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Series Preface

The Advances in Earthquake Engineering series is intended primarily for the trans-
formation of frontier technologies and research results, as well as state-of-the-art 
professional practices in earthquake engineering. It will encompass various topical 
areas such as multidisciplinary earthquake engineering, smart structures and materi-
als, optimal design and lifecycle cost, geotechnical engineering and soil–structure 
interaction, structural and system health monitoring, urban earthquake disaster 
mitigation, postearthquake rehabilitation and reconstruction, innovative numerical 
methods, as well as laboratory and field testing.

This book, Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete 
Structures, serves one of the aforementioned objectives. It provides nonlinear 
properties of reinforced concrete elements in a comprehensive form so that prac-
ticing engineers and researchers can use them readily without solving complex 
equations. With the step-by-step numerical procedures presented in the book, 
and also through supplemental electronic material found at http://www.crcpress 
.com/e_products/downloads/download.asp?cat_no=K10453, the reader will find 
the publication a very useful and practical handbook. The book is to serve not 
only as a reference for graduate students in civil, structural, and construction 
engineering, but also as a good research directory for academicians.

Franklin Y. Cheng, PhD, PE, ASCE Distinguished Member

Editor, Advances in Earthquake Engineering Series
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Preface

Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures (with 
examples and computer coding) is an attempt toward clarifying and simplifying the 
 complexities involved in estimating some basic input parameters required for such 
analyses. The necessity of safe seismic design of structures is becoming a big concern 
for the engineering community due to the increase in damage of buildings during 
recent earthquakes. Most existing buildings do not comply with the current seismic 
codes; therefore, it is necessary to assess their structural safety and to have clear 
answers to questions that raise doubts about their structural safety. For most of these 
buildings it is necessary to prevent structural failure, although the occurrence of lim-
ited damages is usually accepted. As a matter of fact, nonlinear structural analysis 
has been a fundamental tool for the past 30 years, but not one widely addressed in 
university courses and hence not currently employed by structural engineers com-
fortably. On the other hand, spreading of efficient and complete computer codes of 
structural analysis drives them toward a passive attitude that usually opposes the full 
verification of the design process. While nonlinear analysis methods like static push-
over are commonly accepted and recommended as a reliable tool by international 
codes for seismic assessment of buildings, accuracy of the estimate of seismic capac-
ity strongly depends on input parameters of such analysis. Some of the basic inputs, 
namely, (1) axial force–bending moment yield interaction, (2) moment-curvature, 
and (3) moment-rotation characteristics accounting for appropriate nonlinearity of 
constitutive materials of reinforced concrete elements, need to be readdressed for 
an accurate pushover analysis. The design curves and tables proposed in the book 
are the outcome of the studies conducted by the authors using a variety of nonlinear 
tools, computer programs, and software. During the course of teaching, research-
ing, and short-term courses conducted on the subject, it is felt that an appropriate 
use of nonlinear properties of constitutive materials is not common among design 
engineers using software tools. They tend to use default properties of materials as 
input to nonlinear analyses without realizing that a minor variation in the nonlinear 
characteristics of the constitutive materials like concrete and steel could result in an 
unsatisfactory solution leading to wrong assessment and interpretation. The main 
reason for such ignorance can be due to complexities involved in deriving the mate-
rial properties of reinforced concrete that constitute the basic input of the nonlinear 
analyses.

Seismic Design Aids spans five chapters on the topics (1) axial force–bending 
moment yield interaction (P-M), (2) bending moment-curvature relationship (M-f), 
(3) bending moment-rotation characteristics (M-ϑ) for beams with different support 
conditions and loading cases, (4) collapse multiplier of seismic loads for regular 
framed structures using plastic theorems, both upper bound and lower bound limit 
analysis theorems, and (5) verification of plastic flow rule for the developed P-M 
interaction domains. A detailed mathematical modeling of P-M interaction of RC 
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xiv	 Preface

rectangular beams based on international codes, namely, Italian code, Indian code, 
and Eurocode, currently in prevalence by defining the boundaries of the subdomains 
and set of analytical expressions is proposed in the first chapter. Moment-curvature 
relationships for beams (with no axial force) and for columns (with different levels of 
axial forces) are presented in Chapter 2. In Chapter 3, some practical cases of beams 
with relevant support conditions and loading conditions are selected for which the 
collapse mechanism and plastic hinge extension are presented with complete ana-
lytical expressions for moment-rotation and ductility ratios. Chapter 4 deals with 
determination of collapse load multipliers using plastic theorems for a few selected 
examples that are common cases of frames with a weak-beam, strong-column type. 
The developed analytical modeling of P-M interaction is verified for plastic flow rule 
in Chapter 5. Though the material characteristics used in Seismic Design Aids are 
limited to a few international codes, readers can easily derive the required expres-
sions in accordance to any other international code of their choice. This is made 
possible by presenting the step-by-step derivation of the expressions in the relevant 
chapters; simply by replacing a few equations addressing the material characteristics, 
one can readily arrive at the desired expressions. However, using the same algorithm, 
the authors are certain that design engineers and researchers can easily derive other 
cases not addressed in this book.

We also present a step-by-step procedure to carry out pushover analysis of an 
example frame using the proposed design curves and tables as input parameters. Two 
very simple relationships are proposed for upper and lower bounds of the seismic load 
multiplier for regular frames of the weak-beam, strong-column type. The forecasts, 
shown by means of their graphical representations, qualify an optimal agreement 
with the relevant values obtained by pushover analysis for all the regular framed 
structures analyzed. Knowledge of the foreseen static multipliers, also based on an 
easy analytical approach, is useful both for seismic assessment and design, since the 
structure will be safe, by definition, under the seismic loads amplified with static 
lower bounds. The computer codes used for nonlinear optimization of collapse mul-
tiplier using static theorem and for determining kinematic multipliers are given in the 
additional material found on the Web site; using the program, one can easily modify 
the input to determine the multipliers for other cases that are not addressed in Seismic 
Design Aids. The kinematic and static multipliers for collapse loads of frames are 
then compared with the results obtained using the nonlinear static pushover method 
to show the level of confidence in the results obtained using limit analysis.

Each chapter commences with a relevant brief literature review followed by a 
description of the detailed mathematical modeling. Using material characteristics 
of concrete and steel as proposed by the codes, analytical expressions are derived, 
based on classical theory of nonlinear mechanics. The developed equations are 
followed by treatment of structural components of building frames as example 
problems. Tables and design curves are proposed for appropriate combinations of 
cross-section dimensions of beams and columns with relevant sets of percentage of 
tensile and compression reinforcements commonly used in design offices. Seismic 
Design Aids can be useful for capacity assessment of reinforced concrete (RC) ele-
ments whose cross-sections are known and also for performing nonlinear analysis of 
RC structures using readily available computer programs. Design curves are given 
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only for few combinations of cross-section dimensions and steel reinforcement to 
limit the color illustrations, thereby keeping the cost affordable. Using the comple-
mentary information at http://www.crcpress.com/e_products/downloads/download 
.asp?cat_no=K10453 provided, one can compute the required parameters for any 
desired section not illustrated in the figures or tables of this book. Tables are devel-
oped in a spreadsheet form (Excel file), and steps to use these files are also described 
at the end of each chapter. Design engineers can readily use these tables and curves 
as input for their design assignments. The proposed analytical expressions of the 
input parameters addressed in Seismic Design Aids are results of extensive research 
work carried out by the authors. The numerical procedures are proposed in the tables 
after thorough verification of the results in close agreement with those obtained from 
analytical expressions. Complete computer coding, used for obtaining the collapse 
multipliers, is given at the end. With appropriate modifications in the arguments, one 
can easily determine the results for any specific building frame of interest.

The authors hope that Seismic Design Aids will be a useful reference to research-
ers preparing for advanced courses in structural mechanics. The authors extend their 
sincere thanks to the editorial board of CRC Press, Taylor & Francis Group, LLC, for 
publishing this book with great enthusiasm and encouragement. The authors also want 
to place on record the generous permission accorded by Computers and Structures 
Inc., Berkeley, California, for the use of screen shots of SAP2000 software in this 
book. The basic objective is to make nonlinear properties of RC elements avail-
able in a comprehensive form so that practicing engineers and researchers can use 
them readily without solving these complex equations. It is hoped that many design 
engineers, particularly those facing the task of seismic assessment of buildings, will 
find this book a very useful practical reference. We are grateful for any constructive 
comments or criticisms that readers wish to communicate and for notification of any 
errors detected in this book.

The authors have received great assistance, encouragement, and inspiration 
from many sources. Thanks are given to the colleagues of the Department of 
Structural Engineering, University of Naples Federico II, and to the Ministry of 
University Research (MiUR) for the fellowship assistance of one of the authors. 
Thanks are also given to the students of advanced courses of structural engineer-
ing and to practicing engineers who attended several training programs, work-
shops, and lecture series organized by the authors and their colleagues in Italy 
and India for giving their exciting feedback to the approach and methodology of 
handling the subject.

Finally, the authors would like to place on record the extensive cooperation and 
kindness shown by their family members during the completion of this book within 
the scheduled time frame.

Srinivasan Chandrasekaran
Luciano Nunziante

Giorgio Serino
Federico Carannante
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Notations
αn 	 angle between the normal to P-M boundary and d CGe axis
αp 	 angle between the plastic strain vector and d CGe axis
γ c 	 partial safety factor for concrete
γ s  	 partial safety factor for steel
δ 	 displacement (mm)
δe 	 elastic displacement (mm)
δP 	 plastic displacement (mm)
∆θ 	 relative rotation (rad)
∆θE 	 relative rotation at elastic limit (rad)
∆θu 	 relative rotation at collapse (rad)
ec 	 strain in generic fiber of concrete
ec,max	 maximum strain in concrete
ec0	 elastic limit strain in concrete
ecu	 ultimate limit strain in concrete
est	 strain in tensile reinforcement
esc	 strain in compression reinforcement
es0	 elastic limit strain in reinforcement
esu	 ultimate limit strain in reinforcement
eCG 	 strain at CG of the cross-section
θ 	 total rotation (rad)
θe 	 total elastic rotation (rad)
θp 	 total rotation at collapse (rad)
sc 	 stress in generic fiber of concrete (N/mm2)
sc,max	 maximum stress in concrete (N/mm2)
sc0	 design ultimate stress in concrete in compression (N/mm2)
sy	 yield strength of steel (N/mm2)
ss0	 design ultimate stress in steel (N/mm2)
sst	 stress in tensile reinforcement (N/mm2)
ssc	 stress in compression reinforcement (N/mm2)
f 	 curvature (rad/m)
fe 	 elastic curvature (rad/m)
fE 	 limit elastic curvature (rad/m)
fu 	 ultimate curvature (rad/m)
ηθ 	 rotation ductility ( / )∆ ∆θ θu E

ηf 	 curvature ductility ( / )f fu E

Ast	 area of tension reinforcement (mm2)
Asc	 area of compression reinforcement (mm2)
b 	 width of the beam (mm)
d	 effective cover (mm)
d CGe 	 strain increment in the center of gravity (CG) of the reinforced 

concrete (RC) beam
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d f 	 curvature increment
D	 overall depth of the beam (mm)
Es	 modulus of elasticity in steel (N/mm2)
kc	 collapse load multiplier
KE

θ 	 rotational-elastic stiffness (kN-m/rad)
Kp

θ 	 rotational-hardening modulus (kN-m/rad)
KE

f 	 curvature-elastic stiffness (kN-m2/rad)
Kp

f 	 curvature-hardening modulus (kN-m2/rad)
M	 bending moment (N-m)
Me	 elastic bending moment (N-m)
ME	 limit elastic bending moment (N-m)
Mu	 ultimate bending moment (N-m)
pt	 percentage of tensile reinforcement
pc	 percentage of compression reinforcement
P	 axial load (N)
Pe	 elastic axial load (N)
PE	 limit elastic axial load (N)
Pu	 ultimate axial load (N)
q	 depth of plastic kernel of concrete (mm)
Rck	 compressive cube strength of concrete (N/mm2)
V	 shear (kN)
xc 	 depth of neutral axis measure from extreme compression  

fiber (mm)
x x x xc c c c

0 , , ,′ ′′ ′′′ 	 limit position neutral axis (mm)
y	 depth of generic fiber of concrete measured from extreme 

compression fiber (mm)
yQ	 depth of point of rotation in subdomain 6 measured from 

extreme compression fiber (mm)
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1

1 Axial Force–Bending 
Moment Yield Interaction

1.1  SUMMARY

The limit state design procedure of reinforced concrete elements has undergone 
major revision in recent times with more emphasis toward a performance-based engi-
neering approach. This design approach demands a thorough understanding of axial 
force–bending moment (P-M) yield interaction of elements, for moment-resistant 
reinforced concrete (RC) frames under seismic loads, in particular. Current design 
methodologies, both recommended by international codes and employed by prac-
ticing engineers, include desirable features of ultimate strength and working stress 
procedures as well ensure a ductile response. In this chapter, detailed mathemati-
cal modeling of P-M yield interaction of RC rectangular beams based on Eurocode 
currently in prevalence is presented; six subdomains defining the boundary of P-M 
yield interaction are classified. A complete set of analytical expressions is proposed 
and also illustrated through relevant examples. Results obtained for the failure inter-
action curve of RC rectangular sections under P-M yield interaction show that by 
adopting Eurocode strain limits, the boundary curve is divided into two main parts, 
namely, (1) tension failure with weak reinforcement resulting in yielding of steel 
and (2) compression failure with strong reinforcement resulting in crushing of con-
crete. The curves are given in analytical form for every feasible coupling of bending 
moment and axial force. Advantageous use of the proposed P-M interaction for non-
linear seismic analysis is demonstrated in the subsequent chapters; also the devel-
oped boundary of different subdomains is verified for a plastic flow rule. With the 
help of the presented mathematical model and proposed expressions for P-M yield 
interaction, the designing of new structures and assessment of existing RC structures 
can be performed with better understanding and improved accuracy.

1.2  INTRODUCTiON

Concrete is a heterogeneous, cohesive-frictional material exhibiting a complex non-
linear inelastic behavior under multiaxial stress states. The wide use of concrete 
as the primary structural material in several complex structures demands detailed 
understanding of the material response under a combination of different loads (Abu-
Lebdeh and Voyiadjis 1993; Candappa, Sanjayan, and Setunge 2001; Park and Kim 
2003). Sufficient ductility ensured in the design procedure is an important prerequi-
site for suitability of reinforced concrete structures to resist seismic loads (IS 13920, 
1993); this is true because seismic design philosophy demands energy dissipation/
absorption by postelastic deformation for collapse prevention during major earth-
quakes (Chandrasekaran, Tripati, and Srivastav 2003; Chandrasekaran, Serino, and 

K10453.indb   1 6/15/09   4:10:19 PM

© 2010 by Taylor and Francis Group, LLC



2	 Seismic Design Aids for Nonlinear Analysis  

Gupta 2008). Ductility also ensures effective redistribution of moments at critical 
sections as the collapse load is approached (Park and Paulay 1975; Bangash 1989; 
Papadrakakis, Fragiadakis, and Lagaros 2007). Ductility, a measure of energy dis-
sipation by inelastic deformation during major earthquakes, depends mainly on the 
moment-curvature relationship at critical sections where plastic hinges are expected/
imposed to be formed at collapse. RC structures have the facility of changing, within 
certain limits, at the ultimate moment the designer pleases, without changing the 
overall dimensions of the cross-section. As a result, it is sometimes suggested that 
the reinforcement steel areas should be adjusted to make the distribution of the 
ultimate moment in the members the same as the elastic bending moment diagram 
for the factored (ultimate) load. This is a critical aspect of (intended) performance-
based design of the structure, leading to some advantages, namely, (1) the elastic 
analysis necessary will be more laborious; (2) the resulting design shall address the 
required performance criteria set by the designer; as well as (3) plastic hinges are 
made to form on the selected structural components of the desired choice (for exam-
ple, on the beam and not on the column), thus ensuring the required performance 
of buildings under seismic loads. In other words, the structures should be able to 
resist earthquakes in a quantifiable manner and to present levels of desired possible 
damage (Ganzerli, Pantelides, and Reaveley 2000; Ghobarah 2001). Studies (Paulay 
and Priestley 1992) conducted show that the behavior of statically indeterminate 
RC structures depends on a cross-section area of reinforcing the steel-to-concrete 
ratio. For smaller values of this ratio, reinforcement yields plastically before the 
concrete is crushed in compression, while for larger values, it may initiate crush-
ing of concrete prior to the yielding of reinforcement. However, this ratio becomes 
critical when tensile steel reaches yield limit simultaneously with the extreme com-
pressive fiber of concrete reaching its crushing strain. The increasing concern of 
the structural safety of existing buildings not complying with current seismic codes 
demands performance assessment to evaluate their seismic risk, which is a major 
task ahead for structural designers.

Thus, the objective of ensuring safe buildings intensifies the above-stated con-
cerns for which pushover analysis can be seen as a rapid and reasonably accurate 
method (ATC-40, 1996). Pushover analysis accounts for inelastic behavior of the 
building models and provides a reasonable estimate of deformation capacity while 
identifying critical sections likely to reach limit state during earthquakes (Chopra 
and Goel 2000; Chao, Yungting, and Ruo 2006). Researchers used pushover analysis 
successfully for seismic evaluation and showed its comparison with other detailed 
analysis procedures (see, for example, Esra and Gulay 2005; Chandrasekaran and 
Roy 2004, 2006; Chandrasekaran, Nunzinate, et al. 2008b). Researchers emphasised 
that accuracy of results obtained from pushover analysis are strongly influenced by 
basic inputs like: (1) stress-strain relationship of constitutive materials; (2) P-M yield 
interaction; as well as (3) moment rotation capacity of members (see, for example, 
Chandrasekaran et al. 2008a). A qualitative insight of these inputs, P-M interac-
tion in particular, for rectangular cross-section with different area of tensile and 
compressive steel accounting for nonlinear properties of constitutive materials is 
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Axial Force–Bending Moment Yield Interaction	 3

relatively absent in the literature. This chapter presents a mathematical development 
of nonlinear behavior of reinforced concrete members and derives P-M yield interac-
tion while describing their six subdomains.

1.3 M ATHEMATiCAL DEVELOPMENT

Concrete under multiaxial compressive stress state exhibits significant nonlinearity, 
which can be successfully represented by nonlinear constitutive models (Hognestad, 
Hanson, and McHenry 1955; Chen and Chen 1975; Ottosen 1977; Chen 1994a, 
1994b). Many researchers reported different failure criteria in stress space by a 
number of independent control parameters (see, for example, Hsieh, Ting, and Chen 
1982; Menetrey and William 1995; Sankarasubramaniam and Rajasekaran 1996; 
Nunziante, Gambarotta, and Tralli 2007). A nonlinear elastic response of concrete is 
characterized by parabolic stress-strain relationship in the current study and shown 
in Figure  1.1. Elastic limit strain and strain at cracking are limited to 0.2% and 
0.35%, respectively (D.M. 9 gennaio 1996). Tensile stresses in concrete are ignored 
in the study. The design ultimate stress in concrete in compression is given by

	
s

gc
ck

c

R
0 =

(0.83)(0.85)

 	
(1.1)

The stress-strain relationship for concrete under compression stresses is given by

	

s e e e e e

s e e e e e

c c c c c c

c c c c c

a b c( )

( )

= + + < <

= < <

2
0

0 0

0

ccu  	
(1.2)

�c(compressive)

εc(compressive)

�c0

εc0 = 0.2% εcu = 0.35%
0

FiGURE 1.1  Stress-strain relationship for concrete.
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where compression stresses and strains are assumed to be positive in the analysis.  
Constants a, b, and c in Equation 1.2 are determined by imposing the following 
conditions:
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(1.3)

By solving the above equations, we get

 	
a b cc

c

c

c

= - = =
s
s

s
s

0

0

0

0

2
0

2
, ,

 	

(1.4a)

By substituting in Equation 1.2, we get
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e
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e

e e ec c
c

c
c

c

c
c c c( ) ,= - < <0

0
2

2 0

0
0

2
0+

 	
(1.4b)

Steel is isotropic and homogeneous material exhibiting stress-strain relationship as 
shown in Figure 1.2. While the ultimate limit strain in tension and that of compres-
sion are taken as 1% and 0.35%, respectively (D.M. 9 gennaio 1996), elastic strain in 
steel in tension and compression are considered the same. The design ultimate stress 
in steel is given by

	
s

s
gs

y

s
0 =

 	
(1.5)

εsu,c = 0.35% –εs0 εsu,t = 1%
εs0 εs(tensile)

�s(tensile)
�s0

–�s0

FiGURE 1.2  Stress-strain relationship for steel.
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The stress-strain relationship for steel is given by

	

s e e e e e
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00 tt su t su
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s e s e e e
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= - - < < -0 0  	

(1.6)

The reinforced concrete beam of rectangular cross-section shown in Figure 1.3 is now 
examined for P-M yield interaction behavior for the different percentage of tension and 
compression reinforcements. The fundamental Bernoulli hypothesis of linear strain 
over the cross-section, both for elastic and for elastic-plastic responses, of the beam 
under bending moment combined with axial force is assumed. Interaction behavior 
becomes critical when one of the following conditions apply: (1) Reinforcement in 
tension steel reaches ultimate limit; (2) strain in concrete in extreme compression fiber 
reaches ultimate limit; or (3) maximum strain in concrete in compression reaches elas-
tic limit under only axial compression. Figure 1.4 shows P-M limit domain consisting 
of six subdomains as described below. Only the upper boundary curves (corresponding 
to positive-bending moment M) will be examined since there exists a polar symmetry 
of the domains with respect to the center of the domain. Figure 1.5 shows the strain and 
stress profile in steel and concrete for subdomains 1 and 2 where collapse is caused by 
yielding of steel, whereas Figure 1.6 shows the strain and stress profile for subdomains 
3 to 6 for which collapse is caused by crushing of concrete.

1.4  IDENTifiCATiON Of SUBDOMAiNs

1.4.1  SUBDOMAINs 1 AND 2: COLLAPsE CAUsED BY YIELDING OF STEEL

In subdomain 1 (Figures 1.4 to 1.7), the position of neutral axis measured from 
the origin placed on the top of rectangular section (see Figure 1.3) varies in the 
range ]-∞, 0]. Strain in tensile steel reaches ultimate limit and the corresponding 
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FiGURE 1.3  Cross-section of RC beam.
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FiGURE 1.5  Collapse caused by yielding of tensile steel.
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stress reaches design ultimate stress, whereas strain in steel on compression zone 
is given by

 	

e esc su
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c
c

x d

D x d
x=

-
- -




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∀ < 0

 	
(1.7)

The strain in compression steel reaches elastic limit for the position of neutral axis 
assuming the value as
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(1.8)

for e esc s> 0, s ssc s= 0, and ultimate axial force and bending moment are given by
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(1.9)

for e esc s≤ 0, s esc s scE= , and ultimate axial force and bending moment (with respect 
to the center of gravity [CG] of the cross-section) are given by

 	

P A E
x d

D x d
A

M A E

u sc s su
c

c
s st

u sc s

=
-

- -






-

=

e s

e

0

ssu
c

c
s st

x d

D x d
A

D
d

-
- -







+












-






s 0 2 














∀ ∈ x xc c,lim ,0 0

	

(1.10)

From the above equations, position of neutral axis can be deduced as
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By substituting in Equation 1.10, we get
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For depth of neutral axis becoming zero, ultimate axial force and bending moment 
are given by
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Subdomain 2 is further composed of two regions, namely, yielding of tensile steel 
while strain in concrete remains within elastic limits (2a), and yielding of tensile 
steel while strain in concrete reaches ultimate limit (2b). Depth of neutral axis in 
these regions lies in the range [ , ],lim0 ′xc and [ , ],lim ,lim′ ′′x xc c for regions (2a) and (2b), 
respectively (Figure 1.7), and are given by
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e e
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Strain in compression steel, in subdomain 2a, is given by
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The stress and strain of a generic compression fiber of concrete located at a distance 
y measured from the extreme compression fiber are given by
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Ultimate axial force and bending moment in subdomain 2a are given by
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Depth of plastic kernel of concrete is given by
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Ultimate axial force and bending moment in subdomain 2b are given by
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1.4.2	 SUBDOMAINs 3 TO 6: COLLAPsE CAUsED BY CRUsHING OF CONcRETE

In subdomain 3, collapse occurs when maximum strain in concrete reaches crushing 
strain while strain in tension steel varies in the range [ , ]e es su0 , stress in tensile steel 
is ss0 , and position of neutral axis varies in the range [ , ],lim ,lim′′ ′′′x xc c (Figures 1.4 to 
1.7). Position of neutral axis ′′′xc,lim, characterized by e est s= 0, is given by
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 (1.22)

Strains in steel, both in tension and compression, are given by
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(1.23)

The corresponding stress in steel bars reaches ultimate limit as strain exceeds elastic 
limit. Strain in the generic fiber of concrete and depth of plastic kernel are given by
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In subdomains 4 and 5, the position of the neutral axis varies in the range 
[ ,( )],lim′′′ -x D dc  and [( ), ]D d D- , respectively. In subdomain 4, strain in tensile steel 
varies in the range [ , ]0 0es , stress in tensile steel is s est s stE= , whereas in subdomain 
5, tensile steel gains compressive stress progressively. Ultimate axial force and bend-
ing moment in subdomains 3 to 5 are given by
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(1.25)
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Figure 1.7 shows the linear strain profile over the cross-section determined by the 
tensile strain in steel. In subdomain 6, the position of the neutral axis varies in the 
range [D, +∞[, and strain diagram in cross-section rotates about point Q as shown in 
Figure 1.7. The depth of plastic kernel, whose distance is measured from the extreme 
compression fiber, is given by
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Strain in reinforcing steel, both in tension and compression, are given by
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The strain in generic fiber of the concrete is given by
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Ultimate axial force and bending moment are given by
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1.5	N UMERiCAL STUDiEs AND DisCUssiONs

Using the above expressions, P-M yield interaction is now studied for RC beams 
of different cross-sections, reinforced in both tension and compression zones. The 
cross-section dimensions and other relevant data can be seen from the legend of  
the figures. All six subdomains are traced and plotted as seen in Figures 1.8 to 1.19. 
The sample plots are shown for relevant practical cases, namely, (1) for different 
cross-sections; (2) for varying percentage in tension and compression reinforcements; 
(3) for different characteristic strength of concrete; and (4) for different yield strength 
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FiGURE 1.8  (See color insert following p. 138.) P-M interaction curves for RC section 300 × 450 (fck = 25 N/mm2, fy = 380 N/mm2).
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FiGURE 1.9  (See color insert following p. 138.) P-M interaction curves for RC section 300 × 450 (fck = 25 N/mm2, fy = 415 N/mm2).
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FiGURE 1.10  (See color insert following p. 138.) P-M interaction curves for RC section 300 × 500 (fck = 25 N/mm2, fy = 380 N/mm2).
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FiGURE 1.11  (See color insert following p. 138.) P-M interaction curves for RC section 300 × 500 (fck = 25 N/mm2, fy = 415 N/mm2).
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FiGURE 1.12  (See color insert following p. 138.) P-M interaction curves for RC section 300 × 600 (fck = 25 N/mm2, fy = 380 N/mm2).
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FiGURE 1.13  (See color insert following p. 138.) P-M interaction curves for RC section 300 × 600 (fck = 25 N/mm2, fy = 415 N/mm2).
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FiGURE 1.14  (See color insert following p. 138.) P-M interaction curves for RC section 350 × 500 (fck = 25 N/mm2, fy = 380 N/mm2).
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FiGURE 1.15  (See color insert following p. 138.) P-M interaction curves for RC section 350 × 500 (fck = 25 N/mm2, fy = 415 N/mm2).
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FiGURE 1.16  (See color insert following p. 138.) P-M interaction curves for RC section 350 × 600 (fck = 25 N/mm2, fy = 380 N/mm2).
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FiGURE 1.17  P-M interaction curves for RC section 350 × 600 (fck = 25 N/mm2, fy = 415 N/mm2).
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FiGURE 1.18  P-M interaction curves for RC section 350 × 700 (fck = 25 N/mm2, fy = 380 N/mm2).
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FiGURE 1.19  P-M interaction curves for RC section 350 × 700 (fck = 25 N/mm2, fy = 415 N/mm2).
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26	 Seismic Design Aids for Nonlinear Analysis  

of reinforcing steel. The relevant numerical values are also reported in Tables 1.1 to 
1.12. For a ready use of obtaining P-M interaction of any desired RC section other 
than those given in the figures and tables presented above, a summary of expressions 
in the closed form is given in Table 1.13. Ready use of the above-presented procedure 
is demonstrated using the simple spreadsheet program, as discussed in Section 1.7.

The results obtained for the RC failure interaction curve of beams of rectangular 
cross-section under P-M yield interaction show that, by adopting Eurocode strain 
limits, the boundary curve is first divided into two parts based on the type of failure, 
namely, (1) tension failure with weak reinforcement resulting in yielding of steel and 
(2) compression failure with strong reinforcement resulting in crushing of concrete. 
The expressions for different subdomains are also given in analytical form for every 
feasible coupling of bending and axial force. The boundary curve for the steel fail-
ure, in which by definition the tensile steel is in ultimate yielding condition, can be 
further subdivided in three subdomains (1, 2a, 2b). These parts, when subjected to 
increasing compressive axial force, correspond to compression of concrete reaching 
the ultimate limit. Subsequently, for the concrete failure part, for which by definition 
concrete is crushed, the curve can be subdivided into four subdomains (3, 4, 5, 6) for 
which by increasing the compressive axial force, strain in steel varies between the 
tensile failure limit and the tensile elastic limit, until elastic limit in compression for 
concrete disperses all over the cross-section. The sharp bend seen in the boundary of 
subdomain 3 to 4 corresponds to the fact that the stress-strain relationship for steel 
is bilinear (Figure 1.2). The procedure proposed for the bending moment-curvature 
relationships of beams, in the presence of constant axial force, is very simple and 
furnishes expressions in closed form for elastic-plastic regions of RC sections after 
verification with the numerical results. The applied principle may not be new, but the 
presented expressions in closed form will be very useful for practical nonlinear static 
analyses like pushover. The analyses of these responses show that for every kind of 
reinforcement, owing to the small bending strength increment between the elastic 
and the failure limits, the moment-curvature response of rectangular RC sections 
is basically bilinear: After the first linear response, a further linear plastic branch 
is present, with a small slope. The whole response is very close to an elastic-plastic 
response, characterized by a sort of small “hardening effect.”

