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Preface

This book is devoted to a study of the oscillation theory of nonautonomous linear
Hamiltonian differential systems and that of a spectral theory which is adapted to
such systems. Systematic use will be made of basic facts concerning Lagrange
subspaces of R?" and argument functions on the set of symplectic matrices. We
will also consistently apply some fundamental methods of topological dynamics
and of ergodic theory, including Lyapunov exponents, exponential dichotomies,
and rotation numbers. Further, we will show that our results concerning oscillation
theory can be fruitfully applied to several basic issues in the theory of linear-
quadratic control systems with time-varying coefficients.

Nonautonomous Oscillation Theory

In due course, we will give an outline of the specific problems, methods, and results
to be discussed in the body of the book. Before doing that, it seems appropriate
to collocate them in a priori way in the vast and nonhomogeneous area called
oscillation theory of ordinary differential equations. In fact, the word “oscillation”
has various meanings in this context. For example, it can refer to the study of the
zeroes contained in some interval Z € R of a solution of an ordinary differential
equation (ODE). In the case of a two-dimensional ODE, it can refer to the variation
of the polar angle along a solution, i.e., to the “rotation” associated to that solution.
Still again, it may indicate one of the many themes encountered in the study of the
periodic solutions of an ordinary differential equation.

This book is about “rotation.” Let us try to be a bit more precise. We will
focus attention on various issues concerning the solutions of a linear Hamiltonian
differential system

7 =H®)z, (D
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where z € R*" and f € R. The coefficient H(:) is a bounded measurable real 2n x 2n
matrix-valued function satisfying the symplectic condition (JH)T (f) = JH(t) for all
t € R, where the “T” indicates the transpose and J = [(I): _(I)Z ] is the usual 21 x 2n
antisymmetric matrix: I, is the n x n identity matrix and 0,, the n X n zero matrix.
Generally speaking, we will be interested in the “rotation” of the solutions of (1). Of
course, this notion is initially problematic because it is not immediately clear how
to define it precisely, especially if n > 2. One of our main goals will be to do this. It
will turn out that our concept of rotation is closely related to a more or less standard
notion of a “point of verticality” of a solution of (1), namely, a focal point. It will
also turn out that the concept of rotation considered here can be used to study some
basic questions in spectral theory, which are formulated in terms of equation (1) and
which will be discussed shortly.

Equation (1) is of course very significant. As a special case, one can set z = [;]
for x and y in R”, and

0, I,
sz[aﬂm]

where GT = G is a real symmetric n x n matrix-valued function. Then (1) is
equivalent to the second-order system

X' =G@)x, )

which is often encountered in the study of mechanical systems near an equilibrium.
Another special case is obtained by setting n = 1 and

H@:[ 0 1mm}
g0 =Adn) 0

for a real parameter A; in this case (1) is equivalent to the classical Sturm-Liouville
problem

—(pxX)Y +g)x=1d@®)x. 3)

Problem (3) has been studied with success from various points of view for
over 150 years. The number and the location of the zeroes of a solution x(-) are
a recurring theme. Information concerning these zeroes has implications for the
spectral problem obtained by varying A and by imposing boundary conditions, for
example, of Dirichlet type: x(a) = x(b) = 0 where a < b € R. Then, as is well
known, if p, g, and d satisfy certain general hypotheses, then the nth eigenfunction
of (3) has n — 1 zeroes in (a, b), forn = 1,2, ...
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A more general spectral problem is obtained by using (1) as a point of departure.
One introduces a parameter A € R and a positive semidefinite real weight function
I'(¢) in (1), so as to obtain

Z=(HO+AI"'T@)z. “)

This problem was studied systematically by Atkinson in [5]. It is noteworthy that if
I' is semidefinite but not everywhere definite, then the study of the boundary-value
problem associated to (4) cannot be naturally carried out using standard functional-
analytic techniques (due to the fact that one cannot multiply (4) by I"~!). However,
in [5], one finds an “Atkinson condition” which, when imposed on (4), allows the
development of a satisfactory spectral theory for (4).

Another of our goals is to show that our oscillation theory of (1) can be fruitfully
applied to the spectral problem (4) especially when “the boundary conditions are
imposed at t = +00,” i.e., when (4) is considered on the whole line. Let us explain
some of the issues involved in relating oscillation theory and spectral theory in the
context of problem (4). Consider for a moment the version of (3) obtained by setting
p=d=1:

- +gl)x=Ax. 5)

This is the Schrodinger equation with potential g(f) (a most important ordinary
differential equation, due to its basic role in one-dimensional quantum mechanics).
Fix A € R, and consider a solution x(¢) of (5), say, that defined by the initial
conditions x(a) = 0 and x'(a) = 1. This solution is called nonoscillatory in the
interval (a, b) if it has no zeroes there; otherwise, it oscillates. There is a simple and
fruitful way to study the presence/absence of zeroes of x(-) on (a, b), which is at

the heart of the classical Sturm-Liouville theory. Namely, one introduces the polar
x(1)

X (1)
ifa <t < b, then x(¢f) = 0if and only if 8(r) = 7/2 mod 7. Moreover, 6'(r) < 0
at each zero ¢ of x(f), so we can determine the number of zeroes of x(-) in (a, b) by
studying the evolution of 6(-) there, that is, the “rotation” of x(-).

This simple observation does not generalize easily to the Hamiltonian system (1).
It is rather straightforward to generalize the concept of zero of x(-): one sets
z = [;], requires that x(f) = 0, and arrives at the concept of focal point, alias
point of verticality. But it is not easy to extend the concept of polar angle in an
appropriate way; in fact, it seems that this was only done in the 1950s and 1960s.
One way is to introduce argument functions in the symplectic group, as done by
Gel’fand, Lidskii, and Yakubovich. Another is to introduce the Maslov cycle and
the corresponding Maslov index in the manifold of Lagrange subspaces of R
There is a corresponding angle, as was pointed out by Arnol’d (and by Conley
in a little-known paper), which can be used to develop a Sturm-Liouville-type
theory for (4). Still another method to generalize the Sturm-Liouville theory to
Hamiltonian systems can be based on the polar coordinates of Barret and Reid.

angle 6(¢) of the vector [ ] in the two-dimensional phase plane R?. It is clear that



viii Preface

A point which we will emphasize in this book is that one can study the argument
functions, the index, and the polar coordinates from a dynamical point of view,
more precisely, by using basic tools from topological dynamics and ergodic theory.
One point of arrival in our theory is a quantity called the rotation number and its
“complexification,” the Floquet exponent for system (1). Using these quantities,
we will connect the oscillation theory of (1) with the spectral theory of the
Atkinson problem (4), much as the Sturm-Liouville theory connects the oscillation
of solutions of (3) for each fixed A to the spectral theory of (3).

Let us explain this matter in more detail. Let I” > 0 be a real symmetric matrix-
valued function. Consider the boundary-value problem

7 = (H(t) +AJ_1F(t))z, z= |:X:| e R,
y (6)

x(a) =x(b) =0,

where @ < b € R. In [5] an analytic theory of the eigenvalues and eigenfunctions
of (6) is worked out. Let us first try to extend that theory to the entire real axis: thus
set a = —oo and b = oo. One can expect that this will involve some analogue of
the classical Weyl m-functions m4 (1) for (3), and in fact there is a rich literature
concerning the “Weyl-Titchmarsh M-matrices” for (6). We will assume that H(-)
and I"(-) are uniformly bounded and will impose a natural “Atkinson condition” on
the solutions of (5). It will then turn out that the dynamical concept of exponential
dichotomy together with the above-mentioned notion of rotation number permits
one to develop a satisfactory spectral theory for (6) with @ = —oo and b = oo.
In particular, the introduction of the exponential dichotomy concept permits one to
clarify the dynamical significance of the M-matrices.

To summarize what has been said so far, we will supplement the analytic methods
which have been previously used to study the oscillation theory of (1) and the
spectral theory of (4) with certain geometrical and dynamical techniques. The
geometrical methods derive from the structure of the group of symplectic matrices
and from that of the manifold of Lagrangian subspaces of R?*. Using dynamical
methods, we define the rotation number and the Floquet exponent, which permit
one to count the focal points of (1) and to develop the spectral theory of (4) using
the exponential dichotomy concept.

The use of dynamical methods is made possible by carrying out a construction
named after Bebutov, which we now explain. Begin with linear Hamiltonian
differential system (1): we first view the coefficient function H(-) as an element of
an appropriate functional space. This will often be the space of bounded continuous
functions H from R to the Lie algebra of real infinitesimally symplectic matrices
sp(n,R) = {H € My,x(R) |~HTJ + JH = 0y,}. Next introduce the translation
flow o; by setting 0,(H)(-) = H(- 4 ¢t) for all t € R. If the coefficient H(-) of (1)
is uniformly continuous, then the closure cls{o,(H) | t € R} is compact (in the
compact-open topology). Call the closure £2: it is clearly invariant with respect to
the translation flow. The idea now is to let H vary over §2; to emphasize that we
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do not deal only with the “original” function H(-), we write @ to indicate a generic
point of §2. Note that each w € £2 gives rise to a linear differential system of the
form (1); call this system (1),,.

At this point, one introduces the so-called cocycle obtained by considering the
fundamental matrix solution of (1), and letting @ run over £2. One can now apply
the Oseledets theory of the Lyapunov indices of solutions of (1), (w € £2). One
can also apply the Sacker—Sell-Selgrade approach to the theory of exponential
dichotomies. In addition, one can define the rotation number of the family of
equations (1),. We will see that all these dynamical methods permit one to gain
important insight into the oscillation theory of (1) and the spectral theory of (4).

In fact the main tool in the analysis consists in the systematic use of the
rotation number, the Lyapunov index, the exponential dichotomy concept, and
the Weyl matrices. These objects are also important in the discussion of two
more notions which are of fundamental significance in the context of the linear
Hamiltonian system (1): the property of disconjugacy, which is of basic significance
in the calculus of variations, and the related property of existence of principal
solutions, which in many interesting cases can be understood as a generalization
to the nonuniformly hyperbolic case of the bundles provided by the existence of
exponential dichotomy.

Applications to Control Theory

There are numerous applications of the oscillation theory of equation (1) to the
theory of mechanical systems, to the calculus of variations, to control theory, and
to other areas. We will not give an exhaustive account of these applications. But
we will apply our results concerning equations (1) and (4) to certain problems in
linear-quadratic (LQ) control theory. Among these are the linear-quadratic regulator
problem, the Kalman—Bucy filter, the Yakubovich frequency theorem, and the
question of Willems-type dissipativity in (linear) control systems. We now discuss
in a bit more detail these applications to control theory.

First we recall the formulation of the LQ regulator problem. The point of
departure consists of a linear control problem

X =A@)x+B{®u, xcR" ucR",

7
x(0) = x. @

The matrices A(-), B(:) are taken to be bounded continuous functions; the time
dependence is otherwise arbitrary. Let 7 € (0, o0] be an extended positive real
number. Introduce a quadratic functional

Zi(x,w) = (x(7), 5x(7)) + /OI (x(@). G() x(®)) + (u(), R(1) u(r))) dt .
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where S is a symmetric positive semidefinite matrix and G(-), R(-) are bounded
continuous functions such that G'(f) = G(t) > 0 and RT(f) = R(f) > 0 for all
t € R. If the upper limit 7 is finite, one speaks of a finite-horizon problem, otherwise
one has an infinite-horizon problem. If r = oo one sets S = 0,,. For each fixed initial
condition x € R, one seeks a control u: [0, t] — R™ which, when taken together
with the corresponding solution of (7), minimizes Zy(x, u).

This basic problem has been studied in detail and has been solved both when t <
oo and when T = oo. Our contribution is to give a solution in the infinite-horizon
case T = oo which uses the theory of exponential dichotomies and the rotation
number as applied to an appropriate linear Hamiltonian system of the form (1).
In this way one obtains, among other things, detailed information concerning the
regular dependence of the optimal control on parameters.

The appropriate system (1) is obtained via a formal application of the Pontryagin
maximum principle. According to this principle, a minimizing control u must
maximize the Hamiltonian

H(t,x,y,u) = (y,A(®)x + B(t)u) — % ((x,G() x) + (u,R(H)u)),

foreacht € R, x € R”, and an appropriatey € R". Here y is interpreted as a variable
dual to x. This leads immediately to the “feedback rule”

u=R'0OB (1)y.

Substituting for u in the Hamiltonian equations X' = 9% /dy, y’ = —9H/0x leads
to the differential system

, [A® BOR 0B
’ [G(r) _AT() } ®)

Of course, (8) is a special case of (1).

We now arrive at the main point, which is that (under standard controllability
and observability conditions on (7)) the system (8) admits exponential dichotomy.
This is easily proved when one has available the basic facts concerning the rotation
number of (8) and its relation to the existence of exponential dichotomy. Now, the
existence of exponential dichotomy for (8) means that there is a linear projection
P = P:R™ — R such that if z = [}] is in the image of P, then the
solution z(r) of (8) satisfying z(0) = z decays exponentially as r — oo. It

further turns out that z(r) = [?8] = [ M(’g?‘(t)] where x(0) = x and M(¢) is a
function taking values in the set of negative definite symmetric n X n matrices. Set
u(f) = R'(t) B (t) M(¢) x(t) and note that u(r) — 0 exponentially as t — oo.
So it is not so surprising that this u is in fact the unique control which minimizes
Zx(x,u). If one varies X, the dichotomy projection P and the symmetric matrix-
valued function M(¢) do not change, so in fact we have solved the LQ regulator

problem.
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Let us note in passing that we have also solved the feedback stabilization
problem for the control system (7). In fact, set u(t) = R~'(t) B" (t) M(¢) x(1) as

above. Note that if z(r) = [;8

x(7) solves (7) with precisely this control u(z). Since u has the “feedback form”
u(f) = K()x(t) with K(t) = R '(t) BT (t) M(¢), and since the linear system
x' = (A(1) + B(t) R (1) B" (t) M(1)) x is exponentially stable, we have “feedback
stabilized” the system (7).

We can also study certain important properties of the Kalman—Bucy filter by
applying our methods to an appropriate Hamiltonian system of the form (1). This
is because, as Kalman and Bucy observed, the construction of their filter is closely
tied to a “time-reversed” LQ regulator problem. We briefly describe the filter and
the relevance of the theory of linear Hamiltonian systems in this context.

Let £(¢) € R” (r > 0) denote the state of a linear system which is disturbed by a
d-dimensional white noise process: thus

] is the solution of (8) mentioned above, then

dE (1) = A(t) E(t) dt + S(t) dw(?) . 9)

Here w(¢) is a d-dimensional standard Brownian motion, and equation (9) is
understood to be of Itd type. The state &(7) can only be partially observed; it is
assumed that the observation process 5 () satisfies the Itd equation:

dn(t) = B(1) £(1) dt + S1(2) dwi (1) .

where w () is a second, m-dimensional Brownian motion which is independent
of w(#). The functions A, B, S, S| are assumed to be continuous and bounded and
to have the appropriate dimensions. It is assumed that §(0) = 0 and that &(0) is
Gaussian, which implies that & (¢) is Gaussian for all > 0.

Let X, be the o-algebra generated by the set {5(r) | 0 < r < t} of measurements
up to time 7. The goal is to describe an estimate y () for & (f), which minimizes the
mean-square error E{(x” (£ (1) — y(¢)))?} for all vectors x € R"; here the expected
value E{-} is taken over an appropriate probability space. It is well known that this
best estimate is given by the conditional expectation

y() =& =E{E@D| Z).

To describe g(t), one introduces the error process é =& —g(t). It turns out that
& (1) is Gaussian with mean value zero and hence is determined by its nxn covariance
matrix M(¢). Kalman and Bucy showed that M(¢) satisfies a Riccati equation

M' = —-MB"(t) (S:SH ' (t) Bty M + M AT (t) + A(t) M + (SST)(1) .
Now, this Riccati equation corresponds to the linear Hamiltonian system

, [ —AT(1) BT (1) (51D () B(ﬂ} 2, (10)

T LN A1)
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via the matrix change of variables M = Y X~'. It turns out that, under standard
controllability conditions, the system (10) admits exponential dichotomy. This
leads to the conclusion that M(¢) tends exponentially fast to a “nonautonomous
equilibrium” My (£), which essentially describes the error process € (¢), and hence
the signal & (¢) if one takes the estimate g(t) to be known.

We will also apply our results concerning the oscillation theory of equation (1)
and the spectral theory of the family (4) to the circle of ideas and results centered
on the Yakubovich frequency theorem. This theorem was originally formulated and
proved by Yakubovich for LQ control processes with periodic coefficients. We will
state and prove a more general nonautonomous version of this theorem. We briefly
sketch our results in this regard in the next paragraphs.

The point of departure is again the control system (7) combined with a quadratic
functional

7.(xu) = /0 (% G x) + 2(x, g0 u) + (W RO w)) dr.

where the functions A, B, G, g, R are assumed to bei)ounded and continuous and
to have the appropriate dimensions. The functional Zy(x, u) differs from the one
encountered in the context of the LQ regulator in two respects. First of all, the cross-
term (X, g(¢) u) is present in the integrand. Second and more importantly, though it
is assumed that G7 (f) = G(¢) and that R” (f) = R(t) > 0 for all ¢, it is not assumed
that G is positive semidefinite for all #; indeed one is particularly interested in the
case when G(¢) < 0 (r € R). "

We pose the problem of minimizing Zy(x,u) subject to (7). Since G is not
assumed to be positive semidefinite, this problem need not have a solution.
Nevertheless we proceed by applying the Pontryagin maximum principle in a formal
way. Introduce the Hamiltonian

771(1‘, x,y,u)=(y,A(t)x + B(t)u) — % ((x,G(t) x) + 2(x, g(r) u) + (u,R() u)).

A minimizing control u (if it exists) will maximize ﬂ foreachr € R and x € R",
and an appropriate y € R”. This leads to the feedback rule

u=R'OB"(y-R' (g (nx,

and via the Hamiltonian equations x' = 9H/dy, y' = —0#/0x, one is led to the
differential system

an

_pp-l,T —1pT
7 =H@®z, with H = [A BR™ g BRB i|

G_gR—lgT _AT+gR—lBT

In the case when all the coefficients in (11) are T-periodic, Yakubovich showed
that the minimization problem admits a solution if and only if (i) the system (11)
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has exponential dichotomy (frequency condition) and (ii) certain solutions of (11)
have no focal points (nonoscillation condition). We will consider the case when
A, B, G, g, R are bounded continuous functions of time and prove a satisfactory
generalization of Yakubovich’s theorem. It turns out that the frequency condition
and the nonoscillation condition (which can be stated as above) imply that the
optimal control problem can be solved for all x € R”. The converse statement is
not quite true; as a matter of fact, and roughly speaking, the minimizing control
must exhibit a uniform continuity condition in order to ensure that the frequency
condition and the nonoscillation condition are valid.

The frequency theorem has many ramifications and applications, some of which
will be considered in this book. Here we mention that the frequency theorem can be
used to comment on the Willems concept of dissipativity in the context of control
systems. This connection was pointed out and analyzed in the periodic case, by
Yakubovich et al. [158]. We will discuss the connection between the frequency
theorem and the Willems dissipativity concept when the relevant coefficients are
aperiodic functions of time. "

The main point here is to interpret the integrand of the functional Z(x, u) as a
power function. To explain this, set x = 0 in equation (7). Let u: [t;, ;] — R™ be an
integrable function, and let x(¢) be the corresponding solution of (7) with x(¢;) = 0.
Let us write

Ot xw) = 3 (5. G X) +2(x, () w) + {u. RO w))

Then the net energy entering the system due to the effect of u(-) is obtained by
integrating Q(z, x(f), u(r)) in the interval [t,, ,]. Now one says that the system is
dissipative if

/tz A(s,x(s),u(s))ds > 0

whenever #; < t, € R. That is, “energy must be expended” to move the system from
its equilibrium position x = 0.

The basic result which we will prove is that, modulo details, the control system
determined by (7) together with Q(z, x, u) is (strongly) dissipative if and only if the
Hamiltonian system (11) satisfies the frequency condition and the nonoscillation
condition. So the frequency theorem has deep consequences concerning the struc-
ture of LQ control processes.

Outline of the Contents

We end this introduction with a brief outline of the contents of the various chapters
which will follow.
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The long Chap. 1 contains a discussion of various tools from topological
dynamics and from ergodic theory which will be systematically used throughout
the book. We discuss the Birkhoff theorem and the Oseledets theorem, the Bebutov
construction and some facts concerning flows, the Sacker—Sell-Selgrade theory of
exponential dichotomies, and other matters as well.

Chapters 2 and 3 contain the basic theory of the oscillation of the solutions of (1),
respectively, as well as a dynamical approach to the spectral theory of the Atkinson
problem (4). In Chap. 2, we construct and discuss the rotation number for (1),
which is roughly speaking “the average number of focal points” admitted by a so-
called conjoined basis of solutions. This quantity can be defined in several ways,
using the Gel’fand-Lidskii—Yakubovich argument functions, the Maslov index, and
the Barrett—Reid polar angles. In Chap. 3 we complexify the rotation number so
as to obtain the Floquet exponent, a quantity which is quite useful in the study
of problem (4). We state and prove a basic result, namely, that if (4) satisfies an
Atkinson condition, then the rotation number @ = (1) of (4) is constant for A in
an open subinterval Z C R if and only if (4) admits exponential dichotomy for all
A el

The Weyl M-matrices, or M-functions, arise in Chap. 3 as a tool used in the study
of the spectral theory of (4) and especially in the proof of the theorem relating the
constancy of the rotation number to the presence of exponential dichotomy. The
M-functions are defined for nonreal values of the parameter A. However, it is very
important to understand their convergence properties in the limit as Im A tends to
zero, and Chap. 4 is dedicated to a study of this issue. In particular, we work out
an extension to the Atkinson problem (4) of the classical Kotani theory, which is
an important tool in the study of the refined spectral properties of the Schrodinger
operator.

The notion of disconjugacy is very important in the context of the Hamiltonian
linear differential system (1), because of its significance in the calculus of variations.
Chapter 5 is devoted to a discussion of a generalization of the concept of disconju-
gacy, namely, weak disconjugacy. Under natural and mild auxiliary hypotheses, we
prove the existence of a principal solution when (1) is weakly disconjugate. Our
approach to the issue of (weak) disconjugacy relies on the systematic use of tools
of topological dynamics; these allow a deep understanding of the conditions under
which weak disconjugacy holds and also of the properties of the principal solutions.

The book concludes with Chap. 6 (the LQ regulator problem and the Kalman—
Bucy filter), Chap. 7 (the nonautonomous version of the Yakubovich frequency
theorem), and Chap. 8 (Willems dissipativity for LQ control processes).

Note finally that, in this book, methods and results which have been developed in
the course of 100 years in the context of linear Hamiltonian systems with constant
or periodic coefficients are extended to systems whose coefficients can exhibit a
much more general time dependence. Indeed, techniques of topological dynamics
and of ergodic theory which have been worked out in recent times permit us to
apply new methods and adapt older ones to the study of a rich set of new scenarios
which are not possible in the periodic case. In the end we obtain a coherent theory
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which has been successfully applied to a wide range of problems in the setting of
nonautonomous linear Hamiltonian systems.

Firenze, Italy Russell Johnson
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Valladolid, Spain Sylvia Novo
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Chapter 1
Nonautonomous Linear Hamiltonian Systems

This chapter is devoted to the general explanation of the framework of the analysis
made in this book, and to stating the many foundational facts which will be required.
With the aim of being relatively self-contained, precise references where the proofs
of the stated properties can be found are included, and at the same time some proofs
which the reader may consider elementary or well known, but for which it is not
easy to find a completely appropriate reference in the literature, are given.

This long chapter is divided into four sections. The first presents the most
fundamental notions and properties of topological dynamics and ergodic theory,
including the concept and main characteristics of a skew-product flow, which are
fundamental for the book.

The second section summarizes basic results concerning spaces of matrices, the
Grassmannian and Lagrangian manifolds, and matrix-valued functions.

Section 1.3 is devoted to the description of the general framework of the book.
Under mild conditions on the coefficient matrix, a nonautonomous linear system
of ordinary differential equations defines continuous skew-product flows on the
trivial and Grassmannian bundles above a compact metric space. Special attention
is devoted to the Hamiltonian case, for which two special skew-product flows can
be defined. For the first one, which is defined on the Lagrange bundle, the use
of generalized polar coordinates simplifies the task of describing the dynamical
behavior. The second one, which is closely related to the first, is defined on
the bundle given by the set of symmetric matrices. It presents some interesting
monotonicity properties.

The last section concerns one of the most fundamental concepts for the devel-
opment of the analysis made in the book: that of exponential dichotomy, both in
the general linear case and in the linear Hamiltonian case. Many of the properties
ensured by its presence will be described in detail, and then applied later in the
book. The closely related concept of Sacker—Sell spectrum is also discussed, and
several aspects of the Sacker—Sell perturbation theory are explained. The section is

© Springer International Publishing Switzerland 2016 1
R. Johnson et al., Nonautonomous Linear Hamiltonian Systems: Oscillation,

Spectral Theory and Control, Developments in Mathematics 36,

DOI 10.1007/978-3-319-29025-6_1



2 1 Nonautonomous Linear Hamiltonian Systems

completed with the less standard analysis of the behavior of the Grassmannian flows
in the presence of exponential dichotomy.

1.1 Some Fundamental Notions

The concepts and properties summarized in this section will be used often through-
out the book, many times without reference to these initial pages. Suitable references
for all these notions include Nemytskii and Stepanov [110], Ellis [41], Sacker and
Sell [133], Cornfeld et al. [35], Walters [148], Mafié [99], and Rudin [128, 129].

1.1.1 Basic Concepts and Properties of Topological Dynamics

Let £2 be a locally compact Hausdorff topological space. Let X'; and X represent
the Borel sigma-algebras of £2 and R, and let ¥, = Xr x X', be the product sigma-
algebra; i.e. the intersection of all the sigma-algebras on R x £2 containing the sets
I x AforZ € Xg and A € Y. Mild conditions on §2 ensure that X, agrees with
the Borel sigma-algebra of R x £2: it is enough to assume that §2 admits a countable
basis of open sets (see e.g. Proposition 7.6.2 of Cohn [30]).

It will be convenient to work under the hypothesis that X is indeed the Borel
sigma-algebra of Rx 2. So, throughout Sect. 1.1, §2 will represent a locally compact
Hausdorff topological space which admits a countable basis of open sets. In fact,
throughout the book, any flow will be defined on a set which satisfies, at a minimum,
these conditions. Some of the results explained in this section require §2 to be a
compact metric space, but this hypothesis will be specified whenever it is assumed.

A map 0:R x 2 — £2 is Borel measurable if 671 (A) € Xy forall A € Xg. A
global real Borel measurable flow on 2 is a Borel measurable map o: R x £2 — £2
such that 09 = Idp and 0,4y = 0,0 0, for all s, € R, where 6;: 2 — 2, v —
o(t,w). The flow is continuous if o satisfies the stronger condition of being a
continuous map, in which case each map o, is a homeomorphism on £2 with inverse
o—;. The notation (£2, o) will be frequently used to represent a real global flow on
§2, and the words real and global will be omitted when no confusion arises.

The orbit of a point w € §£2 is the set {o;(w)| ¢t € R}, and its positive
(resp. negative) semiorbit is {o,(w)| t € R4}, where Ry = {r € R| t+ > 0}
(resp. {o;(w) | t € R_}, where R_ = {r e R| 1 < 0}).

Given a Borel measurable flow (§2,0), a Borel subset A C £2 (i.e. an element
A of Xq) is o-invariant (resp. positively or negatively o-invariant) if 0,(A) = A
forallt € R (resp. t € Ry ort € R_). Let Y be a topological space. If X is a
sigma-algebra on £2 containing the Borel sets, a map f: 2 — Y is X-measurable if
f~Y(B) € X forevery Borel subset B C Y; and f is Borel measurable when itis Xg-
measurable. A Borel measurable function f: £2 — Y is o-invariant if f(o/(w)) =
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f(w) for all w € £2 and ¢ € R. It is obvious that a Borel subset .4 is o-invariant if
and only if its characteristic function y , is o-invariant.

If X' is a sigma-algebra containing the Borel sets, the concepts of o-invariant
set A € X and o-invariant ¥'-measurable map f: 2 — Y are defined analogously.
Note that in fact this concept of invariance can be extended to any set or function,
since it does not depend on measurability.

All these definitions of o -invariance correspond to strict o-invariance, although
the word strict will be almost always omitted. A less restrictive definition of
invariance, depending on a fixed measure, is given in Sect. 1.1.2.

The flow is local if the map o is defined, Borel measurable, and satisfies the two
initially required properties on an open subset @ C R x §2 containing {0} x £2.
Define O, = {t € R| (t,w) € O} for v € £2. The orbit of the point w for
a local flow (£2,0) is {o;(w)| t € O,}, and it is globally defined if O, = R.
The positive (resp. negative) semiorbit of a point w is the set {o,(w) | t € O, "Ry}
(resp. {oy(w) | t € O,NR_}, and it is globally defined if O, "Ry = Ry (resp. O, N
R_ = R_). A (in general Borel) subset A C £2 is g-invariant (resp. positively or
negatively o-invariant) if it is composed of globally defined orbits (resp. globally
defined positive or negative semiorbits).

Finally, replacing R by R4 (resp. by R_) provides the definition of a (global
or local) real positive (resp. negative) semiflow on £2. The definitions of positive
(resp. negative) semiorbit and (strict) invariance are the obvious ones.

For the remaining definitions and properties discussed in this section, the flow o
is assumed to be continuous.

A compact o-invariant subset M C 2 is minimal if it does not contain properly
any other such set; or, equivalently, if each of its positive or negative semiorbits is
dense in it. The flow (£2, o) is minimal or recurrent if §2 itself is minimal, which
obviously requires §2 to be compact. Note that Zorn’s lemma ensures that, if £2 is
compact, then it contains at least one minimal subset.

Suppose that the positive semiorbit of a point wy for such a flow is relatively
compact. Then the omega-limit set of the point (or of its positive semiorbit) is given
by those points @ € §2 such that @ = limg—o0 0 (#, @wo) for some sequence (#) 1
oco. The omega-limit set is nonempty, compact, connected, and o-invariant. The
concept of alpha-limit set is analogous, working now with a negative semiorbit and
with sequences (f;) | —oo. Clearly, a minimal subset of 2 is the omega-limit set
and the alpha-limit set of each of its elements.

Finally, assume in addition that §2 is a compact metric space, and let d, represent
the distance on £2. The flow (£2, 0) is chain recurrent if given ¢ > 0, ty > 0, and
points @, @ € £2, there exist points ® = @y, ®1,..., @, = ® of §£2 and real
numbers t; > fo, ..., 4y, > to such that do (o, (w;), wiy1) < efori=0,...,m—1.
It is easy to check that minimality implies chain recurrence: just take wy = @ and
w1 = ® and keep in mind that the positive semiorbit of w is dense in §2. It is also
easy to check that if (£2, o) is chain recurrent, then the set §2 is connected.



4 1 Nonautonomous Linear Hamiltonian Systems
1.1.2 Basic Concepts and Properties of Measure Theory

Unless otherwise indicated, any measure appearing in the book is a positive
normalized regular Borel measure. Given such a measure m, let X,, be the m-
completion of the Borel sigma-algebra (see e.g. Theorem 1.36 of [128]), and
represent with the same symbol m the extension of the initial measure to X,. As
usual, the notation “m-a.e.” means almost everywhere with respect to m; “for m-
a.e. w € £2” means for almost every w € §2; and L'(£2, m) represents the quotient
set of X,,-measurable functions f: 2 — R with [, |f(w)|dm < oo (so that two
real functions represent the same class if they are m-a.e. equal, in which case they
are the same element of L' (£2, m)). See Sect. 1.2.4 for the general definitions of 1
spaces of matrix-valued functions on 2.

Let m be a measure on §2. Then m is o-invariant if m(o,(A)) = m(A) for every
Borel subset A € §2 and all ¢t € R, which ensures the same property for every A €
Y. A X,-measurable map f: 2 — Y (for a topological space Y) is o-invariant
with respect to m if, for all t € R, f(0,(w)) = f(w) m-a.e. And a subset A € X, is
o-invariant with respect to mif y , has this property.

The expression “o-invariant” (for sets, measures, or functions) will often be
changed to “invariant” throughout the book, since in most cases no confusion arises.

Proposition 1.2 shows the relation between these concepts of o-invariance with
respect to m and the (strict) ones given in the previous section: it proves that, when
moving for instance in the quotient space L' (£2,m), one can always consider that
a “o-invariant function” satisfies the “strict” definition. More information in this
regard will be added in Proposition 1.5.

Remark 1.1 Recall that any X,,-measurable function f: 2 — K, for K = R
or K = C, agrees m-a.e. with a Borel measurable one (see [128], Lemma 1 of
Theorem 8.12). In addition, if ¥ is any sigma-algebra containing the Borel sets,
and if a sequence (f,,: 2 — K) of X-measurable functions converges everywhere
to a function f, then f is X-measurable (see [128], Theorem 1.14). And, as a
consequence of this last result, if (f,;: 2 — K) is a sequence of X,,-measurable
functions which converges m-a.e. to a function f, then f is X,,,-measurable.

Proposition 1.2 Let (§2, 0) be a Borel measurable flow, and let m be a o-invariant
measure on §2.

(1) Let the X,,-measurable function f:§2 — K be o-invariant with respect to m.
Then there exists a X,,-measurable function f*: 2 — K which is (strictly) o-
invariant such that f = f* m-a.e.

(ii) Let the set A € X, be o-invariant with respect to m. Then there exists a
(strictly) o-invariant set A* € X, suchthat y , = x ,. m-a.e.

Proof

(1) The proof of this property is carried out in Lemma 1 of Chapter 1.2 of [35],
and included here for the reader’s convenience. It follows from Remark 1.1 that
there is no loss of generality in assuming that f is Borel measurable. Define the
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sets N = {(t,w) € R x 2| f(w) # f(0,(w))}, and note that the hypotheses
on ¢ ensure that this set belongs to X, = Xg x X, since the maps R x 2 —
R, (t,w) — f(w) and R x 2 — R, (t,w) + f(0,(w)) are ¥,-measurable.
Define now NV; = {w € 2| (t,w) e N} forr € R,and NV, = {r e R| (t,w) €
N} for w € £2, and note that N; € X forallt € R and NV, € Xg for all
w € £2 (see Theorem 8.2 of [128]). By definition of o-invariance with respect
to m, m(N;) = 0 for all # € R. Define u as the product measure of m and
[ on 2 x R, where [ is the Lebesgue measure on R. Fubini’s theorem (see
Theorem 8.8 of [128]) ensures that the maps w +> I(N,,) and ¢ — m(N;) are
Borel, and that u(N) = [, I(N,,) dm = [ m(N;) dl = 0. Therefore the subset
27 C 2 of points w with I(N,) = 0 is Borel, and m(§2;) = 1. Suppose that
o and o;(w) belong to 2 for a pair (t, w) € R x 2. Then f(w) = f(0;(w)). In
order to prove this assertion, take s € R — ./\/'a,(a,) such that s +¢ € R—N,, and
note that f(0:(w)) = £(0,(01(®))) = f(0,+:()) = (). Now define

" _ |f(w) if there exists t € R with o;(w) € §2f,
o) =17 .
otherwise ,
which is ¥,,-measurable, since it agrees with f at least on §2; (and hence m-
a.e.), and which is o-invariant in the classical sense.

(i) Let g = )(:'; be the o-invariant function associated to y , by (i). Then the set
B ={we | glw)e{0,1}} = 1 belongs to X, is o-invariant, and has full
measure for m: m(B) = 1. The set A* = {w € 2| g(w) = 1} € B also
belongs to X, and is o-invariant. In addition, g(w) = yx ,.(w) forall w € B,
so that y , = x ,. m-a.e., as asserted.

One of the most fundamental results in measure theory is the Birkhoff ergodic
theorem, one of whose simplest versions is now recalled.

Theorem 1.3 Let (§2,0) and m be a Borel measurable flow and a o-invariant
measure on §2. Givenf € L ($2, m), there exists a (strictly) o-invariant set £y € X,
with m(§2r) = 1 such that, for all o € §2;, the limits

t ¢ _ 0
tim 1 [ fewnas = tim 5 [ sonas = tim = [ rewas

—>

exist, agree, and take on a real value f(w). In addition, floi(w) = f(w) for all
w € 2 andt € R, f belongs to L' (2, m), and fgf(a)) dm = [, f(w)dm.

Its proof in the case of a discrete flow (given by the iteration of an automorphism
on §2) can be found, for example, in Section II.1 of [99]. The procedure to deduce
the result for a real flow from the discrete case is standard: define the automorphism
T(w) = o(l,w) and, given f € L'(£2,m), define F(w) = [, f(0,(w))ds; then,
Fubini’s theorem ensures that F € L! (£2,m), and the application of the discrete
version of the theorem to this setting provides the sets £y and the function f
satisfying the theses of the real version. The details are left to the reader.
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Note that the function f provided by the previous theorem can be considered to be
o-invariant in the strict sense: just define it to be 0 outside §2;. Note also that the set
£2¢ contains a Borel subset with measure 1, which is clearly o-invariant with respect
to m. But in fact this Borel subset of 2 can be taken as a (strictly) o-invariant set, as
Proposition 1.5(i) below proves. Therefore, there is no loss of generality in assuming
that the set £2; itself is Borel.

The following result, whose proof is included for completeness, will be required
in Chap. 4. The notation g: £2 — [0, oo] is used for extended-real functions (which
can take the value 00), and the concept of X,,-measurability for such a function is
clear.

Proposition 1.4 Let (§2, 0) be a Borel measurable flow, and let m be a o-invariant
measure on §2. Let f: 2 — [0, 00) be a X,,,-measurable function. Then, there exists
a (strictly) o-invariant set §2y € X, with m($2r) = 1 such that, for all o € §2y, the
limits

t ¢ _ 0
tim < [ Foonds = im o [ fownds = tim = [ o

exist, agree, and take a value f(a)) € R U {oo}. In addition, the extended-real
function f:§2 — [0,00] is X,,-measurable, and it satisfies f(o1(w)) = f(w) for
allw € 2y andt € R, and [, f(w)dm = [, f(w)dm.

Proof Let h: 2 — [0,00) be a X,,-measurable function. For each k € N, define
hy = min(h, k), which obviously belongs to L' (2, m). Hence there exists a function
he € L'(£2,m) and a set 2y, € X, with m(82,,) = 1 satisfying the theses of
Theorem 1.3. Define .Q,f = Mien$2y,, which belongs to X, is o-invariant, and
has full measure for m. Note that the nondecreasing sequence (/;(w)) converges to
h(w) for all w € 2/, and define h*(w) € [0, oo] as the limit of the nondecreasing
sequence of o-invariant functions (i (w)), also for w € Q. Then, h* is X,-
measurable (see Remark 1.1) and o-invariant. In addition, if #»* € L! (£2,m),
then 1 € L'(£2,m): apply the Lebesgue monotone convergence theorem and
the Birkhoff Theorem 1.3 to get 0 < [, h(w)dm = limco [ i(w)dm =
limy—o0 [ hx(@) dm = [, h* () dm < oco.

Returning to the function f of the statement, note that if f € L'(£2,m), the
assertions follow from Theorem 1.3. Assume hence that | of(w)dm = oo, and
associate to it the sequences (f;) and (f1), the set [2]2" , and the function /™, as above.
Therefore, f* ¢ L'($2, m). Clearly, the sets

A= w2} |[* () = oo},
A=1{oeQf|j<f* @) <j+1} forjz0
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belong to X, are o-invariant and disjoint, and satisfy £2;" = AU (UZ2,A;). Then,
if w € A, '

S o1
liminf /0 F(ou(@)) ds = sup lim < /0 filoy(@)) ds
= supfi(@)ds = f*(@) =

keN

so that there exists lim;— o0 (1/7) fot f(o5(w)) ds = f*(w) = oo. The same property
holds for the other two limits of the proposition. Now define

00
Z_XA/

=0

on .in", note that it is X,,-measurable, and associate to it the sequences (g¢), (gx),
and the set SZ; - .in", as at the beginning of the proof. Fix any k¥ € N and any
o € £27 outside A, and take the unique j € N such that w € A; N £27. Then
g(w) = (1/j+1)f(w), and hence

@) = g M) AG + D) = g figen(@).

Since o5(w) € A; N .Q;‘ forall s € R,

+1t—>oot

1 t
a@ = i [ e = — tm 1 [ fge)ds

1 - 1
: < —f* <1
1fk(/+1>(w)_j+1f (w) <

for all k € N. Note that g; vanishes outside U2, A;. Hence Jo gr(@)dm =
f o &(w)dm < 1, so that the Lebesgue domlnated convergence theorem ensures
that g € L'(£2,mp). Let g and 2, C .Q;‘ be the o-invariant function and subset
associated to g by Theorem 1.3, with m(§2,) = 1. Then for all @ in the o-invariant
set A; N §2,, f(w) = (j + 1) g(w) and hence

tim 3 [ oo ds = tim 5 [ stownas

0
= Jim = [ fe@)ds = G+ D) = G+ 1) ).

—>—00
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Define 2y = AU ((UX,4;) N £2, ), and note that it belongs to X, and satisfies
f i=0vY g g

m(82r) = 1. This o-invariant set and the X,,-measurable and o-invariant function

f*(w) ifwoeAd
FEN 0+ D08 ifo e (URA) N2, (1.1)
j=0

satisfy the statements regarding the limits. In addition, for all w € £2,
~ 1 [ 1 [ ~
flo) = tim ¢ [ re@nas= tim < [ fio@)as =),
t—o00 0 t—o00 0

so that f(w) > f*(w) on £2;. Hence, fgf(a))dm > [off(@)dm = 0o =
/. o (@) dm, which completes the proof.

As in the case of Theorem 1.3, the function f provided by Proposition 1.4 can be
considered to be o-invariant in the strict sense, and Proposition 1.5(i), which is
proved immediately below, ensures that the set £2y contains a Borel subset with
measure 1 which is o-invariant with respect to m.

Proposition 1.5 Let (§2,0) be a Borel measurable flow, and let m be a o-invariant
measure on §2.

(1) Let A € X, be a (strictly) o-invariant set with m(A) = 1. Then A contains a
(strictly) o-invariant Borel set B with m(B) = 1.

(i) Let f: 2 — R be X,,-measurable and o-invariant with respect to my. Then
there exists g: §2 — R which is Borel and (strictly) o-invariant such that g =
f m-a.e.

Proof

(i) Itsuffices to prove that for all n € N there exists a o-invariant Borel set B, € A
with m(B,) > m(A) — 1/n, and then take B = U, B,,.

Fix n € N, and note that the regularity of the measure m implies the existence
of a compact set I, € A with m(A — k) < 1/n. The Borel measurability of
the flow ensures that the map R x 2 — R, (t,w) — x, (0(t,w)) is Borel
measurable, and hence Fubini’s theorem guarantees that the maps 7/: 2 — R
given by

) J 1 j+1
h(w) = Z FEl [ Xy, (01(w)) dt
==

are Borel measurable (see e.g. Theorem 8.8 of [128]). Clearly, h{l < h{;‘“, SO
that the limit /,(w) = limj_ h,i (w) exists for all ® € §2, and the (bounded)
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function 4, is Borel measurable. Define
={w € 2| 0,(w) € K, for all t in a set of positive Lebesgue measure} ,

which is contained in .4 and is Borel, since it agrees with £, ' ((0, 00)). Clearly,
B, is (strictly) o-invariant. The Birkhoff Theorem 1.3 ensures that the limits
Ih(w) = lim—eo(1/21) fit Xx,(@-5) ds exist for all  in a o-invariant subset
2, € X, with m(£2,) = 1, and that the function /, is X,,-measurable and o-
invariantin £2,,. Now write £2, = 2°UQ ", where 2° = {w € 2, | l,(w) = 0}
and 2 = {w € 2,| L(w) > 0} and note that these sets belong to X,
and are o-invariant. Applying again the Birkhoff Theorem 1.3 to the function
X ngo = Xx, One proves that m(KC, N 2°) = Jo Xm0 (w)dm = 0. On the

KnM 2,

other hand, it is clear that Qj C B,. Since

n(20) = m(Ky 0 20 +m((2 ~Ki) N 2 <m(@—K,) <

and
1
m(B,) = m(27) =1-m(2) =1—-—,
n

the set B, satisfies the required conditions.

Remark 1.1 and the definition of o-invariance with respect to m show that there
is no loss of generality in assuming that the function f is Borel measurable.
Note also that f = f* — f~ for f© = max(f,0) and f~ = —min(f,0),
which are Borel measurable, o-invariant with respect to m, and nonnegative;
hence it is enough to prove the result for f > 0. Now, on the one hand,
repeating the argument of Proposition 1.2 one can check that the Borel set
N, = {t € R| f(o,(w)) # f(w)} has zero Lebesgue measure for all the
points w in a Borel set 290 C §2 with m(£20) = 1. And, on the other
hand, Proposition 1.4 provides a o-invariant set §2r € X, with m(§2;) =

and an extended-real X,,-measurable o-invariant function f such that f(w) =
lim;— o0 (1/7) fo f(og(w)) ds exists for any w € §2y. Note that if w € £2¢ N £2f,
then f(w) exists and agrees with f(), so that the (o-invariant) function f takes
real values in a o-invariant and X,,-measurable set .Qf C 25 with m(.Qf) =1.
The already verified point (i) guarantees the existence of a Borel o-invariant
set B C .Qf with m(B) = 1. Define g = fXB, and note that g(w) =
lim;— o0 (1/1) fof(crx(a))) Xs(0s(w)) ds for any w € 2. A new application of
Fubini’s theorem ensures that the map w +— (1/1) for f(os(w)) x(05(w)) ds is
Borel for any ¢ € R, so that g is Borel (see Remark 1.1). Clearly, it is also
o-invariant. And it agrees with f on B N £2y, which completes the proof.
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A (positive normalized regular Borel) measure m is o-ergodic if it is invariant and,
in addition, any o-invariant set has measure 0 or 1. The following fundamental
property will often be applied in combination with Theorem 1.3, which associates a
o-invariant function f € L'(£2, m) to each f € L' (2, m).

Theorem 1.6 Let (§2,0) and m be a Borel measurable flow and a o-invariant
measure on §2. The measure m is o -ergodic if and only if every o -invariant function
f € LY(2,m) is constant m-a.e. In other words, if and only if for every f € L' (2, m)
there exists a (strictly) o-invariant set §2; € X, with m(§2;) = 1 such that
f(@o) = [, f(®)dp for every wy € £2;.

The direct implication can be proved as (1)=>(2) in Proposition II.2.1 of [99]. As
for the converse implication: if m(A) € (0, 1) for a o-invariant subset A C 2, then
X4 1S a nonconstant o-invariant integrable function. Note once more that the sets
§2; of the previous statement can be assumed to be Borel.

The following basic characterization of invariance will be useful in the proofs of
several results.

Proposition 1.7 Let (§2,0) be a Borel measurable flow, and let m be a measure
on $2. The following statements are equivalent:

(1) mis o-invariant;
Q) [of(@)dm = [, f(o/(w))dm forallf € L'(2,m)and all t € R;
3) fgf(a)) dm = fgf(cn(a))) dmforallf € C(£2,R) andall t € R.

Proof (1)=(2) If the measure is invariant, then [, s(w)dm = [, s(oi(w))dm
for every simple function s. Take a nonnegative function f € L'(£2,m) and
choose a nondecreasing sequence (s;) of nonnegative simple functions such that
f(w) = limy— o0 sk (w) for all w € £2 (see [128], Theorem 1.17). Hence f(0;(w)) =
lim,,— o0 Sk (0y(w)) for all ® € §2 and r € R. Now apply the Lebesgue monotone
convergence theorem in order to prove that

/Q fw)dm = lim /Q sw)dm = lim /Q 51(0:(@)) dm = /Q F(or(@)) dm.

Finally, any function f € L'(£2,m) can be written as f = fT — f~, where
fT = max(f,0) and f~ = —min(f,0) are nonnegative elements of L'(£2,m).
This proves (2).

(2)=(3) This property is obvious.

(3)=(1) Property (3) and the Lebesgue monotone convergence theorem yield
m(KC) = m(0,(K)) whenever K C £2 is compact and 7 € R: just take a decreasing
sequence of positive and continuous functions (f;) with pointwise limit y,. and with
bound 1. (For instance, fy(w) = 1/(1 + kdg(w, K)), where d;, is the distance in £2
and dg (w, K) = infzex do (@, ®).) Hence, the regularity of the measure m ensures
the same property for every Borel set A C £2.
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The occurrence or lack of invariant and ergodic measures is a fundamental question
in measure theory. There are examples of noncontinuous flows on compact metric
spaces (see [99], Exercise 1.8.6) as well as more basic examples of continuous flows
on noncompact spaces which do not admit any normalized invariant measure.
However, the situation is better when dealing with a continuous flow on a
compact metric space, as stated in Theorem 1.8. This will be the setting from
now on: until the end of this section, (§2,0) will represent a continuous flow on
a compact metric space. A complete proof of Theorem 1.8 in the case of a discrete
flow can be found in [99], Section 1.8, and for a real flow in [110], Theorem 9.05 of
Chapter VI. In fact the result was initially proved by Krylov and Bogoliubov [94].

Theorem 1.8 Let 0 be a continuous flow on a compact metric space S2. Then there
exists at least one o -invariant measure on 2.

In order to deduce the existence of o-ergodic measures from the above result, which
is one of the assertions of the following theorem, consider the set 9t(§2) of positive
normalized regular Borel measures on £2 endowed with the weak™ topology: the
sequence of measures (m;) converges to m if and only if limy—co [, f(w) dmy =
[ f (@) dm for every continuous function f: §2 — R. Then, 9(£2) is a metrizable
compact space (see e.g. Theorems 6.4 and 6.5 of [148]), and it is clearly convex:
any convex combination of measures my, ...,m, in D($2) (i.e. the sum A; m; +
... Aymy,, where Ay, ..., A, € [0, 1] and Z;'l=1 A; = 1), belongs to (£2). Recall
that given a convex subset 2T of 2(£2), a point m is extremal if the equality m =
amj + (1 —a)m, for a € [0,1] and m;,my, € 9N ensures that a € {0, 1}; and
that the closed convex hull of a subset 9t; C 91 is the closure of the set of convex
combinations of points of ;.

Theorem 1.9 Let o be a continuous flow on a compact metric space S2.

(i) The nonempty set Miny(§2,0) of o-invariant measures is a compact convex
subset of M(K2).
(1) Miny (82, 0) is the closed convex hull of the subset of its extremal points.
(iii) An element of Miny (§2, 0) is an extremal point if and only if it is a o-ergodic
measure.

In particular, there exist o-ergodic measures, and every o-invariant measure on
§2 can be written as the limit in the weak® topology of a sequence of convex
combinations of -ergodic measures on §2.

Proof The proof of points (i) and (iii) can be easily carried out by adapting to the
real case the arguments of Theorem 6.10 of [148] for the discrete case. To this end,
use Theorem 1.8 and Proposition 1.7. Point (ii) is an immediate consequence of (i)
and Krein—Milman theorem (see e.g. Theorem 3.23 of [129]), and the last assertions
follow from the previous ones.

Another classical way to deduce the existence of o-ergodic measures from the
existence of o-invariant ones is to use the Choquet representation theorem.
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Remark 1.10 Let o be a continuous flow on a compact metric space £2. The ergodic
component of a o-invariant measure m on £2 is defined as the set of points wy € §2
such that

/ F(@)dm = lim - / fou(0)) ds
o t—00 0

for all f € C($2,R). In other words, it is the intersection of all the o-invariant sets
§2¢ associated by Theorem 1.3 to the continuous functions f. It is not hard to check
that £2; is a Borel set if f is continuous. The separability of C(§2, R) for the topology
given by the norm || f||; = max,ep |f(w)| implies that the ergodic component is
also a Borel set, and that it has measure 1 in the case that m is ergodic: the ergodicity
and Theorem 1.6 ensures that m(§2;) = 1 for every continuous function f.

Theorem 1.9 ensures that, if the flow o is continuous (and £2 is not necessarily
compact), any minimal subset K C £2 concentrates at least one o-ergodic measure;
that is, there exists a o -ergodic measure m on §2 such that m(KC) = 1. In general, one
says that a measure m on £2 is concentrated on a subset if this subset has measure
1. Recall that every measure is normalized unless otherwise indicated.

Let m be a measure on a compact metric space. The topological support of m,
Suppm, is the set £2 — O, where O C 2 is the largest open subset with m(O) = 0.
Obviously, Supp m is a compact subset of £2, with m(Suppm) = 1: the measure is
concentrated on its support. In addition,

Proposition 1.11 Ler (§2, o) be a continuous flow on a compact metric space and
let Supp m be the topological support of a o-invariant measure m.

(i) Suppose that Suppm = 2, and let §20 C §2 satisfy m(§29) = 1. Then §2 is
dense in §2.
(i) If m is o-invariant, so is Supp m.
(iii) If m is o-invariant and §2 is minimal, then Suppm = 2. In fact 2 is minimal
if and only if any o-ergodic measure has full support.

Proof

(i) Suppose for contradiction the existence of a nonempty open subset O C £2
with £20 N O empty. Then m(O) = 0, so that O is contained in the £2 —Supp m,
which is empty. (Note that, in fact, the invariance of the measure is not required
for this property.)

(i1) Let O be as in the definition of Supp m. Then o,(O) is open and m(0,(0)) =
m(0O) = 0 forall t € R, so that 0,(O) = O. That s, o,(Suppm) = Suppm for
allt e R.

(iii) Suppm is compact, since 2 is so. Hence, the first property in (iii) follows
from (ii). The “if” assertion follows from Theorems 1.8 and 1.9: if M 2
is a compact o-invariant set, it concentrates a o-ergodic measure m, and hence
Suppm 2.
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The following property will be required several times in the book. Its proof is
included here for the reader’s convenience.

Proposition 1.12 Ler (£2,0) be a continuous flow on a compact metric space.
Suppose that 2 = Suppm for a o-ergodic measure m. Then there exist subsets
Q% C Q2 with m(2%) = 1 such that the positive o-semiorbit of any w € 2% and
the negative a-semiorbit of any w € §2~ are dense in §2. In particular, (§2,0) is
chain recurrent. In addition, §2 agrees with the omega-limit of any point € 2+
and with the alpha-limit of any point w € §2™.

Proof Let {Oy | k > 1} be a countable basis of open subsets of the compact set £2.
Since £2 = Suppm, then m(Oy) > 0 for each k > 1. It follows from the Birkhoff
Theorems 1.3 and 1.6 that the set

.Q,j' ={w € 2| o,(w) € Oy for some ¢t > 0}

has measure 1, and hence also the countable intersection 27 = ﬂk>1 24 has full
measure for m. Obviously any point in this intersection has dense positive semiorbit.
The set £2~ is defined from

2y ={w € 2] 0,(w) € O for some 1 < 0} .

The chain recurrence follows easily from the fact that any point in the set 217 N 2~
has dense positive and negative semiorbits.

Take now w € 2. If its o-orbit is periodic, then its positive o-semiorbit is finite
and dense, and hence 2 = O(w). Assume that this is not the case. Then the point
-1 belongs to the closure of the positive semiorbit of w (which agrees with §2) but
not to the orbit. Therefore w-1 € O(w), which ensures that {o,(w) | > 0} € O(w).
Since O(w) is closed, it follows that £2 = closure o{o;(w) | t > 0} € O(w). This
proves the last assertion in the case of 2, and a similar argument proves it in the
case of £27.

Remarks 1.13

1. Note that in fact the last argument of the previous proof shows that if the positive
(resp. negative) o-semiorbit of a point @ € £2 is dense, then O(w) = §£2
(resp. A(w) = £2).

2. Itis easy to check that if £2 reduces to a point or is composed of just one periodic
o-orbit, then it admits a unique o-invariant measure, which therefore is ergodic.
In addition, it turns out that it has full topological support.

In most of the sections of the book, (§2, o) will indicate a fixed continuous flow on
a compact metric space. The representation

wt = oy(w)

will be used from now on when no confusion may arise.



14 1 Nonautonomous Linear Hamiltonian Systems
1.1.3 Skew-Product Flows

Let £2 and Y satisfy the conditions imposed on 2 in the previous section: they are
locally compact Hausdorff topological spaces which admit countable bases of open
sets. Hence, £2 x Y satisfies the same properties. In what follows, the product space
£2 xY is understood as a bundle over §2: this is done throughout the book for several
different spaces Y. The sets §2 and Y will be referred to respectively as the base and
the fiber of the bundle.

Let o be a Borel measurable flow on §2. A skew-product flow on §2 xY projecting
onto o is a Borel measurable real flow

TRx2 XY —>2xY, (0,y) (0t,1(tw,y).

The flow (£2,0) is the base flow of 7. Note that 7, satisfies Tr(s + f,w,y) =
(s, ot t(t,w,y)).

Some results concerning noncontinuous skew-product flows will be required in
Chap. 4, and explained in the appropriate place. For the time being, let £2 and Y be
compact metric spaces, and let T be a continuous skew-product flow on §£2 x Y with
continuous base flow (§2, o). It is easy to check that, given a measure p on §2 x Y,
the relation m(A) = u(A x Y) for every Borel set A C £2 defines a measure m on
£2, which in addition is o-invariant if p is T-invariant. In this case, it is said that
projects onto m.

Remark 1.14 In fact, 1 projects onto m if and only if [, . f(w)du = [, f(w) dm
for all f € C(£2,R). For the “if” assertion, keep in mind the regularity of the
measures (see the proof of (3)=(1) in Proposition 1.7). The “only if” assertion
is an easy consequence of the Lebesgue monotone convergence theorem (see the
proof of (1)=(2) in Proposition 1.7).

The following result, whose proof is included for the reader’s convenience, presents
the well-known construction of a T-invariant measure projecting onto a fixed o-
ergodic measure m on §2.

Proposition 1.15 Ler $2 and Y be compact metric spaces, and let T be a continuous
skew-product flow on §2 XY with continuous base flow (§2,0). Let m be a o-ergodic
measure on §2. Then,

(i) there exist T-invariant measures on §2 x Y projecting onto m.

(ii) The set Miny.m (82 X Y, T) of the T- invariant measures projecting onto m is a
convex compact set in the weak ™ topology.

(iii) There exist o-ergodic measures on §2 x Y projecting onto m, and every
T-invariant measure projecting onto m can be written as the limit in the
weak™ topology of a sequence of convex combinations of T-ergodic measures
projecting onto m.
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Proof
(i) The Birkhoff Theorems 1.3 and 1.6 and the ergodicity of the measure m ensure

(ii)

that the set
1 t
2, = {a)o € ‘ lim —/ f(wos)ds = /f(a))dm VfeC(§2,R); .
=00 2t J_, 1)

is o-invariant and that m(§2.) = 1: see Remark 1.10. Now fix (wo,yo) €
2. x Y. Let C(£2 x Y, R) be the set of real continuous functions on the space
£2 x Y. Take also a sequence () 1 oco. The Riesz representation theorem
associates to the bounded linear functional defined by C(£2xY,R) — R, f
(1/(2t)) ff‘rk F(%(s, w0, yo)) ds, whose norm is 1, a (positive normalized regu-
lar Borel) measure py, which satisfies

_ 1 [ .
flw.y)dur = — |  f(Z(s,0,¥0))ds.
2xY 2t J—y,

As stated in the previous section, the set of (positive normalized regular Borel)
measures on £2 x Y is a metrizable compact set in the weak™ topology.
Therefore, the sequence (1) admits a subsequence (u;) which converges
weak™ to a measure p. That is,

~ ) 1 b

flo,y)dp = lim — [ f(Z(s, w0, y0)) ds

2xY j=oo 2t Jy,

whenever f € C(£2 x Y, R). It follows easily from this fact, from the condition
wy € $2., Nand from Remark 1.14, that u projects onto m. Note also that, if
e Randf € C(£2 x Y, R), then

L R B i A
fot(w,y)dp = lim — f@(s+ 1w, ¥0))ds
2xy j=o0 2t Jy,

41

1 . -
= lim — f(f(s,wo,yo))ds=/!2 Yf(wd’)dlh

]_>OO 2t] —t/'—l

as can be deduced from the boundedness of f. According to Proposition 1.7,
this equality proves the T-invariance of w, and completes the proof of (i).

Let M (2 x Y,7) be the set of the 7T-invariant measures on £2 x Y
which project onto m. As in Theorem 1.9(i), an immediate application of the
implication (3)=>(1) of Proposition 1.7 proves that if a measure y is the limit
in the weak™ topology of a sequence (u;) of elements of My, (2 x Y, T),
then u € My (82 x Y, 7). In order to check that p projects onto m, keep
in mind Remark 1.14, and note that if f € C(£2,R), then [, f(w)dpn =
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limy oo [ f(@) dpx = limgsoo [o f(@)dm = [, f(w)dm. The convexity
of Miny (82 X Y, 7) is clear.

As in the proof of Theorem 1.9(ii), properties (i) and (ii) allow one to apply
the Krein—-Milman theorem to prove that the nonempty convex compact set
Minv.m($2 x Y, T) agrees with the closed convex hull of the subset of its
extremal points. In addition, these extremal points are precisely the o-ergodic
measures projecting onto m. To prove this, assume first that the measure
B € Minym(§2 X Y, 7) is ergodic, and apply Theorem 1.9(iii) to deduce that
it is extremal in u € My (£2 x Y, T), which obviously ensures that it is
extremal in My, (£2 XY, 7). Conversely, assume that a measure u is extremal
in Miny.m(2 x Y, 7) and that ¢ = ap; + (1 — a) up for a € [0,1] and
Ui, L2 € 0 € Miny(£2 x Y, 7). Then m = amy + (1 — a) my, where m;
and m; are the o-invariant measures on §2 defined by the projections of p; and
2. Since m is o-ergodic, Theorem 1.9(iii) ensures that a € {0, 1}, so that
is extremal in My, (£2 X Y, T) and hence 7-ergodic. The assertions in (iii) are
proved.

Proposition 1.16 Ler $2 and Y be compact metric spaces, and let T be a continuous
skew-product flow on §2 XY with continuous base flow (§2,0). Let m be a o-ergodic
measure on §2. Let 2y € X, be a o-invariant set with m(§20) = 1, and letl: 2 — Y
be a X,,-measurable map with T(t, w, (w)) = (w-t, [(w-1)) for all w € §2y. Then,

@
(ii)

there exists a Borel set §21 C §2y which is o-invariant set and with m(§2;) = 1
such that the T-invariant set {(w,l(®)) | @ € §£21} C 2 x Y is Borel.

The graph of | concentrates a T-invariant measure |1 which projects onto m,
which is determined by fgxyf(a), ydu = [, f(w, l(w)) dm for all continuous

functions f: 2 x Y — R.

Proof

®

(ii)

The regularity of m and Lusin’s theorem guarantee the existence of a compact
subset M C §2( with m(M) > 0 such that [ is continuous at the points of M.
Define My = {w't| ® € M ,t € [k, k]} fork = 0,1,2, ..., which is also a
compact set, since o is continuous. It is easy to check that £2; = Ugso My is
a Borel o-invariant set of positive measure; hence, by ergodicity, m(§2;) = 1.
In addition, the map / is continuous at the points of all the sets M, as one
can easily deduce from the property of r-invariance of / on £2y and from the
compactness of M and [—k, k]. Finally, one has that {(w, (w)) | ® € £} =
Ur>of(w, [(w)) | @ € My}, and therefore it is Borel.

A T-invariant measure concentrated on £ = {(w,l(w))| w € £}, which
is contained in the graph of [, is constructed in what follows. For all f in
the set C(£2 x Y,R) of real continuous functions, the X,,-measurable map
2 - R, o f(w,l(w)) belongs to L' (£2, R), so that it is possible to define
L(f) = /. o f(w,I(w)) dm. Then L is a bounded linear functional with norm 1
on C(£2 x Y,R), and the Riesz representation theorem provides a (positive
normalized regular Borel) measure j; such that L(f) = fgxy flw.y)du.
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Since [q, .y f(@)dpu = L(f) = fo(a)) dmforall f € C(£2,R), Remark 1.14
ensures that u; projects onto m. In addition, according to the equivalences estab-
lished in Proposition 1.7, the measure j; is T-invariant: if fe C(£2 xY,R) and
t € R, then [, f(T(w.y) d = [of(@t, l(w1)dm = [, f(w,l(w))dm =
fgxyf(w,y) du,, since m is o-invariant. Finally, if L C (£2 x Y) — L is
a compact set, the Lebesgue monotone convergence theorem ensures that
wi(K) = 0 (see the proof of (3)= (1) in Proposition 1.7), and hence the
regularity of u; ensures that p;(£) = 1; that is, y; is concentrated on L.

A skew-product flow may admit many types of compact invariant sets, whose
complexity varies in an ample range. Among them are those described now, which
are especially interesting from a dynamical point of view, and which will appear
frequently in the following chapters. The first one represents an extension of the
idea of an equilibrium point for an autonomous system, or of a T-periodic solution
for a system with T-periodic coefficients.

Definition 1.17 Let §2 and Y be compact metric spaces, and let T be a continuous
skew-product flow on £2 x Y with continuous base flow (£2,0). A compact subset
IC C 2 xY is a copy of the base (for the flow T) if it is T-invariant and, in addition,
Ko ={y € Y| (w,y) € K} reduces to a point for every @ € £2: in other words,
if it agrees with the graph of a continuous map c: 2 — Y satisfying c(wf) =
L(t, w, c(w)), so that K = {(w, c(w)) | w € £2}.

These invariant objects are the simplest ones from a dynamical point of view,
since they reproduce homeomorphically the base §2. The second type of set is a
generalization of the first one.

Definition 1.18 Let £2 and Y be compact metric spaces, and let T be a continuous
skew-product flow on £2 x Y with continuous and minimal base flow (£2,0). A
minimal subset IC C §2 X Y is an almost automorphic extension of the base (for the
flow 7) if it is T-invariant and, in addition, there exists y € Y such that K, = {y €
Y| (w,y) € K} reduces to a point.

Clearly, a copy of the base provides the simplest example of an almost automorphic
extension in the case of minimal base flow. However, there are examples of almost
automorphic extensions which are not copies of the base. The most classical ones
are those due to Millionsc¢ikov [104, 105] and Vinograd [147]. See Johnson [68] for
a detailed dynamical description of these examples, and [67] for a later example of
a scalar linear equation with this type of complicated invariant object, which can
exhibit properties of high dynamical complexity (like sensitive dependence with
respect to initial conditions). Example 8.44 contains a similar construction with
most of the details explained, with an almost automorphic extension of the base
whose fibers reduce to a singleton at a residual set of points of the base but not on a
set of full measure.
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1.2 Basic Properties of Matrices and Lagrange Planes

Throughout the book, M,,xs(R) and M,,xs(C) will represent the (m x d)-
dimensional vector spaces of real or complex m x d matrices; and, as in the
previous pages, the symbol K will represent either R or C. The casesd = m = n
and d = m = 2n will be frequently considered. The symbols M? and M* denote
respectively the transpose and conjugate transpose of M; and ReM and ImM
represent the real and imaginary parts of a complex matrix M. The determinant
and trace of a square matrix M will be represented by detM and tr M. Recall that
detM = detM7, det(MN) = det(NM), trM = tr M”, and tr(MN) = tr(NM). If M
is a nonsingular square matrix (i.e. if det M # 0), then M -1 represents its inverse; I;
and 0Oy are the identity and null matrices in M;x4(K) for all d € N; and 0 represents
the null vector in K¢ for all € N.

A d x d matrix M is symmetric if MT = M and hermitian if M* = M. A real
symmetric matrix or a complex hermitian matrix is selfadjoint, in reference to the
usual Euclidean inner product (x,y) = y*x in K’: in both cases (x, My) = (Mx,y)
for any pair of vectors x and y in K¢. The square matrix M is unitary when M*M =
1,4, and orthogonal if it is real and unitary. A real or complex 2n X 2n matrix M is
symplectic if MTIM = J, where

On _In
J= [ o OJ |

Note that J> = —I,,, and that any symplectic matrix is nonsingular: in fact,
detM = 1. This can be deduced, for instance, from the Iwasawa decomposition
of M, described in Lemma 2.16. The simplest examples of symplectic matrices are
L, and J.

The following notation will always be used:

- GL(m, K): set of nonsingular m x m matrices con coefficients in K,
- U(m, C): set of (complex) unitary m x m matrices,

- SU(m, C): set of unitary m x m matrices with determinant 1,

- O(m,R): set of (real) orthogonal m x m matrices,

- SO(m, R): set of orthogonal m x m matrices with determinant 1,

- Sp(n, C): set of complex symplectic 2n x 2n matrices,

- Sp(n, R): set of real symplectic 2n x 2n matrices.

It is very easy to check that the first five sets are groups with respect to the matrix
product. Proposition 1.23 below guarantees that also Sp(n, C) and Sp(n,R) are
groups. In fact, all of them are Lie groups (see e.g. Sections 1 and 2 of Chapter II of
Helgason [57]).
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1.2.1 Symmetric, Hermitian, and Symplectic Matrices

Consider the sets of real and complex symmetric d x d matrices,

Sa(R) = {M € Myxa(R) | M =M"},
S¢(C) = {M € My»q(C) | M = M"},

which constitute (d x (d + 1))/2-dimensional linear subspaces of M;x,(R) and
Myxq4(C). Let M belong to S;(R). Then,

- M is a positive definite matrix (M > 0) if x” Mx > 0 for all x € R?, x # 0,
- M is a positive semidefinite matrix (M > 0) if x” Mx > 0 for all x € R¢,

- M is a negative definite matrix (M < 0) ift —M > 0,

- M is a negative semidefinite matrix (M < 0) if —M > 0.

The subsets
S (R) = {M € Sy(R)| M > 0},
SH(C) = {M € Sy(C)| ImM > 0}

will be frequently considered. Note that their closures on Sy(R) and S;(C) are
given by

ST(R) = (M € Sy(R) | M > 0},
S§§(C) = {M € S,(C) | ImM > 0},

which can be easily deduced from the definitions of positive definite and semidefi-
nite matrices.
Similarly, if M is a hermitian matrix, then

- M is positive definite (M > 0) if x*Mx > 0 for all x € C?, x # 0,
- M is positive semidefinite (M > 0) if x*Mx > 0 for all x € C¢,

- M is negative definite (M < 0) if —M > 0,

- M is negative semidefinite (M > 0) if —M > 0.

The relations M > N,M > N,M < N and M < N for selfadjoint matrices have the
obvious meaning: for instance, M > N means that M — N > 0.

Well-known properties of positive (real or complex) matrices are: M > 0
(resp. M > 0) if and only if A > 0 (resp. A > 0) for all the eigenvalues A of M
(which are real); hence, M > I, (resp. M > 1) if and only if A > 1 (resp. A > 1)
for all the eigenvalues A of M; and, if M > O (resp. M > 0) and P is nonsingular,
then P*MP > O (resp. P*MP > 0).

Let Mx4(K) be a given positive definite (or semidefinite) matrix. Throughout
the book, the expression “the unique positive definite (or semidefinite) square root of
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M” (will be used very often. That this object exists for positive selfadjoint bounded
operators is a well-known fact: see e.g. Theorem VI.9 of Reed and Simon [122].
The following result provides an easy and constructive proof in the matrix case.

Proposition 1.19 Let M belong to Myxq(C).

() If M > 0, there exists a unique matrix M"/> > 0 such that (M"/*)? = M. In
addition, Mx = 0 if and only if M"/*> x = 0, and M"/? is real if M is real.
(i) IfM > 0, then M'/?> > 0 and (M'/*)~" = (M~1)/2,
(ili) The map defined from {M € S4(C) | M > 0} to itself by sending M to M"/* is
continuously differentiable.

Proof If M > 0, all its eigenvalues are real and nonnegative, and it is a well-known
fact that there exist a unitary matrix P (which is real if M is real) and a real diagonal
matrix D > 0 such that M = P*DP. It is obvious that there exists a unique diagonal
matrix D > 0 such that D = D?. Then the matrix N = P*DP satisfies N >0
and N> = M. This proves the existence, and the fact that N is real if M is real.
Clearly, if M > 0, then D > 0 and hence N > 0. Now, if N > 0 satisfies N? =
M, and Nx = Ax, then Mx = A?x. That is, the eigenvalues and the associated
eigenvectors of N are uniquely determined, so that also the matrix is. In addition,
if M = P*D?P > 0, then M~' = P*D~2P > 0, so that (M'/2)~! = p*D~'p =
(M~")!/2 Note also that M x = 0 ensures that ||M'/2 x|| = 0 for the Euclidean norm
in C4, so that M'/2x = 0. These facts prove (i) and (ii). To prove (iii), one can apply
the Inverse Function Theorem to the map Myxs(C) — Myxs(C), M +— M? at a
point M > 0: it is continuously differentiable at M, and its differential, which sends
C € Myx4(C) to MC + CM, has no null eigenvalues. This last assertion is due to
the positive definite character of M: assume that MC + CM = 0, in order to deduce
that DPCP* + PCP*D = Qg4; and note that this implies that PCP* = 04 and hence
that C = 0,.

Remark 1.20 Suppose that 0 < M < N for two symmetric d X d matrix-valued
functions. Then I; < M~"/2NM~"'/2 and hence I; < N'/>M~'N'/2, since both right-
hand terms have the same eigenvalues. Therefore, 0 < N -1 < pm 71 Clearly, there
is an analogous result if the inequality is strict.

Proposition 1.21

1 IfM e Sj (C), then it is nonsingular, and —M~" € Sj (©).
(i) IfM € Sj (C) is nonsingular, then —M~" € Sj (©).

Proof Write M = A + iB for real symmetric matrices A and B, and assume that
B > 0. Take z € C" with M z = 0 and note that z*M* = 0*. Then2iB =M —M =
M —M*, and therefore 2iz*Bz = z*(M —M*) z = 0, so that z = 0. This proves the
existence of M~!. To check the second assertion in (i), as well as (ii), write M~ =
C+iD for real matrices C and D. It follows from the identity I; = (A +iB)(C +iD)
that AC—BD = I; and BC+AD = 0y, so that also C'B+D"A = 0,. These equalities
ensure that DT + D'BD = DTAC = —C"BC, so that DT = —D'BD — C'BC, which
is obviously symmetric, and is negative semidefinite if B > 0. Finally, if B > 0 and
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2Dz = 0,then Cz = 0 and Dz = 0, so that M~' z = 0 and hence z = 0; that is,
D < 0.

The following basic properties refer to symplectic matrices.
Proposition 1.22 If A is an eigenvalue of M € Sp(n, R), so is 1™\,

Proof Recall that any eigenvalue is different from zero. It can immediately be
checked that MTJv = A~'Jvif Mv = Av, so that the assertion follows from
the coincidence of the set of eigenvalues of any matrix and that of its transpose.

Proposition 1.23 Let M = [%; %j] belong to Sp(n, C). Then MT, M* and M~" are
also symplectic matrices, and

MM = M, MM, = MMy MM — MIM = 1,
MME = MsMT MoMT = MuME MuMT — MoME = 1,
MuML = MoMY MsMT = MiME
MIM; = MMy, MIM, = MTM,

Proof If MTIM = J, then JM'] = —M~'. This implies, on the one hand, that
MJMT = J and MJM* = J, so that MT and M* are symplectic whenever M is.
And, on the other hand, that M~'J(M~")" = J, so that also (M~")”, and hence
M™!, are symplectic if M is.
T T
One more consequence of the identity M~' = —JM"J isthat M~! = [ AZ;T 11%3 ]
M 1

The remaining equalities are immediate consequences of the symplectic character
of M, M", M~!, and (M~ 1)T.

Remarks 1.24

1. Unless otherwise indicated, || - || = | - ||« will denote throughout the book some
fixed norm on the vector space K4, and M,;,xq(K) will be provided with the
associated operator norm, defined by |M| = max|y,=1 [|MX||,,. In general,

no reference to the dimension will be made in the norm notation: the context
will give the precise dimension d or m x d. It can immediately be checked that,
with this definition, |Mx|| < ||M||||x]|, and hence that | MN|| < ||M]|||N|. Recall
that all the norms are equivalent in the case of vector spaces of finite dimension.
However, not every norm on M,,;(K) is associated as above to a vector norm.
2. The most frequently used norm will be the Euclidean norm, defined by ||x| =
(x,x)1/? = (x*x)"/2 on K and by |M|| = max|y=1 ||M x|| on Mg, (K). Itis the
norm associated to the Euclidean inner product defined on K¢ by (x,y) = y*x.In

this case, [|M| = ||M*||: according to the Cauchy—Schwarz inequality, || Mx||> =
(x.MMx) < [x[[|M*Mx|| < [x|[[|[M*[[[|[Mx], so that |Mx] < |[x]|||a*]],
which implies |[M| < ||M*|; and hence also |M*|| < ||[(M*)*|| = |M|. It

is a well-known result that, if M is a square matrix, then |M||> agrees with the
spectral radius p(M*M) of M*M; i.e. with the maximum eigenvalue of the matrix
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M*M. In addition, |M||> = |M*M||: since N = M*M is hermitian and positive
semidefinite, [[N|| = (o(N*N))'/> = (o(N*))'/* = p(N) = ||M]>.

3. The choice of a particular norm on M, (R), which will now be defined, will be
of importance in the proofs of some of the main results of the book. Given a real
dxm matrix M, define |M|r = (tr(M"M))"/?. It is known (see e.g. Section 5.2 of
Meyer [102]) that the continuous map M +— ||M||r defines a matrix norm (which
does not come from a vector norm), called the Frobenius norm. The following
properties will be useful:

Fl. M| = |MT||fif M € Myxn(R);
F2. |tt(MN)| < |M||r|N||Fif M € Myxn(R) and N € Mxq(R);
F3. |[MN|r < |M||¢|N|F if M € Myxu(R) and N € M,,xq(R).

1.2.2 Grassmannian Manifolds

Let W be a m-dimensional linear subspace of K?, withK = RorK = C. Givenk €
{0,1,...,m}, let G,(W) represent the set of the k-dimensional subspaces of W.~Tl5:
set Gr(W) is diffeomorphic to the homogeneous space of left cosets GL(m, K)/H, H
being the closed Lie subgroup of GL(m, K) given by the matrices of the form [6‘ ;],
where A € GL(k,K) and B € GL(m — k, K). Here, * represents any k x (m — k)
matrix and O represents the zero (m — k) x k matrix. With this identification, which
provides G (W) with a differentiable structure, Gy (W) is the Grassmannian manifold
of the k-dimensional linear subspaces of W. In the real case, this manifold can be
also identified with SO(m, R)/H, where H is the closed subgroup of SO(m, R)
given by the matrices of the form [4 ] for A € O(k,R), B € O(m — k,R) and
detA-detB = 1. A similar identification is valid in the complex case, taking now
‘H as the closed subgroup of SU(m, C) given by the matrices of the form [6‘ g] for
A € Uk,C), B € Uim — k,C) and detA-detB = 1. In both cases, Gy(W) is a
compact and connected manifold of dimension k(m — k), which agrees with the real
or complex projective space on W if k = 1. The reader can find a discussion of these
matters in Sections 17 and 18 of Chapter IV of Matsushima [101].

Let || - || represent the Euclidean norm in K¢. It is possible to define a metric
on G; (K% compatible with the topology: the distance between two k-dimensional
linear subspaces g and # is defined by

d(g,h):max( sup d(v,h), sup d(w,g)),

veg. [Ivli=<t weh, [lwll<1

where d(v,h) = infyep ||V — W|. An equivalent and useful definition is given by
Morris [107], Lemma 3.2:

d(g,h) = sup d(v,h)= sup d(w,g). (1.2)

veg, |vll=1 weh, |w]=1
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In fact d(g, h) agrees with the Hausdorff distance between g N'S and 2 NS, where S
is the unit sphere in K¢: see definition (1.25) below, and Section IV.2 of Kato [89].

Consider now the case W = K¢, and take M € GL(d,K). It is clear that the
equivalence class [M] of M in GL(d,K)/ H is determined by the first k column
vectors of M, and that the element of Gy(K¢) corresponding to [M] is the k-
dimensional vector space generated by these column vectors. In other words, any
g € Gi(K?) can be represented by a d x k matrix of rank k, and two of these
matrices G; and G, represent the same vector space g if and only if G; = G,P
for a matrix P € GL(k,KK). That is, Gi(K¢) can be identified with the quotient
space MY, (K)/GL(k, K), where Mk, , (K) C Myx(K) is the subset of matrices
of rank k. Such a matrix G is called a representation of the element of G;(K?)
that it determines, and this fact is denoted by g = G. Now represent by stk(K)
the set {G € Mk, (K)| G*G = I}, and note that choosing an orthonormal
basis of g provides a representation G € Ufnxk(K). Clearly two matrices G
and G; in stk(K) represent the same vector space if and only if G; = G,P
for a unitary matrix P, which is orthogonal if K = R. That is, G;(K?) can be
identified with the quotient space Uk, (K)/U(k,K) (where U(k,R) = O(k, R)).
A standard topological argument proves that the projections maps ngk(K) —
ME,, (K)/GL(k,K) and U%, (K) — UX_, (K)/U(k, K) (which are continuous, by
definition of the topology on the quotient spaces) are also open: see [101], Chapter
IV.2. In particular, the set G;(IK?) is metrizable: see e.g. Lemma 1 of Stone [144].
The following result, whose proof is left to the reader, is another easy consequence
of the open character of the projection maps.

Proposition 1.25 Let (g;) be a sequence of elements of Gi(K?), with g; = G; for
G; € ML (K) (resp. G; € U5, (K)), and g € Gu(K?), with g = G for G €
ME (K) (resp. G € Uk, (K)). Then limjo0 g = g in Ge(K?) if and only if, for
J € N, there exists P; € GL(k,K) (resp. P; € U(k,K)) such that lim; . |G;P; —
G| =0.

This result has some consequences which will be useful in the proofs of several
convergence results scattered throughout the book. For example, it is used to prove
the next proposition.

Proposition 1.26 Let (g;) be a sequence of elements of Gr(K?), and g € Gi(K?).
Then,

() limjo0 g = g in Gu(KY) if and only if and if each vector v € g is the limit in
K™ of a sequence (v;), with v; € g;.

(i) limjoo g = g in Gu(K?) if and only if and if the limit v of any convergent
sequence (v;) with v; € g; belongs to g.

Proof The proof is based on the information provided by Proposition 1.25.

(i) For the “if” assertion in (i), take a representation G = [v!---v¥] of g, for
i=1,...kwrite v\ = lim;_,c0 v} for v; € g, note that lim.cc |G; — G|| = 0
for G; = [v} --~V§‘], and deduce that the rank of the m x k matrix G;j is k for
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large enough j, so that G; represents g;. For the converse assertion, choose
representations ¢ = G and g; = G; with limj,oo G; = G, write v € g as
v = G for ¢ € K% and note that v = limj, o G; .

(i) Note that the “only if” assertion is trivial if v = 0, so assume that this is not

the case and, without loss of generality, that ||v|| = 1 and |v;| = 1. Take
representations g; = G; for G; € UX,(K) and g = G with limj. G; = G.
Write v; = Gj¢; for ¢; € K9, and note that, since ||¢;j| = |v;]| = 1 for

the Euclidean norms, there exists a subsequence (c,,) with limit ¢. Therefore,
v = lim,,—00 G €y = G € g, as asserted. For the converse assertion, choose
any subsequence (g,) of (g;); write g, = G, for G, € Ulfzxk(K)Z apply
the compactness of the unit sphere in K¢ to find a convergent subsequence
(G)) of (G,) with limit G; deduce from the hypothesis that G represents
g; use Proposition 1.25 to see that lim;—,.c g; = g; and conclude from the
independence of the limit with respect to the choice of the subsequence that
the limit of the initial sequence (g;) is g.

1.2.3 Lagrangian Manifolds

The manifold G,(K*") has a submanifold which will play a fundamental role
throughout the book: the Lagrangian manifold, which is now described. Recall that
two vectors z and w in K*" are isotropic if zZ'Jw = 0. Any linear subspace [ of
K" whose vectors are pairwise isotropic satisfies dim/ < n, since [ is contained in
the Euclidean orthogonal subspace to J-l = {Jz| z € [}. An n-dimensional linear
subspace [ C R?" (or I C C?") is a real (or complex) Lagrange plane if z'Jw = 0
for all z and w in /. Let Lr and L¢ represent the sets of real and complex Lagrange
planes. Itis easy to check that the vector columns of a 2nxn matrix [g ] form a basis
of an element [ of Li if and only if the rank of the matrix is n and LlTLz = Lng.
This situation will be represented as [ = [g] throughout the book, and the matrix

[7)] will be called a representation of I. Note that [ 7! ] and [ ]! ] represent the
same Lagrange plane if and only if there is a nonsingular n X n matrix P such that
Ll = F1P and Lz = FzP.

Remarks 1.27

1. There is a basic connection between symplectic matrices and Lagrange planes.
Let V and / be a (real or complex) symplectic matrix and a (real or complex)
Lagrange plane, and represent by V- the vector space {Vz| z € [}. Then V-lis a
new (real or complex) Lagrange plane: it has dimension n since the matrix V is
nonsingular; and, if z and w belong to [, then 2 V'JV w = z”J w = 0. Note that
itV = [} Jand 1= [ ] then v = V[ 1] = [t

2. Tt follows from the previous remark that, if V is symplectic, then [ ;! | and [ }} ]
represent Lagrange planes, since [ ' | and [ " ] have this property. And the same
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T T
happens with [“j‘r] and [“jzr], since according to Proposition 1.23, V7 is also
3 4

symplectic.

3. If the real matrix [g] represents the real Lagrange plane /, then the matrices
Ly + il are nonsingular. As a matter of fact, (Ly £ il)*(L; £+ il,) = LlTLl +
Lg L, and this last matrix is positive definite, as easily deduced from the relation
dim/ = n. In addition, it is possible to find a real representation [%] of [ with
@, + iD; unitary: just take P to be the unique positive definite square root (see
Proposition 1.19) of LlTLl + Lng, where [ = [g ], and define [g; ] = [g ] Pl
Finally, the real matrices [g ] and [g; ] represent the same plane with @; + iD,
and ¥ + i¥, unitary if and only if ¥; = @R and ¥, = P,R with R orthogonal.

The spaces Lk (for K = R and K = C) are compact orientable manifolds of
dimension n(n 4+ 1)/2: see Mishchenko et al. [106], Section 2.4. They can also
be understood as submanifolds of G,(IK*"), so that they are also metrizable. The
following results clarify the meaning of convergence in Lk. Consider the subsets
Lk defined by

Dy, K)y=3leLgl|l= [g} with [g} nonsingular} ,
] seensip
where [g ]il . is the nxn submatrix of [g ] whose jth row is i;th row of the initial

------

one, for 1 < i} < --- < i, < 2n. Note that the (nondisjoint) union of all these sets
fills up the space Lx. In fact, these sets form the charts of the structure of a variety
on Lk, as the following results imply. Direct proofs of them are included for the
reader’s convenience.

Proposition 1.28 Each set D, __;,(K) is open in L.

Proof To simplify the notation, the proof is carried out for the set Dx =
D;y...»(K), which is the complement of the set given by Cx = {l € Lx| [ =
[g] with detL; = 0}. The ideas are the same in the remaining cases. In
order to check that Ck is closed, take a sequence (/) in Cx with limit /, and

k
apply Proposition 1.25 to find representations [, = [2’1‘] and [ = [2] with
2
k
limgoo [ 11 | = [£1]: Then detLy = limyo0 det § = 0, s0 that / € Cy.
2

Now define the map

i (K) = Mxn(K), [—M,

where / = [ 7! ] is the unique representation of / with [ ;! l;,.; = 1Inand M is the

n X n submatrix composed of the remaining rows, preserving the relative order. It is
obvious that d;, . ;, is injective, and it is also obvious how to the inverse di_l,l___’in on
the subset d;, i, (D, ....i,(K)) C M,,x,(K) must be defined.

..... in
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Proposition 1.29 The map d;, ..., is an embedding. More precisely,

(i) if the sequence (I;) of elements of Lk converges to the Lagrange plane I, and
[ belongs to a chart D, __;,(K), then Iy € D;, ., (K) for k large enough, and
limg— oo diy.._i, () = diy.._i, (D).

(1) Iflimg—oo diy.._i, (k) = diy.i, (1), then limg—o0 I = L.

..... in

Proof The proof is carried out again for the case Dk = D ,(K). The other cases
can be handled in an analogous manner. Let d represent d; .

(i) The first assertion in (i) is a trivial consequence of Proposition 1.28. Now

represent | = [ 1’&], with M = d(I), and apply Proposition 1.25 to find

. Ik . . 123 I
representations [ = [L;] with limy_; 0 [L;] = [ A;
2 2
that limy o0 [ o7 | = [ B | for My = LE(LY)™" = d(ly). Thatis, limy 00 d(l) =
d(l), as asserted.
(i) This assertion is another easy consequence of Proposition 1.25.

], which obviously implies

Remark 1.30 The previous result ensures that the sets D, (K) and D41 2,(K)
are homeomorphic to S, (K).

The following result will be fundamental in Sect. 4.5. Its proof follows easily from
Propositions 1.28 and 1.29(i), and the details are left to the reader.

Corollary 1.31 If [;:2 — Lx (k = 1,2,...) are continuous maps with
liml(w) = l(w) uniformly on 2, then l is continuous. If, in addition, | takes
values in a chart Dy, _; (K), then liny_, o0 d;, .. i, (k(®)) = d;,....i,(l(®)) uniformly
on $2.

1.2.4 Matrix-Valued Functions

Section 1.2 is completed by listing some more definitions and properties concerning
real or complex matrix-valued functions. The scalar case is of course included. In
what follows, || - || represents a fixed matrix norm, which can be the Euclidean norm
or any equivalent one (see Remarks 1.24): the various concepts and properties to be
discussed are independent of the particular choice of norm. Note that matrix-valued
function M: 2 — Mx,,(K) is measurable with respect to a fixed sigma-algebra on
£2 containing the Borel sigma-algebra if each of its component functions has this
property. The concepts of o-invariance for matrix-valued functions are a particular
case of the general ones given in Sects. 1.1.1 and 1.1.2.

Definition 1.32 Let m be a o-ergodic measure on §2, and consider on the set of
X,-measurable functions taking values in M, (K) the equivalence relation which
identifies functions which are equal mg-a.e. Consider the quotient space Q. For each
p > 1, the space L7(§2,my) is the subset of Q consisting in functions satisfying
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M, = (fo IM(w)|? dmo)l/p < oo; and L7(£2, my) is endowed with the norm-
topology defined by ||M||,, which is the L7 (£2, mg)-norm.

The notation LP(§2, my) makes no reference to the dimension of the matrix space,
which will always be clearly determined by the context.

Remark 1.33 1t is obvious that M = limy—oo My in LP(£2,mp) if and only if
limy— oo || My — M|, = 0. The spaces L”(§2, my) are hence independent of the initial
choice of the matrix norm, due to the equivalence of any pair of them. Often the
notation L' (£2, mg) or L?(§2, mo) will be used to refer to the spaces of integrable
or square integrable matrix-valued functions, although the word “square” refers of
course to the square of the norm.

Definition 1.34 Let (§2, o) be a continuous flow on a compact metric space §2, and
let X be a sigma-algebra on §2 which can be either the Borel one or its completion
with respect to any fixed invariant measure. Let the function M: 2 — Myx,(K)
be ¥-measurable and let £2p € ¥ be a o-invariant subset. Then M is differentiable
at w € $§2 if there exists (d/df)M(w-t)|,=o, in which case its value is represented
by M’ (w). If M’ (w) exists for all w € £2, then the function M is differentiable
along the flow o on §2. The function M is a solution along the flow on $2y of a
differential equation M’ = h(w-t, M) if M’ (w) exists for all w € §2p and M’ (w-t) =
h(w-t,M(w-t)) for all w € 29 and all + € R. If £2) = 2, then M is said to be a
solution along the flow.

Proposition 1.35 Let M, N: 2 — Myx4(K) be differentiable at w. Then,

(1) the functions AM (for A € K), M + N and MN are differentiable at w, with
(AM) (w) = AM'(w), (M + N)(w) = M'(w) + N'(w) and (MN)'(w) =
M (w)N(w) + M(w)N'(w).

(i1) IfM(w) is nonsingular, then there exists

M (@) = M ()M ()M (v).

(iii) IfM(w) > 0, there exists (M%) (w).

Proof The functions ¢t — (AM)(wt), t — (M + N)(w+1), t — (MN)(w-1),
t = M~ (w-t), and t = M'/?(w-t) are well defined on a neighborhood of ¢ = 0
and differentiable at 0. In the case of the square root, the assertion follows from
Proposition 1.19(iii). The remaining properties are obvious.

Proposition 1.36 Ler (§2,0) be a continuous flow on a compact metric space
$2, and let my be a o-ergodic measure on 2. Let the map f:§2 — R be
Xn,-measurable and differentiable along the flow on S2. Suppose that the limit
lim;— o0 (1/1) fotf/(ars) ds = l(w) € [—o0, ] exists for my-a.e. w € §2. Then
l(w) = 0 for a.e. € 2. In particular, if f' € L' (2, mp), then [, f"(w) dmg = 0.
And this last property also holds for complex functions f: 2 — C, as well as for
real or complex matrix-valued functions.
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Proof Choose a constant k > 0 and a set 50 € X, with mo(ﬁo) > 0 such that
|f(w)| <kforallw e 20, and apply the Birkhoff Theorems 1.3 and 1.6 in order to
find a o-invariant set £2) with m(£29) = 1 such that lim,_, o (1/1) fot Xs, (w-s)ds =
mo(ﬁo) for all w € £2y. Then, for all @ € £2, there exists a sequence (t,) 1 oo
such that w-t,, € 50 for all m € N, so that, if the limit /(w) exists, then l(w) =
lim,— oo (1/ty) (f(wty) — f(w)) = 0. That is, I = 0 myp-a.e. The assertion for
f e L! (82, mg) follows from the Birkhoff Theorem 1.3, and the last statements are
obvious.

Recall finally that, given a topological space Y, a function M:Y — Myx,(K)
is bounded or norm-bounded on Y if supcy [M(y)]| < oo. Observe that any
continuous matrix-valued function M on a compact space Y is bounded.

1.3 Nonautonomous Linear Systems

From this point to the end of Chap. 1, (§2,0) denotes a real continuous flow on a
compact metric space. Recall the notation w-t = o (¢, w) for (t,w) € R x £2. Unless
otherwise indicated, throughout the whole of Sect. 1.3, inclusive all subsections, ||-||
represents the Euclidean vector and matrix norms: see Remarks 1.24.1 and 1.24.2.

1.3.1 The Flows on the Trivial and Grassmannian Bundles

A continuous matrix-valued function A: 2 — Mx(K), with K = R or K = C,
defines a family of nonautonomous 2n-dimensional linear systems,

7 =AlwHz, wes, (1.3)

which, as will be explained in Sect. 1.3.2 derives frequently from a single nonau-
tonomous linear system. Here, as in the rest of the book, the label (1.3) will be used
to make reference both to the whole family and to the system corresponding to a
given element w, when the identity of this element is clear.

A matrix solution of the system (1.3) corresponding to w € §2 is a matrix-valued
function V: R — My« (K) such that V'(t, w) = A(w-t) V(t, ) for all t € R, where
V'(t,w) = (d/drt) V(t,w), and it is a fundamental matrix solution if det V(0, w) #
0, which, by the Liouville formula, ensures that V(z, w) is nonsingular for all z. Let
U,(t, w) be the fundamental matrix solution of the system corresponding to @ with
U4(0, w) = 1. Then, on the one hand, the uniqueness of solutions of (1.3) ensures
that

Ua(t + s,0) = Ux(t,w-s) Up(s,w) forallt,s e Randw € §2; (1.4)
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and, on the other hand, the continuity of A on §2 and the classical theory of
ordinary differential equations ensure the continuity of Us:R x 2 — My, (K).
(The continuity of Uy is proved under less restrictive conditions in Proposition 1.38
below.) These two properties have a fundamental consequence: the family (1.3)
induces a global skew-product continuous flow

wRx2xK! - 2xK!, (t,w,2) — (01, Us(t,0) 7). (1.5)

It is common to say that 74 is a linear skew-product flow, due to the linearity of the
second component of the homeomorphism

{0} xKY = {w1} xK,  (0,2) = (01, Us(t,0) z) .
Take now a linear subspace g of K¢ and define
UA(ts w)g = {UA(tv a))z| Zc< g} ’

and note that dim Uy (¢, w)-g = dim g. Consequently, it is clear that the family (1.11)
also defines a global skew-product continuous flow ¥ on the Grassmannian bundle
2 x Gr(KY),

N Rx 2 x G (KY) = 2 x G(KY), (1w,9) — (o1, Us(t,w)-g).  (1.6)

The results of Sect. 1.2.2 allow one to prove that these flows are also continuous:
Proposition 1.37 The flows t& are continuous fork = 1,...,d.

Proof Fix (t,w,g) € R x £ x gk(Kd), and write it as lim;_ o0 (¥, wj, gj) in the
same space. The goal is to prove that limjo U(j, w;)-g; = U(t,w)-g. Take w €
U(t,w)-g, so that w = U(t,w) Vv for v € g; apply Proposition 1.26(i) to find a
sequence (v;) with v; € g; and limit v; note that w = lim; . U (¥, w;) v;; and apply
again Proposition 1.26(i) to get the desired conclusion.

Note that the previous proof only requires the continuity of the flow t4; i.e. the
continuity of the base flow and the joint continuity of Uy on R x £2. In fact, the
hypothesis of continuity of A is not necessary to ensure the continuity of t4, and
hence that of the flows t&. The following result establishes much less restrictive
hypotheses under which all these flows are continuous. A situation in which it is
relevant is discussed at the end of Sect. 1.3.2. The hypotheses of Proposition 1.38
will be in force in Chap. 2, which is devoted to defining and analyzing the properties
of the rotation number and the Lyapunov index. Given a Borel measurable matrix-
valued function M: R — Myx,(K), let |M||s represent its essential supremum;
i.e. the smallest m € [0, oo] with ||M(f)|| < m for Lebesgue-a.e.t € R.
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Proposition 1.38 Ler A: 2 — Myxs(K) be a Borel measurable matrix-valued
function satisfying the following regularity conditions: first,

a=sup |Au]loc < 00, (1.7)

WES

where A, (s) = A(w-s); and second, the map
>R, w- /A(w-t)z(t) dt (1.8)
R

is continuous for all L'-functions z: R — K?. Consider the family (1.3) given by A.
Then the flows t4 on 2 x K¢ and tﬁ on 2 x G(KY fork = 1,...,d, respectively
defined by (1.5) and (1.6), are continuous.

Proof Foreach w € 2, the existence and uniqueness of a continuous matrix-valued
function t > Uy (¢, w) satisfying

Ust,w) = I; + /OtA(ars) Ua(s,w) ds

is ensured by the standard theory of linear ordinary differential equations (see
e.g. Problem 1 of Chapter 3 of [28]). As pointed out before, Proposition 1.37 ensures
that all the statements follow from the continuity of the flow t4 given by (1.5), which
in turn follows from the continuity of Us: R x 2 — Mxy(K). The continuity of
Uy is now proved.

Take a sequence (1, w,,) with limit (#,wo), and define * = sup,,cy |tml-
The goal is to prove that lim,—co [|Us(tm, wn) — Ua(to,wo)|| = 0. Since
Us(t,w) = Iy + [y A(@-s) Ua(s, ) ds, relation (1.7) ensures that | Ux(t, w)|| <
L+a [} |Ua(s, )| ds for 1 > 0 and [Ua(t, )| < 14a [ |Ua(s, ®)| ds for 1 < 0.
Therefore, by the Gronwall lemma,

|Us(t, )| < e <™ for (1, ) € [-*,1*] x 2. (1.9)

This property, the equality

trﬂ
Un(trs ) — U (fo, o) = / A(@n-5) Un(s, o) ds.

fo

and again (1.7), yield

"
”UA(tmawm) - UA(t07wm)” = ae" |tm - t0| .
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Hence, it suffices to prove that lim,,—, s Us(to, @) = Ua(t, @o). Note that
fo
UA(to, C()m) — UA(to, Cl)()) = / (A(a)m-s) UA(S, Cl)m) —A(C()()'S) UA(S, 0)0)) ds
0
fo
= / (A(wms) — A(wp-s)) Ua(s, wp) ds
0
to
+ [ A@ns) UG 00) - Usts.n) ds.
0

and that 8, = |f0r° (A(wn+s) — A(wo-s)) Ua(s, wo) ds | tends to zero as m tends to oo,
which follows easily from (1.9) and (1.8). Since

fo
[ Ua(to, @) — Ua(to, wo) | < Bm + / a||Ua(s. wm) — Ua(s, wo)|| ds .
0

if ty > 0 and

0
U (10, @m) — Ua(to, w0) | < B + / a||Ua(s. @m) — Ua(s, wo) | ds.,

fo

if tp < 0, a new application of the Gronwall lemma ensures that
U (20, @m) — Ua(to, @) || < B e™,

which yields the required property.

Note that conditions (1.7) and (1.8) are fulfilled if A: £2 — Mx4(K) is a continuous
function.

Remark 1.39 Suppose that (1.7) holds, take any o-invariant measure mg on the
base §2, and define 2, = {w € 2| |[A(w)|| < a}. Then, for all v € £2,
f[o.l] Xa, (@1)dt = 1, so that Fubini’s theorem ensures that [, y,, () dmg = 1
for Lebesgue-a.e. 1 € [0, 1], and the o-invariance of my yields [, o Xa, (@)dmy = 1.
That is, ||A(w)|| < a for mp-a.e. ® € £2. In particular, the matrix-valued function A
belongs to L' (£2, my) for every o-invariant measure m on the base. (Another proof
of this last property can be obtained by applying Proposition 1.4 to the function
A1)

1.3.2 The Hull Construction

An important fact has already been mentioned, namely that the setup described in
Sect. 1.3, which is associated to the family (1.3), can frequently be derived from a
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single d x d linear system, namely
7 =Ao(D)z, (1.10)

where Ag: R — Mxy(K) is bounded and uniformly continuous. To explain this
assertion is the objective of this short section.

Represent the s-translation ¢ — Ag(s + f) by A(¢) for each s € R; and define
£2 as the closure of {A;| s € R} on the set of bounded and uniformly continuous
maps from R to M;4(K) endowed with the compact-open topology. Then £2 is a
compact metrizable space, called the hull of Ay, with a continuous flow defined by
translation:

0Rx2— 2, (s,0) ws,

with w-s(f) = w(s + 1). Detailed proofs of these facts are given in Chapter III
of Sell [140]. Now define the zero-evaluation map

A: 2 - Myx(K), o+ w(0),

which is obviously continuous, and consider the corresponding family z' = A(w+t) z
for w € £2, which fits in the type (1.3). Represent wy = Ay, and note that

A(wot) = A(oi(wo)) = wo(0) = A(0) = Ao (1) .

That is, the initial system (1.10) is included in the family.

It is well-known and easy to check that §2 can be identified with a point, a circle
or a torus if the initial matrix-valued function A is constant, periodic, or quasi-
periodic, respectively.

This procedure is usually referred to as the Bebutov hull construction, in
recognition of the contributions of M. V. Bebutov, who made a groundbreaking
study of the dynamical system defined by the shift operator in the space of
continuous functions on the real line: see [14]. Bebutov’s promising career was cut
off by the Second World War; he fell in July 1942 on the Voronezh front, at the age
of 29. Thirty years later, the works of Miller and Sell [103] and Sell [140] showed
the power of this tool in the analysis of nonautonomous differential equations.
The advantage of the “collective” formulation is clear: unlike what happens with
a single nonautonomous system, the family (1.11) defines a flow, as explained in
the previous section; this fact allows one to use techniques coming from topological
dynamics and ergodic theory for the analysis of the dynamical behavior; and in the
applicability of these methods the compactness of £2 (which does not hold if one
applies the standard method of adding the equation t = 1) is fundamental.

In the context of the Bebutov construction, a result proved to hold for all the
systems in the hull obviously holds for the “initial” system (1.10). However, this
cannot always be said of a result which is only proved to hold for almost all the
systems in the hull £2, where the words “almost all” refer to an ergodic measure
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fixed on £2. In this situation, the fact that the orbit of wy is dense in §£2 sometimes
has important dynamical consequences, as the reader will discover at various points
of the book.

One of the most favorable situations arises when the flow o on 2 is minimal
and uniquely ergodic (i.e. a unique o-invariant measure exists, which according to
Theorem 1.9 is equivalent to the existence of a unique o-ergodic measure). This
happens, for instance, if the flow is almost periodic (i.e. for any ¢ > 0 there exists
8 > 0 such that do(w;t,wyt) < ¢ for all t € R whenever dg(w;,w;) < §),
and minimal: under these hypotheses it is easy to prove that, for all f € C(£2,R),
the value of lim;— o0 (1/1) for f(w-s) ds is independent of the particular choice of w;
and hence the Birkhoff Theorems 1.3 and 1.6 and the regularity of the measures
involved imply that a unique o-ergodic measure exists. This is the situation which
arises when 2 is constructed as the hull of a Bohr almost periodic matrix-valued
function, as proved in Chapter VI of [140]. The fact that the set £2r provided by
Theorem 1.3 agrees with £2 can be enough, in some situations, to ensure that a
given property holds for every system of the family.

The setup described in Proposition 1.38 includes nonautonomous systems with a
very wide class of coefficient functions. For instance, assume that the initial matrix-
valued function Ay: 2 — M« (K) belongs to L (R); i.e. there exists a € R with
lAo(®)|] < a for Lebesgue-a.e. t € R. Endow L*°(R) with the weak™ topology
o (L*®(R), L'(R)), so that a given sequence (B;) of d x d matrix-valued functions
converges to B if and only if [, Bi(1)f () dt converges to [, B(t)f (1) dt for all L'-
functionsf: R — R. Since L! (R) is separable, the Banach—Alouglu theorem ensures
that the closed ball B, consisting of the matrix-valued functions B with |B(?)|| < a
for Lebesgue-a.e. t € R is compact and metrizable. The set C.(R) of continuous
functions with compact support is dense in L' (R), which can be used to check that
a sequence (By) in B, converges to B if and only if fR By (t)f (¢) dt converges to
fR B()f (t) dt for all f € C.(R). Clearly, B, contains the set {A;| s € R} of time-
translated functions A(f) = Ao(f + s). Let £2 C B, be the closure of this set, and
define 0: R x 2 — £2 and A: 2 — Mx4(K) as before. The characterization of the
convergence in 53, makes it easy to prove that ¢ is a continuous flow on £2. And it
is clear that A satisfies the conditions of Proposition 1.38.

See Johnson and Nerurkar [77] for more examples in which a family (1.11)
defining a continuous skew-product flow on £ x K¢ arises from a single initial
nonautonomous system.

1.3.3 The Hamiltonian Case: Flow on the Lagrangian Bundle

Represent

sp(n,R) = {H € Ma,x2,(R) | HJ + JH = 0,,},
sp(n,C) = {H € Mo (C) | H'J + JH = 0,,} ;
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that is, sp(n, R) and sp(n, C) are the Lie algebras of real and complex infinitesimally
symplectic matrices, whose corresponding Lie groups are Sp(n, R) and Sp(n, C).
Recall that J is the standard symplectic matrix [ (1): _Oi” ], that /; and O, are the identity

and null d x d matrices for all d € N, and that H” is the transpose of H. That is,
"
valued functions on £2. Equivalently, H € sp(n, K), with K = R or K = C, if and
only if JH € S,,(K).

A continuous matrix-valued function H: £2 — sp(n, K) defines a family of 2n-
dimensional linear Hamiltonian systems,

any element of sp(n, K) is H = [ ] with H, and H3 symmetric n X n matrix-

7 =Hwtz, weSL. (1.11)
The family of n-dimensional Schrodinger equations
X"+ Glw)x=0, weN (1.12)

determined by a real or complex symmetric # X n matrix-valued function G on
£2 satisfying the two previous conditions, gives rise to a family (1.11) by taking
2=y anan = [% 0]

The labels (1.11) and (1.12) will refer both to the families of systems and to the
particular system corresponding to a given element w € §2. At any given moment
the context will provide the exact meaning.

Since this type of system is the main object of analysis of the book, and since

the matrix H will be almost always fixed, the general notation established in the
previous section will be modified: the matrix U(t, ) = [gigi; gszg] (instead
of Uy(t,w)) will denote the real fundamental matrix solution of equation (1.11)
for o € 2 with U(0,w) = Ip,. The global linear skew-product continuous flow

induced by the family (1.11) on the linear bundle £2 x K2, called now x, is then
wRx 2 xK" > Q2 xK*", (t,w.z)~ (0t,U(t,0)z). (1.13)
Note that both flows tr and 7¢ are defined if H: 2 — sp(n, R), but that just ¢ is
defined if H: 2 — sp(n, C). Let V(¢, w) be a real matrix solution of (1.11). Since
H(w-t) € sp(n, K), it follows that
VI, 0)JV(t,0)) = VI(t,0)(H (0-1)J + JH(w-1))V(t,w) = 0.
Consequently, V (¢, w) belongs to the symplectic group

Sp(n, K) = {V € Moy () | VIV = J}

if and only if V(0, w) does. When this property holds for every w € £2, V is called
a symplectic matrix solution. Obviously, in this case, V is a fundamental matrix
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solution for every w € §2. The main example is the fundamental matrix solution
U(t, w) defined above.

The fact that V(z, w) is symplectic ensures that the family (1.11) defines new
global real continuous skew-product flows on the real and complex Lagrange
bundles. This assertion is now explained.

As a consequence of the symplectic character of U(t, @), the vector space

Ut,w)l = {U(t,0)z| z € I}

is a Lagrange plane for all r € £2 and @ € £2 in the case that / is: it has dimension
n, since U(t, w) defines an isomorphism on K?”; and, if z and w belong to /, then
2" UT(t,w) JU(t, ) w = z'J w = 0. This property implies that the map

TRXx2xLg = 2 %Lk, (to,l) (ot Ut w)l) (1.14)

defines a real global skew-product flow on Kx = £2 x Lx. In addition, if [ = [g ],

— Ui (t.w) Li+Us(t,w) L .
then U(r.0)1 = Ultw)[{1] = | 16017500 2 |- Note that K is a compact

metric space, since §2 and Lk are compact. Note also that g can be understood as
a closed invariant subset of £2 x G, (K?") for the corresponding flow, and that in fact
the flow 7 defined by (1.14) agrees with the restriction of this Grassmannian flow to
Kk. In particular, it is a continuous flow.

Remark 1.40 In fact, as ensured by Proposition 1.38, the flows tx and 7 are
continuous not only if H is continuous on 2, but also if it satisfies conditions (1.7)
and (1.8). It is also clear that, if Hy:R — sp(n, K) is a bounded and uniformly
continuous matrix-valued function, then the hull construction made in Sect. 1.3.2
provides a family of linear Hamiltonian systems over a continuous flow, and the
flows tx and 7 are continuous.

1.3.4 The Hamiltonian Case: Generalized Polar Coordinates
on Lr

As explained in Remark 1.27.3, the space Lr can be identified with the homo-
geneous space of left cosets G/H, where

g= {[(q;l _;2} € Mopson(R)) | (@1 + i®5)* (P + i®s) = I,t ~ Un,C),
2 1

H= { [’g g} € Mayeon(®) | RR = 1,} = O(n.R).
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Recall that the symbol * represents the conjugate transpose, and that U(n, C) and
O(n, R) stand respectively for the groups of n-dimensional unitary complex and
orthogonal real matrices.

Assume that the function H: 2 — sp(n,K) is either continuous or satisfies
the conditions described in Proposition 1.38. The above identification allows one
to express the continuous flow t on the real Lagrange bundle, defined by (1.14)
from (1.11), in terms of the so-called generalized polar coordinates. This is
explained in the following theorem, which follows from a more general result
established in Theorem 9.1 of Chapter V of Reid [127]. As that author explains, the
application of the polar transformation to the study of oscillation and comparison
theorems for matrix differential equations was first presented by Barret in [12] and
subsequently extended in Reid [123, 125]. See Remark 1.27.3 to understand the first
sentence of the theorem.

Theorem 1.41 Let | = [ig] be a real Lagrange plane and let @7, ¢>g and R°
2

. L() ¢0R0 . ¢)0 _¢)0 0
be n x n real matrices such that [ (‘)] = [ b 0], with [ 0 02] € Gand R
9 IR ) &

nonsingular. Then the 2n x n solution of (1.11) corresponding to the initial datum
07 .
]

Ut ) L _ Li(t,o,L,L9) _ Di(t, 0, PV, DY) R(t, w0, DY, DI, RO) ’
LY Ly(t,w, LY, LY) Dy (1, w, D), DY) R(t, 0, DY, DI, R)

where the n x n matrix-valued functions
0 50 0 50 0 50 PO
t—Q(tw, @,.9,), t—> D(t,w, @, D)), and t+ R(t,w, P/, P,,R")
are the solutions of

QD{ =@, Q(a)-t, Dy, sz) s

/ (1.15)
&) =P 0(wt, Py, D),

and
R = S(wt, 1, P2)R (1.16)

given by the initial data @DP , @DS and R respectively, with

00, &) ®,) = [ ] @{]JH(w)[ij (1.17)
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and

S(. b, D) = [ @7 QDZT]H(w)[z;] (1.18)

Moreover,

R'(t,w,®), @) RO R(t, 0, D, ), R") = LI (1,0, L, L) Ly (t, 0, LY, L)
+ LIt 0, LY, L) Ly(t, 0, LY, LY)

D1 (1,00, DY) —&s (10,0 @Y
an [ 1( 1 2) 2( 1 2)

A g I ] eGforallt € R

Consequently, with these coordinates, the linear skew-product flow t induced
by (1.14) in g can be expressed in the following way: given [ € Lg, represent

0
it by [2,] € Lg with @ + i®) unitary (see Remark 1.27.3), and represent by

(1, w, P, @g) and &, (1, w, DY, QDS) the matrix solutions of equations (1.15) with

initial data @0 and &Y. Then U(r, w)-l = [gxz;gg; |

Remark 1.42 Assume that [g;] and [& ], with @; 4+ i®, and ¥; + ¥, unitary,
represent the same real Lagrange plane, and look for R with ¥; = ;R and ¥, =
®,R and RTR = I,,. Then R is orthogonal (see again Remark 1.27.3), which implies
that tr Q(w, @1, ;) = tuQ(w, ¥, ¥) and trS(w, D1, D) = tuS(w, ¥, ¥). In
other words, despite the fact that the functions Q and S given by (1.17) and (1.18)
are uniquely defined on £2 x G but not on K, the functions tr Q and tr S are actually
functions on the quotient space Kg: given w € §2 and / € L, define

Tr Q. 1) = tr([QDIT @{]JH@)[?D, (1.19)
2

TrS(w. 1) = tr([QDIT 7] H(w)[ng, (1.20)
2

where [g;] is any representation of [ with @; + i®, unitary.
In addition, the functions Tr Q and Tr S are continuous on Ky if H is continuous
on £2. To prove this assertion, note that Proposition 1.25 (or Proposition 1.29(i))

ensures that if lim_, o [, = [ in Kg, there exist suitable representations [, = [g’; ]
and I = [f1] with limeoo [ 124 ] =

_ [e. LiRy! _re LiR™!
Remark 1.27.3, [, = [d’;‘;] = [L;ZR;‘] and | = [(pé] = [L;R*I]’ where R;
and R are the unique positive square roots of L] Ly« + L}  Lrs and L{L; + L} Ly;
and finally, @ + i®,; and @; + iP, are unitary, with limy_,o @14 = D and
lim— 00 @2+ = P,. The continuity follows easily from these facts.

[g] in M,x,(IR); hence, as explained in
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1.3.5 The Hamiltonian Case: The Riccati Equation

Consider the following open subsets of L¢ and Lg:

Dcz%zeﬁcus[[ﬂ} and D:DRz%leLRUE[Zﬂ}, (1.21)

which agree with the sets Dy ..n(R) defined in Sect. 1.2.3: both
sets Dx and D ,(K) are composed of those Lagrange planes which admit a
representation [ Lz] with detL; # 0. As seen in Proposition 1.28, they are open.
Obviously, each [ € Dk admits a unique representation of the form [ II‘;], and the
n x n matrix M has to be symmetric: M € S,(C) (M € S,(R) if [ € D). In fact, if
= [g] belongs to Dx, then M = L,L;!.

The set D is the complement in L of the so-called (vertical) Maslov cycle C,
which is hence the set of real Lagrange planes represented by matrices [g] with
detL; = 0. Both sets will play fundamental roles throughout the book.

It is assumed again throughout this section that H: 2 — sp(n,K) is either
a continuous function or satisfies the conditions described in Proposition 1.38.
The joint continuity of U on R x £2 and the open character of Dk ensure that,
if o € £ and ! € D, then U(t,w):l € Dx for t close enough to zero: if
| = [ AI/;()] (with M, symmetric), then U(¢, w)-/ can be represented by [ M(t,(lff,Mo)] as
long as det(U, (1, w) + Us(t, w) Mp) # 0. Since M(t, w,My) = Ly(t,w) L (t,0)"",
where [ggi;] =U(ro)| 1{;0] is the 2n x n matrix solution of (1.11) with initial
datum [ A{I”O ], the symmetric matrix-valued function M(¢t, w, My) is the solution of
the Riccati equation

M' = —M H3(w-t) M — M H(w-t) — H (01) M + Ha(w-1)
= h(w-t,M)

(1.22)

with M (0, w, My) = My. And
M(t, w0, My) = (Uas(t,w) + Us(t, w) Mo) (U1 (¢, w) + Us(t, a))M())_l.

These facts imply that the family of equations (1.22) determines a local skew-
product flow

i Rx 2 xS,(K) > 2 xS,(K), (tw, M) (0t,M(t,w,M,)), (1.23)

which is continuous on the open subset of R x §£2 x S, (K) on which it is defined.
By identifying Dk with the vector space S,(K) of the real n x n symmetric

matrices, 7, can be also considered as a local skew-product flow on 2 x Dxk.

Note that this flow is closely related to the restriction of the flow t to the set
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£2 x Dg C Kk: as explained above, if | = [1\14”0]’ then U(t, w)l = [M(t,i’)”Mo)]
as long as the solution M(t, w,My) exists. It is important to emphasize the fact
that, if [ = [g] belongs to Dk, then U(t, w)-l belongs to Dk as long as
det(U;(t,w) Ly + Us(t,w)Ly) # 0, which is independent of the representation
chosen for /. This condition determines then the maximal interval of definition of
any solution of (1.22).

Remark 1.43 Consider one of the Riccati equations (1.22). Let M () solve it for ¢
varying on an interval Z. The continuity of the flow t (see Remark 1.40) ensures
that, if Z has finite right endpoint » and |M(?)| is bounded on Z, then b is in the
interior of the maximal interval of definition of M(¢). And a similar result holds for
the left endpoint of Z. This property will be used often in the chapters to follow.

Fix now K = R. To study the monotonicity properties of the (continuous) flow 7
on §2 x S, (R) is the purpose of the rest of this section. This analysis reproduces that
carried out by Johnson at al. in [85].

To begin, observe that the Banach space S,(R) is strongly ordered. More
precisely, it contains a closed convex solid cone, given by the positive semidefinite
symmetric matrices M > 0. Its interior is given by the positive definite matrices
M > 0. The (partial) strong order relation in S,(R) is given by

M <M, <— M, —M >0;

MléMz < M, <M, andMl#Mz;
M <M, < M,—M; >0.

The relations >, = and > are defined in the obvious way.
Remarks 1.44

1. The norm ||A||r = (tr(AA))!/? (see Remarks 1.24.1) is monotone on the set
S.(R), on which ||A||r = (tr(A4%))/2. That is, if 0 < A < B, then ||A||r < ||B||r:
tr(A%) < tr(A'/2BA'/?) = tr(B'/’AB'/?) < tr(B?). It follows easily that any other

(equivalent) norm || - || is semimonotone: there exists ¢ > 0 such that0 <A < B
implies [|A]| < ¢ ||B]|.
2. Let || - || be a (semimonotone) matrix-norm, and let A, B and C be matrix-valued

functions with A < B < C. Then, ||B|| < |B—A| + |A]| < c||C—A| + |A|| <
c|IC|l + (1 4 ¢)||A||. In particular, if A and C are bounded, so is B.

3. Another easy consequence of these definitions is the existence of the limit of a
decreasing sequence (A,,) of positive semidefinite matrices: the existence of a
common bound for ||A,, || ensures the existence of a convergent subsequence, and
it is very easy to check that this limit does not depend on the subsequence, and
this proves the assertion.

The proof of Theorem 1.45 is given in Proposition 6 of Chapter 2 of Coppel [34],
and is included here for the reader’s convenience.
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Theorem 1.45 Suppose that the function H: 2 — sp(n,K) is either continuous
or satisfies the conditions described in Proposition 1.38. The local flow t, given
by (1.23) is fiber-monotone on §2 x S,(R). More precisely,

(1) if w € §2 and Ny < N,, then M(t,w,N;) < M(t,w,N,) in their common
interval of definition;

(i) if o € §2 and Ny < N,, then M(t,w,N;) < M(t,w,N,) in their common
interval of definition.

Proof The function D(t) = M(t, w, N;) — M(t, w, N,) satisfies
D' = —D (Hy(ot) + Hy(01) S(1)) — (H] (1) + S(t) H3(w-1)) D,

where S(f) = (M(t,w,N;) + M(t,w,N,))/2. Hence, if V(¢) is the fundamental
matrix solution of

V' = (Hy(w1) + H3(w+1) S(1)) V
with V(0) = I, then
D(®) = (V)" DO) V(1)

when it exists, which proves the statements.

The point wy € 2 and the matrix Ny € S,(R) are fixed in the statement and proof
of the following result, part of which is also given in Chapter 2 of [34].

Theorem 1.46 Suppose that the function H: 2 — sp(n,K) is continuous. Let
Z C R be an interval containing 0 in its interior. Take (wy, Ng) € 2 x S,(R),
and let J be the maximal interval of definition of the solution M(t, wy, Ny) of the
Riccati equation (1.22) associated to H. Represent by N:T — S, (R) a C'-map with
N(0) = Np.

(1) Suppose that N'(t) < h(wy't, N(¢)) for t € I. Then,

N(@{t) < M(t,wy,No) forte N J with t >0,
N(t) = M(t,wy, No) forteZNJ with t <0.

(i1) Suppose that N'(0) < h(wy, Ny) and N'(t) < h(wyt, N(¢)) for t € T. Then,

N(t) < M(t,wy, No) forteZNJ with t >0,
N(t) > M(t,wy, No) forteZNJ with t <O0.
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(iii) Suppose that N'(t) > h(wy-t, N(t)) for t € T. Then,

N(t) = M(t,wy, No) fort€ZNJ with t >0,
N(@{t) < M(t,wy,No) forteZNJ with t <0.

(iv) Suppose that N'(0) > h(wgy, Ny) and N'(t) > h(wyt, N(t)) for t € T. Then,

Proof
@

N(t) > M(t,wy, No) forteZNJ with t >0,
N(t) < M(t,wy,No) forteZNJ with t <O0.

Let (wo, Np) be a fixed element of §2 xS,,(R), and let 7 be the maximal
interval of definition of the solution M(z, wy, Ny) of (1.22). Define
he(wo, M) = h(wy, M)+¢l, and represent by M, (t, w, My) the solution
of M' = he(w-t, M) with M. (0, w, My) = My. Take 1y > 0inZN.J and
£(tg) > 0 such that, if 0 < & < &(t), then the solution M, (t, wy, Ny)
is defined for t € [0, #]. The existence of &(f) is ensured by the joint
continuity of i.(wy, M) on (g, M). Fix ¢ € (0, (to)]. Then,

N' (1) < he(wo-t, N(t)) fort € [0,1)].

In particular, N'(0) < h:(wo, No) = he(wo, M (0, wy, Ny)), and hence
the continuity of N” and & ensure the existence of . € (0, ] such that

N'(t) < he(wo-t, M (t, wo, Np)) fort € [0,z].

Integrating this inequality in [0, 7] € [0, z] yields N(f) < M.(t, wo, No)
for every ¢ € [0,t.]. The goal is to prove that this inequality holds
on [0, #y]. Assume for contradiction the existence of ¥ € [0, 1] and
z € K" such that

N(1) < M(t, w9, No) forr€[0,7X] and N(t¥)z = M.(¢, wo,No) z.
(1.24)

It is easy to deduce from the last equality and the expression of A, that
Z*hg(a)()'l:, N(l‘:)) 7= Z*hg(a)o'l:, MS(Z‘: , W0, N())) Z.

Therefore the C'-function ¢(f) = z*(N(t) — M,(t,wy,Ny))z
satisfies @(1F) = 0 and ¢'(f) < z*(h(wotf,N(t))) —
he(£F, wo, M (£), wo, No))) z = 0. Consequently, ¢(f) > 0 for ¢ < ¢
close enough to ¢, which contradicts the first inequality in (1.24) and
proves the inequality in the interval [0, fy]. Taking now the limit as
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& — 0T implies that N(r) < M(t, o, Ny) for ¢ € [0, to]. Since 1, is any
pointin Z N J N (0, 0o), the first assertion in (i) is proved.

The proof of the second assertion is quite similar. Choose now a
time fp € Z N J N (—00,0), and &(zy) > 0 such that, if 0 < & < (),
then M, (z, w, Np) exists for ¢t € [y, 0]. Fix such a value of ¢ and note
that there exists f. € [f, 0] such that

N' (1) < he(wo-t, Mo (t, wo, No)) fort € [t,,0].
Integrating this inequality in [¢, 0] C [z, 0] yields
N(O) — N(t) < M(0,wp, Ng) — M:(t,w,Np) ,

i.e. N() > M(t, wy, Ny) for every t € [t., 0]. From this point on the
argument repeats that of point (i).
The hypothesis N'(0) < h(wo, No) = h(wo, M(0, wo, Ny)) and the
continuity of N’ and % ensure the existence of r; > 0 in Z N J
such that N'(r) < h(wo-t, M(t, wy, No)) for ¢ € [0, £;]. Integrating this
inequality on [0, 7] C [0, 1] yields N(f) < M(t, wy, Ny) for t € (0, 1;].
In addition, again by hypothesis, N'(r + t;) < h((wo't;)t, N(t +
1)) for t + t; € Z. As proved in (i), this condition ensures that,
if + > 0 is such that + + #; € Z and such that 7 belongs to
the interval of definition of M(t, wy-t;,N(t1)), then N(t + ;) <
M(t, wy-t1, N(t1)). Therefore Theorem 1.45(ii) ensures that, for these
values of t, N(t+1;) < M(t, wot1, M(t1, wo, No)) = M(t+ 11, wy, Np).
According to Remarks 1.44.2 and 1.43, these last inequalities ensure
that M(¢t, wo-t1, M(t1, wo, Np)) is defined at leastif t > O and 1 4+ 1, €
Z N J. Summarizing all this information, N(f) < M(t, wy, Ny) for
t > 0in Z N J, which proves the first assertion in (ii).

Note now that if N'(0) < h(wy, Ng) and N'(t) < h(wo-t, N(r)) for
t € Z, then there exists #; < 0inZ N J such that N(¢t) > M(¢, wy, No)
for t € [t1,0). From here on the preceding argument can be modified
in order to complete the proof of (ii).
These proofs reproduce step by step the preceding ones.

The monotonicity properties of the dynamical system induced by (1.22) lead in a
natural way to the idea of upper and lower solutions. Or, more precisely, to the
generalization of these concepts appropriate to the nonautonomous case, which are
the superequilibria and the subequilibria of the flow. These objects will play an
important role in Chaps. 5 and 7.

Before defining them and analyzing their properties, and in order to avoid
undue interruption of the discussion, another concept is introduced: the upper
semicontinuity of a matrix-valued function N: 2 — S, (R), which will also be
fundamental in Chaps. 5 and 7. Thanks to the order structure of S, (IR), it is possible
to give a direct definition (without considering a set-valued function) and to derive
its main consequences.
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Recall that, given a metric space M with distance d, the Hausdorff distance
between two subsets A and B of M is

dp(A, B) = max (sup inf d(a, b), sup inf d(a, b)) , (1.25)
ac ADEB beB aEA

and that it defines a metric on the set P.(M) of nonempty compact subsets of M:
see Proposition 7.8 of Choquet [27] (and keep in mind that the distance between
two bounded sets is finite). Recall also that some matrix norm || - || (equivalent to
the Euclidean operator norm) is fixed.

Definition 1.47 A matrix-valued function N: 2 — S, (R) is said to be upper
semicontinuous if sup,co [|[N(w)|| < oo and Ny < N(wp) whenever wy =
lim,;— 00 W, and Ny = limy,— 00 N(w),).

Note that any upper semicontinuous function is Borel measurable: the result for
the maps @ + x'N(w)x for any x € R”" fixed follows from the fact that any
scalar semicontinuous function is the limit everywhere of a sequence of continuous
functions and the information recalled in Remark 1.1; and hence the polarization
formulas ensure that any component of N(w) is a Borel measurable function.

Proposition 1.48

(i) Any continuous function is upper semicontinuous.

(ii) Let N: 2 — S, (R) be upper semicontinuous. Then there exists a residual set
2y C 2 of continuity points of N.

(iii) Let (Ny: 82 — S,(R)) be a decreasing and uniformly bounded sequence
of upper semicontinuous functions, and suppose that there exists N(w) =
lim,,— 00 Npu(w) for every w € §2. Then N:2 — S, (R) is upper semicon-
tinuous.

Proof

(i) This assertion is obvious.

(ii) Define Cy = closures,®){N(w)| w € 2} and, forall w € £2, n(w) = {N €
Cy| N < N(w)}. Definition 1.47 ensures that Cy is compact and that n(w) €
P:(Cy), where P.(Cy) is the set of nonempty compact subsets of Cy endowed
with the Hausdorff metric. This means that the map n: 2 — P.(Cy), ® +—
n(w) is well defined. The main step of the proof, whose argument is taken from
Proposition 3.4 in Novo et al. [113], consists in proving that the map n is upper
semicontinuous in the sense of Definition 7.7 of [27]. That is, for each open set
S CCu, theset O = {w € 2| n(w) € S} is open. Given a sequence (w,,) in
£2 — O with limit wy, choose N, € Cy — S with N, < N(w,,) forallm € N,
and take a suitable subsequence (w;) such that there exists No = limj_,o N;.
Then Ny € Cy — S and, by hypothesis, Ny < N(wy). Consequently, n(wo) € S,
and hence wy € 2 — O, which is therefore a closed set.

According to Theorem 7.10 of [27] (whose proof also works in the upper
semicontinuous case), the points of continuity of the map »n form a residual
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subset 2y < 2. It is easy to deduce from the definition of the Hausdorff
metric that the map N is also continuous at these points.

(iii) Definition 1.47 is equivalent to: N is bounded and for all Ny € S, (R) the set
{w € 2] N(w) = Ny} is closed. Using this characterization, the proof of (iii)
follows from the relation

{0 € 2| N() 2 No} = [ J{w € 2| Nu(w) = No}.

meN

The boundedness of N is obvious.

Definition 1.49 Let the Borel measurable map N: £2 — S,(R) have the property
that the solution M (¢, w, N(w)) of (1.22) is defined for every t > 0 (resp. t < 0) and
o € §2. Then N is

- a tg-superequilibrium for t > 0 (resp. for t < 0) if, for all v € 2, N(w-t)
M(t,w, N(w)) for t > 0 (resp. N(w-t) < M(t,w,N(w)) fort < 0),

- a ts-subequilibrium for t > 0 (resp. for t < 0) if, for all € 2, N(w-?)
M(t,w, N(w)) for t > 0 (resp. N(w-t) > M(t,w,N(w)) for t < 0),

- a tg-semiequilibrium for t > 0 (resp. for t < 0) in each of the two previous cases,

- artsequilibriumif M(t, o, N(w)) exists forevery t € Rand w € £2 and it satisfies
N(wt) = M(t,w,N(w)).

A%

IA

The prefix 7; will be omitted when speaking of semiequilibria or equilibria, since in
general no confusion arises.

Definition 1.50

- A superequilibrium N for ¢+ > 0 (resp. for + < 0) is strong if there exists
a time s« > 0 such that N(w-s«) > M(s«,®,N(w)) (resp. N(w-(—s«)) <
M(—sx,w,N(w))) for every w € 2.

- A subequilibrium N for ¢ > 0 (resp. for ¢ < 0) is strong if there exists a time sy >
0 such that N(w-s«) < M(sx,®,N(w)) (resp. N(w-(—sx)) > M(—s«,®, N(w)))
forevery w € 2.

The strong character of a superequilibrium N for + > 0 and Theorem 1.45 ensure
that, for every t > 0 and w € §2, one has N(w-(s« + 1)) = N((w1)-s«) >
M(s«, wt, N(wt)) > M(s«,wt, M(t,w,N(®))) = M(sx + t,w, N(w)), so that the
strong inequality remains valid beyond s.. Analogous properties hold in the three
remaining cases.

Proposition 1.51 Let N: 2 — S,(R) be a Borel measurable map such that the
solution M(t, w, N(w)) of (1.22) is defined for every t € R and € 2. Then,

(1) N is a (strong) superequilibrium for t > 0 if and only if it is a (strong)
superequilibrium for t < 0.

(i) N is a (strong) subequilibrium for t > 0 if and only if it is a (strong)
subequilibrium for t < 0.
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Proof Assume that t € R satisfies that
N(wt) > M(t,w,N(w)) (1.26)
for all w € 2. Then Theorem 1.45 ensures that

N(w-(=1)) = M(=t, 0, M(t, 0-(=1), N(w-(=1))))

(1.27)
<M(—t,w,N({(w-(—1))t)) = M(—t,w,N(w))
for all w € £2. In addition, substituting > by >, < or < in (1.26) changes < by
<, > or > in (1.27). From this the four assertions follow immediately.

As a consequence of the previous result, and under its hypotheses, it is possible to
simply speak of semiequilibria and strong semiequilibria in R, although in order to
characterize them it is enough to consider just positive or negative values of time.

Recall that a metric on 2 is fixed from the beginning. For wy € £2 and § > 0, let
Bg (wo, 8) represent the open neighborhood of wy given by those points of §£2 whose
distance to wy is less than 6. Recall also Definition 1.34 of differentiability along the
flow. Recall that the function /# determines the Riccati equation (1.22).

Proposition 1.52 Let the map N: 2 — S,(R) be Borel measurable and differen-
tiable along the flow on 2. Suppose that it satisfies N'(©) > h(w, N(w)) for every
o € 2 and that M(t, w, N(w)) exists for every t > 0 (resp. t < 0). Then,

(1) N(w) is a superequilibrium for t > 0 (resp. fort < 0).
(ii)) If N(w) > h(w,N(w)), then N(w) is a strong superequilibrium for t > 0
(resp. for t < 0), with N(w-t) > M(t,w,N(w) forall t > 0.
(iii) If for every wy € §2 there exist constants 8, > 0 and 54, > 0 (resp. sy, < 0)
such that N'(0-34,) > h(@-Sey, N(0-S4,)) for all o € Bg(wo, 84,), then N is a
strong superequilibrium for t > 0 (resp. for t < 0).

The analogous statements hold in the case that N'(w) < h(w,N(w)) for every
w € 2.

Proof Assertions (i) and (ii) follow from Theorem 1.46(iii) and (iv). Under the
hypotheses of point (iii) in the case ¢+ > 0, and according to Theorems 1.46(iv)
and 1.45, one has

N(wt) > M(t — Swy, ©-Swy N(@+Sw,))
> M(t — Swy> ©OSwys M(Se, @, N(w))) = M(t, w, N(w))

for every w € Bgo(wo,ds,) and t > s,,. A standard compactness argument
guarantees the strong character of the superequilibrium N for t > 0. An analogous
argument completes the proof of (iii) for # > 0. The case # < 0 is proved in a similar
way.
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Note that a continuous equilibrium for the flow is exactly the same as a copy of the
base for the flow t,: see Definition 1.17. The concept of equilibrium can hence be
understood as a generalization of these interesting dynamical objects.

The following result, whose statement is based on Proposition 1.48(ii), gives
more information about the dynamical consequences of the existence of a semicon-
tinuous equilibrium.

Proposition 1.53 Let N: 2 — S,(R) be a semicontinuous equilibrium, and let
2y C 2 be the residual set of its continuity points. Then 2y is o-invariant.

Suppose that 2 is minimal and define Iy(w) = [Nﬁu)] Then the set K =

closurex, {(w, Iv(w)) | @ € 2y} is an almost automorphic extension of the base
$2 for the flow t defined by (1.14) on Kg.

Proof According to Proposition 1.29, §2y is also the set of continuity points of the
map ly: 2 — Lg. In addition N is an equilibrium, and hence U(z, w) [ N{Z))] =

[ N(I(Z-t) ], as was explained at the beginning of the section. This means that /(w-f) =

U(t, w)-l(w), which easily yields the o-invariance of §2y and the r-invariance of K.

The continuity of N at the points of §2y ensures the equality of sets {/ €
Lr]| (w,]) € K} = {Iy(w)} for every @ € 2. In addition, {(w, Iv(w))| v €
2y} € M for every minimal subset M C K, and hence L € M. Therefore, the
equality holds, which means that /C is minimal and hence is an almost automorphic
extension of the base, as asserted.

1.4 Exponential Dichotomy

The concept of exponential dichotomy (or hyperbolic splitting) is a fundamental
tool in several fields, such as the study of the invertibility of selfadjoint operators in
different spaces (Massera and Schaefer [100]), bifurcation theory (Chenciner and
Tooss [26]), the study of invariant manifolds (Hirsch, Pugh and Shub [63]), the
analysis of homoclinic orbits (Palmer [119]), the spectral theory of the Schrodinger
operator (Johnson [71]), and control theory (Johnson and Nerurkar [75, 77]), among
others.

The special characteristics of a nonautonomous dynamical system in the presence
of exponential dichotomy play a fundamental role in all the chapters of this book.
The aim of this long Sect. 1.4 is to summarize the different definitions and the
many facts concerning the dichotomy property which will be used. The last parts
of the section are devoted to the closely related notion of Sacker—Sell spectral
decomposition, which is critical in several results of the following chapters. The
robustness of the presence of exponential dichotomy, which implies the robustness
of the spectral decomposition, will also be used often.

Throughout the whole of Sect. 1.4, including its subsections, | - || represents the
Euclidean norm in K¢ for K = R or K = C, as well as the corresponding operator
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norm in the set M54 (K): see Remarks 1.24.1 and 1.24.2. The definitions and results
of the section do not depend on this particular choice of the norm. Finally, whenever
it appears, the symbol (§2, o) represents a real continuous flow on a compact metric
space.

1.4.1 The General Linear Case: Definition in Terms
of Projectors

Definition 1.54 Given a continuous function Ag: R — Mx4(K), the linear system
7 =Ay()z (1.28)
has an exponential dichotomy on R if there exist constants 7 > 1 and 8 > 0 together

with a projection Q on K such that, for every s,t € R,

1Ua (0 QU ()l < e P if 1 > s,
- MU0 Ta = Q) Uy} 9 < nef if 1t <5,

where Uy, (7) is the fundamental matrix solution of (1.28) with Uy, (0) = I,.

Remark 1.55 As a matter of fact, the continuity of Ay is not a necessary condition:
the same definition applies to any system z’ = A(¢) z if the matrix-valued function
Uy, i1s well defined and continuous on R.

Let Rg Q and Ker Q represent the range and the kernel of the matrix Q = 02, so
that R = Rg Q @ Ker Q. The following properties, whose proofs are included for
the reader’s convenience, are basic in the theory of exponential dichotomies.

Proposition 1.56 Suppose that (1.28) has an exponential dichotomy on R with
projection Q. Then,

(i) the system (1.28) has no nonzero bounded solutions. More precisely,
- forallzy € RgQ, [|Us () 21| = (1/0) e P ||z, || fort < 0;
- forallzy € Ker Q, |Usy (D) 22| > (1/n) P! ||z2]| fort > 0;
- forallz ¢ RgQ, there exists limy_, o ||Ua, (t) Z|| = 00
- forallz ¢ Ker Q, there exists lim;—, _ ||Ua, (?) Z|| = 0.

(i) RgQ = {z € K| lim oo [ Usy (1) 2] = 0}

= {z € K| sup;» [|Ua, (1) 2] < 00} .

(i) KerQ = {z € K| lim,_oo || Ua, (1) 2| = 0}

= {z € Kd| sup,< |Us, (2) z|| <oo}.
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In particular, “the exponential dichotomy is unique”, that is, the projection Q is
uniquely determined by the behavior of the system.

Proof (i) Assume thatz; = Qz; (i.e.z; € RgQ)and z, = (I; — Q) 7, (i.e. 2 €
Ker Q), and note that Definition 1.54 yields
1Uae () 21|l = [|Uao (1) Q21 || < 1 Uno @) Ol 2|l < e |z
22 = |(la = Q) 2|l < [(la = Q) U,/ )| | Uy () 22|
=< ﬂe_ﬁr ”UA()(t) Zz”

fort > 0 and

Iz = 10zl < 1Q Uy Ol 1Uay @) 21| < e | Uny () 21|
1Us () 221l = [Uno (1) (la = Q) 22| < |Uno (1) (= Q)| 22| < e |||

for + < 0. The two first assertions in (i) follow from these facts. Now, write any
ze€ Klasz = z; + 7, withz; = Qz € RgQandz, = z—1z, € KerQ. If
22 # 0, then | Us, (1) 2]l = [ Usy () 2]l — | Usy D) 21| = (1/m) & |122]| — 5" |1 |
for ¢+ > 0, which tends to oo as t — co. Analogously, if z; # 0, then ||Us,(¢) z| >
Uao @ z1 || = |Uso(0) 22|| > (1/1) e P! ||21]] — neP? |zl for t < 0, which tends to
oo as t — —o0o. The proof of (i) is complete.

(ii) & (iii) The contentions € follow trivially from Definition 1.54. And the
already verified properties stated in (i) show that

{ze K| sup [Usy( 2] <00} SRgQ
=

and

(2 € K?| sup||Us, (1) z]) <00} € Ker Q.
t<0

which completes the proof of (ii) and (iii).
The uniqueness of the exponential dichotomy on the whole line is clear: the range
and kernel of Q are uniquely determined, and hence also the projection is unique.

Recall that (£2,0) is a continuous flow on a compact metric space. Let A: 2 —
Myxq(K) represent either a continuous function or, more generally, a function
satisfying the conditions described in Proposition 1.38. Consider the family of
systems

7 =Alwtz, wesf. (1.29)
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Let Ux(t, ) be the fundamental matrix solution of the system corresponding to
with Uy (0, w) = 1. Recall that the flow t4 given by (1.5) is continuous in both of
the above situations: see Proposition 1.38.

Definition 1.57 A projector Q = {Q(w)} on £2 x K is a jointly continuous map
Q2 xK! - 2xK!, (w,2) (0,0w)z)

such that each Q(w) € Myx4(K) defines a projection on K¢.

Definition 1.58 The family (1.29) has an exponential dichotomy over 2 if there
exist constants 7 > 1 and B8 > 0 together with a projector Q = {Q(w)} on £2 x K¢
such that, forevery r,s € R and w € £2,

- UA(tv a)) Q(a)) = Q(a)t) UA(tv (1)),
- | Us(t, @) Q) Uy (s, )| < pe PO if 1 > s,
- Ua(t, ) (I — Q(@)) Uy (s, 0)|| < nefi™) ifr <.

Remarks 1.59

1. In the situation described in Definition 1.58, it is usual to say that the skew-
product flow ta defined by (1.29) has an exponential dichotomy. In fact, this
concept can be defined for any continuous linear skew-product flow on a finite-
dimensional vector bundle over a Hausdorff base, as in [133].

2. Definition 1.58 is clearly an extension to the nonautonomous setting of the
concept of exponential dichotomy on R for a single linear system, given in
Definition 1.54 and Remark 1.55. In particular, each of the systems of the
family has an exponential dichotomy on the whole real line. (As a matter
of fact, more can be said: see Theorem 1.60 below.) In particular, according
to Proposition 1.56, the exponential dichotomy is unique: Q(w) is uniquely
determined for all @ € £2. The uniqueness of the projector justifies speaking
of exponential dichotomy (on R or over §2) instead of about an exponential
dichotomy.

3. Proposition 1.56 and the previous remark ensure that the presence of exponential
dichotomy over £2 of the family (1.29) implies the absence of nontrivial globally
bounded solutions. This information will be completed in Theorems 1.61
and 1.78.

4. Ttis proved in [131] (Theorem 2 and Section 3) that if §2 is the hull of one of its
elements (see Sect. 1.3.2), say wy, and the system z’ = A(wp-r) z has exponential
dichotomy on R, then the family z' = A(w-r) z has exponential dichotomy over
£2. Recall also that if £2 is minimal then it is the hull of each of its elements.

Theorem 1.60 The family (1.29) has exponential dichotomy over §2 if and only if
all its systems have exponential dichotomy over R.

Proof The “only if” assertion is trivial: see Remark 1.59.2. The proof of the “if”
assertion is based on the results of Sacker and Sell [131, 132]. So assume that each
system of the family (1.29) has exponential dichotomy on R, with projector Q,,.
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Proposition 1.56 proves that none of the systems of the family admits a nontrivial
bounded solution. Define £2;, = {w € 2| dimRgQ, =k} fork = 0,....d. Itis
clear that 2 = 20 U --- U £24, and that the sets §2y, ... £2; are pairwise disjoint.
Theorem 4 of [131] states that each §2; is a compact o-invariant subset of £2. Now
consider the restriction of the flow 74, (defined by (1.5)) to 2 x K¢, and apply
Theorem 2 of [132] in order to conclude that the family (1.29) has exponential
dichotomy over £2;. Since there is a finite number of sets 2, it is easy to deduce
the exponential dichotomy of the family (1.29) over the whole base 2.

