dispersed system,
then, N(Wj > 0) would be equal to the number of possible centres and would be
large, while in a very centralised system, N(Wj > 0) would be 1. We will see later
that it is sometimes better to take N(Wj > M) for some constant M greater than 0
as a better measure of structural change.

A spatial interaction model can be built by maximising an entropy function in
the usual way (Wilson, 1967, 1970) to give:

(1.1)

where:

(1.2)

to ensure that:

(1.3)

and:

(1.4)

where logWj, as we noted earlier, is taken as the measure of consumer benefits
and X an estimate of the total benefits achieved.

We also have:

(1.5)

� and � are parameters (actually, the Lagrangian multipliers associated with
Equations 1.4 and 1.5). Because the matrix is only constrained at the origin end,
we can calculate the total flows into destinations as:

(1.6)

which shows how the spatial interaction model can be the basis of an activity
location model since, in this case, Dj is a measure of retail activity at j.

Note that Wj
� can be written:

(1.7)
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4 The BLV paradigm

and the core equations can be written:

(1.8)

where:

(1.9)

Thus, �logWk can be taken as a measure of the utility of an individual going
to a shopping centre of size Wj but at a transport cost, or disutility, represented
by –�cik.

A suitable hypothesis for representing the dynamics is (Harris and Wilson 1978):

(1.10)

where K is a constant such that KWj can be taken as the (notional) cost of running
the shopping centre in j. This equation then says that if the centre is profitable, it
grows; if not, it declines. The parameter � determines the speed of response to
these signals.

The equilibrium position is given by:

(1.11)

which can be written out in full as:

(1.12)

and these are clearly non-linear simultaneous equations in the {Wj}.
It is possible to characterise the kinds of configurations that can arise for

different regions of � and � space: for larger � and lower �, there are a smaller
number of larger centres, and vice versa (cf. Wilson 1981; Clarke and Wilson 1985;
Clarke and Wilson 1986; Clarke et al. 1986; Lombardo 1986). This can be
interpreted to an extent for a particular zone, say j, by fixing all the Wk, k not equal
to j. The zonal interpretation is shown in Figure 1.2. The left- and right-hand sides
of Equation 1.11 are plotted separately, and the intersections are the possible
equilibrium points. If � ≤ 1, there is always such a point, but if � > 1, there are
three possible cases: only zero has an equilibrium; one additional non-zero stable
state; and the limiting case the joins the two. The � value also determines the
position of the equilibria. These graphs demonstrate multiple equilibria and path
dependence. It also shows that as the parameters � and � (and indeed any other
exogenous variables) change slowly, there is the possibility of a sudden change
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in a zone’s state – phase transitions – from development being possible to
development not being possible, or vice versa. These kinds of change are at a zonal
level, but clearly they will trigger system-wide changes as well.

At this point, we can extend the analysis. In Figure 1.3, we plot initial values
of Wj on the horizontal axis and equilibrium values on the vertical. When � < 1,
there is always a stable intersection between the cost and revenue lines. In this
plot, there is a constant equilibrium size shown for all initial values (Figure 1.3a).
For � = 1, the gradient is finite at the origin (Figure 1.3b), so the existence of
stable intersection depends on the value of the K parameter, which controls the
gradient of the cost line. In the case shown, the equilibrium-size graph in Figure
1.3b shows a constant equilibrium size for all initial values and so is behaving
like the � < 1 case. For � > 1, the gradient is zero at the origin (Figure 1.3c) and
the revenue curve either intersects the cost line twice or not at all (excluding the

The BLV paradigm  5
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6 The BLV paradigm

origin), and so highlights the possibility of multiple solutions in the system. This
is demonstrated in the equilibrium-size graph in Figure 1.3c, which shows that
there is a critical initial value of Wj. Below this value, the centre is ultimately not
profitable, and above it the centre grows.

What we know from the analysis of Figure 1.2 is that, at a zonal level, there
are critical values of � and �, for example, beyond which only Wj = 0 is a stable
solution for that zone. So we know that there are critical points at a zonal level at
which, for example, there can be a jump from a finite Wj to a zero Wj, or vice
versa). This implies there is a set of � and � at which there will be critical changes
somewhere in the system. Here, there will be many more system phase transitions,
but in each case consisting of a zonal transition (which then affects the system as
a whole – since if a Wj jumps to zero, then other Wks will jump upwards, or vice
versa). It would be interesting to see whether the set of critical �s and �s form a
continuous curve – and if we add ‘K’ as a parameter, then we would be looking
for a critical, possibly continuous, surface.

This analysis shows that almost any change in model exogenous variables can,
in principle, bring about a phase transition. For example, any change in the
{eiPi}: then we are looking for a many-dimensional critical surface. We could
possibly take the argument a stage further and build on the fact that equilibrium
solutions in non-linear models are path dependent: we would expect to find phase
transitions along some paths, but not on others for the same model with different
initial conditions.

1.3 An example: retail centres in London

To illustrate the argument, we construct an aggregate demonstration retail model
using London data. This is not intended to be realistic, but simply to show what is
involved in the process of trying to find and interpret retail/urban phase transitions.
The database is shown in Figure 1.4. It consists of 633 residential zones and 215
retail centres. (Retail data is from the Town Centres project, 2002, and population
data is from the 2001 UK census.) The model represented by Equations 1.1, 1.2
and 1.6, in terms of flows and revenue attracted, and Equation 1.12 are solved for
the equilibrium {Wj}. The methods are presented in detail in Dearden and Wilson
(2008). The results of a model run are shown visually in Figures 1.5 and 1.6. Figure
1.7 shows a grid of (�, �) values with a model run for each element of the grid.
One element, a model run displayed in 3D form, is shown in Figure 1.8.

1.4 The next steps

In the next two chapters, we explore more fully the range of possible phase changes
and (in Chapter 3) the implications of these for planning – in particular, while the
non-linearity of the models inhibits their use in long-term forecasting, whether
model-based analysis could be used to avoid undesirable phase changes and to
encourage desirable ones. A particular kind of transport investment that would 
be registered as {cij} changes, for example, could bring about a desirable phase



Figure 1.4 The initial conditions for the London illustration

Figure 1.5 Model outputs
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Figure 1.6 Model outputs showing flows

Figure 1.7 An (�, �) grid
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transition. More generally still, we will use a ‘DNA’ argument to explore the
possibilities of transition given the structural starting point – a ‘genetic medicine’
approach. This takes the initial conditions of the structural variables as limiting
the space of development possibilities. This is in itself valuable policy and
planning information, but we could also pose the question: What should be
changed in this structure to bring about a desired transition?
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2 Phase transitions and path
dependence

2.1 Introduction

A wide variety of techniques are used to model discontinuities in urban evolution.
Catastrophe theory (Thom 1975) provided impetus and was developed in the
context of urban systems by Wilson (1981). Another approach using cellular
automata (Batty 1998) and multi-agent systems (Bura et al. 1996) explores the
emergence of self-organising structures from micro-level behaviours in systems
existing far from equilibrium. Batty (2005) highlights the potential for discon-
tinuities to occur in such systems and Dendrinos and Mullally (1981) uses
dynamical systems theory to demonstrate how discontinuities can occur in the
evolution of city-size patterns. Straussfogel (1991), applying Allen and Sanglier’s
(1981) model based on the theory of dissipative structures, outlines the difficulty
of detecting bifurcations. Approaches based on fractals have a clear link to
dynamical systems theory and can generate realistic urban forms (Batty and
Longley 1994; Benguigui and Czamanski 2004). As far as we know, there is no
standardised way of detecting discontinuities.

We focus on retailing to illustrate the argument. As we saw in Chapter 1, Harris
and Wilson (1978) developed one of the first dynamic retail models that looked
at discontinuous change within the system. This model was later applied at a finer
scale and extended by Fotheringham and Knudsen (1986) to include locational
rent, external scale economies and agglomeration of retail outlets. Similarly,
Lombardo (1986) introduced a more detailed cost function and demand-side
dynamics. These ideas have also been taken forward by a number of other authors;
for example, Lombardo et al. (2004) connected these ideas to the agent-based
modelling framework. Other explorations were offered by Clarke (1981), Clarke
et al. (1986, 1998), Borgers et al. (1991), Nijkamp and Reggiani (1987, 1988),
Oppenheim (1986), Phiri (1980), and Rijk and Vorst (1983a, 1983b). A different
model, based on space-time differentials, was used by Baker (1994) to explore
how trip frequency is affected by shopping centre size, and identified critical values
at which large and small centre behaviour occurs. Part of the difficulty of
understanding discontinuity in these approaches has been the complexity of the
systems and models themselves. Here, we tackle this by using modern visualisation
techniques to reveal the structure of the system and allow it to be explored in detail.
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We use these ideas to build up a framework for identifying and analysing
discontinuities in urban models.

The Harris and Wilson model, described in Chapter 1, is used as a simple
archetype to illustrate the new framework. This can be developed in a straight -
forward way to incorporate further refinement. In Section 2.2, we explain our
framework for detecting and analysing discontinuities. Section 2.3 shows the results
of applying this methodology to two examples – the Greater London and South
Yorkshire retail systems, which allows us to explore the policy applications for
this technique. Some concluding comments are offered in Section 2.4.

2.2 A framework for exploring discontinuities

We first present the retail model of Chapter 1 in discrete time form to make our
procedures explicit. Recall the basic definitions. Sij is the flow of money from
residents of zone i to shops in zone j; ei is spending per head and Pi the residential
population of zone i. The cij parameter represents the cost of travelling from
residential zone i to retail zone j. Wj is a measure of the attractiveness of shops
in j and in our illustrative model here we take this to be measured by floor space.
The vector {Wj} can be taken as a representation of urban structure. The difference
equation form of the model can be represented as follows:

(2.1)

for the period (t, t + 1). Then:

(2.2)

The equilibrium position is given by:

(2.3)

which can also be written out in full as:

(2.4)

As we have noted, it is well known that for non-linear systems there is the
possibility of multiple solutions; solutions are dependent on the initial conditions
– ‘path dependence’. There are discontinuities: that is, there are critical values of
the parameters – such as � and �, but in fact any exogenous parameter or variable
– at which the structure changes suddenly.

Equation 2.1 generates a path through time that will be highly dependent on
the initial conditions. These conditions are unlikely to be near an equilibrium set,
and if � is relatively small, a timeline will be generated that may take a long time
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to reach equilibrium, but will in some sense be governed by the underlying
equilibrium – the retail structure will tend towards that, however slowly. In
practice, of course, other variables that are assumed to be exogenous and fixed
will actually vary, and so to construct real timelines it is necessary to make some
assumptions about these. In order to explore discontinuities, therefore, we first
focus on equilibrium retail structures, {Wj

equil}. We therefore solve Equation 2.1
iteratively, not interpreting each iteration as a passage of time – simply as a
mathematical device for finding the equilibrium solution to which, other things
being constant, the system is tending. To make this plain, we use n to count
iterations so that this is not confused with the elapse of time, t. Hence, we write
Equation 2.1 as Equation 2.1a below:

(2.1a)

where n is now an iteration number. If we wish to construct a timeline that assumes
that each time-step is from one equilibrium to another – because of a change in
otherwise exogenous variables between t and t + 1 – then the solution at time t
could be designated as {Wj

equil(t)}. We could then present the evolution of the
system through time as the sequence:

(2.1b)

The heart of the structural criticality problem is whether, at the location of a
particular zone, j, conditions permit a non-zero value of Wj. If there are many such
locations, then this will be a distributed retail system, and vice versa. A task for
the framework, therefore, is to simulate that analysis. It is difficult to isolate what
is happening in a particular retail zone because, as the equations show, each Wj

equation shows a Wj dependence on {Wk}, k ≠ j (Wilson 1988). To make progress,
we make the assumption that Dj can be plotted against Wj, assuming that all the
{Wk}, k ≠ j are fixed. The equilibrium condition can be written:

(2.5)

to show explicitly the dependence of Dj as a function of Wj, assuming all the other
Wk are fixed.

It was shown analytically in Chapter 1 that there are three cases – shown in
Figure 2.1, which is repeated here for convenience. The cost, KWj, is also plotted
and is, of course, a straight line. At equilibrium, the Dj(Wj) curve and the KWj

line will intersect. In Figure 2.1a (in which � < 1), the gradient of the Dj(Wj) curve
is infinite at the origin, and so there is always an intersection with the cost line,
and that can be shown to be stable. Thus, for � < 1, we would expect a dispersed
system. In the Figure 2.1c case, � > 1, the cost line either intersects the curve
twice (excluding the origin) – as shown by the lower gradient straight line – or
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only at the origin – as shown by the other line. In the former case, the upper
intersection is stable and a non-zero Wj is possible; in the latter case, Wj will be
zero. More centralised patterns will have many such zeros. � = 1 is a special case
(Figure 2.1b). The Dj curve has a finite gradient at the origin and the possibilities
of intersection generating a stable point are like the Figure 2.1c case. We should
therefore always expect a discontinuity at � = 1.

This analysis illustrates the possibility of multiple solutions to the equations:
in the Figure 2.1c case, there are two possible solutions; if there are many zones
in such a state, this indicates multiple solutions for the system as a whole. The
particular solutions ‘achieved’ will depend critically on the initial conditions, and
we need to specify these – starting values for the {Wj} and the {eiPi} – and, of
course, such {Wj} will not be equilibrium values. When (and indeed, if) the iterative
process converges, Equation 2.3 will be satisfied. We iterate through the equations
using a specified set of model parameters – essentially, solving Equation 2.1a.
The parameter values and initial conditions determine whether a stable equilibrium
can be found.

The retail systems we analyse here have large numbers of retail zones, which
means we cannot visualise the phase trajectory of the system as we might with a
system of two or three zones. Instead, we use a three-dimensional representation
of the system, which visualises the position and floor space of each retail zone
and then uses animation to convey the variation of the system variables as it iterates
towards equilibrium or over time. We communicate the important quantities at
each iteration using size, colour (if available) and shape. Retail zones are illustrated
with three-dimensional blocks whose height and tapering indicate floor space {Wj}
and growth rate {	Wj}, respectively. Each residential zone is shown as a circle
on the map with a diameter proportional to its spending power (eiPi). The whole
model is presented on top of a boundary shape file for our region of interest, which
provides a sense of locality and helps us quickly identify the various parts of the
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Figure 2.1 Three variations of the Dj(Wj) curve



system. There is also the option to visualise the money flows into any retail zone 

( ) and out of any residential zone ( ) during a model run. Figure 2.2 

shows the output for one iteration from an example model run. In order to retain
the potential for a retail zone to be revived from zero size, we enforce a minimum
retail zone size of 1 m2.

We now present an algorithm for detecting discontinuous change in the
aggregate retail model. We embed the equilibrium configurations, {Wj

equil}, of 
the system on a grid in some subset of the parameter space. First, we set the initial
conditions of the system by initialising the {Wj} and {eiPi} using real or hypo -
thetical data. We then choose between one and three model parameters to
investigate for discontinuous change. For each one, we define a range and a step
size to produce a set of discrete points. We have defined a one-, two- or three-
dimensional model parameter space, which contains a number of unique parameter
sets. For each of these, we run the model from our initial conditions to equilib -
rium and save the resulting {Wj

equil}. The grid then contains the equilibrium
configurations of {Wj} for the specified parameter ranges. We initially use � and
� – and we can look for the presence of discontinuous change between
neighbouring parameter sets. We can label two configurations as {Wj

P} and {Wj
Q}

and then define a measure of difference � between P and Q as the sum of the
absolute difference across all retail zones:

(2.6)

The differences in {Wj} configurations in parameter space can be visualised –
in the 2D case – by taking � and � as X and Y coordinates and plotting � as a
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∑ Sijj

∑

� PQ
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P

j
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j
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Figure 2.2 One iteration from a single-model run



boundary line between each pair of neighbouring configurations. The algorithm
is summarised as a flow chart in Figure 2.3.

We use computer graphics to visualise a large amount of detail in the results
grid, which allows us to move around and explore it. Each {Wj

equil} in the model
parameter space is presented in the same way as that shown for a single model
run, allowing us to identify the size of individual retail zones. This technique uses
the idea of dimension stacking (LeBlanc et al. 1990) to embed two geographic
dimensions into one, two, or three dimensions representing the model parameter
space. This is illustrated by the example results grid shown in Figure 2.4, which
embeds the British National Grid Easting and Northing into an �, � parameter
space. Feiner and Beshers (1990) introduced a similar system for displaying
financial data. There is the potential in the future to take this further and visualise
a larger number of dimensions recursively. We introduce the � plot in the next
section.

The results grid is illustrated for the Greater London retail system. The data
sources are detailed in Appendix 2.2. We search a two-dimensional area of the
(�, �) space in the range 0.1–2.0 using an 81 � 81 grid. Clarke and Wilson (1985)
did a version of this analysis – but contemporary graphics generate a more
powerful representation.

16 Phase transitions and path dependence
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Figure 2.3 Algorithm for generating a results grid



A � plot is shown in Figure 2.5. A large number of ‘fault lines’ can be seen
running through the grid, each of which represents a discontinuous change in the
system.1 One of the most prominent fault lines at F represents the previously
predicted discontinuity that occurs as � = 1 is crossed. The advantage of visualising
the � plot and results grid in real time is that one can look at what is actually
occurring at the level of individual retail zones. Crossing fault line E in Figure
2.5 leads to the appearance/disappearance of a smaller retail zone (Romford) near
one large central retail zone (Central London). We can analyse this change by
first selecting a pair of parameter sets, one on either side of the fault line (Figure
2.6), and second by plotting a Dj, KWj zone graph for Romford for each parameter
set. The graphs are from the fourth iteration of each model run because this is
where the rate of change for this zone diverges between the different model runs.
We can see in Figure 2.6a that there are two intersections, an unstable lower
intersection and a stable upper intersection, whereas in Figure 2.6b the Dj(Wj) curve
does not intersect the KWj line. The black dot on each graph shows the Wj value
of the retail zone on the fourth iteration.
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Figure 2.4 A two-dimensional results grid
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We calibrated the model by calculating an R-squared value for each {Wj
equil}

in the results grid compared to the initial {Wj}. Figure 2.7 colours the parameter
space by the R-squared value of each parameter set. The best fit2 {Wj

equil} compared
to the real data is at � = 1.95250, � = 0.78875 with an R-squared of 0.78 (marked
in Figure 2.5). In order to explore this in more detail, we generate another grid
centred on the best-fit parameter set (Figure 2.8). The results grid covers the 
space defined by varying � from 1.934 to 1.970 and � over 0.770 to 0.806 (all to
three decimal places). The ridges near the best fit in Figure 2.5 also run through
Figure 2.8 and are easier to distinguish at this resolution. The position of the best
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Figure 2.5 � surface plot in �, � parameter space on top of an 81 � 81 grid of
results
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fit suggests that a change in � or � could cause a discontinuity to occur in the
system that would cause a shift in the position of one or more edge retail zones.

