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Preface

Design of Experiments (DOE) is a powerful technique used for both exploring new
processes and gaining increased knowledge of existing processes, followed by opti-
mising these processes for achieving world-class performance. My involvement in
promoting and training in the use of DOE dates back to the mid-1990s. There are
plenty of books available in the market today on this subject written by classic stat-
isticians, although the majority of them are better suited to other statisticians than to
run-of-the-mill industrial engineers and business managers with limited mathemati-
cal and statistical skills.

DOE never has been a favourite technique for many of today’s engineers and
managers in organisations due to the number crunching involved and the statistical
jargon incorporated into the teaching mode by many statisticians. This book is tar-
geted to people who have either been intimidated by their attempts to learn about
DOE or who have never appreciated the true potential of DOE for achieving break-
through improvements in product quality and process efficiency.

This book gives a solid introduction to the technique through a myriad of practi-
cal examples and case studies. The second edition of the book has incorporated two
new chapters and both cover the latest developments on the topic of DOE. Readers
of this book will develop a sound understanding of the theory of DOE and practical
aspects of how to design, analyse and interpret the results of a designed experiment.
Throughout this book, the emphasis is on the simple but powerful graphical tools
available for data analysis and interpretation. All of the graphs and figures in this
book were created using Minitab version 15.0 for Windows.

I sincerely hope that practising industrial engineers and managers as well as
researchers in academic world will find this book useful in learning how to apply
DOE in their own work environment. The book will also be a useful resource for
people involved in Six Sigma training and projects related to design optimisation and
process performance improvements. In fact, I have personally observed that the num-
ber of applications of DOE in non-manufacturing sectors has increased significantly
because of the methodology taught to Six Sigma professionals such as Six Sigma
Green Belts and Black Belts.

The second edition has a chapter dedicated to DOE for non-manufacturing pro-
cesses. As a mechanical engineer, I was not convinced about the application of
DOE in the context of the service industry and public sector organisations including
Higher Education. I have included a simple case study showing the power of DOE
in a university setting. I firmly believe that DOE can be applied to any industrial set-
ting, although there will be more challenges and barriers in the non-manufacturing
sector compared to traditional manufacturing companies.
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I hope that this book inspires readers to get into the habit of applying DOE for
problem-solving and process troubleshooting. I strongly recommend that readers of
this book continue on a more advanced reference to learn about topics which are
not covered here. I am indebted to many contributors and gurus for the development
of various experimental design techniques, especially Sir Ronald Fisher, Plackett
and Burman, Professor George Box, Professor Douglas Montgomery, Dr Genichi
Taguchi and Dr Dorian Shainin.
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1 Introduction to Industrial
Experimentation

1.1 Introduction

Experiments are performed today in many manufacturing organisations to increase
our understanding and knowledge of various manufacturing processes. Experiments in
manufacturing companies are often conducted in a series of trials or tests which pro-
duce quantifiable outcomes. For continuous improvement in product/process quality,
it is fundamental to understand the process behaviour; the amount of variability and its
impact on processes. In an engineering environment, experiments are often conducted
to explore, estimate or confirm. Exploration refers to understanding the data from the
process. Estimation refers to determining the effects of process variables or factors on
the output performance characteristic. Confirmation implies verifying the predicted
results obtained from the experiment.

In manufacturing processes, it is often of primary interest to explore the relation-
ships between the key input process variables (or factors) and the output performance
characteristics (or quality characteristics). For example, in a metal cutting operation,
cutting speed, feed rate, type of coolant, depth of cut, etc. can be treated as input vari-
ables and the surface finish of the finished part can be considered as an output per-
formance characteristic. In service processes, it is often more difficult to understand
what is to be measured; moreover, the process variability in the service context may
be attributed to human factors, which are difficult to control. Furthermore, the delivery
of service quality is heavily dependent on the situational influences of the person who
provides the service.

One of the common approaches employed by many engineers today in manufactur-
ing companies is One-Variable-At-a-Time (OVAT), where we vary one variable at a
time and keep all other variables in the experiment fixed. This approach depends upon
guesswork, luck, experience and intuition for its success. Moreover, this type of experi-
mentation requires large quantities of resources to obtain a limited amount of infor-
mation about the process. OVAT experiments often are unreliable, inefficient and time
consuming and may yield false optimum conditions for the process.

Statistical thinking and statistical methods play an important role in planning, con-
ducting, analysing and interpreting the data from engineering experiments. Statistical
thinking tells us how to deal with variability, and how to collect and use data so that
effective decisions can be made about the processes or systems we deal with every day.
When several variables influence a certain characteristic of a product, the best strategy
is then to design an experiment so that valid, reliable and sound conclusions can be
drawn effectively, efficiently and economically. In a designed experiment we often make
deliberate changes in the input variables (or factors) and then determine how the output
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functional performance varies accordingly. It is important to note that not all variables
affect the performance in the same manner. Some may have strong influences on the out-
put performance, some may have medium influences and some may have no influence
at all. Therefore the objective of a carefully planned designed experiment is to under-
stand which set of variables in a process affect the performance most and then determine
the best levels for these variables to obtain satisfactory output functional performance in
products. Moreover, we can also set the levels of unimportant variables to their most eco-
nomic settings. This would have an immense impact on financial savings to a company’s
bottom line (Clements, 1995).

Design of Experiments (DOE) was developed in the early 1920s by Sir Ronald
Fisher at the Rothamsted Agricultural Field Research Station in London, England.
His initial experiments were concerned with determining the effect of various fertilis-
ers on different plots of land. The final condition of the crop was dependent not only
on the fertiliser but also on a number of other factors (such as underlying soil con-
dition, moisture content of the soil, etc.) of each of the respective plots. Fisher used
DOE that could differentiate the effect of fertiliser from the effects of other factors.
Since then, DOE has been widely accepted and applied in biological and agricultural
fields. A number of successful applications of DOE have been reported by many US
and European manufacturers over the last 15 years or so. The potential applications of
DOE in manufacturing processes include (Montgomery et al., 1998):

» improved process yield and stability

» improved profits and return on investment

« improved process capability

+ reduced process variability and hence better product performance consistency

» reduced manufacturing costs

+ reduced process design and development time

+ heightened engineers’ morale with success in solving chronic problems

+ increased understanding of the relationship between key process inputs and output(s)
+ increased business profitability by reducing scrap rate, defect rate, rework, retest, etc.

Similarly, the potential applications of DOE in service processes include:

+ identifying the key service process or system variables which influence the process or sys-
tem performance

+ identifying the service design parameters which influence the service quality characteris-
tics in the eyes of customers

+ minimising the time to respond to customer complaints

* minimising errors on service orders

« reducing the service delivery time to customers (e.g. banks, restaurants)

« reducing the turn-around time in producing reports to patients in a healthcare environment,
and so on.

Industrial experiments involve a sequence of activities:

1. Hypothesis — an assumption that motivates the experiment

. Experiment — a series of tests conducted to investigate the hypothesis

3. Analysis — understanding the nature of data and performing statistical analysis of the
collected data from the experiment

[
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Interpretation — understanding the results of the experimental analysis

5. Conclusion — stating whether or not the original set hypothesis is true or false. Very often
more experiments are to be performed to test the hypothesis and sometimes we establish a
new hypothesis that requires more experiments.

Consider a welding process where the primary concern of interest to engineers is
the strength of the weld and the variation in the weld strength values. Through sci-
entific experimentation, we can determine what factors mostly affect the mean weld
strength and the variation in weld strength. Through experimentation, one can also pre-
dict the weld strength under various conditions of key input welding machine param-
eters or factors (e.g. weld speed, voltage, welding time, weld position, etc.).

For the successful application of an industrial designed experiment, we generally
require the following skills:

» Planning skills: Understanding the significance of experimentation for a particular prob-
lem, time and experimental budget required for the experiment, how many people are
involved with the experimentation, establishing who is doing what, etc.

« Statistical skills: The statistical analysis of data obtained from the experiment, assignment
of factors and interactions to various columns of the design matrix (or experimental lay-
out), interpretation of results from the experiment for making sound and valid decisions for
improvement, etc.

«  Teamwork skills: Understanding the objectives of the experiment and having a shared
understanding of the experimental goals to be achieved, better communication among peo-
ple with different skills and learning from one another, brainstorming of factors for the
experiment by team members, etc.

» Engineering skills: Determination of the number of levels of each factor and the range at
which each factor can be varied, determination of what to measure within the experiment,
determination of the capability of the measurement system in place, determination of what
factors can be controlled and what cannot be controlled for the experiment, etc.

1.2 Some Fundamental and Practical Issues in Industrial
Experimentation

An engineer is interested in measuring the yield of a chemical process, which is influ-
enced by two key process variables (or control factors). The engineer decides to per-
form an experiment to study the effects of these two variables on the process yield. The
engineer uses an OVAT approach to experimentation. The first step is to keep the tem-
perature constant (7;) and vary the pressure from P; to P,. The experiment is repeated
twice and the results are illustrated in Table 1.1. The engineer conducts four experi-
mental trials.

The next step is to keep the pressure constant (P;) and vary the temperature from
T, to T5. The results of the experiment are given in Table 1.2.

The engineer has calculated the average yield values for only three combinations of
temperature and pressure: (74, P,), (T}, P,) and (T,, P,). The engineer concludes from the
experiment that the maximum yield of the process can be attained by corresponding to
(T}, P,). The question then arises as to what should be the average yield corresponding to
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Table 1.1 The Effects of Varying Pressure on Process Yield

Trial Temperature Pressure Yield Average Yield (%)

1 T, P, 55,57 56
T, P, 63, 65 64

Table 1.2 The Effects of Varying Temperature on Process Yield

Trial Temperature Pressure Yield Average Yield (%)

3 T, P, 55,57 56
4 T, P, 60,62 61

the combination (7,, P,)? The engineer was unable to study this combination as well as
the interaction between temperature and pressure. Inferaction between two factors exists
when the effect of one factor on the response or output is different at different levels of
the other factor. The difference in the average yield between the trials one and two pro-
vides an estimate of the effect of pressure. Similarly, the difference in the average yield
between trials three and four provide an estimate of the effect of temperature. An effect of
a factor is the change in the average response due to a change in the levels of a factor.
The effect of pressure was estimated to be 8% (i.e. 64—56) when temperature was kept
constant at ‘77’. There is no guarantee whatsoever that the effect of pressure will be the
same when the conditions of temperature change. Similarly the effect of temperature was
estimated to be 5% (i.e. 61—56) when pressure was kept constant at ‘P;’. It is reasonable
to say that we do not get the same effect of temperature when the conditions of pres-
sure change. Therefore the OVAT approach to experimentation can be misleading and
may lead to unsatisfactory experimental conclusions in real-life situations. Moreover, the
success of the OVAT approach to experimentation relies on guesswork, luck, experience
and intuition (Antony, 1997). This type of experimentation is inefficient in that it requires
large resources to obtain a limited amount of information about the process. In order to
obtain a reliable and predictable estimate of factor effects, it is important that we vary
the factors simultaneously at their respective levels. In the above example, the engineer
should have varied the levels of temperature and pressure simultaneously to obtain reli-
able estimates of the effects of temperature and pressure. The focus of this book is to
explain the rationale behind such carefully planned and well-designed experiments.

A study carried out at the University of Navarra, Spain, has shown that 80% of the
companies (sample size of 128) in the Basque Country conduct experimentation using
the OVAT strategy. Moreover, it was found that only 20% of companies carry out
experimentation with a pre-established statistical methodology (Tanco et al., 2008).
The findings of Tanco et al. have also revealed that the size of the industry plays a
large part in DOE awareness; only 22% of small companies are familiar with DOE, as
compared with 43% of medium-sized companies and 76% of large companies (sam-
ple size of 133).
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1.3 Statistical Thinking and its Role Within DOE

One of the success factors for the effective deployment of DOE in any organisation
is the uncompromising commitment of the senior management team and visionary
leadership. However, it is not essential that the senior managers have a good technical
knowledge of the working mechanisms of DOE, although the author argues that they
should have a good understanding of the term ‘statistical thinking’. Statistical thinking
is a philosophy of learning and action based on the following three fundamental princi-
ples (Snee, 1990):

1. All work occurs in a system of interconnected processes.
2. Variation exists in all processes.
3. Understanding and reducing variation are the key to success.

The importance of statistical thinking derives from the fundamental principle of
quality put forth by Deming: ‘Reduce variation and you improve quality’. Customers
of today and tomorrow value products and services that have consistent performance,
which can be achieved by systematically eliminating variation in business processes
(ASQ, 1996). However, our managers lack statistical thinking and some of the possible
reasons for this are as follows:

A shift in the organisation’s priorities — Global competition has forced managers to rethink
how organisations are run and to search for better ways to manage. Problem solving in
manufacturing and R&D, while important, is not seen as particularly relevant to the needs
of management.

*  Managers view statistics as a tool for ‘fire fighting’ actions — One of the most difficult
challenges for every manager is to figure out how to use statistical thinking effectively to
help them make effective decisions. When a problem arises in the business, managers want
to fix it as soon as possible so that they can deal with their day-to-day activities. However,
what they do not realise is that the majority of problems are in systems or processes that
can only be tackled with the support of senior management team. The result is that man-
agement spends too much time ‘fire fighting’, solving the same problem again and again
because the system was not changed. These scenarios are as follows:
= A change in the mindset of people in the enterprise — Philosopher George Bernard Shaw

once said, ‘If you cannot change your mind, you cannot change anything’. It is clear
that managers, quality professionals and statisticians all have new roles that require new
skills. Change implies discontinuity and the destruction of familiar structures and rela-
tionships. Change can be resisted because it involves confrontation of the unknown and
loss of the familiar (Huczynski and Buchanan, 2001).

« Fear of statistics by managers — Even if managers were taught statistics at university,
it was usually focused on complex maths and formulas rather than the application of
statistical tools for problem solving and an effective decision-making process. Usually
managers have their first experience with statistical thinking in a workshop inside the
company, applying some tools with the guidance of an expert. Although this is the best
learning method for understanding and experiencing statistical thinking, managers may
still struggle to apply the principles to a different problem. This fundamental problem
can be tackled by teaching usable and practical statistical techniques through real case
studies at the university level.
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Exercises

Why do we need to perform experiments in organisations?

What are the limitations of the OVAT approach to experimentation?

What types of skills are required to make an experiment successful in organisations?

Why is statistical thinking highly desirable for senior managers and leaders of
organisations?

o

References

American Society of Quality, 1996. Glossary and Tables for Statistical Quality Control.
Statistics Division, Quality Press, Milwaukee, W1.

Antony, J., 1997. A Strategic Methodology to the Use of Advanced Statistical Quality
Improvement Techniques (PhD thesis). University of Portsmouth, UK.

Clements, R.B., 1995. The Experimenter’s Companion. ASQC Quality Press, Milwaukee, WI.

Huczynski, A., Buchanan, D., 2001. Organisational Behaviour: An Introductory Text, fourth
ed. Prentice-Hall, New Jersey, USA.