As is explained in Remark 1.59.3, under the presence of exponential dichotomy
over £2, none of the systems (1.29) admits nontrivial globally bounded solutions.
The converse result is not true in the general case, but it holds in some situations.
The following result is due to Selgrade (see [139], Theorem 10.2) and characterizes
the occurrence of exponential dichotomy in the chain recurrent case (see Sect. 1.1.1
for the concept of chain recurrence):

Theorem 1.61 Suppose that (§2,0) is chain recurrent. Suppose also that the
function A: 2 — Myxq(K) is either continuous or satisfies the conditions described
in Proposition 1.38. Then the family (1.29) has exponential dichotomy over 2 if and
only if none of its systems has a nonzero globally bounded solution.

Remarks 1.62

1. As explained at the end of Sect. 1.1.1, chain recurrence holds if the base flow is
minimal. Consequently, the previous result ensures the occurrence of exponential
dichotomy for the flow restricted to each of the minimal subsets of §2 if none of
the systems (1.29) admits a nontrivial bounded solution.

2. Ttis well known that a constant linear system z’ = A z has exponential dichotomy
on R if and only if A has no purely imaginary eigenvalues. And a periodic linear
system z' = A(¢) z has exponential dichotomy (over R or over the hull £2 of A)
if and only if A(¢) has no purely imaginary characteristic exponents; or, in other
words, if and only if it has no zero Lyapunov exponents. In fact, both assertions
are easy consequences of Theorem 1.61, since in both cases the hull of the initial
system is minimal: see Sect. 1.3.2.

1.4.2 The General Linear Case: Definition in Terms
of Subbundles

It is possible to give an alternative definition of the notion of exponential dichotomy,
based on the idea of hyperbolic splitting, which is often very useful. The concepts
of closed vector subbundle and Whitney sum are required for this. Note that, by
continuity of the flow, any connected component of £2 is o-invariant.

Definition 1.63 A closed vector subbundle of 2 xK¢ is a closed subset F of 2 xK¢
such that, for each w € £2, the w-fiber F, = {z € K¢, (w,z) € F} is a linear
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subspace, and the function w + dim F, is constant on each connected component
of £2. In the case that the function w + dim F,, is constant on §2, its value dim F' is
the dimension of F.

The words “closed vector subbundle” will be substituted very often by “closed
subbundle”.

Remark 1.64 Tt can immediately be checked that a closed subbundle F is an
invariant set for the skew-product flow 74 defined by (1.5) on £2 x K¢ if and only if
Us(t,w)-F, = F,, forall (f, ) € R x £2.

Definition 1.65 The trivial vector bundle £2 x K¢ is the Whitney sum of the closed
vector subbundles Fy, ..., F if K = (F1)o ® - @ (F)e forall w € £2. This fact
is represented by writing 2 x K = F, @ --- @ F,,..

Definition 1.66 The family (1.29) has exponential dichotomy over §2 if there exist
constants 7 > 1 and B > 0 and a splitting £2 x K¢ = F* @ F~ of the bundle into
the Whitney sum of two closed subbundles such that

- F* and F~ are invariant under the flow 74 on 2 x K¢,
- |Ua(t,w)z|| < neP'|z| foreveryt> 0and (w.z) € F*,
- |Ua(t, @) z|| < nef'|z forevery t < 0Oand (w,z) € F~.

The proof of the equivalence of Definitions 1.58 and 1.66, which is carried out in
Proposition 1.68, is based on the connection between the existence of a projector
and of a decomposition of the bundle as a Whitney sum of two closed subbundles.
A complete proof of the following result (see [133]), is included for the reader’s
convenience.

Proposition 1.67 Given a projector Q = {Q(w)} on 2 x K¢, the sets

RgQ = {(0.2)| Q(w)z =1z},
Ker Q = {(».2) | Q(w)z = 0}

are closed subbundles, with fibers Rg Q(w) and Ker Q(w); and they satisfy 2 x
K4 = Rg O & Ker Q as a Whitney sum.

Conversely, given two closed subbundles F\ and F such that 2 xK¢ = F\ @ F,
as a Whitney sum, there exists a unique projector Q with RgQ = F| and
Ker Q = F,.

Proof Assume first that Q is a projector. It is easy to deduce from the continuity
required by Definition 1.57 that the sets Rg Q and Ker Q are closed. Obviously the
fibers over each element of the base are the vector spaces Rg O(w) and Ker Q(w).
Now take a sequence (w;) with limit @, and call £ = dimRgQ(w). It follows
from the continuity in Definition 1.57 that dim Rg Q(w;) > k and dim Ker Q(w;) =
dimRg (I; — Q(w;)) > d — k for large enough j, so that equality holds in both cases.
Consequently, the maps dimRg Q: 2 — {0, ...,d} and dimRg Q: 2 — {0, ...,d}
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are continuous, and hence they are constant on each connected component of 2.
This completes the proof of the first assertion.

To prove the converse assertion, assume that 2 xK? = F; @ F, as a Whitney sum
and, for each w € £2, define Q(w) to be the projection on K¢ with Rg Q(w) = (F}).
and Ker Q(w) = (F»),,. This means that Q(w) z = z' if and only if z = z' 42> with
7' € F;fori = 1,2. The goal is to prove that 2 x K¢ — K“, (w,z) »—> Q(a))z is
continuous. Take a sequence ((w}, Z;)) with limit (w, z), and write z, = z + z with
(wj, z) € F'fori = 1,2; and, in the same way, write z = z' + z>. The property to
prove is then lim;_, zj1 = z!. It will be proved below that the sequence (z! z;, /) is
bounded in K x K¢. Then, any subsequence admits a convergent subsequence, with
limit (z', Z%). Since the subbundles are closed, (w,z') € F! and (0, %) € F2. And,
since z = z' + 72, it follows that z' = z'. The independence of the value of the
limit with respect to the choice of the initial subsequence proves the assertion. Now,
assume for contradiction that (zjl, zj?) is not bounded, which since (z;) is bounded is
equivalent to the unboundedness of (z}). Choose a suitable subsequence (z!) with
limy, o0 |12, | = oo and 1imm—>oo z,/lz,| = z' # 0. Then, lim, o 2, /2, =
limy—o00(zn — 2})/|lz} || = —Z!, which, using again the closed character of the
subbundles, implies that zZ! € (Fi), N (F2), = {0} and provides the sought-for
contradiction. This completes the proof.

Proposition 1.68 Suppose that the function A: 2 — Myx,(K) is either continuous
or satisfies the conditions described in Proposition 1.38. Then Definitions 1.58
and 1.66 are equivalent. For each w € §2, let Q(w) be the projection given by
Definition 1.58, and let FﬂE {z € K| (w,2z) € F*} be the fibers of the subbundles
Ft and F~ of Deﬁmtwn 1.66. Then F} and F, are respectively the range and
kernel of Q(w).

Proof The assertion follows easily from the information provided by Proposi-
tion 1.67, as will now be explained.

Suppose that the family (1.29) satisfies Definition 1.58 with projector Q, and
define F+ = Rg Q and F~ = Ker Q. These closed subbundles are invariant, since
(w1, Us(t,w) Q(w) z) = (w-t, Q(w-t) Us(t, w) z). In addition, if (w,z) € FT, then
(0,2) = (@, Q(w) 2), 50 that | Ua(r, @) z|| = [|Ua(t, ) Q(@) 2| < ne |zl forall
t > 0,and if (w,z) € F~, then (w,z) = (0, (I; — Q(w)) z), so that ||Us(t,w) z|| =
|Us(t, ) (I; — Q(w)) z|| < neP|z| for all + < 0. That is, the family satisfies
Definition 1.66 for the same 7 and f.

Conversely, assume that the family (1.29) satisfies Definition 1.66, and define Q
to be the projector with Rg Q@ = FT and Ker @ = F~. Due to the invariance of the
subbundles, for all z € K¢ one has

Q(w1) Us(t, 0) 2 = Q1) (Ua(t, ) Q(@) 2 + Uy (. ) (s — Q(w)) 2)
=Us(t.w)Qw)z,
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since

Ua(t,) Q(w)z € Ua(t,w)-F} = F!, = Rg Q(w-),
Ua(t, @) (la — Q(@)) 2 € Ua(t, 0)-F,, = F,, = Ker Q(w+);

that is, Q(w-1) Us(t, ) = Ua(t, ®) Q(w). Moreover,

Ua(t, 0) Q@) Uy ' (s, @) = Ua(t, 0) Uy (5, 0) Q(w+s)
= Ua(t — 5, 0-5) Q(s) ,

and hence, if z € K with ||z]| = 1 and t — s > 0,
1Ua(t. ) Q@) Uy (s, @) 2]l = [[Ua(t = 5, 005) Q(es) 2| < nge ™)
where ¢ = sup,c,, |Q(w)|], since (w-s, Q(w-s)z) € FT. And similarly,
Ua(t.0) (ls = Q(@)) Uy ' (5. ) = Ua(t = 5.0-5) (la = Q(-9)) .
so that if z € K¢ with ||z|| = landr — 5 < 0,

[UA(t, @) (Is — Q(@)) Uy ' (s, o) zl| = [|Ua(t — 5. 0-5) (Is — Q(w-s)) ]|
<n(l+q) e,

53

since (w-s, (I — Q(w-s))z) € F~. Therefore, Definition 1.58 holds for a possibly

larger constant 1 and the same f.
Remarks 1.69

1. It follows from Propositions 1.56 and 1.68 that

FT = {(a),z)| tl_l)rgo |Ua(t, w) 2| = 0} = {(a),z)| su([)) |UA(t, ) z|| < o0
>

t<0

F-={@.2)] lim_|Ust0)z) =0} = {(w,zn sup | Us (1, @) z]] < o0

g
2

In particular, F;} and F, can be referred to as the vector spaces of the initial
data giving rise to bounded solutions of (1.29) as t — oo and as t — —o0,
respectively. And also as the vector spaces of the initial data giving rise to

solutions of (1.29) tending to 0 as t — oo and as t — —oo.

2. Any point (w,z) € 2 x K? can be written as (w,z~ + z¥) with (0,z%) € F*,
and z and z~ are unique. Hence Uy (, ) z behaves in the way determined by
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Ua(t,w) zT at 00. More precisely,

lim ||Ua(t,0)z—Us(t,0)zT || = 0. (1.30)
t—+o00

For this reason it is also usual to refer to the closed subbundles F* and F~ as the
stable subbundle at —oo and + oo respectively.

The following continuity property for closed subbundles will be repeatedly used.
Recall the Definition 1.17 of the concept of copy of the base to understand the
statement.

Proposition 1.70 Let F be a closed subbundle of 2 x K¢, and let 2. C 2 be a
connected component. Write k = dimF,, for all w € $2.. Then the map 2. —
Gv(KY), w +— F, is continuous.

Consequently, if F is ta-invariant, the set {(w, F,) | ® € §2} is a copy of the base
for the restriction of the flow r/i‘ defined by (1.6) to 2. x G (K%).

Proof Take a sequence (w;) € 2. with limit w, and assume for contradiction that
F,, is not the limit of Fo, in Gy (K9). According to Proposition 1.26(ii), there exists
a sequence ((w;,v;)) with (w;,v;) € F and with limit (w,v) ¢ F. But this is
impossible, since F is closed. This proves the continuity, and Remark 1.64 makes
the second assertion trivial: T4 (¢, w, F,,) = (0-t, Us(t, ®)-F,,) = (0°t, Fyp).

The section is completed with a discussion of another interesting fact concerning
the exponential dichotomy concept, which will be useful in Chap. 5. Namely, the
exponential dichotomy of a given family is equivalent to that of the adjoint family.
This fact has a simple corollary which will be needed in Chaps. 6 and 7.

Given a linear subspace g € K¢, let g represent the orthogonal complement of
g with respect to the Euclidean inner product, with dim gt = d —dim g. And, given
a closed subbundle F on 2 x K¢, define

Ft :{(a),z)|zeFj;}.

It is easy to check that F1 is a new closed subbundle, and it is obvious that
(FY)*t = F: (gt)* = g. See Remark 1.69.2 for the definition of the concept of
stable subbundles at F0o, which appears in the following discussion.

Proposition 1.71 Suppose that the function A: §2 — Myxq(K) is either continuous
or satisfies the conditions described in Proposition 1.38. The family of linear
systems 7’ = A(w-t) z has exponential dichotomy over 2 with stable subbundles at
+00 and —co given by F~ and F if and only if the adjoint family w' = —AT (w-t) w
has exponential dichotomy over $2 with stable subbundles at +00 and —oo given
by (F7)* and (F*)*.

Proof Assume the exponential dichotomy of the family of systems z’ = A(w-?) z,
and let 2 x K¢ = F* @ F~ be the corresponding Whitney sum. Let w(z) be a
globally bounded solution of the system w' = —A” (w-f) w, and write wo = w(0) =
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z0 + z;, with (0, z; £) € F*. Then, |w|? = (Wo,z(')") + (wo,z, ) and (wo,zat) =
(w(r), z% (1)) for all t € R, where z* (1) represents the solution of the initial system
(for the same w as w(¢)) with initial datum z0 . Taking the limit as t — +o0 yields
(wo,z0 ) = 0, so that wo = 0 and w(z) = 0.

Therefore, the adjoint family has no nontrivial bounded solutions. Note that
the presence of exponential dichotomy for the initial family ensures that £2 can
be written as the following disjoint union: 2 = 29 U .-+ U 24, with £, =
{w € 2| dimF} = k} fork = 0,...,d. According to Lemma 10 of Sacker
and Sell [132], each §2; is a compact invariant isolated subset of §2. Fix one of
these sets §2;. Theorem 1.61 and Remark 1.62 ensure that the adjomt family has
exponential dichotomy over each minimal subset M _C 2. Let Ft v and Fr Mm be
the corresponding closed subbundles. If (w, wy) € Ft wm and (w,2z9) € F +, then
(wo, zo) = (wW(2),2z(r)), with limit 0 as r — oo. Here z(¢) solves 2’ = = Aot t) z with
z(0) = zo and w(r) solves W = —AT(a) 1) w with w(0) = wy. Therefore, (F M)w -
(FH)L, which ensures that dim(F M)w < d — k. Analogously, dim(F o = k.
Consequently, both equalities hold, since (F M)w &) (F e = K% One can now
apply Theorem 2 of [132]: the fact that k does not depend on the choice of M,
together with the absence of nonzero bounded solutions, ensures the exponential
dichotomy of the adjoint family of systems over the space £2;. And since the
spaces §2; form a finite partition of §2, it follows easily that the adjoint family has
exponential dichotomy over the whole base: 2 x K¢ = F F* @ F~. Once this is
known, repeating the above argument shows that F ;)L = (Ff)* and F ~ = (F,)*,
which completes the proof.

Definition 1.72 The linear system z' = A((¢) z is of Hurwitz type at +o0 if it has
exponential dichotomy over R with projection Q = I, and at —oo if the projection
is O = 0g.

The family of linear systems z’ = A(w-t) z for v € §2 is of uniform Hurwitz type
at +o0 if it has exponential dichotomy over §2 with projector Q = {I,}, and at —oc0
if the projector is @ = {04}.

Proposition 1.73 Suppose that the function A: §2 — Myxq(K) is either continuous
or satisfies the conditions described in Proposition 1.38. The family of linear
systems 7 = A(w-t)z for o € 2 is of uniform Hurwitz type at +oo if and only
if the adjoint family w' = —AT (w-t) w is of uniform Hurwitz type at —oc.

Proof The result is an immediate consequence of Proposition 1.71.

Proposition 1.74 Suppose that any solution z(t) of any of the systems of the family
7 = A(wt)z for v € 2 tends to 0 as t — oo (resp. as t — —o0). Then the family
is of uniform Hurwitz type at 400 (resp. at —00).

Proof This result is proved in, for example, Lemma 4 of [133].
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1.4.3 The Hamiltonian Case: Additional Properties

The exponential dichotomy property has some particular properties in the case
of linear Hamiltonian systems. For the reader’s convenience, the definition of
the exponential dichotomy property is repeated and some of these properties are
recalled. In this section, H: 2 — sp(n,K) and G: 2 — S,(K) represent either
continuous functions or, more generally, functions satisfying the conditions imposed
on A in Proposition 1.38. The families of linear Hamiltonian systems

Z =Hwtz, o€ (1.31)
and of Schrodinger n-dimensional equations
X" +GoH)x=0, wef (1.32)

are considered, and the continuous map U:R x £ — Sp(n,K) represents
the fundamental matrix solution of the system (1.31) corresponding to @ with
U(0,w) = by. Recall that taking H = [ { | provides a system of type (1.31)
equivalent to (1.32).

Definition 1.75 The family (1.31) has exponential dichotomy over 2 if there exist
constants 7 > 1 and B > 0 and a splitting £2 x K*" = LT @ L~ of the bundle into
the Whitney sum of two closed subbundles such that

- L* and L™ are invariant under the flow i given by (1.13) on £2 x K",
- Ut w)z| <neP|z| foreveryr> 0and (w,z) € LT,
- U@t w) 2| < neflz| foreveryt < 0and (w,z) € L™.

The family of Schrodinger equations (1.32) has exponential dichotomy over $2 if
this property holds for the associated family of linear Hamiltonian systems.

As proved in Proposition 1.68, this concept can also be formulated in terms of the
existence of a projector Q with the properties required in Definition 1.58.

The analysis of the special facts concerning the Hamiltonian case starts with the
following fundamental result. Recall the concept of a copy of the base, which is
given in Definition 1.17.

Proposition 1.76 Suppose that the function H: 2 — sp(n, K) is either continuous
or satisfies the conditions imposed on A in Proposition 1.38. Suppose also that the
family (1.31) has exponential dichotomy over 2, and let 2 x K" = LT @ L™ be
the corresponding decomposition. Then, for each @ € 2, the fibers

F) =L = {ze K| (0.2) € L} (1.33)

are Lagrange planes, and they vary continuously with respect to w. In particular,
the closed subbundles L* are globally n-dimensional. In addition, U(t, w)-I* (w) =
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I*(w-t) forallt € R and w € Q. That is, the sets {(w, [T (w)) | © € 2} C Kk are
copies of the base for the flow T given by (1.14): t(t, w, [(®)) = (w-t, [ (w-1)).

Proof The symplectic character of the fundamental matrix U(f, w) ensures that
wlJz = wl'UT(t,w)JU(t,w)z for all t € R and for any pair of vectors z, w €
K?", and hence the behavior of the solutions at 400 (resp. —oo) described in
Definition 1.75 yields w/Jz = 0 for any pair of vectors z and w in [T (w) (resp. z
and w in [~ (w)). This fact and the impossibility of the existence of n + 1 linearly
independent isotropic vectors ensure that /* () (resp. L*) are n-dimensional vector
spaces (resp. closed subbundles): recall that K** = [T (w) @ [~ (w). The continuity
of I* (w) follows from Proposition 1.70. Finally, the t-invariance of L* means that
U(t, w)-I* (w) = I*(w-1) forall t € R and w € £2, which proves the last assertions.

Remarks 1.77

1. The same argument proves that, in the case of a single Hamiltonian system
7 = Hy(t) z with exponential dichotomy, the vector spaces [T = RgQ and
I~ = Ker Q determined by the solutions bounded as t — oo and t — —oo (see
Proposition 1.56) are Lagrange planes.

2. It follows from Propositions 1.68 and 1.56 that (w,z) € LT if and only if
SUP;e(0,00) U (2, @) || < 00, in which case the solution U(t, w) z of (1.31) tends
to zero exponentially fast as t+ — oo; and that (w,z) € L~ if and only if
SUP/e(—o00) IU(1, ®) Z|| < 00, in which case the solution U(#, @) z tends to zero
exponentially fast as t — —oo.

3. As stated in Remark 1.69.1, [T (w) and [~ (w) can be referred to as the Lagrange
planes of the initial data of the solutions of (1.31) which give rise to bounded
solutions as t — oo and as t — —oo respectively.

According to Proposition 1.76, in the linear Hamiltonian case the dimensions of the
stable and unstable subbundles are the same for every minimal subset. As in the
proof of Proposition 1.71, this property, Remark 1.62, and Theorem 2 of Sacker and
Sell [132], yield the following fundamental result.

Theorem 1.78 Suppose that the function H: 2 — sp(n,K) is either continuous
or satisfies the conditions imposed on A in Proposition 1.38. The family (1.31) has
exponential dichotomy over §2 if and only if none of its systems admits a nonzero
bounded solution.

Remark 1.79 1t is usual to refer to the presence of exponential dichotomy for
the family (1.11) by saying that the corresponding dynamics is in the uniformly
hyperbolic case. The case on nonuniform hyperbolicity, which is much more
complex, occurs roughly speaking when exponentially increasing solutions coexist
with nontrivial bounded ones for some of the systems of the family. An example of
this situation is carefully described at the end of Chap. 8.

In some interesting cases in which exponential dichotomy is present, it happens that
I (w) € Dk for all w € §2, where Dk is defined in (1.21). In other words, I (w) =
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[ Mi”(w)] for every w € 2. In this case, it follows from Propositions 1.76 and 1.29(i)
that the map M*:2 — Dk, w — M*(w) is a continuous map. Similarly, it
can be the case that [ (w) = Mf”(w)] for every w € £2 for a continuous map
M™:2 - Dk, o —» M ().

Definition 1.80 Assume that the family (1.11) has exponential dichotomy over §2.
The n x n matrices MIjE (w) € S,(K), as well as the continuous matrix-valued maps
M*: Q2 - S,(K), o — M*(w), if they exist, are called the Weyl functions, Weyl
matrices, or Weyl M-matrices of the family (1.31).

It is usual to refer to M (resp. M) as the Weyl function associated to the stable
subbundle at —oo (resp. +00) of the family (1.31): see Remark 1.69.2. Note that
the Weyl functions are continuous equilibria, according to Definition 1.49; and they
define copies of the base {(w, M* (0)) w € 2} C 2 x S,(R) for the flow 7, given
by (1.23), according to Definition 1.17.

Remarks 1.81

1. Assume that both M-functions exist. It follows easily that Ker(M™ (w) —

M™T(w)) = {0}: otherwise there would exist a nonzero vector of the form

[ (x| = [s+()x ] in the vector space I (w) N I”(w), which is impossible.

Hence, the matrix-valued function (M~ — M™)~! exists. The uniqueness of the

projector @ = {Q(w)} and the fact that the range and kernel of Q(w) are the

Lagrange planes represented by [ Mi”(w)] and [ Mf”(w)] (see Propositions 1.68
and 1.76) ensure that

0= M~ —M*T)"'M~ —M~ —Mt)~!

Mt —MY T M MM — M|

where all the matrices are evaluated in w. Note that any regularity property that O
may have is inherited by (M~ —M )", (M~ —MT)"'M~ and Mt (M~ —M*)~!,
and hence also by M * and M. On the other hand, it should be noted that if H is
a C’-function on a C"-manifold £2, then Q, M™, and M~ need not be C".

2. Letz(t) = [;8 ] solve (1.31). It can immediately be checked that

(x(1). Y0} — (x(0).¥0)) = [ (xC0.y0)

151

. (1.34)
:/ ((Ha(w-1) x(1),x(2)) + (y(1), H3(w-1) y(1))) dt,
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so that, in the case that H, > 0 and H5 > 0,

(x(12), ¥(r2)) = (x(11), y(11))

n (1.35)
- / (1 @0 xO 1P + 13 @0 y (o)) dr.

n

Assume now the global existence of the Weyl function M, and take a nonzero

solution U(t, w) [ M+’(‘2)) Xo] = [M +("airz) 0 ] Fixing #; = 0 and letting #, tend

to oo in (1.35) shows that —xo M ()Xo > 0, so that M™ < 0. An analogous
argument proves that M~ > 0 if it is globally defined. In fact, M+ and M~ are
definite in certain situations: for instance, if H, > 0. Less restrictive conditions
will be explained in Chap. 5: see Proposition 5.64.

1.4.4 Sacker-Sell Spectral Decomposition

In this section, M C C(R, Myx,(K)) represents any subset which satisfies the
following two conditions. First, M is invariant under time translation; i.e. if B € M
then B, € M for all t+ € R, where B,;(s) = B(t + s). And second, there exists a
topology on M for which it is a compact metric space and for which the linear
skew-product flow

ERXxMxK! - MxKY, (1,B,z)— (B, U(t,B)z) (1.36)

is continuous, where U(z, B) is the fundamental matrix solution of 2’ = B(r) z with
U,B) =1,.

In what follows, My < M is nonempty, compact, and (time-translation)
invariant, so that the restriction of ¢ to My x K<, denoted by the same symbol, is
well defined. It is easy to adapt Definition 1.66 to express the notion of exponential
dichotomy of a family of systems over My; namely, the family of systems {z' =
B(t)z| B € My} has exponential dichotomy if there exist constants n > 1 and
B > 0 together with a splitting My x K¢ = F* @ F~ of the bundle into the
Whitney sum of two closed subbundles such that

- F* and F~ are invariant under the flow ¢ on Mg x K,
- U@ B z|| <neP|z| foreveryt> 0and (w,z) € F¥,
- U@ B) z|| < nef'|z foreveryt <0and (w,z) € F.

The arguments of Proposition 1.68 imply that this definition is equivalent to the
existence of constants 7 > 1 and 8 > 0 together with a projector Q@ = {Q(B)} on
Mo x K such that, for every t,s € Rand B € M,

- U@.B)Q(B) = Q(B) U(1.B),

- |U@B)QB) U™ (s,B)|| < ne P~ ift >,
- lU@.B)(Ia— QB) U™ (s.B)|| < nef™ ifr <.
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Note also that, if M, satisfies the conditions imposed on M, with My C M|,
and if the family {z’ = B(r)z| B € M} has exponential dichotomy, then also the
family {z’ = B(t) z| B € M} has exponential dichotomy.

Definition 1.82 The Sacker—Sell or dynamical spectrum of M, which will be
denoted by X (M), is the set of A € R such that the family {z' = (B(r)—Al;)z| B €
My} does not have exponential dichotomy over M.

Note that the existence of exponential dichotomy for the family of systems {z’ =
B(t)z| B € My} is equivalent to the condition 0 ¢ X' (M,). The basic result given
in Theorem 1.84, usually called the Sacker—Sell spectral theorem, appears in [133].
Its statement requires a preliminary definition.

Definition 1.83 The four characteristic exponents of the system z’ = B(¢) z for the
element zy € K7, z, = 0, are the values of the limits

. 1 o
limsup = In([U(t. B) o)) . liminf ~ In([U(z. B) zo]]) -

t—+oo !

In the case in which the four limits agree, their value is a Lyapunov exponent of the
system.

It is clear that the values of the four limits in the previous definition are invariant
along the orbits of the restriction of the flow ¢ to My x K¢,

As stated in Lemma 1 of [133], if M is minimal, then the dynamical spectrum
Y (M) agrees with the dynamical spectrum of the system corresponding to each
element B € My; i.e. with the set of points A such that the system does not satisfy
Definition 1.54. In the general case, A € X' (M) if and only if there exists B € M,
such that the corresponding system does not have exponential dichotomy on R.

The following notation is important to understand the formulation of Theo-
rem 1.84. Given A € R — X (M), let Ff (M) represent the stable and unstable
subbundles at Foo for the family {z’ = (B(t) — Al;)z| B € M,}. In other words,
the Whitney sum M, x K¢ = F;' (Mo) @ F; (M) satisfies the conditions of
the previous definition of exponential dichotomy. The following assertions are part
of [133], Lemmas 9 and 10, together with Theorems 2, 3 and 4.

Theorem 1.84 The Sacker—Sell spectrum X (M) is compact and nonempty. If, in
addition, M is connected, then X (M) is is the union of m < d non-overlapping
closed intervals,

Y (Mo) = a1, b1] U ---U [am, bu] , (1.37)

withay < by < ay--- < by—1 < a,y < by,. In this case, there exist closed subbundles
F}Vlo, o ,Fj\”/lo such that MoxK4 = F}v(o D-- -@F’”MO as a Whitney sum, which are
invariant for the flow ¢ defined by (1.36) on Mo x K?. A point (v, z0) with zy # 0
belongs to F{A/l() if and only if its four characteristics exponents belong to [a;, bj], for
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j=1,...,m Inaddition, if
Ao <ay <by <A <ar - <bg_i <Ap_i < am <bm < An,
then
Fluy, = Fz,_, (Mo) N F5} (Mo)

forj = 1,...,m. Finally, given py, p, ¢ X(My) with u; < o, the following
statements are equivalent:

(1) there exists ;1 € (JL1, n2) N X (My);
(2) F;(Mo) NF;} (Mo) # Mo x {0};

and, in addition, F,; (Mo) N F;'z (M) is the sum of the closed subbundles FJMO of
Mo x K? associated to the intervals of X (M) contained in (i1, j12).

Remarks 1.85

1. Note that (B,zy) € F’MO forj = 1,...,m if and only if, whenever a < g; <
b; < b, there exist constants ¢; and ¢, such that cje” < |U(t, B) zo|| < c€” for
t > 0and cie” < |U(t,B) 2o|| < c¢” for ¢ < 0. This property follows from the
characterization of the elements of FLMO in terms of their characteristic exponents
given in the previous theorem.

2. Note also that the fundamental matrix solution of zZ = (B(f) — Al;) z which
agrees with I; at t = 0 is e MU (t, B). In other words, the Sacker—Sell spectrum
X' (M) is determined by the properties of {U(¢, B) | B € My}.

Definition 1.86 Suppose that M, is connected. Then the sets F’ 1 NPT F m/\/lo are
the Sacker—Sell spectral subbundles over M.

Many more facts concerning the characteristic exponents and the Lyapunov expo-
nents, as well as their relation with the Oseledets decomposition of the bundle
2 x K9 can be found in Sect. 2.5. In fact the formulation given there refers to
the Hamiltonian case, but it is also valid in the general linear case. The analysis of
the relation between the spectral decomposition, the Lyapunov exponents and the
characteristic exponents is carried out by Johnson et al. in [86]. A more specific
study in the linear Hamiltonian case can be found in Johnson [72] and Novo
etal. [112].

Now let (§2,0) be as usual a real continuous flow on a compact metric space.
Consider again the family of general linear systems (1.29). In this context, unless
otherwise indicated, the fixed matrix-valued function A is assumed either to be
continuous or to satisfy the conditions of Proposition 1.38, so that the flow t4
defined by (1.5) on £2 x K¢ is continuous. Define My = {A,:R — Myx(K) | w €
£2}, where A,(t) = A(w-), and note that M, and the flow ¢ defined by (1.36)
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on M, x K9 can be respectively identified with £2 and z4. It is usual to represent
Y (A) = ¥ (My). In other words,

Definition 1.87 The Sacker—Sell (or dynamical) spectrum of (1.29), ¥ (A), is the
set of A € R such that the family

7 = A(wt) — Az, weR (1.38)

does not have exponential dichotomy over £2. In addition, if £2 is connected, the
Sacker—Sell subbundles for My provided by Theorem 1.84 are Sacker—Sell spectral
subbundles of the family (1.29), and they are represented by F’ L. F -

The Sacker—Sell spectral subbundles of (1.29) will play a fundamental role in
Sect. 4.5, which is devoted to a perturbation analysis of their behavior.

The following result, regarding the relation between the spectral decomposition
for a given family and its adjoint, will be used in Proposition 1.89, which describes
the special shape of the Sacker—Sell spectral intervals and subbundles in the
Hamiltonian case, due to the intrinsic symplectic structure of the dynamics.

Proposition 1.88 There is a relationship between the Sacker-Sell spectra of (1.29)
and of the adjoint family w' = —AT(w-t)w, namely X(-AT) = —X(A) =
[=bm, —an] U ---U[=by1, —ai]. If, in addition, $2 is connected, then the Sacker-Sell
spectral subbundle of the adjoint family corresponding to the interval [-b;, —aj] is

. L
FT:Tl_j = (@k# F/ﬁ) forj = 1,...,m, where F/ﬁ is the Sacker—Sell spectral
subbundle of the family 7’ = A(w-t)z corresponding to the interval [ay, by]. In

particular, dim FT:Tl_j =dimF, forj=1,...,m.

Proof Proposition 1.71 establishes the equivalence between the exponential
dichotomies over §2 of the family z7 = (A(wr) — Al;)z and its adjoint
w = (—AT(w-t) + Al;) w, from which the first assertion follows. Note that F T:Tl_j
is the spectral subbundle for the adjoint family corresponding to the spectral interval
[—b;, —a,]. Take now (w,wy) € FT:TI_/ with wo # 0, and take (w,zy) € F% for
k # jwith zg # 0. Set z(t) = Ua(t, ) 2o and w(r) = U_,7 (¢, ®) Wo. Assume first
thatk < j, sothat by < aj—2¢forane > 0. According to Remark 1.85.1, there exists
a constant ¢ such that |(zo, Wo)| = |(z(t), w(t))| < cexFTe—a+el = colbimat2e)
for ¢+ > 0. The limit of the last term as t — oo is zero, so that w € ((Ff‘)w)l.
In the case k > j, choose ¢ > 0 such that b; < a; — 2¢ and a new constant
c with |(zg, wo)| = [(z(t), w(1))| < cel®e=h=at = cela=bi=28) for ¢ < 0,
and take the limit as + — —oo to arrive at the same conclusion. Therefore,

+1
F TAT
since this happens for all j = 1,...,m, an easy argument of dimension counting
completes the proof.

. 1 .
7 c (@k# Fﬁ) . Since the dimension of the last space is dim F’,, and

Proposition 1.89 The Sacker—Sell spectrum of the family (1.31) of linear Hamilto-
nian systems satisfies ¥ (H) = —X(H). That is, aj = —b,11—jforj =1,...,m.
If, in addition, $2 is connected, then the spectral subbundles corresponding to
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[—bj, —aj] and [aj, bj] have the same dimension for j = 1,...,m; and, if the
family (1.31) has exponential dichotomy, then the closed subbundle L (resp. L™)
of Definition 1.75 is given by the sum of the spectral subbundles corresponding to
the spectral intervals contained in the positive (resp. negative) half-line.

Proof Given any closed subbundle F of £2 x K¢ and a constant nonsingular d x d
matrix C, denote

C-F={(w,Cz)| (w,2z) € F},

which is a new closed subbundle with the same dimension. Assume that the linear
family zZ = A(w-t)z has exponential dichotomy over £2 and write 2 x K¢ =
F* @ F~. The change of variables Z = Cz takes this family to 7’ = B(w)Z,
with B(w) = CA(w) C~" and Ug(t,w) = CUx(t,w) C~". Since |Up(t, w) Zo|| =
|C Ua(t, w) C'Z||, there exists a constant ¢ > 0 such that

ULt w) C %ol < |Us(1, ) Zol| < ¢ ||Ua(t, 0) C o

for all (r,w) € R x §2. It follows from this fact and from Definition 1.66 that
the family zZ = B(w-f)z has exponential dichotomy over £2, with 2 x K¢ =
C-F* @ C-F~. Consequently, since the same change of variables takes the family
7' = (A(wt) — My)zto 7 = (B(w-t) — Aly) Z, Definition 1.82 yields

Y(A)=X(B)=X(CAC™). (1.39)

Assuming now that 2 is connected, the previous inequalities and the characteri-
zation of the spectral intervals given in Remark 1.85.1 yield an easy proof of the
equalities

F‘Z:C-Ff4 forj=1,...,m. (1.40)

Returning to the Hamiltonian case, relation (1.39), it follows from the equality
H'J 4+ JH = 0,, and Proposition 1.88 that ¥(H) = Y(JHJ™') = X(-H") =
—X(H). If £ is connected, relation (1.40) and Proposition 1.88 guarantee that
dimF™'7 = dimF"};7 = dimF,, as asserted. Assume finally that the
family (1.11) has exponential dichotomy over £2, so that 0 ¢ X (H). It follows
easily from Remarks 1.77.2 and 1.85.1 that the spectral subbundles associated to
the spectral intervals contained in (0, c0) (resp. in (—oo, 0)) are contained in L
(resp. in L™). The already-established relation between spectral subbundles and a
trivial analysis of dimensions prove the last assertion.
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1.4.5 Perturbation Theory in the General Linear Case

One of the most important characteristics of the exponential dichotomy property is
its robustness: it persists under small perturbations of the coefficient matrix of the
initial family. Something similar can be asserted about the Sacker—Sell spectrum.
To explain these assertions is the main goal of this section. Some consequences,
required in the following chapters, will also be worked out.

All the results of this section are consequences of the following powerful
theorem, due to Sacker and Sell: see [133], Theorem 6. The hypotheses on the sets
M and the flow ¢ described at the beginning of Sect. 1.4.4 are retained.

Theorem 1.90 Let My be a nonempty, compact, and (time-translation) invariant
subset of M. Then, for every neighborhood J of X(My) in R, there is a
neighborhood K of My such that X (M) C J for every compact and invariant
subset My of M contained in K. Moreover, if A € R — X (M), then there
exist p > 0 and a neighborhood K of My such that, if My is as above, then
A —=p, A+ p) C R— X(M,). Furthermore, if A € R — X(My), then there
exists a compact neighborhood K of My such that, if M4 is the largest compact
and invariant subset of M contained in K and containing My, then the family
{z’ = (B(t)—Al;) z| B € M4} has exponential dichotomy. In particular, the vector
spaces (Fit)B of the initial data of the solutions of ' = (B(t) — Al;) z which tend to
zero as t — £00 vary continuously with respect to B € M.

Several applications of this theorem will be required in the book. The one most
frequently used is described in what follows. (Others will be described in Sect. 4.5.1
and in the last examples of Sect. 7.2.) It refers to a parameterized perturbation of the
family of systems z’ = A(w-?) z, namely

7 = (A(wt) + Ky(w1) z, (1.41)

where the following conditions are satisfied:

pl. (£2,0) is a continuous flow on a compact metric space, and o (¢, ®) = w-t;

p2. A: 2 — Myxq(K) is continuous;

p3. A C K™ isacompact set containing 0;

p4. {K)| A € A} is an m-parameter family of elements of C(£2, M;x4(K)), with
Ko = 04, such that the map A — C(£2, Myx4(K)), A — Kj is continuous for
the topology of C(£2, Myx4(K)) given by the norm ||B| o = max,ecq |B(w)] .

Write B, (f) = B(w-t) for any matrix-valued functions B: 2 — Mx,(K). Under
the four conditions p1-4, for all n € N, the map

[0,n] x 2 x A = Myxy(K), (t,w,A) = (A4 K)),(t)
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is continuous, and hence uniformly continuous. Therefore, the function

£:[0,00) >R, d sup [(A+ Kp)w(®) —(A+ Ki)u(O)l
<6
(w,x‘g‘e_ng

is continuous, with £(0) = 0, and moreover ||(A+ K ), (t) — (A + K)o (0)|| < £(]¢])
for all (w,A) € £2 x A and |t| < n. Note that

(A + K)o(®) — (A + Kp)o ()|l
= ”(A + Kl)ars(t - S) - (A + Kk)ws(o)” =< é:(lt - S|) .

In other words, € is a common continuity modulus for the set of continuous functions
{(A+K))yp: R — Mxq}. Moreover, there exists ¥ > 0 such that || (A+K}), ()] < «
for all (t,w, L) € R x £2 x A. Define the set

M = {C:R — Myxq | sup |C(#)|| < 2k and C has continuity modulus 2 &},
1R

and provide it with the topology of uniform convergence on compact subsets of R.
Consider also the subsets of M defined by My = {A, | ® € 2}and M4, = {(A+
K)o|w e 2,1 € Ay}, where A, C A is any compact neighborhood of 0 in A. It
is easy to check that M is a compact Hausdorff topological space; that it is invariant
by time-translation; and that the flow ¢ given by (1.36) is continuous. Moreover,
the subsets M and M4, are compact and time-invariant, and My C My,,. In
addition, the exponential dichotomy of the family z' = A(w-7) z over §2 is equivalent
to the exponential dichotomy of the family {z' = B(¢)z| B € M}, according to
the definition given in Sect. 1.4.4. Applying Theorem 1.90 to this setting proves the
following result. Recall that X'(A) represents the dynamical spectrum of the family
{7/ = A(w1)z| w € 2}: see Definition 1.87.

Theorem 1.91 Suppose that conditions pl—p4 hold.

(i) LetZ C R be an open set containing X (A). There exists a compact set Ax C A,
which is a neighborhood of 0 in A, such that X (A+K,) C Z whenever A € A..
In addition, if A € R — X (A), then there exist ¢ = ¢(A) and Ax = Ax(A) as
above such that (A — e, A + &) N X (A + K)) is empty whenever A € A*.

(ii) If, in particular, the unperturbed family 7”7 = A(w-t)z has exponential
dichotomy over 2, then there exists a compact subset Ay, C A, which
determines a neighborhood of 0 in A, such that the family of systems {z' =
A(w1) + Ki(w1) 2| (w,A) € 2 x Ax} has exponential dichotomy: it satisfies
the conditions of Definition 1.58 for a projector Q = {Q(w, A)} and constants
n and B. Consequently,

(ii.1)  the family (1.41) has exponential dichotomy over §2 for all A € Ax,
with projector Qk, = {Qk, (w)} for Ok, (w) = O(w, A) and common
constants 1 and B.
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(ii.2) 2 x A xK! - 2 x Ay x K9, (0,1,2) = (0,1, 0k, (0)2) isa
Jjointly continuous map. In particular, the maps

2 % A* — ded(K) s (C!)s A) = QK/\((U)
and
Ay —> C(82,Myxq(K)), A+ Ok,

are continuous.

(ii3) Let 2 x Ay x K¢ = F+ @ F~ be the decomposition provided by
Definition 1.66. Let §2. C §2 be a connected component, and assume
that also A is connected. Then, there exists an integer k > 0 such that
dimF}, = k and dimF,, = d —k for each (0. )) € 2. x Ax, and
the maps

2 x Ax = GKY, (0.0 FS,
and
Q2 X A = Guk(KY), (@,2) =Ty,

are continuous.

Note that if A = [0, 1] C R, then the set A, contains an interval [0, 1] for some
n > 0. Several consequences of Theorem 1.91, which are now explained, will be
required in Chap. 3. Define

Bs = {K € C(£2, Maxa(K)) | [Kll2 = 6}

for § > 0. Whenever the family 2’ = (A(w-t) + K(w-1)) z has exponential dichotomy
over 2, Qx = {Ox(w)}and 2 x K¢ = F I'{F @ Fy will represent the corresponding
projector and hyperbolic splitting.

Theorem 1.92 Suppose that conditions pl and p2 hold, and that the family of

linear systems 7' = A(w-t) z has exponential dichotomy over $2. Then, there exists
8 > 0 such that

(1) the family 7 = (A(w-t) + K(w-1)) z has exponential dichotomy over §2 for all
K e Bg.

(i) The map Bs — C(£2,Myxq(K)), K — Qg is continuous.

(iii) For each connected component §2. C §2, there exists an integer k > 0 such
that dim(F;{')w = k for each w € §2. and K € B;s, and the maps 2, —
Gi(KY, o — (F;{')w and 2. — Ga—(K9), o + (Fg), are continuous.

(iv) There exists a real constant ¢ with |Qx — Qo, |2 < ¢ ||K||e whenever K € Bs.
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Proof (1), (ii) & (iii) Suppose for contradiction that (i) does not hold. Then there
exists a sequence (E) in C(£2, Myx,(K)) with limit O, (in the uniform topology)
such that the family 2’ = (A(w-r) + Fi{’j(a)'t)) z does not have exponential dichotomy
over £2. But this contradicts Theorem 1.91(i) applied to a continuous mapping
[0,1] = C(£2,Myxa(K)), A + Kj with Ky = 0, and K;; = K;. A similar
argument proves (ii) and (iii).

(iv) The proof is carried out for the most part by Coppel in Chapter 4 of [33]. Let
n > 1and B > 0 be the constants of Definition 1.58 for the exponential dichotomy
of z = A(w-t) z over §2, and choose § < 8/(8n%). Recall that the projection Qg (@)
is uniquely determined for all ® € 2, as Proposition 1.56 states. Following step by
step Coppel’s arguments, it follows that the continuous map Qk: 2 — Myx,(C) is
given for K € Bs by

Ok () = Sk(®) Qo (@) Sg' (@) (1.42)

for the matrix Sx(w) = I; + Qk(w) — 0% (w), where Qk(w) = Y1(0, »), Q3 (w) =
1; — YI%(O, ), and the matrices Y}< and YIZ< satisfy

Y (t, ) = Ua(t, ®) Qo, ()

+ /t Ua(t, ) Qo, (w) U;l(s, ) K(w-s) Y,1<(s, w)ds
0
— [ 0000 U= 0001 U7 5.0) K(os) TG00 ds

fort > 0 and
Yi(t,0) = Ua(t, ) (Ig — Qo (@)

- /0 Ua(t,w) (Ig — Qo, (@) U;l(s, w) K(w-s) Y,%(s, w)ds

+ / r Ua(t, ) Qo, (@) Uy (s, w) K(w-5) Y (s, w) ds

o0

fort < 0. Take K € B;s. It is not hard to deduce from Definition 1.58 that

sup [[Yx(t.w)[| <27 and  sup |[Yi(t.o)| <27

t€[0,00) t€(—00,0]

for all w € §2, which in turn implies that

1 2 4772 1
sup [|Qg(w) — Qg(0)|| < —- Kl < 5 - (1.43)
wES ﬂ 2
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Recall that Sk (0) = I; + Qk(w) — Q% (w). Therefore,

Sg' (@) = ) _(=D!(Qk(@) — Ok (@))*.

k=0

Sk (@) — la = (Qk(@) = 0% (@) Y (=1 (Qk (@) — Ok ()"

k=0
These equalities and (1.43) ensure that
. o 1
sup [1Sic! (@) < ;? =2,

4772
sup [|Sx (@) — Lill < — [IK]l2,
WES :3

_ 472 201 82
sup [|Sx' (@) =Ll < — IKlle Y = = — IKlla.
weR K IB ; 2k ﬂ

These properties, the boundedness of Qp, on 2, and the equality

Ok (@) — Qo (@) = (Sk(@) = 11) Qo, (@) S (@)
+ 0o, (@) (S¢' (@) — L) ,

which follows from (1.42), all taken together, prove the assertion.

The following consequence of Theorem 1.91(i) will be required in Chap. 5. Assume
that conditions pl—p4 hold, and that £2 and A are connected. Note that then the
sets Mo = {A,| @ € 2} and M; = {(A+ K))»| @ € £2} are connected,
for all A € A. The notation established in Theorem 1.84 and Definition 1.38 is
retained, adding now d; = dimFA forj=1,...,m.Forj=1,...,m,let Z; be an
open interval containing [a;, b;] such that Z; N Z;y; is empty forj = 1,...,m — L.
Under the conditions of Theorem 1.91(i), there exists a subset A« C A such that
Y (A + K)) is contained in the disjoint union of the d intervals Z,...,Z, if A €
Ay. Assume also that Ay is connected. For each A € Ay andj = 1,...,m, let
F/(}) represent the Whitney sum of all the spectral subbundles of 2 = (A(w-t) +
K) (w-1)) z corresponding to spectral intervals contained in Z;. Note that F/(0) = F),.

Corollary 1.93 Suppose that S2 is connected. In the situation explained in the
previous paragraph, the map 2 x Ay, — gd_/(K‘l), (@, A) = (F(L)), is well
defined and continuous for j = 1,...,m. In particular, dimF/ (1) = d; for
j=1,....m
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Proof Choose real numbers puo, ..., Ly satisfying uo < infZy, supZ; < u; <
infZj; forj = 1,...m— 1, and supZ, < p,. Take A € Ay, and note that the
family

' = (A(w1) + Ky (w1) — pily) 2

has exponential dichotomy for j = 0,...,m. Write 2 x K™ = FT(X, ;) &
F~(A, ;) for the corresponding hyperbolic splitting, and recall that F,, is the fiber
over w € §2 for any closed subbundle F. Fix j = 0,...,m. Two properties hold:
first, according to Theorem 1.91(ii.3), dim(F* (A, Ij))w is constant with respect to
(w,A) € £ x Ay (recall that £2 and A, are connected), and the map (w,A) +—
(F(A, Hj))w from £2 to the suitable Grassmannian manifold is continuous; and
second, according to the last assertion in Theorem 1.84,

(F ) = (F~ A ti-1))o N (FT (A 1)o

forj = 1,...,m. The continuity of the map of the statement follows easily from
these two facts, and in turn implies the last assertion about dimension.

The last theorem of this section will play a fundamental role in Sect. 3.1. It is an
easy consequence of the more general result given by Johnson in Proposition 3.9
of [65] (see also its proof). As before, the set C(£2, Myx,(K)) is endowed with the
topology given by the norm ||B||; = maxyeg |B(w)]].

Theorem 1.94 Let {A € C||A| < r} — C(82,Myx4(K)), A +— B be an analytic
map for an r > 0, and let the families of systems 7 = By (w-) Z have exponential
dichotomy over §2 whenever |A| < r. Let Q) = {Qx(w)} be the projector provided
by Definition 1.58. Then the map

AeC| A <1} = Myxa(K), A+ Or(w)

is analytic for each w € 2.

1.4.6 Perturbation Theory in the Linear Hamiltonian Case

The following theorem adds some information to that provided by Theorem 1.92 in
the Hamiltonian case. In this context, let Ok (w) and l,ﬂg (w) represent the projections
of the exponential dichotomy over §2 and the corresponding Lagrange planes if this
dichotomy property is present for the family 2’ = (H(w-t) + K(w-r)) z over £2, and
let M,? (w) be the Weyl matrices if they exist: see Definition 1.80.

In what follows, C(£2,sp(n,K)) is understood to be a subset of the space
topological space C(£2, My,x2,(K)), on which the topology is given by the norm
[Blle = maxgee [B(w)]l-
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Theorem 1.95 Suppose that the family of linear Hamiltonian systems 7’ =
H(w-t)z has exponential dichotomy over §2 for a matrix-valued function H €
C(£2,sp(n,K)). Let Bs C C(£2,My,x2,(K)) be the open neighborhood of 0,
provided by Theorem 1.92, and represent B;p = Bs N C(£2,sp(n,K)), so that
the family 77 = (H(w't) + K(w-1)) z is of Hamiltonian type and has exponential
dichotomy over S2 for all K € ng. Then,

(i) the maps I*: 2 x B;p - Lk, (0,K) — lf (w) are continuous.
(ii) Suppose further that l(')';n(a)) € Dk for all o € 2, so that the function
Mg; 282 — Su(K) exists. Then § > 0 can be chosen in such a way that l;(" (w) €

Dk for all K € B;¥ and o € $2. In addition, if I{ (0) = [Min( )], the maps
K w

2 x B;p — Su(K), (@,K) = M (o) andM*’:B;lo — C(£2,S,(K)), K —
M;(', are well defined and continuous. And the analogous statements hold for

lOZn :
Proof

(1) This assertion follows immediately from Theorem 1.92(iii).

(i) The first assertion in (ii) follows from the open character of Dk, the compact-
ness of £2, and property (i). In addition, (i) and Proposition 1.29(i) imply the
continuity of the map £2 x B;p - $;(K), (w,K) —~ M,}" (w). Tt is easy to
deduce from this joint continuity property that the map M* is well-defined
(i.e. that the Weyl function My is continuous) and that it is continuous on B;".

1.4.7 The Grassmannian Flows Under Exponential Dichotomy

Suppose that the family of linear Hamiltonian systems (1.31) has exponential
dichotomy over §2 and, as before, represent by I (w) the Lagrange planes of the
initial data of the solutions of the system corresponding to @ which are bounded
as t — oo (see Remark 1.69.1 and Proposition 1.76), so that the splitting
2 xK» = Lt @ L~ with L* = {(w,2)| z € [*(w)} satisfies Definition 1.75.
The following result is a consequence of the behavior of the solutions of (1.31)
outside L* described in Remark 1.77.2 and Proposition 1.56(i). It shows how the
topological behavior of the flow t on K inherits the complexity of the lower

dimensional flows tf; given by (1.6) on £2 xG(K*") fork = 1,..., n. In this section,
the notation t; will substitute r}fl. As usual, (z1, ..., z) represents the vector space
generated by zy, ..., %.

Proposition 1.96 Suppose that the family (1.31) has exponential dichotomy over
R, and write z = 71 (w) + 77 () for each (v, z) € 2 x K?", with 2+ (w) € I*(w).
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(i) Take wy € $2, k linearly independent vectors z,, . . ., Z; € K2 and a sequence
of real numbers (t,,) T oo. Suppose that there exist k linearly independent
vectors 1, . . ., 7x € K*" with

(#) = lim (U(tn. 0)z)) in Gi(K>)
forj=1,...,k Then,

(Z1,...,Z) = lim U(ty,wo)(Z1,...,2Z) in Qk(KZ”).
m—00

(ii) Take (wo,lo) € Kx with dim(ly N [T (wg)) = k € {0,...,n}, and write Iy =
(z1,....2,) withz; (o) = 0forj =1,... .k and z; (wo) # 0 forj = k +
1,...,n. Take also (t,) 1 oo, and suppose that

wy = lim wyt,,,

m—>0o00
(Z1,....Z) = lim U(ty. 00)(z1.....2z) in G(K™), (1.44)
m—>00
(Zitr.....Zp) = Hm Uty 00) (2t 20) 0 G (K2 .
Then,
(@ ) = lim Ut 00)-(2) (@0). ... 7 (@0)) € Ge(I* (@) .
(Zhy1s ... 2Zy) = mlgr;o U(tim, w0) {2y 1 (@0), . .., 2, (o)) € Gui (I (&d0))
Uzy,...,2,) = lim U(ty,,wo)(21,...,2,) € Lg.
m—>00

(iii) Take (wo,ly) € Kx with dim(lp NI~ (wo)) = k € {0,...,n}, and write ly =
(z1,....2,) with zj*(a)o) =0forj=1,...,kand zj+(a)0) £ 0forj=k+
1,...,n Take also (t,,) | —oo and suppose that conditions (1.44) hold. Then,

(Zy,....%4) = ml)n;o U(tm, w0)-(27 (o), - - ., 2 (w0)) € Ge(I” (@)
{Zit1, .o 2,) = Tim Ut 00)(zy 1 (@0), . ...z (w0)) € Guir (It (i)
(21, c. ,in) = ILII;O U(lm,a)())'(ll, c. ,Zn> e Lr.

Proof Property (i) follows from Proposition 1.26(i).

The first assertion in (ii) is trivial when & = 0. For k > 1, it follows
from the relations U(t,, wo)-(Z1,...,2Zx) = U(tm,a)o)'(zf(wo),...,z,'("(wo)) -
U(ty, wo)-IT (wo) = I[T(wot,) and from the continuity of [T:2 — Lp (see

Proposition 1.76). A similar argument proves the first assertion in (iii).



72 1 Nonautonomous Linear Hamiltonian Systems

Since dim(Z;41,...,Z,) = n — k, the second equality in (ii) is an immediate
consequence of the continuity of /7: 2 — Lx and the following property: given
Z € (Zg41,...,Z,) With ||z|] = 1, there exists a sequence (W,,) in (Zg41,...,Z,)
with Z = lim,—c0 U(t, wo) W,, (o). To prove this last assertion, note that there
exists a sequence (y,,) withy,, € U(t,, @0)(Zi+1, . - -, Z,) and lim,, 00 ¥, = Z (See
Proposition 1.26(i)), so that given ¢ > 0 there exists m; such that ||Z — y,| < &/2
for all m > my. Since Z = limy— 00 Ym/||Ym|, there is no loss of generality in
assuming that ||y,,|| = 1. Assume also that #,, > 0. Define the sequence (W,,)
by Wp = (U (tmy @0) Yu) /| U™ (tm, @0) Y|l sO that w,, € (z41,...,2,) with
lWu| = 1 and

U(tms wO) Wi
Y = (1.45)
”U(tma o) wm“

since ||y, || = 1. Two properties are now required:

(1) There exists ¢; > 0 such that [|[w* (wo)| < ¢ for all w € Iy with |w| = 1,
since K** — I*(wg), W+ W' (wp) is linear and continuous.
(2) There exist my > my and ¢; > 0 with ||U(t,,, wo) Wl ™' < ¢ for all m > my.

Suppose for the moment being that (2) is true. Since | w,,|| = 1, properties (2) and
(1), equality (1.45), and Definition 1.75, yield

U (. ) Wt (o) |
”U(tm’ o) wm“

H~ _ Ut @) w,,, (@0)
”U(tma wO) Wm“

‘ < i —yull +

IA

&
—_ _ﬂtm
> +ccne

for all m > m,, which is smaller than ¢ for large enough m. Hence the initial
assertion holds for the sequence given by W,, = ||U(t, @) Wy || ™" Wy.

There remains to check property (2). As a preliminary step, the existence of
c3 > Osuchthat ||w,, (wo)| > c3 is proved: assume for contradiction the existence of
a subsequence of (W,, (wp)) with limit 0 and note that then the limit of a suitable sub-
sequence of (w,,), withnorm 1, is 0 if k = O or, if kK > 1, it belongs to IT(wo) Ny =
(Z1,...,7;) and at the same time to (x4, .. ., Z,), which is impossible. Therefore,
U (1, @0) Winll = (Ut 00) Wi, (@0) || = U (1, w0) Wt (o)l = e3(1/m) ePim —
cine P with n and B satisfying Definition 1.75 and Proposition 1.56(i). This
implies (2) and completes the proof of the second property in (ii). A similar
argument works for second property in (iii).

The last assertions in (ii) and (iii) are consequences of two facts: the first
one is that (Zy,...,Z,) = limyu_oo Ultm, w0)(Z1,...,2,) in G,(K>"), which is
immediately deduced from the previous properties and from I (@) N I~ (&) = {0};
and the second one is that U(t,,, wy)-(21, . - . , Z,) belongs to the closed subspace Li:
see Sect. 1.3.3.
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The preceding result is the fundamental tool in the proof of the following statement,
which in turn is the key to the proof of Corollary 1.98. This result will be very useful
in Chap. 7, where conditions are established which ensure the global existence of
both Weyl functions for nonoscillatory Hamiltonian systems.

Proposition 1.97 Suppose that the family (1.11) has exponential dichotomy
over 2. Given (wo, ly) € Kk, letk € {0, ..., n} be the dimension of lo N IT (wo) and
let O(wy, ly) be the omega-limit set of (wy, ly) in the flow T on K. Then,

() U(t, wo)-(Ig NI (wo)) = U(t, wo)-lo N T (wo-t) and it has dimension k for all
teR
(ii) Forall (w,l) € O(wy, lp), dim (l nit (a))) =kanddm (NIl (w)) =n—k
In particular, if k = 0, then | = " (w) for all (w,1) € O(wy, ly).
(iii) The sets

O (wo, lp) = {(w. INTT ()| (w,]) € O(wo, lp)} C 2 x G (K,
O (w0, 1p) = {(@.1NT" (@) | (,]) € Owo. o)} C 2 x G, (K*"),

are respectively invariant for the flows t; and t,—; on 2 x Gu(K*") and 2 x
gn—k (KZn)-

(iv) The set OF (wo, ly) is the omega-limit set of (wy, ly N IT (wy)) for the flow T, on
Q2 x G (K™).

And the analogous results hold for the alpha-limit sets in the case that
dim (lp N I~ (wyp)) = k.

Proof (i) These properties follow trivially from the t-invariance of the closed
subbundle L, since U(t, wy) defines an automorphism on Lp for all t € R.

(ii) Take a basis {zi,...,2,} of lp with z; (wg) = 0 exactly forj € {1,....k}
(and for none of them if k¥ = 0) and take a sequence (z,) 1 oo with
1imy,,— o0 (@0 -ty U(tim, wo)+lg) = (w, I) for which there exist the limits

im U(ty, wo)-(21,.... %) in G(K™),

m—00

lim U(ty, wo)(Zgt1, ... ,2,) in gn_k(KZ”) .

m—>0o00
Then conditions (1.44) hold, and Proposition 1.96(ii) implies the first assertion in
(i1). The second one is obvious.
(iii)) & (iv) These last properties are trivial consequences of (ii), (i), and the

definition (1.6) of the flows t; and t,—.
The last assertion is proved using Proposition 1.96(iii).

Corollary 1.98 Suppose that the family (1.11) has exponential dichotomy over S2.
Let K C Kk be a t-minimal set. Then,

(i) there exists an integer k € {0,...,n} such that dim (l+(a)) N l) = k and
dim (I (w) N1) = n—k for every (w,l) € K. In particular, if §2 is minimal,
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k = 0 (resp. k = n) if and only if IC is the copy of the base given by the graph
of 712 — Lk (resp. IT: 2 — Lx).

(ii) The sets KT and K~ given by K* = {(w,IN [F ()| (w,]) € K} and K~ =
{(w,INI"(w))]| (w,]) € K} are minimal for the corresponding flows t, on
2 x Gu(K?) and t,_ on 2 x G, (K?").

Proof Since any minimal set is the alpha-limit and the omega-limit of each of its
points, these properties follow immediately from Proposition 1.97.

Fix wy € £2 and let O(wy) < £2 be its omega-limit set in the base flow.
Proposition 1.97(ii) ensures that, in the case that [ and [T (wp) are supplementary,
the omega-limit set O(wy, lp) for the flow 7 is the graph of the continuous map
O(wy) - Lk, o + [~ (w). Consequently, the dynamics on O(wy, ly) reproduces
that of O(wy). In particular, if £2 is o-minimal, O(wy, ly) is a copy of the base for the
flow 7 on Kk: see Definition 1.17. But, as the following example shows, in general
an omega-limit set can be “very large” and with highly complex dynamics, even in
the case of a minimal base.

Example 1.99 Bjerklov and Johnson [17] give examples of two-dimensional sys-
tems X' = A(w-f) X with A continuous on an almost periodic base §2 for which
£2 x G (R?) is minimal and chaotic in the sense of Li—Yorke. In fact their results are
obtained for the real projective flow, and obviously G (R?) can be identified with
the real projective line (and also with the set of Lagrange planes of R?). By taking
A large enough, the system

X = (A(wt) — ML) x (1.46)

has exponential dichotomy: all its orbits tend exponentially to zero as t — oco. And
the dynamics on £2 x G; (R?) is the same: this new system comes from the initial one
by taking X = ¢~*'X, so that the projective coordinate m = x,/x; does not change.

Note also that £2 x G, (Rz) is minimal and Li—Yorke chaotic for
y = (AT (w1) + ALy, (1.47)

since (w,m) — (w,—1/m) takes this projective flow to that for (1.46). Consider
now the family of four-dimensional Hamiltonian systems

7 = A(a)t) — /\Iz 0, z
N 0, —AT(w-t) + AL,

Clearly this system has exponential dichotomy over £2, with [T (w) = [ézz] and
I (w) = [(1)2] for all w € £2. Take wy € 2 and a Lagrange plane [y C R* with basis

{[%].[ ]} Note that once x; is fixed, it must be the case thatx]y, = 0, so that y,
is unique up to a constant multiple. In other words, there is a unique Lagrange plane
with this type of basis for each given direction x; € R2. Forall ¢ € R, U(t, wy)-lo has
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the basis {[¥{” ], [yzo(,) ]}, where x; () and y,(t) solve the systems (1.46) and (1.47)
corresponding to wy with initial data x; and y, respectively. Therefore, any element
(@.1) of O(wo, lp) has a basis of the form {[§].[?]}. Given such an element,
let m4+(w,l) and m_(w, ) represent the real projective lines corresponding to x
and y. Note also that the real line through the origin represented by my(w, /)
(resp. m—(w, [)) is in fact the intersection /N [T (w) (resp. [N~ (w)). In other words,
O (wo, ly) = {(w, m+(w,)] (w,]) € O(wy, ly)}, where OF (wy, ly) are defined in
Proposition 1.97(iii). One concludes that the maps

OF(wo, l) = 2 x GI(R?), (0,INTE () = (0, me(w, 1)

are flow isomorphisms. Hence, OF (wy, ly) are homeomorphic to 2 x G;(R?),
minimal for the flow 7y, and the dynamics on them is Li—Yorke chaotic. And, since
as explained above, m_(w, [) is uniquely determined by m (w, [), it is also the case
that O(wy, ly) is homeomorphic to £2 x G; (IR?). This fact indicates the complexity
of the dynamics on the omega-limit set. Note also that O(wy, ly) is far away from
being a copy of the base. In fact, for each @ € £ and each m; € G;(R?) there is
exactly one point (w, m, my) € O(wy, l)-



Chapter 2

The Rotation Number and the Lyapunov Index
for Real Nonautonomous Linear Hamiltonian
Systems

Let (£2,0) be a real continuous flow on a compact metric space. The goal of
this chapter is to introduce and analyze two objects, the rotation number and the
Lyapunov index, associated to almost every linear Hamiltonian system of the family

7 =HwhHz, wef. 2.1

The words “almost every” refer to an arbitrarily fixed o-ergodic measure on 2, and

the matrix-valued function H = [Z; _Fglr] € sp(n,R) is supposed to satisfy the

conditions described in Proposition 1.38. That is, the following hypotheses will be
in force throughout the chapter:

Hypotheses 2.1 The Borel measurable function H: 2 — sp(n, R) satisfies:

- SUPuegn ”Ha)”oo < 00, where H, (s) = H(w-s),
- the map 2 — R,  — [ H(w-)z(t)dt is continuous for every L'-function
z.R — R,

Recall that these conditions are fulfilled if H is a continuous function. Proposi-
tion 1.38 and Remark 1.40 ensure the continuity of the flows ¢ and tr induced
by (2.1) on 2 x C?" and 2 x R?", which are defined by (1.13); and of the flow
T on Kx = 2 x Lk, which is defined by (1.14) (both for K = C and K = R).
This fact, as well as several of the properties stated in the previous chapter, will be
fundamental in what follows. Recall that the family of n-dimensional Schrédinger
linear equations

X"+ Glo)x=0, wes, (2.2)
is included in the above setting by takingz = [} Jand H = [ & ].
The following paragraphs contain a general overview of the results of this chapter
and their relation with the various other topics taken up in the rest of the book.
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As explained in Sect. 1.3.3, due to the Hamiltonian character of the system (2.1),
an initial symplectic matrix determines a symplectic matrix solution. It is known
that the real symplectic group Sp(n, R) can be identified with a solid torus. In other
words, it is homeomorphic to the topological product of a simply connected space
and the unit circle S'. This important property was proved in [53] by Gel’fand and
Lidskif to characterize stability regions of linear periodic Hamiltonian systems. The
position of the projection of a symplectic matrix over S! determines an angle, called
by them the argument of the matrix.

This concept is the starting point for Yakubovich’s generalization of the Sturm
theory for two-dimensional systems to linear periodic linear Hamiltonian systems
of higher dimension

7 = Hy(f)z, (2.3)

which is based on geometrical methods, in contrast to the analytical methods
previously used by different authors. In [153, 154, 156], Yakubovich identified
the oscillatory character of the periodic linear Hamiltonian system (2.3) with the
property that the argument along the curve determined by a symplectic matrix
solution of the system has an unbounded increment.

Somewhat later, V. Arnold [8] introduced his argument function on the manifold
of Lagrange planes in R?" and used it to study the Maslov index. This argument
function can also be used to study oscillation problems for (2.3), as pointed out by
Arnold himself in [9].

The argument functions of Yakubovich and Arnold can be put to use in a nonau-
tonomous context, corresponding to the family of linear Hamiltonian systems (2.1).
More precisely, let m be a o-ergodic measure on §2. Johnson defines in [72] an m-
dependent rotation number for the family (2.1) in terms of the time-average of the
Arnold argument (see also Ruelle [130] for a related construction). This definition
shows that the rotation number measures the average oscillation of the solutions
of (2.1).

In the same paper, Johnson gives a definition of an analytic nature of the rotation
number, which is based on the idea of average rotation due to the action of the
Hamiltonian on the generalized unit disc. The analytic nature of this definition for
real values of the parameter suggests a natural way to extend it to the complex plane,
a question which will be central in Chap. 3.

Later, Novo et al. [112] defined the rotation number in a different way, based
on the Yakubovich argument functions, which requires the polar coordinates on the
symplectic group described by Barret [12] and Reid [123, 125] (see Sect. 1.3.4).
These coordinates turn out to be an appropriate tool to study the flow induced
by (2.1) in the Lagrangian bundles and to derive assertions concerning the ergodic
limit which defines the rotation number, which in particular admits an ergodic
representation in terms of these flows.

All these different ways to define the rotation number give rise to exactly the
same object, which in addition constitutes a generalization of the well-known
rotation number for two-dimensional systems: see Johnson and Moser [81].
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In the description of the dynamics of the two-dimensional case, the Lyapunov
exponent also plays a fundamental role: in fact the rotation number and the
Lyapunov exponent are the main tools used in extending the Floquet theory for
periodic systems to the nonautonomous setting. Also in the higher dimensional case
itis interesting to find a single quantity which, roughly speaking, can play the role of
the positive Lyapunov exponent in the analysis of the Lagrangian flow. This object
is the Lyapunov index, defined as the sum of the positive Lyapunov exponents of the
family (2.1) (always with respect to my). It is shown in [112] that the Lyapunov index
also admits an ergodic representation in terms of the polar symplectic coordinates.

The rotation number and the Lyapunov index provide useful information about
the behavior of (2.1). For example, it is a basic fact that, for certain one-parameter
families of nonautonomous linear Hamiltonian systems, the constancy of the
rotation number when the parameter varies in an open interval is equivalent to
the occurrence of exponential dichotomy for the corresponding family of systems.
These families are often referred to as Atkinson spectral problems, because their
basic theory was worked out in Chapter 9 of Atkinson [5]. The details will be
given in Chap. 3. The characteristics and differentiability properties of the rotation
number, related to certain properties of the Lyapunov index, are also fundamental
tools used to describe the limiting behavior on the real axis of the Weyl matrices
associated to an Atkinson spectral problem. These results, which constitute a
generalization of the classical Kotani theory, are written down and proved in
Chap. 4. The Weyl functions can be used to analyze disconjugate linear Hamiltonian
systems, as will be explained in Chap. 5.

The relation between the rotation number and the exponential dichotomy concept
has been used to good effect in control theory, in the context of the nonautonomous
linear regulator problem and the nonautonomous feedback control problem on the
semi-infinite interval [0, c0). These matter will be described in Chap. 6. And it
also turns out that the concepts of rotation number and exponential dichotomy
permit a direct generalization of the Yakubovich Frequency Theorem from periodic
control systems to general nonautonomous systems (2.1) with bounded measurable
coefficients, as will be shown in Chap. 7.

Throughout this chapter, m, will represent a fixed o-ergodic measure on 2. The
existence of such a measure is guaranteed by Theorem 1.9. The different approaches
to the concept of the rotation number with respect to my for the family (2.1) are
worked out in Sect. 2.1.

A strong property of continuous variation of the rotation number for my with
respect to the coefficient matrix H is the main result of the second section. Of course,
different choices of the ergodic measure my may give rise to different values for the
rotation number. In fact, in the case that the value is independent of the choice of
the measure (which is of course the case if the base flow is uniquely ergodic), and
the coefficient matrix H is continuous on the base, it will be shown that the rotation
number can be obtained by taking as starting point any single system of the family.
This result, which completes Sect. 2.2, is especially interesting in the case that the
family (2.1) derives from a single nonautonomous linear Hamiltonian system via
the Bebutov construction, as described in Sect. 1.3.2 (see also Remark 1.40): in



80 2 The Rotation Number and the Lyapunov Index in the Real Case

general, there is no way to guarantee that the set of definition of the rotation number
for my includes this initial system; but this is the case if the Bebutov hull is uniquely
ergodic. For instance, this is true if the starting point is a single linear Hamiltonian
initial system given by a Bohr almost periodic matrix.

In Sect. 2.3, the Schwarzmann homomorphism defined by the flow on £2 is used
to prove that the values of « are “quantized” in the set of coefficient matrices for
which the family (2.1) has exponential dichotomy over §2; and it is explained that,
as a by-product of this fact, Yakubovich’s discussion of stability zones for periodic
Hamiltonian systems [157] can be extended to the general nonautonomous case.
These first three sections reproduce basically the survey [45] of Fabbri et al. on the
rotation number, which is in turn based on the previous works [72] and [112].

Section 2.4, first, establishes a condition on the coefficient matrix, namely
H; > 0 (which is very common in the linear Hamiltonian systems appearing in
the applications and is fulfilled always in the Schrodinger case), which suffices to
ensure that the rotation number is nonnegative for all the ergodic measures on the
base; second, it contains the proofs of some monotonicity properties of the rotation
number; and third, it gives a new definition of the rotation number. These results
are based on facts previously proved by Yakubovich [153, 154], Lidskii [96], and
Gel’fand and Lidskii [53].

The fifth and last section concerns the definition and basic properties of
the Lyapunov index of (2.1) with respect to my. Among these are the ergodic
representation mentioned above, which is now extended to the measurable setting
considered here. A brief reminder of the most basic facts of Oseledet’s multiplicative
ergodic theorem is given, and some particularities arising in the Hamiltonian case,
which are fundamental for the proofs of the main results of Sect. 2.5, are carefully
explained. The proof of the upper semicontinuity of the Lyapunov index with respect
to the coefficient matrix of the nonautonomous Hamiltonian system completes the
section.

2.1 Several Ways to Define the Rotation Number

The rotation number for the family of linear Hamiltonian systems of general
dimension (2.1) admits different definitions, which extend those previously known
in the two-dimensional case. In this section these approaches are explained, their
equivalence is established, and an ergodic representation for the rotation number is
provided. It will be seen later that each of these definitions is convenient for different
purposes.
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2.1.1 In Terms of an Argument on the Real Symplectic Group

The evolution of the argument of a symplectic matrix solution of the linear
Hamiltonian system provides a definition for the rotation number.

The well-known definition of the rotation number for two-dimensional systems,
together with Yakubovich’s identification of the oscillation of a periodic linear
Hamiltonian with the unbounded increment of the argument of a symplectic matrix
solution, makes it natural to define a rotation number as the mean increment of the
argument. This is done in [112] for the higher dimension case, and is explained in
this section.

The definitions of an argument function on the group Sp(n, R) and of equivalence
of arguments appear in Yakubovich and Starzhinskii [159]. They are based on a
preceding definition, due to Gel’fand and Lidskii [53], which is now explained. Let
V be a given real symplectic matrix, and let uy, . .., i, be the eigenvalues of the first
type of the matrix V, repeated according to their multiplicities; i.e. those eigenvalues
with modulus less than 1 or those with modulus 1 for which any corresponding
eigenvector v satisfies iv¥/v > 0 (see [159], Chapter III, Sections 1.2 and 2.7). Let
arg stand for a fixed branch of the usual argument of a complex number. Define

Arg,:Sp(n,R) > R, Vi Z arg [i; . 24

Jj=1

It is known that uy,..., ®,:Sp(n,R) — C (when conveniently ordered) vary
continuously (see [159], Chapter III, Section 2.10). Therefore Arg, is a continuous
multivalued function of V. Clearly, if (Arg, V) is one of the values of Arg, V,
the other values are (Arg, V), = (Arg, V)o + 2mn, for m € Z, and each branch
is a continuous function. In addition, if V(¢) is a continuous curve on Sp(n, R),
and pi(?),..., ua(t) are the eigenvalues of the first type of V(f), defined by
continuity, then the argument increment A Arg,, V(t)|§ZZ = Arg, V(r)—Arg, V(1)
is independent of the choice of the branch: it is a continuous single-valued function.
Finally, if S! denotes the unit circle (understood in what follows as the interval
[0, 27r] with endpoints identified), and V:S' — Sp(n, R) is a continuous curve, then
there exists p € Z such that A Arg, V(t) = Arg, V(2r) — Arg, V(0) = 2p . This
integer p is the index of the curve V.

As pointed out in [154], this definition of argument is difficult to manage; and it
is not clear either that the associated concept of oscillation agrees with the usual
one for the two-dimensional case, defined in terms of the number of zeros of
the solutions, or that it agrees with the other still-to-be introduced definitions for
higher dimension. However, according to the results of [153], it is possible to define
several different arguments for a symplectic matrix, which are equivalent in a sense
explained below, and which can be used clarify these points.

Definition 2.2 An argument of symplectic matrices is a countable-valued function
Arg: Sp(n, R) — R such that: if (Arg V), is any value of Arg V, then the other ones
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are

(Arg V), = (ArgV)o +2mm, meZ;
each of the different branches is a continuous function; and there exists a continuous
curve V:S! — Sp(n, R) of index 1 with A Arg V(1) = 27.

Note that any of the branches (ArgV),, can be chosen to define the argument
increment, due to the indicated relation between them.

Definition 2.3 Two argument functions Arg’ and Arg” are equivalent if there exists
a uniform constant ¢ > 0 such that, for any interval [f;,#,] C R and for any
continuous curve V: [t1, t,] — Sp(n, R), the inequality

|AArg V(D) — AAg" V()2 | < ¢

is satisfied. Here a continuous branch of each argument is taken along the curve.

The existence of several different argument functions which are equivalent to
Arg,, as well as the existence of non-equivalent arguments, is proved in [153].
Among these arguments, those listed below, which are equivalent to Arg,, will play
a role in proving different properties of the rotation number. Here, V = [ % gi] is
a real symplectic matrix, and from now on arg stands for the fixed branch of the
argument satisfying arg(1) = 0.

- The functions

Arg, V = argdet(V, —iV,),
Arg, V = argdet(V3 —iVy),
Arg, V = argdet(V, 4 iV3),
Arg, V = argdet(Vy 4 iVy) .

- The functions
Arg) sV = Arg,(TVS),

forT, S € Sp(n,R)andj =1,...,4.

In the rest of this section, and unless otherwise indicated, Arg will represent any
argument equivalent to Arg,, for example one of those listed above. Given a real

symplectic matrix solution of (2.1), V(t,w) = [“2823 “282; ], define

1
a = lim - ArgV(t,0), (2.5)
t—00

where a continuous branch of the argument is taken along the curve.



2.1 Several Ways to Define the Rotation Number 83

Recall that myg represents a fixed o-ergodic measure on 2. It turns out that « is
well defined and depends only on the measure my. This is proved in the following
theorem, one of the main results of [112], which in addition provides an ergodic
representation for « in terms of the function Tr Q, defined by (1.19) and closely
related to the function Q given by (1.17). As seen in Theorem 1.41, the function
Q determines the flow on K in generalized polar coordinates. Recall that the set
of (normalized) r-invariant measures on g projecting onto my is nonempty: see
Proposition 1.15().

Theorem 2.4 The existence and the value of the limit (2.5) are independent of the
choices of Arg and of V(t,w). In addition, there is a o-invariant subset 29 C 2
with mo(§20) = 1 such that the limit exists for every w € §2y and takes the same
constant value

o :/ TrQ(w,l)du (2.6)
Kr

for every normalized t-invariant measure | on K projecting onto moy, where the

Sunction Tr Q: Kr — R is defined by (1.19).

Proof The equivalence of two given argument functions Arg’ and Arg” implies
| Arg' V(t,w) — Arg" V(t,w) | < c + | Arg' V(0,w) — Arg" V(0,0) | ,

which ensures the independence of o with respect to the particular choice of Arg.
On the other hand, according to Yakubovich’s results [153], choosing a different
symplectic matrix solution of (2.1) (which agrees with V (¢, w) C for a constant real
symplectic matrix C) induces the substitution of Arg with an equivalent argument,
and hence it affects neither the existence nor the value (Qfoa.

Choose now Arg = Arg; and write [V‘ (0"‘))] = [¢1 K ], with @0 + i®) unitary

V2(0,0) o9 RO
and detR® > 0. Theorem 1.41 ensures that [“22;3] = [i%i;ﬁiii;], where

0
[g%g;] and R(t, w) are the solutions of (1.15) and (1.16) with initial values [z{)]
B 2

and R°, and det(® (t, w) — i®,(t, w)) has modulus 1. Clearly, detR(¢, w) > 0 for
every ¢t € R. These facts and the definition of Arg; imply
Arg, V(t,w) = argdet(P(t, w) — iD2(t, w)) = —ilndet(P (¢, w) — iD2(t, ®)) .

In addition,

(P1(1, 0) — iP(1,0)) =i (D1 (1, ©) = iP2(t, ) Q1. P11, w), Pa(t, ),
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and hence, by the Liouville formula and the definition of Tr Q,

t
Arg, V(t,w) — Arg, V(0,w) = / tr Q(w-s, D1 (s, w), (s, w)) ds
0

, 2.7)
= / Tr Q(t(s,w, 1)) ds
0
forl = [zg ] Consequently,
.1 1t
lim — Arg, V(t,w) = lim — | TrQO(z(s,w,!))ds. (2.8)
t—o0 t—o0 f 0

Note that the hypotheses on H ensure that the scalar function Tr Q belongs to
L' (K, ) for all the t-invariant normalized measures 1 on Kg, as is easily deduced
from Remark 1.39. Fix a r-invariant measure p projecting onto myg. Birkhoff’s
ergodic theorem (see Theorem 1.3) provides a function g, € L'(Kg, ) defined
on a t-invariant set K, with u(KC,) = 1, with g, (v(t,w,])) = gu(w,!) for all
(w,1) € K, and t € R, with f/C]R TrQ(w,)dp = '[’CR gu(w, 1) du, and such that the
previous limit exists and agrees with g, (w, [); and the already known independence
of the limit with respect to / ensures that g, only depends on the element @ of the
base space: that is, K, = £2,, x Lg, with my(£2,) = 1, and there exists a function
q,,: 2 — Rwith gy (0,]) = q;(») forall w € £, and | € Lg. Summing up, one
has

1 1 [
3 lim - Arg, V(t,w) = lim —/ TrQ(z(s,w, 1)) ds
t—o0o t—o0o 0 (29)

= qu(@,]) = q(»)

for mp-a.e. @ € 2 and every [ € L. In addition, g, (w) = g} (w-?) forall w € £,
and ¢ € R, so that according to Theorem 1.6, the ergodicity of my guarantees that
q; (w) takes on a constant value «,, for mp-a.e. @ € £2: that is,

oy = /Qq;(a))dmo :/’C TrQ(w, ) dp = g, (), (2.10)

where the last equality holds for my-a.e. @ € §2. Now take any other t-invariant
measure ©* projecting onto myg, and repeat the previous reasoning. It follows
from (2.9) that ¢ (0) = q:* (w) for mp-a.e. @ € £2, and hence (2.10) yields
a, = ayux. In other words, the quantity o, is independent of the choice of the
measure. Therefore, (2.10), (2.9), and the already known independence of ¢, with
respect to the choices of Arg; and V, are sufficient to prove the theorem.

Definition 2.5 The rotation number of the family of linear Hamiltonian sys-
tems (2.1) with respect to my is the (mp-a.e. constant) value of the limit (2.5).
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Remark 2.6 The result is identical, and the quantity « is the same, by defining
.1
a= lim -ArgV(t,w).
t——00

This fact allows one to derive similar relations for the several expressions of «
obtained in the rest of the chapter.

Remark 2.7 Note that the definition (2.5) and the representation (2.6) extend
the definition and the representation of the rotation number for two-dimensional
systems, introduced for the almost periodic Schrodinger case —x” + g(w-)x = 0
by Johnson and Moser in [73] and extended to the general case

r _ | m(wt)  hi(w)
° = [hz(art) —hl(a)-t):| zZ, we 2.11)

by Giachetti and Johnson in [55]: the introduction of the real projective coordinate
@ = arg(z; — izo) leads to the equation ¢’ = f(w-t, ¢), with

f(w, ) = —hy(w) cos® ¢ + h3(w) sin® @ + 2k (w) sin @ cos ¢
- . 0 —1|[h(wt) hs(wit)||cosg |,
= [cosg sing] [ | o} |:h2(a)~t) (@) || sing |
and for all the solutions ¢(t, @) of this equation (my-a.e.),

1
a = lim - ¢(t,w) :/
t—>o00 t Q

where p is any invariant measure for the corresponding projective flow which
projects onto m. Note that any nonzero solution [} ] of (2.11) is the first column
of a symplectic matrix solution V(s,w) = [ 1] (it is enough to take w1(0) =
22(0)/(z3(0) + z3(0)) and w2(0) = —z(0)/(z3(0) + z3(0))), and that ¢(f,w) =

Arg, (t, w).

flo,p)dp,
xP1(R)

Remark 2.8 Consider the Hamiltonian system z’ = Hjz given by a real constant
matrix Hy. The eigenvalues of /o' are ju(r) = e for the eigenvalues B + ia
of Hy. It is easy to check that for # > 0, the fact that an eigenvalue is of the first
type is independent of the value of 7. This is in particular what happens if § <
0, in which case also ji(f) = e~ is an eigenvalue of the first type. Now use
Arg, to define the rotation number of the system. Clearly, if § < 0, the sum of
the arguments of the eigenvalues ((f) and fi(f) does not contribute to the value of
the limit defining «: only the eigenvalues of the first type lying on the unit circle
must be taken into account. Consequently, the choice of this argument to obtain o
shows that the rotation number for the linear Hamiltonian system z' = Hj z agrees
with the sum of the imaginary parts «, . . . , & of those eigenvalues of Hy which are
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purely imaginary (if they exist) and which give rise to eigenvalues of the first type
of e, (In fact Arg, " and (a; + - -+ + a,) t agree modulo 27.) This is what one
could reasonably expect (see Arnold and San Martin [7]). An analogous statement
can be formulated in the periodic case, using now the characteristic exponents of the
system.

2.1.2 Two Analytic Definitions

The idea of average rotation due to the action of the Hamiltonian on the generalized
unit disc gives rise to a new definition for the rotation number. This definition,
which was formulated and analyzed previous to the one described in the previous
section, is given in [72]. In this paper, the Floquet coefficient for a one-parameter
family of nonautonomous linear Hamiltonian systems is introduced and its relation
with the Weyl matrices and with certain spectral problems is described. As already
mentioned, this definition of the rotation number for real values of the parameter
suggests a natural way to extend it to the complex plane, and this question will of
fundamental significance in Chap. 3.

The framework of the problem considered in [72] is more general, including the
linear Hamiltonian families (2.1) as a particular case: a rotation number is defined
for nonautonomous linear systems whose coefficient matrices lie in the Lie algebra
w(p.q) = {H € Miprgxipra(C) | H*Jo + JoH = 0,4,}, where Jy = [‘O’ﬂ ,‘1]
with p > 1 and ¢ > 1. The use of the Iwasawa decompositions of this Lie algebra
and the corresponding Lie group U(p, ) = {V € M(p+g)x(p+¢)(C) | V*IoV = Jo}
allows one to prove that the rotation number is well defined, to work out some of its
properties, and to explain its geometrical significance.

Returning to the linear Hamiltonian setting, the symplectic Lie algebra sp(n, R)
can be mapped diffeomorphically onto u(n,n) N sp(n, C) C u(n,n) via the map
H+> H = K"'HK, where K = [i’;’n ’2’ ]: a direct computation proves that

ﬁ_l[Hl—HlT—i(Hz—HQ H1+H1T—i(H2+H3)] (2.12)
2| Hi+H +i(Hy+Hy) Hy—HI +i(H,—H;) |’ .

and hence that (Jﬁ)T = Jﬁ, so that H € sp(n, C), and also that (Joﬁ)* = —Joﬁ,
so that H € u(n, n); and a similar computation proves that the inverse map H
H = KHK™" takes any element of u(n, n) N sp(n, C) to a real symplectic matrix.
Therefore, it is possible to define a rotation number for the family (2.1) as the value
of the one corresponding to the transform of the coefficient matrix in the new Lie
algebra. This is the path followed in [72], which will be summarized below. But it is
also possible and simpler to redefine the rotation number directly for the symplectic
case using exactly the same construction, as is in fact done in what follows.

The following technical lemma summarizes some properties which will be used
often from now on. The Euclidean norms ||z|| = (z*z)'/? in any vector space C"
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and ||M|| = max=; |Mz| in any space Myx,,(C) will be fixed until the end of

Sect. 2.1.

Lemma 2.9 LetV = [\‘2 “2 ] belong to Sp(n, C) and satisfy the following property:
there is an open domain O C S,,(C) such that det(V,+V3M) # 0 whenever M € O.
Then the map

V:0 > Sy(C), M V-M=(Vs+ VaM)(Vy + V3M)~! (2.13)

is well defined, and is differentiable. In addition, the Fréchet derivative of Vis given
for all My € O by

du, V-M = (VT + MoV ™' M(V) + VaMy) ™!, (2.14)

and hence
detdy,V = (det(V; + VsMy)) ™" (2.15)
Proof According to the results of Sect. 1.2, V[ %] = [}!11)1] represents a

complex Lagrange plane, so that (V; + VM) (Vo + VaM) = (Vo + VaM)T (V) +
ViM). This implies that VM = (Vo + VuM)(Vy + V3M) ™! is also symmetric and
hence that \7 is well defined. Clearly, it is continuous and differentiable.

Recall that the Fréchet derivative at M is defined as the continuous linear
operator dy, V: Sc(n) — Sc(n) such that

lim — |[V-(Mo + M) — V-My — dy, V-M|| = 0. (2.16)
Iml—o | M|

Since (V] + V3M0)_1(V1 4+ VaMo + M)) =1, + (V) + V3M0)_1V3M (which is a
well-defined nonsingular matrix when My € O and |M|| is small enough), one has

V'(MO + M)

— ((vz + VaMo + M)) (I, + (Vi + V3M0)_1V3M)_1) (Vi + VaMo) ™.

Recall also that (I, + A)~! = Y72 (—1)*A* whenever ||A| < 1. Condition (2.16)
is then satisfied by

Ay V-M = (Va — (Vo + VaMo) (Vi + VsMo) ™' V3) M(V; + V3Mo)™!
= (VI + MVD) "MV, 4 VaMy) .

The last equality follows from the symplectic character of V: Proposition 1.23
ensures that (V] Vs — VIV3) + Mo(ViVs — VIV3) = I, + My0, = I, and
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(VI + MoVD)TY (VT + MyVD) = (Vo + VaMy) (Vi + VsMp)~!. Equality (2.14)
is hence proved, and (2.15) is an immediate consequence.

Recall that S;F(C) represents the open subset of the complex symmetric n x n
matrices M such that ImM > 0. The following lemma describes the action of the
Lie group Sp(n, R) on S (C).

Lemma 2.10 Let V = [V‘ Vs ] belong to Sp(n, R). The map
V:SHC) — ST(C), M VM = (Vo + ViM)(V) 4 VaM) ™! (2.17)

is a diffeomorphism.

Proof Define N = (V] + M*V1)(V; + V3M). The first step of the proof is to show
that In N < 0. In fact, an easy computation yields

ImN = VIViImM —ImM V)V, —ImM V] V;Re M + Re M V] V3Im M
=—ImM + (V[ + ReM VI)V,ImM —ImM V, (V; + V3Re M),

since VZT Vi = VlT V4 — I, and V4TV3 = V:,,T V4 (see Proposition 1.23). In addition, if
R is a real matrix, then x” (R — RT)x = 0 for all x € R". Therefore, x” InNx =
—x’ImM x < 0 for all nonzero x € R”, and hence ImN < 0, as asserted.

According to Proposition 1.21, N is a nonsingular matrix. Then, in particular,
there exists (V1 +V3M)~!. Lemma 2.9 ensures that V-M = (Vo ViM)(Vi+V3M) ™!
is also symmetric. In turn, this ensures that

Im(V-M) % (V-M — (V-M)*)

(Vi + V3M)‘1)*% (N* = N)(V; + VsM) ™!

= —((Vi + VsM) " H)*ImN(V; + VsM)™' >0

All these properties imply that Vis a well- -defined map. It is easy to check that, if
Uis another real symplectic matrix, then UV="UoV.In particular there exists
V! = V!, and this fact together with Lemma 2.9 completes the proof.

Recall that U(#, w) represents the (real symplectic) fundamental matrix solution
of (2.1) with U(0, w) = b,. Let U(t, ®):S; (C) — S;(C) be the corresponding
map defined by (2.17). Fort € R, w € £2, and M, € S,j’ (©), let dy, a(t, ) be the
Fréchet derivative at the point M, of ﬁ(t, w); i.e. the linear map on S¢(n) defined by
the corresponding expression (2.16). The rotation number of the family (2.1) with
respect to my can be defined as

11
= — lim 7 argdethOU(t ), (2.18)
n

—0o0
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where a continuous branch of the argument is taken. Theorem 2.11 guarantees the
coincidence of the limits (2.18) and (2.5) for all My € S} (C). Consequently, it
follows from Theorem 2.4 that this last limit exists mg-a.e. in £2 and that its value is
independent of the choice of M, € S} (C).

Theorem 2.11 For all My €S, (C), the limits (2.18) and (2.5) agree.

Proof According to Lemma 2.9,
detdy, U(t, w) = (det(U, (1, ) + Us(t, 0)Mp)) ™",

and hence
1 ~
~ 5 argdetdy, U(t, w) = argdet(U, (t, w) + Us(t, 0)Mp) . (2.19)
n

Let Im'?M, be the unique positive definite square root of ImM,, and
Im™"/ M, its inverse (see Proposition 1.19). Note that, since the matrix
_ Im~/2M, 0 . . C 1 .

Cyy = [Re MoIm=1/2M, Tm! /ZM():I is symplectic, Yakubovich’s results summarized
in Sect. 2.1.1 ensure the equivalence of Arg; and the new argument function

defined by

ArgIzH,CMO V = Arg;(VCy,) -

The fact that det Im'/2M, > 0 implies that

Arg,‘szMo U(t, )

= argdet((U; (t, ®) + Us(t, @) Re Mo) Im™"> My + i Us(t, w) Im'/>My)
= argdet(U, (t, ) + Us(t,w)Mo) ,

which together with (2.19) ensures that the limits (2.18) and (2.5) agree.

Remark 2.12 Take My € S} (C). If follows from Lemma 2.10 that the solution
M(t,w, M) of the Riccati equation (1.22) associated to (2.1) with initial datum
M(0,w,My) = M, is defined for all € R: it agrees with the map f](t, w)-M
defined by (2.17). In addition, considered as a function of ¢, the map dy, f/(t, w)-M
is the solution with initial datum dyy, U(0,w)-M = M of the matrix differential
equation

(M) = f(w-t, M(t, 0, Mo))-8M (2.20)

given by the variational equation associated to the solution M(t,w,My) of the
Riccati equation (1.22) for the Hamiltonian system (2.1). The expression of f(M)-D
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is then given by
f(w,M)-D = —D (H (0) + Hy(0) M) — (H] () + M Hy(w)) D

On the other hand, since argdetV = ImIndet V, definition (2.18), Theorem 2.11,
equation (2.20) and the Liouville formula lead to

t

11
oa=—1lim ——Im | trf(w-s,M(s,w,Myp))ds
t—oo 2n t 0

2.21)

t

1
= tlim " Im | tr(Hi(w-s) + H3(w-s) M(s, w, My)) ds
— 00 0

my-a.e. The last equality is due to the fact that the trace of the linear operator D +—
—DA —ATDis —2ntrA.

Remark 2.13 The last expression in (2.21), which can be taken as a new way to
define the rotation number, indicates that the analytic definition given in this section
also generalizes one of those previously known for the two-dimensional case. That
is, taking the complex projective coordinate m = z/z; associates to (2.11) the
Riccati equation

m' = hy(w-t) — 2k (w-1) m — hy(w-t) m*

whose variational equation associated to a solution m(z, w,mg) with Immy > 0
which is globally defined is (§m)’ = (—2hy(w-t) — 2h3(w-t) m(t, w, mo)) §m. Then,

1 t
a = lim - Im/ (hy(w+s) + h3(w-s) m(s, w,mgp)) ds .
t—>o00 t 0

As stated before, the fact that the rotation number is well defined is proved in [72]
in a more general framework using a rather different approach, which indicates
the geometrical significance of «. It is possible to apply this argument directly to
the symplectic case, as explained in what follows, and this will provide the third
definition for the rotation number.

The Lie group Sp(n, R) is embedded into U(n,n) N Sp(n,C) C U(n,n) via
the map V > V = K'VK, where K = [ ""]: the fact that K~' VK belongs
to U(n,n) N Sp(n, C) follows easily from the equalities K'JK = KJIKT = 2il,
KJ)K* = —2iJ and K*JK = 2iJy. Clearly, ﬁ(t, w) = K'U(t,w)K is the
fundamental matrix solution with value /I, at t = 0 of the system

7 =H(wi)z, (2.22)
which is obtained from (2.1) by means of the linear change of variables Z = K~ 'z

and given by the corresponding matrix H (w) = K'H(w)K defined by (2.12),
which, as seen before, belongs to the Lie algebra u(n, n) N sp(n, C).
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Now let D¢ represent the open set of the complex symmetric # X n matrices M
with I, — M*M > 0.

Remark 2.14 Obviously, D¢ agrees with the unit open disk when n = 1. In fact

{M e S,(O)| ||M | < 1} for the (Euclidean) norm chosen, as is easily
deduced from the fact that ||M |? agrees with the spectral radius p(M *M) of M*M,
i.e. with the maximum of the eigenvalues of the matrix M M (which are all positive).
This ensures the existence of (I, + M)~! and (I, — M)~" whenever M € D¢. In
addition, the set D¢ is convex;i.e. AM; + (1 — A)M, € D¢ whenever My, M, € D¢
and A € [0, 1]. Consequently, it is a connected and simply connected domain.

The Lie group U(n, n) acts on D, as the following lemma describes.

Lemma 2.15 LetV = [V‘ vs ] belong to U(n, n). The map

ViDe = Do, M VA = (Vo + Vabl)(V,y + Vi)~ (2.23)

is a diffeomorphism. Moreover, this action can be extended to the closure of D¢ in

S, (C), and the map v preserves the boundary of Dc.
Proof Since Ve U(n, n),

ViVi—ViVo=1,, ViV3—=V;Va=—I, and —VV3+VV,=0,.
It follows easily from these equalities that
(Vi + VsM)*(Vy + VsM) — (Vs + Vab)*(Vo + VuM) = I, - M*M > 0 (2.24)

it M belongs to the closure of D¢. Consequently, (V) + V’;M) is nonsingular:

V[%] = [V‘+V3M] has rank n, so that, if (V; + V’;M) z = 0 for a vector z # 0, then
Va+VaM

(Va+V4M) z # 0 and hence one has 0 = ||(V; + VsM) z|> > ||(Va+ VaM) z|* > 0,

which is impossible. In addition, if V-M is given by (2.23), then (2.24) yields the
equality

I, — (V-M)*(V-M) = (Vy + VsM)™)*(L, — M*M)(Vy, + VsM)™",

which proves that vV maps D¢ into itself and its boundary into its boundary. The
existence of the inverse map is proved as in Lemma 2.10, and the differentiability

of ? and its inverse map on D is clear.
Consider now the map (2.23) given by U U, ), which belongs to U(n,n). The

previous lemma ensures that det(U, (t,w) + Us(t,)My) # 0 whenever M, €
closuresg, c)Dc, so that the same property holds on a neighborhood of M, in which

the matrix ﬁ(t, a))M given by (2.23) is therefore well defined. The rotation number
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is defined in [72] as

11 =
o = — lim — — argdetdy; U(t, 0) (2.25)

t—>o00 2n t

for Mo € closures,c)Dc and w € £2, where as before dﬁo represents the Fréchet
derivative at M, given by (2.16). The geometrical idea of this definition is that the
rotation number must measure the average rotation due to the action of ﬁ(t, ) on
the set D¢ and its boundary. (Note that an analogous extension to the closure is not
possible for the action of Sp(n, R) on S (C) defined by (2.17).)

In order to prove that the limit (2.25) is independent of the choice of the element
Mo € closures,c)Dc and that it agrees with the previously given ones (2.5)
and (2.18) (and hence it takes the same value my-a.e.), some facts concerning the
Iwasawa decomposition of the real symplectic group are needed.

Lemma 2.16 Any matrix V € Sp(n,R) can be written in a unique way as the
product GS, where both G and S are real symplectic matrices and

P, —d . .
Geg= % [qjl & 2} € Mauxan(R) | (@) + i®2)*(®) + iD>) =1, ,
P

A is lower triangular with

A O i| € Moo (R) | positive diagonal,

Ses= [B (an)!

ATB is symmetric

In addition, S and G depend smoothly on V.

Proof Since [} ] is a Lagrange plane, it follows that Vi Vy + VIVs > 0. It is
easy to check that there exists a unique real lower triangular matrix A with positive
diagonal such that A”A = (VIV, + VI V3)~!. This matrix A is nonsingular. Define
also @; = V4AT and &, = —V3AT, so that @, + i®; is a unitary matrix. It is also
easy to check that —®] Vs + @IV, = AA"TA)™' = Ay, @]V; + &'V, =0,
and that @] V| + @]V, = A(V]V, — VIV,) = A. Finally, if B = —®] V| + ®]Vy,
then one obtains

& -0, ' [Vvi vs] [ oF oI7[vi vs]1_[4 o,
b, & Vo, Vy a —@ZT ¢1T Vo, Vy “|B (AT)_l ’
Note that the last matrix is symplectic, so that ATB is symmetric (see Proposi-

tion 1.23). The smoothness of the decomposition is an easy consequence of the
uniqueness.
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The decomposition of the symplectic fundamental matrix solution of (2.1),
U(t,w) = G(t,w) S(t, w)

_ |:¢)l(tva)) —@Z(t,w)} [A(t,w) 0, } (2.26)
= Dy(t,w) Di(t, w) B(t, w) (AT)_I(Z‘,Q))

is continuous in ¢, and hence the corresponding decomposition for U(¢, w),

U(t,w) = G(t, 0) S(t, w), (2.27)
with
~ _ D (t,w) — iDy(t, w) 0
G(t,w) = K'G(t,w)K = :
t.w) t.w) [ 0 B, (1, 0) + i (1, 0)
S(t.w) = K~'S(t, 0)K ,
is also continuous in z. (As before, K = [i’” ’1”] ) The following technical lemma

shows that g(t, ) does not contribute to the limit (2.25).

Lemma 2.17 With the notation established above,
lim © argdetd~ S(t. w) = 0 228
t_l)Iglo; argdetdy; S(t, ) = (2.28)

for every Mo closures, c)Dc and w € £2.

Proof The first step of the proof consists in checking that the functions

K:Dc - SH(C), M i(l,— M), +M)™",

S:SH(C) —> SH(C) . M+ BA™ + (AT)"'MA™!

K :SH(C) - D¢, M > (il, — M)(il, + M)™!
are well-defined diffeomorphisms. This property is proved using Lemma 2.10 for
S, since S € Sp(n, R). As explained in Remark 2.14, (I, — M) ! exists for M €

De. Clearly (I, + M)(I - M) =1,—Misa symmetric matrix, and hence so is
a1, — M)(I + M) ! In addition,

Im(R-AF) = % (R — R-AD)")

B (4 100y = D) + (1 — )+ FD) U+ )

= (I, + M*) "I, — M*M)(I, + M)~ > 0
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These two properties show that the map K is well defined. Moreover, if M € SH(©),
then Im(il,, + M) > 0, so that (il, + M)~! exists (see Proposition 1.21). And it is
not hard to check that

I — (K~"M)*(K~"M) = 4 (il, + M)")* ImM(il, + M)"" > 0

Lemma 2.9 asserts that K and K—! are differentiable. In addition, K~! oK is the
identity function on D¢, which completes the first step.
Lemma 2.9 also implies that

det dﬁi{\ = 2" det™2n U, + 1\71) for every MeDc,
detdyS = det >"A  for every M € S: (©),

detdyK ' = 2_"2i”2det_2”(il + M) foreveryM € S;(C).

Note that, in the cases of K and K~', the equalities follow from the symplectic
character of the matrices (2i)~/2K and (2i)'/?K~", which define the same maps as
Kand K™!

Fix now w € §2. The equality S(t w) = K~ 1S(t, )K ensures that S(t w) =
K'o S(t w) o K. Consequently, for all M e Dc,

detdsx S(t w) = detdy

>—1 ~’\
St (KM)K detdzr S(t, ) detdyK

= (det (it, + (.- (&A1) ) det Adet(r, + ) 229

It is possible to choose a continuous branch arg, of the complex argument such
that | arg, det(l, + M)| < (n+ 1) 7 for all M € De. To check this assertion, note
that all the eigenvalues of any M € D¢ lie i in the unit disk, since M*M < I,, and
consequently all the eigenvalues of (I, + M) lie in the right complex half-plane
{ze C| Rez >0} ={z € C| —n/2 < argz < /2}. Fix My € D¢ and choose
arg, in order that arg; det(/, + Mo) € (0, 7). Given any other M 1_€ D, choose a
continuous map C: [0, 1] — D¢ such that C(0) = M, and c(l) = M,. At this point,
it is possible to choose continuous functions py, ..., p,: R — C such that the set of
eigenvalues of I, + C(f) coincides with the unordered n-tuple {p;(?), ..., p,(?)},
which may have repeated elements (see e.g. Theorem I1.5.2 of Kato [89]). Then
| arg (p;(1)) — arg; (p;(0))| < 7 (since the graph of p; does not cross the imaginary
axis), and hence | arg, det({, + M) — arg, det(I, + Mo)| < nm, from which the
assertion follows.

Note also that, for any N € S (C), all the eigenvalues of il, + N have positive
definite imaginary part. Repeating the previous argument twice, one proves the
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existence of a continuous branch arg, of the complex argument such that
}arg2 det (iln + §(t, w)-(I? 117))‘
< ‘arg2 det (iI,, + g(t, w)'(f{\'ﬂ)) — arg, det (iln + k\ﬂ))
+ ‘arg2 det (iI,, + I/{\M) — arg, det (iln + I/{\ZVIO))
+ ‘alrg2 det (iln + I/(\-ZVIO)‘ <@2n+1)rm

forall M € D¢ and ¢ > 0. It follows from (2.29) and from the real character of the
matrix A that

arg det dﬁ?(t, w)
= (—2n) (arg2 det (iln + (1, w)-(f(\-l\z)) + arg, det(f, + 1\7))

is a continuous branch of the argument and it is bounded in modulus by 2n (3n +
2) mr. Consequently, given any ¢ > 0 there exists 7, > 0 such that

1 S ~
" argdetdy;S(t, ) ‘ <& whenevert>t.,and M € D¢ . (2.30)

This proves (2.28) in the case that M € De¢. In fact the argument can be simplified for
a fixed M € Dc. But the advantage now is that (2.30) can immediately be extended
to any M € closuresg,c)Dc, since, as can be deduced from (2.15), the determinant

of dﬁg(t, ) is continuous with respect to M.

Theorem 2.18 For every MO € closures, c)Dc, the limit (2.25) agrees with the
limit (2.5).

Proof The map induced on D¢ by 5(1‘, ), namely

E(t, 0)M = (D,(t, 0) + iP>(t, 0)) M (P, (1, w) — iD>(t, )",

is linear, and hence it agrees with its Fréchet derivative at any point. From this fact,
relation (2.27), and the definition of the group g, it follows that

detdy;, ﬁ(t, ) = det G(t, ) det dﬁ()g(t, )

— det™ (&4 (1, ) — i (1, ) det dgy, (1, ) .
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This and Lemma 2.17 ensure that the limit (2.25) is equal to
1 .
a = lim — argdet(®, (1, w) — iDy(t, w)) (2.31)
t—o00

and hence it is independent of the choice of Mo € closureg,c)Dc. But the
expression (2.31) can be also obtained by choosing the argument Arg, in the first

definition (2.5) and keeping in mind the equality [gjﬁg;] = [_:E:Zix;;:‘l ((:z;]

(see (2.26)), since detA(t,w) > 0. This proves that (2.25) is well defined and
coincides with the rotation number (2.5), and hence completes the proof.

Remark 2.19 Relation (2.31) shows that the limit (2.18) measures the index of
rotation of the composition of the two maps

Rx2—->UmnC), (o)t (@ —id)(t,w)

and U(n,C) — S', @  det®, where U(n, C) is the group of the unitary n x n
matrices. This displays once more the geometrical significance of o. Compare (2.31)
with the expression of the limit o in terms of the generalized polar coordinates
appearing in the proof of Theorem 2.4.

Remark 2.20 Using the arguments applied in Remark 2.12, one can prove that

11 r ~ ~
a=—Ilim ——Im | trf(w-s, M(s,w,My))ds
1—oo 2n t 0
1 t
= lim — Im / tr(—i(Hz(a)) — Hy(w)) (2.32)
t—o0 2t 0

+ (H (o) + H (0) — i(H(0) + Hs(0))) M(s, . Mo)) ds

for every M o € closureg, c)Dc. It must be kept in mind that the solution M (t,w, M 0)
of the Riccati equation corresponding to the transformed system (2.22) with
M(0,w,My) = M, is defined for all ¢ € R, as can be deduced from Lemma 2.15,

since it agrees with ﬁ(t, a))-ﬂo. This follows from definition (2.25), Theorem 2.18,
the Liouville formula, and the fact that the map given by 7 — dg; U(t, w)-M is the

solution with initial datum dy;. U(O, w)'ll? = M of the matrix differential equation

(8M) = f(wt, M(t, w, My))-SM (2.33)
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given by
f(w,M)-D =

1 ~
-5D (H\ — H{ — i(H, — H3) + (H + H| — i(H, + H3)) M) (2.34)

1 . ~ .
= 5 (H{ = Hy = i(H> — Hy) + M (Hy + H] — i(H> + H3))) D
which is obtained as the variational equation of the mentioned Riccati equation
associated to its solution M (1 o, Mo) The argument  is omitted in H;(w) in the
last equality.

2.1.3 In Terms of the Arnold—Maslov Index

Arnold’s approach to the theory of the Maslov index suggests a new definition
for the rotation number of the family (2.1). This index theory, which is related
to certain asymptotic methods in perturbation theory, is also a fundamental tool
in the generalization of the Sturm theory to linear Hamiltonian systems, as was
shown by Arnold himself in [9]: for the higher-dimensional Schrédinger equation

x" 4+ G(t) x = 0, instead of zeros of solutions one can consider moments at which
a Lagrange plane evolving under the action of the corresponding system is vertical,
i.e. it is represented by [2] with det L; = 0. Roughly speaking, the Maslov index
measures the number of these vertical moments, which are also known as focal
points in much of the Sturm—Liouville literature.

Arnold [8] characterizes the Maslov index for a closed curve in the space of real
symplectic planes (whose previous definition had been based on intersection index
theory and hence was difficult to manage) in terms of the rotation index of certain
maps on S' (see also Bott [18]). This is the idea which suggests the new approach
to o, which is described in [72]. To explain this definition and its connection with
the preceding ones is the purpose of this section. To this end, the definition of the
Maslov index for a closed curve in the set of real Lagrange planes Ly is briefly
recalled; the reader is referred to [8] for the details.

Let [, be the vertical Lagrange plane, which generated by the n last coordinate
vectors; that is, [, = [(1),7 |- Define the (vertical) Maslov cycle by

C={leLlr]| dm(Nl)=>1}, (2.35)
which is clearly the complement of the set D defined by (1.21), which is homeo-
morphic to S,(R) and hence simply connected: see Remark 1.30. Obviously, C =

UZ=IC", where

Ck={leLg| dm(NI,) =k}.
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Each set C* is an algebraic submanifold of Lr of codimension k(k + 1)/2. In
particular, codim C I = 1. Moreover, C! is two-sidedly embedded in Lg; i.e. there
exists a continuous vector field tangent to Lr which is transversal to C ! and hence
one can refer to the positive and negative sides of C!. The vector field is given at each
point / = [g] € L by the velocity vector of the curve ¢ > -] = [ff;:;ﬁ‘;;‘)‘l ’ii ],
and the positive side is chosen as the one towards which these velocity vectors are
directed.

Definition 2.21 Let 1:S' — L be a smooth closed curve, and assume that A only
intersects C transversally, and hence only in C'. The Maslov index of A is given by

) =dy —d_,

where d (resp. d—) is the number of intersection points for which A passes from
the negative side of C! to the positive side (resp. from the positive to the negative).

The results of [8] (see also Duistermaat [38]) show that the index map c is
independent of the choice of /,, so that it induces a group isomorphism c: 771 (Lr) —
Z, where 1 (Lg) is the fundamental group of Lg. In particular the Maslov index is
defined for any continuous loop in Lp.

The rotation number can be defined in a somewhat approximate way as follows:
choose [ € Lg, and for each pair (¢, w) consider the curve A, :[0,7] — Lg, s
U(s, w) l; deform A,,; to a closed curve A, ; by sliding the final point U(t, w) [
to [ through Lg — C, which as recalled above is simply connected, and represent
d(t,w,l) = c¢(A4,); and then define

.7
o= —r1_1>r(r>1o " d(t,w,l). (2.36)

The limit, when properly defined (see below), exists and is independent of the
choices of [ and w (my-a.e.), as stated in the following theorem. Its proof is basically
a consequence of Arnold’s results, but a brief sketch is included here for the reader’s
convenience.

Theorem 2.22 For every | € Ly, the limit (2.36) agrees with the limit (2.5).

Proof Each real Lagrange plane / = [2] can be represented as [ = [gé] with @; —
i®, unitary: it suffices to take @; = LjP_l, where P is the unique positive definite
square root of LT L; + L% L, (see Remark 1.27.3 and Proposition 1.19). Consequently,
the map

det?(L; — iLy)
det(LlTLl + Lng)

Det’: Lp — S', 1=[]']+ det(®) —idy) = (2.37)

is well defined. In particular, the image of / does not depend on the representation
chosen. It follows easily from Proposition 1.29(i) that it is a continuous function.
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Let A:S' — L be a continuous loop. Define IndA as the rotation index
of the composition Det’> 1:S' — S!; ie. 1/(27) times the increment along the
circumference of a continuous determination of arg: S' — R. It is possible to extend
Ind to an isomorphism Ind: 7 (Lr) — Z. As proved in [8], — Ind and c are in fact
the same map (since they agree on a nonzero homotopy class), and this provides a
simple characterization of the Maslov index in the symplectic case.

Now return to the limit (2.36). The independence of the choice of / follows from
the invariance of ¢ under homotopies. Choose | = [é: ], and note that U(t, w)-l =

[ D1 ]. This teads to

4 o1 det?> (U, — ilh) (1, )
— lim —d(t,w,]) = lim ——arg T T
=00 t det(U; Uy + U, Un)(t, w)

1
= lim — argdet(U;(t, w) — iU (¢, w))
t—>00

1
= tl_l)lgo " Arg, U(t,w),

which proves the result.

The arguments used in the proof of this result will be fundamental in Sect. 2.3, in
which a relation between the properties of the rotation number and the presence of
exponential dichotomy will be discussed.

Remark 2.23 Definition (2.36) shows that «/7 measures the average number of
oriented intersections with the vertical Maslov cycle C of the curve determined in
LR by the evolution of a real Lagrange plane under the flow determined by (2.1).
Therefore, it extends to the 2n-dimensional case another of the usual ways to define
«a for the two-dimensional system (2.11):

o = lim = d(r, )
t—o0

(mp-a.e.), where d(t,w) is the number of oriented zeros in [0,#] of the first
component of an arbitrarily chosen solution of the system (see [73]).

2.2 Continuous Variation of the Rotation Number

The ergodic representation of the rotation number obtained in Sect. 2.1.1 is the
fundamental tool in the study of the continuity of the rotation number with respect
to the L'(§2, mo)-topology in the set of potentials H defining linear Hamiltonian
systems (2.1). The proof of this continuity property is the goal of this section. (See
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Definition 1.32 for the definition of the above topology.) The analysis continues in
Chap. 4, where the directional differentiability of the rotation number is established.

Recall that m represents a fixed o-ergodic measure on §2; that any matrix-valued
function H satisfying Hypotheses 2.1 belongs to L!(§2, mo) (see Remark 1.39); and
that, according to Theorem 2.4,

o(H) = /’C Tr Qu(w. 1) dpus

for every t¥-invariant measure 1y projecting onto myg. Here, ! represents the flow
induced on K by the family of linear systems determined by H,

Tr Qn(w, ) = tr([cp{ oI |JH (o) [zl D (2.38)
2

for a representation [g;] of [ with @; 4 i®; unitary (see Remark 1.42), and «(H) is
the corresponding rotation number.

In order to define the L' (§2, mg)-topology on the set of matrix-valued functions
taking values in sp(n, R), the Euclidean norm || - || is chosen: see Definition 1.32 and
Remarks 1.24.1, 1.24.2, and 1.33. Obviously, the continuity results are independent
of the particular choice of this vector norm. The Frobenius norm || - ||, defined in
Remark 1.24.3, will also be used in the proofs which follow.

Lemma 2.24 Let H, Hy, Hy: 2 — sp(n, R) satisfy Hypotheses 2.1.

(i) There exists a real function Ty € L'(£2, mg) such that

| Tr Qn(w. D] < Th(w)

Sforall (w,1) € Kg, which in addition is continuous on S2 if the matrix-valued
function H is continuous.
(i1) There exists a constant ¢ such that

|TrQH1 (C(),l) _TrQHz(wJN =c “H](Cl)) _HZ(w)||

forall (w,1) € Kg.

Proof Equality (2.38), the continuity and properties of the map | - ||r (see
Remark 1.24.3), the equality tr(AB) = tr(BA), the compactness of the set of unitary
matrices, and the equivalence of the matrix norms || - || and || - ||, ensure that

| Tr Qu(w. D] < [H(w) | F = aollH(@)|F < c1|[H ()]

F

o Jtot o114

for a positive real constant ¢;. Thus, (i) holds for Ty(w) = c;||H(w)|, which
belongs to L!(§2,m) and is continuous if H is. And the value of | Tr Qp, (v, 1) —
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Tr Qu, (®, 1)| is obtained by substituting H by H; — H on (2.38), so that assertion
(i1) follows from the same argument.

Theorem 2.25 Suppose that H = lim,,—o H,, in the L' (82, my)-topology, where
all the matrix-valued functions H, H,,: 2 — sp(n, R) satisfy Hypotheses 2.1. Then

a(H) = li_)ngoot(Hm).

Proof The argument used is standard in measure theory, and the proof is simpler
if the limit matrix H is supposed to be continuous. For each m € N, take a t/-
invariant normalized measure jty, on KCr projecting onto m. Then, according to
Theorem 2.4, a(H,,) = |, icx 1Y OH, (w,l)dup,,. As usual, any measure up,, defines
a functional on the separable space of real continuous functions on g, and the
norm of the functional is g, (Kr) = 1. Proposition 1.15(ii) ensures that any
subsequence of (up,) has a weak® convergent subsequence, say (ip,). Its limit
wy is tH-invariant, projects onto my, and satisfies lim;— oo fK:]R flw,)dun, =
f’C]R f(w,)duy for every continuous function f on Kg. In particular, again by
Theorem 2.4, a(H) = f Ka Tr Qp(w, I) duy. Therefore, in order to prove the result
it suffices to check that

a(Hy) — a(H)
L (2.39)
= / Tr Qu, (@, 1) djgy, — / Tr Qu(w, ) dpuy "=
Kr Kr
Note first that (ii) in Lemma 2.24 and the L' (§2, mo)-convergence imply that
(Tr QHk - Tr QH) ((l), l) d“Hk
Ra (2.40)

<c / |Hi(@) — H)| dmo =% 0.
2

Let Ty satisfy Lemma 2.24(i). Take ¢ > 0 and choose

- aconstant § > 0 such that [ Ty (w) dmg < € if 2 C Qand mo(ﬁ) <6,
- a compact subset K¢ C £2 with my(£2 — ) < § and a continuous symplectic
matrix-valued function H® on §2 such that H®| .. = H]|,..

Consider the map (w,1) — TrQpu(w.) = tr([®]. ®]1JH () [ 3! ]). which is
continuous on K, and choose

- an open subset O° C £2 with K° € O¢ and

mo(O°f —K?) sup |TrQp:(w,l)| <e¢,
(0.)EKR

- acontinuous function r on £ with . <r < y_..
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Let i be any measure on Ky projecting onto my. Then
/ TrQu(w,l)dp = / r(@) Tr Que(w, ) dju
Kr Kr

—/ r(a))TrQHs(w,l)du+/ TrQp(w,)du .
(O—Ke)X LR (2—K#)XLr

Moreover, the definition of O ¢ and (i) in Lemma 2.24 imply that

‘/ r(@) Tr Qpe(w, D) di | < mp(O° —K°) sup |TrQpe(w,])]
(O°=K#)xLr (w.)EKR

<e,

/ Tr Qn(w, ) du 5/ Ty(w)dmy < €.
(Q—’CE)XQR N—Ke

Consequently,

| Teouto ) dyn ~ T 0u(o. 0 dyun
Kr Kr

< / r(w) Tr Qpe (w, 1) dpim, — / r(w) Tr Qe (w, ) duy | + 4¢.
Kr Kr
The weak™ convergence of the sequence of measures implies then that
V Tr Qp(w. 1) durg, — / Tr Qn(w, D dpy | = 0. (2.41)
Kr Kr

Relations (2.40) and (2.41) ensure that (2.39) holds, which proves the result.

The second result of this section analyzes the rotation number for a fixed and
continuous potential H. As has already been pointed out, the rotation number
depends on the choice of the measure m, so that it makes sense to represent it by
a(m). The following theorem shows that, if it is the case that «(m) takes the same
value for every o-ergodic measure m on §2, then any @ € £2 can be chosen for
the definition (2.5) of the rotation number. Clearly, the required hypothesis holds
when the base flow is uniquely ergodic, which is the case when £2 is constructed as
the hull of a Bohr almost periodic function Hy: R — sp(n, R): see Sect. 1.3.2 and
Remark 1.40.

Theorem 2.26 Suppose that the matrix-valued function H defining (2.1) is contin-
uous, and that there exists a number s € R such that a(m) = oy for all o-ergodic
measures m on 2. Then

1 t
lim — [ TrO(z(s,w,1)) ds = ax
0

t—o0o
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uniformly in (w,l) € Kg. Consequently the limits (2.5), (2.18), (2.25) and (2.36)
take the value o irrespective of the point w at which they are calculated.

Proof The proof is carried out in the case ox = 0: the general case only requires
substituting Tr Q with Tr Q — a.. Note first that Theorem 2.4 ensures that

/ TrQ(w,l)du =0 (2.42)
Kr

for every t-invariant measure ¢ on Cg: the result follows directly if w is ergodic,
since it projects onto a o-ergodic measure on §2; and this property together with
the last assertion of Theorem 1.9 proves (2.42) in the general case, since Tr Q is
continuous: see Remark 1.42.

Now suppose for contradiction that there exist ¢ > 0 and sequences (#;) 1 oo,
(wy) in £2, and (I;) in Lk such that

‘tl /kTrQ(t(s,a)k,lk))ds > (2.43)
k Jo

for k € N. The Riesz representation theorem associates to the bounded linear
functional C(Kg,R) — R, g +— (1/%) fotk g(z(s, wx, It)) ds (which has norm 1)
a normalized measure j;. Theorem 1.9(i) ensures that the sequence (1x) admits a
subsequence (;) which converges weak™ to a o-invariant measure jio; that is,

f

1
lim — g(t(s, wj, 1)) ds =/ glw,l)duy,

J=>00 1 Jo K

for every continuous function g. In particular, the inequality (2.43) implies that
| IICR Tr Q(w, I) dio| > €. This contradicts (2.42), which proves the first assertion
of the theorem. The second assertion is a trivial consequence of, for example, (2.8),
and of Theorems 2.11, 2.18, and 2.22.

2.3 The Rotation Number and the Schwarzmann
Homomorphism

This section is devoted to establish a fact concerning the relation between the
rotation number for the family of linear Hamiltonian systems (2.1), the presence of
exponential dichotomy (see Definition 1.75), and the properties of the Schwarzmann
homomorphism, whose definition will be given shortly. The result proved here can
be used to obtain a gap labeling formula for the spectral problems corresponding
to (2.1) and (2.2), as will be explained in detail in Chap. 3, Sect. 3.3.4.
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Let H($2,S") be the set of the homotopy classes of the continuous maps ¢: 2 —
S! c C. The class [¢] contains a map ¢ such that

0> &Pl = §'(0)

is a continuous function. Define

¢'(w)
2 ¢(@)

It follows from Birkhoff’s Theorems 1.3 and 1.6 that

hH(R2,SYY >R, [¢]+— Im

dmo .

h([¢p]) = tl_l)Iglo; arg ¢ (w-1) my-a.e. (2.44)

Schwarzmann [138] proves that the map / is well defined and determines a
homomorphism from the group H($2,S') to the additive group of real numbers.
Consider now the group of real Cech one-cocycles with integer values: it can be
viewed as the quotient space

1
H@.z) = HE5)
&
where £ is the subgroup of H(§2,S') given by the homotopy classes of the maps
¢ (w) = ¥ for continuous maps r: £2 — R. This continuity and equality (2.44)
imply that i([¢]) = O for all ¢ € &, and consequently the map 4 also induces a
homomorphism from H! (£2,7Z) into R.

Definition 2.27 The map h: 7:[1(9, Z) — R is the Schwarzmann homomorphism
of the flow (£2, 0).

Theorem 2.28 Let m be a o-ergodic measure on §2, and let a(m) be the cor-
responding rotation number of the family (2.1). If the family has exponential

dichotomy over §2, then 2a(m) € h (7:[1 (£2, Z)).

Proof Consider the decomposition £2 x R = Lt @ L~ which is determined by
the exponential dichotomy, and recall that, according to Proposition 1.76, the sets
{(w, ()| @ € 2} C Kg with [T (0) = {z € R*"| (w,z) € R*"} are copies of
the base for the flow t: see Definition 1.17.

Define ¢, as the composition of the continuous maps 2 — Lr, o — IT(w)
and Lr — S', [ — Det?[, where this last (continuous) map is defined by (2.37).
The map ¢+ is well defined and continuous. In addition, according to equality (2.44)
and the proof of Theorem 2.22, 20¢(m) = h([¢«]), which completes the proof.

This section will be completed with an application of the preceding result: namely,
a discussion of the concept of “instability zones” for linear nonautonomous Hamil-
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tonian systems. The idea is taken from Yakubovich [157], who makes a similar
analysis in the case of periodic coefficients.

To make this discussion clearer, consider first the periodic case. Represent by Hr
the set of continuous 7-periodic matrix-valued functions taking values in sp(n, R).
It is well known that the subset H}" of Hr consisting of functions Hy such that
the system z' = Hy(?) z is totally unstable, i.e. admits an exponential dichotomy,
is divided into countably many connected, pairwise disjoint subsets U: Hy' =
UkezU. There are various ways to label these regions, among them one stated in
terms of the rotation number, which is now described. Let §2 be the circle obtained
by identifying the endpoints of the interval [0, 7] and let o be the translation flow:
ifw € 2 andr € R, then wt = 0(t,w) = w + ¢t modulo 7. It is a well-known
result that the unique o-ergodic measure my on §2 is induced by the normalized
Lebesgue measure on [0, 7]. And each element of Hy can be uniquely identified
with a continuous function H: 2 — sp(n, R). It turns out that, for each k € Z,
U} consists of those coefficient matrices giving rise to a Hamiltonian family z' =
H(w-t) z for which the rotation number takes the value wk/T: see [157], Theorem 2.

Returning to the general nonautonomous setting, a similar statement can be
formulated. Theorem 2.28 guarantees that if the family (2.1) has an exponential
dichotomy over £2, then its rotation number o (with respect to a fixed o-ergodic
measure on §2) takes values in an enumerable subgroup of the additive group of
the real numbers, defined using the image of the Schwarzmann homomorphism:
more precisely, 2o € § = h(H'(£2,7Z)). In other words, one has a method to
label the elements of the set H)' given by the set H of those maps H: 2 —
sp(n, R) satisfying Hypotheses 2.1 and for which the family (2.1) has an exponential
dichotomy over §2: namely, Hy' = Useslf; where U is given by those matrices
H € H¢' for which the rotation number is 5/2.

2.4 Additional Properties in the Case H; > 0

The main results of this section are Theorem 2.31 and Theorem 2.36. The first one
states that the rotation number of the linear Hamiltonian family (2.1) with respect to
any o-ergodic measure is nonnegative in the case that H3 is continuous and positive
semidefinite. Some preliminary results which have independent interest, used in its
proof, are proved in Lemma 2.29 and Theorem 2.30.

Theorem 2.36, in which it is also assumed that H;3 > 0, provides a new definition
of the rotation number in terms of the so-called proper focal points. It is closely
related to that based on the Arnold—Maslov index, but easier to understand.

Lemma 2.29 Let V = [“2 “2 ] be a symplectic matrix, and define Wy = (V| —
iV3) "LV 4+ iV3).
(1) W‘z = Wy, WoWy = I, and detWy = rdetz(Vl + iV3) for some r > O.

In particular, W is diagonalizable, and all its eigenvalues lie in the unit circle

of C.
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(il)) Wyz = z if and only if V3z = 0. In particular, 1 is an eigenvalue of Wy if and
only if det V3 = 0, and the eigenspace of Wy associated to 1 agrees with the
kernel of Vs.

.
Proof Remarks 1.27.2 and 1.27.3 ensure that [K‘,] represents a Lagrange plane and
3

that Wy is well defined. It can immediately be deduced from V; VlT =V V3T that

Wg = Wy, and from this symmetry that W Wy = I,. The symmetry also implies

that

det(V) — iV3) ™! = det(VI —ivI)™! = det(V; + iV3)/ det(V, VI + V3VT).

Theorem 8 of Chapter 8 [95] shows that Wy is diagonalizable, and this completes
the proof of (i). The properties stated in (ii) are trivial consequences of the definition
of Wv.

Consider now a single linear Hamiltonian system

(2.45)

7 = Ho(t)z = I:HOI(I) H03(t) :|Z,

HOZ(t) _Hgl (t)
where Hy: R — M,x2,(R) is continuous. Represent by V(¢) = [QEZ 538] any real
symplectic matrix solution of this system, and define

Wy (1) = (Vi(0) = iV3(0) ™' (Vi(0) + iV3(0)) .
Theorem I1.5.2 of [89] and Lemma 2.29.1 ensure the existence of continuous

functions p1, ..., pa: R = C with |p;j(r)| = 1 forj = 1,...,nand ¢ € R, such that
the set of eigenvalues of Wy (¢), repeated according to their multiplicities, coincides

with the unordered n-tuple {p; (), . .., p.(¢)}. Thus it is possible to take continuous
argument functions ¢, ..., R — R;ie. pj(f) = €% forj = 1,...,n and
te R

Theorem 2.30 Suppose that Hy3(t) > 0 for each t € R. With the above notation,
the continuous function ¢;: R — R is nondecreasing forj =1, ..., n.

Proof This result is stated by Yakubovich [154], and, as he notes, the proof is
essentially due to Lidskii [96]. The proof is included for the reader’s convenience.
The first step in the proof is to check that

Wy, = iLy(t) Wy, (2.46)

where Ly = 2(Vy — iV3) ' Hps (V] + iVI)~!. Clearly, L} = Ly > 0.
Proposition 1.23 ensures that

ViVI@) = VsOVI () and  VaVI() = V2O VI@) = 1.
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A straightforward computation starting from the relation V’(r) = Hy(r)V(¢) proves
that (2.46) is equivalent to

2iHos (V] +iV1) ™" = Hos (V2 + iVy) + (Vo + iV) (Vi +iV3) " (Vi = iV3)) |
where the argument 7 of V1, V>, V3, V4, and Hy; is omitted. It easy to check that

(Vi +iV3) T (Vi = iVs) = (V] =iV)(V] +iv) ™",
(=Va + iV (V] +iVD) + (Vo + iV (V] — VD) = 2il,,

from which the previous equality follows. Therefore, (2.46) is proved.

An approximation method will be used to prove that each ¢; is nondecreasing.
Fix any #; € R. Obviously, it suffices to prove the existence of a bounded open
interval Z centered in #; such that ¢; increases in Z for j = 1,...,n. For the time
being, let Z be an open interval centered in #;. More restrictions on the interval Z
will be imposed later.

For ¢ > 0, there is a real-analytic function L},: Z — M,x,(C) with (L})* = Lj,
such that sup,c7 || L}, (f) — Ly (¢)|| < &/2, where the Euclidean matrix norm is used.
Consider the differential system

W =il +el,) W, (2.47)

and note that L}, (f) 4 ¢, is real-analytic, strictly positive definite on /, and also
selfadjoint. Let Wy, (¢) be the solution of (2.47) with W{,(¢;) = Wy (t), which hence
takes values in the complex unitary group too: (W;)*(£)Wy,(f) is constant and, by
Lemma 2.29(1), (Wy)* (1) W (t1) = L.

Fix ¢ > 0. Since Wy (¢) varies analytically in ¢, Theorem II.1.10 of [89]
yields real-analytic functions p{,...,p;:Z — C such that the unordered n-tuple
{of(®),....p:(t)} is the set of (possibly repeated) eigenvalues of Wy, (¢). To apply
this theorem requires a standard procedure of extension of Lj(f) to a complex-
analytic selfadjoint matrix-valued function defined on an open and simply connected
domain containing Z.

Take for each j € {1,...,n} a branch of the argument of p; which is analytic
in 7 in and with ¢ (1) € [a — m,a + ). As explained in Section I1.4.2 of [89],
there are families {w{(?), ..., w:(¢)} of eigenvectors of W (r), with Wy, (¢) w; (1) =

pf (1) w; (1), which also vary analytically in 7 € Z. Note that, since (We)y* = (we)™!
and Wy, wi = & w;, then (wi)*Wy, = & (wf)*. Here, and in what follows, the
argument ¢ is omitted. Now write (W5)* Wy, w; = ¢ (wf)* wi. Computing the
derivative with respect to 7 and dividing by e gives

W) (L + e )W)+ (%) W) = i () ()" W) o+ ()" w5

which implies that (qof)’ = ((W)*(Ly + ely) wf)/((wj)* w7) > 0. Hence ¢;(t) is
strictly increasing on Z. This completes the second step of the proof. ‘



108 2 The Rotation Number and the Lyapunov Index in the Real Case

Since the increasing character of ¢; is independent of the branch chosen for
the argument, it is possible to assume from the beginning that ¢, (t;) = ¢, (#1) if
pj, (1) = p;,(2). And clearly, for all & > 0, there is loss of generality neither in
reordering the functions pf in order to get p £(t1) = pj(t1) forj = 1,...,n, nor in
choosing the continuous branch of ¢ with ¢ £() = qoj(tl) forj=1,.

To unify notation, call W9 = Wy, ,oj = p; and (pj ;. Since Wf/(t) varies
continuously in (¢, €), Theorem I1.5.1 of [89] ensures that the unordered sets £°(¢) of
the eigenvalues of Wy, (¢) vary continuously in (z, ), in the sense that the Hausdorff
distance from £°1 (1) to £%2(1,) goes to zero as the sum |#; — f| + |&; — 2] goes to
zero. It is easy to deduce from this and from the boundedness of Z that the unordered
sets £¢(¢) converge to the unordered set £%(¢) uniformly on Z as ¢ — 0.

Let p1,..., o (with 1 <[ < n) be the distinct eigenvalues of Wg(tl), and let the
constant §; > 0 be smaller than the distance between any two of them. Let /5 be the
intersection of the unit circle and the open ball of the complex plane centered in py
and of radius 8,/3. For all k € {1,...,1} choose j; € {1,...,n} with pjok(tl) = Dk.
Note that if ,00(1‘1) = py for any other j, then (pjo (1) = (po(tl) And denote by arg,
the continuous determination of the complex argument such that ¢; (1)) = arg; py.

As was previously announced, some further conditions will be imposed on the
choice of Z. Since the set £(7) of eigenvalues of W) (z) varies continuously in ¢
and is contained in the unit circle, it is possible to find a bounded open interval Z
centered in #; such that

' c Ui, By

for all + € Z. The uniform convergence in Z implies the existence of &g > 0 such
that £°(r) C Uilek for all t € Z when 0 < & < g. Note that the sets By, ... ; are
pairwise disjoint. Recall also that ¢ (11) = ¢;(#1). Fix & € [0, &], and assume that
there exists 7, € Z with p;(12) € By. Then,

- pi(1) € By forall 7 € Z, as can be deduced easily from the continuity of p; with
respect to f;

- pi (1) = px, since the only eigenvalue of Wy (1) = WO(#1) in By is pr;

- ¢ (1) = arg(pj (1)) for all t € Z, since ¢; () = (g?(tl) = arg fr and ¢; is
continuous in f.

Now fixj € {1,...,n}, take t, € Z, and choose k € {1,...,[} with ,oJQ(tz) € By, so

that p](.)(tl) = pr. Choose also sequences (j,,) in {1,...,n} and (&,) | 0 with g; <

o such that lim,,—s o0 ,08’" (1) = pO (t2). Then there exists mg such that p;;" () € By

for all m > mg. Moreover, as was seen above: first, ps’” (t1) = py for all m > my,

so that lim,—e0 p;" (1) = k. = p] O(t,); and second, <p£m (t) = arg(p;"(1;)) for

i=1,2and m > my. Consequently,

90 (12)—0(11) = arg, pf(12) — arg, o) (1)
= lim (arg, p;(12) —arg, p;" (1)) = lim (" (12) — ;" (11)) -
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The increasing character of the elements of the sequence (qojf;”) guarantees that
@i(t) = gojp(t) is nondecreasing in Z. The proof is complete.

The main consequence of these properties, which concerns again the family of
systems (2.1), is now stated and proved. Recall again that, given any ergodic
measure m, a(m) represents the rotation number of the family with respect to m.

Theorem 2.31 Suppose that Hz: 2 — S,(R) is continuous and takes positive
semidefinite values. Then a(m) > 0 for every o-ergodic measure m on §2.

Proof According to Theorem 2.4,
1
a(m) = lim — Arg, U(t, w)
t—>00 -
for m-a.e. w € §2. Fix one of these points w, define

Wu(t. 0) = (U, (t, ®) — iUs(t, 0)) " (U (t. 0) + iUs (1, )

and choose continuous argument functions ¢, (t, ®), . . . , ¢,(t, ) for the eigenvalues
of Wy(t,w). Lemma 2.29(i) implies that ¢(t,w) = (1/2) 27=1 pi(t,w) is a
continuous branch of Arg; U(t, w) = argdet(U, (1, w) + iUs(t, ®)), so that

alm) = Jim ~ p(t.0) = lim ~ (@(t,0) ~ (0.0) (.48)

m-a.e. Theorem 2.30 ensures that ¢ is nondecreasing in ¢, which proves the assertion.

Remark 2.32 Note that the same proof can be used to show that, in the case that H3
is continuous and H3(w) > 0 for all w in a positively o-invariant subset £2; C §2,
and if m is a o-ergodic measure on £2 with m(§2;) = 1, then a(m) > 0.

The result stated in Theorem 2.31 is complemented by the following one, which
shows that a certain order in the coefficient matrices of the equation implies an
order in the corresponding rotation numbers. The matrix-valued functions H' and
H? are supposed to satisfy the conditions initially imposed on H: the matrices H'
and H? satisfy Hypotheses 2.1, and JH' and JH? are symmetric.

Proposition 2.33 Suppose that JH' < JH?. Let m be a o-ergodic measure on 2,
and let a;j(m) represent the rotation number of the family z' = H (w-)zforj = 1,2.
Then ay(m) < ap(m).

Proof Define Tr Q/: Kr — R from B as TrQ from H in (1.19), forj = 1,2. It is
obvious Tr Q! < Tr Q?, so that the result follows from (2.6).

As was stated previously, the second goal of this section is to give a new definition
of the rotation number in the case H3 > 0, which requires first to define the notion
of proper focal points of a given matrix-valued solution. The following lemma is
fundamental to this purpose, and will also be used in Chap. 5. Note that it refers to
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a single Hamiltonian system 2.45. A different approach to a similar result is given
in Theorem 3 of [93].

Lemma 2.34 Assume that Hyz > 0. Given | € Ly, represent | = [2 ], and

[28] = U@ [g ], where U(t) is the matrix-valued solution of (2.45) with

U(0) = I, Then,

(i) ifthe rank of L1 (t) is constant on (a, b) with —co < a < b < oo, then Ker L, (t)
is constant on (a, b). In addition, if a € R (resp. b € R) and t € (a,b), then
Ker Li(t) € KerL;(a) (resp. Ker L (1) € Ker L, (b)).

(ii) Given any finite interval [a, b] there exists a finite number of points ty, . .., t,
witha =ty <t} < ... < ty, = b such that the rank of L(t) is constant on
(ti—1,4) forj = 1,...,m. Consequently, forj =1, ..., m, Ker L|(t) is constant
on (lf,'_l, l,) and Ker L (t) C KerLl(tj_l) N KerLl(tj)for allt € (lf,'_l, l,)

Proof Take [fj] = [, € Lg such that [fj g] € Sp(n,R); for instance, L; =
LR and Ly = —LiR™" for R = L{L; 4+ LYL,. Thencall V(1) = U [ 1\ ] =
[Egg 28 ], which is a symplectic matrix solution of (2.1); define

Wy (1) = (L3(1) —iLi ()~ (La(0) + iL1 (1) ;

and choose continuous argument functions ¢;(?), ..., ¢,(f) for the eigenvalues of
Wy (1), as in Theorem 2.30.

(1) Set k(f) = KerL;(t), and let d be the dimension of KerL,(¢) for t € (a,b).
Since the assertion is trivial for d = 0, assume that d > 1. The goal is hence to
prove that k(¢) is constant on (a, b).

Take 51,52 € (a,b) with s; < s,. The first step of the proof consists in
checking that, if y: (s;,s,) — R" is C! and satisfies y(f) € k(z) for all ¢ €
(s1,52), then also y'(¢) € k(z) fort € (s, s2). In turn, this proof is divided into
three parts. First, since L (f) y(r) = 0 and V'(¢) = Hy(¢) V(2),

Li(ny (1) = -Li(0)y(1) = —Hos () Ly(0) y(1)  if 1 € (51.52). (2.49)
Second, the symplectic character of V(f) (see Proposition 1.23) ensures that
LL, — LTLy = I, and LTL, = LIL,, so that (LY () + iLI (1)) L,(1) y(t) =
y(0) + LE(t) L1 (1) y(¢) + iL% (1) L1 (1) y(r) = y(1); consequently,

L) y() = (L5 (D) +iL{(0)'y() if 1€ (s1,52). (2.50)
And third, from Wy (¢) y(t) = y(¢) (see Lemma 2.29(ii)) it follows that

iLy() Wy(0) y() + Wv()y' (1) =y' (1) if 1 € (51.52),
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where Ly = 2 (L3 —iLy) ™" Hoz (L] +iLT)™! (see the proof of Theorem 2.30),
and hence that iy’ () Ly()y(1) = 7 () — y' &) Wy (1)) y' (1) = 0. The
definition of Ly and the existence of a unique positive semidefinite square root
of Hys (see Proposition 1.19(i)) imply that

Hos(t) (LY (1) +iLT(0) ' y() =0 if 1€ (s1.5). (2.51)

Equalities (2.49), (2.50), and (2.51) prove the assertion.

Now it is possible to deduce that the space k(¢) is constant on (a, b). To check
this, use the fact that the rank of L;(¢) is constant in order to find ¢; and ¢, in
(a,b) and C' functions yi,...,ys: (c1,c2) — R” such that {y;(¢),...,yq(t)}
is a basis of k(r) for each t+ € (c1,c;). (For instance: using the concepts
given in [89], one has that the O-group reduces to {0} at an arbitrary point
co € (a,b): this is due to the fact that the multiplicity of the eigenvalue 0
is constant for the matrix L;(¢) on (a, b). Therefore, Theorem I1.5.4 of [89]
guarantees that the (total) projection corresponding to 0 is C' at the point co,
and this fact implies the assertion.) Then, since y/(?),...,y,(t) € k(r), there
exist continuous functions cj: (1, 00) — Rforj,/ =1,...,d such that y]’.(t) =

27=1 cji(H) yi(r). Let C(z) be the d x d matrix-valued function with element
c;i(t) in the j-row and /-column, so that [y; (1) - - - y4(1)]" = [y1(t) - - - ya()] CT (D).
Let E(r) = [ejl(t)] be the fundamental matrix solution of X’ = C(¢)x
with E(ty) = I, for a fixed #y € (cy, c2). Then, by uniqueness of solutions,
[yi(®) -+ ya®] = [y1(to) -+~ ya(to)| ET(1); that is, y;(t) = Y_i, eq(t) yi(to)
for all ¢ € (a,c), which implies k(f) = k(ty) for all ¢t € (cy, ;). In order to
deduce that the same holds for t € (a, b), assume first for contradiction that
¢* = sup{c € (c1,b) | k(¢) is constant on (cy, c)} is not b; i.e. that ¢* € (cy, b).
The same argument as above guarantees the existence of ¢ > 0 such that k()
is constant in (¢* — ¢, ¢* + &), which contradicts the definition of ¢*. And the
same argument can be used again to obtain a contradiction if one assumes that
cx = inf{c € (a, c3) | k(¢) is constant on (c, ¢3)} is not a.

The first assertion (i) is proved. The second one is an immediate consequence
of the first one and the continuity of L (7).
According to Theorem 2.30, the argument functions ¢; (¢), . . ., ¢,(f) are nonde-
creasing on R. If the dimension of Ker L, (¢) varies at a point ¢, € (a, b), then
at least one ¢, € {¢i,...,,} has the following two properties: @.(t«) is an
integer multiple of 27; and either g« (tx — &, ®) < @« (tx, w) for any € > 0 or
Qs (ts, w) < @x(tx + &, ®). Clearly, for each argument function, this happens at
most at finitely many points of [a, b], which proves the result.

As in the previous lemma, take [ € L, and represent [ = [g] and [L‘(')] =

L (1)

U(t) [g ] A point ty € R is afocal point or vertical point for [L‘ (t)] ifdetLy(tp) =

L (1)

0, which means that this solution intersects the Maslov cycle C given by (2.35) at
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to. That is to say, the multiplicity of ty with respect to [28 ], which is by definition

dim Ker L (#y), is positive.

Among these focal points, the so-called proper ones are fundamental in the
analysis of the oscillatory properties of the Hamiltonian systems (2.1) when H3 > 0.
The equivalence stated in the next definition is a consequence of Lemma 2.34.