The results that appear in the grid above, and therefore also the discontinuities,
are influenced by the initial conditions fed into the model. Starting with a different
{Wj} as our initial conditions would produce a different set of discontinuities. This
suggests there is the potential to influence the behaviour of a retail system and,
if desired, improve its stability through properly informed planning.

It is useful to pursue the London case in more detail, and, for illustrative purposes,
we concentrate, as implied by the (�, �) grid in Figures 2.5 and 2.8, on phase
transitions in (�, �) space. We consider a possible phase change along fault line
D in Figure 2.5 where a two-zone system changes to a five-zone system. We identify
two result maps, one on either side of the possible phase change, in Figure 2.9.

Harrow appears as an edge city when there is a decrease in � (the impact of
retail zone size on consumer shopping destination choice). The initial versus
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Figure 2.6 Zone graphs explaining the appearance of an edge city called Romford
(zone graph plotted after four iterations for parameter sets either side of
a ridge in parameter space)
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equilibrium size plot in Figure 2.9a shows that Harrow is not profitable for any
initial size below about 143,000 m2. With an initial size of 125,500 m2, Harrow
is not a viable centre in this configuration. In the initial versus equilibrium size
plot Figure 2.9b, however, we can see that Harrow is profitable from 74,000 m2

upwards. Harrow’s initial size puts in inside this range and allows it to grow to a
size shown by the flat plateau on the right-hand size of the graph. The height of
this plateau is fairly constant across the range of initial conditions that reach it,
though the exact value depends on the impact of the initial size on other zones.
Exceeding this plateau size in the initial conditions will cause the zone to shrink
back to the size of the plateau (indicated by the diagonal line). If the initial size
of Harrow was less than 74,000 m2, we would not see Harrow appear, showing
the dependence of the system on initial conditions. Figure 2.10 shows equilibrium-
size graphs for the other three centres that appear in the phase transition in Figure 2.9.
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Figure 2.7 �, � parameter space coloured by R-squared comparison of each
{Wj

equil} in the results grid compared to the initial {Wj}

R-squared comparison of initial and equilibrium {Wj} 

Min (-2.63)

Max (0.78)
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Figure 2.8 � surface plot around best fit in �, � parameter space

All the graph pairs show a similar pattern to that of Harrow, supporting the idea
that rapid changes in many zones simultaneously can bring about a phase
transition.

These equilibrium-size graphs provide us with a critical size (Wj) below which
a retail centre is not viable given the available spending power in the population
nearby and the competing retail zones in the system. To demonstrate this idea,
we can modify the initial size of the four edge retail zones that appear in the phase
transition in Figure 2.9b. We set the size of each below its critical size. Figure
2.11 shows the resulting equilibrium state both before (Figure 2.11a) and after
(Figure 2.11b) this modification to the initial conditions. The large central retail
zone remains largely unchanged; however, the four old retail zones on the
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periphery are replaced by three new retail zones: Southall, Bromley and Romford.
It is interesting to note that the general shape of the retail system is preserved.

To help us understand the potential for change across a system, it may be helpful
to look at all the retail centre critical sizes together. For this example, we have
switched to another region, South Yorkshire, a metropolitan county about the same
area as Greater London. The initial conditions are shown in Figure 2.12. The region
has far fewer retail zones and so is easier to reason about for this purpose. Figure
2.13 shows how the critical size relates to the initial conditions size for each of
the retail zones in the region. This was generated using the best-fit model
parameters found above for Greater London. The aim here is to move towards
providing a view on how interventions in a retail system may or may not be
supported by self-organising processes (in this case, market forces). As with the
Greater London model, the figure is only intended to be illustrative of the technique
rather than a comment on the state of the retail system in South Yorkshire.
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Figure 2.9 Structure either side of a phase transition with equilibrium-size zone
graphs for Harrow; the change in Harrow’s critical size accounts for its
appearance/disappearance through the phase transition
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Figure 2.10 Equilibrium-size graphs for the other centres that appear in the phase
transition

2.3 Using the analysis in planning contexts

We can use the insights gained from this analysis to demonstrate two potential
new forms of analysis. First, in relating model predictions to reality, we can take
account of agents, in this case retail developers, by showing how they change the
‘initial conditions’ at a point in time and possibly bring about phase transitions
by their actions. In this way, it should be possible to give an account of the history
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or urban development – in effect, as a sequence of initial conditions, illustrating
path dependence. Second, the model could be deployed on behalf of a developer
wanting to build a new shopping centre. The analysis tools described above could
be used to calculate the size that the new centre would need to be in order to
compete effectively in the current retail market: that is, the minimum size, as a
new ‘initial condition’, to guarantee stability. In the same way, the analysis would
provide a maximum size. In the rest of this chapter, we explore the second of these
ideas in relation to South Yorkshire.

Rotherham is a major town in the area that featured in the news in 2009 because
almost one-third of its high street shops had closed down (Addley 2009). This
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Figure 2.11 The results of changing the initial conditions informed by equilibrium-
size graphs demonstrating path dependence

Figure 2.12 The South Yorkshire retail system
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Figure 2.13 Critical size markers for all South Yorkshire retail centres

has been attributed to various factors, including recession and competition with
two nearby out-of-town shopping centres: Meadowhall and Parkgate. The local
council attempted to reverse the decline with various policies, including
subsidising costs for new retailers and free parking after 3:00 p.m. At the time,
the British Retail Consortium (Hunt and Slater 2009) highlighted the fact that town
centre retailers across the UK were facing similar challenges. They advised that:

Town centres are assets which need to be managed and we need to focus 
on centres which are already at, or approaching, ‘tipping points’ rather than
waiting to tackle the much more difficult task of High Streets already in
decline.

We can see from comparing Figures 2.12 and 2.13 that the critical size
(~133,000 m2) for Rotherham in the 2004 data is about 25 per cent above its size
in the initial conditions (~105,800 m2) – meaning that, in our model, it will decline
without at least a further investment of about 27,000 m2. The zone graphs for
Rotherham either side of the discontinuity are identical on the initial iteration;
however, by iteration 67, we can see major differences. The zone plot in Figure
2.14a for WRotherham

initial = 105,800 m2 shows that the Dj(Wj) curve never intersects
the KWj line at any point except the origin, so pushing Rotherham to zero, whereas
the plot in Figure 2.14b for WRotherham

initial = 134,000 m2 shows a stable intersection
at about 115,000 m2. This may point the way to a methodology to identify the
point at which high streets ‘fail’, either in a recession or in competition with out-
of-town centres.

Retail centre above critical size by amount indicated 

j jj Retail centre below critical size by amount indicated 

Retail centre well below critical size



Figure 2.14 Zone graphs for Rotherham on iteration 67 of the best-fit model run
with (a) WRotherham

initial = 105,800 m2 and (b) WRotherham
initial = 134,000 m2
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2.4 Concluding comments

We have demonstrated a relatively simple and widely applicable software frame -
work for identifying and analysing discontinuities in a simple urban retail model
using semi-realistic data. The visualisation capability is an important part of the
system, which allows discontinuities to be explored in detail. The technique has
the potential to provide useful insights for decision-makers in both government
and retail businesses in order to better understand the impact of planned changes
to a system. For example, when commissioning new out-of-town shopping centres,
one might look at the conditions required to create a reasonable balance of
demand at both the high street and out-of-town shopping centres.

There are many avenues of further research to pursue. The cost function, KWj,
is a retail zone production function, and more realistic functions should be
explored along with alternative rent functions. At the expense of considerable
computing power, it should be possible to overcome the assumption that in
constructing the zonal graphs, all (Wk), k ≠ j, are fixed. In constructing the Dj(Wj)
curve, for each Wj point, the model could be rerun to equilibrium maintaining the
condition of constant total floor space. Once the zonal graphs can be produced
with greater accuracy, their properties can be explored as a set for the whole system,
thus giving us purchase on the exploration of system-wide discontinuities, and
individually – since what the simulations have revealed is that in the instances
where there are two intersections, the position of the unstable intersection relative
to the origin can be explored, and this has implications for the response of the
system to different initial conditions. For example, if a particular Wj

initial is nearer
to the origin than the unstable point, then the system is more likely to ‘jump’ to
the ‘stable’ zero at equilibrium, and vice versa. In this way, it may be possible to
unpick path dependence. It should be possible to estimate plausible timelines for
the exogenous variables and thus to reproduce the history of the evolution of retail
systems. Explorations of alternatives would then lead us to search for
discontinuities generated by changes in any of {ei, Pi, cij or K}.

The method can obviously be extended to other urban models. An obvious
starting point for illustrative purposes is the Lowry (1964) model, and we pursue
this avenue in Chapter 4. This illustrates discontinuities in the residential location
sub-model and provides a basis for exploring the interdependence of the sub-models
in a comprehensive model.

More detail can then be added to any of the sub-models. A residential location
model disaggregated by social groups, for example, could be used to seek
discontinuities that generate gentrification of city centres, for example, as will
become clear in Chapter 4. We have argued that there are related systems that can
be modelled using this kind of methodology (Wilson 2008). There are possible
applications then in network analysis because this model system can be seen as
a network generator.
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Appendix 2.1 Notes about the dynamics

If we set the rent value K equal to the total spending power in the system divided
by the total floor space in the system, it can be shown that the model will maintain
the same overall floor space W at equilibrium as it had at the start of a model run.
Because we are using a self-normalising model, we must also state that growth
is coming from market capture from one zone over another.

Two forms of the retail dynamics equation have been used in previous research.
The first we have used in this chapter:

(2.7)

and a second variation is:

(2.8)

The second equation multiplies the value of � by the Wj value of each retail
zone, which is effectively reducing the rate at which small retail zones reach
equilibrium. In some ways, this produces more realistic results; however, the time
taken to reach equilibrium is so long that it is not practical to use it in an
exploration of equilibrium structures. It can be shown using simulation that both
equations produce almost identical equilibrium structures.

Appendix 2.2 Data sources

Residential zone spending power (eiPi) was calculated by multiplying together CAS
ward-level population data from the UK 2001 census and average retail spending
per month data derived from the ONS Family Spending 2010 Edition. The ward
centre points were used as the location of each residential zone.

The retail zone data is from 2004 and comes from the Town Centres Project.

Notes

1 This bears out the conjecture in Wilson (1981) that there will be critical curves in
(�, �) space.

2 This model, its best fit and all results derived from it are illustrative only because
travel cost is represented by Euclidean distance rather than an accurate and detailed
representation of the real transport network.
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3 Exploring possible urban
futures in a non-linear
dynamics regime

3.1 Forecasting the future of path-dependent urban
systems

It is useful to think of the possible development path of an urban system as a high-
dimensional ‘cone’ to highlight the potential for it to quickly diverge into one of
a vast array of possible futures. We can potentially use this idea to determine the
likely envelope that contains the real future state of the system. As we have
indicated, the ‘cone’ exists in the very high dimensional state space of the system.

We have seen in the preceding chapter that urban systems are complex and 
non-linear, and exhibit properties of multiple equilibria and path dependence. This
makes model-based forecasting in a conventional sense impossible. Path depend -
ence is a key concept, first explored by Arthur (1988), who showed that history
can influence industrial location patterns if agglomeration economies affect that
industry. Agglomeration is a form of positive feedback and allows the possibility
of multiple solutions to the industrial location problem. More generally, any system
that experiences positive feedback can experience path dependence. In a planning
context, the traditional use of urban models has been for exploring ‘what if?’
questions – i.e. for a given set of plans, what is the outcome? This chapter shows
how to interpret this goal given the consequences of non-linearity through a focus
on path dependence.

Martin and Sunley (2006) highlight many problems with the current definition
of path dependence, and make it clear that much more work is needed to
understand the concept properly. They worry that current forms of modelling reduce
it to a mathematical concept. In this chapter, we model path dependence and argue
that our interpretation of it as a ‘dependence on a sequence of initial conditions’
facilitates an exploration of system behaviour that can be a useful counterpart to
more qualitative work on historical path dependence.

The value of each of the variables and parameters of an urban model at one
time constitute a point in state space. Since, typically, many variables and
parameters will be needed for an adequate description, this will be a very high
dimensional space. We also find it helpful to follow Wilson (2008) and to think
of the initial conditions – that are either exogenous in the model or part of the
slow dynamics1 – as the ‘DNA’ of the system because these conditions largely



determine the possible models of development. At each of a sequence of points
in time, the state vector will constitute the initial conditions for the next step. There
are then two ways in which we can construct what we will call the possibility
cone of development: (1) we can introduce stochastic variation into the dynamics
of each model run from some time t – thus generating a set of varying outcomes
at time t + 1; and (2) we can vary the exogenous DNA in the initial conditions at
time t to produce a range of outcomes at time t + 1. The envelope of the initial
conditions at time t and the outcomes at t + 1 forms a section of the possibility
cone. Again, it should be emphasised that this is a ‘cone’ in a high-dimensional
space.

The initial conditions typically will not represent an equilibrium state of the
system. However, at each point in time, there will be equilibrium states that will
be influencing future development. That is, there will be basins of attraction for
multiple solutions, particularly when positive feedback is present. There are then
interesting questions to be explored. Which basins of attraction are within the
possibility cone and which are not? In the case of ‘not’, and if such a state is a
desirable one, is it possible to make an adjustment in the initial conditions that
brings that attractor within the cone? That is potentially a perspective to be
adopted by planners in a complex non-linear world. This is, in a way, asking the
question, ‘what can be achieved by planning?’. It relates to the way in which urban
systems can become ‘locked in’ to a given development path by the initial
conditions. In dynamical systems terms, this represents being stuck near to an
undesired basin of attraction. An example in the UK might be the seaside towns
that are in decline and are experiencing negative ‘lock in’ to a restricted set of
possible futures. There is the potential here to explore what is necessary to break
them out of a negative development path. If the initial ‘structural’ conditions can
be thought of as the ‘DNA’ of the system, then we can think of aspects of planning
as ‘genetic planning’ by analogy with ‘genetic medicine’.

In Section 3.2, we explore in more detail how to construct and represent a
possibility cone. We use an aggregate urban retail model as a demonstrator – first
in Section 3.3 by introducing stochastic variation of the initial conditions, and then
in Section 3.4 by tackling a hypothetical planning application.

3.2 Constructing the possibility cone of an urban system

We have noted that if we take a given urban system at a particular moment in
time, then we can consider ‘the underlying structural variables to be the urban
analogues of DNA’ (Wilson 2008). The physiology is the activity and development
of the city – the fast dynamics predicted by the model – given the starting DNA.
To define the cone in modelling terms, we need to make a distinction between
the exogenous DNA that our model does not directly adjust and endogenous DNA
that our model adjusts and predicts. The cone of development we are envisioning
here can be thought of as a rapidly diverging set of possibilities starting from a
single set of endogenous DNA. We can begin by thinking of the many possibilities
as a tree (Figure 3.1), each level of which represents one step through time. Each
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‘point’ in this diagram is, of course, symbolic because it represents a high-
dimension state vector.

The root of the tree is the initial endogenous DNA representing the current 
state of the system of interest. A number of branches extend from the root node
representing development paths of the system towards equilibrium. The branching,
recall, is brought about in one (or both) of two ways: through noise, representing
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unpredictable events, or through adjustments to the exogenous DNA, which
represent either a planned intervention, such as a new shopping centre or transport
link, or an unplanned change, such as an increase or decrease in petrol prices.
Generally, the planned interventions will be represented as a single binary choice
at a specified time in the tree – either we build a new shopping centre or we do
not. Unplanned changes would be represented by two or more branches that are
allowed to occur at every time-step in the tree. One of the branches would be the
‘no effect’ option, while the other would represent each of the possible values
that can have an effect on the system (e.g. fuel prices can increase, decrease or
remain the same, and can do so at any point in time).

Computer software is used to recursively construct the tree. Starting with the
root node, and for each child node following it in the tree at time t, we generate
a number of branches equal to (xt * s), where xt is the number of different exoge-
nous DNA sets available at time-step t and s is the number of stochastically varying
model runs we do with each exogenous DNA set. In order to represent the full
range of potential variations, we would need to set s to a large value, and so, through
time, the number of the branches in the tree will increase very rapidly. If m is the
maximum time depth of the tree (numbered from zero), then the number of model
runs required to construct the tree/cone N will be:

(3.1)

Clearly, a significant amount of computing power would be required to construct
a deep cone for anything other than the simplest of models.

Each tree branch represents one model run from a complete DNA set at time
t, and this may or may not be iterated to equilibrium. The output from the model
run represents a new and unique endogenous DNA set that forms a new node in
the tree at the end of the branch. By choosing a path through the tree from the
root to a leaf node, we can see that the tree represents a wide range of possible
development paths that cover a number of time-steps. The envelope of this process
is the cone of possible development.

Dealing with stochastic variation is relatively straightforward, and we give an
example in the next section. In the case of changes to the exogenous DNA, we
can build a set of varying exogenous DNA for each time-step in the tree. Each of
these exogenous DNA will represent one permutation of the events that could
possibly occur at the time-step in question. An example set of future events that
could occur at some time-step t could be: fuel price fluctuations, planned
development of a new shopping centre and construction of a new road. The
exogenous DNA set we generate from this would then include every permutation
of the three events (Table 3.1), and can be thought of as a set of possible future
scenarios for the system at time t. Computer software can obviously be used to
automatically generate these sets, given the set of possible events.