It is important to note that the subdomains classified for P-M interaction are based 
on strain limit conditions imposed by the codes. For these prescribed strain limits, 
all points of the section are not in failure condition; this implies that the stress and 
strain increments of the points lying along the P-M boundary depend on both the 
elastic and plastic increments. Hence, normality rule that is valid for true plastic 
domain does not hold completely true. Detailed discussion of the validity and appli-
cability of flow rule can be seen in Chapter 5. Subsequent verifications made by the 
authors show that plastic flow rule is completely satisfied in the subdomains where 
failure is caused by yielding of steel, and not verified for subdomains where failure 
is caused by crushing of concrete.
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TABLE 1.1
P-M Interaction Values for RC Section 300 × 450 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 380 N/mm2 )

xc ec,max sc,max est sst esc σsc Pu Mu+ Mu  -

  -1000 0.00000 0 0.01000 330435 -0.01000 -330435 -1124.14 24.36 24.36

-3.500 0.00000 0 0.01000 330435 -0.00901 -330435 -1124.14 24.36 24.36

-1.750 0.00000 0 0.01000 330435 -0.00820 -330435 -1124.14 24.36 24.36

0.000 0.00000 0 0.01000 330435 -0.00071 -150000 -851.32 77.56 -42.14
0.021 0.00053 5038 0.01000 330435 -0.00023 -47368 -679.47 111.45 -83.60
0.046 0.00121 9325 0.01000 330435 0.00041 86916 -420.21 162.63 -144.68
0.070 0.00200 11023 0.01000 330435 0.00114 240000 -107.31 223.22 -216.55
0.084 0.00249 11023 0.01000 330435 0.00159 330435 77.44 258.13 -258.13
0.099 0.00309 11023 0.01000 330435 0.00216 330435 132.31 266.70 -266.70
0.109 0.00350 11023 0.01000 330435 0.00254 330435 166.60 271.59 -271.59
0.172 0.00350 11023 0.00504 330435 0.00289 330435 336.06 289.91 -289.91
0.235 0.00350 11023 0.00274 330435 0.00305 330435 505.52 299.30 -299.30
0.290 0.00350 11023 0.00157 330435 0.00314 330435 650.77 300.25 -300.25
0.322 0.00350 11023 0.00106 222786 0.00317 330435 941.40 257.99 -265.93
0.374 0.00350 11023 0.00043 89499 0.00322 330435 1332.80 199.83 -217.59
0.420 0.00350 11023 0.00000 0 0.00325 330435 1624.01 153.98 -178.33
0.429 0.00350 11023 -0.00007 -15420 0.00326 330435 1677.25 145.20 -170.70
0.440 0.00350 11023 -0.00016 -32611 0.00326 330435 1737.85 135.04 -161.80
0.450 0.00350 11023 -0.00023 -49000 0.00327 330435 1796.93 124.92 -152.89
1.450 0.00231 11023 -0.00164 -330435 0.00226 330435 2600.44 -22.45 -26.26
5.000 0.00208 11023 -0.00191 -330435 0.00207 330435 2611.49 -24.23 -24.49
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TABLE 1.2
P-M Interaction Values for RC Section 300 × 450 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

   -1000 0.00000 0 0.01000 360870 -0.01000 -360870 -1227.68 26.60 26.60

-3.500 0.00000 0 0.01000 360870 -0.00901 -360870 -1227.68 26.60 26.60

-1.750 0.00000 0 0.01000 360870 -0.00820 -360870 -1227.68 26.60 26.60

0.000 0.00000 0 0.01000 360870 -0.00071 -150000 -908.84 88.77 -51.12
0.021 0.00053 5038 0.01000 360870 -0.00023 -47368 -736.99 122.66 -92.57
0.046 0.00121 9325 0.01000 360870 0.00041 86916 -477.73 173.85 -153.66
0.070 0.00200 11023 0.01000 360870 0.00114 240000 -164.84 234.43 -225.52
0.084 0.00249 11023 0.01000 360870 0.00159 334682 26.34 270.60 -268.67
0.099 0.00309 11023 0.01000 360870 0.00216 360870 120.80 286.89 -286.89
0.109 0.00350 11023 0.01000 360870 0.00254 360870 155.10 291.78 -291.78
0.169 0.00350 11023 0.00518 360870 0.00288 360870 317.02 309.47 -309.47
0.230 0.00350 11023 0.00290 360870 0.00304 360870 478.93 319.02 -319.02
0.282 0.00350 11023 0.00172 360870 0.00313 360870 617.72 320.71 -320.71
0.316 0.00350 11023 0.00115 241063 0.00317 360870 936.72 274.36 -283.19
0.372 0.00350 11023 0.00046 95748 0.00322 360870 1359.47 211.75 -231.29
0.420 0.00350 11023 0.00000 0 0.00325 360870 1670.03 162.95 -189.55
0.429 0.00350 11023 -0.00007 -15420 0.00326 360870 1723.26 154.18 -181.91
0.440 0.00350 11023 -0.00016 -32611 0.00326 360870 1783.86 144.01 -173.02
0.450 0.00350 11023 -0.00023 -49000 0.00327 360870 1842.95 133.90 -164.11
1.450 0.00231 11023 -0.00164 -344114 0.00226 360870 2672.31 -18.52 -33.45
5.000 0.00208 11023 -0.00191 -360870 0.00207 360870 2715.03 -26.47 -26.73
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TABLE 1.3

P-M Interaction Values for RC Section 300 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

 -1000 0.00000 0 0.01000 330435 -0.01000 -330435 -1257.97 30.75 30.75

-3.500 0.00000 0 0.01000 330435 -0.00889 -330435 -1257.97 30.75 30.75

-1.750 0.00000 0 0.01000 330435 -0.00802 -330435 -1257.97 30.75 30.75

0.000 0.00000 0 0.01000 330435 -0.00064 -134043 -925.67 103.86 -60.63
0.024 0.00053 5038 0.01000 330435 -0.00015 -30571 -731.94 146.89 -113.29
0.051 0.00121 9325 0.01000 330435 0.00050 104812 -439.95 211.69 -190.69
0.078 0.00200 11023 0.01000 330435 0.00123 259149 -87.69 288.32 -281.69
0.094 0.00249 11023 0.01000 330435 0.00169 330435 86.66 325.09 -325.09
0.111 0.00309 11023 0.01000 330435 0.00226 330435 148.06 335.71 -335.71
0.122 0.00350 11023 0.01000 330435 0.00264 330435 186.44 341.77 -341.77
0.193 0.00350 11023 0.00504 330435 0.00296 330435 376.07 364.37 -364.37
0.264 0.00350 11023 0.00274 330435 0.00310 330435 565.70 375.79 -375.79
0.324 0.00350 11023 0.00157 330435 0.00318 330435 728.24 376.69 -376.69
0.361 0.00350 11023 0.00106 222786 0.00321 330435 1053.47 323.19 -333.21
0.419 0.00350 11023 0.00043 89499 0.00325 330435 1491.47 249.57 -272.00
0.470 0.00350 11023 0.00000 0 0.00328 330435 1817.34 191.57 -222.32
0.479 0.00350 11023 -0.00007 -13810 0.00328 330435 1870.64 181.66 -213.69
0.490 0.00350 11023 -0.00014 -29280 0.00329 330435 1931.47 170.16 -203.64
0.500 0.00350 11023 -0.00021 -44100 0.00329 330435 1990.93 158.72 -193.58
1.500 0.00233 11023 -0.00160 -330435 0.00229 330435 2895.93 -27.97 -33.53
5.000 0.00209 11023 -0.00189 -330435 0.00208 330435 2910.36 -30.55 -30.95
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TABLE 1.4
P-M Interaction Values for RC Section 300 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 360870 -0.01000 -360870 -1373.83 33.58 33.58

-3.500 0.00000 0 0.01000 360870 -0.00889 -360870 -1373.83 33.58 33.58

-1.750 0.00000 0 0.01000 360870 -0.00802 -360870 -1373.83 33.58 33.58

0.000 0.00000 0 0.01000 360870 -0.00064 -134043 -990.04 118.02 -71.96
0.024 0.00053 5038 0.01000 360870 -0.00015 -30571 -796.31 161.05 -124.62
0.051 0.00121 9325 0.01000 360870 0.00050 104812 -504.32 225.85 -202.02
0.078 0.00200 11023 0.01000 360870 0.00123 259149 -152.06 302.48 -293.01
0.094 0.00249 11023 0.01000 360870 0.00169 354606 63.18 348.25 -347.66
0.111 0.00309 11023 0.01000 360870 0.00226 360870 135.19 361.20 -361.20
0.122 0.00350 11023 0.01000 360870 0.00264 360870 173.56 367.26 -367.26
0.190 0.00350 11023 0.00518 360870 0.00295 360870 354.76 389.09 -389.09
0.257 0.00350 11023 0.00290 360870 0.00309 360870 535.95 400.72 -400.72
0.315 0.00350 11023 0.00172 360870 0.00317 360870 691.26 402.56 -402.56
0.354 0.00350 11023 0.00115 241063 0.00320 360870 1048.23 343.88 -355.03
0.416 0.00350 11023 0.00046 95748 0.00325 360870 1521.31 264.63 -289.30
0.470 0.00350 11023 0.00000 0 0.00328 360870 1868.84 202.90 -236.48
0.479 0.00350 11023 -0.00007 -13810 0.00328 360870 1922.14 192.99 -227.85
0.490 0.00350 11023 -0.00014 -29280 0.00329 360870 1982.97 181.49 -217.80
0.500 0.00350 11023 -0.00021 -44100 0.00329 360870 2042.42 170.05 -207.74
1.500 0.00233 11023 -0.00160 -336467 0.00229 360870 2960.18 -19.45 -45.44
5.000 0.00209 11023 -0.00189 -360870 0.00208 360870 3026.22 -33.38 -33.78
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TABLE 1.5
P-M Interaction Values for RC Section 300 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 330435 -0.00999 -330435 -1525.62 45.77 45.77

-3.500 0.00000 0 0.01000 330435 -0.00867 -330435 -1525.62 45.77 45.77

-1.750 0.00000 0 0.01000 330435 -0.00767 -330435 -1525.62 45.77 45.77

0.000 0.00000 0 0.01000 330435 -0.00053 -110526 -1074.37 167.61 -106.53
0.029 0.00053 5038 0.01000 330435 -0.00003 -5817 -836.88 232.19 -185.61
0.062 0.00121 9325 0.01000 330435 0.00062 131185 -479.44 329.04 -301.44
0.095 0.00200 11023 0.01000 330435 0.00137 287368 -48.44 443.43 -437.46
0.113 0.00249 11023 0.01000 330435 0.00183 330435 105.09 482.13 -482.13
0.135 0.00309 11023 0.01000 330435 0.00240 330435 179.56 497.52 -497.52
0.148 0.00350 11023 0.01000 330435 0.00279 330435 226.11 506.28 -506.28
0.234 0.00350 11023 0.00504 330435 0.00305 330435 456.08 538.79 -538.79
0.320 0.00350 11023 0.00274 330435 0.00317 330435 686.06 554.85 -554.85
0.393 0.00350 11023 0.00157 330435 0.00323 330435 883.18 555.54 -555.54
0.437 0.00350 11023 0.00106 222786 0.00326 330435 1277.62 475.60 -490.51
0.508 0.00350 11023 0.00043 89499 0.00329 330435 1808.80 365.63 -399.00
0.570 0.00350 11023 0.00000 0 0.00332 330435 2204.01 279.06 -324.82
0.579 0.00350 11023 -0.00005 -11425 0.00332 330435 2257.41 266.86 -314.21
0.590 0.00350 11023 -0.00012 -24313 0.00332 330435 2318.58 252.70 -301.84
0.600 0.00350 11023 -0.00018 -36750 0.00333 330435 2378.59 238.61 -289.47
1.600 0.00238 11023 -0.00153 -322149 0.00234 330435 3463.95 -34.75 -55.64
5.000 0.00211 11023 -0.00187 -330435 0.00210 330435 3507.86 -45.35 -46.19
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TABLE 1.6
P-M Interaction Values for RC Section 300 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 415 N/mm2 )

    xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 360870 -0.00999 -360870 -1666.13 49.98 49.98

-3.500 0.00000 0 0.01000 360870 -0.00867 -360870 -1666.13 49.98 49.98

-1.750 0.00000 0 0.01000 360870 -0.00767 -360870 -1666.13 49.98 49.98

0.000 0.00000 0 0.01000 360870 -0.00053 -110526 -1152.43 188.68 -123.39
0.029 0.00053 5038 0.01000 360870 -0.00003 -5817 -914.94 253.27 -202.48
0.062 0.00121 9325 0.01000 360870 0.00062 131185 -557.51 350.12 -318.30
0.095 0.00200 11023 0.01000 360870 0.00137 287368 -126.51 464.51 -454.33
0.113 0.00249 11023 0.01000 360870 0.00183 360870 89.48 520.07 -520.07
0.135 0.00309 11023 0.01000 360870 0.00240 360870 163.95 535.46 -535.46
0.148 0.00350 11023 0.01000 360870 0.00279 360870 210.49 544.22 -544.22
0.230 0.00350 11023 0.00518 360870 0.00304 360870 430.24 575.63 -575.63
0.312 0.00350 11023 0.00290 360870 0.00316 360870 649.98 592.03 -592.03
0.382 0.00350 11023 0.00172 360870 0.00323 360870 838.33 594.14 -594.14
0.429 0.00350 11023 0.00115 241063 0.00326 360870 1271.26 506.45 -523.04
0.504 0.00350 11023 0.00046 95748 0.00329 360870 1845.00 388.06 -424.78
0.570 0.00350 11023 0.00000 0 0.00332 360870 2266.46 295.92 -345.90
0.579 0.00350 11023 -0.00005 -11425 0.00332 360870 2319.86 283.72 -335.28
0.590 0.00350 11023 -0.00012 -24313 0.00332 360870 2381.03 269.56 -322.91
0.600 0.00350 11023 -0.00018 -36750 0.00333 360870 2441.04 255.47 -310.55
1.600 0.00238 11023 -0.00153 -322149 0.00234 360870 3526.40 -17.89 -76.72
5.000 0.00211 11023 -0.00187 -360870 0.00210 360870 3648.38 -49.56 -50.41
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TABLE 1.7
P-M Interaction Values for RC Section 350 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 380 N/mm2 )

    xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 330435 -0.01000 -330435 -1467.63 35.88 35.88

-3.500 0.00000 0 0.01000 330435 -0.00889 -330435 -1467.63 35.88 35.88

-1.750 0.00000 0 0.01000 330435 -0.00802 -330435 -1467.63 35.88 35.88

0.000 0.00000 0 0.01000 330435 -0.00064 -134043 -1079.95 121.16 -70.74
0.024 0.00053 5038 0.01000 330435 -0.00015 -30571 -853.93 171.37 -132.17
0.051 0.00121 9325 0.01000 330435 0.00050 104812 -513.28 246.97 -222.47
0.078 0.00200 11023 0.01000 330435 0.00123 259149 -102.30 336.37 -328.63
0.094 0.00249 11023 0.01000 330435 0.00169 330435 101.10 379.27 -379.27
0.111 0.00309 11023 0.01000 330435 0.00226 330435 172.74 391.66 -391.66
0.122 0.00350 11023 0.01000 330435 0.00264 330435 217.51 398.73 -398.73
0.193 0.00350 11023 0.00504 330435 0.00296 330435 438.75 425.10 -425.10
0.264 0.00350 11023 0.00274 330435 0.00310 330435 659.98 438.42 -438.42
0.324 0.00350 11023 0.00157 330435 0.00318 330435 849.61 439.47 -439.47
0.361 0.00350 11023 0.00106 222786 0.00321 330435 1229.05 377.06 -388.75
0.419 0.00350 11023 0.00043 89499 0.00325 330435 1740.05 291.17 -317.33
0.470 0.00350 11023 0.00000 0 0.00328 330435 2120.23 223.50 -259.37
0.479 0.00350 11023 -0.00007 -13810 0.00328 330435 2182.42 211.93 -249.31
0.490 0.00350 11023 -0.00014 -29280 0.00329 330435 2253.39 198.52 -237.58
0.500 0.00350 11023 -0.00021 -44100 0.00329 330435 2322.75 185.18 -225.84
1.500 0.00233 11023 -0.00160 -330435 0.00229 330435 3378.58 -32.64 -39.12
5.000 0.00209 11023 -0.00189 -330435 0.00208 330435 3395.42 -35.64 -36.11
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TABLE 1.8
P-M Interaction Values for RC Section 350 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 360870 -0.01000 -360870 -1602.80 39.18 39.18

-3.500 0.00000 0 0.01000 360870 -0.00889 -360870 -1602.80 39.18 39.18

-1.750 0.00000 0 0.01000 360870 -0.00802 -360870 -1602.80 39.18 39.18

0.000 0.00000 0 0.01000 360870 -0.00064 -134043 -1155.05 137.69 -83.95
0.024 0.00053 5038 0.01000 360870 -0.00015 -30571 -929.03 187.89 -145.39
0.051 0.00121 9325 0.01000 360870 0.00050 104812 -588.37 263.49 -235.69
0.078 0.00200 11023 0.01000 360870 0.00123 259149 -177.40 352.89 -341.85
0.094 0.00249 11023 0.01000 360870 0.00169 354606 73.71 406.29 -405.61
0.111 0.00309 11023 0.01000 360870 0.00226 360870 157.72 421.40 -421.40
0.122 0.00350 11023 0.01000 360870 0.00264 360870 202.49 428.47 -428.47
0.190 0.00350 11023 0.00518 360870 0.00295 360870 413.88 453.94 -453.94
0.257 0.00350 11023 0.00290 360870 0.00309 360870 625.28 467.50 -467.50
0.315 0.00350 11023 0.00172 360870 0.00317 360870 806.47 469.66 -469.66
0.354 0.00350 11023 0.00115 241063 0.00320 360870 1222.94 401.19 -414.20
0.416 0.00350 11023 0.00046 95748 0.00325 360870 1774.86 308.74 -337.52
0.470 0.00350 11023 0.00000 0 0.00328 360870 2180.31 236.72 -275.90
0.479 0.00350 11023 -0.00007 -13810 0.00328 360870 2242.50 225.15 -265.83
0.490 0.00350 11023 -0.00014 -29280 0.00329 360870 2313.46 211.74 -254.10
0.500 0.00350 11023 -0.00021 -44100 0.00329 360870 2382.83 198.39 -242.36
1.500 0.00233 11023 -0.00160 -336467 0.00229 360870 3453.54 -22.69 -53.02
5.000 0.00209 11023 -0.00189 -360870 0.00208 360870 3530.59 -38.95 -39.41

 

K
10453.indb   34

6/15/09   4:10:44 P
M

©
 2010 by T

aylor and Francis G
roup, L

L
C



A
xial Fo

rce
–B

en
d

in
g M

o
m

en
t Y

ield
 In

teractio
n

	
35

TABLE 1.9
P-M Interaction Values for RC Section 350 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 330435 -0.00999 -330435 -1779.89 53.40 53.40

-3.500 0.00000 0 0.01000 330435 -0.00867 -330435 -1779.89 53.40 53.40

-1.750 0.00000 0 0.01000 330435 -0.00767 -330435 -1779.89 53.40 53.40

0.000 0.00000 0 0.01000 330435 -0.00053 -110526 -1253.43 195.54 -124.28
0.029 0.00053 5038 0.01000 330435 -0.00003 -5817 -976.35 270.89 -216.55
0.062 0.00121 9325 0.01000 330435 0.00062 131185 -559.35 383.88 -351.68
0.095 0.00200 11023 0.01000 330435 0.00137 287368 -56.51 517.33 -510.37
0.113 0.00249 11023 0.01000 330435 0.00183 330435 122.61 562.49 -562.49
0.135 0.00309 11023 0.01000 330435 0.00240 330435 209.49 580.44 -580.44
0.148 0.00350 11023 0.01000 330435 0.00279 330435 263.79 590.66 -590.66
0.234 0.00350 11023 0.00504 330435 0.00305 330435 532.10 628.58 -628.58
0.320 0.00350 11023 0.00274 330435 0.00317 330435 800.40 647.33 -647.33
0.393 0.00350 11023 0.00157 330435 0.00323 330435 1030.38 648.13 -648.13
0.437 0.00350 11023 0.00106 222786 0.00326 330435 1490.55 554.87 -572.27
0.508 0.00350 11023 0.00043 89499 0.00329 330435 2110.27 426.57 -465.50
0.570 0.00350 11023 0.00000 0 0.00332 330435 2571.35 325.56 -378.96
0.579 0.00350 11023 -0.00005 -11425 0.00332 330435 2633.64 311.33 -366.57
0.590 0.00350 11023 -0.00012 -24313 0.00332 330435 2705.01 294.82 -352.14
0.600 0.00350 11023 -0.00018 -36750 0.00333 330435 2775.02 278.38 -337.72
1.600 0.00238 11023 -0.00153 -322149 0.00234 330435 4041.27 -40.54 -64.91
5.000 0.00211 11023 -0.00187 -330435 0.00210 330435 4092.50 -52.90 -53.89
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TABLE 1.10
P-M Interaction Values for RC Section 350 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 360870 -0.00999 -360870 -1943.82 58.31 58.31

-3.500 0.00000 0 0.01000 360870 -0.00867 -360870 -1943.82 58.31 58.31

-1.750 0.00000 0 0.01000 360870 -0.00767 -360870 -1943.82 58.31 58.31

0.000 0.00000 0 0.01000 360870 -0.00053 -110526 -1344.50 220.13 -143.96
0.029 0.00053 5038 0.01000 360870 -0.00003 -5817 -1067.43 295.48 -236.22
0.062 0.00121 9325 0.01000 360870 0.00062 131185 -650.42 408.47 -371.35
0.095 0.00200 11023 0.01000 360870 0.00137 287368 -147.59 541.92 -530.05
0.113 0.00249 11023 0.01000 360870 0.00183 360870 104.39 606.75 -606.75
0.135 0.00309 11023 0.01000 360870 0.00240 360870 191.27 624.70 -624.70
0.148 0.00350 11023 0.01000 360870 0.00279 360870 245.57 634.93 -634.93
0.230 0.00350 11023 0.00518 360870 0.00304 360870 501.94 671.57 -671.57
0.312 0.00350 11023 0.00290 360870 0.00316 360870 758.31 690.70 -690.70
0.382 0.00350 11023 0.00172 360870 0.00323 360870 978.06 693.16 -693.16
0.429 0.00350 11023 0.00115 241063 0.00326 360870 1483.14 590.86 -610.22
0.504 0.00350 11023 0.00046 95748 0.00329 360870 2152.50 452.74 -495.58
0.570 0.00350 11023 0.00000 0 0.00332 360870 2644.21 345.24 -403.55
0.579 0.00350 11023 -0.00005 -11425 0.00332 360870 2706.51 331.00 -391.17
0.590 0.00350 11023 -0.00012 -24313 0.00332 360870 2777.87 314.49 -376.73
0.600 0.00350 11023 -0.00018 -36750 0.00333 360870 2847.88 298.05 -362.31
1.600 0.00238 11023 -0.00153 -322149 0.00234 360870 4114.13 -20.87 -89.50
5.000 0.00211 11023 -0.00187 -360870 0.00210 360870 4256.44 -57.82 -58.81
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TABLE 1.11
P-M Interaction Values for RC Section 350 × 700 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 330435 -0.00999 -330435 -2092.15 74.39 74.39

-3.500 0.00000 0 0.01000 330435 -0.00847 -330435 -2092.15 74.39 74.39

-1.750 0.00000 0 0.01000 330435 -0.00736 -330435 -2092.15 74.39 74.39

0.000 0.00000 0 0.01000 330435 -0.00045 -94030 -1426.90 287.27 -191.71
0.034 0.00053 5038 0.01000 330435 0.00005 11548 -1098.78 392.84 -321.05
0.073 0.00121 9325 0.01000 330435 0.00071 149686 -605.42 550.72 -510.03
0.112 0.00200 11023 0.01000 330435 0.00146 307164 -10.72 737.03 -731.79
0.133 0.00249 11023 0.01000 330435 0.00193 330435 144.12 781.68 -781.68
0.158 0.00309 11023 0.01000 330435 0.00250 330435 246.24 806.21 -806.21
0.174 0.00350 11023 0.01000 330435 0.00290 330435 310.07 820.17 -820.17
0.275 0.00350 11023 0.00504 330435 0.00312 330435 625.45 871.73 -871.73
0.376 0.00350 11023 0.00274 330435 0.00322 330435 940.83 896.80 -896.80
0.462 0.00350 11023 0.00157 330435 0.00327 330435 1211.15 897.20 -897.20
0.514 0.00350 11023 0.00106 222786 0.00330 330435 1752.05 766.92 -791.16
0.597 0.00350 11023 0.00043 89499 0.00332 330435 2480.50 587.74 -641.98
0.670 0.00350 11023 0.00000 0 0.00334 330435 3022.46 446.76 -521.15
0.679 0.00350 11023 -0.00005 -9742 0.00335 330435 3084.84 429.86 -506.44
0.690 0.00350 11023 -0.00010 -20787 0.00335 330435 3156.48 410.24 -489.30
0.700 0.00350 11023 -0.00015 -31500 0.00335 330435 3226.96 390.70 -472.18
1.700 0.00243 11023 -0.00147 -309000 0.00239 330435 4675.50 -39.76 -104.19
5.000 0.00213 11023 -0.00184 -330435 0.00211 330435 4789.16 -73.46 -75.32
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TABLE 1.12
P-M Interaction Values for RC Section 350 × 700 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc Pu Mu+ Mu -

-1000 0.00000 0 0.01000 360870 -0.00999 -360870 -2284.85 81.24 81.24

-3.500 0.00000 0 0.01000 360870 -0.00847 -360870 -2284.85 81.24 81.24

-1.750 0.00000 0 0.01000 360870 -0.00736 -360870 -2284.85 81.24 81.24

0.000 0.00000 0 0.01000 360870 -0.00045 -94030 -1533.96 321.52 -219.12
0.034 0.00053 5038 0.01000 360870 0.00005 11548 -1205.83 427.10 -348.46
0.073 0.00121 9325 0.01000 360870 0.00071 149686 -712.47 584.98 -537.44
0.112 0.00200 11023 0.01000 360870 0.00146 307164 -117.78 771.29 -759.20
0.133 0.00249 11023 0.01000 360870 0.00193 360870 122.71 843.34 -843.34
0.158 0.00309 11023 0.01000 360870 0.00250 360870 224.83 867.88 -867.88
0.174 0.00350 11023 0.01000 360870 0.00290 360870 288.66 881.84 -881.84
0.270 0.00350 11023 0.00518 360870 0.00311 360870 590.00 931.67 -931.67
0.367 0.00350 11023 0.00290 360870 0.00321 360870 891.35 957.31 -957.31
0.449 0.00350 11023 0.00172 360870 0.00327 360870 1149.65 960.03 -960.03
0.505 0.00350 11023 0.00115 241063 0.00329 360870 1743.34 817.12 -844.09
0.593 0.00350 11023 0.00046 95748 0.00332 360870 2530.13 624.21 -683.90
0.670 0.00350 11023 0.00000 0 0.00334 360870 3108.10 474.16 -555.40
0.679 0.00350 11023 -0.00005 -9742 0.00335 360870 3170.48 457.26 -540.70
0.690 0.00350 11023 -0.00010 -20787 0.00335 360870 3242.12 437.64 -523.56
0.700 0.00350 11023 -0.00015 -31500 0.00335 360870 3312.60 418.11 -506.44
1.700 0.00243 11023 -0.00147 -309000 0.00239 360870 4761.14 -12.36 -138.44
5.000 0.00213 11023 -0.00184 -360870 0.00211 360870 4981.86 -80.31 -82.17
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TABLE 1.13
Summary of Expressions for P-M Interaction Behavior
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TABLE 1.13
Summary of Expressions for P-M Interaction Behavior (Continued)
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1.6 C ONCLUsiONs

In this chapter, a detailed methodology for estimating the P-M yield interaction is 
presented while identifying the subdomains of the P-M boundary. RC beams of dif-
ferent cross-sections and percentage of reinforcement in tension and compression 
are analyzed, and their subdomains in P-M interaction are identified. The proposed 
expressions for P-M and M- f are carefully examined for their close agreement 
with selected examples of RC beams. Though some of the observations are already 
reported in the literature, the study quantifies the value through illustrated examples 
relevant to the Eurocode currently prevalent. The expressions presented in a closed 
form will be very useful to the engineering community to perform nonlinear analy-
ses like pushover.

1.7 N UMERiCAL PROCEDURE iN SPREADsHEET FORMAT

A compact disc with relevant content can be downloaded free from http://www.
crcpress.com/e_products/downloads/download.asp?cat_no=K10453. The user can 
change the common design parameters (shown in color in the spreadsheet), namely, 
(1) diameter and number of bars of tensile and compression reinforcement, (2) 
cross-section dimensions, and (3) material properties like fck and fy. All relative coef-
ficients required for each domain are computed automatically, and one can find the 
required P-M curve plotted.
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2 Moment-Curvature 
Relationship for 
RC Sections

2.1  SUMMARY

The correct estimate of curvature ductility of reinforced concrete members has 
always been an attractive subject of study because it engenders a reliable estimate 
of the capacity of buildings under seismic loads. The majority of building stock 
needs structural assessment to certify its safety under revised seismic loads by new 
codes. Structural assessment of existing buildings, by employing nonlinear analyses 
tools like pushover, needs an accurate input of moment-curvature relationship for 
reliable results. In this chapter, analytical predictions of curvature ductility of rein-
forced concrete sections are presented. Relationships, in explicit form, to estimate 
the moment-curvature response are proposed, leading to closed form solutions after 
their verification with those obtained from numerical procedures. The purpose is 
to estimate curvature ductility under service loads in a simpler closed form. The 
influence of longitudinal tensile and compression reinforcements on curvature duc-
tility is also examined and discussed. The spreadsheet program used to estimate the 
moment-curvature relationship, after simplifying the complexities involved in such 
estimates, predicts in good agreement with the proposed analytical expressions. In 
lieu of tedious hand calculations and approximations required in conventional itera-
tive design procedures, the proposed estimate of curvature ductility provides a ready 
solution for a potentially safe design.

2.2  INTRODUCTiON

Earthquake-resistant design of RC-framed structures is essentially focused on the 
displacement ductility of buildings instead of on material ductility of reinforcing 
bars. Critical points of interest are the strain levels in concrete and steel, indicating 
whether the failure is tensile or compressive at the instant of reaching plastic hinge 
formation (Pisanty and Regan 1998). Estimate of ductility demand is of particular 
interest to structural designers for ensuring effective redistribution of moments in 
ultraelastic response, allowing for the development of energy dissipative zones until 
collapse (Pisanty and Regan 1993). In seismic areas, ductility of the structure is 
an important design parameter since modern seismic design philosophy is based 
on energy absorption and dissipation by postelastic deformation for the survival of 
the structure during major earthquakes (Park and Kim 2003). Studies conducted 
on existing buildings showed they were structurally unfit to support seismic loads 
demanded by the revised international codes (see, for example, Chandrasekaran and 
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44	 Seismic Design Aids for Nonlinear Analysis  

Roy 2006; Chao et al. 2006). The deformation demand predictions by improved 
Demand Capacity Method are sensitive to ductility, since higher ductility results in 
conservative predictions (Sinan and Asli 2007). The estimate of moment-curvature 
relationship of RC sections has been a point of research interest for many years (see, 
for example, Pfrang, Siess, and Sozen 1964; Carreira and Chu 1986; Mo 1992); his-
torically, moment-curvature relationships with softening branch were first introduced 
by Wood (1968). Load-deformation characteristics of reinforced concrete members, 
bending in particular, are mainly dependent on moment-curvature characteristics 
of the sections since most of these deformations arise from strains associated with 
flexure (Park and Paulay 1975). Studies also show that in well-designed and detailed 
RC structures, the gap between the actual and design lateral forces narrows down 
by ensuring ductility (see, for example, Wood 1968; Pankaj and Manish 2006). With 
regard to RC building frames with sidesway, their response assessment is compli-
cated because of second-order deformations and because considerable redistribution 
of moments may occur as a result of plastic behavior of sections as well (Nunziante 
and Ocone 1988). Plastic curvature is therefore a complex issue mainly because of 
interaction of various parameters, namely, (1) the response of constitutive material, 
(2) member geometry, and (3) loading conditions. Observations made on plastic soft-
ening beams (Challamel and Hjiaj 2005) showed that the correct estimate of yield 
moment, a nonlocal material parameter, is important to ensure proper continuity 
between elastic and plastic regions during the loading process. Experimental evi-
dence of the moment-curvature relationship of RC sections already faced limited 
loading cases and support conditions (Ko, Kim, and Kim 2001). Mo (1992) per-
formed elastic-plastic buckling analysis by employing a finite element procedure 
to reproduce moment-curvature relationship with the softening branch, and Jirasek 
and Bazant (2002) used an alternate, simplified model where the complex nonlin-
ear geometric effects are embedded in the developed model of material behavior. 
Experimental investigations also impose limitations in estimating the plastic rota-
tion capacity. As already seen (Lopes and Bernardo 2003), the experimental results 
for rotation-deflection behavior showed good agreement with the analysis in the elas-
tic regime, but for the phase of yielding of reinforcement steel, the theoretical results 
did not agree with the experimental inferences.