Montgomery, D.C., Runger, G.C., Hubele, N.F., 1998. Engineering Statistics. John Wiley &
Sons, New York, NY.

Snee, R., 1990. Statistical thinking and its contribution to total quality. Am. Stat. 44 (2),
116-121.

Tanco, M, et al., 2008. Is design of experiments really used? A survey of Basque industries. J.
Eng. Des. 19 (5), 447-460.


http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref1
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref1
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref2
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref3
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref3
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref4
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref4
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref5
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref5
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref6
http://refhub.elsevier.com/B978-0-08-099417-8.00001-8/sbref6

2 Fundamentals of Design
of Experiments

2.1 Introduction

In order to properly understand a designed experiment, it is essential to have a good
understanding of the process. A process is the transformation of inputs into outputs.
In the context of manufacturing, inputs are factors or process variables such as people,
materials, methods, environment, machines, procedures, etc. and outputs can be perfor-
mance characteristics or quality characteristics of a product. Sometimes, an output can
also be referred to as response. In the context of Six Sigma, this is often referred to as
critical-to-quality characteristics.

In performing a designed experiment, we will intentionally make changes to
the input process or machine variables (or factors) in order to observe correspond-
ing changes in the process output. If we are dealing with a new product development
process, we will make changes to the design parameters in order to make the design
performance insensitive to all sources of variation (Montgomery, 2001). The informa-
tion gained from properly planned, executed and analysed experiments can be used to
improve functional performance of products, to reduce the scrap rate or rework rate, to
reduce product development cycle time, to reduce excessive variability in production
processes, to improve throughput yield of processes, to improve the capability of pro-
cesses, etc. Let us suppose that an experimenter wishes to study the influence of five
variables or factors on an injection moulding process. Figure 2.1 illustrates an example
of an injection moulding process with possible inputs and outputs. The typical outputs
of an injection moulding process can be length, thickness, width etc. of an injection
moulded part. However, these outputs can be dependant on a number of input variables
such as mould temperature, injection pressure, injection speed, etc. which could have
an impact on the above mentioned outputs. The purpose of a designed experiment is to
understand the relationship between a set of input variables and an output or outputs.

Now consider a wave soldering process where the output is the number of sol-
der defects. The possible input variables which might influence the number of solder
defects are type of flux, type of solder, flux coating depth, solder temperature, etc. More
recently, DOE has been accepted as a powerful technique in the service industry and
there have been some major achievements. For instance, a credit card company in the
US has used DOE to increase the response rate to their mailings. They have changed the
colour, envelope size, character type and text within the experiment.

In real-life situations, some of the process variables or factors can be controlled fairly
easily and some of them are difficult or expensive to control during normal production
or standard conditions. Figure 2.2 illustrates a general model of a process or system.

Design of Experiments for Engineers and Scientists. DOI: http://dx.doi.org/10.1016/B978-0-08-099417-8.00002-X
Copyright © 2014 Jiju Antony. Published by Elsevier Ltd. All rights reserved.
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Figure 2.1 Illustration of an injection moulding process.
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Figure 2.2 General model of a process/system.

In Figure 2.2, output(s) are performance characteristics which are measured to
assess process/product performance. Controllable variables (represented by X’s) can
be varied easily during an experiment and such variables have a key role to play in
the process characterisation. Uncontrollable variables (represented by Z’s) are dif-
ficult to control during an experiment. These variables or factors are responsible for
variability in product performance or product performance inconsistency. It is impor-
tant to determine the optimal settings of X’s in order to minimise the effects of Z’s.
This is the fundamental strategy of robust design (Roy, 2001).

2.2 Basic Principles of DOE

DOE refers to the process of planning, designing and analysing the experiment so
that valid and objective conclusions can be drawn effectively and efficiently. In order
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to draw statistically sound conclusions from the experiment, it is necessary to inte-
grate simple and powerful statistical methods into the experimental design methodol-
ogy (Vecchio, 1997). The success of any industrially designed experiment depends on
sound planning, appropriate choice of design, statistical analysis of data and teamwork
skills.

In the context of DOE in manufacturing, one may come across two types of pro-
cess variables or factors: qualitative and quantitative. For quantitative factors, one
must decide on the range of settings and how they are to be measured and controlled
during the experiment. For example, in the above injection moulding process, screw
speed, mould temperature, etc. are examples of quantitative factors. Qualitative factors
are discrete in nature. Type of raw material, type of catalyst, type of supplier, etc. are
examples of qualitative factors. A factor may take different levels, depending on the
nature of the factor — quantitative or qualitative. A qualitative factor generally requires
more levels when compared to a quantitative factor. Here the term ‘level’ refers to a
specified value or setting of the factor being examined in the experiment. For instance,
if the experiment is to be performed using three different types of raw materials, then
we can say that the factor — the type of raw material — has three levels.

In the DOE terminology, a trial or run is a certain combination of factor levels
whose effect on the output (or performance characteristic) is of interest.

The three principles of experimental design, namely randomisation, replication and
blocking, can be utilised in industrial experiments to improve the efficiency of experi-
mentation (Antony, 1997). These principles of experimental design are applied to
reduce or even remove experimental bias. It is important to note that large experimen-
tal bias could result in wrong optimal settings or, in some cases, could mask the effect
of the really significant factors. Thus an opportunity for gaining process understanding
is lost, and a primary element for process improvement is overlooked.

2.2.1 Randomisation

We all live in a non-stationary world, a world in which noise factors (or external dis-
turbances) will never stay still. For instance, the manufacture of a metal part is an
operation involving people, machines, measurement, environment, etc. The parts of the
machine are not fixed entities; they wear out over a period of time and their accuracy
is not constant over time. The attitudes of the people who operate the machines vary
from time to time. If you believe your system or process is stable, you do not then need
to randomise the experimental trials. On the other hand, if you believe your process is
unstable and without randomisation, the results will be meaningless and misleading;
you then need to think about randomisation of experimental trials (Box, 1990). If the
process is very unstable and randomisation would make your experiment impossible,
then do not run the experiment. You may have to look at process control methods to
bring your process into a state of statistical control.

While designing industrial experiments, there are factors, such as power surges,
operator errors, fluctuations in ambient temperature and humidity, raw material vari-
ations, etc. which may influence the process output performance because they are
often expensive or difficult to control. Such factors can adversely affect the experimen-
tal results and therefore must be either minimised or removed from the experiment.



10 Design of Experiments for Engineers and Scientists

Randomisation is one of the methods experimenters often rely on to reduce the effect
of experimental bias. The purpose of randomisation is to remove all sources of extra-
neous variation which are not controllable in real-life settings (Leon et al., 1993). By
properly randomising the experiment, we assist in averaging out the effects of noise
factors that may be present in the process. In other words, randomisation can ensure
that all levels of a factor have an equal chance of being affected by noise factors
(Barker, 1990). Dorian Shainin accentuates the importance of randomisation as ‘exper-
imenters’ insurance policy’. He pointed out that ‘failure to randomise the trial condi-
tions mitigates the statistical validity of an experiment’. Randomisation is usually done
by drawing numbered cards from a well-shuffled pack of cards, by drawing numbered
balls from a well-shaken container or by using tables of random numbers.

Sometimes experimenters encounter situations where randomisation of experi-
mental trials is difficult to perform due to cost and time constraints. For instance,
temperature in a chemical process may be a hard-to-change factor, making complete
randomisation of this factor almost impossible. Under such circumstances, it might
be desirable to change the factor levels of temperature less frequently than others. In
such situations, restricted randomisation can be employed.

It is important to note that in a classical DOE approach, complete randomisation
of the experimental trials is advocated, whereas in the Taguchi approach to experi-
mentation, the incorporation of noise factors into the experimental layout will super-
sede the need for randomisation. The following questions are useful if you decide to
apply randomisation strategy to your experiment.

»  What is the cost associated with change of factor levels?

« Have we incorporated any noise factors in the experimental layout?

+  What is the set-up time between trials?

+  How many factors in the experiment are expensive or difficult to control?

» Where do we assign factors whose levels are difficult to change from one to another level?

2.2.2 Replication

In all industrial designed experiments, some variation is introduced because of the
fact that the experimental units such as people, batches of materials, machines, etc.
cannot be physically identical. Replication is a process of running the experimental
trials in a random sequence. Replication means repetitions of an entire experiment
or a portion of it, under more than one condition. Replication has three important
properties. The first property is that it allows the experimenter to obtain a more accu-
rate estimate of the experimental error, a term which represents the differences that
would be observed if the same experimental settings were applied several times to
the same experimental units (operator, machine, material, gauges, etc.). The second
property is that it permits the experimenter to obtain a more precise estimate of the
factor/interaction effect. The third property is that replication can decrease the exper-
imental error and thereby increase precision. If the number of replicates is equal to
one or unity, we would not then be able to make satisfactory conclusions about the
effect of either factors or interactions. The factor or interaction effect could be sig-
nificant due to experimental error. On the other hand, if we have a sufficient number
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of replicates, we would safely be making satisfactory inferences about the effect of
factors/interactions.

Replication can result in a substantial increase in the time needed to conduct an
experiment. Moreover, if the material is expensive, replication may lead to exorbitant
material costs. Any bias or experimental error associated with set-up changes will be
distributed evenly across the experimental runs or trials using replication. The use of
replication in real life must be justified in terms of time and cost.

Many experimenters use the terms ‘repetition’ and ‘replication’ interchangeably.
Technically speaking, however, they are not the same. In repetition, an experimenter
may repeat an experimental trial condition a number of times as planned, before pro-
ceeding to the next trial in the experimental layout. The advantage of this approach
is that the experimental set-up cost should be minimal. However, a set-up error is
unlikely to be detected or identified.

2.2.3 Blocking

Blocking is a method of eliminating the effects of extraneous variation due to noise
factors and thereby improving the efficiency of experimental design. The main objec-
tive is to eliminate unwanted sources of variability such as batch-to-batch, day-to-day,
shift-to-shift, etc.. The idea is to arrange similar or homogenous experimental runs into
blocks (or groups). Generally, a block is a set of relatively homogeneous experimen-
tal conditions (Bisgaard, 1994). The blocks can be batches of raw materials, different
operators, different vendors, etc. Observations collected under the same experimental
conditions (i.e. same day, same shift, etc.) are said to be in the same block. Variability
between blocks must be eliminated from the experimental error, which leads to an
increase in the precision of the experiment. The following two examples illustrate the
role of blocking in industrial designed experiments.

Example 2.1

A metallurgist wants to improve the strength of a steel product. Four factors
are being considered for the experiment, which might have some impact on the
strength. It is decided to study each factor at 2-levels (i.e. a low setting and a high
setting). An eight-trial experiment is chosen by the experimenter but it is possible
to run only four trials per day. Here each day can be treated as a separate block.

Example 2.2

An experiment in a chemical process requires two batches of raw material for
conducting the entire experimental runs. In order to minimise the effect of
batch-to-batch material variability, we need to treat batch of raw material as a
noise factor. In other words, each batch of raw material would form a block.
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2.3 Degrees of Freedom

In the context of statistics, the term ‘degrees of freedom’ is the number of independ-
ent and fair comparisons that can be made in a set of data. For example, consider the
heights of two students, say John and Kevin. If the height of John is Hj and that of
Kevin is Hy, then we can make only one fair comparison (H;—Hy).

In the context of DOE, the number of degrees of freedom associated with a process
variable is equal to one less than the number of levels for that factor (Belavendram,
1995). For example, an engineer wishes to study the effects of reaction temperature
and reaction time on the yield of a chemical process. Assume each factor was studied at
2-levels. The number of degrees of freedom associated with each factor is equal to unity
orl(ie.2—-1=1).

.. Degrees of freedom fora maineffect = Number of levels — 1

The number of degrees of freedom for the entire experiment is equal to one less
than the total number of data points or observations. Assume that you have performed
an eight-trial experiment and that each trial condition was replicated twice. The total
number of observations in this case is equal to 16 and therefore the total degrees of
freedom for the experiment is equal to 15 (i.e. 16 — 1).

The degrees of freedom for an interaction is equal to the product of the degrees of
freedom associated with each factor involved in that particular interaction effect. For
instance, in the above yield example, the degrees of freedom for both reaction tem-
perature and reaction time are equal to one and therefore, the degrees of freedom for
its interaction effect is also equal to unity.

Assume that an experimenter wishes to study the effect of four process or design
parameters at 3-levels. The degrees of freedom required for studying all the main effects
is equal to 8((3 — 1) X 4 = 8). The degrees of freedom for studying one interaction in
this case is equal to 4((3 — 1) X (3 — 1) = 4). The degrees of freedom therefore required
for studying all six interactions (i.e. AB, AC, BC, BD, AD and CD) is equal to 24.

2.4 Confounding

The term ‘confounding’ refers to the combining influences of two or more factor effects
in one measured effect. In other words, one cannot estimate factor effects and their
interaction effects independently. Effects which are confounded are called aliases. A list
of the confoundings which occur in an experimental design is called an alias structure or
a confounding pattern. The confounding of effects is simple to illustrate. Suppose two
factors, say mould temperature and injection speed, are investigated at 2-levels. Five
response values are taken when both factors are at their lower levels and high levels,
respectively. The results of the experiment (i.e. mean response) are given in Table 2.1.

The effect of mould temperature is equal to 82.75 — 75.67 = 7.08. Here effect
refers to the change in mean response due to a change in the levels of a factor.
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Table 2.1 Example of Confounding

Mould Temperature Injection Speed Mean Response
Low level Low level 75.67
High level High level 82.75

The effect of injection speed is also the same as that of mould temperature (i.e.
82.75 — 75.67). So is the calculated effect actually due to injection speed or to mould
temperature? One cannot simply tell this as the effects are confounded.

2.4.1 Design Resolution

Design resolution (R) is a summary characteristic of aliasing or confounding pat-
terns. The degree to which the main effects are aliased with the interaction effects
(two-factor or higher) is represented by the resolution of the corresponding design.
Obviously, we don’t prefer the main effects to be aliased with other main effects.
A design is of resolution R if no p-factor effect is aliased with another effect contain-
ing less than (R—p) factors. For designed experiments, designs of resolution III, IV
and V are particularly important.

Design resolution identifies for a specific design the order of confounding of the
main effects and their interactions. It is a key tool for determining what fractional facto-
rial design will be the best choice for a given problem (Kolarik, 1995). More informa-
tion on full and fractional factorial designs can be seen in the later chapters of this book.

Resolution IIl designs: These are designs in which no main effects are con-
founded with any other main effect, but main effects are confounded with two-
factor interactions and two-factor interactions may be confounded with each other.
For example, studying three factors or process parameters at 2-levels in four trials
or runs is a resolution III design. In this case, each main effect is confounded with
two-factor or second-order interactions.