It is easy to see that if we move from a narrow set of highly probable events
to including increasingly unlikely events, the possibility cone will grow and will
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be more likely to contain the real future state of the system. A balance needs 
to be struck, however, because there are obvious limits on the resources of time
and computing power available to construct such a cone.

3.3 A stochastic version of the aggregate retail model

To construct a realistic possibility cone of development for a given urban system
would require a comprehensive model that represented multiple subsystems and
the interdependencies that exist between them. For the purposes of demonstrating
the techniques, we concentrate in this study on modelling a single subsystem –
urban retail – however, the approach could be applied to more comprehensive
models, and this is an intended area of future research.

We use the archetypal aggregate retail model developed by Harris and Wilson
(1978), and first discussed in Chapter 1. The usual variables for a retail demon -
strator are defined again here for convenience. There are retail zones, j, and we
define Wj as the amount of retail floor space in each such zone; this value also
represents the attractiveness of that retail zone to consumers. We also define a
number of residential zones, i, with population, Pi, and average spending power,
ei. The combined spending power of all the consumers in residential zone i is eiPi.
The cost of travelling from zone i to zone j is given by cij. The accessibility of
each retail zone is represented by an additional multiplier, mj, which affects every
travel cost cij into retail zone j. This allows us to roughly represent a varying
accessibility of zones caused by a complicated transport network without resorting
to a full detailed representation. The parameter � represents returns to scale, so
we expect path dependence wherever this parameter is greater than 1, representing
increasing returns to scale, and giving rise to the possibility of multiple solutions.
The � parameter represents the impact of travel cost on consumer shopping
decisions. In this case, the exogenous variables are {mj}, ei, Pi, and the model will
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Table 3.1 Example exogenous DNA variation set for one time-step

Exogenous Fuel prices Shopping centre Road
DNA index

0 Increase Not built Not built
1 Increase Not built Built
2 Increase Built Not built
3 Increase Built Built
4 No change Not built Not built
5 No change Not built Built
6 No change Built Not built
7 No change Built Built
8 Decrease Not built Not built
9 Decrease Not built Built

10 Decrease Built Not built
11 Decrease Built Built
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predict Wj as the ‘slow dynamics’. The interaction array {Sij} constitutes the fast
dynamics. The DNA, therefore, is:

[{mj}, {ei}, {Pi}, {Wj}, �, �]

The flow of consumer spending from residential zone i to retail zone j is given
in the usual way by:

(3.2)

where:

(3.3)

to ensure that:

(3.4)

we can calculate the total flows into destinations as:

(3.5)

The usual hypothesis for representing the dynamics is:

(3.6)

In order to represent the random events that can affect path dependence, we
add a stochastic term to the dynamics to give:

(3.7)

where 
 is a stochastic2 term drawn from a normal distribution with a mean (�)
of zero and a standard deviation of 0.04. This results in a low level of noise in
the system that is proportional to the size of the retail zone. This is an assumption
we make based on the idea that the larger the number of retail units in a zone, the
greater the potential for unpredictable change. This also keeps the total amount
of stochastic variation in the system roughly constant (due to a constant total 
amount of floor space in the system).

The iterative process represents the system converging towards an equilibrium
state; however, we choose here to explicitly represent the passage of time as a
single step from a set of initial Wj values to the set of Wj values that exist at the
end of a model run. Rather than running the model to equilibrium, each model
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run lasts for 200 iterations. This represents the idea that while a system might
evolve towards a particular equilibrium state, it may not reach it if some external
change (random or planned) causes a change in the phase space of the system.

In order to make the structure of the resulting possibility cone accessible for
both analysis and communication purposes, we visualise its structure. We are
effectively plotting the tree from Figure 3.1 in the multidimensional state space
of the system. Each node in the tree represents a {Wj}. This obviously presents
some challenges because it is a high-dimensional structure and contains a lot of
information. Parallel coordinates (d’Ocagne 1885; Inselberg 1985) are one of the
clearest and most intuitive of the multidimensional visualisation techniques
available. Here, we use a parallel coordinates plot at each time-step to display the
range of stable states reached by the various trajectories that have been calculated.

We demonstrate the techniques developed so far by constructing and visualising
a simple possibility cone for the metropolitan county of South Yorkshire in the
UK containing 19 retail zones and 94 residential zones (data sources as in Chapter 2).
This example is only intended as a proof of concept and not as a case study from
which conclusions should be drawn about the nature of the real system.

A map showing the region is given in Figure 3.2. The heights of the bars in the
figure illustrate the initial {Wj} that represents the initial endogenous DNA for
our possibility cone. The exogenous DNA used to build the cone was found by
calibrating the model to produce the closest equilibrium solution to the initial
conditions data. The travel cost matrix {cij} is calculated from shortest paths through
the road network (see Appendix 3.1 for construction details and data sources).

In order to make this first example as simple as possible, we keep the exogenous
DNA constant and rely on stochastic variation to differentiate each model run.
We also model only a single time-step into the future. To reiterate, in the
terminology of Equation 3.1, we set s = 100, m = 1, x0 = 1 to produce a cone with
100 nodes branching out from a single initial root node, each of which represents
one model run. The resulting cone of development can be seen in Figure 3.3.

The figure shows three parallel coordinates plots. Figure 3.3a is a shaded
envelope that contains the end result of all model runs. The varying width of this
shows how the impact of noise varies between retail centres. The black line running
horizontally across the shaded area indicates the size of each centre in the initial
conditions data from 2004. The axes are scaled to total amount of floor space in
the system. Some centres, such as Sheffield, are stable within a small range relative
to their size, while other centres, such as Doncaster, vary a lot.

Figure 3.3b shows the end state of all 100 model runs over-plotted using
spline-based parallel coordinates. The plotted lines are translucent so the dark areas
of the plot, indicating areas that many end states pass through. This technique allows
the relationship between neighbouring centres in the diagram to be identified. A
very strong market-capture-type relationship can be seen between Parkgate and
Rotherham, and also between Doncaster and Doncaster Lakeside. With interactive
reordering of the axes, all relationships in the system can be explored.

Figure 3.3c shows how brushing can be used to get around the problem of over-
plotting and obscuring individual model runs. Brushed splines are highlighted in
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a heavier black line. By brushing the top 50 per cent of the range of possible sizes
of Meadowhall, we can see that this corresponds to the bottom 60 per cent of the
range of possible sizes at Sheffield.

This kind of prediction is really giving us an idea of the pressures that exist on
each retail centre, be it growth or decline, and where these pressures come from.
How planners, developers and retailers respond to these pressures would then
determine the evolutionary path of the system.

3.4 Tackling a hypothetical planning application

We now add an additional layer of complexity by adding variation to the
exogenous DNA. We can use this to represent both deliberate planned changes
and unplanned events that may or may not occur. Within the constraints of the
retail model we are using, we can model the following unplanned events:

• fuel price fluctuations (affecting the � parameter);
• migration (affecting Pi); and
• recession and expansion of the economy (potentially affecting both ei and �).

It is interesting to note that these are generally occurrences that are out of the
hands of planners, representing changes caused by the global economy, major
technological improvement and potentially even climate change. Deliberate
planned events we can model include:
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Figure 3.3 Single-stage cone of development for South Yorkshire: (a) envelope
containing all end states, (b) detail of end states and (c) brushed detail in
plot showing impact of Meadowhall growing large
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1 rail and bus network construction and road construction (causing an adjust -
ment in the cij and/or {mj});

2 retail zone construction (increasing a particular Wj);
3 housing construction (affecting Pi if we assume the houses are used); and
4 changes in taxation (affecting ei).

We use the South Yorkshire region as our test case again, and for simplicity’s
sake consider one planned event and one unplanned event. We take the planned
event as the construction of Sheffield’s New Retail Quarter – a scheme that plans
to add ~65,000 m2 of retail to the city by 2018. The unplanned event will be petrol
price fluctuations. Details of these events are given in Table 3.2.

The planned cone of development will contain three time-steps with the
construction of the additional retail capacity on time-step 2. From these events,
we can generate a set of varying exogenous DNA for each time-step in the cone.

Again following the methodology given in Section 3.2, we set s = 3, m = 3, 
x0 = 3, x1 = 6, x2 = 3, giving a tree constructed from 1,629 model runs and
representing 1,458 different development paths. Figure 3.5 shows the resulting
cone of development.

Figure 3.5a shows a shaded area that contains the end point of all model runs.
Although this cone is a longer timeline and contains more variation in the
exogenous parameter sets than the cone in Figure 3.3, it has not widened a great
deal except at Meadowhall. Sheffield and Barnsley in the west of the region are
the two most stable large centres. Meadowhall, Parkgate, Rotherham and
Doncaster all vary much more widely, possibly because of the mix of old and
new centres. Figure 3.5b shows all the end states without the New Retail Quarter
and Figure 3.5c shows all the end states with the New Retail Quarter. There is
very little difference in the predicted outcomes, suggesting that this is a beneficial
development that would not impact negatively on other centres. Figure 3.5d
shows the detail available on brushing the individual model run end state splines.
In this case, it shows that Meadowhall growing very large increases the likelihood
of decline in the surrounding centres, especially Parkgate Retail World.

3.5 Conclusions

We have demonstrated a method for constructing and visualising the multi -
dimensional possibility cone of development for an urban system. Such a technique
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Table 3.2 Details of possible future events represented in the possibility cone

Event name Timing Parameter options

Retail expansion Time-step 2 WSheffield unmodified
WSheffield +65,000

Petrol price fluctuation Every time-step � unmodified
� +0.1
� –0.1



provides a useful way of approaching urban planning and specifically forecasting
the future of non-deterministic complex urban systems. For planners, the implica-
tions of this idea is that the possibility cone represents a way of identifying those
system states within reach, and discontinuous change from one stable state to
another represents a possible path creation mechanism.

Here, we have focused on retail in order to simplify our initial explorations;
however, to gain a full understanding of the possibility cone of urban development,
a more comprehensive model would be required. This presents a range of
challenges due to the computing power required to build the cone. The output is
also likely to be far more complex than the system demonstrated here, making
visualisation even more challenging.

The idea that a system moves between the basin of attraction of a number of
solutions is a useful way of thinking about path dependence, and future research
might look for ways to map out and visualise these multidimensional structures.
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Figure 3.4 The exogenous DNA variation at each time-step



Appendix 3.1 Transport network details

Meridian 2 data (http://data.gov.uk/dataset/meridian-2) was used for the motor-
ways and A-roads. Minor roads were generated by triangulating the vertices of
the whole network. This was necessary because the location of each retail centre
is the centroid of an area and not exact enough to connect up with the real minor
roads. The value of mj was set to 1 for all retail zones except Parkgate Retail World
and Doncaster Lakeside, which used values 0.95 and 0.98 to represent the fact
that they are retail parks with 2,000 and 950 free parking spaces, respectively.
Meadowhall Shopping Centre’s location at a motorway junction meant lowering
its mj value from 1 was not necessary to have the model fit, despite it having 12,000
free parking spaces.
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Figure 3.5 Three-stage cone of development with exogenous variation for a
hypothetical planning application in South Yorkshire: (a) envelope
containing all end states, (b) detail of end states for evolutionary paths
without the New Retail Quarter, (c) detail of end states for evolutionary
paths with the New Retail Quarter and (d) brushed detail in plot showing
impact of Meadowhall growing very large
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Notes

1 ‘Fast dynamics’ variables, such as interaction arrays, will be calculated within the
model and should not be thought of as part of the DNA.

2 We use the Mersenne Twister algorithm to generate uniformly distributed random
numbers (Matsumoto and Nishimura 1998). These are then transformed into
random numbers from a Gaussian distribution using the polar form of the Box-
Müller algorithm (Box and Müller 1958).
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4 A dynamic comprehensive
model

4.1 The Lowry model

The Lowry model (Lowry 1964) has rightly achieved iconic status because it
represented the main ideas that would underpin any comprehensive urban model
in the simplest possible way. It could then be progressively refined, and many
authors have contributed to this programme. It is deployed here as an underpinning
framework to illustrate a new development. While many of the post-Lowry
models are dynamic, none, to our knowledge, employ the kind of mechanism that
has been tested in the context of the retail model – used in preceding chapters.
This approach makes non-linearities in the different Lowry-type sub-models
explicit, and, as we know, one of the properties of such models is the possibility
of phase changes – abrupt changes in elements of spatial structure at some critical
parameter values. We show, as an example in this case, that this allows us to
represent the gentrification process. The context for the model presented here,
therefore, consists of the Lowry model itself and the dynamic retail model, the
concepts of which can then be extended into other sub-models.

The main variables in the original Lowry model are:

• A = area of land
• E = employment
• P = population
• c = trip cost
• Z = constraints

to which should be added the following to be used as subscripts or superscripts:

• U = unusable land
• B = basic sector
• R = retail sector
• H = household sector
• k = class of establishment within a sector
• m = number of classes of retail establishment
• i, j = zones
• n = number of zones



So, Ai
H, for example, is the area of land in zone i that is used for housing. If a

subscript or a superscript is omitted, this implies summation. So, Ai, for example,
is the total amount of land in i. There are two kinds of economic sector: basic and
retail – the latter further subdivided. Basic employment – and its spatial distribution
across zones – is given exogenously. Retail employment is generated by the
population. Once this simple principle of building the variables – the region’s
descriptors – is understood, the 12 equations of the model can be presented.

The key land use equation is:

(4.1)

In this equation, he captured some key hypotheses, in effect saying that land
for basic and retail industries can always outbid housing, so this shows land
available for housing is a residual.

The household sector is represented by:

(4.2}

(4.3)

(4.4)

(4.5)

This sequence generates the population from employment and begins the
process of housing them. The first (Equation 4.2) calculates total population as
proportional to total employment. The second (Equation 4.3) allocates this
population to zones, i. fres(cij) is a declining function of travel cost from i to j, thus
building in the likelihood that workers live nearer to their workplace. The third
equation (Equation 4.4) enables g in Equation 4.3 to be calculated as a normalising
factor. The fourth equation (Equation 4.5) is particularly interesting and also shows
how the model is more complicated than appears at first sight. zH is the unit amount
of land used for residences, and so this equation is constraining the numbers
assigned to zone i in relation to land availability. This is one of the subtleties –
and part of the trickiness – of the model: the equations have to be solved iteratively
to ensure that this constraint is satisfied.

The retail sector is represented by:

(4.6)

(4.7)
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(4.8)

(4.9)

(4.10)

(4.11)

These six equations determine the amount of employment generated in the retail
sector. The total in sector k within retail is given by the first equation (Equation
4.6), and this is spatially distributed through the second (Equation 4.7). As with
the residential location equation, the function f k(cij) is a decreasing function of
travel cost, indicating that retail facilities will be demanded relatively nearer to
residences. ck converts these units into employment. The term dkEj represents use
of retail facilities from the workplace. bk is a normalising factor that can be
determined from Equation 4.8. Equation 4.9 imposes a minimum size for retail
sector k at a location. (No school for half a dozen pupils, for example!) Equations
4.10 and 4.11 sort out retail land use, the first calculating a total from a sum of
k-sector uses – ek converting employment into land – and the second specifying
the maximum amount of retail land – in effect, giving ‘basic’ (which has been
given exogenously) priority over retail. In this case, unlike the residential case,
where Pi was constrained by land availability, retail employment is not so
constrained. Lowry argued that, if necessary, retail could ‘build upwards’. If Aj

R

from Equation 4.10 exceeds Aj – Aj
U – Aj

B, it is reset to this maximum, but
employment does not change.

Total employment is then given by:

(4.12)

This final equation simply adds up the total employment in each zone. The
equations are solved iteratively, starting with Ej

Rk = 0. As we have noted, the model
is quite sophisticated in the way it uses constraints to handle land use, and it is
also a useful illustration of something we need always to bear in mind in model
design – the distinction between exogenous and endogenous variables. In this 
case, the given location of basic employment is the exogenous driver but the {cij}
array can also be seen as reflecting the (exogenously specified) investment in
transport.

We now introduce this mechanism not only into Lowry’s retail model, but also
into his residential location model. In the next section, we present this extended
model and then show how it can be used to represent phase changes.
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4.2 The Lowry model with full dynamics

4.2.1 Introduction

We build a model that works through a number of steps. Each of these represents
a unit of time and movement towards equilibrium with a relatively slow relaxation
time for the system. We use similar industry categories to the Lowry model but
differentiate consumer-driven service industries from those that can be thought
to be regulated – such as education and health. This provides a basis for more
effective use of the model in planning. The industry categories are:

• basic industry;
• consumer-driven service industries; and
• regulated service industries.

The unregulated services represented are retail and a catch-all ‘other consumer
driven services’ category. The regulated service industries represented are health
and education.

The initial conditions for the original Lowry model used only basic industry
employment data, from which it developed the rest of a city. We seek both to
make the model more relevant to mature regions and to explore path dependence
by starting with initial conditions that represent the current land use mix and are
generated using the following zone-level data:

• employment by industry;
• population by income level; and
• average house price by type.

In this way, we begin to introduce additional levels of disaggregation, which
will ultimately make such models more realistic. However, like the Lowry model,
the assumption is made that basic industry is the driver of growth. In Dearden
(2012), timelines are explored in which basic employment is exogenously changed
over the course of a model run. BLV-type dynamics are used to model changes
in unregulated service provision, housing provision and house prices. Regulated
service industries are adjusted to match overall population change. Each of these
subsystems is described in its own section below.

4.2.2 System overview

Figure 4.1 shows the steps involved in each time-step of the model. The model
moves through updating basic industry, updating regulated services to match
population growth, updating unregulated services and then updating the residential
location and housing model. Inner iterative loops are used to ensure that growth
in basic employment and growth in regulated service provision matches a
prescribed rate regardless of how land is constrained in the region.