Definition 2.35 Assume that Hy; > 0. A point #p € R is a proper focal point for
Li( L L _ .
[L;(g] =U(1) [L;], where [L;] =]e Lg,if
KerLi(ty) KerLi(t),

where Ker L, (#;) denotes the left-hand limit of the kernel of L;(¢) at the point #y. Or
equivalently, if

m(ty) = dimKerL;(t) —dimKerL;(fy) > 1.

In this case, m(ty) is the multiplicity of the proper focal point ty with respect to
Ly (1)

[Lz(f) ]

Note that, when Hyp; > 0, Lemma 2.34 shows that 28

proper focal points in each bounded subinterval of R, although in a positive half-
line it may have infinitely many proper focal points.

The alternative definition for the rotation number can now be stated. Consider
again the whole family of linear Hamiltonian systems (2.1). Take (w,l) € Kr and
define the rotation number of the family (2.1) with respect to a fixed o-ergodic
measure mg, with H; > 0, as

] has a finite number of

=1
—> 00

3 mito) (2.52)

to€F(w,l)

Here, F;(w, 1) is the set of its proper focal points contained in the interval [0, 1] of

the 21 x n matrix-valued solution [22;3 ] =U(t,w) [g ] of 2.1)forl = [g ] The

next result shows that « is well defined and agrees indeed with the rotation number
previously defined; in other words, that the limit is independent of the choice of
[ € L and that it agrees for every w € §2 with the limit (2.5) defining the rotation
number, so that in particular the value of the limit is constant my-a.e.

Theorem 2.36 Suppose that Hy > 0. For every (w,1) € Kg, the limit (2.52) agrees
with the limit (2.5).

Proof Use now a notation similar to that established at the beginning of the proof of
Lemma 2.34: since the quantities occurring depend on w, it is convenient to add w to
the notation. Note that the equivalent of argument functions explained in Sect. 2.1.1
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ensures that the proof of Theorem 2.31 can be repeated in order to show that (2.48)
holds for the choice of the argument given by ¢(f, w) = (1/2) 27=1 @i(t, w).

Observe that the dimension of Ker L (z, w) increases strictly at a point 7, > 0
(in other words, 7. is a proper focal point) if and only if there exists at least one
argument ¢, € {¢y, ..., @, which reaches at 7, an integer multiple of 27 “arriving
from below”; i.e. @« (tx, ®) € 277 and @« (tx — &, ®) < @« (t«, ®) for any ¢ > 0.
In this case, ¢, contributes one unit to the quantity m(z.). In other words, m(z«)
measures the number of those argument functions of the set {¢i,...,¢,} which
reach at 7, an integer multiple of 27 arriving from below.

The previous comment has the following consequences. First, if there is no
proper focal point in [0, c0), or if there is just one, then the increment of each
argument function ¢;(, w) is less than 47, so that (2.48) ensures that @ = 0, and the
equality of the theorem is trivial. Assume now that there exist at least two, and let
fo > 0 be the smallest one. Fix any ¢ > 0, and let p;(¢) be the number of times that
the argument function ¢; reaches an integer multiple of 27 arriving from below in
the interval (¢, 1], forj = 1, ..., n. Then the number of proper focal points in (%, ]
is at least one for large enough ¢. And, if for these values of ¢, F;—{to} = {t1,...,1},
then m(t)) 4 -+ + m(t;) = p1(t) + -+ + p,(t). Take now ¢ > #; which is less than
the immediately next proper focal point (if it exists). Then

n n l
Y9t w) =Dt @) =27 Y m(t)
=1 =1 s=1

(2.53)

= Z @i(t,w) — Z @j(ty, w) — 27 ij(z‘) <2nm.
j=1 j=1 j=1

The last inequality follows from |¢;j(t,w) — @;j(to,w) — 2mp;(t)| < 2m for
Jj = 1,...,n, which in turn follows easily from the definition of p;(r) and the
nondecreasmg character of ¢;.

The statement of the theorem is now an easy consequence of (2.48), (2.53), and
the definition of F;.

Note the connections between the last result and the definition of the rotation
number in terms of the Arnold—Maslov cycle which was discussed in Sect. 2.1.3.

2.5 The Lyapunov Index

This section is devoted to the definition and main properties of a new index 8, which
is closely related to the Lyapunov exponents of (2.1) and hence to the exponential
growth of the solutions. It will be seen in Sect. 3.2 that, in the higher-dimensional
case, this index plays a role similar to that of the positive Lyapunov exponent
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for two-dimensional systems with zero trace. Following Craig and Simon [36], it
will be called the Lyapunov index of (2.1). As in the case of the rotation number
(Theorem 2.4), this index admits an ergodic representation in terms of the polar
symplectic coordinates introduced in Theorem 1.4 1. This representation is obtained
in [112] for the case of a continuous coefficient matrix H and is adapted here to
the more general setting under consideration, in which H is assumed to satisfy
Hypotheses 2.1.

Throughout this section, ||z|| and ||A| represent the Euclidean norms of a vector
and a matrix, respectively. The results which will be obtained are independent of
these particular choices of the norm.

Recall that U(f,w) represents the fundamental matrix solution of (2.1) with
UQO,w) = I, and that my is a fixed o-ergodic measure on §2. Recall also
(see Definition 1.83) that the four characteristic exponents of the system (2.1)
corresponding to  for the element zy € R?, 7 # 0, are the values of the limits

. 1 o]
limsup — In(|U(. @) 20)) . liminf — In(|U( @) zo])) .

t—+o0

which are invariant along the orbits of the flow g defined by (1.13) on the bundle
2 x R?". In addition, if for a pair (w, zo) the four limits agree, then their common
value is a Lyapunov exponent of the system.

The following result establishes that, for m-a.e. system of the family (2.1), there
exist 2n common Lyapunov exponents, which can be equal or distinct. The first
statements are part of the Multiplicative Ergodic Theorem (see Oseledets [118]
and Ruelle [130]). A straightforward proof can be found in Johnson at al. [86].
Note that these results do not require H to be continuous but only that it induce a
continuous flow on £2 x R?", a property which is guaranteed in the present case by
Hypotheses 2.1, Proposition 1.38 and Remark 1.40.

The concept of a wedge product (see e.g. [22]) is fundamental for the understand-
ing of Theorem 2.37. Forj = 1,...,2n, let A/R?" denote the vector space generated
by all the wedge products z; A --- A z;, where zy,...,z; € R?", Recall that the
wedge product z; A - - - Az; is linear in each factor separately, and that interchanging
two factors changes the sign of the product. The dimension of A/R?" is (2;1), and its
canonical basis is {e; A---Ae;| 1 < i < -+ < i < 2n}, {e},... e} being
the canonical basis of R?". In addition, a 2n x 2n matrix L induces a linear map
NL: NR*™ — NR? by the formula AML(zy A -+ Azj) = Lz; A -+ A Lz, and its
(Buclidean) norm || A/L|| is the (Euclidean) norm of its matrix in the canonical basis.

The ergodicity of the measure my plays a fundamental role in the following
statement. Recall that G,(R?") represents the set of the k-dimensional subspaces
of R?", and that 7 is the flow induced by (2.1) on £2 x G;(R?"): see Sects. 1.2.2
and 1.3.1.
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Theorem 2.37 There exist real numbers p; > --- > pg, positive integers ny, . ..,ny
with ny + - -+ + ng = 2n, and a Borel o-invariant subset §2¢9 C $2 with my(§2o) = 1
such that

0o.l) foreveryj = 1,...,d and v € $2 there exists a nj-dimensional vector
space WY, with limy 00 (1/0) In |U(t,w) z|| = p; forz € W, — {0}.

0.2)  The map 2y — an (RZ"), w W{; is Borel measurable forj = 1,...,d,
with T, (1, , Wé,) = (w+t, W{;).,)for allw € 2pandt e R

03) R*™=W.&---& W forallw € 2.

In addition, if B1 > --- > B, represent the numbers py, . .., pq repeated according
to their multiplicities ny, . .., ng, then
lim © Inf| A UG )] = 2.54
Jim = n||N U@t o)l =B+ + B (2.54)

forj=1,...,2nand o € £2.

Note that, forj = 1,...,d, the set
W= {(w,2) € 2xR"|weRoandze W } C 2 xR"

has properties which recall those of the closed subbundles of Definition 1.63: it is
Tr-invariant (in the sense that it is composed of orbits) and, for a set of points w of
full measure my, its fibers W2, are linear subspaces of R2" of constant dimension. Of
course, they don’t need to be closed. It is usual to refer to these sets as the Oseledets
subbundles.

Definition 2.38 The (possibly repeated) numbers fi,..., B2, are the Lyapunov
exponents of the family of linear Hamiltonian systems (2.1) with respect to my.

The last point of the following result states a well-known property of the Lyapunov
exponents in the Hamiltonian case, which justifies Definition 2.41. A proof is
included for the reader’s convenience. The set 2y is that given in Theorem 2.37.

Lemma 2.39 Let V be a real or complex symplectic matrix. Let n3, ..., 13, be the
eigenvalues of the matrix V*V, with gy > -+ > 1y, > 0. Then,

1) Mopt1— = nj_lforj =1,...,n
@) ny---n, > 1and tr(V*V) > n,
(i) [N VII=mni---n;

Proof Tt follows from Proposition 1.23 that V*V is a symplectic matrix, which
according to Proposition 1.22 ensures (i). Consequently, n; > 1 forj = 1,...,n,
which proves (ii).

Identifying A/C?" with C? for d = (Zj”) by taking coordinates in the canonical
basis allows one to define an (Euclidean) inner product (-,-) on A/C?". It can be
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checked that

* *
Wiz .- Wj VA
(Zi A--AZj, Wi Ao AW ) = det
WiZj - WiZ;
It follows easily that the maps A/L and A/L* are adjoint for any 2n x 2n matrix L, so
that their matrices in the canonical basis have the property that one is the conjugate
transpose of the other one. That is, if M is the matrix of A/V, then the matrix of

AV*is M* . Ttis very easy to deduce that M*M is the matrix of A/(V*V) and that its
eigenvalues are the elements of the set {r)iz1 ni | 1 <iy <--- <1 <2n}. Hence,

assertion (iii) follows from the fact that the Euclidean norm of A’V is the positive
square root of the spectral radius of M*M (see Remark 1.24.2).

Proposition 2.40 Let n}(t,w),...,n5,(t,w) be the eigenvalues of the matrix
Ul(t, 0) U(t, ), with i (t,®) > -+ > na,(t,w) > 0. Let 2y be the set appearing
in Theorem 2.37. Then,

A INUEt o) =mt o) -nito) =1,
(ii) B =1limoo(1/8) Inn;(t, @) forj=1,...,2nand w € 2,
(iii) the Lyapunov exponents of (2.1) for the measure my are £p, ..., £, with
B1=-Bn=0.
Proof The assertions in (i) are proved in Lemma 2.39. Property (ii) follows from
(i) and (2.54), and property (iii) follows (ii) and from 7;(t, w) = r)z_nl Jrl_j(t, ) (see
Lemma 2.39(i)), which implies that 8; = —B2,1j-1.

Definition 2.41 The Lyapunov index of the family of linear Hamiltonian sys-
tems (2.1) with respect to my is

1
:3::31+"'+:3n=t£%10;ln”/\nU(t’w)” (2.55)
for w € £2y, where A" denotes the nth wedge product and +8,..., +f, are the
Lyapunov exponents of (2.1) with §; > --- 8, > 0.

Remarks 2.42

1. The existence of exponential dichotomy for the family (2.1) implies that O does
not belong to its Sacker—Sell spectrum (see Definitions 1.82 and 1.87). According
to Theorem 2.3 of [86], this ensures that 0 is not one of the Lyapunov exponents
of the family, independently of the fixed measure my. In addition, in this case,
the closed subbundles L™ and L~ of Definition 1.75 are given by the sums
of the Oseledets subbundles corresponding to negative and positive Lyapunov
exponents, respectively.

2. All the results summarized here, as well as the definition of the Lyapunov
index, have complete analogues for a complex linear Hamiltonian system.
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Such a system is given by a map H:2 — sp(n,C), for which the
corresponding fundamental matrix solution U(#,w) belongs to Sp(n,C).
Now, B; = lim/seo(1/8)Inn;(t,w) where ni(t,w) > -+ > ny(t,w) and
77% tw),..., n%n(t, w) are the eigenvalues of the positive definite matrix
U*(t,w) U(t, w); and, as before, B; = —B2,4—1. The proof of the corresponding
Proposition 2.40 is identical to that given above.

3. It is a well-known fact (and very easy to prove) that the Lyapunov exponents
of a Hamiltonian system with constant coefficient matrix H are the real parts of
the eigenvalues of H, and hence the Lyapunov index is the sum of those real
parts which are positive. In addition, the classical Floquet theory proves that
the Lyapunov exponents of a Hamiltonian system with periodic coefficients are
the real parts of the characteristic exponents of the system, so that the sum of
those which are positive provides the Lyapunov index. In both cases the ergodic
measure my is unique.

To get an ergodic representation of § for the real family (2.1), the following lemma
is required. It is strongly based on Theorem 2.37, whose notation is maintained. As
usual, the linear subspace of R?" generated by the vectors zy, . ..,z is denoted by
(z1,....7;); and for a linear subspace V of R?", V. represents the linear subspace
(of dimension 2n — dim V) orthogonal to V for the Euclidean inner product.

Lemma 2.43 Let 29 C 2 be the o-invariant subset with mo(§20) = 1 which is
given in Theorem 2.37. For each € $2o, the space R*" admits a basis

1z, ,z;,n,z;r,l, e ,z;n}
satisfying
(1) lim—oo(1/0) In |[U(1, @) z;g;” =Bjforj=1,....n
(i) lim oo (1/0)In Ut w) 25 ;|| = =B forj=1.....n, and
(iii) the subspaces I, = (z,,,....,z,,) and Ir = (Z;"l, e ,z;‘;n) are real
Lagrange planes.

Proof Represent by V_(w), Vo(w) and V4 (w) the sum of the linear subspaces
W/, provided by Theorem 2.37 and corresponding to the strictly positive, null and
strictly negative Lyapunov exponents, respectively. Property 0.3) of Theorem 2.37
and Proposition 2.40(iii) guarantee the existence of an integer k € {0, 1, ..., n} such
that dim V4 (w) = n— k and dim V(w) = 2k and R = V_(w) ® Vo(0) ® V4 (0)
for each w € £2y. Fix w € £2 and note that

z,weV_(w)orz,we Vi(w),
wiz=0 if {zeV_(0), we V), (2.56)
YAS V+(a)), S V()(a)).
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These equalities follow from the relation w'Jz = w! U%(t, w)JU(t, w) z forall t € R,
since property o.1) implies that U(¢, w) z tends to 0 exponentially fast as t — oo for
z € V4, that U(t, w) z tends to 0 as t — —oo exponentially fast for z € V_, and that
foreach ¢ > 0 and each z € Vy, |U(t, w) z|| < € if |¢] is large enough.

In the case that k = n (i.e. Vo(w) = R?") the canonical basis of R?" satisfies
the required conditions. Assume that k < n. If one takes the union of bases of the
Oseledets subspaces W, one obtains bases 1z, 41> 2y, and {z;kH, e ,zj)"n}
of V_(w) and V4 (w) respectively. Conditions (i) and (ii) follow directly from o.1)
forj =k +1,...,n. In the case that k = 0, property (iii) is guaranteed by (2.56),
and the proof is complete. In the remaining case, that is, 2 < dim Vy(w) = 2k < 2n,
Lemma 2.44 below provides a basis {z;,l, e g z:.l, o ,zc‘;k} of Vy(w) such
that (i) and (ii) are also satisfied forj = 1,...,k. A new 'application of (2.56) shows
that also (iii) holds, and this completes the proof.

Lemma 2.44 Let Vo € R be a linear subspace with dim Vy = 2k for k > 1.
Then Vg has a basis {z| , ...z, , zf, e ,z,j'} with (zj_)TJz; = (z?‘)TJz,j' = 0 for
l<j<k<n ‘

Proof Any basis of Vj satisfies the lemma if kK = 1. Assume that the result is true
fors—1.1fJz € Vd— for all z € V, again any basis is suitable. Assume that this is
not the case, and choose z;. € Vo — {0} such that the orthogonal projection of Jz,”
on Vpis z; # 0. Since Jz;_ — z;| is orthogonal to Vo,

0= (zk_)T(Jzk_ — z,'(") = —(zk_)Tz,j' and 0= (z,'(")T(Jz,: — z,'("). (2.57)

The first equality ensures that dim(Jz;,Jz;) = dim(z;,z;}) = 2. Define Vj =
Vo N (Jzk_,Jz,j')J-. It will be checked in the last paragraph of this proof that
(z,, z,j') N {Jz;, Jz,j')l = {0}. This fact has two fundamental consequences: first,
R = (z,z") ® Uz, Jz )t = Vo + (Jzi,Jz )+, and hence

dim V¢ = dim Vy + dim{Jz, Jz; )t —2n = 2k — 2;

and second, Vo = V| & (zk_,z,j'), since Vi N (zk_,z,j') = {0}. Therefore, if one
takes the union of the basis {z ,...z_,,z, ...,z } of V given by the induction
hypothesis and {z,, z,j'}, one obtains a basis of V|, with the required properties.

Finally, if az; + bz € (Jz;,Jz; )t then 0 = a(z)) Uz + b(z;) Uzt =
b(z) Uz} and 0 = a (z;) Tz + b (1) Uzt = a(z;)Uz; . The second equality
in (2.57) ensures that (z)"Jz; = (z;)"z} # 0. This implies that a = b = 0 and
completes the proof.

Remark 2.45 Tt can be assumed that the o-invariant subset 2, appearing in
Theorem 2.37 and Lemma 2.43 is included in the ergodic component of the measure
mo in §2; that is, for each @ € 2o, lim,o0(1/1) [3 f(w-s)ds = [, f(w)dmq for
every f € C(£2,R): see Remark 1.10.
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The following theorem provides the previously announced ergodic representation
for the Lyapunov index 8. The n x n matrix-valued function S was introduced in
Theorem 1.41, and the function Tr S is defined by (1.20).

Theorem 2.46 Let B be the Lyapunov index of the family (2.1) with respect to my.
Then

B = sup{//C TrS(a),l)d,u} =/}C TrS(w,l)dpo,

n

where the supremum is taken over the set of T-invariant measures on Kg projecting
onto my, and [Lg is a certain T-ergodic measure on this set.

Proof Let £2y be the subset of §2 described in Theorem 2.37, with the additional
property explained in Remark 2.45, and let [ and lc‘g be the real Lagrange planes for

@ € §2¢ provided by Lemma 2.43. The point @ will be conveniently chosen later.
L’

_ Ly
cezg,] = [L;] and [Zg,l"‘zatn] = |:L+:|
2

- +
which represent these planes as [gi—gi] and 21+§+ , with ®1i + i@zi unitary
2
and R+ nonsingular for j = 1, 2 (see Remark 1.27.3). In addition, the matrices R+
can be chosen to have positive determinant. Note that the matrices oF, @Zi and R+
depend on the point @.

In order to simplify the notation, set zjjE (t,ow) = U(t,®) z(i. forj=1,...,n
Let Ry (1,d) = R(1,®, ®fF, @5, Ry) and @F(1,0) = Pi(1,d, Pi, dF) for
Jj = 1,2 represent the corresponding solutions of (1.16) and (1.15). According to
Theorem 1.41,

Write the 2n X n real matrices [z

(25 (@) - 22 (t&)] = [q)f(t,cb)Ri(t,cb)]

@ (1,0) Re(t, @)
and (@F)1(t, @) PE(t, @) + (@5)(t, @) @£ (1, @) = I,. Therefore,

det(R_(t, @) R-(1.®)) = det([z; (1, &) -z, (1. &) [z (1. &) -2, (1, D))

= |27 (. &)+ Il (1, @) | detR-(1, @) ,

where the entry of the matrix R_ (#, w) corresponding to the jth row and kth column
is (lz7 (. &)1z (. @) )~ (z7) (1, &) 7 (¢, &). Tt follows that det R—(t, ) (which
is positive) is bounded from above. Consequently, Lemma 2.43 ensures that

1 . 1 .
limsup — IndetR_(t,®) < E rgm = In|z; (1, @)| = E Bi=p8. (2.58)
0 ;

=1

o0 I t ‘
j=1
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Analogously,

1
lim sup IndetR4(f,0) < —f.

—00

On the other hand, since tr H(&®-t) = 0, the fundamental matrix solution

- [o7 @) oF(t,0)|[R-(t,®) 0
V“"”)‘[@l—(m) @3@@)“ 0 R+(r,ca>}

of the system (2.1) for @ has constant determinant, and hence
.1 -
0= lim - ln detV(t, ®)
—>00

< lim sup ln detR_(t,®) + lim sup ln detRy (7, @)

—>00 —>00
5 ﬁ - ﬁ = O 3
from which it follows that
1 1
lim sup IndetR_(t, ) = —lim sup IndetR4(r,0) = B. (2.59)
t—00 1—>00

Under these conditions, the equation (1.16) satisfied by R_(¢,®) and defini-
tions (1.18) and (1.20) guarantee that

1 1!
B =lim sup IndetR_(t,®) = limsup — / TrS(z(s,@,13)) ds. (2.60)

—>00 —>00

The next goal is to prove the existence of a t-invariant measure jto on Cr projecting
onto my such that

B=[ TrS(w,Dduo. (2.61)
Kr

First, choose an increasing sequence (#,,) 1 oo with

B = lim - / " TeS(e(s. . 15)) ds (2.62)
0

m—>00 tm

and apply the Riesz representation theorem in order to associate to the bounded
linear functional C(Kr,R) — R, g — (1/t) fot’" g(t(s, @, 7)) ds a normalized
measure jL,,. According to Theorem 1.9(i), the sequence (ii,,) admits a subsequence
(14;) which converges weak™ to a r-invariant measure g ; that is,

i

Jim + g(t(s,@,15)) ds = / g(w. D) du (2.63)
0

im0l
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for every continuous function g. It is easy to deduce from Remarks 2.45 and 1.14
that 15 projects onto myg. This and (2.60) prove (2.61) in the case that H (and hence
Tr S) is continuous. The more general conditions imposed on H require some more
work, which is now carried out.

Repeating the ideas of the proof of Lemma 2.24, one shows: that TrS €
L'(Kg, w) for any measure on Kg projecting onto my, since H € L'(£2,mp); and
that there exists a positive constant k such that

| TrS(w, 1) — TrSu, (w,])| < k||H(w) — Hyx ()] (2.64)

for all (w,l) € Kgr, where Tr Sy, represents the matrix-valued function defined
by (1.20) from a matrix H, satisfying Hypotheses 2.1. Now fix ¢ > 0. Since H €
L'(£2,my), there exists a continuous symplectic matrix-valued function H® such
that

e
[ @)~ @ am < £ 2.65)
Q 2k
In addition, since H — H® € L'(£2,my), Birkhoff’s ergodic theorem and the

ergodicity of mg can be used to find a set £2° C £2 with my(£2¢) = 1 such that,
for each w, € £2°¢,

lim [ | (es) — B (@3-9)]] ds = / |H@) — @) dmy  (2.66)
0 2

—>00

(see Theorems 1.3 and 1.6). Now take &,, = 1/m for each m € N. The point ® €
£20 used to obtain (2.60) will be chosen as an element of the intersection 29 N
(Nppen$2 1/ ™), which has full measure with respect to mg. The continuity of Tr Sy1/m
and relations (2.63)—(2.66) imply that, for each m € N,

1 [y
/ TrS(w,l)duy — lim —/ TrS(z(s,,17)ds
Ka j=oo i Jo

5/ Tr (S — Syum) (@, 1) dug
Kr
1[4 ~
+ | lim —/ Tr (S — Syim)(t(s, @, 13)) ds
j—=00 i Jo

< / KI[(H — H'™) ()] dmg
2

1 (i 1
+ lim — | k||(H—HY")(@-s)||ds < —,
Jj—>00 tj 0 m

which together with (2.62) proves (2.61).
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The next step consists in showing that, for any t-invariant measure © on K
projecting onto mjg, one has fK TrS(w,l)du < B. Given such a measure, one
proves easily from the Birkhoff Theorem 1.3 that there exists a point (wo, ly) €
20 x Lr such that

1 t
/ TrS(w,l)du < lim —/ TrS(z(s, wo, lp)) ds
Kr t—00 0
(2.67)

1
= lim — IndetRy(t, wo),
t—>00 t

0
where Ry(t,wo) = R(t, a)o,@?,dﬁg,ln) for [y = [g},] with 45? + i@g unitary.
2

0
Represent the n independent column vectors of the real Lagrange plane [zg] by
2

Zoo 1s - - - » Zay.n» and consider the basis {z;o!l, e s z:)'o’l, ... ,z;ro’n} obtained in
Lemma 2.43. Then,

— - + +
[Zw(),l e Zwo,n] - [zwo,l e zwo,n] A+ [zwo,l e zwo,n] B

for some n x n real matrices A and B. Let P be a nonsingular matrix such that AP is
lower triangular, and represent by aj; (resp. bj) the entry of the matrix AP (resp. BP)
corresponding to the jth row and kth column. Then [Zy,, | - - * Zwyn] = [Zwy.1 * * * Zwo.n]P
defines a new basis {Z,,1 - - - Zy,»} Of the Lagrange plane with

n n
= _ E e § ot
Z(U()J - aj Za)(),k + blg Zwo,k
k=j k=1

forj = 1,...,n. This expression and Lemma 2.43 imply that

. 1 -
limsup — In [|U(¢, @) Zwy || < B;

—oo [

forj = 1,...,n. Under these conditions, it is easy to adapt the argument applied to
R_(t, ) in the proof of (2.58) in order to check that lim ;o (1/#) Indet Ry(t, wp) <
B, which together with (2.67) proves that

sup{/ TrS(a),l)d,u} =/ TrS(w,)dpug = B. (2.68)
Kr Kr

n

as asserted.

The proof of Theorem 2.46 will be completed once one has checked
the existence of a t-ergodic measure o projecting onto my and for which
Jic TrS(@,Ddpg = B. Note first that that limieo [ic TrS(w,)dpue =
f’CR TrS(w,l)dp if pu is the limit of the sequence (i) in the weak™ topology.
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To prove this, recall that H € L'(£2,my), so that given & > 0 is possible to
find a continuous matrix-valued function H*: 2 — sp(n,R) with [, |H(w) —
H*(w)| dmy < &/(4k), where k satisfies the condition (2.64). In addition, since
the function TrSpy+ is continuous (see Remark 1.42), there exists jo such that

)IKR Tr Sy (@, D) dpj — [ic, Tt Sp+ (@, 1) dp ) < g/2forj > jo. Hence, using (2.64),

/TrS(a),l)d,uj—/ TrS(a),l)d,u‘
Kr

Kr

5/ |TrS(a),l)—TrSH*(a),l)Id,uj+/ | TrS(w, ) — Tr S (w, )| di
Kr

Kr

+ / TrSp+ (o, 1) du; —/ TrSp«(w, D) dp;| < e
Kr ! Kr
for j > jo, which proves the assertion.
Define ,3 = sup, { /; K TrS(w, ) dv}, where the supremum is taken over

the set of r-ergodic measures on K projecting onto mo. By (2.68), ,3 < B.
Clearly, Tr S(w, ) du < B for any convex combination p of o-ergodic measures.
Therefore, according to (2.68), Proposition 1.15(iii), and the property explained
above, f = fK:]R TrS(w,l)duy < B, and hence § = B. Now take a sequence (k)
of t-ergodic measures projecting onto my with limy_oo |, Ke TrS(w,l)dvy = B.
Proposition 1.15(ii) can be used to find a subsequence (v;) which converges to
a t-invariant measure o in the weak*-topology. The characterization given in
Theorem 1.6 ensures that o is t-ergodic: just keep in mind that the intersection
of a countable number of sets with total measure has total measure. Therefore,
f’C]R TrS(w, ) duo = B, and the proof of Theorem 2.46 is complete.

To formulate the next consequence of the previous theorem, let S(H) represent the
Lyapunov index of the family (2.1) with respect to the fixed o-ergodic measure m.

Corollary 2.47 Suppose that H = lim,,— o H,, in the L' (82, mo)-topology, where
all the matrix-valued functions H, H,,: 2 — sp(n, R) satisfy Hypotheses 2.1. Then

B(H) > limsup B(H,,) .

In other words, the Lyapunov exponent is a semicontinuous function with respect to
the coefficient matrix.

Proof Let the map H +— Tr Sy be defined by (1.20). Theorem 2.46 provides, for
each m € N, a t,-ergodic measure ,, projecting onto my such that §(H,) =
f’C]R Tr Sy, (w,1) diuy,. Let (H;) be any subsequence of (H,,). The following steps
repeat those of the proof of Theorem 2.25, where many more details are given:
there exists a subsequence (i) of (it;) which converges in the weak™ topology to a
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measure . which is T¥-invariant and projects onto n1; and

lim Tr Sy, (0, ) dux = / TrSy(w, D) du. (2.69)
R Kr

k—o00 i

To prove this property one must use the analogue of Lemma 2.24 for Tr Sy instead
of Tr Oy, which has already been required in the proof of Theorem 2.46. Finally, it
follows from Theorem 2.46 and (2.69) that

B(H) > /’C TrSu(o. D dy = Jim B(Hy).

and the assertion follows easily from this inequality and the definition of the superior
limit of a sequence.

Remark 2.48 The result stated in Corollary 2.47 is optimal, in the following sense:
the Lyapunov index is not a continuous function with respect to the coefficient
matrix H, even when this matrix is two-dimensional, and even with respect to
the uniform topology on the set of continuous matrix-valued functions on 2. This
assertion is proved, for instance, by the example constructed by Johnson in [70]. It
consists of: a one-parameter scalar Schrodinger equation —x” + (g(w) —A)x =0
where g is determined as the uniform limit of a sequence of periodic functions; a
point Ay € R; and a sequence (4,,) such that lim,,,—s00 A,;, = A0, lim,,—500 B(Ay) =
0, and B(Ao) > 0. Here, of course, B(A) is the Lyapunov index of the equation
given by A.



Chapter 3

The Floquet Coefficient for Nonautonomous
Linear Hamiltonian Systems: Atkinson
Problems

Let (£2,0) be a real continuous flow on a compact metric space. In the previous
chapter, the notions of rotation number and Lyapunov index for a family of linear
Hamiltonian systems

7 =HwHz, oeS§R, (3.1)

were introduced and some of their properties were analyzed. The central objective of
the present chapter is to study a deeper aspect of the relation between these objects
and the concept of exponential dichotomy. To this end it is convenient to complexify
the rotation number, in order to view it as the imaginary part of a complex number,
called the Floquet coefficient of the family, whose real part equals the negative
Lyapunov index.

More precisely, consider the 2n-dimensional family of linear Hamiltonian
systems

7 = (Hwt) + 2] 'T(ot)z, o€, (3.2)

which can be understood as a perturbation of (3.1) (which corresponds to A = 0)
in the direction determined by I". Here, J = [(1): _Oi”] is the usual antisymmetric

H; Hj3 . .
] 1S continuous on .Q, I =

matrix; the matrix-valued function H = [ 0 _I_}i['

— T, . . . .
[ FF 2 1;,1 ] is a continuous real symmetric 2n X 2n matrix-valued function on £2 (and
1 3

hence J7!T" = [ g 11:1? ] takes values in the Lie algebra sp(n, R)); and A is a complex

parameter. A non-degeneracy condition, to be described later, will be imposed on
I". When this condition is satisfied, the family (3.2) is called an Atkinson problem,
since the conditions of Chapter 9 of [5] are satisfied for each w € £2. Note that,
in order to include in the general formulation the perturbed n-dimensional linear
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Schrodinger equation
X"+ GlwH)x=LAw)Xx, e, (3.3)

where A is a continuous real symmetric nxn matrix-valued function on 2, it suffices
todefinez=[% ], H=% (I)Z] and I' = [OA” 8:].

Let mp be a fixed o-ergodic measure on §2. By letting the parameter A of
equations (3.2) take on real values, the corresponding rotation number and the
Lyapunov index with respect to m (see Definitions 2.5 and 2.41) can be considered
as functions on R and represented by ar(A) and Br(4). In fact, as explained in
Remark 2.42.2, the same expression

o
Br(A) = tl_lglo " In||A"Ura(t, w)]l, (3.4)

where Ur, (¢, w) is the fundamental matrix solution of (3.2) with Up;(0,w) =
I, defines the Lyapunov index (1) on the whole complex plane. The following
fundamental result is proved by Craig and Simon in [36] and Kotani and Simon
in [91]. Recall that a function f: C — R is subharmonic if it is upper semicontinuous
(ie. if limsup,_,, f(A) < f(Ao) for every Ag € C) and submean (i.e. if f(Ao) <

(1/2m) foznf(/lo + ge?) df for every Ao € C and every & > 0).
Theorem 3.1 The Lyapunov index is a subharmonic function on C.

But recall that, in general, it is not a continuous function on the real axis, as pointed
out in Remark 2.48.

On the other hand, the rotation number (1) is a continuous function on the
real axis, as Theorem 2.25 proves. However, the extension of its definition to the
complex plane is not immediate. In fact, it requires hypotheses on the perturbation
I' ensuring the existence of exponential dichotomy for the family (3.2) outside the
real axis. Once this is established, the hyperbolic character of the flow ensures the
existence of the Weyl functions (also called Weyl matrices); and in turn the Weyl
functions allow the definition of a complex function, called the Floquet coefficient
and denoted by w (1), which is holomorphic on the complex open upper half-plane,
whose real part agrees with the negative Lyapunov index and whose imaginary part
converges to the rotation number when the parameter A approaches to the real axis.

These are basically the contents of the first two sections of this chapter. Naturally,
this Floquet coefficient extends to the higher dimensional case a well-known
object for two-dimensional systems (see Johnson and Moser [73]), which in turn
generalizes the Floquet index for periodic systems (see Magnus and Winkler [98]).
In fact, the function wy (A1) has properties analogous to those of the usual (periodic)
Floquet exponents.

In particular, this holomorphic extension is very useful in studying the properties
of the spectral problems given by (3.2) and (3.3). When n = 1, it was used
to study the quasi-periodic Schrodinger operator by Johnson and Moser in [73]
and the general two-dimensional AKNS system by Giachetti and Johnson in [55],
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among other papers. In the context of the Atkinson problem (3.2), it was used to
derive a relation between the rotation number and the existence of exponential
dichotomy for the linear Hamiltonian family by Johnson in [72] and by Johnson
and Nerurkar in [75]. Modulo details, the relation can be stated as follows: if the
rotation number is constant on an open interval Z C R, then the system (3.2) has
exponential dichotomy for each A € Z. The proof of this result requires the elements
of Atkinson’s spectral theory for (3.2) (see Atkinson [5], Chapter 9) together with
a fundamental trace formula. The previously established properties of the Floquet
coefficient are used in the proof of this trace formula, which also requires the
relation between the constant character of the rotation number and the presence of
exponential dichotomy. These two proofs are contained in the third and last section.

This chapter reproduces basically the scheme of the survey of the theory of the
Floquet coefficient which was carried out by Fabbri et al. in [46], which in turn relies
on the papers Johnson [72] and Johnson and Nerurkar [75, 77]. Here, substantially
more details of the proofs, which are in fact nontrivial, are included.

The flow induced by the family (3.2) on K¢ and Kg is denoted by t;,
and, as said before, the fundamental matrix solution satisfying U, (0,w) = Iy,
is represented as Ur)(t, ). Clearly, the matrix Uro(t, w) agrees with U(t, w),
according to the notation established in the previous chapter, which will be
maintained here. Finally, represent, as usual, Ct = {1 € C| ImA > 0} and
C ={1eC| ImA <0}

Remark 3.2 In order to unify the notation, the subscript I" is also used to make
reference to the Schrodinger case (3.3), although in this case using A would perhaps
be more appropriate.

3.1 Exponential Dichotomy and the Weyl Functions

The results stated in this section are independent of the choice of the ergodic
measure mg. The definition of exponential dichotomy for the families (3.2) and (3.3)
corresponding to a fixed value of the parameter A € C is given in Sect. 1.4.3. The
corresponding (closed) stable subbundles at oo will be represented by Lﬁ 5> and

the corresponding continuous fibers will be represented by lﬁ , ().

As stated before, the definition of the Weyl functions and the Floquet coef-
ficient outside the real axis requires the existence of exponential dichotomy for
A ¢ R, which in turn requires a non-degeneracy assumption on the unperturbed
system (3.1). More precisely, as stated in Theorem 3.8, the exponential dichotomy
outside the real axis is guaranteed by the following Atkinson type condition:

Hypotheses 3.3 The continuous matrix-valued function I': 2 — S,,(R) is con-
tinuous, positive semidefinite (which, in the Schrédinger case, means that A: 2 —
S, (R) is positive semidefinite), and in addition each minimal subset of §2 contains
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at least one point w, such that

o
/ | I (wo-t) U(t, wo) z||* dt >0 wheneverz € C*'—{0}. (3.5)

—0o0

Definition 3.4 A continuous symmetric matrix-valued function I satisfying
Hypotheses 3.3 is an Atkinson perturbation.

Remarks 3.5

1. It can immediately be checked that, if I" > 0 or, or if A > 0 in the Schrodinger
case, then Hypotheses 3.3 are valid.

2. Let I''/? be the unique positive semidefinite square root of I" (see Propo-
sition 1.19), and Z any interval in R. It is immediate to see that if the
equality [, | I"Y?(w-t) Ura(t,w) z||>dt = 0 holds for a point @ € £2, then
Sz |7 (w1) U (t, 0) 2> dt = 0.

The proof of the previous assertion concerning the occurrence of exponential
dichotomy, which basically appears in [72] and [75], requires Theorem 1.78, which
characterizes the occurrence of exponential dichotomy in terms of the absence of
globally bounded solutions, as well as a technical lemma:

Lemma 3.6
(1) Suppose that (3.5) holds for an element wy € §2. Then, for each A € C,
o0
/ | T (wo-1) Ura(t, wo) z||*dt > 0 wheneverz € C*—{0} .
—0o0

(i) Let M C $2 be a minimal subset and let wy € M be an element such
that (3.5) holds. Then, for each A € C, there exist ty = to(M,A) > 0 and
8§ = 8(M, L) > 0 such that

to
/ |7 (w-t) Upy(t, ) z||> dt > 8 ||z||* whenever w € M andz € C*"—{0}.
0

(iii) Suppose that I" is an Atkinson perturbation. Then, for each ® € 2 and A € C
there exist tg = to(@, ) > 0 and § = §(@, A) > 0 such that

o
/ | (@1) Ur(t,®) z||* dt > 8 |z||> wheneverz € C*"—{0}.
0

(iv) Suppose that I' is an Atkinson perturbation. Then, for each A € C there exist
to = to(A) > 0 and § = 8(A) > O such that, for every w € 2,

fo
/ I (w-t) Ur(t, a))z||2dt > 6 ||z||2 whenever z € (CZ"—{O}.
0
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Proof

(i) Fix A € C — {0} and assume the existence of zg € C?" such that
S I (wort) Upp(t.wo) 2ol dt = 0. Tt is easy to check that z(f) =
Ur,(t,wp) zo is a solution of the system (3.2) corresponding to wy and to
A = 0, and hence z(f) = U(t, wp) Zo. This and relation (3.5) for wy imply
Zy) = 0.

(ii) Statement (i) applied to the point wy € M ensures the existence of sy =
so(wp) > 0 and & > 0 such that

50
/ | (wo-t) Ura(t, wo) z||*dt > &  whenever ||z]| =1 :
—50
otherwise, [ |I'(wo1) Ur(f, o) 2 ||* dt < 1/m for sequences (s,,) 1 0o
and (z,,) in the unit sphere of C?2"; and hence, for the limit zy of a convergent
subsequence of (z,,), one has ffzo I T (wo+t) Ur(t, wo) zo|* dt = 0.

Let O C 2 be an open neighborhood of w, such that

50
/ |1 (1) Upa(t,w) 2| dt > % wheneverw € O and ||z|| = 1.
- (3.6)

Since M is minimal, there exist positive numbers 7y, ...,7, such that M C
O-1) U -+ U O, as is easily deduced from the density of the o-orbit of w
in M and the compactness of the set M. It follows easily that there exist a
constant [y > 0 and a decreasing sequence (t,,) | —oo with 0 < t,, —f,41 < lo
such that w,, = wot,, € O for every m € N: just take [y = max{7|,....7,},
choose 1y = —7;, with wy € O-f;,, choose t, = t; — T, with wy+t; € O-F;,, and
so on. Now take any s < #; and write it as s = t,, + [ for an m € N and an
[ € (—ly, 0]. Note that wy-s = wy,-l and that [y + [ > 0, —Iy + [ < 0. Then, for
all z in the unit sphere,

so+1lo
/ 1T (@05)) Up (1, 00:5) 2] i
—so—lo
so+lo+1
- / | @) Ura (t — L o) 2> di
—so—lo+!

50
> / | T (Wmet) Urp (t, @) Ura (=1, op-l) 2|> dt > k %

—50

where k = min,eq |;|=1, e[l .0] |Ur (=1L, w-l)z||> > 0. Relation (3.6) has
been used in this reasoning.
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Therefore, since the negative semiorbit {wy-s| s < #,} is dense in the
compact set M, there exists ¢* > 0 such that

so+lo
/ I (wf) Upp(t,w) z||> dt > ¢*  wheneverw € M and ||z]| = 1.
—so—lo

Now it is easy to check that fOZ(SOHO) | I (w-t) Urs(t,w) z||*> dt > 0 whenever
® € M andz € C?"—{0}. Write t, = 2(so + lo). Note that the map (v, z) >
foto | I (w-t) Ur(t, @) z|| dt is continuous and strictly positive, and hence its
minimum value § for w € M and ||z|| = 1 is strictly positive. Note that both 7,
and § depend on the value of A and on the minimal subset M. This proves (ii).
Fix any element @ € §2 and let M C 2 be a minimal subset contained in its
omega-limitset. Let 7y = fo(M, A) and § = §(M, 1) be the constants provided
by Hypotheses 3.3 and statement (ii), and let O C §2 be an open set containing
M such that

) 8
[ i@ Ursa.oyalP a3 ol
0

whenever w € O and z € C?"—{0}. Assume for contradiction that the assertion
(iii) is false for every pair of positive constants fy, §. As in the beginning of
the proof of (ii), an easy argument provides a point zy belonging to the unit
sphere of C2" for which fooo | I (@-t) Urs(t, @) 2o]|*> = 0. Now take s > 0
with @-s € O. Then

s . & - .
SIEP < [ AT (@50 Ura.09) 3l a
0
o0
:/ | T (@1) Upp(t — s, @-5)Z|*dt = 0

forz = U;lA (—s, @-5) zo. This is impossible, and hence (iii) is proved.
The last assertion of the lemma follows from (iii) and a standard compactness
argument.

Remark 3.7 Identical arguments prove the existence of fp = fy(A) > 0 and § =
8(A) > 0 such that property (iv) of the preceding lemma holds when integrating
over [—fo, 0]. In addition, if one keeps in mind Remark 3.5, it is very easy to deduce
the existence of a number § = § (4) > 0 such that property (iv) holds with I"
replaced by I''/? and § replaced by 8, for the same time 7y = to(R).

Theorem 3.8 Suppose that I' is an Atkinson perturbation. Then,

(i) the family (3.2) has exponential dichotomy over §2 for ImA # 0, and
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(i) if ImA # 0 and w € $2, the complex Lagrange planes lIﬂE,A (w) given by the
fibers of the closed subbundles LIjE’A can be represented as [M [:Fl("w!l):l, where

the symmetric matrix-valued functions MIjE satisfy £Im A Im MIjE (w, 1) > 0.
Proof

(i) Fixw € 2 and A € C with ImA # 0. The main step of the proof consists
in showing that the corresponding system (3.2) for @ does not admit a nonzero
bounded solution. Defining

(Lr2) (1) = TZ (1) — UH(wt) + A T (0-1)) 2(t)

it turns out that, for every solution of the system (3.2),

b
0= [ @0 @00 - o0 a0) a
¢ (3.7)
t=b b
— z*(t)]z(t)‘tz —2iImA / 2 (1) [ (1) 2(0) dt

whenever a < b. So, if there exists zy # 0 such that z(f) = Ur)(f,w) z is a
bounded solution, then

o0
/ 172 (w-1) Uy (1, ) 2o ||* dt < 00 . (3.8)
—00

Let tp = fo(A) be the constant provided by Lemma 3.6(iv). Condition (3.8)
provides an increasing sequence (f,,) 1 oo such that

1 tm+1to
—>/ 17V2(@) Upa (1, ) 20| di
m tm
o
:/IMWWWWﬂUmU+MMﬂﬂWt
0

- / ’ I 2((0+t) 1) Ura(t, w-t) 2(t) | dt ,
0

for every m € N. Since §2 is compact and (z(#,)) is bounded, it is possible to
find a subsequence (#;) and points @ € £ ,Zy € C?" such that & = limj_, 0 -1
and o = lim;_, z(#;). But then

to
/HFW@ﬂUm@®%Ww=m
0

which together with Remark 3.5.2 and Lemma 3.6(iv) ensures that z, = 0.
Analogously, it is possible to find a decreasing sequence (s;) | —oo such that
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limj_ o0 2(s;) = 0. Substituting a and b in (3.7) by s; and ¢, it turns out that

o0
/ 1720t Upa (1, ) 202 de = 0,
—00

which contradicts, for instance, Lemma 3.6(i).

The absence of nonzero bounded solutions and Theorem 1.78 prove the
existence of exponential dichotomy over §2, which completes the proof of (i).
Letusfixw € 2 and A € C withImA # 0, and let fp = fp(A) and § = 8(/\)
be the constants whose existence is proved in Lemma 3.6(iv) and Remark 3.7.
Represent the Lagrange plane [} ra(@) by [L‘ ] Assume for contradiction that
L, is not invertible, choose x € C" — {0} with L; x = 0, and note that then
L, x # 0. Then, by formula (3.7), for all b > 1,

1 t=b

2iImA

* [LT Lz] U}k’,l(t’ a))JUﬂl(l, ) I:i;i| X
=0

b
- / x* [L¥ L2 | US, (t ) T (01) Ura(t, o) [il } xdt> 8 | Lox|.
0 2

Taking the limit as » 1 oo and keeping in mind that lim,—,oo Ur (t,w)z = 0
forall z € l;k (w) (see Definition 1.75), one has

1

_EEBXX*U;L;}IP”}X>O,

L,
which is impossible since x* [ L} L3 |J [/ ]x = [0 x*L5 |J[ %] = 0. The
same argument proves that L, is also an invertible matrix.

Thus, l; ; (@) can be represented by [1’&], for an invertible symmetric matrix
M. In addition, using again formula (3.7) for b > 1, given any x € C" — {0},

1 t=b

2iImA

x* [1,, M* ] Ur,(t.w)J Ura(t, o) [II&} X

t=0
2

b
:/0 X" [y M UL, (1 0) T (@) Um<f’w>[fv'}}‘df>5 H[JJ

and hence, taking again the limit as b 1 oo,

1
—x*"ImMx = — x*(M* — M) x

ImA 2iImA

_ 1 * * I
= —3m [1, M ]J|:Mi|x>0.
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This implies that ImA Im M is a positive definite matrix and completes the
proof of assertion (ii) for L; 5> With Mli' (w,A) = M. The proof is analogous for
LE ; (see Remark 3.7).

Let I' be an Atkinson perturbation. According to Definition 1.80, the symmetric
complex n X n matrices MIjE (w, A) whose existence is ensured by Theorem 3.8 for
w € 2and A € C with ImA # 0, as well as the matrix-valued maps M=: £2 x
(C—R) — Sc(n), (w,A) = ME(w, 1), are the Weyl functions or Weyl matrices
(associated to I"). An alternative and equivalent definition for the Weyl functions
can be derived from the fact that Hypotheses 3.3 ensure that the systems (3.2) are in
the limit-point case in +o00. The reader is referred to Hinton and Shaw [61, 62] for
the details of this alternative definition.

Theorem 3.9 Let I' be an Atkinson perturbation. Then the Weyl functions
MIjE(a),A) are jointly continuous in both variables and analytic on C — R for
each fixed w € 2.

Proof The continuity is a consequence of Theorem 1.95(ii). According to Theo-
rem 1.94, Or(w, A) is analytic outside the real axis for w € £2 fixed. As explained
in Remark 1.81.1,

o — My —M5)™'My M7 — M)
MEMy —MP) My —Mf M7 —Mf)™!

for A € C — R, where all the matrices are evaluated in (w, A). Therefore, the
functions (M — M%)™!, (M7 — M})™'My and M (M7 — M)~ are analytic
in A, so that also M- — Mli', M- and M?I are.

In particular, the Weyl functions are symmetric Herglotz matrix-valued functions in
the complex upper and lower half-planes for each fixed w € §2. The definition of
Herglotz matrix-valued function is now recalled:

Definition 3.10 A symmetric matrix-valued function M on C* or C™ is Herglotz
if it is analytic and Im M (1) is either positive semidefinite or negative semidefinite
on the whole half-plane.

Note also that Lffj = L_ﬁk, as is easily deduced from Up3(1,0) = Ura(t, o).

Consequently, MIjE (w, 1) = (MIjP)*(w, A). The t-invariance of the closed
subbundles Llf , ensures that, for every fixed non-real A and w € £2, the functions
t— MIjE (w-t, A) are differentiable and satisfy the Riccati equation corresponding to
the perturbed system (3.2) (see Sect. 1.3.5),

M' = — M(H;(o-t) + AT3(w-0)M — M(H (w+f) + AT (1))
3.9
— (HT (0-t) + AT ()M + Hy (1) + AT (1) ; G
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i.e. M}E (w, A) are globally defined solutions along the flow of (3.9). Or, in other
terms, they are continuous equilibria (see Definition 1.49).

Remark 3.11 Recall the notation f'(w) = (d/dt)f (w-t)|;=9, which was introduced
for any measurable (scalar or matrix-valued) function f on £2 which is differentiable
along the o-orbits on the base, as well as the information provided by Proposi-
tion 1.36: [, f'(w) dmg = 0 whenever f: 2 — C and f* € L' (2, my).

3.1.1 Symmetric Herglotz Matrix-Valued Functions

Some of the most important properties of the Weyl functions derive from their
Herglotz character. The properties of the functions of this type are also fundamental
in the analysis of the limiting behavior of the Floquet coefficient. To avoid further
interruption in the discussion, some basic properties of symmetric Herglotz matrix-
valued (or scalar) functions are recalled in this section.

Definition 3.12 Define, for each § € (0, /2], the sector
(C;’ ={z€Cy|z=|zlexp(if) with 0 € [§, 7 — 5]} .

Let G:C — S,(C) be a function, and take Ay € R. One says that Gy, is
the nontangential limit from the upper half-plane of G at )¢, and represented as
Gy, = limy~;, G(A),if Gy, = hmx—uo recy G(A) forall § € (0, ). One says that
G), is the nontangential limit from the lower half-plane of G at 1, and represented
as Gy, = limy_n;, G(A), if Gy, = hmx—uo _sect G(A) forall § € (0, 7).

> ]

The reader is referred to [90] and [54] for a more extensive description and for the
proofs of the results contained in the following theorem. It can also be formulated
for Herglotz functions with negative imaginary parts in C*, as well as for Herglotz
functions defined on C™.

Theorem 3.13 Let G: CT — S,,(C) be a Herglotz function, withIm G > 0. Then,

(i) for Lebesgue a.e. Ay € R there exists the nontangential limit from the upper
half-plane limy~_;, G(A).

(ii) There exist real symmetric matrices L and K and a real matrix-valued
function P(t) defined for t € R, which is symmetric, nondecreasing and
right-continuous, such that, for A € C¥, the Nevalinna—Riesz—Herglotz
representation

1 t

GA)=L+KA+ /R (ﬂ - m) dpP(1) (3.10)
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holds, with
. N R
L = Re G(i) and K= lim — G(in) > 0.
n—>00 in
(ili) For A € R, represent P{A} = P(AT) — P(A7) = P(A) — lim,—,— P(1). The
Stieltjes inversion formula
1 1 A2
= (P{A} + P{Ao}) + / dP(t) = — lim Im G(t + ig) dt
2 (G1h) =0t oy
holds. In addition,
P{A} = lim ¢ InG(A + ie) = —i lim & G(A + ig),
e—>0t e—0T1

0= lim ¢ ReG(A + ig).

e—0T1

In particular, the matrix-valued measure dP in representation (3.10) is
uniquely determined.

Remarks 3.14
1. Since ImG(i) = K + [(1/(t* 4+ 1)) dP(1) and K > 0, one has

<ImG().
2. Representation (3.10) is deduced from the a priori weaker equality

1
o ImG() =K + / 7 4P

for A € CT, K being a real symmetric matrix, since a symmetric matrix-
valued analytic function is determined by its imaginary part up to an additive
(symmetric) constant matrix.

3. Note that the existence of nontangential limits from the upper half-plane ensures
that for Lebesgue a.e. A9 € R there exist lim,_, o+ G(Ao + p¢) forall p € CT,
and that all of them take the same value.

4. Let G:2 x CT — S,(C) be jointly continuous and Herglotz for each v €
2 fixed. Then, for each w € 2, there exist the limits limy\;, G(w, A) for
Lebesgue-a.e. Ap € R. Fubini’s theorem guarantees the existence of a subset
R < R with full Lebesgue measure such that for all 1y € R these limits exist for
mp-a.e. w € §2. Therefore, the limit for Ao € R is a X,,-measurable function: see
Remark 1.1. Recall that X, is the the mo-completion of the Borel sigma-algebra
of §2. This fact is fundamental in this and in the following chapters, where many
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matrix-valued functions on §2 defined in terms of the limits of Herglotz functions
are integrated with respect to my.

The following theorem will play a fundamental role in Sect. 3.3.4.

Theorem 3.15 Let (G,,) (for m € N) and G« be symmetric Herglotz matrix-valued
functions defined on CT and with positive semidefinite imaginary parts. Suppose
that G« (L) = limy—s 00 Gu(L) uniformly on the compact subsets of C*, and write

1 t
Gu(A) =Ly + KA — dP,(t
e A e B

1 t
«(A) =Ly + K A —— — —— | dP«(1).
o=t kens [ (=)o

Then, dPsx = lim,,_, oo dP,, in the weak™ sense; that is,
lim / (1) dP,()) £(2) = / £ (1) dP« (1) £(1) 3.11)

for every f:R — C?" continuous and with compact support.

Proof The proof relies on the analogous result for the scalar case, which will be
proved as a first step. So, assume that G,, and G4« are Herglotz scalar functions
on C* with positive imaginary parts and they have the above representation
for nondecreasing right-continuous real functions P,, and P, and real numbers
L, K, L«, and K. Note that, clearly, L, = lim,,— L, but it is not possible
to ensure a priori that K, = lim,,—,+ K;,. Define the sequence of positive measures
(im) by djtn(t) = (1/(£> + 1)) dP,,(t). Note that the total variation of i, is

1
tm(R) = /}Rm dPy(1) = C, (3.12)

for a real constant C which does not depend on m € N: this is guaranteed by the
convergence hypothesis and Remark 3.14.1.

Consider now the space Cy(R, C) of the bounded continuous functions on R
which limit to 0 as ¢ tends to co and —oo, endowed with the supremum norm. Any
positive Borel measure p of finite total variation defines a functional on Cy(R, C),
sending f to fR f(@®du(t), with norm given by p(R) (see e.g. Theorem 6.19
of [128]). Hence (3.12) shows that (&,,) can be understood as a bounded sequence
contained in the dual of Cy(R, C). Since Cy(RR, C) is separable, the Banach—Alaoglu
theorem ensures the existence of a weak™ convergent subsequence, say (), with
limit given by a finite measure fio. Call (oo to the measure given by diieo () =
(> + 1) djico(?). Then,

lim / 10 5 dPile) = / () dfioo(t) = / 10 5 dieo) (13

k—00
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forall f € Co(R, C). It follows immediately that

Jim. A ) dP() = /R £ dpioo0)

for each continuous f: R — C with compact support: this is because the function g
given by g(t) = (2 + 1) f(¢) belongs to Co(R, C). In addition, due to (3.12), and by
taking a suitable subsequence if necessary, it is possible to assume the existence of
the limit my = limgo0 [ (1/(2 + 1)) dPi(1).

The proof in the scalar case is completed by checking that the measure dP.
agrees with 1o hence dP, is the weak™ limit in the sense of (3.11) of any
subsequence of the initial sequence (dP,,), and therefore the weak™® limit of the
sequence itself. Define

~ ) 1
Koo = Im Gy (i) — floo(R) = Im G (i) —/ S dioo(1) .
r+1
Then, for every A ¢ R,

o IMGa(h) = Koo + / T e (3.14)

In order to prove this, fix a value of A and take the limits in the representation

ﬁ Im Gr(A) = Ky + / T de(t)
first,
lim K; = lim (Im Gi(i) —/ 2; de(t))
k=00 k=00 R +1
=Im G« (i) —my = Koo + floc(R) — my ;
and second,

kl_')rg()/]R AP dPi(t) = hm /(f(t)+ 1) de(t)
= /f(f)dﬂoo(t) +my = /(f(t) + 1) dfioo — floo(R) + mo
R R

1 -
Z/Ru A oo~ oo (R) + 0.

as can be deduced from the fact that the function f(f) = —14(>+1)/|t—A|? belongs
to Co(R, C), since A € C — R. Hence (3.14) holds. Finally, such a representation
for (1/ImA) Im G«(A) ensures the uniqueness of the measure (see Remark 3.14.2).
Consequently, djtoc = dPx, and the proof is complete in the scalar case.
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It is now easy to deduce the result in the matrix case. Fix z and w in C?" and
apply the scalar result to the sequence of scalar Herglotz functions (z*G,,(1) z) and
its limit z* G« (1) z. It follows that

mll)ngo /Rf(t) z*dP,()z = /Rf(t) 25dP. (1) z
for each continuous f: R — C of compact support. The polarization formula
/Rf(t) 2" dP(f)w
= /RJ?((Z +W)* dP(1) (z + W) — (z— W)* dP(t) (z — W)
iz iw)* dP() (2 + iw) — i (z— iw)* dP(1) (z — iw)) ,
which holds for P = P,, and P = P, guarantees that
mll)n;o /Rf(t) z5dP,,(H)w = /Rf(t) z°dP.(H) w.

The statement follows immediately by writing any function f: R — C?" as f(¢) =

Zjilﬁ(t) e;, where {ey, ..., ey} is the canonical basis of c?.

3.2 The Floquet Coefficient in the Complex Plane

Throughout this section, I" and m, will represent respectively an Atkinson pertur-
bation (see Definition 3.4) and a fixed o-ergodic measure on £2 (see Sect. 1.1.2).

3.2.1 The Floquet Coefficient Outside the Real Axis

The presence of exponential dichotomy and the properties of the corresponding
Weyl functions allow one to define the Floquet coefficient for the families of
systems (3.2) corresponding to values of the parameter A outside the real axis. That
is the goal of this section.

As in the case of rotation number and Lyapunov index, this coefficient depends
on the fixed o-ergodic measure my: set

wr(d) = /9 tr(Hy (@) + AT () + (H3(0) + AT3(@) Mf: (0, 1)) dmg ~ (3.15)

forA e C—R.
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Definition 3.16 The Floquet coefficient with respect to mgy of the family of linear
Hamiltonian systems (3.2) corresponding to A € C™ is given by (3.15).

Remark 3.17 1t is usual to define the Floquet coefficient for A € C™ not as wr (1)
but as wr (1) (which agrees with the conjugate of wy(1)). A possible reason for
this alternative choice will be clear after having studied the limiting behavior on
the real axis of the function wr, in Sect. 3.2.4: in that way, the real part of the
Floquet coefficient always agrees with the negative Lyapunov index —f (see
Theorem 3.30) and its imaginary part can be extended to a continuous function
on the complex plane, coinciding with the rotation number «j on the real axis (see
Theorem 3.32).

As stated before, Definition 3.16 extends to the general case the concept of Floquet
coefficient for nonautonomous two-dimensional linear Hamiltonian systems. The
function wp (1) was first defined in [72] following an alternative path explained
below (Remark 3.34).

It follows from (3.15) that the Floquet coefficient is an analytic function on C*.
An addition fact is that it can also be also defined in terms of M., as is shown in the
following lemma.

Remark 3.18 Let A:R — M,x,(R) be a C' function, and assume that A~'(z)
exists for all + € R. It follows from the Liouville formula that (IndetA(r)) =
tr(A' (DA™ (2)).

Lemma 3.19 Fix A € C —R. Then,

In . . I d
(@.2) LS nonsmgular, an

. . I
(i) for every w € §2 the matrix [Mff (@A) M=

I, I,

1
lim - Indet
Yoo 7 1E€ [M;(w.z, A) My (-t A)

t—o0 f

:| =0 mo-a.e.

(ii) The change of variables z = [Mff (I:).t’k) MF(I;M) ] w takes (3.2) to
, | H (0t 0,
= , , 3.16
w |: 0, H () w (3.16)

where HE, (0) = Hi(w) + AT(0) + (H3(w) + AT3(0)MFE (0, ).
(iii) Finally,

wr(d) = —/Qtr(Hl(a)) + AN () + (H3(w) + AFg(w))MF(w,)L)) dmy .

Proof

n Ill
ME (0.2) My (@)
of lj{ 2 (@) @ I1, (w) = C*", the matrix is nonsingular. In addition, it can be

(i) Since the column vectors of the matrix [ ] determine a basis
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(i)
(iii)
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checked immediately that

My —M5H™! 0, My L[ L 1
- ! + + = | =D
0, (Mp —M7) Mt L] [ ME My

Note that the matrix M. — M,i' is nonsingular, since it has negative (resp. pos-
itive) definite imaginary part when A € C* (resp. A € C7): see Propo-
sition 1.21(i). This equality permits one to determine the linear differential

In In ] which

system satisfied by the matrix-valued function # — [ M (@1.2) M (@1.0)

has coefficient matrix

[y )L ]

(ME)Y (Mp) | LM My
_[ 0, O, M(M;—M,t)—l 0, M My —In}
— Ly (mry 0, My —MHT L -Mp L]

The arguments (-, A) are omitted. It is easy to check that the trace of the right-
hand term is tr((MI‘f — M;)’(M?I - M7p) o, A)). Note that the function
tr((M} — Mp) (M} —Mp)™"(w.1)) is continuous on £2. Hence Birkhoff’s
ergodic theorem (see Theorems 1.3 and 1.6) and Remarks 3.18 and 3.11 ensure
that

lim 1 Indet L L
=00 f Mj'f(a)-t, A) Mp(wt,A)

= /Q (M} — Mp) (M} — Mp) ™ (. 1)) dmy

= /Q (lndet (M?I(a),k) —M;(w,k)))/ dmo =0

myp-a.e. So (i) is proved.

Statement (ii) follows from a straightforward computation taking the Riccati
equation (3.9) as the starting point.

The invariance of the closed Lagrange subbundles LIjE’ , Which are determined
by the exponential dichotomy, and the representation given by Theorem 3.8,
make it possible to write

I Iy
Ura(t, w) [M;g(w, 1) My (o, /\)}

_[ I I, } Wh(tw) 0,
T M (0, ) Mp(wt,)) 0, Wr(to)|
(3.17)
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+
Then [Wﬂg(r’w) O i| is the fundamental matrix solution of (3.16) which
n Wi 5 (L)

agrees with I, at + = 0. The fact that det U (w,f) = 1, statement (i), and
again the Liouville formula lead us to

1
0 = lim " Indet Ur (t, ®)

=00

.1 4 .1 -
= t1_1)1}>10 " Indet W7, (1, ) + rl_l)llolo " Indet Wr,, (, w) (3.18)

/trHIfk(w)dmo+/ tr Hp (w) dmy
2 ’ o)

mo-a.e. This and definition (3.15) prove (iii).

Remark 3.20 Note that the last part of the previous proof ensures that, if A € C—R,
.1 +
wr(d) = :br1_1>r(1>10? Indet Wr, (¢, w) (3.19)

mp-a.e. That is, wr (1) measures the exponential growth and the rotation of the
matrices WfEA(t, ), which are respectively induced by n linearly independent

solutions of (3.2) with initial conditions in the complex Lagrange planes llf , ().
All these properties will be used in the following sections in order to analyze the
Fréchet differentiability and the boundary behavior of the Floquet coefficient.

3.2.2 Fréchet Differentiability of the Floquet Coefficient

Throughout this section, || - | will represent the Euclidean norm of any vector in
R? or C¢ for any dimension d, as well as the corresponding operator norm in any
space of real or complex matrices. Nevertheless, the results are independent of
the choice of an equivalent norm. Let C(§2, sp(n, C)) be the space of continuous
matrix-valued functions K: £2 — sp(n, C) endowed with the topology given by the
norm ||K|le = sup,cq |[K(w)||. The same topology will be given to any space of
continuous functions taking values in any vector space of matrices. And let A, be
a fixed complex value of the parameter with Im A, # 0. Theorems 1.92 and 1.95

guarantee the existence of an open neighborhood B C C($2, sp(n, C)) of 0y, such

that, for all K = [2 _12{] € B, the family of systems

7 = (H(wt) + J ' T(ot) + K1)z, wef. (3.20)

has exponential dichotomy over £2, and such that there exist the Weyl functions
representing the closed subbundles of the solutions bounded at +oo. These are
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denoted M* (w, K). As in (3.15), define
w(K):/ tr(Hy + ATy + Ky + (Hs + AT + K3) MT (0, K)) dmy (3.21)
2

with H, Hs, I, I3, K, and K3 evaluated in w; and represent the fundamental matrix
solution with value I, at t = 0 by Uk (t, ). Note that all of these quantities also
depend on the fixed I" and A, although this dependence does not appear explicitly
in the notation.

Let Q(w,K):C? — C?" be the projection associated to the exponential
dichotomy of (3.20) (see Definition 1.58). Note that

- _yH-ly- (M- — ML
Q:[(M MY M (M~ — M) } 522)

MYM~ —MYY'\M™ MM — M)

as seen in Remark 1.81.1. It follows from Theorems 1.92 and 1.95 that the two
section maps defined by B — C(£2,GL(2n,C)), K — Q(-,K) and B —
C(£2,S,(C)), K = M¥*(-,K) are continuous. By reducing B if needed, it can be
arranged that M* (-, K) and Q(-, K) are uniformly norm-bounded on §2 for K € B.
In addition,

Lemma 3.21 sup, ., |[M*(w,K) — M*(w,0,,)|| = O(|K||e) for K — 0,,.
Proof By Proposition 1.68 and Theorem 3.8, (I, — Q(w, K)) [ I ] = [0”]

Mt (0.K) 0,
for all K € B, which implies that

0y
(1211 - Q(a)’ 02”)) |:M+(a)’K) —M+(CU, 02n)i|

— (Q.K) - Q(@.02,) [ s K)} .

Call this matrix [2 ] According to (3.22),
Fl = (M_(ws 027!) - M+ ((l), OZn))_l (M+((l), K) - M+((l), 0271)) .

Therefore, since ||A|| < ||B||||B~'A| and ||C| < || [IC)] I < |IC|| + |ID]| for square
matrices A, B, C and D with B nonsingular, one has that

||M+(G),K) _M+((U, 027!)”
< M~ (@,02) =M™ (0, 02) 1| F1

< [IM~ (@, 02,) — M (w,02,) | H [?:|
>

1

< M~ (@,05,) =M™ (0, 02) [|Q(, K) = Q(, 02) (1 + |M™F (w0, K)]]) .
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According to Theorem 1.92(iv), sup,c |Q(®,K) — Q(w,02,)|| = O(||K||s) for
K — 0, which together with the uniform bound of M* (w, K) for (w,K) € 2 x B
proves the assertion for M. The proof is analogous for M, keeping now in mind
that

0 I
) 0 n — " — = ) 0 n) — 7K — "
Q1. 0an) [M (0, K)—M (w,Ozn):| (Q@.02) = Q. X)) [M (a),K):|
forall K € B.
Define now
~ Uk(t,w w,K)J UL (s, w if t>3s,
Grlw.t.s) = k(. w) Q(w, K) k(5. @) = (3.23)
_UK(tv (l)) (12}1 - Q((U, K)) J_1U£(S, (U) 1f s>1,
and note that the symmetric matrix-valued function given on §2 x B by
1 ~ ~
Gw,K)= - ( lim Gg(w,0,s) + lim GK(a),O,s)) (3.24)
2 \s—>0— s—>0+
satisfies
1 -1
Gw,K)=|0(w,K)— 512,, J . (3.25)
Hence, by (3.22),
1
M~ —M*)~! — M =My M M)
G= 2 (3.26)

% M~ +MYYM M) MM M) M

This section is basically devoted to proving the following trace formula:

Theorem 3.22 The map w: B — C, K — w(K) is Fréchet differentiable at 0,,,
with

do, WK = /Qtr(G(a),OZn)JK(a))) dmy = /Qtr(Q(a),Oz,l) K(w)) dmy .

This result plays a fundamental role in the application of the properties of the
rotation number to the study of the spectral problems associated to (3.2) and (3.3),
as explained in Sect. 3.3. It appears in [72] in the more general setting considered
there. The different proof presented here is motivated by an argument of Kotani and
Simon [91]. The main step of the proof consists in checking the first equality, which
follows easily once the following technical lemmas have been established.
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Lemma 3.23 The maps M*:B — C(2,Sc(n)), K — M*(w,K) are Fréchet
differentiable with respect to K at 0,, for all w € 2. More precisely, there exist
continuous maps do,, M: 2 x C(82, 5p(n, C)) — C(2,Sc(n)) such that the section
maps do, M* (): C(2, sp(n, C)) — C(82,Sc(n)) are bounded linear operators for
all w € 82, with

M* (@, K) — M* (@, 02,) = do, M* (@)K + 0o(|K]|2) (3.27)
K1 K3

for K — 0y,. In addition, for all K = [Kz —Ki[] in C(£2,sp(n,C)), the maps t —

do, M* (w-1)K satisfy the matrix differential equations
(M) = fra, (0t M* (w+1,0,,))-8M + B (w-1) (3.28)
respectively, where

fra (@, M)'D == D (H1(@) + ATy (@) + (H3(@) + AT3(@)M)
— (H! (@) + AT (@) + M(H;(0) + AT3())) D
and
Bi(0) = K (0) — ME (0, 02,)K; (@) — KT (0)ME (0, 05,)
— ME (@, 05,)K3(@)M* (@, 0,,) (3.30)

Proof As in Lemma 3.19(ii), the change of variables z = C(w-f) w, with C(w) =

I I .
[ M (@.020) M= (@.02) ], transforms (3.20) for K = 0,, into the system
+(w-
W = H™ (w) _On w.
0, H™ (w1)

where HY(0) = Hi(w) + A(0) + (H3y(@) + AeT3(0))MT (0, 05,). The
fundamental matrix solution of this system agreeing with I, at t = 0 is the

wtw) 0,

0 W (tw)
boundedness of C and C™! guarantees that the change of variables preserves the
exponential dichotomy of the original system, and the associated projection for the
transformed system is given by [é’; 8’;] for any w € §2 (see e.g. Proposition 1.56).

Hence there exist positive constants 1 and 8 such that

matrix function [ ], given by the equality analogous to (3.17). The

IWT(t,0) WH (s, 0)|| <ne P forr>s,
(3.31)
W= (r,0) (W) (s, 0)|| < nef™ forr<s.
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As a first consequence, lim, 0o W (t,w) = lim,,_oo W™ (t,0) = 0,, and the
homogeneous equations

(M) = fro, (wt, ME (0-1,02,))-6M ,

with fr, given by (3.29), have no nonzero matrix solutions bounded at oo,
respectively. This is due to the fact that any matrix solution M satisfies M(0) =
(WH (1, 0) M(t) WE (2, w).

A second consequence is that, for all € 2, the matrix dy, M + (w)-K defined
for K € C(£2,sp(n,C)) by

do, M (0)-K = — /OO(W+)T(S, ) B}' (w-s) WH (s, ) ds, (3.32)
0

with B,Jg given by (3.30), is well defined. Note that BI}L (w) is jointly continuous in
(w,K) € 2 x C(82,sp(n,C)), it is bounded on £2 for each K € C(82,sp(n,C))
fixed, and it is linear in K for each w € £2 fixed. A technical and standard
argument allows one to deduce from this fact and (3.31) that the map do, M™: 2 x
C(£2,sp(n,C)) — C(£2,Sc(n)) given by (3.32) is well defined and jointly
continuous. In particular, for all @ € §2, the map do, M ™ (w): C($2, 5p(n,C)) —
C(£2,Sc(n)) is a bounded linear operator. In addition, it is easy to check that

dOan+ (w't)'K

= —/OO(WJF(S, @)(WH) ™1, )" B (0-5) W (5. 0)(WH) ™! (1, w)) ds,

which ensures that ¢ — dy, M ™ (w-1)-K is the unique matrix solution of (3.28) which
is bounded at co.

In order to prove (3.27), use (3.9) to obtain the matrix differential equation
satisfied by t > M (w-t, K) — M+ (w-1,0) with K € B:

§M' = fry, (w1t MY (0-1,0))-8M + B} (0-1) .
where

B (0) = Ka(0) — M T (0, K) K1 (0) — KT (0) M (0, K)
—MT (0, K)K3(0) M (0, K)
- (M+(a)7K) - M+((l), OZn)) H?(a)) (M+(CL),K) _M+(a)v OZn)) .

Therefore, since t — M+ (w-1, K) =M™ (w-t,0) and 1 + B}t (e-1) are bounded on R,

MY (w,K) =M (0,0,,) = — / oo(W+)T(s, w) B (w-5) WF (s, ) ds . (3.33)
0
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On the other hand, Lemma 3.21, (3.31), and the expressions of §}' (w) and B;(" (w)
guarantee that

sup B (@) — Bi ()] = O(IK|%) = o([Kl|)

WES

for K — 0,,, which together with (3.32) and (3.33) gives (3.27).
The proof for M~ is analogous, taking the definition

do, M~ (w)-K = /0 (WHT(s, w) By (w-s) W™ (s, w) ds

as a starting point.
The following result is an immediate consequence of Lemma 3.23:

Lemma 3.24 The map

. 2xB —>C
(0,K) — tr((H3(a)) + A 3(0) + K3(0) (M (0, K) —M_(w,K)))

is Fréchet differentiable with respect to K at 0y, and its derivative is given by
do, H(w) K = tr((H3 (@) + A T3(@)) (doy MT (@)K — do, M~ (w)-K)
+ K3 (@) (M (@, 020) = M~ (0, 020)) )
for K € C(82,sp(n,C)). In particular,
Hw,K) —H(w, 02y) = do,, H(w)-K + o(|[K|l2) for K— 0.

Lemma 3.25 Forall K € C(82,sp(n, C)),
/ do,, {(w)-K dmy = 2/ tr(G(w, 02,)JK (w)) dmy .
Q Q

Proof Define D = Mj — My and S = M} + My where M (0) = M*(w, 0,,).
For a fixed element K € C(£2, sp(n, C)), write SM™ (w) = dy, M* (w)-K and §S =
SM™ + 8M~. Write also Hi** = Hj+ Ay I forj = 1,3. The argument w is omitted
in which follows. It is not hard to check from (3.9) that

tr((D7')'8S) = 2 w(H{*D™'8S) + tr(H*SDT'$S)
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and from the definition of B that
(D~ (BY + By))
=2t (D'K, — D'SK; — D'M{ K3 My ) — tr(K3D).
These equalities and (3.28) yield
r (D716S) = 2 w(H}*D7'5S) + we(Hy*SD™8S)
+ (D7 (fran (- Mg )SM™) + D7 (fra, (-, Mg )-8M7))
+2tr (D7'K, — D7'SKy — D' M K3My)) — tr(K3D) .
In addition,
tr(GoJK) = tr(D™'K, — D7'SK, — DT'MF K3My)
where Gy(w) = G(w, 05,), and
(D™ (fra (. My)-8MF) + D™ (fra, (. My )-8M 7))
= —2tu(H{*D7'8S) — r(H{*SD™'8S) — tw(H* (SMT — M7)) .
It follows from the last three equalities that
tr(D7' 8S) = 2tr(GoJK) — tr(K3 (M — My) + HY*(SM™T — 8M™)),
and hence Lemma 3.24 guarantees that
tr(D™(w) 8S(w)) = 2tr(G(w, 02,)JK (w)) — do,, H(w) K .

As explained in Remark 3.11, the L!(£2, my)-integrability of these functions proves
Lemma 3.25.

Proof of Theorem 3.22 Definition (3.21), Lemma 3.19 (which can immediately be
adapted to the family (3.20)), and the formula for #(w, K), yield

w(K) = %/Qf(a),l{) dmy.

Consequently, Lemmas 3.24 and 3.25 ensure that

w(K) ~w(03) = 3 /Q do,, /@)K dmo + o(IK )

/9 tr(G(@, 02,)JK () dmo + o(|K [ 2)



148 3 The Floquet Coefficient and Atkinson Problems

for K — 0,,. Clearly, C(£2,sp(n,C)) — C, K > [, tr(G(w, 02,)JK(®)) dmy is a
continuous map, which completes the proof of the first equality in the theorem. The
second equality is an immediate consequence of the relation (3.25) between Q and
G and the fact that tr K = 0.

3.2.3 Derivative of the Floquet Coefficient with Respect to A

Theorem 3.26, which is an easy consequence of Theorem 3.22, ensures the existence
of the derivative of wr (1), with respect to the argument A when it lies outside the
real axis, and provides the values of that derivative. This section is devoted to an
analysis of the imaginary part of the derivative. A result will be obtained which will
be required later to study the limiting behavior of the Floquet coefficient on the real
axis.

As in the previous section, define, for Im A # 0,

Ura(t,®) Qra(0) J7'UL, (5, 0), t>s,

Gra(w.t.s) =
ra( ) —Urp (6, ) (In — Qra (@) I UL, (s, 0) , s> 1,

(3.34)

where Q) (w) is the projection determined by the exponential dichotomy of (3.2).
According to Proposition 1.68, its range is [T (w) and its kernel is [~ (), so that
Theorem 3.8 ensures that Qr; (w) is given by the expression (3.22) with M* =
MIjE (w, A). Then, the symmetric matrix

1 ~ ~
Gr(w,A) = 3 (sgl(l)l— Gri(®,0,5) + 111(1)1Jr Gnl(w,O,s)) ,

agrees with the matrix obtained by substituting M* by MIjE (w,A) in (3.26). In
particular, it is analytic with respectto A € C — R.

Theorem 3.26 The derivative of the function wi (1) given by (3.15) with respect to
the parameter is given by

wir(d) = /Qtr(Gp(a),/\) T'(w)) dmg (3.35)

forA e C—R.

Proof The statement follows from Theorem 3.22: just fix A, = A with ImA # 0
and consider the perturbed systems (3.20) with K = &J~'I" for || small enough.

The properties of the function G, which are analyzed in what follows, will play
a fundamental role in analyzing the limiting behavior of the Floquet coefficient, as
well as in the relation between the rotation number and exponential dichotomy.
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Theorem 3.27 ImA ImGr(w,A) > 0 for A € C — R. In particular, the matrix-
valued function A — Gr(w, A) is Herglotz for all v € 2.

Proof Fix A € C — R and consider, for each w € 2, the linear operator ﬁﬁo =
J((d/dt)y — H,) — A I, (where (H,f)(f) = H(w-t) f(r) and (I ,)(t) = I'(w-1) £(2))
from S to L>(R, C?"), where S is the dense subset of L?(IR, C?*) composed of the
absolutely continuous functions with square integrable derivative. It follows from
the exponential dichotomy of (3.2) that Lé) is invertible. To check this assertion,
define

£,() = / - Gro(w.1,5) g(s)ds, (3.36)

for g € L*>(R,C?"), and note that its expression is given by (3.34). Then f, €
L>(R,C?"). This fact follows from the Riesz—Thorin interpolation theorem: it is
easy to deduce from Definition 1.58 that (3.36) defines a bounded operator from
L*®(R, C?") (the set of bounded measurable functions) to itself, while the equality

[ toa= [ ([ Grnwrsa)ua
+/_Z ([;Eﬂl(w,t,s)dt) g(s)ds.

guarantees that it defines a bounded operator from L'(R,C?") to itself. There-
fore, (3.36) defines a bounded operator also from L?(R, C?") to itself. In addition,
f, is absolutely continuous on R. Finally, it is easy to check that f, = J~'g +
(Hw +AJ7r w) f,, which has two consequences: first, f/ is square integrable, so
that f, € S; and second, g coincides with Ei) f,, so that the operator (3.36) is the
inverse of the initial one.

It is easy to check that £ is a selfadjoint operator. Since its imaginary part
is —Im A I, one can conclude that the imaginary part of its inverse is a positive
(resp. negative) semidefinite operator in the case that A € C™T (resp. in the case
that A € C7). A possible way to prove this assertion is to use the arguments of
Proposition 1.21. And a consequence of it is that, if g € L*>(R, R?"),

o o0 —
ImA Im/ / g’ () Gra(w,t,5)g(s)dsdt > 0
—o0 J—00
and, by choosing g(t,z) = ¥ (¢) z for all z € R?", it turns out that the matrix

Im A Im/oo /Oo Grow.t.s) Y (@) v(s)dsdt



150 3 The Floquet Coefficient and Atkinson Problems

is positive semidefinite for every function ¥ € L*(R,R). Now let ¢ € C'(R,R)
satisfy ¢|(—co—1] = —1/2 and ¢|[1,00) = 1/2. Then,

Tm A
ImAGr(w,A) = n; (hm Gra(@.0.5) + lim Gri(,0, s))

~ tim % /_ (f Gra..96/b )¢/
+ lim “Z—f _i ( / Braw.1.5) ¢/ 5/ ds) ¢/ (1/k) di

=i ™2 [ [ Grawravamesmaa

= Jim % / / Gralw.1.9) ¢4/ ¢/ (/) s,

so that it has positive semidefinite imaginary part, as asserted in Theorem 3.27.
The following result is an immediate consequence of Theorems 3.26 and 3.27.

Corollary 3.28 For A € C—R,
Imw/-(1) = / tr(I'*(0) Im Gr(w, 1) I'?*(w)) dmg
2
= / tr(I (@) Im G (w, A)) dmy ,
2

and hence Im A Imw/. (1) > 0.

Remark 3.29 The maximum principle for harmonic functions and Corollary 3.28
ensure that Im w/. is either identically zero or strictly positive (resp. negative) on the
upper (resp. lower) half-plane. In fact, it will be proved (see representation (3.44))
that Imw/. = 0 if and only if the rotation number o is a constant function on the
entire real axis, which is not possible under mild conditions on the measure m (see
Theorem 3.50).

3.2.4 Limit of the Floquet Coefficient on the Real Axis

This section is devoted to the study of the relation between the limit of the Floquet
coefficient on the real axis and the rotation number and the Lyapunov index of the
(real) limit systems. Recall that aj (1) represents the rotation number of (3.2) for
A € R, and that B (4) represents the nonnegative Lyapunov index for A € C.
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The arguments used reproduce basically those appearing in [72]. Consider first
the real part, Re w (1).

Theorem 3.30 Forevery A € C —R,
.1 .
Rewr(A) = — lim " In||A"Ura(t,w)|| = —Br(A)

my-a.e. Moreover, there exist the nontangential limits from the upper and lower
complex half-planes

lim R A) = lim R A)=—-Br(A
A{‘n)}o ewr(A) A}IIEO ewr() Br (o)

for Lebesgue a.e. Ay € R.

Proof As explained at the beginning of Sect. 2.5, the existence of exponential
dichotomy for the system (3.2) with Im A # O ensures the existence of 2n Lyapunov
exponents Ff, ..., FB, associated to the ergodic measure my, with g; > 0 (see
Remark 2.42.1). These exponents are respectively provided by solutions with initial
data on the stable and unstable subbundles LE. In addition, according to the
Oseledets theory, the sum of the positive Lyapunov exponents, i.e. the Lyapunov
index B (A) of (3.2), agrees with the function lim,—o,(1/1) In || A" U, (¢, w)|| for
w € 20, with my(£29) = 1 (see (3.4)). So, the first assertion will be proved once it
is proved that Rew (1) = —Br (1) if ImA # 0.

Fix w € £2¢ and choose bases {z ,zfﬂ} of the subbundle fibers l%k (w)

PRIEEE
such that
.1 + ;
lim — In|z-(t,w)| = FB; forj=1,....n,
|t|—>o00 T J
where zji(t, w) = Uri(t,w) zjf ;- Theorem 3.8(ii) guarantees the existence of

. . Ill
nonsingular matrices P¥ such that [ wE (w)] = [zaﬂf1 zjfn] P*. Hence,
+ , ,

W:t (t.») — I — [, + +
[M%(w-?f wmm} ~ 00|y | =G0 o

with Wﬁx (t, w) defined by (3.17). Look at the n first rows of this matrix equality to
conclude that

det(Wr, (1, )" W, (1, ®))
= [Ix] (. @)[|> -+ X, (¢ @)||*(det P7)* det R(t, w) ,



152 3 The Floquet Coefficient and Atkinson Problems

where X;~ represents the vector composed of the n first components of z;~ and the
entry ij of the matrix R(¢, w) is defined for every i,j = 1,...,n by

(x5 (. ) 1% (1 ) ) ™'x; (1, 0) %7 (1, ) -

Therefore, the choice of z;” (7, w) and the boundedness of det R(7, ) lead to

1 _ L ‘
Jim — In | det Wy, (1, )| < 2&’& Iz (r o) = 2/3,- =Br).
J= J=

Analogously, lim,—,s(1/7) In| det WIJI,A (t, )] < —Br(A). The argument leading
to (3.18) also proves that

1 1
0= rl_lfgo? In|det Wy, (1, 0)| + rl_l)r(r)lc? In|detWp; (t,w)| < Br(A) — Br (),
so that lim,—, o, (1/¢) In | det Wff,A (t, )| = £Br(A). Hence, by (3.19),

1
Rewr(A) = —TE)IEO? In | det Wr; (7, w)

= lim 1 In|detW;, (1, 0)| = —Br ().,
=00 t ’
which, as explained at the beginning of the proof, demonstrates the first assertion of
the theorem.

To prove the second assertion, recall that the holomorphic function —iwp is
Herglotz, since fr(A) > O for all A ¢ R. One uses Theorem 3.13 to establish
the existence of ,311'()&0) = —limy\y, Rewr (1) = limy\y, Br(A) and B (L) =
—limy =3, Rewr () = limy 3, Br(A) at Lebesgue-a.e. Ay € R. Remark 3.14.3
ensures that ,8~ r(Ao) = lim,_ o+ Br(Xo+ pe) forevery p € CT. On the other hand,
the function B is subharmonic on the entire complex plane (see Theorem 3.1).
In particular, for any fixed A € C: limsup,_,, fr(n) < Br(d); pr(d) <
(1/2m) fozﬂ Br(A + ge?)df for every ¢ > 0; and there exists &y > 0 such that
Br(A+ee®) < Br(A)+1foralle < gpand @ € [0,27]. Therefore, Fatou’s lemma
ensures that

1 2 )
Br(A) < limsup — Br(A + ) do
2 0

e—0t

1 2 )
< —/ limsup Br (A + g€®)df < Br(X)
27[ 0 £_>0+
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for all A € C. Taking A € R for which ,311'()&0) and B (Ao) exist, one sees that

2

Br(Ao) < % (/0 B (Ro)do + Br(Ao) d9) <Br(do),

which in turn guarantees that Sr(Ag) = (,311'(/10) + B (A0))/2. This and the
inequalities 0 < ,3?5()&0) < Br(XAo) prove that B (1) = ,314:()&0) = Br(Ao), as
asserted.

The next objective is to analyze the limit of the imaginary part of w (1).
Remarks 3.31

1. As explained in Remark 3.14.4, the Herglotz character of the Weyl functions
ensures the existence of a subset R € R with full Lebesgue measure such that
for all Ap € R there exist the limits lim,x;, MIjE(a),A) for my-a.e. v € 2.
Throughout this chapter and the following one, the value of each limit will be
represented as

ME(w, Ao) = Ali\nll ME(w, X)
0

whenever it exists. Recall also that the functions @ +— M7 (w, ko) are X, -
measurable. Clearly, ImMIiE (w, Ao) = 0.

2. Write M) (t,w, M) for the solution of the Riccati equation (3.9), where A €
C and M;(0,w,Mp) = M,. Take Ay € R and denote by §2,, the subset of
points @ such that the limit Mli' (w,Ao) = limy~z, Mli' (w, A) exists. Assume
that M, (t, w, My) is globally defined. Then, for all € R,

Jim M (1. 2) = Jim M3 (., M7 (0, 0) = My, (1. o, Mf (0. X)) .

as can be deduced from the classical theorems on continuous dependence of
solutions of ordinary differential equations with respect to initial conditions and
parameters. Therefore, the limit MIT (w-t, Xp) exists for all 7 € R (that is, the
o-orbit of w is contained in £2;,), and the map ¢ — MIT (w-t, Ag) solves the
equation (3.9) for A¢. Clearly, if M, (¢, w, M) is globally defined forall w € £2;,,
then the set §2,, is o-invariant. An analogous argument works for M- (w, Ao).

These facts will be fundamental in the proof of the following result, which shows
that the limit of the imaginary part of the Floquet coefficient determines the rotation
number of the limit system. In turn, the properties of the Floquet coefficient will
be used in a later analysis of the boundary behavior of the Weyl functions (see
Sect. 4.3).
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Theorem 3.32 Forall Ay € R,

A—>A£1,r121A>0 Imwr(A) = ar(io). (3.37)

In particular, Imwr is continuous on the closure of C*.

Proof As stated in Remark 2.12, the rotation number of the family (3.2) for o € R
with respect to my is given by

11 !
ar(do) = —lim — — Im | trfr,(@-s, My, (s, w, Mp)) ds
t—oo 2n t 0

t—o00 t

t
= lim l Im tr(Hl ((l)'S) =+ AOFI (a).s) (338)
0
+ (H3(w-s) + Aol 3(w-s)) M, (s, w,Mo)) ds

mp-a.e. for all My € S,j’((C) (i.e. with ImM, > 0), where M), (t,w, M) is the
(globally defined) solution of the Riccati equation (3.9) with M, (0, w, My) = M.
The operator fr (w, M) is given by (3.29).

Fix A in the set R of Remark 3.31.1, so that the limit function MIT (w, Ap) exists
for w € £2, with mo(82;,) = 1.

To obtain an overview of the main arguments required in the following proof,
assume that the function 2, — S,(C), v — M}f (w, Ag) satisfies the following
conditions. First, it takes values on S;l" (C), so that My, (t, 0, M T(w, Ag)) is globally
defined and agrees with M}f (w-t, X9), and £2,, is o-invariant: see Lemma 2.10 and
Remark 3.31.2. Second, it belongs to L! (£2, mp): see Definition 1.32. Note that

A11\51 tr(Hy (@) + A T (o) + (H3(0) + A T3(0)) M (w, 1))
= tr(H(0) + Ao (@) + (H3(®) + AoI3(w)) M7 (@, Ao))

for w € §2),. Third and finally, assume that the Lebesgue dominated convergence
theorem can be applied to these directional limits. Then, on the one hand, defini-
tion (3.15) yields

lim Wr(l) = / tr(Hl(a)) + A()F](Cl)) + (H3(C()) + A()Fg,(a)))M]—t(a),Ao)) dmy ;
Ao Q

and, on the other hand, relation (3.38) for M, = Mli' (w, Ap) and Birkhoff’s ergodic
theorem (see Theorems 1.3 and 1.6) prove that

ar(do) = Im/QtF(Hl (@) + 2ol (@) + (H3(@) + AoT3(w)) M} (@, Ao)) dmy .
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That is, limy\ 1, Imwr (1) = ar(Ag) for all Ag € R. As will be explained at the
end of the proof, the convergence from the upper half-plane follows from this fact
and the Herglotz character of w..

Now, in general, it can be only asserted that the function Mli' (0, o) is X,-
measurable and satisfies Im Mli' (w,Ap) > 0, and hence this argument cannot be
applied. The solution to this problem is quite technical: the framework considered
here must be embedded in the more general one studied in [72], as was done in the
last part of Sect. 2.1.2 of Chap. 2. That is, the family (3.2) is transformed for all
A € C by means of the change of variables Z = K~ 'z; recall that K = [ ity ‘I” ] The
expression of the transformed system is given by the corresponding matr1x (2.12),
with H; substituted by ij = H; + AT;. It is clear that the exponential dichotomy
is preserved, and that the fibers of the corresponding closed subbundles can be

represented by [ ], where the new Weyl functions M IjE (w, A) are related to

In
M.
the “old” functions MIjE (w,A) (for A ¢ R) by the Cayley transform

M = (il, — M)(il, + M)™" and M = i(I, — M), + M)"". (3.39)

Consequently, M7 ME (o, A) € Dc for A ¢ R, where D is the set of the complex
symmetric n X n matrices M with I, — M*M > 0: see the beginning of the proof
of Lemma 2.17. Recall that Ao € R, and let M} (@, Ap) be the transform by (3.39)
of the nontangential limit M (w, Ap), which belongs to the closureg, c)Dc. Then
the set £2;, € §2 with mo(.Qk ) = 1 such that M+ (@, Ap) exists for v € £2;, is
o-invariant, and the map w +— M (w,Ag)isa solutlon along the flow on §2, of the
Riccati equation (3.9) for A: see Remark 3.31.2, and keep in mind that Lemma 2.15
ensures that the solution of the transformed Riccati equation corresponding to Ag is
globally defined for every initial datum in the closure of D¢ and for all w € 2. The
boundedness of the closures, c)Dc ensures that the map is L' (2, mp)-integrable.
As before, these properties, Remarks 2.20 and the Birkhoff ergodic theorem lead to

1 - ~
ar (o) =~ 1 [ iy @. 51w, 20) dmo, (3.40)

where fn 1w, M ) represents the linear operator obtained as the variational equation
of the Riccati equation corresponding to the transformed systems associated to its
solution M. "

The definition of fr;(w, M)-D is obtained by the substitution of H; for HjA
in (2.34). In turn, this expression yields

trfr,k(w»M)

_ (3.41)
= —ntr (i(Hy — Hy) — (H} + (H)" —i(H; + H}))M),
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where Hjl represents Hj*(a)). A straightforward computation from the Riccati
equation corresponding to the transformed systems proves that

i(Hy — H}) — M(H} + (HD) — i(H} + H3))
=2M'(I, + M) + (H))" — H})

—2i (I, — M)HX (I, + M)~ —2(1, + M)(H})T (I, + M)~

for M = 1\7}' (w, A). According to Remarks 3.18 and 3.11,
/ (M (I, + M)~y dmg = / (Indet(l, + M))'dmo = 0.
2 2
Therefore, by (3.39) and (3.19),
1 7 7+
—— | ufri(w, M} (w, 1)) dmgy
2n 0
= / terdmo + / tr(H_,f(i(In — A7I)(In + 1\71)_1)) dmy (3.42)
Q Q
= / tr(H} (o) + Hy ()M} (0, 1)) dmg = wr(A) .
2

It follows from (3.41) that | tr fry (@, 1\7) || is uniformly bounded when (w, M) varies
on §2 x D¢. And, clearly,

Jim trfra(w. Mj- (0. ) = trfr,(@. Mf (0. Ao))
0

my-a.e. Consequently, relations (3.42) and (3.40) and the Lebesgue dominated
convergence theorem ensure that

)kli\n)}o Imwp (/\) =aor (Ao) . (343)

Recall again that, from the beginning, A, is assumed to belong to R: it is a point
for which the Weyl functions converge nontangentially my-a.e. That is, so far it has
been proved that Imw converges nontangentially to the rotation number oy at
Lebesgue-a.e. point of the real axis.

On the other hand, according to Corollary 3.28, Im W/r (A) = 0if ImA > 0.
Theorem 3.13 and this Herglotz character ensure that, if Ao € R and ¢ > 0, then

Imwi- (Ao + ic) = ke + /R 7 du(t)

&
_ AO)Z + g2
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for k > 0 and for a positive regular Borel measure dit on R satisfying fR 1/ +1)
du(t) < oo, which is induced by a nondecreasing nonnegative Borel measurable
function u: R — R. In addition, if A, and A, are continuity points of the distribution
function u, then

A2

lim Imw/ (1 + ie) dt
e—0t A1

(1(A2) —p(A) =

A2 oIlmwp

lim
=01 e ot

(t+ie)dt

= lim Imwp(A; 4+ ig) — lim Imwp(A; + ie).
e—0T1 e—0T

This property and the nontangential limiting behavior (3.43) mean that w4 (4) and
o are the same function (up to an additive constant) Lebesgue-a.e. That is,

. 1 e
Imw’r(/\o + l€) =ke+ ; /R m dOlF(l) (3.44)

and hence the continuity of « on the real axis proved in Theorem 2.25 guarantees
that

Olp(lz) — Olr(ll) = 11m+ ImWr(/lz + i&‘) — 11m+ ImWr(/ll + i&‘) (345)
e—0 e—>0

for all A; and A, in R. Fixing A; € R and applying (3.43) ensures that
ar(A2) = lim,_ o+ Imwr (X, + ie) for every A, € R. Take now sequences
(An) in R and (g,) in R4 with limits Ay and 0. The proof of the first and
main assertion of the theorem will be complete once it has been checked
that lim,,— oo Imwp(A,, + ie,,) = ar(Ay), for which it suffices to check that
limy,—eo(Imwr (X, + igy,) — Imwp (Ao + ig,) = 0. Take any § > O0; find p
such that if A € R and |A — A¢| < p then |a;(A) — ar(Ao)| < §; and note that
there exists m; such that A,, € (A9 — p, Ao + p) whenever m > m;. Reasoning
as above and keeping in mind that Im W/r (t + ie,y)) > 0 fort € R, it follows
that

lim [Imwp(A, + i) —Imwp (Ao + igy) |
m—>00

lim
m—>00

< lim
m—>00

Ao+p
A Imw (1 + i) dt

Am
/ Imw/- (1 + ie,,) dt
0—p

Ao

= lar(Ao+p) —ar(lo—p)| <26.

The second assertion of the theorem is a trivial consequence of the first
one.
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Remark 3.33 The previous proof implies in particular that the rotation number
ar(A) is nondecreasing with respect to A. This property also follows from the more
general one stated in Proposition 2.33, since I" > 0. In particular, oy defines a
positive Borel measure on R.

Remark 3.34 The first definition for the Floquet coefficient outside the real axis
appeared in [72]. It was suggested by relation (3.40) and given by

W) =~ /Q (0 fra (0. M} (@, 2)) dmo

which agrees with (3.15) for A € C™ as can be deduced from the definition (3.29)
of fr(w, M). Note that, according to Birkhoff’s Theorems 1.3 and 1.6,

11 (!
wr(A) = — lim — — / trfra(w-s, M}'(w-s, A))ds
0

t—oo2n t

myp-a.e. This equality also implies that Re w (1) measures the average rate of change
of volume determined by the motion of vectors tangent to M 14: (w, A), whereas
Im wr (1) measures the average rotation around M 14: (w, A).

Remark 3.35 The arguments used to prove Theorem 3.32 can be easily adapted to
check that, for all 1o € R,

li I A) = —ar(do).
A—>A01,IIIr1n)k<0 mW[‘( ) 051“( O)

The point now is to work with the nontangential limits of the Weyl functions from
the lower half-plane and to use the equivalent definition of wr(A) obtained in
Lemma 3.19 (iii). Consequently, defining the Floquet coefficient as suggested in
Remark 3.17 provides a function with the characteristics indicated there.

The last result of this section establishes the trace formula for oy mentioned in the
introduction to this chapter, which will be fundamental in the study of the relation
between exponential dichotomy and the rotation number. It relates the positive
measure determined by ar (see Remark 3.33) with the measure dPr,, appearing
in the representation

1 t

Gr(@,2) = Lr(©) + Kr(@) A + /R (m e

) dPr,(1) (3.46)

for A € C* (and for all w € £2), which is provided by Theorems 3.27 and 3.13.

Theorem 3.36 The trace formula

1
—dor = / tr(F(a)) dP[jw) dmy
T 2
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holds, where the equality is to be interpreted in the following weak™ sense: if p: R —
R is a continuous function with compact support, then

. /R o(t) daur (1) = /Q tr(r(w) A o (1) dPr,w(r)) dno .

Proof The Stieltjes inversion formula (see Theorem 3.13(iii)) ensures that

S Protil + Protio) + [ dpra)

(A1.42)
1 A2
= — lim ImGr(w,t+ ie)dt.
T e—01 A
In addition, this function is bounded on 2 for each fixed finite interval (A1, 1,) C R.
So, the continuity of G (-,i) on §2 and Remark 3.14.1 prove the existence of a
positive matrix C such that

1
0= / 2r1 dPro(t) <ImGr(w,i) <C
R

for all w € £2, and hence, for s € R such that [A1, A;] C [—s, s], one has

1
/ dPry(1) < (s> + 1) ———dPr,(1) < (s +1)C. (3.47)
[A1.42] r+1

[=s.]

On the other hand, according to Theorems 3.32 and 3.26, if (A, 1,) C R,

1 1
— (Olr(/\z) — Olp(/\l)) = — lim (ImWr(/lz + iS) — Imwr(/h + 18))
b4 T ¢—0t

1

A2
= — lim / tr(ImGr(w,t + ie) I'(w)) dmodt.
T ¢—0t A Q

Hence Fubini’s theorem, the Lebesgue dominated convergence theorem, and the
previous inversion formula yield

L r () —ar (i)
T

1 A2
=tr/ I'?(w) (- lim ImGp(w,t+i8)dt> ' (w) dmyg
2

T ¢—0t A

—r /Q (r‘”(a)) 3 (Protin} + Protha) ')

+ I'?(w) dPr.o(t) I'*(w) | dmg
(A1.42)
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for any finite interval (A;, A;) C R. In particular,
1/2 1/2 2
0<tr| I' (@) Proiri} ' (@) dmg < = (ar(A2) —ar(iy))
Q2
forall A; € Rand A, > A. The continuity of the rotation number implies that
tr/ I'2(w) Pro{ri} I'* (@) dmy = 0
I?)

for all A; € R. This fact and the previous equality mean that

1

— dar(t) :/ tr(F(a)) dPrw(l‘)) dmy , (3.48)
T J(1r2) 2 (A1.A2)

and a standard measure-theoretic argument proves that the map sending each Borel
subset B C Rto |, o tr(F (w) [, 5 A4Pro (t)) dmy defines a Borel measure which agrees
with (1/7) dar.

3.3 The Floquet Exponent and Atkinson Spectral Problems

The properties of the rotation number are related to the existence of exponential
dichotomy for the perturbed systems (3.2) and (3.3) with A € R, and consequently
to the associated Atkinson spectral problems. This section contains a discussion of
these interconnections. Throughout Sect. 3.3, the perturbation I" of the family (3.2)
is assumed to be of Atkinson type (see Definition 3.4).

A substantial amount of preliminary work is required for the proofs of the
main results, which are finally carried out in Sects. 3.3.4 and 3.3.5. The first three
subsections contain some basic facts concerning symmetric Herglotz matrix-valued
functions, a certain one-parameter boundary value problem given by (3.2) on a
finite interval and the associated spectral matrix-valued functions, and the limiting
behavior of the characteristic and spectral functions as the interval increases to fill
out the real line. And Sect. 3.3.3 recalls some results about the null controllability
on a compact set of the systems considered. The results here presented are mainly
due to Atkinson [5], Johnson [72], and Johnson and Nerurkar [75, 77].

As before, I' represents an Atkinson perturbation (see Definition 3.4); for each
value of the parameter A € C — R, Qr,(w) represents the projection associated
to the exponential dichotomy of (3.2); MIjE (w,A) are the Weyl functions (see
Theorem 3.8); and Gr(w,A) is the symmetric Herglotz matrix-valued function
(Qra(w) — (1/2)1,)J 7! (see Theorem 3.27). Recall that Qr; and G are given
in terms of MIjE by the corresponding relations (3.22) and (3.26). Throughout this
section, the Euclidean vector and matrix norms are used (see Remark 1.24.2).
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3.3.1 A Boundary Value Problem in [a,b]

Let [a, D] represent a real interval with a < 0 < b, and let A and B be real (2n) x (2n)
matrices such that

Av=Bv=0 implies v=0, and A”JA=B'JB. (3.49)

It is known (see [5], Theorem 9.2.1) that the eigenvalues of the boundary value
problem

Jz' = (JH(wt) + AT (w1)) z,

(3.50)
Iv#0 C»—{0} z(a)=Av and z(b) =BV,

are real and form a countable set. Note that A is an eigenvalue if and only if there
exists a vector v # 0 such that U;i (a,w)Av = U;lA (b, w)Bv = 1z, in which case
zo # 0 is the initial datum of a corresponding eigenfunction. It can be deduced
immediately that the characteristic function

Fib (@, 2)
1, _ _ _ -1
= —E(Urj(a,w)A + Ur) (b, o) B\Urj(a.0) A= Ur) (b,w) B) J

is well defined if and only if A is not an eigenvalue of (3.50). In particular, it
is well defined for all A ¢ R. In addition, the equalities (U:})" Uy} = J (see

Proposition 1.23) and A”JA = B'JB imply that F§' (. A) is symmetric. Clearly, the
matrix-valued map FZ:’; is jointly continuous on §2 x (C — R) and analytic outside
the real axis for each fixed w € §2. The following result shows that A +— Ff"f;(a), A)
is a symmetric Herglotz matrix-valued function.

Proposition 3.37 [fIm A # 0, then Im A Im F{{,(w, 1) < 0.

Proof This proof is basically taken from [5], Section 9.5. Fix w € §2 and write
Fy = FZ’%(@, A) and U, (r) = Ura(t, ). It is easy to check that

(U7 (@) A — UL (b) B)* J*(F3 — F§)J (U ' (a) A — Uy ' (b) B) -
=-AT(UY (@) J U (@) A+ B"(U )Y (b)) J U (b) B. 32D
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On the other hand, (Uf(1)J Ux(r)) = 2ilmA U} (1) I'(w-1) Us (), as can be
deduced from (3.2). Hence,

J=(UY 0I U (o)

= 2iTm A (U7H*(1) (/r U (s) ' (w-s) Us(s) ds) Uy,
0

which together with ATJA = BTJB yields

—AT(UTY (@) T U (@) A + BT(UH*(b)J UL (b) B

a

0
= —2iImA(A*(U;1)*(a) (/ U (s) I (w-s) Us(s) ds) U (@) A

b
+ B*(U;Y)*(b) ( /0 U3 (s) T (w-s) Us(s) ds) U;'(b) B).

(3.52)
This equality and (3.51) imply that (W*(F, — F}) W)/(2iImA) < 0 for a
nonsingular matrix W. The assertion of the proposition follows hence from the fact
that Im ) = (F, —F7)/(2i), which is in turn a consequence of the symmetry of F.

Remark 3.38 According to Lemma 3.6(iv) and Remark 3.7, given any A € C there
exist constants 7y = #y(1) > 0 and § = §(A) > 0 such that, for every z # 0,

4]
[ Ir@o vrs.o)alP dr sl
0
0
| 1r@nvr.o)al dr > sl
—t
It follows from this fact, equalities (3.51) and (3.52), and condition (3.49), that

Tm A Tm F4% (0, A) < 0if [=1o(A), 10(A)] < [a, b].

Let {Ax| k > 1} be the eigenvalues of (3.50), repeated according to their
multiplicities and ordered in such a way that [A;| < |Ar+1|, and let {0,(7) | & >
1} be a corresponding set of normalized eigenfunctions. Atkinson [5] defines in
Section 9.3 a spectral matrix-valued function on R, associated to (3.50) (and hence
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depending on w, as do the eigenvalues and eigenfunctions):

- Y 0:0)6,(0) if r<0,
t<M=<0

Py = 020 if 1=0, (3.53)

Y 0k(0)0(0) if 1>0.

0< A <t

Note that PX’,Z(t) is a nondecreasing right-continuous step function: it is constant
on each interval between successive eigenvalues, and the jump at the eigenvalue
Ajis ZAFAJ_ 0,(0) 0,{(0). Note also that FZ’%(w, A) agrees with K(0,0, 1), where
K(s,t, A) is the integral kernel for (3.50) defined in [5], Section 9.4. Consequently,
according to [5], Theorem 9.7.5 and Problem 9.18, the representation for the
Herglotz function — X’f; (see Theorem 3.13(ii) and Remark 3.14.2) takes the form

1 t

_ FX:’;(Q), A) = LX”%(a)) + KX:Z(&)) A+ /R (m TEr

) dPh (0 (3.54)

for certain real symmetric matrices L’ (w) and K} ().

3.3.2 Limiting Behavior as a — —oo and b — oo

This section contains some important results concerning the limiting properties of
the characteristic and spectral functions defined in Sect. 3.3.1 as the interval [a, b]
increases.

Theorem 3.39 For every pair of matrices A and B satisfying (3.49),

lim  F{%(o.1) = —Gr(w.1),

a—>—00,b—>00

on §2 x (C—1R), and the convergence is uniform on compact subsets of the domain.

Proof The proof is based on the existence of exponential dichotomy for the
system (3.2) for A ¢ R, which was established in Theorem 3.8. Since

(2FZ’,’;(w, M) = (I — 2Qm(a)))> (Uri(a,®))A — Ur} (b, ) B)

=2(Qra(w) Urj(a.®) A+ (I — Qra(w)) Urj(b.®) B) .
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one has that
[2Fih(@. 1) 7 = (10 = 204 ()|
= 2m (P Al + P BI) | (Urh @ ) A= URs (.0 B |

where 8, and 7, are the constants associated to the exponential dichotomy of (3.2)
(see Definition 1.58, and recall thata < 0 < b). Let £ C £2 x (C—R) be a compact
subset. Then the constants 8, and 1, can be chosen to be the same for every (w, A) €
IC, as can easily be deduced from Theorem 1.91(i). Call these common constants 1
and . It is now easy to see that the statement of the theorem is a consequence of
the relation Gr = (Qra — (1/2)n)J ~!, the previous bound, and the following
assertion: there exist ¢ > 0 and p > 0 such that

_ _ —1
H(Uni(a’w)A—Unﬁ(b,w)B) H <p
fora < —c, b > c and (w,A) € K. The next objective is to prove this assertion.

Since |C7Y| = maxpy=1(1/[|CV|)), the previous inequality follows from the
existence of p > 0 such that

[(Uri(a,0)A — UL} (b.w) B)v| = (3.55)
for all v e C?* with ||v| = 1 whenevera < —c, b > c and (w, ) € K. Assume

for contradiction the existence of sequences (a;) | —oo, (by) 1 o0, vx € C?" with
[lvill = 1 and (wy, Ax) € K such that

- _ 1
(U7, (ax. o) A — URS, (br. r) B)vie|| < E (3.56)
Note that there is no loss of generality in assuming that @y < —k and b, > k.

Write Up} (1. @) = Qri(@) U} (t. @) + (I — Qra(w)) U (1. ). The inequality
[lwi — wal|| > [|wy|| — |[w2]| and the exponential dichotomy imply that

| 120 = 0rs (@) UFL (@ o) Avy
— Ora (@) Ury, (b, o) By H (3.57)
1 Bay —Bbx 2
<y tne Al +ne ||B||§%

whenever k > ko, for an index kj large enough. Choose now commonly indexed
subsequences with vy — Vv, 4y — A, wy-ax — @ and wy-by — @ and assume that
Q5 (@) BV # 0. Then, there exist &1 > 0 and k; such that ||Qr, (@x-bi) B Vil >
€1 whenever k > k;. Bearing in mind this property together with the three
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equalities Q;AJQF,A = 0y, (deduced from (3.22)), Qra(wt,A) Ur,(t,w) =
Ur,(t,w) Ora () (ensured by Definition 1.58), and UIZ’AJ Ur, = J, one obtains

e} < |vi B"OF.,, (0xbi) JI Oy, (wx-bi) BV |
= |vi B 07, (@bi) J Iy — O, (rebi)J O, (r-bic) BV |
= )(ka (0x) Ur}, (br, i) BVi)"J-
“(In — Qo (@) UFS, (b, 1) J Or s, (wbr) B Vk‘

< | Qra (@) Ur;, (be. ) B | ne sup Qra(w) IB] -
)eK

Since K is compact, there exists a positive constant p such that
1912, (@) Urj, (bre 00) Bvi| = pef™ = (3.58)
whenever k > k;. Suppose now for contradiction that
|(Ton — Qra (@0) Ury, (b ) Avi|l < k

for all k > k;. Then it follows from (3.57) and (3.58) that p ef* < k 4 2/k, which
is impossible. Therefore

> k; (3.59)

H (In = Qray, (@) Up;, (by, o) A vy

for a suitable subsequence (k;).

Represent by l1j5, ; (@) the vector spaces of the initial data of solutions of (3.1)
which are bounded as t — +o00, determined again by the exponential dichotomy if
(w,A) € K: see Remark 1.77.3. Let § € [0, 1) satisfy [{(wT,w™)| < §[[wH|[lw~|
for all (w, ) € K and all pairs of nonzero vectors w* € lj{ z(@) and w™ € [ (o).

The existence of § is checked below. It is easy to see that, if wt € l; 5 (@) and
W €I, (), then [wF —w||> = 2(1 — §)wT[|[[w™|. Since

(1211 - QF,)»kj ((1)/(/)) UI_”}\](/ (akjv C()kj) A Vk_,‘ € l;,/\kj (C()kj)
and

Ory, (@) UI_—:}tkj (i i) Bvig € llt,xkj (@) .
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the inequalities (3.57), (3.58), and (3.59) yield

4 _
2 >2(1-98)pk;
j

for each index j. This is impossible, so that the condition (3.56) indeed leads to a
contradiction.

In order to check the existence of the constant §, assume the existence of a
sequence (Wp, Ay, W, W) in K x R? x R?" with w lli:,lm (wn) and [WE] =1
such that [(w},w )| > 1 — (1/m) for all m € N. By choosing a suitable
subsequence if needed, it can be assumed that the sequence (w,;, Ay, w;n" ,w, ) tends
to (wo,ko,wa,wg) € K x R? x R?", Hence, |(W6F,wa)| = 1, so that w(‘f and
w,, are linearly dependent. But this is impossible, since the continuous variation of
l}fl (w) in K implies that wgt € leE’AO (w9).

This completes the proof of (3.55) (and hence of the theorem) in the case
that O 5(@) BV # 0. But, if this inequality were not true, one would have
(lon—Qp3(@)) AV # 0, as will be checked in what follows, and the argument would
be analogous. Assume for contradiction that Q-5 (©) BV = 0 and (I, — Q-5 (®)) A

v = 0. From the representation of l}fz (w) and l;l(d)) proved in Theorem 3.8,

one infers the existence of x and y in C" such that BV = [ :IX and

AV = [ M_I(”a_) i)]y. The equality BJB = ATJA and the Herglotz character of
(@

the Weyl functions imply that 0 < x* ImM;r (@, A)x = y"ImMp(0,A)y <0,

which can only occur in the case x = y = 0. Hence, Av = Bv = 0, which,

according to (3.49), implies v = 0. But this is impossible, since ||V|| = 1. The proof

is complete.

I
M @.3)

Theorem 3.39 and the continuity of Gr(w,A) with respect to @ allow one to
apply Theorem 3.15 in order to obtain the following conclusions. The matrix-
valued functions dPr,, and PZ’!’;(Z) appear in the representations (3.46) and (3.54)

respectively. Recall that Pf\”% (1) also depends on w.
Theorem 3.40
(1) Forall w € $2 and every pair of matrices A and B satisfying (3.49),

im [ v 0arsove = [ v odrovo

a—>—00,b—

for every ¥:R — C?" which is continuous and has compact support.
(ii) The map w +— dPr,, is weak™ continuous. In other words, if ® = limy—, oo W,
then

im [ ¥ 0dPra w0 = [ ¥ 00 w0,

for every ¥:R — C?" which is continuous and has compact support.
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Remark 3.41 Tt is possible to repeat the arguments used in Theorem 3.39 in order
to check that, for any pair of sequences (a;) | —oo, (bx) 1T oo and every pair of
bounded sequences (Ay), (By) such that each pair Ay, By, satisfies (3.49), one has

Jlim Fi (0.4) = ~Gr(.}).

on 2 x (C—R), and the convergence is uniform on compact subsets. Consequently,
according to Theorem 3.15,

dim [ W 0ar O w0 = [ W0 dPr,0 v

for every ¥: R — C?" which is continuous and has compact support.

3.3.3  Null Controllability on B; = {y e R?| |ly|| < 1}

Consider a control system
x = A()x+ B()u (3.60)

where x € R?, u € R™, and A and B are continuous matrix-valued functions of the
appropriate dimensions. Let Uy (7) be the fundamental matrix solution of X' = A(¢) x
satisfying U4 (0) = ;. The following definition and result can be found in Barmish
and Schmitendorf [11].

Definition 3.42 Write B, = {y € R?| |ly| < r}. The system (3.60) is B,-null
controllable at (a,x;) € R x R? in time fy = fy(a,x;) > O if there exists a Borel
measurable function u: [a, 00) — B, such that the solution of the corresponding
equation (3.60) with x(a) = x, satisfies x(a + 7y) = 0.

Theorem 3.43 Suppose that there exist ty > 0 and § > 0 such that

a+ty
/ 187 (1) (U™ () UL (@) x| di = § x|

for all x € R? with ||x|| = 1. Then the system (3.60) is B-null controllable in time
to at (a,Xx,) for all x, with ||x|| < §/4.

Remark 3.44 The proof of the previous theorem can be carried out easily using
Theorem 2.1 in [11] and its proof. In fact, the result stated there is much more
general, but Theorem 3.43 is enough for the purposes of this chapter. The
theorem is formulated in [11] for the integrand Hp, (BT (1) (UY)~!(r) UL (a) x),
with Hp, (X) = supyep, y”x. But, as the authors point out, it is immediate to check
that Hp, (x) = ||x]|.
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Assume now that I' satisfies the Atkinson Hypotheses (3.3), fix 4o € R, and
consider the family of nonautonomous control systems

7 = (Hot) + AJ ' Tot)z+J ' ToHhu, weLR. (3.61)

The following result will play a fundamental role in the proof of Theorem 3.48.
Lemma 3.45 There exists § = §(Ag) > 0 and ty = ty(Ag) > O such that
(i) foreveryae R, w € 2 andz € R

a+to
[ 1r@0s WL 6o U, @y dlar = 51

(i) All the systems (3.61) corresponding to Ay and w € §2 are Bi-null controllable
in time to at every (a,z;) € R x {z € R¥| ||z| < §/4}.

(iii) All the systems (3.61) corresponding to Ay and w € 2 are B,-null controllable
in time to at every (a,z;) € R x {z € R*| ||z| < ¢} forr = 4c/8.

Proof

(1) Let to = fo(Ao) > 0 be the constant provided by Lemma 3.6(iv). Suppose
for contradiction the existence of sequences () in R, (wy) in §2 and (z) in
{z € R”"| ||z|| = 1} with

te+to 1
/ | (wi-t) J (UIY—-,)LO)_I(Z‘, wx) U;‘,Ao(tb W) Zi || dt < E .
Ix

Then,

to
> / 1@t T (U, )™+ e 00) ULy, (0 ) 7] i
0

1

to
- / VT (@it)1) Urag (1. onet) J 2] di
0

Taking suitable subsequences with limy—co @ity = @ and limg—.o0 Zx = Z, it
follows that

0]
/ I (Gt) Urs (1. T3] di = 0.
0

and this contradicts the choice of 7.
(i) This is an immediate consequence of (i) and Theorem 3.43.

(iii) Take x; with ||x;]| < ¢ = rd/4 and let u: [a, 00) — Bj be the control such
that the solution X of the corresponding equation (3.60) with x(a) = (1/r) x;
satisfies X(a + #p) = 0. Then the solution of (3.60) with control ru and initial
datum x; at a is given by rX, and hence it takes the value 0 at time a + 1.
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Remark 3.46 By extending the definitions in a suitable way, it is possible to prove
results analogous to those of Theorem 3.43 and Lemma 3.45 in “negative time”.
That s, for all 1y € R, all the systems (3.61) corresponding to Ao and @ € §2 are B,-
null controllable backwards in time —t, at every (a,z;) € R x {z € R**| |z| < ¢},
where ty only depends on A¢, and r only depends on ¢ and c.

3.3.4 Exponential Dichotomy and the Rotation Number

As in the preceding sections, I" is assumed to be an Atkinson perturbation; i.e. to
satisfy Hypotheses 3.3. The main results indicating the connections between the
properties of the rotation number and the existence of exponential dichotomy
for (3.2) are now stated and proved. All the results presented in the previous
sections, as well as the following lemma, are used in the proof of Theorem 3.48.
The definition and main properties of the topological support Supp my of the fixed
ergodic measure are given in Sect. 1.1.2.

Lemma 3.47 Suppose that 2 = Suppmyg. Let Z € R be an open interval such that
the rotation number o is constant on L. Then

tr(F(w) din(t)) =0

s

for any open subinterval I; € T and every w € 2.

Proof Fix the subinterval Z;. The assertion of the lemma follows from (3.48) for
all  in a subset £29 C 2 with my(§£29) = 1. Take any w € §£2 = Suppmy and
write it as @ = limy—, oo @y for wy € £2) (see Proposition 1.11(i)). Let f be a scalar
continuous function with 0 < f < Xz, - Then,

0< tr(F(wk)/f(t) dink(t)) < tr(F(a)k)/ dink(t)) =0.
R 7

It is not difficult to deduce from the continuity of ", from the uniform bound (3.47),
and from the weak™ continuity established by Theorem 3.40(ii), that

w(r@ [10arra0) = tim w(r@ [ 10 drr,m) =o.

Therefore, writing x, (1) = limy— oo fu(f) for an increasing sequence (f;,) of non-
negative continuous functions, and applying the Lebesgue dominated convergence
theorem, one proves the assertion for the point w.

Theorem 3.48 Suppose that 2 = Suppmyg. Let T € R be an open interval such
that the rotation number ay is constant on L, and fix Ay € L. Fix also ® € §2. Then
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the system
Z = (H(@t) + AJ "' T'(&1)) 2 (3.62)

does not admit any nonzero bounded solution.

Proof Assume for contradiction the existence of a nonzero solution Z(¢) of the
system (3.62) and of a constant ¢ such that ||z(r)|| < ¢ for all + € R. The
contradiction is reached in two steps. In the first one, the possibility

o0
/ 7' (1) I (&-1) 2(t) dt = oo (3.63)
—00
is excluded, while in the second it is proved that
o0
0< / Z'(t) I'(&1) Z(r) dt < oo (3.64)
—0o0

is also impossible. This means that f_ozo 77 (1) " (@-1) Z(t) dt = 0, which, according
to Lemma 3.6, is inconsistent with the hypothesis that z(0) # 0. This is the desired
contradiction.

Let o = 19(Ao) be a positive constant satisfying Lemma 3.6(iv) and Remark 3.7,
and consequently Lemma 3.45 and Remark 3.46. Let [ag, bo] be a real interval
containing 0: it may be any such interval for the time being, although later it will be
more precisely chosen.

Lemma 3.45 applied to (bg,Z(by)) and Remark 3.46 applied to (ao,Z(ap))
guarantee the existence of a constant » independent of @y and by and of a Borel
measurable control function i: R — R?", with |[a(7)|| < r and with a() = 0 for
t ¢ [ag — ty, ao] U [bo, by + 1], such that the solution zy(#) of the system

7 = (H(@+1) + AJ ' T(@1))z+ J ' T(@1)u

with z¢(0) = z(0) agrees with Z on [ag, by] and vanishes outside [ag — to, by + to].

Take now sequences (a,,) | —oo and (b,,) 1 oo with [ag — ty, by + to] C [a1, b1]
and choose matrices A and B satisfying (3.49) such that A, is not an eigenvalue for
any of the (countable) family of boundary value problems

JZ' = (JH(&1) + A T(01) z,
(3.65)
dv#0 suchthat z(a,) =Av and z(b,) =Bv.

The fact that this choice is possible is proved in Lemma 3.49 below. As in
Sect. 3.3.1, let {A]"| k > 1} be the ordered set of eigenvalues of (3.65), and let
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{03 (t) | k = 1} be a set of normalized eigenfunctions, so that
bm
@M L(@1) 0 (t)dt = 8. (3.66)

The associated spectral matrix P,(f) is defined by the corresponding expres-
sion (3.53), which implies that, for any interval 7 € R,

[ fOar.0s0= Y 0670 627026 (3.67)
J Ared
if the right-hand term is finite. Define also
b
wo(r) = / UL, (1.®) I'(@-1)zo(1) di
ay

and note that, since z, vanishes outside [a;, b1],

bm
wo = [ UL,0.6) F@ad

for all m > 1. It follows that, for a fixed value of m the following properties (a)—(d)
hold.

(a) The eigenfunction expansion of z, corresponding to (3.65), given by
o0 blVl
s> Z cp 07 (s) with ¢ = / @M () (@) zo(D) dl,
k=1 m

defines a continuous function 8,,(s), since the series converges absolutely and
uniformly on R. This last assertion is proved in Theorem 9.7.4 of [5].

(b) Statement (a), Theorem 9.6.3 of [5], and the orthonormality condition (3.66),
ensure that

0= / " (zg (0 — é;(t)) @) (zo(t) - ém(t)) d

am

bm
= / 7} (t) T (&+1) 20(1) dt

am

o0
—Zchm/
k=1 @

m

() T(@-1) 07 (D) dt + Y (c})’

bm
g k=1

b -
= / 7 (t) T (&-1) 20(1) dt — Z(sz 2.
k=1

am
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that is,
b O | b 2
/ () F@nz@di=3 [ O ) M@ z)d
am k=1 am
In other words, since z( vanishes outside [ay, b1],
2

/ SOm () r@h 2o d

o0

/ - 20 () T(@1)zo(D)dt =)
- k=1

(c) The definitions of wy(¢) and of the spectral matrix P, (f) together with the last
equality in (b) imply that

/R W (1) dPo(t) o)

0 bl bl
= Z / 7l (1) (&) 07(1) dl / O () I' (@) z0(1) dl
k=1 ap ap

h] o0
= / 2L (1) T (@) 2o(1) dt = / 2L (1)) T (@) zo(1) dt .

1 —0Q
(d) It follows from the differential equations satisfied by 8} and z, that
(09" (1) 20())
= (ko = A1) (01) (1) T (@-1) 2o(0) + (87)" () I"(&-1) (1) .
Therefore, the coefficients of the eigenfunction expansion of u corresponding

to (3.65) are (A" — Ao) fab’:" 07T (l) I (@-1) 2o(I) dI. Consequently, (3.67), the
definition of wy, and the corresponding Bessel inequality, yield

/R (t — Xo)> Wi (1) dP,, (1) wo (1)

(' = X)Wy (A1) 07(0) (877 (0) wo(A}')

2

(e I0]e

A} = Xo)?

by
/ O7) () @) 2ol dl

,,.
I

1

by
< / al (t) I'(&-1) a(r) dt .

1
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Lemma 3.47 will play a fundamental role in proving the following assertion:
there exists a constant ¢ > 0 such that, for large enough m,

/ (t = X0)*> Wi (1) dP,, (1) wo (t) > & / wo (£) dP,, () wo (1) . (3.68)
R R

Before checking (3.68), note that it allows one to exclude possibility (3.63): (3.68),
(¢), and (d) above, and the characteristics of the control function u, ensure that

o

bo
&2 / 7' (1) I (&) 2(r) dt < &* / 2l (1) I'(@-1) 20(1) dt

—0o0

by
< [ #or@ands2rurls:
ay
but if (3.63) held it would be possible to choose the initial interval [ag, bo] with
/ bz T(¢) ' (&-1) Z(t) dt as large as desired, making this last inequality impossible.

ao

In order to prove (3.68), note that, for all / € R, the spectral problem

Jz' = (JH(&-D)1) + AT ((@-D)1)z,
dv#0 suchthat z(a,—10) =Av and z(b,—1[) =BvV

has the same eigenvalues as (3.65) and that 6" (¢ + /) is a normalized eigenfunction

for A}". This means that the jump at the eigenvalue A}’ of the spectral matrix for this

problem, denoted by P’ (), is Y ;m_ a0 (D (0;.")T(l)_ The definition of wy and the
; <

Schwarz inequality ensure that

2

/I Wi () AP (1) wo(t) = 3

m
lj €T

a

by
/ O (D) I'(-1) zo(1) dl

bl bl
< / 7l () T'(@-1) 7o(1) dl Z O () I'(&-1) 07 (1) dl

1 el ap
7

bl bl
= / z} (1) T (&) zo(0) dl / tr(r(ca-z) / dap. (1) dt) dl.
a a v

1 1

The last equality follows from (3.67) and from
O () (@D 67 (D) = w(I(@1) 7)) (07" ().

Theorem 3.40 and Lemma 3.47 ensure that

lim tr(F(cD-l) / dP! (1) dt) = tr(r(as.z) / dPr.(1) dt) =0.
m—>00 T T
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Therefore, using Lemma 3.47 and the Lebesgue dominated convergence theorem,
by

lim tr(r(ca-z) / dP! (1) dt) dl =0,
T

—
m—>00 J,

from which
lim / W (1) AP, (t) wo(t) = 0. (3.69)
m—>00 T
On the other hand, taking ¢ equal to one-half of the distance of 1y to R — Z,

/R (t = Xo)*> WP (1) dP,, () W (t)

> / (1 = A0)> WL (1) dP () Wolt) > 4 &2 / W (1) dP (1) Wo(1)
R-T
=4¢? / wg (t) dP, (1) wo(t) — 4 &2 / wg (1) dP,,, (1) wo(1) ,
R T

and it follows from (3.69) and from property (c) that (3.68) holds for m large enough
(since Z and hence zy do not vanish identically). This completes the first step of the
proof.

As stated before, the second and last step of the proof gives rise to a contradiction
under assumption (3.64). Consider a sequence of boundary value problems

§ Jz' = (JH(wt) + A (@) z,
(3.70)

dv#0 suchthat z(—m)=A,v and z(m)=B,v,

where now the matrices A,, and B,, are norm-bounded by 1, the pairs (A,,, By)
satisfy (3.49), and the solution Z is an eigenfunction (associated to the eigenvalue
Ao) for each m € N. A possible choice for these matrices is the following one: for a
fixed A, define

ki = max(JA]l, max [Urj, (m, @) Ur, (=m, )Al)
By = (1/kn) Urp,(m, o) UI_“.io (=m,w)A,

Am = (1/kn)A .

Let Ff’ﬁn(t) denote the translated spectral matrix (corresponding to the problem for
@-1 on the interval [—m — [, m — []. Then its jump at the eigenvalue A is greater or
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equal than z(I) 2 (1)/ ™ 7" (1) I"(&-1) Z(7) dr. Consequently,

(1) I (&) (1) o
T F O T @nand - o(r@n [ .0)

for any open subinterval Z; C T containing A¢. Fix [ with z” () I'(&-1) Z(l) > 0.
Tlleorem 3.40 and Remark 3.41 ensure the existence of the limit as m — oo of
(Pﬁn); call it Pr.;. Therefore, Lemma 3.47 for &-/ implies that

i ' () I'(@-) z(])
lim —— —— =
n—co [ F (1) T (6-1) 2(r) di

’

which contradicts (3.64). The proof is complete.

Lemma 3.49 Given (a,,) | —oo and (b,) 1T oo with a; < b; and A € Sp(n, R),
there exists B € Sp(n, R) satisfying (3.49) such that A is not an eigenvalue for any
of boundary value problems (3.65).

Proof Note that the second condition in (3.49) is automatically satisfied when A
and B are symplectic. Define the real symplectic matrices Ué = by, and U} =
Ur,(ay, o) U;i (by,w) if m > 1, for all A € R. Then the remaining required
conditions hold if and only if det(A — U,AnOB) # 0 for m > 0 (see Sect. 3.3.1). Fix
m > 0 and define

On = {B € Sp(n,R) | det(A — UM B) # 0} .

It is clear that O,, is an open set in Sp(n, R). The main point of this proof is to
check that it is dense. Fix B € Sp(n, R) — O,,, so that 4 is an eigenvalue of (3.65),
and approximate Ao by a sequence (A;) of real non-eigenvalues of (3.65). That is,
det(A — UMB) # 0. Write A — U%B = A — UB for By = (UX)"'UB. Then
By € Oy, for all k, and limy—, o, By = B. The asserted density is proved.

Since Sp(n, R) is a complete metric space, the Baire theorem ensures that the
countable intersection of open dense sets is dense. Therefore there exists B €
Nm>00m, Which proves the lemma.

The main result of this section follows easily from the previous considerations:

Theorem 3.50 Suppose that 2 = Suppmy. Let Z C R be an open interval. Then
the families (3.2) have exponential dichotomy over S2 for all A € T if and only if the
rotation number o (1) (with respect to my) is constant on L.

Proof According to Theorem 2.28, in the presence of exponential dichotomy on an
open interval Z, the quantity 2« ;- (1) takes values in the discrete group determined
by the image of the Schwarzmann homomorphism on the group of real Cech one-
cocycles over §2 with integer values, for all A € Z. The continuity of oy on the
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real axis, which is ensured by Theorem 2.25, implies then that a1 is constant on the
interval. This proves the “only if” part of the theorem.
The “if” part follows from Theorems 3.48 and 1.78.

Remarks 3.51

1. Note that the proof of the “only if” assertion of the previous theorem does not
require either the Atkinson condition described by Hypotheses 3.3 or the fact that
Suppmy = 2.

2. To complete the information provided by Theorem 3.50, note that the rotation
number a:R — R is a nondecreasing function, as Proposition 2.33 proves,
and that it takes just nonnegative values in the case that H3 > 0, as proved by
Theorem 2.31. Note also that H3 = I, in the Schrodinger case.

3.3.5 Exponential Dichotomy and Gap-Labeling

The chapter is completed with a brief analysis of the linear selfadjoint operators
defined for w € £2 by

d d?
Lo =T\~ —Ho and Sy =——3+Go (3.71)

on L*(R,C?") and L*(R, C") respectively. As usual, (H,f)(1) = H(w-t)f(t) and
(Gub)(t) = G(w-)f(r). The domains of these operators are the sets of square
integrable absolutely continuous functions with square integrable derivative. Note
that the families of spectral problems £,z = Az and S,X = A X are given by the
families of equations

Z=(Hw)+1J ")z, we (3.72)
and
— X"+ GlwHx=1x, wesN, (3.73)

which agree with (3.2) and (3.3) with I' = I, and A = I, respectively. These
values of I" and A are fixed for the rest of the section.

The case of the general linear Hamiltonian systems (3.72) will be considered
first. The following result plays a fundamental role in the proof of the main theorem.
Recall that Py, ,, (7) is the spectral matrix-valued function associated to the Herglotz
matrix-valued function Gy,, (w, A) by Theorem 3.13.

Lemma 3.52 The spectrum of the operator L,, agrees with the set of points of non-
constancy of the nondecreasing matrix-valued function Py,, .. In particular, it is
closed.
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Proof Although the proof is standard in spectral theory, a brief sketch is included.
The statement of Theorem 3.40 and the ideas used in its proof allow to repeat the
arguments of Coddington and Levinson [28], Chapter 9, Sections 3 and 5, in order
to check that the mapping

£(6) > g(r) = /R UL (s, ) £(s) ds

defines a unitary isomorphism @ between the Lebesgue space L*(R,C?") and
the space L*(R, C?",dPy,, ,) consisting of vector functions whose norm is square
integrable with respect to dPy,, ,,, with inverse given by

g(1) > £(1) = /R Unyo(t.0) dPry 0 (5) 8.

In addition, the operator @ o L, o @~ agrees with the usual multiplication operator
densely defined on L?(R, C?", dPy,, ,), which maps any g(#) of its domain to 7 g(t).
And it is well known that the spectrum of this operator (and hence that of L)
agrees with the set of non-constancy points of the matrix-valued function Py, ,,(?),
as asserted. Since this set is closed, so is the spectrum.

The strong connection between the occurrence of exponential dichotomy and the
spectrum of L, is illustrated in the following theorem, which appears in [72].

Theorem 3.53 Let @ € 2 have dense orbit. Then the complex number A belongs to
the resolvent set of Lg, which is open, if and only if the corresponding family (3.72)
has exponential dichotomy over 2.

Proof The existence of exponential dichotomy for the equations corresponding to A
provides integral kernels for the operators considered here. This kernel is given by
the function G, 5 (w, 1, 5) defined by the corresponding expression (3.34): as in the

proof of Theorem 3.27, one checks that the mapping sending any g € L*(R, C?") to
£,(1) = / G, 3(@.1.5)g(s) ds
Rl

defines a bounded linear operator from L*(R, (Qz”) to the domain of £, ; and, in
addition, (£, — A)f, = g. This means that A belongs to the resolvent of L.
Consequently, the “if” part of Theorem 3.53 is proved. Note that the density of
the orbit of the element @ has not been required.

The proof of the converse implication is based on the fact that, in the case that
the orbit of @& is dense and A belongs to the resolvent of the operator L, none of
the systems (3.72) corresponding to A admits a nonzero bounded solution. Once
this assertion is proved, Theorem 1.78 ensures the exponential dichotomy over the
whole of §2.
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Assume hence for contradiction the existence of such a bounded solution z
for the equation corresponding to a point wy. The first goal is to prove that A
belongs to the spectrum of L,,. In the case that zy is square integrable, A is an
eigenvalue, and the assertion is true. Suppose therefore that limgeocp = 00,
where ¢; = (ffk lzo(1)|> dt)'/?. Let ri: R — [0,1] be a C? real function equal
to 1 on [—k, k] and vanishing outside [—k — 1, k + 1], with |r/(r)| < 2. Define also
£i.(1) = (r(0)/dy) 2o(1), with d = ([ 7(2) zo(t)||> dr)'/?. 1t is easy to check that
di > ¢ and to deduce two facts: first, that the sequence (Lo, — A) i) tends to 0
in the L?(R, C?")-topology; and second, that no subsequence of (f;) converges in
that topology, since the pointwise limit is 0 but the L?>-norm of all the functions is 1.
According to the Wey] criterion (see e.g. Corollary 2 of Section XIIL.7 of [39]), A
belongs to the essential spectrum of the operator L.

On the other hand, for all s € R, the operator L., is conjugate to L5 under
translation by s: @_; 0 L., 0 @y = L for (D, 1)(¢) = £(z + 5); in particular, their
spectra agree. Therefore, there exists an interval (A — ¢, A + &) contained in the
(open) resolvent of the operator L., for all s € R. According to Lemma 3.52, the
matrix-valued functions Py, ., are constant on (A—e, A 4-¢). The density hypothesis
provides a sequence (s;) with wy = limy—, o, @-s¢, and it is easy to deduce from the
weak™ convergence of the sequence of measures associated to (Pp,, 5.5, ) guaranteed
by Theorem 3.40(ii) that Py, «, is constant on, for example, the subinterval (i —
e/2, A+e /2). Therefore, Lemma 3.52 implies that A cannot belong to the spectrum
of L,,, and this completes the proof of the equivalence.

The Schrodinger case can be analyzed in an analogous way. Set K = [(1)71 8: ],
and let Gy (w, ) and P}(’w (t) be the n x n submatrices of Gx(w,A) and P, (1)
formed by the first n rows and n columns. Then, as in Lemma 3.52, it can be proved
that P}Q » defines a spectral measure for the operator S,,, whose spectrum is closed.

Repeating the proof of Theorem 3.53 one concludes:

Theorem 3.54 Let @ € 2 have dense orbit. Then the complex number A belongs to
the resolvent set of Sg, which is open, if and only if the corresponding Schridinger
Sfamily (3.73) has exponential dichotomy over §2.

Corollary 3.55 Suppose that there exists a o-ergodic measure m such that 2 =
Suppm. Then the spectrum S of the operators L, (or S,) is the same for m-
a.e. w € 82, and it agrees with the set of values of A for which the corresponding
family of linear Hamiltonian systems does not have exponential dichotomy over S2.
In addition, if a:R — R is the rotation number of (3.72) (or (3.73)), then « is a
continuous function which strictly increases on the set S and is constant on each
(open) interval of R — S, where 2a takes values in the image of the Schwarzmann
homomorphism.

Proof Proposition 1.12 ensures that the orbit of m-a.e. ® € £2 is dense, so that
Theorem 3.53 (or 3.54) proves that S is common for m-a.e. w € 2, as well as the
assertion concerning the exponential dichotomy. The remaining assertions follow
from Theorems 2.25, 3.50 and 2.28, and Proposition 2.33.
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Remark 3.56 The preceding result shows that, if §2 is the topological support of a
o-measure m, the corresponding rotation number can be used to label the different
gaps of the spectrum of the operators L and S;, common for m-a.e. w € §2. This
gap-labeling was first obtained for the one-dimensional almost periodic Schrodinger
operator in [73] and for the general two-dimensional case in [71].



Chapter 4
The Weyl Functions

Let (£2, 0) be a real continuous flow on a compact metric space. In this chapter, the
object of study is the family of linear Hamiltonian systems

Z = (Hwt) + 2 'T(wt)z, o€, 4.1)

where A € C is a complex parameter, H = [f{; _fi}{] 12 - sp(n,R)and I =

[_FII 2 1;,{] 12 — S;,(R) are continuous functions, and I'(w) > 0 for all w € £2.
This one-parameter family will often be understood as a perturbation of the family
of systems corresponding to A = 0, namely

7 =H(wt)z, we . (4.2)

As was stated in Chap. 3, the family (4.1) defines an Atkinson spectral problem.
Recall that the perturbed family of n-dimensional Schrodinger equations

— X"+ Gw)x=AAwD)x, e, 4.3)

where G and A are continuous symmetric n X n matrix-valued functions on §2 and
A >0, is included in the general formulation (4.1) by takingz = [ ¥ ], H = [% (1)71]
and I" = [, '],

The present chapter contains three different but closely related sets of results,
which concern the limiting qualitative behavior as A — 0 of the flows determined
by (4.1). Let my be a fixed o-ergodic measure on the base. In Sects. 4.1, 4.2, 4.3,
and 4.5, the unperturbed family of linear Hamiltonian systems (4.2) is assumed to
satisfy the Hypothesis 4.1, to be described shortly, and whose significance will be
clarified in Sect. 4.4, once Kotani’s theory has been summarized.
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Recall that Sg’n (R) represents the set of real 2nx 2n matrices which are symmetric
and positive definite. Recall also that given any measurable function Z on §2, the
function Z’ is defined by Z'(w) = (d/dt)Z'(w-t)|,=0 when this derivative exists.
The notions of differentiability along the flow, and of solution along the flow of a
differential equation, are set out in Definition 1.34. And the concept of integrable or
square integrable matrix-valued function for the measure my associated to a matrix
operator norm is explained in Definition 1.32. In this chapter, unless otherwise
indicated, the “measurable” sets and maps are always “Borel measurable”, and the
invariant sets and maps are (Borel) measurable.

Hypothesis 4.1 There exist a o-invariant subset £29 € £2 with m(£2yp) = 1 and
a measurable matrix-valued function Z: 2 — Sp(n,R) N S;n (R) which belongs to
L'(£2, mg) and which is a solution along the flow on £2, of the equation

7 = —H"(w)Z —ZH(w). 4.4)

In fact, this hypothesis is fulfilled in several interesting situations (see Theorem 4.15
and Sect. 4.4), and it leads to significant results, which are described in what follows.

It will be shown in Sect. 4.1.1 that the function Z of Hypothesis 4.1 provides a
symplectic and square integrable change of variables taking the initial system (4.2)
to skew-symmetric form, and which roughly speaking preserves the rotation number
and the Lyapunov exponent of (4.1) with respect to m. But not any such a change of
variables is useful for the main purposes of this chapter, in which the differentiability
of the rotation number and the limit behavior of the Weyl functions are of interest.
So, once certain basic results have been established, a fundamental consequence
is derived: that a “suitable” change of variables can be associated to each suitable
perturbation direction I'; for instance to appropriate Atkinson perturbations, that
is, those functions I" satisfying Hypotheses 3.3. The construction of this suitable
change of variables is the goal of Sect. 4.1.2, in which simultaneously two complex
symmetric matrix-valued functions NIﬂE are described, which lie in L'(£2, my),
satisfy :I:ImNIiE > 0, and solve along the flow the Riccati equation associated
to (4.2). These functions will also play a fundamental role in the rest of the chapter.
Theorem 4.15 completes the section and gives a characterization by means of several
equivalent properties of those systems satisfying Hypothesis 4.1. In particular, they
agree with the systems for which there exists the L?-average of the solutions.

Let oy (1) be the rotation number of (4.1) with respect to myg. The ergodic
representation for the rotation number obtained in Theorem 2.4 applied to the
systems obtained from (4.1) by means of the above-mentioned change of variables,
together with the method of defining the change itself, is the main tool in proving
the differentiability of ar(A) at A = 0. This property is established in a set of
directions I" which includes those satisfying the Atkinson condition. The value of
the derivative is explicitly obtained and can also be computed from I". These are the
contents of Sect. 4.2.
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Recall that, as seen in Sect. 3.1, the Atkinson Hypotheses 3.3 ensure the
exponential dichotomy of the systems (4.1) for ImA # 0, together with the

representation of the corresponding complex Lagrange planes lﬁ 3 (@) by [ M%I("w Py ]

The Weyl functions MIﬂE (w, A) are jointly continuous in both variables and analytic
outside the real axis for each fixed w € £2: see Theorems 3.8 and 3.9. On the
other hand, when A = 0, the possibility of transforming (4.2) into skew-symmetric
form preserving the Lyapunov index and the fact that all the solutions of this
type of linear Hamiltonian system are bounded, ensure that the Lyapunov index
of the non-perturbed system vanishes. Hence this system does not have exponential
dichotomy: see Remark 2.42.1. The goal is to describe in detail the vertical limit
of the Weyl functions from the upper and lower half-planes: it will be shown that
lim,_, 4o+ MIﬂE (w, i) = £N*(w) in measure. This result is proved in Sect. 4.3. In
fact, the convergence occurs in the L'(£2, mg)-topology; this fact is established in
the same section. The convergence is only proved for I' > 0 in (4.1)and A > 0
in (4.3); the question is still open in the general Atkinson case. In any case these
results provide an extension of Kotani’s theory, whose description is the goal of
Sect. 4.4. This section also contains the generalization to the n-dimensional case of
an inequality for the rotation number which is well-known in the scalar case, where
it was obtained by Moser [108] and by Deift and Simon [37].