Resolution 1V designs: These are designs in which no main effects are confounded
with any other main effect or with any two-factor interaction effects, but two-factor
interaction effects are confounded with each other. For example, studying four factors
or process parameters at 2-levels in eight trials or runs is a resolution IV design. In this
case, each two-factor interaction is confounded with other two-factor interactions.

Resolution V designs: These are designs in which main effects are not confounded
with other main effects, two-factor interactions or three-factor interactions, but two-factor
interactions are confounded with three-factor interactions. For example, studying 5 factors
or process parameters at 2-levels in 16 trials or runs is a resolution V design. In this case,
each two-factor interaction is confounded with three-factor or third-order interactions.

2.4.2 Metrology Considerations for Industrial Designed Experiments

For industrial experiments, the response or quality characteristic will have to be meas-
ured either by direct or indirect methods. These measurement methods produce
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variation in the response. Measurement is a process and varies, just as all processes vary.
Identifying, separating and removing the measurement variation leads to improvements
to the actual measured values obtained from the use of the measurement process.

The following characteristics need to be considered for a measurement system:

» Accuracy: It refers to the degree of closeness between the measured value and the true
value or reference value.

»  Precision: It is a measure of the scatter of results of several observations and is not related
to the true value. It is a comparative measure of the observed values and is only a measure
of the random errors. It is expressed quantitatively as the standard deviation of observed
values from repeated results under identical conditions.

+ Stability: A measurement system is said to be stable if the measurements do not change
over time. In other words, they should not be adversely influenced by operator and envi-
ronmental changes.

» Capability: A measurement system is capable if the measurements are free from bias (accu-
rate) and sensitive. A capable measurement system requires sensitivity (the variation around the
average should be small compared to the specification limits or process spread and accuracy).

2.4.3 Measurement System Capability

The goal of a measurement system capability study is to understand and quan-
tify the sources of variability present in the measurement system. Repeatability and
Reproducibility (R&R) studies analyse the variation of measurements of a gauge and the
variation of measurements by operators, respectively. Repeatability refers to the variation
in measurements obtained when an operator uses the same gauge several times for meas-
uring the identical characteristic on the same part. Reproducibility, on the other hand,
refers to the variation in measurements when several operators use the same gauge for
measuring the identical characteristic on the same part. It is important to note that total
variability in a process can be broken down into variability due to product (or parts vari-
ability) and variability due to measurement system. The variability due to measurement
system is further broken into variability due to gauge (i.e. repeatability) and reproducibil-
ity. Reproducibility can be further broken into variability due to operators and variability
due to (part X operator) interaction (Montgomery and Runger, 1993).

A measurement system is considered to be capable and adequate if it satisfies the
following criterion:

; =10% @2.1)

where P/T = Precision-to-Tolerance ratio, which is given by

~
P _ 60measuremenl error

T  USL — LSL (22)

where USL = Upper Specification Limit of a quality characteristic,
LSL = Lower Specification Limit of a quality characteristic

Moreover,
A2 _ A2 A2
O measurementerror Urepeatability + Ureproducibility
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There are obvious dangers in relying too much on the P/T ratio. For example,
the P/T ratio may be made arbitrarily small by increasing the width of the specifica-
tion of tolerance band. The gauge must be able to have sufficient capability to detect
meaningful variation in the product. The contribution of gauge variability (or meas-
urement error) to the total variability is a much more useful criterion for determining
the measurement system capability. So one may look at the following equation to see
whether the given measurement system is capable or not.

A

g
measurement error
— = 10%

&lotal (23)
Another useful gauge to evaluate a measurement system is to see whether or not
the measurement process is able to detect product variation. If the amount of measure-
ment system variability is high, it will obscure the product variation. It is important
to be able to separate out measurement variability from product variability. Donald J.
Wheeler uses discrimination ratio as an indicator of whether the measurement process
is able to detect product variation (Wheeler and Lynday, 1989). For more information
on discrimination ratio and its use in gauge capability analysis, I would advise readers
to refer to his book entitled Evaluating the Measurement Process (see reference list).

2.4.4 Some Tips for the Development of a Measurement System

The key to managing processes is measurement. Engineers and managers, therefore,
must strive to develop useful measurements of their processes. The following tips are
useful when developing a measurement system for industrial experiments.

1. Select the process you want to measure: This involves process definition and determination
of recipients of the information on measurements, and how that information will be used.
2. Define the characteristic that needs to be measured within the process: This involves
identification and definition of suitable characteristics that reflect customer needs and
expectations. It is always best to have a team of people comprising members from quality
engineering, process engineering and operators in defining the key characteristics that need
to be measured within a process.
3. Perform a quality check: It is quite important to address the following questions during the
development of a measurement system:
+ How accurately can we measure the product characteristics?
- What is the error in our measurement system? Is it acceptable?
+ Is our measurement system stable and capable?
+ What is the contribution of our measurement system variability to the total variation? Is
it acceptable?

2.5 Selection of Quality Characteristics for Industrial
Experiments

The selection of an appropriate quality characteristic is vital for the success of an
industrial experiment. To identify a good quality characteristic, it is suggested to



16 Design of Experiments for Engineers and Scientists

start with the engineering or economic goal. Having determined this goal, iden-
tify the fundamental mechanisms and the physical laws affecting this goal. Finally,
choose the quality characteristics to increase the understanding of these mechanisms
and physical laws. The following points are useful in selecting the quality character-
istics for industrial experiments (Antony, 1998):

» Try to use quality characteristics that are easy to measure.

» Quality characteristics should, as far as possible, be continuous variables.

« Use quality characteristics which can be measured precisely, accurately and with stability.

»  For complex processes, it is best to select quality characteristics at the sub-system level
and perform experiments at this level prior to attempting overall process optimisation.

* Quality characteristics should cover all dimensions of the ideal function or the input—
output relationship.

* Quality characteristics should preferably be additive (i.e. no interaction exists among the
quality characteristics) and monotonic (i.e. the effect of each factor on robustness should
be in a consistent direction, even when the settings of factors are changed).

Consider a certain painting process which results in various problems such as orange
peel, poor appearance, voids, etc. Too often, experimenters measure these characteristics
as data and try to optimise the quality characteristic. It is not the function of the coating
process to produce an orange peel. The problem could be due to excess variability of
the coating process due to noise factors such as variability in viscosity, ambient tem-
perature, etc. We should make every effort to gather data that relate to the engineering
function itself and not to the symptom of variability. One fairly good characteristic to
measure for the coating process is the coating thickness. It is important to understand
that excess variability of coating thickness from its target value could lead to problems
such as orange peel or voids. The sound engineering strategy is to design and analyse an
experiment so that best process parameter settings can be determined in order to yield a
minimum variability of coating thickness around the specified target thickness.

In the context of service organisations, the selection of quality characteristics is not
very straightforward due to the human behavioural characteristics present in the delivery
of the service. However, it is essential to understand what characteristics can be effi-
ciently and effectively measured. For instance, in the banking sector, one may measure
the number of processing errors, the processing time for certain transactions, the waiting
time to open a bank account, etc. It is important to measure those quality characteristics
which have an impact on customer satisfaction. In the context of health care services,
one can measure the proportion or fraction of medication errors, the proportion of cases
with inaccurate diagnosis, the waiting time to get a treatment, the waiting time to be
admitted to an A&E department, the number of malpractice claims in a hospital every
week or month, etc.

Exercises

1. What are the three basic principles of DOE?
2. Explain the role of randomisation in industrial experiments. What are the limitations of
randomisation in experiments?
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. What is replication? Why do we need to replicate experimental trials?

. What is the fundamental difference between repetition and replication?

. Explain the term ‘degrees of freedom’.

. An experimenter wants to study five process parameters at 2-levels and has decided to
use eight trials. How many degrees of freedom are required for studying all five process
parameters?

7. What is confounding and what is its role in the selection of a particular design matrix or
experimental layout?

. What is design resolution? Briefly illustrate its significance in industrial experiments.

9. What is the role of a measurement system in the context of industrial experimentation?

10. State three key factors for the selection of quality characteristics for the success of an

industrial experiment.

11. What are the three Critical-to-Quality (CTQ) characteristics which you believe to be criti-

cal in the eyes of international students who are pursuing a post-graduate course at the

University?

AUt AW
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3 Understanding Key Interactions in
Processes

3.1 Introduction

For modern industrial processes, the interactions between the factors or process
parameters are a major concern to many engineers and managers, and therefore
should be studied, analysed and understood properly for problem solving and pro-
cess optimisation problems. For many process optimisation problems in industries,
the root cause of the problem is sometimes due to the interaction between the factors
rather than the individual effect of each factor on the output performance character-
istic (or response). Here performance characteristic is the characteristic of a product/
service which is most critical to customers (Logothetis, 1994).

The significance of interactions in manufacturing processes can be illustrated by
the following example taken from a wave-soldering process of a PCB assembly line
in a certain electronic industry. The engineering team of the company was interested
in reducing the number of defective solder joints obtained from the soldering pro-
cess. The average defect rate based on the existing conditions is 410 ppm (parts per
million). The team has decided to perform a simple experiment to understand the
influence of wave-soldering process parameters on the number of defective solder
joints.

The team initially utilised an OVAT approach to experimentation. Each process
parameter (or process variable) was studied at 2-levels — low level (represented
by —1) and high level (represented by +1). The parameters and their levels are given
in Table 3.1. The experimental layout (or design matrix) for the experiment is given
in Table 3.2. The design matrix shows all the possible combinations of factors at
their respective levels.

In the experimental layout, the actual process parameter settings are replaced by
—1 and +1. The first trial in Table 3.2 represents the current process settings, with
each process parameter kept at low level. In the second trial, the team has changed
the level of factor ‘A’ from low to high, keeping the levels of other two factors con-
stant. The engineer notices from this experiment that the defect rate is minimum,
corresponding to trial condition 4, and thereby conclude that the optimal setting is
the one corresponding to the fourth trial.

The difference in the responses between the trials 1 and 2 provides an estimate
of the effect of process parameter ‘A’. From Table 3.2, the effect of ‘A’ (370—-420
= —50) was estimated when the levels of ‘B’ and ‘C’ were at low levels. There is
no guarantee whatsoever that ‘A’ will have the same effect for different conditions
of ‘B’ and ‘C’. Similarly, the effects of ‘B’ and ‘C’ can be estimated. In the above
experiment, the response values corresponding to the combinations A (—1) B (+1),
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Table 3.1 List of Process Parameters and Their Levels

Labels Process Parameters  Units Low Level (-1) High Level (+1)

A Flux density glclc 0.85 0.90
B Conveyor speed ft/min 4.5 5.5
C Solder temperature °C 230 260

Table 3.2 OVAT Approach to Wave-Soldering Process

Run A B C Response (ppm)
1 -1 -1 -1 420
2 +1 -1 -1 370
3 +1 +1 -1 410
4 +1 +1 +1 350

A (—=1) C (+1) and B (1) C (+1) are missing. Therefore OVAT to experimentation
can lead to unsatisfactory conclusions and in many cases it would even lead to false
optimum conditions. In this case, the team failed to study the effect of each factor
at different conditions of other factors. In other words, the team failed to study the
interaction between the process parameters.

Interactions occur when the effect of one process parameter depends on the level
of the other process parameter. In other words, the effect of one process parameter on
the response is different at different levels of the other process parameter. In order to
study interaction effects among the process parameters, we need to vary all the fac-
tors simultaneously (Anderson and Whitcomb, 2000). For the above wave-soldering
process, the engineering team employed a Full Factorial Experiment (FFE) and each
trial or run condition was replicated twice to observe variation in results within the
experimental trials. The results of the FFE are given in Table 3.3. Each trial condition
was randomised to minimise the effect of undesirable disturbances or external factors
which were uncontrollable or expensive to control during the experiment.

As it is an FFE, it is possible to study all the interactions among the factors A, B
and C. The interaction between two process parameters (say, A and B) can be com-
puted using the following equation:

(Eap+ny ~ Eap-1) (3.1)

N | =

IA,B

where Ej g (41 is the effect of factor ‘A’ at high level of factor ‘B’ and where E p(_y)
is the effect of factor ‘A’ at low level of factor ‘B’.

For the above example, three two-order interactions and a third-order interac-
tion can be studied. Third-order and higher order interactions are not often impor-
tant for process optimisation problems and therefore not necessary to be studied.
In order to study the interaction between A (flux density) and B (conveyor speed),
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Table 3.3 Results from a 23 FFE

Run Run A B C Response
(Standard Order) (Randomised Order) (ppm)
1 5 -1 -1 -1 420,412
2 7 +1 -1 -1 370, 375
3 4 -1 +1 -1 310, 289
4 1 +1 +1 -1 410, 415
5 8 -1 -1 +1 375, 388
6 3 +1 -1 +1 450, 442
7 2 -1 +1 +1 325,322
8 6 +1 +1 +1 350, 340
Table 3.4 Average ppm Values

Run A B Average

(Standard Order) ppm

1,5 -1 -1 398.75

3,7 -1 +1 311.50

2,6 +1 -1 409.25

4,8 +1 +1 378.75

it is important to form a table (Table 3.4) for average ppm values at the four possible
combinations of A and B (le A(_]) B(_]), A(_]) B(+l)9 A(+l) B(_]) and A(+l) B(+]))
From Table 3.4, the effect of ‘A’ (i.e., going from low level (-1) to high level

(+1)athighlevelof B(i.e. + 1))

= 378.75 — 311.50

= 67.25ppm

Similarly, theeffectof Aatlowlevelof B = 409.25 — 398.75

Interaction between A and B

= 10.5ppm

%[67.25 —10.5]

28.375

In order to determine whether two process parameters are interacting or not, one
can use a simple but powerful graphical tool called interaction graphs. If the lines in
the interaction plot are parallel, there is no interaction between the process param-
eters (Barton, 1990). This implies that the change in the mean response from low to
high level of a factor does not depend on the level of the other factor. On the other
hand, if the lines are non-parallel, an interaction exists between the factors. The
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Figure 3.1 Interaction plot between flux density and conveyor speed.

greater the degree of departure from being parallel, the stronger the interaction effect
(Antony and Kaye, 1998). Figure 3.1 illustrates the interaction plot between ‘A’ (flux
density) and ‘B’ (conveyor speed).

The interaction graph between flux density and conveyor speed shows that the
effect of conveyor speed on ppm at two different levels of flux density is not the
same. This implies that there is an interaction between these two process parameters.
The defect rate (in ppm) is minimum when the conveyor speed is at high level and
flux density at low level.

3.2 Alternative Method for Calculating the Two-Order
Interaction Effect

In order to compute the interaction effect between flux density and conveyor
speed, we need to first multiply columns 2 and 3 in Table 3.4. This is illustrated in
Table 3.5. In Table 3.5, column 3 yields the interaction between flux density (A) and
conveyor speed (B).

Having obtained column 3, we then need to calculate the average ppm at high
level of (A x B) and low level of (A x B). The difference between these will provide
an estimate of the interaction effect.

