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Preface

Control engineering is a multidisciplinary subject which is critical to the
operation of modern technology and which is nearly invisible in daily life.
From atomic force microscopes, through PC disk drives and drive-by-wire
engine controls to Boeing 747’s and to space shuttles, multivariable controls
underlie many of a the devices which are available in the modern world
and without which, they would not function at all. This book is an introduc-
tion to the more advanced techniques which are used to design control
systems for the devices above and which were developed for this purpose
from about 1960.

Modern control theory and in particular state space or state variable meth-
ods can be adapted to the description of many systems because they depend
strongly on physical modelling and physical intuition. The laws of physics are in
the form of continuous differential equations and for this reason, this book
concentrates on system descriptions in this form. This means coupled sets of
linear or nonlinear differential equations. The physical approach is emphasized
in this book because it is most natural for complex systems. It also makes what
would ordinarily be a mathematical subject into a physical one which can
straightforwardly be understood intuitively and which deals with concepts
which engineering and science students are already familiar. In this way it is
easier to apply the theory to the understanding and control of ordinary systems.
Application engineers, working in industry and very pressed for time, should
also find this approach useful for this reason. In particular for those in small
and middle sized companies, like most of those in Denmark, this will be
the case.

In line with the approach set forth above, the book first deals with the
modelling of systems in state space form. Both transfer function and differential
equation modelling are methods decribed with many examples. Linearization is
treated and explained first for very simple nonlinear systems, then more com-
plex systems. Because computer control is so fundamental to modern applica-
tions, discrete time modelling of systems as difference equations is introduced
immediately after the more intuitive differential and transfer function models.
The conversion of differential equation to difference equations is also discussed
at length, including transfer function formulations.
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An important adjunct to modelling is the analysis of state space models to
understand their dynamics. One of the basic reasons for modelling systems is to
better understand them: the basis of control is system first understanding and
mathematical modelling second. The analysis of models encompasses both
continuous and discrete time models and is based on methods of solution of
state equations in both forms. This leads naturally to the important questions of
first stability and then controllability and observability and finally canonical
forms and realizability.

With the intuitive background established as above, the actual control
problem for SISO (Single Input/Single Output) and MIMO (Multiple Input/
Multiple Output) systems can be attacked in a simple way. This means using
tools of analysis already introducted to establish overall stable systems with
required time and frequency responses and necessary stability limits. Among
the necessary characteristics of control systems may be requirements for
zero steady state error in regulation and tracking systems and thus integral
controllers are next introduced. As complex models can be effectively and
inexpensively built into current control systems, deterministic observers are
naturally a part of modern control systems and are introduced next, both for
SISO and MIMO systems together with state feedback systems which use
observers.

Once state feedback is used, it is natural to consider how it can be optimized
and this is the next important subject which is treated. To make this important
subject less mystical, the subject of the calculus of variations is described in a
simple fashion and is further supported by an appendix on simple static opti-
mization. This leads to the benchmark Linear Quadratic Regulators (LQR)
which are the foundation of many modern controllers. Again both continuous
time and discrete time regulators are derived, discussed and exemplified in
the text.

A vital problem in classical and modern control is how to treat noise in
control systems. Nevertheless this question is rarely treated in depth in many
control system textbooks because it is considered to be too mathematical and
too difficult for a second course on controls. In this textbook a simple physical
approach is made to the description of noise and stochastic disturbances which
is easy to understand and apply to common systems. This requires only a few
fundamental statistical concepts which are given in a simple introduction. The
basic noise paradigms, Wiener processes and white noise, are introduced and
exemplified with simple physical models. These are then shown to give the
Lyapunov equation for noise propagation.

With the Lyapunov equation available, it is a very small step to add the
effects of state noise propagation and measurement noise to give the Riccati
equation for optimal state estimators or Kalman filters. These important
observers are derived and illustrated using simulations in terms that make
them easy to understand and apply to real systems. The use of LQR regulators
and Kalman filters give LQG (Linear Quadratic Gaussian) regulators which are
introduced at the end of the book.
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Detailed Chapter Description
Chapter 1: Introduction

Chapter 1 includes a history of automatic control of linear systems which
emphasizes the continuity of the subject and points out the most important
developments since ancient history, and briefly, the foundations for them. This
includes sections on the most primitive, ancient developments, the pre-classical
period, the classical period and finally the modern control period. The main aim
of the chapter is to show how modern control theory grew out of specfic
technical needs and to fix these developments approximately in time. Another
important aim is to show that the understanding of control systems is heavily
dependent on the mathematical descriptions which have been created for the
study of dynamic systems in physics.

Chapter 2: State Space Modelling of Physical Systems

In this chapter the reduction of physical systems to state space form is covered.
This includes a careful description of the linearization process which gives the
linear state space form most used in this book. Also treated are companion
forms of the type useful in linear systems control and transfer function forms for
state space systems. There are a number of examples of the use of the material
presented including electrical systems, mechanical systems, as well as the use of
the linearization method on common nonlinear control objects. This chapter is
supported by a set of problems which can be solved analytically but also with
the use of Matlab/Simulink.

Chapter 3: Analysis of State Space Models

The concepts and tools necessary to analyze multivariable dynamic systems are
detailed in this chapter. The main topics include solution of the linear state
equation, including the transfer function method, natural system modes, modal
decomposition, similarity transforms, stability definitions, stability of linear sys-
tems and external and internal stability. This consideration of stability leads
naturally to the problems of controllability, observability, reachability, detectabil-
ity and duality. Finally the chapter deals with modal decomposition, realizability
and minimal forms. Again the chapter is provided with simple and easily followed
examples which are easily remembered. The chapter is concluded with a summary
of the most important concepts presented. The solution of a long problem set at
the end of this chapter requires the use of Matlab/Simulink and the text in the
chapter suggests some standard routines which might be useful for analysis.
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Chapter 4: Linear Control System Design

In Chapter 4 the basic theory of state space feedback and observer design is
presented. This includes the general design rules for closed loop systems and
specifically deals with pole placement and eigenstructure assignment design.
The chapter has numerous examples of full state feedback control with both
continuous and discrete time controllers. It also describes dead-beat controllers
and introduces integral control of systems in multivariable, state space form.
The chapter develops full and reduced order deterministic observers and pole
placement and eigenstructure assignment for such estimators. The chapter
concludes by combining observers, state feedback and integral control for the
same control object in the same feedback loop. Both continuous and discrete
time controllers and observers are considered. This chapter has examples
simulated with Matlab/Simulink.

Chapter 5: Optimal Control

This chapter starts by describing the optimal control and general optimal
control problem in terms of the minimization of a performance index. With
the help a simplified explanation of the calculus of variations the general
optimal control problem is solved. The Linear Quadratic Regulator (LQR)
optimal control problem is solved, step by step, both in the open and closed
loops, both for continuous and discrete time systems. A careful discussion of the
selection of the weighting matrices in the LQR index is given which makes the
solution simple to apply to real problems. The steady state suboptimal solution
is given and an eigenstructure approach is also detailed. The robustness of LQR
control is discussed in a simple fashion which demarkates its limits without
going into complex detail. Finally the discrete time LQR regulator is developed
after a discussion of the conversion of the performance index to discrete time. In
all cases attention is focussed on illustrating the design methods introduced
using practical examples. These practical examples are often illustrated with
Matlab/Simulink simulations and plots.

Chapter 6: Noise in Dynamic Systems

A very clear and simple presentation is made of the problem of describing noise
in continuous dynamic systems in this chapter. The treatment uses the contin-
uous time treatment in order to make use of students’ natural intuition about
the physics of such systems. This chapter does not require any previous knowl-
edge of random variables or stochastic processes. It introduces the necessary
background in a simple, logical and intuitively appealing fashion. This makes it
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possible to introduce more complex noise descriptions as a natural result of
basic statistical concepts. It contains a simple physical picture of noise which is
useful for building an intuitive understanding of noise rather than a purely
mathematical one. Simple guidelines are given which make it possible to quan-
tify uniform or Gaussian distributed noise for simulation studies. Necessary
concepts such as variance, covariance, stationarity, ergodicity and independent
increment processes are illustrated with concrete examples and figures. The
final results of the chapter are the Lyapunov equations for both continuous
time and discrete time systems. These results give a natural introduction to the
next chapter on Kalman filtering. As with earlier chapters, Matlab/Simulink
support is used for the chapter text and a rather extentive set of problems.

Chapter 7: Optimal Observers: Kalman Filters

This chapter uses the introduction to noise in the preceding chapter to develop
Kalman filters as a natural consequence of applying the Lyapunov equation for
process (or state) noise propagation in linear systems. When a measurement is
added to the description of the process noise propagation, what results is the
Riccati equation, the basis of Kalman filtering. While the emphasis in the
chapter is on continuous systems for physical reasons, discrete time Kalman
filters are shown to be derivable from the continuous filter in a simple way.
After the discussion of Kalman filters, the separation theorem is introduced,
making it possible to construct Linear Quadratic Gaussian (LQG) regulators
for linear systems. Also given are the methods for calculating the noise perfor-
mance of LQG regulators based on apriori estimates of the state and measure-
ment noise in a control system. The unity of LQR regulators and Kalman filters
is stressed (in an appendix), making the transition from the deterministic to the
stochastic case simple and natural. In addition to simple problems, this chapter
includes a set of longer exercises which illustrate some real industrical control/
estimation problems.

Appendices

Because some of the material presented in the book might require a larger
mathematical background than some students may have at a level the book
targets, appendices are provided which include some of the most important
detail necessary to understand the text. These appendices, of which there are 4,
deal with optimization basics, linear algebra, derivation of the Riccati equation
and discrete time systems. In particular the last appendix should prove useful as
many engineering curricula no longer include the complex function theory
necessary to understand such systems. It is provided with extensive illustrations
and examples.
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Class Room Experiences with the Book

At the Technical University of Denmark (DTU) this book has been tested in the
second control course for 8 years and revised, extended and improved over this
period. During this time the students have willowed out a number of errors and
unclear formulations which existed in the original text. The authors are grateful
for their patience and understanding during this process. They are also grateful
for their real additions to the text through their questions and requests for more
information.

At DTU the second course in controls for which this text was written is a one
semester course. During this time the entire book is covered in lectures and
group work. The lectures are given twice a week and are typically 2 x 45 minutes
followed by a “laboratory exercise” of two hours. The laboratory exercise
consists of longer problems formulated as Matlab/Simulink problems requiring
problem formuation (model building from system descriptions), model analy-
sis, control system design and control system testing. It must be admitted that
this is perhaps too much of a work load but apparently the course and the
problems are sufficiently interesting that the students always continue to work
on the laboratory exercies long enough to get the content out of them. This has
been revealed over a period of time by questions directed to the instructors
between lecture days.

It is well known among the students that the course is not easy and is time
consuming to attend. Nevertheless the course is often over subscribed and
students appear after the course start to see if they can be allowed to attend
the lectures and go to exam. Final examination results show that in spite of the
difficulties involved, most of the students have obtained a good feel for the
material. Thesis work after course attendence (done some years later) shows
the material in the textbook has found application in the solution of problems
on a somewhat higher level than the course itself.

Lyngby, Denmark Elbert Hendricks
Lyngby, Denmark Ole Jannerup
USA Paul Haase Sorensen
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Chapter 1
Introduction

Abstract This book is primarily intended to be an introduction to modern
linear control theory but it is useful to review the classical control background
for this important area. This chapter gives a brief history of primitive and
classical controls followed by a review of some of the most important points
in the earlier history of modern control theory.

1.1 The Invisible Thread

Technological and scientific advances occur in steps with the creation of various
devices. In very early history these devices were simple and included such
advances as water clocks in 270 B. C., mechanical clocks in 1283 A. D., steam
boilers in 1681 A. D., steam engines early in the 1700s, and flushing toilets in
1775 A. D. In more recent times the devices invented were somewhat more
complex and included internal combustion engines in about 1886, automatic
pilots in 1914, electronic amplifiers in 1912 and accurate bomb sights in 1934.
What is not usually recognized about these advances is that they are all strongly
dependent on the use of feedback and/or automatic control.

The water clock is older than 270 B. C. but was improved significantly in
accuracy by the Greek Ktesibios who invented a float regulator for the clock
about this time. Mechanical clocks using the verge and foliot escapement were
much more accurate than water clocks and were first seen in Europe about
1283. Steam boilers were used for many purposes in the sixteen hundreds
and became practical with the invention of a steam pressure safety valve in
1681 by Dennis Papin. Steam engines became the prime mover for the Industrial
Revolution with the invention of the centrifugal governor speed control in 1788
by James Watt. Flush toilets were refined by Thomas Crapper using float
regulators and he received a Knighthood from Queen Victoria for his troubles.
Thus even in early times feedback control and regulators have played a critically
important but often nearly invisible part in making even simple technical
devices work in practice.

Closer to the present, diesel internal combustion engines became practically
possible with the creation of a fuel pressure pump/regulator to inject fuel into
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2 1 Introduction

them by Otto Diesel in 1889. An automatic pilot or stability augmentation
device based on the use of the gyroscope was first demonstrated at an air show
in Paris in 1914 by Lawrence Sperry. Electronic amplifiers constructed by
Edwin Armstrong in 1912, used positive feedback in radio receivers to increase
their sensitivity, making possible practical radio reception. Later negative feed-
back amplifiers were made by Harold Black in 1927 which made it possible to
reduce distortion in audio frequency amplifiers for voice telephone and later
music reproduction. Accurate bombsights were made possible by the use of
synchro-repeaters to send air speed, wind and altitude data to a simple com-
puter used in the Norden bombsight. These were used extensively by America
during the bombing attacks against Germany during the Second World War.
Again feedback and automatic control played an obscure or invisible (but ever
increasing) part in the operation of these very successful inventions.

Through history then, feedback control has been woven into many of the
most important technological innovations which have been created from other
technological bases. In many ways these innovations have overshadowed auto-
matic control but feedback control has facilitated many developments. Accord-
ing to Berstein (2002) feedback control has made possible most of the great
waves of technological and scientific development including “... the Scientific
Revolution, the Industrial Revolution, the Age of Aviation, the Space Age and
the Age of Electronics”. Thus feedback control is “an invisible thread in the
history of technology”. Automatic control enables modern technology in the
same way as do modern computers and software but is in general much less
visible. The description of feedback control as an “invisible thread” is due to
Berstein (2002).

1.2 Classical Control Systems and their Background

Classical control is rooted in the primitive period of control system design. This
period is characterized by many intuitive technical inventions and by the lack of
an underlying theoretical basis (except for a few notable exceptions). Often
clever mechanical devices were used to implement the actual control strategies.
This period extends from antiquity up to the beginning of the Second World
War, about 1940. At this stage the requirements of the war together with the
availability of electronic devices and of theoretical tools adapted from the
communications industry made possible a transition to the classical period of
control system development.

1.2.1 Primitive Period Developments

This book deals with the theory of control systems so it is appropriate to start
the review of the primitive control period at a time when theoretical tools



1.2 Classical Control Systems and their Background 3

came into use to analyze control systems. This ignores many of the earliest
developments in control systems but is reasonable given the scope intended. For
interesting reviews of the prehistory of controls the reader should consult Fuller
(1976a,b), Bellman and Kalaba (1964), Astrom (1968) and Berstein (2002).

General recognition of the value of control systems came during the
Industrial Revolution when James Watt began to use fly-ball speed governors
for his steam engines in about 1788. This invention was not new in itself:
windmills and watermills had used similar devices earlier but the application
to widely available practical engines brought the feedback control problem into
the open.

Unfortunately in some cases use of the governor lead to speed instability and
to solve this problem it was necessary to create a theory to explain why this
could occur. The first analysis of speed governors was carried out by George
Airy (Astronomer Royal at Greenwich from 1835). Clockwork mechanisms
were used to control the movement of large telescopes to compensate for the
rotation of the earth and these were fitted with speed governors in an attempt to
improve their accuracy. Using energy and angular momentum considerations,
Airy set up a simplified nonlinear differential equation for the system in about
1840. Considering the linearized form of this equation, it was possible to show
that in some circumstances small oscillations could build up exponentially and
thus account for the instability observed.

A direct attack on the problem of engine speed governors was made by James
Clerk Maxwell in a paper from 1868, “On governors”. Maxwell set up the
differential equations for the overall system and linearized them. In this work
it was pointed out that for stability the characteristic equation of the linearized
system must have roots with negative real parts. Airy’s and Maxwell’s papers
influenced indirectly the work of Edward Routh who published his well known
stability criteria in an Adams Prize Essay in 1877 at Cambridge University.

Independently of Airy and Maxwell, I. Vyshnegradskii carried out an ana-
lysis of governors in Russia in 1876. In continental Europe there were theore-
tical developments inspired by Vyshnegradskii’s paper (which was also
published in French). Aurel Stodola, who was working on the control of hydro-
electric turbines in Switzerland, noted Vyshnegradskii’s paper and asked Adolf
Hurwitz to consider the problem of finding a stability criteria for systems of
any order. Hurwitz was not aware of the work of Routh and found his own
form of the simple stability criteria for linear systems. This took the form of a set
of determinant inequalities in Hurwitz’s formulation.

In 1892 Alexandr Lyapunov considered the stability of a very general class of
nonlinear systems based on earlier work by Jean-Louis Lagrange. On the basis
of general energy considerations he was able to give a general stability criteria
for nonlinear systems as well as the conditions under which the method of
linearization yields a valid assessment of the stability of the underlying non-
linear system. Lyapunov’s paper was not well known in the West until about
1960 when it was re-discovered in the literature. Lyapunov’s analysis and
methods are now in wide general use in the design of control systems. At
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approximately the same time (1892—-1898) operational calculus (Laplace trans-
form analysis) was invented by Oliver Heavyside in England to analyse the
transient behavior of linear electrical systems. Both Lyapunov analysis and
the operational calculus played an important part in the theoretical develop-
ment of control theory in the next century.

1.2.2 Pre-Classical Period Developments

Experimenting with lighting lamps in 1880, Thomas Edison discovered the
Edison effect. This effect is that a current could flow through a vacuum to a
metal conductor in the lamp envelope. No explanation for this effect could be
given until the identification of the electron in 1897 by J. J. Thompson in
England. The discovery of the Edison effect was followed in 1904 by the
invention of the thermionic rectifier diode in 1904 by John Flemming in
England and eventually by the invention of the thermionic triode amplifier by
Lee de Forest in 1906 (though he did not understand how it worked). This was
the beginning of the Age of Electronics. Very rapidly hereafter feedback was
applied around the triode amplifier resulting first in regenerative or positive
feedback radio frequency amplifiers in 1912 and finally in negative feedback
audio amplifiers in 1927. These new inventions were the work of Edwin
Armstrong and Harold Black respectively.

On the theoretical side the complex algebra for A. C. circuits and frequency
analysis techniques were being developed by Charles Steinmetz at General
Electric in the United States in around 1906. The stable oscillations produced
by a triode amplifier when positive feedback was used were found to be due to
its nonlinearity. A theoretical study of the circuit was made by Balthasar van
der Pol in 1920 which is a classic paradigm of nonlinear time domain system
analysis.

In the early 1930s Harold Hazen made important contributions to the
solution of the problem of constructing simulators for control problems includ-
ing the solution of differential equations. Hazen made use of the experience
obtained to write two important papers which were published in 1934 which
studied the effects of feedback on electro-mechanical devices. For these papers
he coined the expression “servomechanisms”. This is the first use of this now
common word in the literature. Later the understanding of servomechanisms
which Hazen had obtained was used in the design of fast fire control systems for
ships, Bennett (1993).

The general use of amplifier circuits in radio frequency receivers and tele-
phone communication lead to a need to understand more deeply the theoretical
nature of amplifier circuits and the reasons for stable and unstable behavior.
This resulted in the work of Harry Nyquist on amplifier stability based on
transfer function analysis in 1932 and that of Hendrik Bode on magnitude and
phase frequency plots of the open and closed loop transfer functions of a system
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in 1940. The work of Nyquist resulted in the derivation of the Nyquist stability
criterion and that of Bode in the investigation of closed loop stability using
the concepts of gain and phase margin. In contrast to earlier work these stability
criteria gave an idea of the relative level of stability which could be obtained. All
of the available theory thus came from the electronics and communication
industries. Thus the stage was set for a period of intense control system devel-
opment at the beginning of the Second World War.

The Second World War made it necessary to develop electronic controllers
for many different devices including radar controlled gun laying, bomb aiming
and automatic pilot systems. By this time the size and power consumption of
triode and pentode amplifiers had been significantly reduced, while at the same
time their amplification, frequency range, robustness and reliability had been
increased. Thus these devices were available for application to the required
control systems and their performance in practical applications was well under-
stood. In fact automated devices of many types, including those mentioned
above, were developed during the war. A great deal of the development of radar
and general electronics was carried out at the Massachusetts Institute of
Technology in the Radiation Laboratory. This work was done using frequency
domain techniques and was of course classified during the war but became
generally known immediately afterward, likewise equivalent work done in the
aircraft industry. Many of the presently used control system design tools
emerged from these efforts including the general use of transfer functions,
block diagrams and frequency domain methods.

In 1947 Nathaniel Nichols published his Nichols chart for the design of
feedback systems based on work done in the Radiation Laboratory. Walter
Evans published in 1948 his root locus design technique which is suitable to
handle the large number of different states which describe the motion of an
aircraft. An important problem in all electronic systems and in particular radar
is noise. Albert Hall and Norbert Wiener realized the importance of this
problem and developed frequency domain methods to deal with it. Hall’s
contribution was a frequency domain formulation of the effect of noise on
control systems in 1941. Wiener introduced in 1942 the use of stochastic models
to treat the effect of noise in dynamic systems and created an optimal filter to
improve the signal to noise ratio in communication systems, the Wiener filter.
Hall and Wiener published their work immediately after the war in 1946 and
1949 respectively. More or less the entire record of the work done at the
Radiation Laboratory was published in a 27 volume series edited by Louis
Fidenour in 1946. There was in this collection of material a volume which
dealt specifically with the design of feedback control systems called “The
Theory of Servomechanisms”.

Thus began the period of Classical Control Theory: just after the end of the
Second World War. The main theoretical tools included the frequency domain
methods of Laplace transforms, transfer functions and s-plane analysis. Text-
books treating these subjects became rapidly and widely available as well as
standard design tools, mostly intented to be used for hand calculations and plots.
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1.2.3 Classical Control Period

The Classical Control period was characterized by a concentration on single
loop, Single Input, Single Output feedback (SISO) systems designed with the
theoretical tools developed during and just after the Second World War.
For the most part these could be applied only to linear time invariant systems.
The main underlying concept is that closed loop characteristics of a system can
be determined uniquely given the open loop properties of the system. This
includes the important disturbance rejection and steady state error properties
of the feedback system.

The theoretical tools were those developed by Nyquist, Bode, Evans and
Nichols earlier and the connection between these methods was clarified
and extended. Performance was assessed in terms of bandwidth, gain and
phase margin or rise time, percentage overshoot, steady state error, resonances
and damping. The connection between these performance goals was well
understood. More refined methods of tuning and compensating (using simple
lead/lag compensators) single loop systems were developed. However the single
loops involved had to be closed one at a time using a trial and error process
which could not guarantee good performance or even stability.

During the Classical Period feedback controllers became part of many
industrial processes because the methods of applying them were well known
and because of the commercial availability of electronic, pneumatic and
hydraulic controllers. This made feedback controllers a part of even home
appliances as well as more advanced technical systems. When transistors
became available in the 1960s Classical controls became even more wide spread.

In about 1956 a great interest developed in the control of aeronautical and
astronautical systems and in particular aircraft, missiles and space vehicles: the
Age of Space was beginning. Such systems have naturally a Multiple Input,
Multiple Output (MIMO) quality which confounds the use of Classical Control
Theory. While single loop analysis can be performed on such systems, the
interweaving of the responses in the different parts of the control object
make it impossible to use SISO design methods. In addition uncertainties and
modelling errors together with stochastic system disturbances and measu-
rement noise increase the order of the system which must be controlled and
this augments the design difficulties.

The problem in controlling ballistic (free flying) objects can be formulated
physically in terms of a coupled set of physically derived nonlinear differential
equations. Sensor dynamics and noise can easily be included in the description
of the control object itself. Thus one is lead naturally back to the time domain
problem formulation which was used by Airy and Maxwell in the 1800s. As an
important help in doing this one has available the classic variational formula-
tions of analytic mechanics as given by Lagrange and Hamilton on the basis of
physical conservation principles. This differential equation approach to the
problem formulation is called the state variable or state space approach in



1.2 Classical Control Systems and their Background 7

control technology and it the main subject of this book. While it is possible in
some cases to handle the nonlinearities involved directly, this book will only
deal with the linearization of the underlying system around some desired or
nominal operating point. Use of the state space approach makes it possible to
treat MIMO systems in a natural way and to use the compact and convenient
vector and matrix description of the control object and its associated feedback
system.

Thus the Classical Control Period lasted between approximately 1945 to
1956 and gave rise to the Modern Control Period from 1956 to the present. The
transition from the earlier period was forced by a requirement that more
complex control objects be analyzed and control systems be made for them.
Handling the details of the more complex systems has been enabled by the
availability of inexpensive digital computers for design purposes but also for
the direct implementation of the control systems themselves.

1.2.4 Modern Control Theory

The large number of states in MIMO state variable systems and the possibly
large number of feedback loops which might exist in a closed loop system make
it necessary to consider how decisions might be made about the feedback levels
in the different loops. It has turned out that this is not a simple question and it is
difficult to impossible in fact to make any reasonable, balanced statement about
what might be required. To solve this problem it has been found to be appro-
priate to attempt to design feedback systems which are optimal in the sense of
balancing input power in the different system inputs against the errors (powers)
which can accepted in the system outputs and/or states. This must be done
of course in such a way that the overall system is stable as well as the separate
loops in it.

This would be a daunting problem if it were not for work done much earlier
to solve physical optimization problems in the sixteen, seventeen and eighteen
hundreds by Leonard Euler, the Bernoullis (Jacob, I, I, Johannes, I, 11, I11, IV,
Daniel and Nicolaus, I, 11, II), Joseph-Louis Lagrange, William Hamilton and
others. These workers gave general solutions to a number of minimization and
maximization problems which have been adapted to solve past and current
MIMO control and estimation problems using the Calculus of Variations. The
initial work in adapting these mathematical methods to control problems
occurred in about 1957 and continues to the present.

In Modern Control Theory it is common to minimize a performance index
which may be a generalized quadratic energy function, in many cases with some
secondary constraints (or limitations on the range or character of the solution).
This may be seen as a “natural” requirement as most systems in nature operate
in such a way as to minimize energy consumption. This may be done either for
continuous or discrete time systems considered in the time domain. There are
however frequency domain formulations of the results found when desired.
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In 1957 Richard Bellman applied dynamic programming to the optimal
control of discrete time systems. This work demonstrated that it was possible
to solve control problems based on a performance index resulting in closed loop
feedback controls which could in general be nonlinear. The solution was also
immediately adaptable to computer based discrete time control systems. Lev
Pontryagin suggested a maximum principle in 1958 which solved the minimum
time control problem for a class of control objects using relay control.

In 1960 and 1961 a significant set of breakthroughs were made generally
available with the publication of four papers by Rudolf Kalman and co-workers.
These papers dealt with (1) the optimal control of discrete time systems (with
J. Bertram), (2) the design equations for the Linear Quadratic Regulator
(LQR), (3) optimal filtering and estimation theory for discrete time systems
and (4) the continuous time Kalman filter (with Richard Bucy). The first two
control papers are based on minimizing a very general energy control perfor-
mance index. The last two deal with applying the same techniques to the
optimum filtering (or estimation) problem which is a generalization of the
least squares fitting techniques due to Carl Fredrik Gauss. All of these solutions
were immediately compatible with computer control and estimation at a time
when computers first became generally available for on-line applications. Thus
the four theoretical breakthroughs above found immediate practical applica-
tion in the very visible aero-space programs of the time. LQR regulators and
Kalman filters form a central part of the material which is presented in this
book.

Computer control has become extremely important in control applications so
that it should be mentioned that discrete time control emerged at the same time as
modern control theory. This was due to the publications of a number of workers,
among whom are: John Ragazzini, Gene Franklin, Lotfi Zedah, Eliahu Jury,
Benjamin Kuo, Karl Astrom and Bjern Wittenmark, in the period of 1952 to
1984. The sampling theory, on which the success of modern computer control is
based, is due in part to the papers of Harry Nyquist from 1928, Claude Shannon,
who worked with sampling theory at Bell Labs in 1949, and Vladimir Kotelnikov
in Russia in 1933. Together with the state variable formulation of system
dynamics this work on discrete time control forms the backbone of current
technical and industrial control applications in many fields.

While automatic control systems and feedback have been an “invisible
thread” during most of time they have existed they will become less so in the
future. This is because the value of accurate control has come to be generally
recognized in many applications. For example the newer fighter and bomber
aircraft in the United States and Europe have been created to be unstable from
the outset in order to give them high maneuverability or stealth characteristics
and cannot be flown without their fly-by-wire control systems. Modern auto-
motive engines have electronic throttles and fuel controllers and cannot operate
without their digital Engine Control Units (ECUs). Such advanced applications
will become much more numerous in the future as the price of computer control
systems continues to decrease.



Chapter 2
State Space Modelling of Physical Systems

Abstract Modelling of state space models based on relevant physical laws is
introduced. Linearization of nonlinear models is discussed and the connection
between the transfer function model and the state space model is derived.
Discrete time models are also introduced.

2.1 Modelling of Physical Systems

Design of control systems is in most cases based on a model of the system to
be controlled. In ‘classical’ control engineering the model is usually presented
as a transfer function. A transfer function can be formulated for a restricted
class of systems: linear, time invariant systems. Such systems are very rare in
the real world — if they exist at all — and the linear model is therefore almost
always an approximate description of the real system. In spite of this, the
transfer function is a very useful tool for analysis and design of control
systems, and it is widely used by control engineers for a large variety of
control problems.

It is quite obvious though that transfer functions have their limitations.
While they are well suited for systems with one input and one output (also
called Single-Input-Single-Output or SISO-systems), they can be awkward to
use for systems with more than one input and one output (Multiple-Input-
Multiple-Output or MIMO-systems).

In this textbook an alternative type of system model will primarily be
used: the state space model. Such a model is, just like transfer function
models, based on a suitable set of physical laws that are supposed to
govern the system under consideration. In the state space modelling the
model equation is not transformed into the frequency domain as is done
in setting up transfer functions: one stays in the time domain. On the
other hand, the set of governing differential equations (which may be of
higher order) are translated to a set of first order coupled differential
equations.

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 2, 9
© Springer-Verlag Berlin Heidelberg 2008
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2.2 Linear System Models

For systems which are linear or for which one can formulate a linear model
which is sufficiently accurate for control purposes, the modelling procedure is
usually quite simple. The basic principles are illustrated in the examples below.

Example 2.1. RLC Circuit

On Fig. 2.1 a simple passive electrical RLC-circuit is shown.

It is desired to formulate a model where the terminal voltage v is the input
and the voltage across the capacitor v¢ is the output. Ohm’s and Kirchhoff’s
laws give the following relation for the voltages,

di(1)

Ri(t) + LW +ve(t) = v(1). 2.1

For the capacitor it is known that
dve(t)  dq(t)

1) =q(t =——==1i(1). 2.2
From these equations it can be seen immediately that
R. 1 n 1
i=——i——v¢ v,
L L L 2.3)
L
Ve = 61.

Here the time-argument has been omitted.

The system can obviously be described by these two coupled first order
ordinary differential equations. It is usually preferred to reformulate the
equations into one vector-matrix equation,

R !
N P A S [’% Ly, (2.4)
el l 0 \ el
C 0
If the state variables are defined as
R 1 l
x:[l}i(: A= L Ly g |L| .=,
\ el \Je l 0
C 0

D E
Fig. 2.1 Dynamic electrical ] i C l—-

RLC-circuit




2.2 Linear System Models 11

Equation (2.4) can be rewritten in a very compact way as
X = AX + Bu. (2.5)
A block diagram of this system is shown on Fig. 2.2.

Fig. 2.2 Block diagram V(1) i1
of the RLC-circuit

i |—1|vc<z>|7|vc<t>
Lel 1

EE

Note that the entries i(¢) and v.(¢) of the vector x are outputs from the two
integrators in the block diagram. Equations (2.4) or (2.5) are called the state
equations of the system on Fig. 2.1. Note that the differentiation of a vector
with respect to the scalar argument (in this case the time ) is accomplished by
simply differentiating each element of the vector.

Since the capacitor voltage is the output, a second equation should be added
to the description of the problem, the output equation:

y=ve=[0 1]x (2.6)

The combination of Egs. (2.5) and (2.6) is called the state space model of the
system.

Laplace transformation of the Eq. (2.3) would lead to the transfer function
model of the system,

Vi) !

(2.7)
0

In Example 2.1 the two-dimensional state vector selected is x = {:1] = U }
A2 C

The reason for choosing precisely two variables in the vector is that one knows from
electrical circuit analysis that such an RLC-circuit is a second order system. Even if
one has no a priori knowledge of the system, it is usually not difficult to choose the
correct number of elements in the x-vector. This will be demonstrated later.

The model in the example is what is called a /inear state space model since the
right hand side of Eq. (2.4) is a linear function of x and u. The matrices A and B
have constant elements and therefore the model is said to be time invariant.

The system above (or rather the model of the system) belongs to the class of
models for which it is also possible to formulate a transfer function model.
But the state space formulation is not limited to the description of such models.
In fact, the general state space model can be nonlinear and can be expressed as:
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(2.8)

When state space models are formulated the following standard notation
is used:

x(?): state vector of dimension n, x(z) € R",
x(?): time derivative of state vector, X(7) € R",
u(¢): input vector, u(z) € R",

y(7): output vector,. y(z) € R'.

The functions f and g are vector functions:

S1(x(2),u(2), t g1(x(2),u(r), 1
tex(.u(0.0 = [P0 ang g | EXOO0 )
L (x(1),u(r) ) & (x(0),u(), 1)

where the functions f; and g; are scalar functions of the vectors x(t) and u(t).
In the general linear case the system equations can be written:

X(1) = A()x(1) + B(1)u(0),

(2.9)
y(1) = C(2)x(1) + D(t)u(z).

Further, if all matrix elements are constant, these equations are reduced to:

x(1) = Ax(?) + Bu(z),

(2.10)
¥(1) = Cx(1) + Du(1),
and the model is said to be Linear and Time Invariant (LTT).
The following names are generally used for the matrices in Eq. (2.10):

A: system or dynamic matrix, A € R"™",

B: input matrix, B € R,

C: output matrix, C € ™",

D: direct transfer or feed forward matrix, D € ™",

The Eq. (2.10) can be drawn as the block diagram on Fig. 2.3. The double
lines indicate that vector quantities (multiple variables) are passed between the
blocks.

Sometimes it is convenient (or necessary) to divide the inputs of the system
into two groups: The group of quantities which one can manipulate and the
variables which have to be regarded as disturbances. The latter type of variables
are determined by the world surrounding the system and they assume values
beyond the designer’s control. In such cases the state equation can be written,



2.2 Linear System Models 13

Fig. 2.3 Block diagram of a
general continuous linear
state space model

x(1) = f(x(1),u(1),v(1), 1), (2.11)

or, in the LTI-case,
x(t) = Ax(¢) + Bu(r) + B,v(1), (2.12)
where v(t) is a vector of disturbance variables,
v(1) € B B, € R,

Although a model of a linear time invariant system can be a transfer function
as well as a state space model, it is important to realize that these two models
do not give the same insight into the system’s properties. The transfer function
is a very efficient description of the relationship between the input and the
output. The state space model provides the same information, of course, but in
addition, it also gives detailed information on the internal state variables. This
means that one can keep track of what is going on internally in the system. For
this reason the state space model is called an internal model whereas the transfer
function is an external model.

There are other important differences between the two model types. When a
transfer function is constructed one can be sure that it is a unigue model. In
contrast to this, the state space model is not unique. One has considerable
freedom when selecting the state variables and the resulting model obviously
depends on the specific choice of state variables. As will be seen later, this fact
allows one to construct state space models with certain special and useful
properties.

The state vector’s components are functions of time. Over a period of time
limited by the initial time and the final time 7 the state vector describes the
system’s behavior in an n-dimensional vector space. The path of the vector end
point is called the trajectory. An example is shown on Fig. 2.4 for some third
order system.

It is not easy to give a stringent definition of the term szate. Its importance
may be illustrated by considering the information it carries. If the state is known
at a particular time, it will be possible from the model to calculate all other
variables in the system at that time. Also, the model makes it possible to
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Fig. 2.4 System trajectory in X,
a 3-dimensional vector space

= Start point, t=t,
X0 p 0

Final point, t=T
X2
X1

calculate the state at any point in time, say ¢, if the initial state x(#p) and the
input in the time interval [fy, f] are known. This will be true for any proper
choice of state variables.

How the state variables should be selected is also difficult to express in general
terms. However, for particular system models, for instance presented in the form
of block diagrams, it is quite straight forward to point out one proper choice of
state variables. The procedure is illustrated in Example 2.2 below.

Example 2.2. DC Motor and Flexible Coupling

Figure 2.5 shows an electric DC-motor with a flexible coupling in the shaft between
the motor armature inertia and the load inertia. R and L are the resistance and the
inductance of the armature windings, k and b are the spring constant and a viscous
(linear) internal damping coefficient of the flexible coupling respectively and J,,, and
J; are the moments of inertia of the motor armature and load respectively. The
armature terminal voltage u is the input to the system and the load angular position
0, is the output.

If the two inertias are separated from each other and the appropriate torques
(Ty, Ty, T,) added as shown on Fig. 2.6, one can write Newton’s Second Law for
both of them as

Jmém = Kal + k(el - em) + b(el - 9m) - bmém» (213)
JiO; = —k(6;,—0,,) — b(6; — 0,,) — b6, (2.14)

K, is the torque constant, b, and b; are viscous bearing friction factors of motor
and load shaft respectively.

Fig. 2.5 DC-motor with
flexible coupling
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6
%"’ T.T, T;.T, %9/
Jj

State convention: 8,,<6,

6,,<9,

Fig. 2.6 Sign and state
convention for the system T,
on Fig. 2.5

Ohm’s and Kirchhoff’s laws applied to the electrical circuit yield

u:m+L@+h% (2.15)
dt
or
;1 : .
l:z(u—kgem — Ri), (2.16)

where k, is the induction coefficient of the motor armature windings.

A block diagram drawn directly from Eq. (2.13), (2.14) and (2.16) is shown
on Fig. 2.7. Since the state equations are first order differential equations, it is
obvious that the integrator outputs would be natural candidates for state vari-
ables. With this choice, the first order time derivatives are simply the inputs to
the integrators. If the Sth-order state vector is defined as

roT. . T
X = [X] X2 X3 X4 X5] = |:l 0,, 0,, 0; 91} , (2.17)

the time derivative of x will be
x:p%%@ﬂ, (2.18)

and the state equations can be written by inspection of the block diagram:

Fig. 2.7 Block diagram for the system on Fig. 2.5
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R k., +1
X —X] ——X3+—
1 I 1 I 3 L%
X = X3,
K, k b+ b, k b
X3 J—mxl—zxz— 7 X3 +EX4+E)C5’ (2.19)
X4 = Xs,
kk +b k b+ b,
X — — X3 — —X4 — .
5 7, 2 7, 3T 7 5

R ke
I -z 0 %

0 0 1 0 0 0
‘ S _% _bjmbm % Jﬂ x+ | ol @20

0 0 0 0 1 0

The output equation is then

y=[0 0 0 1 O]x. (2.21)
One sees that the systems on Fig. 2.5 is a 5th order system: it has 5 states. m

The state variables selected in Example 2.2 were the outputs from the inte-
grators in the block diagram. This particular set of state variables is called the
natural state variables. 1t should be noted, that the block diagram is not unique
and therefore the set of natural state variables is not unique either. The number-
ing order of the state variables can also be changed and this will result in other
matrices than those shown in the example. The matrix elements will certainly be
the same but they will appear in different places in the matrices.

Example 2.3. DC Motor Block Diagram

The electro-mechanical system in Example 2.2 had a flexible coupling between the
two rotating inertias. If this flexibility is absent, which means that the coupling is
completely stiff, the system equations will take on a quite different appearance.
A stiff coupling means that the spring coefficient is infinite: £ =2 co. One
cannot modify the elements of the matrices in Eq. (2.20) directly, since some of
them would also be infinitely large and this is not possible. Instead one must
revert to the set of Egs. (2.13) and (2.14) and modify them. It is obvious that the
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two angle positions will now be equal: 0,, = 6, = 6 and the moment of inertia
and the bearing friction factors will be the sum of the two separate ones:
J=J,+J;and b, = b,, + b;. The two equations are reduced to one second
order differential equation (Newton’s Second Law),

JO = K,i — b0. (2.22)

The electrical equations will be the same as before and the block diagram of the
new system is shown on Fig. 2.8.

Fig. 2.8 Block diagram
of the first reduced system

The number of states has been reduced to 3 and a proper choice is now
x=[xnx]"=[i06]" (2.23)

and the state and output equations are seen to be

_R 0 _& 1
L L I
X=10 0 1 |[x+]|g|u (2.24)
K, by
¥ 0 7 0
y=1010]x. (2.25)

Further reduction of the system can often be justified. For most small DC
servo motors the armature inductance is very small and it is sensible to omit its
influence on the model. Again, one cannot just set L = 0 in Eq. (2.24) but one
must go back to the electric circuit Eq. (2.15) and make the change there,

u= Ri+k,0. (2.26)

In the new block diagram (Fig. 2.9) the armature current 7 is no longer a state
and the only ones remaining are

x=1[00]", (2.27)
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Fig. 2.9 Block diagram of ]
the system in Fig. 2.8 with k
L=0

0 1 0

X = lo  byR+ Kok | x + | Ko |u, (2.28)
JR JR

y=1[10]x (2.29)

]

Example 2.4. Double RC Low Pass Filter

Now it will be shown how to derive a state space model of the passive electrical
network shown on Fig. 2.10. Using Ohm’s and Kirchhoff’s laws on the three
loop currents yields

1
ei = Rii; +—J(i1 — iz)dl‘,

G
O—IJ(' ')dt+1J‘dt+R' (2.30)
_Cl =1 c, (5] 202, .
1
—€, = _EJZZdt

Rearranging these equations,

1
R]il =e; — 7](1.1 - iz)dl,

Ci
R'—IJ(' i) dt lj'dl (2.31)
212—C1 I —n c Ldl, .
1.
e(,:ajlzdt,

leads to the block diagram on Fig. 2.11. Now it is simple to derive the state
equations directly from the diagram:

R R,
e O
L L
Gy G
T o) T e
Fig. 2.10 Simple electrical i i i3=0
network o . o
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Fig. 2.11 Block diagram + 1 i
of system on Fig. 2.10 . u——Q R
i= — 1
© ey
[ I a
=Y
@ J' 1
G
_ 1 i
1 1 1
1 C1<R1(HXI)R(XIX2))7
. . (2.32)
Xy = 62 <R2 (X] - X2)>.
Rearranging gives the state space model
R+ R 1 1
CiRiR CiR
X = P 2 x+ | CiRy fuyy
1 1 0 (2.33)
GRy GR,
y=10 1]x.
)

Example 2.5. Electrical Oven Process Plant

Figure 2.12 shows an electrically heated insulated oven which contains a pro-
duct to be heated. The temperature of the air in the oven space is Ty, the

Insulation
q
T, |
T, '
Product u
T q
4, 8 \
I TY
4 h Controlled
Fig. 2.12 Electrically heated power supply
oven production system
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temperatures of the product, the insulation material and the ambient air are
T,, T, and T, respectively. All temperatures are assumed to be uniform. The
heating power from the electrical heating element is called ¢, and the powers
entering the product and insulation are g, and ¢,. The heat loss to the ambient
air is ¢,,.

The controlled power supply is linear so that

q = ku, (2.34)

where k is a proportionality constant.
The exchange of heat energy is assumed to be by convection and therefore
the powers and the temperatures are related as follows,

e = ko(Ty — Tp),
qr = kr(Tv - 7—;)7 (235)
da = ka(Tr - Ta)7

where the k-coefficients are convection parameters depending on the area and
the physical nature of the surfaces.

If the total heat capacity of the oven air space, the product and the
insulation are denoted by C;, C, and C,, expressions for the time derivative
of the temperature of the different parts of the system can be formulated.
One finds

dT
CSW: qd—d4dg — 4rs
drT,
=g, (2.36)
dT.
r? =4r —Y4a-

A block diagram of the model can be seen on Fig. 2.13.
It is quite obvious, directly from the differential Eq. (2.36), that a sensible
choice of state variables could be

T
X=|x|=|Tg]|. (2.37)
T,

With input u, the disturbance v = T, and output y = T, it is now straightfor-
ward to obtain the set of state equations. It is only a matter of substituting the
proper variables into the Eq. (2.36). The result is
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Fig. 2.13 Block diagram of
the oven production system

ke + ke kg ky ]
a ¢ G k 0
. kg ke G 0
X Cy C, X+ | g |ut . v, (2.39)
ke 0 Ktk 0 [
I G
y=1[010]x. -

2.3 State Space Models from Transfer Functions
2.3.1 Companion Form 1

For a SISO system with a known transfer function it is possible to formulate
a state space model in a standard form.
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Assume that the transfer function is

Y(s)  bus" 4+ b, 5"+ .+ bls+ b
Uis) s"+a, "' +.. . +as+ay

(2.40)

Note, that this transfer function is proper, i.e., the numerator and the
denominator polynomials have the same order.

The procedure is started by performing the first step of a polynomial
division

n—1
Y(s):anr bp18 4+ .+ bis+ by :bn+B(S). (2.41)
STt ap s ars + ag A(s)

V() = 57 V) = AV = L), (2.42)
leads to
SVS) = —ap 15" V(5) — a2 2V(s) — ... — arsV(s) — aV(s) + Uls)  (2.43)
and to
Y(s) = b, U(s) + B(s) V(s). (2.44)

Now define the state variables as follows

(2.45)
X,a(s) = 5" V(s),
Xo1(s) = 5" V(s),
X, (s) = sV (s).

Multiplying each expression by s and substituting the state variables for the
right hand sides of the equations gives
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sXi1(s) = Xa(s
sXa(s) = Xi(s)

Sanz(S) = X1 V(S)a
SXn71(S) = Xn(s)a
X, (s) = 5"V (s).

Inverse Laplace transformation of these equations and of (2.43) gives

x1(1) = xa2(1),

xn72(t) = )C,7,1(l‘),
Xn—1(1) = x,(1),
Xn(1) = —apx1 (1) — ayx2(1) — ... — ap—axn—1(1) — ap_1x,(1) + u(r).

This set of first order differential equations constitutes the state equations for
the System (2.40). The vector-matrix form is seen to be

X1 o0 1 0 ... 0 0 X 0
X2 0 0 1 ... 0 0 X 0
= +
(2.46)
o O 0 0 .. 0 1 X1 0
i X, | |—d —ai —a ... —Ap-2 —dp-1| | Xpn | _1_
= Ax + Bu.

The output equation can be found by inverse Laplace transformation of (2.44),
y= [bo by...by_> bn,l]X-i-bnu = Cx + Du. (2.47)

Note that this state space model is very efficient in the sense of the number of
matrix elements. The matrix elements are the same as the coefficients of the
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transfer function model (2.41) and apart from the zeros and ones these are the
only parameters in the model. The coefficients of the denominator of (2.40)/
(2.41) can be found in the last row of A with the opposite signs and in reverse
order. The numerator coefficients of (2.41) are found in C in reverse order.