The last section of this chapter is devoted to establishing conditions both on the
unperturbed family of systems and on the perturbation which ensure the existence
of exponential dichotomy for small nonvanishing values of the parameter, as well
as the uniform convergence of the Weyl functions. In fact, in the cases analyzed, the
whole Sacker—Sell spectral decomposition varies uniformly as the parameter goes
to 0. The limits of the spectral subbundles (and hence also of the Weyl functions)
turn out again to be determined by I". A more detailed general description of the
hypotheses and goals is given at the beginning of Sect. 4.5.

Most of the results contained in this chapter appear in Novo et al. [112], Johnson
et al. [81] and Fabbri et al. [49]. These papers extend previous results for two-
dimensional systems; see e.g. [114, 116, 117] and references therein.

The measure my is fixed throughout the whole chapter except in Sect. 4.5, in the
course of which the results are independent of any particular measure on the base.
As in the previous chapters, U(t, w) is the fundamental matrix solution satisfying
U(0,w) = by,; t represents the flow induced by the unperturbed systems (4.2) in
K¢ and K, given by (1.14); and g and 7¢ are defined by (1.13). The information
provided by Remarks 1.24 and 1.33 will be used: the Euclidean norms ||x| =
(x’x)!/2 = (x,x)!/? in any R and ||A|| = maxxj=; [|Ax]|| in any Myx,(R) will
be fixed unless otherwise indicated, and used to define the spaces L”(§2,mg) for
p = 1,2. And, as in the previous chapters, given any real matrix A > 0, AV2 will
represent the unique positive semidefinite symmetric square root of A, and A~!/? its
inverse in the case that it exists. If A = Im B, the following notation will be used:
A2 =Im'?Band A72 = Im™'/?B.
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4.1 A Suitable Symplectic Change of Variables

It will be assumed in this section that the unperturbed family (4.2) satisfies
Hypothesis 4.1. As previously mentioned, it will be proved that this fact ensures the
existence of a change of variables and of two complex Lagrange planes associated
to each perturbation direction I" of (4.1) in a wide set, which are suitable for later
purposes. In particular, and roughly speaking, the change of variables preserves the
rotation number and the Lyapunov index of (4.1) for each A € R, and it takes
the initial family (4.2) to skew-symmetric form. The construction of the suitable
change of variables is carried out in two steps. In the first step, a change of
variables is directly defined from the matrix Z provided by Hypothesis 4.1, which is
hence independent of I". In the second step, the properties of the transformed flow
obtained by means of the initial change of variables make it possible to obtain a new
function A satisfying Hypothesis 4.1. In the definition of A, the matrix I" plays
a fundamental role. The change of variables associated to this function A is the
“good one” for the purposes of the chapter.

4.1.1 A Symplectic Change of Variables from Hypothesis 4.1

Recall that
Sj((C) ={Ae€S;(C)| ImA >0} and Sj(R) ={AeS;R)|A>0}.

Recall also that the Riccati equation associated to (4.2) is

M' = —M H3(w-t) M — M Hy(w-t) — HI (0-1) M + Hy (1) . (4.5)
The following technical lemma will be used in Proposition 4.3 and in the last two
sections of the chapter.
Lemma 4.2
(i) Given N:R — SF(C), define

(4.6)

Im'/2N (1) 0,
—Im™'2N(t)ReN(t) Im™'2N() |

() = [

Then the map N satisfies the equation (4.5) for a point w € §2 if and only if the
map Z:R — S;'n (R) defined by Z = CTC satisfies (4.4) for the same @ € 2.
In addition, C and Z are symplectic, and Z > 0.
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ZI Ip

(ii) GivenZ:R — Sp(n,R) N S;(R), withZ = [Z{ 7 ] define

N(1) = Z7 ' (0(=2Za(1) + i) .

ThenImN > 0 and Z = CTC, where C is defined by (4.6).
Proof

(i) Note thatIm'/?N and Im~"/?N exist (see Proposition 1.19), so that also C is well
defined. The proof of the first assertion in (i), which is a straightforward com-
putation taking (4.5) as the starting point, does not present any complications,
and therefore is omitted. It can immediately be checked that C is symplectic,
which implies the same property for Z. Obviously, Z > 0.

(i) The symplectic character of Z (see Proposition 1.23) ensures that

77y = 2370 and I, =723 + 7171 4.7

Note that Z; ' = (Z;1)T > 0, since Z = ZT > 0. Therefore, N is well defined,
with ImN > 0, and it is symmetric, since Z;'Z, = ZI'Z;!. In addition,

CTC — Z;l - Z§Z3_1Z2 Zg )
Z; Z3

The equalities (4.7) imply that Z, = Z;' —Z1 717" = 771 — 78271 Z,, which
proves the equality C'C = Z.
Proposition 4.3 Suppose that there exist a o-invariant subset §20 < $2 with

mo($20) = 1 and a measurable function Z: 2 — Sp(n,R) N S;(R) which solves
the equation (4.4) along the flow on 2. Then,

(1) the complex n x n matrix-valued function
N(@) = Z; ' (0)(~Za(w) + il,). 4.8)

is measurable, symmetric, and a solution along the flow on 2y of the Riccati
equation (4.5).
(i) The real 2n x 2n matrix-valued function

4.9

Clw) = [ Im'/?N(w) 0, }

—Im'?’N(w)ReN(w) Im~"*N(w)

is measurable, satisfies C'C = Z, and is symplectic.

If, in addition, Z € L (£2,myp), then N € Ll(.Q,mO), C e Lz(.Q,mo), and C~! €
L*(£2, my).
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Proof Lemma 4.2 can be used to prove all the assertions in (i) and (ii) except for the
measurability, which is obvious. To check the my-integrability and square integra-
bility of N and C, note that ||CT||?> = ||C||> = ||CTC|| = ||Z|| (see Remark 1.24.2).
Therefore, the integrability of Z ensures that C and C~! = —JC'J belong
to L*(£2,mo), which together with the equality N = Im'?N (Im™'/?NReN +
iTm'/2 N) implies that N € L'(§2, my).

Theorem 4.4

(1) Suppose that there exist a o-invariant subset 290 C §2 with my(§29) = 1 and
a measurable function N: 2 — S (C) which is a solution along the flow on
8§20 of the Riccati equation (4.5). Define C by (4.9). The symplectic change of
variables 7 = C(w-t) z transforms the system (4.2) for @ € $2y into skew-
symmetric form,

(4.10)

7 =HwNZ= [El(m) —Ez(w't)]z

Hy(w1)  Hi(w)

where Hy(w) = —HT (0) and Hy(0) = HE ().

(ii) Conversely, suppose that there exist a o-invariant subset 20 < §2 with
mo(£29) = 1 and a measurable function C:2 — Mpy,x2,(R), with C(w)
nonsingular for w € $2o, which is differentiable along the flow on §2y, and
such that the change of variables 7 = C(w-t) z transforms the system (4.2) for
w € $29 into skew-symmetric form (4.10). Then Z = CTC is a solution along
the flow on §2 of (4.4). If, in addition, C takes values in Sp(n,R), then so does
Z, and the map N defined from Z by (4.8) is a solution along the flow on 2y
of (4.5).

Proof

(i) The point  is assumed to belong to §2y and will be dropped from the notation.

Denote R = ReN and P = Im'/?N. The Riccati equation (4.5) satisfied by
N = R + iP? ensures that

R = —RH3R + P’H3;P*> —RH, —H{R + H,
(4.11)
P'P + PP' = —RH3P*> — P’H;R — P*H, — H| P*
Clearly, the transformed system isZ’ = HZ with H = (C' + CH)C~! on £2,.
Write H = [»ZJ %3 ] The expression of C yields
2

4

H, = P"\(PP' + P’H;R + P*H)P™",

H, =P '(—R — RH3;R — RH, — H'R + H,)P~' = H}

— (4.12)
H; = PH;P = Im'>NH; Im'?> N,

Hy =P '(—P'P—RH:P> —H'P>)P™' = —HT,
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and it follows easily from (4.11) that ﬁ4 =H 1 and ﬁ3 = —ﬁg on £2¢. This
completes the proof of (i).

(i) The hypotheses of (ii) say that H= (C' + CH) C™! is skew-symmetric, which
implies that CT(C' + CH) = —((CT)’ + HTCT) C. That is, the matrix-valued
function Z = CTC solves (4.4). The second assertion in (ii) follows easily from
Lemma 4.2.

Remarks 4.5

1. If Hypothesis 4.1 holds, Proposition 4.3(i) shows that the relation (4.8) defines a
matrix-valued function N satisfying the conditions of Theorem 4.4(i). Therefore
a change of variables Z = C(w-1) z taking (4.2) to skew-symmetric form (4.10)
exists for @ € £2p. Note also that Proposition 4.3 ensures that C is square
integrable. The map C will be referred to as the square integrable matrix-valued
function associated to the function Z provided by Hypothesis 4.1.

2. Under the conditions of Theorem 4.4(i), the transformed systems (4.10) are
deﬁngd just~f0r w € $§29. It follows from (4. lZ)jlnd (4.11) that H,, H3, Hy + Hg4,
and H, — H4 are measurable on £2y, so that H is also measurable. Now £2; is
o-invariant so, in order to have a globally defined measurable skew-symmetric
matrix-valued function H as well as globally defined flows T Tg on £2 X R,
Tcon 2 xC¥, andT onJCR and Kc, it is enough to define H(a)) = 0,, for
w ¢ §2. The expressions U(t, w) = C(w-1) U(t,w) C~ H(w) for (1,w) € R x £
and U (t,w) = Iy for (t,w) € R x (£2 — £20) define the fundamental matrix
solution U(t w) of 7' = H (w+1)Z with U (t,w) = I, so that the flows are
Borel measurable. Of course, nothing ensures that they are continuous on their
corresponding phase spaces; but these flows are continuous on sets of the form
K xR, K xC?, I x Lgor K x L¢ if C is continuous on K < £2. Note also
that, if C is defined from N as in (4.9), then the maps t + H(w-t) are indeed
continuous for all w € £2: for w € §2 this assertion follows from the continuity
of the maps ¢ — C(w-t), t — C'(w-t) and t = C~'(w-t), in turn ensured by the
hypotheses on N; and it is obvious for o ¢ £2.

3. Note that all the solutions of any family of linear Hamiltonian systems z =
H (0)Z given by a skew-symmetric matrix-valued function H are bounded: it
follows from H' = —H that the derivative of [Z(1)||? is zero for every solution
Z(¢) of all these systems.

Assume now that Hypothesis 4.1 holds, and let C be the square integrable matrix-
valued function associated to the function Z which it determines (see Remark 4.5.1).
Of course, the change of variables Z = C(w-r) z can be applied to any family of
linear Hamiltonian systems different from (4.2), independently of the fact that CTC
is no longer a solution of the corresponding equation (4.4): the symplectic character
of C ensures that the transformed family of systems is also Hamiltonian, but it is not
necessarily skew-symmetric. The goal of the following Propositions 4.6 and 4.7 is to
show that the definitions (2.5) and (2.55) of the rotation number and the Lyapunov
index can be directly extended to the transformed equations (in spite of the fact
that the coefficient matrix is not necessarily continuous), and that they take the
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same values as for the initial family. As will be seen, these properties are due to
the block-triangular expression of the matrix C, its square integrability, and the fact
that Im'/N > 0.

Proposition 4.6 Suppose that Hypothesis 4.1 holds, let §2y be the set appearing
there, and let C be the square integrable matrix-valued function associated to the
Junction Z that it provides (see Remark 4.5.1). Given a function V:R x £ —
Sp(n, R), define V:R x 2y — Sp(n,R) by V(t, w) = C(w-t) V(t, ). Then,

.1 ~ .1
tl_l)lgo " Arg, V(t,w) = t1_1)1}>10 " Arg, V(t, w)
whenever one of the limits exists.

. _ [Vitw) vs(tw) = _ Vi) Vi)
Proof Write V(t,w) = [V;(w) Vi(m))] and V(t,w) = [7; (t,w)?/i (m)]. The

expression of C(w) and the fact that Im'/>N(w) > 0 for w € £2, ensure that

1 ~ 1 ~
tl_l)r(r)lo n Arg, V(t,w) = tl_l)rgo n arg det (\71 (t, w) + iVs(s, a)))

= lim l arg det (Iml/zN(w-t)(Vl (t,w) + iVs(t, a))))

t—o0o

1
lim — argdet(V,(t, w) + iV3(t, ®))
t—o00

.1
r1_1>nolo " Arg, V(t, )

forall w € 2y, as asserted.

Proposition 4.7 Suppose that Hypothesis 4.1 holds, let §2y be the set appearing
there, and let C be the square integrable matrix-valued function associated to the
function Z that it provides (see Remark 4.5.1). Then,

() limysoeo(1/8) In || A"C(w-t)|| and lim;_soo(1/£) In || A" C™ (w-t) || exist and are 0
for my-a.e. w € $2y. " "

(i) Given V:R x £y — Sp(n,R), define V:R x 29y — Sp(n,R) by V(t,w) =
C(w-1) V(t,w). Then,

1 ~ 1
lim —In||A" V(f,w)| = lim —In ||A" V(t, 0)||
t—>o0 t t—o0 t

Sfor my-a.e. w € $2¢ for which the second limit exists.
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Proof

(1) Let n%, e n%n be the eigenvalues of the symplectic and positive definite matrix
CTC, with N > -+ > 1M > 0. The results of Lemma 2.39 ensure that
w(CC) > n = 1L, [A"Cll = L, and [A"C|> = n7---mp < (0(CTO)"
Consequently,

0<In ||/\"C||§gln(tr(CTC)) and (In(tr(CTC))) < t(CTC) .  (4.13)

Moreover, since Z = C'C is a solution along the flow on §2y of the equa-
tion (4.4), one has that tr(C’C)’ = —2tr(HC'C). Since H is norm-bounded (it
is continuous on £2) and Z € L' (§2, my), it follows that tr(C'C)" € L' (£2, my).
Hence (4.13), the Birkhoff Theorems 1.3 and 1.6, and Proposition 1.36 ensure
that

1
0 < lim - In[|A"C(w-0)] < = / tr(C7 () C(w)) dmoy = 0
t—o0o t 2 Jo

for mp-a.e. @ € £29, which proves the assertion regarding the first limit in
(). To check it for the second limit, with the same argument, note that the
symplectic and infinitesimally symplectic characters of C and H respectively
ensure that C~! is symplectic, and that Z = (C~1)7C~! agrees with —J(Z~1)TJ
and satisfies Z' = H' (w-1)Z + ZH(w-1).

(ii) Since /\"V(t, w) = A'C(wt) A" V(t,w) A" C™!(w), assertion (ii) follows
from (i).

Corollary 4.8 If Hypothesis 4.1 holds, then all the Lyapunov exponents and the
Lyapunov index of (4.2) with respect to mg vanish.

Proof Let Z be the matrix-valued function provided by Hypothesis 4.1. Consider
the family (4.10) obtained from (4.2) by the change of variables Z = C(wt) z, with
C associated to Z by (4.8) and (4.9). According to Remark 4.5.3, the fundamental
matrix solution ﬁ(t, ) of (4.10) which satisfies ﬁ(O, ®) = I, is bounded
on R x £ (in fact, on R x £2). Therefore, the spectral radius of the matrix
ﬁT(t, ) ﬁ(t, ) is bounded on R x £ (see Remark 1.24.2), and hence all of its
eigenvalues are bounded. Consequently, points (iii) and (ii) of Lemma 2.39 prove
that || A" U, )| is bounded on R x £, and that || A" U, )|l = 1. These
two properties yield lim,— o (1/1) In || AU (t, ) || = 0. Proposition 4.7 implies that
limy—oo(1/2) In || A" U(t, ) || = 0 for mp-a.e. w € £2, and so the assertion holds by
virtue of Definition 2.41.
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4.1.2 A Symplectic Change of Variables Associated to I’

Under Hypothesis 4.1, a change of variables which is associated to a continuous
function I': 2 — S,,(R) and which is suitable for later purposes will be found.
That is the purpose of this section. Note that the condition I" > 0 is not required in
the first result.

Theorem 4.9 Suppose that Hypothesis 4.1 holds, and let §2y be the set that it
provides. Let I': 2 — S,,(R) be a continuous map. Then there is a o-invariant
subset 2 C 2o with my($21r) = 1 such that the limit

Ar(w) = lim % / U (s, w) I'(w-s) U(s, w) ds (4.14)

exists for every w € Q r- In addition, the symmetric matrix-valued function Ar is
measurable, belongs to L' (82, my), and is a solution along the flow on Q2 of (4.4).

Proof The main idea is to reformulate (4.2) with respect to a new base in order to
express (4.14) in terms of the mean value of an integrable function. This is done in
several steps.

Let Z be the matrix-valued function provided by Hypothesis 4.1, let C be the
square integrable matrix-valued map associated to Z, and let (4.10) be the trans-
formed family of skew-symmetric linear Hamiltonian systems obtained from (4.2)
via the change of variablesZ = C(w-t) z for @ € £2 and defined by H (w) = 0y
outside £2o: see Remarks 4.5.1 and 4.5.2. The first step is to check that the compact
subset of £2 x My,,x,(R) defined by

ol = {wl - (w [%D € 2 X Mapn(R) | (@1 + i®2) (@1 + ids) = In}
2

is invariant under the Borel measurable flow Tg induced on £2 x My, x,(R) by the
family (4.10) (see Remark 4.5.2). It is clear that £2! is homeomorphic to the space

2xG, where G is defined in Sect. 1.3.4. Define £} = {(a) [%]) e we 90}.

According to Theorem 1.41 (which just requires that the maps ¢ +— H(w-t) be
continuous: see [127] and Remark 4.5.2), if o' € £2/, then

L B ° 1(1) R(1)
o't =Tr(t,0') = (“) [@0}) = ( B |:q)2(t)R(t)i|)

where the functions (bl(t) = &,(t,0, 89, 8Y), B2() = Byt 0, ), Y,
and R(1) = R(t,w, P9, &Y, 1,) are the solutions of equations (1. 15) and (1.16)
corresponding to the transformed systems (4.10) with initial data @, ¢>° and I,,.
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In addition,
(1) + i®2(1)) (D1 (1) + iD2(1)) = 1, (4.15)

It is easy to deduce from (1.18) and from the relation H = —H" the equality
(d/dt) (R'(t) R(t)) = 0,. That is,

RO R@) = RIO)R(O0) = I, (4.16)

for every r € R, which together with (4.15) implies that Tg(, w') € £2;. The result
is obviousif w!' ¢ £/, since in this case H(w-t) = 0,,. This completes the first step.

At this point the base flow is (2',0'), where 6! = Tg|g1. In spite of the lack
of continuity of this new base flow, the existence of o!-ergodic measures projecting
onto my by IT: 2' — 2., o' ~  can be proved: this will be the second step of
the proof. Use Lusin’s theorem to find an increasing sequence (/C,,),en of compact
subsets of §2 with my(C,,) > 1 — 1/m such that the restriction to K,,, of the matrix-
valued function C given by (4.9) is continuous. Then define

.Qm:{a)eﬂ

lim — /t X, (@-s)ds = mO(K:m)}

t—>o0 2t [,

foreach m > 1, and

1 t
2. = {wE.Q ‘tglgoz—t/_rf(a)'s)ds:/gf(w)dmo VfEC(.Q,R)}.

The ergodicity of the measure my, the Birkhoff Theorems 1.3 and 1.6, Proposi-
tion 1.5(1), and Remark 1.10, allow one to assume without loss of generality that
the sets §2,, for m > 1 and £2. are o-invariant, with m(£2,,) = mo(£2,) = 1.
Now fix a point w) € £2! which projects onto wy € 2. N (Nyy>152,). Take also
a sequence (#) 1 oo. The Riesz representation theorem associates to the bounded
linear operator C(2',R) — R, f! — (1/(2t)) ff‘rkfl (wg+s) ds, with norm 1, a
normalized measure y;. Theorem 1.9(i) ensures that the sequence (14;) admits a
subsequence (u}) which converges weak* to a measure !. That is,

fl(w")du' = lim L tjfl(a)l-s)ds 4.17)
o 2% = %2 . 0 .

]

whenever f! € C(£22',R). It follows easily from this fact, from the condition w, €
£2., and from Remark 1.14, that ,ul projects onto myg. Note also that, if / € R and
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f! e C(2',R), then

1 [
lim — [ fYwi(s+1D)ds

Jj—00 2lj —f

(4.18)

ti—

:Jimi ’ f(a)os)ds—/f(a))du,

Jj—>00 2lj —tj—1

as can be deduced from the boundedness of f'. In order to verify that u' is a
o'-invariant measure, fix / € R, f! € C(22,R), and § > 0, and choose an integer
m € N with 1/m < §/(4||f'| o1). Remark 4.5.2 ensures that the restriction of the
map 0: 2! —> 21, »' > w" to the compact set K}, = {o! € 2'| w € K} is
continuous. Consequently, the Tietze extension theorem ensures that the restriction
of f; = f'oo/ to K, admits a continuous extension to £2', called f;!, , which satisfies

1A ller = Hﬁ”}c}n o < If'g Since ! = £, = (f} —f,’lm))(m%}n, the point
a)é -s belongs to IC,ln if and only if wy-s € K, and wy € £2,,, one has

8
< 2|1 Mlgr (1 = mo(Kn)) <

.1
i 5 [ (0 ooy as

and

)
‘ /Q (@D = fin@D)dpt | <20 fHllr (1 =mo(Kp) = 5.

Therefore, equality (4.17) for fllm and (4.18) imply that

[ rroota@han = [ rwhan
ol ol

| (@) =it di’

1m_[mww>m%m

j—)OO 2t]
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which together with the arbitrary choice of § ensures that

[ freothan = [ rihap
foll foll

Linvariant

whenever f! € C(£2',R) and [ € R. Proposition 1.7 ensures that u' isa o
measure. And, as checked previously, it projects onto m.

Now, to prove the existence of a o!-ergodic measure projecting onto m, note
first that if a measure v! is the limit in the weak* topology of a sequence (v})
of elements of the set Mipy.m, (2!, 0') of o!-invariant measures projecting onto
mo, then v € Minym (21, 01). To see that v! projects onto my, just repeat the
argument of Proposition 1.15(ii). So, only the o' -invariance remains to be checked.
Take f' € C(£2',R). It suffices to prove that [, f'(@")dv'! = [, fl(®")dv',
where f;' = f! o o!. And, since

flHdv' = lim/ oY dvl = lim/ " dv},
01 k—o00 ol k—>00 ol

it is enough to check that limy—oo [ /' (@') dv} = [ f;'(w") dv'. The character-
ization provided by Proposition 1.7 has been used in the last assertions. Note that

' /Q (@D = fla@h) av!

/ (@) — f (@) d'
Ql_lCrln

< 2|1 a1 (1 = mo(Kn))

since v! projects onto m; and that the same relation holds for every v;. Hence,

V fﬁ(w‘)dv‘—/ fl(w") dv}
! o)l

<

[ @) g av +\ [ (@) =)
ol 2!

+ ' [ s = [ g av
v v

<l a1 =motE) + | [ ' = [ af

3

and a good choice of m guarantees that the initial value is as small as desired for
large enough k. That is, v! € Minym, (821, 0'1), as asserted.

It follows that Miny m, (21, 01) is a closed subset of the set of measures on £2!
(which is a compact metrizable space in the weak* topology, since £2' is a compact
metric space: see Theorems 6.4 and 6.5 of [148]), and hence it is compact. Clearly
it is also convex. Therefore, the Krein—-Milman theorem (see e.g. Theorem 3.23



194 4 The Weyl Functions

of [129]) ensures that Niny m, (21, 01) has extremal points, and the argument used
for instance in the proof of Theorem 6.10 of [148] proves that these extremal points
are o' -ergodic measures. That is, there exist o' -ergodic measures projecting ont my,
and the second step of the proof is complete.

From now on, m(l) will be a fixed o' -ergodic measure projecting onto 1.

In the third step one looks for a convenient way to rewrite U(#, ) for w € §2.

In what follows, w! = (a), [%‘ ]) is assumed to belong to £2/. Define ﬁl(a)l) =
2

H (w), where H determines the systems (4.10), and consider the family
7' =H'('nZ. o' e} (4.19)

Since JH' = —(H")'J = H'J, Theorem 1.41 guarantees that the symplectic
matrix-valued function 7 — V' (w'-1) given by V! (0" = [% _gz] is a fundamental
2 1

matrix solution of system (4.19), evaluated along the appropriate orbit of (£2},01).
Now consider the family of systems

7 =H'(w'nNz, we', (4.20)

given by H'(w') = H(w), and note that when »' € £2/, this system is obtained
from (4.19) by means of the change of variables z = (C') ™' (w'-1)Z with C'(0") =
C(w). Then the matrix-valued function 1 — V'(w't) = (CY) N (w'-)V (w'1) is a
fundamental matrix solution of (4.20) when w' € £2), where H' is evaluated along
the appropriate orbit of (£2},0'). Moreover, the boundedness of V! on £2! and the
fact that (C')™! € L*(£2',m}) (which is ensured by Proposition 4.3) imply that

vie 22\ m). (4.21)

Note also that the fundamental matrix solution U' (¢, w') of (4.20) with initial value
U'(0,w") = I, only depends on the first component w of w'; that is, U' (1, ') =
U(t,w) forevery t € R and w' € 2. Therefore, for w € £2,,

U(t,w) = U'(t,0") = Vi(w'1) (V) (), (4.22)

which completes the third step.

The proof of Theorem 4.9 can now be finished. The matrix-valued function I" can
be extended to the new base £2! by defining I'' (') to be equal to I"(w). Clearly, if
w € $2,

1 t
lim —/ UT (s, w) I'(w-s) U(s, ) ds
=00 2t J_,
1 t
= lim —/ (UH (s, 0") T (w'-s5) Ul(s, 0") ds .
—t

t—o00 2t
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It follows from (4.22), (4.21), the Birkhoff Theorems 1.3 and 1.6, and Proposi-
tion 1.5, that there exists a (Borel) o' -invariant subset 2}. € 2! with m}(£2}.) =1
and a (Borel) measurable map A} such that

AR @") = (V)Y @) Ve (V) ") (4.23)
forall 0! 5}, where

1 t
Vi = lim —/ (VHT(w'-s) I (w'-5) Vi(w'-s) ds
1—oo 2t J_,

(4.24)
=/ VHT (0" I'(w") Vi(w") dm) .
!

The projection of 5} onto 2 yields a (Borel) o-invariant subset Qr with
mo($2r) = 1 which consists of points of convergence for the limit (4.14) defining
Ar. This proves the first assertion of Theorem 4.9. The condition (4.21) and
the symplectic character of V! ensure that (V!)™! € L?(£2!,m/), and hence that
AL e LY(22',m}); therefore, Ar € L'(£2,my). Finally, since (V) (w'1r) =
H'(w'-1) V! (w'1), the relation (4.23) implies

Ap) (@' =—HY (@'")AL (") AL ) H ("),

from which the last statement follows.

Remark 4.10 The same arguments as above, which are based on the construction of
the extended flow, ensure the existence of the correlation matrix

1 t
C(r,w) = lim —/ Ul(s + r,w)U(s, w) ds

1—oo 2t |,

((vHH™(@h (/ (VI)T(wl~r)V1(wl)dmO) VH (")
Ql

and the Fourier coefficients of the solutions of (4.2) for my-a.e. w € §2. Conditions
which permit the reconstruction of the solutions in terms of the Fourier series are
given in Wiener and Wintner [149] and Scarpellini [135].

The matrix-valued function A satisfies some of the conditions assumed for Z in
Hypothesis 4.1, but not all of them: nothing ensures that it is positive definite or sym-
plectic. The following result proves that for the most usual perturbations I" (i.e. for
Atkinson perturbations), the limit (4.14) defines a positive definite matrix A (w)
for mp-a.e. € §2; more precisely, for w in the o-invariant set £2 - of Theorem 4.9.
This property will often be represented by writing Ay > 0. Theorem 4.13 guarantees
that two conjugate complex Lagrange planes are determined for myp-a.e. w € §2 by
A whenever Ar > 0. The symmetric representation of these planes provides the
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complex n x n matrix-valued functions from which the suitable symplectic change
of variables associated to the perturbation I" will finally be found.

Proposition 4.11 Suppose that Hypothesis 4.1 holds. Let I' > 0 be a continuous
symmetric positive semidefinite 2n X 2n matrix-valued function on §2 satisfying
Hypotheses 3.3, and let $2  be the subset provided by Theorem 4.9. Then Ar (») > 0
forallw € 2.

Proof The definitions and notation of the proof of Theorem 4.9 are used in what
follows. According to Lemma 3.6(iv) for A = 0,

/00 |1 (w1) U(t, w) z)|)* dt > 0

(o]

whenever w € §2 and z # 0. Therefore,

/ ” 2Z' (VHT (') (T (') V(' -t zdt > 0 (4.25)

—00

whenever w! € 2! and z # 0, as can be deduced from (4.22). According
to (4.23), the positivity of Ar(w) is equivalent to the positivity of the constant
matrix V, defined by (4.24). Obviously, Vi > 0. Assume that z'Virz = 0 for
a vector z € R?. That is, [, f(w')dmj = 0 for the function determined by
fl@h = 2" (V)T (o) ' (") V! (w') z, which is defined for w! € £2}. Then, for
every t € R, [, f(w'1)dmi = 0, so that 2" (V)T (w'-1) ' (0'-1) V! (0'-1)z = 0
for mp-a.e. w' € 2/ ; or, equivalently, (I"'")"/?(w'-f) V! (w'-f) z = 0. Thus, for every
teR,

2 (VHT (') (T (0" 1) Vi(w' 1)z =0 (4.26)
for mj-a.e. ' € $2,. Fubini’s theorem implies that for mj-a.e. o' € £2;, (4.26)
holds for Lebesgue-a.e. t € R, and hence (4.25) ensures that z = 0. Therefore,
Vi > 0 and the result is proved.

Part of point (i) in the following algebraic lemma is crucial in the remaining part of
this section, while both points will be required in Sect. 4.5.

Lemma 4.12 Let A be a 2n x 2n real symmetric matrix. Then n of the eigenvalues
of J~'A are the opposites of the other n of them. In addition,

(i) A is positive definite if and only if: (a) the matrix J~'A has purely imaginary
eigenvalues and can be conjugated to a diagonal matrix; and (b) the sums

of the eigenspaces of J™'A corresponding to eigenvalues with either positive
or negative imaginary parts are complex Lagrange planes I* and I~ which

can be respectively represented as [ Af’; ] and [ 1\5"— ] with N~ = N+ (complex

conjugate) and + Im N* > 0.
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(i) Assume that J~'A is nonsingular, has only real eigenvalues and can be
conjugated to a diagonal matrix. Then the sums of the eigenspaces of J~'A
corresponding to either negative or positive eigenvalues are real Lagrange
planes I and [™.

Proof The eigenvalues of J~'A agree with those of JJ7'AJ~™! = AJ~! and hence
also with those of the transposed matrix —J ' A, which implies the first assertion.

(i) Assume first that A > 0. Consider the inner product defined in C2" by A, namely
(x,y)4 = y*Ax. The adjoint of the matrix J~'A with respect to this product
is —J7'A, since (x,J'Ay)s = —y*AJ'Ax = (—J'AX,y)a. This property
ensures (see e.g. Theorem 7 of Chapter 8 of [95]): (i) that the eigenvalues of
J~'A are purely imaginary, which together with the previously proved property
and the nonsingular character of A ensures that they are iy, ..., £iy,, with
pu;j > Oforj = 1,...,n; and (ii) the existence of a basis of C?" composed
of eigenvectors of J~'A which is orthonormal for the chosen inner product. In
other words, there is a complex matrix P such that

P*AP=1, and P U'AP=D= [’A s } :
0, —iA

with A = Diag(u, ..., iy). Clearly, P can be chosen such that P = [2 g]
and such that J™'A = PDP~', and moreover [T and I~ can be respectively
represented by [1;;] and [g]. Since AP = JPD, then I, = P*JPD. Therefore,
P*JP = D7}, that is,

P3Py —P{P, PsP — PP, | _[—iA™" 0,
ﬁ;Pl —ﬁrﬁz P;ﬁl —ﬁrﬁz n 0, AT |”

This ensures, first, that PPy = P] P, and ﬁg P = T’ITE; in other words, that /T
and [~ are Lagrange planes. And second, that i( P;P; — Py P;) = A > 0, which
in turn guarantees that Py is nonsingular. Consequently, /* are represented by
[Aj'i ], with NT = PPy and N- = P, P! = N7. Moreover, since Nt is
symmetric,

i i B _
ImNT = -3 (Nt —(NNH*) = -3 (PH)"Y(PIP,—P3P)P.

Hence ImN*t > 0. This completes the proof of the asserted properties for the
case A > 0.

Conversely, if A is real and symmetric, the assumptions of the last part of
the statement concerning J~'A ensure the existence of matrices A and D as
above, a nonsingular matrix Pj, and a symmetric matrix N T with InNt > 0
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such that, if P = [ i‘ P ], then J™'A = PDP™! It is easy to check that
NtP NTP

P*AP = —P*J7'PD and that
2PFImNP; A 0
-P*J'PD=| "1 ! iy
[ 0, 2PT ImN(PT)* A

is positive definite: it is enough to prove that A~Y/2P¥ ImNP; AA™YV? is
positive definite, which is true since its eigenvalues agree with those of
P{ImNP;. Thus, P*AP > 0 and hence A > 0, as asserted.

(i) If J7'Az = Az and J7'Aw = puw, with Ap > 0, then zZ/Jw =
(1/w)z"Aw = —(A/pu) 2" Jw, so that zZ/J~'w = 0 follows. Hence /T and
I~ are real Lagrange planes.

See Definitions 1.17 and 1.63 to recall the concepts of copy of the base and closed
subbundle: they appear in the last point of the following theorem, which will be
required in Sect. 4.5. Recall also that, under Hypothesis 4.1, each continuous I”
provides a matrix A by way of (4.14), and that A satisfies the properties described
in Theorem 4.9.

Theorem 4.13 Suppose that Hypothesis 4.1 holds. Let I' be a continuous 2n x
2n matrix-valued function on §2 such that the mo-integrable function Ar defined
by (4.14) satisfies A(w) > 0 for all w € 2, where 2 is the set determined by
Theorem 4.9.

(i) There exists a o-invariant subset 2y < 2 with my($2r) = 1 and real
positive numbers |Lr1, ..., lLr, such that, for every w € 2r, the eigenvalues
ij_lAp(a)) are —ijbry, ..., —ilrn, iUri, .., iflry.

(i) If o € 2, the n-dimensional linear subspaces l}'(a)) and 7 (w) of C*,
respectively generated by the eigenvectors associated to the eigenvalues of
J7YAr with positive and negative imaginary part, are complex Lagrange
planes, and the sets {(w, leE (w))|w € 21} C K¢ are t-invariant.

], with Nf- (w) =

(iii) The planes leE (w) can be represented for w € 21 by [ Nﬁ(w)
r

Nj'f (w) and + ImNIiE (w) > 0, and the functions N;E are Borel measurable and

solutions along the flow on 21 of the Riccati equation (4.5).
(iv) For w € 82, the real matrix

4.27)

Cro) = [ 2V () 0, ]

—Im™ 2N} (@) Re N () Im™'2N ()

is symplectic, and the function Br given by Br(w) = Ck(w) Cr(w) is a Borel,
real, positive definite, and symplectic 2n x 2n matrix solution along the flow



4.1 A Suitable Symplectic Change of Variables 199

on 2r of the equation (4.4). In addition, Br € L'(£2,mo); Cr and C;l €
LX(2, my);

-1
Lo L [, 0, L .
Br(w) :JI:NIT(")) N;(w)i| [On —iln:| |:N1T(CO) NF(CU):| ’

and Br(w) agrees with A (w) for each point w € $2p at which Ar(w) is
symplectic.

Proof (i), (i1) & (iii) Since A is a solution along the flow on Q r of (4.4), one has
that

Ar(wt) = (Ut 0)Ar(0) U™ (1, o) (4.28)

whenever o € 51" and r € R. Take w € 51". According to Lemma 4.12(i), the
condition Ay (w) > 0 implies that J~'A (w) can be conjugated to a diagonal matrix
and has eigenvalues %iur (), ..., xiur,(w). Let z € C?" be an eigenvector of
J7'Ar (w) associated to the eigenvalue ij(w). It follows from (4.28) and from the
symplectic character of U(t, ) that

J AP0 Ut w)z = in(w) Ut,w) z; (4.29)

that is, U(t, ®) z is an eigenvector of J ™' A (w-1) associated to the eigenvalue i (w).
Therefore, the eigenvalues of J™'A (w) are o-invariant functions. Theorem 1.6 and
Proposition 1.5(i) provide a Borel o-invariant set 27 C £2p with mo(2f) = 1
such that these eigenvalues take the constant values

10 SOy VO 77 S PR /7o

for all w € 2. Also, Lemma 4.12(i) ensures that leE (w) are complex Lagrange

planes and that they admit the representation stated in (iii): [*(w) = [ Ni”(w) ]

Another easy consequence of (4.29) is that U(z, a))-lliE (w) = leE (w-t), which in turn
ensures that the matrix-valued functions Nt are solutions along the flow on £} of
the Riccati equation (4.5): see Sect. 1.3.5.

It remains to check that 22} can be reduced to a Borel o-invariant set £2, with
mo(§2r) = 1 such that the functions lIﬂE: 2r — Lc and fo: 2r — S;f((C) are
Borel measurable (which means that they admit Borel extensions to £2), and such
that the sets {(w, lIﬂE (w))|w € $2r} are Borel. The ideas applied here are similar
to those of the proof of Proposition 1.16(i). Let i be one of the eigenvalues,
and note that (4.29) ensures that its multiplicity d is also invariant; i.e. the map
k. 827 —>~gd((C2") , o — Ker(Ar(w) — inly,) is well defined. The measurability
of Ar on §2 established in Theorem 4.9, the regularity of mg, and Lusin’s theorem,
taken together, yield a compact subset M C 2} with m(M) > 0 such that
Ar(w) is continuous at the points of M. It follows easily from Proposition 1.26(ii)
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that k, is continuous on M. Moreover, the same result ensures that the map
® — k() ® ky(w) is continuous if A # u, and hence that the maps M —
Lc, o +— [F(w) are continuous. Define M; = {ot| o € M,t € [}
for j = 0,1,2,..., which is also a compact set. Then 2 = Uj»oM; is a
Borel o-invariant set of positive measure and hence, by ergodicity, my(2r) = 1.
In addition, the maps [ are continuous at the points of all the sets M;: this
assertion can be deduced from the relation U(t, a))-lliE (w) = lIﬂE (w-t) and from
the compactness of M and [k, k]. Therefore, the maps l,ﬂE are Borel measurable
on £2r, and the sets {(w, leE(a))) |w € $2r} are Borel. Finally, Remark 1.30 and
Proposition 1.28 ensure that any Borel set A C S;F (C) can be identified with a Borel
set B C Lc, in such a way that {w € £ | fo(a)) e A} = {w e 2| leE(a)) € B},
which ensures also the Borel measurability of N* on £2.

(@iv) It follows from Lemma 4.2(i) and from the properties of N}' stated in (iii)
that Cr(w) is symplectic for all w € £2, and that the measurable matrix-valued
function B is areal, definite positive, and symplectic solution along the flow on 2y
of (4.4). Therefore, By (w-t) = (U™)T(t,w) B(w) U (t,w) for (t,w) € R x 2.
Now consider the extended flow defined in the proof of Theorem 4.9. With the
notation established there and setting B-(»') = Br(w),

Br(o't) = (VH) ") (V) (") BR(@") V(") (V) (@),  (4.30)

according to (4.22). The boundedness of (’\71)_1 and the square integrability of
the matrix C! imply that (V!)™! € L2(2m/). Recall that the measure m is
ergodic. Apply Theorem 1.3 and Proposition 1.4 to the real functions v(w') =
[(VH™Hw")||> and b (w') = ||BL(w')|| and use Theorem 1.6 in order to prove the
existence of constants 7 € R and by € R U {oo} such that

1 t
5= [ 1V (@) dm) = Tim © [ 1) @) P ds.
ol t—o0o 0

- 1 t
b = / 1BY (") dm) = tim ~ / 1B (@'-5)] ds
foll t—o0 0

for all ' € £2}, where 2} is a o'-invariant subset of 2! with m}(£2})) = 1.

Take ' € £2}. It follows from (4.30) that br < ||V! (@H 1B (@Y b < oo,
so that B} e L'(2}, m(l)); that is, Br € L' (£, my). Consequently, making use of
Proposition 4.3, one sees that C- and C;l belong to Lz(.Q, mp).

On the other hand, since N = N/ and £ImNE > 0 (always in £21), then

—1 ro—1 - _

Irz In ilm N 0, N I In .

2 [ _ ] = r " [ ; and from here a straightforward
N NF 0, im'NF [ LMoL ] &

computation proves the equality stated in (iv) for B . In turn, this equality shows that
J™'Br can be conjugated to the diagonal matrix [’({: _Oi'}n ], and that the eigenspaces
of J7'B(w) respectively associated to the eigenvalues i and —i are the Lagrange

planes [ N};"(w)] and [ N;I"(w) ] But this is exactly what happens with J™'Ar () if
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Ar(w) is symplectic, since in this case the eigenvalues of J~'Ar (w) have modulus
1 and are purely imaginary (see Lemma 4.12(i)). Therefore, in this case, Ar(w) =
Br(w), which completes the proof.

Remark 4.14 Note that Br can be considered as a normalized representation of A,
in the sense that the eigenvalues of JB are +i and the corresponding eigenvectors
determine the same Lagrange planes as those of J~'Aj. The function B satisfies
all the conditions imposed on the matrix-valued function Z in Hypothesis 4.1. In
addition, Cr is defined from B as C is from Z in Proposition 4.3(ii). Theorem 4.4
guarantees that the square integrable symplectic matrix-valued function Cy satisfies
all the hypotheses necessary to define a change of variables that transforms the initial
family of systems (4.2) into skew-symmetric form, with the properties established
in Propositions 4.7 and 4.6.

The section is completed with a result which summarizes some of the preceding
ones and which characterizes the Hamiltonian families satisfying Hypothesis 4.1.
Special attention should be paid to points (6) and (7), which describe apparently
much weaker conditions which, however, turn out to be equivalent to Hypothe-
sis 4.1. Note that point (6) identifies the families for which Hypothesis 4.1 holds
with those for which there exists the L?-average of the solutions of the systems
which correspond to a set of positive measure.

Theorem 4.15 The following assertions are equivalent:

(1) Hypothesis 4.1 holds;

(2) there exist a o-invariant subset 20 C §2 with my(§20) = 1 and a measurable
Sfunction A: 2 — S;;l (R) which belongs to L' (2, mp) and is a solution along
the flow on $2¢ of the equation (4.4);

(3) there exist a o-invariant subset 20 C 2 with my(§290) = 1 and a measurable
Sunction N: 2 — S,(C) with InN(w) > 0 for o € $§2y, which belongs to
L' (£2,my) and is a solution along the flow on 2 of (4.5);

(4) there exist a o-invariant subset 20 C §2 with my(§29) = 1 and a measurable
Sfunction Cy:2 — Myux2,(R) with C,(w) nonsingular for o € $29, which
belongs to L*(§2, my), which is differentiable along the flow on $2o, and which
has the property that the change of variables 7 = Ci(w-) Z takes the initial
system into skew-symmetric form;

(5) there exist a continuous perturbation I', a o-invariant subset 2 < £2 with
mo($2r) = 1, and a measurable function Ap: 2 — SZ(R) which belongs to
L' (£2,my) and is a solution along the flow on Q1 of (4.4), such that Ar(w) is
given by the expression (4.14) for all € $2r, with Ar (@) > 0 at these points;

(6) the limit Ay, given by the corresponding expression (4.14) for I' = I, exists
on a Borel subset 2 C 2 with my($2) > 0;

(7) there exists a continuous perturbation I > 0 such that the limit Ap given
by the corresponding expression (4.14) exists on a Borel subset 2 < §2 with
mo($2) > 0.
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Proof It is obvious that Hypothesis 4.1 ensures (2). Proposition 4.3, Theorem 4.4,
Theorem 4.9 and Proposition 4.11, prove that it also ensures conditions (3), (4), (5),
(6) and (7).

Assume now condition (2). In order to construct a function Z satisfying Hypoth-
esis 4.1 from A, one needs only to repeat the method followed in the proof of
Theorem 4.13 to construct By from A . Therefore, (1) holds.

It follows easily from points (i) and (ii) of Theorem 4.4 that (3) implies (4) and
that (4) implies (2).

Obviously (6) ensures (7) and (5) ensures (2). In order to complete the proof, it
suffices to check that (7) implies (5).

Assume henceforth that (7) is true. Then the set £2, defined now as the set of
points of convergence for the limit (4.14), has positive measure, since it contains §2.
In addition, it is o-invariant. To check this assertion, take w € 2y and [ € R. It
follows immediately from I" > 0 that

1=l t+1
/ Ul (s, ) I'(w-s) U(s, w) ds < / " UT (s, ) I'(w-s) U(s, ) ds
—t+1 —t+l

1+
§/+ U (s, ) I'(w-s) U(s, w) ds .

—t—I

It is easy to deduce that

1 t+1
Ar(w) = lim — UT (s, w) I'(w-s) U(s, w) ds
t—o00 2t i1

and then from this equality that A (w-[) exists and satisfies
Ar(w) = U)'(Lw)Ar(@) U (1 w).

The asserted o-invariance is hence proved. This fact and the ergodicity of mg imply
that mo($2yr) = 1: the function A is defined my-almost everywhere, and hence is
measurable (see e.g. Remark 1.1). And the previous equality guarantees that A is
a solution along the flow on £2 of (4.4). It remains to prove that Ay (w) > 0 for all
w € 2r andthat Ar € L (.Q, }’l’l()).

Assume first for contradiction that there exist @ € £2r and z € R?" with
2'Ar(w)z = 0 and ||z = 1. Then, since U(s,w) € Sp(n,R) for all s € R and
7 w|| = ||w]| forall v € R?*,

1 [t I
1= % _,(z’z> ds = % /_T(U(a),s)z,—JU(a),s)Jz) ds
1 [t 12 /1 gt 172
<= [ Weozds) (= [ |UGsw)Jzfds) .
2t J 2t
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On the other hand, since I" > 0, there exists k > 0 such that ||I"~"/2(w-s)| < k for
all s € R, which means that || U(s, w) w|| < k||I"'/?(w-s) U(s,w) w|| for all s € R
and w € R%". In turn, this ensures that

t

1
lim sup — |U(s, w)w|>ds < kwTAp(w)w,
oo 2t J_;

and hence the previous inequality yields
1 <k@'Ar(w)2)*((Uz)"Ar(w)J2)/* = 0.

This is the sought-for contradiction.
In order to prove that Ap € L'(£2,mg), note that

— the proof of Proposition 4.3 can be repeated to find N and Cr beginning
with Ar, with the difference that it is not possible to assert that they belong
to L'(2, mg) and L2(£2, my);

— the proof of Theorem 4.4(i) can be repeated to obtain a family of Hamiltonian
systems (4.10) given by a skew-symmetric matrix H;

— the three steps in the proof of Theorem 4.9 can be repeated until (4.22) has
been obtained, with the sole exception of assertion (4.21), which cannot yet be
ensured.

Now define 2} = {w' € 2'| w € 21}, and note that, reasoning as in (4.23),

(VHT (@Y Ar(w) V(') = lim % /t(vl)T(wl.s) I'(w's) Vi(w's)ds

forallw! € 2L, where I''(0') = I'(w). It follows easily from the definition of the
Euclidean matrix norm that the function (I"")/2 V! € L2(£2',m}), which due to the
continuity and strict positivity of I"! ensures that V! € L?(2',m/)). That is, (4.21)
holds, and the final part of the proof of Theorem 4.9 can be repeated in order to
check that A belongs to L' (£2, my).

4.2 Directional Differentiability of the Rotation Number

Hypothesis 4.1 is in force throughout this section. Now, a perturbation I", given by
a continuous real 2n x 2n matrix-valued function on 2, will be fixed and subjected
to the hypothesis that it satisfies the condition (5) of Theorem 4.15: there exists
a measurable function Ap: 2 — S;(R) which belongs to L'(£2,mg) and which
is a solution along the flow on 2, of (4.4), such that Ap(w) is given by the
expression (4.14) corresponding to I" for all w € 2, with Ap(w) > 0 at these
points. Recall that this is equivalent to the remaining six conditions described in
Theorem 4.15. Note also that there is no loss of generality in assuming that the
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conclusions of Theorem 4.13 hold in the points of the set £2-. This assumption will
also be in force in this section.

Remark 4.16 As seen in Theorem 4.13, the eigenvalues of J'Ar(w) are
—Iilrys .. s —irn, iLE 1, - -, iftry, and are common for every w € £2r.

Under these conditions, the square integrable matrix Cr given by (4.27) forw € 2
provides a change of variables Z = Cr (w-f) z which takes the systems (4.1) to the
family

7' = Hw1) + A" T(w1)Z, weSL. 4.31)

Here, ﬁ(a)) = —ﬁT(w) is obtained for @ € 2 as in Theorem 4.4(i), F(w) is
given by

I'(w) = (Ch) (o) I'o) CFl(w) (4.32)

for w € 2, and both of them are defined to be 0,,, for w ¢ §21 (see Remark 4.5.2).
The symbols T and T stand for the flows induced on Ky by the family (4.31)
for A € R and A = 0 respectively. Although these flows may not be continuous,
the existence of ergodic measures projecting onto my is checked as in the proof
of Theorem 4.9. The rotation number of (4.1) for A € R, which, according to
Proposition 4.6, can also be directly determined from the family (4.31), will be
represented as oy (A). Note that now A represents a real parameter.

As mentioned before, this section is devoted to establishing the differentiability
of the rotation number in the direction of the matrix I" at the point Ay = 0. The
precise statement of this property is given in Theorem 4.19, whose proof is based
on the equations and properties of the transformed flows. The following auxiliary
results, which are consequences of the close connection between the matrices
Ar, Br, and Cr, show the importance of the particular choice of the linear change
of variables. The equality provided by the first result will play a fundamental role in
Theorem 4.19.

Lemma 4.17 Suppose that Hypothesis 4.1 holds, and that I' and 2 satisfy the
condition (5) of Theorem 4.15 together with Remark 4.16. If v € 21 and | € Ly,
with | = [2 ], then

ol (1o 2]) (i azimeo 2]) ) =ecton

Proof Some information obtained in the proofs of Lemma 4.12 and Theorem 4.13

will be used, and the notation established in Theorem 4.13 will be maintained. Write
Ar = Diag(iry, ..., jiry) and Dp = [’6‘{ _?;{r} For w € £2r, choose Q,, such

that the column vectors of [ ] are eigenvectors associated to (iry, ..., L,

Q(U
N (@) Qo
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respectively. Then the column vectors of [ N7?a3Q7] are eigenvectors associated
r (%)
. M Qﬂ) QHJ
to — ey — , respectively. Therefore, if P, = [ _ 7], then
Hr’l /*’LFJL p y @ N;f(a)) Ow Np (@) Qv

Ar(w) = JPprPal. It follows easily from Theorem 4.13(iv) that Br(w) =
JPwSPgl, with § = [g;’ _Oi’;n ] Therefore,

L | L
L elar)| 1| = (2 ~ceaore| 1]

1 -1

LT\ L
([LlTLg]Bp(a))[L;:D = ([Lg —LIT]PwSPwl[Lj)
Now represent
_ Y L
[XX] =[L} -LT]P, and [?} :Pwl[Lj
and note that
L L [y
0, = [L} —L{][Lﬂ =[L} —LT] Pa,Pwl[Lﬂ = [XX][?};

that is, XY = —XY. Consequently,

~l~

[L{L{]Ap(w)[g} = [XX] Dp[ } = —iXArY +iXArY,
1

(w4 = @0s[3)

— (=2ixY)" = %Y_IX_I.

-1

~I =

These equalities lead to

—1
X (T (GO

= tr((—iXApY + iYAp?)(é Y—lx—l))

- %tr(XApX_l +)_(Ap7(‘l) =t Ar = pr 4+ L,

which completes the proof.
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The following result expresses an important property of invariance with respect
to the measure of integration, which will be the principal tool in the study of the
differentiability of the rotation number. As in Remark 1.42, the function

Tr(w, ) = tr([451T @7] F(w)[il D (4.33)
2

where T is defined by (4.32) and [g; ] is any representation of / in L with @; +i®,
unitary, is well defined on £2y x Lg. In addition, given any t-invariant measure @&
projecting onto myg, T is measurable with respect to the -completion of the Borel
sigma-algebra of 2 x Lp: the last assertion of Remark 1.42 ) ensures that T is
continuous on any compact subset M x Lr C £y x Lg if I" is continuous on
M, and the assertion follows from this fact and a standard application of Lusin’s
theorem to the measurable function I".

Theorem 4.18 Suppose that Hypothesis 4.1 holds, and that I and $2r satisfy the
condition (5) of Theorem 4.15 and Remark 4.16. For every T-invariant measure [t
on Kg projecting onto my, one has

~ 1 ~
/ Tr(a),l)du:z/tr]“(a))dmozur’l_}_..._hunn_
Kr Ie)

30 ~ ~
Proof Take w € 2 and | € Lg, and write [ = [%‘)] with @? + i@g unitary.

2

Let F(,w, ®%, #Y) be the 2n x n matrix solution of (4.31) for A = 0 with initial
~ ~0 0 "’0

datum F(0,w, @9, 2) [ ] Written in generalized polar coordinates (see

Theorem 1.41),

Fit0, 30,39 = [5’310’@5’22’2%)5(%@?22’2271;«)}
D)(t,w, P, Py R(t, w, P, D3, 1,)

Here, as usual, @, (¢, w, 5(1), 53), Ds(t, 0w, DY, 5(2)), and R(t, w, 9, 53,1,,) are the

solutions of the equations (1.15) and (1.16) corresponding to the transformed §Zs—

tems (4.10) with initial data &9, &9, and I,. It is clear that C;: () F(t,w, ®Y, ®9)

is a 2n x n a matrix solution of the system (4.2). Write Cr- 1(a)) F(0,0, 89, @9 =

[q) ] Then C- 1(a) 1) F(t w, ®°, 45(2)) =U(t,w) [¢0R] which implies that

B, (1,0, 8%, B9

1 _ &) 30 F0
Cri(w1) [CDZ(I o ¢’07~2)} = U(t’w)[qbg RR™ (t,w, P}, 9P,.1,) . (4.34)

Relation (4.16) ensures that R~'(t,w, ®1, D>, 1,) and RT)"'(t,w, D1, P>, 1) are
inverse matrices. This property, together with (4.34) and the expression of I,
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ensures that
Tr(t(t, w,1)

@9, P9
:tr([(DT(t 0, B ) (1,0, B, BN T (o ’)[q>£z q>°,q>§;D

= tr([(cb?)T (@)U (1, ) I'(wt) U2, a))|:(p0:|RR)

0 0
It is easy to deduce from the equality Cr (a))[ 2{) ] = [ w0 ] that
2

®YT@D" @) =[@)" @) ]Cl@),

which in turn implies

0 -1
’e = (@07 @] cFw)cr)| g3 ])
2

-1

0
= (1ot @) 51 )

2

Therefore, Theorem 4.9 and Lemma 4.17 imply that

lim i Tr(v(s w,l))ds

t—>o00 2t

ONT ONT ¢O 0NT ONT ¢0 -
=l (@t @ har@| 5 )b @ lsre| 5 ])
2 2

= Wit

Since this happens for mp-a.e. w € §2 and every [ € Lg, the Birkhoff Theorem 1.3
ensures that

/ Tr(@. ) dT = prs + -+ firm 435)
Kr

for every t-invariant measure [ projecting onto n1o.

On the other hand, for all / € L, the vector space J-l = {Jz| z € [} is a real
Lagrange plane, and j: Kr — Kg, (®,]) — (»,J-]) is a homeomorphism which
preserves the flow T: j(7 (¢, w, 1)) = T(t,j(w,1)). This property is a consequence of
the skew-symmetric character of H which implies that U L(t, w)J U (t,w) = J for
the fundamental matrix solution U (t, w) of (4.10) with U (0, w) = I, and hence
that ﬁ(l, w)-(J:) = Jﬁ(l, w)-l. Given a t-ergodic measure Ji projecting onto my,
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let a new measure vV be defined by fKRf(a), ndv = f’CR (f oj)(w,])d . Then,
if Ti(w,)) = T(t,w,D), it is the case that [ (f o w)(w,)dV = [ (fono

DDA = [ (fojot)w.DdT = [ (f o )@ DA = [ fl@.)dV
for all + € R, which means that v is also T-invariant. Therefore, (4.35) ensures that

Ml+...+mn:/ Tr(w,)dv= | (Troj)(w.Dd]I,
Kr Kr

and hence that
1 ~
mri+ -+ i, = 5/ (Tr(w,l) + (Tr o j)(w, D) d k. (4.36)
Kr
Finally, take again (w,l) € £2p x Lr and write [ = [%;] with & 1+ iaz unitary.
Then J[ = [gz] and —52 + ial is also unitary, so that

Tr(w.) + (Tt o j)(@.])

_ tr([as{ 31T () [gl D n tr([_ag ] 'r‘(w)[_%D
2 1
31 31 3 -
-3 F]res ) e,

e 3
since [ »5} e ] is the inverse of [qb ;’2 ] The statements of the theorem can now
1

be proved using (4.35) together with this last equality and (4.36).

Theorem 4.19 Suppose that Hypothesis 4.1 holds, and that I and $2r satisfy the
condition (5) of Theorem 4.15 and Remark 4.16. Then there exists the derivative of
the rotation number in the direction of the matrix I,

@ 0) = 5 /Q r((C1) ™ (@) T(@) 7 (@) dimo = i + -+ firw. (437)

Proof The fundamental result contained in Proposition 4.6 allows one to repeat step
by step the arguments of Theorem 2.4 in order to prove that, for all A € R,

ar(h) = /’C Tt Qra (. ) AT, 4.38)

for every 7 1 -invariant measure 71, on Kg prOJectmg onto mgy, where the function
Tr Qr, is defined by (1.19) with H replaced by H+AJ'T . Itcan immediately be
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checked that

TrQra(w,l) = TrQro(w,l) + ATr(w,1),

where T is defined by (4.33). The argument proving the measurability of 7 with
respect to the 71, -completion of the Borel sigma-algebra of 2 x Lg proves the
same property for Tr Q. Therefore,

ar() —ar(©) _ / oo T

A K
Take now a sequence of real numbers (4,),en with limit O and, for each n € N,
a normalized T -, -invariant measure 71, on Kg projecting onto ng. There is no
loss of generality in assuming that the sequence (i), )nen converges in the weak™
topology to a measure ji: otherwise an appropriate subsequence could be chosen.
Again, although the transformed flows T, and T are not continuous, it is not
hard to check that the limit measure 1 is invariant under the limit flow 7: in fact,
Remark 4.5.2 allows one to adapt the arguments which were used to a similar
end in the proof of Theorem 4.9. The approximation of the matrix-valued function
I' = (CY)~'I ! (which, according Theorem 4.13(iv), belongs to L' (£2,my)) by
a family of continuous matrix-valued functions on §2, and Theorem 4.18, guarantee
that

Lar(a) —ar(©) _
im —~ =

n—>00 An

/ Tr(o.)dTi
Kr

1 ~
:—/trF(a))dm():pr,l—i—m—}—,upn.
2Je

The invariance of the limit with respect to the chosen sequence proves Theo-
rem 4.19.

In the final lines of this section, another representation of the rotation number of the
unperturbed family (4.2) will be presented. The notation established in the previous
proof is retained. Write [ = [%] with 51 + iaz unitary. Then Tr Qro (w,1) =
tr(~Ha(w) (0187 + ,81)) = —tr(Ha(w)) = tu(ImN} (w)Hs(w)): the first
equality follows easily from the definition of Tr Qo, 1, the second uses the equality
@, P1 + &,@) = 1I,, and the third comes from the third equality in (4.12).
Therefore, according to (4.38), for every T-invariant measure projecting onto my,

ar(0) = /’C TrQro (w,l)dTi = /9 tr(Hs () Im N}t (0)) dmy . (4.39)
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4.3 The Limits of the Weyl Functions on the Real Axis

The results of this section are obtained under the following fundamental conditions:

Hypotheses 4.20 Hypothesis 4.1 holds, and either I” > 0 for the general Hamil-
tonian one-parameter family (4.1), or A > 0 for the Schrodinger one-parameter
family (4.3).

Remark 4.21 According to Remark 3.5.1, if Hypotheses 4.20 hold, then Hypothe-
ses 3.3 hold as well. As was seen previously, this fact and Hypothesis 4.1 have two
fundamental consequences: on the one hand, the existence of the Weyl functions
MIjE (w,A) for A ¢ R: see Theorem 3.8; and, on the other hand, the existence of
the functions fo on a o-invariant set 2 C 2 with my(§£2;) = 1, which provide
the symplectic matrix-valued function C given by (4.27): see Proposition 4.11 and
Theorem 4.13.

As stated in the introduction to this chapter, the goal of this section is to prove that
the functions N IjP (w) are the vertical limits from the upper half-plane C. of the Weyl
functions MIjE (w, A) in the L' (£2, mp)-topology. Section 4.5 sets out more restrictive
conditions on £2, on the unperturbed family of systems, and on the perturbation I,
which ensure that functions NIjP are continuous and that the vertical convergence is
in fact uniform on £2.

As a first step, the vertical convergence in measure is proved in Theorem 4.26.
This result is based on the existence of the directional derivative of the rotation num-
ber. The L'-convergence, which requires some additional work in the Schrodinger
case, is stated and proved in Theorems 4.28 and 4.31.

Remarks 4.22

1. For convenience in the proofs, the matrix norm |Allr = (tr(A7A))Y/? (see
Remark 1.24.3) is fixed in this section. Therefore (see Definition 1.32), ||A|, =

([ (tr(AT (w) A(w)))?/ zdmo)l/ " for p = 1,2. Recall that the L”-norms induced
by two (equivalent) matrix norms are equivalent, so that the notion of conver-
gence in the L7 (§2, mp)-topology is independent of this particular choice of the
norm.

2. Property F3 in Remark 1.24.3 can be applied to prove two facts, which will
be repeatedly used in what follows: first, if the sequences (A,,) and (B)
converge to A and B in the L*($2,mp)-topology, then (A,,B,,) converges to
AB in the L'(£2, mg)-topology; and second, if C is a continuous and positive
definite matrix-valued function and the sequence (CA,,) converges to CA in the
LP (82, mp)-topology (for p = 1,2), then (A,,) converges to A in the [P (£2, mo)-
topology. Clearly, both properties can be formulated for one-parameter families
(A,) and (B,) instead of for sequences.
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Recall the information obtained in Sect. 3.1: the functions MIjE (w, A), defined for
ImA # 0and w € £2, are symmetric complex n X n matrix functions, which are
jointly continuous in both variables and analytic outside the real axis for each w € §2
fixed. In addition, & Im A Im M}E (w,1) >0, M}E (0. A) = (MIjE)*(w, A) and, for all
nonreal A and all w € £2, the functions t — MIjE (w-t, A) are differentiable and
satisfy the Riccati equation

M = —M(Hs(w-t) + A3 (wt))M — M(H (w+t) + AT (w-1))
4.40
— (H] (wt) + AT (0)M + Hy(w+t) + A (w-t) . (440

As explained in Sect. 3.2.1, the Weyl functions determine the Floquet coefficient
wr(A) for the fixed ergodic measure my on the upper half-plane, where it is an
analytic function defined by the expressions

wr(A) = + /9 tr(Hl(w) AT (@)
(4.41)

+ (Hs3(0) + AT3()ME (o, /\)) dmy .

In addition, as is proved in Sect. 3.2.4, the Floquet coefficient is extended to the
real axis by the function —f (1) + iay (1), where Br(A) and ar(A) denote the
Lyapunov index and the rotation number of (4.1) respectively. Recall also that
Br(A) represents the Lyapunov index for A inside or outside the real axis, as seen
in Theorem 3.30.

The analysis carried out in this section requires one to transform again the
families of systems (4.1) for A € C and w € 2y (see Remark 4.21) in (4.31) by
means of the symplectic change of variables Z = Cr(w-r) z. The Lagrange planes

lﬁ () = [ Mlj_ﬁl("w A)] are transformed into the Lagrange planes

i, ) e o | Lo
w) =
I —Im™ 2N} (@) Re Nf (@) Im™" /2N (o) | LMF (0, 2)
= In
o MIjE (w, 1)
for w € 2, where
ME(@, X)) = Im™' 2N (0)(ME (0, 1) —Re Nf () Im™ 2N (), (4.42)
and hence + Im M IﬂE (w, A) > 0. In particular, these matrices are nonsingular for @ €

£2r: see Proposition 1.21(i). In addition, as explained in Sect. 1.3.5, the measurable
functions M IjE (w, A) are solutions along the flow on §21 of the corresponding Riccati
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equation (4.40) for the transformed perturbed systems (4.31), namely

M = —M(—Hs(w-1) + AT 3(w-1))M — M(H, (w-1) + AT 1 (1)) was)
— (=Hi(0t) + AT T (00))M + Hy(wt) + AT (1), '

7[5 -& ST _ 1o Tyl et — [D T3
where H = [}7; »ﬁlz] andJ™'I'=J" (Cp)" I'C" = [7;2 _7:{].
The highly technical proof of the vertical convergence of the Weyl functions
requires the algebraic results stated in the following lemma.

Lemma 4.23 Suppose that Hypotheses 4.20 hold, and let 2 satisfy the conditions
of Remark 4.21. Define the hermitian n X n matrices

W(w,A) = I + (M) * (0, ) M (0, 1),

Ti(w, ) = iMF (0, ) W (w, 1) —iWw (o, 1) (M])* (@, 1),

- - (4.44)
Ty(w. 1) = W (@, 1) + Mf (0. ) W (0, 1) (M) (0. 2) -1,

forw € 2 and A € C4, with 117;2 (w, A) defined by (4.42). Then,

@ [ Ti(w,A) iTh(w,A)
—iT(w,A) Ti(w, 1)

(i) [Tl (@, 2)+1, iT(w,A)
—iTz(a),/\) Tl(a),/\) +In

:| is a negative definite matrix, and

i| is a positive semidefinite matrix.

Proof Note first that W* = W > I, and hence 0 < W~! < I,.

(i) Since

. 1 . .
7?1 il _ ! In il, T, + T, 0, ‘In il, ’ (4.45)
—lT2 Tl 2 —lln In On T1 - T2 lIn In
it suffices to verify that 7, + 7, < O and T} — T, < 0. To check the first relation,
note that

Ty + T, = (M} —il,) W™ (M})* +il,) — 1. (4.46)

It is well-known that the eigenvalues of AB and BA agree when A and B are
n X n-matrices, and easy to deduce from this fact that also those of AB — I, and
BA — I, agree. Therefore, the eigenvalues of T + T, agree with those of the
matrix ((1\7}')* +iln)(1\7}' —iIn)W_1 —1I,, which is equal to —2 Im]\?iW‘l; and
the eigenvalues of this last matrix agree with those of —2W~/2Im M }' w12,
which is negative definite. This proves that the eigenvalues of the hermitian
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matrix T 4+ T are strictly negative and hence so is the matrix itself. As for the
matrix 77 — T>, it is immediate to check that

Ty~ Ty = — (M} +il,) W' (M)* —il,) +1,. (4.47)
The equality
(MF)* —il,) (T) — ) (Mf +il,) = —2ImM}: — 4ImM} W™ Im M-

follows easily, and completes the proof of (i): the right-hand matrix is negative
definite and, as checked in Proposition 1.21(i), M I‘t + il, is nonsingular, since
it has positive definite imaginary part.

Substitute 7 by T} + 1, in (4.45): this provides an alternative expression for the
matrix in (ii) which proves that this assertion is equivalent to checking that 77 +
I, + T, and Ty + I, — T, are positive semidefinite matrices. The equality (4.46)
yields

T+ 1L+ T = (M} —il,) W (M) +il,)
so that T + I, + T is positive semidefinite. And (4.47) yields
(MF)* (Ty + 1, — Ty) M

= 2MF) M} — (M) (M} + i) W™ (M) — il,) M-
= 2(M})* M — (W + i (MP)* +il,)) W (W — i (Mf —il,))
= (M{)*M} + iM} — i(M})* + 1,

—(Mh)* + i) W= (M —iL,)
= ((MP)* +il,) (I, — WY (M} — L) ,

which is a also positive semidefinite matrix.

Lemma 4.24 Under the hypotheses of Lemma 4.23,

@

(i1)

ife > 0, then
Br(ie) = :b/ tr(ﬁz(a)) Re M (w, ie) + eI 3(w) Imﬂjﬂf(w,ie)) dmy ;
2

. IBF(ZS) o _ 1 ~
)31_1)r(§1Jr — = ar(0) = E/Qtrl"(a))dmo.
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Proof

(1) It follows from Theorem 3.30 and (4.41) that the Lyapunov index of the family
of systems corresponding to A = ie with ¢ > 0 is given by

Brie) = F / tr(H1(w) + Hy(w) Re MF — el3(w) ImMF) dmo,  (4.48)
2

where M* are evaluated in (w,ig). Write, as before, H = [»ZJ ng] and
2 1
J'T =7 (ch)~'ret = [% _I:I%IT]fora) € Qr. Itis easy to check that

Hi(w) = —Im™ 2N}t (0) Hy(w) Im™ 2N} (w)
I3(w) = Im™ 2N} (@) T3(0) Im™ /2N (0)
and the equality (4.42) implies that
Re ME(w, ig) = Im'/2N}} (0) Re ME (o, ig) Im'/2N}t (0) + Re N}t (),
ImME (o, ie) = Im'2N} (0) InME (0, is) Im'/2N}: (o) .
Therefore, forw € 2,
tI'(F3(C()) ImMIiE (o, is)) = tr(Fg,(a)) Im[\~/[1j5 (o, is)) ,
tr(H1 (w) + H3(w)Re MIjE (w, is))

= tr(H1 (w) + H3(w) Re N}f (a))) — tr(ﬁz(a)) Rel\?,ﬂf (w, is)) .
(4.49)

Recall that the function NIT is a solution along the flow on 2, of (4.5). In
particular,

(Im N (@) = — ImNJ (@) (Hi(w) + H3(0) Re N ()
— (ReN{f (w)H;3(0) + H] (0)) ImN} (),

and thus
(detImNp (w)) = —2detIm N}t (0) tr(H; (@) + H3(0) Re N}t (0)) ;
that is,

(IndetImNp(w))" = —2tr(H(») + H3(w) Re NIT (a))) .
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It follows from Theorem 4.13(iv) that ReNIT € LY(£2,mp). Therefore, as
explained in Proposition 1.36,

/ tr(H1 (w) + H3(w) ReNI‘f(a))) dmy=0. (4.50)
Q

The substitution of (4.49) and (4.50) in (4.48) proves (i).

The equality (3.44) and the nondecreasing character of oy (see e.g.
Remark 3.33) imply that 0 < [; 1/( 4+ 1)dar(f) < Imw/(i). Under these
conditions, the existence of &-(0), which is guaranteed by Theorem 4.19,
ensures that lim,_, o+ Imw).(ie) = a-(0): see e.g. Section VLB of [90]. This
limiting behavior, together with the equality Br = —Imw, the Cauchy—
Riemann equations for wy, and the fact that 8(0) = 0 (see Corollary 4.8),
ensures that

L (*0Br(s) Br(ie)

L . . .
a}(O)zslg%E/O Imw}(zs)ds:slg%go % ds:sgl(gr .

which proves the first equality in (ii). The second equality is a trivial conse-
quence of (4.37) and the definition of I".

Remarks 4.25

1.

Th

Recall that a family (A,) of measurable matrix-valued functions converges in
measure to a measurable matrix-valued function A as ¢ — 0 (with respect to the
fixed measure my) if, for all § > 0,

sli_%mo (o € 2| |Ac(w) —A(w)| = 8}) =0.

Obviously the definition is independent of the choice of the matrix norm and
equivalent to componentwise convergence in measure. And it is also clear
(and well known) that the convergence in the L' (2, mg)-topology implies the
convergence in measure.

. To understand the proof of the following result it is important to keep in mind

that the (1) convergence in measure of A, to A as & — 0 for functions defined
on £2 holds if and only if every sequence (&,,)men of positive numbers with limit
0 admits a subsequence (&) men such thatlim;— o0 A, (@) = A(w) mo-a.e. The
result is well known in the scalar case (see e.g. Exercise 11.45 of [58]), and can
immediately be extended to the case of matrix-valued functions.

eorem 4.26 Suppose that Hypotheses 4.20 hold. Then

lim ME(w, ig) = N (w)
e—0

in measure.



216 4 The Weyl Functions

Proof Let 2 be the set mentioned in Remark 4.21. It can immediately be checked
that the change of variables Z = Cr(w-r) z takes the functions fo (w) forw € 2
to the constant matrices +il,. It will be proved that

1im+ M ?5 (w,ie) = =il in measure, 4.51)
e—>0

which, since my(§£2r) = 1, is equivalent to the assertion of the theorem: see
Remark 4.25.2. As in Lemma 4.23, define W(w, 1) = I, + (M}')*(w, A) 1\7}' (w, )
and take A = ie with ¢ > 0. A straightforward computation taking the Riccati
equation (4.43) as the starting point guarantees that

(W (w,ie) W (w, ie))
= 2tr(Hy(w) Re M (w, ig) + eI 3(w) In M (w, ie))

~ Ti(w,ie) iTh(w,ig)
+ gtr(r(a))[—iTz(a),is) T\ (o, ie) D ’

(4.52)

where T and T, are defined by (4.44). The interested reager can find in the following
steps a possible way to prove this equality. The matrix M }' (w, ie) is represented by
M, and the argument @ is omitted:

twr(H\M* MW" — M*MH, W)
=tu(H\(W - L)W' —HW ' (W-1,)) =0,
w(TTM* MW —M*MT W)
=tuw(CTW—1)W™' =T /W (W —1,))
=tw(-TTWw + T w™),
tr(HoMW™" — M*H, W' + M*H,M*MW ™" + M*MH,W ™)
= w(WHMW™' + M*H,WW ™) = 2tr(H,Re M) ,
tw(M*TsM* MW~ — M*MT ;MW ™)
= (M T3 =M TsW™' —T3M + T3:MW™")
= 2itr(T3ImM) + (=W M* + TsMw™),
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and finally
ie tr(FIW‘1 + T MW M — TTw= — PTw " M
— oMW + Tow™' M + Tamw™" — Tow='m*)
_ m([—;ﬁz ]j{}[ T\(w,ig) iT>(w, is)D '
'y I's||—iTh(w,ic) Ti(w,ic)
The next step in the proof of Theorem 4.26 consists in checking that

_ . ~1/2 T\(w.ie) iTx(w,ie) |51
0 = 2Br(ie) + S/Qtr(l“ (w)|:—iT2(a), &) Ti(.ie) :|F (0))) dmy .
(4.53)

To this end, note that tr(W'W~') = (Indet W)’, and use the information provided
by Proposition 1.36 to deduce that [, tr(W’ W) dmy = 0: Lemma 4.24(i) ensures
that

Br (i) = /9 tr(Ha(w) Re M} (w, ig) + eT'3(w) Im M} (w, ig)) dmo ,

so that in particular the function in the integrand belongs to L (82, mp); and, as stated
in Lemma 4.23(i), the third and final function in (4.52) is strictly negative, so that
Proposition 1.4 ensures that there exists

limf rtr(?(w.s)[ T)(w-s, i€) iTz(w.s’ig):Dds
0

=00 t —iTy(w-s,ie) Ti(w-s, ig)

for mp-a.e. w € §2, and the limit lies in [—o0, 0].
The equality (4.53) and Lemma 4.24(ii) imply that

lim | o(F"() Tl(fl)vls)"‘}'ln sz(Cf),l€) F12(w)) dmo = 0.
=0t Jo —iT)(w,ie) Ti(w,ie)+1,

Lemma 4.23(ii) ensures that the matrix inside the integral is positive semidefinite.
This, the previous assertion and the definition of || - || (see Remark 4.22) imply that

. ; . 1/2
lim Tl(‘(l),lé‘)—fr]n sz((‘l),lé‘) I-vl/Z(w) — 02n
e—ot | —iTh(w,ie) Ti(w,ie)+1,

in the L2(£2, mg)-topology, and hence in measure. In addition, the measurable matrix

function I" is positive definite when I" > 0, and takes the form [%8] with A > 0

when I' = [ﬁ 8] and A > 0. In both cases, Remark 4.22.2 and the characterization
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given in Remark 4.25.2 yield lim,_, o+ (7 (w, i¢) +1,,) = 0, in measure. In addition,
it is easy to check that

2Ty + 1) = W (W= 2i0F5)*) (W + 2 F) W' + 2w —1,)°,

which implies that lim,_, o+ (W(w, ie) + 2iM j: (w,ie)) = 0, in measure. Since
Re (W + 2i1\~/11‘t) = Re? A~41‘t + (ImI\Z}' —I,,)?, one has that lims_,QVZVI}' (w,ie) = il,
in measure, as asserted in (4.51) for M I‘t The analogous result for M can be proved
in a similar way.

Remark 4.27 According to the characterization given in Remark 4.25.2, the conver-
gence in measure implies that the functions NIﬂE coincide with the vertical pointwise
limits from the upper half-plane of the Weyl functions if these limits exist for my-
ae. @ € 2. And it also ensures that lim,_, ,+ Im™! MIﬂE (w,ie) = Im™! fo (w) in
measure.

The following result establishes the L!-convergence in the case of a positive definite
perturbation I". This choice of I" excludes the Schrodinger case, which will be
analyzed separately.

Theorem 4.28 Consider the general Hamiltonian case (4.1). Suppose that Hypoth-
esis 4.1 holds and that I' > 0. Then,

lim ME(w, ig) = N (w)
e—0

in the L' (82, mg)-topology.

Proof The Weyl functions MIjE (w, ie) satisfy the Riccati equation (4.40) for A = ie.
It is not difficult to check that

tr(AmME) (o, ie) Im™' M (w, ie))
= —2tr(H,(0) + H3(w) Re M} (w, ie) — eI3(0) In M (w, is))

— e tr((CrD) (@) N (@) Crh (@) .

where Cr. is obtained substituting NIT (w) by Mli' (w, ig) in (4.27). The left-hand
term agrees with the derivative of IndetIm M,i' (w, ig), and the right-hand term is
a continuous function, so that it belongs to L (£2, myp). Proposition 1.36 and the
representation (4.48) guarantee that

Brie) 1
e 2

/ tr((Crb) (@) I'(w) Cri(w)) dmg . (4.54)
2
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Moreover, Lemma 4.24(ii) yields

lim
e—0t

ﬂpg(ie) = o (0) = % /Q tr((CrHT (w) I'(w) CF (@) dmy (4.55)
where Cr () is given by (4.27). Thus,

lim tr((Crh) (@) I'(w) Cri(w)) dmg
2

e—>0

= /Qtr((C;l)T(a)) I'(w) C;l(a))) dmy .

The definition of the norm || - ||z which was used to define the L>-norm ensures that
lim, o+ T2 Crllla = |7 CF2. In addition, the convergence in measure
of M;f (w, ig) to N;f (w) as & — 0 and the continuity of I" imply the conver-
gence in measure of I''/2Cpl to I'/2C' as & — 0. These two facts (see
Remark 4.29 below) guarantee that lim, o+ I"'/?(w) C;i (w) = I'"*(w) CFH(w)
in the L?(£2, mo)-topology. The continuity and positivity of I"'/? ensure that also
Crl(w) converges to Cr'(w) in L*(£2,mg) (see Remark 4.22.2), which in turn
means that

lim Im'?M} (w, ie) = Im'’N} (w),

e—0T
lim Im_l/zMI‘f(w, ig) = Im_l/zN}f (w),
e—0T
lim ReMIi'(a), i€) Im_l/sz:(a), ig) = ReNIi'(a)) Im_l/zNIi'(a))

e—>01
in L*(£2, my). Finally, since A + iB = (AB~'/? 4 iB'/?)B'/?  one has that

lim M}f (w,ie) = N}f(a))
e—0T

in the L!(£2, my)-topology (see again Remark 4.22.2), as claimed. The analogous
result for M- and N> can be proved in a similar way.

Remark 4.29 Assume that: A and all the elements of the sequence (A,) are
real matrix-valued functions on £2 belonging to LP(£2,my) (for p = 1,2);
lim,, oo |Amllr = |Allr; and lim, o0 Ap(w) = A(w) mp-a.e. Under these
conditions, lim,,—»sc A;;, = A in the L? topology. In order to prove this, fix any ¢ > 0.
The L7-integrability of A provides a number § > 0 such that fx |A[|P dmy < &
whenever mo(ﬁ) < 4, and the Egorov theorem implies that there exists £2, with
mo($2 — §2¢) < & such that (A,,) converges to A uniformly on £2,. Therefore,



220 4 The Weyl Functions

fQ A — AP dmg converges to 0 and [, _ o, I[P dmoy < e. It follows easily from
these facts and from the convergence of ||A,, || » to ||All, that

m—>0Q

lim sup/ A — A, |IP dmg < lim sup/ A — A, |IP dmg
-0,

< / JA[1 dmo + lim sup / 1A P dimo
-2, 22—

m—>0Q

< 2/ VAP dimo < 2.
-9,

which proves the assertion. It is clear that the hypothesis lim,—oco Am(®)
A(w) mp-a.e. can be replaced by lim,, A, = A in measure: just use the
characterization given in Remark 4.25.2. And it is also clear that this result can
be formulated for a family (A,) instead of for a sequence (A4,,).

The rest of the section deals with the Schrédinger family (4.3) with perturbation
A > 0. The notations o, Ny, and MIﬂE have the same meaning as in the previous
sections.

Proposition 4.30 Consider the Schrodinger case (4.3). Suppose that Hypothe-
sis 4.1 holds and that A > 0. Then,

lim ImMF (w,ie) = ImeE(a)),

e—0T
lim Im~'ME(w,ie) = Im™'NE(0),
e—0t
lim Re MFE (w,ie) Im™'M¥ (v, is) = Re N&(w) Im™'NFE ()

e—0t

in the L' (82, mg)-topology.
Proof According to (4.41), the imaginary part of the Floquet coefficient of the

family of systems (4.3) corresponding to A = ie with ¢ > 0 is given by
Imwr (ie) = /9 tr(Im M} (. ig)) dmy . (4.56)
In addition, as was proved in (4.39),
ar(0) = /Q tr(Im N}t (w)) dmy .

Thus, Theorem 3.32 guarantees that

lim tr(ImM?:(a),ie))dmo =/ tr(ImNIT(a))) dmy . 4.57)
=01 0 2
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On the other hand, the relations (4.54) and (4.55) corresponding to this case imply
that

lim tr(A(w) Im™'M} (v, ie)) dmy = / tr(A(w) Im™'Nf (0)) dmy . (4.58)
e—>0 0 2

Relations (4.57) and (4.58), the convergence in measure established in Theo-
rem 4.26, Remark 4.29, the positivity and continuity of A, and Remark 4.22.2,
all taken together, prove the convergence of Im M;f (w,ig) to ImN}L (w) and of
Im™' M} (w, ig) to Im™' N\ (w) in the L' (£2, mo)-topology, as ¢ — 0.

Let £21 be the set appearing in Remark 4.21. Repeating the computation of the
proof of Theorem 4.4(i) for this particular case proves that the change of variables
Z = Cr(w-)ztakes (4.1) forw € 2 to

Hi(w1) Im N (1) }N 4.59)

~r _ ~
L= |:(—ImNIT —isIm_l/ZNITAIm_l/zNI‘f)(w-t) Hi(wt)

with H 1= -H lT In addition, the nonsingular functions M IJE (w, i) defined by (4.42)
are solutions along the flow on §2 of the corresponding Riccati equation (4.43); i.e.

M' = —MImN; (0-OM — MH\(w-1) + H,(0-)M

—Im N} (1) — ie Im™ 2N (0-1) A(w-t) Im™ V2N (w-1) .

It is immediate to determine from this equation those which are satisfied by
ReM }' (w,ie) and ImM }' (w, ig), and not difficult to check that, if w € 2, then

(tr((1, + Re* M (w, ie) + Im® M (o, ie)) Im™' M} (w, is)))/
=¢ tr((ln + Re? 1\7}' (w, is)) Im™! 1\7; (w, ig) Im_l/zN}f (w) A(w)

Im™V2NF (@) Im™! M (o, ie) — Im™ 2N (0) A(w) Im™/2N (a))) .

It follows from the continuity of M j: and A and from the integrability of Im™"/ ZNIT,
which is ensured by Theorem 4.13(iv), that the right-hand term belongs to
L'(£2, mg). Therefore, Proposition 1.36 ensures that

/ tr(A Im_lNIT) dmy
2
= /9 tr(AIm™ 2N Im T ML (1, + Re2M ) Im™ M Im™ 2N E) dim

where N and A have argument w, and M}L has arguments (w, i¢). Using the
relation (4.42), this equality can be also expressed in terms of the function
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Mli' (w, ig) as follows:
/9 tr(AIm™'N}) dmy = /9 tr(AIm™' M} (Im N} + P}) Im™'M}) dmg
where P}t (w, ie) is defined by
Pl = (ReM} —ReN;)Im™'N/ (ReM;t —ReN}').
This equality can be rewritten as

/ tr(F! () Cl-(w) Cr (@) Fs(w)) dmyg
2

_ / t(FT () CL(@) Crr () F(0)) dmo .
2

with
_ Im™ ' M} (0, ie) AV?(w)
Folw) = [ReM}L(a), i€) Irm_lMF(ws i€) Al/z(“’):| ’
_ Im™' N (@) AV (w)
Fle)= [ReN}L(a)) Im™'N () A”z(w)} ‘

Thus, the L>(£2, myp)-norm of the functions C F, is independent of . This fact, the
convergence in measure of CrF, to CrF, and Remark 4.29, imply that

liron+ Cr(w) Fe(w) = Cr(o) F(o)

in the L?(£2, my)-topology. Finally, since C! € L2(£2, my) it follows that Fe(w) —
F(w) as ¢ — 07 in the L'(£2, my)-topology (see Remark 4.22.2), which implies
that

lim+ Re M}f (w, ie) Im_lMI‘f (w,ic) = Re N}f (w) Im_lN}f (w)
e—>0

in the same topology. The proof of Proposition 4.30 is complete.

Theorem 4.31 Consider the Schridinger case (3.3). Suppose that Hypothesis 4.1
holds and that A > 0. Then,

lim ME(w,ie) = N ()
e—01

in the L' (2, mg)-topology.
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Proof In what follows, M,i' is evaluated in (w, i), G, A and NIT are evaluated in w,
and convergence always means as ¢ — 07
The Riccati equation (4.40) for M,i' is now
M = —M? + G(w-1) — is A(w-), (4.60)

while NIT satisfies the same equation for € = 0. It is easy to check that

(r(Im™'M;)) =2 w(Im ™' M} Re M) + e tr(A Im™2M7Y)

(r(Im M + Re M; Im™' M}t Re M)’

= 2tr(Re M} Im™'M} G) + etr(A (—1, + Im™' M} Re’M} Im™' M) .

All the functions in the right-hand terms are continuous. Therefore, according to
Proposition 1.36,

S/QtI'(A Im_zMIT) dmy = —Z/Qtr(lm_lMI‘f ReM?I) dmy ,
e /9 tr(A(=1, + Im™' M} Re’M; Im™' M) dmy
= -2 /9 tr(Re M} Im~' M} G) dmy .
The same computations for NIT (w), now with ¢ = 0, show that
/Qtr(lrn_lNI‘f ReNIT) dmyg =0,
/9 tr(Re N Im™'Nf G) dmy = 0.

Proposition 4.30 implies that tr(Im~'M;f Re M}) and tr(Re M;5 Im™' M} G) con-
verge to tr(Irn_le Re NIT) and tr(Re NIT Im_lNIi' G) in L' (£2, my). Therefore, the
previous four equalities yield

lim s/ tr(A Im_zMIJf) dmy =0,
2

e—0T

lim, s/ tr(AIm™' M} Re’M} Im™'M}) dmy = 0;
e—>0 2
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or, in other words, keeping in mind that ||A|l, = ||AT||, (see property F1 in
Remark 1.24.3),

SEI(I)lJr gl/? ||Im_1MIi'A1/2 ||2 =0,

lim e |A Im™' M ReM |, = 0.

These equalities, Property F2 in Remark 1.24.3, and the Cauchy—Schwarz inequality
ensure that

lim
e—0t

s/tr(lm—‘M,f Alm™'Mf Re M)
4.61)
< tim e [im'ME AV, [ AV I b ReME ], = 0.
e—>0t

The Riccati equations (4.60) for ¢ > 0 and & = 0 also yield

(Im~'M;f Re M) = Re M} Im™'M}f Re M\ + ImM: + Im™' MG

+eIm™'M} AIm™' M} Re M},

(Im~'Nj: ReNf:)" = Re Nt Im™'Nj: Re Nf + ImN;t + Im™'N/ G,

which together with Proposition 1.36 ensures that
0= / tr(Re M Im™ Mjf Re M + Im Mt + Im™' Mt G
2
+ e Im™ M ATm™ M Re M}t ) dmo,

0= / tr(Re N} Im™'Nf Re Nft + ImNf + Im™'N{ G) dmy
2

Property (4.61) and the L'-convergence established in Proposition 4.30 together
with the continuity of G yield

lim ; tr(Im™" M7} Re’MF Im ™2 M) dmy

= /Q tr(Im™"2N} Re?N; Im™"2N /") dmy .

According to Remark 4.29, this fact, together with the convergence in measure and
the definition of ||- |, ensures that Re M- Im™"/2M\ converges to Re Nj" Im™"/2N}
in the L?(§2, mg)-topology. The proof of Theorem 4.31 is completed as was that of
Theorem 4.28.
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Note that these two results and equality (4.41) also provide an ergodic representation
for the Lyapunov index 8 (0) if I" > 0 or A > 0, namely

Br() =F /9 t(H, () + Hy(w) Re N (w)) dmg . 4.62)

The arguments used in this section can be repeated to prove a final result, which
concerns the vertical convergence from the lower half-plane of the Weyl functions.
Note the fundamental difference in the value of the limits.

Theorem 4.32 Suppose that Hypotheses 4.20 hold. Then,

lim_ ME(w, i) = N (o)

in the L' (82, mg)-topology.

Remark 4.33 Denote by u both the volume form on Lr and the induced measure
on the o-algebra of Borel sets, and by m; the complete product measure my @ [
on the corresponding o-algebra of Kr. The matrices Cr play a fundamental role in
the proof of the occurrence of absolutely continuous dynamics for the systems (4.1)
for I' > 0 and (4.3) for A > 0; i.e. of the existence of a t-invariant measure on
KCr which is absolutely continuous with respect to m;. The details of this assertion
(which in fact involves a wider class of systems), as well as an explicit representation
of the density function of such a measure in terms of Cr, can be found in Novo and
Nufez in [111].

4.4 An Extension of the Kotani Theory

In this section, as was the case in the previous one, only positive definite perturba-
tions I" > 0in (4.1) and A > 0 in (4.3) will be considered. On the other hand,
Hypothesis 4.1 is not initially imposed. Define

Ar ={A eR[ Br(1) =0},

where S (A) represents the Lyapunov index of (4.1) with respect to the fixed
o-ergodic measure my. Kotani’s theory for n-dimensional Schrodinger equations
(with perturbation A = I,) and linear Hamiltonian systems (with perturbation
I' = ;) can be found in Kotani and Simon [91] and Sun [145] respectively. This
theory allows one to identify A with the essential support of the absolutely con-
tinuous spectrum of multiplicity 2n of the associated operators. A straightforward
generalization leads to the following result. Remarks 3.31.1 and 3.31.2 contain the
definition and basic properties of MIjE (w, Ap) for Ay € R. Recall also the information
provided by Proposition 1.5(i).
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Theorem 4.34 [f I' > 0 or if, in the Schrodinger case, A > 0, then there exists
a subset Ary C Ar, with the same Lebesgue measure as Ar, such that, for Ay €

Ari,

(i) there exists a o-invariant subset §2;, < $2 with mo(82,,) = 1 such that the
limits MIjP (w, Ao) exist and satisfy £ Im MIjP (w, Ao) > 0 for every w € §2y,,
and the functions $2,, — SH(C), v — :i:MIiE (w, Ao) can be extended to
measurable functions on §2.

(ii) The three matrix-valued functions Im MIjE (w, Ao), Im_lMIj«E (w, Ao), and
Re MIjP (w, Xo) Im_lMIj«E (w, Ao)Re MIjE (w, Ao), belong to L' (2, m).

It is known that, given a general recurrent linear system with bounded solutions,
there is a continuous change of variables taking it into skew-symmetric form (see
e.g. Ellis and Johnson [42] and Cameron [24], and recall that the recurrence of the
system means that the flow on its hull is minimal). In the case that the assumptions
of recurrence and of boundedness of solutions do not hold, it is still possible to
give the explicit expression of a measurable and symplectic change of variables
taking the family of linear Hamiltonian systems (4.1) for A = Ay € A into skew-
symmetric form and preserving its rotation number and Lyapunov index. The proof
of this assertion is basically contained in that of Theorem 4.15. To verify it directly,
define the real matrix-valued function

P (@) = Im!'2M7 (@, Ao) 0

Ik —Im™'2M} (w, Ao) Re M} (w, Ao) Tm™2Mf(w, A0) |
which, as a consequence of Theorem 4.34, is nonsingular and belongs to
L2(£2, my). It can immediately be checked that Py, is symplectic. Theorem 4.4(i),
Remark 4.5.2, and Propositions 4.6 and 4.7 prove the indicated properties for the
change of variables defined by Z = P, (w-1) z for w € £2;,.

In addition, since M}f (w, Ao) is a solution along the flow with positive definite
imaginary part of the Riccati equation (4.40) for A = Ay, Lemma 4.2 proves that
Zry, = P; 2o P12 18 a (positive and symplectic) solution along the flow on §2), of
the equation

7 =—(H(n + AOJ_IF(a)-t))TZ —Z (H(ot) + AoJ ' T (01)) .

These considerations together with the amplified Kotani theory provided by The-
orem 4.34 show that, when the Lyapunov index of (4.1) vanishes for all A in
a set A C R of positive Lebesgue measure, then the Hypothesis 4.1 imposed in
the previous sections of the chapter holds for the systems (4.1) corresponding
to Lebesgue-a.e. A € A. Recall also that Corollary 4.8 shows the converse:
Hypothesis 4.1 for a given family ensures that the Lyapunov index vanishes.

In particular, the results of Sect. 4.3 hold with H replaced by H + A¢J~'I" for
Ao € Ar;. This fact has the following immediate consequence, which adds some
information to that provided by Theorem 4.34.
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Theorem 4.35 Suppose that I' > 0 or that, in the Schrodinger case, A > 0. Sup-
pose also that Ay belongs to the set Ar; defined in Theorem 4.34. Then the matrix-
valued function @ +> MIjE (w, Ao) belong to L' (2, mp), and lim,_,,+ MIjE (w, Ao +
ie) = ME(w, Ao) = limeo- M} (w, Ao + ig) in the L' (£2, mo)-topology.

Consider again the family
= (H(wt) + pJ ' Twn))z, we (4.63)

under the hypothesis I" imposed on I” in this section: I" > 0 or A > 0 if the
family comes from a Schrodinger equation. Take p in the corresponding set A
determined by Theorem 4.34, and note that the family can be written as

Z = (Hy(ot) + 2] ' Tw1)z, we (4.64)

for H,, = H + o' and A = w — juo. Theorem 4.35 states that the function
M}f (w, o) corresponding to (4.63) is the limit in the L!'(£2, mg)-topology of the
functions M (a) Ho + ig) as 5 — 0T. As explained in Remark 4.27, this fact
ensures that M (w, o) = F;Lo (w) for mp-a.e. ® € £2, where NFM is the
function determlned by Theorem 4.13 for the family (4.64). Consequently, the
ergodic representations (4.62), (4.39), and (4.37) for the Lyapunov index B (1) and
the rotation number of (1) of (4.63) (which of course agree with those of (4.64))
obtained in the previous section and expressed in terms of Nli_.,uo (w) can be now

rewritten in terms of Mli' (w, o).
This property has an interesting consequence in the particular case of the family
of n-dimensional Schrédinger equations

-7 +Glwtz=pz, wef, (4.65)

which are perturbed in the direction of A = 1I,. Set I = [16 8], and

take 9o € Ap.i. Then relations (4.39) and (4.37) imply that ap,(no) =

Jo t1r(ImM1‘f0 (@, jt0)) dmy and af, (o) = (1/2) [, t1r(Im_1M1‘f0 (@, o)) dmy.
Therefore,

20, (o) @, (o) = /9 tr(Im M (o, po)) dmo /Q tr(Im ™' M (. 10)) dmo

2
> (/Q (tr(ImM,i:)(w,,uo))tr(Im_lM;)(w,Mo)))l/z dmo)

Note that, if uq, ..., i, are the eigenvalues of a positive definite real n X n matrix A,
then

tr(A) tr(A™") = (1 + -+ ) (/1 + -+ 1/ )

=n+ Z(“i/ﬂj + @i/ i) = n+2n(n—1)/2 = n?,
i)
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since the number of pairs of elements of a set of n elements is n(n — 1)/2 and
x+ 1/x > 2if x > 0. Therefore,

Proposition 4.36 With the preceding notation, if o € Ar,.1, then

2ar, (o) o, (o) = n*.

This extends the well-known inequality for the one-dimensional Schrodinger
equation which states that 2 () o’(t) > 1 at Lebesgue-a.e. 4 € R with null
Lyapunov index, which was established by Moser in [108] and by Deift and Simon
in [37].

4.5 Uniform Convergence of the Weyl Functions in the Case
of Bounded Solutions

This section is devoted to proving the uniform convergence of the Weyl functions
of the systems (4.1) and to analyzing the variation of the corresponding Sacker—
Sell spectral decomposition (see [133] and Sect. 1.4.4). This will be done under the
following conditions:

Hypotheses 4.37 The base flow (§2,0) is minimal and all the solutions of the
unperturbed linear Hamiltonian systems of the family (4.2) are bounded for every
w e 2.

Throughout the whole of Sect. 4.5, including its various subsections, || - || will
represent the Euclidean vector and matrix norms: see Remark 1.24.2. The results
are independent of this particular choice of norms.

Remark 4.38 The boundedness of all the solutions of the unperturbed family (4.2)
guarantees the existence of constants ¢; and ¢; such that 0 < ¢; < |[U(t, )| < 2
and ¢; < |[U'(t,w)|| < c; forall w € £2 and ¢ € R. In fact, the existence of
a constant ¢, such that |U(t, w)|| < c, follows from the compactness of £2 and
the linearity of the system, and this together with the symplectic character of U
ensures that [|[U™' (¢, )| = |J7'UT(t,w)J|| < |U(t,w)|| < c»; moreover, the
other inequalities are satisfied by ¢; = 1/c, since 1 < ||[U|||U"|.

The following fundamental result has already been mentioned in the previous
section. It is proved in Theorem 2.3 and Remark 2.4 of Ellis and Johnson [42]
in the general case. The analogous property for the almost-periodic case had been
previously proved by Cameron [24].

Theorem 4.39 Suppose that Hypotheses 4.37 hold. Then, there exists a continuous
map C: 2 — Myux2,(R) taking values on the set of nonsingular matrices, which
is differentiable along the flow on $2, and such that the change of variables 7 =
C(w-t) z takes the family (4.2) into skew-symmetric form.
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Now, in spite of this simplification, the ergodic and topological structures of the
corresponding flow on the Lagrange bundle are far from being completely classified
in the higher dimension case, and numerous aspects of its dynamics remain unclear.

Nevertheless, in the two-dimensional case, a complete classification of recurrent
linear systems is known and, taking it as the starting point, different properties of
the solutions have been described (see Novo and Obaya [114, 115] and references
therein). In particular, Nufiez and Obaya [116] develop a one-parameter perturbation
theory of these two-dimensional linear Hamiltonian systems, which is based on
the connection between the ergodic and topological structures of the Lagrange
(i.e. projective) bundle. This theory extends part of the classical perturbative
results of Moser and Poschel [109] (see also Eliasson [40]) for the quasi-periodic
Schrodinger equation to a more general setting.

The section presents and completes the results of Fabbri et al. [49], which
extend these two-dimensional properties to the higher dimension case, establishing
conditions on the perturbation directions I" of the initial (elliptic) family which
suffice to ensure (a) the exponential dichotomy of the perturbed systems, and
(b) the uniform convergence as the parameter goes to zero of the Sacker—Sell
spectral decomposition. This uniform convergence of closed subbundles means
convergence of the fibers (on the suitable Grassmannian manifold), with the
additional requirement of the uniformity of the convergence with respect to the base
space £2. In addition, the limiting behavior of the corresponding closed subbundles
as the perturbation parameter goes to zero is analyzed: it is proved that the limits are
uniform over the base and can be determined a priori from the initial non-perturbed
system. These results have a direct application to the study of the measurable
and topological structures of the phase space of the systems under consideration:
each perturbation direction determines a pair of maps from 2 to L¢ whose graphs
determine invariant sets of the unperturbed flow. The point is that an understanding
of these graphs contributes to an understanding of the global ergodic and topological
structures of this flow, along the line of the results of Novo and Obaya [114] and
Arnold et al. [6].

Remark 4.40 Hypotheses 4.37 are stronger than Hypothesis 4.1: the continuous
matrix-valued function C of Theorem 4.39 satisfies the conditions of Theo-
rem 4.4(ii), so that the continuous map Z = C”C satisfies the properties required
in Hypothesis 4.1. In particular, Theorem 4.9 applies in this situation, so that
definition (4.14) associates an L' (£2, mg)-function A to each continuous I". This
information is crucial in what follows.

In fact, Hypotheses 4.37 will not be the only ones needed for the perturbation analy-
sis. The results concerning the uniform variation with respect to A of the Sacker—Sell
spectral decomposition of (4.1) will also require hypotheses on the perturbation
direction I" stronger than those of the previous sections: more specifically, I" will
be required to belong to the set C now defined.

Definition 4.41 A continuous function I": 2 — S,,(R) belongs to the set C if the
function A determined by the limit (4.14) exists for every w € £2.
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The following result ensures that C is nonempty, which is not a priori obvious,
and that it is closed in the set C(£2, S,,(R)) of the continuous symmetric 2n x 2n
matrix-valued functions on §2 endowed with the uniform topology, given by the
norm || Il = sup,eq I (@)

Proposition 4.42 Suppose that there exists a continuous matrix-valued map
C:2 — Myuxou(R) taking values in the set of nonsingular matrices, which
is differentiable along the flow on 2, and such that the change of variables
'Z = C(w-t) z transforms the family of systems (4.2) into skew-symmetric form (4.10).
Then,

(i) the matrix-valued function I'c = CTC belongs to C, and A re =1Ic>0.1In
particular, if Hypotheses 4.37 hold, then C is nonempty.

(i1) If all the solutions of all the unperturbed systems (4.2) are bounded, then the
set C is a closed linear subspace of C(§2,S,,(R)) endowed with the uniform

topology.
Proof

(i) Theorem 4.4(ii) implies that the continuous positive definite matrix-valued
function I'c = CIC solves (4.4) along the flow on £2. Consequently,
UT(t,w) I'c(wt) U(t,w) = I'c(w), and hence the limit A, agrees with Ic.
In particular, Ar,. exists everywhere, so that - € C. (Note also that the
continuous symplectic matrix-valued function Br,. = C1T~C Cr,, defined from
Ar. =TI¢c = C'C as in Theorem 4.13, also belongs to C.) The last assertion in
(i) follows from Theorem 4.39.

(ii) Itis obvious that C is a linear subspace of C(2, S,,(R)). In order to check that
it is a closed subspace, take a sequence (I7,) in C converging to a continuous
matrix-valued function I". Remark 4.38 has two consequences: first, there exists
¢ > 0 such that | UT(s,w) I'(w-s) U(s,w)|| < c for all (s,0) € R x £;
and second, given ¢ > 0, there exists mg such that | U7 (s, w) (I'(w-s) —
Iu(w-s) U(s,w)|| < e forall (s,w) € R x £ if m > my. Fix v € 2 and
choose two sequences (1}) 1 oo and (t,f) 1 oo such that there exist

— 1
A () = lim — / UT(s,w) I'(w-s) U(s, ) ds
k—o0 ZtIi —1

for j = 1, 2. It can immediately be checked that

A (w) = Ap, (0) + Jim i. rk/_ UT (s, 0) (I' (w-5) — Tp(w)) U(s, ) ds

—0 2l‘,l —t]

for j = 1,2, and it is easy to deduce from this equality and the previous
bound that [|A}(w) — A% (w)| < 2e. This fact and an immediate argument
by contradiction imply the existence of the limit Ay (w), that is, the global
existence of Af.
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The structure and properties of the set C are better known in the two-dimensional
case (see [116]). In this situation, there coexist cases in which any continuous I”
belongs to C with other situations in which this is not true.

Proposition 4.43 Suppose that Hypotheses 4.37 hold. Let a measurable map
Z: 2 — S5,(R) be a solution along the flow on §2 of (4.4). If Z has a continuity
point, then Z is continuous on S2. In particular, if I' € C, then the function Ap
defined by (4.14) is continuous on S2.

Proof Some ideas used in the proof of Theorem 3.1 of Furstenberg [52] will be
used. It is possible to repeat step by step the proof of Theorem 4.9, whose notation
is maintained here, taking as the starting point the continuous change of variables
provided by Theorem 4.39. Note that now the function V! and the flow on £2! are
continuous. Given any @ € £, represent o' = (o, ]) € R2'. Take any pair
(t,w) € R x 2. According to (4.22), U(t,w) = V'(w't) (V)" (w"); and (4.4)
ensures that Z(w) = UT(t, w) Z(w-t) U(t, ). These two equalities yield

Z(®) = (VHT(0"1) Z(w+1) V(0" 1) (4.66)

for Z(w) = (VY (0') Z(w) V! (w"). Assume for contradiction the existence of a
point @ € §2 at which Z is not continuous, and note that this is equivalent to saying
that Z is not continuous at @. Then there exist § > 0 and a sequence (@,,) with limit
@ such that there exists 1im,— oo | Z(@) — Z(@,)| > 8. Since, by (4.66),

Z@) = Z@w) = (V) @), 1) (Z(@1) = Z@e1) V' (@), 1)
+((VHT@"1) — (V) (@,,0) Z@1) V' (@,,1)
+(H'@"n z@n (V' (@'1) - V' (@,1)),

the continuity of V! and of the flow on £2! ensures that, for all # € R,

§ < lim |Z@) - Z@,)| < v* limsup | Z(@-1) — Z@n1)]|.
m o0

m—>0Q0

where |V!|| < v on £2!. The conclusion is that for all € R there is a sequence
(w!,) with limit @-¢ such that lim,,— 0 | Z(@+t) — Z(w!) | > §/v2.

The goal now is to deduce that Z is not continuous at any point of £2, which will
give the sought-for contradiction. Take w € £2 and write it as @ = limy_co @-1x
for a sequence (#;), which is possible since the base flow is minimal. For each
k € N choose wy € £ which has distance less than 1/k from -, with
|Z(@-tk) — Z(awy)|| > 8/v?. This makes the continuity of Z at @ impossible, since
limk_,oo W = .

The proof of the first assertion is complete. To check the second one, note that the
definition of A and the fact that I" € C ensure that A is the limit everywhere of a
sequence of continuous functions, so that it is a function of the first Baire category,
and hence it must have continuity points (see e.g. Theorem 7.5 of [27]).
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Proposition 4.44 Suppose that Hypotheses 4.37 hold, that I' € C, that Ap > 0,
and that there exists a point wy € $2 with Ar(wg) > 0. Then Ar(w) > 0 for all
w € S2.

Proof Suppose for contradiction that there exist € £ and zy € R?*" with
zlAr(®)zy = 0. Then, if w(t) = U(t,®) 2o/ | U(t, ) 2o}, it follows from (4.28)
that w’ (1) Ar (w-t) w(f) = 0. Choosing a sequence (t,,) with wy = 1im,,—s00 @t
such that there exists wo = lim,,— oo W(Z,), one gets ngp (wo) wo = 0, which
contradicts the hypothesis.

The situation described in the previous corollary will often be represented by
Ar > 0. The perturbation analysis will consider the families (4.1) in two cases:
when A = i¢ for small real values of ¢ in the case that I" € C and Ar is positive
definite; and when A = & for small real ¢ if ' € C and J'A[ is nonsingular
and can be conjugated to a real diagonal matrix. The advantages of working with
perturbation directions in the set C are summarized in the following result. See
Definitions 1.17 and 1.63 to understand its statements.

Proposition 4.45 Suppose that Hypotheses 4.37 hold and take I' € C. Then,
() if Ar > O, then the corresponding sets {(»,z)| z € IE(w)} C 2 x C?,
. + _ In

with I (w) = [N%(w)
by (1.13); the sets {(w, le5 (w))| w € 2} C K¢ are copies of the base for the
flow t; and the matrix-valued functions NIjP and Cr obtained in Theorem 4.13
are continuous. In particular, there exists a continuous and symplectic change
of variables taking the initial system (4.2) to skew-symmetric form.

(ii) IfJ7'Ar(w) is nonsingular and can be conjugated to a real diagonal matrix for

all € 82, then the sets {(w,z) | z € le5 ()} C 2 x R, with leE (w) provided
by Lemma 4.12(ii), are closed tg-invariant subbundles of 2 x R*".

Proof

], are closed invariant subbundles for the flow tc defined

(i) Note that Proposition 4.43 guarantees that Ar is continuous. The relation
J'AR(wt) = U(t,w) J'Ar(0) U (t, w) for all (t,w) € R x £2, which can
be derived from (4.28) and from the symplectic character of U(t, w), has two
consequences. First, the eigenvalues Fipr(w), ..., Fipr, (@) of J'Ar(w)
are constant on the whole set £2 (and not just constant with respect to any
ergodic measure): since

-1 N Uoz Ult,w)z
JTAr (o) TUeo)z] ~ Lipri(w) 0G0zl (4.67)

whenever J7'Ar(w) z = Fipri(w) z, the assertion follows from the density of
the orbit of an arbitrarily chosen w € §2 and from the continuity of Ar. Second,
if F4iy, (@) is the corresponding eigenspace of J 'A (@), then F4jy, ., (w-1) =
U(t, w)-Fiip, () forall (f, w) € Rx$2. This last property ensures that k(w) =
dim Fijy,., (0) = dimKer(J~'Ar (w) Fiprilan) is o-invariant, which together
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with the minimality of the base flow and the continuity of A ensures that k(w)
is constant on £2: note that if w; = lim,,— e wo-t,,, then k(w;) < k(wp), as
can be deduced from an easy contradiction argument. An almost immediate
consequence of these facts and of the continuity of A is that the sets F'y;,, =
{(w,2) | J7'Ar(w) z = iy z} are tc-invariant closed subbundles of 2 xC 2",
Hence, the first assertion in (i) follows from the equality {(w,z) | z € leE (w)} =
F:I:iul @“‘@F:I:iun~

Now, the first assertion ensures that the maps /*: 2 — L are continuous
and their graphs are copies of the base (see Proposition 1.70), so that the
second assertion of (i) follows. And, according to Proposition 1.29(i), the

representation leE (w) = [ Af'i] provided by Theorem 4.13(iii) implies the
r

continuity of the functions N3, which in turn yields the continuity of Cp
and B, and proves the third assertion of (i). Once this is established, the last
property follows from Theorem 4.13(iii) and Theorem 4.4(i).

(i) Suppose that the hypotheses of (ii) are valid. Keeping in mind the information
provided by Lemma 4.12(ii), it is possible to adapt the proof of (i) in order
to deduce from (4.28) and from the symplectic character of U(t, w) that the
eigenvalues of J™'Ar(w) are o-invariant and hence constant on §2, that the
sets {(w,2) | z € IT(w)} C 2 x R? are t-invariant, and that they are closed
subbundles.

Definition 4.46 Take I" € C with A > 0. The subbundles associated to I are the
closed invariant subbundles {(w,z) € 2 x C**| z € leE (w)} of 2 x C?", where
lj: (w) and [ (w) are the complex Lagrange planes determined by the sums of the
eigenspaces of J~'Ar(w) associated to the eigenvalues with positive and negative
imaginary part.

If ' € C, and if J"'Ar(w) is nonsingular and can be conjugated to a real
diagonal matrix for all @ € 2, then the subbundles associated to I" are the closed
invariant subbundles {(w,z) € 2 x R*" | z € leE (w)} of 2 x R?", where lj: (w) and
I (w) are the real Lagrange planes determined by the sums of the eigenspaces of
J7'Ar (w) associated to the positive and negative eigenvalues, respectively.

The following result is included in order to complete the analysis of the situations
in which Hypotheses 4.1 are valid. In particular, point (ii) reveals once more the
relevance of the set C in the description of the global dynamics induced by (4.2) on
2 xR,

Proposition 4.47

(1) Suppose that 2 is minimal and that there exists a measurable map N: 2 —
S;F(C) which has at least one continuity point and satisfies (4.5) along the flow
on 2. Then N is continuous.

(ii) The existence of a continuous map N:2 — ST (C) which satisfies (4.5)
along the flow on S2 ensures the existence of a continuous change of variables
taking (4.2) to skew-symmetric form (4.10), which in addition is given by a
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symplectic matrix-valued function. Moreover, there exists I' € C such that
_ Nt

N = N/.

The existence of a continuous change of variables taking (4.2) to skew-

symmetric form ensures the boundedness of all the solutions of all the systems

of the family. In particular, when $2 is minimal, these two properties are

actually equivalent.

Proof

®

(i)

(iii)

Suppose that N satisfies the hypotheses of (i), and note that Im™' N is well
defined. The first step in the proof of the continuity of N is to check that N
and Im~! N are norm-bounded on £2. Let wy be a continuity point of N. Then
there exist p > 0 and § > O such that, if M € B, = {M € S,(C) | |[N(wo) —
M| < p},then IM > 0; and, if w € 25 = {w € 2, do(w,wy) < 8}, then
N(w) € B, where dg, represents the distance in the metric space £2.

Since §2 is minimal and §2s is open, there exists a time 7y > 0 such
that for all w € §2 there exists ¢, € [—fy,t] with w-f, € §25. Let
7,(t,w, M) = (w-t,M(t, w, My)) be the local continuous flow induced by (4.2)
on £2 xS, (C) (see (1.23)), and note that M (¢, w, N(w)) = N(w-t). As explained
in Remark 2.12, it follows from Lemma 2.10 that the restriction of 7, to
2 x S} (C) is globally defined. Then the map

[—to,10] x 2 x B, = S} (C), (t,w, M) — M(t,w, Mp)

is globally defined and continuous, and hence it is bounded. In addition,
(—tw,wt,, N(wt,)) belongs to its domain for all € £2, and N(w) =
M(—t,,wt,, N(w-t,)). This proves the boundedness of N on §2, which in turns
implies that of Im™' N.

Note next that wy is also a continuity point of Im N, and hence of Im~ 2N
(see Proposition 1.19). Hence, if C is defined from N by (4.9), then the matrix-
valued function B = CTC is globally defined on £ and continuous at wy.
Lemma 4.2 proves that it is a solution along the flow on §2 of (4.4), so that
Proposition 4.43 ensures that it is continuous. Since N can also be defined
from B by the corresponding expression (4.8), the result in (i) is proved.
Theorem 4.4(i) implies the first assertion in (ii), where the change of variables
C is defined from N by (4.9). Proposition 4.42(i) ensures that Ay, = I¢ for
I'c = CTC. In particular, A is symplectic, so that it agrees with the function
Br,. defined in Theorem 4.13(iv). It is proved there that N = N?IC, which
completes the proof of (ii).

The first assertion of (iii) follows easily from Remark 4.5.3., and the second
one from Theorem 4.39.

Finally, recall that Theorem 3.8 ensures the existence of the M-functions MIjE: 2 x
(C —R) — S,(C) for every Atkinson perturbation I", with the property that
+ImA Im M,jf (w,A) > 0. In the case that the limits lim,_, ;+ M}f (w,ie) = N(w)
exist and belong to S;(C) for every w € £2, the function N is a solution along
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the flow of the Riccati equation (4.5), as is easily deduced from classical results
concerning the dependence of solutions of differential equations on parameters.
Then point (i) of Proposition 4.47(i) ensures that N is continuous, since it has at least
one continuity point (see again (see e.g. Theorem 7.5 of [27]), and points (ii) and
(iii) ensure that all the solutions of all the systems of the unperturbed family (4.2)
are bounded. That is, Hypotheses 4.37 hold if the base is minimal. The following
subsection is devoted to analyzing the converse assertion. Before beginning the
discussion, note that, since Hypothesis 4.1 holds (see Remark 4.40), it follows from
Theorem 4.26 that N(w) = N}' (w) for almost every w € £2 with respect to any
ergodic measure on 2.

4.5.1 The Variation with Respect to a Complex Parameter

The proof of the main result of the section requires the following technical lemma,
which analyzes several nontrivial consequences of the Sacker—Sell perturbation
theorem as applied to the Sacker—Sell spectral decomposition. The framework
of application of the results of [133] which is now required is similar to the
one described in Sect. 1.4, but is not exactly the same. The results proved
in Lemma 4.12(i) are implicit in the following statement. Recall that G,(C?")
represents the Grassmannian manifold of the d-dimensional linear subspaces of C?",
and that given a closed subbundle F C £2 x C?", all the vector spaces F,, given by
the fibers over the points @ € §2 have the same dimension: see Definition 1.63 and
remember that £2 is minimal, and hence connected.

Lemma 4.48 Let D be a constant real positive definite symmetric 2n X 2n matrix
ande; > 0. Let T: 2 [0, 1] — S,,(C) be a jointly continuous map with T'(w, 0) =
0, for all w € $2. Consider the families of linear systems

7 =ieJ ' (D+T(wte)z, weS, (4.68)
for ¢ € [0,e1]. Let +iuy,...,xiuy be the different eigenvalues of J~'D with
multiplicities my, . . ., my respectively, ordered so that 0 < (i < --- < g, and set

r .
=5 min (2441, 2 — f1, o5 b — Ld—1) - (4.69)

For each n € (0,n) there exists e(n) > 0 such that, if ¢ € (0,&(n)), then the
following statements are valid.
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(i) The Sacker=Sell spectrum of (4.68) is contained in the set

[£ep; —en, ew; +enl,
1

d

=
and each of the 2d (disjoint) intervals of this union contains at least one
spectral interval. '

(ii) For each e € (0,e(n)) andj = 1,...,d, the closed subbundle Fsij given by
the sums of the spectral subbundles of (4.68) corresponding to the intervals
contained in [Fep; — en, Fep; + en)] has dimension mj. In addition, the
maps 2 x (0,e(n)) — gmj((CZ"), (w,e) — (ng")w are continuous, and
lim, _, o+ (Fsij)w = thj in gmj((Cz”) uniformly on §2, where thj are the
eigenspaces of J~' D which are associated to +iu;, respectively.

(iii) Let my be any o-ergodic measure on £2, fixj = 1,...,d, and let ,BJi (e) be
the sum of the Lyapunov exponents (equal or distinct) of (4.68) for my which
belong to the interval [eu; — en, eu; + en]. Then,

2+
lim i

= Emju;.
=0t & I

In particular, the families of systems (4.68) corresponding to these values of &
have exponential dichotomy. For & small enough, the complex Lagrange planes

given by the stable subbundles at 00 can be represented by [ Mil(”w o ] and the
corresponding Weyl M-functions satisfy
lim M*(w,e) = Nt

e—0T

Iy

uniformly on $2, where [Ni] represent respectively the complex Lagrange
planes generated by the eigenvectors which are associated to the eigenvalues
iy, ..., %ipg of J7'D.

Proof The proof of this result is based on the Sacker—Sell Theorem 1.90. Consider
the metric space BU = BU(R, My,x2,(C)) of all bounded and uniformly continuous
complex 2n x 2n matrix-valued functions on R, endowed with the compact-open
topology. Let M be a connected compact subset of BU which is invariant by time
translation; i.e. B, € M forall r € R if B € M, where B;(s) = B(t +s). Let U(t, B)
be the fundamental matrix solution of

w =B(t)w (4.70)
with U(0, B) = I,,. Then the real skew-symmetric flow

ERXMxC? > MxC?, (t,B,z) — (B, U(t.B)z)
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is continuous. Now recall the definition of the Sacker—Sell spectrum of any
nonempty, compact, and (time-translation) invariant subset My C M: A € X (M)
if A € R and the family {z’' = (B(¢) — Al»,) z| B € My} does not have exponential
dichotomy over M, (see Definition 1.82). That is, X' (M) = Upers X (B), where
X (B) is the set of A € R such that the system w' = (B(f) — Al,,) w does not have
exponential dichotomy on R (see Definition 1.54). Denote also p(B) = R — X' (B)
and p(Mp) = R — X (Mp) = Npem,p(B). Now assume that M, is connected
and apply Theorem 1.84 in order to check that it makes sense to talk about the
corresponding (¢-invariant and closed) spectral subbundles of My x C?*. More
precisely, if A € p(M,), the sets

FF(Mo) ={(B,w) e M x C*| |e ™ U(t, B)w| — 0 as t — oo},
Fy(Mo) ={(B,w) e M xC>| |le™™U(t,B)W| — 0 as t — —oc},

are Tc-invariant closed subbundles of Mg x C?", and their Whitney sum agrees with
the whole space M x C?", In addition, given w1, Ur € p(My) with p; < po, the
following statements are equivalent:

(1) there exists u € (p1, u2) N X (Mo);
(2) Fy,(Mo) NF;E (M) # Mo x {0}.

In addition, if (1) or (2) holds, then

(3) F,,(Mo) N F;LZ(MO) is the sum of the spectral subbundles of My x C?"
associated to the intervals of X (M) contained in (w1, 12).

Consider now the family of systems (4.68). For ¢ € (0, &1], the time rescaling
w(f) = z(t/¢) applied to (4.68) yields

W =i "D+ T(w(t/e),e)w, weS. 4.71)

For each pair (w, &) € 2 x [0,¢&1], define T, .(r) = T(w(t/e),¢) if ¢ > 0, and
Tyo(t) = 0,. Then, if 0 < & < gy < ¢, the sets

M) = '\D+T,,)| weRYCBU,
My = UsepeqpM(e) = (i (D + Toe) | @ € 2,6 € [0, 8]} C BU

are connected compact invariant subsets of BU. These assertions follow from the
connectivity of §£2, which is due to its minimality, and from the continuity of the map

R x[0,6]] = BU, (w,&)—iJ ' (D+T,.). 4.72)
which is deduced as follows from the hypotheses on T let the sequence (w,,, &)

of elements of £2 x [0, ] converge to (wp,&p); if &g > 0, the continuity of
the map [a,b] X [e0/2,€1] X £2, (t,e,w) +— w-(t/e) allows one to conclude
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that limy,— o0 Te,.5, (1) = Ty (f) uniformly on any interval [a,b] C R; and,
if &g = 0, the assertion follows from the fact that sup,co (sup,eg |7 (0] <
maxs.,, |[T(@,¢)| is as small as desired if ¢ > 0 is small enough. This last
continuity also implies that every neighborhood of M(0) = {iJ~'D} in BU
contains a set M, for &y > 0 small enough. Note also that M(g+) S M(e*) if
0 < g4 < &* < gy.Itis clear that

@) if A € R, w € £2 and ¢ € (0, &;], then the exponential dichotomy on R for the
two systems

7 = (ieJ_l(D + T(w-t, e)) — /Uz,l) z,

W= (irl(D T )= Izn) W,
£

occurs or not simultaneously. That is, the Sacker—Sell spectrum of the family of
systems (4.68) (over £2) coincides with &-X (M (¢)).

(5) The time rescaling does not affect the spectral subbundles. More precisely, the
fiber for the element iJ~'(D + Ty5.) € M(e) of the spectral subbundle of
M(g) x C?" associated to the interval [a, b] of the Sacker—-Sell spectrum of
the family {w' = B(t)w| B € M(g)}, coincides with the fiber for @ of the
spectral subbundle of £2 x C?" associated to the interval [ea, eb] of the Sacker—
Sell spectrum of the family {(4.68) | w € §2}.

Consider now the constant coefficient system
w =iJ"'"Dw. (4.73)

It is well known (and easy to check) that

(M) = 2@ D) = {—ptas ... —ph1, fors - fha) s
and that the eigenspaces Fe ... ,F(l), Fo_l, ... ,Fo_d of J7'D corresponding to the
eigenvalues ipg, ..., i®1, =iy, ..., —iftg, With dimFSt/ =mjforj = 1,...,d,

determine the corresponding spectral subbundles of M (0) x C?".
Take n € (0, no) where 1y is defined by (4.69), then consider the neighborhood
of X (iJ7'D) in R given by
V() = UL, [ — 0, £ + 1],

and choose Ao = 0, Aq,..., Ay with

Ao < (1—1, wi+n <A < pipr—n forj=1,...,d-1, Ha+1n<Ag.
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The Sacker—Sell perturbation theorem (see [133], Theorem 6) ensures the existence
of a constant (1) > 0 such that the following properties hold:

(6) If & € [0,&(n)], then Z(M(g)) € V(n) and hence X (iJ7'D) € T (M,,) <
V(n). In particular, £A; € p(B) whenever B € M, andj = 0,...,d, since
£A; € p(M(e)).

(7) Let Fli(B) represent the complex vector spaces given by the fibers of the
closed subbundles F5*(M,,) for A € p(M,,) and B € M,(,. Then, for
j = 0,...,d, the dimensions di X of the spaces F' itx (B) are independent of

B e ./\/lg(,,), and, in addition, the maps M, — gdi ((Cz”) B — F I, (B)

are continuous. Therefore the same properties hold for the vector spaces
[(B) N F; ) (B) and F_l (B)NF _l ,(B), and for the corresponding maps
on Mg(n)

On the other hand, forj = 1,...,d,

F2,GI7'D)NFY,  (J7'D) = F,
(4.74)
F;_ W~'D)Nn FZ(U—ID) =F/

These equalities are easily deduced from (3) and from the spectral decomposition
of (4.73), since

(Aj—1.4) N EM(0)) = {w;} and (=4, =A;—1) N T(M(0)) = {—p;}
forj =1,...,d. Consequently, (7) ensures that
dim (FZ, (B) N F*, _ (B)) = dim (F;_ (B) N F}/(B)) = dimFy7 = m;

for every B € M,(,. Note also that, for j = 0,...,d, the sets FL]_ (B) (defined

in (7)) agree with the fibers over the element B of the subbundles F it X (M(e)). In
particular, the dimensions of the closed subbundles

Fl = F7, (M) NF5, (M),
F7 = Fy (M) N F5 (M(e)

are equal to m; > 0. Once this fact has been established, the equivalence between
the properties (1) and (2) ensures that each of the intervals

(=Aj,=Ai—) N V() = [—pj —n,—p; + 1],
Aj—1,A) N V() = [ —n, w; + 1]
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contains at least one spectral interval of X' (M(e)). This assertion, together with
property (6) and equality (4), proves (i) for ¢ € [0, e(n)].

In order to prove (ii), note that (3) and (5) ensure that the sums of the spectral
subbundles of (4.68) corresponding to the intervals contained in [—&u; —en, —ep; +
en]and [epu;j—en, epj+en] are the sets F. and F.” defined in the previous paragraph,
respectively. Therefore, they have dimension m;, as asserted. In addition, also by (5),
if B, =iJ"'(D + T,.,.), then

(Fl)o = F3,(Boe) NFY, (Bue) and  (F)y = Fy_ (Bu) N5 (Bo)
for e € (0,&(n)), and (4.74) states that
F{) = F:)Lj(BCU,O) n Fi_)tjil (Bw()) and Fo_j = F);71 (Ba)O) n F;(BwO) .

On the other hand, the continuity stated in (7) and that of the map (4.72) ensure that
also the maps

2 x[0.6()] - G+ (C ), (w,€) F;J,(Bw,g) , (4.75)

for j = 0,...,n, are continuous. These last properties ensure that the maps £2 x
0,e(m) = Gy (C ), (w, &) — (FsE ) are well defined and continuous; and that

EEI(I)1+(F£)w =F) and 821(1)1+(F;f)w =F,’

in G, (C 27) uniformly on £2. The proof of (ii) is complete.
Now fix a o-ergodic measure mg on §2. For any n € (0, 179) and ¢ € (0, £(1)), let
;—1 (6) <--- < :Bij,- (e) be the corresponding Lyapunov exponents of (4.68) which
are contained in the interval [ej; — &7, euj + en]. The fact that they are exactly m; in
number follows from Theorem 2.3 of [86] and Theorem 2.37, since dim F{? = m;: in
fact F decomposes as the sum of the Oseledets subbundles corresponding to those
Lyapunov exponents contained in the fixed interval. Note also that the number m;
is common for all n € (0, 7o) if ¢ € (0,&(n)), as was seen before. Set ,3].+ (e) =
;’1 (&) +---+ ,B]fmj(e), so that ﬁf’(s)/(mje) € [uj — n, uj + n]. Rewriting this
information, for all n € (0, no) there exists £(17) > 0 (the same as before) such that,
if ¢ € (0,e(n) then |,Bj+ (¢)/(mje) — uj| < n. This proves (iii) for ,Bj+ (¢), and the
proof is carried out in an analogous way for ,Bj_ (e).
The presence of exponential dichotomy for the systems (4.70) with B € M,
follows from the fact that g = 0 ¢ X' (M), since 0 ¢ V(). With the previous
notation, property (5) ensures that the sets

LE = {(w.2) e 2 xC? |z € F£(B,.)}
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agree with the stable subbundles at F0o of (4.68). Note that they are n-dimensional
(i.e. di'f) = n) and that their fibers ljc (w) = (L;t)w over each element of the base
are complex Lagrange planes, since the linear system is of Hamiltonian type: see
Proposition 1.76. Similarly, (4.73) does not have exponential dichotomy (that is,
0 ¢ X (iJ7'D)), and the Lagrange planes providing the stable subbundles at 400

and —ccarely = Fy'@--@Fy' =[n Jandlf =Fl®---®F! = [Aj';]: see
Proposition 1.89. It is not hard to deduce from the continuity of the maps (4.75) and
the independence of B, ¢ with respect to  that lim,_, o+ ljc (w) = lgE in G,(C?")

uniformly on £2. Hence, Proposition 1.29(i) and Corollary 1.31 imply that the fibers

of the stable subbundles at Foo can be represented as [ Mil” o ] for & small enough,

(w
and that lim,_, ,+ M*(w, &) = N* uniformly on £2. This completes the proof of the
lemma.

As stated before, the main result of this section refers to the parametric variation of
the perturbed family

7 = (H+t) +ieJ ')z, o€, (4.76)

with real ¢, in the case that I" belongs to the set C and defines a positive definite
limit Ap. This is true if, for instance, I" belongs to C and satisfies the Atkinson
Hypotheses 3.3: this can be checked using Propositions 4.11 and 4.44. What follows
summarizes some of the results of Theorem 4.13 and 4.4(i); see also Remark 4.14.

Let +ipury,..., xiurq be the different eigenvalues of J~'Ar with multiplicities
mry,...,mrg4 respectively, ordered to that 0 < pp; < -+ < urg, and set
|
fr = 7 min (2pras ra = Rras .- Jord — rd—1) - 4.77)

Let l}' (w) = [ N;:"(w)] and I7(w) = [ N;I"(w)] be the complex Lagrange planes gen-

erated by the eigenvalues with positive and negative imaginary parts of J~'A ()
respectively. The symmetric n X n matrix-valued functions NIﬂE are solutions along
the flow on §2 of the equation (4.5) and, according to Proposition 4.43, they are
continuous on 2. Moreover, the symplectic matrix-valued function Cp defined
from these functions by (4.27) is continuous on §2, and Z = Cr (w-t) z determines

a change of variables taking the initial systems (4.2) to a skew-symmetric fam-
ily (4.10).

Remark 4.49 Note that if a family 2 = H(w-)z is taken to W = H(w)w
by means of a change of variables w = C(w-f)z determined by a continuous
map C, then the Sacker—Sell spectra of the two families coincide: the family
7 = (H(wt) — Ay)z is taken to W = (H(w-) — Aly,)w. In addition, the
spectral subbundles F»}LY, . ,F»:’Y and F }1, ..., Fy} of the two families are related by
Flﬁ = C-FQ = {(w,C(w)z)| (w,2) € F{H} forj = 1,...,m. And clearly, the
Lyapunov exponents of both families agree, as can be deduced from Definition 1.83.
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The continuous variation of the Sacker—Sell spectral decomposition is stated in
the following theorem. Note that Proposition 4.42(i) ensures the existence of
perturbation directions I" which satisfy the hypotheses. Clearly, a symmetric result
can be stated for a negative definite limit Aj.

Theorem 4.50 Suppose that Hypotheses 4.37 hold. Let I' € C give rise to a positive
definite Ar, let *ipr,, ..., xijirq be the different eigenvalues of J™'Ar with
multiplicities mr, ...,mp4 respectively, ordered so that 0 < pur; < -+ < [rg,
and let nr be defined by (4.77). For every n € (0, nr) there exists €(n) > 0 such
that, if ¢ € (0,(n)), then the following statements are valid.

(i) The Sacker=Sell spectrum of (4.76) is contained in the set

[tepr; —en, Lepr; +enl,

d
=1

J

and each of the 2d (disjoint) intervals of this union contains at least one
spectral interval.

(ii) Foreache € (0,e(n)) andj = 1,...,d, the closed subbundles Fsij given by
the sums of the spectral subbundles of (4.76) corresponding to the intervals
contained in [Fep; — en, Fep; + en] have dimension m;. In addition, the
maps 2 x (0,e(n)) — gmj((CZ"), (w,e) — (ngj)w are continuous, and
lim,_, o+ (Fsij)w = (Fg:j)w in gm_/.((Cz”) uniformly on $2, where (F(:)tj)w are
the eigenspaces of J~'Ar (w) associated to +ijr j» respectively.

(iii) Let my be any o-ergodic measure on §2, fixj = 1,...,d, and let F,BVIﬂEJ(s) be the
sum of the Lyapunov exponents of (4.76) for mg which belong to the interval
[Leur; —en, £epr; + enl. Then,

ES
tim P7®)

e—>0t 3

= :bmrjﬂr‘/.

In particular, the families of systems (4.76) corresponding to these values of € have
exponential dichotomy. In addition, for & small enough, the stable subbundles at

Foo can be represented by [ Mi?; ie) ], and the corresponding Weyl M-functions
r ’
satisfy

lim Mljf (w,ie) = Nljf(a))
e—0t

uniformly on $2, where leE (w) = [Njé"( )]
T w

Proof Let U,(t, w) represent the fundamental matrix solution of (4.76) satisfying
U.(0, w) = I,. As usual, the subindex is omitted for & = 0.
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The proof, which follows a scheme similar to that of the proof of Theorem 4.9,
is divided into two steps. In the first one, (4.76) is reformulated with respect to a
new base flow (£2 1 01), in order to find a continuous change of variables taking the
unperturbed family of systems to w' = 0. To this end, the unperturbed family (4.2)
is transformed in the corresponding skew-symmetric family (4.10) by means of the
continuous change of variables Z = Cr(w-f)z. This matrix-valued function Cr
will now play the role played by C in the proof of Theorem 4.9. It was explained

there that the set 2 x G!, with G = {[%] ‘ [% ng] € Q} for G defined

in Sect. 1.3.4, is invariant under the flow T induced on §£2 x My,x,(R) by the
unperturbed transformed family (4.10). Let 2! € 2 x G! be a minimal subset, and
1 @
s

o = ?R|Ql. Also, represent by o' = (a) the elements of £2!, so that w

denotes the first component of w'.

Next, define H', V!, H' and U as in the proof of Theorem 4.9, set Cr(w') =
Cr(w) and VIL = (C})_lvl, and note that: first, the change of variables Z =
V(w' 1) w takes the family (4.19) to w = 0, so that z = VL(w'-t) w takes the
unperturbed family (4.20) to w' = 0; second, VIL is symplectic and continuous on
', and is a matrix solution along the flow on 21 of equation (4.20); and third,
Ul(t,w') = Vi(o'1) (VE) N (w') = U(t, w) whenever w is the first component of
w'. Define also I''(w') = I'(w), and consider the new extended family

Z=(H (") +ieJ 'T'(w')z, o'eR (4.78)

Let Ul(t,0') be the fundamental matrix solution of this system satisfying
UN0,0') = I, It is obvious that Ul(t,0') = U.(t,w) for every o' € Q1.
Consequently, the Sacker—Sell spectra of (4.76) and (4.78) coincide; the spectral
decomposition of (4.78) can be obtained from that of (4.76) in a trivial way;
and, if m] is a o'-ergodic measure on 2! projecting onto mqy (whose existence is
guaranteed by the proof of Theorem 4.9), then the Lyapunov exponents of (4.78)
with respect to m], agree with those of (4.76) with respect to my: see Remark 1.85.3
and Definition 1.83.

To complete the first step of the proof of Theorem 4.50, observe that the
continuous and symplectic change of variables z = V% (w'-r) w takes the perturbed
family (4.78) to

w =i "Wri(o')w, o' e} (4.79)

with Wpi (@) = (V) (0") T''(0") V(o).

In the second step of the proof, a perturbative argument based on the ideas
of [109] will provide a transformation of (4.79) into a new family of linear systems
satisfying the hypotheses of Lemma 4.48.

Note that, since U'(t, ') = VL(0'1) (VL)™' (»"), one has that

Wri(w') = (Vi) (") (U)Y (to) M) Ut o) Vi(").
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Consequently, the limit

lim l/ Wri(o's)ds = (V) (@") Al-(0") VI (0") = Dr(0") (4.80)

t—o00 2t

exists for every @' € £2', and it determines a continuous and positive definite
matrix-valued function D, since the hypotheses on I" ensure these properties for
the function

1 t
A}(a)l) = lim — Ul (s, oI (0"-5)U'(s,0") ds = Ar (o) .
=00 2t J_,

It is obvious that A} solves the equation Z' = —(H")?(»'1)Z — ZH'(w'-) along
the flow on £2'. This property, together with the last equality in (4.80) and the
fact that V% solves (4.20) along the flow on !, implies that D/ (') is o!-
invariant, and hence it is constant on £2': Theorem 1.6 ensures that it is almost
everywhere constant for every o'-ergodic measure, and so the assertion follows
from the continuity of Dy . Consequently, according to the Birkhoff Theorem 1.3,

/91 (Wri(0') —Dr)du =0 (4.81)

for every o !-invariant measure j in £2'. Note also that

J'Dr =T N (V) (0" AR (0") VE(0h) 82
= (Vp) @' WAL (") Vi@, 52

since V. is symplectic. Consequently, the eigenvalues of J~!D agree with those
of J7'AL (»"), and the respective eigenspaces of both matrices are related by means
of the continuous matrix V}.

Let the set C(£2", M,x2,(K)) of continuous matrix-valued functions on £2' be
endowed with the topology of the norm || B|| o1 = max,icg1 |B(w')|, where K = R
or K = C. The results of Section 6 of Schwartzman [138] ensure the density of
the set

{f € C(2", Maux2,(R)) | there exists g € C(£2") with g'(0') = f(w")}

(where, as usual, g’(w") represents (d/dt)g(w'-t)|;=o) in the set
f € C(2" My, (R)) | / fdu =0 forevery o' -invariant measure /1 } .
fodl

Now take a sequence of positive real numbers («;) | 0 with k1 < 1. The previous
property and (4.81) allow one to choose a sequence of matrix-valued functions (R;)
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in C(22", Mauxan (R)) whose derivatives along the flow on 2! exist, are continuous,
and satisfy

IR, — (Wri —Dr) o <& (4.83)

for every j € N. Denote r; = ||R;j||o1 for every j € N. Take a strictly decreasing
sequence of positive real numbers (g;) | 0 with &;(r; + rj+1) < k; for every j € N.
Now define

Ejt+

R(w &) = g8+l

1 g —&
Ri(@") + —
Ef — Ej+1 i —

l .
Rj_H(a) ) if Ejt+1 f&‘fé‘j,
& = &j+1

so that 1im£_>sjgr R(w'e) = Ri(w') = lime—:~ R(w' ¢) and [eR(0, &) o1 < k; <

1 for all ¢ € (0,e;]. Consequently, R(w', &) is continuous on £2' x (0, &(], and
leJ7'R(w, &)||g1 < 1 for all & € (0,e;], which in turn ensures that det(l», +
ieJ7'R(w', &) # 0 for every (w',¢) € 2! x (0, &1] . A straightforward computation
allows one to deduce from (4.83) that the continuous linear change of variables
w = (I, + ieJ'R(w' -1, £)) W takes (4.79) for & € (0, &(] to

W =ieJ ' (Dr + Wri(0'1,8)) W, o'e!, (4.84)

where ||Wp1(a)l, e)llgr < ckjif 41 < € < g, and where the constant c is
independent of j. In particular, lim,_, 5+ VT/pl (', &) = 0 uniformly on £2.

Now define Wpl(a)l, 0) = 0 and observe that the family (4.84) satisfies all
the hypotheses of Lemma 4.48. Note also that the extended family (4.78) is taken
to (4.84) by means of the continuous transformation

z= V(") (I, +ieJ 'R(w"1,8)) W.

It follows from (4.82) that the eigenvalues +ury,..., £urq of JTAL(0') =
J7'Ar (@) (which are independent of @) agree with those of J~'Dr, and that
if F(o') and F represent the eigenspaces of J~'Ar(w) and J~'Dp associated
to the same eigenvalue, then F(w') = V} (w") F. Therefore, Lemma 4.48 and
Remark 4.49 imply that the assertions in (i) and (ii) hold for the family (4.78),
as well as the property stated in (iii) for the o'-ergodic measure mé. The previous
remark about the relation between the spectral decompositions and the Lyapunov
exponents of (4.78) and (4.76) completes the proof of (i), (ii), and (iii) for the
family (4.76).

In particular, the initial family of systems (4.76) has exponential dichotomy for
& > 0 small enough, and the corresponding closed subbundles converge uniformly

on £2 as ¢ — 0 to the Lagrange planes V!(w') [ Aﬁt], where [ Af?t] are the
r r

complex Lagrange planes generated by the eigenvectors associated to the eigen-
values {Zijry....,%ipurs} of J-'Dr, respectively. The previously mentioned
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relation between the eigenspaces of J~'Ar(w) and J~'Dr implies that [ Ni”(w)]

and V(") [ Aj’i ] represent the same Lagrange plane leE (w"). The last statement of
I
the theorem follows from these facts: see Proposition 1.29(i) and Corollary 1.31.

4.5.2 The Variation with Respect to a Real Parameter

Consider now the perturbed families
7 = (Hwt) + e 'T)z, weg (4.85)

for ¢ € R. In order to analyze the continuous variation of the spectral decomposition
in this case, the following technical lemma will be required. The information
provided by Lemma 4.12(ii) is required to understand its last statement.

Lemma 4.51 Let D be a constant real positive definite symmetric 2n X 2n matrix
such that

— the different eigenvalues of J~'D are £ 11, ..., £ g € R—{0} with multiplicities
mi, ..., my respectively, ordered so that 0 < 1 < -+ < lUg,
— J7'D can be conjugated to a diagonal matrix,

and define ng by (4.69). Let T:[0,&1] — C(£2,My,x2,(C)), ¢ — T(w,e) be a
continuous map with T(w,0) = 0 for an &1 > 0. Consider the families of linear
systems

7= ' D+T(wte)z, weSs, (4.86)

for e € [0, &1]. For each n € (0, 1) there exists €(n) > 0 such that, if ¢ € (0, (1)),
then the following statements are valid.

(i) The Sacker=Sell spectrum of (4.86) is contained in the set

[Leu; —en, eu; +enl,

d
=1

J

and each of the 2d (disjoint) intervals of this union contains at least one
spectral interval.

(ii) For each e € (0,e(n)) andj = 1,...,d, the closed subbundle Fsij given by
the sums of the spectral subbundles of (4.86) corresponding to the intervals
contained in [Fep; — en, Fep; + en) has dimension mj. In addition, the

maps 2 x (0,e(n)) — gmj((CZ"), (w,e) — (Ffi)w are continuous, and
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lim,_, o+ (Fsij)w = thj in Gy (C ) uniformly on §2, where thj are the
eigenspaces of J~'D which are associated to Fu;, respectively.

(iii) Let my be any o-ergodic measure on §2, fix j = 1,...,d, and let Eji (e) be
the sum of the Lyapunov exponents (equal or distinct) of (4.86) for mg which
belong to the interval [£ep; — en, Lep; + en). Then,

~
= (e

lim S

=01 &

= Emjpu; .

In particular, the families of systems (4.86) corresponding to these values of ¢
have exponential dichotomy. Finally, if l;t (w) represent the corresponding stable
subbundles at Foo, then lg': (w) converge uniformly on 2 as ¢ — 07 to the real
Lagrange planes I* generated by the eigenvectors of J~'D which are associated to
the negative and positive eigenvalues, respectively.

The proof of this result reproduces step by step that of Lemma 4.48; for this reason
it is omitted. Theorem 4.52 will be treated in the same way, indeed it can be proved
as was Theorem 4.50. The main point to keep in mind in order to understand
its statement is that, under the following hypotheses on A, the linear invariant
subbundles respectively generated by the eigenvectors which are associated to the
negative or positive eigenvalues, {(w,[*(w))| @ € 2}, are closed and, according
to Lemma 4.12(ii), [* (w) are real Lagrange planes.