A dynamic comprehensive model  47



Figure 4.1 Time-step flow diagram

Setup initial conditions

1 r

Begin new time step

f

W hile  actual g row th  t required rate, 

correct trial g row th  rate

Trial basic employment growth 

Constrain basic land use

W hile  actual g row th  t required rate, 

correct trial g row th  rate

Trial regulated service growth 

Constrain regulated service land use

A

Update zone running cost per unit

Calculate journey to service trips

Update zone total service income

Adjust zone service provision 

Constrain service provision to available land

Adjust zone service employment

Calculate house price dynamics

Calculate housing provision dynamics

Constrain housing provision to available land

Calculate total employment in each zone

Balance jobs and homes

Calculate service accessibility

Calculate unconstrained housing "p re ssure "

Calculate m over pools

Calculate journey to work trips

Update zone populations

Calculate percentage of each home type occupied by each income level

U
pdate 

resid
e

ntial su
b

syste
m

E f 
s r  |  

%  »  

3  “
n

to C

I  "n> “ 
v> f? 
v>
c  n> 
o - IQ

<  11/1 Q
o  n> 
3 «•

c
T3
Q-
0)
n>

E  I

f  £  
w c
(S O

3  S '  

<  
o ’ fD



It was noted briefly above that, in addition to incorporating explicit dynamics,
a more detailed level of disaggregation is adopted. The key additional levels are:
housing type (k), person type, particularly with respect to income (w), service type
(x), and employment by x and w. The variables and indices are listed in Tables
4.1–4.4 in Appendix 4.1 – exogenous and endogenous variables, and indices in
turn.

4.2.3 Land constraints

The system of land constraints used here differs from that used by Lowry. The
assumption in the original model, as we have seen, is that certain land use types
take priority over others – basic industry first, then retail, and, lastly, residential.
The Lowry model enforced density constraints and minimum service centre sizes.
If these were not met, then the surplus provision from constrained zones was
reallocated to zones that had not yet exceeded these constraints. In our case, because
the model is dynamic, there are many different factors affecting the amount of
each different land use in a zone. Each time-step follows on from that in the
previous time-step (in contrast to Lowry, who reset them at each iteration). In a
dynamic model such as this, maintaining realistic rates of change is a requirement.
As a result of all this, land constraints are more difficult to apply. To deal with
this, the simplest possible solution was taken. There is no mechanism for one land
use type to displace another, so the subsystems compete for land on a first come,
first served basis. As a result, growth of any land use that would exceed the available
land is constrained to fit in the available land. The details are presented in Dearden
(2012). Clearly, this is just one approach to representing this complicated
mechanism in a dynamic model, and future research could develop this further.

4.2.4 Basic industry

A basic employment growth rate is set for each time-step (uniform across the
region). If this causes the land constraints in a zone to be exceeded, then the total
amount of basic industry is constrained in that zone and the ‘surplus’ growth is
redistributed. The detailed mechanism is in Dearden (2012). This process generates
{Ei

B}.

4.2.5 Regulated service industry sub-model

The evolution of regulated services, such as health and education, is often 
planned rather than determined in a market. Here, a simple assumption is made
that a given initial service provision will grow proportionately with changes in
the regional population. The initial growth rate matches the last percentage change
in the system population. Then a similar mechanism is used to constrain land use
as that described for basic employment. Alternatively, these variables can be set
exogenously to represent planned change.

This process generates {Wj
x} and {Ei

x} for regulated services.

A dynamic comprehensive model  49



The unregulated – retail and other consumer driven – services are represented
using the standard BLV retail model framework. For each of these in turn, the
following steps are run through:

(1) First, the rent for unregulated services x in each zone Kj
x is calculated 

based on the accessibility to population (workers and non-workers) scaled by a
constant, 
.

(2) Service usage trips Sij
xw are calculated between each pair of zones for each

person type.
(3) An inverse activity rate is used to include demand from non-workers in these

calculations.
(4) The key step is now to introduce explicit dynamics. Total service revenue

Dj
x attracted to each zone and unit area costs Kj

x are used to calculate the change
in unregulated service provision 	Wj

x:

(4.13)

(4.14)

The term in brackets is the level of profit for the service in the zone.
(5) If these changes cause the land constraints in a zone to be exceeded, then

the total land used by the unregulated service industries is constrained in that zone.
(6) This process generates {Wj

x} for unregulated services, and the change in
employment can then be calculated.

4.2.7 Residential location sub-model

The residential location sub-model is the most complex of the sub-models. It is
disaggregated by three home types (small, large and temporary) and three resident
income groups (low, medium and high).

(1) First, change in house price 	hi
k is calculated based on the difference between

the housing provision Hi
k and housing pressure Li

k:

(4.15)

In the first time-step, it is assumed that housing pressure is equal to housing
provision so there is no change. In later time-steps, the housing pressure calculated
in the previous time-step is used. As we will see, we need to construct temporary
housing (described later) as part of a mechanism to balance available jobs and
available homes. The ‘price’ of temporary housing is assumed to be static
	hi

temporary. A similar system is used to calculate change in housing provision Hi
k

on a fully dynamic basis:

(4.16)
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(2) Next, total employment in each zone is disaggregated by income group, w.
A requirement of the journey to work model (described later) is that the number
of jobs and homes in the region is balanced.

(3) Combined accessibility to services Zi
w is used as a simple representation of

the residential attractiveness of a particular zone. This is calculated and used in
an employment-constrained journey to work model Uij

kw to calculate housing
pressure Li

k. This gives us a measure of where residents would ideally live and
work if there were no constraints on housing provision. Temporary housing is
excluded from these calculations to ensure that ‘real’ housing is constructed to
make up any shortfall.

(4) To calculate residential location, a spatial interaction model based on the
one described by Wilson (1974: 187) is used. The version shown here differs in
that disaggregation by householder status (head of household or not)1 has been
removed and feedback has been introduced into the model to allow the rate of
change to be controlled by the relative sizes of the four mover pools in the model.
The mover pools are defined as:

1 people changing home and employment;
2 people changing employment only;
3 people changing home only; and
4 people changing neither home or employment.

(5) These flows are aggregated to calculate the new population of workers in
each zone, Pi

w, and the new population of workers and non-workers Qi
w using the

inverse activity rate �.

4.3 Running the model as an interactive, visual computer
simulation

4.3.1 Introduction

South Yorkshire was used as an example region to test the model. The region 
is divided into 212 zones, each of which is 3 km2 (Figure 4.2). The data sources
used to generate the initial conditions are detailed in Appendix 4.3. Custom
software was developed in C++ to allow a user to run the model and visualise
each time-step.

Equilibrium is defined as no change greater than 0.1 per cent in any endogenous
variable for at least 100 time-steps. This allows automatic detection of when the
model reaches an equilibrium solution and provides a consistent stopping condition
for the model runs. Given that this model contains so many degrees of freedom,
an automatic calibration system would likely take a huge amount of time to run,
so the calibration was done manually using intuition about the realistic values that
the parameters might take. A useful starting point for the retail subsystem was
the previous best-fit parameters found for South Yorkshire in previous work
(Dearden and Wilson 2011). Interactive visualisation also helped in this process



because the dynamics of the model could be explored – played back many times
– to better understand why the model was deviating from a good fit. The variables
against which the model is calibrated are those endogenous variables predicted
by the dynamic BLV and mover-pool type subsystems:

• unregulated service provision by service type;
• total population by income level;
• home price by housing type; and
• home provision by housing type.

4.3.2 Results grids around best fit

A two-dimensional results grid is generated around the best-fit parameter set. The
grid varies the following two parameters:

• �, varying from 0.9 to 1.2 in steps of 0.05: representing the impact of service
centre size on consumer service usage decisions.

• �, varying from –0.05 to +0.05 in steps of 0.05: representing an addition/
subtraction to the impact of travel cost for both journey to work decisions
(�) and journey to service decisions (�) for all income groups. So � represents
a change in the cost of travel and is assumed to affect journeys of all types
in a similar way.
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Figure 4.2 Zone system for South Yorkshire labelled with zone indices and main
settlements
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In the case of the retail model, it was possible to develop a basic results grid
to facilitate calibration and identification of discontinuities in a single subsystem.
In this case, there are many linked subsystems that make both calibration and the
identification of discontinuities more difficult. A discontinuity in one subsystem
has the potential to cause discontinuities in other subsystems.

The model was run until equilibrium was detected for each cell in the grid, as
described at the beginning of Section 4.3. Figures 4.3–4.9 each display a results
grid for one of the six fast-changing2 endogenous variables. The main settlements
in the real system are marked with a line for easy comparison across the grid. The
results grids for the unregulated services (retail in Figure 4.6 and other consumer-
driven services in Figure 4.7) show clear lines along which both single and
multiple zone discontinuities occur. One example for other consumer-driven
services in Figure 4.7 is from (1.1, –0.05) to (1.2, –0.05). Here, a medium-sized
centre to the east of Sheffield is replaced by a large centre to the north of Sheffield.
The � = 1 discontinuity demonstrated for retail in earlier chapters is not visible,
most likely due to the fact that the impact of travel cost on journey to service
decisions is not set low enough for this to appear (recall this transition only appeared
at low beta values for the retail model in earlier chapters). Figures 4.3–4.5 show
how moving from low alpha and theta to high alpha and theta causes the
competition for housing in large settlements to increase. In this case, the higher
income groups move to the centre of the large settlements and the lower income
groups are displaced to the edge – Doncaster being the clearest example of this

A dynamic comprehensive model  53

Figure 4.3 (�, �) results for grid for low-income population; the main settlements in
the real system are marked with a line for easy comparison across the
grid
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Figure 4.4 (�, �) results for grid for medium-income population; the main
settlements in the real system are marked with a line for easy
comparison across the grid

Figure 4.5 (�, �) results for grid for high-income population; the main settlements
in the real system are marked with a line for easy comparison across 
the grid
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Figure 4.6 (�, �) results for grid for retail; the main settlements in the real system
are marked with a line for easy comparison across the grid

Figure 4.7 (�, �) results for grid for other consumer-driven services; the main
settlements in the real system are marked with a line for easy
comparison across the grid
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Figure 4.8 (�, �) results for grid for small home price; the main settlements in the
real system are marked with a line for easy comparison across the grid

Figure 4.9 (�, �) results for grid for large home price; the main settlements in the
real system are marked with a line for easy comparison across the grid
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in the grid because it is furthest away from the other large settlements. House prices
show less obvious patterns across the grid, but there is a general trend for house
prices to increase near large settlements as travel cost increases.

4.4 Discontinuities in the residential model: the onset 
of gentrification

The methods for gaining insights into discontinuities in retail systems are well
understood and have been described in earlier chapters. In order to analyse those
in other subsystems, and particularly the residential one, it will be appropriate to
develop a zone graph similar to the one developed for the retail model. In the
retail zone graph, the quantities plotted were the revenues and costs in the BLV
dynamics equation. The residential subsystem in this model contains BLV-type
dynamics for house price and housing provision, and these could potentially be
analysed using a zone graph. The situation here is different from the retail case
because there are two residential location dynamics equations (Equations 4.15 and
4.16) rather than one. Also, in the retail zone graph, one of the quantities, the
running cost, KWj, produces a constant straight line. In the residential case, both
the quantities in the dynamics equation (housing pressure by housing type, Li

k,
and housing provision by housing type, Hi

k) are non-linear.
As a starting point, a residential zone graph specific to one housing type is

developed. This plots zone house price for housing type k, hi
k, against housing

pressure for housing type k, Li
k, and housing provision for housing type k, Hi

k.
House price for housing type k, hi

k, does not appear on the right-hand side of the
BLV dynamics equations but has a significant effect on housing pressure, and will
clearly affect different income groups in different ways. One of the phenomena
that might be better understood through this analysis is gentrification, and house
price is clearly an important factor in this. In order to plot a graph for a single
iteration with a range of house prices for one zone, some simplifying assumptions
need to be made. For a graph produced for zone i, it is assumed that:

1 employment is static in zone i;
2 in zone i, housing provision for housing type k, Hi

k, is static;
3 service accessibility is static throughout the region; and
4 house prices in zones other than i are static.

The second of these assumptions is reasonable in most cases because housing
provision evolves much more slowly than house price.

To demonstrate these ideas, an example residential zone graph is plotted in 
Figure 4.10a for zone 141 (near Doncaster) on iteration 200 of a model run using
the best-fit model parameters. Figure 4.10b displays the housing pressure for each
income group. The curve for each income group is fairly wide because the �w

parameter is small3 (�w = 0.000001). This parameter controls the impact of
monetary travel cost and house price on journey to work decisions for each income
group. Each income group will have a preferred house price that is dependent on
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their budget, and the lower the �w parameter, the wider the range of house prices
each income group will accept around the preferred price.

Figure 4.11 shows the same graph plotted using a higher �w parameter (�w =
0.0001). The peak(s) for each income group in Figure 4.11b are narrower, and this
produces a number of stable intersections between the housing pressure and
housing provision lines. The housing pressure curve for each income group can
have multiple peaks if there are multiple zones to which commuters living in this
zone will travel to (because monetary travel costs impact housing budget). The
provision of type k housing, Hi

k, also determines the number of intersections. In
Figure 4.10, there are no intersections, while in Figure 4.11 there are three. Only
the rightmost intersection on each peak is stable due to the way the dynamics work.
If the shape or position of the lines plotted in the graph changes, new stable inter -
sections can appear or existing stable intersections can disappear, causing the current
house price in a zone to shift from one income group’s preference to another. This
can then bring about a change in the demographic that occupies a particular zone.

In order to better understand the evolution of the residential system in a
particular zone, many zone graphs can be plotted back to back in order to build
a surface that covers several hundred iterations. Figure 4.12 shows the first 300
iterations of a model run. Figure 4.12a shows how the housing pressure for
housing type k, Li

k, changes shape, while the housing provision for housing type
k, Hi

k, stays fairly stable. Figure 4.12b displays how the actual house price is
affected by the change in the shape of the housing pressure for housing type k,
Li

k, surface. Early on in the model run, the stable intersections near the preferred
house price for low- and medium-income groups disappear, and so the house price
jumps to the preferred house price for the high-income group. As a result, the
population in the zone changes from the low- to high-income band. This
demonstrates how gentrification can be reproduced by a model of this kind. The
model here contains two kinds of housing: small and large. The starting house
price for each type is different so it would be possible to end up with different
house prices for each type at equilibrium – a demonstration of the influence of
path dependence.

4.5 Concluding comments

We have developed a comprehensive dynamic urban model of the evolution of
multiple urban subsystems that has its roots in the Lowry model and introduces
dynamics into that model. It featured BLV-type dynamics for two types of
unregulated services, as well as housing provision and house prices. The model
was tested by applying it to the metropolitan county of South Yorkshire. A results
grid was generated to identify discontinuities across the many subsystems
represented in this model. Single and multiple zone discontinuities were found in
many of the subsystems. An example of gentrification occurring in one zone was
analysed using a residential zone graph. This graph provided an explanation for
how and why changes in the mix of income groups in a zone occur based on house
price, housing provision and housing pressure.
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An interactive visual simulation of this kind of model is helpful for under-
standing path dependence, emergent self-organisation and discontinuities. The
interactive visual interface provided a large number of simultaneous viewpoints
on the evolution of the simulated system and allowed repeated playback of its
evolution. This allowed detailed exploration of the dynamics in many subsystems.
Development and use of such a large dynamic model would have been much more
difficult without this kind of interface.

One problem identified during model testing is that the zone system used in
this model is possibly too coarse – a finer grid might capture more detail between
the centre and periphery of each particular city, for example. However, more zones
would require more computing power and may impact on being able to run the
model quickly and interactively on a desktop computer. This is clearly something
that could be improved upon in future.

Appendix 4.1 Specification of variables

Table 4.1 Exogenous model variables

Symbol Description

T The number of zones in the system
Vi Total land in zone i
Sk Attractiveness multiplier for type k housing
� Impact of service centre size on service trip decisions

continued . . .
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Figure 4.12 Residential zone graph evolution over 300 iterations: (a) housing
pressure and housing provision surfaces, and (b) actual zone 
house price
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Table 4.1 Continued

Symbol Description

�x Speed of response of type x services to profit signals
�1 Rate at which house prices respond to changes in the system
�2 Rate at which housing provision responds to changes in the system
�w Impact of monetary travel cost and house price on residential location/

journey to work decisions for type w people
ax Area per service industry x employee
� Inverse activity rate
exw Average expenditure of type w people on type x services
ywx Proportion of type x service jobs that provide income level w
ywB Proportion of basic jobs that provide income level w
qw Proportion of budget spent on housing (after subtracting travel to work

costs) by type w people
Ej

Bw Total basic employment in zone j for type w people
�w Impact of travel cost on service usage decisions for type w people
�w Impact of non-monetary travel cost on residential location/journey to work

decisions for type w people
cij Travel cost from zone i to zone j
c′ij Monetary travel cost from zone i to zone j
� Monetary cost of journey to work per km per month (converts cij into c′ij)
�w Total budget for type w people
�1 Proportion of population who change job and home every time-step
�2 Proportion of population who change job only every time-step
�3 Proportion of population who change home only every time-step
�4 Proportion of population who stay unchanged every time-step

Table 4.2 Endogenous model variables – part 1

Symbol Description

Ki
x Rent costs for one unit area of service x in zone i

Ni Land used in zone i before constraints applied
G Required growth rate for basic industry
G’ Growth rate for basic industry adjusted for land constraints
Yi Normalising factor for constraining land use in zone i
Pi Current population of workers in zone i
Pi

w Population of type w workers in zone i
Ej Total employment in zone j
Ej

B Total basic employment in zone j
Ej

Bw Total basic employment in zone j that provides income level w
Ej

w Total employment in zone j that provides income level w
Ej

x Total service x employment in zone j
Ej

xw Total service x employment in zone j that provides income level w
Ej

uw The number of type w job-seekers in zone j
hi

k Type k house price for zone i
Hi

k Number of type k homes in zone i
Hi

k’ Number of vacant type k homes in zone i

continued . . .
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Table 4.2 Continued

Symbol Description

Hi
k2 Number of type k homes in zone i that are fixed by people with type 2

location behaviour (job movers)
Hi

k4 Number of type k homes in zone i that are fixed by people with type 4
location behaviour (non-movers)

Ej
w ′ Number of vacant type w jobs in zone j

Ej
w3 Number of type w jobs in zone j that are fixed by people with type 3

location behaviour (home movers)
Ej

w4 Number of type w jobs in zone j that are fixed by people with type 4
location behaviour (non-movers)

Table 4.3 Endogenous model variables – part 2

Symbol Description

Li
k Total number of residents wanting to live in an ideal hypothetical type k

home in zone i
Uij

kw Number of residents with income w wanting to live in their ideal
hypothetical type k home in zone i and work in zone j

Tij
kwn Number of householders with income w living in type k housing in zone i

and working in zone j with location behaviour n
Sij

xw Total spending by type w people living in zone i on type x services in zone j
Dj

x Total service x expenditure in zone j
Zi

w Combined accessibility of all service types for residents in zone i with
income w

Zi
wx Accessibility of type x services for residents in zone i with income w

Wj
x Total service x provision in zone j

Oi
wk Percentage of type k houses in zone i currently occupied by type w people

E Total system employment
H Total number of homes in the system
S The difference between total real employment and total real housing

capacity
Qi

w Total population of type w workers and non-workers in zone i
F Total real employment (excluding jobseekers)
J Total real housing provision (excluding temporary homes)

Table 4.4 Variable indices

Symbol Description

Wx Service type
Wi,j,m Zone
Ww Person income band
Wk Housing type
Wn Mover pool
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Appendix 4.2 The dynamic model

A4.2.1 Basic industry

A basic employment growth rate is set for each time-step (uniform across the
region). If this causes the land constraints in a zone to be exceeded, then the total
amount of basic industry is constrained in that zone and the ‘surplus’ growth is
redistributed. The detailed mechanism is in Dearden (2012). This process generates
{Ei

B}.