If the numerator polynomial is of lower order than the denominator (in
which case the system is said to be strictly proper), b, and maybe some of the
elements of C will be zero. The matrix D will be zero in this case. A block
diagram of the system based on the state equations is shown on Fig. 2.14.

=

Fig. 2.14 Block diagram of companion form 1 of a SISO system

The states selected here are often called the systems’phase variables and
the model is said to be in phase variable form. A matrix with the structure of
the system matrix in Eq. (2.46) is called a companion matrix and an alter-
native name for this model is the companion form 1.

Example 2.6. DC Motor Position Control

Return now to the third order system on Fig. 2.8 of Example 2.3. If one Laplace
transforms the operators in the block diagram, the transfer function for the
system can be derived and the result is

o) _ K,
U(s)  s(LJs? + (RJ + Lby)s + Rby + K,K,)

With the component data

J=02,L=0.01, R=3,b,=0.05 K, =0.35, K, =0.35,
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the transfer function turns out to be

O(s) 0.5 B 175
U(s)  5(0.002s2 + 0.6005s + 0.2725) 53 4+ 300.2552 + 136.25s

The matrices of the state space model can now be written down directly from
Eq. (2.46) and (2.47),

0 1 0 0
A=10 0 1 B=[0|,C=[175 0 0],D=0.
0 —136.25 —-300.25 1
Fig. 2.15 Block diagram of a u

third order system

A block diagram drawn along the same lines as Fig. 2.14 is shown on Fig. 2.15.
If this the block diagram is compared with that on Fig. 2.8, it is noted that they
are quite different although they are models of the same system. Figure 2.15
contains only 3 parameters, whereas Fig. 2.8 has 6. m)

2.3.2 Companion Form 2

Returning to the transfer function (2.41), a state space model can be constructed
by an alternative choice of state variables.
In this case an auxiliary variable is defined, but this time with the expression,

mgzggmm (2.48)
so that
Y(s) = b,U(s) + B(s) U(s) = b,U(s) + W(s) (2.49)
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and the following set of state variables is selected

X (s) = W(s),

2 State Space Modelling of Physical Systems

Xuo1(s) = sW(s) + an—1 W(s) — b1 U(s),

X,a(s) = 8> W(s) + ay_15W(s) — b,_1sU(s) + a,_2W(s) — b,_2U(s),

X1 = 5" "W(s) + ap1s" T W(s) — by_1s"2U(s) + ...+ ay W(s) — bU(s).

After inverse Laplace transformation these expressions can be written

xa(1) = w(t),

Xn—1(1) = X, (1) + an_1x,(2)

anz(l) = xnfl(t) + anf2xn(t)

x1(1) = Xa(1) + arx, (1) — byu(z).

- bn—l u(l)a
- bnfzu(l),

Multiplying the above expression for X (s) by s, using Eq. (2.48) and inverse
Laplace transforming, it is seen that

fC](l‘) = —aoxn(t) + b()u(l).

The set of first order differential equations can then be written in matrix-

vector form as

i X] ] o o 0 ... 0 —dy 1T X1 T i b() T
Xz 1 00 ... 0 —d| X2 b]
¥ o010 ... 0 - b
ACH @ ? lu=Ax +Bu. (2.50)
).Cn—l o0 0 ... 0 —dy-_2 Xn—1 bn_2
L Xn i _0 0o 0 ... 1 —dy—1] L Xp _bn,l_
The output equation can be found from Eq. (2.49),
y=x,+bu=1[000...01]x+ b,u=Cx+ Du. (2.51)

A block diagram of the companion form 2 is shown on Fig. 2.16.
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Fig. 2.16 Block diagram of companion form 2 of a SISO system

2.4 Linearization

For many systems one does not have useful a priori knowledge which allows
one to formulate a linear model immediately. In such cases it is necessary to
start the modelling by constructing a nonlinear model using the physical laws
and then - if possible - linearizing this model.

If one looks at the nonlinear model (2.11), it can be assumed that this
equation has been solved for a nominal initial state Xy, a nominal input function
u(7) and a nominal disturbance function v(7). The resulting nominal state vector
is supposed to be X(7). Now one would like to describe the system’s behavior in
the neighborhood of the nominal trajectory X(7). Assuming that a new initial
state and new input and disturbance functions are defined which are ‘close’ to
the nominal ones, one can define:

x(1) = x(1) + Ax(1),
u(7) = u(7) + Au(r),
v(t) = V(1) + Av(1),

Xo = Xo + Axp.

(2.52)

Ifit also is assumed that x(7) is close to X(¢) and that the function fin (2.11) is
differentiable to the first order in time, it is reasonable to expand finto a Taylor

series about the nominal values. With the expressions in Eq. (2.52) one can write
Eq. (2.11) as:

X(1) = X(1) + Ax(1) = £(X(1) + Ax(1), u(r) + Au(r), ¥(1) + Av(1), ). (2.53)

Since all terms of order higher than one are discarded, the series expansion
will be:
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of(x(1), u(r), v(1), 1)

0x
of(x(1), u(r), (1), 1)
ov

(1) + Ax(1) = £(x(1), 6(2),¥(1), ¥, 1) +

of(x(1), u(r), v(1), 1)
Ou

AXx(1)
(2.54)

+ Au(r) + Av(r)

The partial derivatives which must be calculated for the nominal time functions,
are in general matrices, the so called Jacobians. The i’th by j’th entry is the
partial derivative of the i’th scalar function in f with respect to the j’th variable
in X, uory.

The Jacobian matrix 0f/0x is quadratic since f and x have the same number
of elements:

[ofi(x,u,v, 1) Ofi(x,a,v,1) ofi(x,a,v, 1)
0x| 0x> o 0xy
8f()~(,ﬁ,{/7 [) 8/{2(;(;6;{’, t) afZ(iﬂlva t) aﬁ(ivﬁvea t)
ok a1 9x2 o 9, » (2.59)
(X, 0,¥, 1) Ofu(X,0,¥,1) I(X,0,¥,1)
L 8X1 8x2 o 8xn _

where the time argument has been omitted for simplicity. However, it is impor-
tant to note that since X(7), u(#) and X(¢) are functions of time, the entries of the
matrices are also in general functions of time (even if fis not explicitly a function
of time). If f is not explicitly a function of time then the nonlinear system (2.11)
is time invariant,

x(1) = f(x(1),u(t),v(1)). (2.56)

From the assumptions above it is clear that
X(1) = £(x(1), 8(1),¥(1), 1). (2.57)

Inserting this into Eq. (2.54), one obtains:

Ax(1) = A(1)Ax(1) + B(1)Au(z) + B, (1) Av(1) (2.58)
where
A() = af(igl, V1) B = 8f(i,8f:l, v, 1) B = 8f(i,af: V.1 2.59)

Equation (2.58) a linear approximation to the nonlinear system (2.11). The linear
approximation expresses the behavior of the system in the close vicinity of the
nominal trajectory X(7). The state variables here are the incremental state variables.

If the problem involves a nonlinear output equation (see Eq. (2.8)), the
linearization of the output function follows exactly the same lines. The linear
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approximation to the output equation y(7) = g(x(¢),u(¢), ) is (it is assumed
that y(7) is not a function of the disturbance),

Ay(t) = C(1)Ax(t) + D(t)Au(z), (2.60)

where the large signal output is defined as

v(1) = §(1) + Ay(0). (2.61)

The relevant matrices are found from:
C(t)y=—"""""=, D(1)=—"—"=. (2.62)

A very important special case arises if the nominal matrix elements are all
constants. In this case the initial state and the nominal state can be considered
the same and this state is called a stationary state. These are natural bases for
the linearization. A stationary state is characterized by zero time derivatives
and from Eq. (2.11) it is seen that that the stationary states must satisfy the
nonlinear algebraic equation:

0= f(X(),ll(),V()). (263)

Note that here the treatment is confined to the time invariant case.
Having determined the stationary states from Eq. (2.63) (there may be more
than one), one can define, as in (2.52) and (2.61):

(2.64)

The A-variables above denote the (small) deviations from the stationary (con-
stant) values and are called the incremental states, inputs, disturbances and
outputs.

As before, the f vector function can be expanded about the stationary values
to find:

(1) = %o + Ax(1) = f(xo, up, vo) +

af(XO , Uo, VO)
du
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The Jacobians are now constant matrices, €.g.:

o on o]
ox;  Oxo 0x,

6f(X(),ll(),V0) % % afz

e I I I (2.66)
o W
LOx1  Ox Oxy 1o

The subscript 0 indicates that all entries in the matrix are calculated at the
stationary (linearization) points.

X is constant and consequently Xy = 0 and (1) = Ax(7). With the notation
from Eq. (2.66), equation (2.65) becomes the linearized state equation:

Ax(7) = AAX(7) + BAu(?) + B,Av, (2.67)
where
8u1 8142 8”}11
of 9 of
Of(x¢, ug, v 2L e 22
B _ 9o, o, Yo) Oa %) _ Quy  Ouy Oty (2.68)
u . . . .
o o o
| Ouy  Oup Oup 1o
and
[oh oh o O]
8v1 8\12 8vp
of, 9f I
8f(X(),llo,V0) - == ...
B\rZT: 5?)1 8?’2 ' 3?/1; . (2.69)
LOv)  Ovy vy,

As before, Eq. (2.67) is called a linear approximation to Eq. (2.11). Since the
matrices are constant, Eq. (2.67) is a LTI-model.

If the output equation is nonlinear as in Eq. (2.8), the problem is treated in
the same way. The linearized output equation is:

Ay(t) = CAx(t) + DAu(?), (2.70)
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where

C:

and

D=

8g(X07 U, VO)
ox

9g(Xo, o, Vo)

Ou

[ 981
8)61
022
8x1
0g;

L Ox

021
81,[1

92
8u1

ogr

_6u1

Example 2.7. Rocket with Air Resistance

4]
ox 2
022
(9x 2
0/
ox 2

og1
8u2
92
6u2
gy
8u2

Og1 ]
ox,
02>
ox,

g

O0xy |

0817
ou,y,
02
Oy,

0gr

ou,y, |
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2.71)

(2.72)

This example deals with a rocket under the influence of gravity, an upward
thrust and a nonlinear wind resistance force. It is assumed that the rocket moves
in a vertical direction and that the long axis of the rocket is constantly vertical.
A sketch of the rocket is shown in Fig. 2.17. The x position axis points upwards
and the velocity is called v.
Newton’s second law says that

mi=—F,— F,+T=+bh*—-mg+T

Fig. 2.17 A rocket in
vertical motion
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or
i)——:I:—vz —|——1 T—_f(v T) (2 73)
g ? ? '

where m is the mass (which is assumed to be constant here), b is the air
resistance coefficient, g is the acceleration due to gravity and 7 is the thrust.
When the rocket moves upwards, then the wind resistance is a downwards
force. So the minus sign of the first right hand term is valid for upwards
movement (v > 0) and the plus sign for downwards movement (v <0).
Equation (2.73) shows that the model is first order. The velocity is the only
state variable, T is the input variable (= T) and the output is equal to the
state, y=v.

The stationary states can be obtained by setting the time derivative of v equal
to zero. This leads to the following relationship between the stationary values of
the variables,

HTo—mg) for v>0
Vo =
—\/+(mg —Ty) for v<O0.

A positive value for vy is only possible if T > mg. A negative value requires
that 7y <myg. If the thrust is zero, the rocket will fall and reach the terminal

velocity,
mg
Vo = Vierm = — 7

As in (2.64) the deviations from the stationary values are defined as

v(1) = vo + Av(1),
(1) = Ty + AT(1),

and the linearized system model can be derived according to Egs. (2.66), (2.67)
and (2.68). The state equation of the system is thus

Av = AAv + BAT, (2.74)
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where

2b f 0
Aid(f(VaT)) B —ZVO or v>
v ) 2
0 —bvo for v<O0,
m
5 de. ) 1
AT |, m’

The first order state Eq. (2.74) becomes

Ay = —’%vo Av+lAT.
m m

This linear differential equation can be Laplace transformed and the following
expression is found (for v(0) = 0):

2b 1
SAV(s) = —’% vo|Av(s) +%AT(S),

from which one obtains

Av(s)  1/m
T(s) _s+ 2—bv 7
Py

which is the transfer function of a first order system. The time constant is

.
2bV0

T =

and therefore it is known from classical control system analysis that the system
is stable for upwards as well as downwards movement. Note that the time
constant is a function not only of m and b but also of vy. A high velocity results
in a small time constant and vice versa. The basic dynamic characteristics of the
system are thus dependent on the stationary state in which the linearization is
carried out. This is typical for nonlinear systems.

It is also typical for nonlinear systems that the differential equations cannot
be solved analytically. This problem will be addressed in the next chapter. In the
present simple case a solution can be found by separation of the variables in
Eq. (2.73). Assuming that the thrust 7 is equal to zero it is found that
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dv
b
2p_g
m

=dt.

This equation can be integrated directly to yield,

g B _ [ e <
o) i e e

if it is in addition assumed that the rocket is initially at rest, i.e., v(0) = 0. The
solution shows that for small values of # and therefore at low velocity, the rocket
moves as if it were only subject to gravity and the constant acceleration g. At
large # and v, the velocity tends to the terminal velocity vie,.

Integrating Eq. (2.75) immediately gives the position of the rocket (assuming
that x(0) = xo),

x(t) —xp=— %ln (cosh (\/%Et>>

(1/2)g, 1< <+/m/(bg)
((5) m@ = Vimg)/bi), 1 >> \/m](Be).

Example 2.8. Hydraulic Velocity Servo

A simplified model for a hydraulic velocity servo can be expressed as follows

%v(t) = Ap(1) — (1),

4 p(e) = ag(t) — Av(),

q(1) = kn/p(2)u(?).

v is the piston velocity, p is the differential pressure over the piston, ¢ is
the volume flow from the servo valve and u is the input voltage to the valve.
A is the piston area, ¢ is a viscous friction coefficient, « is a constant related to
the stiffness of the hydraulic fluid and k is a valve coefficient.

The first step in the linearization procedure is to determine the stationary
state. This is accomplished by setting the time derivatives to zero. With the
initial elimination of ¢, the results are
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0= Ap(] — Vo,

0 = ak\/pouy — Avy.

The stationary values of the variables can be calculated for a given constant
input voltage, uy,

@k,
]70 = A4 MO,

@k
Vo = A3 Uy,

ak’c
qo = —A2 Uy

It is natural to choose the state and output variables,

xl(t)
x2(1)

x(1) = [ ] _ [”E’;] and y(1) = v(1).

plt

The nonlinear state equation becomes

(1) = { Ap(t) — ev(1) }
ak/p(t)u(t) — Av(1)

I
. 1
=
=
>
=
=
> >
s
=
=
| I

After defining the variables and their deviations by the expressions

v(t) = vo + Av(1),
p(t) = po+ Ap(1),
q(1) = qo + Aq(1),

the linear state model can be derived. One finds

Ax(1) = AAX(1) + BAu(1),
Ay(r) = CAx(1) + DAu(1),
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with the matrices,

o oY .
ox; 0x;

oh || 5

_TX] 8X2 0

)
Example 2.9. Water Tank Process Plant
Figure 2.18 shows water tank process for which a model is to be formulated.
Fig. 2.18 Water tank Control valves
process plant Tul 2 Level measurement
w TC
e
ot | to.
T | Tank L Tank R
T T,
H
1 H2
/: O eS)

= I 9
Stirrer 0, /
; 2 Valve area A,

Temperature measurement

Two tanks denoted L and R are connected as shown and into the left tank
can be pumped warm and cold water through control valves with the two input
signals U; and U,. The temperatures and the volume flows are T, T, Q,, and
Q.. The water levels in the two tanks are H; and H» respectively and the tanks
have the same cross sectional area 4. The flow between the tanks is O, and the
flow out of the outlet valve of tank R is Q. This last valve has the variable
opening area A,. The water is stirred rapidly in both tanks and therefore the
temperature is assumed to be constant over the entire volume of each of the tanks.
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Two quantities can be measured on the plant: the level and the temperature
of tank R. For the two measurement systems one has that:

1 = kpH,, (2.76)

2 = kT, (2.77)

where kj, and k; are transducer gains.
The two control valves have the same flow characteristics and it is assumed
that the following two relations are valid,

Qw = kau]a (278)

O, = kqua, (2.79)
where k, is the flow coefficient.
The mathematical model of the plant involves volume and energy conserva-

tion laws and suitable relations describing flow through orifices. Conservation
of fluid volume gives for the two tanks:

AH =0y + Q0 — O, (2.80)
AH, = Q, — 0. (2.81)
The energy content in the water volumes can be written:
E; = AH pc(T) — Tp), (2.82)
Er = AH>pc(T> — Tp).- (2.83)
p and ¢ are the mass density and the specific heat capacity of water. T} is the

reference temperature at which the energy is zero. It is easy to show that one can
set Ty = 0 and the energy equations are reduced to

EL = AH] pCT]7 (284)

Egr = AHzpCTz. (2.85)

For the flow through the orifices it is reasonable to assume that a square root
relation is valid. The formula for this can be written,
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0 = Cudoy /gAP, (2.86)
P

where AP is the differential pressure over the orifice, p is the mass density, 4, is
the area of the orifice and C, is a constant loss coefficient. The hydrostatic
pressure in a liquid at a level H below the surface is P, = pgH + P, (where the
atmospheric pressure is P,), where g is the acceleration due to gravity. The flow
through the outlet valve can thus be written,

Qb = DA, H27 (287)

where D, = Cy4\/2g. The orifice between the tanks has a constant flow area and
one can write,

0, = Co\/ Hi — Hy, (2.88)

where it is assumed that H, > H,.

Now the fact can be utilized that the net power flux into the tanks equals
the accumulated energy per time unit. Thus the time derivatives of the
energy expressions (2.84) and (2.85) give the left hand sides of two new
equations,

dE d

TIL = APCE (Hl Tl) = prCTW + QcpCTL‘ - QrpCTlv (289)
dE d
TIR = ADCE(Hsz) = Q,pcTy — QppcTh. (2.90)

Dividing all terms by pc and differentiating the product yields:

AH\ T, + HTY) = 0, T\, + O.T. — Q. T, (2.91)

A(H Ty + HaTo) = Q, Ty — Q3T (2.92)
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Inserting Egs. (2.80) and (2.81) into Egs. (2.91) and (2.92) respectively gives the
final system equations:

AH\T = 0, T+ Q.T. — Q. Ty — 0T, (2.93)
AH T, = 0, Ty — 0, T> (2.94)

The complete model of the plant now consists of the Egs. (2.76), (2.77),
(2.78), (2.79), (2.80), (2.81), (2.87), (2.88), (2.93) and (2.94). A block diagram
based on this set of equations can be seen on Fig. 2.19.

The natural choice of states is the output variables of the four integrators.
The outlet valve area and the two inlet temperatures are disturbances and the
two control valve voltages are the manipulable inputs. So, state, input and
disturbance vectors will be:

X1 H1

X H u Vi Ay

xo= |2 = |l =t |n | =] e
3 1 up ¥ T
x4 T2 3 ¢

Fig. 2.19 Block diagram of
the process plant
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Now there are four state equations and from the block diagram:

. 1
X = Z[ka(ul + ) — Co/X1 — X2 ],
1

Xy = 71 [Cov/X1 — X2 — Dyy/X2v1],

| (2.96)
X3 = s [(va = x3)kqtty + (v3 — x3)kaia],
. 1
X4 = T (X3 — X4)C0\/X1 — X2.
X2
The output equation is linear in the states,
V1 0 ky 0 0 }
1) = = 1). 2.97
o ="]=10 5 o g ]x0 @9)

The state Equations (2.96) can be written in the form (2.56) and it is natural
to linearize the model around a stationary operating point found using
the Formula (2.63). The equations (2.96), with their left hand sides set to zero,
lead to

ka(utio + o) = Cor/X10 — X20,
Cov/X10 — X20 = D\\/X20V10,
(v20 — X30)u10 = — (V30 — X30)U20,

(x30 — X40)v/X10 — X20 = 0.

(2.98)

The extra subscript (zero) denotes that these are stationary values. The 4
equations in (2.98) contain 9 variables. If for example values for the 2 inputs
and the 3 disturbance variables are selected, the 4 states can be determined
from Eq. (2.98).

The following parameter values will be assumed:
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A =0.785m?,
D, =2.66m'/?/sec,
Cy = 0.056m”? /sec,
k, = 0.004m? /volt - sec,
kp = 2volt/m,
k; = 0.1volt/°C,
assuming that the input voltages can take on values in the interval 0—10 volts

and choosing wujy = upg = 5 volts. Further, setting A,=0.0122m?, T,0=
60°C and T,.,=30°C, the Eq. (2.98) give the values of the stationary states,

X10 = 2.03 m,
X209 = 1.519m7
X30 = X40 = 45°C.

The matrices for the linearized system can be calculated according to
Egs. (2.66), (2.68), (2.69) and (2.71):

[ —Cy Co 0 0 ]
24310 — X0 247 /310~ %
Co -G Dy 0 0
A— 2A\/X10—XQO 2A\/X]0—XQ() 2A\/)?0
0 0 ~ kqttio + kauxo 0
AX10
0 0 Covxio—x20  Copy/X10—X20
L Axxo Axag
(2.99)
_ K, k., _
A A
0 0
B— , (2.100)

ka(vao — x30)  ka(v30 — X30)
Ax10 AX10

0 0
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i 0 0 0 7
Dv X20
- 0 0
B 4 (2.101)
o 0 koo kqu | '
Axyg Axyo
L 0 0 0
020 0
C= [0 0 0 0'1]. (2.102)
With the parameter and stationary variable values above one can find:
—0.0499  0.0499 0 0
0.0499  —0.0667 0 0
A= 0 0 —0.0251 0 ’ (2-103)
0 0 0.0335 —0.0335

0.00510 0.00510

0 0
B= , (2.104)
0.0377 —0.0377
0 0
0 0 0
—4177 0 0
B, = . 2.1
0  0.01255 0.01255 (2.105)
0 0 0

The linearized model describes the behavior of deviations from the station-
ary values. If the incremental system vectors are defined as in Eq. (2.64):

Axl AHl
A AH A
Ax(r) = | T2 = | T2 ,Au(t):{ ”‘}, (2.106)
Axs AT, Auy
AX4 ATz
Av1 AAV
A= |An | = AT, |,
AV3 ATC

where

H\(t) = Hyo+ AH, (1) (2.107)



2.4 Linearization 43

and likewise for the remainder of the variables one ends up with the state space
model,

AX(1) = AAX(7) + BAu(r) + B,Av(1), (2.108)

Ay(1) = CAX(1).

Example 2.10. Two Link Robot Arm

A two-link robot is shown in Fig. 2.20. The robot position is defined by the two
angles, 0; and 0,. The two robot links have the following characteristics:

Link 1: length /;, total mass m;, moment of inertia J;.
Link 2: length /,, total mass m,, moment of inertia J».

Itis assumed that the two links have a symmetric mass distribution so that the
centre of gravity is in the middle of the link. In order to formulate the equations of
motion the so-called Lagrange method can be used. This method defines a set of
generalized coordinates that specify the position of the system uniquely. In this
case the generalized coordinates are the two angles 6; and 6,. The Lagrangian is
defined as the difference between the kinetic and potential energies,

L(01,0,,01,0,) = K— P. (2.109)

Here, K and P are the total kinetic and the total potential energy of the system
expressed in terms of the generalized coordinates and their derivatives, the
generalized velocities.

y TCcP
CG of link 2
0,

CG of link 1
Motor with \ Motor with
torque T, torque T,

\§ e1 X
Fig. 2.20 Two-link robot ; _ S —

arm
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The equations of motion can now be derived as the following Lagrange equations,

d(oLy oL _
di\pp,) 96, "
4 (oL _OL _
di\op,) 90, %

These two equations are fully equivalent to Newton’s equations of motion.

The kinetic energy of the total system is the sum of the kinetic energy of each
link and this in turn is the sum of the kinetic energy due to linecar motion of the
centre of gravity and the kinetic energy of the rotation of the link around the
centre of gravity, i.e.,

(2.110)

1 1., 1 P
K= Emlvél +§J19§ +§m2véz +52(00 + 0,)%. (2.111)

If it is assumed that the center of gravity is positioned in the middle of each of
the links, the cartesian coordinates of the two centers are

(XG,,v6,) = (%cos 91,%Sin61),

, ; (2.112)
(XGyyVG,) = (ll cos 0y + gcos(el +0,),/;sin0; + %sin(el +0,)
The two velocity vectors will be
d
Vo, = (XG,,¥6,)
4 (2.113)

Vg, = E(ngasz)v

Evaluating these derivatives and evaluating their squares in Eq. (2.111) gives for
the kinetic energy, K,

LIS D S B
1
. ( L) @1y

1 P .
+ 5”12[1 12 cos(92)61 (91 + 92)
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The other term in the Lagrangian is the potential energy of the robot links due

to gravity,

P= mlg%sinel +m2g(11 sin 0, +l§2sin(91 + 92)). (2.115)

The two expressions in Eqs. (2.114) and (2.115) respectively are inserted into
the Lagrange equation and after some straightforward calculation one arrives
at the following equations of motion:

Mi10; + M50 + Ki(02,01,00) + G1(01,0,) = 7,

. .. . (2.116)
M>101 + M0y + K>(02,601,0,) + G2(01,02) = 1,
where the inertial components are,
1 > 1 2
M11 = Zl/ﬂl + my 11 +ZMZI2 +J1 +J2 +mzlllzcos92,
1 ) 1
My = My = ZWZZ 12 +J> —|—§le1[2 cos 0,
| (2.117)
My = Zn’lzlg + Ja,
[Mn Mu]
M = .
My My
The centrifugal and coriolis force components are,
. 1 ) .. .
K1(92, 01, 92) = —EWZzlllz Sln(ez) . 92(291 + 92),
| (2.118)
Kz(ez, 61, 92) = 57)’12[112 Sil’l(ez) . 9%
Finally, the terms due to gravity are,
11 [2
G1(01,0,) = mlgzcos 01 + mag| [ cos 6, +§cos(01 +6,) ],
(2.119)

/
G2(01,0,) = M2g§2COS(91 + 0,).

The complete robot system is a control object with two inputs. Normally the
torques are delivered by DC or AC motors with their own specific dynamics but
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in the present case it will be assumed that the control inputs are the torques
themselves,

uU):[TNﬂ]. (2.120)

The state vector is defined as
(2.121)

With H = M~! the non-linear state equation for the two-link robot takes the
following form:

XQ(I) 0 0
—H1(Ki +G) — Hp(K +G H H
(1) = (K 1) 12(K> + G2) L | 12 wn).  (2122)
X4(l) 0 0
—Hy (Ki + G1) — Hy (ks + Ga) Hy Hpy

In order to linearize this model, it is first noted that the coriolis and centri-
fugal forces are all quadratic in the angular velocity, so that for any linearization
around a stationary point, i.e., one with 8,5 = 89 = 0, these terms disappear.
Therefore for linearization around X, the state variables are

010
0
X(7) = xo + Ax(7) = + Ax(1),
020
0
T10 ATl(l)
u(?) =g + Au(t) = [Tzo + Am(1)

From these equations the incremental linear state space model is obtained,

Ax(1) = AAX(1) + BAu(1), (2.123)
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where
i 0 1 0 07
0 0
7—(H11G1+H12G2) 0 *—(H11G1+H12G2) 0
00, 0 00, 0
A= (2.124)
0 0 0 1
—i(HG+HG) 0 —i(HG+HG) 0
0, 211Gy 2220 0 216G 2220_
and
0 0
H H
g |l Hil (2.125)
0 0
Hyily  Hxl

In control applications the measured variables are often the joint angles so
that the output matrix will be

1 0 0 O

=)y o

]x(t). (2.126)

If the joint velocities are also measured, the C matrix will be the identity matrix.

In some real applications one is interested in the cartesian coordinates of the
tool-centre-point (TCP), i.e., the end point of link 2, where a tool is attached. In
this case the output expression will be nonlinear,

B /1 cos 0 + L, cos(0; + 6,)

= . 2.127
lisin®; + sin(91 + 92) ( )

y(
Numerical Example

The matrices for a small robot with the following data will now be calculated
using the parameter values,

m; =3kg, I =0.6m, J; = 0.12kgm?,
my =2.5kg, L, =0.8m, J, =0.15kgm?.
The first step of the linearization is to determine a stationary point. Inspecting

Eq. (2.116), it is seen that with all derivatives set to zero, a set of simple expres-
sions relating the remaining quantities at the stationary point can be found,
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Fig. 2.21 Robot y
configuration at the desired
linearization point

G1(010,020) = 70,

(2.128)
G2(010,020) = T,

This shows that one can choose any set of desired angles (09, 059) and calculate
the appropriate torques from (2.128). If the angles shown on Fig. 2.21 are
selected, the stationary torques are found from (2.128) and (2.119),

TI0 = Gl() == 26124N,
Tao = G = 9.476 N.

For the matrix M one has

B {1.84 +1.20cos0, 0.55+0.6cos 92]

0.55+0.6cos 0, 0.55
and for H,
I { 0.55 —(0.55+0.6.cos 62):|
 det(M) [ —(0.55+0.6cos0,)  1.84 +1.20cos 0,
where

det(M) = —0.36 cos® 0, + 0.7095.
Furthermore from Egs. (2.118) and (2.119) one obtains

K, (62, 91762) =-0.6 Sin(ez) . 62<261 + 92)
Kz(ez, 61 y 92) =0.6 Sil’l(ez) . Gf

and
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G1(61,0,) = 23.544 cos0; + 9.81 cos(6, + 0,),
Gz(el, 92) =928l COS(el + 62).

The stationary values for M and H are

| [2.8792 10695 [ 12514 —24337
"7 110695 055 |7 Y | 24337 6.5512 |

which means that the entries of the matrix B of the linearized system have also
been found (see Eq. (2.1295)),

0 0
| 12514 24337
N 0 0

—2.4337  6.5512

The remaining step in the linearization, i.c., determining A from (2.124), is
not difficult but quite laborious. The result is

0 | 0 0
17832 0 —3.0024 0
A= O 0 0 |
-30.063 0 10456 0

The eigenvalues of the matrix A can be found to be

{ +4.933
ha = .
+1.988

As will also be seen in Chap. 3, the eigenvalues contain important information
about stability of the system. m

2.5 Discrete Time Models

In the previous sections models have been dealt with in the case where all the
variables were functions of the continuous time ¢. This is quite natural since the
physical phenomena which it is desired to model usually are of continuous
nature. However, it is often practical to reformulate the continuous time models
to discrete time models, i.e. models in which the variables are functions of
discrete time.
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Discrete time models are usually the prerequisite for designing discrete
time controllers. Such controllers are of increasing importance because the
digital computer has become more and more common as the hardware basis
for the implementation of controllers. And, in contrast to natural physical
phenomena, a computer works in discrete time. In this section the discrete
time state space model will only be presented. The further treatment and the
way discrete models emerge during the analysis, will be left to later chapters
and appendix D.

In principle the discrete time model (DTM) looks very much like the con-
tinuous time counterpart (CTM) and the time argument ¢ is replaced with the
discrete argument, k7T, where T is the time period between the instants for which
the model is valid and k is the current instaneous sample number, counted from
some initial time, ky. T is usually called the sampling period or interval.

Whereas the CTM is a vector differential equation, the DTM is a vector
difference equation. The equations can be written in different ways. The most
correct notation for the system description is

x((k+1)T) =Fx(kT) + Gu(kT),
(2.129)
y(kT) = Cx(kT) + Du(kT).

The form in Eq. (2.129) is a bit awkward to work with and it is usually
simplified to:

x(k + 1) = Fx(k) + Gu(k),
(2.130)
y(k) = Cx(k) + Du(k),

or even to:

Xir1 = Fxi + Guy,
(2.131)
Yi = Cxy + Duy.

The form of the equations in (2.130) will be used throughout this book.

The notation above indicates that the matrices have constant entries, which
means that the system is time invariant or, as it is sometimes called, shift invariant
or step invariant. In the time varying case the equations must be written

x(k + 1) = F()x(k) + G(k)u(k),
y(k) = C(k)x(k) + D(k)u(k).

(2.132)

Note that the matrices in the state equation are denoted F and G rather than A
and B as in the CTM. If the DTM is a discretized version of the CTM (so that
the CTM and the DTM describe the same system), the matrices will be
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Fig. 2.22 Block diagram of a b
general linear discrete time

state space model

u(k)

different, whereas the matrices C and D in the output equation will be the
same. See Sect. 3.3.

A block diagram for the discrete time model looks very much like Fig. 2.3,
but the integrator block is replaced by the time delay or backward shift operator
g~'. This operator is defined by the expression,

x(k—1) = ¢ 'x(k). (2.133)
Similarly the forward shift operator, g, is defined by
x(k + 1) = gx(k). (2.134)

With the notation of (2.130) the general state space description for the nonlinear
discrete time system will be

x(k + 1) = f(x(k), u(k), k),

(2.135)
y(k) = g(x(k),u(k), k).

2.6 Summary

In this chapter it has been seen how continuous time state space models can be
derived based on appropriate physical laws governing a system. It has also been
seen how state variables can be selected directly from the equations or from a
block diagram of the system. The latter possibility is usually the most straight-
forward method.

Since most system models turn out to be nonlinear and since most of the
analysis and design tools are based on linear models, a very important linear-
ization technique has been introduced. Once the general state space model is
formulated and the possible stationary states have been found, it is quite easy to
derive a linear model which will describes the system properties in the vicinity of
the selected stationary state.

It was shown how one can set up state space models of systems with certain
special forms and finally discrete time state space models were introduced.
These are very important in the many cases where one has to design and
implement discrete time controllers with the intention using a computer to
perform the desired control tasks.
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2.7 Problems

Problem 2.1
Figure 2.23 shows a so-called inverted pendulum. If the driving force on the

cart, u, is the input to the system and the cart position p, the output, a model of

Fig. 2.23 Inverted
pendulum

Angle 9

Length 2L, Mass m

Position p

=

£

Force u P Mass M

—_— —t

Y Y

the system can be derived using Newton’s second law. The model can for
instance be formulated as two second order differential equations in the posi-
tion and the pendulum angle 6.

The equations are

. . 3 .
0’mLsin 0 —ngsmecoseJru
p= )
3
M+m—zmcos29

; ; 3 (2.136)
é:ﬁ(M+ m) sin O —Tmézsin()cos()—ﬁucose

3
M—f—m—zmcosze

)

where g is the acceleration due to gravity.

a. Choose an appropriate state vector and derive the nonlinear state
equation set,
% = f(x,u),
y=g(x,u).
b. Linearize the model by assuming small angles and velocities, and
consequently,

sinf =0, cosO==1, 6')2%07

and derive the linear state model,
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Ax = AAX + BAu,
Ay = CAx + DAu.

c¢. Show that the linear model can be divided into two models. One model describ-
ing the angle (the 0-system) and one model describing the position (the p-system)
and show that the 0-system is completely decoupled from the p-system.

Problem 2.2

a. Find the transfer function, G(s) = y(s)/u(s), for the system in Fig. 2.9.
b. Derive companion form 1 and companion form 2 for the system and draw
the block diagrams for these state space models.

Problem 2.3

a. Linearize the inverted pendulum model from Problem 2.1 a. by using the
method from Sect. 2.4 and assume the following stationary state,

. 4T
Xo=1[6 6 po po] =[0 0 1 0],

and use the parameter values,
m
M =2k =1k L=05 ~10—.
g7 m g7 m7 g seC2
b. Compare the result with the result from problem 2.1 b.

Problem 2.4

A simplified car suspension system is shown on Fig. 2.24. The components in
the figure represent a quarter of a car (or half a motorcycle). M is the body mass,
m is the so-called unsprung mass (wheel, tire, brake etc.), k,; and k; are the spring
constants of the tire and the spring respectively and b is the damping coefficient
of the shock absorber which is assumed to be a linear damper (the damping
force is proportional to the velocity difference between the two members of the

.
£

Fig. 2.24 Car suspension
system
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damper). Au is the position of the road. Only motion in the vertical direction
will be considered.

A model is to be set up which is valid around a stationary state where the
springs are in tension and shortened to their stationary length under
the influence of gravity.

a. Derive a model of the system using Newton’s second law on the two masses

b. Draw a block diagram and choose a set of state variables

c. Formulate a state space model where Au is the input and where the output is
the four dimensional vector,

AXx,
Axy

Af; |7
Ax,

Ay

where Af; is the tire force.
Problem 2.5
The electrical circuits on Fig. 2.25 are called bridged-T-filters.

Fig. 2.25 Common ]
electrical circuits a. R,
(Bridged-T-filters) I I
o o
i e,
e; e
R, o
o o
| ——
L T R
b. 2
[
o o
e
e; e
R, 0
o o

a. Use Ohm’s and Kirchhoff’s laws on the circuits to derive a linear model of
the filters.

b. Draw block diagrams of the circuits and choose in each case a set of state
variables.

c. Derive state space models for the two filters.

Problem 2.6

Figure 2.26 shows a hydraulic servo cylinder. The piston is positioned symme-
trically in the cylinder and the oil volume of the two cylinder chambers are
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Fig. 2.26 Hydraulic servo - x
cylinder

f P ] P2 |_

—

|
| \%4
'

therefore of equal size V. The ring shaped area of the piston is 4.. The mass of
piston and piston rod is M and the rod is loaded by an external force f.

The servo valve delivering the volume flows ¢; and ¢, is symmetric and
dynamically ideal (massless and frictionless) and the relation between the driv-
ing input voltage, u, and the flows is assumed to be

q1 = qo = ku.

The volume flow into a cylinder chamber can be divided into three parts,

q = Ydisplacement + qcompression + Qleakage-

For the left chamber one has,

.V
q1 = ALx“"EPl + Cl(pl _p2)7

where f is the stiffness coefficient for the oil (the so-called bulk modulus) and C;
is a laminar leakage coefficient. Note that the compression flow is proportional
to the time derivative of the pressure in the cylinder chamber.

a. Derive a model for the system with input u, disturbance v = fand output,
y =X
b. Draw a block diagram for the model and set up a linear state model of the form:

X = Ax + Bu + B,v,
y =Cx+ Du.

Problem 2.7

The following discrete time transfer function is given:

35342224245

H(z) = .
S oy B

Set up state space models in companion form 1 and companion form 2.
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Problem 2.8

A nonlinear system is given by the equations,

].7:*]7+OL\/E,

mj = pu—y* — j,

where u is the input and y is the output.

a. Draw a block diagram of the system and choose a state vector.
b. Derive a nonlinear state space model and find the stationary states of the model.
c¢. Linearize the system and derive the linear state space model.

Problem 2.9

A system with 3 interconnected tanks is shown on Fig. 2.27. The tanks have the
cross sectional areas Ay, A, and A4s. The input flows are proportional to the
input voltages,

qq = kuy,

qp = kuy.

The flows follow the square root law and since the pressures in the bottoms of
the tanks are proportional to the level, one has:

q1 = C1/ X1 — X2,
42 = C2/ X3 — X2,
qo = €0/ X2.

a. Derive a set of equations describing the system and formulate a nonlinear
state model with the two inputs u; and u;, and the output y = ¢o.
b. Linearize the model and derive the linear state space model

Ax = AAX + BAu,

Ay = CAx.
uy ”25
4 Vo,
A, A Ay
X M X3
2
e =
a1 a2

Fig. 2.27 Tank system l
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Problem 2.10

A high temperature oven with a product to be heat treated is shown on Figure
2.28. The outer surface temperature 7 of the oven is the same as the temperature
in the inner oven space. The ambient temperature is 7, and the product tempera-
ture is 7. All the temperatures are assumed to be uniform. The variables denoted
q are the heat powers exchanged between the different parts of the system.

Fig. 2.28 High temperature Controlled
oven production system T,| T power supply
q<_ I~ | Product L1
¢ q
Ty
-
qr q=ku

The oven surface temperature is so high that the heat loss to the surroundings
is not only due to convection but also to radiation. Assume that the convection
power is proportional to the temperature difference, i. e.,

qe = kc(TS - Ttt) andqg = kg(TS - Tg),
whereas the radiation heat loss follows the Stefan-Boltzmann law,
qr = kF(T? - Ti)’

Note that the temperatures here are absolute temperatures. The output is the
temperature 7T,. The total heat capacities of the oven air space and the product
are C; andC,.

a. Derive a nonlinear model of the system and formulate the state space model
in the form of Eq. (2.56).

b. Derive a set of equations for determining the stationary states.

c. Linearize the model and derive the matrices A, B, B, and C for the system.






Chapter 3
Analysis of State Space Models

Abstract In this chapter an overview of the properties of the state space models
will be given. A basis for the investigation of these properties is the solution of
the state equation given appropriate boundary conditions. The important
notions of stability, controllability and observability will be introduced and
the similarity transformation discussed. This makes possible the construction of
state space models with a number of useful properties.

3.1 Solution of the Linear State Equation

In this section first the solution of the general time varying state equation will be
obtained and then specialized for the time invariant case.

3.1.1 The Time Varying System

A reasonable starting point for the treatment in this chapter is the homogeneous
(or unforced) state equation,

x(1) = A(1)x(1). (3.1)

Prior to the search for solutions of this matrix differential equation, it is
important to know whether a solution exists and whether the solution found is
unique, given the initial state. x(7o) The answers to these questions are not trivial
and the conditions required to ensure that Eq. (3.1) has a unique solution will
not be derived here. It will only be stated that if A(¢)‘s elements are piecewise
continuous functions of #, a unique solution does exist. As a matter of fact, this
condition is more than what is required. It is sufficient but not necessary.
However, piecewise continuity is not a very restrictive requirement and the
vast majority of practical applications will be covered by this assumption. For
a more thorough treatment of these questions the reader is referred to Kailath
(1980) or Brauer and Nohel (1969).

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 3, 59
© Springer-Verlag Berlin Heidelberg 2008
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For the system (3.1) one can choose n linearly independent initial condition
vectors X(7p). An obvious choice would be:

xi(to)=[100 ... 0]'=e

!
x2(t) =010 ... 0]"=el, 42)

X:(t) =[000 ... 1]"=e¢’

n-*

The solutions to (3.1) corresponding to these initial conditions may be arranged
in a square matrix,

U() = [x1(0) x2(0) -..xa(0)]. (3.3)

Note that U(zy) = I, the identity matrix.
Assume now that the solutions in Eq. (3.3) are linearly dependent. Then, by
definition, there exists a nonzero constant vector z such that

[x1(7) x2(7) ... x4(1)]z =0, (3.4)

for all 7. In particular for = ¢,
[x1(70) x2(t0) ... Xp(to)]z=1[e1 €2 ... e,]z=0. (3.5)
But (3.5) contradicts the fact that all the e; vectors are linearly independent. The
conclusion is that all the solutions in (3.3) are linearly independent

and consequently that U(z) is regular for all ¢, or, in other words: U~ (¢) exists
for all +. With the definition of U() it can be seen that:

U(r) = A()U(2). (3.6)
Any solution U(7) to Eq. (3.3) is called a fundamental matrix of (3.1).

Now it is claimed that the solution to (3.1) for an arbitrary initial condition,
X(1), can be written:

x(1) = U(1)x(10). (3.7

Itis obvious that (3.7) holds for r = ¢,. Differentiating (3.7) with respect to time
gives:

x(1) = U()x(t0) = A()U(1)x (1) = A(1)x(1),

which shows that (3.7) does in fact satisfy the state equation (3.1).
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Now augment equation (3.1) to obtain the nonhomogeneous state equation,
x(1) = A()x(1) + B(¢)u(r). (3.8)

From U(1)U~!(¢) = I it follows that
S (UOU (1) =0 (3.9)

or (omitting the time argument)

dU du~!
—U'+U =0 3.10
dt + dt ( )
or, solving for the time derivative of the inverse,
du~! du
—=-U'!'—U'!=-U"A. 3.11
dt dt ( )

Postmultiplying the last expression with x yields

del

X = —-U'Ax. (3.12)

Premultiplying (3.8) with U™! gives U 'x = U 'Ax 4+ U"'Bu. Inserting
Eq. (3.12) into this expression leads to

-1

U"X—i—d[;t x =U"'Bu (3.13)

which can also be written

%(U’lx) = U 'Bu. (3.14)

Integrating from ¢y to ¢ on both sides of the equal sign yields

/told_ci(Ul(T)x(r))dr = /[01 U~ ' (1)B(t)u(t)dr (3.15)

or

U N (0)x(1) = U (10)x(19) = /IUI(T)B(‘E)U(T)d‘E. (3.16)
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Ordering the terms and premultiplying by U(t) gives the solution,
!
x(1) = U()U (10)x(to) + / U(t)U ' (7)B(t)u(t)dr. (3.17)
1o
Now the state transition matrix will be introduced:

o(t,7) = U(HU (7). (3.18)

The quadratic fundamental matrix U(#) depends on the initial state, according
to the definition in the beginning of this section. If two different fundamental
matrices U () and U(7) are selected, it is known that all columns in the two
matrices are linearly independent and therefore they can act as basis vectors in
the n-dimensional vector space. From linear algebra it is known that a constant
nonsingular matrix P exists such that U,(#)P = U, (7). From (3.18) it is clear
that

o(1,7) = Ui()U; (1) = L2()PP'U, (1) = Uh ()U; (1), (3.19)

This shows, that the state transition matrix is unique and independent of the
specific choice of U(7).

With the state transition matrix available, the solution (3.17) to the non-
homogeneous state equation (3.8) can be written in its final form, noting that

U(O)U (1) = ¢(1,10) -

x(1) = o(1,10)x(10) + /[(])(t, 7)B(1)u(t)dr. (3.20)

The solution has two terms. The first term (¢, 79)x (%) is the solution for
u(z) = 0 and it is therefore called the zero input solution. The integral term is
called the zero state solution because it is the solution if the initial state is a zero
vector. In other words, the solution is a superposition of the effects of the initial
conditions x(7y) and the effects due to the input u(7).

From Egs. (3.6) and (3.18) it can be seen that

% plt.10) = V(U™ (1) = AWUOU ™ () = AW (1. 10). (32D

The state transition matrix has some special properties. From the definition in
Eq. (3.18) it is obvious that

(I)(l(),to) =1L (3.22)
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It is also straightforward to conclude that

& (t,10) = U(t)U™ (1) = (10, 1). (3.23)

Thus, the inverse of ¢(z, 1)) is very easy to find. It is just a matter of inter-
changing its two arguments. It is equally easy to see that

b(12,10) = U(1)U ' (10) = U()U™ ' (1)U(11)U (1)

(3.24)
= &(12, 1) P(11, 10)-

It should be pointed out that although the solution, Eq. (3.20), to the time
varying state equation (3.8) looks simple, it is usually not applicable for prac-
tical calculations. The problem is that ¢(z,7)) can in general not be found
analytically given its defining differential equation (3.21) with the boundary
conditions (3.22). Except for special cases, one has to be satisfied with numerical
solutions, obtained using a computer.

The linear system’s output equation is

y(t) = C(H)x(r) + D(Hu(?). (3.25)

With the solution (3.20) the system’s response can thus be written as

¥ = COB(0)x(0) + [ €)1, OBEu(r)de + D(Du(y)

(3.26)
= (09 )x(0) + [ [C6(1IB() + D(D3( ~ (e
Defining
g(t,t) = C()d(t,t)B(t) + D(1)d(r — 1), (3.27)
for x(zp) = 0 Eq. (3.26) can be written,
y(1) = /[g(t, T)u(t)dr. (3.28)

g(1,7) is called the unit impulse response matrix or just the unit impulse response
of the system.