Theorem 4.52 Consider a perturbation I' € C such that

— the different eigenvalues of J_lAp(a)) are £ury,...,turqa € R — {0}, with
respective multiplicities mry, ..., mrg4;
— J'Ar(w) can be conjugated to a diagonal matrix,

and define n by (4.77). For every n € (0,nr) there exists (n) > 0 such that, if
e € (0,&(n)), then the following statements are valid.

(i) The Sacker—Sell spectrum of (4.85) is contained in the set

[feur; —en, epur; +enl,

d
=1

J

and each of the 2s (disjoint) intervals of this union contains at least one
spectral interval.

(ii) Foreache € (0,e(n)) andj = 1,...,d, the closed subbundles Fs':j given by
the sums of the spectral subbundles of (4.85) corresponding to the intervals
contained in [Fep; — en, Fep; + en] have dimension m;. In addition, the
maps 2 x (0,e(n)) — g,,,_,((CZ"), (w,8) — (F;t/)w are continuous, and
lim,_, o+ (Fsij)w = (Fgcj)w in gm].((CZ”) uniformly on §2, where (thj)w are
the eigenspaces of J~' A (w) which are associated to F r,» respectively.
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(iii) Let my be any o-ergodic measure on $2, fixj = 1,...,d, and let F,BVIﬂEJ(s) be the

sum of the Lyapunov exponents of (4.85) for mg which belong to the interval
[Leur; —en, £epr; + enl. Then,

2+
tim P7®)

= +mp ilr; -
e—>0t & I

In particular, the families of systems corresponding to these values of € have expo-
nential dichotomy. Finally, if leE,S (w) represent the corresponding stable subbundles

at Foo, then lim,_, o+ lﬁg (w) = leE (w) in K uniformly on 2.

Note finally that Theorem 4.52 can be viewed as an extension to the nonautonomous
linear Hamiltonian context of some of the results of Moser and Poschel [109], which
they proved in the case of a quasi-periodic two-dimensional linear Hamiltonian
system.



Chapter 5
Weak Disconjugacy for Linear Hamiltonian
Systems

The analysis of nonautonomous linear Hamiltonian systems with the disconjugacy
property, which is closely related to their oscillation properties and which has
applications in the calculus of variations, is an extended and classical branch of
the study of linear differential systems. The texts of Hartman [56], Coppel [34], and
Reid [127] contain the fundamental facts concerning this property. One of the most
interesting properties of a disconjugate system is the existence of principal solutions:
in many interesting situations they constitute an extension to the nonuniformly
hyperbolic case of the Lagrange planes associated, in the case of exponential
dichotomy, to the bounded solutions at + o0 and —oo: see Remarks 1.79 and 1.77.3.

More recently, Johnson et al. [81, 82] extended the classical analysis, using the
methods of the modern theory of nonautonomous differential systems, many of
which are drawn from the fields of topological dynamics and ergodic theory. These
techniques allowed the authors to study the dynamical and ergodic properties of the
principal solutions, and to go much deeper into the close relation between principal
solutions, Lyapunov indices, and exponential dichotomy.

Later, Fabbri et al. [43, 48] introduced and analyzed a less restrictive condition
called weak disconjugacy, often but not always equivalent to the classical
disconjugacy property. The main advantage of weak disconjugacy as opposed to
disconjugacy is that it holds under a much weakened version of the condition
of identical normality, which is often imposed when studying the classical
disconjugacy property. One of the reasons for the authors to introduce this concept
was its clear relation with the oscillatory properties of the system analyzed (or,
more precisely, with the absence of oscillation). It provided a suitable framework
to optimize the hypotheses of certain results based on the properties of the rotation
number.
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But in fact the interest of weak disconjugacy goes beyond this first analysis.
As shown in Johnson et al. [78], under different additional conditions (still often
providing a scenario less restrictive than the disconjugate one), the weak disconju-
gacy property also ensures the existence of principal solutions. The authors of [43]
describe mild conditions under which the lack of oscillation of a linear Hamiltonian
system is equivalent to its weak disconjugacy, as well as stronger conditions which
ensure the existence of principal solutions for a given system. In [85], the close
relation between principal solutions and exponential dichotomy is analyzed in
detail and, as a consequence, it is shown that the Yakubovich frequency theorem
(in its nonautonomous form as developed in [47]) can be applied to a wide range
of optimization problems. This analysis relies on the strong connection between
the uniform weak disconjugacy and the controllability properties of some systems
constructed from the initial one; and clearly this relation has independent interest.
Also in [84], which is dedicated to the analysis of dissipative linear quadratic control
systems, the properties of weakly disconjugate systems allow the authors to relax the
conditions ensuring the dissipativity. All these questions are explained in detail in
the next chapters, in which the occurrence of weak disconjugacy for the Hamiltonian
systems to be analyzed will play a fundamental role.

This chapter collects and unifies the results of all the mentioned papers, extending
some of them. A somewhat more detailed description of its contents completes this
introduction.

Under a very weak version of identical normality, the notion of weak discon-
jugacy can be characterized in terms of the nonoscillatory behavior of the system
under study. To establish this connection is the goal of Sect. 5.1. The arguments
are based on some of the properties explained in Sect. 2.4, which in turn are
based on previous results of Yakubovich [153, 154], Lidskii [96], and Gel’fand and
Lidskii [53].

In the rest of the chapter, a family of linear Hamiltonian systems defined over
a continuous base flow is considered. If some additional conditions of uniformity
hold, the weak disconjugacy property guarantees the presence of the so-called
uniform principal solutions at 400 and —oo for each of the systems of the family.
These matrix-valued solutions play a fundamental role in the dynamical description
of the Lagrangian flow induced by the family. They define orbits of the Lagrangian
flow, and always lie outside the vertical Maslov cycle. Section 5.2 is devoted to the
proof of their existence in the uniform setting, which will be the scenario almost
always considered in the rest of the chapter.

The results of Sect. 5.3, generally speaking, concern the connections between
disconjugacy and weak disconjugacy. First, they describe several scenarios in which
the uniform weak disconjugacy property studied in the previous section is equivalent
to the true disconjugacy of all the systems, as well as others in which it is guaranteed
by a priori less restrictive hypotheses. One of the conclusions of this analysis is

that the main contribution of the theory of weak disconjugacy as opposed to the

. S H Hy 7.
classical one concerns the situation where H; > 0 (where H = [ H; _;r] is the
1

coefficient matrix) but is not positive definite. Second, they establish conditions on
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a single nonautonomous linear Hamiltonian system which guarantee the uniform
weak disconjugacy of the family constructed from that system by the usual hull
procedure. This fact is especially significant, since most of the results of the section
concern all the systems of the family, including hence the initial one. Third, they
prove the existence of (not necessarily uniform) principal solutions in a setting much
more general than that of disconjugacy. Some examples showing the optimality of
the results complete the section.

The principal solutions always admit unique representations in Lr determined
by two real symmetric n X n matrix-valued functions N*, which will be called
principal functions. In the case of uniform weak disconjugacy, they are bounded
solutions along the flow of the associated family of Riccati matrix equations, and
they are semicontinuous on the base: semicontinuous equilibria, in the language of
Sect. 1.3.5. As a consequence of their definition and of the monotonicity properties
of the Riccati equation, the principal functions N* delimit a compact invariant
zone in g which concentrates any invariant measure on g, contains any minimal
subset, and, frequently, contains also the graph of any continuous invariant function
from the base to L. These are basically the contents of Sect. 5.4, which also include
some properties derived from the semicontinuity of the principal functions: they
determine almost automorphic extensions of the base flow (see Definition 1.18) in
the case that the base flow is minimal. A fundamental comparison result completes
the section.

Weak disconjugacy and principal solutions are closely related to many of the
objects analyzed in the previous chapters. Section 5.5 details their relation with
the Lyapunov index and the Oseledets subbundles. It is shown in Sect. 5.6 that, in
the case of uniform weak disconjugacy, the principal solutions determine closed
supplementary subbundles if and only if exponential dichotomy occurs, in which
case the Weyl functions exist and agree with the principal functions. In addition, if
H3 > 0 and the family has exponential dichotomy, the uniform weak disconjugacy
property is equivalent to the existence of both Weyl functions. This result will be
of relevance in Chap. 7. And Sect. 5.7 presents an ergodic characterization of the
presence of weak disconjugacy and, in some cases, disconjugacy, in terms of the
rotation number of the family of linear Hamiltonian systems.

Sections 5.6 and 5.7 also contain perturbative results showing that a family of
Hamiltonian systems with the properties analyzed in this chapter is always the limit
of a one-parameter family of families possessing exponential dichotomy over §2.
These properties are used to establish a result of continuity of the principal solutions
with respect to the parameter. It should be noted that, even in the context of linear
Hamiltonian systems which are disconjugate in the classical sense, strong technical
conditions are required to ensure the continuous dependence of the principal
solutions with respect to the coefficient matrix: see Reid [126]. In Sect. 5.8, weak
conditions are imposed on the perturbed families which guarantee that the weak
convergence in measure of the principal solutions is equivalent to the convergence
of the corresponding Lyapunov indices.



252 5 Weak Disconjugacy for Linear Hamiltonian Systems

Finally, Sect. 5.9 presents an analysis which in a sense completes the previous
one. The so-called abnormal linear Hamiltonian systems at +o00 or —oo are those
determining some positive or negative t,-semiorbits lying in £ x C, where C
represents the vertical Maslov cycle. Such systems are clearly not disconjugate,
and in fact define families (by the usual hull construction) which are not uniformly
weakly disconjugate at +0o0 or —oo. But still it is possible to combine the
usual topological and measurable tools in order to describe interesting properties
regarding the dynamical behavior of these abnormal systems.

As usual, the goals of the different sections are more precisely described at the
beginning of each one of them.

5.1 Weak Disconjugacy and Nonoscillation

This section concerns a single linear Hamiltonian system

7 = Hy(f)z, 5.1

Hy Hps . . .
where Hy = [ Hoy —HT ] is continuous and bounded on R and takes values in
01

sp(n, R). The following concepts of weak disconjugacy and nonoscillation appear in
Fabbri at al. [48] and Yakubovich [154], respectively. But first the classical concept
of disconjugacy (see e.g. [34]) is recalled.

Definition 5.1 The linear Hamiltonian system (5.1) is disconjugate on R if, for
21 (1)

every nonzero solution z(t) = [zz s

], the vector z; (¢) vanishes at most once on R.

Definition 5.2 The linear Hamiltonian system (5.1) is weakly disconjugate on
[0, 00) (resp. on (—oo, 0]) if there exists #y > 0 such that, for every nonzero solution

z(t) = [28] with z;(0) = 0, there holds z;(f) # 0 for all # > £y (resp. for all

t< —tp).

Clearly a disconjugate system satisfies this definition on both half-lines for 7y = 0,
which justifies the choice of the name for this less restrictive behavior.

In the following definition, Arg denotes any of the equivalent arguments for a
real symplectic matrix defined in Sect. 2.1.1.

Definition 5.3 The linear Hamiltonian system (5.1) is said to be nonoscillatory at
400 (resp. at —oo) if Arg V(f) is a bounded function on [0, co) (resp. on (—oo, 0]),
where V(7) is any symplectic fundamental matrix solution and a continuous branch
of the argument is taken along the curve.

Note that the above definition is independent of the choices of Arg and V (), as
can be deduced from the Definition 2.3 of equivalence of arguments and the results
of [153] summarized immediately below it.
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Remark 5.4 In the case of a constant or periodic coefficient matrix Hy, the
nonoscillation at 400 or at —oo is equivalent to the fact that the rotation number
of the system (5.1) vanishes: Theorem 2.4 and Remark 2.6 prove the direct
implication, and Remark 2.8 the converse one. More facts about the relation between
nonoscillation and the vanishing of the rotation number are established in Sect. 5.7.

This section is devoted to an analysis of the connection between weak disconjugacy
and oscillation: Proposition 5.7 shows that weak disconjugacy on a half-line implies
nonoscillation at the corresponding limit point, and Proposition 5.9(ii) establishes
conditions under which the converse is also true. The optimal assertion is given in
Theorem 5.11.

An easy result will be required. It characterizes weak disconjugacy in terms of the

symplectic fundamental matrix solution U(f) = [g;fg 538] of (5.1) with U(0) =
b,,,, which is fixed for the rest of the section, and which as seen in Sect. 1.3.3 is real

and symplectic for all # € R.

Lemma 5.5 The linear Hamiltonian system (5.1) satisfies Definition 5.2 of weak
disconjugacy on [0, 00) (resp. on (—oo, 0] if and only det Us(t) # O for each t > t;
(resp. fort < —ty).

Proof The assertion follows from the equality U(t) [202 ]= [ Us() 2y ]

Us() 2o

In the rest of the section, the matrix
Wy(t) = (Ui () — iUs(0) ™ (U1 () + iUs(1)) (5.2)

is associated to the fixed fundamental matrix solution of (5.1). As stated in Sect. 2.4,
it is possible to choose continuous functions pi, ..., p,:R — C with |p;(¥)| = 1
forj = 1,...,nand t € R, such that the set of eigenvalues of Wy (f) coincides
with the unordered n-tuple {p; (?), ..., pu()}. Let ¢1, ..., ¢,: R — R be continuous
argument functions: p;(f) = ¢ forj=1,...,nandt € R.

Lemma 5.6 The sum (1/2) Z;'l=1 @j(t) is a continuous branch of the argument
Arg, U(t) = argdet(U,(¢) + iUs(1)).

Proof According to Lemma 2.29(i), det Wy (1) = r(f) det>(U;(¢) + iU3(¢)), where
the function r takes strictly positive values. All the functions involved are continu-
ous, and the assertion follows easily.

Proposition 5.7 If the system (5.1) is weakly disconjugate on [0, 00) (resp. on
(—00,0]), then it is nonoscillatory at +00 (resp. at —o0).

Proof Assume the weak disconjugacy on [0,00). According to Lemmas 5.5
and 2.29(ii), there exists 7y > 0 such that 1 is not an eigenvalue of Wy (¢) if t > .
The continuity of the angle functions ¢; ensures then that ¢;(f) € 2mwmy;, 27w (m;+1))
foranm; € Zifj = 1,...,nand t > 1. This fact and Lemma 5.6 prove the
assertion. The other case can be proved similarly.
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The arguments of the proof of Proposition 5.7 can be used to prove the following
result, which is more general and which will be useful in Sect. 5.3.

Proposition 5.8 If there exists a real Lagrange plane | = [2 ] such that the 2n x n

matrix-valued solution [28] =U(1) [g] of (5.1) satisfies det L, (t) # O for every
t in a positive (resp. negative) half-line, then the system is nonoscillatory at +00
(resp. at —00).

Proof As in the proof of Theorem 2.36, choose any matrix [ ;° | such that [ 2 7! | €
Sp(n, R); for instance, Ly = LR and Ly = —LiR™! for R = LTL, + LIL,.

Then V(1) = U [ ] = [28 28] takes values in Sp(n, R). The arguments
of Lemma 5.6 and Proposition 5.7 can be repeated in order to prove the existence
of a continuous branch of Arg, V(#) bounded in a positive (resp. negative) half-line,

which implies the assertion.

Note that the previous result can be rewritten as: if there exists a symmetric matrix-
valued solution of the Riccati equation

M’ = —M Ho3(t) M — M Hy (1) — H}, () M + Hoo (1)

defined on a positive (resp. negative) half-line, then the system is nonoscillatory at
400 (resp. at —oo): see e.g. Sect. 1.3.5. Many examples illustrating this situation,
from trivial to quite nontrivial, will be described in the book. In fact this is the case
in most of the examples described in this chapter.

It is clear that the converse of Proposition 5.7 cannot be true in the general
situation, even with Hyp; > 0. To see this, just think about the case Hy = 0y,.
However, more can be said in the case Hy; > 0. Recall that the concept of proper
focal point for a given 2n x n matrix-valued solutions of the Hamiltonian system
taking values in Lg is given in Definition 2.35. The next result characterizes the
nonoscillation at 00 in terms of the existence of a maximal or minimal proper
focal point for any solution lying in Lg, and establishes an additional condition
ensuring the converse wof Proposition 5.7.

Proposition 5.9 Suppose that Hys > 0. Then,

(i) the linear Hamiltonian system (5.1) is nonoscillatory at +00 (resp. at —o0) if
and only if the number of positive (resp. negative) proper focal points is finite for

the matrix-valued solution [28] =U(®) [2] where | = [2] is any element

of L. In this case, if t,, is the largest (resp. if 1, is the lowest) proper focal
point, there exists s; > t,, (resp. 5; < I) such that Ker L, (t) is constant on

(57, 00) (resp. on (—o0, 57)).
(ii) If, in addition, for every nonzero solution z(t) = [z‘(t)] of (5.1)withz,;(0) =0

23(1)
the vector 2,(t) does not vanish identically on [t, 00) (resp. on (—o0, t1]) for
all ty € R, then the system (5.1) is weakly disconjugate on [0, 00) (resp. on
(—00,0]).
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Proof

(1) The notation is now taken from the proof of Lemma 2.34. Suppose first the
nonoscillation at 4-0o. The characterization is an immediate consequence of:
inequality (2.53), which ensures that ¢(f) = (1/2) Z;l=1 @j(1) is bounded
if and only if the number of proper focal points is finite; the fact that
@(?) is a continuous branch of Arg, V(f), guaranteed by Lemma 2.29(i); and
Definition 5.3 of nonoscillation at +-00. To prove the last assertion note that
Definition 2.52 and Lemma 2.34 ensure that dim Ker L; (f) may only decrease
on (t,,, 00), so that there are at most dim Ker(z,,) points at which it changes. The
point s; can be taken as the largest point at which dim Ker L;(¢) changes, and
the result follows from Lemma 2.34(i).

In the case of nonoscillation at —oo, the argument is the same. It is necessary
to repeat the reasoning of the proof of Theorem 2.36 in order to show the
inequality analogous to (2.53) in (—oo, 0]. Note also that to the left of the lowest
focal point 7,, the dimension of Ker L; () may only increase as ¢ decreases.

(i) Let s; be the time associated by (i) to the initial Lagrange plane [ = [%Z ], SO
that now U;(f) plays the role of L;(#). Suppose for contradiction that (5.1) is
not weakly disconjugate, and observe that Lemma 5.5 ensures that there exists
a sequence (f,,) 1 oo with det Us(t,,) = O for all m € N. Then there exists
at least one argument function ¢ € {¢i,...,¢,} (of those associated to the
matrix function Wy ) and a subsequence (#;) with @« (#;) = 0 modulus 2. Since
@« 1s bounded, continuous, and nondecreasing, this means that there exists a
time #; with @« (1) = @« (t;) for all ¢ > t,. Therefore, dim Ker Us(f) > 1 for any
t > t;, and hence it is at least 1 for the constant vector space ky = Ker Us(¢)
for t € (s;,00). Now take z, € ky, z; # 0 and consider the solution z(f) =

una] = [,lﬁzg - ] Then z(r) = [, ] for # > #,. This contradicts one of

the hypotheses of (ii), which is hence proved.

Remark 5.10 Continuing with the notation of the previous result: it will be seen
in Sect. 5.9 that, in the case of nonoscillation at 4+o0o, the constant value of
dim Ker L, (f) on (s;, 00) agrees with the number of linearly independent solutions
of (5.1) taking the form U(r) [51] = [zz%] on (s;,00), with [71] € /; and that in
the case of nonoscillation at —oo, the constant value of dim Ker L, (r) on (—o0, 5;)
agrees with the number of linearly independent solutions of (5.1) taking the form
U (3] = [y ] on (—00.5), with [3}] € L.

According to Proposition 5.9(i), in the case Hy3 > 0, it can be stated that a system
is nonoscillatory at +oo or at —oco if and only if it has a finite number of positive or
negative proper focal points. In fact, this characterization is sometimes taken as the
definition: see for instance [141].

Theorem 5.11 Suppose that Hy3(t) > 0 for each t € R. Then the system (5.1) is
weakly disconjugate on [0, 00) (resp. on (—o0,0]) if and only if it is nonoscillatory

at o0 (resp. at —o0o) and, for every nonzero solution z(t) = [28] of (5.1) with

z1(0) = 0, the vector z,(t) does not vanish identically on [t,, 00) (resp. on (—o0, t])
forallt; € R.
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Proof The result follows from Proposition 5.7 and Proposition 5.9(ii), since the
condition regarding the behavior on positive half-lines of nonzero solutions holds
automatically if (5.1) is weakly disconjugate.

Corollary 5.12 Suppose that Hy3(t) > 0 for each t € R. Then the system (5.1) is
weakly disconjugate on [0, 00) (resp. on (—00, 0] if and only if it is nonoscillatory
at +o0o (resp. at —00).

Proof If z;(r) = 0 for a nonzero solution, then z|(r) = Hup(r)z,(t) # O.
This precludes the existence of solutions of (5.1) taking the form [z;:,)] on
any nondegenerate interval. Once this property is established, the result follows
immediately from Theorem 5.11.

This section is completed with an example which illustrates the significance of the
condition involving z; (¢) in Theorem 5.11 which must be added to nonoscillation in
order to guarantee the existence of weak disconjugacy. In fact one might conjecture
that if this condition holds and 0, £ Hys; > 0, then the following stronger condition
is valid: there is a sequence (t,,) 1 oo such that, if /, = [(I):] and [(t,,) = U(ty)l, =
Ul(ty) [(1): ], then I(t,,) N1, = {0} for allm € N. Or, in geometrical terms, that I(z,,) is
outside the vertical Maslov cycle C defined by (2.35) for all m € N. This conjecture
is indeed true if n = 1, but need not be true if n > 2, as the next example shows.

Example 5.13 Let g:R — R be the (continuous) m-periodic extension of the
piecewise linear map satisfying g(0) = g(x) = 0 and g(w/2) = 2, define
G = for g(s) ds, and note that G(krr) = |k|w and G(x/2 + k) = /2 + |k|7 for
all k € Z. Consider the 4-dimensional linear Hamiltonian system

7 = Hy(f)z, (5.3)

where H, is the continuous 27 -periodic function given on 2k, (2k + 2)7] by

0 0 g 0]
0 0 0 0
for 2kn <t < 2k+ m,

—g(H) 0 0 0

0 0 0 0

Ho(l): :0 0 0 o -
0 0 0 g

SO\ for @k yr <1< 2k + 2.
0 0 0 0
[0 () 0 0
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Note that Hyp; > 0. It is easy to obtain the matrix solution U(f) of (5.3) with
U(0) = I, which is 4;r-periodic. In fact, U(¢) is defined by

[ cos G(r) 0 sinG(r) O
0 1 0 0
—sinG(f) 0 cosG(t) O
0 0 0 1

for 0<t<m,

UG =1 =
—1 0 0 0
0 —cosG(t) O —sinG(t
cos G(1) sin G(1) for m <t <2m,
0 0 -1 0
0 sinG() 0 —cosG(t)
and the rule U(r) = —U(+ — 2x) for t € R. From this expression it is immediate

25(1)
the vector z;(f) does not vanish identically on any positive half-line, and that
det Us(1) = 0 (i.e. U(1)-1, with I, = [ {" | belongs to the vertical Maslov cycle C) for
all r € R. By, for example, Lemma 5.5, the system (5.3) is not weakly disconjugate
on [0, 00); thus, by Proposition 5.9(ii), Arg U(¢) must be unbounded as t — oo.

to check that for every nonzero solution z(f) = [z‘(') ] of (5.3) with z;(0) = 0,

5.2 Uniform Weak Disconjugacy and Principal Solutions

In the rest of the chapter, (£2, o) will denote a real continuous flow on a compact
metric space, and a family of linear Hamiltonian systems

7 =Hwitz, weS§, (5.4)
with H = [g; _I_;;IT:I: 2 — Mpy,x2,(R) continuous and taking values in sp(n, R),
will be the object of study.

This section is devoted to establishing conditions ensuring the so-called uniform
weak disconjugacy of the family (5.4), and to derive from this fact the existence and
characteristics of the uniform principal solutions. The first point is hence to define
these concepts.

As usual, U(t,w) = [g;gi; gjgi;] is the (symplectic) fundamental matrix

solution of (5.4) with U(0,w) = I,. Recall that the flow 7 induced by the
family (5.4) on Kr = Kp is given by t(t,w,l) = (-, U(t, w)-I) (see (1.14)).
Recall also that the set

DZ{IEERIIE[;"/’I]}CER, (5.5
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defined in (1.21) (which is the complement in L of the vertical Maslov cycle C
defined by (2.35)), is given by the Lagrange planes [ = [ ;' | with detL; # 0, in
which case [ = [} ] for the real symmetric matrix M = L,L;"". This matrix M is the
unique one parameterizing l in D: see Remark 1.30. By a slight abuse of language,
areal matrix L = [2 ] representing a Lagrange plane is said to belong to Lg; and a
matrix-valued function with this property takes values in Lg. If L represents [ € D,
then L belongs to D; and a matrix-valued function with this property takes values in
D. In this section, || - || represents the Euclidean norm in R™ for all m € Z (or any

equivalent one), as well as the associated matrix norm (see Remarks 1.24).

Definition 5.14 The family (5.4) of linear Hamiltonian systems is uniformly weakly

disconjugate on [0, 00) (resp. on (—oo, 0]) if there exists o > 0 independent of w
such that for every nonzero solution z(f, w) = [;‘(”"’)] with z;(0, w) = 0, there
2(1,w)

holds z; (¢, w) # 0 for all t > #y (resp. z1 (¢, w) # 0 for all 1 < —1y).

Definition 5.15 A 2n x n matrix solution L(¢, w) = [283

on [t1, 00) (resp. on (—oo, 11]) if it takes values in D for all ¢ > #; (resp. for t < t;)
and there exists

] of (5.4) is principal

t —1
lim ( / L7 (s, ) Hy(w-s) (LT) 7' (s, ) ds) =0, (5.6)

—>0o0

(resp. the same holds for the limit as t — —00).
A principal solution on [0, 00) (resp. on (—o0, 0]) is uniform principal at co
(resp. at —oo) if it takes values in D for all r € R.

The relation between disconjugacy on R of one of the systems of the family and the
existence of (uniform) principal solutions at +co for that system has been already
mentioned in the introduction of the chapter (see also Proposition 5.29 below).
Now the hypotheses on disconjugacy are relaxed to the weak version, which is
compensated by the uniformity in the condition for all the systems.

Remarks 5.16

1. It is clear that the family (5.4) is uniformly weakly disconjugate on a half-line if
and only if all its systems are weakly disconjugate on the same half-line and, in
addition, the time #; of Definition 5.2 can be chosen to be the same for all w € 2.
In particular, if all the systems of the family are disconjugate, then the family is
uniformly weakly disconjugate on both half-lines: just take 7p = 0.

2. As in Lemma 5.5, the uniform weak disconjugacy on [0, co) (resp. on (—oo, 0])
is equivalent to the existence of #p > 0 such that det Us(f, w) # 0 for all € 2

if £ > 10 (vesp. t < —to), since U(1, w) [ 2 | = [525?3 . ]

Some conditions which often appear when studying disconjugacy or weak discon-
jugacy will play a fundamental role throughout the chapter.
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D1. The n x n matrix-valued function Hj is positive semidefinite on 2.

D2. For all o € £ and for any nonzero solution z(t,w) = [282;] of the
system (5.4) with z; (0, w) = 0, the vector z; (¢, ) does not vanish identically
on [0, 00).

D3. For any w € £2 there exists a 2n X n matrix solution G(t,w) = [g;gz;]

of (5.4) taking values in D for all t € R. In other words, for all ® € 2 there
exists [, € Lg such that U(t, w)-l, € D forall t € R.

Note that condition D3 can be rewritten as: for any w € £2 there exists a symmetric
matrix-valued solution of the Riccati equation

M' = —M H3(w-t) M — M H,(0-t) — H! (w-1) M + Hy(w-t) (5.7)

which is globally defined: see Sect. 1.3.5.
The main goal of this section is to prove the following characterization, whose
scope will be analyzed in the rest of the chapter.

Theorem 5.17 Suppose that D1 holds. The following properties are equivalent:

(1) the family (5.4) is uniformly weakly disconjugate on [0, 00);
(2) the family (5.4) is uniformly weakly disconjugate on (—oo, 0],
(3) conditions D2 and D3 hold.

In this case, each of the systems of the family admits uniform principal solutions at
400 and —oo which are unique as matrix-valued functions taking values in Lr and
determine t-invariant sets {(w, 1 (w)) | € 2} C 2 x D.

The theorem is an immediate consequence of Theorems 5.25(i) and 5.26, stated
below. One of its conclusions allows one to talk about uniform disconjugacy of the
family, without particular mention of a precise half-line. This will be done beginning
from the following section, once Theorem 5.17 has been proved.

Some previous work will simplify the proofs of the auxiliary theorems. Note that
condition D1, which will be almost always assumed, is not required for the first
results.

Proposition 5.18
(1) Condition D2 holds if and only if there exist § > 0 and ty > 0 such that

/ (0 (UL) 7 (1 w) X[ di > 8] (5.8)
0

Sforallw € 2 andx € R”", where Up, (t, w) is the fundamental matrix solution
of X' = Hi(w-t) x with Uy, (0, ) = I,.

(ii) Suppose that D2 holds, and let ty be the time provided by (i). Then none of
the systems of the family (5.4) admits a solution taking the form [z;z,)] on an
interval of length t.

(iii) Condition D2 is equivalent to
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D2. For all ® € $2 and for any nonzero solution z(t,w) = [282;] of the
system (5.4) with 2, (0, w) = 0, the vector z,(t, ) does not vanish identically
on (—00,0].

Proof

@

(i)

(iii)

Suppose that D2 does not hold and take a nonzero solution [zz(?’w)] on
[0, 00) of the system (5.4) corresponding to w. Then 0 = Hz(w-t) z2(t, ®)
and z’z(t, w) = —HlT(a)-t) z;(t,w) for t > 0, so that z;(t,w) =
(Ugl)_l(t, ) 22(0, w), and (5.8) does not hold for x = z,(0, w).

Conversely, if (5.8) does not hold, then the compactness of §2 and of the
unit sphere in R” ensure that

[ Vs (@t) (UL, (. 0) x|t = 0
0

for each m € N, for a suitable point (w,,,X,) € £ x R" with ||x,| = 1. A
convergent subsequence of ((w,,X,,)) provides (wp, Xg) with ||xo|| = 1 such
that [ [|H3(wo-t) (Ufy,) ™! (t. o) Xo||* df = 0. Then the function z(t, wy) =
[Zz(t(,)wo)] given by z,(r, wo) = (U}, )~ (t, @) Xo is a nonzero solution of the
system (5.4) corresponding to wo on [0,00), as can be deduced from the
equality Hz(wo-t) (UZI1 )y, wp) Xo = 0 for each ¢t > 0. This fact precludes D2.
Suppose for contradiction the existence of a solution of the system correspond-
ing to w taking the form [Z;It)] for ¢t € [a,a + ). Then, [zz(g_a)] solves the
system corresponding to w-a for ¢ € [0, y]. Hence, 0 = H3(w-at) 22(t + a) =
H;((w-a)-t) (UZII)_1 (t, w-a) 25(a) for t € [0, 1], and this yields

0= /0[) | H3 ((0-a)-1) (Ufy) ™ (1, 0-a) 22(a) ||,

which contradicts (5.8).

It follows immediately from (ii) that D2 ensures D2’. Conversely, condition
D2’ can be taken as the starting point to prove the analogue of (i), which will
then ensure (ii) and hence D2.

Remark 5.19 Note that, if H3 > 0, then (5.8) holds, so that D1 and D2 hold. Note
also that this is the case when the family of Hamiltonian systems (5.4) comes from
a family of Schrodinger equations —x” 4+ G(w-1) x = 0, since in this case H3 = I,.

The following notation will be used to indicate the following hypotheses:

D1,.
D2,.

H;(w-t) > 0forall t € R.

For any nonzero solution z(t, w) = [z‘ (tw)

75 (1,w)

] of the system (5.4) correspond-

ing to w with z;(0, w) = 0, the vector z;(#, w) does not vanish identically on
[t1,00) forall t; € R.
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z1(t,w)
75 (1,w)
ing to w with z;(0, w) = 0, the vector z; (¢, w) does not vanish identically on

(—o0, t1] forall #; € R.
D3,. There exists a 2n x n matrix solution G(¢, ®) = [G‘ () ] of the system (5.4)

D2/. For any nonzero solution z(¢, w) = [ ] of the system (5.4) correspond-

Ga(t,w)
corresponding to w taking values in D for all # € R. In other words, there exists
a symmetric matrix solution of the Riccati equation (5.7) corresponding to w
which is globally defined.

Remarks 5.20

1. It is obvious that D1 and D3 hold if D1, and D3, hold for all w € §£2,
respectively. The same holds for D2 and D2': it is obvious that they hold if
every system of the family satisfies D2,, and D2/ , respectively; and the converse
assertion follows, for instance, from points (ii) and (iii) of Proposition 5.18.

2. Clearly, the weak disconjugacy on [0, co) of the system given by w ensures
condition D2,,. Note that the weak disconjugacy on [0, c0) of all the systems
precludes the existence of a nonzero solution taking the form z(z, ) = [zz((t),w) ]
of (5.4) on any positive half-line [a, 00), since w(t) = z(t+a, @) is the solution of
7z’ = H((w-a)-1)) z with w(0) = z(a, w). In particular, D2 holds. Similar relations
hold for the weak disconjugacy on (—o0, 0] and condition D2’.

3. Theorem 5.11 establishes that, under condition D1, the system (5.4) corre-
sponding to w is weakly disconjugate on [0, 0o) (resp. on (—oo, 0]) if and only
if D2,, (resp. D2/)) holds and it is nonoscillatory at +oco (resp. at —oo). In other
words, if D1,, and D2,, (or D2/)) hold, the nonoscillatory character at +oo (or at
—o00) and the weak disconjugacy on [0, co) (or on (—oo, 0]) of the corresponding
system are equivalent properties.

The following result will not be required until the next section. However, it refers
just to conditions D2 and D2’, so that it seems appropriate to include it at this point.

Lemma 5.21

(1) Suppose that D2, holds for a point w\ in the omega-limit set of wy. Then

D2, holds for all t € R.

(ii) Suppose that D2;, holds for all w in the alpha-limit set of wo. Then D2, . holds
forallt e R.

(iii) If $2 is minimal, then D2, (resp. D2, ) holds for a point wy € $2 if and only
if D2 (resp. D2') holds.

(iv) Condition D2 (resp. D2') holds if and only if each minimal subset of §2 contains
a point w such that D2,, (resp. D2} ) holds.

Proof In order to prove (i), note that the omega-limit sets of wy and wy-t agree for
all + € R, so that it is enough to prove that D2,,, holds. Suppose for contradiction
the existence of z, # 0 such that U(t, w) [102] = [z;z,)] on [t,00). Take
a sequence (s,) 1 oo with w; = lim,—co wo-sy,, and choose a subsequence
(s;) such that there exists the limit w, # 0 of (z2(s;)/||Z2(sj)]|). It follows

that [;’2] = limj0 U(sj, wo) [zz/||z02(s,-)||]’ and, consequently, U(t, w;) [v‘v’z] =
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. 0 . 0
limj 500 U(t, wo-s;) U(sj, wo) [zz/nzz(s,-)n] = limj 00 U(t + 55, w0) [Zz/||z2(sj)||] =
lim;_, o I:ZZ(T“I‘S]')(;”ZZ(S/’)”:I for all ¥ € R, which provides a solution taking the form

[wzo(,)] on R for the system for w;. In particular, D2, does not hold, which yields
the sought-for contradiction.

The proof of (ii) is identical, and the properties stated in (iii) are easy conse-
quences of the previous ones and the minimality of £2. In order to prove the “only
if” implication in (iv), suppose for contradiction the existence of wy € §2 such that
D2, does not hold, and choose a minimal subset M of its omega-limit set. By (i),
D2, does not hold for all w € M, which is impossible by hypothesis. An analogous
proof guarantees the result for D2’

Remark 5.22 Tt will be explained in Chap. 6 that condition (5.8) (i.e. condition D2,
according to Proposition 5.18(i)) is equivalent to the uniform null controllability of
the family of control systems

X = H(o)x+ Hy(wt)u, e, (5.9)

a condition which is in turn ensured by an a priori weaker one: each minimal subset
of £2 contains a point @ such that the system (5.9) is null controllable (see the
connection with point (iv) in the previous lemma). In turn, this last condition holds
if H3 > 0 and each minimal subset of £2 contains a point @ with H3(w) > 0: see
Remarks 6.8.1 and 6.2.1.

The following remark, which summarizes some of the results of Chapter 2 of
Coppel [34], provides information which will be important in what follows.

Remark 5.23 Given a point w € £2, let G(t,w) = g%zg

solution of the corresponding system (5.4). Suppose that G(¢, w) takes values in D
for every ¢ in an interval Z. Take a € Z and define

] be a 2n x n matrix

t
Ig(a,t,w) = / Gl_l(s, w) H3(w-s) (GIT)_l(s, w)ds (5.10)
fort € Z. It is easy to check that

|:G1(t, w) Gi(t,0) I(a,t, ) } (5.11)
Gy (t,w) Ga(t,w)Ig(a.t,w) + (G)) (1, w) .

is a fundamental matrix solution of (5.4). Consequently, a 2n X n matrix-valued
function G(t, w) solves (5.4) on Z if and only if it takes the form

[@(t, w)] _ Gi(t, 0) (P(w) + I(a, 1, ) Q(w)) 5.12)
G(t, w) Gy (t, 0) (P(w) + I(a, 1, ®) Q(w)) + (GT)7!(t, w) Q(w) '
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for arbitrary real n x n matrices P(w) and Q(w). Moreover, as proved in [34]
(Proposition 3 of Chapter 2), if G(t,w) belongs to D for t € Z, then P(w) is
nonsingular and

I(a,t,0) = (P(0) + I6(a, t,0) Q(@)) ' I(a, t,0) (PT) () (5.13)

for ¢ € I, with Iy defined from 51 as Ig from Gy in (5.10). Finally, if Z contains a
half-line [a, 00), and there exists lim, o (I'F(a, 1, w))~! =0,, then

lim (Iz(a, t, w) + C)~' = lim (Iz5(a.t, ) 1, + C(Iz(a,t, w) H' =0,
—>00 =00

for every constant matrix C, and hence there exists lim,— oo (I5(b, 1, o) =0,
whenever [b, 00) C Z. The analogous result for the limits at —oo holds if Z contains
a half-line (—oo, b]. These last properties are especially relevant when talking about
uniform principal solutions on positive or negative half-lines: if this is the case, any
t in (5.6) provides the same limit, so that a uniform principal solution at +oco or at
—o0 is a principal solution on [#;, 00) or on (—o0, t;] for all #; € R.

Lemma 5.24 Suppose that D1 and D2 hold, and let ty be the positive time of

Proposition 5.18(i). Let G(t,w) = [g;gg;] be a 2n x n matrix solution of (5.4)

taking values in D for every t > t; and w € §2. Then, for all ® € §2, the symmetric
matrix Ig(a, t, ) defined by (5.10) for t| < a < t is positive definite ift — a > 1.

Proof 1t follows from (5.11) that

_ Gi(t, ) Ig(a, t, w) X

_ Zl(l, a))
z(t, w) = [ :| - I:GZ(I’ w) Ig(a,t,w)xo + (G{)_l(tv w) X0:|

Zz(l, a))

solves (5.4) for all xo € R". Take t, > a + fo and suppose for contradiction that
there exists (wg, Xg) with xg # 0 such that xgl(;(a, tr,wp)Xg = 0, which clearly
implies that ngG(a, t,wo) xg = 0 for all t € [a, ,]. Hence Ig(a,t, wy) Xo = 0 and
Z1(t, wp) = 0 for all ¢ € [a, t,], which contradicts Proposition 5.18(ii).

The results ensuring the properties stated in Theorem 5.17 can be now formulated
and proved. The second statement of Theorem 5.25 will be required in Sect. 5.4.

Theorem 5.25 Suppose that D1, D2, and D3 hold. Then,

(i) the family (5.4) is uniformly weakly disconjugate on [0, 00) and on (—00, 0].
(i) Foreachw € §2 andl € Ly, there exists s, such that U(t, w)-l € D whenever
|l‘| > Sl
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Proof

Gz(l‘,a))
is normalized to G(0,w) = I, for all @ € £2. Once this is done, it follows

from (5.12) and from [gﬁgi;] =[] that

(i) Suppose without loss of generality that the matrix [G‘(t’w) ] of condition D3

U3(l, a)) = Gl(l, a)) I(;(O, t, a))
Us(t, ) = Ga(t,0) I6(0, 1, ) + (G]) ™' (1, )

foreach t € R and w € 2, with I5(0, ¢, w) defined by (5.10). Lemma 5.24
ensures that I5(0, 7, w) (and hence U;(t, w)) is nonsingular whenever |7| > 1,
with £y provided by Proposition 5.18(1). As seen in Remark 5.16.2, this property
is equivalent to the uniform weak disconjugacy at 400 and —oo.

(i) Fix (w,]) € Kg, represent [ = [g], and choose any [Z] = [, € Lg such
that [Z g] € Sp(n, R) (for instance, Ly = L, R'andLy = —L; R ! forR =

L'Li+LTLy). Then V(1, w) = U(t, w) [E g] = [Zgg; ggz;] is a symplectic
matrix solution of (5.4). According to Proposition 5.7, the (already established)
uniform weak disconjugacy of the family on [0, co) ensures that each of the
systems of the family (5.4) is nonoscillatory at 4-0co. Proposition 5.9(i) provides
a time s, such that the vector space ky(w) = KerL,(f,®) is constant on

($e.1, 00). Assume that ky(w) is nontrivial and take a nonzero z € ky(w).

Then [283 ] z is a nontrivial solution of (5.4) and takes the form [, ] for
t > s, which is impossible according to Proposition 5.18(ii). The argument is

analogous in the negative half-line.

Theorem 5.26 Suppose that D1 holds. Then the family (5.4) is uniformly weakly
disconjugate on [0, 00) if and only if it is uniformly weakly disconjugate on (—o0, 0].
If this is the case, then the system (5.4) possesses uniform principal solutions

+
[iixw;} at £o0o for each w € 2, and conditions D2 and D3 hold. In addition,
o L

the principal solutions are unique as matrix-valued functions taking values in L.
~ +
Finally, if I*(w) are the real Lagrange planes represented by I:i‘iigw; :|, then
2 Vo
F(wt) = U(t,w) - 15 (o) forallt € R and € £2.

Proof The proof is carried out according to the following scheme. Assuming first
the uniform weak disconjugacy on [0, c0), the existence of a principal solution
at +oo for each w € §2 with the stated properties is proved. Consequently, and
according to Remark 5.20.2 and Definition 5.15, the family satisfies D2 and D3.
Therefore, Theorem 5.25(i) ensures the uniform weak disconjugacy on (—oo, 0].
Some indications about how to adapt the first steps in order to ensure the existence
of a principal solution at —oo complete the proof. This method of proof can be
repeated taking the uniform weak disconjugacy on (—oo, 0] as the starting point.
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Assume the uniform weak disconjugacy on [0, 00). Recall that then D2 holds,
as explained in Remark 5.20.2. Let t; > 0 satisfy det Us(t, w) # O for t > t, and
w € 2 (see Remark 5.16) and condition in Lemma 5.24. Consider the 2n x n matrix-

valued function G(t, w) = [gjgi;

t € R, solves (5.4), and takes values in D for t > 1y. Represent I(z, w) = I5(to, t, w),
this last matrix being given by (5.10), and note that /(#, w) is nondecreasing in ¢
(since D1 holds). Lemma 5.24 ensures that (¢, w) is positive definite for each r >
2t5. Hence, (I(t, w))™! is positive definite for these values of ¢, and nonincreasing in
t (see Remark 1.20). Therefore, there exists the limit

], which represents a real Lagrange plane for all

Ji(@) = lim (1, 0))”"

(see Remark 1.44.3). The goal now is to prove that I, — I (¢, @) J+ (w) is nonsingular
if # > ty. Consider first the case r > 2¢). By Lemma 5.24,0 < I(t, w) < I(t + tp, w),
so that J4 (w) < (I(t,w))~" for t > 2t,. Hence the matrix I, — I(t, w) J+ (@), whose
eigenvalues agree with those of

"2 (1, 0) (U(t, )™ = T4 (@) I'*(t,0) > 0,

is nonsingular for each + > 2fy. Now take r € [fp,2f] and s > 21, and
observe that the eigenvalues of the two matrices I, — I(t,w) ™' (s, w) and I, —
I712(s, w) I(t,w) I"'/?(s, w) agree. Taking the limits as s — oo one sees that
the set of eigenvalues of the matrix I, — I(t, w) J+(w) agrees with that of I, —
Jj_/z(a)) I(t, ) Ji_/z(a)) (see e.g. Theorem IL.5.1 of [89]). Thus, the assertion is
proved once it has been checked that the eigenvalues of this last matrix are strictly
positive if ty < t < 2ty, which in turn follows from

L — (@) (1, 0) (@) > 1, = I (0) 121, 0) T () -

the eigenvalues of the matrix in the right-hand term agree with those of the matrix
I, — 1(2ty, w) J+ (), which, as already seen, are strictly positive.
According to Remark 5.23, the 2n x n matrix-valued function L™ (¢, w) given by

[L?L(f, w)} _ [ Us(t,w) (I, — I(1, ) J1 (@)

L;—(f, ) N Us(t,w) (I, — I(t, w) I+ (w)) — (U3T)_1(t, ) J+(w)i| (5.14)

solves (5.4) in [fy, 00) and takes values in Lg. It has been just checked that in fact
it takes values in D for ¢ > #,. Hence, by (5.13), if I, + (%o, ¢, w) is defined from Lt
by (5.10), then (I, + (to, t, @)) ™' = (I(t,w)) ™" — J4(w) if t > 210, so that

0, = lim (I,+ (to, 1, ) ™"
—>00

: . (5.15)
= lim ( / (L) (5. 0) Hy(@5) <(L1+)T)‘1(s,w)ds) .
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+
The same symbol [ibrgw;} will denote the extension of the solution given on
2 Lo

i]([,w)
Ly(t.w)
matrix solution of (5.4) which takes values in D for t € [fp, 00) and satisfies

limy s o0 (5 (%0, 1, w))”™' = 0, By Remark 5.23, [ggi;] can be defined from

[ty, 00) to the whole real line. Suppose now that r — [ ] is any 2n X n

Lt w . . . = =
|:L2r xw; :| for t € [tp, 00) by expression (5.12) for suitable functions P(w) and Q(w).

The matrix P(w) is invertible and, by (5.13),
0, = lim (I; (to, 1, )"
—>00

= lim P(@) ((I,+ (to.1.@)) " P(@) + Q(w)) =P () Q(w).

. _ Litw ] _ | L o) P@)
so that Q(w) = 0,. Hence [Zz(m)] = [L;r(m) Po)

of solutions of (5.4), the same equality holds for all # € R. That is, in terms of the
matrix representation of Lagrange planes,

Lito)] _[Lf (o)
[iz(t, w)} - [L;m, w)} (5.16)

i| for each t > #y. By uniqueness

forall r € R.
The next goal is to check that

LYt+row)=L"(t,wr) forallo € Qandt,reR; (5.17)

i.e. they represent the same Lagrange plane. Note that ¢ > LT (t + r,w) and ¢ >
Lt (t, w-r) solve the system corresponding to w-r. Assume first that » > 0, so that
Lt (t + r,w) belongs to D for all t > 5. And

; -1
Jim ( [ @76+ o) Ha(@n) (@ 6+ ) ds)
-1

= lim (/H_r(LI")—l(s, w) Hy(w-s) ((LI")T)—l(s, ) ds) =0y,

—>
=00 o+

as can be deduced from (5.15) and the last assertion of Remark 5.23. Hence, (5.16)
implies (5.17) for r > 0. This in turn implies that, if » > 0,

LYto (=) =LYt —r+r,w(=r) =L —r w),

which completes the proof of (5.17). Consequently, the Lagrange plane represented
by Lt (t,w) = L™ (ty, w-(t — to)) belongs to D for all (1, w) € R x £2.



5.2 Uniform Weak Disconjugacy and Principal Solutions 267

The assertions concerning the uniform principal solution at +oco0 can now be
proved. First, Lt (t,w) always takes values in D, so that relation (5.15) and a
new application of the last assertion of Remark 5.23, ensure that L+(t, w) is
a uniform principal solution at 4+oo. Second, relation (5.16) implies that it is
unique when considered as a function taking values in Lr. And third, (5.17) yields

+
U(r,0)LT(0,0) = LT (r,w) = LT(0, w-r), so that if IT(w) = [L‘ (O’w)i|, then

L 0w
U(r,0) It (0) = IT(wr).
As stated at the beginning of the proof, the uniform weak disconjugacy on
(—o00, 0] holds. To deal now with the existence, uniqueness, and invariance of the
principal solution at —oo, take 7y > 0 satisfying Lemma 5.24 and det Us (7, w) # 0

for t < —ty, write as before G(t, w) = [gjgi; ], and deﬁne7(t, w) = Ig(—ty, t, w)
for + < —#y. This last matrix is negative definite for t+ < —2#, and decreases as ¢
decreases, so that (I(¢, w)) ™" is negative definite and increases as t — —oo. Hence,

there exists J_(w) = lim,_>_oo(7(t, w))~'. Changing I to 7 and J4 to J_in (5.14)
LT (t,w)
L%(t,a))

provides the definition of [ ], which will now play the role played before by

[L?“ (to)

L . The rest of the proof is identical with the previous one.
Ly (t,w)

The proof of Theorem 5.17 is hence complete. Recall that, as stated in the
introduction of this chapter, more information concerning the existence of (perhaps
nonuniform) principal solutions for the systems of the family (5.4) under less
restrictive hypotheses will be given at the end of the following section.

Among the most trivial examples of systems fitting the situation of Theorem 5.17,
one can mention the autonomous cases 2 = [{}]z, with LT(0) = [_}] and
L=(0) =[1].and 2’ = [Z} }]2, with LT(0) = L~(0) = [!]. The reader can find
in this chapter several interesting nonautonomous examples of uniformly weakly
disconjugate families: see e.g. Examples 5.38 and 5.47.

The section is completed with a result which presents sufficient conditions for
the uniform weak disconjugacy of the family (5.4). In some cases, it allows one
to identify this property very quickly: Remark 5.19 shows that the hypotheses of
Proposition 5.27 are fulfilled if H3 > 0 and H, > 0, and Remark 5.22 describes less
restrictive conditions ensuring the same.

Proposition 5.27 Suppose that D1 and D2 holds, and that H, > 0. Then the
family (5.4) is uniformly weakly disconjugate.

Proof Let t; satisfy (5.8). Clearly it suffices to check that the unique solution

(1) = [;Eg] of (5.4) with x(0) = x(f) = 0 is the zero solution. Note

that, for such a solution, fot"(||H;/2(a)~t) x(1)|]> + ||H31/2(a)~t) yO|>dt = o:
see Remark 1.81.2. That is, on the one hand, fot" ||H;/2(a)-t) yO|*dt = 0;
and, on the other hand, for t € [0,1], Ho(w-1)x(r) = 0, so that y'(r) =
—H{ (1) y(7) and hence y(t) = (Uf;,)~" (1, w) y(0). These two equalities lead to
0 = [ |Hy* (1) (UL)~" (. ) y(0)|* dr, which, by (5.8), means that y(0) = 0,
so that z(0) = 0 and hence z = 0.
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5.3 Disconjugacy, Uniform Weak Disconjugacy, and Weak
Disconjugacy

Consider the following three different possibilities for the family (5.4):

A. All the systems of the family are disconjugate.
B. The family is uniformly weakly disconjugate.
C. All the systems of the family are weakly disconjugate on (—oo, 0] or on [0, 00).

(Recall that Theorem 5.17 guarantees that the uniform weak disconjugacy of the
family (5.4) holds simultaneously on both half-lines.) Then,

— A implies B and B implies C: see Remark 5.16.1;
— even when D1 holds, B does not imply A: see Example 5.38 below;
— even when Hz > 0, C does not imply B (or A): see Example 5.39 below.

As stated in the introduction, to analyze the situations in which two of the conditions
A, B, C (or the three of them) hold simultaneously is the first goal of this section.
Some preliminary results concerning nonoscillation, which are of interest in their
own right, will be used in the analysis, and the characterization of uniform weak
disconjugacy provided by Theorem 5.17 will be of fundamental importance from
now on. The properties of the rotation number of the family (5.4) associated to each
o-ergodic measure will provide in Sect. 5.7 more information about the relations
holding between properties A, B and C when D1 and D2 hold.

It was mentioned in the introduction that the great advantage of weak disconju-
gacy, as compared to the classical disconjugacy, is that it holds under a much weaker
version of the condition of identical normality, which is not required in order that B
or C hold (see Example 5.38).

Definition 5.28 The system (5.4) corresponding to w is identically normal on R if,
21 (1)

for every nonzero solution [zz(r)

], the vector z;(¢) does not vanish identically on

any nondegenerate interval.

So, it is clear that the weak disconjugacy on a half-line, as well as conditions D2,
and D2/, are weaker than the identical normality on R of the corresponding system.
Clearly, a disconjugate system is identically normal. Something more can be said
in the case that D1 holds: the following result is proved in Sections 1 and 2 of
Chapter 2 of [34]. Note that Theorem 5.17 can be understood as its extension to the
less restrictive setting considered here.

Proposition 5.29 Suppose that Hy(w-t) > 0 for a point ® € §2 and every t € R.
Then the corresponding system (5.4) is disconjugate on R if and only it is identically

normal on R and it admits a 2n X n matrix solution [gégg] taking values in D for

all't € R. In this case, the corresponding system (5.4) possesses principal solutions
at +00 and —oo, which are unique as functions taking values in Lg.
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Remark 5.30 Tt is almost immediate that, if H3 > 0, all the systems of the
family are identically normal: if z;(r) = 0 for a nonzero solution, then z|(r) =
Hi(w-1) 2p(t) # 0. Thus, Remark 5.19, Theorem 5.17, and Proposition 5.29 ensure
that, if H3 > 0, properties A and B are equivalent, and that they are also equivalent to
the fact that condition D3 holds. This conclusion was mentioned in the introduction:
the main contribution of the theory of weak disconjugacy concerns the situations in
which H3 > 0 but it is not positive definite.

Under condition D1, Theorem 5.32 below describes a situation in which B and C
hold or not simultaneously: this happens when the base flow has a dense semiorbit.
To understand its scope, recall that the existence of positive and negative semiorbits
which are dense in £2 holds in the case of existence of a o-ergodic measure with
total support 2, as proved in Proposition 1.12. The proof of Theorem 5.32 is an
immediate consequence of the following theorem, which is more general.

Theorem 5.31 Let O and A be the omega-limit set and alpha-limit set of wy € §2.
Then,

(1) if the system (5.4) corresponding to wy is nonoscillatory at 400, then all the
systems corresponding to elements of {wo-t| t € R} U O are nonoscillatory at
~+o00, and those corresponding to O are nonoscillatory at —oo.

(i) If the system (5.4) corresponding to wy is nonoscillatory at —oo, then all the
systems corresponding to elements of {wo-t| t € R} U A are nonoscillatory at
—o0, and those corresponding to A are nonoscillatory at +o0.

(iii) If Hz(wot) = O for all t > 0 and all the systems (5.4) corresponding to
elements of {wo} U O are weakly disconjugate on [0, 00), then the family
restricted to O is uniformly weakly disconjugate.

@iv) If H3(wot) > O for all t < 0 and all the systems (5.4) corresponding to
elements of {wo} U A are weakly disconjugate on (—o0,0), then the family
restricted to A is uniformly weakly disconjugate.

Proof

(1) As in Theorem 2.4 (see (2.7)), the definition of Arg, and Theorem 1.41
guarantee that

/tTr O(t(s,w,1) ds = Arg, V(t,w) — Arg, V(0, w) ,
0

where V(t,w) = [5;82; 5;82;] is a symplectic matrix solution of (5.4) with

[ = [“gggzg ] That is, the nonoscillation at +o0o (resp. at —oo) of the system

corresponding to w is equivalent to the existence of /,, € L and ¢, ;, > 0 such
that |f0t TrQ(t (s, w,l,)) ds| < cp,, forall t > 0 (resp. for all + < 0), in which
case the same happens for all / € Lr. Suppose that this is the case for the point
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wo and ¢ > 0. Then

t t+r
'/ TrO(t(s + r, wo, L)) ds / Tr O(z (s, wo, L)) ds
0 r

=

t+r
4 ‘/ Tr Q(z (s, wo, lw)) ds
0

/r Tr O(z(s, wo, lw,)) ds
0

E 2Ca)0,lw0

for all » € R. This ensures the nonoscillation at 4-oo of the system corresponding
to wy-r for all » € R. Now, given w; € O, look for a sequence (z,,) 1 oo such
that there exists (w1, 1) = lim,— o0 T(fm, @0, Ly, ). Then, if t > 0,

t
= lim '/ Tr Q(t(s + tm, @0, L)) ds
0

m—>0Q

'/t Tr O(t(s, wy, 1)) ds
0

= lim

< 2c
m—>00 — (UOJ(UO ’

t+ty,
/ Tr O(z (s, wo, L)) ds
1,

m

and hence the system corresponding to w; is nonoscillatory at +oco. Analogously,

i <
A, < 2o

0
‘/ Tr Q(t(s, w1, 1)) ds

tm
/ Tr Q(z (s, wo, luy,)) ds
1

n—t

which ensures the nonoscillation at —oo and completes the proof of (i).

(iii) Note that the assumption Hz(wof) > 0 ensures condition DI on O =

{wot] t = 0}UQO. In addition, the weak disconjugacy hypothesis guarantees con-
dition D2,, for all w € O (see Remark 5.20.2). Assertion (i) and Lemma 5.21(i)
guarantee that all the systems corresponding to points w € O are nonoscillatory
at oo and satisfy D2,,, which ensure that all of them are weakly disconjugate:
see Remark 5.20.3.
According to Lemma 5.5, the weak disconjugacy of the system (5.4) on [0, c0)
for each @ € O provides t, > 0 with detUs(t,w) # O for each t > 1,.
The time #, can be chosen as the smallest one with this property. In particular,
det Us(t,,, w) = 0. Take r > ¢, and consider

I:Zl (l‘, a))i| _ [U3(l‘— r,a)-r)i|
Zz(l‘,a)) o U4(t—r,a)-r) ’
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which is a matrix solution of (5.4) taking values in Ly and satisfying [
[]- Remark 5.23 yields

Zi(rw) | _
Z(rw) |

Z\(t,w) = Us(t, w) (/T U;l(s, w) H3(w-s) (U_,,T)_l(s, ) ds) U3T(r, ),

r

Z>(t, w) = Uy(t, w) (/t U;l(s, w) H3(w-s) (U;)_l(s, ) ds) U_,,T(r, )
+(U3) " (1.0) Uy (r.0)

for each t > r. Assume for now that there exists 7o > 0, common for all w € 5,
such that det Z; (¢, w) # 0 for each t > r + ty; or, equivalently, such that

/ U3 ' (s, 0) Hy(w-s) (UT) "' (s, ) ds > 0 (5.18)

foreacht > r+fyandall w € 0. Then, det Us(t, w-r) = detZi(t + r,w) # 0
for each t > fy, which implies that ¢,., < fo if r > ¢,. This property will be
fundamental for the completion of the proof. In order to check the existence of
this £, note that, since O is compact, the arguments of Proposition 5.18(i) can
be repeated to obtain 75 > 0 and § > 0 such that (5.8) holds for all w € O
and x € R". Then, reasoning as in Proposition 5.18(ii), one proves that none
of the systems (5.4) corresponding to elements of the positively o-invariant set
O admits a solution taking the form [zz(t)] in [r,r + o], since r > 0. And, in
turn, this property allows one to repeat the proof of Lemma 5.24 in order to
check (5.18).

Statement (iii) is equivalent to the boundedness from above of the set
{tw| @ € O}. This will be checked now. Suppose for contradiction the
existence of a sequence (wy)meny in O with lim, o0 t,, = 00. Recall that
det Us(ty,,, wn) = 0 and note that there is no loss of generality in assuming
that ¢,,, > fy for every m € N. In addition, there exist my and t; € (t, twmo)
with det Us(t1, wy,) # 0: otherwise one would have det Us(t, w,) = 0 for
each t € (fo,1,,], so that the continuity of Us(t,w) in @ would ensure that
det Us(t, @) = 0 for each ¢ > £, for every accumulation point @ € O of (W) men
(and there exists at least one, since O is compact); but this is impossible by the
weak disconjugacy of the system of the family (5.4) corresponding to @ (see
Remark 5.16.2).

According to Theorem II.5.2 of [89], it is possible to choose continuous

functions pi,...,pn: R — C such that the set of eigenvalues of Wy (¢, wy,),
with Wy (t, 0) = (U (t, w) — iUs(t, 0)) " (U1 (t, ) + iUs(t, )), coincides with
the unordered n-tuple {p;(?),...,p,(¢)}, which may have repeated elements.

In addition, according to Lemma 2.29(i), these functions have modulus 1. Let
@1....¢.:R — R be continuous branches of their arguments: ¢%(") = p;(t)
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forj = 1,...,nand ¢t € R. According to Theorem 2.30, ¢; is nondecreasing
forj = 1,...,n. It follows from Lemma 2.29(ii) that det Us (¢, w,,,) = 0O if and
only if there is j € {1,...,n} such that ¢;(f) = 2m;z for some m; € Z. Since
det Us(ty, wm,) # 0, the arguments can be chosen so that ¢;(t;) € (—2n,0)
for j = 1,...,n. Since det U3(twm0,a)m0) = 0, there exist [ € {1,...,n} and
an integer n; > 0 with ¢;(t,,) = 2mm. And since det Us(t, @y,) # 0 for all
1> 1y, then @i(t2) € 2myr, 2(n; + 1)) for all 1, > 1,,, . Fix such a value 7.
The definition of O provides a sequence (sz) 1 oo with limg— oo Wo'Sk = Wy, -
The arguments of Theorem IL.5.1 of [89] show that the unordered sets £(z, w)
of the eigenvalues of the jointly continuous matrix-valued function Wy (¢, w)
vary continuously in (f,w), in the Hausdorff sense explained in the proof of
Theorem 2.30. Therefore, by choosing k large enough, all the elements of
E(t1, wo-sy) belong to {e¥| ¢ € (—2m,0)}, while at least one element of
E(t2, wo-sy) belongs to {e | ¢ € (2mm,2(n; + 1)7)}. For later purposes, choose
such a value of k which in addition satisfies sy > 1,,. Recall that n; > 0.
A new application of Theorem II.5.2 of [89] provides continuous functions
Pls.s ppi R — C such that E(f, wp-sy) = {p1(?),...,pu(0)} for t € [t1, 1].
It follows easily that there exists 7 € (11, 12) such that 1 belongs to E(7, wo-si).
Lemma 2.29(ii) implies that det U3 (7, wo-sx) = 0, so that t,,.;, > t;. However, as
checked at the beginning of the proof, #,,.;, < fo < t1, since sx > f,,. This is the
sought-for contradiction, which completes the proof of (iii)

As an additional interesting fact, note that the time #,, which is provided by
Lemma 5.24, is in fact an upper bound for {t,| @ € O}. In order to check

Vi(t.o) ]

this, take r > 1, for all w € (. The matrix-valued function [Vz(m)

Uy(t+r,0(—r))
Us(0, w) = 0,, Remark 5.23 ensures that, for each ¢ > 0,

[U3(’+”‘)'(_r))] solves (5.4) and satisfies det V;(t,w) # 0 for all + > 0. Since

Us(t, w) = Vi(t, w) ( /0 r Vi (s, 0) Hy(w-5) (V)7 (s, w) ds) 0(w)

for some nonsingular matrix Q(w). Lemma 5.24 ensures that det Us (¢, w) # 0
for each t > 1, as asserted.
(ii) & (iv) These two proofs are analogous to those of points (i) and (iii).

Theorem 5.32 Suppose that D1 holds and that there exists a positive (resp.
negative) o-semiorbit which is dense in §2. Then, all the systems (5.4) are weakly
disconjugate on [0,00) (resp. on (—00,0]) if and only if the family is uniformly
weakly disconjugate.

Example 5.39 shows the optimality of this result, in the sense that, even if H; > 0
(so that D1 and D2 hold: see Remark 5.19) and, at the same time, all the systems
are simultaneously weakly disconjugate both on (—oo, 0] and on [0, 00), then the
existence of a dense orbit (instead of semiorbit) does not suffice to guarantee
the uniform weak disconjugacy of the family. And Example 5.40 shows that the
nonoscillation and weak disconjugacy (on both half-lines) of all the systems in the
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omega-limit set of an initial point do not guarantee the same properties for the initial
system.

The following result, which is an easy consequence of Theorems 5.32 and 5.17,
and of Proposition 5.29, presents situations of equivalence of A, B, and C. Recall
that the identical normality of all the systems of the family holds, for instance, if
H3 > 0.

Proposition 5.33 Suppose that D1 holds, and that every system of the family (5.4)
is identically normal. Then,

(1) the family (5.4) is uniformly weakly disconjugate if and only if all its systems
are disconjugate.

(ii) If there exists a positive (resp. negative) o -semiorbit which is dense in 2, then
all the systems of (5.4) are weakly disconjugate on (—o0, 0] (resp. on (0, co)) if
and only if all of them are disconjugate.

Proof Remark 5.16.1. proves the “if” statements of (i) and (ii). Under D1 and D2,
the uniform weak disconjugacy of (5.4) ensures D3, according to Theorem 5.17.
Therefore, Proposition 5.29 guarantees the disconjugacy of all the systems of the
family: the proof of (i) is complete. In addition, the weak disconjugacy of all the
systems ensures D2: see Remark 5.20.2. By Theorem 5.32, the family is uniformly
weakly disconjugate if the hypothesis of (ii) holds. Thus, (i) completes the proof of
(ii).

Much more can be said in the case of a minimal base. Theorem 5.32 and
Lemma 5.21(iii) play a fundamental role in the proof of statement (ii) of the
following result.

Proposition 5.34 Suppose that D1 holds and that §2 is minimal. Then the fam-
ily (5.4) is uniformly weakly disconjugate if and only if there exists a point wy such
that the corresponding system (5.4) is weakly disconjugate on [0, 0c0) or on (—o0, 0].

Proof The “only if” assertion is trivial. Suppose that the system corresponding to
a point wy € §2 is weakly disconjugate on [0, 00). Proposition 5.7 ensures that it
is nonoscillatory at +o0, so that, by Theorem 5.31(i), all the systems of the family
are. In addition, D2, holds (see Remark 5.20.2), so that Lemma 5.21 ensures that
D2 holds. As explained in Remark 5.20.3, all the systems of the family are weakly
disconjugate on [0, 00), and hence the assertion follows from Theorem 5.32. The
proof is the same taking the weak disconjugacy of a system on (—oo, 0] as the
starting point.

In particular, the last result shows that if a particular linear Hamiltonian system is
weakly disconjugate on a half-line, and if it is determined by a recurrent coefficient
matrix Hy(f) with Hyz > 0, then the family constructed on its hull (see Sect. 1.3.2)
is uniformly weakly disconjugate. However, recurrence is a strong condition. The
following result establishes hypotheses substituting it and providing the same
conclusion. And Proposition 5.36 combines both results to optimize the information
in the case of recurrence.
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Proposition 5.35 Suppose that the orbit of w, is dense in S2, and that

1. H3(wot) > 0 forallt € R (i.e. D1, holds),
2. for each nonzero vector Z, € R" there exist numbers ty > 0 and §y > 0

(depending on z,) such that, if s € R and [222] = U(t, wy-s) [202 ], then there is
ts € [0, 10] with [|21 (1) || = o,

3. there exists a 2n X n matrix solution G(t, wy) = [g%gg;] of the system (5.4)

corresponding to wg taking values in D.
Then the family (5.4) is uniformly weakly disconjugate.

Proof 1t is clear that D1 holds. In order to prove the same for D2, suppose for

contradiction the existence of w € £2 and z, # 0 such that [283] =U(tw)[2]

satisfies z, (f, w) = 0 foreach ¢ > 0. Let #, and 8, be the constants of hypothesis 2 for

z,. Find a sequence (t,,) with ® = lim wy-t,,, and write [228] = U(t, wo't,,) [ 102 ]
Then z; (¢, w) = lim,,—, o 21, (¢) uniformly on [0, #y]. However, for each m there is
an s, € [0, to] such that ||z, (sm)|| > &0, and a contradiction is easily established.

Now represent by A and O the alpha-limit and omega-limit sets of wy, and note
that 2 = AU {wo-t| t € R} U O. And recall that D3 holds globally if and only if
D3, holds for all w € £2.

According to Proposition 5.8, Hypothesis 3 ensures that the system correspond-
ing to wo is nonoscillatory at +occ and at —co. By Theorem 5.31(i), all the
systems corresponding to points of O are nonoscillatory at +o0o, which according
to Remark 5.20.3 ensures that all of them are weakly disconjugate on [0, 00).
Hence, Theorem 5.31(iii) and Theorem 5.17 ensure that D3, holds for all w € O.
Analogous arguments guarantee that it holds for all w € A. Finally, if s € R,
hypothesis 3 yields the solution G(¢t + s,wp) taking values in D of the system
7z’ = H((wy-s)1) z, so that D3,, also holds for all w in the o-orbit of wy. The proof
is complete.

Proposition 5.36 Suppose that §2 is minimal, and that there exists wy € §2 such
that D1, and D2, hold, and such that there exists a 2n X n matrix solution

G(t,wy) = [g%gg;] of the system (5.4) corresponding to wy taking values in D
forall t in a positive or negative half-line. Then the family (5.4) is uniformly weakly

disconjugate.

Proof 1Tt is obvious that D1 holds, and Lemma 5.21(iii) ensures the same for D2.
By Proposition 5.8, the system corresponding to wy is nonoscillatory at +oo or at
—o0; Remark 5.20.3 yields its weak disconjugacy on [0, c0) or on (—oo, 0]; and
Proposition 5.34 completes the proof.

As stated in the introduction, one goal of this section is to establish conditions
on a particular system ensuring the existence of principal solutions. Note that the
second hypothesis of the following result is exactly that of the weak disconjugacy
on [0, co) (or on (—o0, 0], and that the third one, stronger than D2,, (or than D2) ) is



5.3 Disconjugacy, Uniform Weak Disconjugacy, and Weak Disconjugacy 275

rather weaker than the identical normality occurring in the case of disconjugacy (see
Proposition 5.29). Examples 5.39 and 5.41 below show that the theorem is optimal,
in two senses: the existence of a uniform principal solution cannot be ensured even
in the identically normal case, and the weak disconjugacy of a particular system does
not suffice to ensure that it has a principal solution on the corresponding half-line.

Theorem 5.37 Suppose that the system corresponding to wy € §2 satisfies D1,
and det Us(t, wy) # O for all t > ty, and that it admits no solution taking the form
[Zz(:f)] on [t;,00) for all ty > ty. Then it admits a principal solution on [ty, 0),
which is unique as a matrix-valued function taking values in L.

Analogously, suppose that the system corresponding to wy € 2 satisfies D1,
and det Us(t, wy) # O for all t < ty, and that it admits no solution taking the form
[Zz(:f)] on (—oo, t1] for all ty < ty. Then it admits a principal solution on (—o0, ty),
which is unique as a matrix-valued function taking values in L.

Proof As usual, the proofs of these assertions are symmetric, so that just the first
one will be explained. Fix any #; > #;. The arguments of the proofs of points (i) and
(ii) of Proposition 5.18 provide s(¢;) > 0 and §(z;) > 0 such that

ks T \—1 2 2
/ VHs(@0) (U )™ (1) x| dr = 8(0) [x]

n

for all x € R", and show that there is no solution taking the form [z;{,)] on[t;,t; +
s(t1)]. The proof of Lemma 5.24 can be easily adapted to check that I5(#;, t, wp) > 0
whenever t > ; + s(t;), where the maps I5(¢,t, wy) are defined for t > #; > ¢

from G(t, wy) = [gigzg;] by (5.10). From here, the proof of Theorem 5.26 can

be repeated step by step, taking as the starting point I (%, t, wp), until (5.16) is
obtained, and this proves the statements of the first part of the theorem. The only
point of difference is that the nonsingular character of I,, — I5(ty, t, wy) J+(wp) is
proved first in the set [fo + s(fo), 00) and then in [z, fo + s(fo)].

Note that D1, D2, and the weak disconjugacy on [0, co) of the system corresponding
to wo guarantee the hypotheses of the previous theorem, and that under these
conditions the family is uniformly weakly disconjugate if and only if the principal
solution that it provides is uniform, as can be deduced from Theorem 5.17.

The last part of the section presents some examples which were announced
above, and which demonstrate the optimality of the results given in this section.
The main conclusion to be drawn from the first one has already been mentioned:

— Unless H; > 0, the uniform weak disconjugacy of the family is a condition less
restrictive than the disconjugacy of all the systems, since it does not require the
property of identical normality.

In the first three examples, 2 is the closure of the orbit of a particular one of its
elements. In the second and third ones, H3 > 0, so that all the systems are identically
normal. In the second one, they are also weakly disconjugate both on (—oo, 0] and
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on [0, 00). Some of the conclusions which can be inferred from this example have
also been anticipated:

— The weak disconjugacy of all the systems of the family guarantees neither the
uniform weak disconjugacy nor the existence of the uniform principal solutions,
even in the case of identical normality.

— The additional conditions required in Theorem 5.32 and Proposition 5.33(ii)
(existence of a dense semiorbit), and in Proposition 5.35 (properties 2 and 3),
are not superfluous.

Just one of the systems of the third example is weakly disconjugate and nonoscilla-
tory. The main conclusion to be drawn here is the following:

— The nonoscillation and/or weak disconjugacy of the systems corresponding to
the points in the omega-limit set of a given one does not guarantee the same
properties for the initial system, even in the case of identical normality.

And a conclusion corresponding to the fourth example has been mentioned before
Theorem 5.37:

— Conditions H3 > 0 and the weak disconjugacy of a particular system on [0, co)
(or on (—o0, 0]) do not suffice to ensure the existence of principal solution on
[t1, 00) (or on (—o0, t1]) for that system, for all #; € R.

Example 5.38 Let a:R — R be the bounded and uniformly continuous function
defined by

0 if |7 <1,
a®) =9 |f|]—-1 if 1< =<2,
1 if |7 >2.

Then b(t) = fot a(s) ds takes the value 0 on [—1, 1], and is strictly increasing outside
that interval. Consider the two-dimensional Hamiltonian system

7 = [0 a(t):|z.
0 O

It is easy to check that the hull §2 of the coefficient matrix is

o={o 5 ]resofloalh

with a,(f) = a(t+ s). The solution of the system corresponding to s € R with initial

datum [ ] # [9] is [iizg] = [ﬂ(h(ﬁ;)_h(‘?))]. Therefore, x;(f) # 0 for |¢| > 2. For

the limiting system, the solution with the same initial datum is [;‘zgg ] — [/% ! ], and
hence xo0(#) # 0 if  # 0. Therefore, the family is uniformly weakly disconjugate:
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Definition 5.14 holds for t; = 2. However, the initial system (given by s = 0)
is not disconjugate: in fact xo(f) vanishes on [—1, 1], so that the system is not
even identically normal. (And the same situation occurs for s small enough.) For
further reference, note also that this family of Hamiltonian systems does not have
exponential dichotomy over 2, and that both principal solutions are given by the
constant matrix [ | ].

Example 5.39 Let c:R — R be a bounded and uniformly continuous function
satisfying

o(t) = 1 if |t| =37,
-1 if | <2m.

Then the two-dimensional linear system

z’—[o 1:|z
“lew o]®

with H3(f) = 1 > 0 foreach t € R, is weakly disconjugate but not disconjugate: the
first component of any solution takes the form ¢ cos t+c; sint fort € (—2x, 21), so
that it vanishes at least twice; and cze’ + c4e™" for |t| > 3, so that it does not vanish
for large |¢|. As in the previous example, the set 2 = {[ .0, 0] | s e R} U{[9}]}.
with ¢;(f) = c(t + s), is the hull of the coefficient matrix. It is easy to check that
all the systems of the corresponding family (5.4) are weakly disconjugate, but only
the one given by w; = [(1) (1)] is disconjugate. Proposition 5.33(i) ensures that the
family of systems is not uniformly weakly disconjugate: as seen in Remark 5.30,
condition D1 and identical normality hold for every system, since H3(w) = 1 > 0.
In fact, the absence of uniform weak disconjugacy can be also checked directly: as
s — —oo, the “last” zero of the first component of the solution starting at [?] goes
to +oo. In addition, just the limiting system of the family admits uniform principal
solutions, as can be deduced from Proposition 5.29, but all of the systems of the
family admit principal solutions on suitable positive and negative half-lines. Note
also that the principal solution on [37, 00) of the initial system is given by [_e;, ],
which is (up to constant multiple) the unique solution bounded as ¢t — oo; and
that the principal solution on (—oo, —37] is [z; ], the unique solution bounded as
t — —oo. These properties add information to that obtained in Sect. 5.6 concerning
the relation between the uniform principal solutions and the stable subbundles in the
case of exponential dichotomy.

Example 5.40 Letd:R — R be a bounded and uniformly continuous function such
that, for eachm > 1,

1
i) = — ifa, < |t| <bp,
m
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where (a,,) 1 oo, (by) 1 00, apmt1 — by, = 1, and by, — a,, > 4 w m. Consider the
two-dimensional linear Hamiltonian system

1

;L _ 0
zZ = Hy(t)z = [—d(t) 0

i|z, teR. (5.19)

It is easy to deduce from the nature of any solution on the intervals on which d
is constant, that the system is not weakly disconjugate: the first component of each
solution vanishes at least once on any interval [a,,, b,]. As in the previous examples,
the hull of Hy is £2 = {Hys| s € R} U {w:} where Hy(r) = Ho(t + s) and
w = [8 (1)] Again, the family satisfies D1 and all its systems are identically normal,
since H3 > 0, but the only one which is weakly disconjugate (on (—oo, 0] and on
[0, 00)) is the one corresponding to w;: the remaining ones behave as the initial
system. According to Corollary 5.12, this means that the only nonoscillatory system
(at +00 and —oo) is the one corresponding to w,. Note that {w, } is the omega-limit
and alpha-limit set of the initial system.

Example 5.41 Let e:R — R be a continuous function which is strictly positive on
(—1,1) and zero outside this interval. The fundamental matrix solution U(#) with
U(0) = I, of the (single) two-dimensional linear Hamiltonian system

0 e(r)

z/:Ho(t)z:|:O 0 }z, teR

isU(t) = [(1) EY’ ] forE(t) = fot e(s) ds, so that the system is weakly disconjugate on
[0, 00) and on (—o0, 0]. It is easy to deduce that the condition (5.6) of Definition 5.15
is satisfied neither for a #; > 0 taking the limits as t — oo nor for a #; < 0 taking
the limit as + — —oo. That is, no principal solution exists. This is because [(1)]
is a solution of the system outside the interval [—1, 1]: one of the hypotheses of
Theorem 5.37 does not hold.

5.4 General Properties of the Principal Functions

This section refers to the scenario described in Theorem 5.17: D1, D2, and D3
hold, or equivalently, D1 holds and the family is uniformly weakly disconjugate
(on both half-lines); and there exist uniform principal solutions at 0o for each
LF (o)

system (5.4), which are denoted by [L + )
5 (Lo

:| and are unique as matrix-valued

functions taking values in Lg (in fact in D). The symbols I+ (w) will represent in the
F0.0)

rest of the chapter the Lagrange planes represented by 0.0
2 L,

i|, which according

to Definition 5.15 can be also represented by the real matrices [ ] It follows

Ill
NE ()
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from the equality I* (w-f) = U(t, w) - I* (w) established in Theorem 5.26 that
NE(ot) = LE (1, 0) (LE) (1, ) . (5.20)

Or, in other words, that the maps N* () are globally defined symmetric solutions
along the flow of the Riccati equation (5.7) (see Sect. 1.3.5). According to
Definition 1.49, they are equilibria. Note that these functions are unique, as can
be deduced from the uniqueness in Ly of the uniform principal solutions.

Definition 5.42 The globally defined functions N*: 2 — S,(R) parameterizing
the principal solutions at 00 in D are the principal functions.

The analysis of the general properties of the principal functions, as well as of
the dynamical and measurable consequences of these properties, is the object of
this section. Recall that the concept of upper semicontinuous function N: 2 —
Su(R) is described in Definition 1.47, and that its main properties are described in
Proposition 1.48.

Theorem 5.43 Suppose that D1, D2, and D3 hold, and let ty satisfy the assertions
of Remark 5.16 and Proposition 5.18(i). Then, the principal functions N* satisfy

NEt(w) = lim N,(w) (5.21)

for all o € $2, where N, is the continuous symmetric matrix-valued function
given by

Ny (0) = U5 ' (r, 0) Ui (r, ) (5.22)
for |r| > ty. In addition,
N (@) £ Np(w) S N_,(w) S N_, (w) for to<r <ry, (5.23)
and hence
No(@) < N*(@) <N~ (@) <N (@) if r> 1. (5.24)

In particular, FN* are (bounded) upper semicontinuous n x n matrix-valued
functions on 2, and the functions I*: 2 — Lr , @ — I (w) are Borel measurable.

Proof Fix w € 2 and choose uniform principal solutions L* (¢, w) at +00 normal-
ized to Lft (0, w) = I, (so that N* (w) = L;E (0, w)). According to Remark 5.23, for
each fixed r € R with |r| > 1y, the 2n X n matrix-valued function

L (t,w)

Li(t, w)
_ [ L (t.w) (I, — 1(t.0) I(r,0))™") }
LY (o) (I — 1t o) ((r,0) ™) — (LHTD) Nt o) U(r,w) ™ ]’
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with I(t,w) = I;+(0,t,w) given by (5.10), solves (5.4). Note that L](0,w) =
L*(0,w) = I,. By the definition of principal solution, lim,— s (I(r, ®))™! = 0,.

L (1, + .
Therefore, lim, o [L;x Z;] = [EQEZZ; :| for all + € R. In particular, for t = 0,
: (2

. Lj0o)] | tow |, .
lim, o0 [LS ) O,w)] = [L 0w | or, in other words,
NT(w) = lim Ny(w) for Ny(w) = Ly(0,®). (5.25)
r—>00
Note also that Li(r,w) = 0,. It follows from [LE?’”@)] = [22:3]

U(r,w) [2283] = U(r,w) [N,?(”w)] that 0, = U,(r,w) + Us(r,w) N;(w). This

implies (5.22) for |r| > t, which together with (5.25) completes the proof of (5.21)
for NT.
For later purposes, note that

Ni(@) = N*(w) = ((r,0)™ (5.26)

whenever [r| > 1.
Now define I(f,w) = I;-(0,7,w) by (5.10). Repeating the above argument

guarantees that [Lr(t’w) ] =lim,_ [K‘r(t’w) ] for each t € R, with

Ly (t.w) K5(t.0)
Ki(t, )
Ki(t, w)
|: L_(t w) I, —I(t ) (I(r w)™H :|
Ly (t,0) (L, = 1(t, 0) (I(r. 0))™") = (L) (1 0) I (r, )~

for |r| > 9. Then N™ (w) = lim,—— oo N, (a)) with N, (w) = K5(0, ). As before,
Ki{(r,w) = 0, yields N,(w) = —U;'(r,®)U(r,w) for |r| > t. This and
relation (5.22), already established, prove that N,(w) = N,(w) for |r| > 1o, so
that (5.21) also holds for N™.

Relation (5.26) provides an almost immediate proof of (5.23) and (5.24): one
just has to use that —(/(r, a)))_1 increases as r > fy increases, decreases as r < —fy
decreases, and satisfies I~ (—r, w) < 0, < (I(r,w))™" for r > 1.

Therefore the functions FN*(w) are the limits of two decreasing sequences of
continuous functions which are uniformly bounded, as can be deduced from (5.23)
for a fixed value of r; and Remark 1.44.2. Proposition 1.48(iii) ensures that
they are upper semicontinuous. Of course, they are also Borel measurable: see
e.g. Remark 1.1. Now, given a Borel set B C Lg, note that ((*)~'(B) = {w €
Q| 1*(0) € B} = {w € 2| F(w) € BN D}; that B N D can be identified with a
Borel set A C S,(R) (see Remark 1.30); and that (IF)~'(B) = {w € 2 | N*(0) €
A}, which are Borel sets. The proof is complete.
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+
Corollary 5.44 Suppose that D1, D2, and D3 hold, and define [iligw;} =
%) L

U(t,w) [Nﬁ(w) ] Then

-1

N (@) = N* (@) = lim_ ( / (L 5.0) Hy(s) (L) 5,0) ds)

t -1
= lim ( /0 <Lr)—1<s,w)H3<w-s)<(L;)T)—1<s,w)ds) .

Proof The first equality follows from (5.26), and the second one from the analogous
equality N,(w) = N, (w) = N~ (w) — (I(r, w))~! for |r| > ty (with the notation of
the proof of the previous result).

Summing up the main results proved so far in this section: N*(w) are semicon-
tinuous functions given by pointwise limits of continuous symmetric matrix-valued
functions; they are bounded solutions along the flow of the Riccati equation (5.7);
and they parameterize in D the uniform principal solutions at foo: * (w) =

In
NE ()
The following four results go more deeply into the dynamical and measure-
theoretic properties of the functions N* and of the global flows associated to (5.4).
Propositions 5.45 and 5.46 refer to the (residual) sets of continuity points of N*.
The first one states, in particular, that the principal functions provide minimal almost
automorphic extensions of the base §2 if this one is minimal: see Definition 1.18.
And the second one, Proposition 5.46, establishes that the dimension of the
intersection of the vector spaces It (w) and I~ () reaches its minimum on the set
of common continuity points, on which it is constant. Some examples follow the
results and indicate their scope.

Proposition 5.45 Suppose that D1, D2, and D3 hold.

] forevery w € 2.

(i) Let my be a o-ergodic measure on §2. Then each one of the sets I =
{(w,F(w))|w € R} concentrates a t-invariant measure u* projecting onto
my.

(ii) The continuity points of N* form two residual invariant subsets 2% C £,
which are o-invariant.

(i) If 82 is minimal, then the sets K* = Closure;gR{(a)jjE () |w € 2%} are
almost automorphic extensions of the base S2 for the flow t.

Proof

(i) Proposition 1.16(ii) states that the measures u*r defined on Kg by
Jico f(@,D) du® = [, f(o.1%(w)) dm for f € C(Kg.R) satisfy the assertion.

(i1) & (iii)) Proposition 1.48(ii) establishes the residual character of the sets 0%,
and Proposition 1.53 contains the remaining assertions.
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The o-invariant sets £2F provided by Proposition 5.45(ii) play a role in the statement
of the following result.

Proposition 5.46 Suppose that D1, D2, and D3 hold and that S2 is minimal. Let
Q. = 2% N 27 be the o-invariant set of common continuity points of N*. Then,
thereisk € Nwith0 < k < n such that dim a+ (w) N ?_(a))) = k forevery w € 82..
In addition, dim 0+ () NI~ (w)) < kforevery w € 2.

Proof Note that
dim (I (0) N T (w)) = dim (Ker (N~ (0) — N* (w))) (5.27)

for all w € £2: the vectors [ Nf”(w)]xo € I (w) and [ NJ:”(w)]yo e It (w)

+
coincide if and only if xo = yo and N~ (@) xo = N1 (w) yo. Denote [iigw;} =
2y (Lo

U(t,w) [Njé"(w) ] Then, forall w € £2 and t € R,

LNt 0) L] (t,0) — (LD (1, 0) L5 (t,0) = NT(0) — N™(w) (5.28)
since equations (5.4) ensure that the left-hand term is independent of ¢. Hence, since
N (@) = Ly (t.o) (L) (1.0) = (L)) (o) (13) (o).

one has that
NtY(w) =N () = L)) (t,w) (NT (0t) = N~ (1)) L (1. @) . (5.29)
Relations (5.27) and (5.29) ensure that the function
k(w) = dimKer (N~ () = N*(0)) = dim (IT (0) N T (w))

is o-invariant. Note also that k(w) is the multiplicity of 0 as eigenvalue of the
positive definite matrix N~ (w) — Nt (w). That is, if u;(0) < --- < p,(w) are
these eigenvalues, and po(w) = 0, then k(w) = max{k € {0,...,n}| u(w) = 0}

Take wy € 2., w € §2, and a sequence (z,,) with lim,,—,cc ®t,, = . Letk =
k(w) = k(w-t,,). Since the sequence (N~ (w-t,,) — N (w-1,,)) converges to N~ (w) —
N (w), the continuous variation of the set of eigenvalues with respect to the matrix
ensures that u;(wo) = lim,eo uj(w-ty) forj = 0,...,n: see e.g. Theorem I1.5.1
of [89], and note that, in this case, the sets of eigenvalues are ordered subsets of R.
Therefore u;(wo) = 0 at least forj = 0, ... , k, which ensures that k(wg) > k =
k(w). Note that this holds for every @ € £2. In addition, if w; € §2., then the same
argument guarantees that k(w;) > k(wp), so that both dimensions agree. The result
is proved for k = k(wo), where wy is any fixed point in the set £2..
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Examples 5.47 Note that in the case in which N £ are continuous functions, the set
£2. of the previous result agrees with £2, so that the constant dim (7+ (w)yNI- (a)))
takes the same value k for all w € 2. It is possible to construct examples with
N¥ continuous for which k takes any value, from O to n. The simplest ones are, of
course, autonomous. For instance, with n = 1, the system z’ = [:} Hz satisfies
Nt =N~ =1,sothatk = I, whilez’ = [{} ]z satisfies N* = —l and N~ =1,
so that k = 0. By combining these two systems one gets

—-1010

. 0001

7 = 1010 z, (5.30)
0100

for which N* = [} ] and N~ = [} 0], so that k = 1. This can be proved by

direct computation: the solutions of (5.30) with initial data [ Af%r ] and [ ]\52_ ] are

1 0 1 0
0 e! 0 ¢
10 and 1o |
0 —e! 0 ¢

respectively, and they satisfy the conditions of Definition 5.15.

Of course, the two measures 1 * of Proposition 5.45(i) coincide in the case that
Nt = N~ mg-a.e. on £2. Note also that u* are Dirac measures in the autonomous
case. There are also simple nonautonomous cases in which the measures coincide,
such as that given in Example 5.38 (with Nt (w) = N~ (w) = 0 forall w € £2, so
that k = 1). Observe also that the functions N* and N~ are continuous if they agree
everywhere in 2, since according to Theorem 5.43 —N* and Nt = N~ are upper
semicontinuous functions.

Another (very complicated) case with n =1 will be considered in Example 8.44
of Chap. 8. In this example, which is of Million§¢ikov—Vinograd type with minimal
base, the principal functions are noncontinuous maps which agree in the residual
set of their continuity points and are different in full measure, so that the two
T-invariant measures ,ui are different. Therefore, in this case, the constant k of
Proposition 5.46 equals 1, but dim(I* (w) NI~ (w)) = 0 my-a.e., and the sets K* of
Proposition 5.45(iii) are not copies of the base. As a matter of fact, they determine
the unique minimal subset of the corresponding bundle K.

Observe finally that Proposition 5.46 ensures that if the two principal functions
agree in at least one point of §2 (and hence k = n), then they agree at the o-invariant
set of their common continuity points. But this set can have zero measure, as in
Example 8.44, or full measure, as in many of the examples given in this chapter.
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The next two theorems explore the properties of the following subsets of Kg:
assuming that hypotheses D1, D2, and D3 are valid, define

j+
T ={@.)e2xD|l=[lI] with M <N (w)}. (5.31)

{(w.) e 2xD|1=[0] with N*(w) < M},

J ={(@.) e2xD| =[] with N (0) <M <N (0)}.

sothat 7 = J1 N J~. These three sets posses some topological, dynamical and
measurable properties which can be used to describe the global dynamics induced by
the family (5.4) on Kr and on £2 x S, (R). A bit more precisely, recall that, if / € D
and [ = [AI,I”O ], then U(t, w)-l € D as long as the solution M(t, w, My) of the Riccati
equation (5.7) with M(t, w, My) = M is defined, and that these solutions define the
flow 75 on £2 x S, (R) (see Sect. 1.3.5). Therefore, the properties of invariance and
attractivity described by Theorem 5.48 show that the principal functions N* and
N~ “delimit” the areas on which t is globally defined as a flow, and as a positive or
negative semiflow. And Theorem 5.49 proves that any t-invariant measure on Kp is
concentrated on J. The notion of copy of the base is given in Definition 1.17.

Theorem 5.48 Suppose that D1, D2, and D3 hold. Then,

(i) The sets J+, J~, and J, defined by (5.31), are positively t-invariant,
negatively t-invariant, and t-invariant, respectively.

(ii) The set J is compact. In addition, if a sequence ((w;,1;)) of points of J+
(resp. of J~) converges to a point (wo,lo) € 2 x D, then (wo.ly) € J+
(resp. (wo, lp) € T 7).

(iii) Take (w,l) € Kg. Then t(t,w,l) € 2 x D forallt > 0,t <0, andt € R, if
and only if (w,]) € JT, (w,]) € T, and (w,]) € T, respectively.

(iv) J is the maximal t-invariant subset of §2 x D. Moreover, the alpha-limit set
and the omega-limit set of any t-orbit in Kr are contained in J. In particular,
J contains all the minimal subsets of Kg.

Proof

(i) Consider the auxiliary linear equation
M' = —M Hy(wt) — H] (0t) M + Hy(0t) = g(wt, M),

whose solution with initial datum M), represented by M,(t, w, My), is globally
defined for all € £2 and My € S,(R). Take (w,]) € J and represent [ in
the form [ AI,;’O ] Let Z be the maximal interval of definition of M(t, w, My). The
monotonicity properties established in Theorem 1.45 ensure that Nt (w-f) <
M(t, w, My) for all t € Z. In addition, since H3 > 0,

M (t,w,My) = h(wt,M(t,w, My)) < g(wt, M(t,w, My))
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(i)

(iii)

(iv)

for t € Z, so that Theorem 1.46(i) implies that M(t, w, My) < M;(t, w, M)
forr > 0, t € Z. These inequalities imply that |M(s, @, My)| is bounded in
any interval [0, ] C Z: see Remark 1.44.2. It follows from Remark 1.43 that
M(t,w, M) is defined (at least) for ¢+ > 0, and hence (i) is proved for J+.
The proof is analogous for 7. And both properties taken together imply that
J =Jt N Jis t-invariant.

Define J, = {(w,)) € 2 xD|I=["] andN.(w) <M < N_,(w)} for N,
given by (5.22), and note that J = N2, J,, as can be deduced from (5.21)
and (5.24). The continuity of N, and N_, ensures that each set 7, is compact,
so that also J is compact. Now take a sequence ((wy,/;)) of points of J+
with limit (wy, lp) € £2 x D, and represent [; = [jf;j] and [y = [1{4"0 ] Then,
limj0o M; = M. By hypothesis, M; > N7 (w;). Since the function NT is
norm-bounded on §2, it is possible to take a subsequence ((wy, lx)) such that
there exists im N (w;) = Np. Hence, My > Ny. The semicontinuity of —N*
established in Theorem 5.43 ensures that M, > Ny > Nt (wo), which proves
the statement for J+. The proof is analogous for 7.

Just the “only if” assertions must be proved, since the “if”” ones follow from
(). Suppose that U(t, w)-l € D for all t > 0. Write [ = [AI,I”O] and L(t,w) =

[ggg;] =U(o)| AIZ) ]. According to Remark 5.23, if > 0, then

'Z+ (C()t) = |: Ll (ts w) (P(a)) + IL(Os 1, a)) Q(a))) :| ,

Ly(t, ®) (P(@) + 1(0,1,0) Q(w)) + (L)™' (1, ) Q(w)
where P(w) is nonsingular. In particular, taking r = 0,
Nt (w) = My + Q(w) P (w). (5.32)
In addition, by (5.15) and (5.13),
0, = lim I1(0,1,0) = P () (rgrgo 0.1, a))) P(o) + PT(0) O(w),

which implies that

Q(w) P~ (@) = (PTH) (o) P () Q(w) P~ (@) = — lim I;'0,1,0) < 0.

This and (5.32) ensure that N*(w) < Mj. In other words, (w,]) € J7, as
asserted. The proof of the property for J~ is analogous, and both of them
taken together imply the assertion for 7.

By (iii), the 7-orbit of a point (w,l) ¢ J is not contained in £2 x D. This
proves the first assertion in (iv). Now take (wy, ly) € Kr. By Theorem 5.25(ii),
there exists fy > 0 such that t(¢, g, ly) € §2 x D for t > ty. Therefore, by (iii)
and (i), (1, wo, ly) € J+ whenever t > ty. Let the point (w, [;) belong to the
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omega-limit set of (wo, lp), and write it as (wy, 1) = limj_o T(2, w0, lp) for
a sequence (¢)) 1 oco. A new application of Theorem 5.25(ii) provides #; > 0
such that the point 7(¢, w1, [1) = limjeo (¢ + t;, o, lp) belongs to 2 x D
whenever t < —t,. Therefore, by (ii), (¢, w(, ;) € J T whenever t < —t;, and
hence (i) implies that 7(—t; + s, w1,0;) € JT C £ x D whenever s > 0. In
other words, 7(¢,w;,l;) € §£2 x D for all t € R, and hence (iii) ensures that
(w1,hh) € J, as asserted. The proof is analogous for the alpha-limit set. The
last assertion of (iv) is now trivial: any minimal set is the omega-limit set of
each of its orbits.

Recall that X, represents the m-completion of the Borel sigma-algebra for a
(positive normalized regular Borel) measure m.

Theorem 5.49 Suppose that D1, D2, and D3 hold. Then,

®

(ii)

every t-invariant measure |1 on K is concentrated on [J; that is, u(J) = 1.
In particular, let m be a o-ergodic measure on 2, let 2y € X, be a o-
invariant set with m(§29) = 1, and let I: 2 — Lgr be a X,,-measurable map
with t(t, w, (®)) = (o, [(w-1)) for all v € §2y. Then the X,,-measurable set

21 ={we (0 l(w) €T}

is o-invariant with m(§2) = 1.

Suppose further that there exists a subset 20 < $2 with my($29) > 0 for an
ergodic measure mgy on the base such that the o-orbit of w is dense in 2 for all
w € §29. Let K C Kg be a copy of the base. Then IC C J.

Proof

®

Let u be a t-invariant measure on Kg. The Birkhoff Theorem 1.3 provides a
T-invariant set X 7 with u(X7) = 1 and a function 75 4 € L' (g, i) such
that

1T ~
lim —/0 X+ (t(t,w, ) dt = X+ (w,1]) (5.33)

for every (w,]) € Kz, with u(J+) = fKR7]+ (w,))du. Take (w,l) €
K 7. Theorem 5.25(ii) and points (iii) and (i) of Theorem 5.48 provide
to > 0 (depending on (w,l)) such that t(t,w,l) € JT whenever t > t,.
Consequently, (5.33) ensures that 73 +(@,) =1, which in turn ensures that
w(JT) = 1. Analogously, (7 ~) = 1, and therefore u(J) = w(JTNJT ") =
1, as stated.

Assume now that m, 2y and [: 2 — Lp satisfy the conditions in the
last assertion of (i). Applying what has already been proved to the r-ergodic
measure y; which is concentrated on the graph of / and which projects onto
m (see Proposition 1.16(ii)) yields 1 = w,(J) = [, x, (@, (w)) dm, so that
(w,l(w)) € J for m-a.e. w € §2¢. That is, m(£2,) = 1. The t-invariance of J
guarantees the o-invariance of £2;.
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(i) Write K = {(w, l(w)) | w € §2} and note that the t-orbit of (w, [(w)) is dense
in K for all w € £2y. Let £2; be the subset of §2 composed of the points @ with
(v, l(w)) € J, which according to (i) is o-invariant and satisfies m(£2;) = 1.
Points (i) and (ii) of Theorem 5.48 ensure that the (dense) r-orbit of any point
w € §2yp N £2) is contained in the compact set .7, and hence I C 7.

Remark 5.50 The shape of the sets J +, J, and J can vary from extremely
simple, as in the autonomous examples described below the proof of Theorem 5.17
(before Proposition 5.27) to extremely complicated, as in the situation described in
Example 8.44 and summarized in Examples 5.47. In this last case the set J7 is
what in the literature is called a pinched set: the fiber over each point of the base
reduces to a singleton just for a residual proper subset of £2.

The section is completed with the following result, which is consequence of
Theorem 5.26 and the comparison theorems for the Riccati equations of Sect. 1.3.5.
It presents an extension to linear Hamiltonian systems of the Sturm comparison
theorem, similar to the one obtained in [34] for disconjugate systems, as well as a
comparison result for the corresponding Lagrange planes obtained from the uniform
principal solutions. In the proof, B¢ (wy, §p) represents the open set of the points of
£2 at a distance from wy less than 6y > 0.

Proposition 5.51 Consider two families of linear Hamiltonian systems

7 =H'(w)z, wes, (5.34)
7 =H(wt)z, weSR, (5.35)
with JH' < JH?. Suppose that D1 and D2 hold for (5.34) and D1, D2, and D3 hold
for (5.35). Then,
(1) D3 also holds for (5.34). In addition, zl'lejE (w) and N2jE (w) are the principal
Sfunctions of (5.34) and (5.35) respectively, then
N <Nf <Ny <Ny

(i) Suppose further that Hll = le and that any minimal subset of §2 contains a
i|f0rj =1,2. Then

, -
point @ such that H)(w) > H3(w), where H/ = [:} (1:13/)7
2 — T
+ + - -
N" <N,” =N, <Ny.

Proof

(i) Write the Riccati equations associated to ' = H/(w-t) z as

M = —MH,(0-1) M — M H,(w-1) — (H,) (0-1) M + H) (1)
= hj(a)'t, M)
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forj = 1, 2, and consider also the linear equations
M = —MH,(w1) — (H) (0-1) M + H)(w-1) = gj(w-t, M)

forj = 1,2. Let MljE (t, w) solve M’ = hy(w-t, M) in a maximal interval Zy
containing 0 and let Mﬁ (t,w) solve M’ = gy(w-t,M) in R, with MljE 0,0) =
Mﬁ 0,w) = N2ﬂE (w). Then, forall t € T,

hy(wt, M (1, 0)) < hi(wt, MiE (1, 0)) = (M) (t, ) < g1(t, MiE (t, ) |

so that, according to points (i) and (iii) of Theorem 1.46, Nzi(a)-t) <
Mli(t, w) < Mfl(t, w) for all points + € Zy N [0,00) and Nzi(a)-t) >
MljE (t,w) > Mfl(t, w) for all t € 74 N (—o0,0]. These two inequalities and
Remark 1.44.2 imply that ||M1ﬂE (t,w)|| is bounded in any interval [a,b] C Z,
and hence Remark 1.43 ensures that M li (t, w) is globally defined. Therefore:

first, the 2n x n matrix solutions of (5.34) with initial data [ ] take values

I

N5 (@)
in D for every t € R, so that D3 holds, and Theorem 5.17 ensures that the
principal functions NljE (w) exist; and second, Theorem 5.48(iii) ensures that
N1+ (w) < N2jE (w) < N (w). This property and the inequality N2+ (w) < N; (w)
ensured by Theorem 5.43 are used to complete the proof of (i).
Note that (N;")(®) = hi(w,N{ (0)) > hy(w.Nj (@) for all 0 € £.
According to Proposition 1.52(i), this ensures that N1+ is a superequilibrium
for the flow 7y, induced by M’ = hy(w-t,M) on 2 x S,(R) (for ¢t > 0 and
t < 0: see Proposition 1.51). Assume now the additional hypothesis in (ii).
Given any wy € £2, there exist a minimal set contained in the omega-limit set
of {wot| t > 0}, a point @ in this minimal set and a §,, > 0 such that

(N1 (@) = ha (@, Nf" (@) = =N{ (0)Hy ()N (@) + Ni (0)H3 ()N (@)
+ Hy () — Hy (@) > Hy (@) — H3 (@) > 0

for all w € By F(VZB,E&,O). In addition, there exists a time s,, > O such that

oS, € Ba(w,84,). By continuity of the base flow, there exists §,, such that

05, (Ba (@0, 8u)) S Bo(w, 84,)- Hence (Nf)’(a)-swo) > hz(a)-swo,NT(w-swo))

if o € Bg(wy,d,), and therefore Proposition 1.52(iii) ensures that the
superequilibrium N 1+ is strong. This implies the existence of s* > 0 such that

N (@) = N (0-54)-(=5x)) < Ma(—sx, 055, Ni (0-5*))
< Ma(—$x, 54, Ny (05%)) = N () .

The first inequality in (i) and Theorem 1.45 have been used here. Consequently,
N1+ < N2+. The proof of N, < Ny is analogous.
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This comparison property will be used in the proofs of some of the main results of
the rest of the book. In particular, in combination with Theorem 5.58 below, it will
be extremely useful in the determination of the existence of exponential dichotomy
and/or uniform weak disconjugacy for several families of perturbed Hamiltonian
systems.

5.5 Principal Solutions and Lyapunov Index

Throughout this section, mg represents a fixed o-ergodic measure on 2. According
to Definition 2.41, the Lyapunov index of the family (5.4) with respect to myg
is B = By + -+ By, where By > --- > B, > 0 are the nonnegative
Lyapunov exponents with respect to mg repeated according to their multiplicities.
The remaining Lyapunov exponents are —f8; < --- < —f, < 0.

The following two propositions explain the behavior of certain solutions of the
family of systems (5.4) which are important for the ergodic characterization given
in Theorem 5.56. The set D is defined by (5.5). Recall once more that conditions
D2 and D3 are equivalent to the uniform weak disconjugacy of the family (5.4) if

D1 holds, as Theorem 5.17 guarantees.
Remark 5.52 Suppose that det G| # 0. Then,

GiGi +GyGy = G| (I, + (G)) ' G} G2G ) G
and, consequently,
det(G1 G, + GIGy) = det(GTGy) det(l, + (GT)"'GEG,GTY) > det(GTGy) .
Proposition 5.53 Suppose that D1, D2, and D3 hold. Then, there exists a o-

invariant subset §2g C §2 with my(§29) = 1 such that, for all v € $2o, there exist

+
. . G (1,
2n X n matrix solutions ‘i( )
G (t,w)

:| of (5.4) taking values in D with
.1 £\T +
Jlim 2—tlndet (GH'(1.w) G (1. w)) = £B. (5.36)
Proof As proved in Theorem 2.46,

B=[ TrS(w,D)dw
Kr
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for a r-ergodic measure p; on K projecting onto mg, where Tr S(w, /) is defined
by (1.20). Theorems 1.3 and 1.6 ensure then that

1 t
B =1lim — [ TrS(z(s,w,1))ds (5.37)
t—o0o 0

for pi-a.e. (w, ) € Kg. In addition, Theorem 5.49(i) ensures that i is concentrated
on J, which in turn implies that, for y;-a.e. (w,[) € Kr and any representation / =

[g ], the matrix-valued function [282;] =U(t,w) [g] satisfies det L (r, w) # 0

and Nt (w1) < Ly(t,0) L7 (t,0) < N~ (w-) for every t € R. It is easy to deduce
the existence of a o-invariant subset §£2; C £2 with m((§2;) = 1 such that for all
w € £2 there exists (w, ) such that this last condition and (5.37) hold. Fix one
of these points (w,l) with € £2,. Equation (1.16) is satisfied by R(#, w), with
RT(t,0) R(t,w) = LT(t,0) L (t, ) + L (t,w) L»(t, w), and this together with the
Liouville formula guarantees that

1
B = lim —Indet(L] (t,®) L (1, 0) + L} (t, 0) L (1, 0)) .
t—o00 2t

Define M(t,w) = Ly(t,w) L' (t,w) which is symmetric, and note that it is also
bounded: see Remark 1.44.2 and recall that Theorem 5.43 guarantees that N and
N~ are bounded. Therefore,

1
p = lim > Indet (L] (1, ) (I, + M*(t, 0)) L1 (t, w))

1
= lim Z1n det (L] (1, 0) Ly (1. ) ,

—>0o0

G (tw) Ly(1w)
—p and a o-invariant set §2, is analogous: the starting point is the existence of a
t-ergodic measure 1, with —f = |, g 1T S(w, 1) dp,, which follows from the proof
of Theorem 2.46, with a simple adaptation of the argument below (2.59). Finally,
the set 29 = £21 N §2, satisfies the thesis.

+
so that |:G‘ ) i| = [L‘ (@) ] satisfies (5.36). The proof of the assertion concerning

Remark 5.54 For future purposes, the set £29 of Proposition 5.53 is supposed from
now on to be contained in the o-invariant set of full measure for m to which the
Oseledets theorem 2.37 applies.

Proposition 5.55 Suppose that D1, D2, and D3 hold. Let §2y be the subset found

+
in Proposition 5.53 and Remark 5.54. For w € $2y, let [L‘ (@)

Lfﬁ(t,w):| be the principal

+
solution of (5.4) at oo, and let [iixwﬂ be any 2n x n matrix solution of (5.4)

2
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FE@w) LE (o)

with det [F R

i| # 0. Then,
- 1 40T + _

lim sup — Indet ((F{)" (1, ) F{ (1. ®)) = 8.
—oo 2t

Proof Fix w € £2y. According to Remark 5.23, there are matrices P(w) and Q(w)
such that

|:F1+(t, a)):| _ [Lf’(t, w) L (t, ) I+ (0,1, 0) } [P(a)):|
Ff(t,ow)| |Lf(tw) LIt o)[+0,t,0)+ (LH) (o) || 0w) ]

2

+
The hypothesis on [i;zw; i| ensures that the matrix Q(w) is invertible: if Q(w) x =
NOJ

Fi (o) L (o) [ —x ] _ [0] . _1 .
0, then |:F2+(t,w) o |LP@x] = Lo Since IL+ (0, t, ) exists and tends to 0, as

t — oo (see Definition 5.15), and since
P(@) +1+(0.1,0) Q(@) = I;+(0.1,0) (11 (0. 1,0)P(®) + Q(®)) .

there exists s, g with det F’ 1+ (t,w) # 0 fort > s, p. In addition, if K(t,w) =
(FH™'(t,w) LT (1, 0) for t > s, F, then

K(t,0) = (I710,1,0) P() + 0(@)) " 710, 1, 0),
and hence

lim K(t,w) = 0,. (5.38)
1—>00

Fi(to) . . . Fif o) L o) | .
Let [Fz(t,w)] be any 2n x n matrix solution of (5.4). Since I:Fj(r,w) (e is a

fundamental matrix solution of (5.4), there are constant n x n matrices C(w) and
Cy(w) such that F(t,w) = F1+(t, w) Ci(w) + Lf (t, ) C2(w). Hence, for t > s, F,

FI(t,w) Fi (1, 0) = (C1(w) + K(t, w) Cr())"
(FDH (1, 0) Ff (1, 0) (C1(0) + K(1, 0) C2(w))

which together with (5.38) implies that

1
lim sup > In det (FlT(t, w) Fi(t, a)))

—>00

1
< lim sup Y In det ((FIF)T(t, ) F[F (, a))) .

—0o0



292 5 Weak Disconjugacy for Linear Hamiltonian Systems

Remark 5.52 and the argument used to get relation (2.58) combined with the

Oseledets theorem 2.37 prove that the right limit is < §. In turn, Proposition 5.53

and the choice of w provide a matrix solution [ggi;] for which the left limit is

) . FE (o)
exactly . The proof is complete for 8, and is analogous for —f. Note that |:F %) i|

are not assumed to take values in Lg.

Recall that * (w) represent the Lagrange planes associated to the uniform prin-
cipal solutions at +oo, that is, Zi(a)) = [ Nil”(w)]; and that the sets LT =
{(w.F(w)| © € 2} C Kg are t-invariant: 7(r, 0, [F(w)) = (w-1,F(w-1)).
The following result provides an ergodic representation of the Lyapunov index
with respect to a o-ergodic measure my on £2, and describes I (w) in terms of
the Oseledets subbundles of the system.

Let 2k be the number of null Lyapunov exponents. The notation of Lemma 2.43
is now recalled, in order to represent

Vi) = (2}, ...z, )

+
V()(Cl)) ( a)n k+1"“’Zw,n’zw,n—k+1""zw,n> ’

V_ (Cl)) ( a)l""’Z;,n—k>

for w in the o-invariant subset 290 < £2 with mo(§20) = 1 appearing in
Proposition 5.53 and Remark 5.54, where zjil, ... ,zf’n satisfy

hm - ln U, 0) 2E = F8;, (5.39)
and the subspaces generated by {z, ,,...,z,,} and {z reees 6M} are real

Lagrange planes. That is, V_(w) and V4 (w) are the sum of the Oseledets subspaces
corresponding to strictly positive and strictly negative Lyapunov exponents,
respectively; and V(w) is the Oseledets subspace associated to the null Lyapunov
exponent. According to Theorem 2.37 and Proposition 2.40, the sets

Vi={(,v)|w €2, veVi(w)}
Vo={(w,V)| w € 20, v € Vo(w)}
Vo ={(w,Vv)| w € 29, ve V_(w)}

are composed of ty-orbits, where ty is the flow induced by (5.4) on £2¢ X R?;
and there exists d € {l,...,n} such that dimV4(w) = dimV_(w) = d and
dim Vo(w) = 2n — 2d for all @ € £2). Recall that G;(R*") and G,_4(R?")
represent respectively the Grassmannian manifolds of the d-dimensional and (n—d)-
dimensional linear subspaces of R?", and that 7, and t,—, are the corresponding
flows induced by (5.4) on 22 xG,(R?") and £2 xG,—s(R>"): see Sects. 1.2.2 and 1.3.1.
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In the case d = n, the set Go(R?") is made up of a unique element, which is the trivial
linear subspace.

Theorem 5.56 Suppose that D1, D2, and D3 hold, and let §29 C 2 be the o-
invariant subset with my(§29) = 1 found in Proposition 5.53 and Remark 5.54.

(i) Forany w € $2 there exist subspaces Wo (a)) C Vo(®) such that the Lagrange
plane Tt (w) coincides with V (w) & Wo (w) and the Lagrange plane I~ (w)
coincides with V_(w) & W, ().

(i) In particular, By > ... > B, > 0 if and only if It (w) and I~ (w) are
supplementary subspaces my-a.e.

(iii)) The maps

20— GuR™), 0 > Vi(w) and $£0— Gra®R?), 0 > Wi ()

are X,,-measurable, and they satisfy t4(t,w,V+(0w)) = (wt, V+(w-1)) and
T—a(t, 0, Wgt (w)) = (w-t, Wgt (w-)) forallw € 2y and t € R.
iv) B=7F / tr (Hy(0) + H3(0) N*(w)) dmo.
2
(V) There exists a o-invariant subset $21 C $2¢ witfz mo(§21) = 1 such that for all
w € 21, W) () = Wy (w) and dim (IT (w) N I~ (0)) = k = dim Vo(w) /2. In
particular, B = 0 if and only if Nt (w) = N~ () (i.e. [T () = " (0)) mp-a.e.

Proof
(i) Fix w € §2y. Suppose that z ;¢ It () for anindex j € {1,...,n—k}. Choose

7z .z

a subspace generated by n Vectors Vols---sVon € {zw Lo ZgnZyls -oos

zatn}, with v, | = z:)' j»in such a way that it is a supplementary space of It (w)

(and not necessarily a Lagrange plane). Let F* (¢, w) = |: F‘+ Et ) i| be the 2nxn

matrix solution of (5.4) with initial datum F (0, w) = [V, Vo2 -+ Vel Note
that, by (5.39),

. 1
Z lim —In|U(t, o) Voul < B,
m=lt—>oo 2t

since limyoo(1/20) In |U(t, ) Vo 1| = —B; < 0. Remark 5.52 and the
arguments of the proof of Theorem 2.46 imply that

lim sup 21 In det ((F+) (t,w) F+ (t, a)))

—>0o0

< hmsupzllndet ((F+) (, a))F+(t ) + (F+) (1, a))F+(t a)))

—0o0

n . 1
E Z_:ll‘l—lfgo zln ||U(ts (U) Va),m” < ﬂ ’
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(i)
(iii)

(iv)
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which contradicts Proposition 5.55. Thus, V4 (w) € IT(w). Suppose now
that v .= v_ + vy + vy € IT(w) with v+ € Vi(a)) vo € Vo(w) and
v_ 7é 0. Since Vi(w) C IT(w), one has v + vy = v — vy € [T (w),
which in turn provides (zw)TJ(V_ +vy) = 0forj = 1,...,n—k. The
symplectic character of U(t, w) and relation (5.39) imply that (z:)' J.)TJ Vo =

(zj;j)T UT(t,w)JU(t,w) vo = Oforj = 1,..., n—k. The same argument shows
that (ZZ)—J)TJV_ = 0forj = n—k+ 1,...,n Therefore, (z:;j)TJv_ =0
for j = 1,...,n, which implies the existence of n 4 1 isotropic linearly

independent vectors, which, however, is impossible. Consequently, I (w) =
Vi(w)® WJ' (w) with WJ’ (w) C Vh(w), as asserted. The proof of the assertion
for I~ (w) is analogous.

This property is a trivial consequence of (i).

According to Theorems 5.26 and 237, U(t,) - [*(w) = [*(w-) and
U(t,w) Vi (w) = Vi(w-t). It is clear that WjE (w) = & (w) N Vp(w) and that
dim WjE () = dim[* (a)) dim Vi (w) = n—d for all w € §2. In particular,
the maps 29 — G,—4«(R™), v Wgt (w) are well defined and satisfy

U(t, )Wy (0) = Ut, 0)-(IT (0) N Vo(w))

= (U(t,0) - TT () N (U(t, 0)-Vo(w)) =TT (w-1) N Vo(t) = Wi (w-1).

There remains to check the X,-measurability of the four maps. Let
g81: 820 — Gy (R?") and g2: 820 — gdz(]Rz”) be X,,-measurable maps such
that g(w) N g2(w) = {0} for all w € £2¢. Then the “sum” map 2, —
G, +d2(]R2”), w — gi(w) & g(w) is X, measurable: Proposition 1.26(ii)
proves that it is continuous on any compact subset M C £2y if g; and
g» are continuous on M, and the assertion follows from this fact and a
standard application of Lusin’s theorem. Similarly, if g; and g, satisfy the
condition dim(g;(w) N g2(w)) = d; for all w € $2p, then the map £2p —
Gy (R™), @ + gi(w) N ga(w) is X,-measurable. Keeping this in mind,
the X,,-measurability of the maps follow easily from the X,,-measurability
established in Theorem 2.37 and Theorem 5.43.

The arguments of the proof of Theorem 2.46 may be used to prove that

F8 —hmsup—lndet (LDt 0) LE (1, 0) + (L) (1, ) LY (1, w))

—>0o0

for mp-a.e. @ € £2. Remark 5.52 and the boundedness of N* (w-f) proved in
Theorem 5.43 imply then that

F B = limsup 21 Indet (L) (t, 0) L (1, 0)) . (5.40)

—>0o0
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In addition,

(L) (1, 0) = Hy (1) LE (1, 0) + Hs(0-1) L3 (1, )
= (H\(wt) + Hy(wt) N* (1)) LE (1, w)

which combined with (5.40) implies that

FB = limsup 1 /ttr (Hy(w-s) + Hs(w-s) N* (0-5)) ds .
0

t—oo [

These equalities and the Birkhoff Theorems 1.3 and 1.6 prove the statements
of (iv).

(v) With the notation of (i), define l(w) = V1 (w)® W (w) for w € £2y. The defini-
tions of Vi (w) and Vy(w) together with the symplectic character of U and the
behavior at co described by (5.39) guarantee that /(w) is a real Lagrange plane.
It is easy to deduce from (iii) that the map /: 29 — Lg is X,,-measurable and
that 7(t, w, l(w)) = (w-t,(w-t)). According to Theorem 5.49(i), there exists
a o-invariant set §£2, C $29 with my(§£2;) = 1 such that (w,l(w)) € J for
every w € §2,. Representing /(w) by [ MI(’;))] and repeating the arguments of

(iv) shows that —f = [, tr (H1(w) + H3(w) M(w)) dmy, so that

/Qtr (H3(0) (M(0) = Nt (@))) dmy = 0.

Consequently, for all 7 € R there exists £2, C £2, with my(£2,) = 1 such that
tr (Hg(a)-t)(M(a)-t) —N* (a)-t))) = 0 for every w € §2,, which is equivalent
to saying that H3(w-t) Nt (w-t) = H3(w-t) M(w-t), since Nt < M on §2, and
Hz > 0. Define £2; = N;eq$2; C §25, with mo(§2;) = 1. Then, for each w €
21, Hy(wt) Nt (wt) = H3(w-t) M(w-t) for every t € R, since they agree on
Q and are continuous in ¢. Therefore, if L(?, ) = [L‘(t’w)] =U(t,w) [MI(’;)) ],

Ly (1,0)
both L; (¢, w) and Lf (t, w) solve
L = (Hi(o1) + Hy(ot) Nt (w1)) Ly

and take value [, at r = 0, which yields L, (t,w) = Lf (t,w) foreach tr € R.
Finally, D2 ensures that the 27 x n matrix solution of (5.4) L(t, w) —L* (1, w) is
the trivial one: L(t, w) = L™ (¢, w) for every t € R. This implies that N* (w) =
M(®), Wi (w) = Wy (®) and dim(Lt(w) N L~ (w)) = dim W, (w) =
k = dimVy(w)/2 for every w € 2, as stated. The last assertion follows
immediately from the equality dim Vy(w) = 2n for all € £2y, which holds if

B =0.
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Examples 5.57 Returning to Examples 5.47, note that for the autonomous system
Z = [Z! 1]z where Nt = N~ = 1, one must have 8 = 0 (which of course is
trivial in this case): this illustrates the situation considered in Theorem 5.56(ii). The
system z' = [9 ]z satisfies N* # N, so that according to Theorem 5.56(v) it is
the case that 8 > 0 (again, it is trivial to check that § = 1). The four-dimensional
system (5.30), which is also autonomous, satisfies 0 < dim(7+ﬂl_) =1 < 2,0 that
its Lyapunov exponents are 0 and =, with 8, > 0 (in fact 8, = 1). And finally, in
the nonautonomous Example 8.44, B must be positive, since N (w) # N~ (w) for

mo-a.e. w € S2.

5.6 Principal Solutions and Exponential Dichotomy

As in the previous two sections, the hypotheses imposed in this one are described
in Theorem 5.17: conditions D1, D2, and D3 hold; or, in other words, systems (5.4)
are uniformly weakly disconjugate (both on [0, 00) and (—oo, 0]), and they possess
uniform principal solutions at oo and —oo. These principal solutions define the
Lagrange planes * (w) € D which are parameterized by the principal functions
N*(w) forallw € 2.

The results of this section are the analogues of those included in Johnson et
al. [81, 82] for disconjugate systems, and concern the presence or absence of
exponential dichotomy for (5.4) over §2. This concept was defined in Sect. 1.4.3.
The closed invariant subbundles provided by Definition 1.75 in the case of
exponential dichotomy are represented by L*. According to Proposition 1.76,
F(w) = LN ({a)} X RZ") are Lagrange planes for every w € £2, and the maps
2 — Lr, o — [*(w) are continuous. Recall also that the Lagrange planes /T ()
are composed of the initial data of the solutions of (5.4) which are bounded as
t — Fo00, respectively: see Remark 1.77.2.

In the dynamical situation described below by Theorems 5.58 and 5.59, the
Lagrange planes /T (w) take values in D, so that they can be represented in the

form [ ] for continuous matrix-valued functions M*: 2 — S, (R). Recall that

I
M)
these matrix-valued functions are the Weyl functions of (5.4) (see Definition 1.80),
and that they are continuous equilibria (see Definition 1.49) and define copies of
the base {(w, M*(0)) w € 2} C 2 x S,(R) for the flow 7, given by (1.23) (see
Sect. 1.4.7).

Before stating the results of these theorems, it is convenient to recall some
examples of families which are uniformly weakly disconjugate without having the
exponential dichotomy property: this happens in the autonomous case z' = [ - ] Y/
(with Nt = N~ = 1), as well as in the 4-dimensional system described in
Examples 5.47 (with Nt = [} 9] and N~ = [}{]); in the still simple but
nonautonomous case given in as Example 5.38 (with NT(w) = N~ (w) = 0 for
all w € £2); and in the much more complicated case described in Example 8.44,
for which the principal functions are two noncontinuous maps which agree in the
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residual set of their continuity points and are different in a set of full measure.
Conversely, there are examples having exponential dichotomy without weak discon-
jugacy, as simple as ' = [(1) _01] z; or of a more complicated nature: just take any
two-dimensional Hamiltonian system with H3 = 0 (which precludes the existence
of principal solutions) and with exponential dichotomy. Having this in mind makes

it easier to understand the statements which follow.

Theorem 5.58 Suppose that D1, D2, and D3 hold. Then, the family (5.4) has
exponential dichotomy over 2 if and only if R¥ = It(w) & I~ (w) for every
w € £2, in which case = (w) = I*(w) for every @ € 2. In other words, if and
only if N~ > N%, in which case the Weyl functions M*: 2 — S, (R) globally exist,
agree with N*, and hence satisfy M~ > M.

Proof Since N~ > N, it follows from (5.27) that N~ > N'" if and only if I~ (w) N

I (w) = {0} (i.e. if and only if R*" = [T (w) ® [~ (w)) for all w € £2. Assume that
o) | I

2 ) i| = U(t,w) [ NE () ] The argument used

to obtain (5.38) proves that, for each € £2,

this is the case. Denote, as usual, |:

lim (L7) 7' (t, ) L] (t,0) = 0,, (5.41)
—>00
which together with (5.28) and (5.29) yields
0, = lim (L)' (r.0) Ly (t.w) = (L)) (t.0) Ly (.0)) (L7) 7 (1. 0) L (1. 0)
—>00

= lim LHT(t,w) (NT(wt) = N~ (00)) L (1, 0)

In turn, this together with N~ —NT > 0 (which is ensured by Theorem 5.43) implies
that

Tim (L) (1, 0) (N~ (1) = N* (@1)"* =0,. (5.42)

—00

Using again (5.29),

—— _ -1 _
L)1 w) = (NT (@) =N (@) L) (1,0) (NT (010 =N (01),

so that (5.42) and the boundedness of N* yield
lim (7)™ (,w) = 0,. (5.43)
—>00

Repeating the previous arguments one proves that

lim (LH ' (t,w) L] (t,w) =0, and Jim LH™(t,w) =0,. (5.44)
——00 ——00
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In order to prove the existence of exponential dichotomy, as well as the equality
I*(w) = I*(w) for every w € £2, take z*+ such that the solutions U(z, w) z*+ are

bounded as r — oo respectively, and write them as zt = [ I ]cfE (w) +

Nt (@)
+
I + o |z (o) | +
[N_(w)]cz (w). Then, if |:z§:(r,w)i| =U(t,w)z™,

L) o)zl (1 w) = L) 7 (G o) L (o) ¢ () + & (),
L7t w) 77 (1, 0) = ¢ (0) + (L)) 7 (1 0) LT (1,0) & (),

which together with (5.41), (5.43), (5.44), and the choices of z*+ allow one to take
the limit as # — oo in the first equality and as + — —oo in the second one in order to
conclude that ¢ (0) = ¢] () = 0. So, z* € I*(w) and z~ € I”(w). This and the
fact that [T (w) N I~ (w) = {0} show the absence of nonzero bounded solutions,
which according to Theorem 1.78 ensures that the family (5.4) has exponential
dichotomy over £2. Note that it has also been proved that I*(w) < I*(w). Since
these are n-dimensional vector spaces, they agree.

Suppose on the other hand that the family (5.4) has exponential dichotomy over
2. To carry out the proof of the converse only requires to check that I () = I*(w)
for all € £2. To this end, consider the auxiliary perturbed families of Hamiltonian
systems

’_ Hi(w-1) Hs(w-t) T
o [Hz(w't) — Al —HlT(a)'t):| z=H(onz, e, (5.45)

Obviously, all these families satisfy D1. It is easy to check that they also satisfy
D2: if [z;:,)] satisfies (5.45) on an interval, it also solves (5.4) on the same interval.

In addition, if A < 0, then JH* < JH and H% > H,. Proposition 5.51 ensures
that (5.45) satisfies also condition D3 for A < 0, as well as the chain of inequalities

Nt (@, A2) < NT(w, 1) < NT ()
<N (@) <N (@, 1) <N (@, 1)

(5.46)

if A\, < A; < 0, where N*(w, 1) are the principal functions of the perturbed system.
Therefore, there exist the limits

N (w) = lim N¥(w, 1)
A—>0"
for every w € 2, they are finite, and they satisfy

Nf(w) <Nt (@) and N;(0)>N (o).
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It is easy to check that NofE are solutions along the flow of the Riccati equation (5.7).
Since they are globally defined, Theorem 5.48(iii) ensures that N (w) < NofE (w) <
N~ (). Therefore, N*(w) = Ngt (w) for all w € £2. In terms of Lagrange planes,
and according to Proposition 1.29(ii), this proves that

lim. Fw, ) =F(w). (5.47)

On the other hand, Theorems 1.92 and 1.95 guarantee the existence of 1o < 0 such
that (5.45) has exponential dichotomy over §2 for all A € [A¢, 0), with

Jim_ Fw, 1) = F(w) (5.48)

on Lg. Let A vary only on this interval. By (5.46), N (w,4) < N™(w, A), so that the
corresponding equality (5.27) ensures that It (w, 1) and I~ (w, 1) are supplementary.
As seen in the first step of this proof, under these conditions I*(w, 1) = I*(w, 1)
for all w € £2. This together with (5.47) and (5.48) ensures that & (0) = T (w).
In particular, It (0) @ I~ (w) = R?*, which completes the proof of the equivalence
under consideration.

Theorem 5.59 Suppose that the family of Hamiltonian systems (5.4) satisfies
D1 and has exponential dichotomy over S2. Then the following assertions are
equivalent:

(1) the family (5.4) satisfies conditions D2 and D3, i.e. it is uniformly weakly
disconjugate;

(2) there exist both Weyl functions M*:2 — S,(R); i.e. the Lagrange planes
I*(w) belong to D forall w € £2.

In this situation, the Weyl functions agree with the principal functions, and
Mt <M.

Proof The implication (1)=>(2) and the last assertions follow immediately from
Theorem 5.58. Conversely, the existence of M * ensures D3, so that only D2 has to
I I
Mt (1) M~ (w+1)
of variables. A straightforward computation taking the Riccati equation (5.7) as the

starting point proves that the transformed family of systems takes the form

-1
be proved. The relation w(t) = [ ] z(t) defines a continuous change

W= |:Hl(w't) + Hy(w-t) M (1) 0 } (5.49)
0, Hy(wt) + H3(wt) M~ (w+1)

for ® € £2. Note that, for each v € 2, the system (5.49) has exponential

dichotomy, since the change of variables is bounded; and that the initial data of

the solutions which are bounded as + — oo and as + — —oo form respectively

the Lagrange planes represented by [ ' | and [ {" |: these planes are the transformed

ones corresponding to [T (w) and [~ (a)) respectlvely This means that any solution
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which takes a value [V(v)‘ ] at any time is bounded as t — oo, while if it takes a value

[ »92 ] at any time then is bounded as t — —oo. Note also that if [3;8 ] solves (5.49),

sodo [y ] and [ 4ty ]

Suppose that there exists a nontrivial solution [28] of the system (5.4)

corresponding to a point w with z; = 0 on [0, 00), so that [z;{,)] = U(t,w) [ZZ?O)]
for all + > 0. Then there exists a point ® and a solution of the system (5.4)
corresponding to @ of the form [22% ] on R. To prove this assertion, take a sequence
(tw) 1 oo such that there exists ® = lim,_ o ®t,, and assume without loss
of generality the existence of Z) = limy— o0 Z2(fm)/||Z2(tm)]|. Then the solution

[i‘(’) ] =U(t,®) [Z(Eg] satisfies the stated property: given any ¢ € R,

(1)

an] . [0 . 1 _ 0
[iz(t)} =Uo) [zg} = I TGy Y @tm) Ul ©) [12(0)}

o o7 0
= % Tty U ) [Z2(O)} = Tl [Zz(ﬂr tm)]

so that zZ;(r) = 0.

. 0 _ I I (T) w 0
Write [iz(r)] = [M+(w_.t) M_(w_.t)] [:L(t)]' Then [ ™ ] and [ ., | solve (5.49)

and, since w;(f) = —w(¢), one has that w; (¢) and w,(#) are globally bounded. As
explained in Sect. 1.4.1 (see Proposition 1.56 and Remark 1.59.2), the exponential
dichotomy of the transformed system ensures the absence of nontrivial bounded
solutions, so that w; = w, = 0, and hence also z = 0. This proves that D2 holds
and completes the proof.

Remark 5.60 Let my be a o-ergodic measure on §2, and let k = k(my) be the
integer provided by Theorem 5.56(v). Note that if the unperturbed family (5.4)
satisfies D1, D2, and D3 and if it has exponential dichotomy over 2, then
k(my) = 0, as is implied by Theorem 5.58. The converse is not necessarily true.
For instance, in dimension 2 (i.e. with n = 1), the case k = 0 for all the o-ergodic
measures can correspond to exponential dichotomy over §2 with two spectral
intervals, as trivial examples show; or to the absence of exponential dichotomy,
as shown by the examples of disconjugate linear two-dimensional systems given
by Millions¢ikov [104] and Vinograd [147], for which the Sacker—Sell spectrum
consists of just one interval. Example 8.44 contains a detailed description of one
of these last cases. What Theorem 5.56(v) indeed guarantees is that the Lyapunov
index for the measure my is strictly positive whenever k(mg) < n, as in the above-
mentioned cases.

The analysis of the relation between the Weyl and principal functions is completed
with the following result, which shows that any family of linear Hamiltonian
systems satisfying D1, D2, and D3 is the limit of a one-parameter family of families
of systems which also satisfy these conditions and in addition have exponential
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dichotomy over £2, and that the principal functions are always the pointwise limits of
the corresponding one-parameter families of Weyl functions. Part of Theorem 5.61
was proved in [82] under the assumption of the existence of a o-ergodic measure
with total support (see Theorem 5.72). This assumption can be removed by using
Proposition 5.51, which in turn is based on the semiequilibria properties established
in Sect. 1.3.5. Recall that each of the principal functions is continuous at the points
of a residual o-invariant subset of £2: see Proposition 5.45(ii).

Theorem 5.61 Let I’ = [(i gZ] > 0 be a symmetric continuous 2n x 2n matrix-
valued function on $2 such that each minimal subset of §2 has a point w with
A(w) > 0. Consider the family

7 = (Ht)+ A 'Tw))z, we (5.50)
for A € R, and suppose that the set
T = {A € R| (5.50) satisfies D1, D2, and D3} (5.51)

is nonempty. Then,

(i) Z = (=00, Ag] for a point Ay € R. In addition, for A < A, the family (5.50)
has exponential dichotomy over §2 and the Weyl functions exist; but it does not
have exponential dichotomy for A = Ay.

Let M®(w, A) be the Weyl functions of (5.50) for A < Ao, and let N*(w, 1) be the
principal functions of (5.50) for A < Ag. Then,

(i) ME(w,A) = NE(w,A) for A < Ao and, if A\, < A1 < Ao, Mt (w,1,) <
Mt (w, A1) < Nt(w,40) <N (@, 40) <M (w0,A1) <M (@, 1)
(iii) Forevery w € 2,

Jim ME(w, 1) = N¥(w, A).
—>4

(v) If 2 is minimal and .QA:'; are the o-invariant sets of continuity points of

NE(, M), then the sets IC):&) = closurey, {(w, F(w, M) |w e .Qf;} are almost
automorphic extensions of the base §2.

Proof (i), (ii) & (iii) Let M* (w, ) and N*(w, 1) represent the Weyl and principal
functions of (5.50), if they exist. Recall that, according to Theorem 5.59, this is
the case if D1, D2, D3, and the exponential dichotomy over 2 hold, in which case
M*E(w, 1) = N¥(w, }).

Obviously, the perturbed family (5.50) satisfies D1 for all A € R. Since [ ,\, ]
solves (5.4) in an interval if and only if it solves (5.50) in the same interval,
also condition D2 holds or not simultaneously for all A € R. Suppose that
7 is nonempty, fix A; € Z, and choose any A, < A;. Since JH + A, 7 <
JH + A I", Proposition 5.51 ensures that D3 also holds for A,. This ensures that
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(—o0,A] € T for all Ay € Z: T is either a negative half-line or R. Since
(H+ AJ7'I')y, = Hyand (H + AJ™'T"), = H, — AA, Proposition 5.51 also
ensures that Nt (w,1;) < Nt (w, 1)) < N (w,4) < N (w, L) if 1o < Ay.
Hence, (5.27) implies that I (w, 1,) N I~ (w, A2) = {0} and Theorem 5.58 ensures
that the family (5.50) corresponding to A, has exponential dichotomy over 2, with
Ni(a), Az) = Mi(w, Az)

It is obvious that the supremum of Z agrees with that of Z; = [A;,00) N Z.
Whenever A belongs to the interior of 7, the functions M*(w, 1) are solutions
along the flow of

M' = —M H3(w-t)M — M H,(0+t) — H} (0t) M + Hy(w-t) — A Aw-1),

and, as checked above, M (w,1;) < M*(w,A) < M~ (w,A;). Let m be a o-
ergodic measure on §2. Since Suppm is compact (see Sect. 1.1.2), it contains
a minimal set, and hence a point where A is positive definite. In particular,
/. o Alw)dm = A for a constant matrix A > 0. According to Proposition 1.36,
[oME) (@, ) dm = 0,. So,if A € T, then 0, = B, — A A, where

B, = / (—M*H; M* — M*H, — H/M* + H,) dm,
2

and where H; and M * have arguments @ and (w, ). The boundedness of all the
involved functions for A € Z; implies the existence of a constant ¢ > 0 such
that ||B;|| < ¢ for A € Zj, so that also |AA|| < c. This precludes the upper
unboundedness of the interval. In other words, Ag = supZ; = supZ is a finite
number.

Following now the sketch of the proof of (5.47) in Theorem 5.58, one first proves
the existence of Ng: (w,40) = limy; M?*(w, A), which in particular implies
property D3 for the family (5.50) corresponding to A (i.e. A9 € Z) and hence the
existence of N*(w, A¢); and then one deduces that Ng: (w, o) = N*(w, o). This
proves (iii) as well as the chain of inequalities in (ii).

To complete the proof of (i) it is enough to check that the family (5.50)
corresponding to Ay does not have exponential dichotomy over §2. Suppose for
contradiction that the exponential dichotomy occurs. Then the robustness properties
of this property recalled in Theorems 1.92 and 1.95 provide ¢ > 0 such that
Weyl functions exist for A € [Ag, A9 + ¢&]. Therefore Theorem 5.59 proves that
[Lo, Ao + €] C Z, which contradicts the definition of Ay.

(iv) This assertion is implied by Proposition 1.53.

Remarks 5.62

1. It follows from Theorem 5.61(i), Theorem 3.50 and Remark 3.51.1 that the
rotation number with respect to any o-ergodic measure m on £2 is constant on
(—o00, Ag). Proposition 5.65 will show that in fact this constant value is zero.
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2. Suppose that the family (5.4) satisfies D1, D2, and D3 and does not have
exponential dichotomy over £2. Then, for all I" satisfying the conditions of the
previous theorem, the corresponding interval Z is (—oo, 0].

The next result of this section is a consequence of Theorems 5.58 and 5.61: The-
orem 5.63 gives information about the Sacker—Sell spectral decomposition of the
family (5.4) when this family is uniformly weakly disconjugate and does not have
exponential dichotomy over §2. See Definitions 1.82 and 1.87 and Theorem 1.84 to
recall the definitions and main properties of the Sacker—Sell spectrum and Sacker—
Sell decomposition when the base §2 is connected, which last is the case when it is
given by the hull of a particular system. And recall that Proposition 1.89 provides
extra information in the Hamiltonian case.

Theorem 5.63 Suppose that §2 is connected, that Ql, D2, and D3 hold for (5.4),
and that there exists wy € §2 with dim (Z+ (wo) NI~ (a)o)) = k > 1. Then the
Sacker-Sell spectrum X (H) consists of at most 2n—2k+ 1 intervals, and 0 € X (H).

Proof Theorem 5.58 ensures that the family (5.4) does not have exponential
dichotomy over §2, so that, by definition, 0 € X'(H). Suppose for contradiction that
XY (H) contains more than 2n — 2k + 1 intervals. Then, according to Definition 1.87
and Proposition 1.89,

E(H) = [—bd, —ad] U-.--u [—bl, —611] U [—bo,bo] U [al, bl] U-.--uU [ad,bd]

ford > n—k, where 0 < byg < a; < by < -+ < ag < by, and the corresponding
spectral decomposition is

QxR =F'® - OF; OF O F, ® - & F. (5.52)

Choose & > 0 such that the three intervals ST = (=b; — &, —a; + ¢), S° = (=by —
e.bo+e)and S~ = (a; —é, by +¢) are disjoint, and note that X (H) C STUS’US™.
Now take I" = [ " {" |, and consider the family of systems

Z = (Hwt) + W 'To))z=H(oz, we. (5.53)

Theorem 1.91(i) implies the existence of A¢ > 0 such that, if || < Ao, then
Y(H;) C S US°U S . For each of these values of A, let FT (1), F°(), and
F~ (1) be the Whitney sums of the spectral bundles of (5.53) corresponding to those
spectral intervals contained in § +, 8% and S™, respectively. Note that, in particular,
FrO)=F'® - @ Fy',F'(0) = F),and F(0) = F}, & - -- ® F{, so that the
contradiction hypothesis ensures that dim F*(0) = dim F~(0) > n — k.

According to Corollary 1.93, the maps from £2 x [—A¢, A¢] to the corresponding
Grassmannian manifolds (o, 1) — (Ft (1)), (0,1) = (F°(1)),, and (0, ) —
(F~ (X)), are continuous. Consequently, dim(F£(1)),, = dim(F*(0)), > n — k.
These two facts will be necessary to complete the proof.
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Obviously I" satisfies the hypotheses of Theorem 5.61, whose point (i) ensures
that, if —A1¢p < A < 0, then 2’ = H, (w-t) z has exponential dichotomy over §2 and
the Weyl functions M* (w, 1) exist. In particular, 0 does not belong to X (Hj). A
new application of Theorem 1.84 provides the splitting F'(1) = F' 3 L) @ F° (),
where all the semiorbits starting at F (:L (1) and F° (1) have negative and positive
characteristic exponents, respectively. That is, L*(1,0) = F¥ (1) @ F' g: ().

Let wy be the point appearing in the hypotheses of the theorem. From this point
on the proof is divided in two steps:

1. To check that gy = It (wy) N1~ (wp) is contained in (F° (0))cwp -
2. To deduce that there exists A < 0, as small as desired, such that (F%.(1)), has
dimension at least k, so that dim(F 0 A))w, = 2k.

Once this is done, a contradiction is immediately reached: as said before,
dim(F% (1)), > n — k, so that
dimR? = (dim F~(1))ay + (dim F(A))g, + (dim F* (1)),
>n—k+2k+n—k=2n.

To begin with step 1, let {zi,... z} be a basis of go; i.e. z; = [NiI:w())] X;

for a basis {xi,... x;} of Ker(N"(wg) — N~ (wp)). Define the vectors zjjE ) =
[Mi(’;o’k)]xj e F(w, 1), where [F(w,1) = (L=(1,0)),. Then, the k vec-

tors zf'(/\),...,z,'("(/\) are linearly independent, and the same is the case for
z; (A),...,z; (A). According to Theorem 5.61(iii),
lim zF (L) = I X =1z = [ x; = lim z- (). (5.54)
A—0— 7 Nf(wo) |77 N (o) |77 a>0- 7

In addition, the vector spaces

gt = ("), ...zt Q) ST (wo, A),
g W) =(z;A),....2z (1) S (wo. 1)

are k-dimensional; i.e. they belong to the (compact) Grassmann manifold G; (R>").
Choose a sequence (A,) 1 O such that there exist g = lim, o0 gT(Ay) in
Gi(R?). Since limy,—»o0 25 (Ay) = 2 for j = 1...,k and dimgy = k, it
follows from Proposition 1.26(i) that gt = g~ = go. And, since gt (1) C
(o, Aw) = (FEAn))wy @ (F?IE (Am))w,» the previously explained property of
continuous variation of subbundles ensures that

80 C ((FF(0)an ® (F(0)an) N ((F(0))ry ® (F2(0)).y)

(5.55)
= (FO(O))wo .

This completes the first step.
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Write now z"(A») = Wiks) + vi(d) € (FFA))eoy & (FL(An))ag
and z; = w; +v; € (F(0)w, ® (F°(0))s,- As was seen above, the map
A= (FY(A)w @ (F'(L))e, is continuous on [—Ag,0], and this implies the
continuity of the projections over each of the spaces: see Proposition 1.67.
Therefore, the convergence of (zj+ (Am)) to z; implies that (w;(4,,)) and (vj(A,,))
converge to w; and v; for j = 1,...,k. Recall that, by (5.54) and (5.55),
lim,;,—s 0o zjﬂ'(km) =1z € g C Fgo. Hence, the vector w; = lim, o0 Wj(Ay) =
limm_mo(zj+ (Am) — V(1)) belongs at the same time to (F + (0))w, and to (F 0(0))(1)0,
so that w; = 0. Consequently, for large enough m, the k vectors vi(A), . .., Vi(An),
which belong to (F 3_ (Am))wy» are linearly independent. This proves the assertion for
(F 3_ (Am))w,- The same argument proves it for (F%(A,,))s, as well. The proofs of
step 2 and of the theorem itself are complete.