A4.2.2 Regulated service industry sub-model

The evolution of regulated services, such as health and education, is often planned
rather than determined in a market. Here, a simple assumption is made that a given
initial service provision will grow proportionately with changes in the regional
population. The growth rate matches the last percentage change in the system
population. Then a similar mechanism is used to constrain land use as was
described for basic employment. Alternatively, these variables can be set
exogenously to represent planned change.

This process generates {Wj
x} and {Ei

x} for services x that are regulated.

A4.2.3 Unregulated service industry sub-model

The unregulated – retail and other consumer driven – services are represented using
the standard BLV retail model framework. For each of these, in turn, the following
steps are run through. First, the rent for unregulated services x in each zone Kj

x

is calculated based on the accessibility to population (workers and non-workers)
scaled by a constant 
 and to the power of a constant �:

(4.17)

Service usage trips Sij
xw are calculated between each pair of zones for each person

type:

(4.18)

An inverse activity rate is used to include demand from non-workers in these
calculations.

The key step is now to introduce explicit dynamics. Total service revenue Dj
x

(Equation 4.19) attracted to each zone and unit area costs Kj
x are used to calculate

the change in unregulated service provision 	Wj
x:

(4.19)
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(4.20)

The term in brackets is the level of profit for the service in the zone. If these
changes cause the land constraints in a zone to be exceeded, then the total land
used by the unregulated service industries is constrained in that zone. This process
generates {Wj

x} for unregulated services x. An updated level of unregulated
service employment can then be calculated:

(4.21)

A4.2.4 Residential location sub-model

The residential location sub-model is the most complex of the sub-models. It is
disaggregated by three home types (small, large and temporary) and three resident
income groups (low, medium and high).

First, change in house price 	hi
k is calculated based on the difference between

the housing provision Hi
k and housing pressure Li

k (which is calculated at a later
stage below – see Equation 4.37):

(4.22)

(4.23)

In the first time-step, it is assumed that housing pressure is equal to housing
provision so there is no change. In later time-steps, the housing pressure calculated
in the previous time-step is used. As we will see, we need to construct temporary
housing (described later) as part of a mechanism to balance available jobs and
available homes. The ‘price’ of temporary housing is assumed to be static
�hi

temporary (Equation 4.23). A similar system is used to calculate change in housing
provision Hi

k on a fully dynamic basis:

(4.24)

(4.25)

Since house prices usually change more quickly than housing provision, �1 is
set greater than �2. Both these mechanisms are from Wilson (1974). The same
land constraint mechanism as described in the other sub-models is used, so if these
changes cause the land constraints in a zone to be exceeded, then the total land
used by housing in that zone is constrained. Temporary housing is excluded from
this process since it is assumed to take up no land.

	W D K Wj
x x
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	H L Hi
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Next, total employment in each zone is disaggregated by income group, w:

(4.26)

A requirement of the journey to work model (described later) is that the number
of jobs and homes in the region is balanced. To do this, total real employment F
and total real housing provision J are calculated. Then a supply of either jobseeker
provision4 Ei

ww to make up a shortfall of employment (Equation 4.29) or temporary
homes Hi

temp (representing mainly long-distance commuting from outside the
region) to make up a shortfall of housing is provided:

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

where T is the number of zones in the system, Fi is total real employment in zone
i and S is the shortfall of either homes (if positive) or jobs (if negative).

Combined accessibility to services Zi
w is used as a simple representation of the

residential attractiveness of a particular zone. This is calculated and used in an
employment-constrained journey to work model Uij

kw to calculate housing pressure
Li

k. This gives us a measure of where residents would ideally live and work if
there were no constraints on housing provision. Temporary housing is excluded
from these calculations to ensure that ‘real’ housing is constructed to make up
any shortfall (we assume that long-distance commuters will eventually move into
the region permanently). An additional multiplier Sk is included to differentiate
between the attractiveness of different kinds of housing, in this case small versus
large:

(4.32)
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(4.33)

(4.34)

(4.35)

(4.36)

To calculate residential location, a spatial interaction model based on the one
described by Wilson (1974: 187) is used. The version shown here differs in that
disaggregation by householder status (head of household or not)5 has been removed
and feedback has been introduced into the model to allow the rate of change to
be controlled by the relative sizes of the four mover pools in the model. The mover
pools are defined as:

1 people changing home and employment;
2 people changing employment only;
3 people changing home only; and
4 people changing neither home or employment.

The mover pool sizes are represented by four parameters:

(4.37)

These are used to calculate for every zone: the number of homes occupied by
job movers Hi

k2 and Hi
kw2 and fixed residents Hi

k4 and Hi
kw4, the number of homes

on the market Hi
k’, the number of jobs occupied by home movers Ej

w3 and fixed
residents Ej

w4, and the number of vacant jobs Ej
w’:

(4.38)
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(4.40)

(4.41)
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(4.42)

(4.43)

(4.44)

(4.45)

These totals are used to calculate the balancing factors for the journey to work
equations. These balancing factors are calculated iteratively. Iterating 50 times
through the entire set of balancing factors (each model time-step) allows
calculation of flows that meet the constraints reasonably accurately. Journey to
work trips Tij

kw1, Tij
kw2, Tij

kw3, Tij
kw4 that are disaggregated by housing type k, income

band w and mover pool n are calculated:

(4.46)

(4.47)

(4.48)

(4.49)

The balancing factors themselves are messy but straightforward. The explicit
equations are given in Dearden (2012).

These flows are aggregated to calculate the new population of workers in each
zone, Pi

w, and the new population of workers and non-workers Qi
w using the inverse

activity rate �:

(4.50)

(4.51)

In order to provide feedback into the journey to work spatial interaction model,
the proportion of each home type occupied by residents from each income level
Oi

wk is calculated:
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(4.52)

Appendix 4.3 South Yorkshire model data sources

A list of the data sources used is shown in Table 4.5. Spatial data was converted
to 212 � 3 km zones covering South Yorkshire by fragmenting, allocating an area-
based proportion of any totals to each fragment and then re-aggregating to the 
3 km zone system.

Table 4.5 South Yorkshire model data sources

Data Source

Basic, retail and other consumer-driven http://cider.census.ac.uk/cider/wicid/
services employment query.php

1991 SWS Set C (inc. home-workers in
intra-zonal flow)

Education employment www.neighbourhood.statistics.gov.uk
2005

Average house price www.neighbourhood.statistics.gov.uk
Changes of ownership by dwelling price
for 2009

Population by income level Leeds University micro-simulation data
Health employment Estimated from http://nhs.uk and

www.neighbourhood.statistics.gov.uk
data

Notes

1 The average number of workers per household for South Yorkshire is 1.19, and
so is reasonably close to 1.

2 The slower-changing endogenous subsystems (small and large housing provision)
are not shown because they are much the same across the whole grid.

3 For the purposes of generating this graph, all �w parameters are set to the same
value.

4 An assumption is made that jobseekers remain in the same income band when
unemployed and retain the same standard of living.

5 The average number of workers per household for South Yorkshire is 1.19, and
so is reasonably close to 1.
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5 BLV and agent-based models

5.1 Introduction

In this chapter, we explore the relationship between dynamic entropy maximising
models of spatial interaction and structure and agent-based models. The dynamics
are added to spatial interaction models through a form of Lotka-Volterra equations,
which, as we saw in Chapter 1, has led to these models being designated as BLV
– Boltzmann-Lotka-Volterra – models. These models have a long history. ABMs
– agent-based models – are more recent, based on agents that have ‘development
rules’. There is sometimes a confusion with CA (cellular automaton) models in
which the cells are given development rules and so in some ways can seem like
agents. This is resolved by Epstein and Axtell (1996) by distinguishing agents
from an ‘environment’ (which can be a grid of cells). Here, we want to explore
whether it is possible to define a set of agents, an environment and associated rules
in such a way that there is an ABM model that is equivalent to any BLV model.
If this can be established, then, since BLV models are typically more highly
developed and realistic, this should point the way to building more realistic
ABMs. We proceed as follows. We take the retail model as an archetypal BLV
model and then seek to formulate an equivalent – or near-equivalent – ABM.

5.2 The retail model as an archetypal BLV model

We start with the usual model and then show how to convert it into an agent-
based model, which will then allow us to compare the results of the two
approaches. The usual retail equations are repeated here for convenience but with
the definitions of earlier chapters:

(5.1)

where:

(5.2)
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−( )∑
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to ensure that:

(5.3)

and:

(5.4)

logWj is taken as the measure of consumer benefits and X an estimate of the total
benefits achieved.

Note that Wj
� can be written:

(5.5)

so that:

(5.6)

can be taken as a measure of utility.
The usual hypothesis for representing the dynamics is:

(5.7)

where K is a constant such that KWj can be taken as the (notional) cost of running
the shopping centre in j. This equation then says that if the centre is profitable, it
grows; if not, it declines. The parameter � determines the speed of response to
these signals. The equations 5.7 are forms of Lotka-Volterra equations, and hence
the characterisation of these models as BLV models (Wilson 2008).

5.3 An agent-based retail model

We define two kinds of agents:

• Consumers (C), with retail expenditure; and
• Retailers (R), each running a single shop.1

Each consumer and retail agent can be located at a unique point in our region
of interest, rather than being aggregated into zones. We then need to define an
associated set of running costs for each R-agent and a matrix of interaction 
costs.

The C-agents will each be given a residential location, i – possibilities 
of changing these would involve a model extension. Each R-agent will seek a
possible shop location, j. The i’s and j’s are now nodes in the environment. 
In one time period, the consumers will each deploy a utility maximisation rule –
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on a probabilistic basis – to find a shop – the utility being given in Equation 5.6
as uij = �logWj – �cij. Note that this involves ‘looking’ further than neighbouring
cells in the environment, and hence mimics – in fact, generalises – Epstein and
Axtell’s ‘vision’ mechanisms in their ‘sugarscape’ model (Epstein and Axtell 1996).
(This also has a relationship to Potts’ models in the statistical mechanics of crystal
lattices in which interactions extend beyond nearest neighbours.) At each j, the
retailer will be able to sum the inflows and decide whether the revenue exceeds
the costs or not (cf. Equation 5.7). In our trial ABM model, there will be a
probability that a loss-making retailer will seek to relocate. In the terminology of
Holland (1995), each agent has a stimulus and a response – consumers having
income as the stimulus and spending it as a response, each retailer having the total
revenue inflow as a stimulus and the possibility of relocation as a response. The
retailer totalling inflows is equivalent to Holland’s ‘tagging’ of (C) agents as a
means of aggregating. The decision to relocate is an (R) agent interaction with
the environment. We expect that running a model of this type would generate
emergent behaviour as in the BLV model, and we put this to the test below.

The model to be tested works as follows. Each retailer calculates a range of
choice factor Rj for its current shop location j by counting the number of other
shops within n metres of itself, where n is, say, easy walking distance to other
shops nearby – here, we use n = 200 m. We will refer to this range as the range
of choice distance. Rj then represents the number of other shops a consumer would
also be able to visit if it travelled to shop j. The value of Rj is recalculated every
iteration of the model.

Each retailer calculates the net income fj for their shop j every iteration:

(5.8)

where Dj is the total income of shop j and K its operating costs. The total operating
costs of all shops in the region are set equal to the total spending money of all
consumers in the region. As a result, some shops will always be unprofitable, and
as a result their owners will be looking to relocate.

At each iteration, a proportion of randomly chosen retailers are allowed to
relocate. Only those retailers making no money (fj ≤ 0) will consider relocating
when prompted. A retailer that decides to relocate has an equal chance of either
moving to a random position in the region or moving near to one of its competitors.
If it decides to move near a competitor, it will evaluate the profit made by every
other shop k and use this to calculate a probability mjk of moving near that shop:

(5.9)

where tk is the profit made by shop k. If a shop k is making a loss, then tk = 0 and
there will be no chance of another retailer relocating near it. Here, we define
‘moving near to a competitor’ as: moving to a random position that is at most n
metres away from it, where n = range of choice distance.
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A consumer’s position in the region is fixed and represents the position of its
home. Each consumer calculates the probability pij that it will travel from its home
i to visit shop j:

(5.10)

As with the entropy maximising model, � represents the impact of range of
choice on shopping decisions, � the impact of travel cost and cij is the travel cost
between house i and shop j. The set of all pij for one consumer agent i makes up
a probability distribution that represents the likelihood of that consumer shopping
at each shop in the region. Each time a consumer is prompted to go shopping, it
generates a uniform random number to choose a shop based on these probabilities.
Each consumer agent has a fixed amount of money to spend when it goes shopping,
and it always spends the full amount in its chosen shop. This amount can obviously
vary across agents depending on the data used to initialise the model.

During the course of a model run, several retailers may locate within each other’s
range of choice distance and so mutually benefit each other by increasing each
other’s range of choice factor, Rj. We can think of a group of retailers that does
this as making up an ‘emergent’ retail zone, which could, in practice, represent a
row of shops, a high street or a shopping mall. Some pairs of retailers in the retail
zone might be outside each other’s range of choice distance and so not mutually
benefit each other, but still be part of the same group because they are linked
indirectly via other retailers. We can identify these groups as they form in the
model using a recursive algorithm to identify closed groups of retailers that are
all directly or indirectly connected to each other. The full algorithm is given in
Appendix 5.1. The number of retailers in each emergent retail zone can be thought
of as equivalent to the Wj term in the entropy maximising model and the value of
Rj for each retailer in the centre may be less than or equal to this term depending
on its layout. An alternative measure of attractiveness for a retailer could use the
Wj term for the retail zone it belongs to rather than the Rj term. The formula for
pij would then be:

(5.11)

One iteration of the model comprises the following steps:

1 Each consumer chooses a shop and spends all their money there.
2 All retailers calculate their profit level.
3 � per cent of retailers are given the option of relocating.
4 All retailers recalculate their range of choice factor, Rj (because one retailer

moving can affect multiple neighbours).
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5 The size of each emergent retail zone is calculated.
6 All consumers recalculate their set of probabilities pij.

The percentage � represents the rate at which retailers respond to profit levels
and so performs a similar role to � in the entropy maximising model.

5.4 Results: a comparison

5.4.1 System overview

In order to properly test the agent-based model, we choose to model the
metropolitan county of South Yorkshire in the UK. By modelling a real system,
we are better able to judge whether the outputs are realistic or not. Full details of
data sources and how we use them to initialise each model are given in Appendix
5.2. Figure 5.1 shows the raw data plotted on a map and gives an idea of the
distribution of retail outlets within the county (repeated here from Chapters 2 and
3 for convenience).

5.4.2 System equilibrium

The BLV model generally tends towards an equilibrium solution. We can detect
this by examining the change in size of each retail zone, Wj. Here, we define
equilibrium as less than 0.01 per cent change in the size of each retail zone for at
least 250 iterations. We abandon a model run after 100,000 iterations in case the
model does not converge.

Figure 5.1 Visualisation of the South Yorkshire data

Sheffield ...Barnsley

Doncaster

Rotherham
Meadowhall



For the agent-based model, detecting equilibrium is more difficult because
whatever structure emerges is not fixed. For this purpose, we use the fuzzy
numerical technique developed by Hagen-Zanker et al. (2006) for comparing
continuous raster maps. At 100 iteration intervals, we calculate the number of
retailers in each cell of a 40 � 40 grid that covers the region. We use the fuzzy
numerical similarity metric to compare consecutive grids,2 and if this metric exceeds
0.996 (a threshold found by experimentation) we assume that the model has reached
a stable state.

The rate of response parameters in each model were set as follows: for the BLV
model, we use � = 0.003, and for the ABM, we set � = 1%.

5.4.3 Emergent structures

Our first job is to see what kind of structures and behaviour, if any, emerge from
the agent-based model. For this, we use population data for South Yorkshire to
generate consumer agents inside Census Area Statistics (CAS) ward boundaries
(Figure 5.2) but start with a uniform random distribution of retailers across 
the region. For this first exploration, we choose the model parameters � = 1.0, 
� = 0.5. The output using Equation 5.10 is shown in Figure 5.3 and the output
using Equation 5.11 is shown in Figure 5.4.

In both cases, realistic structures emerge with large clusters of retailers appearing
at the major cities/towns in the region: Sheffield, Barnsley, Rotherham and
Doncaster. Equation 5.10 appears to produce more compact retail centres than
Equation 5.11, presumably because there is more benefit in locating close to as
many other retailers as possible.

76 BLV and agent-based models

Figure 5.2 Distribution of the 52,722 consumer agents in the South Yorkshire
model generated from CAS wards



Figure 5.3 Structure in the model using Equation 5.10 (shop height � number of
other shops nearby)

Figure 5.4 Structure in the model using Equation 5.11 (shop height � number of
other shops nearby)
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5.4.4 Results grids

For the BLV model, a results grid can be plotted as in earlier chapters, and this
shows the possibilities of emergent behaviour and of phase changes through plots
of the order parameter. The results grid in Figure 5.5 represents the parameter
space formed by varying the parameters � = 0.2 to 2.0 and � = 0.2 to 2.0, using
a step size in both cases of 0.2.