If the j’th input variable is a unit impulse at time ¢ = ¢, and all other entries of
u() are zero, i.e.,

u()=1[0...08(t—1,)0 ... O]T, 10W<t, <t,
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equation (3.28) then gives

£1j(2,1)8(t — 1) g(t,1p)
! (2,7)0(t — ¢ (1,1
y(l) :/ g2j( ‘C).(T p) dt — g2j(. p) . (3.29)
fo : :
gr.f(t7 T)S(T - [P) gljf([’ tp)
For the i’th output variable it is found that
yilt) = gi(t; 1p)- (3.30)

3.1.2 The Time Invariant System
The solution given in Eq. (3.20) is of course also valid for time invariant systems
and it can be simplified and made much more useful in such cases. For linear,

time invariant systems (LTI systems) the use of the Laplace transform is
possible. Start again with the homogeneous equation,

x(1) = Ax(1). (3.31)
Suppose now that the initial state is x(¢p) = x(0) = X¢. In the time invariant case
it can be assumed that 7y = 0 without loss of generality. Laplace transforming
the time dependent vectors in (3.31) element by element,

sX(s) — xo = AX(s), (3.32)

where the Laplace transform is denoted by X(s) = £ {x(7)}.
Rearranging the terms in (3.32) gives

(sT — A)X(s) =xo or X(s) = (s — A)"xq. (3.33)
Now, defining

U(s)=(sI—A)"" and (1) = 2 {U(s)}, (3.34)
the solution of the state equation can be written as

X(s) = ¥(s)xo, (3.35)
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or using the inverse Laplace transform,
X (1) = Y(1)xo. (3.36)
If the inhomogeneous case is considered,
x(1) = Ax(¢) + Bu(1), (3.37)
a result similar to that in (3.33) can be found,
X(s) = (s1 — A) 'xo + (sI — A)"'BU(s), (3.38)
or applying Eq. (3.34),
X(s) = ¥(s)xo + U(s)BU(s). (3.39)

The second term is the product of two Laplace transforms and the inverse
transform therefore takes the form of a convolution integral:

x(1) = W()xo + /0 (- 1)Bu(t)dk. (3.40)

This solution has a great deal of resemblance to Eq. (3.20). But in this case it is
possible to determine an analytical solution using (3.34). This can be quite
laborious, however, since this requires that the inverse of the matrix (sI — A)
is found symbolically.

For numerical calculations it is usually preferable to use another approach
based on the well known solution to a scalar, linear, time invariant, first order
differential equation

X(#) = ax(r) with x(0) = xo. (3.41)
The solution of this equation is
x(t) = " x. (3.42)

The series expansion of the exponential function is

2.2 o0 ktk

t
e“f:1+az+“7+ L=yt (3.43)
k=0 :
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Now define a square matrix by a series expansion similar to that in Eq. (3.43),

A2[2 [o.¢] A/Ctk
eA‘:I+At+T+ :ZT' (3.44)
k=0 :

The two series equations, (3.43) and (3.44), converge for all finite values of z.
el is called the matrix exponential.

Briefly, some of the properties of this matrix are:
1. From the definition (3.44) it follows that

d

— ARFT
di *

1 1
A= A+ A AP+ L
(N) = A+ A%+ AN T

1 1
A<I+At+2A212+ > = (I+At+2A212+ ...)A

7 (€M) = AeM = eMA. (3.45)

k=0 k! k=0 k!
A’2 AP A% AN

1 1
=T1+A(r+5) +5A2(z2 + 215 + 57) +6A3(r3 + 3157+ 35+ 57 + .

=1+ A(r+5) +%A2(z+s)2 +éA3(Z+s)3 + .= ;MU]{—J‘”)A
or
AL A = AU, (3.46)
If one lets s = —¢, it is found that
Al oA = AT — AO or (AT =AY

which means that the matrix exponential is nonsingular (because e A’ is

convergent for all finite 7). It is inverted by simply changing the sign of the
exponent.
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3. Note that it can be shown that e(A*B) is not in general equal to e’ - ¢ This is
only the case if A and B commute, i.e., if AB = BA.

If comparing Eq. (3.45) with (3.6), one can see that ¢*’ qualifies as a funda-
mental matrix. The state transition matrix (3.18) will then be

d(1,7) = eMemAT = AT, (3.47)

Note, that the state transition matrix is no longer a function of the two
independent arguments ¢ and t as in (3.20), but only a function of the difference
r—.

For t = t9 = 0 one finds that

&(1,0) = d(1) = M. (3.48)

Now it is seen that the solution, Eq. (3.20), of the general linear state equation in
this case reduces to:

x(1) = b(1)x0 + /0 "o(1 — 1)Bu(t)dr. (3.49)

Comparing (3.40) and (3.49) it is also seen that the matrix ¥(z), which was
introduced in (3.34), is exactly the same as (7). Therefore one finally has the
relation,

G() =U(1) = 2 {(ST—A)'} =N (3.50)
or
D(s) = U(s) = (sT—A) . (3.51)
The matrix ®(s) is called the resolvent matrix.
The right hand relation of Eq. (3.50) shows a closed form alternative to the

series expansion for eA’. With the matrix exponential, the solution (3.49) can be
written,

1
x(1) = eM'xg —|—/ AU Bu(t)dr. (3.52)
0

With the output equation,

y(t) = Cx(t) + Du(?), (3.53)
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one obtains

t
y(1) = Cer'xg + C / AU Bu(t)dt + Du(r). (3.54)
0

The impulse response in Eq. (3.27) can be written
g(t,7) = CAU VB + D3(1 — 1) = g(t — 7). (3.55)
After a change of variables this becomes
g(1) = CeMB + D3(1). (3.56)
The resolvent matrix can be written,

_1_ adj(sl — A)

D(s) = (sI — A) —m»

(3.57)
where adj and det denote the adjoint and the determinant of the matrix respectively.

The numerator of ®(s) is an n x n matrix. The denominator is a polynomial
and it is precisely the same polynomial which may be used for the determination
of the eigenvalues of the matrix A,

Poa = det(Al — A). (3.58)

In this context the polynomial is called the characteristic polynomial of A.
®(s) can be decomposed in a way similar to the partial fraction decomposi-
tion of transfer functions for SISO systems but in this case the residuals will in

general be matrices rather than scalars. If it is assumed that A has distinct as well
as repeated eigenvalues, they can be for example,

AyA2, ..., mtimes A, ..., Ag,

where the eigenvalue A, is repeated m times. Equation (3.57) can then be written

adj(sT — A)
D(s) = o . 3.59
() (=A)(s=22) ... (s—=2)" . (8= ho) (3-59)
The partial fraction decomposition turns out to be
Z, V)
D(s) =—— ..
(S) S — 7\,1 S — 7&2 +
+ Zrl Zr2 + + Zrm + + Zo‘ (360)
S*)\,r (s—?»,)z (S*}\.,»)m 377\457

where the matrices Z; have constants elements.
Inverse Laplace transformation of Eq. (3.60) gives the state transition matrix,
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(1)(1) :eAI = Zle}”t+Z2€x2t+... ( )
3.61
+ Lt 4 Lot + A Lot 4 L

The exponential function terms, ¢* and ¢/ ¢, are called the natural modes of
the system.

Computation of the matrix exponential is usually based on some modified
form of the series expansion (3.44). It turns out, however, that accurate com-
putation of A’ is not always simple. The expansion (3.44) converges quite
slowly and in some cases the results are difficult to use. This problem is of
numerical nature and it is beyond the scope of this text to pursue it in detail. The
reader is referred to books like Golub and Van Loan (1989). It is also strongly
recommended that the reader to use well-tested computer algorithms like those
found in packages like MATLAB for actual computations.

There is a special case where calculation is simple: this is when A is a diagonal
matrix. The diagonal elements are the eigenvalues of the matrix,

M0 ... 0 0
0 A ... 0 0
A= : : : : | =A. (3.62)
0 A1 0
0 0 N

A raised to the k’th power is simply

Moo .0
0 A ... 0
A= : : : (3.63)
0 0 ... M, o0
0 0 ... 0
and the series expansion (3.44) can be written
[ oo MKk ]
—- 0 0 0
kz::() k!
00 kk[k
0 > ﬁ . 0 0
o0 Aktk k=0 !
Al = Z 0 : : : : : . (3.64)
k=0 0 0 o 0k ik 0
&
%) )\,klk
0 0 0 4
L ,;0 k|
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The diagonal elements are the series expansion of the scalar exponential
function and consequently it is clear that

M0 0 0
0 e ... 0 0
M= : : : : . (3.65)
0 0 et 0
0 0 0 M

Example 3.1. Second Order LTI System

A second Order LTI-System is given by the equations.

=[5 e[
y=[2 0)x.

The system is SISO and thus « and y are scalars.
The resolvent matrix is

s+6 1
1 s 0 o 177" s 1] | g
O(s)=(I-A) = - = =+t — J
0s| |-8 -6 g s+6| S6HO+8
[ s+6 1 b 1 1/2 1/2
(s+2)(s+4) (s+2)(s+4) St2 5+4 5+2 5+4
—8 s 4 4, 4 1, 2
L(s+2)(s+4) (s+2)(s+4) s+27s+4  s+27s+4
2 1)2 112
L] e 2] oz oz
o s+2 s+4 S s+2 544

All the terms in the resolvent matrix can be inverse Laplace transformed and
the state transition matrix is readily found to be

28_2[ _ 6_4’ %e—Zl _ %6—41

1) =2 Hd(s)} = M = :
¢() { (S)} e [_482t+4€4t _6*2f+2€*4f
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The impulse response matrix (3.56) reduces to a scalar because the system is
SISO. G(¢) is the systems response to a unit impulse, u(t) = (¢),

G(t) = CA'B = y(o)

26_2l _ 8_4’ 16—21 _ 16—41 0
vy =[2 0] v — e e,
_46721 +4€74t _efzz 4 26741 1

The unit impulse response can be seen on Fig. 3.1.

Fig. 3.1 Unit impulse
response

t [sec]

For xg = [ ;} and u(#) = 0 the zero-input response can be calculated from

Eq. (3.52):
x.i(1) = eM'x
B 2672[ _ 674t %672t _ %67‘” 1 B 3672t _ 2674t
_4€—21 + 48—41 _6—21 + 26_4l 2 _66—21 + 86—4[ ’
These responses are shownion Flg..3.2. 0for <0
For xo =0 and u a unit step, i.e., u(f) = Lfor 1>0° the zero-state

response is

Fig. 3.2 Zero-input response
forxo=1[1 2]" 1 [sec]
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! L1 ,-2(t—1) _ 1 ,—4(1—1)
e e
Xzs(l‘) = @A(Z - T)B -1 -dt= ? 2 dt
_e—2(l—r) +28—4(t—r)
0 0

t
%efz(m) _ %674(1 —1) - F _ %6—21 +%e—4z1

1 ,2(-1) 1 ,—4(-1) Lo=2t 1o
;—¢€ +5e 0 2 2

Forxo = [1 2]" and u a unit step the results above can be combined using
superposition,

1 11 -2t 15 —4¢
s +ge T —<e
X(1) = xat) +xo(0) = [ 3 8 ]

11,2t 15 —4¢
—76 +7€

Finally the output can be calculated for the given initial conditions:

Y1) = Cx() =2 0] “%ew—%e—m] RN

_ ue—Zt + 1756—41

I =3t Tl

A plot of x(#) and y() is shown on Fig. 3.3. ]

Fig. 3.3 x(f) and y(f) for
xo=[1 21Tandu(r)aunit  2f N\
step

3.2 Transfer Functions from State Space Models

In Sect. 2.3 it was seen how to derive a state space model given a transfer
function. Here it will be related how this process can be reversed for a LTI

state space model.
The impulse response for such a system is expressed by Eq. (3.56) which will

be repeated here:

g(t) = CerB + D3 (1). (3.66)
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Recalling that Eq. (3.56) is the response given the condition that x(zy) = 0, it
can be Laplace transformed to obtain,

G(s) = C(sI—A)"'B+D, (3.67)

where the result, e*’ = ¢~ '{(sI — A)"'}, has be used.
Using Eq. (3.28) with g(7,7) = g(r — 1) and 7o = 0, it is seen that

y(1) :/0 g(t — t)u(r)dr. (3.68)

The right hand side of (3.68) is a convolution integral and Laplace transforma-
tion leads to the output transfer function,

Y(s) = G(s)U(s), (3.69)

and the analogy to the scalar case is obvious. The matrix G(s) is called the
transfer function matrix. It is of dimension r x m and its 7, j’th element is the
scalar transfer function from the j’th input to the 7’th output.

The inverse matrix, Z{e’} = (s — A)™', in Eq. (3.67) can be written,

_adj(sl — A)

(1-4)" = det(sT — A)’

(3.70)

where adj(sI — A) is the adjoint matrix and det(sI — A) is the determinant of the
matrix (sI — A). Eq. (3.67) can then be rewritten:

_ Cadj(s1 — A)B + det(sI — A)D

G(s) det(sT — A)

(3.71)

The numerator is an r x m-matrix and for SISO systems it is a scalar. The
denominator is always a scalar; as a matter of fact, it is a polynomial in 5. For
the usual scalar transfer function of a SISO system the denominator polynomial
is called the characteristic polynomial and the same notation will be used
for MIMO systems. The systems poles are the solutions of the characteristic
equation:

det(sT — A) = 0. (3.72)

As noted on p. 68, the same equation must be solved to find the eigenvalues
of the matrix A,

det(M — A) = 0. (3.73)
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This shows that the poles of a transfer function of a LTI system are the same as
the eigenvalues of the system matrix of the corresponding state space model.

Note that in this statement the possibility has been neglected that zeroes and
poles cancel each other in the transfer functions. If such a cancellation occurs,
there are eigenvalues of A which are not poles in the transfer function. For this
reason it is necessary to distinguish between the eigenvalues of the A matrix and
the poles of the transfer function matrix.

3.2.1 Natural Modes

If the characteristic polynomial in Eq. (3.71) is factored the transfer function
can be written,

Gls) = Cadj(s1 — An)B + det(sT — A)D 7 (3.74)

[1(s—pi)

i=1

where p; are the poles. For simplicity it has been assumed that all the eigenvalues
are distinct.

This expression can be decomposed (using partial fractions) to a sum of
terms

R, Ry ~ R,

Gs)=——+—+...= . 3.75
) S=p1 S—pP2 ;S—Pi ( )

The constant residual matrices R; are of dimension r x m.

Inverse Laplace transformation of (3.75) yields the impulse response of the

system,

g(t)=> Rie?, 120, (3.76)
i=1

As it is the case for scalar systems, the response (3.76) is composed of terms
containing the exponential functions e?!’.

It may be recalled from p. 69 that these terms are called the natural modes of
the system. The natural modes determine the characteristics of the system’s
dynamic behaviour. The poles/eigenvalues, p;, can be real or complex. In the
first case, the system will have a time constant,

1
T =——\.
Di
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In the second case they will appear as complex conjugate pairs, p; i1 = o £ j,
and the system will have a natural frequency and a damping ratio associated
with each of them,

o

o2 + p?

If the eigenvalue, p;, is repeated k times, the corresponding natural modes
will be

el el Pelit .. {lell,
See also Eq. (3.61).

Example 3.2. Impulse Response of Second Order System

Consider the following system:.

The system matrix is the same as in Example 3.1, so it is known from that
example that

2 1 /2 _1/2
D(s) = s+42 s+44 s+12 s+24
— + —~ +
s+2"'s+4 s+2's+4

The transfer function matrix will be

2 0 2 Y2 12 0
G(s) =CD(s)B+ D = s+2 s+4 s+2 s+4
0 3||__4 + 4 1 + 2 1 0
s+2 "s+4 s+2 " s+4
1 4 -1 =2
I 1 4 2
s+2 s+4 s+2 s+4| -3 —12 N 6 12
| =3, 6 12, 12 | s+2 s+4
s+2's+4 s+2 " s+4
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The impulse response can be found by inverse Laplace transformation,

(0 1 4 5, -1 =2 »
1) = e '+ e
& -3 —12 6 12

efzt _ e—4t 46—21 _ 28—41
= ,l Z 0
—3e X4 6 —12e 4+ 127

3.3 Discrete Time Models of Continuous Systems

As will be apparent later, discrete time state equations are easier to solve than
the continuous equations, especially if a computer is used to do the job.
The discrete time state equations are actually difference equations and their
recursive nature makes them very easy to implement directly as computer
algorithms (see Sect. 2.5). Discrete time state equations are also important
for another reason. As will also be seen later, it is straightforward to design
controllers in discrete time and the natural basis for such a design procedure is a
discrete time state equation.

When deriving the discrete time counterpart of the continuous state equa-
tion, it is usually assumed that all signals in the system are constant between the
sample instants. Hence they can only change value at these sample instants.
This is equivalent to inserting samplers and zero-order holds in the model’s
signal lines. One of the consequences is of course that all signal information
between the sample instants is discarded but that is a problem that one always
has to live with when working in discrete time.

The solution to the LTI state equation (3.37) has been shown earlier to be

t
x(1) = eMxp + eA’/ e A"Bu(t)dr. (3.77)
0

If the solution of this equation for the two time instants 7; = k7 and
t = (k + 1)Tis calculated then one has

kT
x(kT) = e*Txq + eAkT/ e A Bu(t)dt (3.78)
0

and
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(k+1)T
x((k+1)T) = AW DTy 4 eA(k+])T/ e ABu(t)dt (3.79)
0

respectively.
Premultiplying (3.78) by eA” and subtracting the result from (3.79),

(k+1)T
x((k+1)T) = eAx(kT) + eA(kH)T/ e A"Bu(1)dr. (3.80)
kT

Since u(z) is considered constant between the sample instants, one has that
u(¢) = u(kT) on the interval ¢ € [kT, ((k + 1)T)]. Then (3.80) can be rewritten

(k+1)T
x((k+ 1)T) = ATx(kT) / AEDTIR g (k). (3.81)
kT

Changing variables of the integration, (k + 1)T — t = ¢, finally
T
x((k+1)T) = e*Tx(kT) + / eABdt -u(kT). (3.82)
0
Defining the two constant matrices,

T
F=e¢*Tand G = / ABdt. (3.83)
0

Equation (3.82) can be written,
x((k+1)T) =Fx(kT) + Gu(kT), (3.84)

which is the discrete time state equation. In agreement with (2.130) this is
abbreviated to,

x(k + 1) =Fx(k) + Gu(k). (3.85)

The corresponding output equation is identical to the continuous counterpart
with the exception that the time argument is discrete,

y(k) = Cx(k) 4+ Du(k) (3.86)
Since the derivation above is based on the assumption that all signals change

values in a step-wise manner (they are all staircase curves), the procedure is
sometimes called the step-invariant transformation.
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According to Frobenius’ theorem' the discrete time system matrix has the
eigenvalues

Ap = e T (3.87)
Example 3.3. Transfer Function of a Discrete Time System

For a SISO system the block diagram and the transfer function G(s), are given
on Fig. 3.4.

u(t) s+1 y(1)
—_— -
s2+125+20

Fig. 3.4 SISO system

Using the results in Sect. 2.3, it is possible to write down the continuous state
equation by inspection of the transfer function,

0 1 0
X = X + u,
-20 -—12 1

y=111]x.
On this basis the resolvent matrix can be calculated to be

D(s) = (sI— A) ' = 1 {S+ 12 1}

(s+2)(s+10) [ —20 s

and the state transfer matrix can be found by inverse Laplace transformation,

eAt _ d)(l) _ l 10672[ _ 28710[ e72t _ efl()t :| .
8 | =20 2 420100 D=2t 4 Qe 10

If a sampler and a zero-order hold are added in front of the system on Fig. 3.4 as
shown on Fig. 3.5 the system can be discretized by using (3.83).

u(t) u(kT) ()
Fig. 3.5 SISO system with JT —| ZOH G(s) ——>

sampler and zero-order hold

 Frobenius’ theorem: If a matrix A has the cigenvalues A; then the function f{A) has the
eigenvalues f{2;) if the function f{z) is analytic in a region in the complex plane containing the

eigenvalues A;. The function ¢T is analytic in any finite region of the complex plane.
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For a sample period, 7" = 1 sec, the matrices F andG can be found

AT 0.169 0.0169
F=e |T:l = ’
—0.338 —0.0338

the eigenvalues of A and F are

2 0.1353
7\, == 7\, =
A {—10 ) {4.54- 105

and it can be seen that Frobenius’ theorem (3.87) holds for the system .
o2 _ o0 ]

T 1 1
G = / ABdt = 7/
0 8Jo | —2e72% 4 10e 10

1 [=5¢e 241044 0.0415
B 100169 |

80| 10e72 —10e710
The matrix C will be the same as for the continuous system,

c=[11]

This method allows calculation of the exact discrete time matrices but will be
very laborious to apply for systems order greater than, say, 2 to 3. The alter-
native is to use computer computation. m

Example 3.4. Linearized Oven Process Plant

In Example 2.9 a linearized time invariant model of a thermal process plant
is derived,

A
—~
~
~—
|

Ax(7) +Bu(z) + B,v(1),
y(1) = Cx(1),

where v(7) is a vector valued disturbance function. Note that the A denoting the
incremental states has been omitted and that all variables are deviations from a
stationary operating point (see Eq. (2.64)).

The continuous model turned out to be of order 4 and with the given data the
system’s matrices are
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—0.0499  0.0499 0 0
W | 00499 00667 0 0
0 0 —0.0251 o |
0 0 0.0335 —0.0335
0.00510 0.00510 0 0 0
0 0 4177 0 0
T 100377 —00377 |7 " | 0 001255 0.01255
0 0 0 0 0

The eigenvalues of the system matrix A can be found to be

—0.00769
—0.1089
—0.0335
—0.0251

This means that the system is characterized by the 4 time constants,

130 sec
9.18 sec
29.9 sec
39.8 sec

T =

If the system is sampled approximately 5 times per T,,;,, this gives "= 2s which
corresponds to the sample frequency f; = 0.5 Hz.

MATLAB provides an algorithm for numerical computation of F and G.
The computation is executed by the command (‘continuous-to-discrete’):

[F,G] = c2d(A,B,T).

The result are

0.9094 0.0890 0 0 0.00973  0.00973
- 0.0890 0.8795 0 0 G 0.000471  0.000471
N 0 0 0.951 o | | 0.0735 —0.0735

0 0 0.0632 0.9352 0.00243  —0.00243
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The discrete equivalent to B, can be computed using the same command as
above but with B replaced by B,:

[F,Gv] = c2d(A,Bv,T),

—0.386 0 0
| -783 0 0
o 0 0.0245  0.0245

0 0.00081 0.00081

This shows that the numerical structures of the continuous time matrices and
their discrete time equivalents resemble each other to some extent. It should be
pointed out that such a similarity is not always found. This can also be seen in
the next example. m

Example 3.5. Phase Variable State Space Model

Considering a state space model in the phase variable form, it is known
(see Sect. 2.3) that it will only contain the necessary parameters, namely the
coefficients of the nominator and the denominator polynomials. An example
could be
0 1 0 0
. 0 0 1 0
1o 0o o 1M
-2 -5 -7 =2

u, y=1[1 3 0 0]x.

- o O O

A’s eigenvalues are

[ -0.597£j23.1
"1 —0.403+/ 0435

and the largest of the two natural frequencies is @ . = 2.39rad/s or
Jumax = 0.38 Hz. It is desireable to use a sample frequency at least 10 times
higher, choose f; = SHz or T = 0.2 s here.

The MATLAB command from Example 3.4 generates the result

0.9999  0.1997  0.0196 0.0012 0.0000611
—0.0024 09939  0.1913 0.0172 0.001193
=1 200343 —00883 08737 01570| | 001717
03140 —0.8193 —1.187 0.5597 0.1570

Itis clearly seen that the simple structure of A and B is lost by the discretization.
A and B had only 4 elements different from zero or one whereas F and G
have 20. m
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3.4 Solution of the Discrete Time State Equation

The discrete time and time varying state equation (2.132) is in principle easy to
solve because it is in reality a recursion formula,

x(k + 1) = F(k)x(k) + G(k)u(k), (55)
y(k) = C(k)x(k) + D(k)u(k). '

If the initial state is known, the state at the next sample instant can be
calculated and so on. If the initial time and state are ky and x(k) respectively,
it is found that

X(ko + 1) = F(ko)x (ko) + G(ko)u(ko),
x(ko +2) = F(ko + 1)x(ko + 1) + G(ko + Du(ko + 1)
= F(ko + 1)F(ko)x (ko) + F(ko + 1)G(ko)u(ko) + G(ko + L)u(ko + 1),

x(ko +k) = F(ko + k — 1)x(ko + k — 1) + G(ko + k — Du(ko + k — 1) 59
= F(ko + k — )F(ko + k —2) ... F(ko)x (ko)

+F(ko + k — 1)F(ko +k — 2) ... F(ko + 1)G (ko)u(ko)

+F(ko + k — 1)G(ko + k —2) ... F(ko + 2)G(ko + Du(ko + 1),

+F(ko + k — 1)G(ko + k — 2)u(ky + k — 2)
+ Glko +k — Dulko + k — 1).

Comparing Eq. (3.89) with (3.20) the discrete time state transition matrix can be
defined:

&(l,m) =F(—1)F(I—2)...F(m) , &(,]) =1. (3.90)

The general solution can then be written,

X(k()) for k:ko,

XKD =3 o, ko)x(ko) + 5 bk, i+ )G(u() for k> ko1, OOV

i:/CO
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and the output becomes,

C(ko)X(k()) + D(ko)ll(ko) for k= ko,
C(k)(k, ko)x (ko)

y(k) = . (3.92)
+ > C(k)d(k,i+ 1)G(i)u(i) + D(k)u(k) for k> ko+ 1.
i:k()
In this case the unit pulse response can be defined:
. D(k) for k=i
(ki) = . . : (3.93)
C(k)d(k,i+ 1)G(i) for k> i
For x(k¢) = 0,, the output is
k
y(k) = h(k, iju(i). (3.94)
i:k(]

The matrix element /y;(k, ) is the I'th element of y(k) when the j’th element
of u(k) is a unit pulse at time i and all other elements of u are zero, i.e.,

uk) =100 ... 0~4(k)0 ... 0]", (3.95)

where the unit pulse is defined as seen on Fig. 3.6.

Fig. 3.6 Unit pulse function v (k)

As in the continuous case, the results above are difficult to use for further
analytical purposes because a closed form expression for (3.90) cannot in
general be found.

3.4.1 The Time Invariant Discrete Time System
If the matrices in Eq. (3.88) are constant,

x(k + 1) = Fx(k) + Gu(k),

(3.96)
y(k) = Cx(k) + Du(k),
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then the initial time and state vector can be set to ky = 0 and x(k) = x(0) = xo.
This simplifies the solution considerably. Recursive calculation yields

x(1) = Fx¢ + Gu(0),
x(2) = Fx(1) + Gu(1) = F’x¢ + FGu(0) 4 Gu(1),

(3.97)
x(k) = F*xo + F*"'Gu(0) + ... + FGu(k — 2) + G(k — 1).
The expression for the &’th step can be rewritten as
k=1 '
x(k) = Fxo + Y _F“'"'Gu(i). (3.98)
i=0
The state transition matrix (3.90) is now reduced to
¢ (k) = F~. (3.99)
This is the discrete time counterpart of the continuous time exponential
matrix, eA’.

The parallel to the continuous solution (3.49) can clearly be seen. The first
term of (3.98) is the zero-input solution and the second term is the zero-state
solution. This sum is a discrete convolution of the two discrete time functions, F¥
and u(k).

For the output one has

k—1
y(k) = CF*xo + Y~ CF*"'"'Gu(i) + Du(k). (3.100)
i=0

The unit pulse response can also be defined here. Setting

D for k=0
h(k) = , 3.101
(k) {CF"IG for k>1 ( )

equation (3.100) for xo = 0 can be written as

k
i=0

y(k) => h(k — iu(i). (3.102)

The matrix element /i;(k) is the I'th element of y(k) when the j’th element of u(k)
is a unit pulse at time zero and all other elements of u are zero, see also the
expression (3.95) and Fig. 3.6.
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The Z-transform Method

It is possible to derive the solution to the time invariant equation in an alter-
native way using the Z-transformation. See also Appendix D.
The Z-transform of the discrete time function f{k) is defined by

Z{f0) = Fa) = 3 k)=, (3.103
k=

0

The shift properties of the Z-transform need to be used here:

Z{f(k — 1)} = z7'F(z) + f(—1) (backward shift), (3.104)
Z{f(k + 1)} = zF(z) — zf(0) (forward shift). (3.105)

The discrete time state vector x(k) can be Z-transformed element by element
and the time invariant state equation,

x(k + 1) = Fx(k) + Gu(k), (3.106)
1s transformed to

Z{x(k+ 1)} = zX(z) — zxo = FX(z) 4+ GU(=z), (3.107)

which can be solved for X(z),
X(z) = (z1 = F) 'zx¢ + (zI - F) " 'GU(2). (3.108)
With the definition,
U(z) = (1 —F) 'z (3.109)
The solution can be written down as
X(z) = U(2)x + (z1 — F)"'GU(2). (3.110)
Inverse Z-transformation of this equation leads to

x(k) = Z Y= F) ' 2¥xo + Z H{(zZ1 - F)'GU(2)}. (3.111)
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Comparing (3.111) with (3.98) and using (3.109), the discrete time transition
matrix can be found from,

dk) =F = Z7Y (A - F) 'z} = Z27H{U(2)}, (3.112)
which is the discrete time counterpart of (3.50). The matrix,
$(z) = (21— F) 'z, (3.113)

is called the discrete time resolvent matrix.
Equation (3.109) can be written as

_adj(z1 —F) -z

With the eigenvalues of F found from the characteristic equation,
det(Ml —F) =0, (3.115)
one can, similarly to the continuous case, factor the denominator in (3.114),

adj(z1 —F) - z

RN Ey S R s S ey v

(3.116)

where it is assumed that distinct as well as repeated eigenvalues exist in the
system.
Partial fraction decomposition yields

Z Z
;\I](z)iz—)\1+z—7\2 3117
+ Zrl + Zr2 + + Zrm + + ZG ( . )
z—N (Z—)\.r)z (Z_kl)m Z— Ao
or
zZ, zZ»
\IJ(Z)—Z_7Ll oy
+ ZZrl + ZZrZ + ZZrm + + ZZG (3118)
z — 7\" (Z _ }\q‘)Z cen (Z — }\’r)m e P 7\‘0
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and inverse Z-transformation gives the state transition matrix,

dk) =F- =Z X + 205 + ...
(3.119)
+ F(Zl‘thZv ey Zrﬂla ka )\')) + ... Zc7\,€_7

where the function F contains terms of the form Z,.qkq’lkf*k‘f, where k, is a
positive integer for g = 1,2,...,m.

3.5 Discrete Time Transfer Functions

Z-transforming the output equation in (3.96) and inserting (3.108) yields

Y(z) = CX(z) + DU(z) = C(zl — F) 'zx

(3.120)
+C(z1 - F)"'GU(z) + DU(z).
For the initial condition, xy = 0, it is seen that
Y(z) = (C(z21 - F)"'G + D)U(z). (3.121)
In accordance with the normal practice, the function,
H(s) = Cel —F) G+ p = SV =G+ detzI=FD )

det(z1 — F) ’

is called the discrete transfer function matrix. Equation (3.121) can then be
written

Y(z) = H(z)U(2). (3.123)

This could also have been found directly from Eq. (3.102). The right hand
side expression of this equation is the discrete convolution of the unit pulse
response and the input function. The Z-transform of (3.102) is the same
as (3.123).

As for the continuous case, the poles of the transfer functions will be the same
as the eigenvalues of the system matrix F if no pole-zero cancellation occurs in
the transfer function. This means that the poles are those solutions, z = p;, of
the equation
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det(z1 —F) = 0 (3.124)

which are not cancelled by zeros.

The terms p¥ or, in the case of repeated poles, k’ f-“k", are called the discrete
time natural modes. p; can be real or complex. For a real pole the continuous
system will exhibit a time constant,

- T
logepi '

For a complex pair of poles, p; i1 = o % j3, the continuous system will have the
natural frequency and damping ratio,

1 .

Linear State Equation Solution Overview

Continuous Time Discrete Time

State x(1) = Ax(7) + Bu(7), x(0) =xo  x(k+ 1) = Fx(k) + Gu(k), x(0) = x
equation y(1) = Cx(1) + Du(1) y(k) = Cx(k) + Du(k)
Resolvent O(s) = (sT—A)"" O(z) = (z1-F) 'z
matrix
State o(1) =M (k) = FF
Transition
matrix P
Solution x(1) = eA'xg + [y A9 Bu(t)dr x(k) = F'xo + Y F*""'Gu(i)

Impulse/pulse
response

Output
Eigenvalues

Natural modi

Transfer
function

g(1) = CeMB + D3(1)

y(1) = fyg(t = Du(t)de
Solutions to det(A\I — A) =0
ek,t tm—le}\;[

G(s) =C(sI—A) 'B+D

=0
_JDfork=0
h(k) = { CF'G for k> 1
k

y(k) = ;)h(k — iu(i)
Solutions to det(M —F) =0
S Y
H(z) =C(zI-F)'G+D

Example 3.6. Time Response of a Discrete Time System

Suppose that a system is described by the matrices:

—4 -

A:{O ILB:[H,C:HOLDza
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The eigenvalues of A are complex conjugates,
s = —0.54+ j1.937,
which means that the natural frequency and the damping ratio are
o, = 2 rad/sec, ¢ =0.25.

The system is now discretized according to the rules in Sect. 3.3 using the
sample period 7" = 0.1 s. Applying Eq. (3.83) leads to the matrices,

[ 09807  0.09453 ~ [0.004821
1 —0.3781 08862 |7 | 0.09453 |’

The eigenvalues of F are
Ar = 0.9335 £+ ;0.1831

and it is seen that the relation,
>\'F _ eO.l)\.A

holds (see Eq. (3.87)).
One can calculate x by using the state equations recursively or by applying
Eq. (3.98). Assuming xy = 0 with u(k) a unit step, one obtains

1) = 0.9807:x;(0) + 0.09453x,(0) + 0.004821 - 1 = 0.004821,
x2(1) = —0.3781x1(0) + 0.8862x5(0) + 0.09453 - 1 = 0.09453,
p(1) =1 x;(1) = 0.004821.

X1

(
(

x1(2) = 0.9807x; (1) + 0.09453x5(1) + 0.004821 - 1 = 0.01849,
x2(2) = —0.3781x1 (1) + 0.8862x3(1) + 0.09453 - 1 = 0.1765,
p(2) =1-x(2) = 0.01849.

3) = 0.9807x1(2) + 0.09453x,(2) + 0.004821 - 1 = 0.03963,
x2(3) = —0.3781x1(2) + 0.8862x2(2) + 0.09453 - 1 = 0.2439,
¥(3) = 1-x1(3) = 0.03963.

X1

(
(
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Fig. 3.7 Discrete time states 0.4
for a unit step input
(T =0.1)

02}

-0.2 - . .
0 2 4 6 t [sec] 10

A plot of the two states can be seen on Fig. 3.7.

On Fig. 3.8 the response y(k) = x| (k) is shown for the same input. For
comparison the unit step response y(¢) of the continuous system is also shown.
Note that the discrete time curves are drawn as staircase curves. From a
rigorous point of view this is not correct. The discrete state equation (and
the discrete transfer function) provides information on the system beha-
viour at the sample instants only. The staircase curves are used to illus-
trate that the discrete signals are assumed constant between the sample
instants.

It should also be noted that the continuous and the discrete responses
coincide with each other at the sample instants. This is most clearly seen on
the enlarged section of the plot on Fig. 3.9. The two models obviously describe
the same system at these time instants.

0.4
035
03}
0.25
02
0.15
0.1f

0.05 |
Fig. 3.8 Continuous and 0
discrete response for T = 0.1 0 2 4 6 t[sec] 10

0.3

0.2F

0.1}

Fig. 3.9 Enlarged section 0
of Fig. 3.8 ’ : : © t[sec]

—_
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Fig. 3.10 Response for 0.4
T=205s
03}
02} ()
y(k)
0.1}
0
0 2 4 6 8 10

t[s]

When generating a discrete time model of a continuous system, one
can in principle choose an arbitrary sample period. It should be pointed
out, however, that the discrete model’s ability to display the original
system’s properties will deteriorate if 7 is too large. On Fig. 3.10 the
unit step response for 7=0.5s is shown. On this figure the system’s
oscillations agree reasonably well with those of the continuous system.
Figure 3.11 shows the response for 7= 2s. In this case it is difficult to

Fig. 3.11 Response for 0.4
T=2s
03}
0.2}
- y(®)
01} i)
0 -
0 2 4 6 Time [s] 10

see the resemblance between the continuous and the discrete responses.
Although the discretization is formally correct (note that the responses
still coincide at the sample instants), this discrete model is hardly an
appropriate tool for further investigations. The sample period 7= 2s is
more than half the oscillation period of the continuous system (which is
3.14 s) and that is obviously inadequate. An even larger sample period
would completely disguise the original system’s important oscillatory
properties.

The transfer function can be found from (3.122). For T=0.1 s one
obtains

z—0.9807 —0.09453 . z—0.8862  0.09453
zZI-F = , adj(zI — F) = ,
0.3781 z—0.8862 —0.3781 z—10.9807
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and
det(zl — F) = 22 — 1.8669z + 0.9048.

The transfer function becomes

H(2) Cadj(z1 = F)G  0.004821z + 0.004663
z) = = :
det(zI — F) z2 — 1.8669z + 0.9048

The natural modes are,
my = (0.933540.1831)% and m, = (0.9335 — j0.1831)",

and the corresponding natural frequency and damping ratio are
_ |log,(0.9335 +0.1831)|

On 0.1
¢ = — cos(£(0.9335 + j0.1831)) = 0.707.

=141,

3.6 Similarity Transformations

As it has been shown in Chap. 2, the state space model is not unique. If the state
variables are selected in the way as in Examples 2.2 and 2.9, it is possible to
generate one of the many possible state models. This ‘natural’ choice of state
variables is often quite sensible for all practical purposes in terms of analysis,
simulation and design of controllers.

Sometimes it is, however, necessary or practical to change the model to
a form different than the one initially selected. In principle it is quite
simple to alter the state space model. It is just a matter of changing the
choice of state variables. This can be done by similarity transformations. 1f
a n-dimensional state variable x is given, one can obtain another simply by
multiplying by a nonsingular constant matrix P of dimension n X n,

z=Pxex=P 'z (3.125)

The state model for the new state vector is readily found. Whether one
considers a continuous or a discrete model:
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x(7) = Ax(7) + Bu(7), y(¢) = Cx(¢) + Du(?),
or (3.1206)
x(k + 1) =Fx(k) + Gu(k), y(k) = Cx(k) + Du(k),
one can rewrite the state equations in terms of the new state vector z by
substituting for x in (3.126):
P~ 'z(t) = AP '2(7) + Bu(t), y(1) = CP~'z(¢) + Du(?),
or (3.127)
P~ 'z(k 4 1) = FP~'z(k) + Gu(k), y(k) = CP"'z(k) + Du(k).

Premultiplying the first equation in each line by P yields the result:

(1) = PAP 'z(1) + PBu(¢), y(1) = CP'z(¢) + Du(),
or (3.128)
z(k + 1) = PFP~'z(k) + PGu(k), y(k) = CP"'z(k) + Du(k).

The new equations written in the standard form are

z(t) = Az(t) + Bu(r), y(1) = Ciz(t) + Dou(1),
or (3.129)
z(k+ 1) =Fz(k) + Gu(k), y(k) = Cz(k) + Du(k),

where

A, =PAP!' or F, = PFP,

B, =PB or G, = PG,
(3.130)
C,=CP !,

D;:D.

Usually well defined physical variables are used when the state space model
is formulated, e.g. by using the ‘natural’ state variables in the examples of
Chap. 2. Applying the transformation (3.125) a new set of state variables is
obtained. These will in general be linear combinations of the original state
variables and consequently they will usually not be quantities with a specific
physical meaning. This is sometimes taken as a disadvantage of the similarity
transformation technique, since the person making and working with the
model seems to lose the immediate ‘feel” for what is going on in the model.
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However, as will be apparent later, transformation can provide considerable
benefits when it is applied.

As will be seen here and in what follows, the transformed system does retain
the essential dynamic properties of the original system. In Sects. 3.2.1 and 3.5
the eigenvalues and the corresponding natural modes were found to be of great
importance for the system’s behaviour. Eigenvalues for the system matrix are
found from the characteristic equation,

det(M — A) = 0, (3.131)

or from the analogous equation involving F. Writing the characteristic equation
for the transformed system leads to

det(OM — A;) = det(L,PP~' — PAP™') = det(P(A,1 — A)P~)
= det(P) - det(\1 — A) - det(P™') = 0 (3.132)
= det(MI— A) = 0.
The last implication follows from the fact that P and P~! are both nonsingular
and hence their determinants are nonzero. Equation (3.132) shows that A, and
A have the same eigenvalues.
For the continuous time state transition matrix (3.48) which uses the trans-

formed system matrix one obtains (using the series expansion for the matrix
exponential)

: 1
b,(f) = M = PAP 1 L PAP +5PAPTPAP 7 4.

| (3.133)
= P(I + At + EA%Z +.. > P! = PP =PH(1)P .
Similarly for the discrete time transition matrix (3.99) it is clear that
o,(k) = F* = (PEP~)* = (PFP~")(PFP') ... = PF'P~' = P (k)P
k factors
(3.134)

Diagonal transformation

Every constant quadratic matrix with distinct eigenvalues has a full set of
linearly independent eigenvectors. Denoting the eigenvectors v;, the so called
modal matrix,

M=[vivy ... V] (3.135)

is nonsingular.
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For matrices with multiple eigenvalues it may be found that some eigenvec-
tors are linearly dependent and consequently the modal matrix is singular.
Matrices with this peculiarity are called defective.

From the expression defining eigenvectors with the eigenvalue
equation,

AV,‘:A,,'VZ',V,'#O,I.ZI,...,I’I, (3136)
it is seen that
M 0 ... 0
0 2 ... 0
Alviva .o vy =[viva ... V] . . _ e (3.137)
0 0 M

Designating the diagonal matrix as A,
AM = MA. (3.138)

Assuming that A is non-defective one observes that

A=MAM ' o A=M"TAM. (3.139)

Equation (3.139) shows that the system matrix can be transformed to
diagonal form if the similarity transformation matrix P=M"' is
used, i.e.,

z=Px=Mx. (3.140)
The systems (3.126) will be transformed to
2(1) = Az(t) + Bu(1), y(r) = Ciz(t) + Dou(z),

or (3.141)
z(k+ 1) = Az(k) + Gu(k), y(k) = Cz(k) + Du(k),
where
A=M"'AM or A =M 'FM,
B,=M"'B or G,=M"!G,

C, =CM,
DI == D

(3.142)
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The continuous state equation in (3.141) can be written

M0 L..00

. 0 X ... 0

= | ' ' ~|z+Bau. (3.143)
0 0 ... A

For the i’th state variable one has,
n
=Nz + Y by, (3.144)
=1

which shows that the states are completely decoupled from each other. For
this reason the diagonal form is especially convenient for system analysis
purposes.

If the system matrix has repeated eigenvalues and is defective the diagonal
transformation is not possible. Based on the notion of generalized eigenvectors
it can be shown however (see Sect. B.2 of Appendix B) that a non-singular
transformation matrix can be generated which is close to the diagonal form in
this case. If the system matrix has / distinct eigenvalues, the transformed system
matrix will have the form

J 0 0
0 J, ... 0
J=1 ) ) . (3.145)
0o 0 0 J
where
Aox 0 0
0 A = 0
Ji = : 0 (3.1406)
0 0 0 X =
0 0 0 O

U mixm;

The * in the superdiagonal can be 0 or 1.
The state space model with the system matrix (3.145) is called the Jordan
normal form or the modified diagonal form. The submatrices J; are called Jordan
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blocks. They have the dimension m; x m; where m; is the number of times the i’th
eigenvalue occurs.

Example 3.7. Modal Matrix of a Continuous System

The following system is given:

0o 1 -1 1
x=|-6 —11 6 |x+|0]u
6 —11 5 2

y=1[001]

The characteristic equation is:

v =1 1
det(M —A) =det| 6 L+11 —6 | =0,
6 I ar=5

or

AL+ 11D (A =5) 436+ 66— 6(h+ 11) +6(h — 5) + 661 = 0
=AM+ 6+ 110+6=0.

This equation has the solutions

-1
A=< =2
-3.
The eigenvector v; for A; = —1 can be found by and inserting in (3.136)
0 1 -1 V11 V11
-6 —11 6 V21 =—1- V21
-6 —11 5 V3] V31

or

Vit +var —v31 =0,
6vi1 + 10vy — 6v3; =0,.
6vi] + 11vy; — 6v3; = 0.



98 3 Analysis of State Space Models
From these equations clearly
vii =31 and vy =0,

so a possible solution for the first eigenvector is

1
vV = 0
1
Similarly one finds that
1 1
vo=1|2|and v3= |6
4 9

The modal matrix and its inverse become,

5
11 1 35—2
M=1|0 2 6|.M'=|-3 —4 3|,
1 4 9 L3
2

and with the similarity transformation z = M~ 'x the new state model can be
computed

z=Az+Bu, y=Caz.

where
-1 0 0 —1
A=|0 -2 0|, B,B=M'B=| 3|, C,=CM=[149].
0 0 -3 —1

Using M™! as a transformation matrix implies that the new set of state
variables is

5
z1 = 3x; +§x2 — 2x3,

zy = —3x1 — 4x, 4+ 3x3,

zZ3 = X +§X2 — X3.
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Since the two state models above are models of the same physical system,
they will be equivalent to the same transfer function. This can be verified using
Eq. (3.71). In both cases the transfer function is

2824 16s+12  2(s+7.162)(s + 0.8277)
B0+ 1s+6  (s+1)(s+2)(s+3)

G(s)

Example 3.8. Modal Matrix of a Discrete System

Discretizing the continuous system,

0 0 05 10
00 1 0 0
A=|1 0 o|,B=|0 2|, C= ., D= ,
1 00 0 0
-8 —4 -1 0 0

with the sample interval 7'= 1 s, the following matrices for the discrete time
system are found,

—0.2468 —0.5153  0.1246 0.5069 —0.4325
F=| 05069 0.7838  0.1288 |, G= | 0.3658 1.8787
—3.0245 —-0.9970 —0.4960 —2.4936 —-2.0611

Here the MATLAB c2d-function has been used.
The eigenvalues of A and F are
{ —0.2334 £ 1.9227
ha =
—0.5332
—0.2729 +;0.7433
0.5867

The eigenvectors for complex eigenvalues will in general have complex
entries and so will the modal matrix for F. To avoid the slightly cumbersome
manipulations with complex numbers, MATLAB will be used to compute the
modal matrix. The command,

[M,E] = eig(F),

provides M as well as with the matrix E (which is diagonal with the eigenvalues
in the diagonal),

0.1578 +,0.1912  0.1578 —0.1912  —0.4205
M = | 0.08816 —j0.09280 0.08816 +j0.09280  0.7887
—0.8088 +0.5177 —0.8088 — j0.5177  0.4484
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Note that MATLAB normalizes the eigenvectors, i.e., all columns in M have
unity 2-norm,

||Vi||2 =

n 5
Z |vll| =1,
J=1

which can easily be verified.
Diagonal-transformation this system using (3.142) one finds that

—0.2729 + j0.7433 0 0
A= 0 —0.2729 — j0.7433 0 ,
0 0 0.5867

1.6415 —j0.1037 1.6099 + j0.3188
G, = | 1.6415+,0.1037 1.6099 —;0.3188 |,
0.1212 1.9471
—0.8088 +;0.5177 —0.8088 —j0.5177  0.4484
0.1578 +,0.1912  0.1578 —0.1912  —0.4205 .