The section is completed by analyzing the special situation in which both A, and H;

are positive semidefinite. A condition formally similar to D2 will also be considered,

namely

D2*. For all w € £ and for any nonzero solution z(t, w) = [283 ] of the
system (5.4) with z,(0, w) = 0, the vector z, (¢, @) does not vanish identically on
[0, 00).

Repeating step by step the proof of Proposition 5.18(i), one proves that condition
D2* holds if and only if there exist § > 0 and #, > 0 such that

to
/ | Ha(w-t) Ug, (t, ) x||* dt > § ||x|) (5.56)
0

for all w € 2 and x € R". And, as Remark 5.22 explains, D2* is ensured by the
existence of a point @ in each minimal set of §2 having the property that the system
x' =-H lT(a)-t) X + H, (w-t) u is null controllable, which in turn holds if H, > 0 and
each minimal set of §2 contains a point w with H(w) > 0: see Remark 6.2.1.

Proposition 5.64 Suppose that H, > 0, that Hy > 0 (i.e. that DI holds), and that
condition D2* holds. Then,

(i) if the family (5.4) has exponential dichotomy over 2 and the Weyl function M™
(resp. M~ ) is globally defined, then M™ < 0 (resp. M~ > 0).

Suppose that also condition D2 holds. Then,

(i) the family (5.4) is uniformly weakly disconjugate, it has exponential dichotomy
over §2, both Weyl functions are globally defined and agree with the principal
functions, and they satisfy M™ < 0 and M~ > 0.

(iii) For all ® € $2 and My > O, the solution M(t,w,My) of the Riccati
equation (5.7) is defined on (0, 00), and there exist constants ty > 0, B > 0
and 1 > 0, independent of (v, My), such that, for t > ty,

|M(t, 0, Mo) — M~ (w-1)|| < ne .
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(iv) For all ® € $2 and My < O, the solution M(t,w,My) of the Riccati
equation (5.7) is defined on (—o0, 0), and there exist constants ty > 0, § > 0
and 1 > 0, independent of (v, My), such that, for t > ty,

IM(t, 0, Mo) — M (01)|| < nef.

Proof

(i) Assume that M is globally defined and take x, € R”" different from 0.

Reasoning as in Remark 1.81.2, if [?8] =U(t,w) [M+)(‘2)) x ], then

—xoM* (@) x0 = /0 " (1Y@ 0 xO I + 1 @) YO ) di = 0.

so that M+ < 0. Suppose now that xo M (w) xo = 0; i.e. yo = MT (w)Xo =
0. Then the previous equality ensures that X' (1) = H;(w-)x(¢) and y'(r) =
—H[ (1) y(?) for t > 0, so that [U”l (:)"“) "0] solves (5.4) on [0, c0), which by

D2* means that xo = 0. That is, M (w) < 0, as asserted. The proof is similar
in the case of M~

(i) The uniform weak disconjugacy of the family (1.11) has been established by
Proposition 5.27 under less restrictive conditions. Therefore, the main step of
the present proof is to prove the existence of exponential dichotomy. The rest
of the assertions follow from these properties, Theorem 5.59, and point (i).

For reasons both historical and of convenience of presentation, the proof of

the exponential dichotomy is postponed to Chap. 6: see Remark 6.12. In fact,
that proof reproduces the arguments used by Johnson and Nerurkar [74, 76, 77]
in their resolution of the linear regulator problem, in which the existence of
exponential dichotomy is the key point; and it is convenient to adapt the proof
carried out there to the present more abstract setting.

(iii) & (iv) For similar reasons, these proofs are also postponed to Chap. 6: see
Remark 6.30.

5.7 Weak Disconjugacy and Rotation Number

This section provides an ergodic-theoretic characterization of the weak disconju-
gacy of linear Hamiltonian systems (5.4) under conditions D1 and D2 in terms of its
rotation number, analyzed in Chap. 2. Roughly speaking, all the systems are weakly
disconjugate on [0, co) if and only if the average rotation of their solutions is zero.
If m is a 0-ergodic measure on £2, a(m) will denote the rotation number with respect
to m. See Sect. 1.1.2 to recall the definition and main properties of the topological
support of mg, Supp my, which appears frequently in this section.

Recall that a weakly disconjugate system on [0, 0o) is nonoscillatory at +oo, as
ensured by Proposition 5.7. The first connection between weak disconjugacy and
rotation number is hence an immediate consequence of the following result.
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Proposition 5.65 Suppose that the system (5.4) is nonoscillatory at +o0o (or at
—o0) for all € $§2y, where m(§2y) > 0 for a o-ergodic measure m on §2. Then
a(m) = 0.

Proof The nonoscillation of the systems corresponding to points w € §29 means
that the functions ¢t — Arg U(t, w) are bounded as t — oo (or as t — —oo) for any
of the equivalent arguments Arg defined in Sect. 2.1.1 if a continuous branch of the
argument is taken along a given curve. Since m(£2y) > 0, the assertion follows from
Definition 2.5 and Theorem 2.4 (or Remark 2.6).

Theorem 5.66 Suppose that D1 holds and that there exists a o-ergodic measure
mo on §2 with Suppmy = 2 and a(my) = 0. Then,

(i) all the systems of the family (5.4) are nonoscillatory at +00.

(ii) Suppose that, in addition, D2 holds. Then the family of systems (5.4) is
uniformly weakly disconjugate; and, if K C Kgr is a t-invariant compact
subset with K = {(w,l(w))| w € 2} for a continuous function l: 2 — Lg,
then (w) € D forall w € $2.

(iii) Suppose that, in addition, D2 holds and the family (5.4) has exponential
dichotomy. Then the Weyl functions M*: 2 — S,(R) exist globally and satisfy
M~ >M*.

Proof

(i) Theorem 2.4 guarantees that
/ TrQ(w,l)du =0
Kr

for every normalized t-invariant measure  on g projecting onto mg, where
the function TrQ is defined by (1.19). Suppose p to be t-ergodic. The
recurrence result given by Schneiberg in [137] implies that for p-a.e. (w,l) €
KCr there is a sequence (Z,,) 1 oo such that

/m Tr Q(x (s, w, 1)) ds = 0 (5.57)
0

for each m € N. Fix one of these points (), /) and represent [ = [ ] As in
Theorem 2.4 (see (2.7)), the definition of Arg; and Theorem 1.41 1mp1y that

/ TrO(z(s, w, 1)) ds = Arg, V(t,w) — Arg, V(0,w) , (5.58)
0

where V(f,w) = [QE;Z; 5}82;] is a symplectic matrix solution of (5.4) with

[QESZ;] = [']- The equivalence of Arg, V(t,w) and Arg;(V(t,®)S) for
a constant real symplectic matrix S and relation (5.58) provide a positive
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constant p such that

‘/ TrO(z(s,w,0)) —Arg; U(t,w) | < p. (5.59)
0

As in the proof of Theorem 5.31(iii), the eigenvalues of the unitary matrix-
valued function Wy(t,w) = (Ui(t,w) — iUs(t, 0)) " (U (¢, @) + iUs(t, w))
can be written as '@ . ¢ for functions ¢y, ...¢,: R — R which are
continuous and nondecreasing in ¢. Lemma 2.29(i) and the definition of Arg;,
ensure then that (1) = (1/2) Z;:l (1) is a nondecreasing continuous branch
of Arg, U(t,w) = argdet(U,(t, w) + iUs(t, w)). Relations (5.57) and (5.59)
and the nondecreasing character of ¢(f) ensure that ¢(7) is bounded, so that the
system (5.4) corresponding to w is nonoscillatory at 4-co.

The nonoscillation at 400 of the system (5.4) has so far been checked for

mp-a.e. w € §2.Fix now one of these points wy for which in addition {wo-t | t >
0} is dense in £2. Then, Theorem 5.31(i) ensures that all the systems of §2 are
nonoscillatory at 400, which proves (i).
Since Suppmy = §2, mp-almost every positive o-semiorbit is dense in £2 (see
Proposition 1.12). Due to this property and Theorem 5.32, to prove the uniform
weak disconjugacy it suffices to check that each of the systems of the family is
weakly disconjugate on [0, 0co), which in the present conditions is equivalent
to saying that all of them are nonoscillatory at +oco: see Remark 5.20.3.
Therefore, the first assertion (ii) follows from (i).

The second property stated in (ii) follows immediately from Proposi-
tion 1.12 and Theorem 5.49(ii). The interested reader can find in [48] a direct
proof based on the nonoscillatory properties of the systems (5.4) under the
assumed hypotheses.

This assertion follows immediately from (ii) and Theorem 5.59.

The following theorem is an immediate consequence of the two previous results,
Propositions 1.12 and 5.18(iii), and Theorems 5.32 and 5.17.

Theorem 5.67 Suppose that D1 and D2 (or D2') hold, and that there exists a
o-ergodic measure my with Suppmg = §2. Then the following assertions are
equivalent:

(1) condition D3 holds,

(2) the family (5.4) is uniformly weakly disconjugate;

(3) all the systems of the family (5.4) are weakly disconjugate on [0, 00);
(4) all the systems of the family (5.4) are weakly disconjugate on (—oo, 0];
(5) Ol(”nO) =0;

(6) a(m) = 0 for each o-ergodic measure m on §2.

Note that, in particular, if D1 and D2 hold, if the family (5.4) has exponential
dichotomy over §2, and if there exists a o-ergodic measure with full support for
which the rotation number is zero, then the Weyl functions M+ and M~ are globally
defined, with M~ > M. This is a consequence of Theorems 5.67 and 5.58.
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Example 5.68 In order to look more deeply into the preceding characterizations,
note that the simultaneous presence of conditions D1, D2, and the exponential
dichotomy over 2 are compatible with strictly positive rotation number for a
measure with full support. For instance, consider the scalar Schrodinger equation
—x" + g(w-t) x = 0 with an almost periodic coefficient g, whose resolvent set is
composed by those values of A € R such that the system [3]" = [ %1 6][3]
(which satisfies D1 and D2: see Remark 5.19) does not have exponential dichotomy
over the uniquely ergodic base £2: see Sect. 1.3.2 and Corollary 3.55. It is well
known, for instance, that there exist periodic continuous functions g for which the
spectrum is given by a union [ay, b;| U [az, b] U -+ U [a,,, 00) witha; < b) < ap <
by < --+ < a,,. Corollary 3.55 ensures that the rotation number «(A) is nonnegative,
constant in the intervals of the resolvent and strictly increasing with respect to A on
the spectrum. So one example is given by the system corresponding to the equation
—x" 4+ g(wt)x = Ax for a A taken, for instance, in the interval (b, ay) of the
resolvent set. One can multiply examples by noting that for a large set of almost
periodic functions g the spectrum is a Cantor set: see e.g. Moser [108]. Therefore,
the possibilities for the choice of a A as above are practically limitless.

The characterizations provided by Theorem 5.67 together with the continuity of the
rotation number ensure the weak disconjugacy property for the limit of a suitable
sequence of families of weakly disconjugate systems. See Definition 1.32 for the
description of the L!(§2, mg) topology.

Proposition 5.69 Let my be a o-ergodic measure on §2 with Suppmg = £2.
Let (H*:2 — sp(n,R)) be a sequence of continuous matrix-valued functions
converging to a continuous function H in the L'(2,my) topology. Suppose that,
for each k € N, the following two properties hold: the family

7 = H'(w1)z, weR (5.60)

satisfies D1 and D2; and my-almost every system (5.60) is weakly disconjugate.
Then the limit family of Hamiltonian systems 7 = H(w-t) z is uniformly weakly
disconjugate in the case that D2 holds.

Proof Let o (mg) be the rotation number of the family (5.60). Proposition 5.65
ensures that a (mp) = 0, so that by Theorem 2.25,

a(mo) = Jim ak(mo) = 0.

Theorem 5.66(ii) can be used to complete the proof, since the limit family satisfies
conditions D1 and D2.

The next objective is to extend the characterizations given by Theorem 5.67 to the
disconjugate case. This extension is based on Proposition 5.29 and on the fact that
identical normality for all the systems (5.4) ensures condition D2.
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Theorem 5.70 Suppose that D1 holds, that every system of the family (5.4) is
identically normal, and that there exists a o-ergodic measure mgy on §2 with
Suppmy = $2. Then the disconjugacy of all the systems of the family is equivalent
to any of the six situations described in Theorem 5.67.

In order to check the optimality of this result, think again of Example 5.39: all the
systems of the elements of the hull of the initial system provide weakly disconjugate
and identically normal systems, but just one of them is disconjugate; and the family
is not uniformly weakly disconjugate. What fails in order to apply Theorem 5.70 is
that in the present case there is a unique o-ergodic measure my, with Suppmy # £2:
it is the measure concentrated on the o-invariant compact set {w }. In order to check
that any o-ergodic measure m is precisely this one, use the regularity of m to write
m({w}) = inf{m(V)| w; € V andV is open}; apply the Birkhoff Theorems 1.3
and 1.6 to find w, such that m(V) = lim,—co(1/1) for X (w2-s) ds; use the fact that
limy_, 00 d(wy+s, w1) = 0 to conclude that w,-s € V for large enough s; and deduce
that m(V) = 1. This proves that m({w;}) = 1, so that all these ergodic measures
agree: they are all concentrated on the same set {w,;}. Note finally that conditions
D1 and D2 hold, so that Proposition 5.65 ensures that «(rmy) = O.

The following result, which is not directly related to weak disconjugacy,
establishes an interesting property in a situation similar to the one analyzed in
Theorem 5.67: the main and fundamental difference is that the existence of a
measure my with Supp my = 2 is not assumed.

Proposition 5.71 Suppose that D1 and D2 hold, and that a(m) = 0 for each o-
ergodic measure m on §2. Given any (w, ) € Kg, there exists a sequence (t,) 1 00
(depending on (w, 1)) such that U(t,,, w)-l € D forallm € N.

Proof Let K be a minimal subset of the omega-limit set (for o) of w. Take w; € K
and /; € Kr such that (w;,/;) belongs to the omega-limit set (for 7) of (w,]).
Theorem 5.67 ensures that the family (5.4) is uniformly weakly disconjugate over
IC, and hence Theorem 5.25(ii) provides #; such that (w;, ) = ©(t;, w1, ;) € 2 %
D. Since (w», ) also belongs to the omega-limit set of (w, /), it is the case that
(w2, 1) = limy,—00 T(ty, ®, [). The assertion follows hence from the fact that D is
open in Lg: see Proposition 1.28.

The section is completed with two perturbation results. The first one is very
similar to Theorem 5.61: quite similar conclusions are obtained but with different
hypotheses. Recall once more that conditions D1, D2, and D3 for a family of linear
Hamiltonian systems imply the uniform weak disconjugacy on (—oo, 0] and (0, o]
and hence the existence of uniform principal solutions at oo.

Theorem 5.72 Consider the perturbed families of linear Hamiltonian sys-
tems (5.50) for A € R, given by a symmetric 2n X 2n matrix-valued function
I = [(i 8:] > 0 which is continuous on 2. Suppose that D1, D2, and D3 hold
for the unperturbed family (5.4), that I" satisfies the Atkinson Hypotheses 3.3,
and that there exists a o-ergodic measure my with Suppmgy = §2. Let T be defined
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by (5.51). Then all the conclusions of Theorem 5.61 hold, with the exception that the
inequalities in point (ii), except for MT(w, A1) < M~ (w, A1), are not necessarily
strict.

Proof 1t is obvious that the family (5.50) satisfies D1 for all A, and it is easy to
check that also D2 holds, since it holds for A = 0. Since JH + A’ < JH if
A < 0, Proposition 5.51 ensures that D3 also holds for these values of A. This
proves that (—oo, 0] € Z. Proposition 5.65 implies that the rotation number of (5.50)
with respect to my vanishes for each A < 0. Therefore, Theorem 3.50 ensures the
occurrence of exponential dichotomy for A < 0.

Now fix A; < supZ and repeat step by step the proof of Theorem 5.61, with
m = my. There are only two differences. The first one is that now Proposition 5.51
only ensures that NT(w,1;) < NT(w, A1) < N"(w,11) < N (w, L) if 1 < Ay,
And the second one is that the constant average matrix A = /, o A(w) dmy is positive
semidefinite, and not definite. But A is nonzero, since the Atkinson condition
precludes A = 0,, it is continuous, and Suppmy = £2; and the fact that it does
not vanish is enough to conclude that Z is bounded above. The rest of the arguments
are identical to those used in proving Proposition 5.51.

The last result of this section is another illustration of the way in which the
properties of the rotation number and the exponential dichotomy concept, and
the relation among them, determine certain dynamical properties of a family of
Hamiltonian systems. More precisely, it establishes conditions under which, even
if both Lagrange planes lie in the Maslov cycle C defined by (2.35) for some values
of w, they can be approximated by Lagrange planes of perturbed systems which
globally lie outside C. This result will be used in Chap. 8.

Theorem 5.73 Suppose that D1 holds: that there is a o-ergodic measure my on §2
with Suppmgy = §2; that the family (4.2) admits an exponential dichotomy; and that
its rotation number with respect to my is a(mg) = 0. Then there is a p > 0, such
that the family

H, (a)t) H3(0)'l‘) + el

7 =Hwnz= |:H2(a)-t) —HT (1)

i|z, we, (5.61)

has exponential dichotomy over §2 for ¢ € [0, p). Moreover, the Weyl functions
M= (w) exist globally for ¢ € (0, p), and

M (w) < M} (0) < M, (0) < M, (0)

whenever 0 < g1 < &, < p.

Proof The robustness of the exponential dichotomy provides p > 0 such that the
family (5.61), which is a perturbation of (5.4), admits an exponential dichotomy
for ¢ € (0, p): see e.g. Theorem 1.95. Therefore, its rotation number with respect
to mg is zero for all ¢ € (0, p): see Theorem 3.50 and Remark 3.51.1. Since
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H;(w-t) +el, > 0 for ¢ > 0, the perturbed family satisfy condition D2 for ¢ € [0, p]
(see Remark 5.19), and hence Theorem 5.66(ii) ensures that it is uniformly weakly
disconjugate for these values of ¢. Theorem 5.59 ensures the existence of the Weyl
functions Majf, which agree with the uniform principal functions N;IE and satisfy
M} < M_ . The comparison result given in Proposition 5.51 completes the proof.

5.8 Convergence of Sequences of Principal Functions

Consider a sequence of families of linear Hamiltonian systems
, _[H¥ (1)  Hi(wt) "

= [H’Z‘(a)-t) —(H’f)T(w-t)i| z=H(oNz, we, (5.62)
where k € N and each H*: 2 — sp(n, R) is continuous. Theorem 11 of Chapter 2 in
Coppel [34] shows that, if all these systems are disconjugate on R, if H* converges
to H uniformly on £2, and if H; > 0, then the limit systems z° = H(w-)z are
also disconjugate on R. Proposition 5.69 above establishes a similar result for the
weak disconjugacy case if a o-ergodic measure with total support exists (recall that
Hj; > 0 guarantees D2: see Remark 5.19). The question to be analyzed here is that
of the convergence of the sequences of principal functions NkjE of (5.62) to those of
the limit system, N*.

The situation is trivial if the limit family is not just uniformly weakly disconju-
gate (as are the families (5.62)) but in addition has exponential dichotomy over §2.
In this case, and by reason of the robustness of the exponential dichotomy property
described in Theorems 1.92 and 1.95, if k is large enough the principal functions NkjE
are the Weyl functions of (5.62) (see Theorem 5.58), and they converge uniformly
on £2 to the Weyl functions N* of the limit family.

Throughout this section, my will be a fixed o-ergodic measure on 2. Theo-
rem 5.74 establishes a relation between the weak convergence with respect to this
measure of the principal functions and the convergence of the sequence of the
corresponding Lyapunov indices. In fact they turn out to be equivalent if H3 > 0, in
which case the convergence is stronger: it holds in the L>(£2, mq) topology.

The matrices whose convergence is going to be analyzed will always have the
dimensions nxn. As in Sect. 4.3, to define the space L*(§2, m) of nxn matrix-valued
functions, the norm ||A||r = (tr(ATA))l/2 is chosen in M, (R), so that ||A|, =
(fg tr(AT () A(w)) dmo)l/zz see Remark 4.22. This convenient choice of this norm
does not affect the statements concerning the L? convergence, which are true for any
other (equivalent) norm on the set of matrix-valued functions: see Remark 1.33.

Recall that if A and the elements of the sequence (A) belong to L?(£2, my), then
A = limy_, 0 Ay, in the weak topology of LZ(.Q, my) if

/A(a))B(a))dmoz lim / Ar(w) B(w) dmy
Q k—o0 Jo
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for every n x n matrix-valued function B € L?(£2, mg). Once again, this convergence
is equivalent to componentwise convergence in the analogous topology for scalar
functions, and is independent of the matrix norm chosen to define the space
L*(£2, mp).

Theorem 5.74, which is formulated in terms of uniform weak disconjugacy, can
immediately be reformulated in terms of disconjugacy if H; > 0: see Remark 5.30.
To understand the scope of point (iii) it is convenient to keep in mind that A =
lim; _, 0 Ay in the weak topology of L?(£2, my) at least in the following three cases:
first, when A = limg_.o0 Ax in the Lz(.Q,mO) topology; and second and third,
when (A;) is an L?-bounded sequence of matrix-valued functions such that either
A(w) = limg o0 Ag(w) mp-a.e. or A = limy_, o Ay in measure (see Remarks 4.25).
These assertions can be found in, for example, Theorems 13.42 and 13.44 and
Corollary 13.45 of [58]. Recall also that the principal functions are bounded, and
hence they belong to L2(£2, my).

Theorem 5.74 Suppose that the families (5.62) satisfy D1, D2, and D3 for all
k € N, that the sequence (H*) converges to H uniformly on $2, and that the
limit family (5.4) also satisfies D1, D2, and D3. Denote by NkjE (w) and N*(w)
the corresponding principal functions, and by By and B the Lyapunov indices with
respect to mg of (5.62) and (5.4), respectively. Then,

(i) there exists ¢ > 0 such that |[Nt(w)|| < cforallk €e Nand w € 2.

(ii) There exist suitable subsequences (N,jf) and matrix-valued-functions Ngt €
L*(82,mo) such that limj_, oo N,jf = NSE in the weak topology of L*($2,my),
and

NT(w) < Nf (@) < Ny (0) < N (w) (5.63)

formy-a.e. w € S2.

(i) Iflimg_soo NE = N* in the weak topology, then limy_so0 B = B.

(iv) If Hy > 0 and limoo B = B, then limy,0o NE = N* in the L*(£2,mg)
topology.

Proof

(i) Define I' = [é’; 8”] and consider, for A € R, the perturbed families

Z = (HX(wt) + W' T(w1) 2, weR (5.64)
for each k € N, as well as

7 = (H(wt) + A 'To)z, weR. (5.65)
It follows from Theorem 5.61 that for each A < 0 all these families have

exponential dichotomy over £2, that limy (- M,fc (w,A) = N,fc (w) pointwise
for all k € N, with Mt (w,2) < N (w) < Ni(w) < M (w,) for all
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ke Nand A < 0, and that lim; - M* (w, 1) = N* (). As usual, M,fc(a), A)
and M* (w, 1) represent the Weyl functions for the families (5.64) and (5.65).
In turn, Theorem 1.95(ii) ensures that limy_, oo MkjE (w, ) = M*(w, L)
uniformly on £2 for each A < 0. Fix such a A < 0 and note that given ¢ > 0
there exists kg = ko(e) such that

MT(w,) —el, < Nt (0) < Ny (0) < M~ (0, ) + ¢, (5.66)

for k > ko(A) and all w € £2. These inequalities, the boundedness of the Weyl
functions on 2 (which is ensured by their continuity), Remark 1.44.2, and
the boundedness of the finite set of functions NkjE for k < ko (established in
Theorem 5.43), all taken together, imply (i).

The uniform bound for NkjE established in (i) provides a common bound
for |NZ|,. Therefore, there are subsequences (which can be supposed to
be associated to a common subsequence (j) of the sequence of indices (k))
which converge in the weak topology to certain matrix-valued functions
NSE € Lz(.Q, my): see [136], Corollary 4.3. In addition, the weak convergence
preserves the order, as explained in Remark 5.75.1 below. Therefore it follows
from (5.66) that M (w,A) — eI, < Ny (w) < Ny (0) < M~ (0, 1) + ¢l for
all ¢ > 0, and hence that Mt (w, 1) < NS' (@) < Ny (w) < M~ (w, A). Taking
now the limit as A — 0~ completes the proof of (ii).

Theorem 5.56(iv) implies that

Be=F [ 1w (Hi(@) + Hi @) NE @) dno.
@ (5.67)
B = :F/ tr (Hl((l)) + H3(CU)N:|:((U)) dmy .
2
Therefore,
Bi— B = / tr (Hf — Hy + (H5 — H3) N¢) dmo + / tr (Hy (Ny — N)) dmo,
Q2 Q2
and the result follows easily from the hypotheses of (iii) and from (i).

The first step is to prove that the limits NSE of the subsequences of (N,;E)

obtained in (ii) coincide with the principal functions N* if H3 > 0.
Relations (5.67) ensure that

By, = % /9 tr (HY (@) (Vg (@) = Nf @) ) dmo,

B

%/Qtr (H3(0) (N~ (0) = Nt (w))) dmg
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so that

j—o0

tim | (H? () (Nk; (@)~ N (a)))) dmy
= /Q tr (H3(a)) (N_(a)) — N+(a)))) dmy
= /Qtr (H3 (@) (N (0) — N (w))) dmy :

the first equality follows from the hypothesis § = limy_, oo Bx; and the second

one from the uniform boundedness of (H:],fj ) (which is deduced from the general
hypotheses of the theorem) and of (Ny;) (proved in (i), and from the weak
convergence of H3N,i_E to H_o,NgE (established in (ii)). Therefore,

/Qtr (H3(a)) (N_(a)) — No_(a)))) dmy
= /Qtr (H3(a)) (N+ (w) — NJ’ (a)))) dmy .

The inequalities (5.63) and the positivity of H3(w) yield NT(w) = NO+ (w) and
N7 (w) = N, (w) mp-a.e. and, consequently, lim; ;o N,ji_E = N* in the weak
topology. The result applies to any subsequence of the initial sequence, and the
limit is common to all subsequences, so that

klim N,ﬁt (w) = N*(w) in the weak topology of L>(£2, my) . (5.68)
—00

The functions N, ki (w) and N*(w) are bounded solutions along the flow of
the Riccati equations

M' = —MH}(w-t)M — MH{ (1) — (HY)" (w-)M + Hi(w-1),

and so (5.7), Proposition 1.36 and (5.68) imply, reasoning as before, that

lim | t((NEHANE)(w)) dmg
2

k—o00

= lim | tu((~NEHS — HYH'NE + HY)(w)) dmo
2

k—00

/ tr ((—NiHl - (Hl)TN:t + Hz)(a))) dmy
2

:/ tr ((NiH3Ni)(a))) dmy ;
2
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or, in other words, that

. 1/2
Jim ([N = |15y
— 00

N> (5.69)

On the other hand, it follows from (5.68), from the uniform boundedness of
(N ki) established in (i), and from the uniform convergence of (H%) to Hj, that

((HY)'2N) converge to Hy>N* in the weak topology. This fact together
with (5.69) ensures that the convergence holds, in fact, in the L2(82, mg)-
topology: see Remark 5.75.2 below. Finally,

—1/2 1/2
INE — N ||y < |Hy 2 (H)? = (HY?) NE||2

—1/2 1/2
+ |1H; P (HY PNE — HYNF)|2

which combined with the previous L?-convergence and, again, the uniform
convergence of (H§) to H3 and the uniform boundedness of (Nki) are sufficient
to prove that the sequences (Nki) converge to N* in the L2(£2, m)-topology.

Remarks 5.75

1. Suppose thatn = 1 and f = lim;—,  f in the weak topology. Then, if f; > 0, so
is f; that is, the set 29 = {w € 2| f(w) > 0} C £2 has full measure for my:

0 < lim / Si(w) Xa—gq, (w) dmy = / f(w) Xo—g (w)dmy <0,
k=00 Jo Q

so that my(§2 — §29) = 0. The analogous result for n x n matrix-valued functions
follows from this statement, as is now explained. Suppose that A = limy_, o Ak
in the weak topology, and assume that A > 0. Let x € Q" be a vector with
only rational components. It can immediately be checked that the sequence of
scalar nonnegative functions (x’A;x) converges to X’AX in the weak topology.
Therefore there exists a subset 2 C £2 of full m, measure such that x’A (w)x >
0 for all w € £24. The assertion follows easily from the equality mo(Nxeqr $2x) =
1 (since Q" is countable) and from the density of Q" in R”.
2. If A = limy_, o0 Ay in the weak topology and ||A || = limg— o ||Ak]l2, then

lim [|A — A3 = lim | tr(A —A)(A — A) dmy
k—o00 k—>o00 Q

Jim / (tr(A”A) + tr(A]A;) — tr(ATA;) — tr(AJA)) dmy
—>00 Jo

/ (tr(ATA) + tr(ATA) — tr(ATA) — tr(ATA)) dmo = 0,
2

so that limy— 00 Ay = A in the L*(£2, mg) topology.
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5.9 Abnormal Linear Hamiltonian Systems

The last section of this chapter is devoted to a study of the index or order of
abnormality of linear Hamiltonian systems, and of some topological and ergodic
properties of families of systems containing abnormal systems. Roughly speaking,
one of the systems of the family (5.4) is abnormal on a half-line if it has solutions
defining t-semiorbits which lie in £2 x C, where C is the vertical Maslov cycle
defined as Lr — D for D given by (5.5). Note that this situation is not compatible
with the notion of identical normality: see Definition 5.28. In fact it is not even
compatible with the less restrictive notion of disconjugacy, as explained below.

The main results of this section are Theorems 5.80 and 5.85. The first one states,
among other things, that the index of abnormality defines a semicontinuous o-
invariant function d: £2 — {0, 1, ..., n}, which is locally constant on the residual
invariant set £2. of its continuity points. Also there is always at least one point in
£2. at which d assumes its minimum value. Moreover, in the case that there exists a
o-ergodic measure whose support is all of §2, one has that £2,. actually agrees with
the set on which d assumes its minimum value. In the general case, d is constant on
each minimal subset of £2; and, in the case that d 0 (i.e. in the case of existence of
abnormal systems in the family), the maximum value is attained in certain minimal
subsets of £2.

Theorem 5.85 considers the case of d # 0 when in addition the family admits an
exponential dichotomy. Among other properties, it is shown that at least one of the
Lagrange planes must intersect the Maslov cycle C. In fact, for any minimal subset
M C £2, one of the t-invariant subsets {(w, [T (0))| ® € M}, {(0,I"(®))| w €
M} of £2 x Ly is contained in 2 x C.

A final consequence of the previous results consists of a list of properties
formulated in terms of the different functions introduced in the previous analysis
which turn out to be equivalent to property D2, which, as already mentioned, it is
also equivalent to the uniform null controllability of the family of linear control
systems X' = H;(w-t) X + H3(w-r) u: see Remark 5.22.

To begin with the analysis, define

AT (w) = {zo eR™ | U(t,w)zo = [zz(gw)] for ¢ in a positive half—line} ,
A (w) = {zo eR” | U(t,w)zg = [zz(gw)] for ¢ in a negative half—line} ,

Aw) = {zo € R | U(t,0) 2o = [ 1,00 | Tort € R}.

Proposition 5.76

(i) The sets At (w), A~ (w) and A(w) are vector subspaces of R*".

(i) Let w € 52 be fixed and let I, = [(1),:’] be the vertical Lagrange plane. Then
U(t,w) - A(w) C I, foranyt € R, and there exist real values a™ (w) and a™ (w)
such that U(t,w) - AT (w) C I, forallt > a(w) and U(t,w) - A~ (w) < I, for
all t < a~ (w). In particular, the dimension of each of the three vector spaces
is at most n.
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(iii) Forallt € Rand w € $2,

Ut,w) - AT (@) = AT (w1) and U(t,0)- Aw) = A(w-).

Proof

(i) This assertion is almost trivial.
(i) The assertions are obvious for A(w). To analyze the case of AT (w), let
{z1,...,2,} be oneif its bases, and choose a time a € R large enough to ensure

that U(t,w)z; = [z;zt)] .Ut w)z, = [zgno(,)] for all # > a. This proves

thatm < nand U(t,w) - A1 (w) C I, forall t > a. The proof is analogous for
A ().

(i) fU(tw)z = [\, ] forallt € [a* (), 00), then U(s, w1) U(t.w)z = U(s +
tw)z = [, ] forall s € [a*(w) —t,00). This ensures that U(t, ») -
At (w) € AT (w+t) forall t € R and w € R. Consequently, AT (w) =
U(t,w) U(—t,wt) - AT (wt) € U(t, w) - AT (w), so that the equality is proved
for the case of A™. The other two cases are handled analogously.

Now define the functions
dt(w) =dimAT(w), d (w) =dimA (w), and d(w) = dimA(w),
which take values in {0, ..., n} and satisfy

d(w) < min(d" (w),d” (w)). (5.70)

Definition 5.77 The system (5.4) corresponding to w € §2 is abnormal at +o0 if
d*(w) > 0. The integer d* () is the index or order of abnormality of the system at
+o0.

The system (5.4) is abnormal at —oo if d~(w) > 0. The integer d— (w) is the
index or order of abnormality of the system at —oo.

The system (5.4) is abnormal if d(w) > 0. The integer d(w) is the index or order
of abnormality of the system.

Examples 5.78 The simplest example of an abnormal system is the autonomous one
Z = [J9] 2z withd® = d~ = d = 1. In fact it is an easy exercise to construct
autonomous 2n-dimensional Hamiltonian systems with d* = d~ = d = k for any
k € {0,1,...,n}. By defining a(f) as a nonincreasing continuous function taking
the value 1 on (—o0,0] and 0 on [1, 00), one obtains the nonautonomous system
7 = [8“5;)] z, for which d* = d = 0 and d~ = 1. Note that here only the initial
system is considered, not the family of systems over the hull. In this regard, see

Example 5.81 below.

Remark 5.79 Note that abnormality at oo (resp. at —oo) of the system corre-
sponding to a point @ € £2 means that this system has at least one nontrivial
solution of the form [z;z,)] in a positive half-line [a, co) (resp. in a negative half-
line (—oo0, a]). Hence, on the one hand, the system cannot be disconjugate: see
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Definition 5.1. And, on the other hand, the system corresponding to the point w-a
admits a solution of the form [w,?(,)] on [0, co) (resp. on (—oo, 0]), so that is not
weakly disconjugate on [0, 00) (resp. on (—oo, 0]: see Definition 5.2. Therefore, if
D1 holds and one of the systems of the family is abnormal at 4+-co or at —oo, then the
family is not uniformly weakly disconjugate: see Definition 5.14 and Theorem 5.17.
However, it is still possible to develop a theory of principal solutions in this context:
the reader is referred to Reid [127] and Kratz [92] for a detailed study of abnormal
systems, and to Reid [124] and gepitka and Simon Hilscher [141, 142] for the
definition and analysis of the corresponding principal solutions.

Consider now the whole family (5.4). Define

dij = ma;?(di(w), djf = m'g d*(w),
w€E we

(5.71)
dy = maxd(w), d, = mind(w),
WES WESR
and note that (5.70) yields
dn, <min(d},d,;) and dy < min(d);,d;,). (5.72)

The next result collects some fundamental properties of these functions and
quantities. Recall that O(w) and A(w) represent the omega and alpha-limit sets
of the point w for the base flow (§2, 7).

Theorem 5.80

(1) The functions dT, d=, and d are o-invariant on 2.

(i) Ifw € O(wy), then d™ (wy) < d(w); and if w € A(wy), then d~ (wp) < d(w).

(iii) If my is a o-ergodic measure on 2, then the functions d*, d=, and d are
constant and coincide for my-a.e. w € 2.

@iv) If M C 2 is a minimal set, then the functions dT, d~ and d are constant and
coincide on M. Hence, if §2 is minimal, then dE = d,jnE =dy =d,.

) dij = dy, and there exists a minimal subset M C $2 such that d(®w) =
d*(w) = dy for each w € M.

(vi) The function d is upper semicontinuous, and the set of its continuity points
is an open residual invariant subset §2. C §2 on which d is locally constant,
with

{we 2]dw) =dn} C 2.

(vii) If there exists a point wy € §2 with dense positive and negative semiorbits,
then d,, = djf = d(wy) = d*(wo). In particular, wy € £2..

(viii) If mg is a o-ergodic measure on §2 with Suppmgy = 2, then dnﬂf =d,, and
there exists a subset 2, € 2 with m(§2,) = 1 such that d(0) = d*(w) = d,,
for all € $21. In particular, my(§2.) = 1. In addition, in this case, 2, =
{w e 2] dw) = dn}.
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Proof

®
(ii)

(iii)

@v)

)

(vi)
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These properties follow immediately from Proposition 5.76(iii), since U (z, )
is a homeomorphism for all (f,w) € R x £2.
Only the property that d*(wy) < d(w) if @ € O(wy) will be proved: the
second inequality can be checked in a completely analogous way.

The inequality is obvious if ™ (wg) = 0. So, assume that d* (wy) = do >
0. Since w € O(wy), there is a sequence (£,,) T oo with @ = lim,—c0 Wo-1,.
It follows from (i) that (A™ (wo-t,,)) is a sequence in the compact manifold
Ga,(R?"), so that it has a suitable convergent subsequence, say (A+(a)0-tj)),
with limit A. Clearly, it is enough to prove that A € A(w). Recall that
At(wot)) = U(tjwp) - At (wp). Now choose z € A and write it as
z = limj, 0 U(1j, o) - 2; with z; € AT () (see Proposition 1.26(i)). Then

jo0 P e ‘ (0

since t + #; > at(wp) for large enough j, with a*(wy) provided by
Proposition 5.76(ii). This means that z € A(w) and completes the proof.
The constant character of d*, d~, and d with respect to the o-ergodic measure
my follows from the o-invariance proved in (i) (see Theorem 1.6). In addition,
the Poincaré Recurrence Theorem (see e.g. Theorem 1 of Chapter 1 of [35])
provides a subset 2y with m(£2p) = 1 such that w € O(w) N A(w) for all
® € £2¢. It follows from (5.70) and point (ii) above that d(w) < d*(w) <
d(w) <d™ (w) < d(w) if v € §2¢, and this completes the proof of (iii).

Note that M = A(w) = O(w) for all € M. Therefore, using again (5.70)
and (ii), one has that d(w;) < d*(w) < d(w) < d*(w2) < d(w;) for w,
and w; in M, and hence these three functions agree on M. The last statement
of (iv) follows immediately from this fact and from the definitions (5.71).
Let wy € £2 be such that d¥(wg) = d;. It follows from (5.72) and (ii) that
dy < d; = dT(wy) < d(w) < dy forall w € O(wy), and hence, dy; = d;;.
Analogously, if d™ (wo) = d,;, thendy < d,; = d (wo) < d(w) =< dy for all
o € A(wp), and consequently d;;, = dy. That is, dﬂj; = dy, as asserted. Take
now a minimal subset M C O(wy) in order to conclude from the previous
inequalities and (iv) that d(w) = d* (w) = dy forall w € M.

The first goal is to check that lim,,— o d(w,;) < d(wy) whenever this limit
exists for a sequence (w,,) with limit wy. Since 0 < d(w,,) < n and d takes
only integer values, there is no loss of generality in assuming that d(w,,) =
do for each m € N. Now take a subsequence (w;) such that the sequence
(A(w))) converges to a vector space Ay in the compact manifold G, (R?").
The continuity of the flow 74, on £2 x G4, (R*") implies that U(t, wp) - Ag =
limj o0 U(t, wj)- A(w)) for any ¢ € R. Since U(t, wj)-A(w;) € I, foranyt € R
(see Proposition 5.76(ii)), then also the limit is contained in [,. This means
that Ag € A(wp) and hence that dy < d(wp). The upper semicontinuity of d
is proved.
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Let 2, € 2 be the residual set of continuity points of the (upper
semicontinuous) function d, and take w € £2.. Since d takes only integer
values, there is an open neighborhood of @ in 2, on which d is constant.
This implies that §2, is open and that d is locally constant on it. In addition,
property (i) and the continuity of the base flow ensure that §2, is invariant. It
remains to check that each w € £ with d(w) = d,, is a continuity point. Let
(wx) be a sequence with limit w. It follows from the definition of d,, and the
upper semicontinuity of d that

dy <liminfd(wy) < limsupd(wy) < d(w) = d,,
k—o00 k—00

and hence that there exists limy—oo d(wy) = d(w). The proof of (vi) is
complete.
(vii) Take such a point wy. Since O(wy) = Alwy) = £2, it follows

from (5.70), (5.72), and (ii) that d,, < d¥ < d*(wp) < d(w) < d*(w) for all
o € 2. Taking @ = w, shows that d(wy) = d* (wy), and taking the infimum
for w € £2 in this chain of inequalities shows that d,,, = dnﬂf = d*(wy). The
last assertion follows from (vi).

(viii) If Suppm = £2, then there exists a subset £2; € £ with m(£2,) = 1
such that the positive and negative semiorbit of each w; € £2; is dense in
£2: see Proposition 1.12. Therefore, the first assertions in (viii) follow from
(vii). Concerning the set 2. note, first, that according to (vi), £2; € £2,
so that m(§2.) = 1; and, second, that if w; € £2; and w € 2. then there
exists (f,) 1 oo with lim,,—c0 w1+, = w, and hence the invariance of d
proved in (i) together with (vii) ensures that d(w) = lim,—c d(wt,,) =

Example 5.81 Consider again the nonautonomous system described in Exam-
ples 5.78. The hull of the initial coefficient matrix is

o= {[o el e o2 )

where ay(f) = a(t + s) and a:R — R is a nonincreasing continuous function
agreeing with 1 at (—oo, 0] and with 0 at [1, co). Identify £2 with [—o0, o0] by
associating the indices —oo to [§ 9], s to [J4{" ] and oo to [§}]. Then d(s) = 0
for s € (—o0, 0], while d(—o0) = 1. That is, d is a discontinuous function, and
it reaches its maximum on the minimal set {—oo} C £2. Note that {oo} is also
minimal, which does not, however, imply that the maximum of d is reached on it.
Note that the set £2. of continuity points agree with the set at which d attains its
minimum. The computation of d* for the different values of s is also a very easy

exercise.
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Note that Theorem 5.80(iv) and Proposition 5.76(iii) mean that the sets
A={(w,z)|ze Mandz e A(w)},
At ={(w.7)|ze Mandz e AT (w)},

define t-invariant closed vector subbundles over each minimal subset M C £2: see
Definitions 1.63 and Remark 1.64.

The next goal is to study the number of independent solutions of the system (5.4)
corresponding to a given point @ € §2 which take the form [zz(?’w)] in a positive or
negative half-line or in the full line, and with initial data in a given subspace / € L.
To this end, define

d¥:Kp —{0,....n}, (0.0~ dim(AT(w)N 1),
d:Kr —-{0,...,n}, (o,])dim(A(w)NI).

The following lemma provides a relation between d(w) and d(w,[), as well as
between d* (w) and d* (., [).
Lemma 5.82 Let w € $2 be fixed.

() Ifk €10, ...,dT(w)}, then there exists | € Ly such that d¥ (w,]) = k.
(1) Ifk €{0,...,d (w)}, then there exists | € Ly such thatd™ (w,l) = k.
(iii) Ifk €{0,...,d(w)}, then there exists | € Ly such that d(w,l) = k.

Proof

(i) The statement is trivial if d¥(w) = 0, so assume that d*(w) > 0. First,
take k € {0,...,d"(w)} with 0 < k < n. According to Proposition 5.76(ii),

0
Ulat(w),0) - AT(w) = { [zoé] e, [z"+(“’)] ) for linearly independent vec-
2
1 at (@) n .
tors z,,...,2Z, € R" Let {wy,...,w,—x} be a basis of the subspace
orthogonal to(zé, e z’z‘) in R”. It can immediately be checked that [T =

0« 0 W - Wi
zé Z’zc 0 - 0

] belongs to Lg. In addition, if z € U(at(w), )+ AT (w), then
z = [ 2], which ensures that I* N (U(a* (), ©) - A™ (@) = ([‘1] [‘i] ).

&)
Define now | = U~!(a™ (w), w)-IT and note that dim(/ N A*(w)) = dim(IT N
(U(a™ (@), ) - AT(w))) = k. This proves the result when k # 0, n. For k = 0,
take [ = U™ (a*(w), ) [  ]: and for k = n (which requires one to assume that
d*(w) = n), take | = U™ (@™ (@), ) [ 1" ].
(i1) & (iii))  The proof of (ii) is completely analogous to that of (i), and the proof of
(iii) is simpler: just substitute a* (w) by 0 in the previous argument.

In particular, the maxima of d and d * on kg coincide with the maxima of d and d*
on §2, as defined on (5.71). In other words,

_ + _ +
dy = (wl.%?;(ckd(w’l) and dy = (w%zenfckd (w,1]).

Note also that the minimum of d on K is 0.
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Proposition 5.83

(i) The functions dT, d—, and d are t-invariant on K.

(i) If (w,1) € O(wy, ly), then dT (wy, ly) < d(w, 1); and if (w,1) € A(wy, ly), then
d~(wo, lp) <d(w,]).

(iii) If u is a t-ergodic measure on K, then the functions d¥, d—, and d are
constant and coincide for jt-a.e. (w,1) € Kg.

(iv) If K € Kg is a minimal set, then the functions d™, d—, and d are constant and
coincide on K.

) dﬂjj = dy, and there exists a minimal subset K C Ky such that d(w,l) =
d*(w,1) = dy for each (»,1) € K.

(vi) The function d is upper semicontinuous on Kg. In addition, for each k €
{0,...,duy}, the sets

Ly = {(a),l) € Kr | dw,l) > k}

are closed, and Ly — Ly+1 = {(w,]) € Kr | d(w, ) = k} is an open residual
and dense set in Ly, which coincides with the set of continuity points of d in

Ly.
Proof

(i) In the case of d*, (i) is due to the equality AT (w-) N (U(t,w)l) =
U(t,w)-(AT(w) N I), which in turn follows from Proposition 5.76(iii) since
U(t, w) defines a homeomorphism for all (¢, w) € R x £2. The other two cases
are handled analogously.

(i) Suppose that lim,,—, oo (@o-t,,, U(ty, w9)-ly) = (w,l) in Ly and, in addi-
tion, lim,,—s00 AT (w0 ty) N (U(tw, wo)-lg) = A in gd+(w0,l)(R2”). Then A C
lim;,— 00 U(t, wo)-lp = [ and, as seen in the proof of Theorem 5.80(ii), A C
lim,,—s00 A1 (wo-t,,) € AT (w). From here property (ii) follows in the first case,
and the second case is treated analogously.

(ii1), (iv) & (v)  The proofs of these properties are identical to the corresponding
ones of Theorem 5.80.

(vi) The proof of the upper semicontinuity of d on Kr can be carried out by
arguing as in the proof of Theorem 5.80(vi), using the idea explained in the above
point (ii). This upper semicontinuity property ensures that £; is closed, so that
Ly — Ly is open in Ly.

The hardest point in this proof is to prove the density of £, — L1, which is
postponed for now. For the time being, assume that the density holds, and note that
hence the residual set of continuity points of d in £; (which is r-invariant due to (i))
is necessarily contained in £y — L. It remains to check that each (w, [) € £ with
d(w,l) = kis a continuity point of d. Let ((w, [,n)) be a sequence in £; with limit



324 5 Weak Disconjugacy for Linear Hamiltonian Systems

(w, ). It follows from the definition of £; and the upper semicontinuity of d that

k < liminfd(wy, l,) < limsupd(wy,l,) < d(w,]) =k,
m—>00 m—00

and hence that there exists lim; . d(w,l;) = k, as asserted.
In order to check the density of £; — Li+1, note that the case k = n is trivial

and assume therefore that 0 < k < n. As a first case take a point (w, ) € Kr with
d . . o0 z’;+2 e z‘11+1 gl

(w,)) = k+ 1. Write [ = [z; I I R 0}, where 2 < k4 2 <
d <nandz, # 0foreachj = k +2,...,n, and where the vectors z}, ..., z{ are
linearly independent. (Note that the number of 0’s is 1 in the upper n x n matrix if
k = 0, and 0O in the lower one if d = n.) Choose a Vectori”f+1 # 0 satisfying the
following two conditions: it belongs to the subspace orthogonal to that generated by
{z),..., zg} — {z/§+1} (which has dimension n —d + 1); and it does not belong to the
subspace generated by {z‘lH'l, ..., Z}} (note that this means nothing if d = n).

ThenZ:t! cannot be a linear combination of the vectors z: 2, ..., z!. To prove
this, note that obviously nothing must be checked if k = n — 1. Assume for
contradiction that 7{“ = Z;;k 42 AjZ;, and suppose for simplicity that Axi> #
0. Then / can be represented by 01 k0+1311 zz Z(lt:l 107:|, so that ’i’f‘“ is
2) e ATV L

orthogonal to z/§+1. That is, 7{“ belongs to the orthogonal space to (z;, o ,zg ),
which is given by (sz'l, ...,z ) since [ is a Lagrange plane. But this contradicts
the choice of Z}, which proves the assertion.

Note that the previous property has a fundamental consequence: if one chooses

T 0 R 2 gl
e > 0 such that the matrix [ | "3, ., 7 ' | represents a Lagrange
Z) oz 2 0

plane [, then d(w,l;) = k; or, in other words, [, belongs to the set Ly — L1,
whose density is being analyzed.
Note now that the column vectors of the above matrix are isotropic one to another
for any value of ¢, so that it represents a Lagrange plane in the case that its rank is 7.
k41 k41
And note also that [Slzk‘rl i| and |:gzzk‘:1 i| are linearly independent if &; # &;. This
ZZ Z2
implies that there exist at most finitely many values of ¢ for which dim/;, < n. In
other words: except for these values of ¢, [, is indeed a Lagrange plane. Therefore,
in the case d(w,l) = k + 1, it is possible to take a sequence (g,) | 0 avoiding
those values, so that (I, ) is a sequence in £y — L4 with limit /. This completes
the analysis in the case when d(w,[) = k + 1.
Consider now the case d(w,l) = k + 2. The same changes as before can be
carried out first for the column & + 2, in order to obtain a family of Lagrange planes

| = [0 cen 0 g'iflc'i_z lec+3 z? Z‘11+1 cen Z’111|
e = |1 k+1 k+2  k+3 d
ZZ e Z2 Z2 Z2 oo Z2 0 e 0
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contained in L4 — Li+2 except for at most finitely many values of e. Now, for each
one of the “good” values of ¢, it is possible to construct a family

/ . [ [| nfilﬁ'l gfz‘lf_l_z ZII+3 cen z? Z[IH'I cen Z’ll }
ne — 1 k+1 k+2 k43 d
Z2 oo Z2 Z2 Z2 e Z2 0 e 0

of Lagrange planes in £y — Ly+;. In fact all the values of (1, ¢) € (0, 1] x (0, 1] are
valid (once’i”f+2 andi"ﬁ'1 have been fixed) except those of the form (), &;) or (n;, €)
for finitely many indexes j and i. So once again it is possible to choose a sequence
(Uy.e) in Ly — L1 with limit . Clearly the argument can be extended to the cases
d(w,l) = k+ 3,...,n, which proves the asserted density of the set £; — L4 in
L. The proof of point (vi) is complete.

Assume now that the family (5.4) has exponential dichotomy over £2, and let £2 x
R?> = LT @ L~ be the corresponding decomposition, with associated Lagrange
planes I*(w) = {z| (w,z) € L*}. Define the functions

d¥:2 - 1{0,....n}, o dw,F () =dn(A)NIF ()
and note that

dt (®) + d~ (») = dim(A(w) N T (®)) + dim(A(w) N [ (©))

(5.73)
< dim(A(w) N (T (0) & " (0))) = d(o).

Define also the quantities
s s s P RS
dy max d~(w) and d, min d~(w)

Proposition 5.84 Suppose that the family (5.4) has exponential dichotomy over 2,
and define the functions d* as above.

(i) The functions d* are o-invariant, and hence they are mq-a.e. constant with
respect to any o -ergodic measure mgy on §2.

(ii) The functions d* are upper semicontinuous, and the sets of their continuity
points are open residual invariant subsets Qci C 2 on which df; are locally
constant, with

weR|d* () =dr}cQF.

In particular, the functions d¥ are constant on any minimal set M C 2.

(iii) There exist minimal sets M* such that d* (w) = Zlﬁ forall w € M*.

(iv) If there exists a point wy € $§2 with dense orbit, then d*(wy) = 2135
In particular, wg is a continuity point for dt andd .

(v) Ifmy is a o-ergodic measure on §2 with Suppmy = §2, then there exist subsets
Qli C 2 with m(.Qli) = 1 such that d*(w) = d,jn: for all v € .Qli
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In particular, the sets .Qci of (ii) have full measure my. In addition, .Qci =
(o € 2]d*(w) =dE}.

Proof

(i) This property follows immediately from Proposition 5.76(iii) and the equalities

I*(w-1) = U(t, w)-I* () (see Proposition 1.76).

(ii) The upper semicontinuity of d* follows from the continuity of the map
I*:2 — Kg (see again Proposition 1.76) and the upper semicontinuity of
d (see Proposition 5.83(vi)). With this first property in mind, the subsequent
assertions can be checked with the argument used in the proof of Proposi-
tion 5.80(vi). The constant character of d* on any minimal set is a trivial
consequence of the upper semicontinuity.

(iii) Choose wy with ZZ; = d*(w), and let M C O(wy) be a minimal set. Take
€ M. The o-invariance and upper semicontinuity of d* established in (i)
and (ii) ensure that d;; = d*(wp) < d*(w) < d;;, which proves (iii) for d*.
An analogous proof can be given for d.

(iv) Take such a point wy. Then, as above, 2135 < d* (wp) < d* (w) forall w € £2.
Taking the infimum for w € £2 shows that El,f = d¥ (wo).

(v) See the proof of Proposition 5.80(viii).

The next result relates 4+ with d. In particular, it shows that, if the point w belongs
to O(w)UA(w), then the number of independent solutions of the system (5.4) taking
the form [zz(?’w) ] can be calculated in terms of the number of independent solutions
of this form which are bounded as t — £o00; or, equivalently, whose initial data lie
in the subspaces I* (w) and [~ (w).

Theorem 5.85 Suppose that the family (5.4) has exponential dichotomy over §2.
() Ifw € O(w) U A(w), then d(w) = dt(») + d~(v).

@) If mpisao- ergodtc measure, then there are constants d* R d*, and dy, with
dx = d +d*, and such that d* () = djE and d(w) = dx« for my-a.e. w € §2.

(i) If my is a o-ergodic measure with Suppmy = §2, then the equalities of (ii)
hold in the open residual invariant set {w € §2 | d(w) = dy}, which has full
measure my. In addition,

{we]dw) =d}={we2]|dw) =d}={we|dw) =d,}.
and dy = d,,, df = df, d; = d.
(iv) If M C £2 is a minimal set, then the equalities of (ii) hold for all w € M.
Proof

(i) The result is obviously true if d(w) = 0, since (5.73) holds. Assume that
dw) = d > 0, and set k = dim(A(a)) N [T (w)) > 0. Take d linearly
independent vectorsz; = [0, |.....zs = [,3, ] in A(w) such that z; € [T (w)
forj=1,...,k; decompose z; = z +z; with z elF(w)forj=1,....d,
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(ii)

(iii)

@iv)
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and note that z; = 0 forj = 1,....k Let U(t,w)z; = [zz_j?t,w)] be the
corresponding solutions for j = 1,...,k. Assume that ® € O(w), take a
sequence (t,,) 1 oo with lim,,_, ®-t,, = w, and note that there is no loss
of generality in assuming the existence of vectorsZy, ..., Zy such that

@Z,....7Z) = lim Uty o) (z1,....2z) in Gi(R™),
m—>00

(2}(4,_1, .. ,E:i) = mlingo U(lm, a)) . (Zk.H, e, Zn) in gd_k(]RZ") .
Proposition 1.96(ii) of [85] ensures that

(Zl, .. ,’Zk) € gk(l+(w)) and (Zk-l—la o ,7d> € Gy (" (w)).

Repeating now the argument of Proposition 5.80(ii) shows that U(t, w)Z; is of
the form [zz (tw)] foreachj = 1,....d, so thatz; € A(w) forj = 1,....d.

Therefore, d (w) = d(w, l+(a))) > kand d- (@) = d.I"(®) = d—k
This fact and relation (5.73) imply that d(w) = d* (@) + d~ (), as asserted.
The proof of the case w € A(w) is analogous.

Theorem 5.80(iii) and Proposition 5.84(i) ensure that the functions d, £1+, and
d~ are constant for mp-a.e. w € £2. In addition, the Poincaré Recurrence
Theorem (see again [35]) provides a subset £2yp with m(£29) = 1 such that
w € O(w) N A(w) for all w € £2y. These facts and (i) prove (ii).

Points (vi) and (viii) of Theorem 5.80 and (ii) and (v) of Proposition 5.84 imply
that the equalities in (ii) hold for the set £2. N .QQL N 27, that is, in the set

{weR|dw)=d,)N{weR|dw)=d,}N{weR|dw)=d,},

which has full measure m. Note that, in particular, d« = d,,, d = Zl+ and
d_ = d In addition, if d(®w) = d,, then it follows from (5.73) that d+ (w)
and d~ () also attain their minima at w, so that the three sets agree.

Theorem 5.80(iv) and Proposition 5.84(ii) show that the functions d, Ei+, and
d~ are constant on M. On the other hand, the minimality property implies that
M = O(w) for any w € M. These facts and (i) prove the statement of (iv).

Corollary 5.86 The following assertions are equivalent:

(1)

2
3)
“)
5)
(6)

the family of linear Hamiltonian systems (5.4) satisfies condition D2 of
Sect. 5.2;

dt(w) =0 forallw € 2;

d (w) =0forallw € £2;

d* (w) = 0 for each @ which belongs to any minimal subset of $2;

d™ (w) = 0 for each w which belongs to any minimal subset of §2;

d(w) = 0 for each o which belongs to any minimal subset of §2.



328 5 Weak Disconjugacy for Linear Hamiltonian Systems

And, if the family (5.4) has exponential dichotomy over §2, then each of the following
assertions is equivalent to the previous ones:

@) é+ (w) = 0 for each w which belongs to any minimal subset of 2.
8) d~(w) = 0 for each w which belongs to any minimal subset of 2.

Proof (1)¢(2) Assume the existence of w € 2 with d*(w) = 0. Then the system
corresponding to the point w has at least one nontrivial solution of the form [ z;},) ] in
a positive half-line [a, 00), so that the the system corresponding to the point w-(—a)
has at least one nontrivial solution of the form [z;z,) ] in [0, 00). Therefore, D2 does
not hold. This shows that (1) implies (2). The converse assertion is trivial.

(1)< (3) According to Proposition 5.18, conditions D2 and D2’ are equivalent.
Therefore it is enough to repeat the previous argument but in any negative half-line.

(2)<(4) It is obvious that (2) implies (4). Conversely, assume for contradiction
that (2) does not hold, so that d; > 0. Theorem 5.80(v) ensures the existence
of a minimal set M C £ such that d*(0w) = d; > 0 for all o € M, which
precludes (4).

(4)<(5)<(6) These equivalences follow from Theorem 5.80(iv).

(6)<>(7)<>(8) Theorem 5.85(iv) ensures that the (nonnegative) functions d, d+
and d~ are constant on any minimal set M C £2, and that d = d* + d~. The
remaining equivalences follow easily from these facts.

Remarks 5.87

1. The previous corollary and Theorem 5.80(iv) prove that the non-validity of
condition D2 is equivalent to the existence of at least one minimal subset M C 2
such that d(w) > 0 for all w € M.

2. If, in addition, the family (5.4) has exponential dichotomy over §2, then at least
one of the restricted (constant) functions Ei+| m Or d~| w 1s strictly positive;
or in other words, at least one of the associated Lagrange planes /1 (w) or
I”(w) lies on the vertical Maslov cycle C for all w € M. This is proved by
Theorem 5.85(1)&(iv).

3. Recall also that, as stated in Remark 5.22, the non-validity of condition D2 is
equivalent to the absence of uniform null controllability for the family (5.9).

Example 5.88 Example 8.48, in Chap. 8, provides a case of a minimal base with
exponential dichotomy and d* = d~ = 1, so that Corollary 5.86 precludes D2: that
is, the family (5.4) is not uniformly weakly disconjugate.



Chapter 6
Nonautonomous Control Theory: Linear
Regulator Problem and the Kalman-Bucy Filter

The remaining three chapters of the book consider certain problems concerning
linear control systems with time-varying coefficients which give rise in a natural
way to nonautonomous linear Hamiltonian differential systems. The methods
developed in the preceding chapters will be systematically used to study these
control problems.

Chapter 6 begins with a discussion of the feedback stabilization problem for
a nonautonomous linear control system: the stabilizing feedback control will be
determined by formulating and solving an infinite horizon linear regulator problem.
The minimizing pairs for the corresponding functional will be in a one-to-one
correspondence with certain solutions of a nonautonomous linear Hamiltonian
system constructed from the minimization problem. Previous results concerning
the occurrence of exponential dichotomy and the properties of the rotation number
for nonautonomous linear Hamiltonian systems will be used. In proving the results
regarding the feedback stabilization problem, only some basic elements of control
theory will be required; these have been for the most part introduced in Chap. 3. The
Pontryagin Maximum Principle will be just referred to for purposes of motivation;
and also the Riccati equation associated to the linear Hamiltonian system, which
enjoys an important role in many treatments of the linear regulator problem, will
make just a brief appearance here.

The linear regulator on a finite time interval (i.e. in the case of a finite horizon)
has been thoroughly studied and is treated in standard texts; e.g. [S1, 143]. The case
of an infinite horizon is not quite as standard, but a substantial theory is available
in this situation, as well: see e.g. [25] and [13]. In this chapter the treatment of
the linear regulator problem in the infinite horizon case differs from some others in
its systematic application of the theory of exponential dichotomies and the theory
of the rotation number, and in its relative deemphasis of the role of the Riccati
equation. In fact it will be seen that the stable dichotomy projection gives rise to
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330 6 Linear Regulator Problem and the Kalman—Bucy Filter

a negative definite solution of the Riccati equation, which in addition possesses
important regularity properties.

The first section of this chapter presents a preliminary heuristic approach to the
linear regulator problem and to the feedback stabilization problem. This approach
motivates the formulation of the rigorous results proved in the second section.
In Sect. 6.3, the regularity properties of the matrix-valued function solving the
feedback stabilization problem are analyzed. These results reproduce basically those
of Johnson and Nerurkar [76, 77], extending some of them.

The second goal of this chapter is to study the Kalman-Bucy filter in a
nonautonomous setting. This filter is a standard method used in control engineering
for measuring the mean-square error between the output signal of a linear plant
subject to a stochastic disturbance, and the estimated output signal. The concepts of
exponential dichotomy and rotation number for linear Hamiltonian systems can (and
will) be used to produce direct proofs of some basic results concerning the Kalman—
Bucy filter. This is not surprising, in view of the previous use of these concepts in
the study of the linear regulator problem, and in view of the well-known fact that
the Kalman—Bucy filter is “dual” to that problem. Thus the asymptotic limit and the
stability properties of the error covariance matrix can be quickly deduced. Also the
Hurwitz property at 400 of the error propagation system follows immediately from
the corresponding fact for the feedback system which is determined by the linear
regulator problem. This discussion was first carried out in Johnson and Nufiez [83]
and is the content of Sect. 6.4, which begins with a precise description of the
problem to be dealt with.

During the present chapter ( , ) and || - || denote the Euclidean inner product
and the Euclidean norm on R? for any value of d, and the same symbol || - ||
represents the usual operator norm associated to the Euclidean norm on any matrix
space Myx,,(R): see Remark 1.24.2. And, if M € S,(R) (the set of n x n-
symmetric matrices) is positive semidefinite, M'/? will represent its unique positive
semidefinite square root: see Proposition 1.19. In particular, M'/? > 0if M > 0.

6.1 An Heuristic Approach

Let x € R" be a state vector, u € R™ be a control vector, and let A: R — M,,x,(R)
and B:R — M,x,,(R) be bounded and uniformly continuous functions. The
feedback stabilization problem for the linear control system

X =A(H)x+ B(®)u 6.1)

consists in determining a linear time-varying control u = K(f) x such that x = 0 is
an exponentially asymptotically stable solution for the feedback system

X = (A(1) + BOK(1)) x. (6.2)
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It will be seen that a feedback matrix K:R — M,,x,(R) can be determined
by solving an appropriate linear regulator problem, which is now described. Let
G:R — S,(R) and R: R — S,,(R) be bounded and uniformly continuous functions.
Suppose that G > 0 and R > prl, for a fixed pg > 0 which does not depend
ont € R. An infinite horizon linear regulator problem is posed by introducing a
quadratic functional Z, of the following form for each x, € R”": given a locally
integrable control function u: [0,00) — R™, if x:[0,00) — R” is the solution
of (6.1) for that u satisfying x(0) = xo, then

Tu(xw = /0 (x(1). GO x(D) + (u(D). R@) u(0))) dr. 6.3)

The reader is referred to Sect. 8.1 of Chap. 8 for an explanation of the meaning of the
quantity Zy, (x, u) when the pair (x, u) solves the control problem (6.1). In this case,
one speaks of an infinite horizon because the upper limit in the integral defining
Iy, is oo rather than a finite number #,. Each pair (x,u) as above gives rise to an
extended nonnegative real number Zy,(x,u) € [0, c0]. The problem is solved by
establishing conditions on A, B, G, and R which ensure the existence of at least one
control function u for which the corresponding pair (X, u) satisfies Zy, (X, n) < oo,
and for which

I, (x,u) < Iy (x,u)

for every other choice of pair (x, u) as above. Actually, the objective is to minimize
Iy, foreach xo € R" and also to arrange that the minimizing control u = uy, depend
linearly on xy.

There are two distinct approaches to determining a minimizing pair (X,u) of
the functional Zy, given by (6.3) subject to the control problem given by (6.1) and
x(0) = x¢. One of them involves an appeal to the Pontryagin Maximum Principle.
The other one makes uses of the Dynamic Programming Principle of Bellman [51,
143]. The approach which proceeds via the Pontryagin Maximum Principle will
now be illustrated.

Lety € R” be a new variable, which is viewed as conjugate to the state variable
X. Introduce the linear Hamiltonian function

HGxy,w) = {y.X) — 5 (% GO ) + (. RO w)

(6.4)
1
= . AOx+B(Ow) — 5 ({x,G(®)x) + (w,R(1) ) ,
and write the corresponding Hamilton equations
0
x = a—H (t,x,y,u)
y 6.5)

/

oH
Y=o (t,x,y,u)
X
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for each control u. According to the Pontryagin Maximum Principle, if the control
u gives rise to a minimizing pair (X, u) for Zy,, then there is a motion y(z) such that,
for each ¢,

oH  _ _
u (t.x,y,0) =0 (6.6)

(or more primitively, H(f,X,y,u) = maxyerm H(f,X,y,u)), and such that
(x(7),y(¢),u(?)) solves (6.5). This principle can be formulated and proved in an
ample context which includes the linear regulator problem as a very special case;
see e.g. [51] and [25]. However, this fact will not be used: instead, (6.6) will be
regarded as an Ansatz which leads to the solution of the linear regulator problem.

Proceeding with this in mind, one obtains easily from (6.4) and (6.6) that (y, u)
must satisfy the so-called feedback rule

u=R"'(B(1)y. (6.7)
Substituting (6.7) into (6.4), equations (6.5) yield

. [AG BOR (0B ()
‘ _[Ga) —AT(1) }Z’ ©®

where z = [?] e R,

The problem now is to find a solution z(r) = [;22] of (6.8) with x(0) = xo
such that, if u is determined from y by the feedback rule (6.7), then the pair (X, u)
minimizes Zy,. It turns out that, when standard controllability hypotheses hold, such
a solution can be determined; moreover, its existence is due to the fact that, when
these controllability hypotheses hold, the system (6.8) has exponential dichotomy.

Such controllability conditions will be discussed in due course. For now, just
assume their validity and take for granted that (6.8) has exponential dichotomy. Let
Q be the projection corresponding to the exponential dichotomy of (6.8) described in
Definition 1.54. Let U(¢) be the fundamental matrix solution of (6.8) with U(0) =
L, and set Q(t) = U(t) QU™!() for each t € R. Then the range of Q(¢), is a
real Lagrange plane (see the proof of Proposition 1.56 and Remark 1.77.1), and the
controllability conditions will also guarantee that it belongs to the set D defined
by (1.21): it can be represented by the matrix [ Mi’(r) ] for all € R. More precisely,
the parameterizing n x n matrix-valued function M () is a real symmetric negative
definite matrix for each 7 € R.

Now, the conditions X(0) = x¢ and y(0) = M (0) x( determine a solution Z() =
[;Eg ] of (6.8) with §(1) = Mt () X(7). Since Z(0) lies in the image of Q, this solution
decays exponentially as t — oo. Set

K@) =R ') BT (1) M(1) (6.9)
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and u(f) = K(¢) x(¢). It will turn out that Zy (X, u) < oco. By applying a standard
completing-the-square argument, it can be proved that (X, u) is the unique pair which
minimizes Zy,.

The reasoning just carried out is valid for all xo € R”, and u depends linearly on
Xo. Thus, the linear regulator problem is solved. And, in addition, the exponential
x(t
A ((t>)i(t>
stable solution of (6.2). Thus the matrix-valued function K solves the feedback

stabilization problem.

It is important to emphasize that the key step in this solution of the linear
regulator problem and of the feedback stabilization problem is the proof that the
linear Hamiltonian system (6.8) has exponential dichotomy, with some additional
properties regarding the Lagrange plane of the initial data of the bounded solutions
on [0, 00). The proof requires the above-mentioned controllability hypotheses. It is
carried out using the methods of Chap. 3; in particular Theorem 3.50, which relates
the presence of exponential dichotomy to the constancy of the rotation number in a
parameter interval for an Atkinson problem. It is also useful to keep in mind that
the (Weyl) matrix-valued function M+t < 0 which provides the solution of the
linear regulator problem is in fact the negative of the positive definite matrix-valued
function obtained by applying the Bellman Dynamic Programming Principle (for
instance, in the text [51]).

decay as t — oo of z(t) = [ ] implies that x = 0 is an exponentially

6.2 The Rigorous Proofs

This section contains the rigorous solution of the infinite horizon linear regulator
problem and the feedback stabilization problem. As usual, (£2, o) represents a real
continuous flow on a compact metric space, and w-t = o(t, ). This flow may
exhibit all ranges of recurrent behavior, from almost periodic (in particular periodic),
to uniformly recurrent, to topologically transitive with positive topological entropy.
Of course, £2 may contain wandering orbits, as well.

Let the functions A: 2 — M,x,(R), B: 2 — M,xx(R), G: 2 — S,(R), and
R: 2 — S,,(R) be continuous, with G > 0 and R > 0, so in particular there exists
pr > 0 such that R(w) > pgl, for all ® € £2. Introduce the family of control
systems

x' = A(wt)x + B(w)u, weR. (6.10)

Also, for each w € £2 and each x, € R”, introduce the functional

Tyo(xw =5 /0 (x(0). Gl@D) x(1) + (w(D). R@Du@)dr.  (6.11)
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evaluated on those pairs (x, u): [0, c0) — R” x R” such that: u is a locally integrable
control function; and x is the solution of the system (6.10) corresponding to u and
o with x(0) = x¢. Note that 7 ,, takes values in [0, 0o].

As explained in Sect. 1.3.2, if the coefficients A, B, G, and R of (6.1) and (6.3)
are bounded and uniformly continuous matrix-valued functions on R, then a
construction of Bebutov type (taking as starting point (A, B, G, R)) gives rise to
a compact metric space §2 and w-dependent families of problems (6.10) and
functionals (6.11), in which the initial ones are included: more precisely, there exists
a point @y € §2 for which (6.10) and (6.11) coincide with (6.1) and (6.3). Roughly
speaking, the goal of this section is to solve the linear regulator problem uniformly
on 2. Remark 6.16 explains in what cases the solution works for the initial system
and functional if £2 is defined as the hull of its coefficients.

Definition 6.1 System (6.10) is null controllable with unconstrained controls if for
each xg € R” there exist a time #y > 0 and an integrable control function u: [0, 7y] —
R™ such that the solution x(¢) with x(0) = X satisfies x(#p) = 0. In this case, the
control u steers X to 0 in time t.

In the rest of this book, the term null controllable will be used as synonymous with
null controllable with unconstrained controls.

Remarks 6.2

1. Fix @ € £2. Let Ux(t, w) be the fundamental matrix solution of X' = A(w-f) x
with Uy (0, w) = I,. It is well known (see Conti [32], Theorem 7.2.2) that the
null controllability of (6.10) for a fixed w is equivalent to the condition

/ - Uy (t, w) B(w-t) BT (w-t) (U (t,w) dt > 0. (6.12)
0

In turn, (6.12) is clearly equivalent to the following condition: the only solution
y(t) of y = —AT(w-t) y with BT (w-1) y(t) = 0 for all ¢ > 0 is the trivial one.
2. Fix w € §2, assume that (6.12) holds, and choose 7y such that

o
O(ty, w) = / Uy ' (t, w) B(w1) B (w-t) (U; ") (1, 0) dt > 0.
0
It is easy to check that the continuous control u,,: [0, #,] — R™ given by

u, (1) = —BT(0-)(U; ") (t.0) 07" (o, ) Xo

steers Xg to 0 in time fy. Note also that [0,7] x O — R", (t,w) + u,(f) is a
jointly continuous map if Q(#y, w) > O forallw € O C 2.

3. It follows easily from the first remark and from the continuity of B that if B(w-?)
is nonsingular for some ¢ > 0, then the system (6.10) is null controllable.

4. Assume that B(w-f) is positive semidefinite for all > 0. Then B(w-#) x = 0 if and
only if B'/?(w-f) x = 0: see Proposition 1.19(i). This fact and the characterization
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given in the first remark guarantee that system (6.10) is null controllable if and
only if X' = A(w-t) x + B'/?(w-t) u has this property.

5. The previous remarks 1 and 4 can be used to prove also the equivalence of the
null controllability of the three families of systems x' = A(w-f) X + B(w-)u,
X = A(w) X + (B(wt) B (w-1))"/?u, and X' = A(w-1) X + B(w-1) BT (w-1) u.

6. It is obvious that the systems (6.10) is null controllable if and only if x' =
A(w-t)x — B(w-t) u is. This and the previous property imply that, if B(w-r) is
negative semidefinite for all + > 0, then the null controllability of (6.10) is
equivalent to that of X' = A(w-1) X + (=B)/*(w-H) u.

The controllability conditions which will be imposed in the following discussion are
now described. Recall that G > 0, so that G!/2 exists and is positive semidefinite.

C1. Each minimal subset of 2 contains at least one point @; such that the system
X = A(w;t)x + B(w;-H)u

is null controllable.
C2. Each minimal subset of §2 contains at least one point w, such that the system

X = —AT(w1)x + G * (w2t u

is null controllable.

Note that, according to Remarks 6.2.3, 6.2.4 and 6.2.6, the matrix G'/? in condition
C2 can be replaced by G and by —G, and that the condition is automatically satisfied
if G > 0.

Theorem 6.4 below asserts that conditions like C1 or C2 suffice to ensure the
so-called uniform null controllability of a family of control systems over §2. This
property was proved by Johnson and Nerurkar in [74, 75]. Theorem 6.4 and several
results derived from it in this chapter and the following ones illustrate this general
observation: the dynamical properties of the compact metric flow (§2,0) can be
related to the control-theoretic properties of the various control systems (6.10) (see
e.g. [29, 77]).

Definition 6.3 The family of control systems (6.10) is uniformly null controllable
if there exist numbers 7y > 0 and § > 0 such that for all w € 2,

/0 Uy (1, ®) B(w-t) BT (w-1) (U (t, ) dt > §1,. (6.13)
0

Theorem 6.4 Condition C1 holds if and only if the family (6.10) is uniformly null
controllable.

Proof The details of the proof are given in Lemma 3.6: just repeat its arguments
step by step, with B, (U;")7, and 0 taking the roles there played by I', U, and A
respectively, and working on [0, 0o) instead of the real line.
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Remarks 6.5

1. According to Remark 6.2.2, the uniform null controllability implies in particular
the existence of a common time 7, such that, for all x, € R” and w € §2 there is
a continuous control which steers X to 0 in time ¢y, a control which in addition
varies continuously with respectto w € 2.

2. Theorem 6.4 shows that in fact, the uniform null controllability is equivalent to
the apparently less restrictive condition of null controllability of each individual
system of the family.

Consider now the family of linear Hamiltonian systems

,_ [Alw1) Blw) R (w0) B (w1)]
[G(m) AT (1) }Z_H(“’”Z’ weR, (614

where z = [’y‘] € R?". As usual, U(t, w) represents the fundamental matrix solution
of (6.14) with U(0, w) = I»,. Consider also the perturbed family

7 = (H(on) + A ' T(w))z, we, (6.15)
for
_ | G 0,
rer= [ 0, B(w)R () Br(w)} - (6.16)

The next goal is to check that the controllability conditions C1 and C2 imply
that the perturbation I" satisfies the Atkinson Hypotheses 3.3 with respect to the
family (6.14). The following auxiliary result will also be needed in Chap. 7.

Lemma 6.6 The system (6.10) is null controllable if and only if
X = A(w1t) X+ B(wt) R (w1) BT (w-f)u (6.17)

is null controllable.

Proof Let y(f) solve y = —A” (w-t) y. Assume that
B(wt) R (wt) BT (w-1) y(1) = 0

for t > 0. Then y’ (t)B(w-t) R~ (w-t) BT (w-t) y(t) = 0 for t > 0, which implies
that R~'/2(w-t) BT (w-1) y(f) = 0 and hence that B” (w-f) y(f) = 0 for all 1 > 0.
The converse assertion is trivial. The characterization of null controllability given in
Remark 6.2.1 implies the asserted equivalence.
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Proposition 6.7 Suppose that conditions C1 and C2 hold, and let I' be defined
by (6.16). Then there exist ty > 0 and § > 0 such that for all w € S2,

fo
/ | C(wt) Ut,w)z||* dt > 8 ||z||> wheneverz € R*". (6.18)
0

In particular, the family (6.15) satisfies the Atkinson Hypotheses 3.3.
Proof Note that (6.18) is true if and only if

4]
/ UT(t,w) I'*(wt) U(t,w) dt > § Iy,
0

and that (U7 (¢, ) is the fundamental matrix solution of the system z’ =
—H" (w-t) z with initial value I,,; that is, (6.18) is true if and only if the family
of control systems

7 =—-H (0)z+ I'wt)w (6.19)

for o € 2, where w = [y!] € R, is uniformly null controllable: see
Definition 6.3. According to Theorem 6.4, it is enough to check that (6.19) is null
controllable for all w € £2.

So, fix w € 2 and zy = [;g] € R?". Theorem 6.4 and Remark 6.2.4 guarantee
that, since condition C2 holds, the system

X = —AT(w1)x 4 G(wt)u (6.20)

is null controllable. Therefore, there exist a time #; and an integrable control
u;:[0,#;] — R” such that the solution x(¢) of (6.20) for u = wu; with x(0) = x,
satisfies X(¢;) = 0. Condition C1 and Theorem 6.4 also provide a time 7, > 0 and a
integrable control uy: [0, ;] — R” such that the solution y(#) of (6.17) foru = u,
with y(0) = y satisfies y(z;) = 0.

Take typ = max(#, ;) and set u; (1) = 0 forz € [, tp] if t; < tp and w,(¢) = 0 for
t € [, ty] if & < ty. Write out the control system (6.19) as

X = —AT(w-)x + G(wt) (=y + W),
Y = A(w1)y + B(wt) R (1) BT (w-1) (—x + W»),

and set wi (1) = u; (1) + §(1) and wa(1) = wy(1) + X(1). Then, if w = [Wi].Z = [}]

is the solution of (6.19) satisfying Z(0) = zo = |3} | and Z(1p) = 0. Thus w steers
Zy to zero in time #y: (6.19) is null controllable. This completes the proof.
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Remarks 6.8

1. Definition 6.3, Theorem 6.4, Proposition 5.18, and Remark 6.2.5, taken together,
prove the equivalence of: (1) condition C1; (2) the uniform null controllability
of the family (6.10); (3) the uniform null controllability of the family (6.17); and
(4) the fact that the Hamiltonian family (6.14) satisfies condition D2 of Sect. 5.2.
Corollary 5.86 and Remarks 5.87 describe more equivalent situations.

2. Similarly, condition C2 (which, as said before, can be formulated for G instead
of for G'/?) is equivalent to the fact that the family (6.14) satisfies condition D2*
of Sect. 5.6: just use the characterizations provided by Theorem 6.4 and (5.56).

The results of Chap. 5 play an important role in the following auxiliary result
concerning the Atkinson problem (6.15). The notion of uniform weak disconjugacy
is given in Chap. 5, Sect. 5.2. According to Theorem 5.17, since BR7IBT > 0, itis
equivalent to speak of uniform weak disconjugacy on [0, o0) and of uniform weak
disconjugacy on (—oo, 0], which justifies mentioning neither half-line.

Lemma 6.9 Suppose that condition C1 holds. Then,

(i) the families of Hamiltonian systems (6.15) corresponding to A € (—1,1) are
uniformly weakly disconjugate.

(ii) Let m be a o-ergodic measure on §2, and let o (1) be the rotation number of
the family (6.15) with respect to m. Then ar(A) = 0if A € (—1, 1).

Proof

(1) Givenw € §2 and t; > 0, consider the boundary value problem

7 = (H(wt) + A ')z,
x(0) =x(1) =0,

6.21)

where z = [?] and I' is defined by (6.16). The first and main step consists in
checking that this problem has only the null solution for any fixed A € (—1, 1)
if #; is sufficiently large.

To this end, let z(f) = [;22] be a solution of (6.21). Then,

0= {x(1). Y0} ~ (x0).y0) = [ 5 (x5 )

= /tl ((Ax+ (1—=A)BR'BTy,y) + (x, A + 1) Gx — A"y)) dt.
0
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The arguments w-t of A, B, R and G and ¢ of x and y have been suppressed. It
follows that

(A +1) /O 1G> (1) x(1)|| dt
-1 / IR ) B @) y (O P .
0

SinceA —1 <0 <A+ 1and R > 0, one has G(w-1)x(t) = 0 = B (w1) y(¥)
forall ¢ € [0, ], and hence

y = -AN(on)y@);

ie. y(1) = (U;HT(1, w) y(0). The null controllability of all the systems of the
family (6.10) ensured by condition C1 and Theorem 6.4 provide #, > 0 and
8 > 0 (independent of the choice of w) such that, if #; > #o,

/ " Uy (1, ) B(w-t) BT (0-1) (U (1, ) dt > 81,
0

Consequently y(0) = 0. Since x(0) = 0 and the system is linear, it follows that
z(f) = 0 for all r € R. Thus, (6.21) has only the trivial solution if #; > #;, as
asserted.
Definition 5.14 ensures then that the family of Hamiltonian systems (6.15)
is uniformly weakly disconjugate if A € (—1, 1), which proves (i).
(ii) Once (i) is proved, (ii) follows from Propositions 5.7 and 5.65.

Remark 6.10 The uniform weak disconjugacy of the unperturbed family (6.14)
(which was proved in the previous result under condition Cl1), the fact that it
satisfies property D1 of Sect. 5.2, and Theorem 5.17, taken together, ensure that
the family (6.14) satisfies condition D2 (this is already known: see Remark 6.8.1)
and condition D3. These facts will be used in the following theorem.

Recall Definition 1.80 of the continuous Weyl functions M*: 2 — S, (R) associ-
ated to the stable subbundles at Foo in the case of exponential dichotomy of a given
family of real linear Hamiltonian systems.

Theorem 6.11 Suppose that conditions C1 and C2 hold. Then the family of linear
Hamiltonian systems (6.14) has exponential dichotomy over 2. In addition, both
Weyl functions M+ and M~ are globally defined, and they satisfy M* < 0 and
M~ > 0.

Proof If £2 is the topological support of a o-ergodic measure m, then Lemma 6.9,
Proposition 6.7, and Theorem 3.50 ensure that the family (6.14) has exponential
dichotomy over £2. In the general case, some additional reasoning is required.
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First, fix a minimal subset M of 2 and note that it agrees with the topological
support of any o-ergodic measure on §2 concentrated on it: see Sect. 1.1.2. As seen
above, the family (6.14) has exponential dichotomy over M.

It follows from the previous property and Theorem 1.78 that if a point @ belongs
to a minimal subset of £2, the corresponding system (6.14) admits no nonzero
bounded solution. The following step is to find conditions sufficient to guarantee that
the same holds for all the elements of §2, so that a new application of Theorem 1.78
leads to the desired conclusion. Fix @ € £2 and suppose for contradiction that

z(t) = [;8] is a nonzero bounded solution of (6.14). Let —00 < s1 < t; < 00. As

seen in Remark 1.81.2,

(x(). ¥(1)) — (x(s1). ¥(s1)) = / IG"xI + [RVBTy Py di. (6.22)

51

where the arguments w- and ¢ are omitted. Then there exist two sequences (si) |
—oo and (#) 1 oo such that z(sy) — 0 and z(#x) — 0 as k — oc. For, suppose for
contradiction that there is no such sequence (sx). Consider the negative semiorbit in
2 x R?" of the point (w, z(0)) with respect to the linear skew-product flow defined
by the family (6.14). The alpha-limit set A(w,z(0)) is compact and invariant in
2 xR and does not intersect the zero section of £2 x R?" Consequently, each wy
in the projection A(w) of A(w, z(0)) onto £2 has the property that equation (6.14)
admits a nonzero bounded solution. However, the compact invariant set A(w) C £2
contains a minimal set. A contradiction has been reached, and the conclusion is that
the desired sequence (sy) exists. The existence of the sequence (#) is proved in a
similar way, working now with the omega-limit set of the initial data.
As a consequence of this property and (6.22),

0= klggo ((x(t), y(t)) — (X(s%), y(s1)))
_ / T (1620 x O + [R (00 B (@0 yOI?) dr.

This means that G(w-t)x(f) = 0 = BT (w-t)y(¢) for all + € R, and hence that
X (t) = A(wt) x(¢) and y'(f) = —AT (w-1) y(#). Conditions C2 and C1, Theorem 6.4,
and the characterization of null controllability in Remark 6.2.1 ensure that x() = 0
and y(tf) = 0 for all r € R. In other words, (6.14) admits no nonzero bounded
solution for each w € £2, as asserted. This completes the proof of the existence of
exponential dichotomy over 2.

Now, condition C1 ensures that family (6.14) satisfies condition D2 and D3 (see
Remark 6.10), which allows one to apply Theorem 5.58 in order to check the global
existence of the Weyl functions M (w) representing the Lagrange planes /% (w) of
the initial data of the solutions bounded as t — =£00. And condition C2 ensures
that also D2* holds (see Remark 6.8.2), which according to Proposition 5.64(i)
guarantees that M+ < 0 and M~ > 0. The proof is complete.
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Remark 6.12 The proof of Proposition 5.64(ii) can be carried out by repeating the
previous steps. In more detail: use conditions D2 and D2* and their respective
characterizations (5.8) and (5.56) to prove that the families X' = Hi(w-)x +
Hi(wH)u and X' = —H[(wt)x + Hi(w-7)u are uniformly null controllable;

define I' = [H%(:’) H30 (”w)]; adapt the proof of Proposition 6.7 to check that z =

(H(a)-t) + )U_IF(a)-t)) z satisfies the Atkinson Hypotheses 3.3; and reason as in
Lemma 6.9 and Theorem 6.11 to obtain the conclusion. See also the proof of
Theorem 6.24 for a similar line of reasoning.

The following arguments are devoted to showing how, under conditions C1 and C2,
Theorem 6.11 and its proof allow one to construct a stabilizing feedback control
matrix K with good properties, as well as to solve the linear regulator problem.
Thus the main goals of this section will be achieved.

Theorem 6.13 Suppose that conditions C1 and C2 hold. There exists a continuous
matrix-valued function M™: Q2 — S,(R) with M™ < 0 such that if K: 2 —
M,xn(R) is the continuous matrix-valued function defined by

K(®) = R (0) BT (w) Mt (w), (6.23)

then x = 0 is a uniformly exponentially asymptotically stable solution of each of the
equations of the family

X = (A(o1) + B K(w)x, wef. (6.24)

More precisely, the family (6.24) is of uniform Hurwitz type at +00: there exist
constants ) and B, independent of w, such that any solution x(t) of (6.24) satisfies

Ix(0)|| < Fe P |x(0)|| for t>0. (6.25)

Proof Conditions C1 and C2 and Theorem 6.11 ensure the exponential dichotomy
of the family of Hamiltonian systems (6.14) over §2, as well as the existence of
the continuous Weyl function M representing the Lagrange planes /1 (w), with
MT < 0.In particular, for all xo € R”", the solution z(f) of (6.14) with initial

) ® .
Z)xo] € It (w) takes the form z(7) = [M+(Xw.t)x(r)] and satisfies

lz(t)|| < neP"||zo| fort > 0, where the constants 7 > 0 and 8 > 0 are independent
of w: see Definition 1.75.

Note also that, if K(w) is defined by (6.23), then the first component x(¢) of z(z)
is the solution of (6.24) with x(0) = x¢. The exponential decay of ||z(7)|| to zero
ensures the same property for x(¢). In fact, for all v € £2 and ¢ > 0,

datum zg = [ e

IX@)II < 7e™" fIxoll

for 7 = 1 (1 + [M*(0)[1*)'2.
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Therefore, for each w € 2, the matrix K(w) defined by (6.23) solves the feedback
stabilization problem for the linear control system (6.10) under hypotheses C1 and
C2. Note that K is continuous in w; this property is referred to as conservation of
recurrence. More regularity properties of K will be discussed in Sect. 6.3.

As stated before, the next step consists in solving the linear regulator problem
for each w € £2 and xo € R". Given xg € R" and w € £2, let X(¢) be the solution
of (6.24) with x(0) = xo, where K is given by (6.23), and define

i(r) = R (wt) B (wt) M (w-1) X(t) = K(w-1) X(?) , (6.26)

which is continuous on R. Then (6.25) and the boundedness of B, G, R, and K
ensure that 7y, ,,(X,u) < oo. It will be checked below that (x, u) is the sought-for
minimizing pair. A preliminary technical result is required.

Lemma 6.14 Suppose that condition C2 holds. Assume that Ly, ,,(X,u) < oo for
a pair (x,u):[0,00) — R™ x R" which solves (6.10), where u is integrable and
x(0) = xo, and where Iy, ., is given by (6.11). Then,
uel?(0,00),R™)  and lim x(r) = 0. (6.27)
—>00

Proof The first assertion is immediate, since R > prl, > 0 and G > 0. To check
the second one, suppose for contradiction that there exist (f;) 1 oo and ¢ > 0 such
that |x(#)|| = &x > e. Define wy = w-ty, Xx () = X(¢t + ) /e, u(t) = u(t + t)/ex
and x; = x¢(0) = x()/&x, and note that x;(¢) solves the initial value problem

x' = A(wit) x + B(wp-t) w(1)
X(O) = Xk .

Define also
1 o0
Zi= 5 [ (0. G %) + o). Riw wo) a
= 2%/% /0°°<(X(t + 1), G(wr-t) X(t + 1))
+ (u( + ). R(ox-t) u(t + tk))) dt
= 2%31% /:o (x(2), G(w-1) x(2)) + (u(r), R(w-1)u(r))) dr.

Then lim,, oo Iy = 0, since Z,, x,(X,u) < oo and g > & > 0. This implies that
limg— 00 fooo lux(#)||?> dt = 0, since R > 0 and G > 0. Let #y > 0 satisfy

/ ' UL (t,w) G(w-t) Us(t,w) dt > 0 (6.28)
0
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for all w € §2. The existence of this time 7y is ensured by the uniform null control-
lability of the family X' = —A”(w-t) x + G"/?*(w-t) u, which in turn is guaranteed
by condition C2 and by Theorem 6.4. The condition lim;—;co for" lw®|>dt = 0
implies the existence of a suitable subsequence (u;) such that lim;_, o u;(#) = 0 for
Lebesgue-a.e. 1 € [0, 1] (see e.g. Theorem 3.12 of [128]).

Assume without loss of generality that w; — ws« and X; — X, with ||x«|| = 1.1t
is easy to check that, for ¢ € [0, 1p], the limit lim; o0 Xj(f) = X4 (1) = Ua(t, 04) X«
is the solution of

X = A(ws1) X,

x(0) = X4 .

This means that

fo

/ i XLUX(t, s) G(wsot) Ua(t, wx) Xu dt = / (X4 (1), G(ws 1) X4 (1))
0 0

< lim /0 " (300). Gl 30) + (e (). R(@et) we(0))) d
< jin 2% =0,

which contradicts (6.28) and hence completes the proof.
Consequently, the search for a minimizing pair can be limited to those pairs (x, u)
satisfying (6.27).

It is known (see e.g. Sect. 1.3.5) that the function M (w) of Theorem 6.13 is a
solution along the flow of the Riccati equation

M =-MBR'B"TM-—MA—-A"M+ G,

where A, B, G, and R have argument w-¢. The usual completing-the-square trick will
be applied to this equation. Thus let (x, u): [0, c0) — R" x R™ solve (6.10), where
u is a locally integrable control and x(0) = x(. Some manipulation leads to

M @0 %0, x(0) =~ [RV? (ut) ~ R BT Mx(0)
+ (x(@). Gx()) + (u(2). Ru(7)))
at the points 7 at which x/(¢) exist (i.e. at Lebesgue-a.e. t € [0, c0)), where B, G,

R, and M have argument w-t. So, if a pair (x,u) with the preceding conditions
satisfies (6.27), then integrating the above relation gives

20 (%, 1) = /oo IR (u(t) — R™'B"M*x(0)) > di — (M (@) %o, %o) -
0
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Hence Zy,(x,u) > —(1/2)(M* () xo, Xo), which is nonnegative, since M+ < 0,
and the minimum value is attained if and only if (6.26) holds. This leads to:

Theorem 6.15 Suppose that conditions C1 and C2 hold, and let M™ be the matrix-
valued function of Theorem 6.13. For each w € $2 and xo € R”, let X(t) be the
solution of (6.24) with x(0) = x¢, where K is given by (6.23), and define u(t) =
K(w-t) X(?). Then (X, u) is the unique pair which minimizes the functional Iy, ., given
by (6.11), and Ly, ,,(X,u) = —(1/2){M* (w) xo, Xo).

This completes the solution of the nonautonomous linear regulator problem under
conditions C1 and C2.

Remark 6.16 1f the family (6.10) satisfies Definition 6.3 (or equivalently condition
C1, according to Theorem 6.4), then, for all w € §2,x; € R" and #; € R, there exists
an integrable (continuous, as a matter of fact) control u: [¢1, ; + fo] — R™ such that
the solution of the system (6.10) with x(7;) = x; satisfies x(¢; 4 #o) = 0: just take
u(t) = u(r + 1), where u: [0, tg] — R" is the control which steers x; to 0 in time %,
for the system corresponding to @ = w-#;. In other words, each of these systems is
uniformly null controllable. More precisely, in this situation,

Ua(ty, w) (/tlﬂo UA—l(t, w) B(w-1) BT (w-1) (UA_I)T(L ) dt) Ug(tl, )

n

281}17

for each t; € R, where ty and § are independent of #; and w, as can be deduced
from (6.13) for w-t,.
Conversely, suppose that a single system (6.1) satisfies

Ua(t) ( / U086 B0 U3 0 dr) Ul = s, (6.29)

for all r; € R, with common values of 7y and §. Here, as usual, U, satisfies X' =
A(t) x with U4(0) = I,. Then a simple continuity argument proves that the family
constructed in the hull is uniformly null controllable. In fact, if wy is the element of
the hull corresponding to the initial system, then

/ " U 6 00tr) Bwt)1) B (@) 0) (UT)T (1, oty di = 81,
0

for all t; € R, which makes the proof of the assertion trivial.
Assume now that the (less restrictive) condition satisfied by the initial system is

[ uosos 0w oo
0
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(i.e. that the initial system is null controllable: see Remark 6.2.1), and that in
addition the hull £2 obtained from the data (A, B, G,R) by the usual Bebutov
procedure is minimal, which is in particular the case if the initial coefficients
are Bohr almost periodic: see Sect. 1.3.2. Then Theorem 6.4 ensures that the
corresponding family of control systems (6.10) is uniformly null controllable.

This remark indicates possible ways to reformulate the hypotheses assumed in
the main results of this section, Theorems 6.13 and 6.15, in terms of a single
initial control system (6.1) and a single quadratic functional (6.3). Since the results
are valid for all w € §£2, the conclusions of these two theorems can also be
rewritten without any mention of £2: the function M can be directly defined
from the Lagrange plane of the solutions of the corresponding single Hamiltonian
system (6.8) bounded at +oo; K(f) = R™'(¢) B"(t) M (#); and the minimum value
for Zy, is —(1/2)(M*(0) Xo, Xo).

This section is completed by showing how to solve the nonautonomous feedback
stabilization and linear regulator problems when hypothesis C2 is replaced by the
existence of exponential dichotomy for the family (6.14). This last property is in
fact ensured by conditions C1 and C2, as proved by Theorem 6.11, but it can hold
in more general situations: just consider the scalar autonomous case A = —1, B =
R=1land G =0.

Theorem 6.17 Suppose that condition C1 holds and the family (6.14) has exponen-
tial dichotomy over §2. Then all the conclusions of Theorem 6.13 hold, except that
now the Weyl function M satisfies M+ < 0.

Proof Lemma 6.9 and Theorem 5.58 ensure the existence of the matrix-valued
functions M* representing the Lagrange planes of the solutions of (6.14) which
are bounded as t — =oo. In addition, =M+ < 0, as Remark 1.81.2 ensures. The
proof of Theorem 6.13 can be repeated to obtain the desired conclusions.

Note that M = 0 in the autonomous example mentioned before the theorem; this
shows that the result is optimal.

To prove the analogue of Theorem 6.15 in this situation requires to restrict the
domain of the operator Zy, , to square integrable pairs (x, u). It also requires the
following auxiliary lemma, which substitutes Lemma 6.14. Once this is done, the
proof is identical.

Lemma 6.18 Suppose that the pair (x,u) € L*([0,00),R") x L*([0,c0),R")
satisfies (6.10) for a point w € §2 and t > 0. Then lim,—, x(t) = 0.

Proof The hypotheses ensure that x and x’ belong to L?([0, o), R"), so that (x,x) €
L'([0, 00), R™). Since ||x(¢)||> = 2f0t(x(s),x’(s)) ds + ||x(0)||?, there exists the limit
as t — oo of ||x(#)||?, and the L?-integrability of x ensures that its value is 0.

Theorem 6.19 Suppose that condition C1 holds and the family (6.14) has exponen-
tial dichotomy over §2. Let M be the matrix-valued function of Theorem 6.17. Let
T3, Tepresent the restriction of the functional Ly, ., given by (6.11) to the set of

pairs (x,u) € L*([0, 00), R") x L2([0, 00), R") satisfying (6.10) with x(0) = X,. For
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each w € 2 and xo € R", let X(t) be the solution of (6.24) with x(0) = Xo, where
K is given by (6.23), and define u(t) = K(w-t) X(t). Then (X, ) is the unique pair
which minimizes Iy, ,, and I¢ (X, u) = —(1/2) (M ()Xo, Xo).

X0,@’ X0,

Remark 6.20 As stated in the proof of Theorem 6.17, if the family (6.14) has
exponential dichotomy over §2 and if also condition C1 holds, then both Weyl
functions M* exist. This fact will be useful in the following section.

6.3 Regularity Properties of the Stabilizing Control

This third section is devoted to showing that, if A and B depend in a C" manner
on parameters, then the feedback stabilizing matrix K depends also in a C" way
on those parameters. Moreover, if §2 is a C"*! manifold, if the one-parameter group
{o;| t € R} is determined by a C’-vector field on §2, and if the functions A and B are
C" on £2, then in certain circumstances K can be chosen so as to be C"-dependent on
. In general, the regularity properties of K will depend on the regularity properties
of the coefficient functions A, B, G, and R as well as on those of the function M.
However, it will be explained that the regularity of M+ depends to a certain extent
on properties of the base flow o.

The first objective of this section is to carry out the parametric analysis. So,
without assuming anything else on £2, suppose that A = A(w,e), B = B(w,e),
G = G(w, e), and R(w, ¢) depend on a parameter ¢ lying in a Banach space E, and
suppose that A, B, G, and R are continuous on §2 X [E, with values in the appropriate
sets of matrices. This condition implies that the map E — C(£2, M,,x,(R)), e
A(-, e) is continuous for the norm-topology defined by ||C|le = max,ecq |C(®)],
so that if e, converges to e* in [E then A(+, e,) converges to A(:, ¢*) uniformly on £2;
and the same holds for B, G, and R.

Suppose also that the controllability condition C1, as well as the exponential
dichotomy property of the family of linear Hamiltonian systems

—1 T

= [éiztt 2 Blot.e) Ii Ar(c(uwttez)B (@, e)} z2=H(wte)z (6.30)

over §2 hold for e = ey, where ¢ is a given point of E. (Note that, according
to Theorem 6.11, this situation is less restrictive than assuming the controllability
conditions C1 and C2 for ¢p.) Then C1 and the exponential dichotomy over 2
hold for all e in some open neighborhood O C E of ¢;. The assertion concerning
C1 follows from Theorem 6.4, as is easily deduced from Definition 6.3 and the
description of the continuity of A and B with respect to e. And the assertion about
the exponential dichotomy follows from Theorem 1.91(ii). The same result ensures
that, if Q(e) = {Q(w,e)} is the dichotomy projector of (6.30) for e € O (see
Definition 1.58), then the map Q is continuous on §2 x O. Moreover, the dichotomy
constants 7 and B, which a priori depend on e € O, can be chosen to be positive
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numbers which do not depend on (w,e) € £ x O. In addition, an application
of Theorem 1.95 shows that the map 2 x O — S,(K), (w,e) — Mt (w,e)
is continuous. Here, Mt (w, ) is the Weyl function provided by Theorem 6.17
for ¢ € O. Hence, the map 2 x O — M,x,(R), (w,e) — K(w,e) =
R Y(w,e) BT (w,e) MT (w, e) is jointly continuous.

Suppose now that, for a given integer k > 1, and foreachj = 1, ...k, the Fréchet
derivatives D/A, D/ B, DG, and D/,R with respect to e are defined and continuous
on §2 x E. In order to study the consequences regarding higher regularity of the
dichotomy projections Q(w, e) of the family (6.30) for v € §2 and e € O, one
verifies the hypotheses of Theorem 3.1 of Yi [160]. First, as already noted, the
dichotomy constants 1 and 8 of (6.30) can be chosen so as not to depend on e € O.
Second, there is a uniform constant § such that, foreachj = 1, ..., k, there holds

sup | DiH(w.e)]| <.
O

wES, e€

Thus Theorem 3.1 of [160] can be applied (with N = 0 in the notation of that
theorem): the conclusions are that the map O — My,x2,(R), e = Q(w,e) is of
class C* for each w € £2, that the map (w, e) — Q(w, e) is continuous on §2 x O,
and that the Fréchet derivatives D/, Q(w, e) are continuous on 2 xO forj = 1,... k.
In fact that theorem applies to a fixed wy € 2 and it ensures the continuity of
D/,Q(wy, e) with respect to e, but its proof can be generalized in a direct way to
prove the asserted joint continuity.

Recall that the present goal is to derive the regularity properties of the feedback
matrices K(w, e) provided by Theorem 6.19 for ¢ € O. But using Remarks 6.20
and 1.81.1, it can be seen that M+: 2 x O — S,(R) exists and is of class C" in
e € O for each w € £2, and that the Fréchet derivatives D)M™ are continuous on
§£2 x Oforj=1,...,k. The following result is therefore proved.

Proposition 6.21 Let E be a Banach space, and let A, B, G, and R be continuous
functions on §2 x E taking values in the appropriate sets of matrices. Suppose
that there exists k > 0 such that the Fréchet derivatives D{;A, DQB, D{?G, and
DIR are defined and continuous on 2 x E for each j = 0,1,... k. And suppose
also that there exists ey € E such that: either the controllability conditions C1
and C2 hold for the matrices A(-, ey), B(:, e9), and G(-, eg); or C1 holds and the
corresponding family (6.30) has exponential dichotomy over §2. Then there is an
open neighborhood O C E of ey such that the feedback control matrix-valued
function K: 2 x O — M,;,x,(R) given by

K(w,e) =R Y(w,e) BT (w,e) M (w, e)
is well defined and continuous on 2 x O. Also its Fréchet derivatives DLK are

defined and continuous on §2 X O foreachj = 0,1,...,k And, in addition, there
exist positive constants i) and B which do not depend on (w, e) € 2 x O, such that,
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ifwe 2, ecO,andxy € R", then the solution x(t) of the equation
= (A(wt,e) + B(wt,e) K(wt, e)) x

with x(0) = xq satisfies

Ix() < 7e~""|Ixoll

forallt > 0.

Turning now to the second objective of this section, consider the situation in which
2 is a smooth manifold of class C¥*! for k > 1. Let || - || denote the Finsler structure
induced on the tangent bundle of §2 by a fixed Riemannian metric on the base.
Let f be a C*-vector field on £2, and let {o;| t € R} be the 1-parameter group of
diffeomorphisms of §2 induced by f. Thenthe mapo: Rx 2 — 2, (t,0) — wt =
oy(w) is areal C* flow on £2, and the k-order derivative D(’j)crt of 0, is C! with respect
tot.

Assume that A, B, G, and R are all C*-functions on £2, that condition C1 holds,
and that the family of systems (6.14) has exponential dichotomy over 2, so that
according to Theorem 6.19 a feedback matrix-valued function K: 2 — M,,x,(R)
exists. The objective is to find conditions sufficient to guarantee that K is C* as a
function on £2. This is clearly possible if the function M is C* on £2, as derived
from definition (6.23). For this, however, it is not enough that A, B, G, and R are
C*-smooth. To obtain a sufficient condition, and following again Yi [160] (see also
Palmer [119]), one can impose conditions on ¢ and on the family (6.14) ensuring
that the dichotomy constant 8 dominates the hyperbolicity of {c; | r € R}.

To begin the discussion, observe that the w-derivative D,0;(w) satisfies the
variational equation

d
o D,01(w) = Df (01(w)) Dyor(w) , (6.31)
and that D, 0¢(w) is the identity map in the tangent bundle of £2 for any w. Define
the Bohl exponent of the family of systems (6.31) by

Bp = limsup —
|t|—>00 II

(sup ||Dwof(w>||) 6.32)

It is not hard to deduce from (6.31) that 85 < sup,cg ||Df (@)]|, but the strict
inequality may hold. And, if 8; > Bp is any fixed number, then there is a constant
m = 0 with sup,,cq [|[Door(@)|| = m ebilr,

Fix such a value of B; > Bp and differentiate successively equation (6.31) with

respect to w. Note that D},09(w) = 0 forj = 2,...,k. Using the variation of
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parameters formula, one finds constants 7, .. ., 1 such that

sup | D) oy(w)|| < ;&P forj=2,... k.
wER

Theorem 3.1 of [160] can be applied to prove the following result.

Proposition 6.22 Assume that A, B, G, and R are all ck Sfunctions on $2, and
that either conditions C1 and C2 hold or C1 holds and the family (6.14) has
exponential dichotomy over §2. Let 1) and B be the dichotomy constants provided by
Theorem 6.11 and Definition 1.75. And let Bg be defined by (6.32). If (k+1) B < B,
then the dichotomy projection Q is of class C* on 2.

By combining, as before, Remarks 6.20 and 1.81.1, it follows that the map @ >
M (w) is of class C* if (k + 1)Bp < B. Hence the feedback map w +— K(w) given
by (6.23) is a C* function of . To illustrate this result, suppose that £2 is the d-torus
R?/7Z¢ and that o is a minimal Kronecker flow on £2: 6(t, w) = @ + yt where y is
a vector of rationally independent frequencies. Then D,,0;(w) is the identity for all
t € Rand w € £2, and hence Bz = 0. So, in this case, the functions M7 and K are
of class C¥ on §2 when this is true for A, B, G, and R.

The third and last part of this section consists of a discussion of the so-called
pole relocation property in the nonautonomous setting. This means the following.
Take y > 0. The objective is to choose the stabilizing feedback control K), in such a
way that there exists a number 1, > 0 with the property that, if v € £2 and xo € R",
and if x(¢) is the solution of the problem

X' = (A(w1) + B(wt) K(w1)) x

with x(0) = xo, then ||x(?)|| < n,e "||Xo]| for all # > 0. It is required that 7, be
independent of w and Xo.

Such a feedback control can be found by adapting a well-known technique
(see [2] and [1]). The following hypotheses are assumed: A, B, G, and R are all
continuous matrix-valued functions on £2, and the controllability conditions C1 and
C2 hold. Consider the modified family of control systems

x' = (A(wt) + yI,) x + B(wt) u, weR. (6.33)
Then the controllability condition C1 holds for (6.33). In order to check this
assertion, note that Uy, (t, ) = e"'U4(t, w). By Theorem 6.4, there exist fo > 0

and § > 0 such that (6.13) holds for all @ € £2. Therefore, there exists 6, > 0 such
that

o
/0 e U (t, ) B(w+t) BT (w1) (U )T (1, 0) dt > 8, 1,
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for all w € §2; or, in other words, such that

to
/0 Ustys, (1. @) B(w-) BT (1) (Uy ) (1, w) di = 8,1,

for all € £2. Once this fact is established, one can use Theorem 6.4 to guarantee
that C1 holds for (6.33). In a similar way, it can be checked that condition C2 is
valid for the family of control systems

X = —(A(w?) + yL)'x + G (0nu, wel.

Apply now Theorem 6.13 to obtain a continuous function M;’ 12 — S,(R) such
that, if K, (0) = R™'(w) B" (w) M} (), then x = 0 is a uniformly exponentially
stable solution of each system of the family

X' = (A(wt) + yI, + B(w)K, (0)) X, weE .

It is then clear from (6.25) and from Up4y,(f, w) = € "' Ua4y1,+8x(f, ) that the
required number y, indeed exists.

Note finally that, if condition C2 is changed to the existence of exponential
dichotomy of (6.14) over §2, the same conclusion holds but just for values of y > 0
small enough to guarantee the exponential dichotomy of the families of Hamiltonian
systems obtained by replacing A by A + y1, in (6.14). The existence of such values
of y is ensured, for instance, by Theorem 1.91(ii). And, in this case, the sought-for
K, is provided by Theorem 6.17.

6.4 The Kalman—Bucy Filter

As stated in the introduction to this chapter, the Kalman—Bucy filter is a standard
method to measure the mean-square error between the unknown output signal and
the estimated output signal of a linear plant subject to a white noise disturbance. It
was first studied by Kalman and Bucy in [88] and has of course stimulated much
further research: see e.g. Anderson and Moore [2, 3], Benavoli and Chisci [16],
Fagnani and Willems [50], and Bell et al. [15].

The simplest case is, as usual, that in which the structure coefficients of the plant
do not depend on time. In this situation, if one assumes that the signals in question
are Gaussian, and if one further assumes that the initial error signal has a known
expected value and a known covariance matrix, then the time-evolved covariance
matrix of the error signal can be shown to tend exponentially fast to a constant
matrix, which is a solution of a stationary Riccati equation.

When the linear plant has time-varying structure coefficients, the Kalman—Bucy
filter has similar properties, though the analysis which leads to them seems less
known. Bougerol [19-21] has studied the case when the coefficients are determined
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by a stationary ergodic process. He has proved that, under certain controllability
hypotheses, the error covariance matrix tends almost certainly to a time-varying
“stationary state” which is a solution of a time-dependent Riccati equation. The
convergence takes place with nonuniform exponential velocity.

This section analyzes the Kalman—Bucy filter assuming that the coefficients are
bounded and uniformly continuous functions of time. As in the case of the linear
regulator problem, the concepts of exponential dichotomy and rotation number for
linear Hamiltonian differential systems will play a basic role in the present approach
to the Kalman—Bucy filter. Indeed, it is not surprising that dichotomies and rotation
number turn out to be significant here as well, due to a formal analogy between two
Riccati equation arising in the Kalman—Bucy filter model and the Riccati equation
that presents itself when studying the linear regulator problem.

The situation analyzed here is actually subsumed in that studied by Bougerol,
who works in a general measure space setting. His results hold under more general
hypotheses than those of this section. However, the statements included here,
under more restrictive hypotheses, are considerably stronger than his. Roughly
speaking, his almost everywhere exponential estimates are strengthened to uniform
exponential estimates. Also, the dichotomy-based approach allows one to appeal to
general theoretical facts when reasoning, and to avoid detailed manipulation of a
Riccati equation. In addition, the filter depends regularly on parameters in a wide
sense.

As stated in the introduction, the presentation that follows is based on that of
Johnson and Nuiiez [83].

The discussion begins with a review of some basic facts concerning the Kalman—
Bucy filter as they are presented in [51] (see especially pages 135-141). Some
standard concepts of probability theory and the theory of 1t6 differential equations
will be used. The reader is referred to [51] for the necessary definitions and results.

Let A, B, S, and S| be bounded and uniformly continuous matrix-valued functions
of the respective dimensions n x n, m x n, n x d, and m x m where n, m, d are positive
integers. Assume that S S7 is strictly positive definite: there exists p > 0 such that
($18T) (1) = pl,, forall 1 € R.

The data A, B, S, and S| determine a linear system which will be written down
shortly. Let £ (r) € R" denote the state of that linear system at time ¢ > 0. Assume
that the state can only be partially observed, and let (f) € R™ be the observation
of the state at time 7. Assume also that & (7) is subject to a random d-dimensional
disturbance, and that 5(f) is subject to a random m-dimensional noise. The state
evolution is modeled by the It6 differential equation

d§(1) = A(1) E(1) dt + S(1) dw(r) ,
while the equation for the observation is

dy(1) = B(t) £(1) dr + S1(1) dwi (1) .
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Here w(#) and w, (¢) are independent Brownian motion processes, of dimensions d
and m. Let there be given a initial time, which might as well be taken to be t = 0.
Assume that 7(0) = 0. And assume finally that & (0) is Gaussian, which implies that
& (1) is Gaussian for all ¢ > 0: this is explained in Chapter V.9 of [51].

Let X, denote the o-algebra generated by the set {§(r)| 0 < r < 1} of
observations available at time f. The goal is to describe an estimate y(f) for
the state £(f), based on the observation up to time #, which is X;,-measurable,
with E{|y(1)|>} < oo for t > 0, and which minimizes the mean-square error
E{(x"(£(1) — y(1)))?} for all x € R". Here E{-} denotes the expected value with
respect to a probability measure defined on a probability space with respect to which
all occurring stochastic processes are defined and measurable. The first step is to
write down an expression for this minimizer: as proved in [51] (see page 136), the
minimizer is given by the conditional expectation vector

~

M) =EE@| 2,

and it turns out that it also minimizes E{||&(r) — y(¢)||?}. In particular, if &(r) =
E@) — g(t) represents the error process, then E{é (1} =0forallz> 0.

The main results concerning the Kalman—Bucy filter, given in Theorem V.9.2
of [51], read as follows. As explained in Remark V.9.1 of [51], the first assertion
of the following theorem ensures that g(t) is Gaussian for all # > 0. Therefore, the
covariance matrix

M(1) = E{(E() — E{E0NEW® — EEON} = EEOED")

i~s well defined (and positive semidefinite) for + > 0, and it determines the law of
&().

Theorem 6.23 Suppose that A, B, S, and S\ are C' functions in (0,00). The
estimate & (t) satisfies the Ito differential equation

d& (1) = A1) € (1) di + F())(dn() = B §(1) ).
£(0) = E£(0).
where F(f) = M (1) B* (1) (51S]) 7' (¢). The error £ (1) is independent of X,; the error
covariance matrix M(t), which is defined and positive semidefinite for all t > 0,
satisfies the equation

M = —MB"(t) ($;ST) " (t) B(ty M + M AT (t) + A(t) M + (SST) (1) (6.34)

on (0, 00), with M(0) given by the covariance matrix of & (0); and, finally,

n@—AM%@mzl&@wmx
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where Wy is a standard m-dimensional Brownian motion, which has the property
that w1 (t) is X;-measurable for eacht > 0.

Using the fact that the error £(r) equals £(r) — é (), and making a simple
computation, one finds that

dE(1) = (A() — F()) B(®) () dt + S(t) aw(t) — F (1) S1(1) dw1 (1) .

This relation explains why it is important that the homogeneous system dg ®H =
(A(r) — F(t) B(1)) g(t) dt be of Hurwitz type (see Definition 1.72): in this case
é (#) “sees” only a nonanticipative process which depends boundedly on dw(#) and
dw(1).

The proof of Theorem 6.23 is given in [51] and is omitted here. Note that it
requires that A, B, S, and S; be C ! functions of ¢.

Theorem 6.23 will be taken as a starting point to discuss the following points:

(1) the asymptotic limit M (¢) of the error covariance matrix M(z);
(2) the (exponential) rate of approach of M() to M (2);
(3) the Hurwitz nature at +oo of the linear system y’ = (A(r) — F(¢) B(?)) y.

The treatment of points (1), (2), and (3) will not require differentiability assumptions
on A, B, S, and S;. It will begin with (6.34), which is the Riccati equation
corresponding to the linear Hamiltonian system

,_ [ -AT () B"0SiSH'0B@O ], _ -
[ (ST AD) :| z=H(Hz. (6.35)
Note tgat the Bebutov hull (5, o) of the matrix-valued function H can be defined,
since H has no stochastic component. As was explained in Sect. 1.3.2, the functions
A, B, S, and S “extend continuously” to §2; by abusing notation, these extended
functions will be also represented by A, B, S, and S;. This procedure provides then
the families of Riccati equations

M =-MB"(S;S))"'BM + MAT + AM + ST (6.36)
(with A, B, S, and S evaluated in w-f) and of linear Hamiltonian systems

;[ —AT(w1) BT(w1) ($1ST) Nt Blw) | =
= [(SST)(a)-t) Alwt) i| z=H(w1)z (6.37)
for o € £, which include the original equation (6.34) and system (6.35): they
coincide for a point wy € £2.

The first key point in the analysis of (1), (2), and (3) is this: certain controllability
conditions will ensure the occurrence of exponential dichotomy over §2 for the
family (6.37), as well as the existence of Weyl functions M* satisfying FME > 0;
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the function My, = M~ will be the one which appears in (1) and (2); and, at the
same time, the existence of M~ allows one to prove (3).

So, the following step is to describe the analogues of the controllability condi-
tions C1 and C2 in the context of the families of control systems which correspond
to the systems (6.35); these analogues will be assumed in the following analysis.

C3. Each minimal subset of £ contains at least one point w; such that the system
x' = —AT(w;-t)x + Bl (wi-f)u

is null controllable.
C4. Each minimal subset of §2 contains at least one point w, such that the system

X = A(wyt) X + S(wyt)u

is null controllable.

Remark 6.16 explains the situations in which these properties are guaranteed by
conditions on the control systems corresponding to the initial coefficients A(¢), B(t),
S(1), and S (7).

The family (6.37) can be compared with the family (6.14). In fact by making
the substitutions A > —A”, B > BT, §;ST > R, and SST — G, system (6.37) is
transformed into (6.14). In fact the ideas appearing in Sect. 6.2 are the fundamental
ones needed to prove the exponential dichotomy over £2 of the family (6.37).

Note first that, if conditions C3 and C4 hold, then Theorem 6% implies the
uniform null controllability of the families of control systems over £2: that is, the
existence of numbers 7y > 0 and § > 0 such that for all w € £2,

/m UT(t, ) BT (w-t) B(w+t) Ua(t, w) dt > §1,,

. (6.38)
/ Uy (1, @) S(w-0) ST(w-0) (U (1, w) dt > 81,

0

These numbers #, and § will be of basic significance in the analysis of the
nonautonomous Kalman—-Bucy filter.

Theorem 6.24 Suppose that conditions C3 and C4 hold. Then the family of
Hamiltonian systems (6.37) has exponential dichotomy over 2. In addition, both
Weyl functions M M* and M~ are globally defined, and they satisfy Mt < 0 and
M~ > 0.

Proof The way to adapt the arguments used in the proof of Theorem 6.11

to this situation will be described. (See also Remark 6.12.) Set F(w) =
[(SST)(w) 0,

00 B @) i) ) B(w)], and consider the perturbed family of linear
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Hamiltonian systems
7 = (H(wt) + MW 'T(01) 2z (6.39)

forw € 2 and —1 < A < 1, with H given by (6.37). One checks that the
controllability conditions C3 and C4 imply that the family (6.39) satisfies the
following uniform Atkinson condition: there exist fo > 0 and § > 0 such that for all
w € £2,

o __
/ | T () Ut,w) z||*dt > 6 ||z||*> whenever z € R*" .
0

This is demonstrated in the same way as in the proof of Proposition 6.7. Keep in
mind that the null controllability of X' = A(w,f) x + S(w;-) u is equivalent to that
of X' = A(wy-1) X + (SST)'/2(wy-1) u, as is easily deduced from the characterization
given in Remark 6.2.1.

Next, let m be a 6-ergodic measure on 2, and let a7(A) be the rotation number of
the family (6.39) with respect to m. Repeating the proof of Lemma 6.9, one checks
that,if —1 < A < 1, then the corresponding perturbed families are uniformly weakly
disconjugate, with or7(1) = 0.

Now, follow step by step the arguments of Theorem 6.11 in order to prove the
occurrence of exponential dichotomy: first, Theorem 3.50, the Atkinson character
of T, and the properties of the rotation number ensure the existence of exponential
dichotomy over each minimal subset of 2 for the perturbed families corresponding
to A € (—1, 1), so that in particular this holds for A = 0; and second, this property
precludes the existence of a globally bounded solution for any of the systems
of the family (6.37), which according to Theorem 1.78 ensures the existence of
exponential dichotomy over the whole base.

Once this is established, Theorem 5.58 ensures that the corresponding Lagrange
planesTjE (w) (which also determine the principal solutions) belong to D for all w €
2. And finally, the second inequality in (6.38) allows one to repeat the argument
used to prove Proposition 5.64(i) in order to ensure that FM* > 0.

Remark 6.25 As stated in the previous proof, the family of systems (6.37) is
uniformly weakly disconjugate, and the principal functions agree with the Weyl
functions. In particular, Theorem 5.48(i) ensures that any solution of the Riccati
equation (6.36) with initial datum M, > 0 (and hence with My > M+ (w)) is defined
for all # > 0. More properties of these solutions will be described later.

The second fundamental point in the treatment of points (1), (2), and (3) presented
in this chapter consists of an interesting property of the action of the symplectic
matrices on the set of positive definite symmetric matrices, which is now described.
It is derived from considerations presented in Bougerol [21] and Wojtkowski [152].
This action is described in the following technical lemmas, whose significance will
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become clear beginning from Proposition 6.28 on. Introduce the quadratic form
eR" >R, z=[}]~ (x.y), (6.40)
and recall the definition of the open subset D C L (see Sect. 1.3.5),

DZ{leﬁRllE[i’}]]}CﬁR.

Note that Theorem 6.24 ensures that the Lagrange plane I~ (w) = [ Mog’(w) ] belongs
to D forall w € §2, where My, = M.

Lemma 6.26 Define
Ly ={leLr]|ifzelthenq(z)> 0}.

Then,

(1) L4 is compact, and L4+ ND = {l eLgr]|l= [1{71] and M > O}.
(ii) The interior of L4 is

intLy ={le Lr]|if0 #z e lthen q(z) > 0}
={leLr|l=["] and M > 0}.

Proof

(1) The closed and hence compact character of L4 follows easily from the
continuity of ¢ and Proposition 1.26(i). In addition, if [ = [ 1’&] and zyp =
[ 1% ] € L then g(zo) = XJMxo, so that [ belongs to £4 N D if and only
if i =[] forM >0.

(i) Define £ = {l € Lg| if0 # z € Itheng(z) > 0}. It is clear that £ D
{l eLr|l= [1{;] and M > 0}. To prove the “C” statement, take first [ € Lg

with [ = [ 1’&] for a matrix M which is not positive definite, and take xy € R"
with Xg # 0 and x) M xXg < 0. Then zg = [ %, | € [ and g(zo) = x;M X, < 0.
And if [ = [g] with detL; = 0, then / contains a nonzero vector [y% ], at
which ¢ takes on the value 0. In both cases, [ ¢ £ , which proves the equality
of both sets. Obviously, £} C int L. Take now / € int£; and assume for
contradiction that [ ¢ L% . One can immediately discard the possibility that
I=[h]withM > 0and M # 0. This leads to [ = [g] with detL; = 0. Take
X0 # 0 with Ly xo = 0 and set yo = Ly Xy # 0. It is easy to check that [, =

[L‘ z,sz ] is a Lagrange plane; it follows from Proposition 1.25 that it belongs to

L for & > 0 small enough; and it contains the vector [ 737 | = [“7%* | xq.
But this is impossible, since g (| 7y |) = —¢[lyol* < 0.



6.4 The Kalman-Bucy Filter 357

Let S} (R) be the set of positive definite n x n matrices. A distance function d can
be defined on S} (R) as follows: if M; and M, are positive definite, then

1/2
aMy. My = [ Y A | 6.41)
j=1
where A1, ..., A, are the eigenvalues of MM, 1 (which are real and positive, since
1/2 ~1/2

they are also the eigenvalues of M, '“M;M, '*). In fact, this distance function d
is that defined by the Riemannian metric ds*> = tr((M~'dM)?) on S;} (R): see [97],
Section 3. In particular, it induces the usual topology on S} (R).

Lemma 6.27 Let the matrix V. = [% gi] be symplectic. Suppose that q(Vz) > 0

whenever q(z) > 0. Then the action
V:SFR) = ST(R), M VM= (Vy+ VaM)(Vy + VM)~

is well defined. Suppose further that q(Vz) > 0 for all nonzero z € R with
q(z) > 0. Then the action is a strict contraction: there exists a positive constant
Sy < 1 such that

a(V-My, V-M>) < 8y A(M;, M)

whenever M| and M, are positive definite.

Proof In order to prove that Vis well defined, use Lemma 6.26(ii) to see that M €
S (R) parameterizes a Lagrange plane / € int £y, and that the assumption on V
ensures that V-/ € int£Ly C D, so that it is parameterized by a positive definite
matrix. And this matrix is precisely VM.

The rest of the proof follows the arguments of the proof of Theorem 1.7 of [21],
which can be adapted to the situation considered here. The first step is to write

vl ViV vy hT oo, I, 0
Lo, I 0, VallVi'Va I,

and to ensure that V3 V4_l and V4_1V2 are positive definite. This can be done as
follows. Note first that, since g(V [’3’ ]) > 0 and g(V [yoo ]) > 0 whenever xo # 0
and yo # 0, it is the case that the four matrices V1, V,, V3, and V4 are nonsingular, as
is easily checked by contradiction. On the other hand, according to Proposition 1.23,
VIVi = VIvy = I,, VIVs = VIV,, and VI'Vs = VIV, which ensure that V| =
(V4T)_1 + V3 V4_l V,. This proves that the above decomposition of V is valid. Also,
since V- [(}:] = [52] belongs to int £, one has Vj V4_l = (V4 V_;l)_1 > 0. To
check that V7'V is positive definite requires some more work. It is already known
that it is nonsingular, and Proposition 1.23 ensures that it is symmetric. Assume for
contradiction the existence of a negative eigenvalue A and let yo be an associated
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normalized eigenvector: V,;'V,yo = Ayo and |lyo|| = 1. Then Voyo = A V4yo
and Viyo = (V)7 'x0 + V3V, 'Vayo = (V)" yo + A V3 yo, so that, for all real
numbers [,

V[ Yo } _ [(VZ)‘lyo+(K+u)V3yo}
Yo (A + 1) Vayo '

Note that VI'V; = VIV, = VI(V4 Vi) V3 > 0,50 « = yi VIV3yo > 0. Hence,

gV [ =GA+wyiViv) o+ A+ 1w’ yiViVayo
=A+u+A+pla=a(p+)(+1r+1/a).

Choose now & € (—A — 1/a,—A) with u > 0. Then q([uyyo ]) > 0, whereas
q(V[ o ]) < 0. This contradicts the assumptions on V.

It is not hard to prove that VW-M = V(W'M) for two matrices V and W when
all the terms are defined. Consequently, when acting on S;" (R) (and adapting the
notation to that of [21]),

V=0oconoooyor

where 71-M = M + V;'Vo, yM = VuMV], oM = M, and oM = M +
V3V, !. From here, the proof of the Bougerol theorem can be repeated. First, the
definition (6.41) of the distance on S (R), implies that the maps y and o are
isometries. Second, Proposition 1.6 of [21] proves that t; is a contraction on S;l" (R).
Hence, 0oy ot is also a contraction. Now, it is easy to check that (yo1;)-M > V2V4T
for all M > 0, and hence that 0 < (g oy o 71)-M < (V2V4T)_1 for all M > 0.
Therefore, Proposition 1.6 of [21] and the invertibility of V3V, ! provide a constant
Sy < 1 such that

d((rpo00yo01))M, (1200 0y o11)My)
<dyd((ooyot)Mi, (0 0y ot)My) < dydMi, M)

whenever M| > 0 and M, > 0, from which the assertion follows.

The importance of the previous properties in the forthcoming analysis is due to
a fact which is proved in the following proposition: under conditions C3 and C4,
if U(t, w) is the fundamental matrix solution of (6.37) with U(0, w) = I, then
U(t, w) satisfies the first hypothesis imposed on V on Lemma 6.27 for all r > 0,
and the second one for ¢ > 1j; so that it induces an action on S, (R) which is a strict
contraction from a certain time on; and this strict contraction will be the key in the
asymptotic analysis carried out later.
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Proposition 6.28 Let g be defined by (6.40), and let T be the flow induced by (6.37)
on 2 x Lg. Then,

G) q(U(t,w)z) > q(z) forallt > 0, w € 2 andz € R™.
In addition, if conditions C3 and C4 hold and if ty satisfies (6.38), then

(i) q(U(t,w)2) > q(z) forallt > 1y, » € Q 2andz € R?" — {0}.

(iii) The sets : 2 x Ly, .Q X (L4+ ND) and 2 x int Ly are positively T-invariant,
and ‘L’t(.Q X £+) C2x int Ly if t > 1.

(iv) The set K =7, (.Q x L) is compact, and it contains ‘C,(.Q x Ly)ift>t.

Proof Writez = [y | and U(r,w)z = [?8 ] According to (1.34),

{x(0.,y(®) = {x0.y0) = /0 (IS™x()II* + ST By()11%) ds

where S, S|, and B have argument w-s. This proves (i).

(ii) If the right-hand side of the previous equality is null for ¢+ > f#y, then
B(w)y(f) = 0 and ST(w-t)x(f) = 0 in [0, 7], which in turn ensure that
X = —AT(wt)x and y = A(w-)y. That is, B(wt) Us(t,w)yo = 0 and
ST () (UHT(t,w)Xo = 0 in [0, 1], which under conditions C3 and C4
implies (by using (6.38)) that xo = yo = 0 and proves (ii).

(iii) These properties follow immediately from (ii) and Remark 6.25.

(iv) The compactness of the set K is evident, and the last assertion follows from
the equality Tjy+s(@,]) = Ty (@-s, U(s, )-I) and the positive T-invariance of
2 x £+.

With all these preliminaries out of the way, the behavior of the error covariance
matrix of the Kalman—Bucy filter can be analyzed. In fact the family of Kalman-
Bucy filters indexed by the points @ € 2 will be studied: as explained before, the
initial filter corresponds to one of the points wy € Q.Fixw € £ and My > 0,
represent by M(t, w, My) the solution of the corresponding Riccati equation (6.36)
with M(0, w, My) = My, and deduce from Remark 6.25 and Proposition 6.28(iii)
that M(t, w, My) exists and is positive semidefinite for all # > 0. Theorem 6.23
ensures that M,,(1) = M(t,w, M) is the error covariance matrix of the Kalman-
Bucy filter given by the point w € 2 when M? is the initial covariance matrix if
the additional condition that r — (A(w-1), B(w- t) S(w-1), 81 (w-1)) is a C' function
is satisfied. But in fact this last assumption is not imposed in what follows: it will
be shown that, when evaluated along the positive G-orbit of a point @, M, attracts
the solution M(t, w,My) as t — oo; and that, in addition, the rate of convergence
is exponential, and uniform in (@, My). Note that this will be proved for all the
solutions of the Riccati equation (6.36) given by a positive semidefinite initial
datum. Actually, the result can be proved using certain general properties of the
dichotomy projections. But a different approach will be used in the proof here given.
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According to Proposition 6.28(iii) and (iv) and Lemma 6.26(ii), the compact set
K= r,o(.Q x L) is contained in Q x int L+ and hence can be identified with a
compact subset of 2 x S;F(R), which will also be denoted by K. In addition, for
each @ € £2 and each ¢ > fo, the symplectic matrix U(¢, w) satisfies the conditions
imposed on V in Lemma 6.27, which hence ensures that U(¢, w) induces a strict
contraction on S (R). This fact and the compactness of §2 ensure the existence of
a common constant § < 1 such that d(f](to, w)-My, f](to, w)-M,) < §dA(M,, M>)
whenever (w, M) and (w, M;) belong to K.

Take now s > 0. Since UQRty + s,w) = Ul(ty, w-(to + 5)) U(fo + s,w) and
(w-(to + ), f](to + s,w)-M) € K whenever M > 0 (see Proposition 6.28(iv)), it
follows that

AU (2t + 5, )-My, U2t + 5, 0)-M>) < 8 AUt + s, )-My, Ulty + 5, )-M>)

whenever M; > 0 and M; > 0. A recursive procedure proves that, if 1 = (m +
1)ty + s for an integer m > 1 and s € [0, 1)), then

a(U(t, w)-My, U(t, 0)-M>) < 8"a(U(to + 5. 0)-My, Uty + 5, 0)-M>)

whenever M| > 0 and M, > 0. In particular, for this value of r and all w € 5, and
each initial datum M, > 0,

AM(t, w0, Mp), Moo (@-1)) < 8"A(Mo (10 + 5), Moo (w-1)) . (6.42)

since f](t, w)-My = M(t, w, M), as explained in Sect. 1.3.5.
Recall the information provided by Theorem 6.24 in order to understand the
following statement.

Theorem 6.29 Suppose that conditions C3 and C4 hold, and let Moo, = M~ be
the Weyl function associated to the stable subbundle at +oo. With the notation
previously established, there exist constants B > 0 and 1 > 0 such that

IM(1, 0, Mo) — Moo (w-1)|| < e

whenever w € 5, My > 0, and t > 21y, where ty satisfies (6.38).

Proof Let § satisty (6.42) and set 8 = —(In)/(31). It is easy to check that § <
—(mInd)/((m + 2)ty) for all m > 1, and hence §" < e~ whenever t € [(m +
1)to, (m + 2)1p). These facts and the inequality (6.42) ensure that

AM(t, w0, My), Mo (w-1)) < e P aA(M(tg + 5. 0, M), Moo (0-(tg + 5)))  (6.43)

whenever t > 2f5, s € [0,1)), and v € 2. Now, in order to apply Proposi-
tion 6.28(iv), let K be, as before, the compact subset of 2 x S;F(R) equivalent
to the subset ‘L',O(.Q x L) of 2 x D. Then, for t = (m + 1)ty + s > 21, the
four pairs (w-t, M(t, w, My)), (w-t, Mso(w-1)), (w-(to + s5),M(ty + s, ®w,M,)) and
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(w-(to + 5), Moo (w-(to + 5))) belong to K. It is obvious that the set K, = {M €
SH(R) | thereis w € 2 with (0, M) € K} is compact. Note that M, (¢), Mo (w-t),
M(ty + 5,0, Mp) and Moo (w-(tp + 5)) belong to this compact set. Of course, there
exists a common bound 7, for ||M; — M || if My, M, € K5, and it is also clear that
there exists 7, such that d(My, M) < n,||M; — M| for all pairs if My, M, € Ky,
since both norms induce the same topology. All these properties and (6.43) provide
a number n = 1 1, such that the statement of the theorem holds.

Remark 6.30 The proof of Proposition 5.64(iii) repeats the arguments used in the
previous theorem. The key point is to check that the results of Proposition 6.28 are
also valid for the Hamiltonian system (5.4) of Chap. 5 when H, > 0, H; > 0, and
conditions D2 and D2* hold, and this can be done following the same steps as in
Proposition 6.28. Keep in mind that, according to (5.8) and (5.56), conditions D2
and D2* guarantee the existence of 7y > 0 and § > 0 such that

to
/ | H3(e0-0) (Ugy) ™ (2, 0) x||* d = 8%,
0

fo
/ |Hz (@) Un, (¢, 0) x|* di = §|x]1>.
0

The proof of assertion (iv) requires some preliminary work, but the ideas are the
same. Keep now in mind that conditions D2 and D2* ensure the existence of 7y > 0
and § > 0 such that

0
/ Vs (0) (U5, (1, w) X[ di > 8]x]?

—ty

0
/ IH (1) Upy, (1, 0) x> dr = 8|1x]> .

—Io

The first inequality is due to the equivalence between D2 and D2’ proved in
Proposition 5.18(iii), and the second one can be checked with the same argument.
The details are left to the reader.

Theorem 6.29 completes the analysis of questions (1) and (2). The treatment of
the Kalman-Bucy filter is finished with a discussion of point (3): the Hurwitz
character at +oo of the system y = (A(w-f) — F,(f) B(wt))y, where F, (1) =
M, () BT (w+1) ($18T) (1) and M,,(t) = M(t,w,M?) is the error covariance
matrix of the Kalman—Bucy filter given by the point w € 2:ie. of the system

Y = (A1) — My, (1) B (1) (S15]) ™' (1) B(w1))y = Au(0) Y., (6.44)
when w € 2 is fixed. Actually, the exponential rate should be uniform in w € 2.1n

fact, a reasonable additional hypothesis is sufficient to provide the uniform Hurwitz
character of the family (6.44).



362 6 Linear Regulator Problem and the Kalman—Bucy Filter

Proposition 6.31 Suppose that conditions C3_and C4 hold. There exist constants
N« > 0 and Bx > 0 such that, if ® € §2 and y,(t) is any solution of the
equation (6.44), then

1Yo DI < 7 e[y 20)

for t > 2t), where ty satisfies (6.38). In addition, lf§ - S,(R), w — Mg isa
continuous map, then there exists 1 > 0 such that

Iyo O < 7™ lyo (0)]

forallt > 0.

Proof Recall that the Hamiltonian system (6.37) has exponential dichotomy, as
follows from Theorem 6.24, and that I~ (w) = [ M Oi”(w) ] is the Lagrange plane of the
solutions which tend to 0 as t — —oo. Of course, the function M, is continuous on
£2, and hence bounded. Therefore, it follows easily from Definition 1.75 that there

exist constants n; > 0 and 81 > 0 such that, if x(7) is any solution of any one of the
systems

X = (=A"(wt) + BT (01) (515]) " (w1) B(wt) Mo (01)) X, (6.45)

with x(0) = x, for arbitrary xo € R”, then |x(r)] < 51 e P17 |xo| for all
t < 0. In other words, the family (6.45) is of uniform Hurwitz type at —oo (see
Definition 1.72). Proposition 1.73 ensures that the family of adjoint systems

V = (A1) — Moo (1) B (01) (515]) ™! (1) B(@1)) § = Aco(1) ¥ (6.46)

is uniformly Hurwitz at 400. According to Definition 1.58, there are constants 1, >
0and B, > 0 such that || Ua, (1, 0) Uyl (s, )|l < n2 e P20 whenever 1 > s.

Now, M,,(?) tends exponentially fast to M, (w-f) in the sense of Theorem 6.29.
Define

N (1) = (Moo (@-1) = My (1) BT (@-1) ($15]) ™ (0+1) B(w 1)
and take 73 > 0 such that | N, (1)|| < n3 e:ﬂ’ forallo € £2 and all 1 > 21, Let Yo (?)

be a solution of equation (6.44) for w € £2. Then, since A, () = Axo(@-1) + N, (?),
one has

Yo() = Uny (t.®) Uy (210, ©) yu (210)

+ /T Us, (t,®) U;Olo (s, w) Ny (5) Yo (s) ds,
2

fo
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so that, if ¢t > 21,

t
1Yo @) < 2 e P20y (2u0) || + / mnze P07 e |y, (s)]| ds
2ty

and hence

t
P |y < e ly(200) | +/ mnze ™ Py (s)l ds.

2ty

The Gronwall inequality and the bound | "e=Prdr < 1/ for s > 21y, imply that, if
t > 2t,

1¥o DIl < n2 20y o) e™/Pe™P2 = . ey 2u0) |

for ne = nae?P2tmm/P and B, = B,, which are both independent of w. This
proves the first assertion.

Note finally that the last hypothesis of the proposition ensures that the map
[0, 2¢0] x Q - S:(R), ; (t,) +— M,(t) is jointly continuous, since M, (f)
solves (6.36). Therefore, also A, (f) is continuous on [0, 2] X Q , and hence there
exists k > 0 such that ||Uy,, (2f9)|| < « for all ® € £2. Consequently, for all w € 2,
Yo 220) || = |Ua, (2%) Yu(0)|| < & ||y (0)|, and the last assertion is true for the
constant ) = K 1.

The continuity of the attracting matrix-valued function My, can as usual be
interpreted in terms of conservation of recurrence. So if, for example, the initial
coefficients A, B, S, and S; are Bohr almost periodic functions and Q is their
common hull, then for each w € 5, the function t +— My (w-f) is Bohr almost
periodic and has frequency module contained in the joint one of (A, B, S, S1).

Note also that the regularity results of Sect. 6.3 can be applied to M, whenever
A, B, S, and S| satisfy the regularity hypotheses there assumed: M, depends nicely
onw € 2 andis a regular function of eventual parameters in the coefficients A, B,
S, and S;. In addition, it presents regularity properties when 2 is a differentiable
manifold.

Example 6.32 The section is completed with an example which illustrates how the
Kalman—Bucy filter “works”. Essentially the same example is treated in the original
paper [88]. Consider the stochastic scalar differential equation

dE() = a&(f) dt + saw(r) (6.47)

where a and s belong to R, s > 0, and w(?) is a standard one-dimensional Brownian
motion (thus w(f) ~ N(0,¢) for each t > 0). The initial value £(0) is taken to be
Gaussian with mean (o and variance my; that is, with the standard notation, £ (0) ~
N(uo,mp)). When a < 0 the equation (6.47) gives rise to an Ornstein—Uhlenbeck
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process (see Baldi [10]). One wishes to estimate the state £ (¢) of this process, based
on an observation process 7().
Let the observation process satisfy

dn(t) = b&(t)dt + s1dwi (1),
n0) =0,

where b and b, belong to R, b; > 0, and w(¢) is a standard Brownian motion
process which is independent of w(#). From the discussion carried out in this section,
the optimal estimate & (¢) satisfies

dE(t) = a&(r) di + F(D)(dn(r) — bE®) d).
£(0) = E£(0),
where f(t) = m(f) bs;* and m(7) satisfies the Riccati equation
m' = —b*s7im* + 2am + s> (6.48)

with m(0) = my. The quantity m(z) is the variance of the (Gaussian) error process
§@0) =§(0) —§().

The next step is to study the behavior of the function m(z) defining f (). One way
to do this is to introduce the Hamiltonian differential system

2.2
z’:[ 2abs1 }z:Hz (6.49)

N a

and note that (6.48) is the Riccati equation associated to (6.49). The eigenvalues of
H are +,/a? + b2s2s, 2 with eigenvectors

1
b_zs% (a + ./ a* + b2s2s1—2)

from which one can give an explicit formula for the fundamental matrix solution
of (6.49) and give and explicit formula for m(¢).

For a general (time-dependent) filter it is usually best to analyze the behavior
of the error covariance matrix by introducing the corresponding linear Hamiltonian
system (6.35): the presence of an exponential dichotomy will facilitate the deter-
mination of the stationary solution M (¢) of the Riccati equation (6.34), and the
determination of the rate of exponential approach of a solution M(r) of (6.34) with
M(0) > 0to Mso(2). In the present example, however, it is easier to study the Riccati
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equation (6.48) directly. The zeros of the right-hand side of (6.48) are

mx = b 25t (a +4/a* + bzszsl_z) .

(The inversion of signs is intentional, to maintain consistency with the previous
notation.) Hence, (6.48) can be written as

m' = —b s H(m —my)(m—m_). (6.50)

Note also that m™ < 0 < m™. If m(0) > m then one sees directly from (6.50) that
m(t) tends to m_ with an exponential rate which is initially bzsl_2 (m(0) —my), and
which increases with ¢ in such a way as to tend asymptotically to bzsl_2 (m_——my) =

2./a* + bzszsl_z.



Chapter 7
Nonautonomous Control Theory: A General
Version of the Yakubovich Frequency Theorem

The main purpose of this chapter is to state and prove a nonautonomous version
of the well-known Yakubovich Frequency Theorem [156], which was originally
formulated and proved for control systems x’ = A(?) x + B(f) u with time-periodic
coefficients. The extension of this theorem to the nonautonomous category is for-
mulated in terms of a linear-quadratic optimization problem involving an indefinite
quadratic function of x and u with nonperiodic coefficients. The nonperiodicity
creates difficulties which can be overcome using methods previously discussed in
this book. In particular, the Frequency Condition and the Nonoscillation Condition
of the periodic case are rewritten in terms of the occurrence exponential dichotomy
and of the properties of one of the Weyl functions.

The main results to follow appeared in the work of Fabbri et al. [47]. The
narrative of these results given here presents many more details of the proofs; some
of them appeared in Johnson and Nufiez [84]. Two more equivalent conditions are
added to the previous ones in the paper of Johnson et al. [80]. The paper [85] by
Johnson et al. contains a supplementary analysis of the hypotheses under which the
Frequency Theorem holds, which is also included here.