AXB Average ppm at high level of (A X B) — Average ppm at low level of (A X B)

%(398.75 + 378.75) — %(311.50 + 409.25)

388.75 — 360.375
= 28.375
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Table 3.5 Alternative Method to Compute the
Interaction Effect

A B AXxB  Average ppm
-l -1 +1 398.75
-l +1 -1 311.50
1 -1 -1 409.25
*l +1 +1 378.75
395 —— —
F Flux density
385 - =
§ 375-
=
365 -
355 \
Solder temperature

Figure 3.2 Interaction plot between solder temperature and flux density.

Now consider the interaction between flux density (A) and solder temperature. The
interaction graph is shown in Figure 3.2. The graph shows that the effect of solder
temperature at different levels of flux density is almost the same. Moreover, the lines
are almost parallel, which indicates that there is little interaction between these two
factors.

The interaction plot suggests that the mean solder defect rate is minimum when
solder temperature is at high level and flux density at low level.

Note: Non-parallel lines are an indicator of the existence of interactions between
two factors and parallel lines indicate no interactions between the factors.

3.3 Synergistic Interaction Versus Antagonistic Interaction

The effects of process parameters can be either fixed or random. Fixed process
parameter effects occur when the process parameter levels included in the experi-
ment are controllable and specifically chosen because they are the only ones for
which inferences are desired. For example, if you want to determine the effect of
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Figure 3.3 Antagonistic interaction between two factors A and B.

temperature at 2-levels (180°F and 210°F) on the viscosity of a fluid, then both180°F
and 210°F are considered to be fixed parameter levels. On the other hand, random
process parameter effects are associated with those parameters whose levels are ran-
domly chosen from a large population of possible levels. Inferences are not usually
desired on the specific parameter levels included in an experiment, but rather on
the population of levels represented by those in the experiment. Factor levels rep-
resented by batches of raw materials drawn from a large population are examples of
random process parameter levels. In this book, only fixed process parameter effects
are considered.

For synergistic interaction, the lines on the plot do not cross each other (Gunst
and Mason, 1991). For example, Figure 3.1 is an example of synergistic interaction.
In contrast, for antagonistic interaction, the lines on the plot cross each other. This is
illustrated in Figure 3.3. In this case, the change in mean response for factor B at low
level (represented by —1) is noticeably high compared to high level. In other words,
factor B is less sensitive to variation in mean response at high level of factor A.

In order to have a greater understanding of the analysis and interpretation of inter-
action effects, the following two scenarios can be considered.

3.4 Scenario 1

In an established baking school, the students had failed to produce uniform-sized
cakes, despite their continuous efforts. The engineering team of the company was
looking for the key factors or interactions which were most responsible for the vari-
ation in the weight of cakes. Here the weight of the cakes was considered to be the
critical characteristic to the customers. A project was initiated to understand the
nature of the problem and come up with a possible solution to identify the causes of
variation and, if possible, eliminate them for greater consistency in the weights of



Understanding Key Interactions in Processes 25

Table 3.6 List of Baking Process Variables for the Experiment

Factors Label Low Level High Level
Butter (cups) B Va Ya

Milk (cups) M Va Ya

Flour (cups) F Y% 1

Sugar (cups) S 1% Ya

Oven temperature (°C) O 200 225

Eggs E 2 3

Table 3.7 Response Table for the Cake Baking Experiment

Run B M BxM O F S E Weight log(SD)
(Grams)
1 -1 -1 +1 -1 +1 +1 -1 102.3,117.6 1.034
2 +1 -1 -1 -1 -1 +1 +1 114.6, 120.3 0.605
3 -1 +1 -1 -1 +1 -1 +1 134.6, 126.7 0.747
4 +1 +1 +1 -1 -1 -1 -1 116.4,123.9 0.725
5 -1 -1 +1 +1 -1 -1 +1 112.6, 130.6 1.105
6 +1 -1 -1 +1 +1 -1 -1 150.6, 141.7 0.799
7 -1 +1 -1 +1 -1 +1 -1 133.6, 122.4 0.899
8 +1 +1 +1 +1 +1 +1 +1 155.8,138.6 1.085

these cakes. Further to a thorough brainstorming session, six process variables (or
factors) and a possible interaction (B X M) were considered for the experiment. The
factors and their levels are given in Table 3.6.

Each process variable was kept at 2-levels and the objective of the experiment
was to determine the optimum combination of process variables which yield mini-
mum variation in the weight of cakes. An FFE would have required 64 experimental
runs. Due to limited time and experimental budget, it was decided to select a 26~
fractional factorial experiment (i.e. eight trials or runs). Each trial condition was
replicated twice to obtain sufficient degrees of freedom for the error term. Because
we are analysing variation, the minimum number of replicates per trial condition is
two. Table 3.7 presents the experimental layout or design matrix for the cake baking
experiment. According to the Central Limit Theorem (CLT), if you repeatedly take
large random samples from a stable process and display the averages of each sam-
ple in a frequency diagram, the diagram will be approximately bell-shaped. In other
words, the sampling distribution of means is roughly normal, according to CLT. It
is quite interesting to note that the distribution of sample standard deviations (SDs)
does not follow a normal distribution. However, if we transform the sample SDs
by taking their logarithms, the logarithms of the SDs will be much closer to being
normally distributed. The last column in Table 3.7 gives the logarithmic transforma-
tion of sample SD. The SDs and log(SD) can easily be obtained by using a scientific
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calculator or Microsoft Excel spreadsheet. Here our interest is to analyse the interac-
tion between the process variables butter (B) and milk (M) rather than the individual
effect of each process variable on the variability of cake weights.

In order to analyse the interaction effect between butter and milk, we form a table
for average log(SD) values corresponding to all of the four possible combinations of
B and M. The results are given in Table 3.8.

Calculation of interaction effect (B x M):

Effect of butter (B)at high level of milk (M) = 0.905 — 0.823 = 0.082
Effect of butter (B)at low level of milk (M) = 0.702 — 1.0695 = —0.3675
Using Eq. (4.1),

1
BXM = 5[0.082 — (—0.3675)] = 1/2[0.082 + 0.3675] = 0.225
Figure 3.4 illustrates the interaction plot between the process variables ‘B’ and ‘M’.
Figure 3.4 clearly indicates the existence of interaction between the factors butter

and milk. The interaction plot shows that variability in the weight of cakes is mini-
mum when the level of butter is kept at high level and milk at low level.

Table 3.8 Interaction Table for log(SD)

B M Average log(SD)
-1 -1 1.0695

-1 +1 0.823

+1 -1 0.702

+1 +1 0.905

1.0 H

0.9 1

Mean Log(s)

0.8 1

0.7

Figure 3.4 Interaction plot between milk and butter.
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3.5 Scenario 2

In this scenario, we illustrate an experiment conducted by a chemical engineer to
study the effect of three process variables (temperature, catalyst and pH) on the
chemical yield. The results of the experiment are given in Table 3.9. The engineer
was interested in studying the effect of three process variables and the interaction
between temperature and catalyst. The engineer has replicated each trial condi-
tion three times to obtain sufficient degrees of freedom for the experimental error.
Moreover, replication increases the precision of the experiment by reducing the SDs
used to estimate the process parameter (or factor) effects.

The first step was to construct a table (Table 3.10) for interaction between TE and
CA. The mean chemical yield at all four combinations of TE and CA was estimated.
In order to determine whether or not these variables are interacting, an interaction
plot was constructed (Figure 3.5).

As the lines are not parallel, there is an interaction between the process varia-
bles CA and TE. The graph indicates that the effect of CA is insensitive to mean
yield at low level of TE. However, maximum yield is obtained when temperature is
kept at a high level. Maximum yield is obtained when temperature is set at a high
level and CA at a low level. The interaction effect can be computed in the following
manner.

Table 3.9 Experimental Layout for the Yield Experiment

Trial TE CA pH Chemical Yield
(%)
1 -1 -1 -1 60.4, 62.1, 63.4
2 +1 -1 -1 64.1,79.4,74.0
3 -1 +1 -1 59.6,61.2,57.5
4 +1 +1 -1 66.7, 67.3, 68.9
5 -1 -1 +1 63.3, 66.0, 65.3
6 +1 -1 +1 91.2,77.4,84.9
7 -1 +1 +1 68.1,71.3, 68.6
8 +1 +1 +1 75.3,77.1,76.1

Table 3.10 TE x CA Interaction Table

TE CA Mean Chemical Yield

-1 -1 63.42
+1 -1 78.50
-1 +1 64.38

+1 +1 71.90
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Figure 3.5 Interaction plot between CA and TE.

Effect of CA at high level of TE = 71.90 — 78.50 = —6.60

Effect of CA at low level of TE = 64.38 — 63.42 = 0.96

CA X TE = %[—6.60 —0.96] = —3.78

3.6 Scenario 3

In this scenario, we share the results of an experiment carried out in a certain grind-
ing process to reduce common-cause variation (random in nature and expensive to
control in many cases). The primary purpose of the experiment in this case was to
reduce variation in the outer diameter produced by a grinding operation. The follow-
ing factors and their effects were of interest to the experimenter.

Feed Rate — Factor A — labelled as FR
Wheel Speed — Factor B — labelled as WHS
Work Speed — Factor C — labelled as WOS
Wheel Grade — Factor D — labelled as WG
Interaction between WHS and WOS
Interaction between WHS and WG

SR W=

The results of the experiment are given in Table 3.11. The response of interest
for this experiment was Signal-to-Noise ratio (SNR). SNR is a performance statistic
recommended by Dr Taguchi in order to make the process insensitive to undesirable
disturbances called noise factors (Gijo, 2005; Lochner and Matar, 1990). The pur-
pose of the SNR is to maximise the signal while minimising the impact of noise. The
whole idea is to achieve robustness, and the higher the SNR, the greater the robust-
ness will be.
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Table 3.11 SNR Values and Interactions

Trial WHS x WOS WHS x WG  Response (SNR)

1 +1 +1 53.469
2 -1 -1 50.970
3 -1 +1 49.030
4 +1 -1 56.991
5 +1 +1 49.030
6 -1 -1 46.108
7 -1 +1 46.108
8 +1 -1 44.948

Interaction Plot (data means) for SNR
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50.0
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Figure 3.6 Interaction plot between WOS and WHS.

The mean SNR at high level (+1) of WHS x WOS = 51.11

The mean SNR at low level (—1) of WHS X WOS = 48.054

Therefore, interaction effect = 3.056

Similarly, the mean SNR at high level of WHS X WG = 49.409

The mean SNR at low level of WHS x WG = 49.754

Therefore, interaction effect= —0.345

Figure 3.6 illustrates the interaction plot between the WHS and WOS. As the lines
are non-parallel, there is a strong interaction between those two factors.

Figure 3.6 shows that the effect of WOS on SNR at different levels of WHS is
not the same. As SNR needs to be maximised, the optimum combination is when
WOS and WHS are kept at a low level. Figure 3.7 illustrates the interaction plot
between the WHS and WG. As the lines exhibit near parallelism, there is no interac-
tion between those two factors.
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Interaction Plot (data means) for SNR
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Figure 3.7 Interaction plot between WG and WHS.

Exercises

1. In a certain casting process for manufacturing jet engine turbine blades, the objective of
the experiment is to determine the most important interaction effects (if there are any) that
affect part shrinkage. The experimenter has selected three process parameters: pour speed
(A), metal temperature (B) and mould temperature(C), each factor being kept at two lev-
els for the study. The response table, together with the response values, is shown below.
Calculate and analyse the two-factor interactions among the three process variables. Each
run was replicated three times to have adequate degrees of freedom for error.

Run A B C Shrinkage

1 -1 -1 -1 2.22,2.11,2.14
2 +1 -1 -1 1.42, 1.54, 1.05
3 -1 +1 -1 2.25,2.31,2.21
4 +1 +1 -1 1.00, 1.38, 1.19
5 -1 -1 +1 1.73, 1.86, 1.79
6 +1 -1 +1 2.71,2.45,2.46
7 -1 +1 +1 1.84, 1.76, 1.70
8 +1 +1 +1 2.27,2.69,2.71

2. A company that manufactures can-forming equipment wants to set up an experiment to
help understand the factors influencing surface finish on a particular steel subassembly.
The company decides to perform an eight-trial experiment with three factors at 2-levels. A
brainstorming session conducted with people within the organisation — operator, supervisor
and engineer — resulted in the finished part being measured at four places. The list of fac-
tors (A: tool radius, B: feed rate and C: Revolutions per Minute (RPM)) and the response
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(surface finish) is shown in the following experimental layout. Generate an interaction plot
for any two-way interactions with large effects.

Run A B C Surface Finish

1 -1 -1 -1 50, 50, 55, 50

2 +1 -1 -1 145, 150, 100, 110
3 -1 +1 -1 160, 165, 155, 160
4 +1 +1 -1 180, 200, 190, 195
5 -1 -1 +1 60, 65, 55, 60

6 +1 -1 +1 25, 35, 35, 30

7 -1 +1 +1 160, 160, 150, 165
8 +1 +1 +1 80, 70, 75, 80

3. Assume you are planning to carry out an experiment to investigate the sensitivity of an
amplifier to process variation. The response of interest for the experiment is the gain of the
amplifier measured in decibels (dB). You would like to evaluate the effects of three factors:
resistor (R), width of the microstrip lines (W) and a capacitor (C). Each factor was studied
at 2-levels and a simulation was conducted for studying all the combinations of factors at
their respective levels. The coded matrix is shown below.

Run w R C Gain

(dB)
1 -1 -1 -1 12.85
2 +1 -1 -1 13.01
3 -1 +1 -1 14.52
4 +1 +1 -1 14.71
5 -1 -1 +1 12.93
6 +1 -1 +1 13.09
7 -1 +1 +1 14.61
8 +1 +1 +1 14.81

Calculate and analyse all the two-factor interactions W X R, R X C and W x C.
Also construct an interaction graph between W and R. How would you interpret this
graph?
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4 A Systematic Methodology for
Design of Experiments

4.1 Introduction

It is widely considered that DOE (or experimental design) forms an essential part of
the quest for effective improvement in process performance or product/service qual-
ity. This chapter discusses the barriers and cognitive gaps in the statistical knowledge
required by industrial engineers for tackling process and quality-related problems
using DOE technique. This chapter also presents a systematic methodology to guide
people in organisations with limited statistical ability for solving manufacturing pro-
cess-related problems in real-life situations.