Figure 5.6 shows a surface plot of the order parameter N(Wj > 300,000) for the
same parameter space as Figure 5.5.

For comparison, we produce a results grid for both variants of the agent-based
model and show the results in Figures 5.7 and 5.8. A visual comparison of the
grids suggests that both models are producing similar outputs with the BLV model
grid in Figure 5.5.

Plots of the order parameter N(Wj > 300,000) in Figures 5.9 and 5.10 indicate
that the behaviour of the agent-based model is largely similar to the BLV model
across the parameter space; however, there are some clear differences, especially
when Equation 5.10 is used. This may be, in part, because the agent-based model
is a much more noisy system than the BLV model.

5.4.5 Model calibration

We can measure the goodness of fit of each of the model runs in the results grids
above to find a best fit for each model.

The goodness of fit of the output from the BLV model is easily checked 
against data using the coefficient of determination, R-squared, because we have
a fixed zone system – each retail zone in the model is at the same position 
as its equivalent zone in the data. We find the best fit at (� = 1.0932191948797,
� = 0.5260256949075), which produces an R-squared value of 0.8. The output

Figure 5.5 Results grid for the BLV model in (�, �) space (retail zone height �
floor space)
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Figure 5.6 Order parameter surface plot for the BLV model in (�, �) space; colour
scale indicates number of retail centres greater than 300,000 m2 where
white = 0 and black = 2

Figure 5.7 Results grid in (�, �) space for the agent-based model using Equation
5.10 (shop height � number of other shops nearby)
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Figure 5.8 Results grid in (�, �) space for the agent-based model using Equation
5.11 (shop height � number of other shops nearby)

Figure 5.9 Order parameter surface plot for the agent-based model using Equation
5.10 in (�, �) space; colour scale indicates number of retail centres
greater than 300,000 m2 where white = 0 and black = 2
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Figure 5.10 Order parameter surface plot for the agent-based model using Equation
5.11 in (�, �) space; colour scale indicates number of retail centres
greater than 300,000 m2 where white = 0 and black = 2

Figure 5.11 Best-fit BLV model run for South Yorkshire; retail zones are shown by
blocks (height � floor space) and residential zones are shown by circles
(radius � spending power)

b e t a

2 . 0

1 . 8  —

1 . 6  —

1 . 4  —

1 . 2

1 . 0  —

0 . 8

0 . 6  —

0 . 4

0 . 2  —

1 l l l l l l l l l a l pha  
O O O O l —

N J J ^ < J i C O O N J J i . C ^ O O O



82 BLV and agent-based models

(Figure 5.11) matches the real system reasonably well, however, because we are
not taking into account the complexities of the transport network in our measure
of distance, we are missing some retail zones, most notably the large Meadowhall
shopping centre near Sheffield.

Measuring the output from the agent-based model is more difficult because retail
zones can emerge anywhere on the map. We again make use of the fuzzy numerical
comparison technique because it allows us to compare two retail systems that differ
in both position and number of centres. To do this, we convert both the town centres
data (see Appendix 5.2) and the agent-based model output to a raster grid. We
find the best-fit parameter set for Equation 5.10 at (� = 1.57, � = 1.15) (Figure
5.12) and for Equation 5.11 at (� = 1.57, � = 0.73) (Figure 5.13).

5.5 Conclusion

We have demonstrated a zoneless agent-based model of urban retail in which retail
centres emerge due to individual retailers locating near each other. By comparing
the outputs across a portion of (�, �) parameter space, we have demonstrated that
it produces similar results to the well-established BLV urban retail model. This
work is a first step towards defining an agent-based model that is equivalent to
any BLV model.

In comparing the models side by side, it becomes clear that the BLV model is
far less computationally intensive to run when dealing with very large systems.
For example, the real population of South Yorkshire is approximately 1.2 million
people; however, in order to produce fast run times, we modelled the region using
~50,000 consumer agents and ~500 retailer agents (see Appendix 5.2 for more
details). Given more time and/or computing power, the number of retailer and
consumer agents could be increased closer to the real number.

The agent-based model is potentially easier to disaggregate because we can
quickly introduce multiple agent types through class-based inheritance in an
object-oriented programming language.

Here, we used macro-level data to both initialise the agent-based model and
calibrate its output. It would be preferable to use micro-level data to generate and
calibrate the retailer and consumer agents, though locating appropriate sources of
data at this scale is difficult.

The next steps would involve more disaggregation – that is, more agent types
– and then to extend the model in the direction of a comprehensive model that
drew in a wider range of urban sub-models – possibly using the Lowry (1964)
model as an archetype, but also moving towards realism (cf. Wilson 2006).
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Appendix 5.1 An algorithm for calculating the boundary
and membership of emergent retail zones

Pseudo-code is given here for calculating the emergent retail zones that appear in
the model.

Setup an empty list of shops called processedList
While there are still shops not in processedList

Choose a shop s that is not in processedList
Setup an empty list called shopList
Call function findClosedGroup with s, shopList and
processedList as parameters
shopList now contains all the shops in one retail zone

The recursive function findClosedGroup does the following:

For each shop t nearby
If t is not already in shopList

Add t to shopList
Add t to processedList
Call function findClosedGroup with t, shopList and
processedList as parameters

Appendix 5.2 Data sources

The retail data come from the Town Centres project 2004. We use the total retail
floor space attribute from each town centre area to:

• For the BLV model: set the floor space of each retail zone in the BLV model.
• For the ABM model: determine the number of retailer agents we need to

generate inside the town centre area for the ABM model. We do this by
dividing the total retail floor space by an average shop size of ~2,800 m2,
which produced about 500 retailer agents for the region. The average shop
size was chosen to reduce the computation load but could obviously be reduced
given more time.

The population data are from the 2001 UK Census. We use the All people field
from the KS001 Usual resident population table for the CAS Wards boundaries.
Then:

• For the BLV model: the centroid of each CAS Ward is the location of each
residential zone and the Pi value is set to the All people value.

• For the ABM model: the All people value, divided by an aggregation factor,
decides the number of consumer agents we generate at random positions inside
the CAS Ward boundary. In this case, the aggregation factor was set to 24
(meaning that each consumer agent represents 24 people) and produced
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~50,000 consumer agents in the model. Again, this was done to allow for
reasonable computation times.

Average retail spending per month data (derived from the ONS Family Spending
2010 Edition) was used to:

• For the BLV model: set the ei value for each residential zone.
• For the ABM model: set the spending money available to each consumer agent.

For simplicity, all travel costs were calculated from the Euclidean distance
between two points.

Notes

1 For simplicity, we are only modelling independent retailers. An interesting
extension of the model might be to include chain stores with one retailer owning
multiple shops.

2 We use a neighbourhood size of 10.
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6 Gaming with dynamic models

6.1 Introduction

With over half the world’s population now living in urban areas (Martine 2007),
it is becoming increasingly important to understand how cities evolve so that we
can ensure that urban environments are sustainable and serve the needs of their
populace. The evolution of cities is influenced both by the actions of planners
working in the public sector and the self-organising processes that occur in a city
without any central control, such as those of the private market and private
individuals (Garvin 2001).

Understanding urban evolution is, however, a significant challenge. Cities 
are systems of organised complexity (Weaver 1948; Jacobs 1961). Large-scale
behaviours and structures can emerge out of the micro-scale interactions of people
but are not easy to understand or predict from individual actions (Mitchell 2009).
The behaviour of each component is dependent on the behaviour of many others,
making it difficult to analyse any one part in isolation (Allen and Sanglier 1981).
Cities also contain non-linear relationships between different parts, which further
complicates analysis. One resulting phenomenon is path dependence (Arthur
1988), which means that random events in the evolution of a system can have a
great influence on its future state. Another is the potential for discontinuities to
occur – where small changes to one part of a system have disproportionately large
effects elsewhere.

A better understanding of the dynamic behaviour of cities would help planners
to manage the self-organising processes at work in the system. It should be
possible, for example, to develop one part of a region without causing decline in
other areas.

Dynamic urban models can be brought to bear for studying the evolution of
urban systems. Increases in available computing power have allowed more detail
to be represented but means that the models are becoming complex – examples
being agent-based models (Schelling 1969) and Boltzmann-Lotka-Volterra (BLV)
models (Wilson 2008). Computer simulation is one way of analysing such models,
and involves running computational models and exploring the outputs. Simulations
provide a useful way of examining the underlying models and theory, identifying
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new and simple regularities, and generating new hypotheses (Hartmann 1996). A
simulation of this kind typically produces large volumes of data and involves
complex relationships, so we require good analytical tools in order to make
progress. Batty et al. (2004) introduce the idea of visual modelling and identify
three potential benefits: (1) it can provide a simplifying viewpoint on complicated
systems; (2) it enables exploration and discovery; and (3) it allows engagement
with non-scientific experts. Extending a visual modelling interface to allow the
user to participate in the simulation to affect the outcome in some way appears
to be a natural next step. To see why this might be beneficial, it is useful to look
at the typical mode of use for urban models:

The implicit objective in the conventional approach to modeling is to produce
forecasts of the most likely consequences of some discrete proposal for
someone other than the model-builder. What the recipient of the forecast learns
is no more than the contents of the forecast. Nothing, or nothing much, is
learnt about the way in which the city works or about the role which the
proposed project might play in its evolution.

(Macmillan 1996)

Additionally, given the already described complex, non-linear nature of urban
systems, producing accurate forecasts in a conventional sense is impossible 
(but see Chapter 3). It may be helpful to put a greater emphasis on exploring the
processes at work to try to gain a greater understanding of how the system behaves
in a generally applicable way, rather than focusing on one simulation outcome.

One way of doing this might be to use participatory computer simulation, first
developed in the context of classroom learning by Wilensky and Stroup (1999).
In participatory simulations, human-controlled agents can provide a complex and
accurate behavioural model to apply to the solution of any given objectives in the
simulation (Cacciaguerra and Roffilli 2005). In this framework, an urban simula -
tion model could, for example, enable stakeholders to participate in the evolution
of a simulated urban system. The model is then open to feedback from participants
who can suggest improvements and changes to bring the simulated system closer
to the real system. In this mode of use, it might be helpful to see urban models
as in constant evolution themselves in the face of repeated use, feedback and
development. The Kolb (1984) learning cycle (Figure 6.1) used in experiential
learning suggests that the capability to experiment with system behaviour could
be of benefit to stakeholders learning about the likely behaviour of a system –
even if that experience is gained in a virtual system rather than a real one.

We explore participatory urban simulation here by developing two prototype
systems that allow human participation in a computer simulation of urban retail.
Both systems are derived from the agent-based model in Chapter 5. We start in
Section 6.2 by exploring different ways of structuring user participation. We define
our template agent-based retail model in Section 6.3, derive a demonstrator system
from it in Section 6.4 and a game in Section 6.5, and then conclude the chapter
in Section 6.6.



6.2 Approaches for structuring user participation in
simulations

Clearly, there are many different ways a user might participate in a simulated
system. In non-participatory urban simulations, the level of interaction is usually
restricted to adjusting exogenous model parameters in order to explore the range
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Figure 6.1 (a) Standard Kolb learning cycle and (b) participatory computer
simulation learning cycle
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of outputs. In a participatory simulation, we would expect more direct interaction
with system entities. For example, Semboloni’s (2007) online CityDev software
uses a comprehensive agent-based model as the basis for a participatory simulation
in which a human can generate new agents and control them. Its application to
the development of a new suburb of Florence emphasises the role of private
investors in determining the resulting urban structure. The type of underlying 
model will clearly play some part in determining what a user can and cannot do.
Aggregate land use transportation models could, for example, allow a user to control
different parts of the transport infrastructure or set planning policy in particular
zones. In this chapter, we focus on agent-based models because they provide an
opportunity for a user to control individual system actors. Participatory simulation
has obvious similarities with serious games, which are rapidly gaining acceptance
as an innovative and engaging way of teaching and learning in fields such as the
military, government, education, corporate training and health care (Susi et al.
2007). There is a lot of overlap in the two areas, though clearly not every
participatory simulation need involve gaming, and not every serious game need
involve simulation; however, both involve participation in a process, and it is
helpful to explore the two concepts together.

Many participatory simulations do not involve computers. One of the most well
known is the paper-based beer game (Sterman 1989), which allows participants
to learn about the behaviour of the retail supply chain. Reckien and Eisenack (2008)
developed a non-computer role-playing game to teach participants about urban
sprawl. The game was found to give participants a better understanding of the
interdependencies between the different actors in the system, as well as
familiarising them with the qualitative computer model that the simulation was
based on. Barreteau et al. (2001) found benefits in applying a multi-agent system
model alongside a non-computer role-playing simulation (derived from the model)
for improving the management of irrigation systems in the Senegal River Valley.
The role-playing game was found to make the computer model and its underlying
assumptions more accessible to local stakeholders. It also helped to evaluate and
validate the model. Similarly, Castella et al. (2005) used a role-playing game to
collaboratively develop an agent-based model of agricultural dynamics with local
stakeholders in Vietnam.

SimCity is the most well known computer game related to urban planning but
was designed primarily for entertainment, and as a serious game fails in many
areas (Lobo 2005), not least because the underlying model is hidden. Von
Mammen and Jacob (2009) allow a player to control a computer simulation of
swarming agents by adjusting the parameters that control the interaction of agents
and by taking control of single agents, among other things. This kind of immersion
is presented as a way of better understanding dynamic complex systems and so
is obviously of relevance to cities. Van Bilsen et al. (2010) developed SimPort-
MV2, a multiplayer computer game based around a planned extension to the port
of Rotterdam. It was designed to give students and professionals the chance to
explore different strategies for developing an international port while learning about
the behaviour of complex adaptive systems. They present the view that simulation
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games are one of the only tools flexible enough for participants to learn about
complex adaptive systems.

Here, we are interested in using participatory computer-based simulation to
explore the process of urban evolution, focusing specifically on the phenomena
already identified: interdependencies, self-organisation and emergence, discontinu -
ities, and path dependence. To do this, we derive our prototype systems from an
agent-based model that is known to demonstrate such phenomena. A participatory
simulation derived from an agent-based model and structured as a game would
provide each user with the opportunity to role-play subjectively as one of the 
agents in the simulation, competing with other agents, working within rules and
constraints and eventually winning or losing, subject to some success criteria. The
idea being that the user could gain insight into the important factors that determine
the evolutionary path of an urban system, similar to the way human chess players
develop expert knowledge about the important parts of the game, rather than using
the brute force analysis applied by computer players. What form the game takes
obviously depends on the roles available in the system being simulated. In the
case of a retail system, the main agents are retailers, consumers, developers and
the planning authority. It would be important to provide each player with a clear
role and support multiple human players. For comparison purposes, we also
develop a second form of participatory simulation structured as a demonstrator.
With no criteria for success and no imposed rules (other than the constraints in
the underlying model), this would provide a sandbox for objective experimentation
with all elements of a system.

6.3 A simple retail agent-based model

The template for our participatory systems is the agent-based model developed
in Chapter 5. Where the agent-based model runs automatically, with the computer
updating all the entities in the simulation, the participatory systems only proceed
once all participants have provided their input. By using an agent-based model,
we are allowing exploration of a wide range of scales: from regional, through retail
zone, right down to individual shops. The zone system in the model emerges from
the behaviour of individual agents and is an example of second-order emergence
(Squazzoni 2008) – macro-structures that emerge from micro-behaviour but then,
in turn, influence that same micro-level behaviour.

One change over the original model is that if a retailer move would cause it to
overlap with another shop, it is randomly displaced to a nearby, non-overlapping
position – we assume all shopping zones are single storey. This is intended to
help participants see more easily how many retailers exist in each retail zone.

For comparison with the participatory simulation systems, we first apply the
agent-based model to the evolution of the metropolitan county of South Yorkshire.
We use the best-fit parameters found for this model in Chapter 5 (� = 1.57, � =
0.73). The model contains ~500 shops and ~50,000 households (due to constraints
on time and computing power, some aggregation was necessary – each household
agent represents ~24 real consumers). Figure 6.2 shows these agents located based
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on real data (see Appendix 5.2 of Chapter 5 for details of the data used). The initial
conditions for the agent-based model differ in that the retailer agents are located
in a uniform random way throughout the region.

Figure 6.2 Household and retailer agent distribution derived from data

Figure 6.3 After 400 retailer moves (80 iterations) controlled by agent-based model
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During the agent-based simulation run, one can see the process of retail zone
emergence, growth and decline that occurs in the simulation. The retailers ‘self-
organise’ into profitable clusters and disband unprofitable clusters. It is also
apparent that retailers locate near where most households are. Path dependence
is visible in the seeds of early randomly forming small clusters growing to form
larger clusters at those points. We get some idea about interdependence in the
reliance of retailers on one another to increase apparent consumer range of choice.
After 400 retailer moves (which actually equates to 80 iterations with five shops
moving every iteration), the ABM generates the system shown in Figure 6.3.

6.4 A demonstration retail system

We modify the retail ABM explained in Section 6.3 to construct a demonstrator
in which the user can move the retailers in a region around without any obvious
goals or structure. This mode allows exploration of interdependencies between
entities at a range of scales (e.g. individual shops and retail zones). The immersive
nature of the system means that the user can see what patterns are possible given
the constraints of the model so that they might better understand the competition-
driven self-organisation and emergence that appears in the agent-based model. This
knowledge would hopefully then provide insights into the nature of real retail
systems.

The user is given system-level metrics that could have an impact on the
dynamics in the system: (1) the total proportion of retailers making a profit; and
(2) the accessibility of households to retail facilities. The accessibility to retail
facilities �i for householder i is defined as the combined attractiveness of all retailers
from that location:

(6.1)

Shop profitability is shown by the colour of each shop, red for unprofitable 
and green for profitable. The overall amount of profit made by all the shops in a
retail zone is displayed over it as a text label. We manually calibrate values of
accessibility through trial and error to fit into four categories: low, medium, high
and very high, which is then used to visualise the accessibility to retail facilities
for each household using contours. The user moves retailers by dragging and
dropping them using the mouse. Multiple shops can be moved at the same time
by dragging a selection box over them, making this relatively quick and easy. The
state of the system updates every time the location of a retailer is changed. The
stochastic nature of the model means that the system state will fluctuate over time
– households can potentially change their shopping locations at every step,
bringing the behaviour of the demonstration retail system closer to the uncertainty
of the real world.