A more detailed description of the contents of the chapter completes this
introduction. Consider the control system

X =A()x+ B(H)u, (7.1

where x € R"” and u € R™, together with the quadratic form

O(t,x,u) = % ((x, G(@) X) + 2(x, g() u) + (u, R() u)). (7.2)

The functions A, B, G, g, and R are assumed to be bounded and uniformly
continuous functions on R, with values in the sets of real matrices of the appropriate
dimensions. In addition, G and R are symmetric, and R(f) > pgl,, for a common
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pr > 0 and all r € R. Note that now the condition G > 0, which was required in
the previous chapter, is not imposed. The relation between the control problem (7.1)
and the so-called supply rate Q is explained in Sect. 8.1 of Chap. 8.

Fix xo € R" and introduce the quadratic functional

Ty (X, u) = /0 - O(t, x(1),u(r) dt (7.3)

evaluated on the so-called admissible pairs (x,u): [0, 00) — R" x R™; i.e. those for
which u belongs to L*((0, c0), R™) and the solution x(z) of (7.1) for this control with
x(0) = x belongs to L2((0, 00), R"). The problem of minimizing Zy, relative to the
set of admissible pairs will be posed. In what follows, it will be assumed that (7.1)
is L2-stabilizable; that is, for each x, € R”, there exists at lfljlst one admissible pair
(x,u). The problem is of a complex nature bgcause now Q is not assumed to be
positive semidefinite. Indeed one can have inf Zy, = —oo0.

Yakubovich [156, 157] presented a complete solution to the problem in the case
when the coefficient matrices A, B, G, g, and R are all T-periodic functions. In
particular, he showed that, in this case, the existence of a minimizing pair (X, )
for each xo € R is equivalent to the validity of a Frequency Condition and a
Nonoscillation Condition. He also showed the equivalence of these with several
other conditions of a classical nature; for example the existence of a Lyapunov-type
function, and the existence of a stabilizing feedback control for (7.1).

In this chapter, Yakubovich’s results will be reformulated and proved in the more
general situation when A, B, G, g, and R are bounded and uniformly continuous.
In this context, a fundamental role is played by the concepts of exponential
dichotomy and rotation number for the family of linear Hamiltonian system which
is naturally associated to (7.1) and Zy, via the Pontryagin Maximum Principle and
the usual hull construction. More precisely, as described in the first section of this
chapter: the Yakubovich Frequency Condition will be replaced by the condition
that the Hamiltonian family admits exponential dichotomy, while his Nonoscillation
Condition will be replaced by an assumption that in particular ensures that the
rotation number of the family with respect to any ergodic measure vanishes. In fact
these conditions are related, as is explained below.

In the second and main section the above-mentioned conditions are stated and
their equivalence is proved. The basic results can be improved when some additional
properties on the recurrence of the coefficients (which are always valid in the
periodic case) are imposed. Some examples, which illustrate how these various
equivalences can be applied, are given. The last part of Sect. 7.2 is devoted
to relating the rotation number to the Frequency and Nonoscillation Conditions.
More precisely, under the same additional hypothesis as above, the nonautonomous
version of Yakubovich’s condition of strong nonoscillation (see [157], p. 1030),
which is reformulated in the nonautonomous setting in terms of the rotation
number, can be weakened. And the presence of the Frequency and Nonoscillation
Conditions can be characterized in terms of the instability zones for nonautonomous



7.1 The Frequency and Nonoscillation Conditions 369

Hamiltonian systems, which were labeled in Sect. 2.3 by means of the rotation
number.

The third and last section is devoted to a description of certain scenarios in
which the Frequency and Nonoscillation Conditions hold. Roughly speaking, there
are two different ones, depending on the presence or absence of the uniform weak
disconjugacy property discussed in Chap. 5.

The following notation will be in force throughout the chapter. As usual, { , )
and |- || are the Euclidean inner product and norm on R¢ for any value of d; and ||A||
represents the operator norm associated to the Euclidean norm for A € M,,x,, (R).
In addition, the Hilbert space L?([0, 00), RY) (for d € N) will be endowed with the
inner product (u, v); = fooo u’ (1) v(#) dt and the associated norm |uf|; = (u, u)}/z,
and represented by L2. And the norm [(x,w)|| = (|[x[|> + [u]?)"/? will be
considered in the product space L2 x 2.

7.1 The Frequency and Nonoscillation Conditions

This section is devoted to the definition of the Frequency and Nonoscillation
Conditions in the general nonautonomous setting. The Pontryagin procedure is
followed in order to minimize the functional (7.3) with respect to controls u € Lfn
and solutions x € Li of (7.1).

Consider the Hamiltonian

771,(t, x,y.u) = (y,x) — é(t, x,u) = (y,A(®)x + B(t)u) — @(t, X, u),

with O defined by (7.2). Using a uniform stabilization condition which will be
discussed in Sect. 7.2, the Pontryagin Maximum Principle can be proved to be valid.
Namely, if (X,0) € L? x L2, is a minimizing pair for Zy,, then there is a motion
¥(#) such that (x(¢), y(¢), u(¢)) simultaneously solves the corresponding Hamilton
equations

X = %—H (t,x,y,u)
y (7.4)

/

OH
y = —a—(t,x,y,u)
X
and
OH
Sg X0.¥0).u() =0.
u
This equality leads to the new feedback rule

u=R'OB"(y-R' (g (nx,
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which must be satisfied by (x(¢), y(¢),u(z)). Substituting this equality for u into
Hamilton’s equations (7.4) and writing z = [’y‘] yields

(7.5)

_pp-l,T —1pT
7 =H@)z, with H:[A BR™ ¢ BRB :|,

G_gR—lgT _AT+gR—lBT

and the minimizing problem is hence rewritten as follows: to find a solution z(7) =

[;gg] of (7.5) with X(0) = xo such that, if @ is determined from ¥ by the feedback
rule, then the pair (X, u) is admissible and minimizes fxg.

As explained in Sect. 1.3.2, if all the coefficient matrices of this problem are
bounded and uniformly continuous functions on R, then the Bebutov construction
gives rise to the hull space §2, and hence to families of Hamiltonian systems and
of minimizing problems in which the initial ones are included. If the functions A,
B, G, g, and R are all T-periodic functions with minimal period T > 0, then §2
is homeomorphic to a circle and the translation flow on it is equivalent to a one-
parameter group of rigid motions on the circle. But the periodicity is of course not
assumed here. And in fact there is no special reason to require §2 to be the hull of a
particular system: the results will be obtained uniformly on §2 (and hence for each
of its points) in the more general setting now described.

Let (£2,0) be a real continuous flow on a compact metric space, and let
A,G: 2 - M,x,(R), B, g: 2 — Mxn(R), and R: 2 — M,,x,»(R) be continuous
matrix-valued functions, with G and R symmetric and R > 0. Consider the family
of control systems

X =A@ x +Bonu, we, (1.6)

define
Bultxw = 5 (G X + 2 gl w) + @ R@DW). (]
Tyutxw = | "B, 6 x(0), ule) dr, (7.8)

for w € §2, and consider the problem of minimizing this functional when the pair
(x,u) is admissible; i.e. when it belongs to Lﬁ X Lfn and solves the problem (7.6)
with x(0) = x¢. The following lemma states a consequence of the admissibility of a
pair which will be used in the analysis. Its proof is identical to that of Lemma 6.18.

Lemma 7.1 If the pair (x,w) is admissible for the functional 7x0,w, then
lim;— 00 X(£) = 0.

As before, the uniform stabilization condition (which will be discussed in Sect. 7.2
and which in particular ensures the existence of at least one admissible pair (x, u) for
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each w € £2), together with the Pontryagin Maximum Principle, relates the problem
of minimizing Zy, ., to the family of linear Hamiltonian systems

7 =Hwiz, we R, (7.9)
where z = [?] forx,y € R" and

—1,T ~1pT
_ [A_BR_lgT BRTB T] (7.10)
G—gR g -A"+gR™'B
As usual, U(t, w) will represent the fundamental matrix solution of this system with
U(0,w) = I,, which is real and symplectic for all pairs (¢, ®).

The reformulation of the Yakubovich Frequency and Nonoscillation Conditions
is carried out making use of this family of Hamiltonian systems. In the case of the
Frequency Condition, under the assumption of T-periodicity of the initial matrices,
Yakubovich’s definition is as follows: if U(¢) is the fundamental matrix solution
of (7.5) with U(0) = I,,, then

det(U(T) — P 1,,) # 0 (7.11)

whenever 8 € [0, 27). In other words, the initial periodic Hamiltonian system (7.5)
has no null Lyapunov exponents, and therefore it has only one solution which is
bounded on all of R, namely the trivial one. This observation leads to the sought-
for generalized formulation of the condition: the Frequency Condition will be the
absence of nontrivial bounded solutions. Theorem 1.78 states that this hypothesis
can be rewritten as

FC (Frequency Condition). The family (7.9) has exponential dichotomy over £2.

Consider now the Nonoscillation Condition. Return to the case of periodic coeffi-
cients, and assume that the frequency condition (7.11) holds; or, in other words,
that the system (7.5) has exponential dichotomy on R. Let [T be the Lagrange

plane of the initial data giving rise to solutions which are bounded as t — oo (see
Remark 1.77.1). Represent [t by [);,8] and define [?Eg ] =U(r) [)f,g ]- Yakubovich’s
Nonoscillation Condition is then

detX(f) #0 forallreR. (7.12)
As Yakubovich points out [157], this condition can be expressed geometrically in
terms of the vertical Maslov cycle C, which is the complement in Lg of the set D

defined by

D={leLlp|l=[h]}CLr: (7.13)
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condition (7.12) holds if and only if [T (r) = U(t)-[T belongs to D for all ¢ € R.
The extension to the present nonautonomous setting of the nonoscillation condition
is hence clear. As usual, if the family (7.9) has exponential dichotomy over £2,
It (w) represents the Lagrange plane of the vectors giving rise to solutions which
are bounded as t — oo.

NC (Nonoscillation Condition). Condition FC holds and [T (w) € D for all
w € 2.

In other words, the Nonoscillation Condition is equivalent to the global existence
of the Weyl function M7 : see Definition 1.80. Recall that the set D is open, a fact
which will be used often in the chapter: see Proposition 1.28.

Remarks 7.2

1. If the Frequency and Nonoscillation Conditions are fulfilled, then all the systems
of the family (7.9) satisfy Definition 5.3 of nonoscillation at 400 and at —oo.
This is proved by Proposition 5.8.

2. Note that the definition (2.36) of the rotation number in terms of the Maslov
index and the subsequent Theorem 2.22 ensure that the rotation number of (7.9)
with respect to any o-ergodic measure on §2 vanishes when condition NC holds.
(This is also proved by the previous remark and Proposition 5.65.)

7.2 The Extension of the Yakubovich Frequency Theorem

The main result of [156] (Theorem 2) asserts the logical equivalence of six
conditions, when the coefficients A, B, G, g, and R are all T-periodic functions. One
of these conditions is the solvability of the problem of minimizing the functional
Zx,.» given by (7.8) subject to (7.6). Two more equivalent conditions are added to
the list in Theorem 1 of [157].

The main goal of this section is to reformulate Yakubovich’s six conditions (now
called Y1, Y2, Y3, Y4, Y5, and Y6) in a way appropriate to the case of general
nonautonomous control processes. Under an additional hypothesis (always valid
in the periodic case), two more conditions, Y7 and Y8, will be added to the list.
The logical equivalence of these conditions will be proved when the following
a priori condition of exponential stabilizability at 400 of the family of control
processes (7.6) is satisfied.

Hypothesis 7.3 There exists a continuous function Ky: 2 — M,,x,(R) such that
the family of linear systems

X = A(w1) x = (A(w1) + Blw) Ky(o) X, €, (7.14)
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is uniformly Hurwitz at 4-o0; i.e. there exist constants 7 > 0 and g > 0 such that,
forall w € £2,

1U3(t.0) Uz (s, 0)|| < ne P79 i > s, (7.15)

where U(t, ) is the matrix-solution of (7.14) with Ux(0, ®) = I,.

It will be seen later on (in Proposition 7.33) that the controllability condition C1
of Sect. 6.2 implies Hypothesis 7.3. And it will seen now that, in the general case,
Hypothesis 7.3 guarantees the L>-stabilization condition required for Yakubovich’s
results. In fact they turn out to be equivalent in the periodic case: see Theorem 1
of [156]. A more restrictive condition is required in the nonautonomous case, due to
the infinite-horizon nature of the optimization problem.

Proposition 7.4 If Hypothesis 7.3 holds, then there exists at least one admissible
pair for the functional Ly, ., given by (7.8) for each xo € R".

Proof Given xo € R", let x(¢) solve (7.14) with x(0) = x; and define
u(t) = B(w-t) Ko(w-)x(¢). Then u(f) and x(r) are square integrable in [0, co),
and (x,u): [0, 00) — R" x R™ satisfies (7.6).

Suppose that Hypothesis 7.3 holds, and consider the family of control systems
X = A1) X+ Blo) U, weLR, (7.16)

with A defined by (7.14). There is a basic relation between the families (7.6)
and (7.16): the equality

u(?) = u(?) + Ko(w-1) x(1) (7.17)

establishes a correspondence between pairs (x,u) which satisfy (7.16) and pairs
(x,u) solving (7.6). A systematic use of this correspondence and of the Hurwitz
nature of the family (7.14) will be made in the rest of this section, especially in the
proof of Theorem 7.10. Using the uniform boundedness of Ky, it is possible to show
that there exist strictly positive constants ¢; and ¢, (independent of ) such that,
if (7.17) holds, then

cr(IxIl + I1815) < 113 + llull7, < ca(lx]7 + [[017) - (7.18)

Lemma 7.5 Suppose that Hypothesis 7.3 holds. For all o € $£2, xo € R" and
U € L2, write the unique solution x(t) of (7.16) with x(0) = Xq as

X(1) =Xo (1) + Ao @), (7.19)
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where
X, (1) = Ux(t, 0) X, (7.20)
Lo @) (1) = / UL(t, o) U,Ail(s, ) B(w-s)u(s) ds . (7.21)
0

Then, there exist positive constants c3 and c4 such that, for all w € §2, xo € R" and
uel?,

IXolln < cslixoll and (Ao @]ln < cal[u]l, . (7.22)

In particular, X € Lﬁ.

Proof The first inequality in (7.22) follows immediately from (7.15). The second
one requires some more work. Define b = sup,cp, ||B(®)]|. Note that, by Holder’s
inequality,

, 2 ' 2
( /0 eI u(s)| ds) = ( /0 (e P2 () [y e P2 ds)
t t
< [t e [ e a2
0 0

1 [ 3 s
< - / e P9 |l(s) || ? ds .
B Jo

The second bound in (7.22) follows from this inequality and (7.15), since

e’} t 2
Ao @7 = /0 H /0 Ux(t,a))U;‘il(s,a))B(w-s)ﬁ(s)ds dt
b2 2 e’} t
‘Tn i ( /0 e P ||ﬁ(s)||2ds) dt
bZ 2 [’} . e’} B b2 2 .
= [ (woe [T erera) o= T e,

This completes the proof.

Yakubovich’s condition Y1 can be conveniently reformulated for the nonau-
tonomous case, in a way which will be now described. Fix @ € $2 and suppose
that the problem of minimizing the functional Zy, , subject to (7.6) can be solved
for each xo € R”". If it is assumed that Hypothesis 7.3 holds, then the Pontryagin
Maximum Principle is valid: Yakubovich explains this in [156], pp. 619-621. The
arguments used there rely on the abstract optimization theory givenin [155], and can
easily be adapted to the nonperiodic case thanks to the boundedness of G, g, and R.
See also Carlson et al. [25]. Hence, as seen in Sect. 7.1, if X, € R”, then to each
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(admissible) minimizing pair (X, u) of FIVXO,,H there corresponds a point yo € R” such

that the solution Z(r) = [;gg] of (7.9) with Z(0) = [}] lies in 2,, and (X, §. i)

satisfies
u(r) = R Y (w1) BT (w1) y(1) — R (w-1) g7 (w-1) x(1). (7.24)

Note that such a solution z(f) satisfies lim;—ooZ(f) = 0. This is proved as
Lemmas 6.18 and 7.1, since both Z and Z’ lie in L%n. In particular, for each w € §2
and xo € R", there exists at least one yo € R” such that zy = [;8] belongs to the

vector space

L(w) =zy € R”"| sup |U(t,w) 2| < o0} . (7.25)

t€[0,00)

In fact by letting xo vary in R", one obtains at least n linearly independent solutions
z1(1), ..., z,(¢) of the system (7.9) corresponding to the fixed point w which tend to
0 as t - +o0, and with z;(0), ...,z,(0) € [y(w). These n solutions play a role in
the proof of the following lemma, which is required to formulate condition Y1.

Lemma 7.6 Suppose that Hypothesis 7.3 holds and that the problem of minimizing
the functional Ly, ., subject to (7.6) can be solved for each Xy € R" and each v € £2.
Then,

(i) for each w € $2, the set l,(w) defined by (7.25) is a Lagrange plane. In
addition,

bi@) = {20 € B¥'| lim |[U(r.0) 2] = 0} . (7.26)

(ii) For each w € $2 and each Xy € R" there exist a unique yo € R" such that [;8]

belongs to ly(w) and a unique pair (X, 0) which minimizes Ly, .. In addition,

if[égg] = U(t.0) [ 2] then (%.§. 1) solve (7.24).

(iii) lp(w) € Dforall w € 2.
Proof

(i) Fix € £2 and define /(w) to be the vector space generated by the previously
found set of initial data {z;(0),...,z,(0)} C R?", which has dimension .
Then lim,, || U(t, w) zo|| = O for all zy € I(w), which implies that /() is a
Lagrange plane: if zy, wy € [(w), the symplectic character of U(t, w) ensures
that zJJ wy = z) U (1, 0)JU(t, w) wy, which tends to zero as 1 — oo.

Clearly, /(w) < l(w). Take now a nonzero vector wy € [,(w), and assume
for contradiction that wy ¢ [(w). Hence wy = w; 4+ w;, with w; € [(w)
and 0 # w, € J-l(w), the orthogonal complement of /(w) in R?*. Then
U(t, w) wy is bounded as t — o0, since U(t, w) w; tends to 0. On the other
hand, Jw, € (), so that U(t,w)Jw; tends to 0 as t — oo. The equality
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(i)

(iii)
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[w2]? = —whJiw, = —(U(t, 0)Jw2)TJ(U(t, @) W) leads to the sought-for
contradiction. Hence (7.26) holds and /,(w) = I(w) is a Lagrange plane, as
asserted.

The construction of /,(w) which was carried out before stating the lemma
shows the existence of y, for each Xy and described its relation with a
minimizing pair. The uniqueness of y( follows from the condition dim /;(w) =
n, and this completes the proof of (ii).

This last property follows immediately from (ii): just let Xy vary in order to
form a basis of R".

Yakubovich’s condition Y1 can finally be reformulated. Also the remaining seven
conditions are described at this point: Theorem 7.10 states the already announced
equivalence of these conditions. Recall that Hypothesis 7.3 is always assumed in
this section.

Y1.

Y2.

Y3.

The following two properties hold:

Y1;. For each w € 2, the problem of minimizing the functional ’fxo,w given
by (7.8) subject to (7.6) admits a solution for each xo € R". That is, there
exists a control functionu € L,Zn such that the solution x(¢) of

X = A(w1)x+ B(w-)u
with X(0) = x belongs to L2, and
Tyow(X,0) = infZy, ,,(x, 1),

where the infimum is taken over the set of admissible pairs.
Y1,. The map 2 — Lr, o +— [(w), with [,(w) defined by (7.25), is
continuous.

The Frequency Condition FC and the Nonoscillation Condition NC hold for
the family (7.9).

There exists a symmetric n x n matrix-valued function M+ which is continuous
on §2 and which is differentiable along the o-orbits, with the following
properties: first, M is a solution along the flow of the Riccati equation

M = —MBR'B"™M — (AT — gR™'B"\M
(7.27)
—M(A—-BR 'g") + G—gR 4",

where A, B, G, g, and R are evaluated in w-t; and second, if

K =R ' (—g" + BTM™), (7.28)
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then the family of systems
x' = (A(wt) + B(wt) K(w1)) X, we R (7.29)
is of uniform Hurwitz type at 4-co.
Y4. There exists a symmetric # x n matrix-valued function M which is continuous
on §2 and which is differentiable along the o-orbits, such that the form

Vo (t,X) = (X, MT (1) X)

satisfies

d% V,(t.x(1)) = 20, (t,x(f), u(?))

— (u(t) — K(w-t) x(t), R(w-t)(u(t) — K(w-1) x(1))) .

(7.30)

Here u: [0,00) — R™ is an arbitrary continuous function, while K: 2 —
M,,,x»(R) has the property that the family of systems (7.29) is of uniform
Hurwitz type at +oo. (It will turn out that K is defined from M™ by (7.28).)
In addition, x(7) is an arbitrary solution of the system (7.6) corresponding to @
and to the control u(z), and Q,, is defined by (7.7).

Y5. There exist § > 0 independent of w and a symmetric n x n matrix-valued
function M;r which is continuous on §2 and which is differentiable along the
o-orbits, such that, for each w € £2, the “Lyapunov function”

V2 (t,x) = (x, M (01) x)

satisfies
dit VE(1,x(1) < 2Q,(t.x(1), u(r)) — 8(Ix()]* + [u(@)||) (7.31)

for each continuous function u: [0, 00) — R™. Here, x() is any solution of
the system (7.6) corresponding to w and to this control u(¢), and Q,, is defined
by (7.7). "

Y6. The functional Zy,, is positive definite on the space of processes (x,u) € L? x
L2 which satisfy (7.6) with x(0) = 0. More precisely, there exists § > 0,
independent of w, such that

/0 B (. x(0) u(0) di = § /0 (XD + fu)|?) di (7.32)

for all such pairs (x, u). Here, 0, is defined by (7.7).

Assume now that there exists a o-ergodic measure m on §2 with Suppmy = §2.
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Y7. The Frequency Condition FC holds for the family (7.9), and the rotation
number of the family (7.9) with respect to mg vanishes.

Y8. There exists § > 0 such that if the function K: £2 — sp(n, R) is continuous
and satisfies maxyegp [|K(w)|| < &, then the rotation number of the family

7 = H)+ Kz, ocf (7.33)

with respect to mg vanishes.

Remark 7.7 Note that conditions Y3 and Y4 include Hypothesis 7.3. In addition,
it will be seen in the proof of Y2=>Y3 in the next theorem that also Y2 implies
Hypothesis 7.3. That is, conditions Y2, Y3, or Y4 suffice by themselves to guarantee
the solvability of the minimization problem.

Remarks 7.8

1. In the periodic case, there exists a unique o-invariant (and hence o-ergodic)
measure mg, which in addition satisfies Suppmy = £2: see Remark 1.13.2.
On the other hand, and again in the periodic case, the rotation number of the
family (7.9) vanishes if and only if the systems are nonoscillatory, in the sense
of Definition 5.3: see Remark 5.4. This means that Y7 agrees with the second
equivalent condition of Theorem 1 of [157], which imposes the exponential
dichotomy and the nonoscillation of the periodic Hamiltonian system.

2. In the same sense, Y8 is a nonautonomous version of the Yakubovich condition
of strong nonoscillation. This condition, formulated as the third equivalent
condition of Theorem 1 of [157], imposes that all the Hamiltonian systems in
a neighborhood of the initial one are nonoscillatory. It is important to emphasize
that Y8 gives a necessary and sufficient condition for the simultaneous validity
of the Frequency Condition FC and the Nonoscillation Condition NC formulated
exclusively in terms of the properties of the rotation number. In addition,
Theorem 7.18 shows that this condition can be weakened in some cases.

A preliminary lemma will be useful at several points of the proofs of the main
theorems of this section, as well as in Chap. 8. Recall once more (see Sect. 1.3.5)
that the family of Riccati equations (7.27), which is associated to the family of linear
Hamiltonian systems (7.9), defines a local skew-product flow 7, on 2 x S,(R): in
time ¢ it sends the pair (@, My) to the pair (w-t, M(t, w, My)), where M(t, w, M) is
the solution of the equation (7.27) with M (0, w, My) = M,.

Lemma 7.9 Take (w, M) € 2 x S,(R) and define

V(o,M() (tv X) = (Xv M(tv w, MO) X)
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as long as M(t, w, My) exists. Then, for any pair (x(t),u(t)) solving (7.6),

% Va),Mo (tv X(t)) = Zéw (t’ X(t)’ ll(t)) (734)

- (ll(t) - Kw,Mo (t) X(t)v R(wt)(u(t) - Kw,Mo (t) X(t)»
for
Koo (1) = RN (w-1)(—g" (w-t) + B (w-1) M(t, 0, My)) .

Proof A straightforward computation from the Riccati equation (7.27) and the
control system (7.6) proves the result.

Theorem 7.10 Suppose that Hypothesis 7.3 holds. Then,

(1) all of the statements Y1, Y2, Y3, Y4, Y5, andX6 are equivalent. In addition,
if they hold, the minimizing pair (X(t), u(t)) for Ly, ., is defined from the unique

solution [;8 ] of (7.9) satisfying X(0) = X¢ which is bounded as t — oo (which

in turn satisfies [;‘Eg; ] = [ M+’((2)) o ] ) by means of the feedback rule (7.24); and
Tyoo(X,0) = —(1/2)(x0, M (@) Xo).

(i) If, in addition, there exists a o-ergodic measure my on §2 with full topological
support, then they are all also equivalent to statements Y7 and Y8.

Proof

(i) Following Yakubovich’s strategy, the equivalence of the first six conditions
will be proved by checking that Y1=Y2=Y3=Y4=Y1, and then that
Y2=Y5=Y6=Y1. The steps which require new or extended arguments with
respect to those given by Yakubovich in [156] are Y1=Y2 and Y6=Y1.
Nevertheless, for the reader’s convenience, most of the details of all the steps
will be explained. The proof of the last assertions in (i) is implicit in the proof
of the equivalences.

Y1=Y2. The main step consists in proving that, if Y1 holds, then the fam-
ily (7.9) has exponential dichotomy over §2. By Theorem 1.78, it is sufficient to
prove that no equation (7.9) admits a nonzero solution which is bounded on all of
R. This is done in what follows.

As explained in Remark 1.27.3, for each w € 2, the Lagrange plane /(@) can
be represented by a 2n X n matrix [g;] with @;(w) + iP2(w) € U(n,R), this
representation being unique up to multiplication by any matrix in O(n, R). Define

~ @O foll
2, = %(w,[q)ﬂ)m € R, l(w) = [q)ﬂ, ®) + id) € Un,R)} ,
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which due to the continuity of /, and the compactness of U(#, R) is a compact subset
of 2 x My, x,(R). Theorem 1.41 ensures that

_ - — @0 0] t,wa®07¢0
0p:R X2y — §2,, (t,a), |:¢§)i|) -~ (a)-t, [@;Et w, P @Dz);iD

defines a continuous flow on 5;,. Here, &,(t, w, 9?, QDS) and &, (t, w, P9, @g) are
the solutions of (1.15) with initial data 45{) and @g respectively, and they satisfy
(1, w, dY, @g) +iDs(t, 0, DY, QDS) € U(n,R). Theorem 1.41 also ensures that, if

(a), [zg]) € 51,, then

Uy [ 2] = [ 1000, 9. 0 Ri.0. 9. 95.1)
Y| Dt 0, Y, PN R(t,w, DY, D), 1,) |

where R(t, w, ®), @), 1,) is the fundamental matrix solution with value I, atz = 0

of the system

X =S(wt, & (t,o, P, D)), &1, w0, D), ) x =S <gb<,,w [¢;>]>)

£ 0 £
¢2

(7.35)

with S defined by (1.18). Take xo € R" and define z, = [zg]xo € ly(w) and
2

z(t) = U(t, w) 7o. It follows easily that |z(¢)|| = ||x(¢)||, where x(¢) is the solution
of (7.35) with x(0) = x;. This and the alternative definition of /,(w) given by (7.26)
ensure that every solution (7.35) tends to 0 as t — oo. Since this happens for all

(t,a), [zg]) S .5;,, the family (7.35) has exponential dichotomy over 5;, (see
Propositiz)n 1.74), which in turn implies that every nonzero solution of any of the
systems (7.35) is unbounded as t — —oo (see Proposition 1.56).

Since any solution z(#) of (7.9) which is bounded as t — oo satisfies z(0) €
Iy(w), the above relation between norms ensures that z(r) is not bounded as
t — —oo. This proves the exponential dichotomy of the family (7.9) over £2,
and hence the Frequency Condition. Note also that, with the usual notation for
the Lagrange planes associated to the exponential dichotomy, I(w) = [T(w)
under Hypothesis 7.3 when condition Y1 holds: see Remark 1.77.2. Hence the
Nonoscillation Condition follows from Lemma 7.6(iii). The proof of Y1=Y2 is
complete.

Y2=>Y3. The Frequency and Nonoscillation Conditions show that /™ (w) can

be represented by [ M+”(w) ] As is explained in Sect. 1.3.5, the action of U(t, w)

takes the Lagrange plane /T (w) to [T (w-f), and hence M™ solves the Riccati
equation (7.27) along the flow. Recall that there exist constants n > 0 and 8 > 0
such that for all @ € 2 and zy € I (w), the inequality ||U(t, ) zo|| < ne #"||zo]|
is valid: see Definition 1.75. Take any w € 2 and any xo € R", define zp =
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[ Mi”(w)] Xo, which belongs to I*(w), and represent U(t,w)zy = [;‘8] Then

[;‘8] € I (w+), and hence y(f) = M (w-t)x(¢) for all + € R. This ensures
that x(7) is the solution of (7.29) with x(0) = x¢, where K is defined by (7.28).
Finally, ||x(s)|| < ||z(¢)|, and the continuity of M™ provides a k > 0 such that
lzo|| < k|[xol|. This shows that ||x(¢)|| < kn e #'||xo|, and hence that Y3 holds (see
Proposition 1.74).

Y3=Y4. This implication is a consequence of Lemma 7.9 applied to the matrix-
valued function M of Y3.

Y4=-Y1. Assume that the condition stated in Y4 holds. Then, for all pairs (x, u)
with the properties required there,

X(ATM + MTA+ MTY =G+ KTRK)x + 2u!(BTMt —¢" —RK)x =0,

where u and x are evaluated in ¢ and all the matrices are evaluated in w-t. Take
t = 0. For any xo € R”" it is possible to choose a pair such that x(0) = x¢ and
u(0) = 0, which ensures that (M*) = —ATM* — M*A + G — KTRK on £2, and
hence that u/(B"M* — g7 — RK) x = 0 for all pairs (x, u) satisfying the properties
required in Y4. And now, for any xo € R", it is possible to choose a pair in such
a way that x(0) = x¢ and u(0) = (BTM* — g — RK) xo, which implies that
B'™M* — g" — RK = 0 on £2. The last equality ensures that K and M are related
by (7.28), which together with the first inequality shows that M is a solution along
the flow of the Riccati equation (7.27). (Incidentally, note that Y4 implies Y3.)
The next step is to derive from equality (7.30) that

2T 5 (%, ) = — (X0, M (@) x0) + /oo IR (w-1) ((r) = K(e-1) x(1)) |2t
0

for each admissible pair (x,u) € L2x L. Let K satisfy Hypothesis 7.3 (for instance,
Ko = K). Given such a pair, consider the function u given by (7.17) (i.e. u(s) =
u(t) — Ko(w-1) x(1)), which also belongs to L2, and note that x solves the system
X = Z(w-t) x+B(w-t) u(f) with x(0) = xq, where A = A+BK,. Take a sequence of
continuous functions () in L2 with limy—c, Uy = Win L2, and represent by x;(?)
the unique solution of the system x’ = X(a)-t) X + B(w-1) Ui () with x,(0) = xo.
Then x(f) — x4(f) solves X' = A(w-1)X + B(w-r) (& — W) with initial datum 0. It
follows from Lemma 7.5 that ||x — x|, = ||[Ae (@ — )|, < csl[t — Wi|,n, so that
X = limy_ o0 Xx in L,zl. In addition, if uy is defined from (x4, ;) by (7.17), then
u = limy_00 uy in L2, and x; solves X' = A(w-f) x + B(w-1) u(t). Equality (7.30)
(which holds for continuous functions) and Lemma 7.1 applied to the admissible
pair (X, u;) imply that

Z’fw,xo(xk,uk) = —(XO,M+(a)) Xo)
+ /OOHRl/Z(w't) (w (1) — K(w-t) xi (1)) || dt .
0

and this together with the already verified L>-convergence proves the assertion.
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Clearly —(1/2)(xo, Mt (w) X¢) is the minimum value of FIVw,XO, and it is attained
at the pair (x,u), where u(f) = K(w-t)X(¢) and X solves (7.29) with x(0) = xo.
Note that the admissibility of this pair is guaranteed by the Hurwitz assumption on

K. Tn addition, if §(1) = M* (1) X(t), then [;Eg] solves (7.9), and the feedback

rule (7.24) holds. These facts and Lemma 7.6(ii) ensure that the Lagrange plane
Ip(w) defined by (7.25) can be represented by [ Mi”(w) ], which in turn implies the
continuity of 2 — Lg, o — ().

Y2=YS5. Following the scheme given in [156], pp. 624-625, take § > 0 small
enough to ensure that R — 81, > 0, and consider the family of systems

7 = Hy(w )z, w € 2, (7.36)

where Hj is obtained by substituting G and R by G — 41, and R — 81, in (7.10).
Define also

_ ~ )
Q% (1,x,u) = Q,(1,x,u) — 3 (Il + [[ufl?)

1

=3 ((x, (G(w-1) — 81,) x)

1 2(x, g(w)u) + (u, (R(w) — 8I,,) u>)

for w € £2, and note that the family (7.36) is obtained from the old family of control
problems (7.6) and the new family of quadratic forms {Q | @ € 2} in the same
way as (7.9) was constructed from (7.6) and {Q,, | w € £2}.

Theorems 1.92 and 1.95 ensure that, for § > 0 sufficiently small, the fam-
ily (7.36) has exponential dichotomy over §2, and that the corresponding Lagrange

plane lgL (w) belongs to D for all w € £2: lgL (w) = [ M;"(w)]. In other words,
condition Y2 is satisfied for these values of §. Lemma 7.9 applied to the solution
M;' of the Riccati equation obtained from (7.36) ensures that, if Vf)(t, X) =
(x, M;‘ (w-1) x), then

d ~ ~
7 Vo (8,x(0) < 200, (1,x(1), u(1) = 29, (1, x(1), u(r) — 8(I|x(1)’[| + [[u(d]*)

whenever (x,u): [0, 00) — R” x R"” solves (7.6). That is, Y5 holds.

Y5=Y6. Take a pair (x,u) € L? x L2 satisfying (7.6) with x(0) = 0; i.e.
an admissible pair for Zy,. The arguments in the second step of the proof of
Y4=-Y1, based on Hypothesis 7.3, Lemmas 7.5 and 7.1, and the density of the set
of continuous functions in the set L2, can be repeated to derive from relation (7.31)

m?>
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(which is ensured by Y5) the following equality:
0 = (x(0), M} (@) x(0))
< 2/0 (Qu (& x(1), u(®) = (X * + [u(®)|)) dt

which implies (7.32) and hence Y6.

Y6=Y1. This assertion will be proved by amplifying some arguments used
in [156]. These argument are sufficient to prove Y1;. However, they are not in and
of themselves sufficient to prove the continuity of the map w +— (@) in Y1,.
Nevertheless it will be seen that the approach of [156] can be adapted to prove also
the required continuity.

The relation between the families of control systems (7.6) and (7.16) established
before Lemma 7.5, and the results proved there, will be systematically used in what
follows. Define

Vo (x0) = {(x.0) € L} x L;, | x(0) = xo and (7.19) holds on [0, c0)} .

Itis easy to deduce from the inequality [|A,, (u; — uz) [ < ca [a; — ]| (see (7.22))

that V,, (Xo) is a closed subset of L2 x L2 Set V,, = V,, (0). and note that Y, is a
closed linear subspace of the Banach space L2 x L2 In fact V,, can be identified with
the graph of the bounded linear transformation A,,: L2, — L2, W +— A, (u) defined
by (7.21): V,, = {(A,(@),0) |0 € L2}. And VY, (xo) is the affine space (X, 0) + V.,
with X,, defined by (7.20).

Associate in the same way the sets V,(Xo) and V,, to the family (7.6). Note that
both V and V,, are Banach spaces in the norm inherited from L? x L2 , and that the
map Vo = Vo, (x,10) > (x,u—Kp(w-) x) defines a bijection between V and V,,.
This bijection is in fact bicontinuous. Recall also the definition (7.8) of Ixo (X, 1)
for (x,u) € V,(xo), given in terms of the map 90, (t,x, u) defined by (7.7). Now, for
(x,0) € Vo (x0), define

0, (1, x,0) = O, (t,x,1 + Ko(w1) x) (7.37)

% ((x, Glw1)x) + 2(x, 3w 8) + (& R(w-) ﬁ)) :
Ty (x,10) = /0 - 0., (. x(1),0(1)) dt, (7.38)

where G = G + gKo + KIg” + KIRKy and ¢ = g + K/R. The problem to
be considered now is the minimization problem for the family of functionals fx(),w
subject to the family of control problems (7.16). Note that the corresponding set of
admissible pairs is precisely V,,(Xo).
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The assumed condition Y6 states the existence of a constant § > 0 independent
of w € £2 such that Zg,(x,u) > §(||x||> + |[u|?) for all processes (x,u) € V,. It

follows easily from (7.18) that there exists § > 0 independent of w € §2 such that
Too(x.8) = 3(xII; + 1G], (7.39)

if (x,@) € V,,. Next, let j,: L2 — V., be defined by j, (@) = (A, (@), W), which is a
bounded linear transformation with bound independent of w € §2, since, according
to (7.22), A, has these properties. It will be convenient to polarize the quadratic
form fo,w 0j,. To this end, if U, v € 12, define

W@ =3 [ (@ 0,600 2,00) + 2@ 0.2 v0)

+ (@) U(1), Ao, (V)(1)) + (U(?), R(w-1) V(t))) dr
(7.40)

and note that G, (8, v) = G, (v, ) and that g, (@, 0) = Zy.,,9j, (0). The boundedness
of Ay, G, g, and R, Holder’s inequality, and the lower bound (7.39), provide strictly
positive constants c¢5 and c¢¢ independent of w € §2 such that

(G0 @, V)| < es[@ulvln and G, (@ 8) > colul, (7.41)

whenever u, v € Lfn. More properties of this map will be explained below.
For each w € 2 and xg € R", Zy, ,, defines a functional on L,zn, sending U to

% @+ Ao (). 8) = / " Bt R (1) + Ao (@) (1), B(0)
0
— G, @.8) + /0 (o @)(1). C() R0 () + Ro (). 3(e1) 8)))
1 [ _ —~ -
+ 5/0 (Xu (1), G(w-1) X, (1)) dt .

It is clear that minimizing fxo,w on 9(1, (xo) is equivalent to minimizing the quantity
G (W, W) — 2¢, (W) on L2, where ¢, is the functional given on L2, by

m>

2¢,(U) = — /O (Ao @), G@) X0 (0) + R0 (1), BN WMD) dt.  (7.42)

Note that this functional is again uniformly bounded in w, due to (7.22) and the
boundedness of G and g. According to the Lax—Milgram theorem (see Corollary 5.8
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of [23]), the inequalities (7.41) and the symmetry of g,, ensure the existence of a
unique U,, € L2, such that

Uy, 0,) — 2¢,(U,) = ,I\nlrzl (9o (0, 1) — 29, (W)) .
uel;

This means that there exists a unique process (Xp, U,), with x,, = f\\w(ﬁw)’ at
which Zy, ., attains its minimum value on the set of admissible pairs V,,(Xo). In
other words, condition Y1, holds for the optimization problem now considered.
The goal now is to prove that the map §2 — L2, @ > U, is continuous. This is the
crucial point in the extension of Yakubovich’s proof of the implication Y6=Y1 to
the general nonautonomous case.

To this end, recall that the Lax—Milgram theorem can be viewed as a corollary
of a fundamental result of Stampacchia ([23], Theorem 5.6), according to which the
vector U, is characterized as the unique U € L2, such that

Go@,v—1) > ¢,(v—1) forallvel?. (7.43)
The proof of Stampacchia’s theorem must be analyzed in order to prove the asserted
continuity. Let w,, be the unique element of Lfn such that @, (@) = (w,,, ), for all

ue Lfn. Further, let p,,: Lfn — Lfn be the unique bounded linear operator such that

Jo@. V) = (U (@),v), forallve L2

m >

(7.44)

which according to (7.41) satisfies

[l o @) ||, = | s”up (e (@), V)| = ” s”up 19 @, V)| < cs|[ulln
v[m=1 v[m=1

and (4, (W), W),, > cs|[0]|>. According to (7.43), U, is characterized as the unique
u € L2 such that

(o@), v —1),, > (W,,v—1), forallvel?.
This holds for a given 0 € L2 if and only if there exists p > 0 such that
(PWy — p @) +U—1U,v—1), <0 forallvel?,

which in turn holds if and only if & = pw,, — p 4, (W) + U, i.e. if and only if W is a
fixed point of the affine map

sw:len—>Lfn, V> pW, — P e(V) + V. (7.45)
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Ifvi, vy € Lfn, then

50 (v1) = 50 (V)12
= |[vi = V2|2 = 2p{te (Vi = V2), Vi = V) + 02 [l 1o (Vi — V2) |1

< |vi = v2|l3,(1 = 2pc6 + p*c?) .

If p is close enough to 2¢e/ cg and to the left of this value, then the constant k =
(1 —2pce + p*c2)!/? belongs to (0, 1), so that the map s, is a uniform contraction
on L2. It is important to note that k is independent of @ € £2. The conclusion is
that U, is the unique fixed point of the uniform contraction s, on Lfn, where s, is
determined by the chosen value of p.

Lemma 7.11 below, which is fundamental for this proof, is a technical result
which proves that the three maps

.Q—>Li, O X,,
L2 x> L, (0.0) - A,®@),

2 XL — L2, (0,V) > 5,(V)

respectively defined by (7.20), (7.21), and (7.45) are continuous. Assume for the
time being that Lemma 7.11 is valid. Since, for , ®; € §2, one has

[a,, _ﬁwl i = 50 (W) — Sw) (ﬁan)”m

< |Is(Wy,) — Sw) W) [l + (B u,) — Sw) (ﬁan)”m’

it follows that (1 — k)||U, — Uy, ln < |50 (Wy) — Sw, @) |m> Which implies the
continuity of 2 — L2 ,® + U,. In turn, this implies the continuity of £2 —
L2 o+ x, with X, =X, + A, (U,). That s, for each xo € R" the map 2 — L2 x
L2 sending o to the unique minimizing pair for fxo,w is continuous. This completes
the fundamental part of this step of the proof.

The following step is to apply the Pontryagin Maximum Principle to the
stabilized system (7.16). As stated before, that this can be done is proved in [156],
pp. 619-621. Fix xo € R", and let (X0, U,) (with X, = A, (1,)) be the minimizing
process for Zy, ,,. Introduce the Hamiltonian

Ho(t,x.y.0) = (y.X) — Q0 (. x.0) = (y. A(w1) X + B(w1)8) — O (£, X, 7).

According to the Maximum Principle, there is a solution y,, € L? of the adjoint
equation

aAw ~ - S ~ ~
Y =- ;,i (1, %0, ¥, 0y) = —AT(@1) y + G(01) X, + Z(01) T, (7.46)
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such that (0%, /90) (¢, X, (£), Yo (). T,y (1)) = 0. Hypothesis 7.3 and Proposition 1.73
ensure that the adjoint family y’ = —A” (1) y is of uniform Hurwitz type at —oo,
i.e. there exist positive constants 7 and 8 such that

IUD™! (1. 0) UL(s, )| < 7P (7.47)

whenever w € 2 and 7 < s. Since the map ¢ — G(w-f) X, () 4+ 2(w-1) 8y () belongs
to L2, it follows that

Yol = = [ (U500 UL(6.0) Clars) 59 + ) Bu(0)

is the unique solution of (7.46) in Lﬁ: on the one hand, it follows from (7.47)
that it is square integrable (see the proof of Lemma 7.5); and, on the other hand,
the existence of another square integrable solution of (7.46) would imply the
existence of a solution in L2 of the homogeneous equation y’ = —ZT(art) y, and
hence the existence of a globally bounded solution (see the proof of Lemma 6.18),
contradicting Proposition 1.56.

The next objective is to check that the map 2 — R", o > y,(0) is continuous.
This is a simple consequence of (7.47), of the continuity of Uy, and of the continuity

of the map 2 — L2, w +> g, defined by g,(s) = G(@-5) X (5) + 2(-5) Ty (5),
which in turn follows from the continuity and boundedness of G and ¢ and from the

continuity of the maps w + X, and @ > U,. The details are omitted: see the proof
of Lemma 7.11 below for similar considerations.

The function z,,(f) = ’y‘z 8 solves the linear Hamiltonian system z' = H (wh)z
given by
fitw) — | A@) ~B@ R @)2'@)  B@)R@) B @)
G(w) —g(@)R@)g" () —AT(w) + (@) R (@) B"(w) |

In addition, lim,—,  Z,, (#) = 0. This is proved again as was done in Lemmas 6.18
and 7.1, since z,, and z, lie in L%n.

Recall that during the whole procedure, X is fixed. Represent the just-determined
vector y,,(0) by yx,.»- The continuity of 2 — R", @ > yx, » has been established.
As explained when describing condition Y1, the Lagrange plane/l\;, (w) associated to
the minimization problem studied above admits the representation [ A{fw ], where the
columns of M,, are given by the vectors Ye, o, - - . , Ye,.» associated to the coordinate
vectors e, ..., e, (see Lemma 7.6). This proves the continuity of the map 2 —
Lr, ® »—>/l\;,(a)).

Putting all the above information together: the families of control systems (7.16)
and functionals (7.38) satisfy condition Y 1. This result must be now carried back to
the original control systems (7.6) and functionals (7.8). It is obvious that the unique
minimizing pair for Zy, ., (X, u) in the set of admissible pairs V, (Xo) is (Xy, U,) with



388 7 A General Version of the Yakubovich Frequency Theorem

u, (f) = U, (1) + Ko(w-1) X, (1), since defining U, (r) from u by this equality yields
Txp.0(X,0) = Ly, ,»,(x,1). In particular, condition Y 1; holds. And, on the other hand,

Xo (1)
Yo (t)

system (7.9). In fact, H(w) = ﬁ(a)). This means that the Lagrange plane /,(w)
given by (7.25) agrees with/l\b(a)). Therefore, it is continuous, so that condition Y1,
is satisfied. The proof of Y6=Y1 is finally complete (once Lemma 7.11 has been
proved).

(ii) Suppose now that there exists a o-ergodic measure my with Suppmy = §2.
Note that, once the equivalences in (i) have been proved, it is enough to check that
Y2=Y7=Y5,and Y7=Y8=Y7.

Y2=-Y7. This implication has already been proved: see e.g. Remark 7.2.2. Note
that it does not require the existence of my.

Y7=Y5. Repeating the ideas of the proof of Y2=Y5, take §p > 0 small enough
to ensure that R — 6y, > 0, define

it is easy to check that the same function z,,(f) = [ ] satisfies the Hamiltonian

~ ~ 8
Q) (1, x,u) = Q, (1, X, u) — 3 (IxII> + ull?)

forw € £2 and § € (0, 8], and consider the perturbed families (7.36), associated
to (7.6) and the quadratic forms Qi. By taking a smaller §, > 0, if needed, it is
possible to guarantee that the families (7.36) have exponential dichotomy over §2 for
8 € [0, 8] (see Theorem 1.92). Therefore, one can repeat the arguments of the proof
of the “only if” assertion of Theorem 3.50 in order to deduce that also the rotation
number of these families with respect to my is zero (see also Remark 3.51.1).

Fix a value § € (0, o], and note that condition Y7 holds for the corresponding
family (7.36). According to Theorem 5.73, this fact ensures the existence of ¢ > 0
such that

7 = (Hg(a)-t) + ¢ [8: (I)z :|) z (7.48)

has exponential dichotomy over 2, and such that the corresponding Weyl functions
Mg'; are globally defined. (Note that the property Suppmy = £2 is required at this
point.)

Define V24 (1, x) = (x, M;:E (w-1) x). The proof will be completed once it has been
shown that for all # > 0, all @ € £2 and all pairs (x(z), u(f)) solving (7.6),

d ~ ~
7 VEE(ex(1) <290 (t.x(1).u() = 2 Qy(t.x.w) = (IIx[1* + ul?).  (7.49)
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since this ensures that Mg'; satisfies Y5. Property (7.49) will be first established

for t = 0. Let M; (t,a),Mg: (w)) represent the solution of the Riccati equation
corresponding to (7.36), namely

M' = —MB(R — §81,,))"'B"™M — (AT — g(R—61,,)"'B")\M
(7.50)
—~M(A—BR~-8L,)""g") + (G—68I,) —g(R—$8I,)'g"

which satisfies Ms(0, w, Mg'; (w)) = M;jg (w), and which is defined for ¢ in an open
(bounded or unbounded) interval centered at 0. Here the coefficient functions A, B,
G, g, and R have argument w-t. Applying Lemma 7.9 to the family (7.36) and to the

function V8 e )(t, X) = (X,Mg(t,a),M;"g(w)) x) yields
ba
d fall
Vo X(0) <280 x0).u)

Note that Mg'; (w) is a solution along the base flow of the Riccati equation associated
to (7.48), which has the expression (7.50) with B (R — §1,,)~! B” replaced by B (R —
81,)"' BT +¢l,. Ttis easy to deduce from this fact, from the Riccati equation (7.50)
satisfied by M;(t, o, M;:E (w)), and from M;(0, w, M;'s (w)) = M;'s (w), that

(M) (@) = My(t.0, M5, @) | _ = e M)2(@) = Mito.MF,@)|
' : 1= : ' 1=
and hence, using again the equality M;s(0, w, M;jg (w)) = Mg'; (w), that

9 yie 1 x(1)

. <208 (0,%(0),u(0)) .

=0

@, X(t))

< —
= +
=0 dt CRUANC)

This proves (7.49) for t = 0, all w € £2, and all pairs (x, u) solving (7.6).

Now, given s € R, define x,(f) = x(s + ) and uy(f) = u(s + ) and note that
the pair (x,, uy) solves (7.6) for w-s. It is easy to check that (d/df) V3 (t, x(1))|1=s =
(d/dt) V22 (t,x4(t))| =0, Which ensures that

<20 (0,%,(0),u,(0)) = 208 (5,x(s), u(s)) .

1=s

d% VB (1,x(1))

This completes the proof of (7.49) and of the implication Y7=Y5.

Y7=Y8. Since the family (7.9) has exponential dichotomy over §2, Theo-
rem 1.92 provides § > 0 such that the family (7.33) has exponential dichotomy
over 2 if max,eg |[K(w)|| < 8. The continuous variation in K of the rotation
number with respect to myg (established in Theorem 2.25), the fact that its image
lies in a discrete group when the exponential dichotomy property holds (ensured by
Theorem 2.28), and the condition that it vanishes for (7.9) (included in Y7) prove
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that the rotation number of (7.33) is zero whenever max,eg ||[K(w)|| < &, which
means that Y8 holds.

Y8=Y7. Take a positive definite continuous function I': 2 — S,,(R), and
recall that I' satisfies the conditions described in Hypotheses 3.3 with respect
to (7.9) (see Remark 3.5.1). Consider the families of perturbed Hamiltonian systems

Z = (H(wt)+ 2] 'Twt)z, ocR. (7.51)

Condition Y8 ensures that the rotation number with respect to myg is zero at
least for the families corresponding to the values of A which belong to an open
interval centered at 0. Theorem 3.50 ensures that all these families have exponential
dichotomy over £2. That is, the statements of Y7 hold.

Lemma 7.11 Suppose that Hypothesis 7.3 and condition Y6 hold, and fix x, € R".
Then the maps

.Q—>Lﬁ, O X,,
MR XLy =L, (@,0) - A1),

2 XL — L2, (0,V) > 5,(V)

respectively defined by (7.20), (7.21) and (7.45) are continuous.

Proof The proof of the continuity of 2 — Li, ® +— X,, which is somewhat
simpler than the other ones, is omitted. Fix (w,0) € 2 x L2. Since A, (0) —
Ao, (U1) = A, (@) — Ay, (W) + Ay, (@W—T1), the second bound in (7.22) shows that to
check the continuity of A: £2 x Lfn — Lﬁ it suffices to check that, for each fixed
wp € 2 andu € Lfn, and for each sequence (wy) with limit @y, one has that
limg 00 [ A (@) — Aay @]l = 0. Write V(,5,0) = Us(t,w) U,Ail(s, ) B(w-s)
and b = sup,p, |[B(w)|. The bound (7.15) ensures that, for all pairs w,® € £2,
IV(t,s,w) — V(t,s,@)| < 2bne Pt if t > &, and hence fot |V, s, w) —
V(t,s,0)||ds <2bn/p forall t > 0 and fsoo |V(t, s, w) —V(t,s,0)|dt <2bn/p
for all s > 0. Using Holder’s inequality as in (7.23),

”/\wk (ﬁ) - Acoo (ﬁ)”i = /0 ”/\wk (ﬁ)(t) - /\wo (ﬁ)(l)||2 dt

= % 0 (/o IV, s.0r) = V(t. s, 00)| ||ﬁ(S)||2ds) dt
_ % o ( / IV(t,5, 00) = V(1.5 00)] d,) is
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Take & > 0 and write [~ = [3° + fvso Then,

2]9” o . ) o0
T [[a(s) | 1V (t,s,ap) — VI(t,s,wo)l| dt ) ds
S0 s
Py [ , 2
=g ; )" = —

if 5o is large enough, for all k¥ € N. Fix such a value of sy, and note that to complete
the proof of the continuity of A it is enough to show that, given any & > 0,

o0
/ |V, s, o) —V(t,s,wo)| dt <&
0

for all s € [0, so] if & is large enough, since then

2]9” S0 . ) e e]
T ; [[a(s)]| / IV(t, s, ) — VI(t,s,wo)| dt | ds <

And this is easy: first, for all s € [0, s¢],

2bn
B

2152
€ [[ulf;, -

o 2b 2b
/ V(5,00 = Vt.5.00) | dr < == T et < 5 T e <

4]

N[ o

if 1y is large enough, for all k¥ € N; and second, fixing such a value of 7, there exists
ko such that |V(t, s, w,)—=V(t,s, wo)| < &/(2ty) if t € [0, t0], s € [0, s0], and k > kg,
so that [, |V (t, 5, ) — V(t, s, o) dt < &/2. Thus, A is continuous.

The proof of the continuity of s: 2 x L2, — L2, (w,V) > 5,(V) requires the
proof of the continuity of the maps

.Q—)Lfn, w W,
wRxL2 -1, (010) (010) - 1.

The first continuity property will now be analyzed. It is equivalent to the continuity
of p: 2 — (I3)*, o +— ¢, defined by (7.42), where (L2)* is the dual of L2
provided with the norm topology for [[¢|| 22y« = supjy), =1 [¢(v)|. This equivalence
is due to the definition of w,,, which satisfies ¢, (v) = (w,, v}, and to the fact that

[We, — Was [l = | S”uP (Waoy = Wan, Vim = [|¢w, — <sz||<L,2n)* .
v|[m=1

Define f: 2 x L2, — L2, (w,0) > f, () by

£, (@)(1) = GT (1) Ao (@) (1) + E(0-1) W) .
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The boundedness of G and g and the second bound in (7.22) ensure that the map f is
well defined: in fact there exists fy > 0 such that ||£, (@)||, < fo |[u]|,, for all v € 2
and every u € L2. Now fix » € §2 andu € L2 with |[d]|,, = 1, which will be used
several times in what follows. Then,

/0 " R (6) — R, ()8, @) (1) i

2 |§0w(ﬁ) — Pu, (ﬁ)| =

+ ’ / X0 () (£, (@) (1) — £, @)(1) dt
0

Holder’s inequality shows that

= ”/’Zw _/’Zwl ”n ”fw(ﬁ)”n ff() ”/’Zw _/)Z(Ul ”n ’

‘ /0 " Rol) — Ron () B @ (0

so that the continuity of 2 — Lﬁ, o +— X, shows that this first term is as small as
desired if w; is close enough to w. Write the second term as fooo = Oto + ftso Then,

using the relation ||X,,(r)|| < ne~#" |0 (which follows from (7.15)) and Hélder’s

inequality,
00 1/2
<2nf %ol (/ e_zﬂt) ,
to

which is as small as desired if 7, is large enough, independently of @ and w;. And,
once such a value of ¢y has been fixed, one has

/ i\gl () (£, @) (1) — £, @)(1)) dr

‘ /0 "0 (@ (1) — £ @) 1)

=alal [ (16@I1 120 @0 - 20 @O

+ G = G@rnl 20 @O + 2@ —F@ ]l [a)]| ) d

<7 %ol (go /0 MA@ () = A, @0

o __ R 1/2 f0 12
+ ¢4 (/0 ||G(a)-t)—G(w1-t)||2dt) + (/0 ||§(w-t)—§(w1-t)||2dt) )

where g9 = sup,co ||a(a))|| Holder’s inequality and the bounds (7.15) and (7.22)
have been used. The continuity of G and g shows that the last two terms are as small
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as desired if w; is close enough to w, and the same property for the remaining term
follows from

1/2

/ e @) — A, @ ()] di < ( / ° / IVt s.0) = Vi, s.o0) |2 ds dr)
0 0 0

and the uniform continuity of V on the compact set [0, #5] %[0, #5]x §2. This completes
the proof of the continuity of the map 2 — Lfn, = W,.

The proof of the lemma will be completed once the continuity of the map p: £2 x
L2 — [}, (w,0) > [1,(0) defined by (7.44) has been shown. As in the previous
case, by definition of u,, (W), this is equivalent to the continuity of the map q: £2 x
L2 — (L2)* sending (w, 1) to the linear real map E}w/u\ given by 'q\wﬁ(v) =g, v),
where this last expression is defined by (7.40). That is, given w, W, and & > 0, it must
be shown that [g,, (@, V) — gy, (U1, V)| < & whenever ||v|,, = 1if |[@ —u ||, and the
distance of w to w; are small enough. The proof relies heavily on the properties of
the function A, including

/0 o)) = Aoy WOt

2b 0] to
< 7”/0 /0 IV (2,5, 0) = V(t, 5, 00) | [V(s) || ds d,

which is deduced by applying Holder’s inequality as in (7.23), and which is as
small as desired for a fixed #y whenever |[v|,, = 1 if w; is close enough to w.
The numerous details are omitted, since all the ideas involved have already been
explained.

Remarks 7.12

1. The continuity of the functions M;‘ and Mt on £2 required in conditions Y2,
Y4, and Y5 means that they have recurrence properties which are at least as
strong as those of the data A, B, G, g, and R. This phenomenon of “conservation
of recurrence” reduces to the T-periodicity of M;’ and M7 in the case when the
coefficient functions are all 7-periodic.

2. The Weyl function Mt provided by the Frequency and Nonoscillation Condi-
tions is the same function Mt which satisfies conditions Y3 and Y4.

3. As pointed out in the proof of Y1=>Y3, the Lagrange planes I, (w) and I* ()
agree when Hypothesis 7.3 and condition Y1 hold.

Regarding condition Y1, the required continuity of the map @ +— [,(w) and of
the minimizing pair may seem artificial. However, Example 7.13 shows that it is
possible for 7y, , to admit a minimizing control for each v € £ and xo € R”,
and nevertheless for the map w — [,(w) to be discontinuous. On the other hand,
Theorem 7.14 states that if the base flow (§2, o) is minimal, then the first condition
in Y1 ensures the second one. In this regard, recall that if A, B, G, g, and R are
periodic, or more generally Bohr almost periodic, then the hull (£2, o) is minimal:
see Sect. 1.3.2.
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Example 7.13 Setn = m = 1 and define
GO =1+y@®, —A@®=B@O=R010=g0)=1,

where y is continuous and satisfies y(f) = 0 for |f| > 1, as well as some further
conditions to be specified below. It can immediately be checked that the common
hull of (A(1), B(1), G(1), (1), R(1)) is

Q={-L1L1+4+y(n,1,1)|se R}U{(-1,1,1,1,1)},

where as usual y,(f) = y(t + ). It is possible to identify §2 with the set {s €
R} U{=x00}, where oo and —oo represent the same point. In this case, the functional
to be minimized for each s € R is

Tolo) = 5 /0 (1 4+ )20 + 250 u() + 20 dr

associated to the two-dimensional Hamiltonian system

/o _ -2 1 .
Z =H(Hz= [)/y(t) 21| z: (7.52)

and, for 00, the functional is

fim,xo (x,u) = %/Ooo(xZ(t) + 2x(t) u(t) + uz(t)) dt

with Hamiltonian system

;L 21
z —Hiooz—|:0 2i|z. (7.53)

In addition, this constant system describes the behavior of any solution of each of
the systems (7.52) for |#| large enough. More precisely, the general solution of (7.52)
fort > 1 —sis kje [(1)] + kye* [H Hence each of the systems (including the
limiting one) has a solution decaying exponentially as t — oo, which is unique up
to a constant multiple: it agrees with ke [(1)] for ¢t large enough. This implies that
there exists at most one initial datum such that the corresponding solution of the
(scalar) Riccati equation associated to (7.52),

/

m = —m* + 4m + (1), (7.54)

is defined in [0, c0) and agrees with O for r > 1 — s. Clearly, independently of
any additional property required on y, this initial datum is O if s > 1, and the
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corresponding solution vanishes identically in [0, 0o). This is also the situation for
the Riccati equation m’ = —m? + 4m associated to (7.53).

Assume for the moment that such an initial datum indeed exists, and represent
by mJ (r) and mi oo = 0 the corresponding solutions of the Riccati equations
corresponding to s € R and to +o00. Note that the functions K,(f) = R™'(—g? +
B'm (1)) = =1 + m(t) and K+oo = R™'(—g" + B'mZL_) = —2 determine the
equations ¥’ = (A + BK,(t))x = (-2 + m}())x and ¥ = (A + BK+oo)x =
—2x, whose solutions decay exponentially as + — +oo. Then, a repetition of
the arguments of the implications Y3=Y4=7Y1 of Theorem 7.10 shows the
existence of a unique minimizing pair for each of the functionals FIVMO, given by
(x%s(t), mf (1) X5(1)) where X, solves X' = (=2 + m;} (1)) x with X(0) = xo; as well
as for FIvioo,xO, given in all these cases by (xoe_zt, 0). In other words, condition Y1,
holds.

Now choose y in such a way that the equation m’ = —m? + 4m + y(¢) has a
bounded solution with m™* (f) = 4 fort < —1 and m* (t) = 0 for t > 1. (Just choose
a C' function m™ with these properties, and define y = (m*)’ + (m™)? — 4m™.)
Then the solution m;" (1) = m™ (s + 1) of (7.54) is bounded and agrees with 0 for
t > 1 —s. In other words, the mentioned “special” initial datum for (7.54) exists: it
is m" (0) = m™ (s), so that it agrees with 4 for s < —1 and with O for s > 1 (which
was already known). And recall that it is 0 also for +o0.

In this way, the Lagrange plane /,(s) given by (7.26) is represented by [(1)] for
s > 1 and s = o0 and by [H for s < —1. In particular, limy_, _, Iy(s) # I(—00),
and therefore condition Y1, does not hold.

Theorem 7.14 Suppose that (82, 0) is minimal and that Hypothesis 7.3 holds. Then
condition Y1 implies condition Y2. That is, the seven conditions Y11, Y1, Y2, Y3,
Y4, YS, and Y6 are all equivalent. In addition, given any o-ergodic measure mgy on
§2, the seven conditions listed above are all equivalent to the properties Y7 and Y8
corresponding to my.

Proof Under Hypotheses 7.3 and Y1;, Lemma 7.6 applies. If, in addition, the
Frequency Condition holds, then the Lagrange plane /,(w) of the lemma, given
by (7.25), agrees with the Lagrange plane /*(w) provided by the exponential
dichotomy (see Remark 1.69.1). In addition, in the minimal case, any ergodic
measure m has full support (see Proposition 1.11(iii)). Hence, the goal is to prove
that FC holds if Y1, holds, and then apply Theorem 7.10 to complete the proof.

Define, for each integer k > 1, 2, = {w € 2| |U(t,w) 20| < (1/2)]|zo|| for
any zo € l,(w) and all r > k}. The first step consists in using Lemma 7.6 to check
that §2; is closed in §2. So, take a sequence (wj) in £2; converging to a point wy € $2,
and assume by choosing a suitable subsequence if needed that /;(w;) converges to a
Lagrange plane /(wo). Then each zg € [(wp) is the limit of a sequence (z;) with z; €
Ip(w;) (see Proposition 1.26(i)), so that [|[U(t, wo) zo|| = limjeo U, w)) zi|| <
limj 0 (1/2)||z;|| = (1/2)]|zo]| for each ¢ > k. This and Lemma 7.6, taken together,
show that I(wy) < I(wp) (and hence that I(wy) = Ip(wp), since both of them are
n-dimensional), and that wy € £2.
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Lemma 7.6 also shows that £2 = U;>12;. By the Baire category theorem (see
e.g. [27], Chap. 7), the compact metric space §2 is not a set of the first category
in itself, so that some set §2; has non-empty interior. Fix an open set O C §2
and take any point w € §2. The minimal character of the flow provides a sequence
(#;)) | —oosuchthatw-t; € Oforallj € N. Thereis no loss of generality in assuming
that ; — tjy; > k for all j € N. Take zy € ,(w), and set z; = U(tj, w) zo; then
U(—ll, a)-tl) 7, = 7o, U(ll — 1, a)'lz) ) =17,..., U(lj —i+1, a)'tj+1) Ziy =12, ...
It follows that ||z;|| < (1/2)||zj41|| forj € N, and so z(¢) = U(¢, ) 2o is unbounded
as t — —oo. This fact and Theorem 1.78 ensure that the family (7.9) has exponential
dichotomy over £2. Hence the Frequency Condition FC holds, so that Y2 is satisfied.
That is, condition Y1, implies condition Y2.

The last statement follows immediately from Theorem 7.10.

Remark 7.15 Returning to the setting described at the beginning of the chapter, a
natural question arises: how can the Frequency Theorem 7.10 be applied in order
to ensure the solvability of the initial minimization problem, given by the single
functional (7.3) and the single control system (7.1)? A first step could be to ensure
Hypothesis 7.3: Proposition 7.33 below shows that a possible way to guarantee
this hypothesis is to ensure the uniform controllability of the family of control
systems (7.6) defined from (7.1); and Remark 6.16 explains that this is the case if the
initial control system is uniformly null controllable, or if the initial system is simply
controllable and the hull £2 of (A, B, G, g, R) is minimal. The second step should
be to guarantee that one of the equivalent conditions Y2-Y6 holds. But recall (see
Remark 7.7) that some of these hypotheses ensure by themselves Hypothesis 7.3:
this is the case of Y2, Y3, and Y4. So it would be enough to ensure, for instance,
that the family of linear Hamiltonian systems on the hull satisfies the Frequency and
Nonoscillation Conditions. For the Frequency Condition, the exponential dichotomy
over R of the initial Hamiltonian system is sufficient: see Remark 1.59.4. And the
Nonoscillation Condition can be ensured if the Lagrange plane /™ (f) composed of

the solutions which are bounded as t — oo can be represented as [ (f) = [ Mi’ (r)]

forall t € R (i.e. if IT(f) € D for all t € R), where the symmetric matrix-valued
function M7 is bounded, since in this case the same happens for all the systems in
the hull. This last condition holds automatically if the hull is minimal.

The section continues with two applications of Theorem 7.10, which are both based
on the fact that the general robustness results for exponential dichotomies allow one
to prove that the Frequency Condition and the Nonoscillation Condition are highly
insensitive to small perturbations of the coefficient matrices A, B, G, g, and R.

Example 7.16 Suppose that A, B, G, g, and R are all continuous 7-periodic func-
tions. Suppose that the problem of minimizing the functional Zy, given by (7.3)
subject to (7.1) can be solved for each xo € R". According to the Yakubovich
theorem for the periodic case, the periodic family (7.9) (where wt = @ + ¢ for
w € [0,7T) and ¢ € R) satisfies the Frequency Condition and the Nonoscillation
Condition. Hence it has exponential dichotomy over the circle 2o = R/[0, T], and
the Lagrange plane I (w) lies in D for each wy € £2o.
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Next, let e > 0, and let A}, By, Gy, g1, and R be bounded and uniformly contin-
uous matrix-valued functions of the appropriate dimensions, satisfying ||A;(7)| <
& ..., |IRi(®)| < eforall t € R. Of course, these functions need not be periodic.
Then, as proved below, there exists €x > 0 such that, if 0 < & < &4, the
system z' = (H(¢) + H;(1)) z has exponential dichotomy on R. Here, H and H,
are respectively defined from (A, B, G, g,R) and (A, By, Gy, g1, R)) as in (7.5).
Remark 1.59.4 ensures that the family of systems defined over the hull £2 of H + H,
have exponential dichotomy over £2. And, in addition, the Lagrange plane I (w)
exists for every w € 2 (see also below). Hence the family over §2 satisfies the
Frequency gnd Nonoscillation Conditions, so that Theorem 7.10 ensures that, for
each @ € 2 (and in particular, for the point giving rise to the hull), the functional
7,7 admits a minimizing pair for each xg € R".

The assertion concerning the exponential dichotomy can be proved by contra-
diction. Assume that there exists a sequence (E,,:R — sp(n,R)) of uniformly
continuous functions with sup,cp ||?m(t)|| < I/msuchthatz = (H(r) + PIZW,(I)) z
does not have exponential dichotomy over R, and look for a continuous mapping
K from [0, 1] to the set of uniformly continuous maps from R to sp(n, R)) with
supeg IK(A)(0)|| < 2 forall A € [0,1], K(©0) = 0, and K(1/j) = K;. For all
A € [0, 1], consider the closure M} of the set {(H + K(u))s| 1 € [0,1], s € R}
(where as usual Cs(f) = C(s + 1)) on the set of bounded and uniformly continuous
maps from R to sp(n, R) endowed with the compact-open topology. It is easy to
check that M, is a compact Hausdorff topological space; that it is invariant by
time-translation; and that the flow ¢ given by (1.36) is continuous. In addition,
My € M, € M forall A € [0,1]. Theorem 1.91(i) provides the sought-for
contradiction. And the same argument, together with the fact that D is open and
an application of Theorem 1.91(ii.3), proves the assertion concerning the global
existence of the Weyl function M for the perturbed family of systems.

Example 7.17 For the second application, let T be the k-torus with angular
variables 6, ..., 6, identified with (R/[0, 27])*. Let oy, ..., o be real numbers.
Write 6 = (61,...,6;) and ¢« = (y,...,04), and represent by 6 + «-t the
Kronecker flow on T*. Let A, B, G, g, and R be matrix-valued functions of the
appropriate sizes, defined and continuous on T*, so that for each 8 € TX, the
functions t — A(0+a-1), ...,t — R(0+a-t) are quasi-periodic functions. Consider
the family of Hamiltonian systems

Z=HO+atz (7.55)

for 6 € T*, where z = [?] for x,y € R", and H is defined from (A, B, G, g,R)
as in (7.5). Suppose that, for some fixed frequency vector «, the family (7.55) has
exponential dichotomy over T*, and that the Lagrange plane /™ (6) belongs to D for
all 6 € T*. In other words, assume that the family (7.55) satisfies the Frequency and
Nonoscillation Conditions.

An application of the Sacker—Sell perturbation theorem, to be explained below,
now allows one to show that there exists &, > 0 such that, if the distance on T*
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between « and y is dy«(r, y) < &0, then the family of Hamiltonian systems obtained
by substituting & by y in (7.55) has exponential dichotomy over T*, with [t (0) € D
for all & € T*. That is, for all frequency vectors y near «, and for each 6 € T¥,
the functional Pfo,xO admits a minimizing pair for each xo € R". Of course, varying
a gives rise to a very “strong” perturbation of H. As already indicated, the point is
that the Frequency Condition and the Nonoscillation Condition are insensitive even
to such strong perturbations.
To guarantee the existence of the mentioned &, define

M ={Hy,| 0 €T yeT,

where Hy,: R — sp(n, R) is defined by Hg,, (t) = H(0 + y-t), and consider it as
a subset of the set of bounded and uniformly continuous maps from R to sp(n, R)
endowed with the compact-open topology. As in the previous example, it is easy
to check that M is a compact Hausdorff topological space; that it is invariant by
time-translation; and that the flow { given by (1.36) is continuous. Consider also its
subsets

M, ={Hp, |0 € T', y € R* with dp(a, y) < &}

for ¢ > 0, which are compact and invariant, and apply once more Theorem 1.91 to
My C M, C M to get the desired conclusion.

7.2.1 The Frequency Theorem and the Rotation Number

There are two goals to be achieved in this section. The first one is to see how
condition Y8 (which, as is explained in Remark 7.8.2, is the reformulation of
Yakubovich’s condition of strong nonoscillation given in p. 1030 of [157] in a way
appropriate for the theory of nonautonomous linear Hamiltonian systems) can be
weakened in some cases. This will be done in Theorem 7.18. The second goal
is to establish a connection between the families of linear Hamiltonian systems
satisfying the Frequency and Nonoscillation Conditions and one of the instability
zones labeled in terms of the rotation number (see Sect. 2.3): more precisely, these
Hamiltonian systems are shown to belong to the zone corresponding to zero rotation
number.

Theorem 7.18 gives a sufficient condition for the simultaneous validity of the
Frequency Condition FC and the Nonoscillation Condition NC in terms of the
properties of the rotation number for the perturbed families (7.51), where H is given

by (7.9)and I" = [_Iff 2 I;,Ii ] is a suitable perturbation. This condition is weaker than

Y 8. This result will be cdmplemented with Proposition 7.19, which provides a wide
set of perturbations I" for which the family (7.51) satisfies two of the hypotheses of
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Theorem 7.18: namely, the Atkinson condition, and the existence of A; < 0 (in fact
A = =D suchthat BR™'BT + A, I3 > 0.

Let ar(m, A) represent the rotation number of the family (7.51) corresponding
to A € R with respect to the o-ergodic measure m on §2. Note that ay (m, 0) is
obviously independent of I".

Theorem 7.18 Suppose that Hypothesis 7.3 holds and that there exists a o-
ergodic measure my on §2 with §2 = Suppmy. Take I' satisfying the Atkinson
Hypotheses 3.3 with respect to the unperturbed family (7.9) and such that there
exist Ay < 0 with BR™'BT + X\ I's > 0. Suppose also that there exists Ay > 0 such
that and o (mg, A2) = 0. Then the Frequency Condition FC and the Nonoscillation
Condition NC are valid.

Proof According to Theorem 2.31, if BR™'B” + AI'; > 0 then ar(mp, 1) > 0.
Hypotheses 3.3 guarantee that I3 > 0, so that ay(mg,A) > 0 for all A >
A1. In addition, according to Proposition 2.33, the function A +— ay(mgp, A) is
continuous and nondecreasing. These facts and the condition af(mgy, A,) = 0
ensure that - (mp,A) = 0 for all A € (1, A;). Consequently, since Suppmy =
§2, Theorem 3.50 guarantees the exponential dichotomy over §2 for the families
corresponding to these values of A. Taking A = 0 shows that the Frequency
Condition is valid, as well as that the rotation number of the unperturbed family (7.9)
with respect to my vanishes. Therefore, the equivalence of Y2 and Y7 under
Hypothesis 7.3 completes the proof.

Proposition 7.19 Suppose that condition C1 holds. Define

Fw) = [C(w) 0, }

0, B(w)R '(w)B"(w)

and setA = A—BR™! g'. Suppose also that one of the following situations holds:

(i) C:2 — M,x,(R) is a continuous function taking values in the set of positive
definite symmetric matrices.
(i) C = G = G —gR'g" is positive semidefinite, and each minimal subset of

2 contains at least one element w, such that X' = —ZT(a)z-t) X+ 5(a)2't) uis
null controllable.

(iii) C = -G=-G+ g R™'g" is negative semidefinite, and each minimal subset
of 2 contains at least one element w; such that X' = —ZT(a)yt) X+ 5(a)3~t) u

is null controllable.

Then there exist tg > 0 and § > 0 such that for all v € 2,

fo
/ | [ (wt) Ut,w) z||* dt > & ||z||* wheneverz € R*".
0
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In particular, I' satisfies the Atkinson Hypotheses 3.3 with respect to (7.9).

Proof The proof follows a scheme similar to that of the proof of Proposition 6.7.
As in that proof, it is enough to show the null controllability for all @ € £2 of the
corresponding system (6.19), which can be rewritten in the following form:

x = —ZT(w-t) X — E(w-t) y+ Clwt)wy, 756
y = A(w-1)y + B(wt) R (w-1) BT (w-1) (=X + W) . (750

Hence, fix w € 2 and 2y = [’y‘g] € R%"If (i) holds, Remark 6.2.3 ensures the null
controllability of

X = AT (w1)x + Clw)u, (7.57)

so that there is an integrable control u;: [0, #;] — R” such that the corresponding
solution of the system given by u = wu; with X(0) = x, satisfies x(¢;) = 0.
Analogously, under condition C1, Theorem 6.4 and Lemma 7.34 guarantee that
y = A(wt)y + B(wt) R (w-1) BT (w-f)u is null controllable, which in turn
provides an integrable control uy: [0, ;] — R” such that the solution y(¢) of this
system with u = w,; and y(0) = y, satisfies y(r,) = 0. Assume without loss
of generality t; = t, = to, and define w;(t) = u;(t) + C (1) 5(a)~t))7 and
w2 = w, + X. Then [ ] solves the corresponding system (7.56) with values [ }9 ]
and [8] at times O and #, which proves the assertion in this case.

If the situation is described by (ii), the controllability of (7.57) is guaranteed by
Theorem 6.4. Finally, in the case (iii), Remark 6.2.6 and Theorem 6.4 ensure again
the null controllability of (7.57). From this point on the proof is carried out as above.

This completes the first point of this section. Now, to begin with the analysis
connecting conditions FC and NC to the “instability zones”, recall that the union
of these zones is by definition formed by the set of Hamiltonian families which
have exponential dichotomy over 2. It has been seen at the end of Sect. 2.3 that
these zones are countable in number and can be labeled in terms of the values of the
rotation number.

Consider first the periodic case. Recall that U/, is the instability region determined
by those T-periodic systems with exponential dichotomy for which the rotation
number (with respect to the normalized Lebesgue measure on the circle £2, which
is ergodic for the translation flow) is zero. Under the assumption of existence
of admissible pairs, Yakubovich proves in Theorem 3 of [157] that a T-periodic,
linear Hamiltonian system of the form (7.9) (i.e. coming from an optimal control
problem of the considered type) satisfies the periodic Frequency and Nonoscillation
Conditions exactly when it lies in I/(. Thus one of the results of [156] is equivalent
to the statement that, if A, B, Q g, and R are T-periodic functions, then the problem
of minimizing the functional Zy, given by (7.3) subject to (7.1) is solvable for all
Xo € R”" if and only if the coefficient matrix of equation (7.5) lies in U.



7.3 Verification of the Frequency and Nonoscillation Conditions 401

A similar statement can be formulated in the general nonautonomous setting. Let
my be a fixed o-ergodic measure on §2 and let () be the corresponding rotation
number. As explained in Sect. 2.3, if the family (7.58) satisfies the Frequency
Condition, then 2c () belongs to the countable subgroup S = hHY(2,7)) given
by the image of the Schwarzmann homomorphism 4. If in addition it satisfies the
Nonoscillation Condition, then its rotation number is zero (see Remark 7.2.2), so
that the coefficient matrix belongs to the instability zone U/(. The converse assertion
can be formulated if in addition mg has the property that Suppmy = 2 and
Hypothesis 7.3 holds: if H belongs to the set U corresponding to this measure
(i.e. if the family of systems (7.9) has exponential dichotomy over 2 and satisfies
a(mp) = 0), then conditions FC and NC are satisfied. This is due to the equivalence
between Y2 and Y7 proved in Theorem 7.10.

Summing up, the Schwarzmann homomorphism permits one to interpret the
conditions FC and NC in terms of instability regions for linear nonautonomous
Hamiltonian systems, at least when the corresponding flow (£2,0) admits a
o-ergodic measure my whose support is all of £2.

As an example, let £2 be the 3-sphere S3. It is well-known (see e.g. [4]) that
there is a smooth vector field on S* whose corresponding one-parameter group
of diffeomorphisms admits an ergodic measure my equivalent to the normalized
Lebesgue measure on S3. In this case, H'(£2,Z) = {0} and so S = {0}. So if
the family (7.58) has exponential dichotomy over £2, then its rotation number is
zero, and the Nonoscillation Condition is automatically satisfied. In this respect,
the family (7.58) resembles a constant coefficient system when £2 = S3. More
generally, this holds whenever HY(2,7) is a finite group, since in this case the
image of the Schwarzmann homomorphism is {0}.

7.3 Verification of the Frequency and Nonoscillation
Conditions

As stated in the introduction to this chapter, the present section is devoted to the
analysis of some scenarios in which the Frequency and Nonoscillation Conditions
are fulfilled. This analysis will not be restricted to those Hamiltonian systems (7.9)
arising from the minimization problem posed in the previous sections, but to a
general family of linear Hamiltonian systems

7 = Hwtz, w €S2, (7.58)

_ [H H
where H = [ Hy —HT

sp(n, R). Recall that in the case that FC and NC hold, the Lagrange plane It (w) of
the solutions of (7.58) which are bounded as t — oo admits a unique representation

] 12 — My,x2,(R) is a continuous function taking values in

I . . . .
[ M+ (@) ] Hence the n x n matrix-valued function M7 is continuous on §2, and the
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function ¢ — M (w-t) solves the Riccati equation
M' = —MH;(w-t)M — MH, (w-t) — H(w-t)M + Hy(w-t) =h(w-t, M) (7.59)

associated to (7.58). Or, in other words, the function M is a solution along the flow
of (7.59). In the language of Sects. 1.3.5 and 1.4.7, the function M is a continuous
equilibrium and the set {(w,MT(w))| @ € 2} C 2 x S,(R) is a copy of the
base for the flow 7, given by (1.23). The matrix M~ (w) is associated in the same
way to the Lagrange plane [~ (w) if this plane also belongs to D. The continuous
functions M*: 2 — S, (R), when they exist, are the Weyl functions for (7.58): see
Definition 1.80.

In order to analyze the different dynamical possibilities under which conditions
FC and NC hold, conditions D1, D2, and D3 of Chap. 5 will play a fundamental
role. They are now recalled for the reader’s convenience.

D1. The n x n matrix-valued function Hj is positive semidefinite on §2.

D2. For all @ € £ and every nonzero solution z(t,w) = [283] of the

system (5.4) with z; (0, w) = 0, the vector z; (¢, @) does not vanish identically
on [0, 00).

D3. For all w € £2 there exists a 2n x n matrix solution G(z, w) of (7.58) taking
values in the set D defined by (7.13) for all # € R.

Remarks 7.20

1. If D1 holds, condition D2 is equivalent to the uniform null controllability (see
Definition 6.3) of the family X' = H,;(w-t) X + Hz(w-f) u, as Proposition 5.18
states; and both conditions D1 and D2 hold when H; > 0, as is explained in
Remark 5.19.

2. Note also that D3 is equivalent to the following condition: for all w € §2 there
exists a solution of the Riccati equation (7.59) which is globally defined. In
particular it is guaranteed by the Nonoscillation Condition. Therefore, if D1,
FC, and NC hold, then D2 is equivalent to the uniform weak disconjugacy of
the family (7.9).

In most of the remaining results of the chapter, condition D1 will be assumed to
hold. Note that this is the case if the family (7.58) is of the particular form (7.9),
coming from a minimization problem. Since the Nonoscillation Condition ensures
D3, the analysis of the families satisfying FC and NC will lead to two different
possibilities: either D2 holds or it does not.

This section is divided into three parts. In the first one, the case of uniform
weak disconjugacy is analyzed: this is the case in which D1, D2, and D3 hold.
The occurrence of FC and NC will be characterized in terms of the properties of the
principal solutions, and will imply that the sections of the two closed subbundles
associated to the exponential dichotomy lie in D. The required hypotheses can be
substantially relaxed if the base flow is minimal. The second part considers the case
of FC and NC in which D2 does not hold, so that the uniform weak disconjugacy is
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precluded, and is centered in the analysis of the robustness of this scenario. Finally,
the third part presents a nontrivial example showing that the controllability condition
C1, which is usually valid in the applications of the Frequency Theorem (and which
will turn out to be equivalent to D2 for the family (7.9)), is in fact not necessary in
order that its statements hold.

Note finally that all the results assuming the Frequency Condition FC and
the Nonoscillation Condition NC admit a “symmetric” statement: they can be
formulated taking as the starting point the exponential dichotomy of the family and
the global existence of the Weyl function M ™.

7.3.1 The Case of Uniform Weak Disconjugacy

Theorem 5.25 proves that conditions D1, D2, and D3 ensure the uniform weak
disconjugacy of the family (7.58), which in turn implies the existence of principal
solutions at =00: see Definition 5.15. In fact, under condition D1, the uniform weak
disconjugacy is equivalent to conditions D2 and D3, as stated in Theorem 5.17.
Among other properties, the principal solutions are given by Lagrange planes

T (w) € Dforall o € 2 with U(t, o) (@) = = (w-1), so that I () = I:Nin(w)

for matrix-valued functions N*: 2 — S,(R) which are solutions along the flow
of the Riccati equation (7.59): see Sect. 1.3.5. In addition, the functions F+N + are
(upper) semicontinuous equilibria, and they satisfy Nt < N~. Recall that the
matrix-valued functions N*:2 — S,(R) are the so-called principal functions
of (7.58).

The most valuable information for the purposes of this section has already been
obtained in Theorems 5.58 and 5.59. Their statements are now rewritten for the
reader’s convenience. The examples described immediately before Theorem 5.58
help to understand the scope of these statements.

Theorem 7.21 Suppose that D1 holds. Then,

(i) if D2 and D3 hold, then the family (5.4) satisfies the Frequency Condition FC

ifand only if N~ > NT, i.e. if N~ (w) > NT(w) forall w € £2.

(ii) If FC holds, then the family (7.9) satisfies conditions D2 and D3 if and only if
there exist both Weyl functions M*, in which case NC holds.

(ili) If D2, D3, and FC (and NC) hold, then the Weyl functions M* agree with the
principal functions N*, and hence they satisfy M~ > M.

@iv) If FC and NC hold, then D2 is equivalent to the uniform weak disconjugacy of
the family (7.9).

Theorems 5.48 and 5.49 describe the dynamical behavior and measurable behavior
of the flow on Kr under conditions D1, D2, and D3. The interesting situation for
the purposes of this section is that in which exponential dichotomy is present: in this
case the Weyl and principal functions agree, so that the set 7 of those theorems is
defined in terms of the Weyl functions. And Theorem 5.61 completes the analysis
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of the relation between the Weyl and principal functions, showing that any family of
linear Hamiltonian systems satisfying D1, D2, and D3 is the limit of a one-parameter
family of families of systems which satisfy these conditions together with FC, and
that the principal functions are always the pointwise limits of the corresponding
one-parameter families of Weyl functions.

As anticipated above, the conditions ensuring the uniform weak disconjugacy
of the initial family can be relaxed in the case of a minimal base. This is
what Proposition 7.25 shows. A previous result is required, which is interesting
in itself: of course, the existence of the Weyl functions does not require the
existence of principal functions; but as Proposition 7.23 states, even in the absence
of the principal functions, the Weyl functions play a similar role regarding the
monotonicity behavior of the Lagrangian flow: see Theorem 5.48.

Consider now the new families of linear Hamiltonian systems, defined
from (7.58),

r_ Hi(w1) 0, . .
‘= [Hz(a)'t) —HlT(a).t):| z=Gonz, w €

and

7 = | @D H@D el )y ons,  weq. (7.60)
Hy(wt) —H(w1)

Clearly, JG < JH < JH,, < JH,, if 0 < g| < &, if D1 holds. The Riccati equations

associated to these families are, respectively,

M' = —M H\(w1) — H! (0-t) M + Hy(w-t) = g(w-t,M), (7.61)
M' = —M (H3(w-t) + el,) M — M Hy(w-t) — H (w-t) M + Ha(w-1)

(7.62)
= he(wt,M).
Note that b, < h < gforall ¢ > 0if D1 holds, with & given by (7.59). Recall that the
solution of (7.59) with initial datum M, € S,(R) is represented by M(z, w, My), and
let M,(t, w, My) and M, (t, w, M) represent the corresponding respective solutions
of (7.61) and (7.62). Note also that M,(t, w, M)) is globally defined, since g(w, M)
is a linear map.

Remark 7.22 Recall that if it is a priori possible to ensure that a solution M(¢) of
one of these Riccati equations satisfies M (t) < M(t) < M;(¢) on its domain for
continuous matrix-valued functions M, () and M, (t), then M(¢) is defined at least
where M (f) and M, () are defined: see Remarks 1.44.2 and 1.43.

Proposition 7.23 Suppose that the family of Hamiltonian systems (7.58) satisfies
D1 and the Frequency and Nonoscillation Conditions FC and NC. Then,
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(i) there exists &g > 0 such that, if ¢ € (0,&], then the family (7.60) has

exponential dichotomy over 2 with I (w) = Mi"(w) , and
M*(0) = M (@) < M (0) < M (0) < M] (). (7.63)

(i) If My > M™(w), then the function M(t, w, My) is defined for every t > 0, and
Mt (wt) < M(t, 0, Mo) < My(t, 0, M) .

(iii) IfMy < M_ (w) for a given & € (0, &¢), then the function M(t, w, My) is defined
foreveryt <0, and

M[(I,C(),Mo) < M(t,a),M()) < Mg_(a)t) .

Proof

(i) Theorems 1.92 and 1.95 ensure the existence of a number &y > 0 such that the
family (7.60) has exponential dichotomy over £2 with l;t (w) = Mi”(w)] for
all € £2. This and Remarks 7.20.1 and 7.20.2 show that this familgl satisfies
D1, D2, and D3 if 0 < & < gg. Theorem 7.21 ensures that the Weyl and
principal functions agree for these values of ¢, and that M" < M, . Since JH,
increases with &, Proposition 5.51(i) ensures that M. (w) increases and M, (w)
decreases with ¢. To complete the proof of the chain of inequalities (7.63),
recall that MS' (w) = lim,_,o+ M} (), as Theorem 1.95 ensures.

(ii) Theorem 1.45 ensures that, if My > M™ (w), then MT (w-t) < M(t,w, M)
wherever the second function is defined. In addition,

M (t,w,Mp) = h(w-t,M(t,w, My)) < g(wt, M(t,w, My)),

so that Theorem 1.46(i) ensures that M(t, w, My) < M;(t,w,My) fort > 0
where both solutions are defined. Since M;(t, w, My) is defined on R, it follows
that M (¢, w, My) is defined (at least) for r > 0: see Remark 7.22.

(iii) Assume that M(t, w, M)) is defined on [t, 0] C (—o0, 0]. The first inequality in
(iii) for this ¢ follows, as above, from Theorem 1.46(i). In addition,

M (t,w0, My) = h(wt, M(t,w, My)) > he(w-t, M(t,w, My)) ,

and hence Theorems 1.46(iii) and Theorem 1.45 ensure that M(t, w, My) <
M (t,w,My) < M, (t,0,M_ (w)) = M_ (w-t). Again, Remark 7.22 ensures
that M (¢, w, My) is defined (at least) for r < 0.

Corollary 7.24 Suppose that the family of Hamiltonian systems (7.58) satisfies D1
and the Frequency and Nonoscillation Conditions FC and NC.
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(i) Let &g be provided by Proposition 7.23. If M™ (0) < My < M (w) for some ¢ €
(0, o], then the function M(t, w, My) is defined for everyt € R, and M™ (w-t) <
M(t, 0, My) < M_ (w-1).

(ii) IfI”(w) € D for a point w € £2, then Mt (w) < M~ (w).

Proof Assertion (i) follows immediately from the previous result. The inequality
M*(w) < M~ (w) is proved by taking the limit as ¢ — 0" in MT (0) < M, (w),
which is ensured by (7.63). Since

dim (I (0) N It (w)) = dim (Ker (M~ (0) — M T (w)))

for all w € £2 (which is proved as equality (5.27)), the inequality in (ii) is in fact
strict.

Proposition 7.25 Suppose that §2 is minimal, and that the family of Hamiltonian
systems (7.58) satisfies D1 and the Frequency and Nonoscillation Conditions FC
and NC. If there exists wy € §2 with [~ (wy) € D, then I~ (w) € D forall w € 2.
In other words, under these conditions the family of Hamiltonian systems (7.58) is
in the situation of uniform weak disconjugacy described by points (ii) and (iii) of
Theorem 7.21.

Proof Since D is open and [7:2 — Lp is continuous, there exists an open
neighborhood O C £2 of wy with [~ (w) € D for all w € O, and Corollary 7.24(ii)
ensures that M ' (w) < M~ () for these points of the base. By the minimality of the
base, there are positive times #1, ..., # such that 2 = o0, (O) U --- U 0, (O). Take
w € Randt; € {n,...,1} with w = @+t; for ® € O. Since M~ (@) > M™* (@),
Proposition 7.23(ii) ensures that M~ (w) = M~ (&tj) = M(tj, @, M~ (@)) exists,
which together with Corollary 7.24(ii) proves the assertion.

The following immediate corollary is just a clearer way to rewrite the previous
result.

Corollary 7.26 Suppose that §2 is minimal and that the family of Hamiltonian
systems (7.58) satisfies D1 and the Frequency and Nonoscillation Conditions FC
and NC. Then,

(1) D2 holds if and only if I” (w) € D for every w € £2;
(ii) D2 does not hold if and only if I” (w) ¢ D for every w € 2.

The last result of this subsection establishes more conditions ensuring the existence
of both Weyl functions. It is important to note that condition D1 is not imposed,
and that in the case that it holds, the conclusions of this proposition imply again the
uniform weak disconjugacy of the Hamiltonian family (7.58).

Proposition 7.27 Suppose that the family of Hamiltonian systems (7.58) satisfies
the Frequency and Nonoscillation Conditions FC and NC.
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(1) Let {(w,l(w)) | w € 2} C D be a copy of the base such that the Lagrange
planes l(w) and I (w) are supplementary for all ® € $2. Then l(w) = I (w)
for every w € £2, so that the Weyl function M~ : 2 — S, (R) exists.

(i1) Suppose that §2 is o-minimal, that KC C D is t-minimal, and that the Lagrange
planes | and I (w) are supplementary for at least one point (w,1) € K. Then
K ={(w,l"(w))| w € 2}, so that the Weyl function M~: 2 — S, (R) exists.

Proof
(1) Write [(w) = [ N{’;))] for all @ € £2. The hypotheses ensure that w =
~1
[ Mi”(w) Ni’;) )] z defines a continuous change of variables. A straightforward
computation from the Riccati equation (7.59) shows that the transformed family
of linear Hamiltonian systems takes the form

,_ [Hi(o1) + Hy(0t) M* (1) 0,
W= 0, Hy(0-1) + Hy(w) N(wt) | "

for w € 2. Obviously, each system of the transformed family has exponential
dichotomy and the stable subbundles at oo have dimension n. It is also
obvious that the n-dimensional vector space of the solutions bounded as t — co
is, for all @ € $2, the Lagrange plane represented by [(I)'; ], which is the

transform of [ Mi”(w)]. And if w(r) = [3;8] is bounded as t — —oo then

w; = 0: otherwise [Wlo(’)] is a nontrivial bounded solution, which according
to Proposition 1.56 is impossible. Hence the vector space of the initial data
of solutions bounded as + — —oo is the Lagrange plane represented by [(}: ],

which is the transform of [ szo) ] This proves that N(w) = M~ (w) for all

w € §2, as asserted.
(i) This assertion follows immediately from Corollary 1.98(i).

7.3.2 The Absence of Uniform Weak Disconjugacy

It will be assumed in what follows that the family (7.58) satisfies D1 and the
Frequency and Nonoscillation Conditions FC and NC. According to Theorem 7.21,
condition D2 holds if and only if M~ (w) exists for all w € §2. Proposition 7.28 says
something more about this equivalence. Recall that the concept of abnormal system,
which appears in its statement, is given in Definition 5.77.

Proposition 7.28 Suppose that the family of Hamiltonian systems (7.58) satisfies
D1 and the Frequency and Nonoscillation Conditions FC and NC. Then,

(i) D2 holds if and only if I"(w) € D for every w € 2 and the family of
Hamiltonian systems (7.58) is in the situation described by Theorem 7.2 1(iii).
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(ii) D2 does not hold if and only if there is a o-minimal subset M C $2 such that
IT(w) ¢ D for all o € M. In addition, in this case, all the systems of the
Sfamily (5.4) corresponding to points v € M are abnormal. More precisely,
each system of the family (7.58) corresponding to a point w € M has at least

one nontrivial solution of the form z*(t) = [1;0(,)] fort € R, withz*(t) €
I~ (w1).

Proof The equivalence stated in (i) follows from Theorem 7.21, and it proves the
“if” implication in (ii). The “only if” assertion and the last statements in (ii) are
explained in Remark 5.87.2.

Proposition 7.29 Suppose that the family of Hamiltonian systems (7.58) satisfies
D1 and the Frequency and Nonoscillation Conditions FC and NC. Suppose in
addition that there exists a o-ergodic measure m on §2 with Suppm = §2. Then one
of the following situations holds:

1. There is an open set O C £2 such that I~ (w) € D for every w € O, and O
contains a o-invariant set §2o with m(829) = 1 whose orbits are all dense;
2. I (w) ¢ D forevery w € S2.

Proof Suppose that condition 2 does not hold, so that the open set O =
(7)™ (D) € £2 is nonempty. If o € O, M~ (w) < M (w) by Corollary 7.24(ii),
and [T (wt) € D (i.e. ot € O) for all t > 0 by Proposition 7.23(ii). Since
Suppm = £2, the set 290 = {w € 2| {w-t, t < 0} is dense} has full measure for m
(see Proposition 1.12). Finally, given @ € £2 there is t < 0 such that -t € O, and
hence w € O. This completes the proof.

There are trivial examples of systems satisfying D1, D3, FC, and NC, but not D2.
The simplest one is perhaps the two-dimensional constant system z’ = [_é (1’] z, for
which A = —1 and B = 0. This trivial case also satisfies Hypothesis 7.3, which is
required for the general Yakubovich Frequency Theorem 7.10.

The remaining results of this section analyze some dynamical consequences
of the situation of absence of uniform weak disconjugacy. Both the Frequency
and Nonoscillation Conditions are robust, but not D2. Theorem 7.31 analyzes two
different types of one-parameter perturbations, one of which preserves D2 and the
other of which makes it immediately disappear. And this result and Proposition 7.32
analyze the occurrence of almost automorphic dynamics in the endpoints of the
intervals at which FC and NC hold. Example 7.37, in the following section, will
illustrate the optimality of the results, in the sense that, for this example: the
Frequency Theorem 7.10 applies; there exists an almost automorphic minimal set in
the Riccati semiflow; and this minimal case does not reduce to a copy of the base.

In what follows it will be assumed that §2 is o-minimal, so that Corollary 7.26
applies. Let I = [ "] > 0 be a continuous symmetric 2n x 2n matrix-valued
function on 2, and suppose that A(w) > 0 for a point @ € $£2. Consider the
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perturbed families of Hamiltonian systems

(7.64)

7 = (H(a)-t) + )U_l]“(a)-t)) 7= |: H(w1) Hi(w-1) :|

Hy(w-t) — AA(wt) —HT (w-1)

forw € £2.

Remark 7.30 If D1, FC, and NC hold for (7.58) but D2 does not, then I" does not
satisfy the Atkinson condition given by Hypotheses 3.3: if [zz(gw)] is a nontrivial

solution on [0, co) of the system (7.58) corresponding to w, then I (w-7) [zz(gw)] =
[g]; and this contradicts Lemma 3.6(iv). This fact precludes the possibility of using
Theorem 3.50 in order to characterize the presence of exponential dichotomy by

means of the properties of the rotation number.

The auxiliary families of systems

2 = (Ho(wt) + A7 T(01) 2

_[ Hy(wt) H3(a)-t)+sln} (7.65)
T L Ho(wt) = AAr)  —HT (@) "

for € §2, will play a role in the statement and proof of the following result. The
subindex ¢ and the argument A will be used to make reference to these systems.
Note that (7.64) agree with (7.65) for ¢ = 0 and with (7.58) fore = A = 0. Note
also that all these families of systems share the submatrix H;(w). Note further that
JH, + AT is increasing in ¢ and in A, and that (7.65) always satisfies D1 and D2
(see Remark 7.20.1). Therefore, the comparison result of Proposition 5.51 can be
applied. In addition, recall that each of the principal functions is continuous at the
points of a residual subset of §2: see Theorem 5.43 and Proposition 1.48(ii). And
recall finally the information provided by Remark 7.22, which will be used in what
follows without further reference.

Theorem 7.31 Suppose that §2 is o-minimal and that the family of Hamiltonian
systems (7.58) satisfies D1 and the Frequency and Nonoscillation Conditions FC
and NC, but not D2. Define

T ={0} U {Ao € R| (7.64) satisfies FC and NC
for A €10, o) or A € (A9,0]}.

Then,

(1) Z is an open interval containing 0, and for A € Z, l(')"(a),k) € D and
Iy (@,A) ¢ D forall w € 2. In addition, M(;" (w, A1) < M(;" (w, A7) for every
w € §2 and for every pair of elements A\ < A, of L.

(ii) There exists a nonincreasing and lower semicontinuous extended-real function

p:Z — (0, 00] such that (7.65) satisfies D1, D2, D3, and FC for A € 7 if and
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only if ¢ € (0, p(A)). In particular, for these values of ¢, there exist the Weyl
functions ME (v, X).
(iii) IfA € Z, then

My (@.2) < M (@.2) < M} (0.2) <M (0.4) < M_ (0.2)

whenever 0 < & < &, < p(A) and w € £2.
@iv) If Ay and A, belong to T and Ay < A, then

MG (@, 11) = MF (@, 41) < M (0,2) < M7 (0, 42) < M (@, 41)

whenever € € (0, p(A;)) and w € 2.

V) If A € T satisfies p(A) < oo, then the family of systems (7.65) corresponding
to A and ¢ = p(A) satisfies D1, D2, and D3 (but not FC), and its principal
functions are

+ _ : +
Niip(@ 2 = lim  ME(@,2).

In addition, if .Qf are the o-invariant residual sets of continuity points of
Ny (@, 2), then T, (w,1) N Z;m(w,)t)~ # {0} for all » € 2}F N Q.
Moreover, the sets IC;IE = closurei, {(®, l/jfm (w, Q) |w € .Qf} are almost
automorphic extensions of the base §2.

(vi) If A € T satisfies p(A) = 00, then lim, oo ME (@, 1) = 0,,.

(vil) Foreach A € T fix k) € R such that (1 + k) I, < M(;" (w, A). Then the limits
Dy (w, ) = lim,_,o+ (M (0, 4) — ky1,)" exist, define continuous functions

(w4
on 82, and satisfy I (v, A) = [ D (©-2)

kDT (@ )+ ] whenever w € 2 and A € T.
7] 3 n

Proof

(i) It obvious that 7 is an interval. Fix A; € Z. The robustness of the exponential
dichotomy and of the existence of M+ (see Theorems 1.92 and 1.95) guarantees
the existence of an open interval Z; containing A; such that (7.64) satisfies FC
and NC. Consequently, Z is open. Since NC holds, l(')" (w,A) € D whenever
w € £2 and A € Z. In addition, [ Y, | solves (7.58) if and only if it solves (7.64),
so that this last family does not satisfy D2 for any value of A. This together with
Corollary 7.26 ensures that [ (w,A) ¢ D whenever v € §2 and A € Z. The
inequality MO+ (w, A1) < MS' (w, Ay) forevery w € £2 and A; < A, in Z follows
by taking the limits as ¢ — 07 in the second equality of (iii), which will be
proved independently below. And the arguments used in the last part of the proof
of Proposition 5.51 show that the inequality is strict.

(ii), (iii) & (iv) Fix A € Z and define Z(1) = {e > 0| (7.65) satisfies FC and NC}.
Theorems 1.92 and 1.95 ensure that Z(1) is nonempty and open. The following step
is to show that Z(A) is an interval. The family (7.65) corresponding to a fixed
gy € I(A) satisfies D1, D2, and D3 (see Remark 7.20.1), so that Theorem 7.21
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ensures that the Weyl functions M;E (w,A) and the principal functions N:; (w, L)
exist and agree, with M;; (w,A) < Ms_2 (w, A) for all w € £2. Now, if ¢ € (0, &3),
Proposition 5.51 ensures that the corresponding family (7.65) satisfies D1, D2, and
D3, with Mg'(a),/\) < N;(a),/\) < Mgt(a),/\) < ME_Z(a),)L) < Ns_l(a),)k), so that
again Theorem 7.21 ensures that Mﬁf (w, A) exist and agree with Nslc (w, A). This
means that &; € Z(1), and hence that this set is indeed an interval.

Define p(A) = supZ(A) and note that p(A) ¢ Z(A). In order to show that
the extended-real function p:Z — (0, co] is nonincreasing, take two elements
A1 < A2in Z. If & € Z(A,) then, as was seen above, N (0, 12) = M (w,1y) <
M; (w,)2) = N (w,A) for all o € £2. Proposition 5.51 shows that NF (w, 1) <
Mt (w,X) < M (w,A3) < N (w,A), and hence Theorem 7.21 ensures the
existence of the Weyl functions M;t (w, X)) = N:E (w, Ay). In particular, ¢ € Z(A,);
that is, Z(A,) € Z(A41), so that p(A1) > p(A,). The existence of the Weyl functions
and the nonincreasing character of p stated in (ii), and the inequalities in (iii) and
(iv), have now been proved. It remains to check that p is a lower semicontinuous
function; i.e. that p(A) < liminf,— p(4,,) for all sequences (1,,) in Z with limit
A € Z. Take ¢ € (0,p(A)). Then the family (7.65) corresponding to & and A
satisfies FC and NC, and hence there exists an integer my > 1 such that the families
corresponding to € and A,, also do so for all m > my. Therefore ¢ < p(A,,) for all
m > my, which proves the assertion.

(v) Fix A € 7 with p(A) < oo, and recall that the family (7.65) corresponding
to this A and to ¢ = p(A) > O satisfies D1 and D2 (see Remark 7.20.1). In
addition, (iii) ensures the existence of the limits

Nt — +
Ny (@, 1) = S_}:)I(Ill)_ M (w, )

(see Remark 1.44.3) as well as the inequalities M} (w, 1) < N* (w,A) <
M_(w,A) for all ¢ € (0, p(A)). This ensures that D3 holds as well. The
equality N;E(M(w, A) = Npi(l)(a), A) is checked as was (5.47) in the proof of
Theorem 5.58. Note that it is not the case that N;A) (w,A) < N,y (o, A) for
every w € £2: if this property held, then Theorem 7.21 would ensure FC
and NC for the pair (4, p(1)), and the robustness of these properties would

contradict the definition of p(4). Consequently, there exists wy € £2 with
l:_(l) (o) NI, (wo) # {0}. Since dim (l:_(x) (wot) N1 (a)o-t)) is constant for

t € R (as can be deduced from U(r, wo)-I* (wy) = I* (wp-1)), the minimality
of the base flow ensures that Z:(A) (w) N 7;(1)(0)) # {0} for all the points w at
which both principal functions are continuous. The last assertion in (v) was
proved in Proposition 1.53.

(vi) In order to simplify the notation, this proof will be carried out for the case
A = 0, and the corresponding index will be omitted: the general case admits an
identical proof. So, assume that p(0) = oo, and hence that the system (7.60)
admits both Weyl functions for all ¢ > 0. Fix one of these values ¢ > 0,
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and take u. such that h.(w,£ul,) < O whenever u > u, and v € £2.
Here h, is the function determining the Riccati equation (7.62) (corresponding
to (7.65) for A = 0), whose solution with initial datum M, is represented
by M.(t,w,My). Choose v, > pu, such that —v. I, < Msi(a)) < vl,.
Proposition 7.23(ii) ensures that the solution M, (¢, ®, v.I,) exists for t > 0
and w € $£2; and, since h.(w,v.I;,) < 0, Theorem 1.46(iv) ensures that
M (t,w,vel,) < v I, for t > 0. Hence, v, belongs to

Ze = {v € (Ue, ve] | there is s, > 0 such that

M (t,w,v:l,) <vl,fort > s, and w € 2}.

It is clear that Z, is a nondegenerate interval. Note that MSjE (wt) <
M:(t,w,vel,) < vl,forallv € Z,, t > 5, and w € §2, so that the minimality
of the base flow ensures that MSjE < vl,. In particular, by Proposition 7.23(ii),
M (t,w,vl,) exists for v € Z,, t > 0 and w € £2. The goal now is to
prove that Z, = (W, v]. Let n, = infZ, and assume for contradiction
that n, > w.. Then, h.(w, n.I,) < 0, so that Theorem 1.46(iv) ensures that
M. (t,w,n.l,) < nl, for all t > 0. Fix ty > 0. The continuity of the Riccati
flow ensures that there exists § > 0 such that M, (ty, w, vI,) < (n.—§)I, for all
w € 2 if v € (5., ve) is close enough to 1,. Choose one of these values of v,
so that M (t, w, v.l,) < vI, fort > s,. Then, for t > ty + s, M:(t, w0, vel,) =
Ma(th w'(t - tO)vMa(t —lh,w, Vsln)) = Ma(tva'(t - t0)7 Vln) = (778 - S)In
But this implies that n, — § € Z, and contradicts the choice of 7,.

Therefore, as was seen above, M, < (infZ.)l, = u.l,. A symmetric
argument (working now with ¢ < 0) shows that —u I, < M;" . These facts
and Theorem 7.21 imply that

— ey <M <M < ., (7.66)

In particular, u, > 0, and this conclusion is reached working only under the
hypothesis that i, (w, £ul,) < 0 whenever 4 > . and w € §2.

Now, from the properties of the fixed number ¢ > 0 and the hypothesis
Hs > 0, one has hy(w, £ul,) < —p*el, F w(H(0) + H! (w)) + Ha, so that
there exists

wr = inf{u, | hy(w, £ul,) < 0 whenever u > p. and w € 2} > 0.

Then, he(w,£ul,) < 0 whenever © > u¥ and @ € £2, so that, in fact,
1y > 0. Now let ¢ vary in (0, co). It will be proved below that ;1 decreases
as ¢ increases and that lim,_o 4} = 0. Property (vi) will hence be proved by
taking the limits as ¢ — oo in (7.66) with u, replaced by .

If 0 < &1 < &, then he, (v, uly) > hey (0, £puly), so that w3, > pz >0,
and hence the limit lim,—oo ) = p%, > 0 exists. Suppose for contradiction
that 3, > 0, and take 119 € (0, u3,) and any w7 . Then there exists &2 > &
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(vii)

such that h,, (0, £ul,) < —,uzszln F u(H (w) + HlT(a))) + H, < 0 whenever
n e (uo, “Zl] and w € £2. Therefore, since h,,(w, £ul,) < he (0, £uly,), it
is the case that &, (@, £ul,) < Oforall u > o and w € £2. This implies that
Mz, < Jo < [g, Which is impossible. This completes the proof of statement
(vi).

Fix A € 7 and take ¢ € (0, p(4)). Then, by (iii),

(A +k) L <M (w,2) <MH(w, 1) < M (0, 1)

for every w € £2. Therefore, I, < M, (w, A) — k;1,, and hence
0 < (M, (0, M) —kil,) " <1,

for all w € £2 (see Remark 1.20). In addition, since M, (w, A) decreases
with &, it follows that (M, (w, ) — k;1,)~! increases with e. This ensures
that D (0, A) = lim,_o+ (M, (@, 1) — k;1,)~" exists (see Remark 1.44.3),
D’Z\ (w,A)

with 0 < Dy, (w,A) < I,. Moreover, the matrix [ kD (@ )+
/\ 3 n

] represents a

Lagrange plane: obviously,
(D) (koD + 1) = (ka(Dy))" + 1) D ;
. Dy (@.4) 0 n .
and if [kw;(w D4, ]c = [0] for a vector ¢ € R”, then ¢ = 0, so that its
A > n

range is n. Note also that

l;(w,,\)z[ In }E[ M (0, 1) = kaly) ™! }

M (@, 2) k(M (@, A) = kady) ™" + 1,

so that, since [ (w,A) = lim,_, o+ I (w, A) (see e.g. Theorem 1.90),

Dy (@.2)
D (@) + 1, |

EWME[

Finally, since k) is fixed, D(w) = Dy, (w, ) is the unique matrix such that

Iy(w, 1) = [ K DD(EU";L_ L ] It follows easily from Proposition 1.25 that D, (w, A)

is continuous on 2.

It is clear that the interval Z of Theorem 7.31 is not necessarily bounded from
above or below: to see this just consider the two-dimensional autonomous system

/

7z =

[_Al (1)] z. The following result analyzes the dynamics of the systems (7.64)

corresponding to A = sup Z in the case that it is finite.
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Proposition 7.32 Under the conditions of Theorem 7.3 1 and with the notation there
established, suppose that Ay = supZ < oo, and let ky € R satisfy (1 + ko)I,, <
MS' (w, 0). Then the limits

Dif (. Ao) = lim (M (@.2) = kol) ™"
0
Dy (@, 20) = lim D (.2)

exist for every w € $2 and define upper semicontinuous functions on §2. In
D (@.40)

addition, the matrices 5
k)»D](O (0,20)+1y

i| represent Lagrange planes 7}5} (w), and if 2 f(:)
represent the o-invariant residual sets of continuity points of Dz‘; (w, Ao) then the

sets IC)j; = closurex, {(w, z)j; (a))) |w e .Qit} are almost automorphic extensions
of the base §2.

Proof Point (i) of the previous theorem implies that MJ (w, A) increases with A,
so that (1 + ko) I, < MJ‘ (w, A) for all A € (0, Ap), and hence (see Remark 1.20):
0< (Mg'(a), A) —kol,)™' < 1I,forall A € (0,1) and all ® € £2; and (M(;F(a), A) —
kol,)~! decreases with A. This ensures that D,j; (w,Ao) = limj 5 (M(;F (w,A) —
kol,)~! exists, and that 0 < D,j; (w, Ao) < I,. Also, the function D,j; (w, Ap) is upper
semicontinuous on 2, as is ensured by Proposition 1.48(i).

Fix now k; = ko for all A € (0, A¢) and check the proof of Theorem 7.31(vii) in
order to observe that D} (w,A) < I, increases as A increases in Z, as (M, (w, A) —
Iqln)_l does for a fixed and valid €. Hence,

D (w.40) = Jim Do, 2) <1,

exists for all w € 2, and the function D} (@, Ao) is upper semicontinuous on £2, as
follows from Proposition 1.48(i) since each Dy (. A) is continuous.

The last two assertions are proved in the same way as the analogous ones in
points (vi) and (v) of Theorem 7.31.

7.3.3 Presence and Absence of a Controllability Condition

When dealing with an optimization problem of the type described at the beginning
of this chapter, the underlying Hamiltonian family takes the particular form (7.9),
which in particular ensures condition D1. Frequently, in order to apply the
Yakubovich Frequency Theorem, Condition C1 of Sect. 6.2 is assumed:

C1. Each minimal subset of §2 contains at least one point w; such that the system
X = A(wit)x+ B(wi-t)u

is null controllable.
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Recall that this ensures that the family of control systems is uniformly null
controllable, as Theorem 6.4 proves, and therefore it is equivalent to the null
controllability of all the systems of the family. There are two basic reasons for
making this assumption. The first one is that when Cl1 is fulfilled, Hypothesis 7.3,
regarding exponential stabilization, holds:

Proposition 7.33 The controllability condition C1 implies Hypothesis 7.3.

Proof The assertion is proved in Sect. 6.2: just consider the auxiliary linear
regulator problem given by (6.11) with a new G > 0, so that condition C2 there
is automatically satisfied (see Remark 6.2.3). Theorem 6.13 provides a continuous
function Ky: 2 — M,,x,(R) such that the family (7.14) is uniformly Hurwitz at
+00.

The second reason is that, when dealing with Hamiltonian systems of the form (7.9),
condition C1 turns out to be equivalent to condition D2 (see Remark 6.8.1 for
a similar result), as will now be explained. That is, since condition D1 holds,
under conditions FC and NC condition C1 is equivalent to the uniform weak
disconjugacy of the family (7.9): see Remark 7.20.2. And this is a kind of “optimal”
situation, which in particular implies the global existence of the Weyl functions (see
Theorem 7.21(iii)). In addition, as Theorem 5.67 states (see also the remark below
it), if there exists an ergodic measure with full support for which the rotation number
is zero, and if condition FC holds, then condition C1 suffices to ensure the uniform
weak disconjugacy of the Hamiltonian family.

Recall that Theorem 6.4 shows that condition C1 is equivalent to the uniform null
controllability of the family (7.6). Recall also that, as explained in Remark 6.16,
the uniform null controllability of the family (7.6) follows from the uniform null
controllability of a single system corresponding to an element @ € §2 with dense
o-orbit. The following technical lemma is a generalization of Lemma 6.6 (for which
the matrix-valued function g is identically zero).

Lemma 7.34 Define
A(w1) = A(wt) — B(wt) R N (w-1) g7 (w-1) .
Then the system (7.6) is null controllable if and only if
X = A(w-1) X + B(wt) R (w1) B () u (7.67)

is null controllable.

Proof It suffices to show that the null controllability of (7.67) is equivalent to that of
x = A(w-t) X + B(w) R (w1) BT (w-1) u,

and then apply Lemma 6.6. Take xo € R". If u: [0, #,] — R™ is an integrable control
for this last system such that the solution x(7) with x(0) = x satisfies x(fp) = 0,
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thenu() = u()+R~"(w-t) g’ (w-t) x(¢) is an integrable control for the system (7.67)
which steers X to 0 in time #y. The converse assertion is proved in the same way.

The previous lemma, Definition 6.3, Theorem 6.4 and Proposition 5.18 imply the
following statement which was announced previously:

Corollary 7.35 Condition C1 holds if and only if the Hamiltonian family (7.9)
satisfies condition D2.

Remark 7.36 Corollary 5.86 and Remarks 5.87 describe more equivalent situations.
In addition, Theorem 7.21(ii) states that, under D2 (i.e. under the uniform null
controllability hypothesis), conditions FC and NC ensure the global existence of
M~ . And conversely, Theorem 7.21(ii) also states that FC and the global existence
of M and M~ ensure D2 and hence the uniform null controllability.

But in fact, to apply the Yakubovich Frequency Theorem does not require that C1
holds. The trivial autonomous example z’ = [_01 (1)] z (for which A = —1, B =
G = g = 0, and R is any positive real number), is probably the simplest case of
this applicability in the absence of C1. The main purpose of this section is to give
an example which is not trivial at all. In particular, it is nonautonomous.

Example 7.37 In this example, the Frequency and Nonoscillation Conditions are
satisfied, the uniform null controllability condition on X' = A(w-) x + B(w-f)u is
not fulfilled, the family of systems is not uniformly weakly disconjugate, and the
exponential stabilization condition given by Hypothesis 7.3 is satisfied. In addition,
the interval Z defined in Theorem 7.31 is bounded from above, and the almost
automorphic extensions of Proposition 7.32 are not copies of the base.

In the well-known example due to Vinograd [147] (based on the previous results
of Millions¢ikov [104, 105]), a nonuniformly hyperbolic family of two-dimensional
Hamiltonian systems is constructed: nontrivial bounded solutions coexist with
exponentially increasing or decreasing ones. In this case, (£2,0) is an almost
periodic minimal flow. A careful analysis of this problem can be found in [68] and
is summarized in [87]. The interested reader can find in Example 8.44 all the details
of a similar construction. By modifying their constructions, Johnson [69] writes
down a nonuniformly hyperbolic family of Schrodinger equations x” —f(w-f) x = 0.
His analysis shows that, for A < 0 close to 0, the family of Hamiltonian systems
constructed by taking x; = x and y; = x" in x”" + (A — f(w-t)) x = 0, namely

1] =L oJ00]
yi flwt) =2 0]y ]’
has exponential dichotomy over §2, and that there exist the (scalar) Weyl functions
m*E (w, A). This means that, for these values of A, the systems satisfy D1, D3, FC,
NC, and existence of m™. It is clear (and ensured by Proposition 7.28) that D2

also holds. Theorem 5.61 applied to I" = [(1) 8] ensures hence that this family has
exponential dichotomy and that both Weyl functions exist whenever A € (—oo, 0).
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Consider the family of linear Hamiltonian systems

/

X 0 0107 [x x|
X2 0 -1 00 X2 X2
— = H)(wt (7.68)
w | T | f@wn-2 000||n @y
y2 0 —A201]Ly y2

for o € £2 and for A < 0. As explained in Sect. 7.1, this Hamiltonian system is
naturally associated to the problem of minimizing the functional

~

Loxpa (X, 1) = /0 % (x(0). G(w-1,A)x(1)) + (u(n), u())) dr

where G(w, ) = [f (’”)O_l _OA ], when it is evaluated on pairs (x, u): [0, 00) — R? x

R? which are admissible: u belongs to L*([0, 00), R?), and the solution x of the

control system
/ 0 0 10
= 7.
X |:0 _1:|x+[0 0i|l.l, (7.69)

corresponding to this control u and with x(0) = x; also belongs to the space
L?([0, 00), R?). Note that by taking K, = —I,, the family of systems

/ 0 0 10 -1 0
<= ([0 [os]een)= [ 5]
is uniformly Hurwitz at 4-co. In other words, Hypothesis 7.3 is fulfilled. Proposi-

tion 7.4 ensures that for each (xg, w, A) there is at least one admissible pair.
Note that (7.68) can be uncoupled to take the form

] =l o)) = [2]=15 00

Therefore, for A < 0, the Lagrange planes

M (w, ) = and [ (w,A) =

1 0
0 2
mt(w,A) 0
0 A
are composed of the initial data of the solutions bounded as t — oo and t —
—00, respectively. It is obvious that the family (7.68) satisfies D1, D3, FC, and
NC if A < 0, which together with Hypothesis 7.3 ensures that the conclusions of

the Yakubovich Frequency Theorem apply. That is, for all A < 0, v € £2, and
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Xo € R”, there exists a unique minimizing pair (X, u) for FIV(U,XO, 1, which is given by
(i(t), [’"Jr(‘a”’*) 8] )_((t)) for the solution x(#) of X' = [’"Jr(‘a”’” o ] x with x(0) =
Xo; and the minimum value is

~ - 1 mT(w,A) 0
Ia),X(),/l(Xs u) = _E X(7)-|: (O ) A/2i| X0 ,

: +
since MT (w, A) = [m (Ow,l) A(/)z]"

0
The above considerations are valid for all A < 0. Since |:8 :| solves (7.68) for

every value of A, D2 never holds. (And of course, [~ (w, A) iﬁ D for A < 0.)In
other words, the family of Hamiltonian systems (7.68) is not uniformly weakly
disconjugate for any value of A, and the family of control systems (7.69) (which
is common for all A) is not uniformly null controllable: condition C1 does not hold.
Note that the Frequency and Nonoscillation Conditions do not hold for A = 0.

Note finally that the family (7.68) can be reinterpreted as a perturbation of a
family of the type (7.64) which satisfies the hypotheses of Theorem 7.31, with H =
H,, for a fixed value Ao < 0, A = I, and the parameter A substituted by A — Ao.
With these identifications, the interval Z defined in Theorem 7.31 is given by Z =
(—00, —Ap). And the almost automorphic extensions of the base ICjO provided by
Proposition 7.32 (which are almost automorphic extensions for the system (7.68)
corresponding to A = 0) are not copies of the base. The details of this last assertion
can be found in [68] and [87].



Chapter 8
Nonautonomous Control Theory:
Linear-Quadratic Dissipative Control Processes

This chapter is devoted to the analysis of the dissipativity of linear control systems
with time-varying coefficients and time-dependent quadratic supply rates: in other
words, nonautonomous linear-quadratic control problems. These problems give rise
in a natural way to linear nonautonomous linear Hamiltonian systems. The methods
developed in the preceding chapters can and will be used in the analysis.

The concept of dissipativity as conceived by Willems [150, 151] (see also
Trentelman and Willems [146]) is of great interest in systems theory and has been
systematically developed by scientists working in that area (see for instance Hill and
Moylan [60], Hill [59], Polishing [121], and Savin and Peterson [134]). As is stated
in [151], the basic idea of Willems’ theory is to take account in a systematic way
of the energy transfer between a given dynamical system and its environment. The
bookkeeping of energy transfer is carried out using a supply rate (or power function)
together with a storage function. Generally speaking, a dissipative system exchanges
energy with its environment, and this phenomenon is modeled by the supply rate:
when this quantity is suitably integrated, it measures the flow of energy from the
environment into the system; and the storage function measures the quantity of
energy stored inside the system. The core concept is that a dissipative system with
a storage function cannot store more energy than that received from the outside: the
difference between the supplied and the internally stored energy is the dissipated
energy.

Among the classical fields of applications of the analysis of dissipativity, one can
mention continuum mechanics, thermodynamics, viscoelasticity, and electricity.

These concepts are of interest in particular when the system under consideration
is of control type. In this context, a particularly important case is that of a linear
control system with a quadratic supply rate. In the study of dissipative systems, the
focus is put on the construction of a storage function. But it seems that, despite
the information contained in the preceding papers about this subject, it is still
not known whether a dissipative linear-quadratic control problem always admits
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a storage function. Yakubovich et al. establish in [158] controllability conditions
under which, if all the relevant coefficient matrices are periodic with a common
period, then a strictly dissipative linear control system with a quadratic supply rate
admits a quadratic strong storage function. The nonstrict case is not analyzed in
that work, in which the authors make use of the Yakubovich Frequency Theorem.
The generalization of this theorem given in Chap. 7, together with other methods
described in the previous chapters, formed the basis for an extension of the result
of [158] to the general nonautonomous (nonperiodic) case, when the coefficients
of the linear-quadratic control problem are bounded and uniformly continuous
functions of 7. The coefficients might for example be all periodic, but two of them
might have incommensurable periods. This extension appeared first in Fabbri et
al. [44] and later, including also the case of nonstrict dissipativity, in Johnson and
Nuifiez [84].

The discussion of the generalization contained in [44] and [84] is not the
unique goal of Chap. 8. The strong conditions that the generalization requires
(uniform null controllability, and that the Frequency and Nonoscillation Conditions
of Chap. 7 hold) are weakened in order to include other scenarios: first, the existence
of exponential dichotomy is relaxed to that of uniform weak disconjugacy; and
second, the uniform null controllability is removed in order to describe situations
of dissipativity and existence of storage function which have not heretofore been
analyzed in the literature, even in the simplest cases of constant or periodic
coefficients. In all the cases of dissipativity (normal or strict) here studied, a storage
function (normal or strong) exists, and it turns out often to be the “optimal” one.
Some of these results appeared for the first time in [84] and in Johnson et al. [79].
Putting all these results together, and hence analyzing in a systematic way the
possible scenarios of dissipativity arising for linear-quadratic control problems, is
the objective of this chapter.

The problem to be studied is formulated in Sect. 8.1, which contains the main
definitions of dissipativity, strict dissipativity, storage function, and strong storage
function. A general nonautonomous framework is imposed: the coefficients of
the control system and of the supply rate are simply assumed to be bounded
and uniformly continuous functions of 7. Some properties deduced from the null
controllability, which will be required later, will be stated and proved in Sect. 8.2.

Section 8.3 contains two results which generalize statements proved by Willems
in [151] in the autonomous case. The first one states that the existence of a storage
function for a given linear-quadratic control problem is equivalent to the fact that
the so-called available storage is finite, in which case it (the available storage) is
indeed a storage function: it is, to some extent, the “worst” possible one. This is the
key point to prove this fundamental assertion: under a uniform null controllability
property, the dissipativity of a linear-quadratic control problem is equivalent to the
existence of a storage function. The second result shows that in fact, if the uniform
null controllability holds, then the dissipativity is equivalent to the positivity of the
so-called required supply, in which case this function is a new storage function: the
“best” one. These results are included in [79].
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Section 8.4 contains a proof of an easy but fundamental property, often used
in the following sections: globally defined symmetric matrix-valued solutions
of a Riccati equation constructed from the coefficients of the linear-quadratic
problem provide storage functions (or strong storage functions) if they are positive
semidefinite (or definite).

The main results about dissipativity are given in Sect. 8.5, under the fundamental
hypothesis that the initial control problem is null controllable in a “uniform”
way. It is divided into two parts. Some of the results of the first one, which also
assumes the exponential dichotomy of the Hamiltonian system which arises from
the linear-quadratic problem (among other conditions), generalize the statements
proved in [158] to the nonautonomous case. Of course, the statements and proofs
must be modified to take account of the nonperiodic nature of the coefficient
matrices. The contents of the section reproduce and extend those of [44] and [84].
But whereas in those papers the results were based on those of Chap. 7 (following
the ideas of [158]), the analysis presented here is independent of the Yakubovich
Frequency Theorem. The main results establish equivalences between the normal
or strict dissipativity and the properties of the vector space (Lagrange plane, as a
matter of fact) determined by the solutions bounded at —oo. In the second section
the exponential dichotomy hypothesis is substituted by some conditions on weak
disconjugacy, which are less restrictive, and hence the equivalence results there
obtained are weaker, although of interest in certain applications.

The hypothesis of uniform null controllability is removed in Sect. 8.6, where the
results of Sect. 8.4 are used to establish some dynamical conditions ensuring the
dissipativity (normal or strict) of the linear-quadratic problem. A perturbative result
shows that, even in the absence of such conditions, the dynamical methods described
in the book may allow one to establish the dissipativity of a given problem.

Section 8.7 contains three nontrivial examples which demonstrate the optimality
of the results of the previous sections: they describe interesting dynamical situations
which are not included in the classical framework of the dissipativity analysis.
And Sect. 8.8 shows that all the results can be easily adapted to the time-reversed
problems, providing hence new scenarios of applicability of the nonautonomous
techniques which constitute the main tools of all the book.

Each section begins with a more detailed description of the results contained
therein and their scope.

Throughout this chapter, ( , ) and ||-|| denote the Euclidean inner product and the
Euclidean norm on R¢ for all values of d; and given A € Myx,,(R), ||A| represents
the usual operator norm associated to the Euclidean norm.

8.1 Statement of the Problem

This section describes the linear-quadratic control problems considered in the
chapter, and includes the definitions of their dissipativity and strict dissipativity
adopted in this book. In fact these definitions admit variations: Remark 8.3 gives
alternative ones, and explains a possible reason for their coexistence in the literature.
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As in the previous chapters, consider a time-varying linear control problem
X =A@)x+B({)u, (8.1

where x € R” is a state vector, u € R is a control vector, and the coefficients A and
B are bounded and uniformly continuous matrix-valued functions of the appropriate
dimensions. Associate to (8.1) the quadratic functional

é(t, X, u) = % (x,G()x) + 2 (x,g(®)u) + (u,R()u)), (8.2)

where G, g, and R are bounded and uniformly continuous matrix functions of the
appropriate dimensions, with G = G, RT = R, and R(f) > §1,, forall t € R and a
common § > 0. Throughout the chapter, any control function u: [t;, ;] — R™ will
always assumed to be square integrable.

The relation between Q and the control system can be understood in this way:
the quantity fr? Q(t,x(7),u(t)) dt, when the pair (x,u) solves the control system,
represents the amount of “supply” (meaning for instance energy) which has to be
delivered to the system in order to transfer it from its state in time 7 to its state in
time #,. This is the reason for which Q is called the supply rate or power function.

The pair given by the linear control system and the quadratic form will be
called a linear-quadratic (or LQ for short) control problem. The classical problem
of minimizing the quantity fooo 9(s,x(s),u(s)) ds, when the functions x and u
are square integrable functions on [0, c0) and solve the control system with the
additional condition x(0) = x¢ for a fixed x¢, has been considered in Chaps. 6
and 7.

Concerning the subject of this chapter, the rough idea is that a dissipative system
is one which loses energy; or, in other terms, which requires energy coming from
the environment to move from its equilibrium position to another one. The existence
of this amount of energy is often guaranteed by the existence of a storage function,
which roughly speaking bounds from below the energy that the system requires
to pass from the state of minimum storage to a given state. These are the ideas
formalized in the next definitions.

Definition 8.1 The control system (8.1) is dissipative with supply rate (8.2) if for
each pair #; < t, € R and for each control u: 71, ;] — R™, the solution x(¢) of (8.1)
satisfying x(#;) = 0 has the property that

/ § O(s, x(s),u(s))ds > 0.

The control system (8.1) is strictly dissipative with supply rate (8.2) if there exists
8 > 0 such that (8.1) is dissipative with the modified supply rate

Qs(t,x,w) = Ot x,w) — 8 (x> + [|u?). (8.3)
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These concepts are also called dissipativity or strict dissipativity of the LQ control
problem given by (8.1) and (8.2).

So, this definition responds to the idea that a system is dissipative if, when at rest at
time ¢ = #; and then “set into motion”, it cannot restore energy to the environment.
Remark 8.3 gives an alternative formulation of dissipativity, which is very common
in the literature, and which requires the next definition:

Definition 8.2 A function V:R x R" — R is a storage function for the LQ control
problem given by (8.1) and (8.2) if the following conditions hold. First, V(z,0) = 0
and V(t,x) > 0 for all (¢,x) € R x R". Second, if t; < 1, € R, ifu: [t;, ] —> R is
a control function, and if x(7) solves the corresponding system (8.1) (with arbitrary
initial value x(;) € R"), then

/ " B(s.x(5). uls)) ds = % V(2. x(12)) — V(b1 x(1)))

The function V is a strong storage function for the LQ control problem if it is a
storage function and if, in addition, V (¢, x) > 0 for all r € R and all nonzero x € R".

The inequality in this definition formalizes the idea that the change of internal stored
energy in a given time interval will never exceed the amount of energy that flows
into the system in that interval. In other words: the control system cannot store
more energy than is supplied to it from the outside. Note that the factor 1/2 is not
included in the classical definitions: it appears here to make the notation consistent
with that used in the preceding chapters. Note also that V is not even required to be
continuous. Howeyver, the storage functions that the dynamical techniques provide
in this chapter will be jointly continuous, and in fact quadratic in x.

Remark 8.3 1Tt is clear that the existence of a storage function ensures the dis-
sipativity of the LQ system (the almost trivial details are given in the proof of
Theorem 8.6). In fact, in some of the most cited references on dissipative systems
(such as [151] or [146]), the definitions of dissipativity read as follows: the control
system (8.1) is dissipative with supply rate (8.2) if there exists a storage function
V for the LQ problem; and it is strictly dissipative with supply rate (8.2) if there
exists § > O such that (8.1) is dissipative with the modified supply rate (8.3).
Theorem 8.6 below shows what is possibly the main reason for the coexistence
of these two different definitions: they turn out to be equivalent not only in the
autonomous and periodic cases but also the general recurrent one if the system (8.1)
is null controllable; or more generally, when all the systems of the family defined
over the hull §2 of the data (A, B, G, g, R) are null controllable (see Sect. 1.3.2 and
Remark 6.16 in this regard); and the null controllability is a common property in the
main applied examples.

Definition 8.1 is chosen in this book, since it is less restrictive from a theoretical
point of view, and it responds better to the rough idea of dissipativity explained
above. But the reader may keep in mind what Willems explains in [151]: when
talking about dissipative systems which arise in physical problems, the main
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question concerning dissipativity is not if a storage function exists (which is usually
the case), but what this storage function might look like. In fact in all the situations
described in this chapter in which (strict) dissipativity is guaranteed, a (strong)
storage function exists. Thus the reader can adopt the second definition if it is more
convenient for any reason.

As in the previous chapters, the analysis will be carried out for a family of LQ
control systems defined over a compact metric space §2 with a continuous flow o.
In particular, this setting appears when £2 is the hull in the compact-open topology of
the quintuple (A, B, G, g, R): see Sect. 1.3.2. If this is the case, the results regarding
the dissipativity of the initial system (8.1) can derived from the results concerning
the family (8.4) below by an obvious “restriction” process.

So, let A, B, G, g, and R be now given continuous matrix-valued functions on £2
of the appropriate dimensions, with G = G andR = R > pl,, fora p > 0, and
consider the family of control systems

x = A(wt)x+ B(wu, w € 2 (8.4)

together with the family of quadratic functionals

éw(z‘, X,u) = % (%, G(w1)x) + 2 (x, g(w-t)u) + (u, R(w-t)u)). (8.5)

From now on, the notation LQ, will be used to make reference to the linear-
quadratic problem given by the system (8.4) and the functional (8.5) corresponding
to a particular point w € 2. The concepts of dissipativity or strict dissipativity of a
particular LQ, pair are those given in Definition 8.1.

The results on dissipativity will be obtained in terms of the dynamical properties
of the family of Hamiltonian systems

7 =Hwiz, we R, (8.6)

where z = [?] forx,y € R" and

H(w) A(@) = B(@)R™ ' (0)g" (») B(w)R™! (w)B" ()

w) = .
G(@) — g(@)R(@)g" (@) —~AT(®) + g(@)R™(w)B" (@)

It is not the first time that this family has appeared in the book: the Hamiltonian

family appears in Chap. 7 associated via the Pontryagin Maximum Principle to the
minimizing problem for the functional

oo (X, 1) = /0 - O, (s, x(5), u(s)) ds (8.7)
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for square integrable pairs (X, u) satisfying (8.4) with x(0) = x (i.e. for admissible
pairs), with 2, given by (8.5). This association requires the additional uniform
stabilization condition described by Hypotheses 7.3. But note that, in fact, one can
simply define (8.6) from (8.4) and (8.5) without assuming anything else.

8.2 Uniform Null Controllability and Time-Reversion

In order to avoid further interruption in the discussion, several facts concerning
the controllability of the family (8.4) which will be needed later are discussed in
this section. These properties, which require uniform null controllability, are based
on the controllability that the time-reversed problems inherit from the initial ones.
Some of these results appear in [77] and [44], but the proofs given here include more
details.

To start with, note that the time-reversed map o~ (f,w) = o(—t,w) = w-(—1)
also defines a real continuous flow on £2. From now on, £2~ will represent the same
compact metric space 2, but understood as the phase space of the flow o™

Proposition 8.4 The family (8.4) is uniformly null controllable if and only if the
same holds for the family of time-reversed control systems

X' = —A(w(=1)) x — B(w-(—1)) u, we N ; (8.8)
in addition, in this case, a same time t, satisfies the property stated in Definition 6.3
for (8.4) and for (8.8).

Proof Obviously it suffices to proof the “only if” part. Assume hence the uniform
null controllability of the family (8.4), and let 7, and § satisfy Definition 6.3. As
usual, Uy (¢, w) represents the fundamental matrix solution of X' = A(w-t) x with
value I, at t = O for each w € 2. It is clear that Us(—t, w) is the fundamental
matrix-solution of X' = —A(w-(—t)) x with value I, at t = 0 for each v € £2~.
Then, if wy € £2,

81, < /m Ugl(s, o) B(wy-s) BT(a)O-s) (UA_I)T(S’ wp) ds
0
= /0 O(UA_I(to — 5, o) B(wo+(t — 5))
B (@o-(to = 5)) (U7 (10 = 5. w0) ) ds

_7 ( / " U (5, 0) Bo-(—9) B (@) (U7 ) (=s.0) ds) o,
0
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where @ = wy-fy and U = Uy ' (ty, wp). Obviously, any point w € 2~ = 2 can be
written as wy-t, for a point wy € §2. Using the compactness of §2 and the continuity
of Uy (ty, w-(—1y)) with respect to w, a §~ > 0 such that

/ ! Uy ' (=s, 0) B(w-(—s)) BT (w-(—s)) (U (=5, w) ds > §71,
0

for all w € §£27 is obtained, and this proves the assertions.

The next result establishes consequences of the uniform null controllability which
will be fundamental for the purposes of the chapter.

Proposition 8.5 Suppose that the family (8.4) is uniformly null controllable, and
let tg > 0 be the time of Definition 6.3.

(1) Given ¢ > 0 there exists §x > 0 such that, if o € 2 and if xo € R" satisfies

X0l < 8x, then there is a continuous control function uy: [0, to] — R™ with
lu, ()| < e forallt € [0,1t] such that the solution x,, of X' = A(w-1)x +
B(w-t)u, () with x,(0) = X satisfies X, (ty) = 0. In addition, the map §2 x
[0, 10] = R™, (w,1) = u,(?) is jointly continuous.

(ii) Given ¢ > 0 there exists 6« > 0 such that, if ® € §2 and if Xo € R" satisfies
IXoll < 8, then there is a continuous control function v,: [—ty, 0] — R™ with
Vo ()| < & forall t € [—ty,0] such that the solutiony,, of X' = A(w-t)x +
B(w-t) v, (¢) with y,(0) = X¢ satisfies y,(—ty) = 0. In addition, the map
2 X [~ty,0] > R, (w,1) = Vy(2) is jointly continuous.

(iii) Foralls € R, xg € R" and w € 2 there exists a control functionW: [s—to, 5] —
R" such that the solutionX: [s — 1y, 5] — R" of X' = A(w-t) X + B(w-1) U(t) with
X(s — t9) = 0 satisfies X(s) = Xo.

Proof

(i) Let # be the time appearing in Definition 6.3. The result follows very easily
from Remark 6.2.2: the matrix

O(ty, w) = /Oto UA—l(s, w) B(w-s) BT (w-s) (UA—I)T(S, ) ds

is continuous in @ and satisfies Q(ty,w)™' < (1/8)I, for § satisfying
Definition 6.3; hence, taking p such that ||B(w-t)(Uy") (t,w)| < p for all
w € £2 andt € [0, ty], the control function

u, (1) = =B (0-)(U; ) (t. @) 0~ (t, ) Xo

has the asserted properties with 8, = 4/ p.

(ii) Proposition 8.4 and point (i) provide 6* > 0 such that if ||xo|| < &* then there
is a continuous control function u,: [0, f)] — R™ with |ju, (f)|| < & for all
t € [0, 1] such that the solution x,, of X' = —A(w-(—1)) x — B(w-(—1)) u, (¢)
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with x,(0) = x satisfies x,, (o) = 0, and in such a way that the map £2 x
[0,7] = R™, (t,w) — u,(?) is jointly continuous. It is easy to check that
Vo:[—1,0] = R, t — u,(—t) and y,: [~ty,0] = R™, t — x,(—1) satisfy
the assertions in (ii).

(iii) Fix s, x, and w. Proposition 8.4, Definition 6.3 and Remark 6.2.2 provide a
control u: [0, fo] — R™ such that the solution X: [0, fo] — R" of

X' = —A((w9)(=1) x = B((-5)-(—1)) u(t)

with x(0) = x satisfies X(fp) = 0. The assertion in (iii) is hence satisfied by
W [s—tg,5] > R™, t>ua(s—1) andX: [s — 19, 5] > R, 1> X(s —1).

8.3 Equivalence of Definitions Under Uniform Null
Controllability: The Available Storage and Required

Supply

The main results of this section are Theorems 8.6 and 8.15. The first establishes
controllability conditions under which the dissipativity of the control system (8.1)
with supply rate QO given by (8.2) is equivalent to the existence of a storage
function (resp. strong storage function) for the same control system and supply
rate (see Remark 8.3). The reader can find in [158] some information regarding
previous results concerning this equivalence, as well as some recent results along
the same lines. More precisely, in [158], the authors consider the case of T-
periodic component functions, and prove that if the periodic control system is
controllable and the LQ control problem is strictly dissipative, then a strong
storage function exists. The information provided by Theorem 8.6 fills an important
gap in this previous information, in the sense that neither periodicity nor strict
dissipativity is assumed. (And much more will be said under additional hypotheses
in Theorems 8.22, 8.23, and 8.34.)

Theorem 8.6 is now formulated, although it will be proved later, after the
auxiliary result stated in Proposition 8.8, which in turn requires Definition 8.7.
To understand the scope of the theorem, recall that the previous chapters explain
several situations which guarantee the uniform null controllability: see for instance
Theorem 6.4, Remarks 6.5.2, 6.8, 7.20, and 5.87, and Corollaries 7.35 and 5.86.

Theorem 8.6 Suppose that the family (8.4) is uniformly null controllable. Then, for
eachw € 2, the LQ , control problem is dissipative if and only if it admits a storage
function. In other words, if the family (8.4) is uniformly null controllable, then, for
each o € §2, the Definitions 8.1 of dissipativity and strict dissipativity for the LQ,
control system given by (8.4) and (8.5) are equivalent to those given in Remark 8.3.
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The next definition and result do not depend on any kind of properties of the family
but just of a particular LQ problem. Therefore they are formulated for the initial LQ
control system described in Sect. 8.1.

Definition 8.7 The available storage of the LQ control system given by (8.1)
and (8.2) is the extended-real function V“ defined on R x R”" by

+h u: [t,t + h] — R™ control
Ve(t, x) = sup —2/ A(s,x(s),u(s)) ds | and x solves (8.1)
hz=0 ! in [t,t + h] with x(r) = x

It is clear that V“(f,x) > 0: =2 ﬂr+h§(s, x(s),u(s))ds = 0 for h = 0. The next
result is a nonautonomous version of Theorem 1 of [151].

Proposition 8.8 The following statements are equivalent:

(1) there exists a storage function V for the LQ control problem given by (8.1)
and (8.2); in other words, the control system (8.1) is dissipative with supply
rate (8.2) in the sense of Remark 8.3;

(2) the available storage V* for the LQ control problem satisfies V*(t,X) < oo for
each (t,x) € R x R".

In addition, under these conditions V* is a storage function for the LQ control
problem, and V¢ <V for any other storage function V.