Studies reported above show that no simplified procedure exists to estimate cur-
vature ductility of RC sections. The response of RC building frames under ground 
shaking generally results in nonlinear behavior, which is complex to model. Further, 
increased use of a displacement-based design approach leads to nonlinear static pro-
cedures for estimating seismic demands (FEMA 450, 2004; FEMA 440, 2005) for 
which such an estimate of moment-curvature relationship is essential. Therefore, in 
this study, a simplified numerical procedure for moment-curvature relationship of 
RC sections is attempted. The computations are based on their nonlinear character-
istics in full depth of the cross-section, for different ratios of longitudinal tensile and 
compression reinforcements. They account for the variation on depth of neutral axis 
passing through different domains, classified on the basis of strain levels reached in 
the constitutive materials, namely, concrete and steel. Obtained results, by employ-
ing the numerical procedure on example RC sections, are verified with expressions 
derived from detailed analytical modeling.
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2.3 M ATHEMATiCAL DEVELOPMENT

Significant nonlinearity exhibited by concrete, under multiaxial stress state, can be 
successively represented by nonlinear characteristics of constitutive models capable 
of interpreting inelastic deformations (Chen 1994a, 1994b). Elastic stress-strain rela-
tionship of constitutive materials, as prescribed by the code currently in prevalence 
(D.M. 9 gennaio 1996; Eurocode UNI ENV 1991-1, 1991-2; Ordinanza 2003, 2005; 
D.M. 2005) are used in this study, as already presented in Chapter 1. The funda-
mental Bernoulli’s hypothesis of linear strain over the cross-section, both for elastic 
and elastic-plastic responses of the beam under bending moment combined with 
axial force, will be assumed. The interaction behavior becomes critical when one 
of the following conditions applies: (1) strain in reinforcing steel in tension reaches 
ultimate limit; (2) strain in concrete in extreme compression fiber reaches ultimate 
limit; or (3) maximum strain in concrete in compression reaches elastic limit under 
only axial compression.

2.4 M OMENT-CURVATURE iN ELAsTiC RANGE

It is well known that the bending curvature is the derivative of bending rotation, 
varying along the member length and at any cross-section, and is given by slope of 
the strain profile. It depends on the fluctuations of neutral axis depth and continu-
ously varying strains. Moment-curvature relationship, in elastic range, depends on 
both the magnitude and nature of the axial force. Figure 2.1 shows the curvature 
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FiGURE 2.1  Curvature profile for strain variation in concrete and steel.
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profile for strain variation in concrete and steel. Magnitude of axial force is assumed 
to vary in the range of

	 -(Asc + Ast) ss0 < P < {bDsc0 + (Asc+ Ast) ss0}	 (2.1a)

The nature of axial force will vary as (1) tensile axial force (considered as nega-
tive in this study); (2) zero axial force; as well as (3) compressive axial force 
(considered positive). Stress and strain in concrete and steel, in elastic range are 
given by

	

e ϕ e ϕ e ϕ

s

c e c sc e c st e c

c

x y x d D x d= - = - = - -

=

( ); ( ); ( );

(( )[ ( ) ]
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E xc c c e c e
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sc s e c
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=

2 0 0

0
2

e ϕ s ϕ
e

s ϕ --

= - -

d

E D x dst s e c

);

( );s ϕ
 	

(2.1b)

2.4.1	T ENsILE AXIAL FORcE

Tensile axial force results in reduced curvature. Under the action of axial force, the 
equilibrium equation for axial force is written along the length axis of the beam 
while moment is evaluated about the CG of the cross-section. Expressions for axial 
force and bending moment, in explicit form, are given by

	
P A A b d D d p p Dp p pe st st sc sc c t t c= - + = - - + - +s s ( )[ ( ) ( tt c sx E) ] f

	 (2.2)
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(2.3)

Percentages of steel, in tension and compression zones, are given by

	
A p b D d A p b D dst t sc c= - = -( ); ( )

 	  (2.4)

By solving Equation 2.2 with respect to xc, we obtain the following relationship:

	
x

P b d D d p p Dp E

b d D p p Ec
e c t t s

c t

=
+ - - +

- +
( )[ ( ) ]

( )( )

f
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(2.5)
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By substituting Equation 2.5 in Equation 2.3, moment-curvature relationship is 
obtained as

	
M

D d
p p

P p p b D d dD E p pe
c t

e c t s c= -
+

- + + -2
2

2 32 2

( )
( ) ( ) ttf f f  ∀ ∈[ , ]0 0

	
(2.6)

where f0  is the limit curvature for xc = 0 ; by imposing this condition in Equation 
2.5, we get

	
f0 =

- + -
P

b d D E Dp d p p
e

s t c t( ) [ ( )]  	
 (2.7)

As curvature is influenced by the percentage of tension reinforcement, by imposing 
the conditions x D dc s= = -0 0and f e /( ) in Equation 2.2 and solving with respect to 
pt , for a specified range of fu

b Q Q Q Q Q( ) /= - + -1 1
2

0 2 24 2 , Equation 2.6 is defined 
in the total range [ , ]0 fE , where fE  is the limit elastic curvature and is derived in 
the following section. For further increase in curvature more than f0 , concrete also 
contributes to the resulting compression, and expressions for axial force and bending 
moment take the following form:
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where the coefficients Ai (for i = 0 to 3) and Bi (for i = 0 to 4), as a function of cur-
vature, are given by
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By solving Equation 2.8 with respect to variable xc, three roots of the variable are 
obtained as
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where,
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Out of the above, only one root, namely xc3, is in close agreement with the obtained 
numerical solution. By substituting the root xc3 in Equation 2.11, the moment-curva-
ture relationship in elastic range is obtained as
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4 3
4f f f f f f00, ]fE  	

(2.13)

2.4.2	N O AXIAL FORcE

The moment-curvature relationship is given by Equation 2.13 for the complete range 
of [ , ]0 fE .

2.4.3	 COMPREssIVE AXIAL FORcE

Expressions for axial force and bending moment are given by
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where the coefficients Ei = 0,1,2 and Fi = 0,1 are given by
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By solving Equation 2.14, the position of the neutral axis is determined as
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- + - -1 1
2

2 0

0

4

2

( )

 	
 (2.17)

By substituting Equation 2.17 in Equation 2.15, we get

	
M F P F P xe e e c= + ∀ ∈0 1 00( , ) ( , ) [ , ]f f f f

 	  (2.18)

where

f
e s

0
0

2
0

3

3

2
=

- + - + b D d E Dp d p p D

bD
c s c t c c( ) ( ( ))

ss

e e s

c

c s c c t c cb b D d E Dp d p p D

0

0 0
2

03 3
-

- + - +(( ) ( ( )) ))





-
2

3
0

3
0

4

2

P D

bD

e c

c

s

s
 	

(2.19)

By imposing the condition (xc = D) in Equation 2.17, limit curvature f0  is deter-
mined as given above. Further increase in curvature changes the equilibrium conditions 
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due to contributions from the resultant compressive force by concrete. For curvature 
more than f0 , moment-curvature relationship is discussed in the next section.

2.5 E LAsTiC LiMiT BENDiNG MOMENT AND CURVATURE

The limit elastic curvature, depending on the magnitude of axial force and percent-
age of reinforcing steel in tension and compression, results in four possible cases, 
namely, (1) strain in tension steel reaches yield limit and stress in concrete vanishes; 
(2) strain in tension steel reaches yield limit but stress in concrete is present; (3) 
strain in compression steel reaches elastic limit; and (4) strain in extreme compres-
sion fiber in concrete reaches elastic limit value.

2.5.1 � CAsE 1: STRAIN IN TENsION STEEL REAcHEs YIELD 
LIMIT AND STREss IN CONcRETE VANIsHEs

This case is verified when pt < Pe + bdEspces0/b(d-D)sso. By imposing s sst s= 0 and 
recalling Equation 2.2, the depth of the neutral axis can be obtained as given below:

	
x D d xc

i s

E
c

( ) = - - ∀ <
e
f

0 0
  	

 (2.20)

By substituting Equation 2.20 in Equation 2.2, elastic limit curvature can be deter-
mined as

	
f

s
E

E c t s

s c

P b D d p p

bE p D d dD
=

+ - +
+ -

( )( )

( )
0

2 22 3  	
 (2.21)

By substituting Equation 2.21 in Equation 2.3, elastic limit moment is obtained as

	
M

D d
P b D d pE

i
E t s

( ) [ ( ) ]= - + -2
2

2 0s
 	

 (2.22)

2.5.2 � CAsE 2: STRAIN IN TENsION STEEL REAcHEs YIELD LIMIT 
AND STREss IN CONcRETE DOEs NOT EQUAL ZERO

Depth of neutral axis is given by

	
x D d x D dc

ii s

E
c

( ) [ , ]= - - ∀ ∈ -
e
f

0 0
 	  

(2.23)

By substituting Equation 2.23 in Equation 2.8, the expression for limit elastic curva-
ture can be obtained as

	
L L L LE E E0 1 2

2
3

3 0+ + + =f f f
 	  (2.24)
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where the coefficients Li = 0,1,2,3 are given by

	

L
b

L
P b D d

s c s c

c

E c

0
0

2
0 0 0

0
2

1
0

2

3

3
=

+

= -
+ -

e e s
e

e

( )
,

(

e

)) ( ) ( )
,

e e e s e
e

s c s c s c t c

c

E p p

L

0 0 0 0 0
2

0
2

2

2 + + + 

==
- - + - + b D d d D E p d Ds c c c s c( ) ( ) ( )( )2 0

2
0 0 0e e e s 

=
-

e

s
e

c

c

c

L
b d D

0
2

3

3
0

0
23

,

( )

 	

(2.25)

By solving Equation 2.24, which is of a third-degree polynomial, only one real root 
(third root) gives the limit elastic curvature:

	

fE
ii

L
L

i L L L
( )

( . . )(
= - -

- -1
12

4
2 5198 4 3645 3

3
2

2
2

1 3))
( . . )

λ
λ- +









1 5874 2 7495i

	
		  (2.26)

where

λ = - + - + - - +2 9 27 4 3 22
3

1 2 3 3
2

0 2
2

1 3
3

2L L L L L L L L L L( ) ( 33
1 2 3 3

2
0

2
1 3

9 27- +



L L L L L )

/

		  (2.27)

By substituting Equation 2.26 in Equation 2.9, limit elastic bending moment is 
obtained as:

	

M
b M M

ME
ii

c

ii

E
ii

ii

E
ii

( )
( )

( )

( )

( )
(= + +

2 0
2

1
2

2
3e f f
iii ii

E
ii ii

E
iiM M) ( ) ( ) ( ) ( )+ +









4 5

2f f
	

 (2.28)

where the superscript (ii) represents the second case. Constants of the above equation 
are given by

M M
D dii s c s c ii s

1
0

3
0 0 0

2
04

6

2( ) ( )( )
,

( )
=

+
= -

-e e e s e22
0 0 0

3 0

3

3

2

( )
,

( ) ( ) (( )

e e s

e

c s c

ii
s s tM D d D d E p

+

= - - -- - + 

=
-

p d

M
D d

c c c s c

ii

) ( ) ,

( ) (
( )

e e e s0
2

0 0 0

4

2

3 DD d E p D d d Ds c c c s c- + - + + 2 2 22
0

2
0 0 0) ( )( ) ( )e e e s 

=
- +

3

65

3
0

,

( ) ( )( )M
d D D dii cs

 	

(2.29)
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2.5.3  CAsE 3: STRAIN IN COMPREssION STEEL REAcHEs ELAsTIc LIMIT VALUE

Depth of neutral axis is given by

	
x dc

iii s

E

( ) = +
e
f

0

 	
 (2.30)

By substituting Equation 2.30 in Equation 2.8, the expression for limit elastic curva-
ture is obtained as

	
H H H HE E E0 1 2

2
3

3 0+ + + =f f f
	  (2.31)

where the constants Hi  (for i = 0 to 3) are given by

	

H
b

H
P b

s c s c

c

E c s

0
0

2
0 0 0

0
2

1
0

2
0

3

3
=

+

=
- +

e e e s
e

e e

( )

[(DD d E p p d

H b

s c t c c c s

c

- + + -

=

) ( ) ( )]

(

e s e e
e

0
2

0 0 0

0
2

2

2

33 22 2
2

0 0 0

0
2

3

dD D d E p
d

H

s t
c c s

c

- - +
-







)

( )s e e
e

== -
bd c

c

3
0

0
23

s
e  	

(2.32)

By solving Equation 2.31, only one real root (the second one) gives the limit elastic 
curvature as

fE
iii

H
H

i H H H
( )

( . . )
= - -

+ -1
12

4
2 5198 4 3645 3

3
2

2
2

1 3(( )
- -











ω

ω( . . )1 5874 2 7495i

 		
		  (2.33)

where

ω = - + - + - -( ) +2 9 27 4 3 22
3

1 2 3 3
2

0 2
2

1 3

3

2
3H H H H H H H H H H -- +( )





9 271 2 3 3
2

0

2
1 3

H H H H H
/

 	
		  (2.34)

By substituting Equation 2.33 in Equation 2.9, limit elastic bending moment can be 
obtained as follows:

	

M
b M M

E
iii

c

iii

E
iii

iii

E
iii

( )
( )

( )

( )

(
= +

2 0
2

1
2

2

e f f ))
( ) ( ) ( ) ( ) ( )+ + +




M M Miii iii

E
iii iii

E
iii

3 4 5
2f f





	
(2.35)
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where

	

M M
D diii s s c c iii

1
0

3
0 0 0

2

4

6

2 3( ) ( )( )
,

( )(
=

-
=

-e e e s ee e e s

e

c s s c

iii
s sM d D D d E

0 0 0
2

0

3 0

3

2

-

= - -

)
,

( ) ( ) (( ) pp p d

M D d

t c c c s c

iii

- - - 

= -

) ( ) ,

(( )

e e e s0
2

0 0 0

4

2

))( )
( )( )

,D d E p
d D d

M

s t c
c s c- +

- -
2

3 2

3
2

0
2

2
0 0 0

5

e
e e s

(( ) ( )iii cd d D
=

-3
02

6

s

	

(2.36)

2.5.4 � CAsE 4: STRAIN IN EXTREME COMPREssION FIBER  
IN CONcRETE REAcHEs ELAsTIc LIMIT VALUE

Now, the depth of neutral axis is given by

	
xc

iv c

E

( ) =
e
f

0

 	
(2.37)

By substituting Equation 2.37 in Equation 2.8, the expression for limit elastic curva-
ture is obtained as

	
R R RE E0 1 2

2 0+ + =f f
 	 (2.38)

where the constants Ri  (for i = 0 to 2) are given by

	

R
b

R P b D d E p p

R

c c
e s c c t0

0 0
1 0

2

2

3
= = - + - +

= -

e s
e, ( ) ( ),

bb D d E Dp d p ps t t c( ) [ ( )]- - -
 	

 (2.39)

By solving Equation 2.38, the only real root (in this case, the first root) gives the limit 
elastic curvature as

	
fE

iv
R R R R

R
( ) = -

+ -1 1
2

0 2

2

4

2  	
 (2.40)

By substituting Equation 2.40 in Equation 2.9, limit elastic bending moment, ME, 
can be obtained as follows:

	
M

M M
M ME

iv
iv

E
iv

iv

E
iv

iv( )
( )

( )

( )

( )
( )= + + +1

2
2

3 4f f
(( ) ( )iv

E
ivf

 	
 (2.41)
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where

	

M
bD

M b

M

iv c c

iv
c c

iv

1
0 0

2 0
2

0

3

3

1
4

1
2

( )

( )

( )

=

= -

=

e s

e s

bb D d dD E p p

M b D d

s c t c

iv

( ) ( )

(( )

2 2
0

4
2 2

2 3

1
2

2

+ - -

= +

e

-- - +3dD E Dp d p ps t c t) [ ( )]
	

 (2.42)

It may be easily seen that for tension steel exceeding the maximum limit of 4%, 
as specified in many codes (e.g., see IS 456, 2000), case 4 will never result in a 
practical situation. For the case (xc > D), the limits of the integral in Equation 2.8 
will be from (0, D), which will also result in compression failure and hence are not 
discussed (compression failure is not of design interest for several disadvantages 
affiliated to such failure). Expressions for limit elastic moments are summarized 
below:

	

M
M p p

M p p
E

E
ii

t t el

E
iii

t t el

=
<

>







( )
,

( )
,

if

if
 	

 (2.43)

where pt el, , for two cases, namely, (1) axial force neglected, and (2) axial force con-
sidered, are given by the following equations:

	
p p

D D d

D d Dt el c
c s c c

,

[ ( ) ]

( )(
= +

- -
- -

2
0 0 0 03 6

6 2

e e e s
dd Es c)2

0
2e  	

(2.44)

	
p

D d P b d D E p bD
t el

c E s c s s
,

( ) [ ( ) ]
=

- + - +6 2 2
0

2
0

2
0e e e [[ ( )]

( )( )

6 3

6 2
0 0 0 0

2
0

2

d D

b D d D d E
c s c c

s c

e e e s
e

+ -
- - ees0  		

		  (2.45)

2.6 P ERCENTAGE Of STEEL fOR BALANCED SECTiON

The percentage of reinforcement in tension and compression for balanced failure is 
obtained by considering both of the following conditions: (1) maximum compressive 
strain in concrete reaches ultimate limit strain and (2) strain in tensile reinforce-
ment reaches ultimate limit. Balanced reinforcement for two cases is considered, 
namely, (1) for beams where axial force vanishes and (2) for beam/columns where 
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P-M interaction is predominantly present. For sections with vanishing axial force, 
depth of neutral axis is given by

	

x D dc
cu

cu su

=
+







-
e

e e
( )

 	

(2.46)

For vanishing axial force, the governing equation to determine the percentage of 
reinforcement is given by

	

P b y dy A A q bc c

q

x

sc st s c

c

= + - + =∫ s e s s[ ( )] ( ) 0 0 0

 	

(2.47)

In explicit form, Equation 2.47 becomes

	
b d D p pc c cu c c t cu su s( )[ ( )( ) ]- - - - +s e e s e e s0 0 0 03 3 == 0

 	 (2.48)

By solving, the percentage of steel for a balanced section is obtained as

	
p pt bal c

cu c c

cu su s
,

( )

( )
= +

-
+

3

3
0 0

0

e e s
e e s  	

(2.49)

For a known cross-section with a fixed percentage of compression reinforcement, 
Equation 2.49 gives the percentage of steel for a balanced section. It can be easily 
seen that for the assumed condition of strain in compression steel greater than elastic 
limit, Equation 2.49 shall yield the percentage of tension reinforcement for balanced 
sections whose overall depth exceeds 240 mm, which is a practical case of cross-
section dimension of RC beams used in multistory building frames. For sections 
where axial force is predominantly present, the percentage of balanced reinforce-
ment depends on the magnitude of axial force. By assuming the same hypothesis 
presented above, the depth of the neutral axis is given by Equation 2.46, but Equation 
2.48 becomes as given below:

	
b d D p pc c cu c c t cu su s( )[ ( )( ) ]- - - - +s e e s e e s0 0 0 03 3 == P0  	 (2.50)

By solving, the percentage of steel for a balanced section is obtained as

 	
p p

P

b Dt bal c
cu c c

cu su s
,

( )

( ) (
= +

-
+

-
-

3

3
0 0

0

0e e s
e e s dd s)s 0  	

(2.51)

where P0 is the axial force ( P0 0>  if it is compression). For the known cross-section 
with a fixed percentage of compression reinforcement, Equation 2.51 gives the per-
centage of steel for a balanced section. In a similar manner, the percentage of compres-
sion reinforcement for a balanced section, by fixing pt, can be obtained by inverting the 
relationship given in Equations 2.49 and 2.51 for respective axial force conditions.
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2.7 U LTiMATE BENDiNG MOMENT-CURVATURE RELATiONsHiP

The study in this section is limited to RC sections imposed with tension failure, 
because the compression and balance failures do not have any practical significance 
in the displacement-based design approach, in particular. Let us consider two pos-
sible cases: (1) neutral axis position assumes negative values and (2) neutral axis 
position assumes positive values.

2.7.1	N EUTRAL AXIs POsITION AssUMING NEGATIVE VALUEs

By imposing the conditions x D dc su= = -0 and f e /( )  and solving Equation 2.2 with 
respect to pt , for a specified range of p P bd E p b d Dt u s c su s< + -e s/ ( ) 0 , the depth of 
the neutral axis is given by

	
x D d xc

su

u
c= - - ∀ <

e
f

0
 	

 (2.52)

At collapse, the equilibrium equations become

	
P A A b d D p E p d xu s st sc sc t s s c c u= - + = - + -s s s f0 0( )[ ( ) ]]

 	 (2.53)

	
M A A

D
d

b D d
D du s st sc sc= + -







= - -( )
( )

( )[s s0 2
2

2
pp E p x dt s s c c us f0 + -( ) ]

 		
		  (2.54)

By solving Equation 2.53 with respect to fu , we obtain the ultimate curvature as

	
f

s e
u

u s t s c su

s c

P b D d p E p

bE p D d dD
=

+ - +
+ -

( )[ ]

(
0

2 22 3 ))  	
 (2.55)

By substituting Equation 2.55 in Equation 2.54, the ultimate bending moment can 
be determined as

	
M

D d
P b D d pu u t s= - + -2

2
2 0[ ( ) ]s

 	
 (2.56)

It may be noted that the ultimate bending moment in this case is similar to one given 
by Equation 2.22 for elastic range.

2.7.2	N EUTRAL AXIs POsITION AssUMING POsITIVE VALUEs

Under this condition at collapse, four different cases of tension failure of RC sections 
are possible, namely,

	 (a) e e e e e est su sc s c c= < <, , ,,max0 0

	 (b) e e e e e e est su sc s c c cu= < < <, , ,,max0 0
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	 (c) e e e e e e est su s sc su c c= < < <, , ,,max0 0  	 (2.57)

	 (d) e e e e e e e est su s sc cu c c cu= < < < <, , ,max0 0

As strain in tensile steel reaches its ultimate value causing tensile failure, in all the 
four cases mentioned above, the equation for computing the depth of the neutral axis 
(as a function of ultimate curvature) will remain unchanged and is given by

	
x D dc

a d su

u

( )- = - -
e
f  	  

(2.58)

Axial force and bending moment in the cross-section at collapse for case (a) are 
given by

	

P b y dy A Au c c

x

s st sc sc

c

= - +∫ s e s s[ ( )]
0

0

 	

(2.59)

	

M b y
D

y dy A Au c c

x

s st sc s

c

= -






+ +∫ s e s s[ ( )] (
2

0

0 cc

D
d)

2
-







 	

 (2.60)

By substituting Equation 2.58 in Equation 2.59 we get

	
J J J Ju u u0 1 2

2
3

3 0+ + + =f f f
 	  (2.61)

where the constants Ji = 0,1,2,3 are given by

	

J
b

J
P b d D

su c su c

c

u c

0

2
0 0

0
2

1

0
2

3

3
=

+

=
- + -

e e e s
e

e

( )
,

( )) ( )E p ps c c c c su su t s ce s e e e s e0
2

0 0 0 0
22+ +( ) + 

ee

e e s

c

s c
c suJ b D d dD E p

d D

0
2

2
2 2

2
02 3

,

( )
( ) ( )

= + - +
- + cc

c

c

c

J
b d D

0

0
2

3

3
0

0
23

e

s
e











=
-

,

( )

 	

(2.62)

By solving Equation 2.61, the real root (in this case, the third root) gives the ultimate 
curvature as

	

fu
a

J
J

i J J J
( )

( . . )
= - -

- -( )1
12

4
2 5198 4 3645 3

3
2

2
2

1 3

aa
a- +













( . . )1 5874 2 7495i

		   (2.63)

K10453.indb   57 6/15/09   4:11:11 PM

© 2010 by Taylor and Francis Group, LLC



58	 Seismic Design Aids for Nonlinear Analysis  

where

a = - + - + - -( ) +2 9 27 4 3 22
3

1 2 3 3
2

0 2
2

1 3

3

2
3J J J J J J J J J J -- +( )





9 271 2 3 3
2

0

2
1 3

J J J J J
/

		  (2.64)

By substituting Equation 2.63 in Equation 2.60, ultimate moment is given by

	

M
b M M

M Mu
a

c

a

u
a

a

u
a

a( )
( )

( )

( )

( )
( )= + + +

2 0
2

1
2

2
3 4e f f

(( ) ( ) ( ) ( )a
u
a a

u
aMf f+









5

2

 	
(2.65)

where the superscript (a) stands for the case (a); the constants of the above equation 
are given by

M M
d Da su c su c a su

1

3
0 0

2

24

6

2 3( ) ( )( )
,

( ) (
=

+
=

-e e e s e ee e s

e e

c su c

a
s c su cM D d d D E p

0 0

3 0
2

3

2

+

= - - -

)
,

( ) ( )( ) dd D d p

M

su c su c t c s

a

e e e s e s( ) ( ) ,

(

2 20 0 0
2

0

4

+ + - 

))
( ) ( ) ( )( )(

=
- - - + - + +D d D d E p d D d Ds c c c3 2 22

0
2

0e e essu c

a cM
d D D d

)
,

( ) ( )( )

s

s

0

5

3
0

3

6

 

=
- +

 		
		

(2.66)

Axial force and bending moment in the cross-section at collapse for case (b) are 
given by

	

P b y dy A A q bu c c

q

x

st s sc sc c

c

= - + +∫ s e s s s[ ( )] 0 0

 	

(2.67)

M b y
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2 0 cc

cD
d

q b
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2 2
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
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+ -
s

 	

(2.68)

By substituting the Equation 2.58 in 2.67, we get

	
Q Q Qu u0 1 2

2 0+ + =f f
 	  (2.69)

where the constants Qi = 0,1,2 are given by

	

Q
b

Q b D d E p

c c su

c s c su

0
0 0

1 0

3

3
= -

+

= - - +

s e e

s e s

( )
,

( )( ss t u

s c

p P

Q bE p D d dD

0

2
2 22 3

) ,

( )

-

= + -  	

(2.70)
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By solving Equation 2.69, the first root of the quadratic, representing the ultimate 
curvature, is given as

	
fu

b
Q Q Q Q

Q
( ) =

- + -1 1
2

0 2

2

4

2  	

 (2.71)

By substituting Equation 2.71 in Equation 2.68, ultimate moment is obtained as

	

M
b M M
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b

b

u
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b

u
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b b( )
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( )

( )

( )
( ) ( )= + + +
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3 4f f
fuu
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(2.72)

where
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b
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(2.73)

Axial force and bending moment in the cross-section at collapse for case (c) are 
given by

	

P b y dy A Au c c

x

s sc st

c

= + -∫ s e s[ ( )] ( )
0

0

 	

(2.74)
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 (2.75)

By substituting Equation 2.58 in Equation 2.74, we get

	
W W W Wu u u0 1 2

2
3

3 0+ + + =f f f
 	  

(2.76)

where the constants Wi = 0,1,2,3 are given by
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(2.77)
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where J0,3 can be seen from Equation 2.62. By solving Equation 2.76, the real root (in 
this case, it is the third root) gives the ultimate curvature as
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c
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By substituting Equation 2.78 in Equation 2.74, ultimate moment is obtained as
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where
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Axial force and bending moment in the cross-section at collapse for case (d) are 
given by

	

P b y dy A A q bu c c

q

x

sc st s c

c
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By substituting Equation 2.58 in Equation 2.82 and solving, the ultimate curvature 
is obtained as
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By substituting Equation 2.84 in Equation 2.83, the ultimate bending moment is 
obtained as
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For the condition of D d c s su

c s
< - +

-
( )2 0 0

0 0

e e e
e e , ultimate moment, derived above, takes the 

following form:

	

M

M p p

M p p p

M

u

u
a

t t

u
b

t t t

u
d

=

<

< <

( ) ( )

( ) ( ) ( )

(

if

if

1

1 2

)) ( )if p pt t
2 <










 	

(2.86)
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The percentage of tension reinforcements is determined by imposing the follow-
ing conditions:

	 1.	 pt
( )1 is determined by imposing e e e est su c c= =, ,max 0  and solving Equation 

2.60 with respect to pt .

	 2.	 pt
( )2  is determined by imposing the e e e est su sc s= =, 0  and solving Equation 

2.68 with respect to pt.

For the other condition, namely, D d c s su

c s
> - +

-
( )2 0 0

0 0

e e e
e e , ultimate moment now takes a dif-

ferent form as given below:
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(2.88)
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where
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The percentage of tension reinforcements is determined by imposing the follow-
ing conditions:

	 1.	 pt
( )3 is determined by imposing the e e e est su c c= =, ,max 0  and solving 

Equation 2.75 with respect to pt ;

	 2.	 pt
( )4 is determined by imposing the e e e est su sc s= =, 0  and solving 

Equation 2.83 respect to pt .

For the condition D d c s su

c s
= - +

-
( )2 0 0

0 0

e e e
e e , ultimate moment is given by
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 (2.90)

2.8 N UMERiCAL STUDiEs AND DisCUssiONs

An example RC section of 300 × 500 is considered for the study. The section is rein-
forced on both tension and compression zones whose percentage is varied to study 
their influence on the curvature ductility. Concrete with compressive cube strength 
of 30 N/mm2 and steel with yield strength of 415 N/mm2 are considered. Figure 2.2 
shows the variation of elastic moment with percentage of tension reinforcement for 
a constant compression reinforcement consisting of 4Φ22. It is seen that the limit 
elastic moment increases linearly for the case of tensile steel reaching its yield 
limit while strain in concrete is within the elastic limit (see the curve governed 
by Equations 2.22 and 2.28). For other cases, namely, (1) strain in compression 
steel reaches elastic limit (see the curve governed by Equation 2.35 as well as (2) 
crushing failure where strain in extreme fiber in concrete reaches elastic limit (see 
the curve governed by Equation 2.41), the influence of the percentage of tension 
reinforcement on the limit elastic moment is marginal. Although there is a sharp 
rise for lower percentages of reinforcements, this increase becomes marginal for 
higher percentage values. The point of intersection of moment profiles governed 
by Equations 2.22 and 2.28 with that of Equation 2.35 gives the limit value of the 
percentage of tensile reinforcement (pt,elastic). A percentage of tensile steel less than 
this value results in yielding of tensile steel while greater values result in yielding 
of compression steel. The point of intersection of moment profiles governed by 
Equations 2.22 and 2.28 with that of Equation 2.41 is not of significant importance 
because the latter results in crushing failure of concrete. It is evident that the 
percentage of tensile reinforcement influences limit elastic moment considerably 
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in the case of ductile failure only. It may be noted that Figure 2.2 plots the moment 
variation based on the same governing equations used subsequently for estimating the 
moment-curvature relationship. It can also be seen that limit elastic moment is given 
by the minimum of the four values given by the Equations 2.22, 2.28, 2.35, and 2.41, 
respectively. The trace of the point along the hatched line gives the minimum limit 
elastic moment, thus obtained. Figure 2.3 shows the moment-curvature plots for the 
RC section reinforced with 4#22Φ on tension face but varying the compression steel. 
It can be seen from the figure that for a fixed percentage of tensile reinforcement, 
influence of variation of compression reinforcement on moment-curvature is only mar-
ginal. Also, there exists at least one critical value of the percentage of both tensile and 
compression reinforcement that reduces the curvature ductility to the minimum. The 
proposed analytical expressions are capable of tracing this critical value, so that it can 
be avoided for a successful design of the section.

The effect of axial force on moment-curvature is also studied by subjecting the 
RC section reinforced with 4#22Φ, both on compression and tension zones. The sec-
tion is subjected to compressive axial force only as the tensile force limits the cur-
vature and cannot be helpful in predicting the desired behavior. Figure 2.4 presents 
the moment-curvature for different axial forces considered. Moment-curvatures seen 
in the figure show linear response in elastic range and hardening-like response in 
elastic-plastic range. The figure shows that increase in axial force results in increase 
of moments and curvature at both the elastic and ultimate levels. For all four cases 
shown in the figure, there is only a marginal increase in ultimate moment with respect 
to their corresponding limit elastic moment. For the numerical cases examined, it is 
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FiGURE 2.2  Variation of elastic moment with percentage of tensile steel reinforcement.
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therefore stated that the variation in magnitude of axial force does not influence 
the ductility ratio much in comparison to its influence on limit elastic and ultimate 
moments; however, higher axial forces tend to reduce the curvature ductility. The 
critical value of axial force, beyond which a reduction is caused in curvature ductil-
ity, can also be obtained from the proposed analytical hypothesis.
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FiGURE 2.3  Variation of moment-curvature with percentage of compression reinforcement.
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FiGURE 2.4  Moment-curvature relationship for different axial forces.
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 The influence of the percentage of reinforcing steel on ductility ratio for different 
axial forces is also studied by examining two cases:(1) by varying steel percentage 
in tension, with 4#22Φ on the compression side; and (2) by varying the percentage 
of compression reinforcement, with 4#22Φ on the tension side. Figures 2.5 and 2.6 
show the influence of tensile and compression reinforcement on curvature ductility, 
respectively. Figure 2.5 shows that plastic softening behavior is observed in the sec-
tion under large curvature amplitudes. This may be attributed to the expected failure 
pattern (local collapse mechanism) of the structural members of building frames 
located in seismic areas. Larger ductility ratios for reduced tensile reinforcement 
prompts the design of members initiating ductile failure. However, tensile reinforce-
ment closer to pt,bal will result in more curvature ductility since there is a marginal 
reduction seen due to the kink in the curve for (lesser) values closer to pt,bal. Figure 2.6 
shows that maximum curvature ductility is obtained for compression reinforcement 
equal to pc,bal, when the section is subjected to axial compressive force. However, for 
tensile axial forces, the same percentage of compression steel as of tension steel (pc = pt)  
gives the maximum curvature ductility. It can be therefore summarized that the  
percentage of tension reinforcement influences curvature ductility to a larger extent 
and therefore demands good ductile detailing in the members of building frames 
located in seismic areas. Focus should be on this aspect while designing structures in 
seismic areas. Studies conducted by researchers with respect to the recent develop-
ment in codes in this aspect (for example, see Amador and Nadyane 2008) also veri-
fied the same for a safe distribution of earthquake forces without complete collapse 
of the building. A spreadsheet program is used to estimate the moment-curvature 
relationship by iteration, after simplifying the complexities involved in such an esti-
mate. The values are estimated in two ranges, namely, (1) elastic and (2) elastic-plastic, 
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FiGURE 2.5  Variation of curvature ductility with percentage of tensile steel reinforcement.
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separately. The results given in the closed form are useful for researchers but not 
as much for practicing engineers; a simplified spreadsheet program is prepared to 
facilitate ready use for practicing engineers.