C[:

Although the states of this state space model are decoupled, this is
not necessarily convenient for practical computations. However the
transfer functions will of course still have real polynomials. For this
MIMO system with two inputs and two outputs there are four transfer
functions,

where

Hll(Z) H12(Z):|

H(z) = {Hzl(z) Hy(z) |

The transfer function matrix H(s) can be found from Eq. (3.122) based on
the matrices above. The MATLAB command is for input number 1 (see the last
right hand side argument),

[num,den] = ss2tf (Lambda,Gt,Ct,D,1).

The denominator polynomial is the same for all four transfer functions,
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A(z) = 2 — 0.040942> + 0.3068z — 0.3679.

The numerator polynomials are

B (z) = —2.49362% — 0.5587z + 1.2564,

Biy(z) = —2.06112> +0.5418z + 1.5193,

(2)

(2)
By (z) = 0.5069z> — 0.6451z + 0.1382,
Bo(z) = —0.43252% — 1.1005z — 0.2629.

3.7 Stability

Stability is one of the most important properties of dynamic systems. In most
cases the stability of a system is a necessary condition for the practical applic-
ability of the system.

There are several possible definitions of stability. Most of them involve the
notion of an equilibrium point. For a system governed by the state equation,

or (3.147)
x(k + 1) =f(x(k),u(k),v(k), k).

A point X, is said to be an equilibrium point or state for the system if the state
is X, at some initial time #( or ko and at all future times in the absence of inputs or
disturbances. This means that

0 =1(x,,0,0,7) for t > 1y
or (3.148)
x(k+1) =x, =1(x,,0,0,k) for k > k.

In other words if the system is positioned in an equilibrium point, it will
remain there if not influenced by any input or disturbance. At this early
stage of the investigation, it is intuitively obvious that the existence of an
equilibrium point does not assure stability. If for instance the simple
dynamic system shown on Fig. 3.12 is considered, it is noticed that both
balls are in an equilibrium point but only the left ball is in a stable
equilibrium point.
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Fig. 3.12 Stable and
unstable equilibrium

Unstable equilibrium

Stable equilibrium

Comparing the above definition of an equilibrium point with the definition
of a stationary point in Sect. 2.4, it is seen that an equilibrium point is the same
as a stationary point in the special case ug = 0 and vy = 0 (compare Eq. (3.148)
with (2.63)).

For the linear systems the equilibrium points can be found by solving:

0=A(rx,
or (3.149)
x, = F(k)x,.

X, = 0 is always an equilibrium state for the linear system but there may be
others. In the continuous case the origin is the only equilibrium state if A is
nonsingular for all z. Such an equilibrium point is called isolated. If A is singular
(which means that it has at least one zero eigenvalue and def(A) = 0 ) there will
be infinitely many equilibrium points. Similarly if the discrete system matrix F
has the eigenvalue 1 for some k. In these cases Eq. (3.149) can be written

A(D)x, =0-X,,
F(k)x, =1-x,,

which shows that all the infinitely many eigenvectors ax, are equilibrium states.
For nonlinear systems the matter can be much more complicated. In
Fig. 3.13 a so-called phase plane plot is shown. The curves are possible trajec-
tories for a second order nonlinear system with the states x; and x,. The timeis a
parameter along the trajectories. One can see several trajectories for different
values of the initial states. The unshaded area is an unstable region. Two isolated
equilibrium points are apparent: one is stable and one is unstable. Trajectories
started near the closed contour in the bottom of the unstable region (in the top
of the fourth quadrant) will eventually follow the contour. Such a contour is
called a limit cycle. If an initial state is in the unshaded region, the trajectory will
go towards such a limit cycle or disappear into the infinite distance. Trajectories
started in the shaded stable region will end at the stable equilibrium point.
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i:’ X1 Trajectories

Unstable region

]

Stable region

\ X

Isolated stable
o ) Limit cycle equilibrium point
Isolated unstable equilibrium point

Fig. 3.13 Stable and unstable regions

From the Figs. 3.12 and 3.13 it is obvious that it is necessary to distinguish
between local and global stability. The systems on the figures are stable only for
certain values of the states but not for other combinations of the state variables.
In such cases one talk about local stability. If the entire state space is a stable
region, the system is said to be globally stable.

Now some more formal definitions of stability will be given. Note that the
definitions below are stated for continuous systems but they are also perfectly
valid for discrete time systems. It is only a matter of replacing the continuous
time ¢ with the discrete time k.

Stability Definition 1

The state x, is a stable equilibrium point at the time ¢ = ¢, if for any given
value & > 0 there exists a number (g, 7o) such that if ||x(79) — x.|| <&, then
IIx(7) — x.|| <e for all 1 > 1. A system which is stable according to this defini-
tion is also called stable in the sense of Lyapunov or stable i.s.L. For a second
order system the definition can be clarified as shown on Fig. 3.14. Stability i.s.L.
implies that if the system is started somewhere within the disk with radius 6 then
the trajectory will remain within the disk with radius € at all times.
If 8 is independent of ¢, the system is said to be uniformly stable i.s.L.

Stability Definition 2

The state x, is an asymptotically stable equilibrium point at the time ¢t = ¢ if
itis stablei.s.L. and if there exists a number 8, (#y) such that if ||x(#)) — X.|| <31,
then lim ||x(r) — x| = 0. If 3, is independent of 7y the system is uniformly
asymll)?oofically stable.
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Fig. 3.14 Stability in the X5
sense of Lyapunov

>
N

X

Fig. 3.15 Asymptotic stability X,

NP

X

On Fig. 3.15 is shown what this means for the second order system example. If
the systems’ initial state is within the disk with radius 9; then the trajectory will
remain within the disk with radius & (because asymptotic stability also implies
stability i.s.L.) and the state will tend to the equilibrium state x, as ¢ goes to infinity.

The two stability definitions above only depend on the properties of the
homogeneous (unforced) state equation. They deal with zero-input stability. An
alternative definition, which also includes the input, is the following:

Stability Definition 3

If any input satisfying the condition |[u(z)|| < kj <oo (i.e. the input is bounded)
for all 7 results in an output satisfying the analogous condition ||y (¢)|| < k» <oo
for all ¢, then the system is bounded-input-bounded-output stable or BIBO stable.

3.7.1 Stability Criteria for Linear Systems

Based on the definitions above a criteria for stability of linear systems is derived.
Consider the equilibrium point x, = 0 (the origin).

Stability Theorem 1A
The state x, = 0 of the homogeneous linear system

x(1) = A(1)x(1) (3.150)
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is stable i.s.L. if and only if there exists a finite constant M < oo such that
(2, 20)|| < M for all ty and ¢ > ¢,. (3.151)

The matrix norm will be used here:

Q|| = sup Qx| _ sup [|Qx]|. (3.152)

o XN =
The ‘if’-part (sufficiency) will be proved first. In other words, if (3.151) is

true, then it will be proved that the system is stable i.s.L.
The solution of (3.150) is

x(1) = &(1, to)Xo. (3.153)
From Eq. (3.152)
Qx| < QI - lIx]]- (3.154)
From (3.153), (3.154) and (3.151) one finds
IX(D)] = [lo(1, 0)xoll < [[0(1, 20)[| - Ix0l| < M - ||x0]- (3.155)

If for a given positive € one chooses § = ¢/ M, from (3.155) it is clear that
Isoll < 8= [Ix(1)]| < M- 57 == (3.156)

which shows that the system is stable i.s.L. according to definition 1.

It is also easy to see that condition (3.151) is necessary for stability. Assume
that the system is stable i.s.L. but (3.151) does not hold, i.e., the norm ||$(z, 79)]|
can take arbitrarily large values for some 7. This means that for given values of €
and & one can be sure that for instance,

(1, 20)]] >831 where 0<8; <. (3.157)

Now choose the vector v with ||v|| = | and such that

(2, 20)v]l = [1o(z, 20) I (3.158)

Furthermore, choose

X0 :61V‘ (3159)
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This means that

[[xol <8 (3.160)

which is the condition which is desired for the initial state.
But now

X = bz 10)x0ll = 81| (2, 20)v]|

(3.161)
=81[d(t, t0)]| > &1 = =€,

&

which contradicts the assumption that the system is stable i.s.L and the theorem
is proven.
Along the same lines one can prove:

Stability Theorem 1B
The state x, = 0 of the homogeneous linear system,

x(1) = A(0)x(1), (3.162)

is asymptotically stable if and only if there exists a finite constant M < oo such
that,

(2, 20)|| < M for all ty and ¢ > 1, (3.163)
and
tlim (2, 20)|| = 0 for all 7. (3.164)

The theorems above seem simple and their practical uses are somewhat
limited, since they are based on the norm of the state transition matrix for
which a closed form analytical expression does not exist in general. However,
for time invariant systems, the theorems lead to very useful stability rules.

3.7.2 Time Invariant Systems

The theorems in the last section are valid for continuous as well as for discrete
time systems and in the following specific rules will be derived for each of these
systems.

Continuous Time Systems
For the time invariant system,
x(1) = Ax(1), (3.165)
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one has (see Eqgs. (3.47) and (3.48))

(1, 10) = d(1) = eM. (3.166)

Fromequation (3.61), if A has no repeated eigenvalues, then the norm of ¢(¢)
can be written

1ol = ‘

i

<"1 - |1zl (3.167)
i

where the following matrix norm property has been used
[A+B+C+...|| <|All+|B] +|IC|| + ...

The matrices Z; are constant and so are their norms. The eigenvalues are in
general complex, A;;1 = a=£jb (and of course are real for b = 0) and the
exponential functions can therefore be written in the form,

ek,-t _ eat eﬂ”.

If the real part is nonpositive, i.e. a < 0, then all the exponential functions in
(3.167) are bounded and one can choose

M=sup || |12 (3.168)
i

and immediately it is clear that the condition of theorem 1A,
[o(D)]| <M, (3.169)

is fulfilled.

If A has repeated eigenvalues, Eq. (3.61) will contain terms of the form
Z,it'e“te | where [ is a positive integer. If ¢ < 0, the result of the procedure
above will be unchanged because

lim #e®e” = 0 for a<0. (3.170)

—00
If a = 0 this is not true since
|/ — oo for t — oo (3.171)

and the condition in Eq. (3.151) can obviously not be met.
The result of this investigation is as follows:
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e The state x, = 0 of the time invariant system (3.165) is stable i.s.L. if
and only if the eigenvalues of the system matrix A have nonpositive
real parts and if eigenvalues on the imaginary axis are simple
(nonrepeated).

If the real parts of A’s eigenvalues are strictly negative it is obvious from the
development above that the condition for asymptotic stability,

lim || ()] = 0, (3.172)

1—00

is satisfied and it can be stated that:

e The state x, = 0 of the time invariant system (3.165) is asymptotically stable
if and only if the eigenvalues of the system matrix A have negative real parts.

Example 3.9. Stability of a Phase Variable System

In this example consider a continuous time 4th order system with three different
eigenvalue locations,

-1.5 0 0
a. -2 b. -2 C. 0
—-0.3+;1.5 —0.3+1.5 —0.3+;1.5

The matrices are

0 1 0 0 0
0 0 1 0 0
A= . B= ,C=[1 0 0 0], D=0.
0 0 0 1 0
—dy —dad; —dy —djz 1

As a matter of fact only the system matrix A is important here since the stability
will be investigated according to stability definitions 1 and 2.
The characteristic polynomial of A is

P(A) = M+ @ + ol + ah+ a

with the coefficients

as 75} ay ao
System a 4.1 7.44 9.99 7.02
System b 2.6 3.54 4.68 0

System ¢ 0.6 2.34 0 0
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System a has all it’s eigenvalues strictly in the left half plane and it is therefore
asymptotically stable.

System b is stable i.s.L. because it has an eigenvalue on the imaginary axis.
System ¢ has a double eigenvalue on the imaginary axis and hence it is neither
asymptotically stable nor stable i.s.L. It is unstable.

A simulation (numerical solution of the system equations) in system a. for the
initial state xo = [0 1 1 0]” and u(r) = 0 results in the responses shown on
Fig. 3.16. On the left plot the phase plane plot is given for the first two states, which

Fig. 3.16 Responses for 2 ’ 2
system a 1

-2 0 x@ 2 0 10 t[sec] 20

means that x; is drawn as a function of x;. The right plot shows the usual time
response plot of the two states. As expected the states tend to zero in time since the
system is asymptotically stable and the only equilibrium point is the zero state
(see the remarks following Eq. (3.149)).

The responses for system b. are shown in Fig. 3.17. The system matrix for
system b. is

0 1 0 0

0 0 1 0
A =

0 0 0 1

0 —4.064 -354 =26

The eigenvector associated with the eigenvalue A, =0isv; =[¢ 0 0 0]7

where ¢ is any number and consequently any initial vector equal to this eigen-
vector will be an equilibrium point,
Xg = V] = Xe.

x(1)

Fig. 3.17 Responses for -2 : -1 :
system b -2 0 x@» 2 0 10 1 [sec] 20
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If this initial state is chosen for some ¢, the system will remain in that state at all
times. However, the initial state selected here is not an equilibrium point, which
is clearly seen on Fig. 3.17.

The simulation gives the final state,

X = lim x(1) =[1.312 0 0 0],
which is the equilibrium point found above for ¢ = 1.312. If it is desired that the
system come to rest closer to the origin (i.e., if a smaller value of € is required),
this can be achieved by choosing an initial state closer to the origin (picking a
smaller §). As a matter of fact € can be chosen arbitrarily small. This is in
agreement with stability definition 1: The system is stable i.s.L.

From the plots for system c. (Fig. 3.18) it is obvious that the system is
unstable. The phase plane plot as well as the plot of x;(¢) vs. ¢ goes to infinity
with time. This is also in agreement with the stability criterion above. One or
more eigenvalues in the right half plane would give a similar result. m

Fig. 3.18 Responses for 2 ; 10
system ¢ 3

()

2 )

. O .
0 10 x,0) 20 0 10 [sec] 20

Example 3.10. Eigenvalues of a Robot Arm

The two-link robot in Example 2.10 is a nonlinear system but earlier a linearized
model for a specific pair of link angles was derived. It was found that the
eigenvalues of the 4. order system matrix with the link angles 6, = 45° and
0, = —30° were

{ +4.933
ha =
+1.988

Linearizing the system for other angle combinations, other quite different
sets of eigenvalues would be found. Fixing the angle 6, = —30° and varying 0,
the results as shown on Fig. 3.19 can be obtained. Apparently the system is
unstable for the two positive values of the angle 0, since it has two eigenvalues in
the right half plane. For the two negative values of 0, the picture changes
completely. The eigenvalues are now purely imaginary (and nonrepeated) and
the system will be stable i.s.L. in these configurations.
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R
My = { +6.639 ! ; ;
+3214 R
el
% 0 6
6
o | 4933 : 1 1
R I i
0,=45° : : :
el
6 0 6
6
—_N° : * .
| e=0 Ay = { +0.0076 ! : 3
—*< +/3.794 ) R AR
. * .
oL AR
6 0 6
6 e Kool
Ay = { +73.012 *
+76.291 O o
. *
PSS
6 0 6
o=
! #
Ay = { +j3.214 ol -
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*
el
6 0 6

Fig. 3.19 Eigenvalues for two-link robot

It is obvious that the system’s properties will change considerably when the
angle configuration and therefore also the basis for the linearization is altered.
This is typical of nonlinear systems. m)

Discrete Time Systems

For the discrete time system which is time invariant,

x(k + 1) = Fx(k), (3.173)
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the solution (3.98) was found earlier with the state transition matrix given

by (3.119).
If F has only simple eigenvalues then

blk) =F =) "7}, (3.174)

For ;1 a complex conjugate pole pair one can write,
A= a+jb = |\i|e™, (3.175)

thus

()| = ’

>z
i

If the magnitude of all the eigenvalues has the property,

<>tz (3.176)

<1, (3.177)
all terms in (3.176) will be bounded. Setting

M =sup > il |2 (3.178)

one finds that
lb(k)|| <M. (3.179)

From (3.119) it is clear that this is still true even if F has repeated poles
provided they have magnitude less than 1 because the terms originating from
repeated eigenvalues will disappear with time:

Jim K n< = 0. (3.180)

Only if |A,| = 1 for some repeated eigenvalue will there be difficulties because in
that case the term will go to infinity with time,

k| — oo for k — oo. (3.181)

It can be concluded that

e The state x, =0 of the time invariant system, Eq. (3.173), is stable
i.s.L. if and only if the eigenvalues of the system matrix F are not
located outside the unit circle and if eigenvalues on the unit circle are
simple.
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If F’s eigenvalues are all strictly inside the unit circle, then it is certain that
Jim {6 (k)| =0 (3.182)

and hence:

e The state x, = 0 of the time invariant system (3.173) is asymptotically stable
if and only if the eigenvalues of the system matrix F are strictly within the
unit circle.

Example 3.11. Eigenfrequencies of a Time Varying System

Examples have been found which show that the stability rules involving the
eigenvalues of time invariant systems should not be applied to other classes of
systems. One such example is the following:

Consider the continuous time, time varying and unforced system,

—1 +acos?(t) 1 — asin() cos(?)
—1 —asin(r)cos(r)  —1 + asin’(7)

X(1) = x(1).

The eigenvalues are obtained from the characteristic equation,
M+ Q2-ah+2—a=0,
and the result is

2
XZ_Z oci 2—a)

- 2.
> 4 +a

It can be seen that the eigenvalues are real and negative or have negative real
parts for a<2.
The solution of the state equation above for 7o = 0 is

X(t) = d)(ta O)XO

where

e Dicos(r) e 'sin(t)
—eDisin(r) e ' cos(t)

¢(2,0) =

This can be seen by direct substitution in the state equation.

If o> 1 the elements in the first column of ¢(z,0) will clearly take on
arbitrarily large values as 1 — oo and hence the system is unstable even though
its’ eigenvalues are strictly in the left half plane for o > 2. m)

The results from this and similar examples should not lead to the presump-
tion that stability evaluations based on eigenvalues always will give wrong
results for time varying systems. As a matter of fact, the eigenvalues will often
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give reliable information on stability also in these cases. This subject will not be
pursued further here but the interested reader is referred to more specialized
textbooks such as Rugh (1996).

3.7.3 BIBO Stability

According to stability definition 3 on p. 104 the input-output stability or BIBO
stability problem can be treated in a way similar to the development in Sect. 3.7.1
and 3.7.2. In this case the derivations will be omitted and only the final results stated.
For a more detailed discussion the reader is again referred to Rugh (1996).

Note that in the stability theorem below the influence of the D-term of the
output egs. (3.25) or (3.88) is not mentioned. It is obvious, that if D is bounded
it will not affect the boundedness of the output and if it is not bounded, then
the output is not bounded either. The theorem is based on the unit impulse
response (3.28) or, in the discrete time case, the unit pulse response (3.93).

Stability Theorem 2
The continuous time linear state equation (3.8) and (3.25) is BIBO-stable if and

only if there exists a finite constant ¢ such that the unit impulse response satisfies
the condition:

t
/ la(t, )| dx < ¢ for ¢ > o, (3.183)
[

The discrete time linear state equation (3.88) is BIBO-stable if and only if there
exist a finite constant ¢ such that the unit pulse response satisfies the condition:

k—1
> llgk, )| < ¢ for k > ko. (3.184)
i=ko

Note, that for linear systems in general, BIBO-stability and zero-input stability
of the origin as discussed in Sect. 3.7.1 are not necessarily equivalent.

Time Invariant Systems

e The continuous time LTI system (3.37) and (3.53) is BIBO-stable if and only if
the poles of the transfer function matrix (3.71) are strictly in the left half plane

e The discrete time LTI system (3.96) is BIBO-stable if and only if the poles of
the transfer function matrix (3.122) are strictly within the unit circle.

As can be judged from the above stability rules, zero-input stability and
BIBO-stability are equivalent for LTI-systems if the systems’ eigenvalues and
poles are the same. This is not always the case and therefore one must distin-
guish between internal and external stability.
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3.7.4 Internal and External Stability

The state space model is an internal model and the stability investigation
based on the state model will reveal whether or not the system is internally
stable. For LTI systems this property is determined by the eigenvalues of the
system matrix.

If the model is represented by a transfer function matrix (Eq. (3.71) or
(3.122)), then one is dealing with an external model and the placement of the
poles gives information on the system’s external stability. If an unstable eigen-
value/pole is cancelled by a zero, the system may be externally stable although it
is internally unstable. Conversely, an internally stable LTI-system will also be
externally stable.

Example 3.12. Externally Stable and Internally Unstable System

Consider the SISO continuous time LTI system,

-3 4 12 1
x=|1 0 0 |x+]0]u,
0 1 0 0

y=[1 -1 =2]x.
The eigenvalues which are found from the expression

A+3 -4 —12
det| —1 A 0 [=0
0 -1 A

are

2

and it is obvious that the system is not internally (asymptotically) stable.
The external model is the transfer function

(s) _ 2 —s5—2
w) = A B e T

(s+1)(s—2) (s+1)

(s+3)(s+2)(s=2) (s+3)(s+2)°
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Thanks to the cancellation of the pole-zero pair, the systems poles are

{ -3
S =
-2
and the system is externally stable.
If u(r) is a unit step applied to the system and the response simulated the

results on Figs. 3.20 and 3.21 are obtained. All three states go to infinity for
t — oo but the output y(7) = x;(7) — x2(7) — 2x3(7) remains finite at all times.

Fig. 3.20 Output of 0.25
externally stable system y() ! ! ! 3
02F -/~ N~ e e R

05 | f oo P P e ]
O ffeee o e e e

0.05 ff-nmmmmeee- B R RRRREEE R RRRRRRRRE e

0 1 2 3 4 t[sec] S

Fig. 3.21 States of internally 10
unstable system

4 t[sec] 5

Consequently it is reasonable to state that the system is internally unstable
but externally stable. In spite of this interesting result, one should keep in
mind that exact cancellation of pole-zero pairs is more often found in text-
book examples than in real practical systems.

With matrix entries differing slightly from the integers in this example one
might see zeroes and poles very close to each other but not exactly equal. In that
case the unstable eigenvalue would remain as a pole in the transfer function and
the response y(f) would contain the corresponding unstable natural mode
although possibly with a very small weight factor. The first 5 s of the response
could very well look almost like that in Fig. 3.20 but at some later time it would
diverge and go to infinity. 0
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3.7.5 Lyapunov’s Method

Except for LTI-systems, stability analysis can be quite difficult. As indicated
above, there are several definitions of stability and a variety of stability criteria
for different classes of systems can be found. The Russian mathematician
Lyapunov formulated one of the most general stability criteria known. Only a
brief overview of the Lyapunov’s second (or direct) method will be given here.
For more details please refer to Vidyasagar (1978) or to Middleton and Good-
win (1990).

The Lyapunov method is based on the notion of positive definite functions of the
state vector x. The continuous scalar function W(x) is positive definite if and only if

1. W(0)=0,
2. W(x) > 0 for all nonzero x and
3. W(x) — oo for ||x]| — oo.
The scalar time dependent functions V(x, 7) and V(x, k) are positive definite
if W(x) is positive definite and if and only if
V(x,1) > W(x) for all x and 7 > 1, (continuous time)
or
V(x,k) > W(x) for all x and k > k (discrete time).

Stability Theorem 3A
The systems,

or (3.185)
x(k+ 1) =f(x(k), k)

are stable i.s.L. if V(x,7) or V(x,k) is a positive definite function and if and
only if

d
—V(x,1) <0
d[ (X’)—

or (3.186)

Vix(k+1),k+1) = V(x(k),k) <0.
Stability Theorem 3B
The systems (3.185) are asymptotically stable if V(x, ¢) or V(x,k) is a positive
definite function and if and only if
d
—V(x,1)<0

dt
(3.187)

or
Vix(k + 1),k + 1) — V(x(k), k) <0.
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The positive definite functions fulfilling the conditions of Egs. (3.186) or
(3.187) are called Lyapunov functions. Although these criteria look simple, they
are not necessarily easy to use in practical situations. The problem is to find a
Lyapunov function for the system at hand. It should be pointed out that lack of
success in finding such a function is of course not a proof of instability.

An example of a Lyapunov function with an obvious physical significance is
the energy function of a system. The total energy of a system is always positive.
If the (unforced) system dissipates energy with time, the total energy will
decrease as expressed in (3.186) or (3.187) and the system will be stable.

Example 3.13. Stability i.s.L. for a Nonlinear System

Consider the mechanical system on Fig. 3.22. A block with the mass M is
moving on a horizontal surface and it is assumed that the friction between the
block and the surface is of the Coulomb type (‘dry’ friction). The block is
connected to the surface frame via the linear spring with the stiffness constant k.

Fig. 3.22 Mass-spring \

system with o
Coulomb-friction Coulombfrlctlonforceff

When the block moves, the Coulomb friction force can be written
Jfr=d-sign(x). (3.188)

The friction force has the constant numerical value d and it is always directed
opposite to the velocity. Note that the sign-function is only defined for x # 0.
For x = 0 the friction force can assume any value in the range,

—d<f<d. (3.189)

The system model can be found simply by applying Newton’s second law to
the block’s mass,

MX = —kx —d - sign(%), x#0. (3.190)

If the velocity is zero at ¢ = 0, it will remain so for all future times if the spring
force is smaller than the maximum friction force d because one has

Mi=0, =0, |kx|<d. (3.191)
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If for some t, X = 0 and |kx| > d, the friction force will assume its maximum
value and in that instant of time Newton’s second law will be

MX = —kx +d - sign(x). (3.192)
The total energy is the sum of the kinetic energy of the block and the

potential energy accumulated in the spring.
Define now the state vector,

X1 X
x:{ }:H (3.193)
X2 X

Since the spring force is proportional to the deformation, the expression for the
total energy is

1 1
E(x) = meg + Ekxf. (3.194)

E(x) is quadratic in both state variables so it is found that

E(x) =0 for x =0,
E(x) > 0 for x # 0, (3.195)

and E(x) is a positive definite function.
The time derivative of E(x) is seen to be

%E(x) = mxyX; + kxx;. (3.196)

For x; # 0 the following expressions for the state equations are valid,

X1 = X2,
1 (3.197)
Xy = %(—kxl —d - sign(xy)),
which, inserted into (3.196), leads to
d .
EE(X) = —dx; - sign(x,) <0 for all x; # 0. (3.198)
For x, = 0 one has
d
—E(x)=0. (3.199)

dt
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Equations (3.198) and (3.199) can be combined to show that

d
TE(x) <0. (3.200)

This means, according to theorem 3A above, that the system is stable i.s.L.

Note that this system has infinitely many equilibrium points, namely all
points in the state plane (the system is second order) where

d d
Xzzoand —ESX]S% )

Lyapunov’s Direct Method for LTI Systems

For the homogeneous LTI system,

%(1) = Ax(1),

x(k+1) = Fx(k), (3:200)

a quadratic form can be formed by choosing a symmetric, constant matrix P,

V(x) = x"Px. (3.202)

If P is positive definite, Eq. (3.202) is a Lyapunov function candidate.
For the continuous and the discrete time cases respectively,

d
—V(x) = x"Px + x"Px,

dt (3.203)
AV =V(x(k+1)) — V(x(k)) = x"(k+ 1)Px(k + 1) — xT (k)Px(k).
Inserting the expressions (3.201) into (3.203) gives,
% V(x) = x"(ATP + PA)x,
AV = xT(k)(FTPF — P)x(k). (3.204)

Applying theorem 3B it can now be seen that if it is possible to find another
positive definite matrix Q such that

ATP+PA=-Q
or (3.205)
F'PF-P=-Q

then the systems (3.201) are asymptotically stable. These two equations above
are called the Lyapunov equations.
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3.8 Controllability and Observability

In the effort to design controllers for dynamic systems one is often con-
fronted with the question whether or not it is possible to give a closed loop
system an appropriate set of properties. This question may be divided into
several subquestions such as: can a controller be designed which will
stabilize an unstable system? Can one be sure that the system state can
be forced to achieve any desired value in state space? Can one be sure that
no state in the system can achieve undesired values? Is it possible to
determine all states in the system from the knowledge available in the
measured system output?

Answers to such essential questions can be found by considering a systems
controllability and observability. Before proceeding to formal definitions of
these concepts an introductory example will be given.

Example 3.14". Stability with Mixed Controllability/Observability Characteristics

Consider a fourth order LTI SISO system with the following state space model:

2 3 2 1 1
-2 =3 0 0 -2
X = X + u,
-2 =2 -4 0 2
(3.206)
-2 -2 -2 =5 -1
y=1[7642]x.
The system transfer function can be found from Eq. (3.71),
53+ 9s% + 265 + 24
G(s) = . 3.207
()= @105 1 35 + 305 1 24 (3-207)
The zeroes and the poles can be found from the polynomials of G(s),
—1
-2
-2
zi=4 =3 ,pi= 3 (3.208)
—4
—4

 Example 3.14 is borrowed from Friedland (1987).
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Three of the poles are cancelled by the zeroes and the transfer function is in
reality not of fourth order but only first order as

B 1
e

G(s) (3.209)
A block diagram of the system is shown on Fig. 3.23. It is not possible to see
from the model in Eq. (3.207) or from the block diagram that the system has an
order less than 4.

However if the system is transformed into the diagonal form (see p. 94), some
insight can be gained into the nature of the problem. Since all eigenvalues are
distinct, the modal matrix is regular and the similarity transformation can be
carried out without difficulties. With the modal matrix M a new state vector will
be introduced given by

v=M'x. (3.210)

Using MATLAB it is found that

-1 0 0 0 1.4142
0 -2 0 0 0
A = 5 B[ =
0 0 -3 0 2.4495
(3.211)
o 0 0 -4 0

C,=1[0.7071 0.4082 0 O0].

With this model representation a quite different block diagram on Fig. 3.24 can
be obtained. If the transfer function from the two block diagrams are found they
give exactly the same result as (3.209). The input-output description is the same.

From Fig. 3.24 one can see that the four states have different status in the
system. The state variable v; can be influenced directly via the input # and it can
be observed directly at the output. The state v, is not coupled to the input and
since all state are decoupled from each other, v, can not be affected by any other
state either. v, can be observed at the output just like v;. With v3 the opposite is
the case. It can be influenced from u but can not be ‘seen’ at the output. The last
state can neither be controlled via u nor be observed at y.

It seems natural to divide the system into the four first order subsystems
visible on Fig. 3.24:

Subsystem with v, is controllable and observable,
Subsystem with v, is not controllable but observable,
Subsystem with v3 is controllable but not observable,
Subsystem with vy is not controllable and not observable.
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Fig. 3.23 Block diagram of fourth order SISO system

Only one of the four states is controllable as well as observable and, as will be
seen later, this is the reason why the transfer function is in reality only of first order.
In the diagonalized system on Fig 3.24 it is obvious what consequences the lack of
controllability or observability have. In this case the four eigenvalues are uniquely
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Fig. 3.24 Block diagram of system on diagonal form

connected to each of the four subsystems. One can see that for instance the
subsystem with the eigenvalue v, can not in any way be affected from the input
by which one can hope to control the system and this eigenvalue’s influence on the
output must be accepted as it is. Similarly the two unobservable subsystems with
eigenvalues v3 and v4 will be invisible from outside the system. Since the system is
internally (and therefore also externally) stable, one can probably live with this state
of affairs. Even if the initial values of the states v, and v4 are nonzero, they will decay
to zero with time and they will do no harm. The state v; is affected by the input but it
will remain within finite limits for all times. m)

Note that a system where all uncontrollable states are stable is called
stabilizable, because any unstable state can be affected via the input and
therefore it may be stabilized. A system where the unobservable states are
stable is said to be detectable.

3.8.1 Controllability (Continuous Time Systems)
Controllability Definition

The linear system,
x(1) = A(1)x(z) + B(7)u(z), (3.212)

is controllable on the finite time interval [z, 7] if there exists an input u(#) which
will drive the system from any initial state x(#y) = X, to the zero state x(#;) = 0.
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Controllability is a property connected to the inner structure (i.e., the cou-
plings between the states) and the way the states are coupled to the input
variables. Controllability has nothing to do with the system outputs and
therefore only the state equation (3.212) is of interest for judging this property.
For obvious reasons, controllability defined as above is sometimes called
controllability-to-the-origin. See also Sect. 3.8.3.

There are several ways in which it is possible to determine whether a system is
controllable or not. Some of the criteria which can be used are closely related to the
type of direct inspection used in Example 3.14 but others are much more abstract in
nature. The study of the matter will start with a criterion of the last category.

Controllability Theorem CC1

The linear state space model (3.212) is controllable on [ty, #/] if and only if the
quadratic n X n matrix,

Wello,17) = / (10, OBOBT ()07 (10, 1), (3.213)

is regular. The matrix W.(1, ty) is called the controllability Gramian. It will first
be shown, that the test condition is sufficient, i.e., if the Gramian is regular, then
the system is controllable.

Assume that W.(1, #7) is regular and for a given arbitrary initial state vector
Xy, let the input vector be

u(r) = =BT ()d" (10, )W, (10, t)X0 , 1 € [to, 1/]. (3.214)

From Eq. (3.20) it is clear that the solution to the state equation at the final time
can be written

X(1) = (s o+ [ " 617 DB(u(x)de

. (3.215)
'f
= (17, 10)X0 — / o (1, )B(T)BT (1) (10, YW, (49, ty)Xodlt.
1o
Property (3.24) of the state transition matrix means that one can write
d(17,71) = d(17, 10) b (t0, T). (3.216)

Using this expression in the integral of (3.215) yields
I
x(1r) = &(1r, t0)x0 — d(1p, fo)/ & (10, T)B(T)BT (1) (10, )t W, (10, 17)X0
)

=0. (3.217)
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To see that the regularity condition is necessary, it can be assumed that it is
not and obtain a contradiction. In other words, suppose that the system is
controllable but W.(1, #/) is singular.
If the Gramian is singular then there exists a nonzero vector X such that the
quadratic form

x{W.(to, t9)xg = 0 (3.218)

or

xo We(to, t7)x0 = / T, BB ()07 (10, (xodi = 0. (3.219)

fo
Defining
z(1) = BT (1)) (1o, 1)xo, (3.220)
the integrand can be written
x1 & (10, BB (7 (10, 1)x0 = 27 (1)2(0) = (DI (3.221)
So the integrand is the square of the norm of a vector and therefore always

nonnegative. An integral with a nonnegative integrand can only be zero if the
integrand is identically zero over the entire integration interval,

Xgd(to, 1)B(t) =0, t € [ty 1. (3.222)
Since the system is controllable an input vector, u(¢), can be found such that
Iy
0 = d(t7, 10)X0 + / o(tr, 1)B(t)u(r)dt (3.223)
oy

or using (3.23) and (3.24),

Xo = —/[fd)(to,r)B(r)u(r)dt. (3.224)

Premultiplying by x{ and applying (3.222) gives the result,
Iy
x{xg = —/ x{ d(t9, T)B(1)u(t)dr = 0, (3.225)
to

which contradicts the fact that x( is a nonzero vector and the necessity of the
condition above has been proved.
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The quadratic controllability Gramian is clearly symmetric and furthermore it
can be shown that it is in general positive semidefinite. If the system is controllable,
the Gramian must be positive definite.

In the LTI case the transition matrix is

d(1,7) = AU (3.226)

and the controllability Gramian becomes

iy
We(to, ) = / Ao BBTeA (00 gy (3.227)

4

or, if one lets 7o = 0,
Iy -
W, (1) = / e ABB e A dr. (3.228)
0

Controllability theorem CCI1 is not convenient to use for practical controll-
ability tests but fortunately for LTI systems, an alternative criterion is available.

Controllability Theorem CC2
The LTI system model,

x(1) = Ax(1) + Bu(1), (3.229)
is controllable if and only if the controllability matrix,
M.=[B AB A’B ... A"'B], (3.230)

has rank n, i.e., full rank.

It will now be demonstrated that this rank requirement fails if and only if
the controllability Gramian is singular. If W,(z;) is singular the condition,
Eq. (3.222), is satisfied. For the LTI system the transition matrix is
¢ (0, 1) = d(7) = eA and (3.222) becomes

/() =xlerB =0, 10, 1] (3.231)

Since this vector is identically zero on the entire time interval, its time deriva-
tives must also be zero:

dz’ (t)/dt = x}e*'AB = 0,

P27(1))di? = xIeAA’B = 0,
0/ 0 (3.232)

d" 21 (1) /dt" " = x[eMAT'B = 0.
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This means that

xje*[B AB A’B ... A"'B|=x{e"M,=0. (3.233)

Al is a nonzero | x n vector whose elements are time functions

x(e
x{eM = [ai (1) ax(t) ... an(1)]. (3.234)

The n rows are called M.,

rf
l.T
M.=| |, (3.235)
r
and from (3.233) it is seen that
> anr! =o. (3.236)
i=1

The last expression shows that the n rows of M, are not linearly independent
and this means that M, has less than full rank.

The ‘only if’-part can be proven as follows. Using the series expansion
(3.44) of the matrix exponential and additionally the Cayley-Hamilton
theorem, e~A’ can be expressed as the finite series

-1

=

e—Ar — ZAk(_l)k _

o (1) AX. (3.237)
k=0 k!

(]

>~

=0

Postmultiplying by the n x m-dimensional B-matrix gives the n x m-
dimensional matrix,

ImO(O(Z)
—At — k 2 1 Imal(l)
e B=) w()A'B=[B AB A’B ... A"'B] . ., (3.238)
k=0 :
Imocn—l(t)

where I, is the m-dimensional identity matrix.
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The transpose of this matrix is

BT

B7A"
T,-ATr _
B'e = [ImO(O(t) Imocl([) cee Imanfl(l)] . (3.239)

BT(AT)nfl
Inserting (3.238) and (3.239) into (3.228) one obtains the result,

ImBll(t) ImBlZ(t) ImBln(l)

ff Iln Irﬂ e I"'I n
W, (1) :Mc/o B?I(I) B?z(f) | B? (1) M7

C

(3.240)

ImBnl (t) ImBn2([) ce ImBnn(Z)
= MLQM(Ty

where the B-functions are products of the a-functions above.

This equation shows that even if Q has full rank (i.e., nm), the quad-
ratic n x n matrix product to the right can not have rank larger that the
rank of M,. In other words, if M, has less than full rank, the Gramian will
be singular.

Note that from the development above, controllability due to theorem CC2
is independent of the final time #,. This means that if the system (3.229) has a
controllability matrix (3.230) of full rank, then the controllability matrix (3.228)
will be regular for any t,.

In addition to the two controllability theorems above there is a third one
which is based on certain properties of the eigenvectors of the system matrix A.

The usual 7’th eigenvector corresponding to the ’th eigenvalue of A is defined by

AVl':>\,,'V,', v,-;éO, = 1,...771. (3241)
Because of the order of multiplication in this equation the eigenvector v; is
sometimes called the right eigenvector. Similarly the left eigenvector is w; defined
by the relation
ThA _ T P
w,A=hw', w,#0, i=1,...,n (3.242)
Taking transpose on both sides of the equal sign in (3.242) gives

Alw, = hw; (3.243)

and it is seen that the left eigenvectors of A are the right eigenvectors of A”.
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All of the expressions (3.242) can be written in a compact form,

w wl

T T
"2 la=A|" | or QA = AQ. (3.244)
wl wl

Assuming that the left eigenvectors are linearly independent (which will be the
case unless A is defective), it is seen from (3.244) that

AQ ' = Q7 'A. (3.245)
Comparing this expression with Eq. (3.138) one has that

T
Wi

T
W

Q'=MorM'=Q= (3.246)

T
Wy

Controllability Theorem CC3

Part 1
The LTI system (3.229) is controllable if and only if no left eigenvector of A
exists such that:

w/B =0, (3.247)

1

which means that no left eigenvector of A must be orthogonal to all the
columns of B.

Part 2
The LTI system (3.229) is controllable if and only if the n x (n + m) -dimen-
sional matrix,

R, =[sI-A B], (3.248)
has rank » for any complex scalar s. This theorem is proved in RUGH (1996).

The controllability test in the two-part theorem CC3 is called the Popov-
Belevitch-Hautus test or thePBH test. Based on theorem CC3 a controllability test
for systems can finally be found with diagonal system matrices which is particularly
easy to use since it can answer the controllability question simply, by inspection.

Controllability Theorem CC4

A diagonal LTI system with distinct eigenvalues is controllable if and only if the
B matrix has no zero rows.
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The state equation for such a system can be written:

MO . 0 b bio bim
0 7\4 “e e O b b b m
x=Ax+Bu=| 7 x| 7F 7 u,(3.249)
0 0 e )\.,1 bnl an bnm

so A = AT and therefore right and the left eigenvectors are the same. Equation
(3.242) becomes

M 0 ...00
0 2 ... 0

(Wi wy Wi | = [hwi;i Awyy Aiwni ] (3.250)
0o 0 ... A\,

and the elements of /’th eigenvector are determined from the equations

Wk,'}\.k = 7\.,‘%’]([. (3251)
Since all eigenvalues are distinct it is found that
wii = 0 for k # i,
wii = q; for k=i, (3.252)
or
w/=[0 0 ... 0 ¢g 0 ... 0 0], q#0. (3.253)
The product (3.247) will have an appearance like
[0 0 0 0
0 0 0 0
WiTB = C]ibil qibiZ q:'bi3 q;'bim (3~254)
0 0 0 0
| 0 0 0 0 |

It is evident from (3.254) that w/B = 0 if and only if the /’th row of B is a zero row.
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If there are repeated eigenvalues, other eigenvectors than (3.253) can be
generated and the system can be uncontrollable even if B has no zero rows.
Applying theorem CC2, it can be proved that controllability is preserved by a
similarity transformation.

3.8.2 Controllability and Similarity Transformations

Using the transformation matrix P on a system with the matrices A and B,
Eq. (3.130) can be used to find the matrices of the transformed system,

A, = PAP,
(3.255)
B, = PB,
and the controllability matrix is
M. = [PB PAP PA’B ... PA"'B|=PM. (3.256)

where M. is the controllability matrix for the original system. The quadratic
P-matrix is regular and has full rank and therefore Eq. (3.256) shows that M.
and M., have the same rank.

In other words, controllability is preserved during similarity transformations.

3.8.3 Reachability (Continuous Time Systems)

In addition to the definition of controllability on p. 124, there is a similar
definition of reachability.

Reachability Definition

The system (3.212) is said to be reachable on the finite time interval [z, /]
if there exists an input u(#) which will drive the system from any initial
state X(7) = Xo to any final state x(#;). Sometimes the initial state is taken
to be the origin and in that case reachability is denoted controllability-
from-the-origin. For continuous time systems the issue of reachability
does not call for further investigations, since controllability and reach-
ability are equivalent for systems in continuous time. The theorems CCl1-
CC4 can therefore also be used as tests for reachability for this class of
systems.

Example 3.15. Controllability Analysis with the PBH Test

The system in Example 3.14 can be tested for controllability by applying the
theorems above.
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With the system matrices

2 3 2 1 1
-2 =3 0 0 -2
A= ) B= )
-2 =2 -4 0 2
-2 -2 =2 =5 -1

the controllability matrix M. can be calculated as
1 -1 1 -1
-2 4 -10 28
2 -6 18 —-54
-1 3 -9 27

M.=[B AB A’B A’B]=

The matrix has rank 2 and it is concluded that the system is not controllable.
The left eigenvectors corresponding to the eigenvalues are

wi=[4 3 2 1] for 1 = —1,
wi=[3 3 2 1] for Ay =2,
wi=[2 2 2 1] for A3 =3,
wi=[1 1 1 1] for a4 =—4.

It can be seen immediately that wIB = 0 and again, this time according to the
PBH-test, the conclusion is that the system is not controllable.

This result is plausible in the light of the block diagram on Fig. 3.24. It was
seen above that controllability is not changed by the similarity transformation:
if the diagonal system is not controllable, neither is the original system. That the
diagonal system is not controllable is evident not only from Fig. 3.24 but also by
theorem CC4 which can be applied here since the eigenvalues are distinct. The
B,-matrix has two zero rows and the system is certainly not controllable. m

Example 3.16. Controllability of an Electrical Network

Consider the electrical system on Fig. 3.25.
Itis desired to create a model of the system with the voltage « as input and the
current y as output.

Fig. 3.25 Passive electrical
circuit
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Using Ohm’s and Kirchhoff’s laws and the relations for inductive and capaci-

tive impedances on the two branches of the circuit,
diy

u= Ry + LE,
u= Ryir +v, (3.257)
1
=— | bdt.
v CJ 1o
Differentiating the third equation and inserting for i, in the second one yields
di
=Ry +L—
u 11+ ar
dv (3.258)
=R, C—+.
u ) 7 +v
Choosing the state vector, x = [i] V] T, the state equation for the circuit can
easily be found:
SIONE
X = Xt = (3.259)
" R,C R,C

The output y is the sum of the two currents,
u—v 1 1 1 1
R = X —— —u=1— —u. 3.260
y=i+ih=1i+ % X1 R2x2+R2u [ RJX+R2L{ ( )

The system is by its nature in diagonal form and the controllability theorem

CC4 can be applied if the eigenvalues are distinct.
From (3.259) it can be seen directly that the eigenvalues are

>"l = _%7
(3.261)
o L
2T T RC

Since both rows of B are always nonzero, it is obvious that the system is

controllable if the eigenvalues are distinct, i.e., if

R 1
— F = 3.262
7 R, C’ (3.262)
the controllability matrix is
1 R
L 12
M.=[B AB]|= ) e (3.263)

R,C R
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This quadratic matrix has rank 2 if the determinant is nonzero, which is
precisely the case if the condition (3.262) is fulfilled.
If the component values

Ry = 1009,
Ry, = 1kQ,
L=1H,

C = 10 uF,

are selected the model below emerges:

. [—100 0 ] { 1 ]
X = X + u,
0 —100 100

y=[1 —0.001]x+ 0.001u.

(3.264)

In this case the eigenvalues are equal and theorem CC4 does not apply. Thus,
even though the B matrix has no zero rows, one cannot conclude that the system
is controllable. On the contrary, the controllability matrix M, does not have full
rank and the system is clearly uncontrollable.

In this case it is simple to see why this must be the case. A block diagram of
the system is seen on Fig. 3.26.