4.2 Barriers in the Successful Application of DOE

Although DOE has been around for nearly 100 years, research has clearly demon-
strated that less than 30% of people are knowledgeable about DOE. Despite every
effort by specialists and practitioners in quality and statistics, DOE has yet to
be applied as widely as it could and should be. A study carried out in Sweden has
shown that only 18% of Swedish companies are using the Robust Parameter Design
(RPD) methodology advocated by Dr Taguchi. These results were part of a large
study carried out as part of a European project which looked into the use of RPD
methodology across five countries (Germany, Ireland, The Netherlands, Spain and
Sweden). It was also found that the application of Six Sigma methodology has a pos-
itive influence on the application of DOE. A recent study has shown that over 60%
of companies that apply DOE frequently are knowledgeable about Six Sigma as a
problem-solving methodology. It has been observed over the years that companies
utilising Six Sigma and Design for Six Sigma (DFSS) methodologies are using DOE
more frequently than those companies which are not. The ‘effective’ application of
DOE by industrial engineers is limited in many manufacturing organisations (Antony
and Kaye, 1995). Some noticeable barriers are as folows:

« Educational barriers
The word ‘statistics’ invokes fear in many industrial engineers. The fundamental problem
begins with the current statistical education for the engineering community in their aca-
demic curriculum. The courses currently available in ‘engineering statistics’ often tend to
concentrate on the theory of probability, probability distributions and more mathemati-
cal aspects of the subject, rather than practically useful techniques such as DOE, Taguchi
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method, robust design, gauge capability studies, Statistical Process Control (SPC), etc.
It was found from various sources of literature that DOE is rarely taught at universities or
at company-provided training sessions. The best way to tackle this issue is through inces-
sant cooperation between industry and academia. In the context of small and medium
enterprises (SMEs), engineers typically do not have access to books and case studies
which demonstrate the power of DOE. In addition, most of the DOE material is availa-
ble in English but many engineers and scientists in the developing world lack adequate
English reading skills and therefore cannot use such materials. Another study has shown
that the only experiments students participate in, if any, are based on demonstration and are
often of limited educational value. Although DOE is a very powerful technique for prob-
lem solving in manufacturing companies, it was observed that both engineers and scientists
receive little or no training in DOE at the university level. The most common criticisms
of the teaching of DOE in many schools are that it is too academic in focus and that most
examples taught to engineers are far too theoretical and do not represent real-world prob-
lems. There is a clear consensus that academics needs to change the way it teaches busi-
ness statistics (Bisgaard, 1991). Engineers must be taught these powerful techniques in the
academic world with a number of supporting case studies. This will ensure a better under-
standing of the application of statistical techniques before they enter the job market.
Management barriers

Managers often don’t understand the importance of DOE in problem solving or don’t
appreciate the competitive value it brings into the organisation. In many organisations,
managers encourage their engineers to use the so-called ‘home-grown’ solutions for pro-
cess- and quality-related problems. These ‘home-grown’ solutions are consistent with
the OVAT approach to experimentation, as managers are always after quick-fix solutions
which yield short-term benefits to their organisations. Responses from managers with high
resistance to change may include the following:

+ DOE tells me what I already know.

- It sounds good, but it is not applicable to my job.

- I need to make additional effort to prove what I already know.

Many managers do not instinctively think statistically, mainly because they are not
convinced that statistical thinking adds any value to management and decision-making.
Managers in organisations believe that DOE is very demanding of resources.

Cultural barriers

Cultural barriers are one of the principal reasons why DOE is not commonly used in many
organisations. The management should be prepared to address all cultural barrier issues
that might be present within the organisation, plus any fear of training or reluctance to
embrace the application of DOE. Many organisations are not culturally ready for the intro-
duction and implementation of advanced quality improvement techniques such as DOE
and Taguchi. The best way to overcome this barrier is through intensive training programs
and by demonstrating the successful application of such techniques by other organisations
during the training. The culture of the company is very much reliant on the style of lead-
ership. If the leaders are not committed to the idea of performing industrially designed
experiments for improving quality and process efficiency, then the concept of DOE
becomes just ‘lip service’ on the part of the senior management team and will never be a
reality (Tanco et al., 2009).

Communication barriers

Research has indicated that there is very little communication between the academic and
industrial worlds. Moreover, the communication among industrial engineers, managers
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and statisticians in many organisations is limited. For the successful initiative of any

quality improvement programme, these communities should work together and make

this barrier less formidable. For example, lack of statistical knowledge for engineers
could lead to problems such as misinterpretation of historical data or misunderstanding
of the nature of interactions among factors under consideration for a given experiment.

Similarly, academic statisticians’ lack of engineering knowledge could lead to problems

such as undesirable selection of process variables and quality characteristics for the experi-

ment, lack of measurement system precision and accuracy, etc. Managers’ lack of basic
knowledge in engineering and statistics could lead to problems such as high quality costs,
poor quality and therefore lost competitiveness in the world marketplace and so on and
so forth.

« Other barriers

Negative experiences with DOE may make companies reluctant to use DOE again. The

majority of negative DOE experiences can be classified into two groups. The first relates to

technical issues and the second to non-technical issues. Technical issues include

+ choosing unreasonably large or small designs;

- 1inadequate or even poor measurement of quality characteristics;

- not choosing the appropriate levels for the process variables, etc. Non-linearity or cur-
vature effects of process variables should be explored to determine the best operating
process conditions;

- assessing the impact of ‘uncontrolled variables’ which can influence the output of the
process. Experimenters should try to understand how the ‘uncontrolled variables’ influ-
ence the process behaviour and devise strategies to minimise their impact as much as
possible; and

- lacking awareness of assumptions: data analysis, awareness of different alternatives
whey they are needed, etc.

Some of the non-technical issues include

+ lack of experimental planning;

+ executing one-shot experimentation instead of adopting sequential, adaptive and itera-
tive nature of experimentation and

+ not choosing the right process variables or design variables for the experiment in the
first round of experimentation, etc.

Commercial software systems and expert systems in DOE provide no guidance
whatsoever in classifying and analysing manufacturing process quality-related
problems from which a suitable approach (Taguchi, Classical or Shainin’s approach)
can be selected. Very little research has been done on this particular aspect and
from the author’s standpoint, this is probably the most important part of DOE. The
selection of a particular approach to experimentation (i.e. Taguchi, Classical or
Shainin) is dependent upon a number of criteria: the complexity involved, the degree
of optimisation required by the experimenter, the time required for completion of the
experiment, cost issues associated with the experiment, the allowed response time
to report back to management, etc. Moreover, many software systems in DOE stress
data analysis and do not properly address data interpretation. Thus, many engineers,
having performed the statistical analysis using such software systems, would not
know how to effectively utilise the results of the analysis without assistance from
statisticians.
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4.3 A Practical Methodology for DOE

The methodology of DOE is fundamentally divided into four phases. These are:

1. planning phase
2. designing phase
3. conducting phase
4. analysing phase.

4.3.1 Planning Phase

The planning phase is made up of the following steps. Many engineers pay special
attention on the statistical details of DOE and very little attention to the non-statis-
tical details. According to Peace (1993), experimental studies may fail not only as
a result of lack of technical knowledge of the process under study or wrong use of
statistical techniques but also due to lack of planning. It is the responsibility of the
senior management team in the organisation to create an environment that stimulates
a culture of using experimental design techniques for process optimisation problems,
product and process development projects, improving process capability through
systematically reducing excessive variation in processes, etc.

Problem Recognition and Formulation

A clear and succinct statement of the problem can create a better understanding of
what needs to be done. The statement should contain an objective that is specific,
measurable and which can yield practical value to the company (Kumar and Tobin,
1990). The creation of a multidisciplinary team in order to have a shared under-
standing of the problem is critical in the planning phase. The multidisciplinary team
should be led by someone with good knowledge of the process (a DOE specialist),
good communication skills, good interpersonal skills and awareness of team dynam-
ics. Other team members may include process engineers, a quality engineer/manager,
a machine operator, a management representative and manufacturing/production
engineers/managers. Sharing experiences and individual knowledge is critical to
assure a deeper understanding of the process providing more efficient ways to design
experiments (Romeu, 2006). Some manufacturing problems that can be addressed
using an experimental approach include

« development of new products; improvement of existing processes or products;

« improvement of the process/product performance relative to the needs and demands of
customers;

+ reduction of existing process spread, which leads to poor capability.

The objective of the experiment must be clearly specified and has to be measur-
able. Objectives can be either short term or long term. A short-term objective could
be to fix a problem related to a high scrap rate. However, this objective is not at all
specific and not measured in a true sense. What is ‘high’, for instance? What particu-
lar process causes a high scrap rate? Some aspects of Six Sigma thinking would be
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very beneficial to help the team convert this engineering or manufacturing problem
into a statistical problem.

Selection of Response or Quality Characteristic

The selection of a suitable response for the experiment is critical to the success of
any industrially designed experiment. Time spent in establishing a meaningful
response variable before a well-planned experiment is rarely wasted. The response
can be variable or attribute in nature. Variable responses such as length, thickness,
diameter, viscosity, strength, etc. generally provide more information than attribute
responses such as good/bad, pass/fail or yes/no. Moreover, variable characteristics or
responses require fewer samples than attributes to achieve the same level of statisti-
cal significance. It is also not unusual to have several responses requiring simultane-
ous optimisation, which can be quite challenging at times.

Experimenters should define the measurement system prior to performing the
experiment in order to understand what to measure, where to measure and who is
doing the measurements, etc. so that various components of variation (measure-
ment system variability, operator variability, part variability, etc.) can be evaluated.
Defining a measurement system, including human resources, equipments and meas-
urement methods, is a fundamental aspect in planning experimental studies. It is
important to ensure that equipment exists and is suitable, accessible and calibrated.
The quality of a measurement system is usually determined by the statistical prop-
erties of the data it generates over a period of time which captures both long- and
short-term variation. Experimenters should be aware of the repeatability, reproduci-
bility and uncertainty of the measurements prior to the execution of industrial experi-
ments (Launsby and Weese, 1995). It is advisable to make sure that the measurement
system is capable, stable, robust and insensitive to environmental changes.

Selection of Process Variables or Design Parameters

Some possible ways to identify potential process variables are the use of engineering
knowledge of the process, historical data, cause-and-effect analysis and brainstorm-
ing. This is a very important step of the experimental design procedure. If important
factors are left out of the experiment, then the results of the experiment are not accu-
rate or useful for any improvement actions. It is a good practice to conduct a screen-
ing experiment in the first phase of any experimental investigation to identify the
most important design parameters or process variables. More information on screen-
ing experiments/designs can be obtained from Chapter 5.

Classification of Process Variables

Having identified the process variables, the next step is to classify them into con-
trollable and uncontrollable variables. Control variables are those which can be
controlled by a process engineer/production engineer in a production environ-
ment. Uncontrollable variables (or noise variables) are those which are difficult or
expensive to control in actual production environments. Variables such as ambient
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temperature fluctuations, humidity fluctuations, raw material variations, etc. are
examples of noise variables. These variables may have an immense impact on the
process variability and therefore must be dealt with for enhanced understanding of
our process. The effect of such nuisance variables can be minimised by the effective
application of DOE principles such as blocking, randomisation and replication. (For
more information on these three principles, refer to Chapter 8.)

Determining the Levels of Process Variables

A level is the value that a process variable holds in an experiment. For example, a
car’s gas mileage is influenced by such levels as tyre pressure, speed, etc. The num-
ber of levels depends on the nature of the process variable to be studied for the
experiment and whether or not the chosen process variable is qualitative (type of cat-
alyst, type of material, etc.) or quantitative (temperature, speed, pressure, etc.). For
quantitative process variables, two levels are generally required in the early stages
of experimentation. However, for qualitative variables, more than two levels may be
required. If a non-linear function is expected by the experimenter, then it is advisable
to study variables at three or more levels. This would assist in quantifying the non-
linear (or curvature) effect of the process variable on the response function.

List All the Interactions of Interest

Interaction among variables is quite common in industrial experiments. In order
to effectively interpret the results of the experiment, it is highly desirable to have
a good understanding of the interaction between two process variables (Marilyn,
1993). The best way to relate to interaction is to view it as an effect, just like a factor
or process variable effect. Since it is not an input you can control, unlike factors or
process variables, interactions do not enter into descriptions of trial conditions. In the
context of DOE, we generally study two-order interactions. The number of two-order
interactions within an experiment can be easily obtained by using a simple equation:

nX(n-—1)
2

N = 4.1

where n is the number of factors.

For example, if you consider four factors in an experiment, the number of two-
order interactions can be equal to six.

The questions to ask include ‘Do we need to study the interactions in the initial
phase of experimentation?’ and ‘How many two-order interactions are of interest to
the experimenter?” The size of the experiment is dependent on the number of fac-
tors to be studied and the number of interactions, which are of great concern to the
experimenter.

4.3.2 Designing Phase

In this phase, one may select the most appropriate design for the experiment. Some
DOE practitioners would argue that proper experimental design is often more
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important than sophisticated statistical analysis. The author would agree with this
point as the damage caused by poor experimental design is irreparable. The choice
of design depends upon a number of factors such as the number of factors to be stud-
ied, the number of levels at which the factors are to be explored, the resources and
budget allocated for the experiment, the nature of the problem and objectives to be
achieved, etc. Experiments can be statistically designed using the classical approach
advocated by Sir Ronald Fisher, the orthogonal array approach advocated by Dr
Genichi Taguchi or the variables search approach promoted by Dr Dorian Shainin.
This book is focused on the classical DOE approach advocated by Sir Ronald Fisher.
Within this approach, one can choose full factorial, fractional factorial or screening
designs (such as Plackett-Burmann designs). These designs are introduced to the
reader in the subsequent chapters.

During the design stage, it is quite important to consider the confounding struc-
ture and resolution of the design (Minitab, 2000). It is good practice to have the
design matrix ready for the team prior to executing the experiment. The design
matrix generally reveals all the settings of factors at different levels and the order
of running a particular experiment. Experimenters are advised to carefully consider
the three principles of experimental design prior to conducting the real experiment.
The principles of randomisation, replication and blocking should be carefully taken
into account but depending upon the nature of the problem and the objectives set for
the experiment (Montgomery, 2001). These principles will be explained in detail at a
later stage of the book.

4.3.3 Conducting Phase

This is the phase in which the planned experiment is carried out and the results are
evaluated. Several considerations are recognised as being recommended prior to exe-
cuting an experiment, such as

+ selection of a suitable location for carrying out the experiment. It is important to ensure
that the location is not affected by any external sources of noise (vibration, humidity, etc.);

+ availability of materials/parts, operators, machines, etc. required for carrying out the
experiment;

+ assessment of the viability of an action in monetary terms by utilising cost—benefit analy-
sis. A simple evaluation must also be carried out in order to verify that the experiment is
the only possible solution for the problem at hand and justify that the benefits to be gained
from the experiment will exceed the cost of the experiment.

The following steps may be useful while performing the experiment in order to
ensure that it is performed according to the prepared experimental design matrix (or
layout).

« The person responsible for the experiment should be present throughout the experiment. In
order to reduce the operator-to-operator variability, it is best to use the same operator for
the entire experiment.

*  Monitor the experimental trials. This is to find any discrepancies while running the experi-
ment. It is advisable to stop running the experiment if any discrepancies are found.

» Record the observed response values on the prepared data sheet or directly into the computer.