With the spreadsheet program, moment-curvature relationship of the RC sec-
tion, reinforced with 4#22Φ, both in tension and compression sides, is now plot-
ted for different axial loads (only compressive). The curves are compared with 
those obtained by using the proposed analytical expressions. Figure 2.7 shows the 
comparison of the curves obtained by employing both numerical and analytical 
procedures. By comparing, it can be seen that there is practically no difference 
between the curves in the elastic range, whereas there exists a marginal difference 
in the plastic range. However, both procedures estimate the same ultimate curva-
ture and the ultimate moments as well. Also, the curvature ductility ratio obtained 
by both procedures remains the same. With regard to their close agreement, the 
proposed closed-form expressions for moment-curvature relationship, accounting 
for nonlinear characteristics of constitutive materials according to Eurocode, are 
thus qualified for use in seismic design and in structural assessments as well. A 
detailed procedure to obtain the moment-curvature relationship using the spread-
sheet program is presented in Section 2.10. For easy reference to practicing engi-
neers, Figures 2.8 to 2.15 show the moment-curvature plots for a few RC sections 
used in common practice; used are the relevant percentage of tensile and compres-
sion reinforcement. Please note that these are plotted for pure bending case only 
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(P = 0). Tables 2.1 to 2.14 show the values for M - Φ relationship for the relevant 
sections considered in the analysis.

It can be inferred from the above discussions that a detailed trace of moment-
curvature relationship is inevitable for successful seismic design of structures. The 
relationship is, however, very complex as a result of many factors: (1) constitutive 
material’s nonlinear response; (2) magnitude of axial load and their nature; as well 
as (3) cross-section properties and percentage of reinforcement (tensile steel, in par-
ticular). Numerical studies conducted lead to useful design guidelines of multistory 
RC buildings. The upper-floor elements (beams, in particular) are designed to have 
ductile failure, which in turn permits large curvature ductility. This, in fact, helps the 
formation of plastic hinges at upper floors (on beams, in particular with a strong col-
umn–weak beam design concept) first, enabling effective redistribution of moments; 
this subsequently enables the formation of plastic hinges at lower floors. On the con-
trary, a column member, usually subjected to larger axial force, is designed without 
much increase in compression reinforcement because this does not help to improve 
its curvature ductility. However, in building frames under seismic loads, columns 
reinforced on two sides only will either be in tension or in compression, and hence 
pt = pc holds well.
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FiGURE 2.9  (See color insert following p. 138.) Bending moment-curvature for RC sections 350 mm wide (fck = 25 N/mm2,  fy = 380 N/mm2).
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FiGURE 2.10  (See color insert following p. 138.) Bending moment-curvature for RC sections 300 mm wide (fck = 30 N/mm2,  fy = 380 N/mm2).
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FiGURE 2.11  (See color insert following p. 138.) Bending moment-curvature for RC sections 350 mm wide (fck = 30 N/mm2,  fy = 380 N/mm2).
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FiGURE 2.12  (See color insert following p. 138.) Bending moment-curvature for RC sections 300 mm wide (fck = 25 N/mm2,  fy = 415 N/mm2).

K
10453.indb   72

6/15/09   4:11:25 P
M

©
 2010 by T

aylor and Francis G
roup, L

L
C



M
o

m
en

t-C
u

rvatu
re R

elatio
n

sh
ip

 fo
r R

C
 Sectio

n
s	

73

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

1.4E+03

1.6E+03

0.0E+00 5.0E‒03 1.0E‒02 1.5E‒02 2.0E‒02 2.5E‒02 3.0E‒02
Curvature (rad/m)

Be
nd

in
g 

m
om

en
t (

kN
-m

)

35
0×

50
0

35
0×

60
0

35
0×

70
0

pt = 2.5%; pc = 2.0%

pt = 1.5%; pc = 1.2%
pt = 2.0%; pc = 1.5%

pt = 2.5%; pc = 2.0%

pt = 1.5%; pc = 1.2%
pt = 2.0%; pc = 1.5%

pt = 2.5%; pc = 2.0%

pt = 1.5%; pc = 1.2%
pt = 2.0%; pc = 1.5%

fck = 25 N/mm2

fy = 415 N/mm2

FiGURE 2.13  (See color insert following p. 138.) Bending moment-curvature for RC sections 350 mm wide (fck = 25 N/mm2,  fy = 415 N/mm2).
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FiGURE 2.14  (See color insert following p. 138.) Bending moment-curvature for RC sections 300 mm wide (fck = 30 N/mm2,  fy = 415 N/mm2).
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FiGURE 2.15  (See color insert following p. 138.) Bending moment-curvature for RC sections 350 mm wide (fck = 30 N/mm2,  fy = 415 N/mm2).

K
10453.indb   75

6/15/09   4:11:27 P
M

©
 2010 by T

aylor and Francis G
roup, L

L
C



76	 Seismic Design Aids for Nonlinear Analysis  

TABLE 2.1
M-Φ for RC Section 300 × 450 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

175.45 0.000002 0.019 0.000002 0.514 0.000001 0.305 0.000010 0.364
177.18 0.000261 2.693 0.000358 75.215 0.000217 45.588 0.001475 53.264
179.02 0.000528 5.053 0.000711 149.287 0.000440 92.318 0.002950 105.604
180.98 0.000801 7.060 0.001058 222.111 0.000668 140.296 0.004425 156.938
183.06 0.001080 8.691 0.001398 293.563 0.000903 189.647 0.005900 207.171
173.44 0.001279 9.591 0.001818 330.435 0.001058 222.152 0.007375 234.406
155.36 0.001375 9.947 0.002342 330.435 0.001109 232.977 0.008850 236.584
141.56 0.001462 10.225 0.002875 330.435 0.001152 241.891 0.010325 238.133
130.64 0.001542 10.444 0.003414 330.435 0.001188 249.389 0.011800 239.280
121.76 0.001616 10.618 0.003959 330.435 0.001218 255.799 0.013275 240.157
114.38 0.001687 10.754 0.004508 330.435 0.001245 261.357 0.014750 240.845
108.14 0.001755 10.857 0.005060 330.435 0.001268 266.231 0.016225 241.395
102.79 0.001819 10.933 0.005615 330.435 0.001288 270.549 0.017700 241.842

98.15 0.001882 10.985 0.006172 330.435 0.001307 274.407 0.019175 242.211
94.08 0.001943 11.014 0.006730 330.435 0.001323 277.883 0.020650 242.518
90.49 0.002002 11.023 0.007290 330.435 0.001338 281.036 0.022125 242.777
87.29 0.002060 11.023 0.007852 330.435 0.001352 283.915 0.023600 242.998
84.42 0.002117 11.023 0.008415 330.435 0.001365 286.555 0.025075 243.186
81.83 0.002173 11.023 0.008978 330.435 0.001376 288.984 0.026550 243.350
79.48 0.002228 11.023 0.009543 330.435 0.001387 291.226 0.028025 243.492
77.35 0.002282 11.023 0.010108 330.435 0.001397 293.303 0.029500 243.617

 

TABLE 2.2
M-Φ for RC Section 300 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

195.46 0.000002 0.022 0.000003 0.577 0.000002 0.347 0.000010 0.514
197.34 0.000257 2.647 0.000354 74.436 0.000218 45.684 0.001300 66.344
199.35 0.000518 4.973 0.000704 147.775 0.000440 92.465 0.002600 131.584
201.48 0.000786 6.960 0.001047 219.918 0.000669 140.442 0.003900 195.626
203.75 0.001059 8.586 0.001385 290.749 0.000903 189.731 0.005200 258.357
194.12 0.001262 9.522 0.001793 330.435 0.001067 224.020 0.006500 295.025
173.58 0.001354 9.873 0.002312 330.435 0.001120 235.192 0.007800 297.850
157.90 0.001437 10.150 0.002840 330.435 0.001164 244.417 0.009100 299.863
145.47 0.001513 10.370 0.003375 330.435 0.001201 252.194 0.010400 301.358
135.35 0.001584 10.546 0.003915 330.435 0.001233 258.855 0.011700 302.503

 
(Continued)
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TABLE 2.2 (CONTiNUED)
M-Φ for RC Section 300 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

126.94 0.001650 10.686 0.004460 330.435 0.001260 264.638 0.013000 303.403
119.82 0.001713 10.797 0.005008 330.435 0.001284 269.715 0.014300 304.125
113.70 0.001774 10.882 0.005558 330.435 0.001306 274.214 0.015600 304.712
108.40 0.001832 10.946 0.006111 330.435 0.001325 278.234 0.016900 305.198
103.75 0.001888 10.989 0.006666 330.435 0.001342 281.854 0.018200 305.604
99.63 0.001943 11.014 0.007222 330.435 0.001358 285.135 0.019500 305.947
95.96 0.001996 11.023 0.007780 330.435 0.001372 288.127 0.020800 306.240
92.67 0.002048 11.023 0.008339 330.435 0.001385 290.871 0.022100 306.491
89.71 0.002099 11.023 0.008899 330.435 0.001397 293.396 0.023400 306.708
87.01 0.002149 11.023 0.009460 330.435 0.001408 295.728 0.024700 306.898
84.56 0.002199 11.023 0.010021 330.435 0.001419 297.889 0.026000 307.065

 

TABLE 2.3
M-Φ for RC Section 300 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, 
 fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

235.47 0.000002 0.026 0.000003 0.703 0.000002 0.431 0.000010 0.929
237.69 0.000252 2.602 0.000352 73.971 0.000220 46.233 0.001060 97.705
240.06 0.000509 4.896 0.000699 146.890 0.000445 93.518 0.002120 193.868
242.56 0.000771 6.863 0.001041 218.664 0.000676 141.948 0.003180 288.358
245.22 0.001040 8.482 0.001377 289.184 0.000913 191.632 0.004240 381.023
234.19 0.001241 9.437 0.001780 330.435 0.001082 227.265 0.005300 437.422
208.89 0.001329 9.781 0.002297 330.435 0.001138 238.929 0.006360 441.757
189.54 0.001406 10.052 0.002823 330.435 0.001184 248.593 0.007420 444.857
174.18 0.001477 10.270 0.003357 330.435 0.001223 256.762 0.008480 447.166
161.66 0.001542 10.446 0.003896 330.435 0.001256 263.775 0.009540 448.941
151.24 0.001603 10.589 0.004439 330.435 0.001285 269.874 0.010600 450.338
142.41 0.001660 10.706 0.004986 330.435 0.001311 275.235 0.011660 451.461
134.82 0.001715 10.799 0.005536 330.435 0.001333 279.990 0.012720 452.379
128.22 0.001767 10.874 0.006088 330.435 0.001354 284.241 0.013780 453.139
122.44 0.001817 10.931 0.006642 330.435 0.001372 288.068 0.014840 453.776
117.31 0.001865 10.973 0.007198 330.435 0.001388 291.534 0.015900 454.316
112.74 0.001912 11.002 0.007755 330.435 0.001403 294.692 0.016960 454.777
108.64 0.001958 11.018 0.008314 330.435 0.001417 297.583 0.018020 455.174
104.93 0.002002 11.023 0.008873 330.435 0.001430 300.242 0.019080 455.519
101.57 0.002046 11.023 0.009434 330.435 0.001441 302.699 0.020140 455.821
98.50 0.002088 11.023 0.009996 330.435 0.001452 304.975 0.021200 456.085
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TABLE 2.4
M-Φ for RC Section 350 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

195.46 0.000002 0.022 0.000003 0.577 0.000002 0.347 0.000010 0.600
197.34 0.000257 2.647 0.000354 74.436 0.000218 45.684 0.001300 77.401
199.35 0.000518 4.973 0.000704 147.775 0.000440 92.465 0.002600 153.515
201.48 0.000786 6.960 0.001047 219.918 0.000669 140.442 0.003900 228.230
203.75 0.001059 8.586 0.001385 290.749 0.000903 189.731 0.005200 301.417
194.12 0.001262 9.522 0.001793 330.435 0.001067 224.020 0.006500 344.196
173.58 0.001354 9.873 0.002312 330.435 0.001120 235.192 0.007800 347.491
157.90 0.001437 10.150 0.002840 330.435 0.001164 244.417 0.009100 349.840
145.47 0.001513 10.370 0.003375 330.435 0.001201 252.194 0.010400 351.584
135.35 0.001584 10.546 0.003915 330.435 0.001233 258.855 0.011700 352.921
126.94 0.001650 10.686 0.004460 330.435 0.001260 264.638 0.013000 353.970
119.82 0.001713 10.797 0.005008 330.435 0.001284 269.715 0.014300 354.812
113.70 0.001774 10.882 0.005558 330.435 0.001306 274.214 0.015600 355.498
108.40 0.001832 10.946 0.006111 330.435 0.001325 278.234 0.016900 356.065
103.75 0.001888 10.989 0.006666 330.435 0.001342 281.854 0.018200 356.538
99.63 0.001943 11.014 0.007222 330.435 0.001358 285.135 0.019500 356.939
95.96 0.001996 11.023 0.007780 330.435 0.001372 288.127 0.020800 357.280
92.67 0.002048 11.023 0.008339 330.435 0.001385 290.871 0.022100 357.573
89.71 0.002099 11.023 0.008899 330.435 0.001397 293.396 0.023400 357.827
87.01 0.002149 11.023 0.009460 330.435 0.001408 295.728 0.024700 358.048
84.56 0.002199 11.023 0.010021 330.435 0.001419 297.889 0.026000 358.242

 

TABLE 2.5
M-Φ for RC Section 350 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

235.47 0.000002 0.026 0.000003 0.703 0.000002 0.431 0.000010 1.083
237.70 0.000253 2.614 0.000354 74.318 0.000221 46.453 0.001065 114.523
240.08 0.000511 4.916 0.000703 147.573 0.000447 93.969 0.002130 227.229
242.60 0.000775 6.889 0.001046 219.671 0.000679 142.642 0.003195 337.963
245.27 0.001045 8.509 0.001383 290.502 0.000917 192.582 0.004260 446.545
233.50 0.001243 9.446 0.001792 330.435 0.001084 227.569 0.005325 510.468
208.28 0.001331 9.790 0.002311 330.435 0.001139 239.227 0.006390 515.502
188.98 0.001409 10.060 0.002841 330.435 0.001185 248.885 0.007455 519.101
173.67 0.001480 10.277 0.003377 330.435 0.001224 257.046 0.008520 521.782
161.18 0.001545 10.453 0.003919 330.435 0.001257 264.051 0.009585 523.841

 
(Continued)
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TABLE 2.5 (CONTiNUED)
M-Φ for RC Section 350 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

150.79 0.001606 10.595 0.004465 330.435 0.001286 270.143 0.010650 525.463
141.98 0.001663 10.711 0.005014 330.435 0.001312 275.496 0.011715 526.766
134.42 0.001718 10.804 0.005567 330.435 0.001334 280.243 0.012780 527.830
127.85 0.001770 10.878 0.006122 330.435 0.001355 284.487 0.013845 528.711
122.08 0.001820 10.934 0.006679 330.435 0.001373 288.307 0.014910 529.450
116.97 0.001869 10.976 0.007237 330.435 0.001389 291.767 0.015975 530.076
112.42 0.001916 11.004 0.007797 330.435 0.001404 294.919 0.017040 530.611
108.33 0.001961 11.019 0.008359 330.435 0.001418 297.804 0.018105 531.071
104.64 0.002006 11.023 0.008921 330.435 0.001431 300.459 0.019170 531.471
101.28 0.002049 11.023 0.009484 330.435 0.001442 302.910 0.020235 531.820
98.23 0.002092 11.023 0.010049 330.435 0.001453 305.181 0.021300 532.127

 

TABLE 2.6
M-Φ for RC Section 350 × 700 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 380 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

275.49 0.000003 0.030 0.000004 0.828 0.000002 0.516 0.000010 1.775
278.06 0.000250 2.586 0.000353 74.077 0.000223 46.883 0.000900 158.569
280.80 0.000505 4.868 0.000701 147.119 0.000451 94.801 0.001800 314.709
283.69 0.000766 6.827 0.001043 219.036 0.000685 143.844 0.002700 468.218
286.77 0.001032 8.443 0.001380 289.722 0.000924 194.118 0.003600 618.860
273.27 0.001230 9.388 0.001785 330.435 0.001095 229.889 0.004500 709.364
243.30 0.001314 9.726 0.002304 330.435 0.001152 241.888 0.005400 716.525
220.36 0.001388 9.992 0.002833 330.435 0.001199 251.848 0.006300 721.656
202.14 0.001455 10.206 0.003369 330.435 0.001239 260.280 0.007200 725.486
187.28 0.001517 10.380 0.003910 330.435 0.001274 267.528 0.008100 728.435
174.89 0.001574 10.523 0.004456 330.435 0.001304 273.838 0.009000 730.760
164.39 0.001627 10.641 0.005006 330.435 0.001330 279.389 0.009900 732.632
155.36 0.001678 10.737 0.005558 330.435 0.001354 284.315 0.010800 734.162
147.51 0.001726 10.816 0.006113 330.435 0.001375 288.720 0.011700 735.432
140.61 0.001772 10.880 0.006670 330.435 0.001394 292.686 0.012600 736.498
134.51 0.001816 10.930 0.007229 330.435 0.001411 296.278 0.013500 737.402
129.06 0.001858 10.968 0.007790 330.435 0.001426 299.549 0.014400 738.176
124.16 0.001900 10.996 0.008351 330.435 0.001441 302.542 0.015300 738.843
119.74 0.001940 11.013 0.008914 330.435 0.001454 305.293 0.016200 739.424
115.72 0.001979 11.022 0.009478 330.435 0.001466 307.832 0.017100 739.931
112.06 0.002017 11.023 0.010043 330.435 0.001477 310.183 0.018000 740.378
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TABLE 2.7
M-Φ for RC Section 300 × 450 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

175.45 0.000002 0.019 0.000002 0.514 0.000001 0.305 0.000010 0.364
177.18 0.000262 2.701 0.000359 75.468 0.000218 45.744 0.001480 53.443
179.03 0.000530 5.068 0.000713 149.785 0.000441 92.639 0.002960 105.955
181.00 0.000804 7.079 0.001061 222.845 0.000670 140.791 0.004440 157.455
183.09 0.001084 8.711 0.001402 294.522 0.000906 190.326 0.005920 207.844
183.99 0.001362 9.900 0.001746 360.870 0.001140 239.300 0.007400 254.523
164.88 0.001464 10.232 0.002266 360.870 0.001198 251.517 0.008880 257.127
150.26 0.001557 10.482 0.002794 360.870 0.001246 261.645 0.010360 258.986
138.68 0.001642 10.670 0.003331 360.870 0.001287 270.217 0.011840 260.369
129.24 0.001721 10.810 0.003873 360.870 0.001322 277.591 0.013320 261.429
121.38 0.001796 10.909 0.004420 360.870 0.001352 284.018 0.014800 262.262
114.73 0.001868 10.975 0.004970 360.870 0.001379 289.684 0.016280 262.930
109.02 0.001936 11.012 0.005523 360.870 0.001403 294.729 0.017760 263.474
104.07 0.002002 11.023 0.006079 360.870 0.001425 299.259 0.019240 263.923
99.72 0.002066 11.023 0.006636 360.870 0.001445 303.357 0.020720 264.299
95.87 0.002128 11.023 0.007196 360.870 0.001462 307.084 0.022200 264.616
92.44 0.002189 11.023 0.007757 360.870 0.001479 310.486 0.023680 264.886
89.35 0.002248 11.023 0.008319 360.870 0.001493 313.606 0.025160 265.120
86.57 0.002306 11.023 0.008883 360.870 0.001507 316.476 0.026640 265.322
84.04 0.002363 11.023 0.009447 360.870 0.001520 319.126 0.028120 265.499
81.73 0.002419 11.023 0.010013 360.870 0.001531 321.580 0.029600 265.655

 

TABLE 2.8
M-Φ for RC Section 300 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

195.46 0.000002 0.022 0.000003 0.577 0.000002 0.347 0.000010 0.514
197.36 0.000260 2.675 0.000359 75.288 0.000220 46.218 0.001315 67.103
199.40 0.000524 5.023 0.000712 149.453 0.000446 93.559 0.002630 133.076
201.56 0.000795 7.023 0.001059 222.392 0.000677 142.126 0.003945 197.820
203.85 0.001072 8.652 0.001400 293.984 0.000914 192.040 0.005260 261.219
205.03 0.001348 9.852 0.001742 360.870 0.001151 241.670 0.006575 320.485
183.43 0.001447 10.182 0.002261 360.870 0.001211 254.225 0.007890 323.833
166.91 0.001536 10.431 0.002790 360.870 0.001260 264.652 0.009205 326.228
153.80 0.001618 10.621 0.003326 360.870 0.001302 273.489 0.010520 328.013
143.10 0.001694 10.765 0.003869 360.870 0.001339 281.096 0.011835 329.385

 
(Continued)
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TABLE 2.8 (CONTiNUED)
M-Φ for RC Section 300 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

134.19 0.001765 10.871 0.004416 360.870 0.001370 287.731 0.013150 330.466
126.65 0.001832 10.946 0.004967 360.870 0.001398 293.580 0.014465 331.333
120.16 0.001896 10.994 0.005520 360.870 0.001423 298.786 0.015780 332.042
114.53 0.001958 11.019 0.006077 360.870 0.001445 303.458 0.017095 332.628
109.58 0.002017 11.023 0.006635 360.870 0.001465 307.681 0.018410 333.119
105.21 0.002075 11.023 0.007196 360.870 0.001483 311.520 0.019725 333.534
101.30 0.002131 11.023 0.007757 360.870 0.001500 315.027 0.021040 333.889
97.79 0.002186 11.023 0.008321 360.870 0.001515 318.243 0.022355 334.194
94.62 0.002240 11.023 0.008885 360.870 0.001530 321.202 0.023670 334.460
91.74 0.002292 11.023 0.009451 360.870 0.001543 323.934 0.024985 334.693
89.11 0.002344 11.023 0.010017 360.870 0.001555 326.465 0.026300 334.897

 

TABLE 2.9
M-Φ for RC Section 300 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

235.47 0.000002 0.026 0.000003 0.703 0.000002 0.431 0.000010 0.929
237.73 0.000256 2.637 0.000357 75.011 0.000223 46.894 0.001075 99.077
240.13 0.000516 4.957 0.000709 148.938 0.000452 94.872 0.002150 196.566
242.67 0.000783 6.939 0.001056 221.684 0.000686 144.031 0.003225 292.330
245.38 0.001055 8.563 0.001396 293.136 0.000926 194.484 0.004300 386.210
247.15 0.001328 9.780 0.001735 360.870 0.001167 245.104 0.005375 475.224
220.59 0.001423 10.105 0.002254 360.870 0.001229 258.153 0.006450 480.345
200.24 0.001507 10.353 0.002782 360.870 0.001281 269.018 0.007525 484.021
184.07 0.001583 10.544 0.003319 360.870 0.001325 278.243 0.008600 486.770
170.86 0.001653 10.692 0.003862 360.870 0.001363 286.195 0.009675 488.888
159.85 0.001718 10.805 0.004409 360.870 0.001396 293.136 0.010750 490.561
150.51 0.001780 10.890 0.004960 360.870 0.001425 299.259 0.011825 491.908
142.48 0.001838 10.951 0.005515 360.870 0.001451 304.708 0.012900 493.011
135.49 0.001894 10.992 0.006072 360.870 0.001474 309.594 0.013975 493.926
129.35 0.001947 11.016 0.006632 360.870 0.001495 314.007 0.015050 494.694
123.91 0.001998 11.023 0.007193 360.870 0.001514 318.016 0.016125 495.346
119.06 0.002048 11.023 0.007756 360.870 0.001532 321.677 0.017200 495.903
114.69 0.002096 11.023 0.008321 360.870 0.001548 325.035 0.018275 496.385
110.75 0.002143 11.023 0.008886 360.870 0.001563 328.126 0.019350 496.803
107.17 0.002189 11.023 0.009453 360.870 0.001576 330.981 0.020425 497.170
103.89 0.002234 11.023 0.010021 360.870 0.001589 333.625 0.021500 497.493
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TABLE 2.10
M-Φ for RC Section 300 × 600 (pt = 2.0%, pc = 1.5%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

253.84 0.000003 0.028 0.000003 0.664 0.000002 0.470 0.000010 1.168
256.29 0.000287 2.937 0.000351 73.784 0.000253 53.224 0.001120 129.721
258.91 0.000580 5.466 0.000697 146.338 0.000513 107.678 0.002240 257.112
261.68 0.000879 7.562 0.001036 217.548 0.000778 163.476 0.003360 381.970
264.64 0.001186 9.196 0.001368 287.283 0.001051 220.749 0.004480 504.059
267.80 0.001500 10.334 0.001692 355.385 0.001332 279.655 0.005600 623.099
240.89 0.001619 10.623 0.002212 360.870 0.001417 297.605 0.006720 639.282
217.95 0.001709 10.790 0.002760 360.870 0.001474 309.448 0.007840 644.483
199.76 0.001790 10.902 0.003317 360.870 0.001521 319.425 0.008960 648.340
184.94 0.001864 10.973 0.003881 360.870 0.001562 327.968 0.010080 651.290
172.59 0.001933 11.011 0.004451 360.870 0.001597 335.378 0.011200 653.603
162.14 0.001998 11.023 0.005025 360.870 0.001628 341.878 0.012320 655.454
153.17 0.002059 11.023 0.005602 360.870 0.001655 347.633 0.013440 656.959
145.37 0.002117 11.023 0.006183 360.870 0.001680 352.765 0.014560 658.202
138.53 0.002172 11.023 0.006765 360.870 0.001702 357.370 0.015680 659.242
132.98 0.002234 11.023 0.007342 360.870 0.001730 360.870 0.016800 660.015
130.50 0.002339 11.023 0.007876 360.870 0.001801 360.870 0.017920 660.173
128.31 0.002443 11.023 0.008410 360.870 0.001872 360.870 0.019040 660.303
126.37 0.002548 11.023 0.008944 360.870 0.001943 360.870 0.020160 660.413
124.63 0.002652 11.023 0.009478 360.870 0.002014 360.870 0.021280 660.505
123.06 0.002757 11.023 0.010011 360.870 0.002085 360.870 0.022400 660.584

 

TABLE 2.11
M-Φ for RC Section 300 × 600 (pt = 2.5%, pc = 2.0%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

260.56 0.000003 0.029 0.000003 0.650 0.000002 0.484 0.000010 1.436
262.80 0.000294 3.006 0.000344 72.254 0.000261 54.754 0.001120 159.655
265.17 0.000594 5.575 0.000683 143.391 0.000527 110.625 0.002240 316.747
267.67 0.000899 7.685 0.001016 213.321 0.000799 167.703 0.003360 471.078
270.32 0.001211 9.308 0.001343 281.939 0.001077 226.093 0.004480 622.425
273.13 0.001530 10.413 0.001662 349.123 0.001362 285.917 0.005600 770.527
247.63 0.001664 10.712 0.002166 360.870 0.001462 307.115 0.006720 803.297
222.91 0.001748 10.848 0.002721 360.870 0.001512 317.603 0.007840 809.358
203.41 0.001823 10.937 0.003285 360.870 0.001554 326.291 0.008960 813.776
187.61 0.001891 10.991 0.003855 360.870 0.001589 333.620 0.010080 817.106

 
(Continued)
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TABLE 2.12
M-Φ for RC Section 350 × 500 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

195.46 0.000002 0.022 0.000003 0.577 0.000002 0.347 0.000010 0.600
197.36 0.000259 2.671 0.000358 75.146 0.000220 46.129 0.001313 78.139
199.39 0.000523 5.015 0.000710 149.174 0.000445 93.376 0.002625 154.965
201.54 0.000794 7.012 0.001057 221.980 0.000675 141.845 0.003938 230.364
203.84 0.001070 8.641 0.001397 293.445 0.000913 191.655 0.005250 304.199
205.27 0.001347 9.849 0.001737 360.870 0.001150 241.538 0.006563 373.854
183.65 0.001446 10.178 0.002255 360.870 0.001210 254.095 0.007875 377.767
167.10 0.001535 10.428 0.002783 360.870 0.001260 264.525 0.009188 380.568
153.97 0.001617 10.619 0.003318 360.870 0.001302 273.364 0.010500 382.654
143.27 0.001692 10.763 0.003860 360.870 0.001338 280.975 0.011813 384.259
134.35 0.001763 10.869 0.004405 360.870 0.001370 287.612 0.013125 385.522
126.79 0.001831 10.944 0.004955 360.870 0.001397 293.465 0.014438 386.537
120.30 0.001895 10.993 0.005508 360.870 0.001422 298.674 0.015750 387.365
114.66 0.001956 11.018 0.006063 360.870 0.001445 303.348 0.017063 388.051
109.71 0.002016 11.023 0.006620 360.870 0.001465 307.573 0.018375 388.625
105.32 0.002074 11.023 0.007180 360.870 0.001483 311.416 0.019688 389.110
101.41 0.002130 11.023 0.007740 360.870 0.001500 314.925 0.021000 389.525

97.90 0.002184 11.023 0.008303 360.870 0.001515 318.143 0.022313 389.883
94.72 0.002238 11.023 0.008866 360.870 0.001529 321.105 0.023625 390.194
91.84 0.002290 11.023 0.009430 360.870 0.001542 323.839 0.024938 390.466
89.21 0.002342 11.023 0.009996 360.870 0.001554 326.372 0.026250 390.705

 

TABLE 2.11 (CONTiNUED)
M-Φ for RC Section 300 × 600 (pt = 2.5%, pc = 2.0%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

174.51 0.001955 11.018 0.004429 360.870 0.001619 339.895 0.011200 819.683
163.48 0.002014 11.023 0.005008 360.870 0.001644 345.334 0.012320 821.719
154.04 0.002070 11.023 0.005590 360.870 0.001667 350.097 0.013440 823.359
145.88 0.002124 11.023 0.006175 360.870 0.001687 354.304 0.014560 824.699
138.74 0.002175 11.023 0.006762 360.870 0.001705 358.046 0.015680 825.810
132.98 0.002234 11.023 0.007342 360.870 0.001730 360.870 0.016800 826.628
130.50 0.002339 11.023 0.007876 360.870 0.001801 360.870 0.017920 826.786
128.31 0.002443 11.023 0.008410 360.870 0.001872 360.870 0.019040 826.917
126.37 0.002548 11.023 0.008944 360.870 0.001943 360.870 0.020160 827.026
124.63 0.002652 11.023 0.009478 360.870 0.002014 360.870 0.021280 827.119
123.06 0.002757 11.023 0.010011 360.870 0.002085 360.870 0.022400 827.198
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TABLE 2.13

M-Φ for RC Section 350 × 600 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2,  
fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

235.47 0.000002 0.026 0.000003 0.703 0.000002 0.431 0.000010 1.083
237.73 0.000256 2.637 0.000357 75.011 0.000223 46.894 0.001075 115.590
240.13 0.000516 4.957 0.000709 148.938 0.000452 94.872 0.002150 229.327
242.67 0.000783 6.939 0.001056 221.684 0.000686 144.031 0.003225 341.052
245.38 0.001055 8.563 0.001396 293.136 0.000926 194.484 0.004300 450.579
247.15 0.001328 9.780 0.001735 360.870 0.001167 245.104 0.005375 554.428
220.59 0.001423 10.105 0.002254 360.870 0.001229 258.153 0.006450 560.402
200.24 0.001507 10.353 0.002782 360.870 0.001281 269.018 0.007525 564.692
184.07 0.001583 10.544 0.003319 360.870 0.001325 278.243 0.008600 567.898
170.86 0.001653 10.692 0.003862 360.870 0.001363 286.195 0.009675 570.370
159.85 0.001718 10.805 0.004409 360.870 0.001396 293.136 0.010750 572.321
150.51 0.001780 10.890 0.004960 360.870 0.001425 299.259 0.011825 573.893
142.48 0.001838 10.951 0.005515 360.870 0.001451 304.708 0.012900 575.180
135.49 0.001894 10.992 0.006072 360.870 0.001474 309.594 0.013975 576.247
129.35 0.001947 11.016 0.006632 360.870 0.001495 314.007 0.015050 577.143
123.91 0.001998 11.023 0.007193 360.870 0.001514 318.016 0.016125 577.903
119.06 0.002048 11.023 0.007756 360.870 0.001532 321.677 0.017200 578.554
114.69 0.002096 11.023 0.008321 360.870 0.001548 325.035 0.018275 579.115
110.75 0.002143 11.023 0.008886 360.870 0.001563 328.126 0.019350 579.604
107.17 0.002189 11.023 0.009453 360.870 0.001576 330.981 0.020425 580.031
103.89 0.002234 11.023 0.010021 360.870 0.001589 333.625 0.021500 580.408

 

TABLE 2.14
M-Φ for RC Section 350 × 700 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, 
 fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

275.49 0.000003 0.030 0.000004 0.828 0.000002 0.516 0.000010 1.775
278.09 0.000253 2.613 0.000357 74.894 0.000226 47.410 0.000910 160.317
280.86 0.000511 4.915 0.000708 148.730 0.000457 95.878 0.001820 318.150
283.79 0.000775 6.886 0.001054 221.412 0.000693 145.500 0.002730 473.287
286.91 0.001044 8.507 0.001394 292.833 0.000935 196.383 0.003640 625.484
289.09 0.001315 9.732 0.001733 360.870 0.001179 247.558 0.004550 770.508
257.59 0.001406 10.052 0.002252 360.870 0.001243 260.950 0.005460 778.985
233.42 0.001487 10.298 0.002781 360.870 0.001296 272.118 0.006370 785.085
214.20 0.001559 10.488 0.003318 360.870 0.001341 281.611 0.007280 789.656
198.50 0.001626 10.637 0.003862 360.870 0.001380 289.803 0.008190 793.185

 
(Continued)
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2.9 C ONCLUsiONs

In this chapter, a new analytical procedure for estimating curvature ductility 
of RC sections is proposed. The purpose is to estimate the moment-curvature 
relationship under service loads, in a simpler closed-form manner. Analytical 
expressions for moment-curvature relationship of RC sections, accounting for 
nonlinear characteristics of constitutive materials according to Eurocode, are 
proposed in elastic and elastic-plastic ranges as well. Percentage of tension rein-
forcement influences curvature ductility to a large extent. There exists at least 
one critical value of percentage of both tensile and compression reinforcements 
that reduces the curvature ductility to the minimum. The proposed analytical 
expressions are capable of tracing this critical value, so that it can be avoided 
for a successful design of the section. Tensile reinforcement, closer to pt,bal, will 
result in more curvature ductility since there is a marginal reduction seen due to 
the kink in the curve for (lesser) values closer to pt,bal. Maximum curvature duc-
tility is obtained for compression reinforcement equal to pc,bal when the section is 
subjected to axial compressive forces; for tensile axial forces, the percentage of 
compression steel, the same as that of tension steel (pc = pt), gives the maximum 
curvature ductility.