The two states are decoupled and the two independent first order differential
equations,

X1 = —100x; + u,
X2 = —100x2 + 100u, (3.265)
can casily be solved. The solutions are
xi(1) = e (xig + p(r),
x2(1) = e 1% (xp0 + 100p(2)), (3.266)

where x;o and x,q are the initial values and

Fig. 3.26 Block diagram of
the uncontrollable system
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u(t) = /0 t %% (1) dr. (3.267)

If the situation is considered where it is desired to drive the system from an
initial state to the zero state,

xl(tf) 0
-[230]- (]
x2(1r) 0
for some final time f4 it is seen from (3.266) that this is only possible if
x20 = 100x19. But this is in disagreement with the definition of controllability,

which requires that the system is taken from any initial state to the zero statein a
given finite period of time. Consequently, the system is not controllable. m

Example 3.17. Controllability of the Water Tank Process

In the tank Example 2.9 a linearized MIMO model was derived for a specific
stationary state. The inputs to the system were the two input voltages u; and u;
to the control valves, the outputs were the measured level H, and temperature
T, of the R-tank and the state vector was composed of the two levels and the
two temperatures,

H,
H,
1) =
X = |
T
The system matrices turned out to be:
[—0.0499  0.0499 0 0
A 0.0499  —0.0667 0 0
- 0 0o  -00251 o |
. 0 0 0.0335  —0.0355
[0.00510 0.00510
0 0
B:
0.0377 —0.0377
. 0 0
[0 2 0 0
C= .
100 0 0.1

Using MATLAB the controllability matrix can be found,
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509.5 509.5 —25.45 —25.45 2.541 2.541 -0.2711 —0.2711
0 0 2545 2545 —2.968 —2.968 0.3249 0.3249
3766 —3766 —94.56 94.56 2.374 —2.374 —0.05961 0.05961
0 0 126.3 —126.3 —7.408 7.408 0.3291 —0.3291

The first 4 columns of M, are linearly independent and therefore the matrix has
full rank and the system is controllable. Canceling the first column of the
B-matrix, which means discarding the first input voltage u;, one might expect
difficulties with the controllability. However, testing the controllability from
the matrix-pair A (unchanged) and the reduced input matrix,

0.00510
0
—0.0377 |’
0

B =

it is discoverd (using MATLAB’s rank function) that the system is still
controllable. 0

3.8.4 Controllability ( Discrete Time Systems)

A definition of controllability exists for discrete time systems and it is quite similar
to the definition on p. 124. However, whereas for continuous systems the properties
of controllability and reachability are equivalent (controllability implies reach-
ability and vice versa), this is not necessarily the case for discrete time systems.

If a discrete time system is reachable one can find a sequence of control
inputs which will bring the system from any initial state to any final state.
Choosing the origin as the final state, the system fulfills the requirements for
controllability and it is seen that if the system is reachable, it is also controllable.
The following simple example shows that the converse need not be true.

Example 3.18. Non-Reachable System

Consider now the second order discrete time LTI system

x(k+1) = [(1) Hx(/«” [Hu(k). (3.268)

For the individual states one can write

(3.269)
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The system is clearly controllable because if for an arbitrary initial state one
has

Xp) = [a b]T
one can set

u(k) = —(a+5),0,0,...
and find that
x(k) =0 for k > 1,

which shows that the system is controllable. However, the second state x, (k) is
zero for all £ > 1 no matter what the input is and it is obviously not possible to
move it somewhere else. Therefore the system is not reachable. m

It turns out that this problem only arises if the discrete time system matrix F
is singular. If F is regular, controllability implies reachability as in the contin-
uous time case.

Although singular system matrices may be rare, the consequences of the
finding above must be accepted and the conclusion is that reachability is the
better measure for characterizing discrete time systems. Thus, in the following
the theorems and tests presented will be in terms of reachability.

3.8.5 Reachability ( Discrete Time Systems)
Reachability Definition

The discrete time linear system,
x(k+ 1) = F(k)x(k) + G(k)u(k), (3.270)

is said to be reachable on the finite time interval [ko, k] if there exists an input
sequence u(k) which will drive the system from the initial state x(ko) = 0 to any
final state x(ks). This property can also be denoted controllability-from-the-
origin. Sometimes the initial state is taken to be any vector x(ko) in the state
space. In the theorems and proofs below it is assumed that x(k¢) = 0 but only
minor and immaterial changes will occur if another initial state is selected.

Reachability Theorem RD1
The system (3.270) is reachable on [ko, k] if and only if the quadratic reach-
ability Gramian,

k/,]

W, (ko,ky) = D dlky.i+ NGOG ()¢ (Kpyi + 1), (3.271)
i=ko

is regular.
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It can be proved that the condition is sufficient by assuming that W,(ko, k) is
regular and then, for x(ko) = 0 and an arbitrary final state x(ky), choose the
sequence of input vectors,

u(k) = GT(k)d" (kp, k + DYW, ko, kp)x(ks) , k = ko, ki, ..., kp— 1. (3.272)

According to Eq. (3.91) the solution to the state equation at the final time can be
written as

k-1
X(tr) = > O(kyi+ 1)
i—ko
=1 (3.273)
=D Olkp i+ DGHGT ()T (kyi + 1)

i:ko
= x(ky)

and this shows that the system is reachable on [k, k/].

Conversely, assume that the system is reachable but the Gramian is singular.
If so, a nonzero vector x, can be found such that it’s quadratic form with
W, (ko, kr) becomes zero,

W, (ko, kp)x4 = 0, (3.274)
or
k1
W, (ko,kp)xa = Y X0 dlky, i + GG (1) ky, (i + 1)xa = 0. (3.275)
i=ko
Defining
2(i) = GT (D)o  (kpyi+ D)Xy, i = ko, ki, ooy kp— 1, (3.276)

it is seen that the summand can be written,

xT(ky i+ NGOG (NS (kyy i+ Dx, = 2 (2() = 2. (3.27)
Since the norm is nonnegative, z(7) must be identically zero for (3.275) to hold.

It was assumed that the system is reachable, so choosing x(ks) = X,, it is
known that an input sequence u,(k) can be found such that

X, = X(17) = Z¢ (kg i+ 1)G(i)uy(i). (3.278)
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Premultiplying by x! gives
k/ 1 k/ 1

=> x1d(kpi+ 1)G => 2(u,(i)=0 (3279

i= k() i= k()

which contradicts the assumption that x, # 0. The conclusion is that if the
system is reachable, then the Gramian must be regular.

The Gramian is in general symmetric and positive semidefinite. If the system
is reachable, the Gramian is positive definite.

In the time invariant case,

x(k + 1) = Fx(k) + Gu(k). (3.280)

The corresponding state transfer matrix is (see Eq. (3.90))
O(kpyi+ 1) =Fo 1 (3.281)

and the reachability Gramian can be written (for ko = 0)
W, (k) = > FHIGGT (FT )1 (3.282)
i=0

or, changing the summation index toj = ky— 1 — i,

W, (k) = Y FGG"(F"Y. (3.283)
=0
Reachability Theorem RD2
The LTI system model,
x(k + 1) = Fx(k) + Gu(k), (3.284)

is reachable if and only if the reachability matrix,

M,=[G FG FG ... F"'G], (3.285)

has rank n, i.e., full rank.
The solution to (3.284) at the final time k,is given by Eq. (3.98),

k=1
x(kp) =Y F¥"'"'Gu(i) for x(0) = 0. (3.286)
i=0
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The solution can be written
x(ks) = F¥"'Gu(0) + ... + FGu(k; — 2) + Gu(k; — 1)

[u(ky—1)]

3.287
=[G FG F*G ... F"'G]| u(2) ( :

For reachability it is required that x(k;) can be assigned any value in the
n-dimensional state space and with the input sequence in (3.287), it is
therefore required that the vectors in the matrix immediately to the right
of the last equal sign have at least n linearly independent columns. If this
is not the case for some k;, one may improve the situation by letting k,
increase, thus adding more columns to the matrix. However, according to
Cayley-Hamilton’s theorem all powers F?, for p > n can be expressed as a
linear combination of the powers up to n — 1, so one does not gain any-
thing further by letting k, grow larger than n. This shows that Eq. (3.287)
has a unique solution if and only if M, has full rank. The reachability
matrix is precisely the same as the controllability matrix (3.230) for con-
tinuous time systems and very often M, is called the controllability matrix
for the system (3.284).

Reachability Theorem RD3

The PBH test is also valid for discrete time systems.

Part 1
The LTI system (3.280) is controllable if and only if no left eigenvector of F
exists such that

w/G=0 (3.288)

1

which means that no left eigenvector of F must be orthogonal to all the columns
of G.

Part 2
The LTI system (3.280) is controllable if and only if the n x (n + m)-dimen-
sional matrix,

R =[ZI-F G (3.289)

has rank 7 for all complex scalars z.
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Reachability Theorem RD4

A diagonal LTI system with distinct eigenvalues is controllable if and only if
the G matrix has no zero rows.

The proofs for theorems RD3 and RD4 are similar to the proofs for theo-
rems CC3 and CC4.

3.8.6 Observability (Continuous Time Systems)
Observability Definition

The linear system,
%(1) = A()x(1) + B(u(1), x(1o) = o,
y(2) = C(0)x (1),

is said to be observable on the finite time interval [z, ¢/ if any initial state x, is
uniquely determined by the output y(¢) over the same time interval.

Observability has nothing to do with the input to the system but only
with the way the states are interconnected and the way the output is
connected to the states. Consequently only the unforced state space
model is considered.

(3.290)

Observability Theorem OC1

The linear state model (3.290) is observable if and only if the quadratic n x n
matrix,

Walto,t) = [ 67 () C (OCOO( w)dr (3.291)

is regular. The matrix W, (7, t/) is called the observability Gramian.
To see that the condition is sufficient consider the output solution (see Eq. (3.26)),

(1) = C(1)d(2, t0)Xo. (3.292)
Premultiplying by ¢ (7, 10)C” (¢) and integrating on both sides of the equal sign
yields

/ ! &7 (1, 10)CT ()y(1)dt = W, (10, 17)Xo (3.293)

which is a set of linear equations in the elements of xo. If W, (79, #/) is regular, x,
is uniquely determined.
Conversely, if the Gramian is singular, a nonzero vector x,, can be found such that

Wo(l‘(), lf)Xg =0 (3.294)
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and therefore also

xIW, (1o, t)x, = 0. (3.295)
But then

X(ITWO(Z(), ff)X,,T = /tf XZ(])T(t» IO)CT(t)C(Z)d)(tv tﬂ)xadt
’°U_ (3.296)
. / 27 (D2()dt = 0
where z(7) has been defined as
z(1) = C(1)d(t, 10)Xq- (3.297)

The integrand in the right hand term of (3.297) is the square of the norm of z(¢)
and since the norm is nonnegative, it can be concluded that

C()d(t,t0)xa =0, 1 € [to, /] (3.298)

Note that z(¢) is precisely the output of the system for x(¢y) = x,, and since
this output is identically zero over the entire time interval, x(#) cannot be
determined from y(¢) and the system is clearly not observable. In other words,
the regularity of the Gramian is also a necessary condition for observability.

For LTI systems one has ¢(z, ) = e*"") and for f, = 0 the observability
Gramian becomes

oo
W, (1) = / eAicTcerMdr. (3.299)
0

Observability Theorem OC2
The LTI system model,

x(1) = Ax(?),
) ® (3.300)
y(1) = Cx(1),
is observable if and only if the observability matrix
C
CA
M, = | CA? |, (3.301)
CA”71

has rank n, i.e., full rank.
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It can be shown that this rank requirement fails if and only if the observability
Gramian is singular. If Wy (#) is singular the condition (3.298) is applicable. For
the LTI system it is known that (7, 1) = ¢(z) = €A’ and (3.298) becomes

z(t) = CeMx, =0, t €0, ], (3.302)

Since this vector is identically zero on the entire time interval, its time deriva-
tives must also be zero

da(t)/dt = CAer'x, = 0,
d’z(t)/df* = CA*eA'x, = 0,

(3.303)
d"'z(t)/di"" = CA" ! eMx, = 0.
This means that
C
CA
CA? |eMx, = Myet'x, = 0. (3.304)
CA.nfl
eMx, is a nonzero n x 1 vector whose elements are time functions,
by (l
by (t
erix, = 2.( al (3.305)
bu(1)
If the n columns of M, are denoted M,
M, =c; €2 ... (3.306)
It is seen from (3.304) that
n
> ai(t)e; = 0. (3.307)
i—1

The last expression shows that the n columns of M,, are not linearly independent
and this means that M, has less than full rank.
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The ‘only if*-part can be proven as follows.
Using the series expansion (3.44) of the matrix exponential and additionally
the Cayley-Hamilton theorem, eA’ can be expressed as the finite series,

00 k k n—1
A = ZA;!Z) =3 () A" (3.308)

k=0 =0

b

Premultiplying with the » x n-dimensional C-matrix gives the » x m-dimensional
matrix,

C
. CA
CeM = " (CA* = [Ly()) Lyi() ... Ly()]| CA* |, (3.309)
k=0 .
CA"!

where I, is the r-dimensional identity matrix. The transpose of this matrix is

11‘70 (t)

r Ly (¢
ACT = [CT ATCT ... (AT)"'CT) Vf() (3.310)

Ir'Ynfl (t)

Inserting (3.309) and (3.310) into (3.299) results in the matrix,

LBi(6) LB ... LBy,(1)

LBo() LBan(t) ... LBy(7)

Iy
W, (1) = M! /0 dtM, = MIQM,, (3.311)

I"Bnl(l) Ii‘BnZ(l) tee Il’Bnn(l)

where the B-functions are products of the v -functions above. This equation
shows that even if Q has full rank (i.e., rn), the quadratic n x n matrix product
on the right can not have rank larger that the rank of M,. In other words, if M,
has less than full rank, the Gramian will be singular.

If the observability matrix M,, has full rank, then the system is observable for
all values of the final time #.

The PBH test for observability is expressed in the next theorem. In this case
the ordinary eigenvectors (right eigenvectors) are used:

AV,’ = 7\/,'V,f. (3312)
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Observability Theorem OC3

Part 1
The LTI system (3.300) is observable if and only if no right eigenvector of
A exists such that

Cvi=0 (3.313)

which means that no right eigenvector of A must be orthogonal to all the rows of C.

Part 2
The LTI system (3.300) is observable if and only if the (r + n) X n-dimensional
matrix,

R,—| © 3.314
=4 (33149

has rank » for any complex scalar s.

The theorem is proved in Middleton and Goodwin (1990).
For a diagonal system the following theorem is valid

Observability Theorem OC4

A diagonal LTI system with distinct eigenvalues is observable if and only if the
C matrix has no zero columns.

The proof can be based on observability theorem OC3 and follows the same
lines as the proof of controllability theorem CC4 on p. 130.

3.8.7 Observability and Similarity Transformations

Using the transformation matrix P on a system with the matrices A and C,
Eq. (3.130) can be used and find the matrices for a transformed system,

A, = PAP,
(3.315)
C,=CP !,
and the controllability matrix,
cp!
CAP™!
M, = | CA’P"' | =M, P, (3.316)
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where M, is the observability matrix for the original system. The quadratic P~
matrix is regular and has full rank and therefore Eq. (3.316) shows that M, and
M,, have the same rank.

In other words, observability is preserved during similarity transformations.

Example 3.19. Observability of the Water Tank Process
Consider now the observability property for the tank system in Example 2.9 (see

also Example 3.17).
The observability matrix can be computed to be

0 2-10° 0 0
0 0 0 104
9987 —1.134-10* 0 0
M, = 0 0 3354 3354 10-5
—1165 1389 0 0
0 0 —-19.67 11.25
127.5 —150.1 0 0
L 0 0 0.8712  —0.3773

By using MATLARB it is found that M, has full rank (the first four rows are
linearly independent) and it is concluded that the system is observable.

Omitting the temperature 7, as an output, a reduced output matrix is
obtained,

Cra=1[0200],

and the new observability matrix for the pair (A, C,.y) is

0 2-10° 0 0
j— . 4
M, .= 9987 1.344-10 0 O 10-5.
’ —1165 1389 0 0
127.5 —150.8 0 0

This matrix is obviously singular (as it has zero columns) and the system with
only the single output y; is not observable.
The system matrix A has the eigenvalues,

—0.03354
—0.02511

A — )
—0.109

—0.007686

and the corresponding right eigenvectors are
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0 0 06459 —0.7634
0 0  —07934 —0.6459
v v =10 00438 o 0
1 09698 0 0

Using the PBH-test for observability, the following products are found:

0 0 0 —1.292
CV] = ,CV2 = ,CV3 = 7CV4 = .
0.1 0.097 —1.527 0

None of these vectors are zero vectors and this shows that the original system
with two outputs is observable.

Carrying out the same calculation based on the reduced output matrix, C,.4,
one finds

Cde] = 0, C,,ngZ =0 CredV3 = —1.527, C,TdV4 = —1.292.

Since two of these products (in this case scalars) are zero, it can be concluded as
before, that the system with only one output is not observable. 0

3.8.8 Observability (Discrete Time Systems)

As it is the case for controllability/reachability, the proofs are often easier to
carry out in discrete time than in continuous time and therefore the proofs are
not given in this section. The proofs can be found in Kailath(1980), Rugh(1996)
or in Middleton and Goodwin (1990). The proofs can also be carried out as a
useful exercise for the reader.

Observability Definition (Discrete Time)

The discrete time linear system,

x(k+1) = F(k)x(k), x(ko) = xo, (3.317)

is said to be observable on the finite time interval [ko  k/] if any initial state X is
uniquely determined by the output y(k) over the same time interval.

Observability Theorem OD1

The state model (3.317) is observable if and only if the quadratic n x n
observability Gramian,

W, (ko, ky) = Zd» (i, ko) CT (k) CP (i, ko), (3.318)
i=ko
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is regular. W,(ko, ky) is symmetric and in general positive semidefinite. If the
system is observable, the Gramian is positive definite.
For an LTI system with ¢(i, ko) = F~% and with ko = 0 the Gramian is

W, (k) = > (F')'C"CF". (3.319)
i=0
Observability Theorem OD2

The LTI system,
x(k+ 1) =Fx(k),
( ) (k) (3.320)
y(k) = Cx(k),

is observable if and only if theobservability matrix,

C
CF
M, = | CF* |, (3.321)

CF”71

has rank #» (full rank).

Observability Theorem OD3
The PBH test.

Part 1
The LTI system (3.320) is observable if and only if no right eigenvector of
F exists such that

Cvi=0 (3.322)

which means that no right eigenvector of F is orthogonal to all the rows of C.

Part 2
The LTI system (3.320) is observable if and only if the (r + n) x n-dimensional
matrix,

R, = ¢ 3.323
=] (3.323)

has rank n for all complex scalars z.

Observability Theorem OD4

The diagonal theorem is the same as the continuous time observability
theorem OCA4.
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On the following pages an overview of the controllability/reachability and
the observability theorems is given.

3.8.9 Duality

If the two LTI state space models below are considered:

X = AX + Bu
Sy (3.324)
y =Cx
with the model
. T T
S. : {Z_AT”C u (3.325)
y=B'z

The controllability and observability matrices for the latter systems are:

C T
1 CA T
M..=[c" ATc" ... @A"Yy c'l=| =M!_, (3.326)
CAn71
BT
BTAT
M, = . =[B AB ... A"'B]" =M. (3.327)
BT(AT)H—]

This shows that the system S is controllable if and only if S, is observable and
that the system S. is observable if and only if S, is controllable. This property is
called duality.

3.8.10 Modal Decomposition

In the solutions of the state equations will be again investigated here in the light
of controllability and observability.
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As the starting point, take the diagonal transformation of a nondefective
continuous time LTI system and for such a system, apply Eq. (3.133) with
P~! = M (the modal matrix). Carrying this through one obtains for the state
transition matrix,

AL MMM (3.328)
The complete solution (3.52) of the state equation can now be written
t
x(1) = e*'x +/ A" Bu(t)dr
0

I (3.329)
= MMM x, +/ MeA I M~ Bu(t)dx.
0

If expressions (3.135) and (3.246) are used here, the zero-input solution
becomes

Xu:()(l) = MeA[M71x0

M0 0 1[wf
0 &M 0 | |w]
=[vi v A/
b a O (3.330)
0 0 Mt wh
= Zv eniwl X0
m=
Since ™" as well as wlxg are scalars, (3.330) can be written
n
Xu=o(t) = > (Whxo€" ). (3.331)

m=1

Following the same lines, the complete solution is

X(1) = Z(w X0€"" )V +va(J P 1=1) CBu(r)dr). (3.332)

=1 m=

Note that the integral contained in the right hand term is also a scalar.
A similar treatment of the discrete time solution (3.98) using (3.134) leads to
essentially the same result,

n

x(k) = " (wpxohy,) vm+2vm (ZM iwI Gu( )) (3.333)

m=1

the expressions in the parentheses again being scalars.
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These particular forms of the solutions are called modal decompositions.

It is obvious that the contribution to the solutions originating from the
eigenvalue X, (or rather, from the natural mode ¢*' or Xf;) will lie in the
direction of the corresponding right eigenvector v,,.

It is also obvious that if

w/B#0 or w.G#0 forallm

then all natural modes will be excited by the input. As has been seen, this is the
same as saying that the system is controllable/reachable (see controllability/
reachability theorems CC3/RD3).

The output becomes (the D-matrix is of no importance here and is set to zero)

n n t
(1) =) (whxoe")Cvy + > Cv,, < / e*m<”>w,7,;Bu(r)dr> (3.334)
m=1 0

m=1
and

n k—1

y(k) = (whxoky)CVi + Y Cyy, <Z K,k;,_l_iw;GU(i)>. (3.335)
m=1

m=1 i=0
In both terms on the right side of the equal sign it can be seen that if
Cv,, #0 forall m

then all natural modes will be present in the output. According to observability
theorem OC3 or OD3, this is equivalent to observability.

3.8.11 Controllable| Reachable Subspace Decomposition

If a system is not controllable/reachable, it is possible by a suitable similarity
transformation to decompose the system into controllable and noncontrollable
parts. The theorem supporting this possibility will be stated here without proof.
The proof can be found in Kwakernaak and Sivan (1972).

Decomposition Theorem 1

If the system with the matrices A, B and C is not controllable (i.e., A is of
dimension n x n and rank(M,) = p<n) then a similarity transformation can be
found given by z = Q~!x such that the transformed matrices have the form,

A(? A12

Ar—QlAQ—[O A

],Bt =Q 'B= []ﬂ ,C,=CQ=[C. Cp,]l,(3.336)



3.8 Controllability and Observability 155

where dim(A,) =p x p, dim(B,) =p x m, dim(C,) =r x p and where the
matrix pair {A., B.} is controllable,
and where

C(sI—A) 'B=C.(s1 —A.) 'B. = G(s). (3.337)

The transformation matrix Q can be generated as follows:

M, has dimension n X nm and since its rank is p, p linearly independent
columns can be found among the columns of M,. Suppose that these columns
arecy, ¢y, ...c,c,. Then choose n — p column vectors v, v2, . .. v,—, such that the
7 X n matrix,

Q=[er @ ... ¢ Vi V2 ... Vu,l (3.338)

becomes nonsingular.

Example 3.20. System Controllability Decomposition

Consider the 2 x 2 system,

-5 —10 10 1 4 Lo o
A=|2 -1 —2|,B=|1 of,Cc= . (3.339)
010
0 -4 1 12

The controllability matrix is readily computed to be

1 4 =50 5 =20
M,=|1 0 -1 4 -3 -8
1 2 =32 1 -14

One finds that rank(M,) = 2 and the system is not controllable.
It is obvious, that the first two columns of M, are linearly independent and if
vi = [1 0 0" is selected, it is found that,

4 1 0 1 0
Q=|1 0 0| and Q'=|0 —-55 05/,
2.0 11 =2
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and then
1 4 '2
A=Q'AQ=|-1 —1.-1],
0 1 =3
1 0
1 3.340
Bf = Q_lB = ) ( )
0 0
1 411
C,=CQ= L
1 0.0
Now, clearly,
-1 4 1 0 1 4
A, = ,B. = ,C. = ) (3.341)
-1 -1 0 1 1 0

It can also be seen that the noncontrollable part of the system is described by
the state equation,

Z3 = —3z3. (3.342)

The state z3 is decoupled from the other states as well as from both inputs and it
is therefore clearly not controllable. In contrast to this, it is easy to verify that
the system with the matrices {A., B} is controllable.

It is also quite easy, although a bit more cumbersome, to verify that the
original system (3.339) and the reduced system (3.341) have the same transfer
function matrix,

s—3 4(s+2)
$24+25+5 s2+25+5

G(s) =
s+ 1 4

24+25+5 242545

Note, that the state vector of the transformed system (3.340) can be found from
the expression z = Q~'x. With the Q found above one finds

Z1 = X2,
zo = —0.5x, + 0.5x3,

73 = X1 + Xp — 2X3.
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As seen from the reduced system (3.341), the state z3 is superfluous in the sense
that it is not necessary for the input-output description of the system.

Finally, it is noted that the uncontrollable system has the eigenvalue A = —3,
which means that this part of the system is stable. Thus it can be concluded, that
the system is stabilizable, see p. 124. 0

3.8.12 Observable Subspace Decomposition

If a system is not observable, it is possible by a suitable similarity transforma-
tion to decompose the system into observable and unobservable parts. The
proof of this theorem can also in this case be found in Kwakernaak and
Sivan (1972).

Decomposition Theorem 2

If the system with the matrices A, B and C is not observable (i.e. A is of
dimension n x n and rank(M,) = p<n), then a similarity transformation can
be found, given by z = Px, such that the transformed matrices assume the form,

A, 0
A21 Ano

o

A, =PAP ! = [ } B, =PB = [ ] C,=CP ' =[C, 0], (3.343)

no
where dim(A,) = p x p, dim(B,) = p x m,dim(C,) = r x p,
where the matrix pair {A,, C,} is observable,

and where

C(sT—A)'B=C,(sI —A,) "B, = G(s). (3.344)

The transformation matrix P can be generated as follows:

M, has dimension nr x n and since its rank is p, p linearly independent rows can
be found among the columns of M,. Suppose that these rows are ry,rs,...,1,,
then choose n — p row vectors v, va, ..., v,_, such that the n x n matrix,

I
I

p
pP— : (3.345)
Vi

V2

LY(n—p) J

becomes nonsingular.
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Example 3.21. System Observability Decomposition

The system,
-1 -4 4 30
01 0
A=|-3 -4 6|,B=|1 1|, C= L3 ol (3.346)
-3 -5 7 2 1

is controllable but not observable, as the (M,) = 2.
The observability matrix is

0 1 07
3 -2
-3 -4 6
M, =
4 -6 38
-3 -2 6
-2 0 4]

The first two rows of M, re linearly independent and these rows are selected as
the first two rows of the transformation matrix. If one selects v = [1 0 0], P
becomes regular:

01 0 0 0 1
P=|1 3 2|, P'=1]1 0 0
1 0 0 1,5 —-0,5 0,5
Then one finds that
5 -3'0
A, =PAP'=|6 -4 . 0],
2 21
11
2 1 (3.347)
B, = PB = ,
30
1 0.0
C,=CP'= -
0 1'0

and

5 -3 I 1 1 0
A, = { ], B, = { ], C, = { } (3.348)
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The second order system (3.348) is controllable as well as observable.
The system (3.348) as well as the original system (3.346) has the transfer
function matrix,

o
Gs) = [°} Ios | 2 (3.349)
s+1 s—2

All the transfer functions in (3.349) are of first order but nevertheless the system
is second order as seen from the controllable and observable state space model
(3.348).
The eigenvalues of the original system (3.346) are
-1
=11
2

-1
=1

The remaining unstable eigenvalue, A = 1, must belong to the unobservable
part of the system and it is therefore not detectable. m

and for the reduced system,

3.9 Canonical Forms

Depending on the controllability/reachability and observability properties of a
system, it is possible to construct state space models of a particularly simple
structure. These special model forms are called canonical or companion forms.
Below some important canonical forms for SISO systems will be presented.
Similar forms can be defined for MIMO systems but they do not have a form
which is as simple as those for SISO systems. Their practical use is thus some-
what more limited. The MIMO cases are treated in Kailath (1980).

3.9.1 Controller Canonical Form

In Sect. 2.3 it was demonstrated how a state model could be derived from a
SISO transfer function. Using the method of Sect. 2.3, the state space model
turned out to be on a special form which was called the phase variable form or
the companion form 1, see Eq. (2.46) and (2.47). This form is also known by
another name: the controller canonical form.

It was seen that a proper transfer function leads to a state space model with a
nonzero direct transfer matrix D. If the transfer function is strictly proper, the
D-matrix becomes zero.
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If a controllable SISO-system is considered,

X = Ax + Bu,
(3.350)
y = Cx + Du,
it is known that all the » columns of the controllability matrix,
M.=[B AB A’B ... A°' B, (3.351)

are linearly independent.
The characteristic polynomial for the system is

Pua = det(M — A) = X"+ a, (X" + ...+ a)h + a. (3.352)

Now a set of n column vectors can be defined as follows:

pl = B7
P = Apl + ap—1Pp; = AB + anlea
p; = Ap, + @, op; = A’°B +a, |AB +a, »B, (3.353)

p,=Ap, | +aip,=A""'B+a, | A"*B+...+axAB + aB.

It can be shown that the p-vectors are linearly independent because the
columns of M. are linearly independent. Consequently, defining the square
matrix,

P= [pn Pt P2 --- pl]’ (3354)

it is known that P~! exists.
Applying the Cayley Hamilton theorem,

Ap, = (A" +a, A"+ ..+ &A” + A + ag])B — a)B
= —aB=—ap, =P[000 ... 0 —a)’,

Ap, ;=p,—aip, =P[100 ... 0—a]”,
n—1 1 1P1 [ 1] ) (3355)
Ap, > =P, —ap; =P010 ... 0—a)

>

Ap; =Pr—ayip; =P[000... 1—a, ],
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this can be written

Alp, Py P -+
0o 1
0 0
=P
0 0
—dy —dadp

which means that

or

P
0o ... 0
0
0o ... 0
—a —dp-2
AP = PA,.
A.. = P'AP.

161
0
0
: =PA.. (3.356)
1
—dp—1
(3.357)
(3.358)

The last result shows that if the similarity transformation z = P~'x is used,
the system matrix of the new model representation will be

Which gives the immediate result that

B

which gives

The output matrix becomes

1 0
0 1
0 0
—a
=P[000 ...
0
0
P 'B=B. = |:
0
1
C.e=CP=[by by by ...

—dp-2

01)"

0

0
: (3.359)

1

—dp—1

(3.360)
(3.361)
bui]- (3.362)
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Finally one find that

D. =D.

(3.363)

The controllability matrix of the controller canonical model is easily com-

puted to be

Mc,(fc = [Bcc A(?L'B(?(? Achcc ce AZC_IBC(J]

0
0

0
0
0
0

—dp—1

—dp—1

2
ay—1 — dn-2

1
—dy—1
2
a, | —dp-2

3
—a, |+ 20a,-1Gp—2 — Qp-3

017
1 X
XX
L XX
XX

X X

(3.364)

where the X-elements are functions of the coefficients a;. The determinant of
M, . is always equal to 1 or —1 independent of the a;-coefficients and that is, of

course, in accordance with the precondition that the system is controllable.

Example 3.22. Controller Canonical Form Transformation

Consider a continuous time SISO system with the matrices,

1 6 -3 1
A=|-1 -1 1], B=|1l], C=[0 0 1]
-2 2 0 | 1
The controllability matrix is
(1 4 =2
M,=[B AB A’B]= |1 -1 -3
|10 —10

and since the determinant is det(M,) = 36, the system is clearly controllable.
The characteristic polynomial can be calculated to be

A—1 -6 3
Poa=det| 1 A+l —1|=1-31+2
2 -2

which means that



3.9 Canonical Forms 163

ay = 0,
ay = —37
[ 2.

The eigenvalues are

A

I
—

-2

so the system is unstable.
The p-vectors (3.353) can readily be found to be,

1
pi=B=|1],
1
4
p=AB+axB=AB=|—1|{,
0
-5
p;=AB+mAB+aB=AB-3B=| —6 |,
-13
and the matrix P and its inverse are
-5 4 1 0.02778  0.11111  —0.13889
P=[p; p, pjJ=| -6 —1 1|, P'=]0.19444 —0.22222 0.02778
—13 0 1 0.36111  1.44444 —0.80556

The similarity transformation leads to the new model representation in the
controller canonical form,

0 10 0
Ae.=P'AP=|0 0 1|,B.=P'B=|0]|, C.e=CP=[-13 0 1].
3.0 1

-2
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Fig. 3.27 Block diagram for
the controller canonical

+
form Y+~ |T|Z3 |T|Zz | 21 _y

The block diagram for the controller canonical representation is shown on
Fig. 3.27.

As expected, the block diagram has the same structure as the block diagram
in Fig. 2.14. This kind of block diagram, containing only constants, integrators
and summers, is often used as a basis for setting up analog or digital computers
for simulation purposes.

It is known that the system on Fig. 3.27 is controllable. The observability
matrix is

C 0 0 1
M,=|CA|=|-2 2 0
CA’ -4 —14 8
and since det(M,) = 36, the system is also observable. 0

As it has been pointed out previously, the controller canonical form is very
efficient in terms of number of parameters. A strictly proper n’th order SISO
system will in general have n> 4 2n parameters in its matrices. The correspond-
ing controller canonical form will at most have 2n parameters different from
zero or one, precisely the same as in the transfer function.

3.9.2 Observer Canonical Form

For an observable SISO system,

X = Ax + Bu,
(3.365)
y = Cx + Du,

with the characteristic equation,

Poa = detO ] —A) ="+ a, (N ..+ ah+ap, (3.366)
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the following set of linearly independent n-dimensional row vectors can be

defined:

q =C,
q; = CA + an71C7
q; = CA2 + an71CA + aan(jv

q/ =CA" ' +a, |CA" + ...+ a,CA + a,C.

Further, define the nonsingular n x n matrix,

(3.367)

(3.368)

The Q-matrix for the similarity transformation z = Qx can be used to obtain
the following matrices for the alternative model representation, which is called

the observer canonical form,

0 0 O 0 —ap T
0 0 0 —-a
Loloo1 o 0 -
Ay = QAQ =
00 0 ... 0 —a,,
L0 0 0 ... 1 —a, ]
bo
by
B, = OB = . ’
bnfl

(3.369)

(3.370)

(3.371)

(3.372)
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The observability matrix for the observer canonical form is

Coc
CocAoc
Mo,oc = CocAi(-

n—1
C”CAoc

[0 0 0 0 0 1 ]
0 0 0 0 1 — 1
0 0 0 — 1 aﬁ_] )
=10 0 1 —ay1 & —ay2 —@ | +2a,1ay-2 — a3 |(3.373)
o1 ... X X X X
1 X ... X X b% b |

Since det(M,,.) is equal to 1 or —1, the system is observable.
The observer canonical form is identical to the companion form 2 from
Sect. 2.3.2.

Example 3.23. Observer Canonical Form Transformation

Now an alternative method of achieving the observer canonical form for the
system of Eq. (3.365) will be considered.

If one supposes that one can obtain the observer canonical form (3.369)—(3.372)
by a similarity transformation z = Qx, then it is known that the original model
(3.365) must be observable. This follows from the fact that observability is invariant
under a similarity transformation, see section 3.8.7. So one knows that the obser-
vability matrices M, and M, ,., for the original model and the observer canonical
form respectively, are both nonsingular. From Eq. (3.316) it is known that

Mu,oc = M0Q71 (3374)
or
Q=M,! M,. (3.375)

The system of Example 3.22 has the matrices
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The coefficients of the characteristic polynomial are

a2:O,
ay :73,
a0:2

and the observability matrix (3.373) of the observer canonical form can be
written down directly:

0 0 1 0 0 1
My = |0 1 —apy | =01 0
1 —ap @ —aya 1 0 3

The transformation matrix is computed as

-4 —14 5
Q:M;})L,M,,: -2 2 0
0o 0 1

and the matrices of the observer canonical form become

0 0 -2
Ay = (2/&(271 =10 30,
0 1 0
—13
B, = QB = 0 )
1

Co.=CQ'=[0 0 1].

If the procedure of Sect. 3.9.2 is used, the same result will of course be obtained.

3.9.3 Duality for Canonical Forms
If the matrices in Sect. 3.9.1 and 3.9.2 are compared, it is found that

A=Al

oc?

B, =C’ (3.376)

oc?

Ccc = BT

oc?
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and it can be concluded that the controller canonical form and the observer
canonical form are dual models according to the definition of Sect. 3.8.9.

3.9.4 Pole-zero Cancellation in SISO Systems

In the preceding sections it was shown that a SISO state space model in
controller canonical form is always controllable and a model in observer
canonical form is always observable. On the other hand, the controller canoni-
cal form need not be observable and the observer canonical form need not be
controllable.

For a strictly proper transfer function the connection between transfer
function and the state space model is

G(s) =C(sI—A)"'B
or (3.377)
H(z) = C(zl - F)'G.
The following argument deals with the continuous time case but is equally valid

for the discrete time models.
If A is nondefective, Eq. (3.377) can be written,

G(s) =C(sI—A) 'B=CMM (s — A) 'MM'B
=CMM '(sT—AM) 'M'B=CM(sI —M'AM) 'M"'B  (3.378)
= CM(sl — A)"'M'B,

where M is the modal matrix for A. Using Eqgs. (3.135) and (3.246) one arrives
at the result

n

_ WT C,' TB
G(s)=Cl[vi Vs ... v,](sI—A)" '2 Bzzviw’x- (3.379)

i1 ST M

The pole/eigenvalue A; will only be present in the transfer function if the
products Cv; and w/B are both nonzero. One knows from the PBH observa-
bility and controllability tests that this means that the state space model is
observable and controllable. If, for some i, one has that CV; or w[TB =0 (or
both), then the pole/eigenvalue A; will not appear in the transfer function. It is
cancelled by a zero.
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This shows that if a SISO state space model is not controllable or not
observable (or neither) then zero/pole cancellation(s) will occur in the transfer
function. Note that this rule is not valid for MIMO systems.

3.10 Realizability

In this section the problem of the construction of state space models from
transfer function matrices for MIMO LTI systems is addressed.

The presence of a direct transfer matrix D in the state space model is
unimportant for the treatment of this subject and therefore it is assumed that
the state space models have the simpler form:

x(?) = Ax(¢) + Bu(r),
y(1) = Cx(1),
or (3.380)
x(k+ 1) =Fx(k) + Gu(k),
¥(k) = Cx (k).

If one starts by considering the SISO case, one can return to the development
in Chap. 2, Sect. 2.3. One can see directly from this section that one can
construct (or realize) a state space model with D = 0 for any strictly proper
SISO transfer function G(s) or H(z), i.e., any transfer function where the
numerator polynomial has a smaller degree than the denominator polynomial.
In this context the state space model (3.380) is called a realization of G(s) or
H(z). Note that Sect. 2.3 dealt with continuous time systems only but construc-
tion of the companion forms works equally well for discrete time systems. This
finding can be extended to MIMO systems.

Realizability Theorem

An LTI realization for the transfer function matrices G(s) or H(z) can be found
if and only if all elements of the transfer function matrix are strictly proper
transfer functions. The relation between the matrices of the realization and the
transfer function matrices is

C(sI—A)"'B=G(s)
or (3.381)
C(zI—F)"'G=H(z).

(Do not confuse the continuous time transfer function matrix G(s) with the
discrete time input matrix G).
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To prove the ‘only if” part of the theorem above it can be assumed that G(s)
or H(z) has the realization (3.380) and then it is known from Sects. 3.2 and 3.5
that (3.381) is true. From the above argument it is also known that the elements
of G(s) or H(z) are strictly proper transfer functions.

The ‘i’ part can be proved as follows. Suppose that G(s) or H(z) have
strictly proper transfer functions. If one looks at all the denominator poly-
nomials of say the elements Gj(s) of the r x m -dimensional G(s), one can
find the least common polynomial containing all factors in these denomi-
nator polynomials,

dis) =" +dprs™ + .+ dis + do. (3.382)
Then one can write
d(s)G(s) =N,_1 "+ N, o’ T+ ..+ Nis+Np (3.383)

where N; denote constant r x m -matrices.
It is now claimed that the following state space model is a realization
of G(s):

r 0, I, 0, ... 0, 0, 7
0, 0, L, ... 0,
A= ;
0, 0,, 0, ... 0, I,
| —dol,, —diL, —dol, ... —dyoly —dy 1,
(3.384)
0, -
0,
B=|: |, C=[NogN, ... N,,N, ],
0,,
LT,

where 0, and I, are the quadratic zero and the identity matrices,
both of dimension m. As seen from A, the state space model has the
dimension mp.
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Define the transfer function matrix:

Z(s)=(sI—A)'B= : . (3.385)
Z, i(s)
Z,(s)

The Z,(s)-matrices have the dimension m x m and Z(s) has the dimension
mp x m. If multiplying (3.385) by (sI — A), one finds that

sZ — AZ + B (3.386)
or
- V4 .
SZ1 Z2
SZZ .3
: = ’ . 3.387
- (3.387)
Sprl 7
sZ ’
’ _*dOZ] - dl Z2 B p—2Zp—] - dp—IZp + lm_

This equation gives two relations:
SZ,‘:ZH,I, i:1,2,...,p—1 (3388)

and
SLy, +doy +d\ Ly + ...+ dy L, =1, (3.389)

If successively the relations (3.388) are inserted into (3.389), it is found that

Z, = ﬁlm (3.390)
and, using (3.388) again,
Ly
! sk,
Z(s) = m L, . (3.391)
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Finally premultiplying by C one obtains

C(s1 — A)"'B = CZ(s)

1 - . (3.392)
= m [NO Nis ... NP,Q.SJ prlsp } = G(S)
Example 3.24. Realizability of a MIMO System
Consider a MIMO LTI system with the transfer function matrix:
1 3
B (s+ 1) s—2
G(s) = 543 ) (3.393)

GrG-2) (s-2)

The system has two inputs and two outputs, so r = m = 2.
The d-polynomial must contain all factors of the four denominator
polynomials,

d(s) = (s + 1)2(S— 2)2 =5t — 25 — 35" + 45 + 4.

Since 0,, = [8 8} and I, = { (1) (1)] , the matrices A and B of the state

space realization (3.384) are

0 0 1 0 0 0 0 07 [0 07
0o o0 0 I 0 0 0 O 0 0
o o0 o0 0 1 0 00 0 0
A o o0 o0 0 01 00 B= 0 0 (3.394)
o 0 0 0 001 0 0 0
0o 0 0 0 0 0 01 0 0
-4 0 -4 0 3 0 2 0 1 0
L0 -4 0 -4 0 3 0 2] L0 1]

Multiplying G(s) by d(s) yields,

2 —4s+4 38— 95— 6
d(s)G(s) =
(5)6(s) {s3+252—5s—6 2s2+4s+2}
which can be written,

d(s)G(s) = N3s* + Nas® + Nys + Ny
0 3 1 0
e S3+
1 0 2

—4
~5 4

|
Ne

s+
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One can now set up the remaining output matrix,

4 -6 -4 -9 1 0 0 3
C= , (3.395)
6 2 -5 4 2210

and a state space model corresponding to (3.393) is established. The state
space realization is of 8’th order which is a result of the method which has
been used.

The order of the transfer functions in (3.393) is one or two, so one might
suspect that the order of the state space model is greater than necessary. That is
in fact the case. One can however find state space models with the same transfer
function matrix but of lower order than 8.

If the state space model is tested for controllability, it is found that the
controllability matrix M, has the rank 8 and the system is certainly controllable.
The observability matrix M, has, however, only rank 4, so the model is not
observable. As will be seen later the model loses observability because it has
superfluous states. 0

3.10.1 Minimality

If one generates a state space realization of a system with a given transfer
function matrix G(s) (or H(z)), one knows that this realization is not unique.
One cannot be sure that the realization has the lowest possible order, i.e. that
the system matrix A (or F) of the state space model has the smallest possible
dimension. To be able to handle such realizability problems, it is useful to state a
formal definition of minimality. The definition can for instance be found in
Kailath (1980).

Minimality Definition

A minimal realization corresponding to G(s) is a state space model which has the

smallest possible system matrix A for all triples {A, B, C} satisfying the relation
C(sT—A)"'B=G(s). (3.396)

The definition is similar for discrete time systems:

A minimal realization corresponding to H(z) is a discrete time state space
model which has the smallest possible system matrix F for all triples {F, G, C}
satisfying the relation

C(z1 —F)"'G = H(2). (3.397)

It turns out that there is a simple connection between minimality and controllability/
observability. In fact one can prove the following theorem.
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Minimality Theorem

A realization {A,B,C} is minimal if and only if it is controllable and
observable.

A discrete time realization {F, G, C} is minimal if and only if it is reachable
and observable.

The continuous time version of the theorem will now be proved. A proof of
the discrete time version can be found in Rugh (1996). First assume that {A, B}
are not controllable. If that is the case then by application of the result from
Sect. 3.8.11, one could find another realization of smaller order with the same
transfer function matrix. But then {A, B} could not have been be minimal and
that proves the ‘only if” part of the theorem.

To prove the ‘if” part, it is assumed that the n’th order realization {A, B, C} is
controllable and observable and that one can find another controllable and
observable realization {A, By, C,} with the order n; < n.

The two realizations have the same transfer function matrix so one knows
that

G(s)=C(s1—A)'B=C (s — A;) 'B,. (3.398)

The impulse response (3.56) must therefore also be the same. With D = 0 one
finds that

g(t) = CerB = C e'B;. (3.399)
Stepwise differentiation with respect to time yields:
CAeMB = C1AMBy,
CA’¢A'B = C|Aje* By,

(3.400)
CA"eMB = C 1AM 'B;.
If one evaluates all of these expressions for # = 0 one obtains
CA'B = C,A/B; for all i. (3.401)
The controllability and the observability matrices for {A, B, C} are
C
CA
M,=| CA* |, M.=[B AB A’B ... A" 'B] . (3.402)
CA”71

nrxn
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and multiplying the two matrices,

CB CAB ... CA"'B
2 n
M,M., — CAB CA’B ... CA'B . (3.403)
CA"'B CA"B ... CA™’B

nrxnm

Similarly, for {A, By, C,} one calculates,

C
CiA,

M, =| CA} |, M. =B AB; AB; ... AI"'B;], ... (3.404)

C]A'li_l

nrxng

although it was assumed that n; < n. From Eq. (3.401) one can see that
calculation of MIO,IM;.I gives exactly the same matrix as in (3.403), so

MM, =M, M. (3.405)
Since {A,B,C} is controllable and observable, the Sylvester inequality’
shows that
rank(M,) = rank(M,) = n (3.406)
from which it follows that
rank(M,M,) = n. (3.407)
{A|, By, C,} is also controllable and observable and therefore
rank(M;, ) = rank(M,,) = n (3.408)
and

rank(M.,

0,1

M) =n. (3.409)

 The Sylvester inequality: If the matrix A has dimension m x n and B has dimension n x p,
then rank(A) + rank(B) — n < rank(AB) < min(rank(A), rank(B))
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But then, from (3.405) it follows that n; = n, which clearly contradicts the
assumption that n; <n. In other words, if {A,B,C} is controllable
and observable, no realization of lower order exists and the theorem is
proved.

Example 3.25. Minimality Analysis of a MIMO System

By application of the minimality theorem above, a suspicion concerning the
realization in Example 3.24 is confirmed. The state space model (3.394)—(3.395)
is controllable but not observable and therefore it is not minimal. The obser-
vability matrix has dimension 16 x 8 and rank p=4. To carry out the obser-
vable subspace decomposition of Sect. 3.8.12, one must pick the same number
of linearly independent rows from M,. It turns out that its first four rows are
linearly independent and one can set up the transformation matrix P as follows:

T4 6 -4 -9 00 37

6 2 -5 4 2 210

0 —12 4 —18 —4 0 1 6

4 0 10 2 -2 4 4 2

P=l 170 0 "0 T 00 of
0O 1 0 0 0 100

0o 0 1 0 0 010

L 0 0 0 1 0 00 1]

The upper four rows are the rows from M, and the rows under the dotted line
were selected in such a way that P becomes nonsingular.

The similarity transformation (3.343) yields the matrices of the minimal
realization,

z = A,z + B,u,
y = COZ,

where

o0 1 0
I N 1 B

12375 3735 1375 —1.6875| °
0.75 275 075 0625

Ie
|

[1000]
01 0 0]

A - = O
N NS W
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It can be verified that the reduced system {A,,B,,C,} is controllable and
observable and therefore a minimal realization. It can also be verified that the
system has the transfer function matrix (3.393). The state variables of the
minimal model can be found using the transformation z = Px.