The demonstrator was tested using the exact same set-up as was described in
the previous section. Using the demonstrator allows a participant to explore the
impact of individual shops and entire retail zones on the rest of the retail system.

� ��

i k ikk
W c= −( )∑ exp
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Retail zones form dynamically as retailers are moved around. As large retail zones
form, individual retailers and small groups of shops nearby have little choice but
to join the larger agglomeration to avoid being unprofitable. Path dependence is
made clear by the fact that, with a limited number of moves, one can only achieve
so much – moving a large retail zone is not really feasible if a high level of invest -
ment (in this case, in moves) has already been made. Use of the demonstrator
suggests that the spatial form of a retail centre might be an important factor in its
attractiveness to consumers. The Parkgate Shopping Park has an advantage over
Rotherham because its purpose-built structure packs a similar number of shops
into a smaller area and so offers visitors more convenient access, and it is probably
seen as a more compact whole. It is certainly more attractive in our model. By
contrast, Rotherham is made up of more spread out and separate streets, diluted
by mixed uses. Parkgate has 118,000 m2 of retail in an area of 125,000m2 versus
Rotherham’s 105,000 m2 spread out over 512,500m2. A possible solution might
be to increase the continuity and density of shops in Rotherham town centre.
Rotherham town centre and many other high streets likely need updating in the
face of competition from purpose-built shopping centres, something that is being
tackled in Rotherham by the 25-year Rotherham Renaissance project.

6.5 A two-player urban retail game

We adapt the agent-based model into a game for two people to role-play as large
chain-store retailers/developers, each owning half of all the shops in a region. This
is not realistic but is offered on a simple proof-of-concept basis. The players
compete to build the most profitable pattern of shops after a fixed number of shop
moves. Writing a computer-controlled agent to represent this kind of large-scale
organisation in a computer is complicated, so having a human play this role
simplifies the system a great deal. To make the game fair, each player’s group of
shops is initially located in a near identical spatial pattern. This is done by
allocating pairs of shops to random locations in the region and giving one shop
to each player. There are no computer-controlled retailer agents. Each player takes
it in turn to move a set number of shops, using a similar interface to that described
for the demonstration retail system, after which the households in the region
recalculate their shopping patterns. As with the demonstrator, each player has access
to detailed information about the region: household density, the net income of each
shop and retail accessibility level.

Figure 6.4 illustrates the end state after the retail game was played by two players
for 40 turns, where each player moved five shops per turn. The game forces players
to try to outdo their opponent, but it means more risky locations were tried. The
winning player made better decisions about where to invest moves in terms of
location and zone size. Low retail accessibility anywhere in the region was a useful
signal to the players that a new centre might be built there, though this obviously
depended on the carrying capacity of the location in terms of its overall spending
power. In competition, it was difficult to not oversupply an area with retail
facilities. Zones defined in inappropriate locations were likely to lose out in



competition with better-located zones. Discontinuities were observable at the retail
zone scale when an existing retail zone became redundant in the eyes of consumers
due to the appearance of a more attractive, usually larger or closer, retail zone.

6.6 Conclusions and future work

Human participation in simulations of complex urban systems has the potential
to provide a useful and original point of view on the behaviour of dynamic urban
models for the purposes of model development and improving our understanding
of complex urban systems.

Participatory simulations of this kind could be used in teaching. They could also
be used as an accessible and engaging way in to planning support systems (PSS)
and might help to increase the currently low level of adoption in the planning
community (Vonk et al. 2005). They have the capacity to make underlying models
and data more transparent, make the complex non-linear dynamics of urban
systems easier to understand and help planners become more familiar with the 
types of challenges they are likely to face under a range of different conditions
when supporting a competitive market place. Where stakeholders are involved,
participatory simulations could be helpful for informing and engaging with them
about important issues.

The systems presented here are prototypes, but give some idea of what might
be possible in future given more research in this area. These systems would likely
need to be further developed with, and tested by, potential end users to ensure
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Figure 6.4 After 40 player turns each in the two-player game



they match their requirements. Both systems provide useful but very different
viewpoints on the processes at work in the simulation. They are potentially useful
as hypothesis-generation tools and allow exploration of the interplay between
planned actions and self-organising processes. The game could be used to explore
how large chains such as Tesco grow to dominate grocery retailing. It would
beneficial to test the game with a larger number of players – having only two
retailers in South Yorkshire, as in the example we gave, is clearly unrealistic. Using
the retail agent-based model as the basis for both systems subjected it to a lot of
scrutiny and points to possible future improvements, such as retailer agents that
take into account household accessibility levels, household density and/or
household shopping budgets when deciding where to relocate. There is also a need
to realistically calculate the attractiveness of clusters of shops all owned by the
same chain-store retailer player. Disaggregating the household agents by different
socio-economic variables might help to provide more realism.

In the ABM, the retailers followed dense residential areas and it was difficult
to imagine any other distribution of retail given the static residential locations.
These two subsystems are obviously closely linked, and it might be useful to build
a more comprehensive version of the model in which households could also
relocate. The game presented here provides players with complete and detailed
information about the region, something that real retailers are unlikely to have
access to. It might be interesting to experiment with giving players and agents
partial information about the region to see how this affects the behaviour of
individual players, and the region as a whole. Finally, there is potential to extend
the game to work over a computer network to support larger numbers (ideally
tens or hundreds) of players. This would provide more realistic conditions and
responses for the simulation, as well as the opportunity to record and analyse
human-agent-generated emergent patterns in the system. Berland and Rand (2009)
see participatory simulations within an agent-based model framework as a way
of ‘crowdsourcing’ dynamic information from participants. Players could take on
a variety of different roles, including retailer, developer and planner. Supporting
large numbers of players in this way is now almost routinely done in online games
produced by the entertainment games industry.
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7 Applications in archaeology
and history

7.1 Introduction

Geography is rooted in place and archaeology and history in time.1 But the
interesting questions in geography are about change, and history, especially a sub-
discipline such as urban history, is sometimes focused on place. A more common
distinction is that geographers, on the whole, work in contemporary times and
historians in past times, though this distinction is blurred by the work of historical
geographers, on the one hand, and contemporary historians, on the other. Perhaps
– a conjecture – one reason why the two disciplines do not come closer together
is because the data available from historical sources are so imperfect that the
techniques of the contemporary geographer seem unusable. History is a jigsaw
puzzle with many of the pieces missing.

The geographical modeller can offer, first, a systematic framework for analysis
that embraces both place and time, and, second, models based on this framework
that may be used, in some instances, to fill in data gaps. The framework itself
offers a way of systematising the historical ‘picture’ and integrating historical
evidence, and the models, through the theories on which they are built, can offer
new insights for historians. Thus, it is possible to articulate a common foundation
and to facilitate ongoing research. The aim in this paper is to show, through two
case studies, how ideas developed in geographical modelling can be generalised
for the potential benefit of both archaeology and history.

The models to be developed have an important role to play in complexity science.
Weaver (1948, 1958) characterised problems – or systems – as simple, of
disorganised complexity and of organised complexity, and the models presented
here lie in the third category, with sub-models developed from the second. In
particular, they exhibit non-linearities and the characteristics of such systems come
into play – particularly the notion of ‘path dependence’.

7.2 Geographical models

7.2.1 Introduction

It is useful to begin by briefly referring to the classical models that geographers
have typically brought to bear and that are still much cited, and then to outline a
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newer (though now not-so-new) generation of mathematical models. It can be
shown that the classical models are special cases of these.

The models can relate to towns, cities, regions or even countries, and the flows
between them. Or we can examine interactions between zones in a smaller area,
such as a single town.

7.2.2 The classical models

The candidate models are:

• Malthus – demography;
• Von Thünen – agricultural land use;
• Weber – location of industry;
• Palander, Hoover and Hotelling – market areas and competing firms;
• Burgess, Hoyt, Harris and Ullman – urban structure and development –

residential structures;
• Christaller and Losch – central place theory; and
• Zipf – spatial interaction.

Interestingly, these models are all defined on a basis that treats space as
continuous. They define their own boundaries. The mathematical models to be
presented here work best when space is divided into a set of discrete zones. This
may indicate that the deployment of this kind of zone system was a powerful
invention!

Malthus (1798) demographic model offered exponential growth and then
corresponding decline as resources became unavailable. This model became the
logistic model. Von Thünen’s (1826) work on agricultural land use remains very
important, partly because it was fully rooted in its historical period – more
importantly because it opened up some valuable economic concepts in urban and
regional analysis. He showed that by introducing transport costs, the more intensive
agriculture would be found in rings near to markets. These ideas were generalised
in a contemporary context by Alonso (1964) and cast in mathematical program -
ming form by Herbert and Stevens (1960). Weber’s (1909) work on industrial
location was similarly important. He was concerned with the optimum location
of a factory in relation to resources, labour and markets. These concepts were
generalised in different ways by Palander (1935), Hoover (1937) and Hotelling
(1929). Burgess (1927), Hoyt (1939) and Harris and Ullman (1945) were all
concerned with the social structure of cities. Burgess showed how immigrants took
up residence in inner-city areas and progressively, as wealth increased, moved
further out: another kind of ring structure. Hoyt added a sector dimension, and
Harris and Ullman a poly-nucleated structure. Christaller (1933) and Losch (1940),
in different ways, set themselves the task of modelling the overall pattern of
villages, towns and cities in relation to market areas, based on different principles.
Zipf (1946) developed a model of spatial interaction by analogy with Newton’s
law of gravity.



All of these models offer some insights and the beginnings of theories in their
various domains. However, it can be shown that, within the mathematical
modelling formalism introduced here, all of these models can be reproduced as
special cases – see Wilson (2000) for a review of these developments. In this
chapter, we focus on one particular model from the set that is available and show
how it can be transported from contemporary analysis into, first, archaeology and,
then, history. The two case studies to be presented are based on the model that
has been extensively used in earlier chapters.

7.3 Archaeology

In the late 1980s, Rihll and Wilson (1987a, 1987b, 1991) worked with point data
on urban structures in Greece in the ninth century BC. Locations were known from
archaeological explorations, but nothing was known of relative sizes. This work
is now being developed further.2 See Figure 7.1 for a map of the settlement
locations.
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Figure 7.1 Settlements in Greece in the ninth century BC
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The retail model was reinterpreted. The i’s and j’s in the model can now be
taken as settlement locations and the interactions a combination of trade and
migration. It is then possible to run the model with, initially, ‘all settlement sizes
equal’ – that is, all the Wjs equal – and to seek an equilibrium from the dynamic
equations – essentially solving Equation 7.9 below iteratively. In this case, with
very sparse data, it was necessary to explore a range of � and � parameter values
to see if plausible outcomes could be achieved. One set of results is shown in
Figure 7.2.

Bevan has now improved the network base of the model to take topography
into account, as shown in Figure 7.3. This is an elementary network analysis to
show the hierarchical structure that emerged – and it is interesting that the main
central places include Athens, Corinth and Thebes. These central places were all
well known to archaeologists bar one, and it is probably still an open question as
to whether a major dig should be launched there!

What this illustrates is that models can help to solve ‘missing data’ problems
– and this is likely to be very helpful in archaeological and historical contexts.

Figure 7.2 The Greek settlement hierarchy as revealed in a model run
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7.4 History

7.4.1 Introduction

The second example takes us beyond equilibrium analysis to attempt to model
real dynamics: the evolution of the United States regional system from 1790 to
1870. The period was chosen because, first, there was good census data on urban
populations and, second, we were particularly interested in the impact of railway
development on the Midwest, following the work of Cronon (1991). The
exploration of the evolution of systems of cities has a long history – illustrated
by Berry’s (1964) classic paper. In this section, we take a simple model based on
that used for the evolution of retail centres within a city and reinterpret it as a
model of a system of cities. The retail model is outlined again for convenience in
Section 7.4.2, and its ‘system’ interpretation in Section 7.4.3. In Section 7.4.4,
we explain the idea of urban ‘DNA’ and its evolution. In Section 7.4.5, we describe
the current system of interest – the evolution of Chicago from 1790 to 1870 in
the context of the development of the United States in that period, with particular
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Figure 7.3 A more realistic network with modelled flows3



reference to railways. We present some results to explore the evolution of the
populations of cities in this system in Section 7.4.6. There are many possible
avenues for further research, and these are discussed in Section 7.4.7.

7.4.2 The retail model

The simple aggregated retail model of previous chapters is repeated here for
convenience. Sij(t) is the flow of spending from residents of i to shops in j at time
t. In this case, we add a t label to the remaining definitions to prepare the way for
building a dynamic model. Let ei(t) be spending per head and Pi(t) the population
of i. The parameter cij(t) is the travel cost from zone i to zone j at time t. Wj(t) is
a measure of the attractiveness of shops in j, which, for these illustrative purposes,
we take as the logarithm of ‘size’ – reflecting range of choice and lower prices
through scale economies. The obvious order parameter would be N(Wj > 0) – the
number of centres that are non-zero. In a fully dispersed system, then N(Wj > 0)
would be equal to the number of possible centres and would be large, while in a
very centralised system N(Wj > 0) would be 1.

The usual model with a time label added is then:

(7.1)

where:

(7.2)

to ensure that:

(7.3)

and:

(7.4)

where logWj(t), as we noted earlier, is taken as the measure of consumer benefits
and X(t) an estimate of the total benefits achieved. We also have:

(7.5)

�(t) and �(t) are parameters (actually, the Lagrangian multipliers associated with
Equations 7.4 and 7.5). Because the matrix is only constrained at the origin end,
we can calculate the total flows into destinations as:

(7.6)
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A suitable hypothesis for representing the dynamics is:

(7.7)

where K(t) is such that K(t)Wj(t) can be taken as the (notional) cost of running
the shopping centre in j. This equation then says that if the centre is profitable, it
grows; if not, it declines. The parameter � determines the speed of response to
these signals.

The equilibrium position is given by:

(7.8)

which can be written out in full as:

(7.9)

and these are clearly non-linear simultaneous equations in the {Wj(t)}.
The dynamics are given by:

(7.10)

If the populations and the total floor space do not change, then Equations 7.7
and 7.10 simply represent moves towards equilibrium.

7.4.3 Reinterpreting and extending the model for a system of cities

We now assume that each node in the system is a city (or a town or a village)
with population Pi and level of economic activity Wi. ei is the average level of
economic activity generated per capita and Sij represents the level of interaction
between places – to be interpreted mainly as trade flows – but with an
accompanying implicit assumption, which we will formulate formally below, that
migration follows trade. cij is a measure of transport cost as usual and Ki is a measure
of the cost per unit of maintaining a level of economic activity at i. We will have
the possibility of ei representing a spectrum from poor to rich, and similarly, Ki,
from cheap to expensive, and so in a sense reflecting ‘rent’.

A particularly interesting development is to examine the dynamics of {cij}, and
here we do this exogenously using an underlying spider network. It is interesting
and important to do this as an extension of the usual model, but also because it
may be critical to the evolution of the system around Chicago.

For the total population, for illustration, we can assume an annual rate of increase
– say from net migration and births over deaths, of, say, �t, from t to t + 1 for
each t. We can obviously vary this assumption. We also ought to introduce some
‘noise’ into the system. However, the key assumption we make is that the change
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in population at i is determined by the change in the level of economic activity.
We can combine these assumptions as follows:

(7.11)

where 
1t is a random variable, suitably scaled, with a mean considerably less
than 1, 
2 is a constant that represents the scale of population change related to
change in economic activity (which can be positive or negative) and �(t) is a
normalising factor to ensure that the overall growth rate is �t. Hence:

(7.12)

so that �(t) is determined from:

(7.13)

and hence:

(7.14)

The model would then be run by working through Equations 7.1, 7.2, 7.6, 7.7,
7.94 and 7.10, and then adjusting {Pi} through Equation 7.11, and recycling through
Equations 7.1, 7.2, 7.6, 7.7, 7.9 and 7.10 with Pi(t + 1).

7.4.4 System ‘DNA’ and its evolution

It is well known that the pattern of evolution of a dynamical system – the core of
the dynamical model in our case being Equations 7.7, 7.10 and 7.11 – are strongly
dependent on the initial conditions. In the case of urban and regional systems, it
has been argued (Wilson 2008) that for each step in the evolution of a dynamical
system represented by these kinds of difference equations, the ‘initial condi-
tions’ at time t, as determinants of the equations solutions at time t + 1, can be
regarded as the ‘DNA’ of the system. This is because since the changes in a step
are likely to be relatively small, the possibilities of change – what might be called
the ‘cone of possible development’ – will be strongly determined by what is there.
This accords with a common-sense view of the situation: that the existing
infrastructure, economic activities and populations will determine what is possible
in the immediate future. In the model presented here, therefore, the ‘DNA’ can
be taken as a string – the set of scalars, vectors and matrices:

(7.15)
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The i-elements:

(7.16)

can be taken as the ‘DNA’ characteristics of the zone and can be used to build
typologies.

As the system evolves over time, the DNA also evolves. This represents the
slow dynamics of the system. It is the {Sij} that represents the fast dynamics of
the system – the ‘physiology’. It is already clear that in the model, some of the
DNA variables are exogenous and some are endogenous. The model will predict
the evolution of the endogenous elements with the timelines of the other elements
specified outside the model. The ambition in model development is always to extend
the list of endogenous variables and to minimise the extent of the exogenous ones.

The model can, in principle, be used in three ways: first, to seek to explain the
evolution of a system of interest – and this is where it is potentially of interest to
historical geography. Second, to establish typologies based on the DNA. Third,
in a contemporary planning context to explore ‘genetic medicine’: how can the
DNA string be modified to take the system to a desired path outside the cone of
possible development? In the rest of the chapter, we focus on the first of these
objectives, and take as our system of interest the evolution of the regional system
around Chicago from 1790 through the nineteenth century.