With regard to their close agreement with the analytical procedure, proposed 
expressions for moment-curvature estimate are thus qualified for use in design and 
in structural assessments as well. Avoiding tedious hand-calculations and approxi-
mations required in conventional iterative design procedures, the proposed method 
eliminates the possibility of potentially unsafe design. In the absence of enough 
experimental evidence to be more conclusive on the topic, the proposed closed-form 
solutions for the unknown curvature ductility ratios are confident of giving a reliable 

TABLE 2.14 (CONTiNUED)
M-Φ for RC Section 350 × 700 (pt = 1.5%, pc = 1.2%, fck = 25 N/mm2, 
 fy = 415 N/mm2 )

xc ec,max sc,max est sst esc ssc F M

(mm) (kN/m2) (kN/m2) (kN/m2) (rad/m) (kN-m)

185.39 0.001687 10.754 0.004410 360.870 0.001414 296.958 0.009100 795.977
174.27 0.001744 10.843 0.004962 360.870 0.001444 303.272 0.010010 798.229
164.70 0.001799 10.912 0.005518 360.870 0.001471 308.891 0.010920 800.075
156.37 0.001850 10.961 0.006076 360.870 0.001495 313.931 0.011830 801.610
149.04 0.001899 10.995 0.006637 360.870 0.001517 318.479 0.012740 802.900
142.54 0.001946 11.015 0.007200 360.870 0.001536 322.610 0.013650 803.996
136.74 0.001991 11.023 0.007764 360.870 0.001554 326.379 0.014560 804.936
131.53 0.002035 11.023 0.008330 360.870 0.001571 329.837 0.015470 805.747
126.81 0.002077 11.023 0.008897 360.870 0.001586 333.019 0.016380 806.454
122.53 0.002119 11.023 0.009466 360.870 0.001600 335.958 0.017290 807.073
118.61 0.002159 11.023 0.010035 360.870 0.001613 338.681 0.018200 807.619
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and safe estimate of the said parameter. With due consideration to the increasing 
necessity of structural assessment of existing buildings under seismic loads, the pro-
posed expressions of moment-curvature relationship shall become an integral input 
while employing nonlinear static procedures.

2.10  SPREADsHEET PROGRAM

The presented analytical expressions for moment-curvature relationship in closed 
form are very useful for researchers. However, to facilitate the ready application of 
the developed procedure, a simple spreadsheet program used to estimate the moment-
curvature relationship is presented; this should encourage the structural designers to 
use it instantly and with confidence. The spreadsheet is available in the CD content, 
which can be freely downloaded from the following Web site: http://www.crcpress 
.com/e_products/downloads/download.asp?cat_no=K10453. Table  2.15 shows the 
values of the points traced along the M-Φ curve, obtained numerically, for no axial 
force case.

2.10.1 � STEP-BY-STEP PROcEDURE TO UsE THE SPREADsHEET 
PROGRAM GIVEN ON THE WEB SITE

Table 2.15 shows the demonstrated example case, which is explained in this section.
First, to predict the moment-curvature relationship in elastic range, the steps are 

as follows:

	 1.	 An arbitrary value is assumed for the limit elastic curvature; assign any 
value to cell B21; for example, 0.005.

	 2.	 Fix axial force to the desired value; depth of neutral axis is determined. 
Click cell A21; Go to Tools in the menu; then select Goal Seek; Set cell: 
A21; To value: axial force; for example, axial force is set to zero; By 
changing cell: click iteration, select $C$21 (neutral axis position); click 
iteration. You will find a remark: Goal Seeking with Cell A21 found solu-
tion. If target value and current value are the same, then the solution is 
determined; press OK. We get xc as 0.172. Observe the values of cells  
D21 = 0.00086; E21 = 0.000708; F21 = 0.00149. These values correspond 
to e e ec sc st,max , , , respectively. These values of the strain should be less than 
e ec s0 011 11= =( ); ( )cell I cell M . In this case, es0 0 00172= . . Therefore, we 
increase the curvature to 0.00578 to get xc as 0.173 m for e est s= 0. Thus, 
the limit elastic curvature is determined as 0.00578 rad/m, and the cor-
responding moment is 232.62 kN-m.

	 3.	 Fixing this value as the limit elastic curvature and subdividing it equally, 
moment-curvature values for the first five rows are now obtained as fol-
lows: For example, consider the first row, select Cell A16; Go to Tools; 
select Goal Seek; Set Cell A16; To value: Axial force (in this case it is 
zero); By changing Cell: Click iteration; select $C$16; press OK. You will 
find a remark: Goal Seeking with Cell A21 found solution. If target value 
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TABLE 2.15
M-Φ for RC Section 300 × 500 for No Axial Force (pt = 1.08%, pc = 1.08%, Rck = 30 N/mm2, fy = 415 N/mm2 )

P F xc ec,max esc est sc,max ssc sst q M

(kN) (rad/m) (m) (kN/m2) (kN/m2) (kN/m2) (m) (kN-m)

0.00 0.000010 0.165 0.00000 0.000001 0.00000 22 284 640 0.00 0.41
0.00 0.001166 0.167 0.00019 0.000159 0.00035 2444 33437 74301 0.00 48.07
0.00 0.002322 0.168 0.00039 0.000320 0.00070 4657 67283 147269 0.00 95.20
0.00 0.003478 0.169 0.00059 0.000485 0.00105 6648 101874 219493 0.00 141.76
0.00 0.004634 0.171 0.00079 0.000654 0.00139 8408 137269 290913 0.00 187.72
0.00 0.005780 0.173 0.00100 0.000825 0.00172 9909 173216 360856 0.00 232.62
0.00 0.007080 0.153 0.00108 0.000872 0.00224 10457 183156 360870 0.00 234.86
0.00 0.008379 0.139 0.00116 0.000911 0.00278 10906 191230 360870 0.00 236.41
0.00 0.009679 0.127 0.00123 0.000943 0.00332 11283 197947 360870 0.00 237.55
0.00 0.010979 0.118 0.00130 0.000970 0.00386 11603 203635 360870 0.00 238.40
0.00 0.012279 0.111 0.00136 0.000993 0.00441 11879 208523 360870 0.00 239.07
0.00 0.013578 0.105 0.00142 0.001013 0.00496 12118 212773 360870 0.00 239.61
0.00 0.014878 0.099 0.00148 0.001031 0.00552 12325 216505 360870 0.00 240.04
0.00 0.016178 0.095 0.00153 0.001047 0.00607 12504 219811 360870 0.00 240.40
0.00 0.017478 0.091 0.00159 0.001061 0.00663 12659 222762 360870 0.00 240.69
0.00 0.018777 0.087 0.00164 0.001073 0.00719 12792 225415 360870 0.00 240.95
0.00 0.020077 0.084 0.00169 0.001085 0.00775 12904 227814 360870 0.00 241.16
0.00 0.021377 0.081 0.00174 0.001095 0.00831 12999 229997 360870 0.00 241.34
0.00 0.022677 0.079 0.00179 0.001105 0.00887 13075 231994 360870 0.00 241.50
0.00 0.023976 0.076 0.00183 0.001113 0.00944 13136 233829 360870 0.00 241.64
0.00 0.025276 0.074 0.00188 0.001122 0.01000 13180 235525 360870 0.00 241.77
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and current value are the same; then the solution is determined; press OK. 
Repeat the same procedure for the next four rows and obtain the points of 
M-F curve in elastic range.

Second, for estimating the values in elastic-plastic range, the following steps are 
adopted:

	 1.	 Assign any value to cell B36; for example, 0.025.
	 2.	 Fix axial force to the desired value; depth of neutral axis is determined. 

Click A36; Go to Tools in the menu; then select Goal seek; Set cell: A36; 
To value: axial force; for example, axial force is set to zero; By changing 
cell: click iteration; select $C$36 (neutral axis position); click iteration; 
You will find a remark: Goal Seeking with Cell A36 found solution; If 
target value and current value are the same; then the solution is deter-
mined; press OK. We get xc as 0.075. Observe the values of cells D36 =  
0.00187; E36 = 0.00112; F36 = 0.00988. These values correspond to 
e e ec sc st,max , , , respectively. These values of the strain should be less than 
e ecu su= =( ); ( )cell J cell N11 11 . In this case, esu = 0 01. . Therefore, we 
increase the curvature to 0.025276 to get xc as 0.074 m for e est su= . Thus, 
ultimate curvature is determined as 0.025276 rad/m, and the correspond-
ing moment is 241.77 kNm.

	 3.	 Fixing this value as the ultimate curvature and subdividing it equally, 
moment-curvature values for the next 14 rows after limit elastic values 
(first yellow band) are now obtained as follows: For example, consider 
row 22; select Cell A22; Go to Tools; select Goal Seek; Set Cell A22; To 
value: Axial force (in this case it is zero); By changing Cell: Click itera-
tion, select $C$22; press OK. You will find a remark: Goal Seeking with 
Cell A22 found solution. If target value and current value are the same, 
then the solution is determined; press OK. Repeat the same procedure 
for the next 13 rows and obtain the points of M-F curve in elastic-plastic 
range.

The above example shows that tensile strain in steel reaches limit elastic values and 
ultimate value first, making the failure as tension failure. However, in some exam-
ples, you may also see that concrete reaches its maximum value first, making it as a 
compression failure.
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3 Moment-Rotation 
Relationship for RC Beams

3.1  SUMMARY

Moment-rotation relationships of RC beams provide an estimate of the beams’ 
ductility, which is a valuable design parameter. The correct estimate of ductility 
is very important in the context of recent advancements in design approaches like 
displacement-based design. In this chapter, collapse mechanism and plastic hinge 
extensions of RC beams in bending, under increasing concentrated design load until 
collapse, are examined. Moment-rotation relationships in explicit form, in elastic and 
elastic-plastic ranges, are derived from the proposed bilinear modeling of moment-
curvature relationships, presented in Chapter 2. Analytical estimates are verified for 
equilibrium and compatibility conditions. Ductility ratios of two cases, (1) a fixed 
beam and (2) a simply supported beam, are presented. The proposed analytical 
procedure is capable of modeling the moment-rotation relationship, accounting for 
nonlinear characteristics of the materials, and providing a satisfactory estimate of 
ductility. They are useful for designing special moment-resisting RC framed struc-
tures, in particular, where ductility is an important design parameter. In the techni-
cal context in this chapter, relative rotation occurring between the extremities of a 
plastic hinge is termed as rotation.

3.2  INTRODUCTiON

Recent revisions in design approaches of RC elements include desirable features of 
ultimate strength and working stress design as well, to ensure satisfactory design. A 
seismic design procedure that does not account for maximum plastic deformation 
demands, which a structure is likely to undergo during severe ground motion, could 
lead to unreliable performance (Amador and Nadyane 2008). With displacement-
based design approach becoming more common, it is imperative to ensure conceptual 
implication of multiple target performance (damage) levels that are expected to be 
achieved, or at least not exceeded, when the structure is subjected to earthquakes of 
specified intensity (Priestley, Calvi, and Kowalsky 2007). Gilbert and Smith (2006) 
showed the significance of strain localization in RC slabs and its adverse effect on 
ductility. While seismic design philosophy demands energy dissipation/absorption 
by postelastic deformation for collapse prevention during major earthquakes, the 
seismic capacity of buildings is highly sensitive to their ductility estimates (Zhang 
and Der Kiureghian 1993). Owing to the large economic losses derived from recent 
seismic events, design methodologies based on explicit control of dynamic response 
of structures emphasizing sufficient ductility of members at local and global levels are 
being practiced by and large; this should lead to a desired solution for the sustainable 
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development of building stock envisaging more major earthquakes in future (Mahin 
et al. 2006). Ductility, a measure of energy dissipation by inelastic deformation dur-
ing major earthquakes, depends mainly on moment-curvature relationship at criti-
cal sections, where plastic hinges are expected/imposed to be formed at collapse; it 
also ensures effective redistribution of moments at these sections, as collapse load is 
approached (Park and Paulay 1975; Paulay and Priestley 1992). Damage models that 
quantify severity of repeated plastic cycling through plastic energy dissipation are 
simple tools that can be used for practical seismic design. In other words, structures 
should be designed to resist earthquakes in a quantifiable manner, imposed with 
desired possible damage (Bangash 1989; Ghobarah 2001; SEAOC 1995). Structural 
performance of a building during an earthquake depends on many parameters such 
as material properties and hysteretic behavior of members, joints, and the like that 
are highly uncertain (Rustem 2006). Fan Sau-Cheong and Wang (2002) justified 
recommendation of reinforced concrete structures to resist seismic loading only if 
the design is capable of ensuring sufficient ductility.

The literature reviewed critically emphasizes the importance of ductility in RC sec-
tions to ensure satisfactory behavior under seismic loads. However, analytical expres-
sions, in a closed form for moment-rotation relationship and ductility of rectangular 
RC sections (with different tensile and compressive reinforcements), accounting for 
nonlinear properties of constitutive materials, are relatively absent in the literature. 
This chapter presents a mathematical development of nonlinear behavior of RC beams 
based in Eurocode currently in prevalence and derives moment-rotation relationships 
and ductility from the bilinear modeling of moment-curvature relationships presented 
in Chapter 2. Theoretical moment-rotation curves for RC beams in bending, under 
increasing central concentrated design load until collapse, are studied. Ductility ratios 
of fixed beams and simply supported beams are examined and discussed.

3.3 M ATHEMATiCAL DEVELOPMENT

Concrete under multiaxial compressive stress state exhibits significant nonlinearity. 
The fundamental Bernoulli hypothesis of linear strain over the cross-section for both 
elastic and elastic-plastic responses of the beam, under bending moment combined 
with axial force, is assumed in the study. Axial force–bending moment yield inter-
action discussed in Chapter 1 is recalled. For classifying the failure as tension (or) 
compression caused by yielding of steel (or) crushing of concrete, respectively, the 
percentage of steel or a balanced section is given by

	
p p

P

b Dt bal c
cu c c

cu su s
,

( )

( ) (
= +

-
+

-
-

3

3
0 0

0

0e e s
e e s dd s)s 0  	

(3.1)

where P0 is the axial force (P0 > 0, if it is compression). For the known cross-section 
with fixed percentage of compression reinforcement, Equation 3.1 gives the percent-
age of reinforcement for the balanced section. It is to be noted that the above equa-
tion is the same as Equation 2.51. Moment-curvature relationship, as presented in 
Chapter 2, is recalled for elastic and elastic-plastic range. It is well known that the 
presence of axial force influences moment-curvature relationships. It is also essential 
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to know the critical value of axial force up to which the failure remains tensile; only 
until those critical values, moment-rotation relationships are proposed to be exam-
ined in the following section. For the axial force of P P∈[ , ]*0 , collapse is caused by 
yielding of tensile steel, and for P > P*, collapse is caused by crushing of concrete. 
The critical value of axial force P* is given by

	

P b D d p pcu c

cu su
c t c s
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- -
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3
0

0 0
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






 	
(3.2)

Moment-curvature relationships, in elastic and elastic-plastic ranges are now 
examined for an RC beam of cross-section 300 × 450 mm with Rck as 25 N/mm2 and 
fy as 41 N/mm2. For members of building frames under seismic loads, in particular, 
design type leading to tension failure is normally used, because of its known advan-
tages. For the beam reinforced with the same percentage of tension and compression 
steel (4#22F), critical axial force computed from Equation 3.2 amounts to 291.51kN. 
Moment-curvature relationships are examined for axial forces less than this critical 
value, and relevant curves are shown in Figure 3.1. Both the curves obtained from 
bilinear approximation and using moment-curvature relationships are presented in 
the figure. It is seen from the figure that the variations are very small for lesser 
values of axial force but tend to increase for greater values. Therefore, the devel-
oped moment-curvature relationship discussed in Chapter 2 validates the procedure 
for tensile failure up to axial load level of critical value. Hence it is satisfactory to 
use bilinear approximated moment-curvature to further investigate moment-rotation 
relationships and rotation ductility of RC beams; the same is used in the further sec-
tions of discussions.
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FiGURE 3.1  Moment-curvature for RC section 300 × 450 for different axial forces.
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3.4 A NALYTiCAL MOMENT-ROTATiON RELATiONsHiPs

The relationships shall be examined in elastic and elastic-plastic range, successively 
(Nunziante, Gambarotta, and Tralli 2007). General equations of equilibrium are 
known as

	

d V z
dz

q z
d M z

dz
q z

( )
( ),

( )
( )= - = -

2

2
 	

(3.3)

where V(z), M(z), q(z) are shear force, bending moment, and distributed load present 
in the beam. Assuming the hypothesis of small displacement, compatibility equa-
tions are given by

	
f δ
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d z
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2

2
 	  

(3.4)

where, δ( )z  is the transverse displacement function of the beam. Moment-curvature 
relationships, in elastic and elastic-plastic ranges for monotonically increasing cur-
vature, are known as
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where, KE
ME

E

f
f=  is the curvature-elastic stiffness and Kp

M Mu E

u E

f
f f= -

-  is the curvature-
hardening modulus. Figure 3.2 shows moment-curvature and moment-relative rota-
tion for the beams considered in the analysis, showing also the elastic stiffness and 
the hardening modulus for curvature and relative rotation, respectively. General dif-
ferential equations for the beam can now be written as
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FiGURE 3.2  Elastic stiffness and hardening modulus: (a) relative rotation, (b) curvature.
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Further, (1) rotation, (2) curvature, (3) bending moment, and (4) shear in elastic 
and elastic-plastic range, expressed as the function of displacement, are given by
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(3.9)

This proposed modeling of elastic-plastic beam allows to obtain deformations 
with good accuracy. On the basis of the procedure discussed above and with the help 
of bilinear approximated moment-curvature, moment-rotation relationships of two 
cases are now examined.

3.4.1 F IXED BEAM UNDER CENTRAL CONcENTRATED LOAD

Figures 3.3 and 3.4 show a fixed beam and simply supported beams under central 
concentrated load. The beams are examined for increasing design load until collapse 
and the corresponding moment-rotation relationships, both in elastic and elastic-
plastic ranges; axial force is not considered in the analysis (P = 0). In the elastic 
range, the beam is subdivided in two parts whose lengths lie in the range (0, L/2) and 
(L/2, L), respectively. Displacement functions of both of the parts in the same refer-
ence system (with origin at left support of the beam) are given by
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where S S S01 11 32, , ,

 
are integration constants. It is assumed that both the tension 

and compression reinforcements of the beam are continuous without any curtailment 
along its length, leading to the same values of limit elastic and ultimate bending 
moments. At elastic limit, bending moment reaches its limit value in its absolute 
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FiGURE 3.3  Fixed beam subjected to central concentrated load.
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terms at sections z = 0 and z = L/2, simultaneously. By imposing the appropriate 
equilibrium and compatibility conditions at fixed supports and midspan, integration 
constants are obtained as

	

S S S
k F L

K
S

F

K

S
k F L

E E
01 11 21 31

02

3

0
16 12

= = = = -

=

, ,f f
k

1192
0

16 1212 22 32K
S S

k F L

K
S

k F

KE E E
f f f, , ,= = - =

 	

(3.11)

where, k is the load multiplier and F is the point load. Substituting in Equation 3.8, 
displacement function for the beam in elastic range is determined as
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[for fixed beam case] 	(3.12)

Similarly, functions for rotation, bending moment and shear can be readily derived 
from Equation 3.12. Figure 3.5 shows the bending moment, curvature, rotation and 
displacement of the beam, plotted along its length; profiles are shown at elastic limit 
and at collapse as well. It can be seen from the figure that both compatibility and equi-
librium conditions are well satisfied. Load multiplier at elastic limit is given by
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At elastic limit, relative rotation, total rotation, and ductility of the hinge formed 
at midspan are given by

	

D

D

q q q

q

E E m E m

u

z L z L(midspan)

(midspa

= = - =( ) ( ),1 2

nn)

(midspan)

(m

= = - =

=

q q

h
q
q

u m u m

u

E

z L z L( ) ( ),1 2

D
D iidspan)

 	

(3.14)

y

zA B

F

L

Lm1
L/2

v1(z) v4(z)v2(z) v3(z)

Lm2

FiGURE 3.4  Simply supported beam subjected to central concentrated load.
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central concentrated load.
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In terms of moment and curvature-elastic stiffness, relative rotation at elastic 
limit is given by
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where, Lm1 and Lm2 are the extremities of the plastic hinge, measured along the 
length of the beam (see Figure  3.3). Similarly, for the plastic hinges formed at 
fixed supports, relative rotation at elastic limit, total rotation, and ductility ratio 
are given by
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(3.16)

where, Lf is the length of plastic hinges formed at the fixed supports. Relative rota-
tion of these hinges can also be expressed as
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E f f
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M L L L
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- 2

 	

(3.17)

In the elastic-plastic range, the beam is subdivided by six parts (see Figure 3.3). 
Plastic hinges are present in the first, third, fourth, and sixth parts, while strain 
remains elastic in the second and fourth parts. Displacement function for each part 
is given by
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		  (3.18)

where N N N N N N N N01 11 21 31 06 16 26 36, , , , , , , are integration constants. The functions 
δ δ2 5( ), ( )z z  are required to satisfy Equation 3.6, while the remaining functions sat-
isfy Equation 3.7. Imposing the respective equilibrium and compatibility conditions, 
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derived are the following set of equations that have to be satisfied:
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		   (3.19)

By solving, integration constants can be determined. By substituting moment as ME 
at (z = Lm1) and Mu at (z = L/2), collapse load multiplier is obtained as
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 (3.20)

By substituting in Equations 3.15 and 3.17, respectively, relative rotation of plastic 
hinges formed at midspan and supports, at elastic limit, are obtained as
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(3.21)

In the elastic-plastic range, respective values are given by
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Rotation ductility of the plastic hinges formed at supports and midspan are given by
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(3.23)

Moment-rotation relationships, in both elastic and plastic zones, are summarized as
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(3.24)

where the rotational-elastic stiffness and hardening modulus KE
q , KP

q assume differ-
ent values for plastic hinges formed at midspan and supports. For hinges formed at 
midspan and supports, their respective values are given by:
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(3.25)
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(3.26)

3.4.2  SIMPLY SUPPORTED BEAM UNDER CENTRAL CONcENTRATED LOAD

Figure 3.4 shows the simply supported beam under central concentrated load. The 
beam is examined for increasing design load until collapse; and moment-rotation rela-
tionships, in elastic and elastic-plastic ranges, are presented. In the elastic range, the 
beam is subdivided in two parts whose lengths lie in the range (0, L/2) and (L/2, L),  
respectively. The displacement functions for both of the parts are given by

	

δ

δ

1 01 11 21
2

31
3

2

0 2( ) [ , / ]

( )

z Y Y z Y z Y z z L

z Y

= + + + ∀ ∈

= 002 12 22
2

32
32 2 2+ - + - + - ∀ ∈Y z L Y z L Y z L z L( / ) ( / ) ( / ) [ // , ]2 L 	

(3.27)

By imposing appropriate equilibrium and compatibility conditions, integration con-
stants of Equation 3.27 are obtained as
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where k and F are the load multiplier and point load, respectively. Substituting in 
Equation 3.27, displacement function for the beam in elastic range is determined as:
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[for simply supported beam]		
		

(3.29)

Figure 3.6 shows the bending moment, curvature, rotation, and displacement pro-
files of the beam, plotted along its length; profiles are shown at elastic limit and 
collapse as well. It can be seen from the figure that compatibility and equilibrium 
conditions are well satisfied. The load multiplier at elastic limit is now given by

	
k

M

FLe
E=

4

 	
(3.30)

Using Equation 3.14, relative rotation of the plastic hinge formed at midspan, at 
elastic limit, is given by
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(3.31)

where Lm1 and Lm2 are the extremities of the plastic hinge measured along the length 
of the beam as shown in Figure 3.4 and are given by
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(3.32)

The length of the plastic hinge formed at midspan is given by:
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Substituting in Equation 3.31, relative rotation of the plastic hinge at elastic limit is 
given by
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(3.34)

In the elastic-plastic range, the beam is subdivided in four parts (see Figure 3.4). 
Plastic hinges are present in second and third part, while the strain in the  
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FiGURE 3.6  Bending moment, curvature, rotation, and displacement for simply supported 
beam under central concentrated load.
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first and fourth parts remains elastic. Displacement functions for each part are 
given by

	

δ

δ

1 01 11 21
2

31
3

1

2

0( ) [ , ]

( )

z R R z R z R z z L

z R

m= + + + ∀ ∈

= 002 12 1 22 1
2

32 1
3+ - + - + - ∀ ∈R z L R z L R z L z Lm m m( ) ( ) ( ) [ mm L

z R R z L R z L R

1

3 03 13 23
2

3

2

2 2

, / ]

( ) ( / ) ( / )δ = + - + - + 33
3

2

4 04 14 2

2 2( / ) [ / , ]

( ) ( )

z L z L L

z R R z L

m

m

- ∀ ∈

= + - +δ RR z L R z L z L Lm m m24 2
2

34 2
3

2( ) ( ) [ , ]- + - ∀ ∈
 		

		  (3.35)

where R R R R01 11 24 34, ,..., ,  are the integration constants that can be determined by 
imposing the respective equilibrium and compatibility conditions in Equation 3.35. 
Relative rotation of the plastic hinge formed at midspan is given by
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By recalling the relative rotation of the plastic hinge at elastic limit given by Equation 
3.34, ductility of the plastic hinge formed at midspan can be expressed as
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(3.37)

It is important to note that rotation ductility obtained above is as same as the hinge 
formed at midspan in the fixed beam, given by Equation 3.25, but the changes in 
rotational-elastic and hardening modulus are given by
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(3.38)

3.4.3 F IXED BEAM UNDER UNIFORMLY DIsTRIBUTED LOAD

In this section, the collapse mechanism and the plastic hinge extension of a fixed RC 
beam, in bending under increasing uniformly distributed design load until collapse, 
is examined, and expressions for moment-rotation relationships are derived. A fixed 
beam of 5 m span considered for the study is shown in Figure 3.7. Two RC beams with 
cross-sections 300 × 450 mm and 300 × 600 mm are analyzed with different percent-
ages of tension and compression reinforcements. The bending moment, curvature, 
rotation, and deflection function in a closed form in elastic range are given by
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where G G0 1,  are integration constants depending on boundary kinematical con-
straints. The equivalent bending stiffness is given by
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A procedure based on the static theorem of limit analysis is applied to obtain a 
lower-bound collapse load multiplier, length of plastic hinge, and relative rotation. 
It is well known that in the framework of the static theorem, only equilibrium and 
plastic compatibility conditions are to be fulfilled. For the selected cross-section 
and reinforcement, let the ultimate moments be MuA and MuB at fixed supports, MuC 
at midspan, and let ME be the limit moment (Figure  3.7). Since the load is uni-
formly distributed, equilibrium requires a parabolic bending moment function over 
the beam. A statically admissible bending moment distribution M = M(z) is hence 
a parabola passing through these values at supports and midspan. The equilibrium 
equations at collapse of these sections are thus given by
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where q x x yc c

c
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. By solving Equation 3.44, depth of neu-

tral axis is obtained as
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By substituting in Equation 3.45 and imposing the conditions
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three values of elastic bending moments are obtained, out of which lower bound 
value is taken as elastic moment, ME. By further substituting in Equation 3.45 and 
imposing the condition that e ec cu,max = , the ultimate bending moment of the cross-
section is obtained as
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The relevant uniformly distributed statically admissible load is given by
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By integrating the moment distribution along the length of the beam at collapse, we 
get
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Now, by imposing | |M M MuA uC u= = , the collapse load multiplier and integration 
constants D1, D2 are obtained as
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where Mu is given by Equation 3.48. For equilibrium of stresses corresponding to 
the vanishing value of axial force, the position of neutral axis and linear axial defor-
mation profile can be obtained under the Bernoulli condition for both elastic and 
elastic-plastic zones. Figure 3.7 shows the details of plastic hinges formed at critical 
sections. For the zero axial load case in Equation 3.44, strain in concrete in extreme 
compression fiber is given by
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By substituting in Equation 3.44 and equating it to Equation 3.50, depth of neutral 
axis is obtained as
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Subsequently, curvature, rotation, and displacements for the elastic-plastic zone 
of the beam are given by
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where H0 and H1 are integration constants.
By means of the above procedure, functions of curvature, rotation, and displace-

ment of the elastic and elastic-plastic sections of the beam are obtained. Equating 
rotations and displacements in the connecting points and imposing the conditions 
zero rotation at midspan and zero displacements at fixed supports, the actual solu-
tion for displacement at collapse is determined by solving Equations 3.42 and 3.57. 
The solution for displacement obtained from the static procedure described above 
clearly fulfills the continuity requirements at the connection points between the 
elastic and elastic-plastic parts since the solution presents only a negligible error 
of 0.005 radians of the rotation at the fixed supports. On the other hand, it is well 
known that in the framework of static theorem of limit analysis, not all kinemati-
cal conditions can be satisfied. The results obtained for the collapse multiplier and 
plastic hinge length that are intended as relative rotations between the sections 
whose abscissa are L1 and L2, also representing the boundaries of the incoming 
plastic hinge, are only lower bounds of the actual ones. Even though obtained 
by means of the shown static procedure, the result is nearly close to the exact 
ones. The proposed modeling for the elastic-plastic beam allows one to obtain the 
deformation of the beam also with good accuracy. Further, the relative rotations at 
elastic limit and collapse and ductility ratio (see the enlarged view of Figure 3.7) 
are given by
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The points along the length of the beam, namely, L1 and L2 representing extremi-
ties of the plastic hinge, can be determined by equating the lower bound value of 
elastic moment to the actual bending moment given by Equation 3.50 and solving 
it with respect to variable z. The moment-rotation relationship of the beam in both 
elastic and plastic zones is summarized as
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(3.59)

3.5 N UMERiCAL STUDiEs AND DisCUssiONs

The above developed procedure is verified with numerical examples. RC beams of 
cross-section 300 × 450 mm, reinforced with 4# 22 Φ in both tensile and compression 
zone, under central point load are now examined. Two support conditions are consid-
ered: (1) both ends fixed and (2) both ends simply supported. The spans of the beams 
are varied as 3.5 m, 4 m, 4.5 m, and 5 m. The spans are selected in a close range, since 
the objective is to examine their influence on moment-rotation relationship; and at the 
same time, the chosen cross-section shall be also accommodated. Further, the cross-
section and the reinforcement of the beams (with different spans) are kept the same so 
that the influence of their variation on moment-curvature is controlled as the moment-
rotation relationship is derived from the bilinear approximation of moment-curvature.