The system {A,,B,, C,} has the eigenvalues

-1

-1
2
2

ha, =

The 8’th order state space model (3.394) has the 8 eigenvalues,

—1
—1
—1

ha =

2

Since the unobservable part of (3.394)/ (3.395) has unstable eigenvalues, it is not
detectable. 0
Example 3.26. Analysis of a Hydraulic Servo Cylinder

A simplified model of a symmetric control cylinder of a hydraulic position servo
shown on Fig. 3.28 can be modelled as follows.
Expressions for the two volume flows can be written,

. V.

q1 = Ax + Epl + Ci(p1 — p2)s (3.410)
. V.

g = AcX — Epz + Ci(p1 — p2), (3.411)

, o m 1

Fig. 3.28 Hydraulic servo —‘T | | l|7

cylinder 9
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where A, is the cylinder area, V' is the oil volume for each of the cylinder cha-
mbers, B is the bulk modulus (the stiffness coefficient) of the oil, p; and p, are
the pressures in the cylinder chambers and C; is a leakage coefficient. x is the
position of the piston and f'is an external load force.

If the cylinder is fed by a perfect, symmetric servo valve, the volume flows can
be considered equal and if the valve is linear and very fast compared to the
dynamics of the rest of the system, the simple relationship,

Q1 = q» = ku, (3.412)

can be assumed where u is the input voltage to the servo valve and k is a
proportionality constant.

The model is completed by using Newton’s second law for the total mass M of
piston and piston rods:

M=+ Adp1 — p) — Cri. (3.413)

The last term of Eq. (3.413) is the viscous friction between cylinder and piston.

The set of equations (3.410)—(3.413) is the basis for the block diagram on
Fig. 3.29. Defining the state variables as indicated on the block diagram, the state
equations can be written down by direct inspection . Withx =[x x p; p2]”
one finds

X| = X2,

Xy = LM(_C/‘XZ + Ac(x3 — x4) + 1),

£ =0 (e — Gy — i) k), (3.414)
X4 = IE/(Asz + Ci(x3 — x4) — ku),

Y =X

<
[~ ]

Fig. 3.29 Block diagram of
hydraulic servo cylinder
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or in matrix-vector form

0 1 0 0 0 0
C A, A,

0 -% ¥ W 0 W

X = 0 _Ab _GB cp X+ | gp Ut 0 1

roor g 3.415)

0 AP CB _Cp K 0 e
4 4 4 4

y=I[1 0 0 O]x.
Insert the following data in the equations:
A, = 150cm?,

V = 3000 cm’,

M = 500kg = 0.5 - 1000 kg,

B = 7000 bar
3
cm
Ci=1
! bar - sec’
10N -
Cr=01—C
cm
3
k=20—"0
sec - volt

Note that the units cm? 1000 kg and bar are used, instead of the SI-units: meters,
kilograms and Pascals. The reason for this is that the alternative units lead to

matrices which are better conditioned for numerical computations than the SI-
units.

With the data above the system matrices are:

0 1 0 0 0 0
0 -02 300  —300 0 2
A= , B= B, = | |,
0 —350 —2.333 2.333 46.67 0
0 350 2333 —2333 —46.67 0
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The eigenvalues of A are

—2.433 +j458.3

If the controllability and the observability matrices are found, it will be
discovered that the system is neither controllable nor observable. The controll-
ability matrix can be computed to be

0 0 2.8-104 —1.363-10°

M, — 0 2.8-10* —1.363-10° —5.88-10°

46.67 2178  —9.8-10° 9.342 - 107

—46.67  217.8 9.8-10° 9.342 - 107
det(M,) = 0.

One can also find that rank(M,) = 3, which means that 3 columns of M, are
linearly independent. A closer look at M, shows that the first 3 columns are
linearly independent and a suitable transformation matrix for a controllable
subspace transformation (see Sect. 3.8.11),

7=Q 'x, (3.416)
could be
0 0 28104 0
0~ 0 28104 —1.363-10° 0
| 4667 —217.8 —98-10° 1
—46.67 217.8 9.8-100 1
which gives
75 1.666-10~4 1.071-10"2 —1.071-1072
o' — 1.738 - 1074 3.571-10° 0 0
~|3.571-1073 0 0 0

0 0 0.5 0.5

The matrices of the transformed system will be:



3.10 Realizability 181

0 0 0 )
1 1 0 —21-1050
At:Q_AQ: ' )
0 1 —4866 '0
0 0 0 )
1
0

B=Q 'B=|0 | C=0cQ=/0028-100],

0
and the controllable part of the system is described by the matrices

[0 0 0

Ac=1|1 0 -2.1-10°],
|0 1 —4.866
1

B.=|0[,C,=[0 0 2.8-10*].
K

The system {A., B., C.} is not only controllable, it is also observable. The
states of the transformed system can be found from Eq. (3.416):

7.5x1 + 1.666 - 1074x, + 1.071 - 1072 (x3 — x4)

Z 1.071 - 1072x; + 3.571 - 105x;,
z2= |- | = 3.571-107%x,
Zm’
0.5(x1 + x2).

The controllable (and observable) system has the 3 states in the state vector z..
and these states are of course linear combinations of the original states. But it is
also seen that the cylinder chamber pressures x3 and x4 (p; and p; respectively)
are no longer present individually but only as the pressure difference, x3 — x4. It
can thus be concluded that the two pressures can not be controlled (or observed)
individually.

One of the 4 states of the original system is superfluous. Looking at the
differential equations or block diagram on Fig. 3.29, this is not a surprising
result. As a matter of fact, the two chamber pressures only occur as the
difference p; — p, and it would be natural to choose this pressure difference as
a state instead of the two individual pressures. m
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3.11 Summary

This chapter has dealt with the problems of investigating the characteristics of
dynamical systems. The treatment has included the following main issues:

Solution of the state equations.
Similarity transformations.
Stability.

Controllability and observability.
Realizability and minimality.

SAEal i

Regarding 1

Since an analytical solution to the general state equations (2.8) and (2.135)
usually cannot be found, the treatment was restricted to the linear equations
(3.8) and (3.88). It turns out however that an analytical solution is difficult to
achieve even in this case. For the time invariant equations (3.37) and (3.96), the
situation is more favourable. In this case it is easy to obtain a solution which is
immediately useful. It is also possible to apply Laplace and Z-transformation to
these equations and define a generalization of the transfer function and the
notion of impulse response known from the classical discussion of SISO sys-
tems. It should be noted that the importance of the analytical solutions is
primarily connected to further analysis issues such as stability and controll-
ability. Determination of a specific response for a more or less complicated
system, linear or nonlinear, is much more easily found by computer simulation.

Regarding 2

In contrast to the transfer function system formulation, the state space model is
not unique. The state vector can be chosen in indefinitely many ways and
certain choices provide one with specific advantages. Given one state space
model, one can easily change it to another by a similarity transformation where
one basically selects a new set of state variables by using the expression (3.125).
It is important to note that the new model shares all the important properties
of the original one. A particularly simple state model is the model with a
diagonal system matrix. In such a diagonal system all states are completely
decoupled from each other and this makes most analysis easier. All system
models with nondefective system matrices can be diagonalized with a similarity
transformation.

Regarding 3

One of the most important characteristics of dynamic systems is stability. It can
be a quite difficult task to determine whether a general nonlinear system models
is stable or not. Even for linear time varying models this question is not trivial.
On the otherhand, for LTI models there is a simple stability criteria based on the
position of the system eigenvalues in the complex plane. This is the case no
matter which of the several possible stability definitions one wants to use. When
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using these criteria, it must be remembered that the linear time invariant
model is always an approximation to a more comprehensive and correct
description of the system. In most cases, the LTI model has emerged by a
linearization of a nonlinear system around a stationary operating point. Con-
sequently, the stability analysis based on this linear model can only (at most) tell
about the stability in a close vicinity of this stationary state. Nevertheless, the
linear model stability criteria are very useful for practical analysis purposes.

Regarding 4

When designing controllers for dynamic systems, it is very important, prior to
the design process, to be able to determine which options are available for the
design. The notions of controllability and observability provide tools for ana-
lysis in this area. Loosely expressed, a system is said to be controllable if it is
possible to obtain entry into the system via the input variables and influence all
states individually. Similarly, the system is observable if one can obtain infor-
mation about all the states by viewing the system through the output. There is a
variety of criteria for determination of controllability and observability.
The most important ones are expressed in the controllability theorems CC2/
RD2 (Egs. (3.230) and (3.285)) and in the observability theorems OC2/0OD2
(Egs. (3.301) and (3.321)).

A system is said to be stabilizable if any non-controllable state is stable. A
system is detectable if any non-observable state is stable. For systems which are
not controllable or not observable, it is possible to carry out a similarity trans-
formation which reveals the non-controllable or non-observable states. This
allows one to determine if the system is stabilizable or detectable respectively.

Regarding 5

Realizability is concerned with the problem of formulating state space models
from a transfer function matrix. It turns out that this is always possible if the
individual transfer functions are all strictly proper. Moreover, the direct transfer
matrix D will be zero in this case. Another problem connected to state space
models and especially models derived from a transfer function matrix, is minim-
ality. One says that a state space model equivalent to a given transfer function
matrix is minimal if it has the smallest possible number of states. It was shown,
that the system is minimal if and only if it is controllable as well as observable.

3.12 Notes
3.12.1 Linear Systems Theory

The main mathematical background for this chapter is what is now called linear
systems theory. This theory, though presented as a whole here, has emerged
piecemeal from the work of many different investigators both mathematicians
and physicists, over a period of nearly 400 years.
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This first main contribution to linear systems theory was published by René
du Perron Descartes in 1637. Descartes was a French mathematician and
philosopher and one of the first modern scientists. He originated what is now
called analytic or coordinate geometry. The first exposition of the elements of
Cartesian coordinate geometry (Geometry) was published as an appendix to a
natural philosophical work (Discourse on the Method of Reasoning Well and
Seeking Truth in the Sciences). Discourse was an attempt to collect together
Descartes’ thoughts on the underlying order in the physical world and a great
departure from the traditions of his time. While Discourse was revolutionary,
Geometry was an evolution of the mathematics known at that time: its goal was
the unification of geometry and algebra. The natural philosophical methods
and principles of Discourse proved to be very popular and were not generally
displaced until the time of Newton, some 30 years later.

While it is generally acknowledged that the invention of differential calculus
is due to Newton, Pierre de Fermat was responsible for an approach to finding
the tangent to a curve, effectively differentiation, in about 1630 as well as
extentions to the coordinate geometry of Descartes. These results were first
published after his death in around 1682 and they make Fermat the first worker
to actually differentiate a function.

Isaac Newton was the originator of differential and integral calculus but his
results were first published in 1687, about 10 years after their actual discovery.
This was three years after the publication of similar work by Gottfried Wilhelm
Leibniz in 1684. Newton is responsible for the notation for the time derivative
(or fluxion at that time) which is x. Leibniz’s notation was intuitively much
more suggestive for he wrote the same quantity as % It is also Leibniz who
introduced the notation s for sum (or integral) or, in modern terms, Jx dt. The

work of Newton and Leibniz emphasized the inverse relationship of differen-
tiation and integration and set the stage for the exposition of the basic laws of
mechanics, Newton’s Laws.

Further important developments in the area of differential equations and their
application to physical problems are due in particular to three members of the
Bernoulli family, Jakob, Johann and later Daniel Bernoulli, in the period from
about 1690 to 1770. The Bernoullis learned calculus from the work of Leibniz and
were in constant contact with him and thus adopted his notation. In part, because
of the intuitive quality of Leibniz’s notation, they made significant contributions to
the theory and applications of differential equations and the calculus of variations.

The active period of the Bernoulli family overlapped that of Leonhard Euler
who is responsible for the use of symbols 7 and e and for discovering the Euler
identity e = sin(0) + icos(0) and relating its properties. Euler is also credited
with important contributions to the theory of analysis (advanced calculus),
differential equations and the calculus of variations.

When Euler left Berlin for St. Petersburg in 1766, it was arranged that his
position as director for the mathematical division of the Berlin Academy be
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filled by Joseph Louis Lagrange. Lagrange introduced the method of variation
of parameters to solve differential equations, extentions of the calculus of
variations in a modern form and an influential book on the mathematical
unification of general mechanics. An assistant to Lagrange during one of his
later appointments was Pierre Simon de Laplace who, apart from important
contributions to celestial mechanics, the theory of partial differential equations
and the theory of probability, is responsible for the Laplace transform.

Karl Friedrich Gauss (1777-1855) was a singularly gifted mathematician who
was also interested in physics. It is Gauss who first introduced the modern
requirements and standards for rigorous mathematical proofs. His production
of new mathematics was so profound and fundamental that it would be difficult
to relate here his actual contribution to linear systems theory. It will only be noted
here that Gauss was the first to plot complex numbers as points in a two
dimensional plane. That is the representation where the complex number is
represented with as the abscissa on the real axis and is the ordinate on the
imaginary axis. On this background it is not surprizing that Gauss is also
responsible for the analytic geometry of complex numbers and functions and
the rigorous foundation for complex variable theory. The possibility of drawing a
picture established complex variable theory as a valid branch of mathematics
whereas earlier it had been viewed with some scepticism by other mathematicians.
This work was published in 1831. Another of Gauss’s discoveries, the Gaussian
probability distribution function, will be treated in a later chapter of this book.

Vector analysis is a degenerate form of the mathematics of quaternions,
developed most completely by William Rowan Hamilton and published in
1843. Quaternions are four-fold numbers which have some of the qualities of
vectors for multipicative algebraic operations. In spite of Hamilton’s best
efforts, they were never widely used because they are too complex for easy
understanding and application. The vector analysis which is currently used is a
simplification of Hamilton’s work due to an American physicist, Josiah Willard
Giggs, originating from about 1880.

The invention of, as well as the mechanics of the manipulation of matrices is due
to an Englishman, Authur Cayley in many publications from about 1863 to 1883.
The proofs of many of his results are due to his friend and co-worker, James Joseph
Sylvester. In fact the word matrix is due to Sylvester and was first mentioned in a
publication in 1848. Many of the important connections between matrices and
determinates and the theory of invariants is also due to these workers.

Linear systems theory requires the solution of systems of coupled linear
differential equations with constant coefficients. A simple method for doing
this is Laplace Transform, Operator or Heavyside Calculus and is due to the
efforts of Oliver Heavyside, an innovative but unconventional English electri-
cal engineer from about 1891. This work was not initially appreciated because
of its apparent lack of rigor and because of its odd notation. Now this calculus
is widely recognized and used to solve physical and engineering problems
involving systems of linear differential equations. It has also been given a
respectible mathematical foundation using function theory, though with
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some difficulty, by Carson and Bromwich and others. Heavyside also made
contributions to the development and practical applications of James Clerk
Maxwell’s electromagnetic theory. The Heavyside layer in the atmosphere is
named after the same engineer.

To complete the picture of the linear systems theory now currently used, Jean
Baptiste Joseph Fourier should be mentioned here because of his unifying
influence on the time and frequency domain formulations of the theory. In its
original form, Fourier’s book from 1822 showed that any periodic function can
be represented as an infinite sum of sine and cosine functions of varying
amplitudes. Such a collection of sine and cosine functions is called the spectrum
of the signal. It is possible to extend such formulations to aperiodic functions
using Fourier transforms. These concepts are often used in modern signal
analysis and in many practical devices such as frequency synthesizers and
spectrum analyzers.

From the statements above, it is clear that the vital elements of linear systems
theory were all more or less available from 1900. It has been further developed
and simplified into its current convenient form through numerous applications
of it by many workers. These applications have been primarily to electrical and
electronic circuits but also to control systems, especially in the last 50 years. The
control applications are extremely wide ranging and stretch from microscopic
solid state electric motors to aircraft, ships and even buildings (stabilization
against earthquakes).

3.13 Problems

Problem 3.1
Given the time varying linear system:

0
1

t

0 ¢

x(1) = [0 O}x(r) +

u(1), x(1o) = lx“’]. (3.417)

*20

a. Find the state transition matrix ¢ (7, 7y) (Hint: Solve the two state equations
for the homogeneous equation directly).

b. Check the result by application of equation (3.21).

c¢. Find the complete solution of (3.417) for u(z) =1 for > 1.

d. Check the solution of part c. by inserting into (3.417).

Problem 3.2
One has the continuous time system:
. -3 2 1
x:{ { _2]X+{b}u,y:[l 0]x.

a. Find eigenvalues, resolvent matrix, transfer function, state transition matrix
and impulse response.
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b. Determine the parameter b such that the input only influences the natural
mode corresponding to the eigenvalue farthest away from the origin.

¢. Choose the initial statexo = [1 —1]" and the input u(¢) = 2¢/, 7> 0and
determine b such that lim y(7) = 0.

t—00
Find y(¢) for this value of b.

Problem 3.3
A linear 3. order system has the system matrix:
4 Loy
A— 2
-0 -1 8
0o 0 =3

a. Determine the resolvent matrix ®(s) and the state transition matrix ¢(7).
b. Determine the state vector x(¢) for 7 > O when u(1) = 0Oandxo = [0 1 0],

Problem 3.4

Given the discrete time system:

0 1

x(k+1) = [_% % x(k) + mu(k), () = {—é —ﬂx(k)
a. Set xo = [8] and u(k) = 1 for all k.

Find y(0), y(1) and y(2).

. Determine the eigenvalues, the natural modes and the resolvent matrix.
Find an analytical expression for the state transition matrix F¥.

. Find the transfer function H(z) = y(z)/u(z).
Find an analytical expression for the unit pulse response /(k).

o a0 o

=n

Forxg = {8

(hint: apply Eq. (3.102)).

Compute y(1) and y(2) and compare with the results from question a.

} and u(k) = 1 for all k , find an analytical expression for y(k)

Problem 3.5
Consider the system with the A-matrix from Problem 3.3:
X=Ax, xo=[0 1 0]

a. Find the eigenvalues and a set of eigenvectors for A.

b. Carry out the diagonal transformation of A.

c. Use the diagonal transformation and Eq. (3.65) to determine the state
vector x(t).
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Problem 3.6
A linear system is given by its state space model:
. -4 -3 3
x:[1 0]x+[0}u,y=[o 1]x.

a. Find the eigenvalues and the eigenvectors of the system.

b. Determine the diagonal transformed system.

¢. Determine the state transition matrix of the diagonal system.

d. Determine the state transition matrix of the original system (Hint: use (3.133)).
Problem 3.7

A perfect ball rolls in the vertical plane on the surfaces shown on Fig. 3.30.

Fig. 3.30 Rolling ball on
surface in the vertical plane : :

La. With no rolling resistance ~ 2a. With no rolling resistance
1b. With rolling resistance 2b. With rolling resistance

A~ N

4. With rolling resistance

a. Use stability definitions 1 and 2 in the beginning of Sect. 3.7 to characterize
the stability properties in all 6 cases.

Justify the results.

Problem 3.8
Given the continuous time state space model,

x(7) = Ax(7) + Bu(z),

with the following system matrices

] -2 3 5
(I
. A= 2. A=|3 2 -5
)
- 2 1 -3
-2 -3 5 2 =3 5]
3. A=]6 15 -21 4. A=|10 20 -20
514 19 9 19 —18]
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a. In all four cases, find the eigenvalues and mark them on a drawing of the
complex plane.
b. Characterize the four system’s stability properties.

Problem 3.9

One has the discrete time state space model,
x(k + 1) = Fx(k) + Gu(k),

with the following system matrices,

T 10 0
11
. F= _21 T 2F=|5 5 0
L2 -1
[ -1 2 -1 (1.5 —0.5 0.25
3. F=|—15 25 —I 4 F=|1 0 025
3 =3 2 0.5 —0.5 075

a. In all four cases, find the eigenvalues and mark them on a drawing of the
complex plane with the unit circle.
b. Characterize the four system’s stability properties.

Problem 3.10

Consider the system:

0 1 0
x(k—&—l):[_l é]x(k)—i—[l]u(k), yk)=[-2 1]x(k).

2

a. Find the system’s eigenvalues and natural modes.
Is the system asymptotically stable?

b. Find the transfer function of the system.
Is the system BIBO-stable?

Problem 3.11

Given the following continuous time LTI-system:
. [0 1 N 0 _q 1
X = L o X | y=la X.

a. Is the system internally stable?
b. Determine « such that the system is BIBO-stable.
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Problem 3.12
One has the system:

-3 4 11 12
e S o R N Al IR

a. Is the system controllable?
Is it observable?

Now the system is changes in such a way that

S R |

b. How does this change influence the controllability and the observability?

Problem 3.13
Consider the system:

-1 1 1 1

‘ 0 0 1 |x+]0 0 boo
X = X u, y= X.
" Y=o 2 o0
0 —2 -3

. Compute the eigenvalues and the corresponding eigenvectors for 4.
. Use a similarity transformation to achieve the diagonal form of the system.
Draw block diagrams of the original as well as of the diagonal system.
. Determine the transfer function matrix for both systems.
Find the left eigenvectors for the system matrix 4 (hint: use Eq. (3.246),
Wy

T
w>

o oo o

-1

ie., =[vi v ... V]

W,

f. Use Eqgs. (3.230) and (3.301) to determine controllability and observability of
the system.

g. Repeat f. using the PBH-test.

Problem 3.14
Given the following system:
-2 -3 5 0
x=|4 5 =5|x+|1l|uy=[-2 -5 5]x.
3 4 -3 1

a. Find the characteristic polynomial of the system.
b. If possible, find the controller canonical form and the observer canonical
form for the system.
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c¢. Determine the transfer function
d. Comment on the system’s controllability and observability in relation to the
properties of the transfer function.

Problem 3.15

For a linear system a model is given in the form of the following differential
equation:

dy dy v, _du
das  dr? a YT '

a. Show that the system model can be written as the state space model:

01 0 0
x=10 0 1 [x+|0]u y=[-2 1 0]x (3.418)
4 4 -1 1

b. Is the system internally stable?

Is the system minimal?
c. Find a minimal state model for the system.
d. Is the system (3.418) stabilizable?

Is the system (3.418) detectable?

Problem 3.16
A block diagram of a MIMO LTI system is seen on Fig. 3.31.

Y1

Y2

Fig. 3.31 Block diagram of a
MIMO system
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a. Determine the transfer function matrix G(s) of the system:

Lol =50 o)

. Choose the natural state variables and derive a state space model.
Is the state model minimal?
d. Derive a state space model using the method in Sect. 3.10 (the Eq. (3.384)).
Is this system minimal?
e. Find a minimal system by controllable subspace decomposition.
f. Is the system in part b. stabilizable and detectable?

oo



Chapter 4
Linear Control System Design

Abstract In this chapter a review of the design of multivariable feedback
controllers for linear systems will be considered. This review treats mainly
deterministic control objects with deterministic disturbances. After giving an
overview of the type of linear systems to be treated, this chapter will handle the
basic control system design method known as pole or eigenvalue placement.
First systems where measurements of all the states are available will be treated.
For cases when such complete state measurements are not available the concept
of deterministic observers to estimate the states which are not measured directly
will be introduced. It will also be shown that it is often possible to design
reduced order observers where only the unmeasured states are estimated.

4.1 Control System Design

Before going into the specific task of designing linear control systems it is
necessary to set the ground rules for the treatment. This can be done by present-
ing an overall picture of the components and configuration of the system which is
to be considered.

A control system is a dynamic system which is designed to operate in a
prescribed manner without external interference, in spite of unavoidable effects
(disturbances) which impede its proper operation. The main purpose of this
book is to present methods to analyze and synthesize such systems. A second
purpose is to present methods to model disturbances and design control systems
for minimum disturbance sensitivity. This requires a tabulation of the main
elements of such systems and a presentation of their general configuration.

The main components of a control system are

. The plant or control object.

. The actuators or drivers for the plant.

. The sensors which measure the current operating point of the plant.

. The controller which drives the plant in accordance with the overall control
objective given the sensor measurements.

AW o —
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Fig. 4.1 Block diagram of a Plant Sensor
typical control system. disturbances disturbances
The plant or control object
is shown in the upper part
of the figure while the Control obj
Ac ]ect I
controller and feedback cuators (Plant) Sensors
loop is shown at the bottom Plant Plant
inputs outputs
Control Sensor
signals outputs
Feedback loop
Controller
Reference j
inputs

A block diagram of a typical control system is presented on Fig. 4.1. Note, that
the actuators and sensors are usually considered to be external to the control
object itself. However it is often necessary that the dynamics of these components
are taken into account in the design of the overall feedback control system.

The plants or control objects which may be controlled in this way can be of
many different types: mechanical, electrical, fluid dynamic, economic, biologi-
cal, etc. or combinations of such plants. The only limitation to the nature of the
plant (as far as this book is concerned) is that it be described in terms of a
coupled set of differential or difference equations. Actuators are devices which
are coupled to the control inputs of the plant to supply the energy necessary to
effectuate the control commands of the controller. Sensors are devices for
measuring the outputs and/or states of the plant. This general description can
be used on many types of systems. The controller is in general a dynamic system
which on the basis of the measurements provided by the sensors gives an input
to the actuators which drive the control object in such a way as to accomplish
the desired control objective.

The main feature of control system theory is feedback. This means use of
the sensor measurements to derive a signal or signals which are used to drive the
actuators of the control object to accomplish a given control task. Such a
feedback (loop) is shown on Fig. 4.1 and it is in general external to the control
object itself. This mechanism is used to increase the speed or bandwidth of the
control object, to increase control accuracy at one or many operating points or
to achieve some other desirable control effect.

Another important feature of feedback control systems is an external input
which is inserted into the controller in order to provide information as to what
the desired control point or trajectory is. This input is shown on the bottom of
Fig. 4.1 and is commonly called the reference or command input. Often this
input takes the form of a desired value for one or more of the outputs or states of
the control object. It may be either constant or variable.
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One of the main reasons to use control systems is to suppress disturbances of
the control object or minimize the effect of noisy or inaccurate measurements of
the state of the plant. Disturbances which are inherent in the plant are often
called state disturbances, biases or noise. These are indicated on Fig. 4.1. Such
disturbances are often generated physically in the plant but may also include
changes in the characteristics of the control object itself. These modelling error
disturbances are just as important as those which come from other sources
because they make it difficult to know the nature of the plant itself. Thus they
destroy the basis for proper modelling and accurate design. Such disturbances
are called plant parameter variations or modelling errors. When measurements
are made on the states of a system, it is often the case that disturbances are
introduced in the measurement mechanism or sensor itself. This is shown on
Fig. 4.1 as the measurement disturbance or noise source. In this chapter the
presence of the state disturbance will be considered indirectly and it will be
assumed to be of an unmodelled ‘deterministic’ type. Disturbances cannot in
general be manipulated by the control system designer so that the designer can at
best suppress or minimize the effects of disturbances on a given control system.
This nearly always involves a design compromise between carrying out the
desired control task while at the same time suppressing system disturbances.

Many examples of control systems are readily visible in the world at the
present time. These include control systems for chemical process plants, hard
disk drives, automotive engines and vehicles, aircraft autopilots, space vehicle
attitude and navigation, investment and economic management systems. In fact
the availability of inexpensive semiconductor chips as central processing units
(CPUs) and analog signal processors ensure that control systems will be built
into a very large percentage of the more complex industrial products and
services which will be offered in the future.

Currently most of the control systems which have been produced are for
physical or chemical systems. As an easily understood physical example one can
take an aircraft autopilot. In such systems the control objective is to control the
speed, altitude and attitude of the aircraft as accurately as possible. A second
main objective is to provide for automatic path following as well, but only the
first objective will be considered here. The plant is of course the aircraft itself:
it is a dynamic system because the control surfaces and engine of the aircraft,
once activated, can only react with time constants and/or time delays. Increas-
ing for example the throttle control of a jet engine will cause an increase in
thrust only on time scales of say 10-30 s.

The actuator for the engine is the fuel injection nozzle and fuel control valve.
For attitude control the actuator is the control surface positioning mechanism.
This mechanism is often an electric or a hydraulic motor. Sensors on aircraft
include gyroscopes to sense the angle of the aircraft with respect to the horizon
and rate gyros to sense rate of rotation. Air speed sensors are often pitot
tubes. Currently the sensor signals are fed into a controller which is a digital
computer. In former times the controller was a electrical/mechanical analog
computer. One important disturbance which prevents an aircraft from
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following a desired path is the air movement around it. This can take the form
of side wind, updrafts and downdrafts. When the aircraft deviates from its
desired flight path because of external air movements, the job of the controller is
to maintain a certain attitude and speed as closely as possible. Additionally it
can be stated that aircraft autopilots are currently so advanced that the pilots’
main task in many cases (even during landing and takeof¥) is reduced to simply
monitoring the aircraft’s attitude and path controllers.

The consideration of control systems for other types of systems than physical
or chemical has also reached an advanced level in some areas. One of the most
interesting of these areas is control and/or planning applied to economic systems.
Consider the case of the inventory control. A sales organization wants to
control the size of its inventory so that it can always fill its orders. Its inventory
on any given day is equal to the size of its stock plus the orders which are given
to the organization’s supplier the previous day, minus its daily sales. From
experience the manager knows that his sales vary around a certain value every
day. The question is: what sort of control must be applied in order to make
certain that there is always something to sell? The sensor here is the counting up
of the stock every day. The actuator is the giving of the order. Dynamically the
system is dominated by its inherent time delays. Possible state disturbances in
the system are the sales level which changes and the variability of production
quantity and quality. Measurement disturbance could be possible mistakes in
counting up the stock or difficulties in keeping track of large numbers of
different commodities. This is a typical management problem but other inter-
esting problems are for example optimal investment strategies and commodity
pricing.

4.1.1 Controller Operating Modes

Control systems can obviously be used for many different purposes but in
general they operate in two basic control modes:

1. As regulators, intended to operate around a single set or operating point in
state space.
2. As trackers, intended to follow a certain trajectory in state space.

For linear systems, which do not change their dynamic characteristics with
their operating point in state space, there is very little difference between these
two modes of operation. However, as most control objects are nonlinear, there
may be significant control problems involved in operating in these two different
modes.

When operating in the regulator mode a control system has the goal of
keeping the control object at a certain location (or set point) in state space.
This location is specified by defining a constant value of a single state or output
variable, multiple states or outputs or some linear combination of them. This is
probably the most common operating mode for a control system.
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When a control system operates in the tracking mode, it is the intention that
the state vector describe a certain path (trajectory) in state space. Usually this is
accomplished by changing the reference input to the control system according
to some predetermined pattern in order to cause it to move as desired. This is the
second most common operating mode for a control system.

Example 4.1. Regulator for the Idle Speed of a Spark Ignition Engine

Modern gasoline driven vehicles spend on the order of 30% of their operating life
at idle when operating in cities. It is also true that drivers in large measure judge
the quality of their vehicles by the evenness of their engines in idle speed. This
means that it is important for vehicle manufacturers to ensure that
their engines idle at a constant speed (usually 600-1200 rpm) and smoothly,
despite load disturbances. These disturbances are mainly due to secondary
engine loads (lighting, generators, pumps for steering assistance, electric
windows, air conditioning, etc.).

Mostly because of emission restrictions, modern vehicles are nearly all pro-
vided with electronic engine actuators, sensors as well as three-way catalyst
exhaust systems. In fact the main reason for the advanced engine controls is
emissions legislation. Recently it has become clear for reasons of cost that most
vehicles will be provided with drive-by-wire throttle bodies. In such systems the
accelerator pedal is connected to a potentiometer and the throttle plate operated
with an electric motor position control system. This makes it possible to eliminate
several other actuators for other engine functions than idle speed control and thus
reduce the overall cost of the engine control system. Thus idle speed control is
accomplished by controlling the position of the throttle plate and hence the air
flow to the engine. A secondary engine speed control is via the spark timing. The
throttle plate is a butterfly valve placed just before the intake manifold or
plenum of the engine. This plenum is then connected by runners to the engine
ports on the engine head itself. The actuator for the throttle plate is often a DC
electric motor with or without some gear reduction. The sensor for the engine
speed is a magnetic pick up which is coupled to the engine crank shaft.

Figure 4.2 is a block diagram for an idle speed control system. Here it is
shown that the idle speed control system measures the crank shaft speed, n, and
on this basis adjusts the port air mass flow, m,,, via the throttle plate angle o and
the engine spark timing. In general for physical reasons the throttle angle
control is used for slow speed control while spark timing is used only for fast,
momentary speed control. Also shown on the block diagram only for the sake
of completeness is the air/fuel ratio control which is assumed in this example to
be ideal (the ratio of the port air mass flow to the fuel mass flow is fixed at
Mgy /My = 14.7. This ratio is the stochiometric air/fuel ratio (AFR) necessary
for low emission operation of modern catalyst equipped engines. The idle
speed control subsystem has to work in conjunction with the engine air/fuel
ratio control loop. O
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Fig_. 4.2 Block diagram for | Fuel Spark
an idle speed control system injectors || timing
for a port injected gasoline l
engine Pedal "fi
mput | Throttle Intake + A+ Eneine .
plate manifold 8
o r Mgy
Air/Fuel
DC-motor ratio control

Idle speed
control
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Example 4.2. Optical Tracking of a Labyrinth Game

An interesting tracking control study with numerous possible industrial appli-
cations has been carried out at Department of Automation at the Technical
University of Denmark on a labyrinth game using a television sensor. The control
object for this study is an x—y game labyrinth equipped with actuators (small
DC-motors) for the x and y directions. The object of the game is to use the x and
ycontrols to tip the game board in either direction to move a small ball around a
predetermined path marked on the game board. To sense the position of the ball
on the game board, a small CCD television camera is used together with a frame
grabber. To make this exercise more difficult, holes are cut in the game board
close to the target path on the game board.

Figure 4.3 is a block diagram of the experimental set up. The television
camera acts as a two dimensional optical sensor for the position of the ball on
the labyrinth game board. To make its pictures understandable for the con-
troller microprocessor a frame grabber is used to digitize the picture. The
camera picture also provides information about the target track along which
the ball must be moved. This is the path which must be tracked by the control
system. The tracking controller generates x and y angular inputs to the
tipping actuators built into the labyrinth game box. These are control vol-
tages Vpcy and Vpc, which drive the DC-motors. The main state disturbances
for the ball are the irregularities in the surface of the labyrinth game board
and the ball itself. Measurement noise enters the system via the digitizing of
the television camera picture and consists of pixel noise and scattered light
from the surroundings.

To start a game the ball is placed in its starting position. The controller and
its associated software then locates the outline of the game board and the target
track on it. It also locates the optical center of the ball. To move the ball along
the target trajectory, the reference for the ball center is moved continuously
along it slowly enough for the ball to follow. In other words the ball is set to
track a certain changing position or state trajectory on the game board. m
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Fig. 4.3 Path tracking y-direction x- and y-axis x-direction
controller of a labyrinth controllers
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4.2 Full State Feedback for Linear Systems

In this section the control object under consideration will be described by the
LTI state equation known from Chap. 2. For a continuous time system a vector
state equation can be used:

x(7) = Ax(7) + Bu(z) + B,v(7). 4.1)

The disturbance v(7) is assumed to be of a deterministic nature. Measurements
are made on this system which can be either the states themselves or linear
combinations of them:

y(1) = Cx(1) + w(1). 4.2)

The vector w(?) represents the measurement noise, but it will not be considered
explicitly in this chapter.

In order to establish linear feedback around the system above, a linear feed-
back law can be implemented which can be written:

u(r) = —Kx(1) +r(1), (4.3)
where K is a feedback matrix (or a gain matrix) of dimension n x m. r(¢) is the

reference input vector to the system. It has the same dimension as the input
vector u(z).



200 4 Linear Control System Design

As all of the states are measured, the resulting feedback system is called a full
state feedback system. Usually it is intended that the output of the control object
should follow the reference input in some sense. A short name for the state
feedback controller which is sometimes used is state controller. A block diagram
of the closed loop system is seen on Fig. 4.4.

Fig. 4.4 Closed loop system / .
with full state feedback 10,0, g L3020, [ 20

8- + y(@®)

K |¢

Inserting Eqgs. (4.3) into (4.1) and ignoring the state disturbance for the
moment, an equation for the closed loop system can be derived:

(1) = (A — BK)x(1) + Br(1). (4.4)

Equation (4.4) is the state equation of the closed loop system with the linear state
feedback. This system is asymptotically stable if and only if the system matrix,

Ax = A — BK, (4.5)

has all its eigenvalues in the left half plane. As will be seen later, it is possible—
under mild conditions—to place the eigenvalues of Ak arbitrarily when full state
feedback is used. The eigenvalues are determined as the solutions to the equation:

det(M — A + BK) = 0. (4.6)

This method of design is often called pole placement and is a common method
for initial system design, Jacobs (1993), Friedland (1987). Before going into a
more complete development of the eigenvalue placement method, it is useful to
look at an introductory example based on the DC-motor of Example 2.3.

Example 4.3. Pole Placement Regulator of a DC Motor

Consider an example where a DC-motor is used for angular or linear position

control. A practical example of the former control type is the throttle position control

subsystem which forms part of the idle speed control system in Example 4.1. An

example of a controller for linear movement is that for the x and y coordinates of an

x—y plotter. For the sake of simplicity an angular position control is considered here.
The states are the angular position and velocity respectively,

x1:9,

)CQZO.
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Assume that the armature inductance is negligible so that an adequate state
equation is Eq. (2.28),

0 1 0
T 0 by R + K.k, X+ K, %
- JR JR 4.7)
y=1[1 0]x.

To obtain some insight into the meaning of the matrix elements, the transfer
function for the motor can be found. First the individual equations are written
down,

).Cl = X2,
bbR+Kake Ku
_ Sake  Ka 48
X TR 2t Rt (4.8)
Yy =X

Then these equations are Laplace transformed:

sx1(s) = xa2(s),

B byR + K k.

T xa(s) + euls), 49)

sx2(s) =
y(s) = xi(s)-
Eliminating the state variables gives directly the relation between u and y,

K,

yGs) b, R+ K.k, Ky (4.10)

JR T s(tus+ 1)
S<bbR + Kakes * 1) ( )

where 7, is the motor time constant and K, the static motor gain. In many
cases it is true that,

bbR < Kakea
and therefore,
JR 1
Tm = m and K, = k_e
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Substituting these quantities into the state Equation in (4.7) one finds

0 1 0
X = [0 ] ]x+ [K]u (4.11)
T S

It is desireable to place the eigenvalues of the closed loop system in prede-
termined positions. For instance one can choose,

7\‘01 = - i]B?

where o and B are positive numbers. This means that it is desired that the closed
loop characteristic polynomial to be

Pa(M) = (A + o4 B) A+ o4 —jB) =A% + 20k + o + B (4.12)
This is also the characteristic polynomial of the closed loop system matrix Ak,
Poy(N) = det(M — Ag) = det(M — A + BK), (4.13)
with
K=k k]

and with the matrices from Eq. (4.11), one has

v 0 1 0 0
Pcho\‘) = det [ ] : 0 L ki Ky ko Ky
0 % T T T (4.14)
_ 7\‘2 + 1 -+ sz‘,m 7\‘ + levm )
T Tm

Equating (4.12) and (4.14) leads directly to expressions for the determination
of k; and k»,

1+ kZKvm

T m

=2

)

(4.15)
levm — 0(2 + Bz’
Tm

which gives
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) 2
ki =—— + B),
=2+ )

‘[’-ﬂl 1
kz = <20( — —) .
Kvm Tm
From classical system theory it is known that the reciprocal of the time
constant is the cutoff (or break frequency) of the first order system,

(4.16)

1
— = Wp.
Tm

For the characteristic polynomial (4.12) of the second order system it is also

known that
®, =1/ + % and Lo, = o.

If the natural frequency ®, is to be, say 5 times the cutoff frequency and the
damping ratio to be { = v/2/2, then the parameters must be

5v2
o = B = —
2T,
which gives the gains
k] - 2 )
KomTm
(4.17)
b V21
: KW‘I? ’

A block diagram of the closed loop system is shown on Fig. 4.5. Now it is
obvious that what has been achieved here is nothing but a reinvention of the
classical position servomechanism with internal tachometer feedback. But, as
will become clear presently, this achievement has much wider perspectives.

Armature I_,

Fig. 4.5 DC-motor with
state feedback L
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Example 4.4. Pole Placement for a Mass, Spring, Damper System

A large number of dynamic systems can be described as second order systems
with more or less damping. These include suspensions for transport vehicles,
various hydraulic components, simple seismometers, simple rate gyros, loud-
speakers and many other technical devices. It is also often true that the effective
response of complex higher order systems is dominated by a single complex pole
pair, again, more or less damped. Thus it is relevant to look at such systems in
order to evaluate the effect of full state feedback. A simple system which can be
used as an example is a forced mass-spring-damper system.
The differential equation describing such a system can be written,

mi = —kx — bx + F, (4.18)

where m is the mass, x is its position, k is the spring constant,  is the damping
coefficient and F'is an external driving force. A sketch of the system is shown on
Fig. 4.6.

Fig. 4.6 A driven mass-spring-damper system .

m —

R Ty
D
B

Damping coefficient b

Usually for mechanical systems the position and the velocity are selected as

state variables,
{ . } { ; }
X = fr— . y
X2 X

and the state equations can readily be formulated as

xl = X2,
. b 1
Xp = ——X| —— X2 +—F.
m m m

If one lets the driving acceleration be the input to the system (i.e., u = F/ m) the
following dynamic and input matrices result:

0 1
k b
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Deriving the transfer function the same way as in Example 4.3 the natural
frequency and the damping ratio for the system are found to be

k
W, = —
m
- b
B 2Vmk

If it is desired to design a state controller with measurement of and feedback
from the two states, one can proceed as in Example 4.3. Choosing the closed
loop natural frequency ®,,; and damping ratio {, the closed loop characteristic
polynomial becomes

Po(M) = A2 + 20, Ok + @2,
The closed loop characteristic polynomial is
Pey(M) = det(M — A + BK) = A% + (ka + 2L0,) + ky + @2,
where the feedback gain matrix which has been used is
K=[k k]

Comparison the two expressions for P.,(A) gives the gains,

2
" (4.19)
kZ - z(cclmm‘l - C(Dn)-

2
ki = Wype — O

Notice that the treatment above allows the possibility that the original
damping ratio { of the system can be either positive or negative. A negative
damping may be hard to imagine in this case but second order systems
with negative damping do exist. Moreover, the natural frequencies may
have any value. If it is desired that the closed loop system to be slower
than the original system (co,21d<o)£) then the gain k; becomes negative. So it is
always possible to stabilize the system no matter how badly damped or how fast
it is. The only requirement is that an adequate driving force can be generated.

Now a numerical example will be given which is representative of a heavy

industrial system. Assume the following data

m=1500ke, k=20000, b= 15
m m
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i

The system’s eigenvalues, natural frequency and damping ratio are

This leads to the matrices,

0 1

A= , B=

—1.333 —-0.1167

d
A= —0.0583 +/1.153, ®, = 1.155%, £ = 0.0505.

This is a system with very low damping and an objective for the control
system design will be to increase the damping. If the values

rad
Wyl = 2@7 Ccl = 067

are selected, the feedback gains may be calculated from Eq. (4.19),
ki = 2.666,

ko = 2.283.

Figure 4.7 shows the closed loop system. The result of a simulation of the
system with and without feedback is shown on Fig. 4.8. The input signal to
the system with feedback is a unit step and for the uncontrolled system it is a
step of height 1/3.

The force time function for the feedback case is seen on Fig. 4.9. The
responses show that the dynamic behaviour of the system has been improved
considerably by the feedback. In spite of the fast response of the controlled
system, the force necessary for the movement is not excessive.

oy u T X |T| X |T| x
—r - | L L]

b

k

System o

ky

Fig. 4.7 Mass-spring- —
damper system with state k,
feedback L
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Fig. 4.8 Response of the 0.5 ‘ : ‘
system on Fig. 4.7 with and x [m] . Without feedback
without state feedback o I A NG D A

%% 5 10 15 fsec) 20
Fig. 4.9 Force for the 1500
system with state feedback
F[N] : :
1000 /- ................. .................
500 |
0 .
0 5 10 15 t [sec] 20
a

The last example shows that stable or unstable systems can be stabilized using
full state feedback. In fact the eigenvalues have been placed arbitrarily in the
complex plane in order to satisfy a predetermined performance requirement.
This has been done for a low order system but it can also be done for a higher
order system though this may require more sophisticated design procedures that
those used here. Notice however that the simple method presented above gives no
clue as to where the eigenvalues of the closed loop system might be placed for
optimal results. This requires a more complex treatment which will be presented in
Chap. 5.

Though the remarks and examples above indicate that full state feedback can
be used to obtain any given eigenvalue placement, some cautionary remarks are
in order with respect to what can be accomplished on general systems. One of
the reasons for caution is that the discussion above has not considered the
question of system zeros. As will be detailed later, system zeros cannot be
moved using this type of feedback (for SISO systems) and this means that
they may set a fundamental limit to system performance. Zeros have an impor-
tant influence on the transient response of a system. In particular a zero can
cause a large overshoot even in a stable system. Nonminimum phase zeros
(those in the right half plane) are particularly worrying in this respect. It must
be remembered that right half plane zeros cannot be cancelled with right half
plane poles.
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4.3 State Feedback for SISO Systems
4.3.1 Controller Design Based on the Controller Canonical Form

The design procedure in Sect. 4.2 can be systematized in several ways. For SISO
systems the most obvious general approach is based on the controller canonical
form of the state equation. In Sect 3.9 it was seen that a controllable system can
always be transformed into the controller canonical form using the similarity
transformation,

z=P'x, (4.20)

where P can be found from Eq. (3.354). If the state equation is given as a
controller canonical form, as will be the case if the state model is derived directly
from a transfer function, then one already knows beforehand, that the system is
controllable.

The controller canonical form is:

7= Az + B,

(4.21)
y = C(’CZ7
where
0 0 0 0
0 0 o 0 0 0
Ao = : : : : : , Bee=1:1, (4.22)
0 0 0 0 1 0
—dy —ayp —dr ... —dp2 —dy]
Cooe=1[bo by by... byl
With the full state feedback,
u=—K.z+r, (4.23)
and the feedback gain matrix,
K. = [k, K,.. k], (4.24)
the following closed loop system is obtained,
z = Ag,z+ B,r,
(4.25)

y = C(’Cza
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where the system matrix becomes

AK = Acc - BCCKC(‘

cc

0 | 0 0 0 1
0 0 1 0 0
(4.26)
0 0 0 0 1
L —do —k/] —d _k/2 —da —kg . —Adp2 —kiF] —dp—1 _k:1_

Since the input matrix is still the same as before, it is seen immediately that the
closed loop system is also in the controller canonical form. This means that the
elements in the bottom row of Ak, are the coefficients of the characteristic
polynomial of the closed loop system.

Now if it is desired that the eigenvalues of the closed loop system are to be
placed in specific positions in the complex plane,

7\4(’1 = 7\40113 7\'(,’/27 ) )\‘L’I)‘l? (427)

the closed loop characteristic polynomial can be written

P, agy = [JO0=her) =M+ o+ okt og. (4.28)

i=1

Comparing (4.26) and (4.28) allows one to set up a very simple set of equations
for determination of the feedback gains

oy = do + k/lv
o =day + k/27
(4.29)
Op—1 = dp—1 + quv
which implies that
k| = o — ap,
k’z =0 —ay,
(4.30)

/
kn = p—1 — dp—1-
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Substituting (4.20) into (4.23) the gain matrix for the original system can be
found:

u=-K. P 'x+r=—-Kx+r
(4.31)
=K=K.P"

If the system (4.21) is the original system and not the result of a similarity
transformation this last step is of course irrelevant.