« Any experiment deviations and unusual occurrences must be recorded and analysed.
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4.3.4 Analysing Phase

It has been quite interesting to observe over the years that many engineers rush into
the conducting and analysing phases of DOE and pay little attention to the planning
and designing phases. My personal message, as a mechanical engineer, to the engi-
neering fraternity is that it is the planning and designing phases that are crucial to the
success of the experiment and not the executing and analysing phases. I am not sug-
gesting that conducting and analysing the phases of DOE are unimportant but if we
do not plan and design an experiment correctly the first time, there is no way to save
the experiment with a sophisticated statistical analysis.

Having performed the experiment, the next phase is to analyse and interpret the
results so that valid and sound conclusions can be derived. In DOE, the following are
the possible objectives to be achieved from this phase:

+ Determine the design parameters or process variables that affect the mean process
performance.

+ Determine the design parameters or process variables that influence performance variability.

» Determine the design parameter levels that yield the optimum performance.

+ Determine whether further improvement is possible.

The following tools can be used for the analysis of experimental results. As the
focus of this book is to ‘Keep It Statistically Simple’ for the readers, the author will
be introducing only simple but powerful tools for the analysis and interpretation of
results. There are a number of DOE books available on the market that cover more
sophisticated statistical methods for the analysis. The author encourages readers to
use Minitab software for the analysis of experimental results.

4.4 Analytical Tools of DOE

4.4.1 Main Effects Plot

A main effects plot is a plot of the mean response values at each level of a design
parameter or process variable. One can use this plot to compare the relative strength
of the effects of various factors. The sign and magnitude of a main effect would tell
us the following:

» The sign of a main effect tells us of the direction of the effect, that is, whether the average
response value increases or decreases.
+ The magnitude tells us of the strength of the effect.

If the effect of a design or process parameter is positive, it implies that the aver-
age response is higher at a high level rather than a low level of the parameter setting.
In contrast, if the effect is negative, it means that the average response at the low-
level setting of the parameter is more than at the high level. Figure 4.1 illustrates the
main effect of temperature on the tensile strength of a steel specimen. As you can see
from the figure, tensile strength increases when the temperature setting varies from
low to high (i.e. —1 to 1).
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Figure 4.1 Main effect plot of temperature on tensile strength.

The effect of a process or design parameter (or factor) can be mathematically cal-
culated using the following simple equation:
_ 4.2)

E; = Fiy = Foy

where 17“( L1y = average response at high-level setting of a factor, and 17(_1) = average
response at low-level setting of a factor.

4.4.2 Interactions Plots

An interactions plot is a powerful graphical tool which plots the mean response of
two factors at all possible combinations of their settings. If the lines are parallel, this
indicates that there is an interaction between the factors. Non-parallel lines are an
indication of the presence of interaction between the factors. More information on
interactions and how to interpret them can be seen in Chapter 3.

4.4.3 Cube Plots

Cube plots display the average response values at all combinations of process or
design parameter settings. One can easily determine the best and worst combina-
tions of factor levels for achieving the desired optimum response. A cube plot is use-
ful to determine the path of steepest ascent or descent for optimisation problems.
Figure 4.2 illustrates an example of a cube plot for a cutting tool life optimisation
study with three tool parameters: cutting speed, tool geometry and cutting angle. The
graph indicates that tool life increases when cutting speed is set at low level and cut-
ting angle and tool geometry are set at high levels. The worst condition occurs when
all factors are set at low levels.

4.4.4 Pareto Plot of Factor Effects

The Pareto plot allows one to detect the factor and interaction effects that are most
important to the process or design optimisation study one has to deal with. It displays



42 Design of Experiments for Engineers and Scientists

54.667 42.333
|
|
|
39.667 !
; 49.333
|
|
|
Tool geometry I
42 333/1_ _________________ 317-667
7
//// Cutting angle
» 26.000 L~ 34.667 4

-1 Cutting speed

Figure 4.2 Example of a cube plot for cutting tool optimisation study.
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Figure 4.3 Pareto plot of the standardised effects.

the absolute values of the effects, and draws a reference line on the chart. Any effect
that extends past this reference line is potentially important. For example, for the
above tool life experiment, a Pareto plot is constructed (Figure 4.3). The graph shows
that factors B and C and interaction AC are most important. Minitab displays the abso-
lute value of the standardised effects of factors when there is an error term. It is always
a good practice to check the findings from a Pareto chart with Normal Probability Plot
(NPP) of the estimates of the effects (refer to NPP in the following section).

4.4.5 NPP of Factor Effects

For NPPs, the main and interaction effects of factors or process (or design) parameters
should be plotted against cumulative probability (%). Inactive main and interaction
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Figure 4.4 NPP of effects for cutting tool optimisation example.

effects tend to fall roughly along a straight line, whereas active effects tend to appear
as extreme points falling off each end of the straight line (Benski, 1989). These active
effects are judged to be statistically significant. Figure 4.4 shows an NPP of effects
of factors for the above cutting tool optimisation example at a 5% significance level.
Here the significance level is the risk of saying that a factor is significant when in fact
it is not. In other words, it is the probability of the observed significant effect being
due to pure chance. The results are absolutely identical to that of a Pareto plot of fac-
tor/interaction effects.

4.4.6 NPP of Residuals

One of the key assumptions for the statistical analysis of data from industrial experi-
ments is that the data come from a normal distribution. The appearance of a moderate
departure from normality does not necessarily imply a serious violation of the assump-
tions. Gross deviations from normality are potentially serious and require further
analysis. In order to check the data for normality, it is best to construct an NPP of the
residuals. NPPs are useful for evaluating the normality of a data set, even when there is
a fairly small number of observations. Here residual is the mean difference between the
observed value (obtained from the experiment) and the predicted or fitted value. If the
residuals fall approximately along a straight line, they are then normally distributed. In
contrast, if the residuals do not fall fairly close to a straight line, they are then not nor-
mally distributed and hence the data do not come from a normal population.

The general approach to dealing with non-normality situations is to apply vari-
ance-stabilising transformation on the data. An explanation on data transforma-
tion is beyond the scope of this book and therefore readers are advised to refer to
Montgomery (2001), which covers the use of data transformation and how to per-
form data transformation in a detailed manner. Figure 4.5 illustrates the NPP of
residuals for the cutting tool optimisation example. The graph shows that the points
fall fairly close to a straight line, indicating that the data are approximately normal.
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Figure 4.5 NPP of residuals for the cutting tool example.

Figure 4.6 Contour plot of cutting tool life.
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4.4.7 Response Surface Plots and Regression Models

Response surface plots such as contour and surface plots are useful for establishing
desirable response values and operating conditions. In a contour plot, the response
surface is viewed as a two-dimensional plane where all points that have the same
response are connected to produce contour lines of constant responses. A surface
plot generally displays a three-dimensional view that may provide a clearer pic-
ture of the response. If the regression model (i.e. first-order model) contains only
the main effects and no interaction effect, the fitted response surface will be a plane
(i.e. contour lines will be straight). If the model contains interaction effects, the con-
tour lines will be curved and not straight. The contours produced by a second-order
model will be elliptical in nature. Figures 4.6 and 4.7 illustrate the contour and sur-

face plots of cutting tool life (hours).
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Figure 4.7 Surface plot of cutting tool life.

Both contour and surface plots help experimenters to understand the nature of
the relationship between the two factors (cutting speed and cutting angle) and the
response (life in hours). As can be seen in Figures 4.6 and 4.7, the tool life increases
with an increase in cutting angle and a decrease in cutting speed. Moreover, we have
used a fitted surface (Figure 4.7) to find a direction of potential improvement for a
process. A formal way to seek the direction of improvement in process optimisation
problems is called the method of steepest ascent or descent (depending on the nature
of the problem at hand, i.e. whether one needs to maximise or minimise the response
of interest).

4.5 Model Building for Predicting Response Function

This section is focused on the model building and prediction of response function at
various operating conditions of the process. Here the author uses a regression model
approach to illustrate the relationship between a response and a set of process param-
eters (or design parameters) which affect the response. The use of this regression
model is to predict the response for different combinations of process parameters
(or design parameters) at their best levels. In order to develop a regression model
based on the significant effects (either main or interaction), the first step is to deter-
mine the regression coefficients. For factors at 2-levels, the regression coefficients
are obtained by dividing the estimates of effects by 2. The reason is that a two-unit
change (i.e. low-level setting (—1) to a high-level setting (4+1)) in a process param-
eter (or factor) produces a change in the response function. A regression model for
factors at 2-levels is usually of the form

=By Bx + Byxy + o A Boxyxy + By o e (4.3)



46 Design of Experiments for Engineers and Scientists

where (3, 3, are the regression coefficients and {3, is the average response in a facto-
rial experiment. The term ‘€’ is the random error component which is approximately
normal and independently distributed with mean zero and constant variance 6. The
regression coefficient 3;, corresponds to the interaction between the process param-
eters x; and x,. For example, the regression model for the cutting tool life optimisa-
tion study is given by

y = 40.833 + 5.667(B) + 3.417(C) — 4.417(AC) 4.4)

The response values obtained from Eq. (4.4) are called predicted values and the
actual response values obtained from the experiment are called observed values.
Residuals can be obtained by taking the difference of observed and predicted (or
fitted) values. Equation (4.4) provides us with a tool that can be used to study the
response as a function of three tool life parameters: cutting speed, tool geometry and
cutting angle. We can predict the cutting tool life for various combinations of these
tool parameters. For instance, if all the cutting tool life parameters are kept at low-
level settings, the predicted tool life then would be

40.833 + 5.667(B) + 3.417(C) — 4.417(AC)
= 40.833 + 5.667(— 1) + 3.417(— 1) — 4.417(—1) X (= 1)
= 27332

y

The observed value of tool life (refer to cube plot) is 26 h. The difference between
the observed value and predicted value (i.e. residual) is — 1.332. Similarly, if all the
cutting tool life parameters are kept at the optimal condition (i.e. cutting speed =
low, tool geometry = high and cutting angle = high), the predicted tool life would
then be

$ = 40.883 + 5.667(+1) + 3.417(+1) — {4.417(—1) X (+1)}
= 54384

Once the statistical analysis is performed on the experimental data, it is important
to verify the results by means of confirmatory experiments or trials. The number of
confirmatory runs at the optimal settings can vary from 4 to 20 (4 runs if expensive,
20 runs if cheap).

4.6 Confidence Interval for the Mean Response

The statistical confidence interval (CI) (at 99% confidence limit) for the mean
response can be computed using the equation

Cl=y=+ 3{9} 4.5)

Jn
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Table 4.1 Confirmation Trials

Results from Confirmation Trials

53.48
52.69
53.88
54.12
54.36

where

Y = mean response obtained from confirmation trials or runs
SD = standard deviation of response obtained from confirmation trials
n = number of samples (or confirmation runs).

For the cutting tool life example, five samples were collected from the process
at the optimal condition (i.e. cutting speed = low, tool geometry = high and cutting
angle = high). The results of the confirmation trials are illustrated in Table 4.1.

y = 53.71hand SD = 0.654h
Ninety-nine per cent CI for the mean response is given by:

Cl =53.71= 3{@}

J5

= 5371 = 0.877 = (54.55,52.83)

As the predicted value based on the regression model falls within the statistical
CI, we will consider our model good.

If the results from the confirmation trials or runs fall outside the statistical CI,
possible causes must be identified. Some of the possible causes may be

» incorrect choice of experimental design for the problem at hand

« improper choice of response(s) for the experiment

+ inadequate control of noise factors, which cause excessive variation

+ omission of some important process or design parameters in the first rounds of experi-
mentation

¢ measurement error

+ wrong assumptions regarding interactions

- errors in conducting the experiment, etc.

If the results from the confirmatory trials or runs are within the CI, then improve-
ment action on the process is recommended. The new process or design parameters
should be implemented with the involvement of top management. After the solution
has been implemented, control charts on the response(s) or key process parameters
should be constructed for constantly monitoring, analysing, managing and improving
the process performance.
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4.7 Statistical, Technical and Sociological Dimensions
of DOE

4.7.1 Statistical Dimension of DOE

This dimension refers to all statistical assumptions and mathematical methods that
validate the application of DOE. Some of the key aspects one may consider include
(Tanco et al., 2008) the following:

«  Low precision of the experiment due to inadequate samples collected per experimental
run — Quite often engineers in organisations rush into experiments without having a good
understanding of the number of replicates they need to have per trial condition. The levels
of o and P risks should be understood in the planning phase. Here « is the risk of wrongly
deciding that a process variable is a signal in our process when in reality it is not. On the
other hand, p represents the risk of missing a signal and considering it as underlying noise.
The levels of both risks should be chosen in a way that is both technically acceptable and
economically feasible. The number of replicates is related to its power or capability to
detect signals; as each experimental run requires resources, there is a trade-off between
precision and the allocated budget for the experiment.

*  Randomisation is difficult as some of the factors were hard to change — When some of the fac-
tors are hard to change, it is good practice to look into ‘split-plot” design. It is common to forget
the split-plot structure of the design and analyse the data as a full factorial design, but this can
lead to erroneous conclusions on the determination of significant factors and their interactions.

» Lack of proper analysis of residuals — Some assumptions before we carry out proper statisti-
cal analysis must be verified to validate the results of the analysis. Emphasis must be given
to independence of the residuals, the variance stability and normality assumption of data.

» Data transformation before the identification of factor effects on the response variable — In
DOE, we transform the response variable to stabilise the variance of the residuals and Box—
Cox transformation is very useful when little is known about the behaviour of the process.

»  Proper analysis of interactions and the confounding pattern — Many engineers in organisa-
tions do not have a good understanding of how to analyse interactions and how to interpret
the confounding structure provided by statistical software systems. This scenario is very
much applicable when engineers are trying to characterise a process using low-resolution
design where main effects are confounded with two interaction effects.

4.7.2 Technical Dimension of DOE

Technical dimension refers to the way experiments are executed as well as all activi-
ties involved in experimental planning until some realistic conclusions are derived.
Technical dimensions include

*  Process stability before conducting DOE — A number of scholars debate the point as
though experimenters need to achieve process stability prior to performing a designed
experiment (Costa et al., 2006). Although randomisation and blocking are principles used
to reduce suspected noises in the process, it is advisable to achieve process stability (as
much as possible) so that noise factors will not prevent the identification of important fac-
tor and interaction effects.
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Involvement of key players for identification of factors — It is absolutely critical to involve
all the stakeholders at the planning phase in order to reach a consensus on which factors
should be included in the experiment. Experiments are always very expensive and time
consuming and therefore it is advisable to clearly define the team formation and the roles
and responsibilities of all team members.

Selection of wrong levels and not taking time to explore curvature effects — Selecting the
right process variables and choosing the appropriate levels for the process variables is not
a straightforward process in industrially designed experiments. Experimenters should be
able to explore the curvature effects of process variables to determine if non-linear effects
are present. This can be achieved by adding centre points. It is often a good practice to start
with 2¥ factorial or 2 ~ P) fractional factorial experiments and then add centre points to
determine the presence of curvature effects of process variables on the response or quality
characteristic of interest (Anderson and Kraber, 1999).