The percentages of reinforcements, both in tension and compression (pt = pc = 
1.21%), are kept less than the balanced section (pt,bal = 1.85%) to initiate a tensile 
failure in the beam. Axial force is varied as (1) 0 kN, (2) 100 kN, and (3) 200 kN but 
kept well below the critical load value (p* for the chosen cross-section is 291.51 kN), 
since the load level in closer proximity to the critical may indicate the influence of 
compression failure. Moment-rotation curves are plotted only for the plastic hinge 
formed at the midspan. However, details of plastic hinges formed at the support 
can be seen from Tables 3.1 and 3.2 for fixed beam and simply supported beam, 
respectively.

Figures 3.8 and 3.9 show the moment rotation of the fixed beam and simply sup-
ported beam under different axial forces, respectively. The curves in these figures 
are plotted for the beams of 4 m span only, but Tables 3.1 and 3.2 show the details for 
the beams with different spans considered in the study. The tables and Figures 3.8 
and 3.9 show that for the fixed beam and simply supported beams of specific span 
length, say L m, the rotational-elastic stiffness KE

q  decreases for the increase in axial 
force while rotational-hardening modulus Kp

q  increases; this is true for beams of all 
spans examined in the study. For the same axial force, increase in span length of the 
fixed and simply supported beams leads to the decrease of both rotational-elastic and 
hardening modulus. Relative rotation of plastic hinges formed at the supports (in the 
case of fixed beam) and at the midspan increases with the increase in span length 
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TABLE 3.1
Hinge Properties for a Fixed Beam

Description of Data and Properties  
(Fixed Beam) Hinge at Support Hinge at Midspan

 L  
(m)

P  
(kN)

fE 

(rad/m)
fu  

(rad/m)
ME  

(kN-m)
Mu

(kN-m)
∆qE  

(rad)
∆qu  

(rad) h
Lp  

(mm)

KE
q

  
(kNm/
rad)

KP
q

  
(kNm/
rad)

∆qE  

(rad)
∆qu  

(rad) h
Lp  

 (mm)

KE
q

(kN–m/ 
rad)

KP
q

(kN–m/ 
rad)

3.50 0 0.0068 0.0288 206.65 214.34 0.000210 0.000559 2.665 31.41 985272 22025 0.000419 0.001118 2.665 62.82 492636 11013

3.50 100 0.0072 0.0294 222.97 233.29 0.000272 0.000708 2.605 38.70 820555 23660 0.000543 0.001416 2.605 77.40 410278 11830

3.50 200 0.0076 0.0300 238.89 252.07 0.000338 0.000860 2.545 45.77 707097 25252 0.000676 0.001720 2.545 91.53 353549 12626

4.00 0 0.0068 0.0288 206.65 214.34 0.000240 0.000639 2.665 35.89 862113 19272 0.000479 0.001278 2.665 71.79 431057 9636

4.00 100 0.0072 0.0294 222.97 233.29 0.000311 0.000809 2.605 44.23 717986 20702 0.000621 0.001618 2.605 88.46 358993 10351

4.00 200 0.0076 0.0300 238.89 252.07 0.000386 0.000983 2.545 52.31 618710 22096 0.000772 0.001966 2.545 104.61 309355 11048

4.50 0 0.0068 0.0288 206.65 214.34 0.000270 0.000719 2.665 40.38 766323 17131 0.000539 0.001438 2.665 80.76 383161 8565

4.50 100 0.0072 0.0294 222.97 233.29 0.000349 0.000910 2.605 49.76 638210 18402 0.000699 0.001820 2.605 99.52 319105 9201

4.50 200 0.0076 0.0300 238.89 252.07 0.000434 0.001106 2.545 58.84 549964 19640 0.000869 0.002211 2.545 117.69 274982 9820

5.00 0 0.0068 0.0288 206.65 214.34 0.000300 0.000799 2.665 44.87 689690 15418 0.000599 0.001597 2.665 89.74 344845 7709

5.00 100 0.0072 0.0294 222.97 233.29 0.000388 0.001011 2.605 55.29 574389 16562 0.000776 0.002022 2.605 110.58 287194 8281

5.00 200 0.0076 0.0300 238.89 252.07 0.000483 0.001229 2.545 65.38 494968 17676 0.000965 0.002457 2.545 130.76 247484 8838
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TABLE 3.2
Details of Hinges Formed at Midspan in a Simply Supported Beam with a Central Point Load

Description of Data and Properties  
(Simply Supported Beam) Hinge at Midspan

L (m) P (kN) fE (rad/m) fu (rad/m) ME (kN-m) Mu (kN-m) ∆qE (rad) ∆qu (rad) η Lp (mm) KE
q

 
(kN-m/rad) KP

q
 
(kN-m/rad)

3.50 0.00 0.0068 0.0288 206.65 214.34 0.000839 0.002236 2.665 125.63 246318 5506
3.50 100.00 0.0072 0.0294 222.97 233.29 0.001087 0.002831 2.605 154.81 205139 5915
3.50 200.00 0.0076 0.0300 238.89 252.07 0.001351 0.003440 2.545 183.07 176774 6313
4.00 0.00 0.0068 0.0288 206.65 214.34 0.000959 0.002556 2.665 143.58 215528 4818
4.00 100.00 0.0072 0.0294 222.97 233.29 0.001242 0.003236 2.605 176.92 179496 5176
4.00 200.00 0.0076 0.0300 238.89 252.07 0.001544 0.003931 2.545 209.22 154677 5524
4.50 0.00 0.0068 0.0288 206.65 214.34 0.001079 0.002875 2.665 161.52 191581 4283
4.50 100.00 0.0072 0.0294 222.97 233.29 0.001397 0.003640 2.605 199.04 159552 4601
4.50 200.00 0.0076 0.0300 238.89 252.07 0.001737 0.004423 2.545 235.37 137491 4910
5.00 0.00 0.0068 0.0288 206.65 214.34 0.001199 0.003195 2.665 179.47 172423 3854
5.00 100.00 0.0072 0.0294 222.97 233.29 0.001553 0.004045 2.605 221.15 143597 4140
5.00 200.00 0.0076 0.0300 238.89 252.07 0.001931 0.004914 2.545 261.53 123742 4419
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FiGURE 3.8  Moment-rotation of fixed beam under different axial forces:
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FiGURE 3.9  Moment-rotation of simply supported beam under different axial forces:
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110	 Seismic Design Aids for Nonlinear Analysis  

for the same axial force level; this is true for both at elastic and ultimate stages. 
Also, for the same span length, say for L m, increase in the axial force increases the 
relative rotation of the hinges, both at elastic and ultimate stages. Ductility ratios of 
plastic hinges formed at supports (in case of fixed beams only) and midspan are the 
same for beams of all spans, subjected to the same axial force; they decrease with 
the increase in the axial force. The length of plastic hinges formed, both at supports 
and midspan, increases with the increase in axial force for the same span of the 
beams. Figures 3.10 and 3.11 show moment-rotation curves of plastic hinges formed 
at midspan of the fixed beam and simply supported beams of cross-section 300 × 
450 mm, with different spans under consideration; plots show the behavior for no 
axial force. It can be seen from the figures and tables that ductility ratios of plastic 
hinges formed at supports (in the case of fixed beams) and midspan are the same 
even with the increase in the span length, under the same axial force. However, there 
is increase in the length of these plastic hinges with the increase in span lengths, both 
those formed at supports and those at midspan as well; the length of plastic hinges 
formed at midspan is double those formed at the supports in the case of fixed beams 
examined.

Figures 3.12 and 3.13 show the moment-rotation curves for the beam of 4 m span, 
with two different percentages of tensile reinforcements: (1) 1.21%, which is the 
same as pc, and (2) 1.85%, which is the same as pt,bal. It is seen from the figures that 
increase in tension reinforcement certainly increases relative rotations at elastic and 
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FiGURE 3.11  Moment-rotation of simply supported beam with different span length (P = 0):
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FiGURE 3.12  Moment-rotation of fixed beam with different tensile reinforcements:
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112	 Seismic Design Aids for Nonlinear Analysis  

collapse states, and it also increases moments at elastic and ultimate stages. It is 
interesting to note that ductility increases only to a marginal extent in comparison 
with the increases in moments and relative rotations. Therefore, members of RC 
frames located in seismic zones shall be designed with lesser percentage of tensile 
reinforcement (which, in other words, is not a compromise on ductility) in compari-
son with the balanced section, as this can certainly ensure a tensile failure; savings 
in steel can be seen since a derived benefit apart from ensuring the required ductility. 
Also, fixing the percentage of compression reinforcement, either equal to that of ten-
sion steel or lesser, will be advantageous.

Figures 3.14 and 3.15 show the moment-rotation plots for fixed beams (under uni-
formly distributed load) of two cross-sections, 300 × 450 mm and 300 × 600 mm, 
respectively. Table 3.3 shows the moment-rotation and ductility ratio for example 
cases considered. It is seen that the ductility ratio considerably increases for beams 
with tension failure compared with that of compression failure, showing also a reduc-
tion in length of plastic hinge thus formed. It is also observed that there is a reduction 
in the length of plastic hinge and increase in ductility ratio when the percentage of 
tension reinforcement decreases. The required ductility shall be fixed on the basis 
of demand capacity ratio of the building frame under earthquake loads obtained 
from preliminary assessment and appropriate input parameter, namely, (1) the sec-
tion causing tension failure or (2) a balanced section can be chosen.
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FiGURE 3.13  Moment-rotation of simply supported beam with different tensile reinforcements:
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FiGURE 3.14  Moment-rotation of RC beam 300 × 450:
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FiGURE 3.15  Moment-rotation of RC beam 300 × 600:
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3.6 C ONCLUsiONs

A detailed methodology for estimating moment-rotation for RC sections in both 
elastic and plastic zones separately is presented. Nonlinear characteristics of con-
stitutive materials, namely, concrete and reinforcing steel, according to Eurocode 
currently in prevalence are considered, while deriving the analytical expressions 
for moment-rotation in a closed form. The expressions are derived from the ear-
lier developed moment-curvature relationship in Chapter 2, considering a bilinear 
modeling. Collapse mechanism and plastic hinge extension of RC beams in bend-
ing under increasing design load until collapse is presented. Axial forces limit-
ing to result in tensile failure of the chosen beams are also considered during the 
analysis. The proposed moment-rotation relationships are verified for equilibrium 
and compatibility conditions and ductility ratios of fixed beams and simply sup-
ported beams of different span length are presented. The bilinear approximation 
of moment-curvature used in the study does not seem to influence the derived ana-
lytical expressions of moment-rotation relationships, thus providing a reasonably 
accurate estimate.

Rotational-elastic stiffness and hardening modulus, the main contributors of duc-
tility, are influenced by the span length of the beam, axial force level, and percentage 
of steel reinforcement of the cross-section but are not influenced by the support con-
straints. Ductility is not influenced by the span length of fixed and simply supported 
beams and their support constraints, whereas length of the plastic hinges is influ-
enced significantly. It is advantageous to limit the value of tension reinforcement less 
than that required for a balanced section because ductility is not being influenced by 
the increase in percentage of tension reinforcement (for a fixed value of compression 

TABLE 3.3
Details of Hinges Formed at Midspan and Supports in a Fixed 
Beam under Uniformly Distributed Load

Section 300 × 450 Section 300 × 600

Description
Classification

Compression 
Failure Balanced

Compression 
Failure Balanced

Pt (%) 2.50 1.84 2.50 1.84
Pc (%) 1.00 1.00 1.00 1.00

DqE (rad) 0.00112 0.00051 0.00096 0.00046

Dqu (rad) 0.00606 0.00586 0.0046 0.00475

η 5.19 11.60 4.81 10.35

ME (Nm) 3.67E+05 2.842E+05 6.797E+05 5.295E+05
Mu (Nm) 3.75E+05 2.938E+05 6.975E+05 5.472E+05

k 4.789 3.756 8.899 6.99

(lp)support (mm) 12.30 2.95 14.03 4.0

(lp)midspan (mm) 495.0 242.91 529.1 283.7
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reinforcement). This initiates tensile failure for certain and makes use of the member 
ductility for effective redistribution of moments at sections where hinges are formed. 
In the present context of increased emphasis on ductile detailing and displacement-
based design approach for structures under seismic loads, analytical estimates of 
moment-rotation, ductility, and length of plastic hinges presented in a closed form 
can be seen as useful contributions. It is reemphasized that ductility estimates of RC 
sections should be made with caution in the presence of axial force. Estimates of 
critical axial force provided in the closed form can also be useful in this context.

The study verified some of the important facts through proposed analytical expres-
sions presented in a closed form. They are useful for designing special moment-
resisting RC framed structures, where ductility is an important design parameter. 
The method verifies a safe seismic design procedure and can be useful for the prac-
ticing engineers as well.

3.7  SPREADsHEET PROGRAM

The spreadsheet program used to estimate the moment-rotation relationship simpli-
fies the complexities involved in such an estimate, thus encouraging the practicing 
structural designers to use it instantly and with confidence. A compact disc with 
relevant contents can be downloaded free from the following Web site: http://www.
crcpress.com/e_products/downloads/download.asp?cat_no=K10453.

3.7.1  STEP-BY-STEP PROcEDURE TO UsE THE NUMERIcAL METHOD ON THE WEB sITE

Using the same procedure as explained in Section 2.10, moment-curvature for 
the chosen cross-section is first determined. The program based on the numerical 
procedure automatically computes the moment-rotation for the RC beam, using 
bilinear approximation of the moment-curvature, thus obtained. A sample case 
problem is presented for fixed beam and a simply supported beam with 3.5 m span 
length, with different point loads. Please note that the hypothesis discussed above 
is verified for a tensile failure only. To ensure the failure as tensile, you will cross-
check two important parameters: (1) axial load not to exceed P* value (given by 
Equation 3.2), as well as (2) the percentage of tension reinforcement not to exceed 
pt,bal.
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4 Bounds for Collapse 
Loads of Building 
Frames Subjected 
to Seismic Loads
A Comparison with 
Nonlinear Static Pushover

4.1  SUMMARY

Recent updates of international codes on seismic analysis and design of buildings 
reflect the threats to existing buildings under more frequent earthquakes foreseen in 
the near future. The objective of ensuring structural safety of these buildings under 
seismic action intensifies their performance assessment for which pushover analysis 
is widely accepted as a rapid and reasonably accurate method. However, approaches 
based on limit analysis procedures (both static and kinematic theorems of plasticity 
theory) have also been equally popular for addressing issues related to structural 
safety in situations of extreme loads that can jeopardize buildings and could threaten 
the lives of inhabitants. A comparison between the forecast of design base shear 
obtained by pushover analysis and collapse loads based on limit analysis procedures 
is advantageous to establish confidence in the obtained results. In this chapter, we 
discuss the analytical procedures to determine the collapse loads by limit analysis 
and pushover as well. Comparison of the results obtained by employing the above 
tools on multistory moment-resisting reinforced concrete frames subjected to seis-
mic loads is presented. Displacement-controlled pushover analysis is performed on 
the building frames whose input parameters like axial force–bending moment yield 
interaction and moment-rotation are derived based on the detailed mathematical 
modeling presented in earlier chapters. Bounds for collapse loads based on both 
static and kinematic theorems of limit analysis are obtained using mathematical pro-
gramming tools. Computer code used to determine the collapse multipliers is given 
in Chapter 6.

Numerical studies conducted show that the design base shear computed using 
nonlinear static pushover, for an accepted level of damage like collapse prevention, 
predicts the response value closer to the upper bounds obtained by plasticity theo-
rems, in certain cases considered. The proposed bounds for collapse loads obtained 
in closed form, which fit with pushover analysis to a good accuracy, become a 
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useful tool for preliminary design and assessment as well. This study helps the 
designers and researchers to use displacement-controlled pushover analysis with 
improved confidence as their results of different examples are compared with other 
similar methods used to assess the collapse loads. While pushover analysis is rec-
ommended as an appropriate tool for seismic assessment of buildings, it is empha-
sized that accuracy of pushover depends on characteristic inputs presented in the 
earlier chapters, and design base shear will be better estimated using the proposed 
expressions.

4.2  INTRODUCTiON

The increased use of concrete as the primary structural material in several complex 
structures such as reactor vessels, dams, offshore structures, and the like needs an 
accurate estimate of this material response when subjected to a variety of loads that 
determine the presence of bending, shear, and axial force (Abu-Lebdeh and Voyiadjis 
1993; Paulay and Priestley 1992). Seismic design philosophy demands energy dis-
sipation/absorption by postelastic deformation for collapse prevention during major 
earthquakes. Most of the existing RC buildings do not comply with revised seismic 
codes as a result of material degradation with age, as well as increase in seismic 
intensity imposing higher design loads. In such situations, performance assessment 
of existing buildings becomes inevitable to estimate their structural safety. While 
Gilbert and Smith (2006) showed a parameter-varying approach to identify con-
stitutive nonlinearities in structures subjected to seismic excitations, the objective 
of ensuring safe buildings intensifies the above-stated concerns for which nonlin-
ear static pushover analysis (NLSP) can be seen as a rapid and reasonably accurate 
method (Esra and Gulay 2005). Pushover analysis accounts for inelastic behavior of 
building models and provides reasonable estimates of deformation capacity while 
identifying critical sections likely to reach limit state during earthquakes (Chopra 
and Goel 2000). A qualitative insight of input parameters required for performing 
nonlinear static pushover is presented in earlier chapters. In this chapter, collapse 
multipliers of RC building frames with different geometry are assessed by employ-
ing different procedures, namely, (1) displacement-controlled nonlinear static push-
over; (2) upper bound, or kinematic theorem; (3) lower bound, or static theorem; 
and (4) step-by-step load increment procedure by employing the force-controlled 
method. The results obtained are then compared.

4.3 C OLLAPsE MULTiPLiERs

In this section, the procedure employed for obtaining the collapse load multipliers on 
RC building frames is briefly presented. For the sake of simplicity, a regular frame 
with m spans and n floors is considered. Let L be the length of all floor beams and H 
be the height of all floors. Let Q0 be the constant vertical load on beams at midspan, 
corresponding to the sum of dead loads and appropriate live loads (IS 1893, 2002; 
Chopra 2003; Chandrasekaran and Roy 2006). Let Fn, Fn-1, … Fi, … F2, F1 be the 
set of transverse forces distributed along the height of the building for the base shear 
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computed from the code (IS 1893, 2002). They are assumed to act at every floor level 
where a constant, equal mass is lumped.
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where Vb is the base shear and Wi is the seismic weight of the floors computed from 
dead load and percentage of appropriate live loads as specified in the code (IS 1893, 
2002). All beams and columns are considered to have the same ultimate bending 
strength, Mu,b and Mu,c, respectively. Without loss of generality, only the cases of 
weak or balanced section for beams are considered, while columns are considered 
to be strongly reinforced. In the following section, a straightforward procedure for 
obtaining upper bounds, Kk (using kinematic theorem), and lower bounds, Ks (using 
static theorem), of the collapse multiplier is proposed. Figures 4.1 and 4.2 show the 
P-M interaction of the RC beam and the column, respectively. Figures 4.3 and 4.4 
show the moment-rotation capacity of the tensile and compressive plastic hinges, 
which are used for the analysis. For any other RC section, the reader can easily deter-
mine these input parameters either using the enclosed CD or referring to the explicit 
expressions given in Chapters 1 and 3 of Seismic Design Aids. It is well known that 
the limit analysis theorem is applicable to convex domains only where the normality 
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rule is verified. A detailed insight of verification of flow rule for the proposed P-M 
interaction domain is presented in Chapter 5.

4.3.1  KINEMATIc MULTIPLIER, Kk

The proposed upper-bound collapse multiplier, Kk, for the seismic design forces 
distribution shown in Equation 4.1 is obtained by means of the kinematical proce-
dure of limit analysis. This is based on the assumption of a failure mode shown in 
Figure 4.5, fulfilling only the compatibility requirement that allows the evaluation 
of the total dissipation.
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where Mu is the ultimate bending moment of the element considered, p is the number 
of plastic hinge, n is the number of floors, m is number of spans, L is the length of 
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beams, Q0 is the concentrated load on the beam at midspan, Dqi  is the relative rota-
tion rate, δhi is the floor displacement rate in the horizontal direction and δvk  is the 
beam displacement rate in the vertical direction. The searched kinematical multi-
plier is given by
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The simplest failure mode is assumed corresponding to the positioning of plastic 
hinges at critical sections, namely, all beam supports and the bottom section of first-
floor columns. The modeled failure mode assumes point-wise plastic hinges at which 
relative plastic rotations occur. For this failure mode, vertical loads do not work, and 
hence the revised kinematical multiplier is given by
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4.3.2  STATIc MULTIPLIER, Ks

A static multiplier, Ks, constituting a lower bound of the collapse multiplier, is to be 
obtained by employing the static procedure of limit analysis, based on the search of a 
statically admissible stress distribution. While the stress field fulfilling only equilib-
rium equations must be contained in the ultimate strength limits, no kinematic com-
patibility equations, in elastic or plastic range, are required to be satisfied. Statically 
admissible distribution of bending moment at any section is considered, and its dis-
tribution is set to satisfy the condition that bending moment is less than or equal to 
ultimate bending moment at the cross-section. Equilibrium equations written for 
various characteristic sections of the structure and satisfactory conditions for plastic 
compatibility at these sections impose constraints to the mathematical programming 
problem (Rustem 2006; Yakut, Yilmaz, and Bayili 2001). The static theorem of limit 
analysis enables one to compute the collapse static multiplier of loads, Ks, satisfying 
the following relationship:

	
K Kc s= max( ),

 	 (4.5)

where Kc is the collapse multiplier to be bounded. The usual hypotheses of piecewise-
linear structure having characteristics of piecewise-constant geometry and strength, 
subjected to concentrated loads and convex yield domain with plane boundaries, are 
applied (Nunziante and Ocone 1988). Thus, the associated plastic flow rule for small 
displacements simplifies the procedure, in static instance, to a problem of optimal 
research by means of linear programming. In order to give an idea of the computational 
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tasks required to fulfill the above general procedure, we shall evaluate the number of 
equations and variables involved in the study of an ordinary rectangular mesh frame. 
For [n] floors and [m] spans subjected to central concentrated load [Q0], the number of 
characteristic sections is [n(5m + 2)]. The number of redundancies become [3mn] and  
the number of independent equilibrium equations become [2n (m + 1)], making the 
number of variables in the problem, represented by the redundant moments, [3mn]. 
By using monodimensional strength domains for beams and columns (plasticization 
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caused only due to bending moment and P-M interaction is ignored), the number 
of plastic compatibility inequalities becomes [n(10m + 4)]. Plastic compatibility 
inequalities at midspan and at supports of the beams are given by

	
- ≤ ≤ ∀ ∈ ∀ ∈| | | | { , , ,..., }, { ,, , ,M M M k m iu b i k u b 0 1 2 0 1,, ,..., }2 n

 	
(4.6)

Further, inequalities at the column supports are given by

	
- ≤ ≤ ∀ ∈ + ∀ ∈| | | | { , , ,..., }, {, , ,M M M k m iu c i k u c 0 1 2 1 0,, , ,..., }1 2 n

 	
(4.7)

Thus, the total number of equations and inequalities amounts to [6n(2m + 1)]. By solv-
ing the linear programming problem using LINGO (Raphel, Marak, and Truszcynski 
2002; Sforza 2002) characterized by these equations and inequalities, static multiplier 
can be determined. One can foresee the complexities involved in establishing the above 
equilibrium equations and inequalities, for a multistory building frame, in particular.

An approximate and simplified procedure is therefore desirable to determine the col-
lapse multiplier by overcoming the above-mentioned complexities. A statically admis-
sible solution is obtained as the sum of results of two cases, namely, (1) the solution 
corresponding to vertical concentrated loads on beams causing linear bending moment 
diagram, satisfying null moments at supports; and (2) the solution corresponding to the 
distribution of floor shear equally to (m + 1) floor columns assuming null moments at the 
column center and obtaining end moments at the ith floor. In the latter case, frame node 
equilibrium is fulfilled by equating the end moments of columns with that of beams. 
Figure 4.6 shows the bending moment diagrams for the two cases mentioned above. At 
the extreme joints of beams, bending moment is equal to the sum of end moments of col-
umns from upper and lower floors, while at internal nodes, two adjacent beams share this 
value. The sum of the equilibrated bending moment distributions, [Ks (MF + MQ)] (the 
subscript F stands for floor shear, and Q stands for vertical concentrated load) shall satisfy 
the static compatibility conditions given by Equations 4.6 and 4.7. However, kinematic 
compatibility at nodes of the frame is not satisfied, and hence the obtained multiplier is 
only a static lower bound of the collapse multiplier Kc. It is interesting to verify that for 
a strong column–weak beam design concept [Mu,c > Mu,b], the maximum value of the 
collapse multiplier is obtained on the extreme spans when bending moments at these sec-
tions reach their ultimate values. In general, it should also be verified that these bending 
moments shall not be greater than the ultimate moment. Thus, the lower bound of the 
collapse load, Ks, is given in a more simplified form as
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(4.8)

However, this simplified procedure cannot be extended for building frames with 
irregular structural configurations.

4.3.3  STEP-BY-STEP ANALYsIs FOR A SIMPLE FRAME wITH P-M INTERAcTION

A step-by-step procedure based on successive applications of the displacement 
method is briefly presented, where the lateral load (seismic load distributed along the 
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height from base shear) with constant collapse multiplier in each floor is applied until 
the required number of plastic hinges are formed, leading to collapse. For simplicity, 
a single story–single bay frame is considered, as shown in Figure 4.7.

Step 1: The frame is characterized by seven sections (A, B, C, D, E, G, R) at which 
bending moment and axial forces are computed. Three degrees of freedom, namely, 
qc, qE, and Δ as rotations at beam-column joints and sway displacement at the top, 
respectively, are considered. Equilibrium equations, as functions of the degrees of 
freedom, are given by

 	 K ⋅ =δ b  	 (4.9)
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where kb and kc are stiffness of beam and column elements, respectively. While the 
vertical load, Q0, is kept constant, the lateral load, F, is increased by the multiplier 
k1. By solving Equation 4.9 with respect to the degrees of freedom, elastic solution 
for the frame, as a function of the collapse multiplier, is obtained. Bending moment 
and axial forces at all the sections are given by
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By increasing the multiplier, k1 is obtained as 15.90, while the couple (P, M) in section 
A reaches the boundary of the P-M domain for columns, resulting in the formation of  
the first plastic hinge at this section (Figure 4.7). The couples (P, M) at other sections 
are verified for not reaching the boundaries of their corresponding domains.

Step 2: In the second step, only the lateral load is increased by the multiplier, k2. 
With the presence of plastic hinge at section A, the couple (P, M) must belong to  
P - M domain of the column in the second step. For the equilibrium condition given 
by Equation 4.9, stiffness matrix and vector b are given by
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Bending moment and axial forces at all section are now given by
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Net bending moment and axial force at any section can be determined by summariz-
ing the respective equations of Steps 1 and 2. By further increasing the collapse mul-
tiplier, k2 is obtained as 0.5, and the couple (P, M) at section R reaches the boundary 
of P-M domain of the column, resulting in the formation of the second plastic hinge 
at this section.

Step 3: Now, a new frame characterized by two plastic hinges at sections A and R 
is considered. Stiffness matrix and the vector b are given by
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Bending moment and axial forces at all sections are given by
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Net bending moment and axial force at any section can now be determined by sum-
marizing the respective equations of Steps 1, 2, and 3. By further increasing the col-
lapse multiplier, k3 is obtained as 1.35, and the couple (P, M) at section E reaches the 
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boundary of the P-M domain of the beam, resulting in the formation of third plastic 
hinge in the beam at section E.

Step 4: Finally, the frame is characterized by three plastic hinges at sections A, 
R, and E, formed successively. The stiffness matrix and vector displacements are 
given by
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By solving, bending moment and axial forces at all sections are given by
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Net bending moment and axial force at collapse can be obtained by summarizing the 
respective equations of all the above steps. By further increasing the collapse multi-
plier, k4 is obtained as 0.58, and the couple (P, M) at section C reaches the boundary 
of P-M domain of the beam, resulting in the formation of the final plastic hinge at 
section C, causing collapse. The total collapse load multiplier is given by the sum of 
multipliers of each step and is equal to 18.33.

Table 4.1 shows the trace of strain values for concrete and steel at compression 
and tension, respectively, obtained during the analysis. It can be seen from Table 4.1 
that the strain in tensile steel reaches ultimate value, causing the plastic hinges at 

TABLE 4.1
Strain Values in Elements Obtained by Step-by-Step Procedure 
(P-M Interaction)

Step No. Element Section esc est ec,max

1 column 1 0.0010 0.01000 0.00214
2 column 7 0.0013 0.01000 0.00249
3 beam 5 0.0009 0.01000 0.00213
4 beam 3 0.0013 0.01000 0.00253
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critical sections. Collapse is caused by tensile failure as the strain in steel reaches 
ultimate value before concrete reaches its ultimate strain. Table 4.2 shows the his-
tory of collapse multipliers thus obtained along with the displacements and base 
shear at each step. The strains at critical sections where plastic hinges are formed 
are verified for their ultimate values. Figure 4.7 shows the force-displacement pro-
file obtained by the force-controlled, step-by-step procedure employed on a single  

TABLE 4.2
Collapse Multiplier, Displacement, and Base Shear Obtained by Step-by-Step 
Procedure (P-M Interaction)

Step 
No. Section P (kN)

M 
(kN-m)

Hinge 
Formation

Collapse
Multiplier 

in Each 
Stage

Collapse 
Multiplier

Displ. 
(m)

Base 
Shear 
(kN)

A - 68.638 - 253.218 yes

B - 68.638 163.380 no

C 115.509 163.380 no
1 D 115.509 26.103 no 15.900 15.900 0.01152 219.6585

E 115.509 - 193.673 no

G 109.888 193.673 no
R 109.888 - 268.364 no

A - 72.262 - 251.861 yes

B - 72.262 169.560 no

C 120.872 169.560 no
2 D 120.872 25.035 no 0.500 16.400 0.012123 226.566

E 120.872 - 201.989 no

G 113.512 201.989 no
R 113.512 - 284.451 yes

A - 90.912 - 248.454 yes

B - 90.912 206.860 no

C 130.197 206.860 no
3 D 130.197 25.035 no 1.350 17.750 0.016360 245.2163

E 130.197 - 239.290 yes

G 132.162 239.290 no
R 132.162 - 288.856 yes

A - 98.93 - 246.99 yes

B - 98.93 238.91 no

C 130.20 238.91 yes
D 130.20 41.06 no

4 E 130.20 - 239.29 yes 0.580 18.330 0.021488 253.229

G 140.18 239.29 no
R 140.18 - 290.30 yes
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story–single bay frame. Traces of plastic hinges tagged in the force-displacement 
curve can be seen in the figure. Figure 4.8 shows the pushover curve obtained from 
nonlinear static pushover analysis; while for easy comparison it is also superposed 
in Figure 4.7. While the P-M interaction is ignored, the final collapse multiplier 
is 17.35, which marginally underestimates the collapse load in comparison to the 
case when P-M interaction is considered. Trace of hinges formed during the analy-
sis is shown in Table 4.3. It is worthwhile to note that the history of formation of 
plastic hinges is different for the two cases, namely, (1) considering axial force and 
P-M interaction and (2) neglecting axial force, respectively.