4.3.2 Ackermann’s Formula

It is possible to avoid the similarity transformation prior to application of the
design procedure above. To show how this can be achieved the treatment will be
specialized for a third order system for the sake of simplicity. The result can
immediately be extended to systems of any order.
The controllability matrix for the third order system,
x = Ax + Bu, (4.32)
is

M.=[B AB A’B]. (4.33)

If the controller is transformed into canonical form (using z = P~ 'x)
one finds

Z = A.z+ B..u, (4.34)
with the controllability matrix (see Eq. (3.256)),
Mcc = [B. A.B. A2B.]=P 'M, (4.35)
which shows that
P! =M. M. (4.36)
The matrices A and A, have the same characteristic polynomial,

Pch,AO\') = 7\43 + 6127\.2 +ah+ay = Pch,A..(x)» (437)

cc
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which means that

0 1 0 0 0 0 1
Ae=1]0 0 1 |, Be=|0|andM.,.=|0 1 —a |. (4.38)
—dy —d; —ap 1 1 —day a% —da

As before the coefficients of the closed loop characteristic polynomial are
selected:

Po ac(M) = 0P 4 00h? 4+ oqh + o, (4.39)
In this polynomial substitute A, for A and obtain the matrix polynomial:
Popag(Ace) = A2+ 0nA2 + oA + ol (4.40)
From the Cayley-Hamilton theorem it is known that
Al + A2, + A + apl = 0. (4.41)

Subtracting (4.41) from (4.40) yields

Pch,AK (Acc) = (OL2 — az)AgC + (0(1 — al)Acc + (OL() — ao)I. (442)
Since
0 0 1
Al = | —a —a —a (4.43)

aay —ap+aiay —a)+a;
Equation (4.42) becomes

Qo —do O —dyp O —d

Poac(Ac) = | X X X (4.44)
X X X
where the elements marked X are functions of the coefficients ¢; and o;.
From Eq. (4.30) one has that
ch = [O(o —dyp 0] —da oy — az] (4.45)
which means that one can write
Kie=[1 0 0]Pyac(A)=[1 0 0]Py s (P 'AP)  440)

=[1 0 0]P'Py a (AP
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Equations (4.31), (4.46) and (4.36) lead to

K=K.P'=[1 0 0]P'Pyac(A)

=[1 0 0]M. oM. Py s (A) = . 40
= ¢, cctVi, c/1.AK( )— [0 0 I]M(; Pch,AK(A)-

As mentioned earlier, there is no difficulty in extending this method to
systems of arbitrary order n and the complete Ackermann’s formula for the
gain is therefore

K=[0 0 ... 0 1M, 'Py ac(A), (4.48)

where the row vector to the right of the equal sign has the length 7.

4.3.3 Conditions for Eigenvalue Assignment

Equation (4.48) shows that K can be found if M, is nonsingular, i.e., if the
system is controllable. This was also the case for the first design procedure in
this section and it is concluded that controllability is a sufficient condition for
arbitrary eigenvalue placement.

Considering an uncontrollable system the controllable subspace decomposi-
tion in Sect. 3.8.11 can be applied. A similarity transformationz = Q'x is used
where Q is found from (3.338). If it is assumed that a gain matrix K has been
found for the system (4.1) then it is clear that

K, = KQ, (4.49)

where K, is the gain matrix for the transformed system.
The eigenvalues for the closed loop system are the solutions of the equation

det(M — A + BK) = 0. (4.50)

Pre- and post-multiplying with the determinants of Q_; and Q and carry
through the following calculation:

det(Q") - det(\l — A + BK) - det(Q) = det(Q ' (M — A + BK)Q)

4.51
= det(M — Q 'AQ + Q 'BKQ) = det(Ml — A, + BK,) = 0. (430

If the system’s controllability matrix has the rank p the gain matrix can be
partitioned,

Kt == [Ktl Ktz L (4~52)
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such that K,; has the length p and K, has length n — p. Now insert the
partitioned matrices into the last expression in Eq. (4.51) and see that

Ac A12 Bc
delO\.I — A[ + B[K[) =det| M — A [K,] K,z]
ne
. M, — A, +BK,; .—A;+BKp, (4.53)
= el - = - - = - = = - = ==
0 ! 7\4171711 - Anc

— det(M, — A, + B.K,) - det(M,,_, — A,.) = 0.

The last expression shows that the closed loop eigenvalues consist of the
p eigenvalues which can be influenced by the gain matrix K;; and the remaining
n — p eigenvalues of the uncontrollable system matrix A,,.. These eigenvalues
cannot be influenced by the feedback gains and will therefore remain in their
original positions. Thus it is concluded that controllability is also a necessary
condition for arbitrary eigenvalue placement.

Another important conclusion can be drawn from the result above. It is clear
that all the eigenvalues in the controllable subspace can be assigned specific
values, even if the controllable subsystem is not stable. If the eigenvalues of the
uncontrollable system are also in the left half plane then the closed loop system
can be made stable by a proper choice of K,;. So it can be seen that it is quite
reasonable to call such a system stabilizable. See p. 124.

System Zeros

If a full state feedback controller for the system in controller canonical form
is designed, it will be noticed that the output matrix is not changed by the
feedback. Since the coefficients of the numerator polynomial of the transfer
function are given entirely by the C.. matrix and since the transfer function is
unique, it is obvious that the zeros of the system will remain unchanged by the
state feedback. See also the remarks in the end of Sect. 4.2, p. 207.

Discrete Time Systems

It should be pointed out that the design procedures detailed earlier in this
section are also valid for discrete time systems. The only difference is the actual
positions which are normally selected for the closed loop system eigenvalues.

If the system equations are

x(k + 1) = Fx(k) + Gu(k),

4.54
y(k) = Cx(k), (39
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the linear feedback law will be
u(k) = —Kx(k) + r(k) (4.55)

resulting in the closed loop equations

x(k + 1) = (F — GK)x(k) + Gr(k),

(4.56)
y(k) = Cx(k).
The closed loop system matrix is
Fx =F — GK. (4.57)
The eigenvalues are determined by the equation,
det(Ml — F 4+ GK) = 0. (4.58)

The conditions for eigenvalue assignment stated above are equally valid for
discrete time systems.

The relations between the eigenvalues in the continuous and discrete time
domains are given by Eq. (3.87):

1
Ap =T oy = Flog AF- (4.59)

Thus if a continuous time eigenvalue pair is given by
M =axjb (4.60)
the corresponding discrete time eigenvalue pair will be
A = e“T(coshT + jsin bT). (4.61)

In general the controller designer will attempt to give the closed loop system well
damped eigenvalues with a sufficiently high natural frequency, or if real eigenvalues
are selected, time constants of a reasonable magnitude will be chosen. These
requirements can be illustrated by the eigenvalue placements on Fig. 4.10. If the
eigenvalues are placed in the shaded region, they will have a certain minimum
damping and a certain minimum natural frequency (or a maximum time constant).
For the discrete time system the corresponding region will be as shown on
Fig. 4.11 (see also appendix D),

Itis important to note that one should not try to place the eigenvalues too far
to the left or too close to the origin in the continuous and discrete time cases
respectively (see the dashed curves on the figures). This will result in large gain
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Im

Fig. 4.10 Eigenvalue
placement for continuous
time systems
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Fig. 4.11 Eigenvalue
placement for discrete time
systems
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values in the K-matrix and therefore also to excessively large input signals and
high noise sensitivity.

Example 4.5. Continuous Control via the Controller Canonical Form

The continuous third order system,

—0.14 033 —0.33 0
x=| 01 —028 0 |x+| 0 |uy=[2 0 0]x, (462
0 1.7 —0.77 —0.025

will now be investigated. This system has the eigenvalues

[ —0.8986
| —0.1457 £ 0.2157
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which correspond to

T =1.11 sec,

o, = 0.26sec”!, (=0.56

The determinant of the controllability matrix for the system of Eq. (4.62) is
nonzero, so the system is controllable. It is desired to design a state controller
such that the closed loop system has real eigenvalues corresponding to time
constants of about 1.5s. Therefore choose the closed loop eigenvalues,

—0.67
ha={ —0.67, (4.63)
—0.67

which means that the closed loop characteristic polynomial will be
Poi(h) = A +2.012% 4 1.3467A + 0.3008.

First the design method involving the controller canonical form will be used.
The necessary similarity transformation matrix is found from Eq. (3.353).
One has

231 825 0
P=[p;p,p;]=| 0825 0 0 | x107?
—0.155 —10.5 -25

and

0 1212 0
P'=|121.1 -3394 0
-50.9 135  —40

and consequently

0 1 0 0
Aee = 0 0 1 , Bee=10],
—0.06087 —0.3296 —1.19 1

C.. =1[0.00462 0.0165 0].
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This is all that is required to determine the feedback gains from (4.30),
Kee = [k,I k/z kg],
where

k| = a9 — ap = 0.3008 — 0.06087 = 0.2399,
Ky =0y —a; = 1.3467 — 0.3296 = 1.10171,
ky=03—a;=2.01-1.19=0.82.

The feedback matrix for the control canonical form has been found here. To
transform back to the original system one has to use Eq. (4.31),

K=K.P'=[81.54 5626 —32.8].
Using this gain matrix the eigenvalues of the closed loop system are found to be

—0.687 = 0.029

det\l —A+BK)=0= A, = {
—0.637
This is not precisely what was specified and the reason is small round off errors
in the calculation above. The deviations are of no significant importance
though. The system designed will have properties which can hardly be distin-
guished from the system with the specified eigenvalues, Eq. (4.63).
A simulation of the closed loop system,

x = (A — BK)x + Br, y = Cx, (4.64)

can now be carried out. If 7 is a unit step, the responses on Fig. 4.12 are found.
The initial state is a zero-vector. The output has an overshoot of approximately
12 percent, a feature which cannot be explained from the real eigenvalues. If the
transfer function of the System (4.62) is calculated, one finds

Gls) = yis) 0.0165s + 0.004262
Cu(s) s34 1.1952 4+ 3.2965 + 0.06087

The system has the zero,
z = —0.28,
and since the state feedback does not influence the zeros, the same zero will be

present in the closed loop system. This zero is close enough to the eigenvalues to
be responsible for the overshoot on Fig. 4.12. 0
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Fig. 4.12 Output and input 0.02 T T T
signals for unit step ‘ } ‘
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Example 4.6. Discrete Control via the Controller Canonical Form

Now a discrete time controller for the system in Example 4.5 will be designed.
The procedure starts with the discretization of the continuous system using the
Formulas (3.83)

x(k + 1) = Fx(k) + Gu(k), y(k) = Cx(k).

First an appropriate sample period must be selected, one which is approxi-
mately one fifth of the system time constant:

T =0.2sec.
Using MATLAB’s Control System Toolbox it is found that

0.9730  0.05293 —0.06031
F=cAT = 0.01918 0.9461 —0.00061
0.003142 0.3063  0.8572

and

. 1.554-107*
G= / ABdt = | 1.0369 - 1076
0 —4.635-1073
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Using the same closed loop eigenvalues as in the previous example, the discrete
time eigenvalues will be,

0.87459
Mt = €T = { 0.87459
0.87459

which means that the closed loop characteristic polynomial will be
P re (M) = A2 — 2.6238)% 4 2.2947) — 0.66898.

This time applying Ackermann’s formula, the matrix polynomial is easily
found by substituting F for A in this polynomial,

Pev (F) = F? — 2.6238F> + 2.2947F — 0.668981.
The controllability matrix is found to be

15539 430.72  658.96
M= [GFGFG]=| 1.0369 6.7881  17.107 | -107°.
—4633.9 —3971.4 —3400.9

Some the elements of M. are very small and the determinant of M., is therefore
also small:

det(M,) = —7.641 - 1072,

Ackermann’s formula requires the inverse of M, and consequently the very small
values for det(IM,) can cause numerical problems when the gain matrix is calculated.
However, in this case the formula works properly and the gain matrix
obtained is

K=[0 0 1]M.'P, g (F)=[74.634 47.719 —30.393].
Testing the closed loop eigenvalues yields the result,

0.87827 £ j 0.002375

det()] — F + GK) = 0= &, = {
0.87724

This is close to the desired placement and it indicates that the matrix inversion
did not cause significant numerical problems.

Problems may arise, however, if det(M.) becomes too small. If, for instance,
a sample period is selected which is ten times smaller, 7= 77 = 0.02s. Repeat-
ing the entire procedure, one will end up with a controllability matrix M,1 with
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det(M,1) = —1.051-107"7.

The corresponding gain matrix for the same closed loop eigenvalues turns out
to be,

K; = [12974 265900 —667.14],

or up to a factor 5000 larger than before. When the controllability matrix
comes close to being singular (the system is close to ‘lose controllability’), the
controller must then work much harder to maintain the desired control. Gains
of this size may give rise to severe accuracy and noise problems if they are
implemented in a real system.

A discrete time simulation of the unit step response for the closed loop
system with the gain matrix K,

x(k+1) = (F — GK)x(k) + Gr(k), y(k) = Cx(k),

is easily carried out using the state equation directly as a recursive formula.
For a zero initial state vector the result on Fig. 4.13 is seen. The responses are
almost exactly equal to the responses of the continuous system at the sampling
instants which is also expected. It might be noted that the stationary value of
the discrete time output differs slightly from that of the continuous system.
This is caused by the fact that no attempt has been made to ensure that the
stationary gain for the closed loop system should have a specific value. So far

0.02 ! ! ! !

0.01

T= 0;2 sec

1
Fig. 4.13 Output and input 0 20 30 60 80 100
signals for unit step Sample no.
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the only problem considered has been of giving the systems certain dynamic
properties. m

Example 4.7. Control of an Uncontrollable but Stabilizable System

A state controller for the uncontrollable system below will now be designed:

-5 —10 10 4
x=|2 -1 =2[|x+|0|u, y=[1 0 0]x
0 -4 1 2
The eigenvalues are
—1+,2
ha =
T

and although the system is uncontrollable, it is stabilizable because all eigenva-
lues are in the left half plane.
The controllability matrix and its determinant are readily found:

40 —20
M. |0 4 -8, der(M,)=0.
2 2 -14

The rank of M, is 2 and it is immediately seen that the two first columns are
linearly independent.

The matrix required for the controllability subspace decomposition can be
for instance (see Eq. (3.338)),

)

Il
SRR
N oA o

which has

0.125 —0.125 0.25
det(Q) =—16 and Q'= |—0125 0.125 025
0.5 05  —I
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The similarity transformation z = Q~'x gives the matrices

0 —5; -3 |
lemz_Ljf;f_LmolBhy
0 0 -3 0

C=cQ=[* 0i 0]

and the controllable part of the system is described by the matrices,
0 -5 1
A , Be= , C.=[4 0],
1 -2 0

with the nonsingular controllability matrix,

1 0
Mcuc = .
o 1]

Since this system is controllable the two eigenvalues can be assigned arbi-
trary values by the two-dimensional gain matrix K,; (see Egs. (4.52) and (4.53)).
If the eigenvalues and characteristic polynomial are chosen as

4
xAKzl B =Pop 1 = A%+ 9+ 20,
-5

the gain matrix can be found from Ackermann’s formula,
Ki = [0 1]M ! P (Ac) = [7 1].

The third element in the total gain matrix K, has no influence on the closed
system eigenvalues and it can be assigned any value, for instance zero,

K, =[Ky Kp]=[7 1 0]
Re-transformation to the original basis gives finally
K=KQ'=[075 —0.75 2].
Note that with the above choice of Q, all states are fed back. But in contrast
to the controllable case, the K-matrix is not unique. As a matter of fact it is

dependent on the specific choice of the columns of Q which can easily be
verified.
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One can test the closed loop eigenvalues as usual by solving
det(\I — A+ BK) =0

and obtain

-3
which is precisely as expected. The uncontrollable eigenvalue A= —3 is kept
unchanged and the two other eigenvalues are as assigned. m
Example 4.8. Control of the Labyrinth Game

It is an interesting exercise to derive a position regulator for the labyrinth
game presented in Example 4.2. This can be accomplished by considering one
degree of freedom at a time, for example the x direction. Figure 4.14 shows a
schematic drawing of the forces working on the ball on the game board in the
x direction. Applying Newton’s Second Law to the system, assuming that the
angle 0 is small and the acceleration 0 is negligible, gives

mx = mg0 — Fy+ mézx,
I(b = I‘Ff.
If it 1s assumed that the ball rolls on the board, it must be true that
X =rm

Inserting the moment of inertia for the ball,

Variable tilt Ball with
angle © mass m
moment of inertia I

\Q\/ Velocity o
Fy
X
Fig. 4.14 Schematic mg\

drawing of the labyrinth
game board

/
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and eliminating Fyand o from the three equations above leads to the result:

(g0 + x6%). (4.65)

jé‘:

|

The Model (4.65) is nonlinear and it has two inputs, 6 and 0.
If the position and velocity vectors are defined as

=] e o[- 1]
X=|, |= and u=|.| = ,
X X2 0 up
the model can be described with the state equation,

X2
x=f(x,u)= |5 S
( ) 7gu1—|—7x1u5

Linearizing the model around the stationary state x, =0, up=0, one has
Ax = AAX + B'Au

where

0 1 0 0
A= and B'|5 )
00 2g 0

Since the last column of B is zero, the system is reduced to a single input system
with the input matrix

0

5 1.

78

The A-matrix shows that the linear system approximating the nonlinear one is
nothing but a double integrator: the acceleration of the ball is simply propor-
tional to the board tilt angle.

It is desired to design a discrete time controller for the system and since the
controller involves video information, the sample period is given by the CCIR
video scan rate. This is 25 Hz. So choose T=0.04s. In this simple case the
discretization can be carried out by hand using the Formulas (3.83):

B=—
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S
Il
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|

where o= 5g/7.
Inserting the values for 7 and g finally gives the model,

1 0.04 . 1073
=) 0% a [0 107,

The controllability matrix is

M, =[G FG] = { (4.66)

g g1+ng] B [5.606-103 0.01681}
<5} ) L 0.2803 0.2803 |

det(M.)#0 and the system is controllable.

The closed loop system is rquired to have a natural frequency of approxi-
mately 1 Hz (®,,,= 6.28 rad/s) and the damping ratio {.,=0.5. The continuous
eigenvalues providing these properties are

he = —3.14 £5.44.
The corresponding discrete time eigenvalues are found from Eq. (4.61),
ha = 0.8611 £;0.1904,
which implies that the characteristic polynomial is

Pa(h) =A% — 172221 4 0.7778.

The gain matrix is readily found using Ackermann’s formula,
K = [0 1]M_ ' P.,(F) = [4.959 0.8919)].

A closed loop step response is shown on Fig. 4.15 m
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Fig. 4.15 Output and 0.4 . . : : :
control signal for unit 1 : : ;
step input

0.5}
0 s Y
u(k) T=0.2sec
05 I L L L I
0 10 20 30 40 50 60
Sample no.

4.4 State Feedback for MIMO Systems

The design methods in Sect. 4.3 are simple but unfortunately only valid for
systems with one input. For MIMO systems (or rather for systems with multiple
inputs, MI systems, since the output is not involved in the control) the situation
is somewhat different and more complicated.

A more comprehensive treatment of MIMO state feedback will be left until
Chap. 5 and in this section the treatment will be confined to a quick overview of
a couple of available methods for MIMO feedback design. Only the continuous
time case will be treated but the methods work equally well for discrete time
systems.

The main principle in the control is still the linear state feedback according to
the control law:

u=—-Kx+r. (4.67)

Inserting this control signal in the state equation gives, as seen before, the closed
loop state equation,

x = (A — BK)x + Br = Axx + Br. (4.68)

Eigenvalue assignment means that a gain vector K must be found such that
the eigenvalues assume preselected values:
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M
A
Mg =2 . (4.69)

K

7\‘11

It can be shown, that the conditions for eigenvalue assignment for SISO systems
discussed in Sect. 4.3.3 are also valid in the MIMO case:

1. The closed loop eigenvalues for the System (4.68) can be placed arbitrarily if
and only if the system is controllable.

2. The System (4.68) can be stabilized if and only if the uncontrollable states are
stable (the system is stabilizable).

4.4.1 Eigenstructure Assignment for MIMO Systems

Whereas the eigenvalue placement can be accomplished uniquely (i.e., for a
unique K) for any controllable SISO system, it turns out that further options
exist for MIMO systems. Besides assigning the eigenvalues, it is also possible to
make some demands on the eigenvectors. This is important, because the eigen-
vectors determine the system’s response as seen from the modal decomposition
in Sect. 3.8.10.

A controller design involving eigenvalues as well as eigenvectors is called
eigenstructure assignment. The closed loop eigenvectors are defined by the
relation

(A — BK)V,‘ = 7\4V,‘. (470)

This equation can be rearranged to obtain

- A B]L{vi ] —0. @.71)
Vi

Foreach A;(4.71) is a homogeneous set of linear equations. The set consists of n
equations with n + m unknowns. It is known from the controllability theorem
CC3 that the left hand matrix (the coefficient matrix) has full rank » if and only
if the open loop system is controllable. Then the theory of linear equations
requires that there will be m linearly independent solutions for each of the
chosen A,. This indicates again, that in the SISO case there will be only one
solution since m=1.

Equation (4.71) also shows that one cannot pick eigenvalues and eigenvec-
tors completely arbitrarily. The solution vector,
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=] 472
v= )=o) 67

must lie in the nullspace N of the coefficient matrix T, = [A, 1 — A B]J.

The nullspace of T; is spanned by a set of m linearly independent vectors
n;i,n;2,...,n;, each of dimension n+ m. The solution vector p;is in the nullspace
if it can be composed of a linear combination of the vectors n; j,n;2, ..., n; .
According to the definition in (4.72) one has that Kv; = q; from which

Klvi v» ... vi]=[q ¢ ... q,] (4.73)
or
KV = Q. (4.74)

If all the eigenvectors are selected to be linearly independent then the gain
matrix below can be found,

K=QV (4.75)

K must be a real valued matrix but this is assured if the eigenvalues as well as the
eigenvectors are selected as complex conjugate pairs.

Thus to complete the design task the n eigenvalues A; must be chosen, n
vectors p; determined satisfying (4.71) and then K computed from (4.75). The
procedure may seem simple, but it can be quite laborious for higher order
systems.

Example 4.9. Eigenstructure Control of a MISO System

A design for an eigenstructure state controller for the MISO-system,

0 0 1 1 0
x=|-51 =3|x+|0 O0|u, y=[0 0 1]x, (4.76)
0 1 0 0 1

is to be made here. The eigenvalues of the system matrix are

-1
7\‘ p—
A {1112

The system has a complex conjugate eigenvalue pair in the right half plane and
it is therefore unstable.
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The system is to be stabilized with the closed loop eigenvalues,

-2
g =4 -3 - 4.77)
—4
The matrix T, is
i 0 -1 1 0
T,=[M-A B]=|5 -1 3 0 0
0 -1 Ao 01

Now the vectors spanning the nullspace have to be found. This can be done in
several ways but an easy one is selected here: the MATLAB function null.
The following results for the three closed loop eigenvalues are found:

=2,
[0.6923 [—0.2308 ]
2 0 -1 10 0.7692 0.0769
Ti=|5 -3 3 0 0[,n,;=|—03846|,m,= | 04615
0 -1 -2 0 1 1 0
L 0 J L 1 J
M =3,
[0.375 ] [—0.17
3 0 -1 1 0 0.375 0.1
T,=|5 -4 3 - My = | —0.125 | my,y=| 03
0 —1 =3 — 1 1 0
L 0 J L 1 J
s = —4,
[0.2644 ] [—0.0575]
4 0 -1 10 0.2299 0.0805
Ts=|5 =5 3 0 0,ny; = |—0.0575|,m,=| 0.2299
0 —1 —4 0 1 1 0
L 0 J L 1 J
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The next step is to assign the p-vectors and hereby the eigenvectors of the
closed loop system. The three p-vectors can be constructed as arbitrary linear
combinations of the respective n-vector pairs,

P, = ;1M + oon; ).

The three uppermost entries of the p-vector constitute the eigenvector of the
closed loop system. If the Ith entry is selected to be zero then the corresponding
eigenvalue, A; (and natural mode e*), will not appear in the I'th state variable.
This follows from Eq. (3.332).

Following this scheme it is easy to obtain the following p-vectors:

0 0.074 0.0575
~0.2308 0 0.0575

p = |-02308|, p,=|-0125|, ps=| 0
~0.2308 0.1 0.2299
~0.6923 ~0.375 0.0575

Now the matrices V and Q can be found by inspection,

0 0.075  0.0575
V=1]-02308 0 00575,
| —0.2308 —0.125 0
[—0.2308 0.1  0.2299
| —0.6923  —0.375 0.0575]’

and finally the gain matrix is

K —Qv-! {5.5 ~1.5 2.5}

25 =15 45

Testing the closed loop eigenvalues assures that the requirement (4.77) is
met. The unit step responses for the closed loop system are shown on Fig. 4.16.
The two curves are the output y(7) for a unit step on each of the two reference
inputs. 0

Robust Eigenstructure Assignment

The freedom to select eigenvectors in multi-input state feedback can be used
to increase the robustness of the control system. This subject will not be pursued
at this point but it is only mentioned that robustness against deterioration of the
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Fig. 4.16 Unit step response
for the MISO system

t [sec]

system performance caused by imprecise or incomplete modelling or by devia-
tions between the linearization state and the actual operating state is an impor-
tant issue. It can be shown, that if the closed loop eigenvectors v; are chosen
orthogonal (or as close to orthogonality as possible) then sensitivity of the
eigenvalue location subject to parameter changes in the model will be minimized.

Orthogonality algorithms have been developed and one of them is imple-
mented in the MATLAB function place. This algorithm is based on a paper
by Kautsky et al. (1985).

Example 4.10. Eigenstructure Control of a MISO System with Matlab

Returning to the system from Example 4.9 and using the MATLAB place
function with the same eigenvalues as before a different gain matrix can be
found. The function is invoked by the command,

K =place(a,B,[-2 —3 —4])
and the result is the gain matrix,

5785 —2.080 2.681
2,016 —0.5358 4.215]°

A simulation similar to the one in Example 4.9 leads to the result shown
on Fig. 4.17. Apart from the stationary values, the responses resemble those
of Example 4.9. It is noted though that the overshoot for the step input to
input channel no. 2 is much smaller here than on Fig. 4.16. In this respect the
eigenvector assignment is more favorable with the MATLAB place func-
tion than with the scheme used in Example 4.9. m
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Fig. 4.17 Unit step response
for the MISO system (with
the MATLAB place
function)

4.4.2 Dead Beat Regulators

Usually a continuous time controller has a discrete time equivalent and vice
versa. However there is an exception to this rule. One can design discrete time
controllers which do not have a continuous counterpart and which are very
fast.

The reason for this is that the transformation which is used to discretize
continuous systems has the particular characteristic that continuous time eigen-
values with Re(\.) = —oo are mapped into discrete time eigenvalues at the
origin. If a state controller is designed for all closed loop eigenvalues placed at
the origin, the characteristic equation will be very simple,

PC/LFK(?\') =N+ 0(,1_17\,n71 + . oA toy = A (478)
All the a-coefficients are zero.
Cayley-Hamilton’s theorem states that every quadratic matrix satisfies its
own characteristic equation or
Fi + o, F '+ + oy Fg + ool = 0. (4.79)
But, since all the coefficients are zero, this leads to
Fg =0 (4.80)
which obviously means that

Fiy =0 for p>n. (4.81)
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If the asymptotically stable closed loop system,
x(k + 1) = Fgx(k) + Gu(k), (4.82)

is released in the initial state xo and u(k)=0 for all k£ then a response will be
found such that (see Eq. (3.98))

x(k) = Fixo. (4.83)
According to (4.80) this will then achieve the result that
x(k)=0 for k>n. (4.84)

In other words, the system comes to rest in at most n sample periods. Systems
with this behaviour are called dead-beat or finite settling time systems.

If one lets u(k) = ug (a constant vector) then the zero-state output can also be
found from Eq. (3.98),

k—1
x(k) =Y F§ ' Guo = (F{ '+ Fg 2+ ...+ Fx + DGy, (4.85)
i=0

This shows that because of (4.80), the output will be constant for k>n. So the
system also has a dead-beat behaviour for a constant nonzero input.

With a dead-beat regulator the system can apparently be made as fast as desired.
It is just a question of choosing a sufficiently small sample period. But of course
there are limits. The cost of the very rapid response is very large feedback gains
which implies large actuator drive signals and high noise sensitivity. It also implies a
large sensitivity to unmodelled dynamics. This in turn can lead to poor transient
response and in the worst case, instability.

For a deadbeat regulator the only design parameter is the sampling time.
This means that for any given plant several different sample periods will have
to be tried in order to find one which will yield the desired performance of that
system. This is especially true in the presence of modelling error or neglected
dynamics. In any case it must be remembered that the input signals will usually
be large compared to those in a more common eigenvalue placement regula-
tor. For these reasons the practical implementation of a dead-beat controller
can be somewhat problematic.

Example 4.11. Deadbeat Control of the Labyrinth Game

If a dead-beat controller is designed for the labyrinth game board from Example
4.8, Ackermann’s formula can be used with (4.66) because this system is SISO.
The characteristic matrix polynomial is
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pan(F) = F2 = {1 2T}

0 1
One finds a gain matrix:

K=[0 l]MglFZ:[# %}:[89.2 5.352].

A step response with y reaching the same final value as in Example 4.8 is shown
on Fig. 4.18. Comparing this with Fig. 4.15, one can clearly see that the settling

Fig 4.18 Output and control ! 1
signal for step input for the : :
labyrinth game

k)
02} 1

20 1 ;

okt S L S

5 10 15 20 25
Sample no.

time has been reduced from approximately 50 times the sample period (10s) to
exactly 2 (0.4s). The price is that the maximum value of the control signal is
increased by a factor of 18. m

4.5 Integral Controllers

One of the drawbacks of state variable feedback is that the output of the system
is not directly involved in the control. This means that the controller design does
not provide the possibility of assigning a predetermined stationary relationship
between the inputs and the outputs.

Consider the closed loop system with state feedback law:

% = Akx + Br. (4.86)
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Ifisis assumed that the system is in a stationary state then the time derivative of
the state vector is zero,

0= AKX() + Bl‘(). (487)

The system matrix Ag will probably not have any eigenvalues at the origin so it
will be nonsingular and the stationary state can be found by solving Equation
(4.87) for x:

Xo = —Ag 'Bry. (4.88)
The stationary output with this state will be
¥oCxo = —CA¢'Bry. (4.89)

If the system has the same number of inputs and outputs (m = r), the right hand
matrix will be square and the necessary reference vector for a given output can
finally be determined to be

ro = —(CAg'B) "y, (4.90)

provided of course that the matrix CAy 'B is also nonsingular.

It should be kept in mind however that the basis for the state controller
design is a linear model which is usually the result of a linearization of a
nonlinear system model at some stationary operating point. This means that
even in cases where the reference vector (4.90) can be found, it is only useful if
the system’s state is exactly the stationary state on which the linearization was
based. Another difficulty arises if the system is subject to disturbances since the
‘plain’ state controller does not take a nonzero v-vector into account. Fortu-
nately, as in classical control, all of the problems mentioned here can be more or
less overcome by a single means: system augmentation with integrators.

Integration can be included in state feedback control in several ways but the
following scheme is the most straightforward. Figure 4.19 shows the overall
system. The state is fed back as before, but in addition the output is also
measured and fed back in an outer loop to a new primary summation point.
The output of this summing point is the system error vector. e(t). The output
vector and the reference vector must have the same dimension, r, but since a new
gain matrix K; has been inserted, this need not be the same as the number of
inputs to the system, i.e., the dimension m of the input vector u. As usual, the
system can only be in a stationary state if the outputs x; of the integrators are
constant. This can only be the case if the error is zero since

e=x. 4.91)
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Fig. 4.19 State feedback
with integration

This is the case no matter which constant values of r and v are imposed on the
system.

By adding integrators the order of the system is by increased the number of
integrators used. Therefore it is natural to define a new augmented state vector,

X
X, = [ } (4.92)

.9;

The new state vector will have the dimension n, = n + r, where r is the number
of integrator states. The equations governing the augmented system are

X = Ax + Bu + B,v,

u = —Kx + Kjx;,
(4.93)
X;=—-Cx+r,
y = Cx.
This can be written in matrix form as
X A 0]x B 0 B,
= u—+ r-+ v,
X; —-C 0] |x; 0 I, 0
(4.94)
X
y=I[C o] |,
Xi
or using the augmented state vector,
X, = A1X, + Bju+ B,r + B,v,
(4.95)

Y= Clxa-
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L, is the r-dimensional identity matrix and

A = AD B—B B—0 B—B" C,=[C 0 4.96
]|:C 0:|7 l|:0:|a r|:lr:|7 vl|:0:|7 1*[ ] ()

The input equation can be written,
X
u=-[K —K[]{ } = —Kix,, (4.97)

where
K, =K -K;] (4.98)
Inserting this into Eq. (4.95) leads to
X, = (A1 — B1K})x, + B,r + By v. (4.99)

Apart from the fact that a disturbance term has been added, this equation is
precisely the same as Eq. (4.4), with the augmented matrices replacing the
original ones. As before, if it is desired to design the state controller by eigen-
value or eigenstructure assignment, then the gain matrix K; must be found such
that the solutions to the equation,

A —BK BK;
del(M — A —|—B1K1) = d€l<7\.l — |: :|>

=0, 4.100
_c 0 ( )

are the desired eigenvalues.

Discrete Time Systems

The integrating state controller can also be implemented in discrete time
systems. The continuous time integrator on Fig. 4.19 is an r-dimensional
dynamic system whose state equation can be written, see Eq. (4.91),

X[:0xi+e, (4101)
where the ‘system matrix’ is a zero matrix with r eigenvalues which are all zero.
The discrete equivalent to this system is a system with r eigenvalues which are all
one. Such a system has the discrete state equation,

xi(k+ 1) = Lx;(k) + e(k) = x;(k) + e(k), (4.102)

where the system matrix is the r-dimensional identity matrix.
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Fig. 4.20 Discrete time state  y(x) 4 _e(k) x(k+1) x;(k) u
feedback with integration ==

y(k)

The discrete time integrator can be inserted as shown on Fig. 4.20. The set of
equations for the overall system is now

x(k + 1) = Fx(k) + Gu(k) + G,v(k),
u(k) = —Kx(k) + Kix;(k), 4.103)
Xi(k +1) = x;(k) — Cx(k) +r(k),
y(k) = Cx(k).
Defining again the augmented state vector,
_ [ x(k)
X4 (k) = L[(k)], (4.104)
(4.103) can be written
x(k+1) F 0] [x(k) G 0 G,
_ | e+ | v,
x;(k+1) -C I || xi(k) 0 L
(4.105)
poric o *®
y(k) =1 o |
or
X,(k+ 1) =Fix,(k) + Giu(k) + G,r(k) + G,v(k), (4.106)
y(k) = Cixa(k),
where
F 0 G 0 G,
n=[ e [o] e =] ] e =[] e=ic o @
Inserting the feedback law
u(k) = —[K —K,»]{X(k) ] = —Kixa(k) (4.108)
x;(k)
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where
K, =[K -K;] (4.109)
gives finally,
X,(k+ 1) = (F; — GK})x,(k) + G,r(k) + G,1v(k), (4.110)

which is quite similar to Eq. (4.99).

The result of the investigation in this section is that addition of integrators
does not give rise to new problems. By augmenting the state vectors and the
matrices, the integral control case can be formulated as a standard state feed-
back control problem. This problem can then be solved in the standard way
using eigenvalue and/or eigenstructure assignment. This also means that the
necessary and sufficient condition for full eigenvalue placement is that the
matrix-pairs (A, B;) or (F;, G;) are controllable.

Itis known from classical control that insertion of integral control (usually in
the shape of a PI or a PID controller) may give dynamic problems caused by the
negative phase shift of the integrator. Problems of this sort do not arise when
using state feedback. As long as the augmented system is controllable, the
closed loop system dynamics can be designed as desired in spite of the presence
of the single (or multiple) integrator(s).

Example 4.12. Integral Control of a Third Order System

In this example the third order system from Examples 4.5 and 4.6 will again be
considered. The continuous system is augmented with an extra integrator for
the state x;,

—-0.14 033 -0.33 0 0 0

[k 01 —028 0 0 0 0
Xa = = Xqg + u—+ r,

X; 0 .7 =0.77 0 —0.025 0

-2 0 0 0 0 1

y=[2 0 0 0]x,.

The augmented system is controllable. The gain matrix will be found using
Ackermann’s formula and the four eigenvalues are selected as in Example 4.5,

—0.67
—0.67
—0.67
—0.67

7\‘01 =
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Using MATLAB’s Control System Toolbox and invoking the Ackermann
design function by the command,

K1 = acker (Al,B1, [-0.67 -0.67 -0.67 -0.671),
a gain matrix can be obtained which is
K, =[K —k;]=[210.7 —88.95 —59.6 —43.62].

Carrying out a simulation based on a model with the block diagram on
Fig. 4.19 with r = 0.1 and with B, = 0, the output y(¢) and the input u(¢) can be
determined just as in Example 4.5. The responses are plotted on Fig. 4.21. The
desired final value is now achieved exactly for ¢+ — oco. The control signal is
somewhat larger than in Example 4.5 and the reason is that the gains, especially
the first entry of Ky, are quite large. As a matter of fact, one may be demanding
too much of this system. It requires a large control effort to achieve the
eigenvalues selected here. If they were moved closer to the origin, the gains
would decrease and consequently the settling time would increase. Figure 4.22
shows the four states,

Xal X1
Xa2 X2
X(I = = s
Xa3 X3
Xa4 Xi

0.2 T

Fig. 4.21 Responses for

third order system with
integrator 0 5 10 15 t[sec] 20




4.5 Integral Controllers 241

Fig. 4.22 States for third 0.06 ‘ ‘ ;
order system with integrator X, | i : e E—
sl S ]

0ol /S I S

oL ]

-0.02

004 b N\ . b

-0.06
0 t [sec]

during the settling of the system. Note that the plot shows x;/5.
For the discrete time case the matrices from Example 4.6 will be used. The
state vector is augmented to find

0.9730  0.05293 —0.06031 0
0.01918 09461 —0.00061 0
0

Xa(k+1) = Xq(k)
0.003142  0.3063  0.8572
-2 0 0 1
1.554-1074 0
1.0369 - 10° 0
u(k r(k).

—4.634-1073 0
0 1

Using Ackermann’s formula again, one can find K; for the desired eigenvalue
placement. If the continuous time eigenvalues above are translated into the
discrete time values they are the same as in Example 4.6.

In order to reduce the gains, one can alternatively compute the gain matrix
for a discrete eigenvalue set at a greater distance from the origin. One finds

Case 1
—0.67 0.8746

At = —0.67 = At = 0.8746 = K; =[193.78 —77.55 —53.49 —7.529],
—0.67 0.8746

—0.67 0.8746
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Case 2
—0.35 0.9324
—0. 9324
Aot = 0.35 = Aeld = 0.93 =K, =[37.99 —38.36 —8.809 —0.6358].
-0.35 0.9324
—0.35 0.9324

The ‘slower’ eigenvalues result in gain values which are up to a factor 12 smaller
than in the ‘fast’ case. This could be important in preventing noise problems.

The response to a step of height 0.1 is seen on Fig. 4.23 and 4.24. In both
cases it can be seen that the integrator fulfills its required function. The sta-
tionary value of the output is exactly 0.1.

Case | resembles the continuous time system on Fig. 4.21 as would be
expected. Case 2 has a longer settling time but it has no overshoot and the
control signal does not have the peak observed in Case 1. 0

y(k)

Fig. 4.23 Responses for : : 1 T=0.2sec
. . . 0 i ; i
discrete time systems with 0 50 100 1

. 50 200
integrator Sample no.

Fig. 4.24 Control signals for : ; T=0.2sec
discrete time systems with 0 50 100 150 200
integrator Sample no.
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Example 4.13. Water Tank Process Control with Multiple Integrators

The tank system in Example 2.9 has the state vector, input vector and distur-
bance vectors,

X H,
1 AV
X2 H> ui
X = = , U= s, v=|wmn|=|T,
X3 T, u
V3 Tc
X4 T2

The inputs to the system are the two control valve voltages.
The system was linearized at the stationary operating point given by

2.03
0.0122
1.519 5 60
Xp = , Uy = , Yo = )
45 5
30
45

and the dynamic, input, disturbance and output matrices found were:

—0.0499  0.0499 0 0 0.00510  0.00510
_ | 0.0499  —0.0667 0 0 B— 0 0
0 0 —0.0251 0 ’ 0.0377 —0.0377 |’
0 0 0.0335 —0.0335 0 0
0 0 0
B, — —4.177 0 0 Cc= {0 2.0 0 }
0 0.01255 0.01255 0 0 0 0.1
0 0 0

A state controller with integration is to be designed for the system outputs. A
simplified block diagram of the entire system with the controller is shown on Fig.
4.25 (Compare this with Fig. 2.19). The block named Tank system contains the
nonlinear set of differential equations governing the system. So the figure illus-
trates a model of the nonlinear system with a controller which will be designed on
the basis of the /inear model. As is the case with most controllers designed from a
linear model, there is an inconsistency between the controller and the system it is
meant to control. There will only be complete agreement between the controller
and the nonlinear system model if the system is operating exactly at the lineariza-
tion point given by the stationary state, input and disturbance given above.

It is therefore extremely important that the overall system’s behaviour is
investigated carefully under operating conditions different than the lineariza-
tion point. For this reason it should be clear that access to reliable simulation
software is just as important as analysis and design software.
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Fig. 4.25 Tank system with V) vy Vs
integral controller ‘ l ‘
N
Tank
system |
Y2

The system is sixth order and thus six eigenvalues must be selected. A natural
frequency for the eigenvalues of 0.1 rad/s is desired with a damping ratio of at
least 0.5. In accordance with these demands the closed loop eigenvalues will be
selected to be

~0.095 £ 70.02
At = { —0.08 £0.06
—0.05 £0.085

These eigenvalues are shown on Fig. 4.26: they lie approximately on a semi-
circle. Using the MATLAB place function gives the gain matrix

_[2.642 5308 2466  7.159 , 0.1975 —4.242

K, =[K —-K|= . .
19.46 46.39 —1.838 —4.028, —1.77 1.919
Figure 4.27 shows 1000 s of a simulation of the closed loop system. The initial
values are the stationary linearization values. At t = 100 sec a step occurs on the
reference value | requiring the system’s level H, to change from the initial value 1.519
to 1.6m. Atz = 500 s a step on r, orders the temperature 75 to rise it from 45 to 48°C.

0.1

0.05

-0.05

Fig. 4.26 Eigenvalue

placement for the overall 0.1 i i i
system -0.1 -0.05 0 0.05
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Fig. 4.27 Step responses 1.7 5 @ ‘ T
for the outputs : ‘ :

1.5
50

T, [°C]

48

PP T S S

44 1 I I 1
0 200 400 600 800 1000
1t [sec]

The stationary values are achieved exactly, before as well as after the
changes, because of the integrators. The dynamic responses are also satisfactory
but it is seen that there is dynamic cross-coupling between the two outputs.
When the level changes a transient is seen on the temperature and vice versa.

A plot of the two control signals is seen on Fig. 4.28. If it is assumed that the
maximum span of the control signals is 0-10 volts, it is noted that both signals
keep within this limit.

Fig. 4.28 Control signals 10
U, [voli]

i i i i
0 200 400 600 800 1000
t [sec]

To see the effect of changes in the disturbance variables, another simulation
is carried out where the disturbances are changed as follows,
A, :0.0122m? — 0.0134m?at 7 = 100+,
T, :60°C — 95°Catr=400s,
T,:30°C — 10°Catt =700 s.
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Fig. 4.29 Outputs for § '

disturbance changes L
H, [m]

T, [°C]
sabo S A ]

45

44.8

446 i i i i
0 200 400 600 800 1000
t [sec]

Fig. 4.30 Control signals for 10
disturbance changes U, [volt]

0 ! 1 I 1
0 200 400 600 800 1000
t [sec]

The responses of the outputs and the control signals are seen on Fig. 4.29 and
4.30. The desired stationary values are held perfectly in all cases but dynamic
errors do occur after the changes in the disturbance variables. The errors are
well damped. In the close vicinity of the linearization point this is of course in
accordance with the positions of the eigenvalues but it is not known in advance
how the system would behave if the system is moved away from this operating
condition. As seen on the plots, there is no indication of any deterioration of the
system properties even for large changes in the disturbances. 0

Example 4.14. Two Link Robot Arm Control with Multiple Integrators

Here a discrete time controller with integration will be designed for the two-link
robot from Example 2.10. The design will be based on the model linearized
around the state given by the two link angles: 0; = 45° and 6, = —30°, see p. 48.

Prior to the controller design the model must be discretized with the sample
period desired for the controller. The robot is a relatively fast mechanical
system, so 7' = 0.02 s will be used. This means that it will be possible to handle
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frequencies up to about 5 Hz (one tenth of the sample frequency) with reason-
able accuracy. If further investigations show that this is not adequate, the design
must be revised with a different sample period selection.

The discrete time matrices become (using MATLAB’s c2d function),

[ 1003.6 20.024 —0.60095 —0.0040071
Fo 357.19 1003.6 —60.152  —0.60118 10-3
—6.0182 —0.040106  1002.1 20.014 ’
| —602.38  —6.0182 209.36 1002.1
[ 0.25048 —0.48716
G- 25.068 —48.758 102
—-0.48716  1.3112
| —48.758 131.21

The eigenstructure design is characterized by the position of the eigenvalues.
For good damping, ¢ > 0.7 is selected, and for fast response, a natural fre-
quency in the neighborhood of 10 rad/s. Consequently the eigenvalues are

T +7
Mg =4 —8.6+j5
97426

and the discrete eigenvalues become,

0.86085 4 j0.12131
Netg = "0 = ¢ 0.83777 £ j0.084058
0.82254 4 j0.042811

The MATLAB place function gives the gain matrix

841.3  76.385 153.99 20.175 ,—63.628 —8.1492

K =[K-K]= , :
=1 1= 134388 30304 90155 10,891 127411 —5.175

The gains are to be realized as constants in the control computer. This is usually
easier than realizing the gains using analog operational amplifiers (as will usually
be the case for a continuous time controller). It should be kept in mind though
that large gains may cause noise sensitivity, especially in the discrete case.

The overall system with controller is shown on Fig. 4.31. Note that the
outputs y; and y, are equal to the states x; and x3 respectively. Note also that
the figure is divided into two parts. The continuous time nonlinear robot system
to the right of the thin vertical line and the discrete time controller to the left of
the line. When passing this interface, the continuous (‘analog’) signals are
converted to discrete (‘digital’) signals by the analog-to-digital converters,
ADC. The discrete signals are converted to continuous signals by the digital-
to-analog converters, DAC.
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Fig. 4.31 Discrete time
controller for a two-link
robot

0
O

X
ADC

S
D 2
S
D
gy
D

.
Y2
—
Y
Discrete time Continuous
controller time system

All the operations to the left of the vertical line take place in a real time
computer.

The results of a simulation carried out on the system of Fig. 4.31 are shown
on the two Figs. 4.32 and 4.33. The initial state is the same as the linearization
point of Example 2.10:

S
a

S
a

=
a

45° 7/4
o] | o
YT 300 | T | —a/6
0 0

Two steps are imposed upon the system. At = 0.1 s the reference r| is changed
from n/4 rad to —n/4 rad and at 7 = 3 s the reference r; is changed from —n/6
rad to /6 rad. The initial and the final configurations are shown on Fig. 4.34.