4.7.3 Sociological and Managerial Dimensions of DOE

DOE in an industrial context is always an iterative process; each experiment answers some
questions and triggers new ones, and so on until the team concludes that the full knowl-
edge required is sufficient to reach the expected degree of excellence of the process. Some
of the sociological and managerial dimensions include

Communicating the need for DOE at the Senior Management level — Clear and open com-
munication to the senior management team about the need for DOE is a critical factor. It is
absolutely essential to share world-class examples to gain the attention of the senior man-
agement team.

Communicating the need for DOE at the shop floor level — Process improvement tech-
niques such as DOE are not meant just for senior- and middle-level managers. For DOE
to be successful, it is absolutely critical to involve people on the shop floor to identify the
potential process variables or factors which are believed to have an impact on the response
or quality characteristic. Operators and supervisors on the shop floor can also give good
input into the selection of levels for each process variable.

Using the DOE project charter as a tool to develop a good business case for the prob-
lem — Many Six Sigma-related projects in organisations begin with a project charter which
encompasses the cost-benefits, the nature of the problem, what to measure in order to
describe the problem, how to measure, etc. I do think it might be a good practice for engi-
neers and experimenters to develop a DOE project charter at the planning phase and pre-
sent it to the senior management team for approval.

Exercises

B

n

What are the common barriers to the successful application of DOE?

Discuss the four phases in the methodology of DOE.

What are the criteria for the selection of an experimental design?

Explain the key considerations which need to be taken into account prior to executing an
experiment.

What is the purpose of NPP of residuals?

Explain the role of Response Surface Plots in industrial experiments.
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Why do we need to develop regression models?

What are the possible causes of experiments being unsuccessful?

What are the statistical dimensions of the execution of an industrially designed experiment?
10. What are the technical dimensions of the execution of an industrially designed experiment?
11. What are the managerial and sociological dimensions of the execution of an industrially
designed experiment?

L ®
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5 Screening Designs

5.1 Introduction

In many process development and manufacturing applications, the number of poten-
tial process or design variables or parameters (or factors) is large. Screening is used
to reduce the number of process or design parameters (or factors) by identifying
the key ones that affect the product quality or process performance. This reduction
allows one to focus process improvement efforts on the few really important factors,
or the ‘vital few’.

Screening designs provide an effective way to consider a large number of process
or design parameters (or factors) in a minimum number of experimental runs or tri-
als (i.e. with minimum resources and budget). The purpose of screening designs is to
identify and separate out those factors that demand further investigation. This chap-
ter is focused on the Screening Designs expounded by R.L. Plackett and J.P. Burman
in 1946 — hence the name Plackett—-Burman designs (P-B designs). P-B designs are
based on Hadamard matrices in which the number of experimental runs or trials is a
multiple of four, i.e. N =4, §, 12, 16 and so on, where N is the number of trials/runs
(Plackett and Burmann, 1946).

P-B designs are suitable for studying up to k = (N—1)/(L—1) factors, where L
is the number of levels and k is the number of factors. For instance, using a 12-run
experiment, it is possible to study up to 11 process or design parameters at 2-levels.
One of the interesting properties of P-B designs is that all main effects are estimated
with the same precision. This implies that one does not have to anticipate which fac-
tors are most likely to be important when setting up the study. For screening designs,
experimenters are generally not interested in investigating the nature of interactions
among the factors (Antony, 2002). The aim is to study as many factors as possible in
a minimum number of trials and to identify those that need to be studied in further
rounds of experimentation in which interactions can be more thoroughly assessed.

5.2 Geometric and Non-geometric P-B Designs

Geometric P-B designs are those in which N is a power of two. The number of runs
can be 4, 8, 16, 32, etc. Geometric designs are identical to fractional factorial designs
(refer to Chapter 7) in which one may be able to study the interactions between fac-
tors. For example, an eight-run geometric P-B design is presented in Table 5.1. This
allows one to study up to seven factors at 2-levels.

Design of Experiments for Engineers and Scientists. DOI: http://dx.doi.org/10.1016/B978-0-08-099417-8.00005-5
Copyright © 2014 Jiju Antony. Published by Elsevier Ltd. All rights reserved.
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Table 5.1 An Eight-Run Geometric P-B Design

A B C D E F G

+1 -1 -1 +1 -1 +1 +1
+1 +1 -1 -1 +1 -1 +1
+1 +1 +1 -1 -1 +1 -1
-1 +1 +1 +1 -1 -1 +1
+1 -1 +1 +1 +1 -1 -1
-1 +1 -1 +1 +1 +1 -1
-1 -1 +1 -1 +1 +1 +1

-1 -1 -1 -1 -1 -1 -1

Table 5.2 Design Matrix for a
Four-Run Geometric P-B Design

A B C
-1 +1 +1
+1 -1 +1
+1 +1 -1
-1 -1 -1

Each P-B design can be constructed easily using a ‘generating vector’ which, for
example, in the case of N = 4 has the form (-1 +1 +1). The design matrix or experi-
mental layout is obtained by arranging the vector as the first column and off-setting
by one vector element for each new column. In other words, a new column is gener-
ated from the previous one by moving the elements of the previous column down
once and placing the last element in the first position. The matrix is completed by
a row of ones. Table 5.2 illustrates the competed design matrix for a four-run P-B
design (N = 4) using the above generating vector.

Non-geometric P-B designs are designs which are multiples of four but are not
powers of two. Such designs have runs of 12, 20, 24, 28, etc. These designs do not
have complete confounding of effects. For non-geometric P-B designs, each main
effect is partially confounded with all interactions that do not contain the main effect
(Wheeler, 1988). If the interaction effect is suspected to be large, then the interac-
tion may distort the estimated effects of several process or design parameters, since
each interaction is partially confounded with all main effects except the two interact-
ing factors. Table 5.3 illustrates the design matrix for a 12-run non-geometric P-B
design with generating vector (+1 +1 —1 +1 +1 +1 —1 —1 —1 +1 —1). This design
should not be used to analyse interactions. A 12-run P-B design is generally used for
studying 11 main effects. There is nothing wrong with having fewer than 11 factors.
If the process is suspected to be highly interactive, it would be better to use a geo-
metric design as opposed to a non-geometric design. In contrast, if interactions are of
no concern to the experimenter, it is advisable to use a non-geometric design.
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Table 5.3 A 12-Run Non-geometric P-B Design

A B C D E F G H I J K
+1 -1 +1 -1 -1 -1 +1 +1 +1 -1 +1
+1 +1 -1 +1 -1 -1 -1 +1 +1 +1 -1
-1 +1 +1 —1 +1 -1 -1 -1 +1 +1 +1
+1 -1 +1 +1 -1 +1 -1 -1 -1 +1 +1
+1 +1 -1 +1 +1 -1 +1 -1 -1 -1 +1
+1 +1 +1 —1 +1 +1 -1 +1 -1 —1 -1
-1 +1 +1 +1 -1 +1 +1 -1 +1 -1 -1
-1 -1 +1 +1 +1 -1 +1 +1 -1 +1 -1
-1 -1 -1 +1 +1 +1 -1 +1 +1 —1 +1
+1 -1 -1 -1 +1 +1 +1 -1 +1 +1 -1
-1 +1 -1 -1 -1 +1 +1 +1 -1 +1 +1

-1 -1 -1 —1 -1 -1 -1 -1 -1 —1 -1

The generating vectors for P-B designs are as follows:

N=4(-1+1+1)
N=8(+1 +1+1 —1+1-1-1)

N=12(+1+1 =1 +1 +1 +1 =1 =1 =1 +1 =1)

N=16(+1+1 41 +1 =1 +1 =1 +1 +1 =1 =1 +1 =1 =1 1)
N=20(+1+1 =1 =141 +1+14+1 =1 4+1 =1 +1 =1 =1 =1 =1 +1 +1 =1)

The obvious advantage of P-B designs is the limited number of runs to evalu-
ate large number of factors. Since interactions are not of interest to the experimenter
for P-B designs, the important main effects can be selected for more in-depth study.
The obvious disadvantage of P-B designs is tied to the assumption required to evaluate
up to k = (N — 1) factors in N runs. It is important to note that one can study fewer than
(N — 1) factors in N runs. The unused columns can be used to estimate experimental
error (Barrentine, 1999). Geometric P-B designs are resolution III designs and there-
fore these designs can be folded over to achieve a design resolution I'V.

Example 5.1

In this section, the author would like to illustrate a simple example with an
eight-run P-B design which has been used for studying seven factors. The data
for this example is taken from Barrentine’s book An introduction to Design of
Experiments: A Simplified Approach. This example is based on the manufac-
turing process of a paperboard product. The objective of the experiment was
to increase the puncture resistance of this paperboard product. The response
or quality characteristic of interest to the team conducting the experiment was
the force required to penetrate the material. The objective was to maximise the
mean force required to penetrate the material. Seven factors at 2-levels were
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studied using an eight-run geometric P-B design. Table 5.4 presents the factors
selected from the brainstorming session and their levels.

Table 5.4 List of Factors and Their Levels for the Experiment

Factors Labels Low-Level High-Level
Setting Setting

Paste temperature A 130°F 160°F

Amount of additive B 0.2% 0.5%

Press roll pressure C 40 psi 80 psi

Paper moisture D Low High

Paste type B No clay With clay

Cure time 18 10 days 5 days

Machine speed G 120 fpm 200fpm

Table 5.5 presents the results of an eight-run geometric P-B design experi-
ment with two replicates per experimental trial condition.

Table 5.5 Design Matrix of an Eight-Run Geometric P-B Design for the Experiment

A B C D E F G R1 R2

+1 -1 -1 +1 -1 +1 +1 12.5 16.84
+1 +1 -1 -1 +1 -1 +1 42.44 39.29
+1 +1 +1 -1 -1 +1 -1 55.08 47.57
-1 +1 +1 +1 -1 -1 +1 49.37 47.69
+1 -1 +1 +1 +1 -1 —1 55.43 52.80
-1 +1 -1 +1 +1 +1 -1 42.51 35.02
-1 -1 +1 -1 +1 +1 +1 51.13 57.92
-1 -1 -1 -1 -1 -1 -1 15.61 13.65

The data was analysed using Minitab software and the results are illustrated
below. The first task was to identify the key main effects that were most influential
on the response (i.e. force). Figure 5.1 presents a standardised normal plot of effects
for the above experiment. Effects C, E and B fall away from the straight line, which
implies that they are statistically significant at 5% significance level. Effects A, D, F
and G fall along the straight line and therefore can be treated as inactive effects. It is
important to note that one can consider even a 10% significance level for screening
designs in order to ensure that no important factor effects or parameters are omitted
in the first round of experimentation.

In order to substantiate the findings of normal plot, the author have used the
Pareto plot of effects. The Pareto plot (Figure 5.2) shows that effects C (press roll
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Figure 5.2 Pareto plot of the effects for the experiment.

pressure), E (paste type) and B (amount of additive) are most important to the pro-
cess and therefore should be studied in greater depth. The effect plot of the signifi-
cant effects is shown in Figure 5.3.

From the above results, one may conclude that main effects C (press roll pres-
sure), E (paste type) and B (amount of additive) are found to have significant impact
on the mean puncture resistance (i.e. the force required to penetrate the paper board).

In order to analyse the factors affecting variability in force, we need to calculate
the SD of observations at each experimental design point. The results are given in
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Figure 5.3 Main effects plot of the significant effects.

Table 5.6 Design Matrix of an Eight-Run Geometric P-B Design with Standard
Deviation Values

A B C D E F G S In(SD)
+1 -1 -1 +1 -1 +1 +1 3.07 1.122
+1 +1 -1 -1 +1 -1 +1 2.23 0.802
+1 +1 +1 -1 -1 +1 -1 5.31 1.670
-1 +1 +1 +1 -1 -1 +1 1.18 0.166
+1 -1 +1 +1 +1 -1 -1 1.86 0.621
-1 +1 -1 +1 +1 +1 -1 5.30 1.668
-1 -1 +1 -1 +1 +1 +1 4.80 1.569
-1 -1 -1 -1 -1 -1 -1 1.39 0.329

Table 5.6. As we have seen before in the cake baking example (refer to Chapter 3),
the SD of observations do not follow a normal distribution. Therefore we transform
the sample SD by taking their logarithms, as the logarithms of the SD will be much
closer to being normally distributed (refer to Chapter 3). It is important to note that
SD can be computed using any scientific calculator.

Figure 5.4 shows a standardised normal plot of effects affecting In(SD). The nor-
mal plot indicates that only factor F (cure time) influenced the variation in the punc-
ture resistance (i.e. force). Further analysis of factor F has revealed that variability
is maximum when cure time is set at high level (i.e. 5 days). This can be seen in
Figure 5.5.

The conclusions are that factors C, B and E have a significant impact on process
average, whereas factor F has a significant impact on process variability. The other
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factors such as A, D and G can be set at their economic levels since they do not
appear to influence either the process average or the process variability. The next
stage of the experimentation would be to consider the interaction among the factors
and select the optimal settings from the experiment that yields maximum force with
minimum variability. This can be accomplished by utilising more powerful designs
such as full factorials or fractional factorial designs with resolution IV (i.e. main
effects are free of third-order interactions or two-factor interactions are confounded
with other two-factor interactions).
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Example 5.2

In this example, we consider a plastic foam extrusion process. A process
improvement team was formed to investigate what affects the porosity of plastic
parts. After a thorough brainstorming session with quality engineers, the process
manager and the operators, it was identified that eight process parameters might
have some impact on porosity. Table 5.7 presents the list of parameters and their
levels for the experiment. Each factor was studied at 2-levels. As the total degrees
of freedom for studying eight factors at 2-levels is equal to 8, it was decided to
choose a non-geometric 12-run P-B design with 11 degrees of freedom. The
extra 3 degrees of freedom can be used to estimate experimental error. Table 5.8
presents the experimental layout with response values in both standard and ran-
dom order.

Table 5.7 List of Process Parameters and Their Levels for the Experiment

Process Parameters Labels Low Level (—1) High Level (+1)
Temperature profile A 1 2

Temperature after heating B 210°C 170°C
Temperature after expansion C 170°C 150°C
Temperature before coating die D 130°C 115°C
Extrusion speed E 6 m/min 4.5 m/min
Adhesive coating thickness 17 0.7 mm 0.4mm
Adhesive coating temperature G 115°C 100°C
Expansion angle H Max Min

Table 5.8 Experimental Layout for 12-Run P-B Design with Response Values

Run A B C D E F G H Porosity (%)
1(6) +1 +1 -1 +1 +1 +1 -1 -1 44.8
2(11) +1 -1 +1 +1 +1 -1 —1 —il 37.2
309 -1 +1 +1 +1 -1 —Il =1l +1 36.0
4. (7) +1 +1 +1 -1 -1 -1 +1 -1 34.8
5(2) +1 +1 -1 -1 -1 +1 -1 +1 46.4
6 (1) +1 -1 -1 -1 +1 —Il +1 +1 24.8
7(5) -1 -1 -1 +1 -1 +1 +1 -1 43.6
8 (12) -1 -1 +1 -1 +1 +1 -1 +1 44.8
9(3) -1 +1 -1 +1 +1 —Il +1 +1 24.0

10 (8) +1 -1 +1 +1 -1 +1 +1 +1 34.4

11 (4) -1 +1 +1 -1 +1 +1 +1 —il 27.2

12 (10) -1 -1 -1 -1 -1 -1 -1 -1 49.6

Note: Numbers in parentheses represent the random order of experimental runs or trials.
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The objective of the experiment was to determine the key parameters that affect
percentage porosity. The Minitab software system was used for analysis purposes.
Figure 5.6 illustrates a standardised Pareto plot of effects for the experiment.
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Figure 5.6 Standardised Pareto plot of Effects for the plastic foam extrusion process.
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Figure 5.7 Main effects plot for the experiment.