7.4.5 The system of interest

Chicago and its wider environs make an excellent case study, and there is a very
good history (Cronon 1991) on which we have relied heavily. Population census
data is available for each decade from 1790, and in our model each iteration
represents one year. There is rapid development much influenced by changes in
transport technology, notably the building of railway lines. Since we are interested
in both the opening up of the Midwest and the access to markets in the Northeast,
we consider a large region for our system of interest, as shown in Figure 7.4.

The data (or the assumptions when data is not available) for the model runs 
is assembled as follows. Population data (Pi) is obtained from the NHGIS 
census website at www.nhgis.org. We used county data collected every decade
of our study period, and since the county boundaries changed on a regular basis,
we aggregated the data to a 120 km square grid to achieve period-by-period
consistency (Figure 7.5). The centroid of each grid square (after being cropped
by water boundaries) is then taken as the position of an aggregate settlement, which
is representative of the whole grid square area. The initial values for each Pi come
from the 1790 census.

The economic activity per capita, ei, was set to $500. We assumed one-third
of the population would be employed in any given settlement and so the initial
value for each Wj was set to one-third of Pi (taking Wj as a count of the number
of jobs in a zone). In order to maintain a constant ratio of 3:1 in population versus

e P W c j Ki i i ij i t, , , (for all ), , , , ,� � � 
11 2, 
⎡⎣ ⎤⎦



jobs, we recalculate the number of jobs in a settlement after calculating the
normalised population dynamics:

(7.17)

Ki was set to a constant value K calculated from:

(7.18)

The transport costs (cij) are calculated on the basis of lowest ‘cost’ routes through
a spider network using Dijkstra’s (1959) algorithm. There are three kinds of links:
roads, water and rail, with rail links further subdivided into branch and trunk lines.
We upgrade specific links at the appropriate iteration in a model run to represent
railway construction. The links are weighted through three parameters: if road
distance in km is the unit, then a water link is multiplied by w, say, a branch rail
link by r and trunk lines by t. In the tests presented below, w is taken as 1/16 and
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Figure 7.4 Model area with Midwest boundary



Figure 7.5 The grid of aggregated settlements
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Figure 7.6 A method for adding shape file features into the spider network



r as 1/20 and t as 1/40. We construct the spider network by calculating a Delaunay
(1934) triangulation of the aggregated settlement positions together with additional
points that mark the path of water and railways. These additional points are derived
from shape files of appropriate data (i.e. rivers, lakes, coastline and railways) and
the general method, applicable to all kinds of data, is illustrated in Figure 7.6.
Full details of the spider network construction are given in Appendix 7.1. The
spider network around Chicago is shown in Figure 7.7, and the full spider network
is shown in Figure 7.8.

The model parameters �, �, �, 
1, 
2, w, r and t were estimated by a
combination of manual and automated calibration, which aimed to maximise the
average R-squared value for the whole 80-year period when comparing the model
output to the census data for the appropriate year – in order to obtain year-by-
year census records, we interpolated between the nearest two decades. The national
increase in population for each iteration, �t, was also calculated from the
interpolated year-by-year census records.
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Figure 7.7 Spider network around Chicago and Lake Michigan



7.4.6 Results

The best-fit model parameters below gave an average R-squared over all 80 years
of ~0.24:

• � = 0.26
• � = 0.03
• � = 0.0006
• 
1 = 0.01
• 
2 = 3
• w = 0.06
• r = 0.05
• t = 0.025

The Chicago grid square population was 264,546 compared to 456,959 in the
census data giving an error of –192,413. Figure 7.9 shows four evenly spaced years
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Figure 7.8 The complete spider network for 1870 showing all rail lines
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from the best-fit model run. From 1791 until 1840, growth in the model is mainly
confined to the east coast, with some small settlements also appearing along the
south coast. Here, the model output is less concentrated in the north than the census
data, and this may be because we do not model the influence of seaports such as
New York – a possible future model improvement. In the early 1840s, we see
growth following the construction of the railway lines westwards, and this
intensifies so that by 1870, a new transport corridor exists between New York
and the Midwest, along which large settlements have developed, representing 
a major change to the distribution of economic activity in the country. Appendix
7.2 provides a comparison of the model population and census data for each 
decade between 1790 and 1870. The model also offers estimates of the trade 
flows between zones, and in Figure 7.10 we show the flows from Chicago for
1971 and 1870.

(a) 1791 (b) 1817

(c) 1843 (d) 1870

Settlement
(scale α population)

Figure 7.9 Best-fit model output



7.4.7 Concluding comments

There are many possible improvements that can be explored with this type of model
in future work, and we conclude by outlining some of these. We explore dis -
aggregation and we indicate how the attractiveness factor could be expanded. We
explore the challenge of modelling transport system dynamics.

In the model as presented, Wj is taken as an aggregate measure of economic
activity. In practice, there are at least four markets that make up this aggregate,
and we need to explore at some point treating these separately. They are: grain,
livestock and meat packing, lumber, and manufactured goods. The first three are
exports from the Midwest, particularly to the Northeast. The last is made up of
exports from the Northeast, some of which are imports to the Midwest. This last
is complicated by the fact that much of the distribution to small towns and
settlements was by the newly invented mail order. If the volumes in each case
could be translated into value, then there would be common units to produce an
aggregate value. Alternatively, the model could be run for the four markets
separately or re-aggregated, as indicated in the next subsection, through the
attractiveness function.

There are at least two ways of disaggregating the attractiveness function (and,
indeed, these two ways could be used in combination). In each case, Wj would be
broken down into a series of multiplicative factors:

(7.19)

Each Wj
(k) with (k = 1, 2, 3, 4) could be taken as attractiveness factors for each

of the four markets: grain, livestock/meat, lumber and manufactured goods, or it

W W W Wj j j j
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Figure 7.10 Predictions of export flows from Chicago in (a) 1791 and (b) 1870



could be taken to represent different influences, such as level of economic develop -
ment or technological advances – such as grain silos and ‘booster’ marketing of
some of the cities.

The railway lines have been entered exogenously for our model runs. More
ambitiously, we could attempt to model the evolution of the transport network by
adding a dynamic hypothesis, which would be the transport system equivalent of
Equation 7.7. A conjecture for this might be:

(7.20)

However, the task is more complicated than this. A real transport network is
made up of links, and a new railway line, for example, is a sequence of links in
the network. Each link carries traffic from many origin-destination pairs, and so
there is an issue of whether we should try to reformulate Equation 7.20 on a link
basis rather than an origin-destination basis.

The results that have been presented are offered on a ‘proof of concept’ basis:
this is a potentially interesting way to explore historical geography. It is well known
that the evolution of non-linear dynamical systems is path dependent. We have
introduced the idea of ‘system DNA’ as the sequence of initial conditions for the
slow dynamics of our system of interest and we have paid particular attention to
the changes in travel costs brought about by the introduction of railways. This
shows how the acts of individuals – in this case, the railway developers – influence
the evolutionary path of the system of interest. Given that the model is a very
simple and crude one, the fact that the results fit the data tolerably well suggests
that this might be a rich seam for further exploration.

7.5 Concluding comments

The models introduced here are at the core of geographical theory, but make use of
ideas from economics, physics, ecology and political science, and are shown to have
applications in archaeology and history. This epitomises what can be achieved through
interdisciplinary thinking. The umbrella for these kinds of concepts in contemporary
research is provided by complexity science. In the future, there is no doubt that this
toolkit will expand and there will be a much wider range of application.

Appendix 7.1 Spider network construction

The spider network was constructed by calculating a Delaunay triangulation of a
set of points comprising the settlement positions and some additional feature
markers. The feature markers were derived from shape files of appropriate data,
including rivers, lakes, coastline and railways. Each feature marker was given a
type indicating the kind of feature it represented, either water or rail. Railway feature
markers additionally contained data on year of construction. The network links
produced by the Delaunay triangulation were given their type based on the rules
that took into account the type of the two end points and the position of the link
in relation to the original shape file features.

	c S t S tij ij ij= +( )− ( )⎡⎣ ⎤⎦� 1
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Appendix 7.2 Comparison of model output with census
data

This section contains a decade-by-decade comparison of the best-fit model output
with the census data.

Figure 7.11 Aggregated 1790 census data

(a) Model output (b) Aggregated census data

Figure 7.12 Comparison of model with census data for 1800



(a) Model output (b) Aggregated census data

Figure 7.13 Comparison of model with census data for 1810

(a) Model output (b) Aggregated census data

Figure 7.14 Comparison of model with census data for 1820

(a) Model output (b) Aggregated census data

Figure 7.15 Comparison of model with census data for 1830



(a) Model output (b) Aggregated census data

Figure 7.16 Comparison of model with census data for 1840

(a) Model output (b) Aggregated census data

Figure 7.17 Comparison of model with census data for 1850

(a) Model output (b) Aggregated census data

Figure 7.18 Comparison of model with census data for 1860



Notes

1 Henceforth, for convenience, I will simply use ‘history’ for ‘archaeology and
history’.

2 A. Bevan, private communication.
3 I am grateful to Andrew Bevan for this figure.
4 Implying that we run the Wj system to equilibrium using an inner loop every

iteration of the model.
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8 Research challenges

8.1 Towards realistic models

All the models described in this book are offered on a ‘proof-of-concept’ basis.
The construction and analysis of dynamic models shows that considerable progress
has been made: phase changes can be identified; the nature of path dependence
unpicked; and the possible uses of such models in planning illustrated through
the idea of ‘DNA’ and ‘possibility cones’. An obvious next step is to make the
models more realistic, typically through disaggregation. This has been done
extensively in the spatial interaction component of the retail model (Birkin et al.
1996). In the aggregate model used in earlier chapters, for example, the aggregate
flow matrix {Sij} could be replaced by {Sij

kwn}, say, where k was a person type,
w, income and n, retail centre type (or more likely, in real applications, a store
type). Such disaggregation complicates the dynamics, of course, but can also lead
to new kinds of interesting results. In the retail case, with the model functioning
at the store level, it may be possible to identify vulnerable companies, for example.
In the model based on Lowry principles in Chapter 4, we did develop a disag-
gregate model, and this allowed us to show how house types that had been
associated with lower incomes could be ‘taken over’ by those with higher – the
‘gentrification’ process. This model also begins to show the effects of subsystem
linkages on dynamics and also offers new indicators such as ‘housing pressure’,
which could then be related to the land market and associated housing prices. In
the case of the Chicago model in Chapter 7, it would obviously be fruitful to
disaggregate in terms of the main components of trade – grain, livestock and meat
packing, lumber and manufactured goods. There is substantial scope for further
research on these lines.

In the early stages of model development, it is sometimes necessary to treat
some features and associated variables as exogenous either through lack of data
or, more often perhaps, because of model development challenges. A good
example is provided by the Chicago model in Chapter 7, where the evolution of
the rail network is input exogenously. A research challenge is to make this
endogenous. This has been achieved in a contemporary road transport model, and
could, in principle, be extended to more complex situations (de Martinis et al.
2014).



8.2 Technical challenges

While we believe that we have successfully opened up some significant avenues
of research, we are conscious that increased computing power and new data sources
will create new opportunities. For example, even our South Yorkshire retail
model functions in a 19-dimensional phase space, and large numbers of computer
runs are needed to explore, for example, how basins of attraction ‘move’ as
parameters change. This kind of knowledge is potentially valuable for planners
and developers, and so there is an associated visualisation and presentation
challenge.

There is a further ‘high dimensionality’ issue: we have illustrated the compli-
cations of path dependence – a sequence of ‘initial conditions. The array of initial
conditions is formidable, and representing the ‘cones of possibility’, for example,
is a serious visualisation challenge. We could, in principle, show how, in relation
to initial conditions at any point in time, these relate to critical size markers of
the kind introduced in Chapter 2.

We have presented a results grid as the basis for model calibration, and this
works well when we have two principal parameters. As models are disaggregated,
the number of parameters will increase and we will need new methods – ‘big
computing’ – to optimise the calibration process.

This list, potentially, can all be handled in terms of increased computing power.
We can then look further ahead: as relevant data become available in real time –
for example, the possibility of estimating the {cij} array from Google Maps – we
can seek to calibrate models through real time, at each point analysing dynamic
‘pressures’ and underlying basins of attraction.

8.3 Applications in planning

Models have been used extensively in planning, but by no means comprehensively
or even ‘typically’. Most planners do not use models in their work, and there is
considerable scope for further research here. The models are most developed for
planning purposes in retail and transport planning, though there have been some
good applications with Lowry-based models. However, these applications have
always been concerned with the relatively short term and using models in a
comparative static-equilibrium mode – essentially (and simplifying) the spatial
interaction component without the dynamics.

The conceptualisation of the ‘models in planning’ process is illustrated in
Figure 8.1 (Roumpani and Wilson 2014). This illustrates the different kinds of
data potentially available – on the left side of the diagram. This has to be processed
in various ways to construct an information system that is at the heart of the process.
The modeller-planner can extract from the information system inputs to specify
a model run, receive reports (in the illustration in this figure from ESRI’s City
Engine), the output of which feeds back into the information system for (if
required) ongoing access and use. By working iteratively, the planner can ‘design’
with the aid of models by adjusting the controllable exogenous variables.
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There are essentially three modes of use:

1 evaluating a current situation by calculating indicators and identifying
challenges – essentially exploring the current equilibrium – and this is
enhanced by being in a dynamic framework because new indicators are
available, such as housing pressure;

2 testing plans for the short run (e.g. for significant new housing developments);
and

3 exploring long-run scenarios.

In modes 1 and 2, the principal contribution from dynamic modelling is through
the development of new indicators that are significant even for the analysis of an
equilibrium situation. For mode 3, for long-run explorations, a timeline of
exogenous variables will be input by the planner, some of these such as population
projections forming a core ‘backcloth’, some, such as allocations of housing,
‘planning design’ variables, that can be chosen. A dynamic model can then
illustrate possible development paths – the ‘cones of possibility’ of Chapter 3 –
and the ideas of ‘urban DNA’ and ‘genetic planning’ can be deployed. All of this
represents new territory and a major research challenge.

8.4 Applications across scales and times

The analysis presented in this book has been based on a relatively small number
of examples. However, it is clear that the core ideas are applicable to any system
whose elements satisfy the conditions for which Boltzmann and Lotka-Volterra
principles hold: a large weakly interacting ‘population’ generating flows between
‘origins’ and ‘destinations’, and where there are ‘facilities’ at the destination end
that are competing for ‘business’ (or where the populations are competing for spaces
in the facilities). Inverted commas have been deployed around the key generic
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terms here because each can be interpreted very widely. We have shown how
models can be developed in a variety of circumstances through our examples, but
it is clear intuitively that the range of possible application is much broader.

A number of examples can already be identified: international trade and the
impact of changing technologies – larger ships and ports; migration flows; and,
perhaps most interestingly, applications to war and battles – both contemporary
and historical. In this last case, spatial interaction is interpreted as ‘threat’, which,
particularly in historical examples, attenuates with distance. The well-known
Richardson (1960) models of arms races can be given spatial dimensions along
the lines of the examples already presented here.

More broadly, there are many disciplines that satisfy the Boltzmann-Lotka-
Volterra conditions. Examples can be found in most of the social sciences, and,
as we have seen, in archaeology and history, where it is clear that there is a very
wide range of potential examples.

8.5 Greater challenges

The challenges identified above build directly on the research outlined in the book.
For the longer run, greater challenges can be already identified:

1 In the search for more realistic models, the drive is always towards greater
disaggregation, and this generates a very high level of dimensionality –
arrays with many subscripts and superscripts. It was once estimated that, even
with quite coarse categories, as many as 1013 variables might be needed for
a comprehensive description of an urban system (Wilson 2007). One way to
handle this is through micro-simulation – a method that generates a hypo -
thetical population that ‘looks like’ a real one through the use of conditional
probability distributions that are consistent with the data. The challenge in
the context of this book is to further develop the present range of micro-
simulation models and to make them fully dynamic.

2 This connects to deeper theory development to underpin the models. Articulating
the structures in terms of conditional probabilities is, in effect, specifying
‘chains of causality’, and this process needs to be thought through systematically.

3 Most of our examples have been constructed using Boltzmann-style spatial
interaction models with a Lotka-Volterra element added. As we have seen, the
Boltzmann represents the fast dynamics, the Lotka-Volterra the slow. In the
Lotka-Volterra case, what are being generated are structures that evolve over
time. There are other approaches to modelling the evolution of structure – notably,
that first introduced by Turing in the context of morphogenesis, involving two
or more diffusion equations that interact to generate the structures.

4 We have already seen that there are alternative modelling ‘styles’, particularly
agent-based modelling and gaming – and we have shown how these can be
adapted to the problems of this book in Chapters 5 and 6. There are clearly
many opportunities to develop these ideas further, not least to formally
demonstrate equivalences. We can add to this list cellular automata modelling
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and various kinds of economic models. Since, in all cases, we are seeking to
model the same real systems, integration should be possible but has not yet
been achieved.

8.6 Concluding comments: combinatorial evolution

A meta-research task that is likely to be productive is to seek to frame the
programme outlined above in terms of the concept of ‘combinatorial evolution’ used
by Brian Arthur (2010) in his book The Nature of Technology. His starting point,
mainly in terms of ‘hard’ technology, is that the big complex systems sit at the top
of a hierarchy of systems – think of aeroplanes, then engines and wings, then turbo
blades and so on – much more complicated than that of course. His key argument
is, then, that evolutions – advances – mainly take place at lower levels in the hier -
archy, and then through new combinations of those advances. In our case, our top-
level system of interest is, say, a city. A retail system is at the next level down in
the hierarchy. Arthur’s argument can be applied not just to the systems themselves
– though it can, think of technologies impacting on cities and retailing – but also
on the science of these systems, and modelling is an element of that science. What
we have demonstrated in this book is that understanding of the dynamical systems
through extended Lotka-Volterra equations, increased com puting power and
innovative visualisation offers a lower-level set of tech nologies that can then be
applied at higher levels. In particular, the planning system itself can be seen as a
high-level system, and we have explored the contributions of dynamic modelling
– from lower down the hierarchy – to increase effectiveness at the higher levels.

So this helps us to interpret what we have achieved, but it also provides a
framework within which we can seek further advances, some of which we have
indicated both throughout the book and in this last chapter. The increasing power
of the modelling ‘technology’, and all the associated technologies, presage an
exciting future for this field.
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