4.4 N UMERiCAL STUDiEs AND DisCUssiONs

Reinforced concrete building frames with different geometry are analyzed, and 
bounds of collapse multipliers obtained by employing different procedures are com-
pared. Seven frames are considered for the analytical study: (1) single bay–single 
story, (2) single bay–double story, (3) single bay–single story with unequal column 
length, (4) four bay–two story, (5) six bay–three story irregular, (6) six bay–three 
story regular, and (7) five bay–ten story. All the frames are comprised of (1) 450 mm  
square RC columns, reinforced with 12#25Φ and lateral ties of 8 mm at 200 c/c 
(refer to Figure 4.2); (2) 300 × 450 mm RC beam, reinforced with 4#22Φ as tensile 
and compression steel with shear stirrups of 10 mm at 250 c/c (refer to Figure 4.1); and 
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FiGURE 4.8  Pushover curve of single story–single bay RC frame.
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(3) 125-mm-thick RC slab. M25 mix and high-yield strength deformed bars (Fe 415) 
are used in the members. All building frames consisting of 4 m bay widths and 4 m 
story heights are assumed to be located in Zone V (IS 1893, 2002) with soil condi-
tion as ‘‘medium’’ type. Seismic weight at each floor is computed using IS code (IS 
1893, 2002), and the base shear is distributed along the height of the building. Live 
load of equivalent magnitude is considered to act at the midspan of the beam, while 
lateral loads, computed from the base shear, are assumed to act at each floor level. 

TABLE 4.3
Collapse Multiplier, Displacement, and Base Shear Obtained  
by Step-by-Step Procedure (Neglecting Axial Force)

Step 
No. Section M (kN-m)

Hinge 
Formation

Collapse
Multiplier in
Each Stage

Collapse 
Multiplier

Displ. 
(m)

Base 
Shear 
(kN)

A - 249.914 no

B 161.124 no
C 161.124 no

1 D 26.104 no 15.699 15.70 0.0114 216.88
E - 191.417 no

G 191.417 no
R - 265.060 yes

A - 265.060 yes

B 170.716 no
C 170.716 no

2 D 27.336 no 0.577 16.28 0.0121 224.85
E - 198.544 no

G 198.544 no
R - 265.060 yes

A - 265.060 yes

B 186.622 no
C 186.622 no
D 27.336 no
E - 214.450 yes

3 G 214.450 no 0.576 16.85 0.0139 232.80
R - 265.060 yes

A - 265.060 yes

B 214.450 no
C 214.450 yes

4 D 107.225 no 0.504 17.35 0.0183 239.76
E - 214.450 yes

G 214.450 no
R - 265.060 yes
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Using the proposed expressions for P-M interaction and moment-rotation, beams and 
columns are modeled.

Collapse multipliers are assessed by employing above-described procedures, 
namely, (1) displacement-controlled nonlinear static pushover; (2) upper bound, or 
kinematic theorem; (3) lower bound, or static theorem; and (4) step-by-step load 
increment procedure by employing force-controlled method; and the results obtained 
are compared. Nonlinear characteristics of beam and column hinges are assigned to 
the structural elements of the building frames and performance levels, namely, (1) 
immediate occupancy (IO), (2) life safety (LS), and (3) collapse prevention (CP), 
are tagged to the respective moment-rotation curves during the pushover analysis. 
Displacement-controlled pushover analysis is performed for the preset target dis-
placement of about 4% of the height of the building to trace the formation of plastic 
hinges. Pushover curves obtained are plotted for different types of building frames 
considered and shown in Figure 4.9. Base force corresponding to the step at which 
requisite numbers of plastic hinges are formed to ensure a collapse mechanism is 
traced and tabulated. Collapse multiplier is obtained as the ratio of base shears at 
collapse and design base shear recommended by the code for safe seismic design (IS 
1893, 2002). Collapse multipliers obtained using (1) kinematic procedure (Equation 
4.4), (2) modified static procedure (using Equation 4.8), and (3) mathematical pro-
gramming tool (LINGO) (Raphel, Marak, and Truszcynski 2002; Sforza 2002) are 
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FiGURE 4.9  Pushover curves.
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also shown in the table. During limit analysis procedures, P-M interactions of the 
structural elements are ignored.

To trace the path of formation of plastic hinges, a step-by-step, force-controlled 
procedure is also employed on a single bay–single story frame, with and without 
considering P-M interaction. Plastic hinges obtained at each step are traced and the 
corresponding displacement and collapse multipliers are recorded. Tables 4.2 and 
4.3 show the displacement, base shear, and collapse multipliers obtained at various 
steps for both cases, (1) considering P-M interaction and (2) neglecting axial force, 
respectively. It can be seen from the tables that the collapse multipliers obtained from 
the force-controlled, step-by-step procedure are 18.33 (by considering P-M interac-
tion) and 17.35 (by neglecting axial force). A ready comparison of displacement-
controlled pushover cannot be made with the force-controlled method, employed 
on a single bay–single story frame. However, base shear obtained from pushover 
analysis at Step 6 (refer to Table 4.4), where four plastic hinges are formed (same 
as the case of the step-by-step, force-controlled procedure), becomes comparable 
and the collapse multiplier determined from pushover is 20. Table 4.4 also shows 
that the collapse load at this stage determined from pushover is capable of pushing 
the rooftop of the frame by about 14 mm as compared to that of about 21 mm and  
18 mm obtained from the force-controlled methods (refer to Tables  4.2 and 4.3); 
hence, the comparison is made by considering the force level causing the same num-
ber of plastic hinges.

Figure 4.10 shows the comparison of collapse multipliers obtained for different 
types of buildings considered in the study, while Table 4.4 shows the comparison 
obtained by employing different procedures. By comparing these multipliers, it can 
be seen that for a single bay–single story frame, plastic theorems underestimate the 
true collapse load in comparison with pushover, since they do not account for reserve 
capacities of structural members that can be reflected in the analysis by considering 
P-M interaction. For multibay-multistory frames, pushover multipliers closely agree 
with that of the kinematic theorem; also in the case of frames with irregular struc-
tural configurations, pushover multipliers are in close agreement with kinematic 
theorem only for increased bay and story numbers. This intuits employing kinematic 
theorem as an approximate method for the preliminary estimate of collapse loads, 
which should be subsequently verified by pushover analysis, however. Limitations 
imposed by mathematical programming tools can be seen for the absence of results 
for higher story frames (for example, a ten-story frame), whereas no such limitations 
are imposed by pushover analysis. Force-controlled, step-by-step analysis is capable 
of estimating the collapse multiplier in close agreement with pushover and is a better 
estimate compared with limit theorems. This may be due to the fact that the former 
method accounts for redistribution of moment-carrying capacity of plastic hinges 
at critical sections, which is an indirect contribution from P-M interaction. While 
axial force is neglected, this procedure results in the same value as that of the limit 
theorems, since the hypothesis becomes the same in both the cases.
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TABLE 4.4
Collapse Multipliers Obtained from Different Procedures
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4.5 C ONCLUsiONs

Although different procedures exist to estimate collapse loads of building frames 
under seismic action, a relatively new procedure, pushover analysis, is compared, 
showing its suitability for the subject of discussion. Based on the numerical stud-
ies conducted, it can be seen that for single-story building frames, plastic theo-
rems underestimate the true collapse load in comparison with pushover because 
they do not account for reserve capacities of structural elements that can be 
reflected in the analysis by considering P-M interaction. For multistory-multibay 
frames, design base shear estimated by pushover closely agrees with the kine-
matic theorem, making it an appropriate method for the preliminary estimate of 
collapse load in such cases. Force-controlled, step-by-step analysis is capable of 
estimating the collapse load in close agreement to pushover (closer than limit 
theorems) because it accounts for P-M interaction. But still the difference may 
be due to the fact that the former procedure does not account for redistribu-
tion of moments at critical sections where plastic hinges are formed. Also, this 
procedure is computationally expensive and cumbersome in comparison with 
nonlinear static pushover.

Under the increasing necessity of seismic evaluation of existing RC buildings, 
displacement-controlled pushover analysis is certainly seen as an appropriate and 
reasonably accurate tool. This study shall help the designers and researchers to use 
displacement-controlled pushover analysis with improved confidence as their results 
of different examples are compared with other similar methods used to assess the 
collapse loads. The results obtained are influenced by input parameters, P-M inter-
action in particular. It is therefore emphasized to use axial force–bending moment 
yield interaction accounting for nonlinear characteristics of constitutive materials. 
Though the results obtained by employing plastic theorems on the limited exam-
ples are not new, the study quantifies these values through illustrated examples and 
their comparison with those obtained using pushover analysis; this is a relatively 
new attempt made through this study. With the presented mathematical modeling 
and proposed expressions for the said input parameters to nonlinear static pushover 
analysis, it is believed that designers and researchers will use pushover analysis more 
commonly in the future with improved confidence and accuracy.
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5 Flow Rule Verification  
for P-M Interaction 
Domains

5.1 � SUMMARY

A detailed analytical modeling of P-M yield interaction is presented in Chapter 1, 
defining the limit boundaries with six subdomains based on Eurocode currently in 
prevalence. In this chapter, the developed P-M interaction domains are verified for 
plastic flow-rule in two main sections: (1) tension failure resulting in yielding of  
steel and (2) compression failure resulting in crushing of concrete. The conventional 
limit P-M domain is described according to Eurocode currently in prevalence as 
long as the plastic strain increment becomes nearly normal to the yield domain over 
the part of bending response, in the presence of axial force. The flow rule verifies 
for a close agreement in all subdomains of tension failure, while it does not qualify 
in a few of the subdomains of crushing failure. The mathematically developed P-M 
interaction model is thus capable of identifying the damage mechanism of different 
subdomains in RC sections, in a closer agreement for tension failure subdomains, in 
particular; damage identification is made on the basis of strain profile of concrete 
and reinforcing steel.

5.2 � INTRODUCTiON

Earlier studies conducted by researchers (e.g., Abu-Lebdeh and Voyiadjis 1993; 
Park and Kim 2003) emphasized a prerequisite of material response behavior to 
a variety of loads to successfully forecast their behavior under conditions leading 
to damage. Through knowledge of P-M yield domains, the structural designer is 
enabled to assess the type of failure caused to the member, either tensile or compres-
sive (Chandrasekaran et al. 2008a). Khan, Al-Gadhib, and Baluch (2007) used two 
parameters to define the effective compliance nature of elastic-damage model of 
high-strength concrete under multiaxial loading; these two parameters account for 
different behavior of concrete in tension and compression. They emphasized that the 
study of concrete behavior under P-M interaction is necessary to trace the strain soft-
ening effect, in particular. In a reinforced concrete section, reinforcement behaves as 
an elastic-plastic spring because of which an RC beam section developed horizontal 
cracks under three-point loading (Sumarec, Sekulovic, and Krajcinovic 2003). It is a 
well-understood fact that RC members inherit the flexibility of changing, within cer-
tain limits, the ultimate moment as the designer pleases, without undergoing a major 
change in the overall dimensions of the cross-section. This initiated a recent practice 
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among structural designers to adjust the area of tensile steel for achieving the dis-
tribution of ultimate moment to be the same as that of the elastic moment for the 
factored load. However, under seismic loads, codes insist that the structures should 
be designed to resist earthquakes in a quantifiable manner imposed with desired 
possible damage (e.g., Ganzerli, Pantelides, and Reaveley 2000). Therefore, damage 
models that quantify severity of repeated plastic cycling through energy dissipation 
are simple tools that can be used for safe seismic design. The strain equivalence 
hypothesis used by the researchers (e.g., Hsieh, Ting, and Chen 1982) that equates 
strain in effective (undamaged) and damaged configurations is adopted for deriving 
the constitutive equations in the present study.

The proposed P-M yield interaction shown in Chapter 1 is a conventional limit 
domain with strain limits prescribed by Eurocode; hence, it does not fulfill the 
complete mechanical meaning. Since the entire cross-section is not under limit 
stress, the proposed limit domain is different from the one valid for homogeneous 
materials like steel. Further, equilibrium states inside the P-M boundary are not 
fully in elastic state since loading and unloading for composite materials, such as 
reinforced concrete does not follow the same path. Also, the plastic strain incre-
ments evaluated for limit stress states belonging to P-M boundary are not truly 
and completely plastic increments because part of the section remains elastic. The 
above-mentioned arguments are addressed in this chapter with a main focus to 
verify the plastic flow rule in the developed P-M interaction domains. To examine 
this objective closely, P-M domains are reclassified broadly as (1) tensile failure 
resulting in yielding of steel, which is now subdivided into five subdomains, and 
(2) compression failure resulting in crushing of concrete, which is now further sub-
divided into five subdomains, making the total number of subdomains ten instead 
of six as seen in Chapter 1. For closer examination of plastic flow rule, this reclas-
sification becomes inevitable.

5.3 �M ATHEMATiCAL DEVELOPMENT

The domain 2a discussed in Chapter 1 is now subdivided into two, namely, 2 1
a
( )

and 2 2
a
( ); domain 2b is subdivided into two, namely, 2 1

b
( ) and 2 2

b
( ) in the tensile fail-

ure zone. In the compression failure zone, domain 6 presented in Chapter 1 is 
now subdivided into two, namely, 6a and 6b. All other subdomains proposed in 
Chapter 1 remain the same. Figure 5.1 shows the typical P-M limit domain con-
sisting of ten subdomains as discussed below. Only the upper boundary curves 
will be examined to see which one-to-one M = M(P) relationship exists; the 
lower boundary can be readily examined using the similar procedure and hence 
is not presented. Figure 5.2 shows the strain level in steel and concrete for sub-
domains 1 to 2 2

b
( ) in which collapse is caused by yielding of steel, and Figure 5.3 

shows strain levels for subdomains 3 to 6b in which collapse is caused by crush-
ing of concrete.
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FiGURE 5.1  P-M interaction curve for different subdomains.
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FiGURE 5.2  Collapse caused by yielding of steel.
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FiGURE 5.3  Collapse caused by crushing of concrete.
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5.3.1 � SUBDOMAINs 1 TO 2b
(2) : COLLAPsE CAUsED BY YIELDING OF STEEL

In the subdomains from 1 to 2 2
b
( ) , strain in tensile steel reaches its ultimate limit, and 

the corresponding stress reaches the design ultimate stress; strain in compressive 
steel is given by

	

e esc su
c

c

x d

D x d
=

-
- -





 	 (5.1)

Strain in any generic compression fiber of concrete located at a distance y measure 
from the extreme compression fiber of concrete is given by

	
e

e
e

e
c

su c

c
c

su c

c

y
x y

D x d

x

D x d
( )

( )
, ,max=

-
- -

=
- - 	 (5.2)

where ec,max is the maximum strain in concrete.
In subdomain 1, neglecting the tensile stress in concrete in the equilibrium equa-

tions, the position of the neutral axis lies in the range ] , ].,lim
( )- ∞ xc
0 xc,lim

( )0 is the limit 
position of neutral axis between two subdomains 1 and 2 1

a
( ) for strain in compression 

steel reaching its elastic limit (refer to Figure 5.2, subdomain 1). It is important to 
note that the neutral axis positions are chosen only for detecting the characteristics 
of the P-M boundary; please note that the succeeding states do not belong to the 
same loading path for the chosen cross-section. This limit position is given by

	
x

d D
c

su s s

su s
,lim

( ) ( )

( )
0 0 0

0

=
+ -

-
e e e

e e 	 (5.3)

In subdomain 1, for strain conditions e e es sc su0 < > and ssc s= s 0 ,ultimate axial 
force and bending moment are given by

	

P b D d p p

M P b
D

d

u s c t

u u

= - -

= -















∀

s 0

2

( )( )

xx xc c∈ - ∞] , ],lim
( )0 	 (5.4)

	
p

A

b D d
p

A

b D dc
sc

t
st=

-
=

-( )
,

( ) 	 (5.5)

where pt, pc are percentage of tensile and compression reinforcements, respectively. 
It may be noted from the above equations that the ultimate axial force and bending 
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moment are independent of the position of neutral axis; bending moment varies lin-
early with axial force.

In subdomain 2 1
a
( ) , neglecting the tensile stress in concrete in the equilibrium 

equations, the position of the neutral axis lies in the range [ , ],,lim
( )

,lim
( )x xc c
a0 0= where

xc
a
,lim

( ) is the limit position of the neutral axis between two subdomains 2 1
a
( ) and 2 2

a
( )

for strain in compression steel less than elastic limit (refer to Figure 5.2, subdomain 
2 1

a
( )). In subdomain 2 1

a
( ) , for the strain conditions esc s≤ e 0 , s esc s scE= ,ultimate axial 

force and bending moment are given by

P b D d p E
x d

D x d
pu c s su

c

c
s t= -

-
- -


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
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
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-
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





M b D d D d p E
x d

D x du c s su
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1
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

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
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
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
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ss t

c c c

p

x x x

0

0
,lim

( )
,l, iim

( )a = 0

		
		  (5.6)

Depth of neutral axis can be deduced as

	
x

D d P b E p d p D d

P b D dc
u s c su s t

u

=
- + - -

+ -
( )[ ( ( ))]

(

e s 0

))( )E p ps c su t se s+ 0

	 (5.7)

Further, by substituting in Equation 5.6, we get

	
M P b D d p

D
du u t s= + - -





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[ ( ) ]2
20s 	 (5.8)

Besides, for depth of neutral axis reaching zero, ultimate axial force and bending 
moment are given by

	

P b dp E D d p

M b
D

d D

u c s su t s
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s e0

0for 	 (5.9)

In subdomain 2 2
a
( ) , stress in any generic compression fiber of concrete is given by

	
s e

s
e

e
s
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e
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		  (5.10)
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The position of the neutral axis lies in the range [ , ],,lim
( )

,limx xc
a

c= ′0 where ′xc,lim is 
the limit position of neutral axis between the subdomains 2 2

a
( ) and 2 1

b
( ) for maximum 

strain in concrete approaching elastic limit (refer to Figure 5.2, subdomain 2 2
a
( )). This 

limit position is given by

	

′ =
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
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x D dc
c

c su
,lim ( )

.
. .

e
e e

0

0

0 002
0 002 0 001

0 167 0







-

= - = =

( )

. ( ) ;,max

D d

D d c c stfor e e e eesu

	 (5.11)

Ultimate axial force and bending moment in subdomain 2 2
a
( ) are given by

P b b y dy D d p pu c c

x
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		  (5.12)

It may be noted that the stresses in concrete and compression steel are less than 
their elastic limits. The ultimate axial force expression given by Equation 5.12 can 
be rewritten as

	
A A x A x A xc c c0 1 2

2
3

3 0+ + + =
	 (5.13)

where the constants, Ai= 0 1 2 3, , , are given by the following relationships:
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By solving Equation 5.13, the depth of the neutral axis can be derived as a func-
tion of axial force and properties of the cross-section, as given by

x P
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where

λ = - -( ) + - +( ) -4 3 2 9 27 22
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Out of the above, only one root (xc3) is in close agreement with the numerical solution 
obtained; by substituting xc3 in moment expression of Equation 5.12, we get
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where the constants, Bi= 0 1 2 3 4, , , ,
are given by
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In subdomain 2 1
b
( ) , maximum strain in concrete is greater than elastic limit but 

still less than its ultimate limit; this causes plasticization of a small zone near the 
extreme compression fiber. This zone is termed as the plastic kernel of concrete, 
whose depth is given by the following equation:

	
q x D x dc

c

su
c= - - -

e
e

0 ( ) 	 (5.19)

The position of the neutral axis lies in the range [ , ],,lim ,lim
( )′x xc c
b

 
where xc

b
,lim

( ) is the 
limit position of neutral axis between subdomains 2 1

b
( ) and 2 2

b
( ) for strain in compres-

sion steel approaches elastic limit (refer to Figure 5.2, subdomain 2 1
b
( )). This limit 

position is given by
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Expressions for ultimate axial force and bending moment in subdomain 2 1
b
( ) are given 

by
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		  (5.21)

Expression for axial force, presented in the above equation can be rewritten as

	
C C x C xc c0 1 2

2 0+ + = 	 (5.22)

where the constants, Ci= 0 1 2, , are given by the following relationship:
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By solving, the depth of the neutral axis can be derived as a function of axial force 
and properties of the cross-section as given below:

	
x

C C C C

Cc = -
+ -1 1

2
0 2

2

4

2
	 (5.24)

By substituting the root xc in moment expression of Equation 5.21, the relationship 
for P-M interaction is obtained as given below:
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where the constants, Di = 0,1,2,3 are given as below:
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In the subdomain 2 2
b
( ) , steel in compression zone starts yielding while the depth 

of plastic kernel of concrete assumes the same value as given by Equation 5.19. The 
position of the neutral axis lies in the range [ , ],,lim

( )
,limx xc

b
c′′ where ′′xc,lim is the limit 

position of neutral axis between the subdomains 2 2
b
( ) and 3 for strain in compression 

steel reaching elastic limit (refer to Figure 5.2, subdomain 2 2
b
( )) and is given by
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Ultimate axial force and bending moment in subdomain 2 2
b
( ) are given by
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By solving the expression of axial force in the above equation, depth of neutral axis 
is determined as

	
x

P b D d p p

bc
u su c c su s t c

c

=
+ - + -3 30 0 0

0

e e s e s
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( )[ ( )]

(( )e ec su0 3+
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By substituting in the moment expression of Equation 5.28, P-M relationship for this 
domain is obtained as

	
M E E x P E x Pu c u c u= + +0 1 2

2( ) ( )
	 (5.30)

where the constants Ei = 0,1,2 are given by:
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(5.31)

5.3.2	 SUBDOMAINs 3 TO 6b: COLLAPsE CAUsED BY CRUsHING OF CONcRETE

The strain profile for concrete and steel for different subdomains is shown in 
Figure 5.3. By imposing the respective strain limits in concrete and steel, the posi-
tion of the neutral axis between the respective limit values can be determined as 
explained above. However, it is necessary to know that the plastic flow rule shall 
stand verified in the tensile failure zone initiated by yielding of steel; therefore a 
detailed mathematical derivation is presented in the above section. For continu-
ity of understanding the limit domains in compression failure zone, a summary 
of expressions for all ten domains is given in Table 5.1. A detailed procedure can 
be seen from the literature (see, for example, Chandrasekaran et al. 2008a). The 
presented summary of expressions may be readily used by designers to identify the 
damage to cross-section based on strain profile of constitutive materials. Adding to 
the designer’s point of interest, influence of tension and compression reinforcements 
on the developed P-M interaction domain can also be seen from Chandrasekaran 
et al. (2008a).

5.4 � PLAsTiC STRAiN INCREMENT iN DiffERENT SUBDOMAiNs

For a stress state belonging to the yield boundary of P-M curve and moving on the 
curve, plastic strain increment, in vector form, can be expressed as

	

d
d

dp
CGe

e
f

=








 	 (5.32)
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TABLE 5.1
Summary of Expressions for P-M Yield Interaction for Different Subdomains

Sub- 
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TABLE 5.1 (CONTiNUED)
Summary of Expressions for P-M Yield Interaction for Different Subdomains 

Sub- 
domain

xc     q(xc)       ec,max(xc)        est(xc)           esc(xc) |sst(xc)| |ssc(xc)| Pu(xc) Mu(xc)
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where d CGe is strain increment along the axis of the beam evaluated at the CG of  
the cross-section and df is the curvature increment. It is usual in the theory of plas-
ticity that plastic strain vector increments given by Equation 5.32 shall be repre-
sented in the same plane reporting P-M yield domain by placing the axes of d CGe  and
df upon P and M, respectively. The vector d pe is shown connected to the relevant 
stress point belonging to the P-M yield boundary of every subdomain, as seen in 
Figure 5.4. Axial strain at CG and curvature in subdomains 1 to 2 2

b
( ) are given by

	

e
e

CG
su

cD xc d
x

D=
- -







-




2 	 (5.33)

	
f

e
=

- -
su

D xc d
	 (5.34)

By solving Equation 5.33 with respect to xc, we obtain the following relationship:

	
x

D D d
c

su CG

su CG

=
- -

-
e e

e e
2

2

( )

( )
	 (5.35)

Substituting in Equation 5.34, the relationship between curvature and strain at CG is 
obtained as given below:

	
f

e e
=

-
-

2

2

( )su CG

D d
	 (5.36)

The derivative of Equation 5.36 with respect to axial strain increment at CG is given by

	

d
d D d

d
dCG

p
CG

f
e

a
π

π f
e

= -
-

= -










2
2

180
, (arctan inn deg) 	 (5.37)

where ap is the angle between the plastic strain vector and strain axis that assumes 
a constant value given by Equation 5.37 in subdomains 1 to 2 2

b
( ). Strain increment at 

CG and curvature in subdomains 3 to 5 are given by

	

e eCG cu
c

D
x

= -






1
2 	 (5.38)

	
f

e
= cu

xc
	 (5.39)

By solving Equation 5.38 with respect to xc and substituting in Equation 5.39, we obtain 
the relationship between curvature and strain increment at CG as given below:

	
f

e e
=

-2 ( )cu CG

D
	 (5.40)
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FiGURE 5.4  Verification of plastic flow rule for P-M subdomains.
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Further, derivative of curvature given by the above equation with respect to axial 
strain increment at CG is given by

	

d
d D

d
dCG

p
CG

f
e π

π f
e

= - = -










2 180
, arctan ( dea in gg) 	 (5.41)

where, ap assumes a constant values given by Equation 5.41 in subdomains 3 to 5. In 
subdomains 6a to 6b, depth of plastic kernel of concrete is limited to ( / )3 7D

 
to limit 

maximum strain in concrete to its ultimate value. Now, strain at CG and curvature in 
subdomains 6a to 6b are given by

	

e
e e

e e eCG
cu c

cu cu c
cxc D

x
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- -








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
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0 2( )
	 (5.42)
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e e e

=
- -

cu c

cu cu cxc D
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	 (5.43)
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FiGURE 5.5  Verification of plastic flow rule for P-M subdomains (RC beam 300 × 450 mm 
with pc not equal to pt).
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By solving Equation 5.42 with respect to xc and substituting in Equation 5.43, we 
obtain the relationship between curvature and strain at CG as given below:

	
f

e e e
e e

=
-
-

2

2
0

0

cu c CG

c cuD

( )

( )
	 (5.44)

The derivative of curvature in the above equation with respect to strain at CG is 
given by

	

d
d D

d
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cu
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e

e
e e
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


 ( deg)in 	 (5.45)

where ap assumes a constant value given by Equation 5.46 in subdomains 6a to 6b. 
By summarizing the results, we can write:

	

d
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d D

DCG
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













	 (5.46)

5.5 V ERifiCATiON Of FLOW RULE

The developed P-M interaction relationships are now verified in different subdo-
mains, both in tension and compression failure zones. In subdomain 1, it may be 
noted that the ultimate axial force and bending moment are independent of the posi-
tion of neutral axis, as seen from Equations 5.4 and 5.5. Therefore, verification of 
flow rule does not apply to this subdomain. In subdomain 2 1

a
( ) , ultimate moment is 

given by Equation 5.8, and its derivate with respect to axial force is given by

	

dM

dP
D d dM

dP
u

u
n

u

u

= - = +









2

2
180

2
, arctana

π
π





 ( deg)in 	 (5.47)

where an is the angle between the normal to P-M boundary and strain axis, d CGe . 
The product of Equations 5.37 and 5.47 gives the following relationship:

	

d M

d P
d

d
dMd d P du

u CG
CG







⋅






= - ⇒ + =f
e

f e1 0 	 (5.48)
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This perfectly verifies the plastic flow rule in subdomain 2 1
a
( ). Similarly, verifica-

tion of the plastic flow rule in other subdomains is carried out and the results are 
plotted as shown in Figure 5.4. The verification is also illustrated through an exam-
ple. An RC beam of size 300 × 450 mm, reinforced with 4#22F on the tension and 
compression side with Rck as 25 N/mm2 and fy as 415 N/mm2 is now considered. The 
P-M boundary showing all the subdomains is plotted in Figure 5.4. Different points, 
A to H, one on each subdomain from 2 1

a
( ) to 6a are identified; angles between the nor-

mal to the P-M boundary ( )an and plastic strain vector ( )ap with respect to d CGe axis 
are computed. It can be seen from Figure 5.4 that the normality rule is well satisfied 
in subdomains 2 1

a
( ) to 2 1

b
( ) , whereas it is not completely satisfied in subdomains 2 2

b
( ) to 

6a; it means that the developed P-M interaction relationships are well agreed with 
the plastic flow rule in the subdomains causing tension failure, with an exception in 
subdomain 2 2

b
( ) , since this is the limit boundary between tension and compression 

failure zones.
In the case of subdomains of compression failure, since the damage is initiated 

by strain in concrete reaching its limit value leading to crushing of concrete, the 
flow rule verification fails. In subdomains 6a–6b, strain in concrete is reaching 
its ultimate limit and the section is becoming more plasticized (see Figure 5.3). 
Strain profile is rotated about the point Q since ultimate limit strain in concrete 
is fixed (as imposed by Eurocode); hence, the plastic flow rule cannot be verified 
since there is no continuity in the strain increment. Table 5.2 shows the numerical 
values of the angles between the strain axis and normal and tangent of the plastic 
strain vectors for different subdomains. It can be seen that plastic normality rule 
qualifies well in subdomains 2 21 2

a b
( ) ( ) ,- but it does not satisfy completely in sub-

domains 3 to 6a.

5.6 C ONCLUsiONs

A detailed methodology of examining the plastic flow rule in the proposed P-M 
yield interaction subdomains is presented in this chapter. The mathematically 
developed P-M interaction model is capable of identifying the damage mechanism 
of different subdomains in RC sections; damage identification is made on the basis 
of strain profile of concrete and reinforcing steel. The verified plastic flow is in 
close agreement with normality in all subdomains of tension failure, while it does 
not qualify in a few of the subdomains of crushing failure. Also, verification of the 
plastic flow rule on the proposed P-M interaction relationships is influenced neither 
by cross-section area of the members nor by variation of tension and compression 
reinforcements. The developed P-M interaction boundary that is subsequently veri-
fied for complete agreement in tension zone, in particular (where failure is initiated 
by yielding of steel), will enhance the confidence level of structural designers to use 
the proposed expressions. With the help of the proposed summary of expressions 
presented in a closed form, it is believed that structural design of new RC buildings 
and assessment of existing buildings can be performed with better understanding 
and improved accuracy.
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TABLE 5.2
Numerical Values for Different Examples in Subdomains

 

φ (rad/m) 

–1096.87 0.00 –2.771 0.0031 –0.0094 –5.128 0.195 –1.000 101.03 101.03 0.00

–961.67 26.36 –0.028 0.0223 –0.0056 –5.128 0.195 –1.000 101.03 101.03 0.00

–499.59 117.17 0.032 0.0257 –0.0050 –5.128 0.198 –1.014 101.03 101.19 –0.15

78.11 229.15 0.078 0.0292 –0.0043 –5.128 0.189 –0.969 101.03 100.70 0.33

249.41 260.22 0.097 0.0310 –0.0040 –5.128 0.150 –0.771 101.03 98.55 2.49

499.69 287.52 0.187 0.0188 –0.0007 –4.444 0.070 –0.310 102.68 93.99 8.69

1222.13 230.56 0.344 0.0102 0.0012 –4.444 –0.141 0.627 102.68 81.97 20.71

1759.22 149.46 0.437 0.0080 0.0017 –4.444 –0.165 0.735 102.68 80.61 22.07

2184.26 73.98 1.196 0.0020 0.0019 –31.111 –0.181 5.643 91.84 79.72 12.12

2578.69 1.02 1.912 0.0012 0.0020 –31.111 –0.161 5.000 91.84 80.87 10.97
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Other detailed studies (Chandrasekaran et al. 2008a) conducted by the authors 
on RC beams to examine the influence of the developed P-M interaction sub-
domains are also quite useful for the design engineers and are summarized here 
for their benefit. However, these studies are not the subject of this chapter and 
hence are not presented in detail. For increased percentage of tension reinforce-
ment (with a fixed percentage of compression reinforcement), the P-M boundary 
gets elongated along its leading diagonal without influencing the boundary limit 
of subdomains, causing crushing failure; for a fixed percentage of tension rein-
forcement, increase in the percentage of compression reinforcement elongates the 
P-M boundary along its shorter diagonal without influencing the boundary limit of 
subdomains, causing tension failure. Increase in the areas of cross-section of the 
beam show enlargement in the P-M boundary. Influence of material characteristics 
is also examined by the authors in detail. The results show that increase in yield 
strength of steel reinforcement enlarges the P-M boundaries nominally, but this 
nominal enlargement is symmetrical about the axial load axis. Change in charac-
teristic compressive strength of concrete in the beams influences P-M boundaries 
by enlarging the subdomains of crushing failure while those of tension failure are 
not influenced at all.