Figure 5.6 shows that process parameters such as G (adhesive coating tempera-
ture), E (extrusion speed) and F (adhesive coating thickness) have significant impact
on porosity. These parameters should be further explored using full fractional
designs and more advanced methods such as response surface methods, if necessary.
In the next stage of experimentation, one should analyse the interactions among the
parameters E, F and G. In order to identify which levels of these parameters yield
minimum porosity, we may consider an effects plot (Figure 5.7). Figure 5.7 shows
that E at high level, F at low level and G at high level yields minimum porosity.
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Figure 5.7 shows that porosity will decrease when temperature is kept at high

level (100°C). Similarly, porosity decreases as extrusion speed is kept at high level

4

.5 m/min) and coating thickness at low level (0.7 mm).

Example 5.3

In this section, the author would like to illustrate an example with a 12-run
Taguchi Orthogonal Array which has been used for studying seven factors. The
data for this example is taken from Kiemele et al. (2000). In this example, we
consider a process of producing the small cylindrical protective mechanism that
houses the solid explosive material used to inflate the air bag in an automobile.
Each trial condition was replicated four times to observe variation within the
trials. The response of interest for the experiment was the diameter of cylinder
and the target value for diameter was 800. Table 5.9 presents the experimental
layout with the factors and the results. The last two columns represent the mean
(y-bar) and SD of diameter of the cylinder.

Table 5.9 Experimental Layout for Screening Seven Factors at 2-Levels

RmA B C D E F G Y, Y, Y, Y, y-bar SD

1 -1 -1 -1 -1 =1 —1 —1 803.00 800.77 804.64 799.34 801.94 2.35
2 -1 -1 -1 =1 =1 +1 +1 806.31 804.80 807.19 803.80 805.53 1.52
3 -1 -1 +1 +1 +1 -1 —1 806.89 795.18 797.31 809.94 802.33 7.19
4 -1 +1 —1 +1 +1 —1 +1 80549 79547 794.50 804.59 800.01 5.83
5 =1 +1 +1 =1 +1 +1 -1 80229 801.69 799.96 802.94 801.72 1.28
6 -1 +1 +1 +1 -1 +1 +1 811.38 798.87 811.01 800.78 805.51 6.61
7 +1 -1 +1 +1 =1 -1 +1 79573 794.57 801.15 794.03 796.37 3.26
8 +1 -1 +1 -1 +1 +1 +1 801.36 802.22 798.58 800.09 800.56 1.59
9 +1 -1 -1 +1 +1 +1 -1 79232 799.13 803.69 804.33 799.87 5.54
10 +1 +1 +1 -1 -1 —1 —1 803.23 802.30 798.00 800.21 800.94 2.33
11 +1 +1 -1 +1 —1 +1 -1 806.09 801.04 806.97 805.88 804.99 2.68
12 +1 +1 -1 =1 +1 —1 +1 799.02 796.58 796.61 800.55 798.19 1.95

The first part of the analysis is to determine the most important factors that influ-

ence the mean diameter of the cylinder. Obviously, not all seven factors would have
an equal impact on the diameter. So we may use a simple main effects plot to screen
the most important ones from the unimportant ones. Figure 5.8 shows the main
effects plot. Figure 5.8 shows that factors A, E and F are the most important ones
that can be used to adjust the diameter to the target value of 800. The most inter-
esting feature of DOE is that it can not only identify the most important factors but
also understand the unimportant factors. The levels of unimportant factors can be set

at

their most economical levels. This would save significant cash in certain cases of

industrial experiments.



Screening Designs 61

Main effects plot (data means) for means

802.5 - ‘\
801.5 — o

. — —
800.5 -

1 2 1 2 1 2
g D E E
3 8025
g % RN
% 8015 . \
C
£ 8005
a) T T T T T T
= 1 2 1 2 1 2
G

802.5

801.5 b —

800.5

Figure 5.8 Main effects plot for the experiment (mean diameter).

Main effects plot (data means) for log (SD)

0.6

0.4 - e - -

0.2

0.6
/ — ) .\
0.4 - / — —

0.2

Mean of means

0.6 4

0.4

02 ; ;

Figure 5.9 Main effects plot for the experiment (analysis of diameter variability).

The next part of the analysis is to understand the factors which influence vari-
ability in diameter. In this instance, it is not only important to achieve a mean diam-
eter closer to the target of 800 but also to achieve consistent diameter values closer
to 800. In order to analyse variability, we compute SD at each experimental design
point and use logarithmic transformation for validating normal distribution assump-
tions. This point is very well covered in Lochner and Matar (1990). It was a surprise
to observe from Figure 5.9 that factor D is the only factor which causes variation
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in the diameter of the cylinder. Moreover, it points out that minimum variation is
obtained when we keep this factor at its low-level setting. This is a very useful piece
of information for any designed experiment.

Exercises

What are screening designs?

Compare geometric and non-geometric P-B designs.

What are the strengths and limitations of P-B designs?

When would you utilise screening designs in real-life situations?

Explain how to overcome the problem of low resolution in a screening design.

R W=
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6 Full Factorial Designs

6.1 Introduction

It is widely accepted that the most commonly used experimental designs in manu-
facturing companies are full and fractional factorial designs at 2-levels and 3-levels.
Factorial designs would enable an experimenter to study the joint effect of the fac-
tors (or process/design parameters) on a response. A factorial design can be either
full or fractional factorial. This chapter is primarily focused on full factorial designs
at 2-levels only. Factors at 3-levels are beyond the scope of this book. However, if
readers wish to learn about experimental design for factors at 3-levels, the author
would suggest them to refer to Montgomery (2001).

A full factorial designed experiment consists of all possible combinations of lev-
els for all factors. The total number of experiments for studying k factors at 2-levels
is 2. The 2* full factorial design is particularly useful in the early stages of experi-
mental work, especially when the number of process parameters or design param-
eters (or factors) is less than or equal to 4. One of the assumptions we make for
factors at 2-levels is that the response is approximately linear over the range of the
factor settings chosen. The first design in the 2X series is one with only two factors,
say, A and B, each factor to be studied at 2-levels. This is called a 22 full factorial
design.

6.2 Example of a 22 Full Factorial Design

Here we consider a simple nickel plating process with two plating process param-
eters: plating time and plating solution temperature (Kiemele et al., 1997). Each pro-
cess parameter is studied at 2-levels. The response of interest to the experimenters
was plating thickness. Table 6.1 illustrates the two process parameters and their cho-
sen levels for the experiment.

Table 6.1 Process Parameters and Their Levels for the Experiment

Process Parameters Labels Low Level High Level
Plating time A 4s 12s
Plating solution temperature B 16°C 32°C

Design of Experiments for Engineers and Scientists. DOI: http://dx.doi.org/10.1016/B978-0-08-099417-8.00006-7
Copyright © 2014 Jiju Antony. Published by Elsevier Ltd. All rights reserved.
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Table 6.2 Design layout of the Experiment with Response Values

Trial Number A B Plating Thickness

1 4 16 116.1 1169 112.6 1187 1149
2 4 32 1067 107.5 1059  107.1 106.5
3 12 16 1165 115.5 1192 1147 118.3
4 12 32 1232 125.1 1245 1240 1247

Table 6.3 Coded Design Matrix with Mean
Plating Thickness Values

A B AB Mean Plating Thickness

-1 —1 1 115.84
~1 1 -1 106.74
1 -1 -1 116.84
1 1 1 124.30

Table 6.2 shows the design layout of the experiment with response values. Each
experimental condition was replicated five times so that a reasonable estimate of
error variance (or experimental error) could be obtained.

The following are the four objectives set by the experimenter:

Which main effects or interactions might affect the mean plating thickness?
Which main effects or interactions might influence variability in plating thickness?
What is the best setting of factors to minimise variability in thickness?

How can a target plating thickness of 120 units be achieved?

BN

6.2.1 Objective 1: Determination of Main/Interaction Effects That
Influence Mean Plating Thickness

In order to determine the effect of process parameters A and B and its interaction
AB, we need to construct a coded design matrix with mean plating thickness values
as shown in Table 6.3.

The column AB is obtained by simply multiplying the coded values in columns A
and B. Interaction AB yields a combined effect of two factors, A and B. The results
from Minitab software are shown below. Figure 6.1 illustrates the normal plot of
effects. The graph illustrates that process parameter ‘plating time’ and the interaction
between ‘plating time and plating solution temperature’ are statistically significant
at 5% significance level. In other words, these effects have a large impact on the
mean plating thickness, though plating solution temperature has very little impact on
the mean plating thickness. This finding can be further supported by considering the
main effects plot and interaction plot (see Figures 6.2 and 6.3, respectively).

It can be seen from Figure 6.2 that plating time has a huge impact on plating
thickness, whereas plating solution temperature has no impact on plating thickness
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whatsoever. However, it is interesting to note that plating solution temperature has
a lower sensitivity to variability in plating thickness when compared to plating time.
Figure 6.3 indicates that there is a strong interaction between plating time and plat-
ing thickness. Plating thickness is maximum when plating time is kept at high level
(12s) and plating solution temperature is kept at high level (32°C). Similarly, plating
thickness is minimum when plating solution temperature is kept at high level (32°C)
and plating time is kept at low level (4s).

6.2.2 Objective 2: Determination of Main/Interaction Effects That
Influence Variability in Plating Thickness

In order to determine the effect of A, B and interaction AB on process variability, we
need to construct a coded design matrix with response as variability in plating thick-
ness (Table 6.4).

Minitab software is used to identify which effects are most important to process
variability. Figure 6.4 shows a Pareto plot of the effects on variability [In(SD)]. It is
quite clear from the graph that process parameter plating solution temperature (B)

Table 6.4 Coded Design Matrix with Variability as Response

A B AB Variability in Plating  In(SD)
Thickness (SD)
-1 -1 1 2.278 0.823
-1 1 -1 0.607 —0.499
1 -1 -1 1.884 0.633
1 1 1 0.731 -0.313
B—
AB—
A: Plating time
A— B: Plating temp.
T T
0.0 0.5 1.0

Figure 6.4 Pareto plot of effects on plating thickness variability.
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Figure 6.5 Main effects plot with variability as response.

has a significant effect on plating thickness variability, whereas plating time (A) has
no impact on plating thickness variability. Interaction AB has again very little impact
on variability. Figure 6.5 shows that variability is minimum when the plating solu-
tion temperature is set at high level (32°C). This finding provides the answer to our
objective 3, set out earlier in this chapter.

6.2.3 Objective 4: How to Achieve a Target Plating Thickness of
120 Units?

In order to achieve a target plating thickness of 120 units, we need to initially
develop a simple regression model (or mathematical model) which connects the
response of interest (i.e., plating thickness) and the significant process parameters.
In order to develop a regression model, we need to construct a table of effects and
regression coefficients (Kiemele et al., 1997). It is important to recall that regression
coefficients for factors at 2-levels are just half the estimate of effect. A sample cal-
culation of how to estimate the effect of paste time and the interaction between time
and temperature is shown below (Table 6.3).

Effect of Plating Time on Plating Thickness
Mean plating thickness at high level of plating time = (116.84 + 124.30)/2

=120.57
Mean plating thickness at low level of plating time = (115.84 + 106.74)/2
=111.29
Effect of plating time on plating thickness = (120.57 — 111.29)
=9.28

Regression coefficient of plating time (A) = 9.28/2
=4.64
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Interaction Effect Between Plating Time and Plating Solution
Temperature (AB)
Referring to Column 3 in Table 7.3, the mean plating
thickness at low level of AB = (106.74 + 116.84)/2

=111.79
Similarly, the mean plating thickness at high level of AB = (115.84 + 124.30)/2
=120.07
Therefore, interaction AB = 120.07 - 111.79
=8.28

Regression coefficient of the interaction term (AB) =4.14

The regression model for the plating thickness can be therefore written as

y = By + B, (A)+ B}, (AB) (6.1)

where
B, = overall mean plating thickness = 115.93

B, = regression coefficient of factor A (plating time)

B,, = regression coefficient of interaction AB (plating time X plating solution temperature)

The predicted model for plating thickness is therefore given by

$ = 115.93 + 4.64 (A) + 4.14 (AB)

Using the above predicted model, we need to determine the settings of parameters
which give a target thickness of 120 units (i.e., y = 120). Moreover, we know that
a high level of plating solution temperature (factor B) yields minimum variability.
Therefore, we can set B at a low level (i.e., 1).
Now, we can write, 120 = 115.93 + 4.64 (A) + 4.14 (A)
=11593+4.64 A +4.14A
=115.93 +8.78 A
4.07 =8.78 A
A =0.463 (in coded terms)

=8.28

=8.28

=8.28

=8.28

The following equation can be used to convert the coded values into actual

parameter values (or vice versa).

High+ Low
2

Actual =

High— L
Jr[ ig ow

e Coded (6.2)

For example, for factor A, high-level setting = 125, low-level setting = 4s, coded
value = 0.463:
Actual = {(12 + 4)/2} + {((12 - 4)/2)) . 0.463}

=8 +4(0.463)

=9.85 sec
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Figure 6.6 NPP of residuals for the plating experiment.

Table 6.5 List of Process Parameters and Their Levels

Process Parameters  Labels Low Level High Level

Temperature T 80°C 120°C
Pressure P 50psi 70psi
Reaction time R Smin 15min

Therefore, to achieve a target plate thickness of 120 units, we need to set the plat-
ing time for 9.85s at a temperature of 32°C. We need to perform confirmation exper-
iments or runs to verify the results of our analysis. If the results of the confirmation
experiments or runs (i.e., each observation from the trials) fall within the interval of
y = 3 (s.e.), then the results are satisfactory. Here s.e. refers to standard error and is

obtained by siln , where SD is the sample standard deviation and 7 is sample size.

The analysis of a 2* factorial design assumes that the observations are normally
and independently distributed (Logothetis, 1992). The best way to check the normal-
ity assumption is by constructing an NPP of residuals (Box et al., 1978). Figure 6.6
presents the normal probability of residuals for the plating experiment. As the residu-
als fall approximately along a straight line, we can conclude that the data come f