Proof (1)=(2) Let V be any storage function for the LQ control problem. Since V
is nonnegative,

t+h
-2 / " O(s,x(s), u(s)) ds < V(t.x(t)) — V(t + h.x(t + b)) < V(£.x(1)) < 00,

so that V“(t,x) < o0, as asserted in (2). Note also that V“(t,x) < V(¢,x) for each
(t,x) € R x R", which proves the last assertion of the theorem.

(2)=(1) Assume that V¢(¢,x) < oo for each (t,x) € R x R". To prove this
implication and complete the proof of the theorem it suffices to show that V¢ satisfies
the two conditions in Definition 8.2 of storage function for the LQ problem. The first
one is that V4(z,0) = 0 for each ¢ € R; or equivalently, that V“(¢,0) < ¢ for each
& > 0 (since V* > 0). Fix t € R and ¢ > 0 and note that the definition of (the real
value) V“(t, 0) ensures the existence of 4, > 0 and a control u,: [t,t + h] — R™
such that, if x: [z, + h;] — R" is the solution of X' = A(¢) x + B(f) u.(¢) with
X.(f) = 0, then

t+he
Va(r,0) < —2 / O(s, x.(5), () ds + &
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Hence, since é is a quadratic form, for each A > 0
2 t+he 2
Vet 0) < 2 / (s, Ax.(s), Aus(s))ds + € < ie Vet 0) + ¢,
t

so that taking the limit as A — oo it follows that V“(z,0) < ¢, as asserted.

In order to prove the remaining statement, choose two times #; < t,, a control
u: [t1, ] — R™ and any solution X: [t;, 2] — R" of the system x' = A(f)x +
B(f) u(z). Take also any 4 > 0 and any control u: [f,, t, +h] — R™, and letX: [, 1, +
h] — R" be the solution of X' = A(¢) x + B(r) u(?) with X(r;) = x(2). Now define
the control u: [#1, &, +h] — R™ by concatenating u on [t1, ) and @ on [t5, 1, + 4], and
note that the solutionX: [t;, i, +h] — R" of X' = A(¢) x+B(r) u(r) withX(1;) = x(1)
agrees with x on [t;, ;] and with X on [t2, #, + &]. The definition of V“(¢,x(#)) yields

t+h

vVt x(t)) > =2 / O(s,X(s), U(s)) ds

n

5] t+h
=2 / O(s, x(5), u(s)) ds — 2 / " O(s, x(s), u(s)) ds,

n

so that taking the supremum over the set defining V*(z,, x(1)) yields
15 -
Ve(nx(n) = <2 [ 000 x(6).us) ds + V(. x().
1

This is equivalent to the inequality in Definition 8.2. The proof is complete.

Proof of Theorem 8.6 Observe that it is enough to prove the equivalence of the
definitions in the case of dissipativity, since once this fact is established, the
definition of strict dissipativity is the same in both cases. (This is the reason why
the last sentence of the theorem is equivalent to the previous one.)

It is simple to deduce that the existence of a storage function V,, for the LQ,,
problem given by (8.4) and (8.5) guarantees its dissipativity. In fact, take #; < £, a
control u: [t1, t;] — R™, and the solution x(f) of (8.4) with x(¢;) = 0, and note that

/ "B (5. X(9), 0s)) ds = Vi (12, X(2)) — V(11 X(11)) = V(12 x(12)) = 0.

which proves the assertion.

Assume now that the LQ,, pair is dissipative. According to Proposition 8.8, it is
enough to check that the available storage V; of the LQ,, control problem (given by
Definition 8.7 with Q replaced by Q,,) satisfies V¢ (¢, x) < oo.

Fix (z,x) € R x R". According to Proposition 8.5(iii), there exist a time #; < ¢
and a control : [¢1, ] — R” such that the solutionX: [t{, f] — R" of X' = A(w-1) x+
B(w-1)u(?) withX(r;) = 0 satisfies X(r) = x. Take now any & > 0 and an arbitrary
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control w: [t, r + h] — R™, define u*: [, + h] — R™ by concatenating W on [t1, )
and u on [z, ¢ + k], and denote by x* the solution of X' = A(w-r) X + B(w-r) u*(r)
with x*(7;) = 0. It is clear that x* agrees with X on [r1, ] and with the solution X of
x' = A(w') x + B(w-t) u(z) with X(f) = x on [t,¢ + h]. Finally, the assumption in
(ii) ensures that

+h _
/ Qu(s,x*(s),u*(s))ds > 0,

and consequently, by the definition of the available storage,

+h t__
Va(t,x) < —2/ Q. (s, X(s),u(s)) ds < 2/ Qu(s,X(s),U(s)) ds < 00.

This completes the proof.

It is important to remark that, although the hypothesis of Theorem 8.6 refers to
the whole family of control problems, the thesis is formulated for each LQ control
problem of the family. In this regard it is convenient to bear in mind two questions.
On the one hand, Remark 6.16 describes situations in which, if §2 is obtained as
the common hull of the initial coefficients (A, B, G, g, R) of (8.1) and (8.2), the
initial control problem satisfies conditions ensuring the uniform null controllability
of the family. And, on the other hand, in the hull of an initial LQ control problem
there may coexist elements for which a storage function exists together with others
without this property. This can happen in particular in two situations: under the
uniform controllability of the family systems if the hull is not minimal, as in
Example 8.12; and when the hull is minimal but the family of control problems is
not uniformly null controllable, as in Example 8.13. Those examples are postponed
until Proposition 8.10, where it is proved that the coexistence is not possible in the
case of minimality plus uniform null controllability.

It is also important to emphasize the fact that the controllability hypothesis is
fundamental for the equivalence of the two classical definitions of dissipativity given
in Theorem 8.6. That is the reason for the inclusion of the next simple example.

Example 8.9 The goal now is to construct an example of a family of LQ control
problem which satisfies Definition 8.1 but for which a storage function does not
exist, which according to Theorem 8.6 is only possible if the property of uniform
null controllability does not hold. For instance, let (£2,0) be a minimal flow and
let A: 2 — R be continuous. Then, taking B = 0, one gets the family of “control
problems” x’ = A(w-r) x, which obviously give rise to dissipative control problems
no matter what the choice of G, g, and R > 0. However, takingA = 1,B = 0,g = 0,
G = —1, and any R > 0 (not necessarily autonomous) one gets an LQ (dissipative)
control problem which does not admit a storage function, since the available storage,
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independent of the point of the hull, is

t+h
Ve(t,x) = sup %/ 2 eZ(S—t)ds} = 00
h>0 t

for every (z,x). Note that the supremum giving rise to V“(¢, x) is actually obtained
when u = 0, since B = 0 (which ensures that the solution is independent of u),
g=0andR > 0.

The next proposition, which was referred to above, contains an interesting result
about the limiting behaviour of dissipativity. In particular, it ensures that the
coexistence of dissipative and nondissipative LQ control problems is impossible
if they correspond to the same minimal subset of £2 under the uniform null
controllability assumption.

Proposition 8.10 Suppose that there exists wy € §2 such that the corresponding
LQ ., control problem is dissipative (resp. strictly dissipative). Then for each
w; € closureg{wy-t| t € R} the LQ,, control problem is dissipative (resp. strictly
dissipative).

Proof The proof is carried out in the case of dissipativity: the arguments are
analogous in the strict situation. Take w; € closureg{wy-?| t € R} and a sequence
(sp) with lim,— o wo-s, = ;. Let u:[t;,,] — R™ be a control, let X(r) be
the solution of X' = A(w;-f)x + B(w;-t)u(r) with x(t;) = 0, and let x,(z) be
the solution of X' = A((wp-sn):1) X + B((wo-s,)1) u(r) with x,(t;) = 0 for each
n € N. The definition (8.5) of Q,, the classical results on continuous dependence
of solutions with respect to the coefficients of the equations, and the Lebesgue
dominated convergence theorem ensure that

/ B (5, K(5), (s)) ds = lim_ / B (5 %0(5), 5 ds

1

n—>oo

= lim / zéwo(s+sn,xn(s),ﬁ(s))ds

t+sy

= lim Qo (8, Xn (s — 8y),u(s — 5,)) ds > 0.
=00 Ji 45,

The last inequality, which proves the result, follows from the assumed dissipativity,
since w,: [t; + Su, f + s4] = R™, t — u(t — s,) is a control, and x,(f — s,) is the
solution of X' = A(wy-t) X + B(wo-t) 4, (¢) with x,(f; + s, —s,) = 0.

Remark 8.11 1f one imposes the definition of dissipativity given in Remark 8.3
(i.e. the existence of a storage function), then the conclusions of Proposition 8.10
do in fact hold if and only if the uniform null controllability of the family (8.6) is
assumed. The “if” assertion follows immediately from Theorem 8.6, and the “only
if” assertion is proved by Example 8.13.
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Example 8.12 This example shows that, even in the simple case of the autonomous
control system X’ = x + u, which is null controllable (since B = 1 > 0: see
Remark 6.2.1), it is possible to have a nonautonomous supply rate giving rise to
a hull £ on which there coexist dissipative and nondissipative systems. Recall
that Proposition 8.10 shows that this is impossible for problems corresponding to
points in the same minimal subset of the hull, so that this hull will necessarily be
nonminimal.

Take hence A = B = R = 1, g = 0, and let G be an increasing continuous
function satisfying

-2 iftr<0,

G =
® { 0 ifr>1.

The linear Hamiltonian system associated to the corresponding LQ problem is

7 = ! ! z
G -1

and it is easy to check that the hull £2 of the coefficient matrix is

R Ay B S Y

with G,(f) = G(t + s). Consider first the right-limiting system z’ = [ } ! ] z. Since
the corresponding quadratic form is [ (x, u) = u*/2, the corresponding LQ control
problem satisfies the Definition 8.1 of dissipativity. However, the quadratic form
associated to the left-limiting system z’ = [ _}, _} |z is O—oo(x,u) = —xu + u%/2,
and taking u:[0,1] — R, 7 +— 1 and the solution x(r) = ¢’ — 1 of ¥’ = x + 1
with x(0) = 0 one gets J Ox(x(s), u(s))ds = [, (—¢* +3/2)ds = —e + 5/2 <
0. Therefore this last system corresponds to a nondissipative LQ control problem.
Example 8.16 adds some more information about this nondissipative system.

Example 8.13 This example, which was announced in Remark 8.3, shows that
Proposition 8.10 is not true for the definition of dissipativity given in Remark 8.3
unless the uniform null controllability is assumed: the coexistence of a point w € §2
such that the corresponding LQ,, control problem admits a storage function with
other points for which this property does not hold is possible, even in the same
minimal subset M C £2. Proposition 8.10, Theorem 8.6 and Remark 6.5.2, taken
together, state that this cannot happen when all the systems corresponding to points
of M are null controllable.

As in Example 8.9, the problem will be scalar and with B = 0, which precludes
the null controllability of any one of the linear control systems X' = A(w-t) x +
B(wt)u = A(w-t) x, and which gives families of dissipative LQ control problems
irrespectively of the choices of G, g, and R. Take a A: 2 — R continuous and with
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additional properties to be described later, G = —A, g = 0 and R = 1. [t is easy to
check that

1 :
Ve (0,x) = sup { _XZ(EZIO}'A(wo)dS _ 1)} '
n>0 ( 2

(As in Example 8.9, the supremum in the definition of V¢ (0, x) is actually attained
when u = 0.) The question hence is to choose A so that this supremum is finite
for some values of w and oo for other ones. And the existence of such functions
A is a well-known fact, described by Poincaré in [120] (see also Johnson [64]). It
is enough to take £2 as the (minimal) hull of a recurrent AR - R (and A as the
time-zero evaluation operator: see Sect. 1.3.2) such that:

— First, ¥ = Z(t)x does not have exponential dichotomy over R (which is
equivalent to saying that the family X' = A(w-f) x does not have exponential
dichotomy over §2 (see Remark 1.59.4). "

— Second, supesof{|fgA®)ds|} = oo or supco{|fyA(s)ds|} = oo.
Then there exists a residual subset R C £2 such that, for any v € R,
lim sup,_, o fOTA(a)-s) ds = oc. This means that V¢ (0,x) = oo for any w € £2
and x € R, which according to Proposition 8.10 precludes the existence of
storage function for the corresponding LQ problem.

There are particular examples given in the literature. The interested reader can find
in [87], Theorem A.2, a short proof of the existence of the residual set R, and of
more interesting oscillatory properties of the solutions of the systems corresponding
to the points of R (see also Example 8.44).

The second main result of this section, Theorem 8.15, establishes the equivalence
between the dissipativity of a particular LQ, control problem and the existence of
the optimal storage function, to be defined now, under the fundamental hypothesis
of the uniform null controllability of the family (8.4).

Definition 8.14 Suppose that the family (8.4) is uniformly null controllable. The
required supply of the LQ, control problem given by (8.4) and (8.5) is the
extended-real function V;, defined on R x R" by

- w: [t — h,t] — R™ control
VI, x) = zrig 2 / Qu(s,x(s),u(s)) ds | and x solves (8.4) with
- i=h x(f) =xandx(t—h) =0

Proposition 8.5(iii) ensures that the set over which the infimum is taken is nonempty
for all (t,x) € R x R". The next result provides a nonautonomous version of
Theorem 2 of [151]: the equivalence between dissipativity and nonnegativity of
the required supply. Note again that the thesis is formulated for each LQ control
problem of the family: see the comment before Theorem 8.6, and recall that
Example 8.12 displays a case of uniform null controllability for which dissipative
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and nondissipative problems coexist, so that positive and nonpositive required
supplies coexist.

Theorem 8.15 Suppose that the family (8.4) is uniformly null controllable. Fix @ €
$2. Then the following statements are equivalent:

(1) the control system (8.4) is dissipative with supply rate (8.5);
(2) the required supply V. for the LQ, control problem satisfies V| (t,x) > 0 for
each (t,x) € R x R".

In addition, under these conditions V), is a storage function for the LQ ,, control
problem, and V,, < V] for any other storage function V,,.

Proof The equivalence of (1) and (2) is an easy consequence of Definition 8.1.
Hence the first objective will be to check that if V| > 0 then it is a storage function
for the LQ,, control problem.

It is clear from the definition that the (nonnegative) infimum of the set which
appears in the definition of V) (¢, 0) is reached for 1 = 0, and is 0. Now take t; < 1,
and a pair (X, u) solving (8.4) in [t1, 1,]. Take & > 0 and a control W: [t; —h, t;] — R™
such that the solution X: [t; — &, ;] — R" with X(t; — h) = 0 satisfies X(¢;) =
X(t1). Repeat the concatenating process already made twice before and note that the
definition of V; ensures that

n

V! (1. X(1)) < 2 0, (s,X(s),U(s)) ds + 2 / § O, (s,X(s), u(s)) ds .

t1—h

Therefore, taking the infimum of the set defining V, (t;, X(¢;)) yields

VI (0, X(12)) < V7 (01, %(1)) + 2 / "B (5. %(5). (s)) ds.

as required.

The proof will be completed once it is shown that V] > V,, for any other storage
function V,, for the LQ,, control problem. Fix (f,x) € RxR", and choose # > 0 such
that there exists a control u: [t — &, ] — R™ for which the solution x: [t — i, {] - R”
of X' = A(w-1) x + B(w-t) u(r) with x(r — h) = 0 satisfies X(r) = x. Then, since V,,
is a storage function,

/[ Q) (5, X(s), W(s)) ds = Voo (1, X(1) — Voo (t — b, X(t = h)) = Vo (1,%) ,
t—h

so that the asserted inequality follows from the definition of V) (¢, x).

Note that the last assertion of the preceding theorem states the optimality of the
required supply mentioned above: it is the largest one among all the possible storage
functions for the LQ , control problem. And, on the other hand, the available storage
is the smallest one.
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Example 8.16 Consider again the family of LQ control problems of Example 8.12.
More precisely, consider the autonomous one given x’ = x + u and Q_ (x, u) =
—xu+u?/2, givenby z’ = [_12 A ] z. Theorem 8.15 ensures that its required supply

takes negative values at some pairs (z, x).

8.4 Riccati Equation and Storage Functions

Recall once more (see Sect. 1.3.5) that the family of Riccati equations defined
from (8.6) by

M' = —M H3(w-t) M — M Hy(w-t) — H! (0-) M + Hy(w-1) (8.9)

with H, = A—BR 'g",H, = G —gR7'g", and H; = BR'B", defines a local
skew-product flow 7, on £2 x S,(R); in time ¢ it sends the pair (w, My) to the pair
(w1), M(t,w, My)), where M(t, w, M) is the solution of the equation (8.9) with
M(O, w, M()) = M().

Take one of these solutions, and define

Voum, . X) = (X, M(t, v, My) X)

as long as it exists. Lemma 7.9 states that, for any pair (x(f), u(¢)) solving (8.4),

% Va),Mo (tv X(t)) = Zéw (t’ X(t)’ ll(t)) (810)

— (u(t) — Ko, (1) X(2), R(w-t) (u(t) — Koy 01, (1) X(2)))
for
Koo (1) = RN (w-1)(—=g" (w-t) + BT (w-1) M(t, 0, My)) .

Relation (8.10) is the key point required to show the strong connection between
the existence of globally defined nonnegative solutions of equations (8.9) and
the dissipativity of the LQ control problems considered in this chapter. This
relation is explained in the next result, which does not require extra controllability,
dichotomy, or disconjugacy properties to be imposed on the family of Hamiltonian
systems (8.6), and which is fundamental in the rest of the chapter.

Proposition 8.17

(1) Suppose that there exist a point w € $2 and a matrix My > 0 (resp. My > 0)
such that M(t, w, M) is a globally defined solution of the Riccati equation (8.9),
with M(t, w, My) > 0 (resp. M(t,w,My) > 0) for all t € R. Then the LQ,,
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problem is dissipative and the function
Vom, (t,X) = (X, M(t, v, Mp) X)

is a continuous storage function (resp. a strong storage function) for it.

(i1) Suppose that there exist a point wy € $2 with dense o-orbit and a positive
semidefinite matrix My > 0 such that M(t, wy, My) is a globally defined and
bounded solution of the corresponding Riccati equation, with M(t, wy, My) > 0
forallt € R. Then each LQ ,, control problem of the family is dissipative and
admits a continuous storage function.

Proof

(i) The hypotheses on M(t, wy, My) ensure that V,, »,(#,X) is continuous, glob-
ally defined and positive semidefinite (resp. definite), and it is obvious that
Ve, (t,0) = 0. Therefore, since R > 0, integrating the relation (8.10) yields

> / "B (5, X(5) () d5 = Virato (11, X(0)) — Voury (o x(1)) (8.11)

if ; < t, and the pair (x, u) solves (8.4) in [t1, #;]. This fact proves (i).

(ii) Choose any w € £2 and write it as @ = lim,,— o wo°t,, for a suitable sequence
(t)- Since the sequence (M(t,,, wy, Mp)) in S,(R) is bounded, there exists a
convergent subsequence, say (M(t;, wo, My)), with limit M,,. It is obvious that
M, > 0. In addition, for any ¢ € R, there exists M(t,w, M,,): otherwise there
would be a time s between 0 and ¢ with |M(s,w,M,,)| as large as desired
(see Remark 1.43), but this is impossible since M(s, w, M,,) = limj oo M(s +
tj, wo, My) and the set {M(t, wo, My) | ¢t € R} is, by hypothesis, bounded. It is
also clear that M (¢, w, M,,) > 0. This all means that M (¢, w, M,,) satisfies the
conditions in (i), and this completes the proof of (ii).

8.5 The Optimal Situation: Uniform Null Controllability

The hypotheses for all the main results of this section include the uniform null
controllability of the family (8.4) (see Definition 6.3). Recall that Theorem 6.4
proves the equivalence between this property and the apparently less restrictive
condition C1 of Sects. 6.2 and 7.3.3, and hence with the null controllability of all the
systems of the family: see Remark 6.5.2. The information provided by Theorem 6.4,
Remarks 6.8 and 7.20, and Corollaries 7.35 and 5.86 contributes to give a better idea
of the controllability scenario of this section.

The section is divided into three subsections, each one of which adds more
fundamental hypotheses to that of controllability. In the first subsection, one
assumes the exponential dichotomy of (8.6) and the global existence of the Weyl
function M~ , which are proved to be equivalent to the Frequency and Nonoscillation
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Conditions of Chap. 7. In other words, under these conditions, the Weyl function
MT™ also globally exists. And in fact the main results state the equivalence
between the uniform (strict) dissipativity of the family of LQ control problems
and the fact that M~ is positive (definite) semidefinite. In addition, always working
under these conditions, the optimal storage function, i.e. the required supply (see
Theorem 8.15), is expressed in terms of M~ . Also, in this subsection the connection
between the hypotheses here imposed and the Yakubovich Frequency Theorem (in
its nonautonomous general version: see Theorem 7.10) is discussed. In fact, the
Yakubovich Frequency Theorem was used in [44] and [84] to obtain most of the
results proved here. The approach taken here permits one to simplify the proofs
of [44] and [84].

As a historical comment, note that the analysis made in [44] and [84] was
motivated by that of [158]. The results of this last paper are stated in the case of
periodic coefficients, while those of [44] and [84] take up the situation of general
time-varying coefficients. The second subsection is devoted to showing how the
results proved so far can be formulated in terms of an initial system when £2 is
given by its hull.

The third subsection requires the weak disconjugacy of all the systems (8.6),
which together with the uniform null controllability ensures the uniform weak
disconjugacy of the family, and hence the existence of the principal functions N
and N~. The conditions imposed are less restrictive than in the previous section:
this situation may be present in the absence of exponential dichotomy, as trivial
examples show (see Example 8.35), while the hypotheses of the first subsection are
considerably stronger than the occurrence of uniform weak disconjugacy. But the
main result of this section also requires that a o-ergodic measure with full support
exist (which is not necessary to fulfill the conditions of the exponential dichotomy
theorem of the first subsection: see Example 8.36), and that all the corresponding
Lyapunov exponents are different from zero. In this case, an equivalence with the
uniform dissipativity of the family is determined in terms of N~, which under these
conditions determines the required supply, but now just for mg-a.a. systems of the
family.

8.5.1 With Exponential Dichotomy and Global Existence
of M~

The main results of this section are Theorems 8.22 and 8.23. Under the fundamental
hypothesis of uniform null controllability, they establish the equivalence between
the (strict) uniform dissipativity of the family of LQ,, control problems and some
properties of the Weyl function M~, whose global existence is also required; and
they determine the optimal (strong) storage function in terms of M~. The section
also analyzes the relation between the framework here considered and that of the
application of the Yakubovich Frequency Theorem.
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As in the previous sections, the analysis will be carried out for a family (8.4) of
control systems and a family (8.5) of supply rates varying in §2. As a byproduct
of the analysis, it will be shown that the optimal storage function (i.e. the required
supply: see Theorem 8.15) varies continuously with respect to w, a fact which has
the fundamental consequence explained in Remark 8.25. However, in spite of the
fact that the hypotheses and theses of the results of this section are formulated for the
families of LQ control problems (and the linear Hamiltonian systems defined from
them), they can be rewritten in terms of a single problem, without making reference
to the whole family. The details of this comment are explained in Sect. 8.5.2.

Definition 8.18 The family of control systems (8.4) is uniformly dissipative with
Sfamily of supply rates {Q, | w € 2} given by (8.5) if for each w € §2, for each
pair t; < t, € R, and for each control u: [t;, ;] — R, the solution x(7) of (8.4)
satisfying x(#;) = 0 has the property that

/ : O, (s, x(s), u(s)) ds > 0;

i.e. if each LQ, control problem of the family is dissipative. The family (8.4)
of control systems is uniformly stricly dissipative with family of supply rates
{Q, | w € £2} given by (8.5) if there exists § > 0 such that the family is uniformly
dissipative with the modified supply rates

Qus(t.x, ) = Qu(tx,w) — & (Ix[* + [u]?):

i.e. if each LQ,, control problem of the family is strictly dissipative and the constant
8 > 0 of Definition 8.1 is common to the whole family.

It is clear that, in this context, the “uniformity” means nothing when referred to
the dissipative case. However, it is meaningful in the case of strict dissipativity: see
Proposition 8.28 and Remark 8.29.1, at the end of this section.

The hypotheses required in this section are now given. In fact there are several
equivalent ways to formulate them, as Proposition 8.20 shows. The main results are
formulated immediately after it.

Hypotheses 8.19 The family of control systems (8.4) is uniformly null control-
lable, the family (8.6) has exponential dichotomy over §2, and the Weyl function
M~ is globally defined.

Recall that the last condition means that the Lagrange plane /™ (w) of the solutions
which are bounded as t — —oo (see Remark 1.77.3) admits the representation
[ M,I"(w)] for all w € £2; in other words, it lies outside the vertical Maslov cycle for
all o € §2. As seen in Sect. 7.3, even under the stabilization hypothesis assumed
in the Yakubovich Frequency Theorem, the Lagrange plane [ (w) may be or may
not have this property. But it turns out that Hypotheses 8.19 ensure also the global
existence of M, as the next result recalls.
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Proposition 8.20 The following assertions are equivalent:

(1) Hypotheses 8.19 hold;

(2) the family of Hamiltonian systems (8.6) has exponential dichotomy over 2 and
both Weyl functions M* are globally defined;

(3) the family of control systems (8.4) is uniformly null controllable, the family (8.6)
has exponential dichotomy over §2, and the Weyl function M™ globally exists.

In addition, in this case, M < M~, and the family of control systems (8.4) satisfies
Hypothesis 7.3.

Proof Note that the family (8.6) satisfies condition D1 of Chap. 5 (which is a
fundamental fact for this result). The proofs of the equivalences and the inequality
M™ < M~ follow easily from Corollary 7.35, which states that the uniform null
controllability of the family (8.4) is equivalent to D2, and from Theorem 7.21, since
the global existence of M~ or M ensures that D3 holds. Finally, Proposition 7.33
shows that Hypothesis 7.3 is satisfied.

Remark 8.21 1t is implicit in the previous proof that Hypotheses 8.19 ensure the
uniform weak disconjugacy of the family.

The main results of this section can now be stated.

Theorem 8.22 Suppose that Hypotheses 8.19 hold. Then the following assertions
are equivalent:

(1) the family of control systems (8.4) is uniformly dissipative with family of supply
rates {Q, | w € §2} given by (8.5);
2) M— =0.

In addition, in this case the function V_ (t,X) = (Xx,M (w-t)X) is the required
supply for the LQ, control problem, and is jointly continuous in the variables
(w,t,%).

Theorem 8.23 Suppose that Hypotheses 8.19 hold. Then the following assertions
are equivalent:

(1) the family of control systems (8.4) is uniformly strictly dissipative with family
of supply rates {Q,, | w € 2} given by (8.5);
2) M~ > 0.

In addition, in this case the function V_ (t,X) = (X,M (w't)X) is the required
supply for the LQ ., control problem, it is strong, and it is jointly continuous in the
variables (w, t, X).

The next lemma reveals a strong connection between M~ and the required supply,
which is the key point in the proofs of the main theorems of this section.

Lemma 8.24 Suppose that Hypotheses 8.19 hold. With notation as above,

V(X)) = (X,M (w1)X).
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Proof Since M(t,w, M~ (w)) = M~ (w-t), relation (8.11) (which does not require
any positivity in the solution of the Riccati equation), the definition of V/ (¢, x) and
the trivial equality Vi, y—(w)(¢,0) = 0, ensure that V] (t,X) > V,y—( (X)) =
(x, M~ (w-1) x). So, the goal now is to prove the converse inequality.

As a first step, it will be proved that V (0,%¢) < (X9, M~ (w) Xo) forall v € £2
and xy € R". So, fix @ and xy. Applying (8.10) to V,, y—(») ensures that for any pair
(x(7), u(?)) solving (8.4),

V- 6x(0) = 28,,%(0), () (8.12)

— (u(®) = K™ (0t) (1), R(w-1) (u(t) — K~ (1) X(1)))
for
K =R '(—g"+B"M). (8.13)
Let x(7) be the solution of the equation
X' = (A(wt) + Bl K™ (01)x (8.14)

with x(0) = x¢. Now fix ¢ > 0. Let §* > 0 be provided by Proposition 8.5(ii)
(with §* < e for later purposes). It is easy to check that [ e éf%x(r)] solves the

Hamiltonian system (8.6): the definition of K™ and the Riccati equation satisfied by
M~ along the flow ensure that

X(1) = (A—BR™'g)x+ BR'B*n(t)x(1)
M~ x(1)) = (G—gR"g)x+ (gR™'B* —A*) n(t)x(1) ,

where all the coefficient matrices have argument w-t. That is, [M*(gft)) X(t)]

U(t, ®) [ s~ xo |- and obviously [ y~(a) x, | belongs to I~ (). This ensures that x(f)
tends to zero exponentially as t — —oo: see Definition 1.75 and Proposition 1.76.
Thus, there exists 2 > 0 such that ||x(7)|| < 6* for all + < —h. Such a value of & will
be fixed in what follows.

Define a control function u(¢) on [—#, 0] in the feedback form

u(t) = K (w1)x(r) forte[—h,0], (8.15)
and apply Proposition 8.5(ii) in order to obtain a continuous function uy: [—%, 0] —

R™ with |Ju,(r)|| < e for all ¢ € [—t,0] such that the solution x,(¢) of X' =
A((w-h)-1) x 4+ B((w-h)-1) u,(7) with x,(0) = x(—h) satisfies x,(—1y) = 0.
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Now consider the concatenated control

u(r) fort € [-h,0],
u,(t+ h) forte[—ty—h,—h).

u(r) =

Let X(7) be the solution of X' = A(w-f) x + B(w-r) u(r) with X(0) = xo. It is clear
that x(r) = x(¢) for all 7 € [—h, 0] and X(—t) — h) = x,(—to) = 0. Integrating (8.12)
for the pair (X, u) in the interval [—h — fo, 0] and keeping in mind equality (8.15),
one obtains

O ~
2 / 3.0 (5.%(s). 6(s)) ds = (x0. M~ () Xo)

to—h

—h
+ / (a(s) — K~ (w-5) X(s), R(w-s) (u(s) — K (w-s)X(s))) ds .

to—h

Hence, using the pair (X, 1) in the definition of V. (0, Xo) yields
Vi, (0,%0) < (X0, M~ (@) Xo)
+ torsup {[lu(t) — K (o) X(1)||* | € [~tg — h,—h]}.
where r > ||R(w)|| for all w € §2. Now take t € [—ty — h, —h] and note that

X(1) = Ua(t, ) Uy (—to — h, w) X(—tg — h)

+/t Us(t, w) UA_l(s, ) B(w-s)u(s) ds

to—h

= Us(t + h, w-(=to — h)) X(—to — h)

+/t Ua(t — s, w-s) B(w-s) u(s) ds .

to—h

Also note that t — s € [0, 1] for s € [ty — h, #]. So, if for all t € [0, fp] and w € £2,
it is the case that u > ||Ua(t, )|, b > ||B(w)|| and ko > ||K~ (w)|| for all v € £2,
then

1K~ (0-0) X(1)|| < ko (ubs + toube) < (1 +tob)koue

for t € [—ty — h,—to]. Therefore, if p = (1 + t9b) kou (independent of e),
then V7 (0,%9) < (xo, M~ (w)xo) + for (1 + p)? &% This shows that V' (0,xp) <
(x0, M~ (@) xo) and completes the first step of the proof.

The second and last step of the proof is to show that V! (z,xo) = V. (0, X,) for
all + € R. This follows easily from the definition of the required supply, from the
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equalities

t

0
0, (s,x(s), u(s)) ds = / O, (t + 5, x(t + ), u(t + 5)) ds
—h

—t—h

0
= / Oui(s, x(t + s),u(t + 5)) ds,
—h

and from the fact that the pair (X, @) given by X(s) = x(¢ + s) and u(s) = u(t + s)
solves the system (8.4) for w-t if the pair (x, u) solves it for . The proof is complete.

The proofs of the main results are easy consequences of the previous ones and the
properties of the required supply as analyzed in Theorem 8.15:

Proof of Theorem 8.22 Note that the joint continuity with respect to all three
arguments of the function V_ (1,x) = (x, M (w-1)x) follows from the continuity
of the flow 0 on R x £2 and of M~ on £2 (see e.g. Definition 1.80). Lemma 8.24
shows that the required supply is given by V_ (¢, X), so that Theorem 8.15 implies
the equivalence between (1) and (2), as well as the assertion that V| is the required
supply. The proof is complete.

Proof of Theorem 8.23 (1)=(2) Fix any @ € £2 and xo € R", xg # 0. Take & > 0
and a pair (x,u) solving the system (8.4) with u square integrable, x(0) = 0 and
x(—h) = Xo. The assumed uniform strict dissipativity of the family of LQ control
problems ensures the existence of a common § > 0 such that

0 0
2 [ Qusxuends =5 [ (X6 + Ju)) ds. (5.16)
—h —h

Now the proof follows the argument of the proof of Lemma 4 in [158]. The
boundedness of A and B provides positive constants a and b such that

0 0 0
[_ X ds <a /_ x5+ b /_ Jul ds.

Hence,

0 0
ol = 2 /_ (x(s). X (5)) ds < /_ X + W01 ds

h

0 0
<@+ [ ) 1ds b / Ju)Pds

0
<(@+b+1) /_h (Ix@®1* + l[u(s)|?) ds.
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and therefore (8.16) ensures that

0
2 / Qu(s.x(s).u(s)) ds = 8 @+ b+ 1) xol.
—h

This bound and the definition of the required supply V/, yield V! (0,x¢) > § (a+b+
1)7!Ixo]|*> > 0, and hence Lemma 8.24 shows that M~ (w) > 0 and that V is the
required supply, as asserted. It is obvious that V] is strong and that it is continuous
in (w, t,X).

(2)=(1) Following the proof of Y2=Y5 of Theorem 7.10, note that the
quadratic functional obtained by substituting G and R by G—§1I, and R—4§1,,, in (8.5)
is given by

Q) (t.x,u) = Qu(t.x,u) — 8 (x> + [[u]]?). (8.17)

Define also Hs(w) by substituting G and R by G — §I, and R — 41, in the matrix H
of (8.6). According to Theorems 1.92 and 1.95, it is possible to choose § > 0 small
enough to guarantee: that R — 81, > 0, that the Lagrange planes of the initial data
of the solutions of z = Hs(w-t) z which are bounded as r — oo are represented

by [ Mggi"(w) ], and that M (w) > 0 forall w € £2. It follows from the relation (8.12)
corresponding to the value chosen for § and from (8.17) that

d ~
7 Vot @6 x(1) =2 Qo (1x(0),u(1) = 8 (X1 + u)])

for any pair solving (8.4). In turn, this ensures that

(x(t2), My (w-1)2) X(t2))

153 —

<2 [ (@ole.x0).u) = 8(IxO1? + [u) ) d
n

for every pair (x,u) solving (8.4) with u square integrable and x(¢;) = 0. This

proves the asserted uniform strict dissipativity.

The last assertions were proved in the verification of (1)=(2).

Remark 8.25 As in the paper [158], in the situations described in Theorems 8.22
and 8.23, the optimal storage function turns out to be quadratic with respect to the
state x, and to have a r-dependence with recurrence properties which are at least
as strong as those of the coefficients (in turn inherited from those of an initial LQ
problem if the family is obtained via a Bebutov construction). Thus, for example, if
A, B, G, g, R are all Bohr almost periodic functions with frequency module 9, then
V is almost periodic in # with frequency module contained in 1.

Remark 8.26 1t is easy to construct nonautonomous examples for which Theo-
rems 8.22 and 8.23 imply the uniform dissipativity of the family over the hull. In
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Example 8.36 the reader can find a concrete illustration of this, for which in addition
the hull is not minimal.

The next result of the section concerns the behavior of the Weyl function M+
(whose global existence is ensured by Proposition 8.20 under Hypotheses 8.19) in
the case of uniform strict dissipativity. Define now K™ = R™'(—¢" + B'M™*) and
let U(t, w) = Uy pg+(t, ) be the fundamental matrix solution of equation

X = (A(wt) + B(wt) KT (0-1) x
with U(0, ) = I,.

Theorem 8.27 Suppose that Hypotheses 8.19 hold, and that the family of control
systems (8.4) is uniformly strictly dissipative with family of supply rates {Q,, | w €
§2} given by (8.5). Let to > 0 be the positive time satisfying the condition on uniform
null controllability of Definition 6.3. Then, there exists p > 1 such that

-1

0
—oMt(w) < ( /_ U(t, ) ' B(wt) R (w+1) BT (w) (U (t, ) dt)

]

forall w € S2.

Proof The idea of the proof is taken from that of Theorem 1 of [158]. The control
system (8.4) can be rewritten as

X = (A(wt) + B(w1) KT (w1)x + B(wt) v (8.18)

for
v=u—K"(00)x. (8.19)
Hence the family of control systems (8.18) is uniformly null controllable. Fix now
o € £2 and xo € R". Proposition 8.5(iii) provides a square integrable control
u: [—19,0] = R™ such that the solution x: [—#, 0] — R” of (8.4) with x(—#)) = 0

satisfies x(0) = xo. Define v by (8.19). Note the relation (8.10) for V,, 4+, and
this pair (x, u) reads

dit (x(1), MT (1) x(1)) = 2Q,, (1, X(1), u(®)) — (v(), R(@)¥(1))),

and hence, by the uniform strict dissipativity,

0
(%o, M+ (@) x0) + / IRV (@-5) v(s)| ds

—Io

0o _ 0
- / 28, (s x(s).u(s)ds = 8 [ (IxG)I? + u(s)IP) ds.

fo —l
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It follows easily from the definition of v that there exists §; € (0, 1) with

0 0
(I 2 + ()| ds = 8 / IRV (@) v(s)|1? ds

—l —l

Assume without loss of generality that §6; < 1, define p = 1/(1 — §8;) € (0,1),
and deduce from the last inequalities that

0
p (x0. M* (@) x0) < /_ IR (@-5) v(s)|> ds .

This means that

— p (%o, MT (@) x0)

v: [—to, 0] = R™ control
< inf / IRY?(w-5) v(s)||* ds |and x solves (8.18) with
o x(—1y) = 0 and x(0) = xo

It was noted previously that the set on the right is nonempty. Lemma 3 of [158]
ensures that its infimum is precisely

-1

0
X) (/_t U~'(t,w)B(wt) R (0+1) BT (w-t) (U (¢, w) dt) ‘.

and this completes the proof.

The point of Theorem 8.27 is the following. According to Proposition 8.20,
M~ (w) > M*(w) for all o € £2. But even if M~ (w) is positive definite for all
w € £2, the symmetric n X n matrix M1 () need not be positive semidefinite. Thus
Theorem 8.27 states in effect that M (w) cannot be “too negative”.

There is a clear connection between the techniques and results of this section and
those of Sect. 7.2, which contains the proof of the general version of the Yakubovich
Frequency Theorem. The point at which this connection is strongest is in the proof
of Lemma 8.24. The next goal of this section is to show that in fact both frameworks
are closely related.

Recall that the motivation of the Yakubovich Frequency Theorem is the mini-
mization problem for the functional Zy, ., (x,u) defined by (8.7) when evaluated
on the admissible pairs (i.e. square integrable pairs (x,u) satisfying (8.4) with
x(0) = Xxp). Recall also that the Theorem establishes an uniform stabilization
condition (Hypothesis 7.3) under which the solvability of the minimizing problem
can be determined from the dynamical properties of the family (8.6). And recall
further that the Frequency and Nonoscillation Conditions for (8.6) are equivalent
to the occurrence of exponential dichotomy and the global existence of the Weyl
function M.
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Proposition 8.28 Suppose that the family of control systems (8.4) satisfies Hypoth-
esis 7.3, and that either (1): the family of LQ, control problems is uniformly
strictly dissipative with family of supply rates given by (8.5); or (2): it satisfies the
Frequency and Nonoscillation Conditions. Then properties Y1, Y2, Y3, Y4, Y5, and
Y6 of Sect. 7.2 hold for the families (8.4), (8.7), (8.5), and (8.6).

Proof It is clear that, if (1) holds, the families (8.4) and (8.5) satisfy property Y6 of
Sect. 7.2: an easy contradiction argument proves this assertion. And (2) is exactly
condition Y2. Therefore, the result follows from Theorem 7.10.

Remarks 8.29

1. A natural question arise: under Hypothesis 7.3, does condition Y6 imply uniform
strict dissipativity? The answer is no: Y6 does not imply dissipativity, even when
n = 1. This is what Example 8.30 shows.

2. Proposition 8.20 shows that Hypotheses 8.19 (which include Hypothesis 7.3),
imply the conditions Y2 (i.e. Frequency and Nonoscillation Conditions) of
Sect. 7.2. Therefore, by Theorem 7.10, properties Y1, Y2, Y3, Y4, Y5, and
Y6 also hold if Hypotheses 8.19 hold, as in Theorems 8.22 and 8.23. However,
as seen in Sect. 7.3.3, the framework of the Yakubovich Frequency Theorem is
less restrictive: it does not require the uniform null controllability. Example 7.37
illustrates a situation in which: the Frequency and Nonoscillation Conditions are
satisfied and Hypothesis 7.3 holds, so that conditions Y 1-Y6 are fulfilled; but the
Weyl function M~ does not globally exist, which according to Proposition 8.20
implies the absence of uniform null controllability.

Example 8.30 In order to check that, even under Hypothesis 7.3, condition Y6 does
not imply uniform strict dissipativity, take n = 1, and the autonomous coefficients
givenbyA =1,B=1,G = 0,g = —1,and R = 1. Then the corresponding

control system x’ = x + u satisfies Hypothesis 7.3 (just take Ky = —2), and it is
a trivial exercise to check that the Hamiltonian system z’ = [_21 _12] z satisfies the

Frequency and Nonoscillation Conditions. Hence, Theorem 7.10 ensures that the six
conditions Y 1-Y6 hold. However, the associated control problem is nondissipative.
One way to check this assertion is to note that ¥ = x + u is null controllable
(see Remarks 6.2) and that the Weyl function (constant, as a matter of fact) n™ is
\/_ — 2 < 0, and then use Lemma 8.24 and Theorem 8.15.

8.5.2 The Results for a Single System

As said before, the results of the preceding section can be formulated in terms of a
single LQ problem. The idea is to ensure that the properties required for the whole
family are inherited from those of one system.

To begin with, recall that Remark 6.16 describes two situations in which the
family of control systems defined over the common hull £ of (A,B,G,g,R) is
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uniformly null controllable. The simplest one corresponds to the case of a null con-
trollable initial system and a minimal £2. On the other hand, as seen in Sect. 1.4.1,
when §2 is minimal, the exponential dichotomy of the initial Hamiltonian system
ensures that of the whole family (8.6) over £2; and it is easy to see that in this case
the global existence and boundedness of M (or M ™) for the initial system ensures
the corresponding property for all the systems of the hull.

These results indicate a possible way to reformulate Proposition 8.20:

Proposition 8.31 Consider the single LQ control problem defined by (8.1)
and (8.2). Suppose that A, B, G, g, and R are bounded and uniformly continuous
functions, and that the hull 2 of (A, B, G, g,R) is minimal. Let 7 = H(t) z be the
Hamiltonian system of type (8.6) obtained from the initial data, and let U(t) be the
fundamental matrix solution of this system with U(0) = I,,. Then the following
assertions are equivalent:

(1) the initial control system (8.1) is null controllable, the Hamiltonian system
7 = H(t)z has exponential dichotomy, and there exists a bounded function

M™:R — S,(R) such that [Mﬁ”(t)] = U(t)-[” in Lg, where [ is the Lagrange
space of the solutions which are bounded at —oo;
(2) the Hamiltonian system z' = H(t) z has exponential dichotomy, and there exist

two bounded functions M*:R — S,(R) such that [ MiI (t)] = U(1)-I* in Ly,

where I* are the Lagrange spaces of the solutions which are bounded at +oo;
(3) the initial control system (8.1) is null controllable, the Hamiltonian system
7 = H(t)z has exponential dichotomy, and there exists a bounded function

MT:R — S,(R) such that [Mi”(t)] = U(?)-I" in Lg, where [T is the Lagrange
space of the solutions which are bounded at co.

In addition, in this case, M~ (f) — MV (t) > pl, for a common p > 0 and all t € R.

In the same line of ideas, an elementary continuity argument shows that if the initial
LQ control problem is dissipative or strictly dissipative (according to Definition 8.1),
then the family of all the LQ,, problems over the hull is uniformly dissipative or
strictly dissipative (according to Definition 8.18). That is, the dissipativity or strict
dissipativity of the initial LQ problem is equivalent to the corresponding uniform
property of the whole family.

Therefore, Theorem 8.22 can be reformulated as follows:

Theorem 8.32 Consider the single LQ control problem defined by (8.1) and (8.2).
Suppose that A, B, G, g, and R are bounded and uniformly continuous functions, and
that the hull 2 of (A, B, G, g, R) is minimal. Let 7/ (t) = H(t) z be the Hamiltonian
system of type (8.6) obtained from the initial data, and let U(t) be the fundamental
matrix solution of this system with U(0) = b,. And suppose also that the situation
(1) of Proposition 8.31 holds. The following assertions are equivalent:

(1) the initial LQ control problem is dissipative;
(2) M—(t) > 0forallt € R.
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In addition, in this case the function V~(t,X) = (X, M~ (t) X) is the optimal storage
Sfunction for the LQ control problem, and it is jointly continuous.

Theorem 8.23 can be reformulated in a very similar way (point (2) will read:
M™(t) > pl, for a common p > 0 and all r+ € R), and the same is the case with
Theorem 8.27. Note that in all these results, the function M~ can be defined directly
from the Lagrange plane of the solutions of the corresponding single Hamiltonian
system bounded at —oo, and V™ (¢,x) = (x, M~ (¢) x) is the storage function.

The results summarized in this section should not be intended to be optimal: the
minimality condition on §2 can be relaxed, in the line of what Remark 6.16 explains.
The exponential dichotomy of 2 = H(f) z ensures that of (8.6) over the hull (see
Remark 1.59.4); and there are situations less restrictive than minimality in which
the global existence and properties of the Weyl functions are deduced and inherited
from the corresponding ones of the initial system: for instance, if one can check that
M~ (¢) and is norm-bounded on R, and satisfies M~ () > 0 (or M~ (¢) > pl, for a
common p > 0) for all ¢ € R, then the Weyl function M~ exists globally on the hull
and it is positive semidefinite (or definite). This is the case in the nonautonomous
Example 8.36.

8.5.3 The Uniformly Weakly Disconjugate Case

This section is focused on Theorem 8.34, which establishes conditions ensuring, on
the one hand, the uniform weak disconjugacy of the family, and on the other hand,
the equivalence between the positive semidefiniteness of the principal function N~
and the uniform dissipativity of the family of LQ control problems. In addition, the
optimal storage function is determined up to zero measure.

Hypotheses 8.33 The family of control systems (8.4) is uniformly null control-
lable, and all the systems of the family (8.6) are weakly disconjugate simultaneously
at +o0 or at —oo.

Theorem 8.34 Suppose that Hypotheses 8.33 hold and that §2 = Suppmy for a
o-ergodic measure my. Then,

(i) the family (8.6) is uniformly weakly disconjugate, so that it admits principal
functions N* and N™.
Suppose also that all the Lyapunov exponents of the family of Hamiltonian
systems (8.6) are different from zero. Then,
(ii) the following assertions are equivalent:

(1) the family of control systems (8.4) is uniformly dissipative with family of
supply rates {Q,, | w € 2} given by (8.5);
2) N >0.

In addition, in this case, the function V; (t,x) = (x, N (w-1)X) is a storage
function for the LQ ,, control problem for all w € 2, and it is jointly continuous
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in (t,X). Mvoreovei; there exists a o-invariant subset §2o C $2 with my(£2p) = 1
such that V_ (t,X) is the required supply for all w € $§2o.

Proof

(i) Proposition 1.12 ensures the existence of dense positive and negative o-
semiorbits in 2, which is enough to deduce from Hypotheses 8.33 and
Theorem 5.32 the uniform weak disconjugacy of the family.

(i) Let £2) be the o-invariant set provided by Theorem 5.56, which has full measure
my. That is, if ® € 2y, then the Lagrange planeT_ (w) = [ Nf”(w)] determining
the uniform principal solution at —oo agrees with the vector space of the initial
data of the solutions of the Hamiltonian system (8.6) corresponding to w with
negative Lyapunov exponent. The proofs of the equivalence of (1) and (2), as
well as of the last assertion of (ii), rely on Theorem 8.15, as was the case in the
proof of Theorem 8.22. The crucial point is to establish the following result,
which is analogous to that of Lemma 8.24:

Vo(t,x) = (x, N (wt)x) for w € 2y, te€R and xeR". (8.20)
Note first that
Vot x) > (X, N (wt)x) for o €2, teR and xeR" : (8.21)

just reason as at the beginning of the proof of Lemma 8.24. Now fix w € £2¢ and
Xo € R”, and note that one has to check that V! (#,x9) < (xo, N~ (w-t) Xo). So,
follow again the proof of Lemma 8.24, but now with the following changes:

— In relations (8.12) and (8.14) substitute M~ by N~ and K~ by K =
R (—g" + B'N™).

— Deduce that the solution x(7) tends to 0 as + — —oo from the fact that
[ N_(’;(.?) X(t)] solves (8.6) with [ N—zﬁ’)) Xo] € T_(a)), which ensures that its
Lyapunov exponent is negative. (Note that now one does not have the
uniform exponential convergence to 0 as t — —oo of all the solutions of
the all the corresponding equations (8.14), but this is not required.)

This completes the proof of (8.20). The next step is to prove the equivalence between
(1) and (2).

So, assume (1), apply Theorem 8.15 in order to show that N*(w) > 0 for all
w € £y, take w € §2y with dense o-orbit (which is possible, as Proposition 1.12
guarantees), and use the upper semicontinuity of N~ ensured by Theorem 5.43 to
conclude that N~ is globally positive semidefinite.

The converse implication follows from (8.21) and Theorem 8.15.

To prove the last assertions of point (ii), recall that N~ solves the Riccati
equation (8.9) along the base flow (see Sect. 5.4), and apply Proposition 8.17(i)
to conclude that Vw(t, x) is a storage function for all w € 2. Note finally that
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the continuity of Vo (t,x) = (X, N~ (w-1) x) for each w € £2( follows from that of
t—> N~ (w1).

Observe that, due to the upper semicontinuity, the condition N~ > 0 is equivalent
to the apparently less restrictive property of existence of a point @ € £2 with dense
o-orbit such that N~ (w-t) > O forall r € R.

Example 8.35 Although in many situations the uniform weak disconjugacy and
the exponential dichotomy of the family (8.6) hold or not simultaneously, this is
of course not always the case. There are trivial examples for which the uniform
disconjugacy can be proved using Theorem 8.34 and not Theorem 8.22. For
instance, consider z = [:} %] z, which is determined from X’ = —x + u and
O(x,1) = (—x* + u?)/2, which does not have exponential dichotomy (its only
eigenvalue is 0), and for which the principal functions are the constants n™ = n~ =
1: this constant function is the only globally defined solution of the Riccati equation

m = —(m—1)>2

Example 8.36 In order to construct an example for which the information about
dissipativity is provided by Theorem 8.22 and not by Theorem 8.34, it is possible
to follow an idea similar to the one behind Example 8.12. Take n = 1, A = -2,
B=+2,R=1,g=0,andlet G be any increasing continuous function satisfying

-1 ifr<0,

G =
® { 0 ifr>1.

The linear Hamiltonian system associated to the corresponding LQ problem is

z’—[_z 2i|z
LG 2|7

and the hull £2 of the coefficient matrix is now the set

P I R A

with G,(r) = G(t+s). Note that the autonomous linear problem is x' = —2x++/2u,
which is null controllable.

All the systems of the family are weakly disconjugate and have exponential
dichotomy. To prove this in the case of 2 = H_ooz = [Z23%]z, which is
autonomous, note for instance that conditions D1 and D2 of Chap. 5 are fulfilled
(see Remark 5.19). In addition the corresponding Riccati equation, which is
m' = —2m> + 4m — 1, has globally defined solutions: the constant functions
1 & /2/2. This ensures that also D3 holds. In fact this constant system has also
exponential dichotomy, and hence the Weyl and principal functions agree, with

mt(—00) = nt(—o00) = 1 — +/2/2 and m™(—00) = n (—00) = 1 + v/2/2:



8.5 The Optimal Situation: Uniform Null Controllability 451

see e.g. Theorem 5.58. The situation is the same forz’ = Hooz = [‘02 %] z, where

now mt(c0) = nt(co) = 0 and m (00) = n~(00) = 4. And, in the case of
7 =H)z = [Gj(zt) %] z for s € R, one can: firstly apply (twice) Proposition 5.51,
since JHoo < JH(t) < JH_, in order to conclude that the principal functions
nE(s) exist with 0 < nt(s) <1 —+/2/2 < 1 + +/2/2 < n~(s) < 4; and secondly
deduce from Theorem 5.58 the presence of exponential dichotomy, with m* (s) =
n*(s). According to Theorem 1.60, the whole family of linear Hamiltonian systems
has exponential dichotomy over 2. (Incidentally, note that this last property ensures
that 1 — m™ (7) solve the Riccati equation m’ = —m? + 4m + G(r) associated to the
initial Hamiltonian system, and that

V2

lim m*™ () =1——, limm™(¢) =0,
t——00 2 t—00
2
lim m=(t) =1+ —, limm () =4;
t—>—00 2 t—>00

moreover, Proposition 5.51 shows that Fm™ are nondecreasing functions.)

Therefore, Hypotheses 8.33 are fulfilled, as well as Hypotheses 8.19. However,
the unique ergodic measures on £2 are those concentrated on its two proper minimal
set: this follows from Birkhoff Theorem 1.3 and from the fact that these minimal
sets are the alpha-limit and the omega-limit sets of any other element of £2.
Consequently, £2 does not admit an ergodic measure with full support, so that one
cannot apply Theorem 8.34. On the other hand, nothing precludes an application
of Theorem 8.23 to conclude that the family of LQ control problems is uniformly
strictly dissipative, with strong storage function defined by

2+ V2) 22
R E— for s = —00,
Vs(tsx) = M fors € R’
2
242 fors = o0,

which is jointly continuous with respect to (s, ¢, x). Of course, this means that every
LQ systems of the family is strictly dissipative, including the initial one.

Remark 8.37 1In contradistinction to the trivial situation described in Example 8.35,
Example 8.44 presents a uniformly null controllable family of dissipative almost
periodic LQ control problems over a minimal hull, for which the associated
family of linear Hamiltonian systems does not have exponential dichotomy, and
a stabilizing feedback control does not exist. However, the family is uniformly
weakly disconjugate, and both principal functions are negative, so that it is again
Theorem 8.34 (and not Theorem 8.22) which ensures the uniform dissipativity of
the family. The example is of Millions¢ikov—Vinograd type ([104, 147]) and has
a Lyapunov exponent with irregular behavior. Examples of this type have been
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mentioned several times in the previous chapters. Here, in Example 8.44, all the
many details of the construction are given, in order to allow the reader to understand
the idea behind this extremely complicated dynamical situation.

Remark 8.38 A natural question arises: is it possible to carry out an analysis similar
to that of Sect. 8.5.2 in order to obtain the conclusions of Theorem 8.34 from
hypotheses on a single system? The easiest situation corresponds, as usual, to the
case of a minimal base flow. But even in this case one cannot ensure that if the
Lyapunov exponents of the initial systems are different from zero, then the same
happens on the hull. Example 8.44 is once more the tool to check whether or not
this can happen: in fact, in this family there coexist systems with positive and null
Lyapunov indexes.

8.6 In the Absence of Uniform Null Controllability

In this section a situation similar to that of Sect. 7.3.3 is considered: the uniform
controllability condition is not required to obtain results on the dissipativity of all
the systems of the family. However, these results are not as precise as in the previous
section: they do not establish equivalences.

Recall that Proposition 8.17(i) shows that, in the case of existence, a globally
defined solution of the Riccati equation (8.9) corresponding to a point @ € §2 which
in addition is negative semidefinite provides a storage function for the LQ,, problem
(which therefore is dissipative), without extra controllability assumptions. This is
the key point in the proofs of the next propositions.

Proposition 8.39 Suppose that the family (8.6) admits exponential dichotomy and
that the Weyl function M~ globally exists. Define

V, (t.X) = (X, M (w1)X) .

Then,

(1) f M~ (@) = 0 for all o € £2, then the family of control systems (8.4) is
uniformly dissipative with family of supply rates {Q,, | ® € §2} given by (8.5).
In addition, V_ (t,X) is a storage function for the LQ ., control problem, and is
Jjointly continuous in the variables (w, t, X).

(i) If M~ (@) > 0 for all ® € £2, then the family of control systems (8.4) is
uniformly strictly dissipative with family of supply rates {Q,, | w € §2} given
by (8.5). In addition, the storage function V_ (t,X) is strong.

Proof Since M(t,w, M~ (w)) = M~ (w-t), the assertions in (i) follow from Proposi-

tion 8.17(i) and Definition 8.18. In order to prove (ii), just repeat the arguments of
the proof of (2)=>(1) in the proof of Theorem 8.23.
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Proposition 8.40 Suppose that the family (8.6) is uniformly weakly disconjugate,
and let N~ be its principal function at —oo. Define

Vo(1.x) = (x, N"(01)X) .

Then, if N"(w) > 0 for all o € $2 (resp. N~ (w) > 0 for all o € §2), then the
Jamily of control systems (8.4) is uniformly dissipative with family of supply rates
{Qu | w € 2} given by (8.5). In addition, V; (t,x) is a storage function (resp. strong
storage function) for the LQ , control problem, and is continuous in the variables

(t,x).

Proof As in the previous result, the assertions follow from Proposition 8.17(i) and
Definition 8.18.

Note that the hypotheses of the previous propositions do not require the uniform null
controllability of the family (8.4). The trivial autonomous example z' = [i 0 ] z
(which derives for instance from A = 1, B = g = 0, G = 2, and any positive real
number R) is a simple example which does not satisfy uniform null controllability
(since the control system is X’ = x), and for which m™ = 1 (and m™ does not exist,
since [T = [(1)]), so that it fits the hypotheses of Proposition 8.39. See Remark 7.35,
Corollary 5.86, and Remarks 5.87 to recall once more the dynamical meaning of the
absence of uniform null controllability.

The hypotheses of Proposition 8.40 also include the global existence of M,
which cannot necessarily be asserted in the presence of exponential dichotomy
without assuming the uniform null controllability: this is the situation in the

autonomous example z’ = [:% 10] z (coming for instance fromA = —1,B =g =0,
G = -2, and any R > 0), which satisfies the Frequency and Nonoscillation
Conditions.

The following result, which is the last of the section, concerns a situation in
which, in spite of the lack of the global existence of M ™, it is possible to establish
conditions ensuring the uniform dissipativity (normal or strict) of the family. This
results will be fundamental in the analysis of Examples 8.48 and 8.49. They illus-
trate a situation in which a uniformly dissipative family lacks “everything”: uniform
null controllability, exponential dichotomy, and uniform weak disconjugacy.

To formulate this result, consider the perturbed family

7 =H, (o) z, weE R, (8.22)
where
Ho() A(@) —B(@)R™ ' (@)g"(®)  B(@)R™'(@)B"(0) + eA(w)
s\w) =
G(0) — g(@)R ' (@)g"(w) —AT(w) + g(@)R ' (0)B" ()

and where A is continuous and positive semidefinite on 2.
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Theorem 8.41 Suppose that there exists an ¢ > 0 such that the Riccati equa-
tion (8.9) associated to the corresponding family (8.22) (obtained by replacing H3
by H3 + ¢l,) has a solution along the flow M, such that M.(w) > 0 for all w € 2.
Then the family of control systems (8.4) is uniformly dissipative with family of supply
rates {Q, | w € §2} given by (8.5). In addition, V (t,X) = (X,M.(w-?)X) is a
storage function for the LQ ., control problem, and it is continuous in (t, X).

Proof The main step of the proof is to check that, for all + > 0, all w € §2 and all
pairs (x(7), u(z)) solving (8.4),

d% VE(1,x(1)) < 2D (1,X(1), u(r)) . (8.23)

The proof of this fact reproduces step by step that of (7.49), although in this case the
notation is simpler. Nevertheless, it is included here for the reader’s convenience.

The inequality will be first established for t+ = 0. As usual, M(¢t, v, M (w))
represents the solution of (8.9) with ¢ = 0 with initial data M,(w). Relation (8.10)
for Ve, m, () (£, X) = (X, M(t, , M. (w)) X) yields

d ~
E Mg (w) (ts X(t)) = 2Qw (tv X(t), ll(l)) .

It is easy to deduce from the fact that M (0, w, M. (®w)) = M,(w) and from the Riccati
equations (8.9) and its analogue with Hs replaced by Hz +¢l,,, which M, (w) satisfies
along the base flow, that

My(0) = M'(1,0, M(0)) |,_, — eMc(0) A(w) Me(0) < M'(t, 0, Mc(@)) |,_,

and hence, using again the equality M (0, w, M. (®)) = M, (w), that

d Vst (6.X(0) | < 20,(0,x(0), u(0)) .

d
—Votx(@®)| < —
=0 dt =0

dt

This proves (8.23) for = 0, and all @ € £2 and all pairs (x, u) solving (8.4).

Now, given s € R, define x,(f) = x(s + 7) and u,(f) = u(s + 7) and note that
the pair (x;, uy) solves (8.4) for w-s. It is easy to check that (d/dt)V,, (t,x(¢))|=s =
(d/dt)V,.s(t, X,(1))|;=0, which ensures that

% Ve x(D) | < 204(0,%,(0), ug(0)) = 2 O, (s, X(s). u(s)) .

t=s

This completes the proof of (8.23).

The assertions of the theorem can be now proved: V. is nonnegative, and
integrating (8.23) at any interval [t;, ;] shows that it is a storage function. This
means that all the systems of the family are dissipative. And the continuity of



8.6 In the Absence of Uniform Null Controllability 455

(w,t,x) — VI (t,x) with respect to (¢, x) is an immediate consequence of that of
t—> M (w-1).

Remark 8.42 Of course, there are two basic situations in which the Riccati equation
associated to the perturbed family (8.22) admits a (not necessarily positive) solution
along the flow, which is one of the hypotheses required in Theorem 8.41: when it
has exponential dichotomy over £2 and at least one of the Weyl functions exists;
and when, despite the lack of exponential dichotomy, the family is uniformly
weakly disconjugate, so that the principal functions exist (see Theorem 5.58). But a
fundamental question arises: is it possible to establish conditions on the unperturbed
system of the family ensuring that one of these situations holds? The next three
paragraphs give partial answers to this question.

Take first A = [,. Suppose that there is a o-ergodic measure m on §2 with
Suppmy = £2; that the unperturbed family (8.6) (i.e. (8.22) with ¢ = 0) admits an
exponential dichotomy; and that its rotation number with respect to myg (see Chap. 2
to review this concept) is a(mg) = 0. Theorem 5.73 provides p > 0 such that the
family (8.22) has exponential dichotomy over §2 for ¢ € [0, p), and such that one
has global existence of the Weyl functions M, Si (w) for e € (0, p) with

M () < M (0) < M (0) < M, (0)

whenever 0 < &; < & < p. Thus if for a value of & the Weyl function M is
positive semidefinite, then the hypotheses of Theorem 8.41 are fulfilled, and one
of the theses of that theorem is improved: the storage function provided by M is
continuous in its three variables.

Something more can be said in this case: if M, (w) > 0 for all w € £2, then
the family of control systems (8.4) is uniformly strictly dissipative with family of
supply rates {Q, | w € §2} given by (8.5); and the storage function Vi (¢, x) is
strong. In order to prove this, act as in Proposition 8.39(ii): repeat the arguments of
(2)=(1) in the proof of Theorem 8.23, now combined with the ideas of the proof of
Theorem 8.41.

The other “easy” case of applicability of Theorem 8.41 corresponds to the case in
which: the perturbed family is uniformly weakly disconjugate, so that the principal
functions exist; and the greater one, N, is positive semidefinite. To this end, note
that the family (8.22) satisfies H.3 > 0 if A > 0, which suffices to guarantee
conditions D1 and D2 (see Remark 5.19), so that there is at least a good chance to
obtain a uniformly weakly disconjugate family. For instance, this is the case if H, =
G — gR™'g" is positive semidefinite (see Proposition 5.27). Of course, in general,
the storage function now provided by N~ will not be continuous with respect to w.
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8.7 Millionscikov-Vinograd Type Examples

Three examples which were previously announced are discussed in this section.
The first one contains a detailed construction of Million§¢ikov—Vinograd type, and
provides a scalar nonautonomous LQ control problem for which the following
properties v1—v7 hold. The meaning of the term nonuniformly hyperbolic dynamics
is explained in Remark 1.79, the definition of the Sacker—Sell spectrum is given in
Sect. 1.4.4, and the concepts of uniform weak disconjugacy, and principal solutions
and functions are explained in Chap. 5.

vl. The hull is minimal and uniquely ergodic.

v2. The Sacker—Sell spectrum of the associated family of Hamiltonian systems
i8S [=Boo, Boo] for a number foo > 0. That is, the family does not have
exponential dichotomy but its Lyapunov index (with respect to the unique
ergodic measure) is positive: see Sect. 1.4.4. In other words, its dynamics is
in the nonuniformly hyperbolic case. In addition, the rotation number of the
family of linear Hamiltonian systems is zero.

v3. The family of Hamiltonian systems is uniformly weakly disconjugate. In
addition, the principal functions are noncontinuous, and agree on the residual
set of their continuity points but are distinct on a set of full measure. In
particular, they determine an almost-automorphic extension of the base flow
which is not a copy of the base.

v4. The family of LQ control problems on the hull is uniformly null controllable,
and the uniform stabilization Hypothesis 7.3 is satisfied.

vS. All the LQ control problems of the family are dissipative and have a strong
storage function.

v6. A stabilizing feedback control cannot be always constructed from the initial
data by applying the method explained in Chap. 6.

v7. The infinite-horizon optimal control problems associated to the LQ control
problems are not solvable for the points of a residual subset of the hull, but
they are solvable for all the points in a subset of full measure of the hull.

The other two examples, which are based on the first one, illustrate how Theo-
rem 8.41 can be applied to study the dissipativity of some nonautonomous systems
without uniform null controllability.

Remark 8.43 The result to be explained now will be used twice in the next example.
Consider a two-dimensional linear differential system z' = H(¢) z given by a T-
periodic matrix-valued function H satisfying conditions which ensure the existence,
uniqueness, and continuous variation with respect to initial data of the solutions of
the system. Represent by z(t, zg) the solution with initial data z(0, zg) = [flojg ], and
cos ¢(t,0)
sin ¢(t,0)

equations satisfied by ¢(¢, 6) and r(z, 0), although the particular expressions are not
important for what follows. Write the first one as

write it as z(t,z9) = r(¢,0) [ ] It is simple to derive the scalar differential

¢ = h(t,9),
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so that & is T-periodic in ¢. Assume that this equation has at least three distinct 7-
periodic solutions given by initial angles 6}, 6, and 63 determining three different
lines passing through 0 in the z-plane. Then all its solutions are T-periodic. This is
the property which will be required later.

To check it, note that ¢(7,0;) = 6; for i = 1,2,3. Hence, if U(¢) is the
fundamental matrix-valued solution of the Hamiltonian system with U(0) = I,

then U(T) [fﬁfg’] =r(T.,6) [ffjg:] fori = 1,2, 3. But this is only possible if two
of the three numbers (7', 6;) take the same value A, in which case A is an eigenvalue
for U(T) with two linearly independent associated eigenvectors; that is, the only
possibility is U(T) = A I for a constant A. This means that U(T) [ <38 | = A [<6].
In particular, for every 6 € [0,27) there exists an integer number ky such that
(T, 0) = 0 + kor. Now, given the point 8 previously used, define 7 as the largest
neighborhood of 6; in [0, 27r) composed by those values of 6 for which (T, 6) = 6.
The continuous variation with respect to the initial datum of the solutions of the
angular equation ensures that Z is open and closed in [0, 27), so that both intervals
coincide. This proves the assertion.

Incidentally, note that if, in addition to the initial hypotheses, H defines a linear
Hamiltonian system (that is, if tr H = 0), then detU = 1 (see Sect. 1.2), so that
either A = 1 or A = —1. Since the equation ¢’ = A(z, ¢) has at least one T-periodic
solution, the conclusion is that U(T) = I,, which ensures that all the solutions of

the linear Hamiltonian system are T-periodic.

Example 8.44 This scalar example consists of a family of LQ control problems
defined over the Bebutov hull of an initial control problem, for which conditions
vl-v7 are satisfied. In particular they are uniformly null controllable, and the
associated family of Hamiltonian systems is uniformly weakly disconjugate, but
it does not have exponential dichotomy over the hull. Therefore, Theorem 8.22
does not provide useful information, whereas Theorem 8.34 ensures the uniform
dissipativity of the family. In fact, despite the uniform null controllability of the
control problems, a stabilizing feedback control cannot be always constructed. The
example, which is of Million$¢ikov—Vinograd type, presents a case of nonuniformly
hyperbolic dynamics.
All the angles will be expressed in radians. To begin with, define

A=—-1, B=1, G =g*()—1, and R=1

where the function g(f) remains to be determined. These data give rise to the scalar
control system x’ = —x + u and to the quadratic form

Qt, x,u) = % (GO X* +2g()xu+u?).

The linear Hamiltonian system associated to this LQ control problem is

;o -1 —g() 1
7 = |: 1 1+g(f)i|z. (8.24)
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where z = [f] € R2. The construction to follow will produce a Bohr almost
periodic function g(¢) and a corresponding (also Bohr almost periodic) function
G(t) = g*(t) — 1 with appropriate properties. In particular the family of linear
Hamiltonian systems (8.6) over the (minimal) Bebutov hull will be uniformly
weakly disconjugate but will not admit an exponential dichotomy. In fact, g will
be the uniform limit on R of a sequence {g;} of Ty-periodic functions, where
T, = jiTi— for a positive integer ji, for k = 1,2, ... Hence g will be a so-called
limit-periodic function. And the corresponding system will display nonuniform
hyperbolicity: it will have positive Lyapunov index in the absence of exponential
dichotomy; or, in other words, its Sacker—Sell spectrum will be given by a
nondegenerate interval centered at 0. The construction makes use of the well-known
procedure of Million$¢ikov ([104]; see also Vinograd [147]) which has been applied
by later authors in various contexts (e.g. [31, 69]).

Although the idea behind the construction of g is simple, to formalize it requires
much work. This is the reason for which the construction is carried out in several
steps.

Step 0. Let 7y and Ty be real numbers to be determined, with 0 < #y < Tp. Set

0.1 if0<t<yp,
-1 ifty<t<Ty,

Yo(r) = {
and extend y,(7) to be a Ty-periodic function on R. Substituting g by y; in (8.24),
one obtains the Ty-periodic differential system which satisfies

| —-1.1 1 .
H' z= z if0<t<t,

1 1.1
7 = (8.25)

1
H2Z2|: (1)0:|Z ifty<t<Ty.

The first basic idea is that there exist two half-lines in the first quadrant of the
z-plane, determined by angles 190+ < ¥, in (0,7/2), which delimit an open
sector with the property that the orbit under (8.25) of any initial state in that
sector satisfies the following properties: its argument strictly increases on [0, 7]
and reaches a value as close to ¥, as desired if #, is large enough; its modulus is
as large as desired if 7 is large enough; and it moves along a circle centered at 0
in the clockwise sense and at angular speed 1 on [fo, To], so that it reaches 193' if
Ty — 1y is large enough. To formalize this idea is the first purpose of this initial
step.

Note that the matrix H' has eigenvalues 41 for

—7no=+021>04 (8.26)
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(the anticorrespondence between signs is intentional). Therefore, the phase space
structure of zZ = H'z is that of a saddlepoint. In order to describe it a little better,
let z; be the normalized eigenvectors of H' associated to &7 which lie in the first
quadrant of the z-plane: explicitly,

zh=r" ! and z, =r" !
0 1.1— 4021 0 1.1+4/021 "

for r¥ = (2.42 F 2.2/0.21)7V/2. Let 97 € [0,27] be the polar angles of z; (in
radians). It is obvious that 0 < ¥ < 95 < 7/2.
There is another way to determine the same angles ©," and ;. Denote zy =

[<os8] (so that 7] =12 0();) and write the solution of (8.25) starting at zy in time 0 as

2(1,29) = r(1,0) [COS"’(“ 9)} .

sinp(t, )

It is a trivial exercise to check that ¢(z, 6) is the solution of

¢ = (1 + yo(t)) sin(2p) — 1 (8.27)
with ¢(0,6) = 6. Note that the equation reduces to ¢’ = —1 in (¢, Tp], which
ensures that

o(t,0) = p(t—19,0(ty,0)) = @(ty,0) —t+ 1ty fort € [ty, To]; (8.28)

and it reduces to ¢’ = 1.1sin(2¢)—11n (0, ], so that there exist two angles 190+ and
¥, in (0, w/2) with z‘}(;F < m/4 < ¥ which determine constant solutions on [0, #o].
The angles ¥ solve 1.1sin(2¢) — 1 = 0, that is, 9 = (1/2) arcsin(1/(1.1)). For
later reference, note that

sin(2 95) = 1—11 > 0.9. (8.29)
Consequently,
05<9 <06<¥; <1.1-8 and 5 —9; >04+3, (8.30)
where
§=2710,

This constant § is fixed for the rest of the example. Note that ¥;" + § < 9. Of
course, z‘}gt are the same angles as before.
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For later purposes, observe that r(¢, 8) is the solution of the equation

= —(1 4 y(0) cos2 (1, 0)) r

with r(0,6) = 1, where ¢(t,6) is as above. This equation reduces to ¥ = 0 in
[f0, To], so that r(t, 0) = r(ty, 0) for ¢ € [ty, Ty]: the phase space structure of z’ =
H?z is that of a center, with orbits given by circles centered at 0.

The next goal is to prove that a suitable choice of 7y and Tj provides two
angles 90+ and 6, which determine two Ty-periodic solutions of (8.27) with some
additional characteristics. More precisely, the following properties will hold:

19 < 0,7 < 67 <0 +6.

2. ¢(To. 6y7) = 6,

3. 7 (To, 6,7) = e*PoTo, with By > 0.35.

4. 190+ < ol(t, 9_0+) < o(t, 9_0_) < ¥, forallt e R.

Note that points 2 and 3 can be written as
2(Ty,2;5) = e Tz,=  with By > 0.35. (8.31)
0 0

Let V) be the closed sector in the z-plane whose vertex is 0 and whose bounding
rays are A(:)F = {c z(:)|E | ¢ > 0}. The set V) is invariant under the fundamental matrix
solution exp(¢tH') of equation (8.25) for 0 < ¢ < f,. Note that the vectors on the unit
circle belonging to V, are of the form zy for # € [9;", ¥, ], and that any 6 in the
interior of the interval defines a solution ¢(¢, 8) of (8.27) which strictly increases
towards %, , and which has the property that ¢(t, 0) is as close to ¥, as desired if
fo is large enough. On the other hand, r(¢, ) decreases while ¢(z,0) € (O, 7/4)
and increases for ¢(z, 0) € (/4,9 ); and (1o, 0) is as large as desired if 1, is large
enough. Choose ¢ > 0 such that —ny — ¢ > 0.4, and a time fy > 6 such that

0 <y —¢t,0) <8/4 and r(ty, ) > 7070 (8.32)

for all 6 € [19(;F + 6/8, 1, ]: it is enough to take 7 such that (8.32) holds for 6 =
ﬁ(;L—}— 4/8. In particular, for all 6 € (ﬁ(;L—}— 8/8, ﬂ(;r—}— 8/4),

8 8 8
<p(to,9)—9>z90‘—z—z95f—z=z‘}0——1‘}0+—§>0.

Define now
05 91— R, 0 otg,0) -0,

which is continuous and satisfies

f@§) =0 and f(9)>l90_—l9(f—g forall@e(ﬂo*'-kg,ﬁ(j.g_g),
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and choose é0+ e (0, 193' + 6/8) and éo_ € (190+ + 8/4,9) to be the abscissae
of the two intersection points of the graph of f and the line of height #; — 193' -4
(which are uniquely determined, as is explained below); i.e.

o(t0, 0F) — 0F = 05 — 05 — 6. (8.33)
Note that
O — O = ¢(t0,6,) — 05 +8 <8,
so that z‘}(;F < é0+ < éo_ < 190+ + &, which proves property 1. Then choose
To=ty+ 0y — 9 =8,

and note for future reference that 7, < #y + 1.1 — 0.5 < 1.1, (since the first
inequalities in (8.30) hold and 7y > 6) and that Ty — #, > 0.4 (due to the second
assertion in (8.30)). The equalities (8.28) for ¢+ = T, and (8.33), together with the
definition of Ty yield

@(To,0,7) = @(t0, 0,7 ) —To+10 = 0F + 95— 0 —6—To+10=10,", (834)

so that property 2 holds. As a matter of fact, relation (8.34) is satisfied for a pomt 6
if and only if ¢ (%, 0)—0 = vy — 19+ 8, that is, if and only iff(0) = vy — 19 -6
and this proves the uniqueness of Gi which was asserted before: if there were at
least three points with this property, then all the solutions of the equation (8.27)
would be Ty-periodic (see Remark 8.43), and hence the function f would take the
constant value ¥, — 190+ — 8, which is not true.

Now observe that éo_ > 9"+ 8/4, so that (8.32) implies that

(T, éo—) = r(to, 9_0—) > M=o — ef};()To

for EO = (—no— &) to/To > 0.41y/(1.11y) > 0.35. These properties prove point 3
for 6, . _

To verify property 3 also for é0+ note that det U(Ty) = 1, and that 070 is one
of its eigenvalues (see (8.31), which is already known for 6 , ), so that the other

one is e~Po0 This fact together with U(T) [COS 2 i| = r(To, 0;") |:C°W(T° ") i|
sinp(To.5)

r(To, 6 +) o8 9" i| (here (8.34) is used) shows that (T, 6, +) = e‘ﬁ"T", as required.

The proof of pomt 3 is hence complete.
To complete this part of the proof, note also that the orbits of the solutions
of (8.25) starting at Z;¥ lie in the interior of the sector V), for all ¢+ € [0, 7], so
0
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that their argument decreases for ¢ € [y, Tp]. This fact together with (8.34) ensures
property 4.

The initial step is completed by modifying y,(#) in the following way: take g9 > 0
small, and define g, as the simplest piecewise linear continuous 7y-periodic function
taking the values 0.1 on [0, #p] and —1 on [ty + €0, To — &o] (so that its graph on [0, T)]
is formed by four segments). Hence,

510. Igo(l‘)| <l1forallteR.

The reason for the choice of this label and those to follow will be clear at the next
step. In addition, it is possible to take &g small enough to guarantee that the linear
Hamiltonian system

;o —1—go(?) 1
’ _[ -1 1+go(l)}z (839

has the following properties:
619. If Uy(?) is the fundamental matrix solution of (8.35) with Uy(0) = I», then
there exist Bp > 0.35 and two angles 65 € (0, 7r/2) such that

+ 60T
U()(T()) Z9:F =e Po 0Z9:F .
0 0

Tio. 9 < 6, < 65 < ¥y + 8, and hence 0 < 6; — 6,7 < 271°.
810 0.5 < O < ¢o(t.6,5) < @o(t,0;) < 1.1 for all t € R, where go(t, 0)
represents the solution of

¢' = (1 + go(1) sin(2¢) — 1 (8.36)

with o (t,0) = 6.

The main point in proving this assertion is to check that | Uy(f) — U(?) || is as small as
desired for all ¢ € [0, Ty] if ¢ is small enough, for which it may be convenient to fix
the Euclidean norm: see Remark 1.24.2. This can be done by means of the Gronwall
lemma. To be more precise, write the systems (8.25) and (8.35) as 2’ = H(r) z and
7z = Hy(¢) z and note that

U(1) = U' (1) = Ho(1) (Uo(t) — U(1)) + (Ho(r) — H(1)) U (1) ,

so that ||U(f) — Uy(1)|| = 0 for ¢ € [0, ty] and

IUo(t) = U < / [Ho()[[ [1Uo(s) — U )] ds+/ [Ho(s) = H($)|[ [|U(s)]| ds
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for t € [ty, To]; and then apply the facts that |Hy(s) —H(s)|| = 0 for ¢t € [ty + &0, To—
&o] and

To

to+eo
/ [Ho(s) = H(s)[[|U(s)l ds + / H(s) = Ho(s)[[|U(s)|l ds < c1 €0

fo To—¢o

for some constant ¢; > 0 which is independent of gy, together with the Gronwall
lemma, in order to deduce that ||Uy(t) — U(t)|| < ¢z & for all ¢ € [0, Ty], where ¢,
is independent of &¢. This is the announced property.

Now note that properties 1 and 4 provide p > 0 such that z‘}(;F < é(f — p and
193' < @(t,0) <9 forall (1,0) € [0, To] x [é0+— 0, éo_—i- p]. In addition, the bound
of ||Up(7) — U(2)|| shows that, if &¢ is small enough, then |¢(z, 0) — @o(t, 0)| < § for
(#,0) € [0, Ty] x [95’ — p, 0y + pl. And it is easy to deduce directly from the bound
|U(To) — Uo(To) || < cae0 that the eigenvalues and the arguments Hoi of the lines of
corresponding eigenvectors of the matrices U(Ty) and Uy(Ty) (where one chooses
90+ < ;) are as close as desired by taking &y small enough: use for instance the fact
that det Uy (Ty) = detU(Tp) = 1. Therefore, there exists &y > 0 small enough to
ensure that properties 6,9 and 7, hold and, in addition, that 935 € [90+ —p, 05 +p] C
;, éo_ + p]. Consequently,

193'—5 < @o(t, 95’) <@o(t.0)) <V, +6

forall € [0, Ty]. It is possible to say something more: it is already known that 95’ >
193' ,and it is easy to deduce from the properties of (8.36) and from ¢y (7, 95’ )= 95’
(which follows from 61¢) that (¢, 90+ ) > 90+ for all ¢t € (0, Ty). Therefore,

B < o, 6, < @o(t,05) <Dy +6

for all ¢+ € [0, Tp], which together with (8.30) and the Ty-periodicity of ¢o(, Goi)
(which is ensured by 6;¢) prove 8;¢. This completes the proof of the final assertion
of the initial step.

Step k. The general step consists in modifying the initial system (8.35) by
means of successive small perturbations in order to obtain systems with
properties similar to those of the initial one, in such a way that: the
directions giving the stable and unstable subbundles of the exponential
dichotomy become closer at each step; but at the same time there exist
solutions whose Lyapunov exponent is bounded from below by a common
constant. The procedure now described is based on that of Section 5
of [69].

The goal will be achieved using an induction argument, whose hypotheses and
thesis will be explained after fixing some notation.



464 8 Linear-Quadratic Dissipative Control Processes

Given a sequence of Ti-periodic continuous real functions (g), consider the
systems

;| =1 —gk(®) 1
oo [ -1 +gk(r)} ’ (837

and let Ui(t) be the corresponding fundamental matrix solution with U;(0) = I,.
Represent by z(t,zg) the solution of the preceding system with zy(t,z9) = zg =
[cos#], and note that

sin 0

2(t,2) = 14(2, ) [cos ot 0)} |

sin ¢ (¢, 9)
where @y (2, 6) is the solution of the associated angular equation
@' = (1 + gr(t)) sin(2p) — 1 (8.38)
with ¢ (0, 8) = 0, and r(¢, 6) solves
= —(1 4+ gi(t) cos(2 g (2, 0)) r (8.39)

with (0, 8) = 1. These three equations will be often referred to as (8.37), (8.38);
and (8.39);.

Recall that the value § = 27! was fixed at the initial step, in which also the
angle 190+ was determined. It is important to keep in mind that 0.5 < z‘}(;F < 0.6 and
that (8.29) holds. The induction hypothesis reads as follows. There exist an integer
k > 10 together with a Tj-periodic function g; such that all the following properties
hold:

S le®] = Y’ 27 < 2forall € R.

6r.  There exists f; > 0.35 — (1/5) Zjl:g 27 > 0.3 and two angles 6, and 6
such that

BT, )
U(T)z,s =e Br “z,7
k k

in other words, @(t, Qki) are Ty-periodic functions, and rk(Tk,Q,jF) =
eTPTk (In particular, the system (8.37); has exponential dichotomy on
R, with Lyapunov index f; > 0.3, and its rotation number is zero: see
Remarks 1.62.2 and 2.8.)

Tee O <0 <07 <0f+8and0 <0 -6 <27%.
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8 05< 190+ < @it 9k+) < @i(t,8;) < 1.1 for all t € R. In particular, there
exist globally defined solutions mkjE of the Riccati equation

m =-m>+2(1+g@)m—1,

and 0.5 < m,j'(t) < my (f) < my (t) < 2 forall t € R: they are given by
mkjE () = tan ¢ (1, Gljc ), and so they are T;-periodic functions.

Now define Tyg = Ty, g10(t) = go(?), 91% = 90i, and B9 = By, where Ty, go,
90i, and By have been obtained in the initial step, and note that they satisfy the
conditions 51, 610, 710, and 8;¢. Recall also that Ty > fo > 6 > 2§. The induction
thesis is now stated: there exist a Ty -periodic function g4+ and two angles 9,:_1
and 9,;_1 such that all the properties 5;+1, 6x+1, 7x+1, and 84 hold, and such that,
in addition,

%t1. T+ is an integer multiple of 7 .

10k+1- 0 < gr+1(6) — gx(®) < 2% forallr € R.

Wi 0 <0, <65,<67.

1241, ot.67) < o1t 0 ) < @er1 (.0, < @u(t.67) and mf (1) <
my (1) < m, (1) < my (1) forall 1 € R.

The properties 5;41—12;4; will be proved in the following order: 94, 10+,
Sk1, 1gq1, part of 641, Ti1, 12541, 8k+1, and the rest of 654 .
To begin with, take

& =0, — 9k+
and note that, according to 7,

0<8 <27%. (8.40)
Define Ty+1 = jx Ty for a positive integer ji, which will be determined later, and

note that this ensures 9;4. Let y; be a continuous function supported on [T+ —
26, Tk+1] such that

0<y(r) <2°8, forallreR, (8.41)
and such that
T
/ ve(t) dt = 0.856;. (8.42)
Ti1—26

By abusing notation slightly, let y; be also the Ty -periodic extension to R of the
initial y;. Now define gx+1 = gx — Y«- Note that, irrespective of the value chosen for
Jjx» the inequality 0 < y;(f) < 2°7* ensured by (8.40) and (8.41) guarantees 101,
which in turn, together with 5, ensures also 54 .
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Take 6, € [0, 6, ], and recall that ¢i(t, 6y) and @iy (z, 6p) are respectively the
solutions of (8.38), and (8.38),+; with value 6y at t = 0. The coincidence of g; and
8k+1 0N [0, Tk+1 — 28] yields

(pk(l‘, 9) = §0k+1(l‘, 9) forallt € [O, Tet1 — 25] . (8.43)
In addition,

@ (t,60) — Prp1 (2, o)
= (1+ 8i1(0) (InQ2gu(t, 60)) — sin Qg1 (. 60))) (8.44)
+ (8 (1) — gi+1(1) sin(2gx (2, 6p)) -

Now use the bound |1 + gi+i(f)] < 3 (which follows from the already proved
property S+1) and [(gx+1() — gk(1)) sin(2(t, 6p)| < y(7) for all ¢ € [0, Tiq1],
together with the inequality |sinx — siny| < |x — y| for all x,y € R and with the
relations (8.43) and (8.42), in order to see that

t

0u(t. 00) — P (1. 60)| < / 610x(s. 6) — i1 (5. 60)| ds + 0.85 8
Tk+1—25

forall t € [Ty4+1—26, Ti+1]- Therefore, (8.43), the Gronwall lemma, and the equality
§ = 2719 yield

|@i(t, 60) — a1 (2. 60)| < 0.85€'27 8 < 0.878 if 1 € [0, Tp1] - (8.45)

This inequality will be used several times in the present step.
It follows from property 6y that, if 6y € (6;", 6;"], then

1
lim qu(j Tk, 9()) = ek_ and lim e In Vk(j Tk, 9()) = ,Bk.
j—>00 j—=oo Ty
These facts show that it is possible to choose a positive integer j; large enough to

ensure that, if ¥, = 9,(+ + 0.05 8, (which due to the definition of §; belongs to
(67, 6;)), then

oc(Teg1, 9) > 07 —0.058  and  Inr(Tegr, %) > Brts Tir (8.46)

for Teq1 = ji T and Bt = Br — 1/(5- 258). This will be the value chosen for j,
which will be fixed from now on. Note also that the inequalities (8.46) are valid for
all 6y € [, Qk_]

In the next step, two functions will be defined and some of their properties will
be described. The first one is

L6, 071 =R, 0> @i(Tis1,60) — 0o .
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Note that, since Ty is a multiple of Ty,

fi@F) = fi6) =0, (8.47)
and it follows immediately from (8.46) and the definitions of §; and ¥ that

max  fi(6o) > fi(Dr) > 6, —0.056; — (G,QL +0.056;) = 0.96;. (8.48)
Bo€l6;.67]

The second function is

e 10,671 > R, 0y = @(Titr, 60) — @rt1(Tis1, 6o) -
It follows from 8; and (8.45) that

oi(t,60) € (955, 1.1) C (0,7/2),

@r+1(2,00) € [@i(t, 60) — 0.87 8k, i (2, o) + 0.87 5] (8.49)
C (¥ —0.8768,1.1+0.878) C (0,7/2)

for all 1 € [0, Ty1] and all 6y € [6,", 6, 1. Here the inequalities (8.30) and §; <
0.001 (which in turn follows from (8.40), since k£ > 10) have been used. In addition,
8k(1) = grt1(1) + yi(t) = gr+1(2), so that, if ¢ € (0, 7/2) then

(1 + gr(0)sin(2p) — 1 > (1 + gx+1(7)) sin(2p) — 1  forallt e R, (8.50)

and the inequality is strict if y(f) > 0. Therefore, relations (8.49) and the standard
results of comparison of solutions of scalar equations prove that

@r(t, 00) > orer1(t,00)  forallz € [0, Tyt1] (8.51)

whenever 6, € [Gk‘" ,0,], the inequality being strict at the end of the interval.
Consequently, i (6y) > 0 for all 6y € [Gk‘" ,0; ]; hence, according to (8.45),

0< hk(e()) < 0.87 8k (852)

for all 6 € [6;F, 0, 1.
Now compare the graphs of the continuous functions f; and /. It can immedi-
ately be deduced from (8.47), (8.48), and (8.52) that f; and /; coincide at (at least)

two points, Q,EEH, with

0 <Ot <% <65 <0 . (8.53)
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These will be the points of the induction thesis; in particular, 11,4, holds. Note that,
at these points,

oer1(Tir1, 05) = 051, (8.54)

so that they define two T4 -periodic solutions of (8.38);+;. This is one of the
statements of 6, 1; the other one will be proved at the end of this step. Note that the
points 9,:_1 are the only ones at which the graphs of f; and h; intersect: otherwise
all the solutions of (8.38);+; would be T} ;-periodic (see Remark 8.43), and hence
it would be the case that f; = hy, which does not hold.

The next goal is to check the properties stated in 74 for this choice of ijj_l.
The first assertion is a trivial consequence of 11;4; and 7;. Next note that, since
Ji(B0) > hi(6p) if and only if 6, € (9,:_1, t1)- it suffices to prove that

fi0F +0.58) < (6 +0.568),
or, equivalently, that
Pk 1(Tig1, 07 +0.58) < 07+ 0.5,
since this and the property 9,(+ + 0.058; € (0,::_1, 01 (see (8.53)) imply that
(9,:_1, Or1) C Ch 9k++ 0.5 ;). To this end, go back to the relation (8.44) in order
to deduce from (8.51), (8.45), | sinx —siny | < |[x —y|, (8.49), gx — gk+1 = Y& = 0,
property 8, and sin(2 19;) > 0.9 (see (8.29)), that
gol/((l‘, 90) — (p/i_H(t, 90) >—6-0.87 8k + 0.9 )/k(l‘) fort e [Tk+1 — 26, Tk+1]
for all 0, € [0;", 0,1, which together with (8.42) yields

gok(Tk_H, 90) — (Pk+1(Tk+17 90) > (—128 -0.87+0.9- 085) Sk > 0.5 Sk

forall 8y € [9; , 0,"]. Therefore, bearing in mind that g, (¢, 61) < @i (¢, 6,) if 6, < 6,
and that T4 is a multiple of T,

Okt 1 (Te1, 07+ 0.58) < @ (Tieg1, 0 + 0.58;) — 0.56,
< @(Tig1,07) — 058, = 67— 0.58, = 6, +0.56;.

This completes the proof of 7, . For future purposes, note that ¥ < 6, < 6
(see (8.53)), and hence it follows from the second inequality in (8.46) (which, as
said above, is valid for all 8y € [, 6, ]) and the definition of B4, that

1
"e(Tir1, 0,1 1) > exp ((.Bk - m) Tk+l) . (8.55)
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The next goal is to prove 12;. It follows from the last inequality in 1134
and from (8.51) that (¢, 0,7) > ¢i(t, 0,1 )) = @r+1(t, 0,) for ¢ € [0, Ty41]. On
the other hand, since the functions ¢y (¢, ijj_l) and ¢4 (¢, ij_ﬁ_l) are Ty -periodic,
relations (8.49) also hold for all € [T+, 0] and all 6, € [Q,j', 0, ]. Therefore, the
inequality (8.50) ensures that

(1, 00) < orr1(t,6p) forallt € [-Tyqq,0]

whenever 0, € [9k+, 0,°]. Hence, ¢ (2, 9,(+) < olt, 9,:_1) < @r+1(t, 9,;:_1) fort €
[~Tk+1,0]. The first chain of inequalities in 12,4, follows from these properties,
from the Ty -periodicity of the functions ¢ (z, Gki) and g4+ (2, ij_ﬁ_l), and from the
second inequality in 11;4;. And the second chain of inequalities in 12,4 is a trivial
consequence of the first one and 8y, since m; (1) = tan (2, Gki) and mkiH(t) =

tan g1 (¢, 035 ).
Clearly, the inequalities of 124 and property 8; ensure 8;.
To complete the proof of 6,41, one has to check that ry4 (Tj+1, Qkﬁ D= eFPer1Tk

for a number B4+ > 0.35— (1/5) Z(Hl) 8277 The first step is to prove that

0< (pk_H(l, 9k_+l) < % forall r € [Tk-‘rl — 26, Tk-H]- (8.56)

The first inequality is included in 8;4;. To prove the second one, apply the mean
value theorem and the bound |¢;, ;| < 4 (which follows from the equation (8.38);
and the bound 5,4 ) in order to check that

lor+1 0 1) — Ol = |1 05 1) — @kt (Tir1, O )] < 86
forall t € [Ty+1 — 28, Ty+1]; hence, using now 7,41, (8.30) and § = 1/21°,
Qe (t.07,) < 05, +88 <0 +95 <0.6+95 < %

forall t € [Ti+1 — 26, Tr+1], which proves (8.56).
Property (8.56) has an immediate consequence: it ensures that

Yi(t) cos(Qpr+1(t, 6,11)) = 0 forallz € [0, Tit1] . (8.57)
Consider now the functions r(#,6,,,) and ri4+1(f,6,,), which respectively

solve (8.39) and (8.39)+1, with (0,6, ) = r+1(0,6,,) = 1. The first
one is given by

Rt 0731) = exp (— /0 (1 + gu(5)) cosQer(s. 6,,)) ds) ,
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and, due to (8.57), the second one satisfies
t
re+1(t, 04 1) = exp (_/0 (1 + gx(s) — vx(5)) cos(2 gr+1(s, 0 1)) ds)

> exp (_/0 (1 + gi(s)) cos(2 gr+1(5, 0,51)) ds)

= rni(t, 91:+1)6XP<—/0 1+ gk(s))(008(2</)k+1(s» b))

— cos(2i(s, e,j_H))) ds).

The inequalities |1 4+ gx()] < 3, |cosx — cosy| < |x — y| and (8.45), and the
equality (8.43), yield

it 1 (Tit1, Ogy) = 1e(Tig1, Oy ) exp(—12- 0.87 8, 8)

which, together with (8.55) and the bounds Ty > o > 6and §; < § = 1/2'°
(which in turn follows from (8.40) since k > 10), ensures that

_ 1 12-0.876;6
F(Tit1, 0y 1) > exp ((.Bk BT T=t Tors ) Tk+l)

1
> exp ((.Bk = 7)Tk+l)-

This fact and the bound of B provided by 6; show that rx11(Ti+1, 0, ) = ePer1T
for Brr1 > B —1/(5-27) > 0.35—(1/5) Z(Hl) ~827 > 0.3. From this point on
it is possible to reproduce the argument used at the initial step in order to deduce that
i1 (Tha 1, 9,;:_1) = ¢ P+1Tk Hence, 6, is proved. This completes the induction
step of the construction.

Final step and conclusions. Now define

g(t) = lim g(1) = gi0(1) = Y yu(0) (8.58)

k=10

for ¢t € R. Properties 5; and 94, show that g is the uniform limit on R of a sequence
of continuous Ty-periodic functions with 7, = j;Ty—;, so g(¢) is limit-periodic.
Applying the Bebutov construction (see Sect. 1.3.2) to the system (8.24) provides
a compact metric space §2 equipped with a (time-translation) flow o. Taking wy =
g € £2 and defining 'g: 2 — R as the continuous operator of evaluation at ¢ = 0,
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one gets g(wo-t) = g(). One also obtains the family of equations

’ —1 —g(w1) 1
= 2 .
z [ 4 I+ Z) z, w €S2, (8.59)

which reduces to (8.24) for w = wy = g.

The description of this example will be completed by proving properties v1-v7.
Before starting this task, it is convenient to explain the way in which the periodic
systems (8.37) and the corresponding Weyl functions m,:f can be extended to the hull
£2, as well as some additional properties. This is done in the following paragraphs.
A property stated in v1 must be anticipated: the flow on £2 is minimal (see below
for a suitable reference).

Let F(f) represent the frequency module of an almost periodic function f; its
definition can be found in, for example, [73]. It is also given in Lemma 8.45, at
the end of the example, which shows that F(g) = Ui>10F(gr). The following
fundamental property is proved in Section 2 of [81]: for every almost periodic
function f with F(f) € F(g), there exists a continuous function f on £2 (the hull of
g) with f(wot) = f(¢) forall t € R (where wy = g € £2).

Fix now k > 0. According to 8y, the functions m,fc (1) are Ty-periodic, as gy is.
Therefore, F(mf) C F(g). Let g: 2 — R and m: 2 — R be the continuous
functions associated to m,fc and g; by the procedure just explained, with

Tlwot) = gi(d) and T (wor) = mE(r) forallr e R. (8.60)

It is easy to deduce from these equalities, the Ti-periodicity of g; and of m,:f, and
the density of the orbit of wy in §2, that the functions 7 'ﬁi,ﬁc (w+1) and t = gr(w-1)
are Ty-periodic for every w € 2.

Consider the family of periodic Hamiltonian systems

’ —1 =g (1) 1
= ~ s 2, 8.61
£ [ -1 A ) A (860

and note that the first equality in (8.60) ensures that the system corresponding
to wy coincides with (8.37). According to Remark 1.59.4, this property and the
exponential dichotomy of the system (8.37) on R ensure that the family (8.61) has
exponential dichotomy over §2. And it follows from the minimality of the base flow,
the continuity of the functions %ﬁt on 2, the second equality in (8.60), and the
definition of the functions m,fc (see property 8y), that %}f are the corresponding
Weyl functions. In particular, these two functions are solutions along the flow of the

Riccati equation associated to (8.61), namely

m = —m* 42 (1 +g(wt)m—1. (8.62)



472 8 Linear-Quadratic Dissipative Control Processes

Once this procedure has been performed for all ¥ > 0, one can use (8.60) together
with the minimality of the flow on £2 in order to deduce from the last chain of
inequalities in 12;) that

0.5 < 71 (w) < Ty (@) < Ty (0) <7 () <2 (8.63)

forall k € N and all w € £2. Consequently, there exist the limits

7 (w) = lim 7 (w), (8.64)
k—>o00
with
0.5 <7 (w) <7 (w) <2 (8.65)

for all € £2. Note also that the maps 77~ (w) are globally defined solutions along
the flow of the Riccati equation

m =—m?4+2(1 +3g(w1))m—1 (8.66)

associated to (8.59). To prove this assertion: note that limy— |[g — Gklle = O,
which in turn is a consequence of property 10,41, the equalities g(wo-f) = g(¢) and
‘Gi(wot) = gi(1), and the minimality of the base flow; hence, if 7,4 and 7, represent
the flows induced on £2 x S;(R) by the Riccati equations (8.62) and (8.66), then

(1, 0,7 () = lim 1t 0, mE ()
k—>o00
= lim (o1, mE (01)) = (01,75 (01))
k—>o00

as asserted.

The properties v1-v7 can now be proved.

v1: According to the results of Chapter VI of [140], the flow on 2 is minimal and
admits a unique ergodic measure 7, which has total support (see Proposition 1.11).
In particular, v1 is satisfied.

v2: On the one hand, properties 6; and 7; ensure that the family (8.59) cannot
admit exponential dichotomy: if it did, the perturbation theorem of Sacker and
Sell (see e.g. Theorem 1.95) and point 7; would imply that the limits of the two
sequences of angles (0,5'5) determine the polar angles of the initial data of two
different solutions of (8.59) for w = w, (those which are bounded at Fo0); and
hence 6, — 9;’ would be bounded apart from zero for large k, which is precluded
by 8.

On the other hand, it follows from 6; that the Lyapunov exponents of the
system (8.61) corresponding to wy (that is, of the system (8.37)) are +f;, with
Br > 0.3: see Remark 2.42.3. Consequently, the Lyapunov index of the family (8.61)
with respect to myg is Bi. A possible way to check this assertion is to apply for
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example Lemma 1 of [133], since §2 is minimal. It can also be deduced from
61 and the Ty-periodicity of the extended function g;. The upper semicontinuity
of the Lyapunov index guaranteed by Corollary 2.47 ensures that the Lyapunov
index of the limit system (8.59) is a number 8o, > 0.3. (As a matter of fact,
Boo = limy_ o Bk, as Lemma 8.46 proves.)

These two properties ensure that the Sacker—Sell spectrum of the family is
[—Boo, Boo] 2 [—0.3,0.3]: see Sect. 1.4.4; that is, the first assertion in v2 holds.

To complete the proof of v2, note that the family (8.59) has zero rotation number
with respect to my. This property follows from the existence of the globally defined
solutions 77F of the Riccati equation (8.66) and from Propositions 5.8 and 5.65.

v3: It is a well-known fact that the dynamical behavior of the flow 7 determined
by (8.59) on Kr = £2 x Lp is highly complicated in the nonuniformly hyperbolic
case. Part of this behavior is summarized below, in point 13. The reader can find an
easy proof of its statements (as well as many more details) in Theorem 4.10 of [87],
which is based on ideas which were previously considered in [64] and [66].

13. The set Kr = £2 x L contains a unique minimal subset M for the flow 7. This
set M is not uniquely ergodic: it supports two different r-ergodic measures %,
which are the unique 7-ergodic measures in Kr. These measures are associated
to two nonclosed t-invariant graphs {(w,/*(w))| @ € £2} by means of the
relation [, f(w,1) du* = [,f(w.1*(w))dm for all continuous functions
f: IC]R — R.

In fact the maps [T determine in full measure the principal solutions for (8.59),
as is proved in what follows. Note first that the family (8.59) is uniformly weakly
disconjugate; in fact all its systems are disconjugate. This is deduced, for instance,
from Remark 5.30, since the existence of the functions 7i., given by (8.64),
which are globally defined solutions along the flow of the Riccati equation (8.66),
guarantees property D3. This proves the first assertion in v3.

Consequently, Theorem 5.17 ensures the existence of uniform principal solutions
at =00 which can be parameterized by the principal functions n*: 2 — R, which
are defined by (5.20). Since the sets {(w,[* (w)) | @ € 2} concentrate two ergodic
measures (see Proposition 5.45(i)), it follows from the uniqueness established in

point 13 that [* (w) =T (w) for mp-almost every w € £2, where I+ (w) = I:nil(a)) ]

In what follows, z*(r, w) represent the solutions of (8.59) with z+(0,w) =
[nil(w)]. It is proved in Theorem 5.56(i) that there exists a o-invariant subset
20 C £2 with my(£2y) = 1 such that

1
F Boo = lim —In |zE (1, 0)| (8.67)
1|

|t|—>o00

for every w € £2y. A first consequence of this fact is that n™ (w) # n™ () for all
w € §2o9. However, these two functions cannot be different in the whole of §2: if this
were the case, Theorem 5.58 would ensure the exponential dichotomy over 2 of the
family (8.59), which is precluded by v2. In fact, if £2. is the residual set of common
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continuity points for n* and n~ (see Proposition 5.45(ii)), then n (w) = n™ (w) for
all € £2.. To prove this assertion, recall first that Theorem 5.17 also ensures that
n* are globally defined solutions along the flow of the Riccati equation (8.66). Then,
take a point @ with n* (@) = n~ (@), note that this implies that n* (@-t) = n™ (@-1)
for all + € R, and use the fact that the o-orbit of @ is dense in the minimal set
£2. A consequence of this property is that n* and n~ are not continuous on £2.
This fact, together with Proposition (5.45) and the uniqueness of the minimal set
M established in 13, shows that M = closure;CR{(w-t,7+(w-t)) lo € F) =
closure,cR{(w-t,7_(w-t)) |w € 2%} (where w is any element of £2.) is an almost
automorphic extension of the base 2 for the flow r, which does not reduce to a
copy of the base. This completes the proof of the properties stated in v3.

Although the remaining properties of the example could be proved from the
information collected so far, it is interesting to check that the principal functions
n* agree everywhere with the limits 7% given by (8.64). This fact is proved in
Lemma 8.46 below. Of course, its proof only requires already known properties. In
particular, it follows from (8.65) that

0.5 <nt(w) <n (w) <2 (8.68)
forall w € £2.

v4: The family of linear Hamiltonian systems (8.59) is associated to the family
of LQ control problems given by

X =—x+u (8.69)

together with

O, (t,x,u) = (5(w-t)x2 +2g(w-t)xu + uz) ,

| =

where 5(0)) = Z*(w) — 1. Note that the (autonomous) control system (8.69) is
(uniformly) null controllable, as is easily deduced for instance from Definition 6.3;
and that the homogeneous linear system x' = —x is of Hurwitz type at 400,
i.e. Hypothesis 7.3 is satisfied. Hence, the properties stated in v4 hold.

v5: Proposition 8.17(i) and the inequalities (8.68) ensure that the family of LQ
control problems corresponding to the family of linear Hamiltonian systems (8.59)
via the relations A = —1,B = 1,G = g — 1, and R = 1 is uniformly dissipative
(that is, all the elements of the family are dissipative); and that each problem admits
the strong storage function V_ (¢, x) = (1/2){x,n™(w)) x). These properties imply
v5. Note also that, since nt (w) > 0, the function V. (t,x) = (1/2)(x,n" (w-1) x) is
also a strong storage function, often “worse”, in the sense that it is smaller for those
points w with nt(w) < n~(w). In fact, Theorem 5.48(iv) yields

n(w) < n(t,w,ng) <n (wt)
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for all w € £2 and all ny € R giving rise to a globally defined solution of (8.66).
In other words, V,, (t,x) = (1/2){x,n (w-t)x) and V[ (t,x) = (1/2){x,n " (w1) x)
are the “best” and “worst” storage functions defined from global solutions of the
Riccati equation (8.66). Additional information is given in Theorem 8.34, which
implies that V| is the required supply for mp-a.e. w € §2.

v6: A second consequence of (8.67) is that, if w € £2y, the feedback control

u= n"(wt)=g(w1)x (8.70)

exponentially stabilizes the LQ, control problem. To see this, one can repeat an
argument which has appeared several times in the book, and which is included
again for the reader’s convenience. The goal is to prove that all the solutions of
the linear equation X' = (—1 + n™ (w-f) —g(w-1)) x decay exponentially to zero as
t — oo if w € £2¢. Note that (8.67) provides constants 7 > 0 and 8 > 0 such that
lzt(t,w)| < ne P forall t+ > 0. Note also that z*(t,w) = U(t,w)z"(0,w)
belongs to l+ (wt) = U(t,w): l+ (w) (see Theorem 5.26), which ensures that it
n+(z)~t)(;$)(t,w)
of X = (=1 + nT(wt) — g(w1)x with x7(0,w) = 1. Finally, |xT(t,w)| <
|zT(t, )| < ne P". The assertion follows from this fact, since all the remaining
solutions of the scalar equation are multiples of x™ (¢, w).

On the other hand, there exists a residual set R C £2 with my(R) = 0 such that
forall w € R and all zy € R? — {0}, the solution z(t,w) = U(t, w) zy of (8.59)
satisfies

can be written as ] It follows easily that x*(z, w) is the solution

1
lim sup — In||z(f, w)|| = Boo =03 >0. (8.71)

—>0o0

One way to prove this fact is to use the following fundamental property, which holds
in the nonuniformly hyperbolic case. Its proof appears also in Theorem 4.10 of [87]
(see also [64] and [66]):

14. Let M C §2 x Kg be the minimal set appearing in point 13. There exists a
residual subset R C M such that, if (w,]) € R and Z(¢, w) solves (8.59) with
Z(0, w) € I, then

| B TS
limsup — In ||Z(t, w)|| = Boo and liminf— In ||Z(z, w)| = —Poo -
—>+oo I —>%oo0 1
(8.72)

To deduce (8.71) from statement 14 requires some more work. The first point is
to check that the projection of R onto £2 is also a residual set R. This is done
in Lemma 8.47 below. Now take (w,]) € R and Z € [, so that (8.72) holds
for Z(t,w) = U(t,w)Z; take any zo € R? which is linearly independent of Z
and define z(t,w) = U(t, w) zy; recall that the determinant of the fundamental
matrix solution V(¢,w) = [Z(t,w) z(t,w)] is a constant ¢ (as is deduced from
the Liouville formula), and that |c| = |detV(t,w)| < ||Z(z, )] - ||z(t, w)|; take
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any ¢ > 0; use the second equality in (8.72) to find a sequence (#) 1 oo with
| Z(tr, )| < ePoot ik for all k € N; and deduce that || Z(#;, )| > |c| ePoo=?) %
and hence that limsup,_, .,(1/¢) In ||z(t, w)|| > Boo — &. This completes the proof
of (8.71).

Relation (8.71) has the consequence that, if @ € £2y, then the control sys-
tem (8.69) cannot be stabilized by the control (8.70). Indeed, if m(t, ) is any
bounded solution of the Riccati equation (8.66) (as are t — nt(w-) and t +—
n~ (w-t)), then u = (m(t, w)—g(w-1)) x does not stabilize (8.69): if this were the case,
then any solution x(7) of x' = (—1 —g(w-t) — m(¢, w)) x would be bounded at + o0,

and hence it would provide the nontrivial bounded solution z(t, w) = [m(rf‘a(f))x(r)]
of (8.59), contradicting (8.71). In this sense, “one cannot stabilize (8.69) using the
data A, B, 5,'g‘, and R”. This is what point v6 states.

v7: Finally, consider the infinite-horizon control problem of minimizing the
functional Z, ., (x, u) = fooo Q, (1, x(1), u(t)) dt on the set of the admissible pairs;
that is, on the set of pairs (x(¢),u(t)) € L*((0,00),R) x L*((0,00),IR) which
solve (8.69) and satisfy x(0) = xo. One can show that the problem is solvable for all
€ §2y: the minimizing pair (x(¢), u(t)) for Z,, , is defined from the unique solution

[;8] of (8.59) satisfying x¥(0) = xo which belongs to L?((0, c0), R) by the relation

u(r) = y(t) —'g(w-r) x(r). (Note that (8.67) ensures the existence of [;‘8 ], which is

determined by the initial datum [?Eg;] = [n+ Z?))XO ].) To prove this assertion, take
o € 20, define V. (¢,x) = n™ (w+t) x*, and apply Lemma 7.9 to check that, if a pair
(x(1), u(r)) is admissible, then

2T (5, 1) = =™ (@) 3 + /O 1(u(r) = (=&(@-1) + 0™ (w-) x(1)||* dr.

Consequently, Z’fw,m (x,u) > —n+(a)) x(z) for all admissible pairs, and the
equality holds for the pair (x(¢),u(r)) described above. Conversely, if a pair
(x(1),u(?)) is admissible and the equality holds, then x(¢) is square integrable
and u(t) = (—g(w-t) + n™ (w-1)) x(¢), and it is easy to conclude from these facts that
(x(0), u(®)) = (x(1), u(?)).

However, the optimization problem is not solvable for w € R and xy # 0. To
see this, suppose for contradiction the existence of @ € R and xo # 0 such that the
problem admits a minimizing pair (x(¢), #(f)) € L*((0,00),R) x L?((0,00),R).
It has been seen in point v4 that the uniform stabilization Hypothesis 7.3 is
satisfied. Consequently, as is explained in Chap. 7, if y(r) = u(r) + g(w-t) X(¢),
then z(r) = [;22] solves the system (8.59) corresponding to w. And clearly
Z(1) € L*((0,00),R?). In particular, there exists lim,—, Z(f) = 0: this is proved
as in Lemmas 6.18 and 7.1, since both z and z’ are square integrable on (0, cc). But
the last property is precluded by (8.71).
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These facts prove property v7. The description of the Millions¢ikov—Vinograd
type example is hence complete (once the next lemmas, which were used in the
final step, have been proved).

Lemma 8.45 Let F(f) represent the frequency module of an almost periodic
function f. In the situation described in Example 8.44, F(g) = U>10F (gk)-

Proof Recall that F(f) is the additive group composed of the finite integer
combinations of the so-called frequencies of the almost periodic function f, defined
as those values of A € R such that

o1
lim —
t—o0o

/ t fls)e ™ ds#0.
0

It is simple to deduce from the convergence of the sequence (gx) to g, which
according to property 10z is uniform on R, that F(g) < Uis10F(gk). The
converse inclusion requires some more work. Since F(gy) = {27j/Ti| j € Z}
and T); is a multiple of Tyg (see 9%+1), it is enough to see that 277/ T4+ € M(g) for
all k > 10. In other words (see (8.58)), that

t

1 — "
Cr1 = tlim - gio(s) — Z ¥i(s) e 2/ Tt gg £ () (8.73)

—00
0 j=10

for all £ > 10. Note that 27t/ T+ does not belong to the frequency module of the
T1o-periodic function g9, and that the same happens with y; forj = 10,...,k—1,
since it is T} -periodic. Therefore,

t—o00 t

1 & )
Ck+1 = lim — —Zyj(s) e 27/ Tt g
0
j=k

=— E lim —/ yi(s) e 2/ Tt g
— t—o00 0
=

o0

1 Tj+1 .
= — Z —/ 7i(s) e /Tt g |
= T Jo ‘

Now recall that y; # 0 is zero on the interval [0, Tj+; — 28] and nonnegative on the
interval [Tj41 — 28, Tj11], so that, if j > k,

1 Tj+1 y
(ot [
Ti+1 Jo
1l
- ¥;(s) cos(2ms/Tiq1)ds < 0.

Tiv1 J1yp -8
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To check the last inequality, use property 94; in order to write T4 =
mTyy1 for mj € N, and note that cos(2ms/Ty41) is strictly positive on
((m; — (/) Ter, mTiq1] = (T — (1/4) Tir, Tipa] D [Tjr1 — 268, Tjga]-
The conclusion is that Recy4; < O for all k& > 10, which implies (8.73) and
completes the proof.

Lemma 8.46 In the situation described in Example 8.44, the functions ¥ defined
by the limits (8.64) agree with the principal functions n*. In particular, Boo =
limg— o0 Bi-

Proof Consider again the Riccati equations

m = —m?>+2(1 +Z(w1)m—1= h(wt,m) (8.74)
and

m = —m*+2(1 +Z(wt)m—1=h(wt,m), (8.75)

and represent by my (¢, w, my) and m(t, @, mp) the respective solutions with initial
data my € R. Note that

hi(w,m) > h(w,m) wheneverm > 0

for all w € £2, since gx(w) > g(w). In turn this property follows from the relation
gr(f) > g(t) (which is due to the construction of g), from (8.60), and from the
minimality of the base flow. This property will be used below twice to apply the
comparison results given in Theorem 1.46. Recall also that mk(z‘,a),mkjE (w)) =
mkjE (w-1), m(t,w, 7% (w)) = 7 (w-1) and m(t, 0, n* (w)) = n*(w-) forall k € N,
teRandw € £2.

Theorems 5.48 and 5.58 ensure that a solution m(z, w, mg) of (8.75) is globally
defined if and only if nT(w) < my < n (w), and that a solution my (¢, w, mg)
of (8.74) is globally defined if and only if m,j' (w) < my < m; (w). The first of
these properties, the equality 77~ (w-f) = m(t, w, 71 (w)), and (8.65) yield

nt(w) <7 (w) =T (@) <n” (o)

forall w € £2.

The next step is to prove that n™ (w) < my (w) forall w € £ and all k € N,
which obviously ensures that n~(w) < 7 (w) and hence that they are equal.
Assume for contradiction that n™ (w) > m, (@) for a certain point w € §2 and a
value of k. Then my(t,w,n” (w)) is not globally defined. This fact, together with
m(t,w,n" (w)) > m(t,0,m; (w) = my (w-t) for all + € R and the property
limy s o0 [mi(t, 0, n~ (w))—my; (w-t)] = O (which can be easily deduced from (1.30)),
ensures that my (f, v, n~ (w)) tends to 4-o0 at it approaches a negative value of 7 from
the right. Since n™ (w-t) = m(t,w,n" (w)) > m(t,w,n" (w)) for those values of
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t < 0 at which the last solution is defined (see Theorem 1.46(i)), the function n™
cannot be globally defined, which is the sought-for contradiction.

The proof of the first assertion of the lemma will be complete once it has been
checked that n*(w) > m}} (w) for all @ € £2 and all k € N, which yields n*(w) >
7T (w). Let w; € £2. be a continuity point of nt and n™. As seen in the proof of
v3, nt(w;) = n"(w), so that the four functions n* and 7#* agree at this point.
Choose now any point w; € §2 and write w; = lim;_« w;-#; for a suitable sequence
(t) 1 oo. Then limj— oo nt (w2et;)) = n(w1) = 7T (w;). This fact ensures that
nt(wy+f) > 0forall t € R: since h(w,0) = —1 < Oforall w € 2, if nT (wyty) <0
for a point fy € R, then n* (w,+f) < 0 for all t > ty; therefore 7+ (w;) < 0, which is
precluded by (8.65). Now assume for contradiction that 0 < nt(w,) < m; )
for a value of k. Then my(t,w,n"(w)) is not globally defined, which together
with mi(t, 0, n*(0)) < m,j'(a)'t) and lim,_» oo |mi(t, @, nt (w)) — m,j'(w-t)| =0
(see again (1.30)) ensures that my(t,w,n" (w)) tends to —oo at it approaches a
positive value of ¢ from the left. But this is impossible, since 0 < nt(wt) =
m(t,w,n(w)) < m(t,w,n"(w)) for t > 0 if the last function is defined (see
again Theorem 1.46(i)). This contradiction completes the proof of the equalities
nt =7t

The last assertion of the lemma follows immediately from the first one, which
shows that n™ are the pointwise limits of (mk ) on £2, and from Theorems 5.58
and 5.74¢(iii).

Lemma 8.47 Suppose that 2 is minimal. Let M C Kg be an almost automorphic

extension of the base flow such that the fiber M, = {l| (w,l) € M} reduces

to a point for a residual set 2. of points of the base; i.e. M, = {l(w)} for

every o € 2. Let R C M be a residual set in M. Then the projection
= {w | there exists | € Lr with (w,[) € R} is a residual set in §2.

Proof The definition of residual set ensures the existence of a countable family
{Pk | k € N} of closed subsets of M with (intxg P ») N M empty such that M—TR C
UkeNP Let [1:Kr — £2, (w,]) > o be the projection onto the base, so that
R=1II (R) Define P, = I1 (Pk) for k € N and note that all these sets are closed in
£2.Itis easy to deduce from the fact that [T(M) = §2 (which is an easy consequence
of the minimality of the base flow) that 2 — R € [T(M —R) C UienPr. The goal
is hence to prove that int Py is empty for all k € N.

Suppose for contradiction the existence of k € N, w; € £2 and §y > 0 such that
B C Py, where B is the closed ball of points of §2 at a distance from w; less than or
equal to &. It follows immediately that

(T7'(BNR))NMC (T (PN ) NM.
The property assumed on 2. has two consequences. The first one is that

(T'(BNK))NM=(BxLr)N(2: x Lp) N M,
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since both sets agree with {(w, [(w)) | @ € BN $2.}. The second consequence is that
(H_I(Pk N .QL)) nMcC 51(.

This second consequence can be proved as follows: take @ € P, N §2, and [ € Lp
with (w,1) € M (that is, take (w,l) € (IT7'(Py N £2,)) N M); note that, then,
[ = l(w); and conclude that if it were the case that (w,]) = (0, l(®)) ¢ Pr S M,
then ({w} x Lr) N P would be empty, so that w ¢ IT (Pk) = P and a contradiction
would be reached.

Therefore,

(B x Lg) N (2. x Lg) "M C Py

Clearly, the left-hand term is depvse in (B x Lgr) N M. Therefore, taking closures in
Kr leads to (B x Lr) N M C Py: this is the sought-for contradiction. The lemma
is proved.

Example 8.48 The example will consist of a three-dimensional family of nonau-
tonomous LQ control problems which is uniformly strictly dissipative but which
has the following properties: there is just one single autonomous control system in
the family (but the quadratic functionals are time-dependent); and this autonomous
control system is not controllable. The corresponding family of linear Hamiltonian
systems will have exponential dichotomy, but the Weyl functions will not exist. The
uniform strict dissipativity will hence be deduced from Theorem 8.41.
Consider again the family of linear Hamiltonian systems

’ -1 _E(w't) 1
= 2 7
z [ - 1—|—'§(a)-t)i|z’ w € 2, (8.76)

constructed in the previous example, where the following properties were proved:
the family does not have exponential dichotomy, all the systems of the family (8.76)
are disconjugate, and the uniform principal solutions determine the Lagrange planes

t(w) = [n+l(w)] and I"(®) = [ (o) ], With 0.5 < n*(0) < n~(w) < 2 for each
w € §2: see (8.68).
According to Theorem 5.61(i), the family of linear Hamiltonian systems

;| —1-"glwr) 1
z —[ 12 1+'§(a)-t)}z’ weE R, (8.77)

has exponential dichotomy over §2 for every A € (0, 00), with corresponding
Lagrange planes lf (w) = [mi (1(1)’ Py ], and in addition n” (w) < m™ (w, A) for every
A > 0. In particular, m~ (w,A) > 0.5 > O forallw € £2 and A > 0.

For the rest of the example, A > 0 will be fixed. The robustness of the exponential
dichotomy (see e.g. Theorem 1.95) ensures that, if ¢ > 0 is small enough, then the
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family of linear Hamiltonian systems

/= —1 —"g(w) li—s - e,
—1+2 1 +g(w)

also has exponential dichotomy over §2 with corresponding Lagrange planes
[mgt (lw,x)] satisfying lim,_, o+ m;t(a), A) = m*(w, ). Therefore, for ¢ > 0 small
enough, m, (w,A) > O for every v € £2. This fact will be of fundamental
importance in the later discussion of this example.

Now it is possible to define the desired family of LQ control problems. Define,
as in the previous example, G(w) = g>(w) — 1. Consider the diagonal matrices

-1 00 100
A= 0-10|, B=]000],
0 01 000

5A (w) = 5(w)§ + AL, andR = I3, and the (autonomous) linear control system

~

X =Ax+ Bu, (8.78)

with the (nonautonomous) family of quadratic functionals

((x, Gi (1) x) + 2 (x, Z(w-1) Bu) + (u,u)). (8.79)

N =

éi) (t,x,u) =

It can immediately be checked that condition (6.12) does not hold, so that the control
problem (8.78) is not null controllable. The associated family of six-dimensional
linear Hamiltonian systems is

, [A-Z(wnB B
= | A ~ ~|z. 8.80
z [ B4l A+ 0nB|” (8.80)

Note that (8.80) uncouples into three two-dimensional families: the family (8.77)
and the constant coefficient ones

, _[-10 ;|1 0
Z_|:A 1:|z and z—[k _1i|z.

It is obvious that these constant systems have exponential dichotomy, and that the

only (constant) Weyl functions are m; = —A/2 for the first one, and m; = A/2

for last one. Therefore, the family (8.80) has exponential dichotomy over £2, with
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Lagrange planes

1 0 0] ! 0 0 |
0 1 0 0 0 0
0 0 0 i 0 0 1
+ — —
FPeb=l +wrn o ol° T@Y=l —wno o |
0 —2/20 0 1 0
0 0 1] 0 0 A/2

which obviously lie in the vertical Maslov cycle C. (Incidentally, note that d* (w) =

1 for every v € §2, where d* are defined in Sect. 5.9. In fact the shape of
B precludes condition D2 of Chap. 5, so that one cannot have d+ (w) = 0 or
d- (w) = 0 for any value of w: see Corollary 5.86.) The same uncoupling procedure
ensures that, for the values of ¢ > 0 previously associated to A, the family of
perturbed systems

, [A-F(wtB B+ ¢l
= < ~ ~ 2 .81
‘ [ “B+As  -A+RenB|"  OF (8.81)
has exponential dichotomy over §2, with Lagrange planes [ Mil(; Py ], where
mf (o, ) 0 0
M (w, 1) = 0 (A-=V1+ek)e 0 and
| 0 0 (—1—-+1+4+¢ed)/e
mg (w, ) 0 0
M (w,A) = 0 1+ V1+4+ed)/e 0
| 0 0 (—1+/1+ed)/e

Hence M_ (w, A) > 0 for ¢ > 0 small enough, and Theorem 8.41 and Remark 8.42
imply that the family of LQ control problems given by (8.78) and (8.79) is uniformly
strictly dissipative. Of course, this is true for any value of A > 0.

Note finally that the same construction could be carried out by taking as the
starting point a system simpler than (8.76) but satisfying similar properties: absence
of exponential dichotomy, presence of uniform weak disconjugacy, and with n~ >
0; for instance, z’ = [j i] z, coming from x’ = —x4u and Q(x, 1) = (—x*+u?)/2,
for which nt = n~ = 1: see Remark 8.35. And the same remarks apply to the next
example.

Example 8.49 The last example will show that, in fact, the unperturbed family
of LQ control problems of the previous example, given by (8.78) and (8.79) for
A = 0 (which is not null controllable, and for which the corresponding family
of Hamiltonian system does not have exponential dichotomy and is not uniformly
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weakly disconjugate), is uniformly dissipative. Theorem 8.41 will again be the main
tool used in the discussion.

So, consider a new perturbation of the family of Hamiltonian systems associated
to (8.78) and (8.79), now given by

wef (8.82)

, [A-% @B B+el;—B)
= -B —A+Z(w)B z

for ¢ > 0 and note that it uncouples into three two-dimensional families: the
family (8.76) and the single constant coefficient systems

, | -1 e r |1 e
z—[ Oli|z and z—|:0 _1i|z.

It is obvious the last two systems have exponential dichotomy, and easy to compute
their (constant) Weyl functions: m;' = 0 and m; = 2/¢ for that on the left, and

m; = —2/¢ and m; = O for that on the right. Therefore,

1 0 0 ] [ 1 0 0]

0O 1 0 0 1 0

~ 0 o0 1 ~ 0 0 1

" = s l =

@) nt(w) 0 0 @) n(w) 0 0

0 0 O 0 2/e0
| 0 0 —2/e| | 0 0 0]

(where n" (w) and n™ (w) are the principal functions of (8.76)) are Lagrange planes
satisfying U(t, w) I (w) = * (w-f). In particular, the family (8.82) satisfies
condition D3 of Chap. 5. Since it also satisfies D1 and D2 (see e.g. Remark 5.19),
Theorem 5.17 ensures that it is uniformly weakly disconjugate. There are several
ways to prove that I+ define the uniform principal solutions at +oc. For instance, it
is very easy to check that they satisfy the conditions in Definition 5.6. Hence,
n(w) 0 0
N, (w) = 0 2/60(|=0
0 0 o0

is the principal function at —oo. Since N, (w) > 0 for all w € 2, Theorem 8.41
ensures that the family of LQ control problems given by (8.78) and (8.79) is uni-
formly strictly dissipative, and that Vi) (t,x) = (x,N_ (w) x) defines a (nonstrong)
storage function for every w € £2. Note also that this storage function is not jointly
continuous.
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8.8 Back to the Time-Reversed Problem

As mentioned in the introduction to this chapter, the goal of this last section is to
adapt the results of the previous ones to the time-reversed situation, providing hence
new scenarios in which the dissipativity of LQ control problems can be deduced
from the dynamical properties of certain families of linear Hamiltonian systems.

Consider, as in Sect. 8.2, the time-reversed flow 0~ on 27 and the family of
control systems

X = —A(w(—=1))x — B(w-(=))u, e . (8.83)

Consider also the family of time-reversed quadratic forms

5% =5 ((x.Gl-0)x)

(8.84)
+2(x, g(@(=1) 1) + (1. R(@-(=n) v))
for w € 27, as well as the family of linear Hamiltonian systems
7 = H (w(-1)z, w€E N7, (8.85)

where z = [;] forx,y € R" and

H (o) —A(®) + B@)R™(0)g" (®) B(@)R™ (0)B" ()
W) = .
G(w) —g@R(w)g" (@)  AT(0) - g(@)R(0)B ()
Note that, following the ideas of Chap. 7, this family of Hamiltonian systems would
arise by applying the Pontryagin Principle to the family of problems obtained by
trying to minimize

Toomw= [ " B (5.x(6). u(s)) ds

forw € £2 and x¢ € R". Here the admissible pairs (x, u) are determined by referring
to the control systems (8.83) with x(0) = xg. Strictly speaking, the proof of the
Pontryagin Principle requires a stabilization condition, but this condition is not
required to construct the systems (8.85) from the data of (8.83) and (8.84).

It can immediately be checked the following simple but important properties.
Proposition 8.50 The function [;8] solves (8.6) if and only if iy‘%g] = [_"5(__’)”]
solves (8.85); and the function M(t, w, My) solves (8.9) on (a, b) with M(t, w, M) =
My if and only if N(t, w, My) = —M(—t, w, My) solves the Riccati equation defined
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[from the time-reversed Hamiltonian system (8.85) on (—b, —a) with N(0, w, My) =
M.

In particular, these facts imply that the symmetry [;8 ] — [_";(__’)t) ] can be viewed
as a map from the solution space of (8.6) onto the solution space of (8.85). They
have a fundamental dynamical consequence regarding the existence of exponential
dichotomy of the time-reversed systems and the structure of the corresponding
Lagrange planes.

Proposition 8.51 Suppose that the family of Hamiltonian systems (8.6) has expo-
nential dichotomy over §2, and that the Weyl function M™ (resp. M~ ) globally exists.
Then the family (8.85) has exponential dichotomy over §2™ and the Weyl function
M~ globally exists, with M~ (o) = —M () forall w € 2 (resp. the Weyl function
M™ globally exists, with M™ (w) = —M~(w) for all w € ).

Proof Theorem 1.78 shows that the presence of exponential dichotomy for the
family (8.85) over £27 is equivalent to the absence of nonzero bounded solutions,
and hence the first assertion follows from Proposition 8.50. This last result shows

+ +
that, for each w € £2, a basis { | ™ @ U T ® of I+ (w-t) provides a basis
0 V0]

+_ +_ ~

{ [ X‘i(( r)t)i| e, |: x;i(( r)t)i|} of IT (w-1). Here I (w) and I (w) are the Lagrange
-y (= —In \T

planes of the initial data of the solutions bounded as t — 00 of the families (8.6)

and (8.85) respectively: see Remark 1.77.3. This implies the remaining assertions.

Corollary 8.52 Hypotheses 8.19 hold for the families (8.4) and (8.6) over S2 if and
only if they hold for the families (8.83) and (8.85) over 2.

Proof The assertion follows easily from Propositions 8.4, 8.20, and 8.51.

These basic facts are the keys to reformulating all the results of this chapter
regarding dissipativity, but now for the time-reversed control family and supply rate.
Note that the proofs do not need to be repeated: the “new” facts are consequences
of those already known and those just summarized. The role previously played by
M~ , in the main results, is hence now played by Mt (more precisely by —M ™). The
main results obtained by means of this reformulation are now given.

1. Suppose that there exist a point @ € £2 and a negative semidefinite matrix
My > 0 such that M(¢, w, My) is a globally defined solution of the time-reversed
Riccati equation, with M(t, w, My) < 0 (resp. M(t,w, M) < 0) forall t € R.
Then the time-reversed LQ, problem is dissipative (resp. strictly dissipative)
and Vi, p,(£,X) = (X, M(t, w, Mp) X) is a storage function (resp. strong storage
function) for it.

2. Suppose that there exists a point wy € §2 with dense o-orbit and a negative
semidefinite matrix My < 0 such that M(t, wy, My) is a globally defined and
bounded solution of the corresponding Riccati equation, with M (t, wy, My) < 0
for all # € R. Then each time-reversed LQ, control problem of the family is
dissipative and admits a storage function.
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3. Suppose that Hypotheses 8.19 hold. Then the following assertions are equiva-
lent:

(1) the family of control systems (8.83) is uniformly dissipative with family of
supply rates {Q, | w € £2} given by (8.84);
(2) Mt <0.

In addition, in this case the function V! (z,x) = —(x, M (w-t) x) is the required
supply for the time-reversed LQ,, control problem, and is jointly continuous in
the variables (w, t, X).

4. Suppose that Hypotheses 8.19 hold. Then the following assertions are equiva-
lent:

(1) the family of control systems (8.83) is uniformly strictly dissipative with
family of supply rates {Q_ | w € §2} given by (8.84);
(2) Mt <0.

In addition, in this case the function V! (z,x) = —(x, M+ (»-1) X) is the required
supply for the time-reversed LQ, control problem. It is strong, and is jointly
continuous in the variables (w, t, X).

5. Suppose that the family (8.6) admits exponential dichotomy and that the Weyl
function M globally exists. Define V. (7,x) = —(x, Mt (w-1) ). Then,

(i) if MT(w) < 0 for all w € £2, then the family of control systems (8.83)
is uniformly dissipative with family of supply rates {Q_ | w € £2} given
by (8.84). In addition, V| (,x) is a storage function for the time-reversed
LQ,, control problem, and is jointly continuous in the variables (w, ¢, X).

(i) If MT(w) < O for all w € £2, then the family of control systems (8.83)
is uniformly strictly dissipative with family of supply rates {Q | w € 2}
given by (8.84). In addition, the storage function V' (¢, x) is strong.

6. With the hypotheses and notation established just before Theorem 8.41, define
WE (t,x) = (x, M} (w-1) x) for each ¢ € (0, p). Then,

(i) if there is an & € (0, p) such that M\ (w) < 0 for all w € £2, then the family
of control systems (8.83) is uniformly dissipative with family of supply rates
{9, | € 2} given by (8.84). In addition, W’ (¢, x) is a storage function
for the time-reversed LQ,, control problem, and is jointly continuous in the
variables (o, t, X).

(ii) If there is an ¢ € (0, p) such that M} (w) < O for all w € £2, then the
family of control systems (8.83) is uniformly strictly dissipative with family
of supply rates {Q_ | w € 2} given by (8.84). In addition, the storage
function W, (¢, X) is strong.
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Disconjugacy, weak, 252, 268, 306
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Disconjugate system, 252
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Equilibrium, sub-, 44
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Exponential dichotomy, 46, 47, 49-51, 56, 59,
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Feedback rule, 332, 369

Feedback stabilization problem, 330
Floquet coefficient, 138, 139, 141, 148, 150
Floquet exponent, 160

Flow, 2

Flow, almost periodic, 33

Flow, base, 14

Flow, chain recurrent, 3

Flow, continuous, 2

Flow, linear, 29

Flow, local, 3

Flow, minimal, 3

Flow, recurrent, 3

Flow, skew-product, 14

Flow, uniquely ergodic, 33

Focal point, proper, 112
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Function, invariant, 2, 4

Function, measurable, 2

Function, semicontinuous, 126
Function, solution along the flow, 27
Function, subharmonic, 126
Function, submean, 126

Gap-labeling, 176

Generalized polar coordinates, 35, 36
Grassmannian flow, 28, 29, 70
Grassmannian manifold, 22

Hausdorff distance, 43
Hull, Bebutov, 31, 32

Hull, closed convex, 11
Hurwitz family, uniform, 55
Hurwitz system, 55

Infinite horizon problem, 331
Isotropic vectors, 24

Kalman-Bucy filter, 350
Kotani theory, 225

Lagange plane, representation, 24
Lagrange plane, 18, 24

Lagrangian flow, 28, 33, 34
Lagrangian manifold, 24

Linear Hamiltonian system, 34
Linear-quadratic control problem, 422
Lyapunov exponents, 60, 114, 115
Lyapunov index, 113, 116, 119, 289

Maslov cycle, 38, 97

Maslov index, 98

Matrix norm, Euclidean, 21
Matrix norm, Frobenius, 22
Matrix norm, monotone, 39
Matrix norm, operator, 21
Matrix norm, semimonotone, 39
Matrix solution, 28

Matrix solution, fundamental, 28
Matrix solution, symplectic, 34
Matrix, hermitian, 18

Matrix, infinitesimally symplectic, 34
Matrix, negative definite, 19
Matrix, negative semidefinite, 19
Matrix, nonsingular, 18

Index

Matrix, orthogonal, 18

Matrix, positive definite, 19

Matrix, positive semidefinite, 19

Matrix, selfadjoint, 18

Matrix, square root, 20

Matrix, symmetric, 18

Matrix, symplectic, 18

Matrix, unitary, 18

Matrix-valued function, 26

Matrix-valued function, bounded, 28

Matrix-valued function, Herglotz, 133, 134

Matrix-valued function, upper semicontinuous,
43

Measure, 4

Measure concentrated on, 12

Measure, ergodic, 10, 11

Measure, ergodic component, 12

Measure, invariant, 4, 11

Measure, projecting, 14

Measure, projection of, 14

Measure, topological support, 12

Nonautonomous linear systems, 28

Nonoscillation, 252

Nonoscillation Condition, 369, 372, 401

Nonoscillatory system, 252

Nontangential limit, 134

Null controllability, 167, 334

Null controllability, uniform, 335, 344, 425,
436, 452

Orbit, 2, 3
Orbit, globally defined, 3

Point, extremal, 11

Point, focal, 111

Point, vertical, 111

Principal function, 278, 279, 296, 312, 403
Principal solution, 257, 258, 289, 296
Principal solution, uniform, 258

Projector, 49

Required supply, 433

Riccati equation, 38, 435

Rotation number, 80-84, 86, 88, 90, 92, 97-99,
103, 105, 109, 112, 169, 203, 306

Sacker—Sell decomposition, 59, 64, 69
Sacker—Sell perturbation theory, 64, 69
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Sacker—Sell spectrum, 60, 62, 64, 69 Subbundle, stable, 54
Sacker—Sell subbundles, 61 Supply rate, 422,423,
Schrédinger equation, 34 438

Schwarzmann homomorphism, 103, 104 Supply, required, 427
Semiflow, 3 System, identically normal, 268

Semiorbit, 2, 3
Set, alpha-limit, 3

Set, invariant, 2—4 Theorem, Birkhoff, 5, 10
Set, minimal, 3 Theorem, Oseledets, 115
Set, negatively invariant, 3 Theorem, Sacker—Sell, 64

Set, omega-limit, 3
Set, pinched, 287

Set, positively invariant, 3 Weyl function, 58, 127, 133, 210, 228, 235,
Storage function, 423 246, 296, 437

Storage function, strong, 423 Weyl matrix, 58, 133

Storage, available, 427 Whitney sum, 51

Strong order, 39

Subbundle, 50
Subbundle, dimension, 50 Yakubovich Frequency Theorem, 372



	Preface
	Nonautonomous Oscillation Theory
	Applications to Control Theory
	Outline of the Contents

	Acknowledgments
	Contents
	1 Nonautonomous Linear Hamiltonian Systems
	1.1 Some Fundamental Notions
	1.1.1 Basic Concepts and Properties of Topological Dynamics
	1.1.2 Basic Concepts and Properties of Measure Theory
	1.1.3 Skew-Product Flows

	1.2 Basic Properties of Matrices and Lagrange Planes
	1.2.1 Symmetric, Hermitian, and Symplectic Matrices
	1.2.2 Grassmannian Manifolds
	1.2.3 Lagrangian Manifolds
	1.2.4 Matrix-Valued Functions

	1.3 Nonautonomous Linear Systems
	1.3.1 The Flows on the Trivial and Grassmannian Bundles
	1.3.2 The Hull Construction
	1.3.3 The Hamiltonian Case: Flow on the Lagrangian Bundle
	1.3.4 The Hamiltonian Case: Generalized Polar Coordinates on LR
	1.3.5 The Hamiltonian Case: The Riccati Equation

	1.4 Exponential Dichotomy
	1.4.1 The General Linear Case: Definition in Terms of Projectors
	1.4.2 The General Linear Case: Definition in Terms of Subbundles
	1.4.3 The Hamiltonian Case: Additional Properties
	1.4.4 Sacker–Sell Spectral Decomposition
	1.4.5 Perturbation Theory in the General Linear Case
	1.4.6 Perturbation Theory in the Linear Hamiltonian Case
	1.4.7 The Grassmannian Flows Under Exponential Dichotomy


	2 The Rotation Number and the Lyapunov Index for Real Nonautonomous Linear Hamiltonian Systems
	2.1 Several Ways to Define the Rotation Number
	2.1.1 In Terms of an Argument on the Real Symplectic Group
	2.1.2 Two Analytic Definitions
	2.1.3 In Terms of the Arnold–Maslov Index

	2.2 Continuous Variation of the Rotation Number
	2.3 The Rotation Number and the Schwarzmann Homomorphism
	2.4 Additional Properties in the Case H3≥0
	2.5 The Lyapunov Index

	3 The Floquet Coefficient for Nonautonomous Linear Hamiltonian Systems: Atkinson Problems
	3.1 Exponential Dichotomy and the Weyl Functions
	3.1.1 Symmetric Herglotz Matrix-Valued Functions

	3.2 The Floquet Coefficient in the Complex Plane
	3.2.1 The Floquet Coefficient Outside the Real Axis
	3.2.2 Fréchet Differentiability of the Floquet Coefficient
	3.2.3 Derivative of the Floquet Coefficient with Respect to λ
	3.2.4 Limit of the Floquet Coefficient on the Real Axis

	3.3 The Floquet Exponent and Atkinson Spectral Problems
	3.3.1 A Boundary Value Problem in [a,b]
	3.3.2 Limiting Behavior as a→-∞ and b→∞
	3.3.3 Null Controllability on B1={y  E  Rd|  ||y|| ≤1}
	3.3.4 Exponential Dichotomy and the Rotation Number
	3.3.5 Exponential Dichotomy and Gap-Labeling


	4 The Weyl Functions
	4.1 A Suitable Symplectic Change of Variables
	4.1.1 A Symplectic Change of Variables from Hypothesis 4.1
	4.1.2 A Symplectic Change of Variables Associated to Γ

	4.2 Directional Differentiability of the Rotation Number
	4.3 The Limits of the Weyl Functions on the Real Axis
	4.4 An Extension of the Kotani Theory
	4.5 Uniform Convergence of the Weyl Functions in the Case of Bounded Solutions
	4.5.1 The Variation with Respect to a Complex Parameter
	4.5.2 The Variation with Respect to a Real Parameter


	5 Weak Disconjugacy for Linear Hamiltonian Systems
	5.1 Weak Disconjugacy and Nonoscillation
	5.2 Uniform Weak Disconjugacy and Principal Solutions
	5.3 Disconjugacy, Uniform Weak Disconjugacy, and Weak Disconjugacy
	5.4 General Properties of the Principal Functions
	5.5 Principal Solutions and Lyapunov Index
	5.6 Principal Solutions and Exponential Dichotomy
	5.7 Weak Disconjugacy and Rotation Number
	5.8 Convergence of Sequences of Principal Functions
	5.9 Abnormal Linear Hamiltonian Systems

	6 Nonautonomous Control Theory: Linear Regulator Problem and the Kalman–Bucy Filter
	6.1 An Heuristic Approach
	6.2 The Rigorous Proofs
	6.3 Regularity Properties of the Stabilizing Control
	6.4 The Kalman–Bucy Filter

	7 Nonautonomous Control Theory: A General Version of the Yakubovich Frequency Theorem
	7.1 The Frequency and Nonoscillation Conditions
	7.2 The Extension of the Yakubovich Frequency Theorem
	7.2.1 The Frequency Theorem and the Rotation Number

	7.3 Verification of the Frequency and Nonoscillation Conditions
	7.3.1 The Case of Uniform Weak Disconjugacy
	7.3.2 The Absence of Uniform Weak Disconjugacy
	7.3.3 Presence and Absence of a Controllability Condition


	8 Nonautonomous Control Theory: Linear-Quadratic Dissipative Control Processes
	8.1 Statement of the Problem
	8.2 Uniform Null Controllability and Time-Reversion
	8.3 Equivalence of Definitions Under Uniform Null Controllability: The Available Storage and Required Supply
	8.4 Riccati Equation and Storage Functions
	8.5 The Optimal Situation: Uniform Null Controllability
	8.5.1 With Exponential Dichotomy and Global Existence of M-
	8.5.2 The Results for a Single System
	8.5.3 The Uniformly Weakly Disconjugate Case

	8.6 In the Absence of Uniform Null Controllability
	8.7 Millionščikov–Vinograd Type Examples
	8.8 Back to the Time-Reversed Problem

	References
	Index