APPENDiX: SUMMARY Of P-M RELATiONsHiPs 
fOR DiffERENT SUBDOMAiNs

The stress-strain limits for the different subdomains are seen in Table 1. The follow-
ing summary of expressions is useful to determine the P-M relationships in different 
subdomains.
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where the constants, Bi= 0 1 2 3 4, , , , are given by
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where the constants, Ai= 0 1 2 3, , , , are given by
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where Di= 0 1 2, , are constants given by the following relationship:
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where Ci= 0 1 2, , are constants given by the following relationship:
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where Ei= 0 1 2, , are constants given by the following relationships:
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where the constants Gi = 0,1,2,3 are given by
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Subdomain 6a
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where the constants Ji=0,1,2,3,4,5 are given by
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Subdomain 6b
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6 Computer Coding for 
Collapse Multipliers

6.1  INTRODUCTION

Reinforced concrete building frames with different geometry are analyzed, and bounds 
for collapse loads are determined. The computer coding used for this will be discussed 
in this section. With reference to numerical studies discussed in Chapter 4, the cases 
considered for the analysis are (1) single bay–single story regular frame, (2) single bay–
double story regular frame, (3) single bay–single story with unequal column length, 
(4) four bay–two story regular frame, (5) six bay–three story irregular frame, (6) six 
bay–three story regular frame, and (7) five bay–ten story regular frame. Figures 6.1 to 
6.6 show the elevation of the building frames considered for the analysis. All building 
frames are comprised of (1) 450 mm square RC columns, reinforced with 12Φ25 and 
lateral ties of 8 mm at 200 c/c; (2) 300 × 450 mm RC beam, reinforced with 4Φ22 as 
tensile and compression steel with shear stirrups of 10 mm at 250 c/c; as well as (3)  
125-mm-thick RC slab. M25 mix and high-yield-strength deformed bars (Fe 415) are 
used. All building frames consisting of 4 m bay widths and 4 m story heights are 
assumed to be located in Zone V (IS 1893, 2002) with soil condition as “medium” type. 
Seismic weight at each floor is computed using IS code (IS 1893, 2002), and the base 
shear is distributed along the height of the building. Live load of equivalent magnitude 
is considered to act at the midspan of the beam, and lateral loads, computed from the 
base shear, are assumed to act at each floor level. With the proposed expressions for 
P-M interaction and moment-rotation, beams and columns are modeled.

6.2 COMPUTER  CODING FOR COLLAPSE MULTIPLIERS

The computer coding listed below is compatible with Wolfram Mathematica (Version 
6.0.0) for Windows platform.

Quit[ ]

Units for Length (m), Moment (kN-m), Force (kN)

p0 = Live load (as per admissible loading clause): 2.5 kN/sq.m

Story height H, length of beam L, breadth of beam b, overall depth of beam 
D0, density of concrete g, size of square column D1, slab thickness s

6.2.1  SINGLE BAY–SINGLE STORY REGULAR FRAME

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g =25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2
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FiGURE 6.1  Single bay–single story regular frame.

2

1

6

4

L = 4 m

H
 =

 4
 m

3

5

kF1

Q

Q
kF2

7

8

9

10

11 12

H
 =

 4
 m

X1 X2

X6

X4

X5

X3
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FiGURE 6.3  Single bay–single story frame with unequal column length.
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10

Dead load for slab

q2=(1/2*L*L*s* g)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g)/L

3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=2*D1*D1*H*g
40.5

Seismic mass, M

M=(2*B1+Fc)/9.81

15.6473

Spectral ordinate (as per IS 1893)

Sa= ((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T- 
0.1]-UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])
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FiGURE 6.4  Four bay–two story regular frame.
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Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange →{0,3}]

(The plot thus obtained in the computer screen can be seen in Image 6.1.)

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(H)^0.75

0.212132

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

13.815

Ultimate bending moment for beam and column

 Mb=214.45; Mc=265.06;

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

kc=Simplify[(2*Mb+2*Mc)/(Vb*H)]

17.3547

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]

ks=Simplify[Mb/(Vb/2*H/2)]

15.523

3.0

2.5

2.0

1.5

1.0

0.5

0 1 2 3 4

IMAGE 6.1  Response spectrum.
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6.2.2  SINGLE BAY–TwO STORY REGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g =25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s* g )/2
12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L* g )/L
3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=2*D1*D1*H*g
40.5

Seismic mass for first floor, M1

M1=(2*B1+Fc)/9.81

15.6473

Seismic mass for second floor, M2

M2=(2*B1+Fc)/9.81

15.6473

Total seismic mass

M=M1+M2

31.2946

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))
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(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange →{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(2*H)^0.75

0.356762

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

27.63

Seismic forces at each floor (starting from the ground floor)

F1=Vb*(M1*(H^2))/(M1*(H^2)+M2*((2*H)^2))

F2=Vb*(M2*((2*H)^2))/(M1*(H^2)+M2*((2*H)^2))

5.526

22.104

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

kc=Simplify[(4*Mb+2*Mc)/(F1*H+F2*2*H)]

6.97672

Static multiplier, ks [Equation 4.8 of Design Aids]

ks=Simplify[(2*Mb)/((F1+F2)/2*H+F1/2*H)]

6.46791

6.2.3  SINGLE BAY–SINGLE STORY FRAME wITH UNEQUAL COLUMN LENGTH

Quit[ ]

H=4; L=4; H1=3; p0=2.5; b=0.3; D0=0.45; g  =25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab
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q2=(1/2*L*L*s*g)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g)/L

3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=D1*D1*H*g+(H1/2+2)*D1*D1*g
37.9688

Seismic mass

M=(2*B1+Fc)/9.81

15.3893

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange→{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(H)^0.75

0.212132

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

13.5872

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

K10453.indb   173 6/15/09   4:13:05 PM

© 2010 by Taylor and Francis Group, LLC



174	 Seismic Design Aids for Nonlinear Analysis 

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

kc=Simplify[((1+H/H1)*Mb+(1+H/H1)*Mc)/(Vb*H)]

20.5866

6.2.4 F OUR BAY–TwO STORY REGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g  =25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*g )/2
12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g )/L
3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=5*D1*D1*H*g
101.25

Seismic mass for first floor, M1

M1=(8*B1+Fc)/9.81

56.3965

Seismic mass for second floor, M2

M2=(8*B1+Fc)/9.81

56.3965

Total seismic mass

M=M1+M2

112.793
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Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange →{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(2*H)^0.75

0.356762

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

99.585

Seismic forces at each floor (starting from the ground floor)

F1=Vb*(M1*(H^2))/(M1*(H^2)+M2*((2*H)^2))

F2=Vb*(M2*((2*H)^2))/(M1*(H^2)+M2*((2*H)^2))

19.917

79.668

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

kc=Simplify[(16*Mb+5*Mc)/(F1*H+F2*2*H)]

6.63378

ks=Simplify[(5*Mb)/((F1+F2)/2*H+F1/2*H)]

4.48633

6.2.5  SIX BAY–THREE STORY IRREGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g=25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab
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q2=(1/2*L*L*s*g)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g)/L

3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=D1*D1*H*g
20.25

Seismic mass for first floor, M1

M1=(12*B1+7*Fc)/9.81

83.5627

Seismic mass for second floor, M2

M2=(8*B1+5*Fc)/9.81

56.3965

Seismic mass for third floor, M3

M3=(4*B1+3*Fc)/9.81

29.2304

Total seismic mass

M=M1+M2+M3

169.19

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange→{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(3*H)^0.75
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0.483556

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

149.378

Seismic forces at each floor (starting from the ground floor)

F1=Vb*(M1*(H^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2))

F2=Vb*(M2*((2*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2))

F3=Vb*(M3*((3*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2))

21.8139

58.8888

68.6748

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

kc=Simplify[(24*Mb+7*Mc)/(F1*H+F2*2*H+F3*3*H)]

5.06503

6.2.6  SIX BAY–THREE STORY REGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g=25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*g)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g)/L

3.375
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Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=D1*D1*H*g
20.25

Seismic mass for first floor, M1

M1=(12*B1+7*Fc)/9.81

83.5627

Seismic mass for second floor, M2

M2=(12*B1+7*Fc)/9.81

83.5627

Seismic mass for third floor, M3

M3=(12*B1+7*Fc)/9.81

83.5627

Total seismic mass

M=M1+M2+M3

250.688

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange→{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(3*H)^0.75

0.483556

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.09

Base shear

Vb=Ah*M*9.81

221.332

Seismic forces at each floor (starting from the ground floor)
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F1=Vb*(M1*(H^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2))

F2=Vb*(M2*((2*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2))

F3=Vb*(M3*((3*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2))

15.8095

63.2379

142.285

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

kc=Simplify[(36*Mb+7*Mc)/(F1*H+F2*2*H+F3*3*H)]

4.20617

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]

ks=Simplify[(7*Mb)/((F1+F2+F3)/2*H+(F1+F2)/2*H)]

2.49875

6.2.7 F IVE BAY–TEN STORY REGULAR FRAME

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g=25; D1=0.45; s=0.125;

Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*g)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g)/L

3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

Total dead load on the column, Fc

Fc=D1*D1*4*g
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20.25

Seismic mass for each floor

M1=(10*B1+6*Fc)/9.81;

M2=(10*B1+6*Fc)/9.81;

M3=(10*B1+6*Fc)/9.81;

M4=(10*B1+6*Fc)/9.81;

M5=(10*B1+6*Fc)/9.81;

M6=(10*B1+6*Fc)/9.81;

M7=(10*B1+6*Fc)/9.81;

M8=(10*B1+6*Fc)/9.81;

M9=(10*B1+6*Fc)/9.81;

M10=(10*B1+6*Fc)/9.81;

Total seismic mass

M=M1+M2+M3+M4+M5+M6+M7+M8+M9+M10

699.796

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange →{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(10*H)^0.75

1.19291

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.0410426

Base shear

Vb=Ah*M*9.81

281.758

Seismic forces at each floor (starting from the ground floor)

F1=Vb*(M1*(H^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H)^2)
+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H)^2)
+M10*((10*H)^2))

K10453.indb   180 6/15/09   4:13:06 PM

© 2010 by Taylor and Francis Group, LLC



Computer Coding for Collapse Multipliers	 181

F2=Vb*(M2*((2*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F3=Vb*(M3*((3*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F4=Vb*(M4*((4*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F5=Vb*(M5*((5*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F6=Vb*(M6*((6*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F7=Vb*(M7*((7*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F8=Vb*(M8*((8*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F9=Vb*(M9*((9*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((4*H
)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((9*H
)^2)+M10*((10*H)^2))

F10=Vb*(M10*((10*H)^2))/(M1*(H^2)+M2*((2*H)^2)+M3*((3*H)^2)+M4*((
4*H)^2)+M5*((5*H)^2)+M6*((6*H)^2)+M7*((7*H)^2)+M8*((8*H)^2)+M9*((
9*H)^2)+M10*((10*H)^2))

0.731838

2.92735

6.58654

11.7094

18.296

26.3462

35.8601

46.8376

59.2789

73.1838

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

K10453.indb   181 6/15/09   4:13:06 PM

© 2010 by Taylor and Francis Group, LLC



182	 Seismic Design Aids for Nonlinear Analysis 

Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

kc=Simplify[(100*Mb+6*Mc)/(F1*H+F2*2*H+F3*3*H+F4*4*H+F5*5*H+F6
*6*H+F7*7*H+F8*8*H+F9*9*H+F10*10*H)]

2.60133

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]

ks=Simplify[(6*Mb)/((F1+F2+F3+F4+F5+F6+F7+F8+F9+F10)/2*H+(F1+F2+
F3+F4+F5+F6+F7+F8+F9)/2*H)]

1.31207

(The computer coding as appears on the screen can be seen in Images 6.2 to 6.6.)

6.2.8 G ENERAL PROcEDURE FOR REGULAR FRAMEs wITH M BAYs–N STORIEs

This section provides the coding for obtaining the collapse multipliers (both static and 
kinematic) for regular frames with the number of bays and stories of the user’s choice.

Quit[ ]

H=4; L=4; p0=2.5; b=0.3; D0=0.45; g  =25; D1=0.45; s=0.125;

IMAGE 6.2  Five bay–ten story regular frame; coding in Mathematica_page 1.
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Live load

q1=(1/2*L*L*p0)/2

10

Dead load for slab

q2=(1/2*L*L*s*g)/2

12.5

Dead load for finishes

q3=(1/2*L*L*1)/2

4

Dead load for beam

q4=(b*D0*L*g)/L

3.375

Total dead load on the beam and slab, B1

B1=(1/2)*L*q1*0.5+(1/2)*L*q2+(1/2)*q3*L+q4*L

56.5

IMAGE 6.3  Five bay–ten story regular frame; coding in Mathematica_page 2.
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Total dead load on the column, Fc

Fc=D1*D1*4*g
20.25

Seismic mass for generic ith floor

Mi=((m+1)*Fc+2*m*B1)/9.81

0.101937 (113. m+20.25 (1+m))

Total seismic mass

M= Mi*(n)

0.101937 (113. m+20.25 (1+m)) n

Spectral ordinate (as per IS 1893)

Sa=((1+15*T)*(UnitStep[T]-UnitStep[T-0.1])+2.50*(UnitStep[T-0.1]-
UnitStep[T-0.55])+1.36/T*(UnitStep[T-0.55]-UnitStep[T-4.00]))

(1.36 (-UnitStep[-4+T]+UnitStep[-0.55+T]))/T+2.5 (-UnitStep[-0.55+T]+UnitStep[-
0.1+T])+(1+15 T) (-UnitStep[-0.1+T]+UnitStep[T])

IMAGE 6.4  Five bay–ten story regular frame; coding in Mathematica_page 3.
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Graphic representation of the spectrum

Plot[Sa,{T,0,4},PlotRange_{0,3}]

Base shear constants

Z0=0.36; I0=1; R0=5; T=0.075*(n*H)^0.75

0.212132 n0.75

Acceleration coefficient for calculating base shear

Ah=Z0/2*I0/R0*Sa

0.036 ((6.4111 (-UnitStep[-4.+0.212132 n0.75]+UnitStep[-0.55+0.212132 
n0.75]))/n0.75+2.5 (-UnitStep[-0.55+0.212132 n0.75]+UnitStep[-0.1+0.212132 
n0.75])+(1+3.18198 n0.75) (-UnitStep[-0.1+0.212132 n0.75]+UnitStep[0.212132 
n0.75]))

Base shear

Vb=Ah*M*9.81

0.036 (113. m+20.25 (1+m)) n ((6.4111 (-UnitStep[-4.+0.212132 
n0.75]+UnitStep[-0.55+0.212132 n0.75]))/n0.75+2.5 (-UnitStep[-0.55+0.212132 
n0.75]+UnitStep[-0.1+0.212132 n0.75])+(1+3.18198 n0.75) (-UnitStep[-
0.1+0.212132 n0.75]+UnitStep[0.212132 n0.75]))

IMAGE 6.5  Five bay–ten story regular frame; coding in Mathematica_page 4.

K10453.indb   185 6/15/09   4:13:08 PM

© 2010 by Taylor and Francis Group, LLC



186	 Seismic Design Aids for Nonlinear Analysis 

Seismic forces at each floor (starting from the ground floor)

	

F Vb
W i H

W i H
i

i

i

n

i

=
∑
=

*
*( * ) ^

* ( * ) ^

2

2
1

1/((1+n) (1+2 n))0.216 i2 (113. m+20.25 (1+m)) ((6.4111 (-UnitStep[-
4.+0.212132 n0.75]+UnitStep[-0.55+0.212132 n0.75]))/n0.75+2.5 (-UnitStep[-
0.55+0.212132 n0.75]+UnitStep[-0.1+0.212132 n0.75])+(1+3.18198 n0.75) 
(-UnitStep[-0.1+0.212132 n0.75]+UnitStep[0.212132 n0.75]))

Base shear

	

Vb* =
=

∑Fi

i

n

1

0.036 (113. m+20.25 (1+m)) n ((6.4111 (-UnitStep[-4.+0.212132 
n0.75]+UnitStep[-0.55+0.212132 n0.75]))/n0.75+2.5 (-UnitStep[-0.55+0.212132 
n0.75]+UnitStep[-0.1+0.212132 n0.75])+(1+3.18198 n0.75) (-UnitStep[-
0.1+0.212132 n0.75]+UnitStep[0.212132 n0.75]))

IMAGE 6.6  Five bay–ten story regular frame; coding in Mathematica_page 5.
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Kinematic multiplier, kc [Equation 4.4 of Seismic Design Aids]

	

k
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FullSimplify
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(4.62963 (1. +2. n) (Mc+m Mc+2. m Mb n))/((20.25 +133.25 m) n1.25 (1. 
+n) (-6.4111 UnitStep[-4.+0.212132 n0.75]+(6.4111 -2.5 n0.75) UnitStep[-
0.55+0.212132 n0.75]+(1.5 n0.75-3.18198 n1.5) UnitStep[-0.1+0.212132 
n0.75]+(n0.75+3.18198 n1.5) UnitStep[0.212132 n0.75]))

Static multiplier, ks [Equation 4.8 of Seismic Design Aids]
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


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1

*

((0.5 +0.5 m) Mb (0.5 +n) (1. +n))/((20.25 +133.25 m) n0.25 (0.036 +0.072 
n2) (-6.4111 UnitStep[-4+0.212132 n0.75]+(6.4111 -2.5 n0.75) UnitStep[-
0.55+0.212132 n0.75]+(1.5 n0.75-3.18198 n1.5) UnitStep[-0.1+0.212132 
n0.75]+(n0.75+3.18198 n1.5) UnitStep[0.212132 n0.75]))

Ultimate bending moment for beam and column

Mb=214.45; Mc=265.06;

Kinematic multiplier for example cases

k m nc/.{ , }→ →1 1

k m nc/.{ , }→ →1 2

k m nc/ .{ , }→ →4 2

k m nc/.{ , }→ →6 3
k m nc/ .{ , }→ →5 10

17.3547

6.97672

6.63378

4.20617

2.60133

Static multiplier for example cases

k m nc/ .{ , }→ →1 1
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k m ns/ .{ , }→ →1 2

k m ns/.{ , }→ →4 2

k m ns/.{ , }→ →6 3
k m ns/ .{ , }→ →5 10

15.523

6.46791

4.48633

2.49875

1.31207

Base shear for example cases

V m nb/.{ , }→ →1 1

V m nb/.{ , }→ →1 2

V m nb/.{ , }→ →4 2
V m nb/.{ , }→ →6 3

V m nb/.{ , }→ →5 10

13.815

27.63

99.585

221.332

281.758

Plot[{ /. , /. },{ , , }]k m k m nc s→ →1 1 1 10

(The plot thus obtained on the computer screen can be seen in Image 6.7.)

8

9

7

6

5

4

3

4 6 8 10

IMAGE 6.7  Collapse multipliers for regular frame (m bays, n stories).
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6.2.9	 COMPUTER CODING TO COMPUTE STATIc COLLAPsE MULTIPLIERs (LINGO)

Computer coding used to obtain static collapse multipliers by an alternative method 
(Sforza 2002; Student LINGO 2005) is given for two example cases: (1) single bay–
single story regular frame, and (2) single bay–single story irregular frame. The cod-
ing can be seen in Images 6.8 and 6.9, respectively.

IMAGE 6.8  Single bay–single story regular frame; coding in LINGO.

IMAGE 6.9  Single bay–single story frame with unequal column length; coding in LINGO.
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6.3 P ROCEDURE TO PERfORM PUsHOVER ANALYsis

In this section, a detailed procedure to perform nonlinear static pushover analysis is 
presented. A five bay–ten story regular frame in reinforced concrete is considered 
as an example case. The building frame consists of structural elements as follows: 
(1) 450 mm square RC columns, reinforced with 12Φ25 and lateral ties of 8 mm  
at 200 c/c; (2) 300 × 450 mm RC beam, reinforced with 4Φ22 as tensile and com-
pression steel with shear stirrups of 10 mm at 250 c/c; and (3) 125-mm-thick RC 
slab. The concrete mix is M25 and the reinforcing steel used is high-yield-strength 
deformed bars, Fe 415. The building frame consists of 4 m bay width and 4 m story 
height, with no structural and geometric irregularities and assumed to be located in 
Zone V (IS 1893, 2002) with soil condition as “medium” type. Using the proposed 
expressions for P-M interaction and moment-rotation, presented in Chapters 1 and 2, 
respectively, beams and columns are modeled. Figure 6.7 shows the P-M interaction 
details for the beam hinges to be used in the model. The P-M interaction domains 
are traced using the summary of expressions given in Chapter 1. Figure 6.8 shows 
the moment rotation for the beam hinges, which are plotted using the expressions 
given in Chapter 3. Similarly, P-M interaction details and moment-rotation for col-
umn hinges are shown in Figures 6.9 and 6.10, respectively. The building frame is  
modeled in SAP2000, version 10.1.2 advanced, using the geometric and structural 
details as mentioned above. In the following section, a step-by-step approach for 
performing pushover analysis of the building model is presented.
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FiGURE 6.7  P-M interaction for beam hinges.
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FiGURE 6.8  Moment-rotation for beam hinges.
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FiGURE 6.9  P-M interaction for column hinges.
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6.3.1  STEP-BY-STEP APPROAcH UsING SAP2000

Step 1: Select New Model from the pull-down menu. (Image 6.10)

Step 2: Select the 2D frame with n stories and m bays. Set the units to kN-m. 
(Image 6.11)

Step 3: Fix the dimensions of the frame. (Image 6.12)
Step 4: The 2D frame is prepared and displayed. (Image 6.13)
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FiGURE 6.10  Moment-rotation for column hinges.

IMAGE 6.10  New model from the pull-down menu.
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Step 5: Save the file as ten story bldg_new. It is necessary to mark the tip node with 
the desired label to monitor the pushover curve at this node. Select the tip node, 
and in the menu, select Edit – Change Label; enter roof top. (Image 6.14)

Step 6: Display labels of members. Click View on the menu bar; set Display 
Options – Frames/Cables/Tendons. The default labeling in SAP is as follows: 
The first bottom column is numbered as 1, and the numbering increases 

IMAGE 6.11  2D frame with n stories and m bays.

IMAGE 6.12  Fixing the dimensions of the frame.
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IMAGE 6.13  Display of the prepared 2D frame.

IMAGE 6.14  Display of joint roof top.
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along the height; this is repeated for other column lines. The numbering of 
the beams is then assigned (automatically) from the lower floor (left mem-
ber) and increases along the height. (Image 6.15)

Step 7: Change labels for columns. Go to Edit – Change Labels – Element 
Labels – Frame. The columns are labeled as IC0J (the prefix I denotes floor 
number and J denotes column line). One can use Excel program to rename 
the labels quickly. (Image 6.16)

Step 8: Change labels for beams. Go to Edit – Change Labels – Element Labels 
– Frame. The beams are labeled as IB0J (the prefix I denotes floor number 
and J denotes beam line). (Image 6.17)

Step 9: To assign the fixed supports to the columns at the base, select the col-
umn joints at the base. Go to Assign – Joint – Restraints. (Image 6.18)

Step 10: Material properties for reinforced concrete. (Image 6.19)
Step 11: Section properties – beams. Go to Menu – Define – Frame Section and 

enter the details. (Image 6.20)
Step 12: Section properties – columns. Go to Menu – Define – Frame Section 

and enter the details. (Image 6.21)
Step 13: Assign beams and columns of the frame with appropriate sections. Go 

to Menu – Assign – Frame/Cable/Tendon – Frame Sections. (Image 6.22)
Step 14: Define nonlinear hinge properties for beam hinges. Go to Menu – 

Define – Hinge Properties. (Image 6.23)

IMAGE 6.15  Numbering of beams.
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IMAGE 6.16  Numbering of columns.

IMAGE 6.17  Changing labels for beams.
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IMAGE 6.18  Joint constraints.

IMAGE 6.19  Material property data.
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IMAGE 6.20  Section property for beams.

IMAGE 6.21  Section property for columns.
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IMAGE 6.22  Assigning frame sections.

IMAGE 6.23  Nonlinear hinge properties for beams, step 1.
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Step 15: Define nonlinear hinge properties for beam hinges, continued. Go to 
Menu – Define – Hinge Properties. (Image 6.24)

Step 16: Define nonlinear hinge properties for beam hinges, continued. Go to 
Menu – Define – Hinge Properties. (Image 6.25)

Step 17: Define nonlinear hinge properties for column hinges. Go to Menu – 
Define – Hinge Properties. (Image 6.26)

IMAGE 6.25  Nonlinear hinge properties for beams, step 3.

IMAGE 6.24  Nonlinear hinge properties for beams, step 2.
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Step 18: Define nonlinear hinge properties for column hinges, continued. Go 
to Menu – Define – Hinge Properties. (Image 6.27)

IMAGE 6.26  Nonlinear hinge properties for columns, step 1.

IMAGE 6.27  Nonlinear hinge properties for columns, step 2.
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Step 19: Define nonlinear hinge properties for column hinges, continued. Go 
to Menu – Define – Hinge Properties. (Image 6.28)

Step 20: Mass source. Go to Menu – Define – Mass Source. (Image 6.29)
Step 21: Assign end length offset to ensure rigidity of connections between 

beams and columns. Select all the members and joints, in total. Go to Menu –  
Assign – Frame/Cable/Tendon – End (length) Offsets. (Image 6.30)

IMAGE 6.29  Defining mass source.

IMAGE 6.28  Nonlinear hinge properties for columns, step 3.
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Step 22: Assign end offsets, continued. Once the end offsets are created, you 
will note dark lines at the beam-column joints in the model. (Images 6.31 
and 6.32)

IMAGE 6.31  Assigning End offset, step 2.

IMAGE 6.30  Assigning End offset, step 1.
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Step 23: Assign tensile hinges to the beams. Select the beams. Go to Menu – 
Assign – Frame/Cable/Tendon – Hinges. (Images 6.33 and 6.34)

Step 24: Assign compression hinges to columns. Select the columns. Go to 
Menu – Assign – Frame/Cable/Tendon – Hinges. (Image 6.35)

Step 25: Define load cases. Go to Menu – Define – Load Cases. (Image 6.36)

IMAGE 6.32  Assigning End offset, step 3.

IMAGE 6.33  Assigning tensile hinges to beams, step 1.
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IMAGE 6.34  Assigning tensile hinges to beams, step 2.

IMAGE 6.35  Assigning compression hinges to columns.
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Step 26: Assign the loads to the beam. In this example, we assign a central 
concentrated load of 41.25 kN, calculated as per the code (IS 1893, 2002), 
to beams in each floor. Select all the beams. Go to Menu – Assign – Frame/
Cable/Tendon – Point. (Images 6.37 to 6.39)

Step 27: Assign diaphragm action to the model. Select each floor, separately. 
Go to Menu – Assign – Joint – Constraints. (Images 6.40 and 6.41)

IMAGE 6.36  Defining load cases.

IMAGE 6.37  Assigning loads to beams, step 1.
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Step 28: Assign pushover load at the roof top. Select the left top joint (as shown 
in the screen). Go to Menu – Assign – Joint Loads. Assign 10 kN load in 
global X direction. (Image 6.42)

IMAGE 6.38  Assigning loads to beams, step 2.

IMAGE 6.39  Assigning loads to beams, step 3.
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Step 29: Define analysis cases. Go to Menu – Define – Analysis Cases – Add 
New Case. Let the case name be initial pushover. It is essential to apply the 
dead and live loads on the frame before we intend to push the frame using 
lateral load. Do not apply pushover load before applying gravity loads. The 
results could be erroneous. (Image 6.43)

IMAGE 6.40  Assigning diaphragm action, step 1.

IMAGE 6.41  Assigning diaphragm action, step 2.
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Step 30: Define analysis cases, continued. While selecting other parameters, 
click Load Application – Modify/Show and set the parameters as Full Load. 
Use monitored displacement at joint roof top created in Step 5. (Image 6.44)

Step 31: Define analysis cases, continued. Set a new case—pushover by the same 
procedure. But we will apply this load case, using displacement control, con-
tinuing from the previous case. While defining the parameters, results are saved 
at multiple states to trace the formation of hinges. (Images 6.45 and 6.46)

Step 32: Define analysis cases, continued. Set the nonlinear parameters. Click 
Modify/Show. An example case is shown in Image 6.47.  However, these param-
eters are system dependent, and the user can choose these values depending 
upon the nature of the model, by trial and error (and with experience).

IMAGE 6.42  Assigning pushover load at roof top.

IMAGE 6.43  Defining analysis cases, step 1.
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IMAGE 6.44  Defining analysis cases, step 2.

IMAGE 6.45  Defining analysis cases, step 3.

IMAGE 6.46  Defining analysis cases, step 4.
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Step 33: Define analysis cases, continued. All defined analysis cases may be 
viewed and checked using Show Analysis Case Tree. (Image 6.48)

IMAGE 6.47  Defining analysis cases, step 5.

IMAGE 6.48  Defining analysis cases, step 6.
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Step 34: Run the analysis. Press F5. To see the pushover curve for a target dis-
placement set at the point roof tip, go to Menu – Display – Pushover Curve. 
(Image 6.49)

Step 35: Obtain the history of formation of plastic hinges. Go to File in the 
pushover curve screen – Display Tables. (Image 6.50)

Important Note:  This example is only a sample illustration to introduce push-
over analysis to new users. Although the above steps are believed to introduce 
this nonlinear static analysis procedure clearly, interpretation of results for any 
specific model, for any specific purpose, is not the responsibility of the authors. 
Readers are advised to go through research papers and the Help menu of SAP2000, 
in detail, for a thorough understanding of different analysis parameters, in their 
own interest. The aforementioned are only introductory guidelines and solely the 
interpretation of the software parameters by the authors.

IMAGE 6.49  Pushover curve.
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IMAGE 6.50  History of formation of plastic hinges.
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COLOR FIGUrE 1.9  P-M interaction curves for RC section 300 × 450 (fck = 25 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 1.10  P-M interaction curves for RC section 300 × 500 (fck = 25 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 1.11  P-M interaction curves for RC section 300 × 500 (fck = 25 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 1.12  P-M interaction curves for RC section 300 × 600 (fck = 25 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 1.13  P-M interaction curves for RC section 300 × 600 (fck = 25 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 1.14  P-M interaction curves for RC section 350 × 500 (fck = 25 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 1.15  P-M interaction curves for RC section 350 × 500 (fck = 25 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 1.16  P-M interaction curves for RC section 350 × 600 (fck = 25 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 2.9  Bending moment-curvature for RC sections 350 mm wide (fck = 25 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 2.10  Bending moment-curvature for RC sections 300 mm wide (fck = 30 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 2.11  Bending moment-curvature for RC sections 350 mm wide (fck = 30 N/mm2, fy = 380 N/mm2).
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COLOR FIGUrE 2.12  Bending moment-curvature for RC sections 300 mm wide (fck = 25 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 2.13  Bending moment-curvature for RC sections 350 mm wide (fck = 25 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 2.14  Bending moment-curvature for RC sections 300 mm wide (fck = 30 N/mm2, fy = 415 N/mm2).
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COLOR FIGUrE 2.15  Bending moment-curvature for RC sections 350 mm wide (fck = 30 N/mm2, fy = 415 N/mm2).
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