0.8 . " . .
fraaj |\ T R— e |
04 ftooe s AR SRS
oaf e

02t B e e fe
04 F A e b T RRE CRTRITERE
06\ ]
08F\ — — ——

Fig. 4.32 Robot link angle 0 1 2 3 4
step responses t [sec]
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Fig. 4.33 Control signals 100
(motor torques)

-150

t [sec]

Fig. 4.34 Link
configurations before
and after steps

Final
configuration

Initial
configuration

0, =—45°

8,=30°

After the transients the new angles are accurately achieved but with some
dynamic interaction between the two outputs. The control signals (the motor
torques) on Fig. 4.33 are stair case functions because they are outputs from the
DAC-converters.

Although the system properties change considerably under this change of
configuration (see Example 3.10), there are no signs of performance deteriora-
tion in the responses. The controller seems to be robust enough to allow large
changes in the operating point. m

Example 4.15. Discrete Control of a Stock Inventory

A discrete time example of a non-technical problem is the control of the stock
inventory of a commodity (for example candy, beer, underpants, etc.) given
the requirement that some stock must always be available for sale. Given is
that the quantity of a commodity c¢(k) must be equal to its value on the
previous day plus that which is ordered, o(k), on the previous day from a
supplier. The quantity sold on any day, s(k), has to be subtracted from the
existing stock. The state equations which describes this system are:
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c(k + 1) = (k) + o(k) — s(k),
o(k +1) = u(k),
y(k) = c(k),

or in vector-matrix form:
clk+1)
ok +1)

117 [e(k)
- lo O] L(k)
(k) = [1 0]x(k).

The sampling period is 7' = 1 day.

What is desired in this example is to keep the stationary value of the stock
constant independent of arbitrary constant sales. The sales must be considered
a disturbance to the system as indicated in Eq. (4.111). This can be accom-
plished by adding a discrete time integral state as on Fig. 4.20,

-1

x(k+1) = ]s(k),
0 @.111)

u(k) +
1

xi(k +1) = r(k) = y(k) + xi(k) = r(k) — Cx(k) + xi(k).

The system is augmented in the usual way,

clk+1) I 1 077 ck) 0 -1
olk+1) | =10 0 O0f]|ok)|+|L]uk)+]| 0 [s(k),
X,’(k + 1) -1 0 1 )Cl'(k) 0 0

with the augmented matrices,

1 1 0 0
Fi=|0 0 0f|and G, = |1
-1 0 1 0

It is easy to find the controller gain using Ackermann’s formula.
Selecting the closed loop eigenvalues,

0.2
)\'cl = 02 y
0.2

it is found that

K, = [k ky —k;]=[19214 —0.512].
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Fig. 4.35 Disturbance 3
response of stock control
system

Sample no.
(Days)

The daily order can then be calculated from the formula:
ok + 1) =u(k) = —=Kx(k) + kix;(k) = —kic(k) — kyo(k) + kix;(k).

A simulation on the closed loop system (see Eq. (4.110)) gives the result on
Fig. 4.35. At the start of the simulation the sales and the ordered inventory are
1.4 per day (measured in some appropriate unit) and the stock is 1.2 which is
what is desired. At day no. 5 the sales go up from 1.4 to 2 and consequently the
stock has decreased at the morning of day 6. This causes the ‘controller’ to take
action and the ordered inventory increases on day 7. After the transients a new
equilibrium is established at day 13, with a new constant daily order equal to the
sales with the stock available the same size as before the disturbance. 0

4.6 Deterministic Observers and State Estimation

From previous sections of this chapter it is clear that full state feedback is very
useful in obtaining control systems which have good stability and robustness
properties. In order to use full state feedback it is necessary that all states of a
given system are measured. In practice this is not always possible or desirable.
In some cases sensors are simply not available or cannot be made for the states
which one would desire to measure. In other cases the required sensor is too
expensive for the intended application. It has to be remembered that each
measurement requires a sensor and its associated power supply, signal condi-
tioning equipment and measurement connections. This means that each sensor
channel represents a significant investment of time and money. Moreover in
addition to the noise in the process to be controlled each measurement is also a
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source of noise which can reduce the accuracy with which a control object can
be controlled.

If the process which is to be controlled is observable and a reasonably
accurate model is available for it, then it is possible to use a modified model
of the process to estimate the states of the process which are not measured. The
main model modification is to add a term which corrects for modelling error
and internal disturbances. Under the proper conditions, the state estimates can
then be used instead of direct measurements in a full state feedback system.
Such a modified model, used in a feedback system is called a Luenberger observer
or a Kalman filter, depending on how it is designed. Often this is shortened to
‘observer’ with it being understood from the problem formulation or context
which kind of observer or filter is being considered. As will become apparent in
what follows, observers also have the very useful property that they can be used to
effectively suppress or reduce both process and measurement noise in feedback
systems and in some cases, this is their main advantage. The intention of the
modifications which are introduced in the system models which form an observer
is to cause the state estimates to follow more or less exactly and rapidly the states
of the control object independent of internal or external disturbances. Here
‘disturbances’ can be actual signals as well as modelling errors.

Luenberger observers are modified models of control objects which are
designed from deterministic considerations. Kalman filters are in structure
identical to Luenberger observers but they are modified models of control
objects which are designed from statistical considerations. In this chapter only
deterministic (or Luenberger) observers will be considered.

4.6.1 Continuous Time Full Order Observers

In what follows the control object is to be described by the usual system
equations:

(1) = Ax(1) + Bu(), 4.112)
y(1) = Cx(1). (4.113)

If the Egs. (4.112) and (4.113) were exact and undisturbed by noise, it would
be reasonable to use the states estimated with the model of the system alone as
the basis of a state feedback system. Such an observer might be called an open
loop observer, see Kailath (1980). Unfortunately it is rare that a system is known
with such accuracy and is noise free. Thus it is necessary to introduce feedback
around the system model itself in order to force it to follow the control object
accurately. Such a configuration might be called a closed loop observer. In control
circles only such systems are called observers: open loop observers are most
correctly called feed forward systems.
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In order to practically estimate the state x(¢) of the linear system described by

Eqgs. (4.112) and (4.113) a system of differential equations can be constructed
which has the form,

(1) = Mx(t) + Nu(z) + Ly(1), (4.114)

where X(7) is estimate of the state variable x(z). Equation (4.114) is the state
equation of an observer for (4.112) if

x(t9) = x(ty) implies x(¢) = x(¢) for all ¢ > #, and for all u(z). (4.115)
As all of the states of the system are estimated, the observer is a full order
observer.

Equation (4.114) is now subtracted from (4.112), (4.113) is inserted and the
following equation is obtained

X(1) — X(1) = é&.(1) = (A — LO)x(¢) — Mx(¢) + (B — N)u(z). (4.116)
The vector,
e.(1) =x(1) — x(1), (4.117)
is called the estimation error. Letting
M=A-LCand N=B (4.118)
Equation (4.116) becomes
e.(1) = (A —LC)e.(1). (4.119)
If the system in Eq. (4.119) is asymptotically stable, i.c., if the eigenvalues of the
system matrix A — LC are all in the left half plane, then the condition (4.115) is
fulfilled and (4.114) is an observer or a state estimator for (4.112).

Even if the estimator is ‘started’ in an initial state such that x(7o) # x(1), the
asymptotic stability will, according to Eq. (4.119) ensure that

X(7) — x(1) for — occ.

For this reason (4.114) is called an asymptotic state estimator for (4.112).
If the estimated output is defined as

y(1) = Cx(1) (4.120)

then (4.114) can be written with insertion of (4.118) as
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x(1) = AX(1) + Bu(z) + L(y(1) — y(2)). (4.121)

The gain matrix L is called the observer gain matrix and is to be selected by the
designer.

Fig. 4.36 Full order
continuous time observer

¥

Linear system model

Observer ,T‘ f‘ *

Figure 4.36 shows a block diagram of a full order observer. It is implicit in
the block diagram that the system to be controlled and the observer have exactly
the same A, B and C matrices. Both the control object and the observer are
supplied with the same input. The outputs of the control object and observer
model are subtracted from each other and this output difference is multiplied by
the observer gain L and inserted into the summing point in front of the observer
model. This difference is called a residual or an innovation. Figure 4.37 shows an
alternative block diagram of the observer.

Clearly the properties of the observer in Eq. (4.121) are strongly dependent
on the matrix L. The most important point here is that the Eq. (4.119) describ-
ing the estimation error is stable and sufficiently fast to ensure that initial
estimation errors will vanish rapidly. These qualities are reflected in the eigen-
values of the observer system matrix,

AL =A - LC, (4.122)

u() Yy

X(0)

Fig. 4.37 Alternative block
diagram of the observer of
Eq. (4.121)
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which is sometimes called the stability matrix of the observer (4.121). The
eigenvalues of the stability matrix are the solutions of the equation:

det(M — A + LC) = 0. (4.123)

4.6.2 Discrete Time Full Order Observers

In the discrete time case the methods used to analyze and describe the properties
of observers are nearly the same as above for continuous systems. The observers
which can be constructed may however have somewhat different properties. This
is in large measure due to the fact that the pure time delay is an inherent dynamic
element in discrete time systems. This means that no input can influence a control
object or observer between sampling times and no discrete measurement can
resolve what a control object is doing between sampling times.
For the discrete time system,

x(k + 1) = Fx(k) + Gu(k),

(4.124)
y(k) = Cx(k),
the discrete observer equivalent to (4.121) will be
X(k + 1) =Fx(k) + Gu(k) + L(y(k) — y(k)). (4.125)
Defining the estimation error,
e.(k) = x(k) — x(k), (4.1206)

and subtracting (4.125) from (4.124) gives the equation governing the error,
e.(k+1)=(F—LCelk), (4.127)
and it is not surprising to find that the stability matrix is
FL=F-LC. (4.128)

The observer (4.125) calculates the state estimate at time k + 1 as soon the
measurement y is taken at time k. In other words, the observer predicts what
the state will be one sample period forward. Therefore (4.125) is called a
predictive observer. Sometimes it is argued, that the observer (4.125) does not
lead to the best possible result since is does not benefit from the last
measurement, i.e., the measurement y(k + 1).
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It is of course not possible for any real time computer to make a measure-
ment, to calculate the state estimate and to calculate the control signal instan-
tancously. However, if the plant to be controlled is much slower than the
computer, a computation delay may be immaterial and in such cases the
observer above can be improved.

To accomplish this an intermediate state, X(k), is introduced and the state
estimation calculation is split into two steps. During the sample period from
time k to time k + 1 the time update is calculated,

X(k+ 1) =Fx(k) + Gu(k), (4.129)

and at time k + 1 the system output y(k + 1) is measured and the measurement
update is calculated (‘instantancously’), i.e., the actual state estimate,

X(k+1) =Fx(k) + Gu(k) + L(y(k + 1) — Cx(k + 1)). (4.130)
Since the current value of the output is used, the observer (4.129) and (4.130) is
called a current observer.
If Eq. (4.129) is inserted into (4.130), it can be rewritten as
x(k+ 1) = (F — LCF)Xx(k) + Gu(k) — LCGu(k) + LCx(k + 1).  (4.131)
Using the state Eq. (4.124) leads to
X(k + 1) = (F — LCF)x(k) + Gu(k) + LCFx(k). (4.132)
Subtracting this from (4.124) gives
x(k+1) —x(k+ 1) =x(k) — (F — LCF)x(k) — LCFx(k)  (4.133)
or, introducing again the estimation error (4.126),
xX(k+1)—x(k+1)=e(k+1) = (F—LCF)e,(k). (4.134)

The stability matrix in (4.134) resembles that of Eq. (4.127). The only difference
is that the output matrix C is replaced by the product CF, which has the same
dimension as C.

4.7 Observer Design for SISO Systems
4.7.1 Observer Design Based on the Observer Canonical Form
Any observable SISO system can be brought into observer canonical form by

a similarity transformation as shown in Sect. 3.9.2. The state transformation is
carried out by the expression z = Qx where Q is found from Eq. (3.368).
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The observer canonical form is:

z = A,z + Byu,

y:CDsz
where

0 0 O 0 —ay T

0 0 0 —-a
0 0 0 -m

AO( = ) BOL =

0 0 0 ... 0 —a,,
000 0 ... 1 —ap,]

Coe=[00...01]

The observer for this system will be,

2(1) = Anez(t) + Boeta(t) + Lo (y(1) — (1)),

with the gain matrix,

and the stability matrix,

AL - Aoc - LucCoc"

oc

Inserting these matrices into (4.139) gives

o 0 0 ... 0 —ay — I
1 00 ... 0 —dq —l’z
0O 1 0 ... 0 —a2—1’3

oc

U
0 —dp-2 — ln—l

1 —dy—1 — l/n J
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(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)
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The stability matrix is also in observer canonical form, so the last column
contains the coefficients of the characteristic polynomial of the stability
matrix.

If it is desired that the eigenvalues of the observer be placed in the specified
positions in the complex plane,

Mo = Loty o2, - - 5 hon, (4.141)

then the stability matrix characteristic polynomial can be written,

n

Pch, AL, — HO\‘ - )\'oi) = 7\4” + Oﬂnfl)vn_1 + ...+ 0517» =+ . (4142)
i=1

Comparing (4.140) and (4.142) leads to a set of equations for determination of
the gains:

o =ag+ 11,
o =a; + 15,
(4.143)
Oy—1 = dp—1 + l/n;
or
I'y = o — ap,
Iy =04 —a,
(4.144)

/
Iy =01 — ap_y.

For the original system the stability matrix is Ay, = A — LC. The transfor-
mation means that,

AL =A-LC=Q'A,.Q-LC,Q=Q 'A,.Q-Q'QLC,Q w.145)
= Q_] (Aac - QLCoc)Q = Q_IALocQ = Q_l (Aac - LUL‘COL‘)Q7 .

which shows that
L=Q 'L,. (4.146)
The stability matrix of the predictive discrete time observer has the same form

as in the continuous case so this design method will also work for the predictive
observer.
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4.7.2 Ackermann’s Formula for the Observer

The problems of designing a state feedback controller and a full order observer
are very much alike. The controller closed loop system matrix and the observer
stability matrix are

Ak = A — BK,

(4.147)
AL =A - LC.

Looking at the dual systems introduced in Sect. 3.8.9 and specializing to the
SISO case,

«=Ax+B
S\.:{;‘:C?L “ (4.148)
and
. T T
SZ:{)Z}:‘;T?'_C u. (4.149)

Designing an observer for the system S, leads to the stability matrix above. It’s
transpose is

Al =AT-CTLL (4.150)
Design of a controller for system S, leads to the matrix,
Ag. = AT - C'K.. (4.151)

If L_{ = K. the two matrices in (4.150) and (4.151) are equal. This shows that
designing an observer for the system S, is precisely the same as designing a
controller for the dual system S..

Formulation of Ackermann’s formula for the design of a controller for S.
yields

K.=[00 ... 0 1]M_!Pya, (A7), (4.152)

where M. - is the controllability matrix for S. and P ak. (AT) is the closed loop
characteristic polynomial with the system matrix AT replacing A. Now the
observer gain matrix for S, can be found as

0
0

L,=K/ =P}, (ADHMDT|:|. (4.153)
0
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From Eq. (3.326) it is known that M[_ = M, and therefore also that

M HT =m; ! (4.154)

¢z
and for the characteristic polynomial one finds that
PZ;z.,AK: (AT) = PZ;LALT (AT)

= (AT + o (AT + .+ oy AT+ ooD)” (4.155)
— A” + an*]Anil + . + ulA + uol — P("thLv\» (A).

By these simple manipulations Ackermann’s formula for the full order observer
for the system of Eq. (4.148) has been derived:
0
0
L=Pya (AM,"|:|. (4.156)
0
1

Ackermann’s formula can be applied to continuous as well as discrete time
systems. For the predictive observer the formula is used unchanged, with the
system matrix F replacing A and with the usual observability matrix,

- C -

CF
M,=| CF* |. (4.157)

Canl

For the current estimator the output matrix C is replaced by the product CF

(see Eq. (4.134)) and consequently M, in Ackermann’s formula is replaced

by

" CF
CF?

M, = | CF° |. (4.158)

| CF”
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Example 4.16. Observer Control of a Marginally stable System

Many mechanical and electrical systems (or combinations of them) can be
described as un- or underdamped harmonic oscillators. For example hydrau-
lic/mechanical motors, tuned circuits (electrical or mechanical/electrical), etc.
The state and output equations of such a system are easy to write down.
Choosing the position and the velocity as the states, the equations will be

X1 0 1
L ol
y=[10}[m]-

®, is the natural frequency of the system. The eigenvalues are purely
imaginary,

0

Xi
+

1

X2

A= :tj(’)n;
so the system is Lyapunov stable.

It is assumed that only the position of the body is measured. An observer for
this system can be found from Eq. (4.121),

. 0 1
X =
—o2 0

where L is two-dimensional,

X+ u+ L(y — Cx),

1]
L= .
b
In this simple case the gains can be found directly by comparing coefficients.
The characteristic polynomial of the stability matrix is
[10] )

=N+ L4 02 + b =2 + 20,000k + @2,

0 1

2
-, 0

[
_|_

20
det(M — A + LC) = det -
0

1)

where ®,, is the natural frequency and (, is the damping ratio of the observer.

In order for the observer to be reasonably fast with respect to the control
object, the observer eigenvalues should be on the order of 5-10 times as ‘fast’ as
the system itself. This means that one could select ®,, = 5w,. The damping of
these eigenvalues should be good: (, = 0.707. In other words,
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Iy = 26,0, = 7.07,
o + b =250% = b = 240’

It should be noticed here that the control object is a system which is not stable
itself. The observer for this system is however stable and fast so that it can
follow the control object independent of its nonstable behavior or its initial
conditions. There is no contradiction in this: the situation is parallel to the
design of a stable controller for a nonstable or unstable control object. m)

Example 4.17. Discrete Observer for a SISO System

In this example a discrete time predictive observer for the system in Examples
4.5 and 4.6 is to be designed. The system is SISO and therefore Ackermann’s
Formula (4.156) can be applied.
The continuous system’s eigenvalues are
[ —0.8986
© | =0.1457 +£0.2157

Again, it is desired that the observer to be much faster than the system itself, so
the following observer eigenvalues are selected:

-5
h—
« {—3.5 +j3.5 '

which means that the observer will not only be fast, it will also be well
damped.The discrete time eigenvalues with the sample period 7= 0.2 s will be

ppy — M _ 0.3679
! 0.3798 +0.3199

With these eigenvalues the characteristic polynomial for the stability matrix
becomes,

P, v, (F) = F? — 1.1275F% 4 0.5260F — 0.090721I,

where
0.9730  0.05293 —0.06031
F= 0.01918 09461 —0.00061
0.003142  0.3063 0.8572

The observability matrix is,

C 2 0 0
M,=| CF | = |19459 0.10586 —0.12062 |,
CF’ 1.8949 0.16621 —0.22082
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and the observer gain matrix is readily computed,
0.8244
L= | -8.8262
—15.592

Carrying out a simulation of the estimation error determined by the state
Equation (4.127), the results as shown on Fig. 4.38 will appear. In this case the
initial error,

0
€.0 = 0.1 s

was assumed.

Fig. 4.38 Estimation error 0.3
for e, = [0 0.1 0]" : : :
0.25 f oo R CERITR PR e B

02 R E AR EEREETERTRRPRREE . ................ 4
0.15 e R b ]

0l =] L4 b L]

0.05 | f e b

iT:O.Z sec

—-0.05 : :
0 5 10 20
Sample no.

As should be expected, the error tends to zero and it has disappeared in about
11 samples or approx. 2.2s. m

Example 4.18. Current Observer for the SISO System

The current observer (4.129) and (4.130) can be designed the same way as in the
predictive case. The only difference is that the output matrix C must be replaced

by the product CF.
The modified observability matrix becomes

CF 1.9459 0.10586 —0.12062
M, = |CF*| = | 1.8949 0.16621 —0.22082
CF’ 1.8462 0.18991 —0.30368

The new observer gain matrix is found to be

0.44245

L= |-9.3475],

—14.735
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Fig. 4.39 Estimation error 0.3
for e,p = [0 0.1 0]7 (current
observer) 025+

02f = e b P
oash || S S ]
01 = A A .

0.05 | R R ]

T=0.2sec

-0.05 :
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Sample no.

which is not far from the gain matrix in the previous example. The estimation
error is now governed by the state equation:

e.(k+1) = (F — LCF)e, (k).

The solution for the same initial error as in Example 4.17 is found by
simulation. See Fig. 4.39. Comparing with Fig. 4.38, a slight decrease in the
errors can be noted on Fig. 4.39, but in this case the difference is not very
significant. m

4.7.3 Conditions for Eigenvalue Assignment

The Formula (4.156) show that L can be found if M,, is nonsingular, i.c., if the
system is observable. It can be concluded that observability is a sufficient
condition for arbitrary eigenvalue placement for the observer.

If a unobservable system is considered the observable subspace decomposi-
tion in Sect. 3.8.12 can be applied. A similarity transformation z = PXis applied
where P is found from (3.345). If it is assumed that an observer gain matrix L
has been found then it is known from Eq. (4.146) that

L, = PL, (4.159)

where L, is the gain matrix for the transformed system. The cigenvalues for the
stability matrix are the solutions of the equation:

det(M — A + LC) = 0. (4.160)
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Multiply now by the determinants of P and P~! and make the transformation:

det(P) - det(M — A 4+ LC) - det(P~") = det(P(M — A + LC)P™) ( :
4.161
= det(M — PAP™! + PLCP™!) = det(M — A, + L,C,) = 0.

If the system’s observability matrix has the rank p, the gain matrix is partitioned
as

L
L,:[ "}, (4.162)
Lo

such that L;; has the length p and L, has length n — p. Insertion of the parti-
tioned matrices into the last expression in Eq. (4.161) yields

[Co 0])
M, — Ay +L;Co, 0
2 S e (4.163)
—App + LpCy : )\'Infp — Ay

= det(?»lp — Ay + L,1C0) . det(?»ln,p — A,m) =0.

Ay 0
A 12 Ano

L,

det(}\l - At + L[C[) = det 7\] -
Lo

The last expression shows that the eigenvalues consist of the p eigenvalues
which can be influenced by the gain matrix L,; and the remaining n —p
eigenvalues of the non observable system matrix A, 0. These eigenvalues cannot
be influenced by the observer gains and will therefore remain in their original
positions. Thus it can be concluded that observability is also a necessary con-
dition for arbitrary eigenvalue placement.

Another important conclusion can be drawn from the result above. It is clear
that all the eigenvalues in the observable subspace can be assigned specific values,
even if the observable subsystem is not stable. If the eigenvalues of the unobservable
system are also in the left half plane then the observer can be made stable by proper
choice of L;;. A system where the unobservable cigenvalues are stable is called
detectable. See p. 124. Precisely similar conditions apply for discrete time systems.

4.8 Observer Design for MIMO Systems
It can be shown that the conditions for eigenvalue assignment for SISO observers
discussed in the previous section are also valid in the MIMO case:

1. The observer eigenvalues can be placed arbitrarily if and only if the system is
observable.
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2. The stability matrix can be stabilized if and only if the unobservable states
are stable (the system is detectable).

To find a design method for MIMO observers the duality properties can
once again be utilized. The essential matrices for the controller and the obser-
ver cases are:

Ax = A — BK,

(4.164)
AL =A-LC.

Following the same line of development as in Sect. 4.7.2, it is easy to see that
designing a controller for the system,

X = Ax + Bu
Sy , (4.165)

y =Cx

is the same as designing a state feedback controller for the dual system,

S, :

(4.166)

2=A"z+C"u
y =Bz

4.8.1 Eigenstructure Assignment for MIMO Observers

The robust eigenstructure assignment implemented in the MATLAB function
place, can thus be used for observer design with a simple modification. The
observer gain matrix L for the MIMO system (4.165) is determined by the
command,

L=place(A,C, [Ai,A2,..., hal),

where Ap,Aa,..., A are the observer eigenvalues. Note that prime (°) in
MATLAB denotes matrix transposition.

4.8.2 Dead Beat Observers

By a derivation completely parallel to the treatment in Sect. 4.4.2 it can be
shown that a discrete time observer with dead beat behaviour is obtained if the
eigenvalues of the stability matrix are all placed in zero.

In this case the characteristic polynomial becomes

det(M — F + LC) = Pe, (M) =1+ o A+ fouk +og = 1" (4.167)
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A deadbeat observer will now be desiged for the system of Example 4.19.

Example 4.19. Predictive Deadbeat Observer

A predictive dead beat observer is designed by using the n eigenvalues,
Ao =0,0,...,0.

Repeating the procedure from Example 4.17 leads to the gain matrix

1.3881
L= | -30.616
—47.111

and a simulation of the estimation error under the same circumstances as in the
two previous examples gives the responses on Fig. 4.40. All error components

Fig. 4.40 Estimation error 0.6 .
T .

f()l‘ €0 = [0 0.1 0} ] ee3(k)i : :

(dead beat observer) 05F- ST SITREE SRR TP PEPEPERE e CETEREREREREPEVET

041 5 RRREE SRRRTEEPRRNERPPS o P

S T — S

02F-- I R RERREEEEEE ................. ..................

7] 0% O — E— —

e, (k) T=0.2sec

Sample no. 20

are exactly zero from the third sample instant, clearly indicating the dead beat
behaviour. The price is, as it is usually the case with dead beat systems, that the
gains as well as the signal amplitudes are large compared to the cases with more
‘normal’ eigenvalue placements. 0

4.9 Reduced Order Observers

The observers which have been described above are all full order. This means
that all the states of the control object are estimated whether or not this is
necessary. In some cases control objects have states which can be effectively
measured without internal state or measurement noise while other states have
large noise components. It may also be true that the modelling of some states is
very accurate while the measurements of others are inaccurate.
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Under these circumstances it might be advantageous to estimate a subset of
the state variables. Such model reductions may be advantageous because they
make it possible to simplify the control system and thus reduce system costs. This
is nearly always an interesting proposition because not only does this reduce
hardware costs but also implementation time and tuning difficulties. For these
reasons reduced order observers are of great interest for practical applications.

Consider now a system divided into blocks containing the states which can be
accurately measured directly, x;, and another set for which an observer is
required, X;. In contrast to what is usually the case, it is clearly important
here to order the states properly.

The state vector,

X|
X = [ ] (4.168)

defines the blocks of the overall system according to the state equation,
X An A12:| [Xl] |:B1:|
| = + u, 4.169
[Xz ] |:A21 Axn | [ X2 B, ( )
where the state vector x is measured according to
y = Cixp. (4.170)

It will be assumed for simplicity here that the matrix C; is quadratic and
nonsingular. This will very often be the case and the method presented will
therefore cover most practical problems, although it is not applicable in all cases.
The assumption is not absolutely necessary but it introduces a useful simplifica-
tion and a straightforward design technique. For a more general approach the
reader should see Friedland (1987) or Kwakernaak and Sivan (1972).

If a full order observer is to be constructed for this system, it should estimate
the entire state vector,

X1
%= [ } 4.171)

Xo
However there is no reason to estimate the upper component of the state vector
since it is available through the measurement (4.170). Therefore let

X =x; =C/ly. (4.172)

On the other hand it is necessary to introduce a general observer for the lower
component x, of the state vector,

X, =z + Ly, (4.173)
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where the auxiliary state vector z is determined from a state equation of the
form,

i =Mz + Nu + Py. (4.174)

This vector has the same order as x,, 1.e., 7 — rsince x; and y have the dimension r.
If the estimation error is defined as before, the expression for the error will be

X; — X €l 0
e, = = = . (4.175)
X2 —X2 €e2 €e2
Using Eqs. (4.169) and (4.173) an expression for €,, can be derived:
€ =X — Xo = AsX; + Anx2 + Bou— Ly — . (4.176)
Further using Eqs. (4.170) and (4.174) yields

éd:)'(z—;Q:Az])q +A»nxs+Bu—LCx; —MZ—NU—Py

4.177)
=AyX; +Apxo+Bu—LCi (A 1X; +A2X2 +Bju) —Mz — Nu— Py.
From (4.173), (4.170) and (4.175) is seen that
Z=X)y — € —LC]X]. (4178)
Inserting this into (4.177) and after some manipulation this gives
é()z = (A21 — LC1A11 + MLCl— PC])X] -+ (A22 — LC]Alz — M)X2 (4 179)
+ (B, — LC;B; — N)u + Me,.. '
The first three right hand terms can be made zero by setting
M = Ay — LC/Ap,
N =B, - LCBy, (4.180)
P = (Ay — LC1A|)C;! + ML,
and (4.179) becomes
éo = Me., = (A — LCiApp)e.. (4.181)

This last differential equation shows that M is the stability matrix of the
reduced order observer and the design task is once again, reduced to deter-
mining L such that M will have a desired set of eigenvalues. The problem is
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quite parallel to finding L in the full order observer such that the matrix,
Ay, = A — LC, gives the desired eigenvalues. The usual eigenvalue or eigen-
structure design can therefore be used with the only modification that C
must be replaced by C;Aj».

The eigenvalues of the reduced order observer stability matrix are the
solutions to

det(M — Azy + LCiA ) = 0. (4.182)

The condition for eigenvalue or eigenstructure assignment is also as before. The
necessary and sufficient condition is that the observability matrix,

CiAp
CiApAxy
M = | CApA}, |, (4.183)

n—r—1
C1A12A22

has the full rank n — r.
A block diagram of the reduced order observer is shown on Fig. 4.41.

Fig. 4.41 Reduced order

u(r) . .
observer Linear state equation

(A and B)

Linear system model

Observer

)

X0

+ XF i) f 2(f) +

Discrete Time Case

It should be noticed that the derivation above can be carried out in exactly
the same way with difference equations and discrete time versions of the
observer design shown above can easily be constructed. If the discrete time
system matrix is partitioned in the same way as in Eq. (4.169),

Fi, F
F = [ ! 12} (4.184)
Far Fp
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then the estimation error is determined by the difference equation,

ea(k+ 1) =Mey(k) = (Fnn — LC Fi2)en(k), (4.185)
and the stability matrix is seen to be

M = F» — LCFy>. (4.186)

Example 4.20. Reduced Order Observer for a Third Order System

Returning to the third order system from Example 4.5. The model for this system is

~0.14 033 —0.33 0
x=1] 01 —028 0 |[x+| 0 |uy=[2 0 0
0 17 —0.77 —0.025

Supposing that only the first state variable can be measured according to the
output equation, an observer for estimation of the two remaining states is
needed.

The system matrix partition (4.169) leads to

Ay =—0.14, Aj; =[0.33 —0.33],

0.1 —0.28 0
Ap = ; Ap = )
0 1.7 =0.77
and the output equation can be written
y=Cx; =2x;.

L will have dimension 2 x 1 and can be found if the matrix pair {A, CiA},} is
observable. It is found that

CiAp
CiA A

/

—1.3068 0.5082

0.66 —0.66
[ ]and det(M))) = —0.5281.

so the observability requirement is fulfilled.
The observer should be much faster than the system and the following
eigenvalues are selected,

Ao = —3.5+/3.5.
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Fig. 4.42 Unit step response 0.02 - - - - -
of system and reduced order 3 3 3 : :
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Ackermann’s Formula (4.156) for the observer case can be applied and the
following result is found:
—28.32
L= )
—37.34

The result of a simulation of the overall system is shown on Fig. 4.42. The
block diagram of the system is seen on Fig. 4.41 and the system’s initial state
vector is a zero vector. The observer is however started with incorrect initial

conditions, namely:
o — {)}20} B {0.01]
7 k0] L002)

A deviation between the states x; and x3 on one side and the corresponding
estimated states X, and X3 on the other side is clearly visible over the first 1.5 s of
the simulation. After this the curves coincide, showing that the estimation
errors have vanished as was intended. 0

4.10 State Feedback with Observers

Itis clear from Sects. 4.6, 4.7, 4.8, 4.9 that it is possible to estimate the states of a
linear system using a linear system model called an observer. Even if only a
subset of the states of a control object is measured, it is still possible to make all
the states available for feedback purposes, albeit some only as estimates. It is
clear however that proper design techniques must be used to ensure accurate
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Fig. 4.43 State feedback
with full order observer, the
design situation
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State controller
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estimates. It now has to be investigated how the combination of observer state
estimates and full state feedback will work in conjunction with each other.

A block diagram of the observer structure to be studied in this chapter is in
Fig. 4.43. It may be seen on the figure that the observer structure of Sect. 4.6 has
been retained without any changes. What is new is that the state estimates are
used in the control loop instead of direct state measurements. Most importantly,
it is necessary to specify design guidelines for such apparently complex systems
given the requirement that overall asymptotic stability must be attained.

It should be kept in mind that the observer (full order as well as reduced
order) is a linear approximation to the real system and therefore it cannot exactly
follow the states of the real system which is most likely nonlinear. It is very
important to study the possible consequences of this fact. Usually this is most
conveniently done by simulation as shown in Example 4.22.

4.10.1 Combining Observers and State Feedback
As before the control object is to be described by the state equations:
x(1) = Ax(¢) + Bu(1), (4.187)

y(1) = Cx(1), (4.188)

and the observer by the equation,
x(1) = AX(1) + Bu(7) + L(y(r) — Cx(1)). (4.189)
To establish full state feedback using the state estimates, the feedback law is

u(r) = —K&(¢) + r(1). (4.190)
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This immediately leads to the observer state equation (the time argument is
omitted),

x = (A —BK — LC)X + Ly + Br. (4.191)
The estimation error is
e =X—X=X=X—¢,. (4.192)

If x is inserted into (4.190) and the resulting u into (4.187), the following
equation is obtained

x = (A — BK)x + BKe, + Br. (4.193)
The estimation error is governed by the equation
¢, = (A—LC)e,. (4.194)

Equations (4.193) and (4.194) can be combined to the 2n-dimensional state

equation,
X A — BK BK X B
= + r. (4.195)
€, 0 A—LC] e, 0

The characteristic equation of the overall system is
M — A + BK —BK

0 M—-T-A+LC
= det(M — A+ BK) - det(M — A + LC) = 0.

det

(4.196)

This shows that the eigenvalues of the overall system (4.195) consist of the union
of the eigenvalues of the controller and the eigenvalues of the observer.

In other words, the eigenvalues of the controller and those of the observer are
independent of each other. If the controller as well as the observer separately
have been given eigenvalues in the left half plane, then one can be sure that the
overall system will be asymptotically stable. This important result is often called
the separation principle though this label was originally applied to stochastic
systems.

In the presentation of the observer/full state feedback control system above,
no account has been taken of the response time of the observer. In fact this has
not been necessary at all. The reason for this is that if overall stability can be
achieved then the response time of the observer is not important in itself, as long
asitis atleast as fast as the system itself, given the input which one wishes for the
control system to follow. If the observer is not fast enough to follow the control
object then this will degrade the quality of the control which can be attained,



4.10 State Feedback with Observers 275

though not its stability, given a reasonably accurate system model for the
controller and observer design.

To ensure that the observer is fast enough, the observer eigenvalues should
normally be placed to the left of the controller eigenvalues in the complex plane.
For continuous time systems it is often suggested that the observer eigenvalues
are selected according to

Ao =a- A, (4.197)

where A is the controller eigenvalue and the multiplication factor a is 3-10.

If this rule is applied a good result is achieved in most cases, but it should
remembered that it is merely a coarse rule of thumb. Sometimes adequate
performance is obtained even if the observer eigenvalues are placed quite
close to the controller eigenvalues. It should also be noted that if the eigenvalues
are placed too far into the left half plane, large observer gains and severe noise
and disturbance sensitivity may be the result.

Discrete Time Case

As before for controllers and observers, it is obvious that the discrete time
systems can be treated precisely the same way as the continuous ones above.
The discrete version of the 2n-dimensional overall system state Equation (4.195)
is

[x(k—i—l)] _ [F—GK GK Hx(k)

ec(k+1) 0 F-LC ee(k)]Jr[ﬂr(k) (4.198)

and consequently the characteristic equation reflecting the separation principle
becomes

M —-F+GK —-GK
det
0 M—F+LC
= det(MI — F + GK) - det(\I — F + LC) = 0.

(4.199)

Example 4.21. Combined Observer/Pole Placement Control

For the third order system in Example 4.5 a state controller was designed with
the gain matrix,

K=[81.54 5626 —32.8],

resulting in the closed loop eigenvalues,
—0.67
et =< —0.67
—0.67
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If the full state feedback is to be replaced with an observer and feedback of the
estimated states instead of the real states, an observer gain matrix must be found
such that the observer stability matrix has suitable eigenvalues. If the observer
eigenvalues,

-3
7\40{ )
242

are selected, it is obvious that the observer is considerably faster than the
controller.

The block diagram of the overall system is the one depicted on Fig. 4.43 with
the exception that the input # and the output y are both scalars and the L matrix
can be determined by application of Ackermann’s Formula (4.156). The following
matrix is obtained:

2.905
L= |-23.65]. (4.200)
—44.21
If the system and the observer are both started with a zero initial vector (i.e
X9 = X = 0), it will hardly be possible to distinguish the step responses x(7) and
x(¢) from each other and the output and the control signal will be as on Fig. 4.12.
However if the two initial vectors are not the same, an estimation error will occur,
at least for a period of time depending on how fast the observer is.
Now, two simulations are carried out using two different observer gain
matrices, namely (4.200) and the matrix,
0.1050
L= |-0.01988 |,
—03985

giving the observer eigenvalues,

{ —0.6
7\40 = ;
—0.4+0.4

which means an observer which is five times ‘slower’ that the first one.

The estimation errors e, () = x(¢) — X(¢) are shown on Fig. 4.44 for the two
cases. The initial values are

e = [0.0005 —0.0005 0.001]".



4.10 State Feedback with Observers 277

x1073 x 107
&eﬁr ? : %
el S :
‘ ‘ i €S
‘N 0 pucl T
U €2 f } €
: : St e e e
Fast  observer Slow  observer
» ‘ ‘ ‘ ‘ ‘
‘ ‘ : 10 ‘ ‘
0 5 10 15 20 0 5 10 15 20
t [sec] t [sec]

Fig. 4.44 Estimation error for the two different observer cases
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Fig. 4.45 Input end output for the two different observer cases

If the fast observer is used, the initial estimation errors have disappeared in less
than 4 s, whereas the slow observer needs more than 15s to remove the error.
The apparently large differences in the estimation errors do not reflect similar
differences in the input and output signals, which are shown on Fig. 4.45. Both
signals are almost identical for the fast and the slow observer.

This example indicates that it is not necessarily advantageous to make the
observer very fast compared with the controller. In fact, the slow observer has
much smaller gains than the fast one and it will therefore be less prone to
exhibiting undesired noise sensitivity.

4.10.2 State Feedback with Integral Controller and Observer

The observer based state feedback controller can be combined with the error
integration introduced in Sect. 4.5. A simplified block diagram of an overall
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Fig. 4.46 State feedback
with integral controller and
observer. Note, that in the
real situation the linear
system model above is
replaced by the physical
system which in most cases
is nonlinear

r(r) e(t) x,(1), y(1)
= Linear system model

Observer
X(1)

system with such a controller structure is shown on Fig. 4.46. The entire set of
equations for the system consists of the already known relationships:

X = AX + Bu,
x; =r — Cx,

X = AX 4 Bu + LC(x — %),
u = —Kx + Kjx,.

(4.201)

If an overall system state vector is defined, the following model can be obtained:

X A BK; ~BK X 0
X |=|-C o0 0 x; | + | L |r. (4.202)
X LC BK, A—-LC-BK]|[x 0

Similarity transformation of this system using the matrix,

L, 0 0
P=(0 I 0 |=P" (4.203)
I, 0 —I,
leads to the state vector,
X X X
z=P|x; | = X; =[x, (4.204)
X X — X e,

and the overall system matrix,

Ay,=PAP'=| —C 0 0 , (4.205)
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where A, is the system matrix in Eq. (4.202).
The matrix is block triangular and the eigenvalues can be found from

A-BK BK;. BK
det(Ml = Ag) = det| M— | —C 0 0 (4.206)
0 0 ‘A-LC
A—-BK BK, |

-C

= det <M -

This means that the overall set of eigenvalues consists of the eigenvalues for the
feedback integral controller (see Eq. (4.100)) plus the observer eigenvalues.

) -det(\] — (A — LC)) = 0.

Discrete Time Case

For the discrete time systems, quite similar manipulations can be carried out
and the overall system matrix corresponding to the state vector,
x(k)
z(k) = | x;(k) |, (4.207)

becomes

F.=| -C L 0o |. (4.208)
0 0 F-LC

One can immediately see that the conclusion concerning the separation eigen-
values is precisely the same as for (4.205).

Example 4.22. MIMO Observer/Integrator Control of the Robot Arm

Example 4.14 investigated the integration state controller for the two link robot
from Example 2.10.

If the full state feedback controller is replaced with a full order observer and
the additional output feedback and the integrators maintained, the overall
system on Fig. 4.47 results. The system is the continuous/discrete ‘hybrid’
version of the system on figure 4.46. To obtain a design for the entire control
system it is only necessary to combine the integrating controller from example
4.14 with the controller gain matrix,

K, =[K -K/]
841.3 76.385 15399 20.175 —63.628 —8.1492
| 343.88 30304 90.155 10.891 —27.411 —5.175 |

and with an observer gain matrix ensuring an appropriate eigenvalue placement
for the stability matrix Fy, =F — LC.
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Robot

L
'y,
L
L [
Observer >
. Yy
=
|— K
Discrete time Continuous
controller time system

Fig. 4.47 Controller and observer for two link robot

The six controller eigenvalues are

—7+j7
Ao =4 —8.6+/5
—9.7+£2.6

in continuous time and

0.86085 + j0.12131
Nerg = 0% = ¢ 0.83777 +0.084058 (4.209)
0.82254 + j0.042811

in discrete time. The sample period is 7 = 0.02s.

According to the usual rule of thumb, the observer should be 3-10 times
faster than the controller. If the 4 best damped controller eigenvalues above are
picked as a starting point and if a factor 5 is selected, the following discrete time
observer eigenvalues will be obtained:
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0.3714 +0.2029
o { 0.3663 j:j'0.0975 (4.210)
Applying the MATLAB place function leads to the gain matrix
1.2644  2.341-107%
22.373 —0.083636 @211)

—0.013327 1.2715
—1.0311 20.879

If all the known matrices are inserted into the 10 x 10-dimensional overall
system matrix (4.208), it will be found that the 10 eigenvalues will be the union
of (4.209) and (4.210), precisely as expected.

A simulation corresponding to the one carried out in Example 4.14 gives the
results on Figs. 4.48 and 4.49. Comparison with Figs. 4.32 and 4.33 reveals that
the system with observer is not quite as robust as the system in Example 4.14.
The performance is slightly inferior (more oscillatory) after 1 = 3s. where the
links have moved far away from the linearization point. This is not uncommon
for control systems containing observers.

It may be possible to improve the performance by making the observer
faster. If a factor 10 is used for the observer eigenvalues instead of 5, the result
on Fig. 4.50 is obtained. Only the angle 0, and the input u; are shown for
simplicity. The angle response is clearly better than the previous one for a slower
observer. However some of the gains are also larger,

1.7578 —1.594- 1074
39.190 —0.031706
4.212
-9.1553-1073 1.8106 ’ ( )
—0.89259 42.294

and this will increase the noise sensitivity.

0.8 ; ; ; T
frady |\ S L ]
oaf | e
oaf |B e
of | T .
4l o\ T R T
08P\ - o

-0.8
-1

Fig. 4.48 Robot link angle 0 1 > 3
step responses t [sec]
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Fig. 4.49 Control signals 150
(motor torques) [Nm]

100

50

ool — S ]

-150
0

0.8 : : 150

[rad]

“100H- ......

-150

Fig. 4.50 Responses with a faster observer

Noise effects are not pursued at this point, but it must be pointed out that at
least one source of noise is inevitable in hybrid systems with analog-to-digital
converters. The converter will not only sample the continuous signal at discrete
instants of time, it will also quantize it. The deviation between the continuous
signal and the quantized signal depends on the resolution of the ADC and this is
given by the number of bits the converter can handle linearly. There is no
quantization involved in the simulations above but this can easily be included
in the simulation. It is just a matter of adding the quantizers in the output lines
as seen on Fig. 4.51. A new simulation using the fast observer (4.212) and with a
12 bit converter gives the responses on Fig. 4.52. The angle seems unaffected but
the control signal is clearly noisier than before because the quantization noise
propagates through the system from the quantizer to the input signal. A part of
a record of the quantization noise is seen on Fig. 4.53. If a 10 bit converter is
used, the measurement noise problem becomes even more evident as seen on
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Fig. 4.51 Quantizers
inserted into output lines
[ u
DAC 1
‘ Robot
U
—®| DAC
X1 3
Xig
-« ADC |=
ADC |=a il
| X3q ? _yi
e
M
0.8 : : 150
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50 |
0
0
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SO R ]
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-1 . .
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0 4 0 2
t [sec] t [sec]
Fig. 4.52 Responses with a faster observer (12 bit quantization)
103
5 X
il X3 =434 |
0
1k il
Fig. 4.53 Quantization -2
g % 0.45 0.5 0.55 0.6 0.65

noise (12 bit quantization)

t [sec]
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0.8 : - 150

[rad]

—100 [ SARRRRRRREEE SR

-150
4 0 2
t [sec] t [sec]

Fig. 4.54 Responses with a faster observer (10 bit quantization)

Fig. 4.54. In this case the input noise has become worse and now one can also
see faintly that the noise influences the link angle 6,. With the slower observer
(4.211) this noise influence would be much more modest.

It can be concluded that there is a price to be paid if the observer is made too
fast. This is in fact a general problem. It is usually the case that there is a trade
off between the requirement that the observer should follow the states closely
and its sensitivity to noise and disturbances. This problem is treated in more
detail in later chapters. 0

4.10.3 State Feedback with Reduced Order Observer

Given the simplicity that the separation principle makes possible in the design
of full order observer/feedback systems, it is of great interest to determine how
full order feedback will function together with reduced order observers. The
overall system is shown on Fig. 4.55.

A reduced order observer has been derived in Sect. 4.9 for the control object
given by Equation (4.187). In this treatment the states x; are measured while
the remaining states are estimated on the basis of these measurements. The
estimation errors are given by

€1 = X1 — )A(] =0 (4213)
€,n = Xp — )Aiz = )A(z = X2 — €, (4214)
and e, is governed by the state equation

éeZ = Meez = (A22 — LC]A]z)eez. (4215)
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Fig. 4.55 State feedback
Rk t x, (1) y(1)
with reduced order observer £ +O u) Linear system model ]—Jc_‘—s

1
(see the remarks to Fig. 4.46) - L

Observer

X, (1)

4 State controller
{ K] |4:
+

The control signal is given by

u=—Ki+r=—[K, Kz]{Xl} +r (4.216)
Xo

since X; = Xxi. Inserting (4.216) and (4.214) into (4.187) yields,
X A A B;K; B/K B
[%1}:[ 1 12}[?(1]_[ 1K By 2][ X }—F[ l]r, 4217)
X2 Ay An][x B:K; BoKs | [x2 —e B,
where the partitioning of A and B is the same is in Eq. (4.169). Combining
(4.217) with (4.215) leads to

X A —BiK; A12—BIK2:B1K2 X B,
Xo | = [A1 —BoK; Ay —BoKy BoKs | [ xo | + [Bo|r (4.218)
eo| [0 0 M ||en 0
or
X A — BK BK, X B
= +| e (4.219)
€2 0 M () 0

The overall system matrix is block triangular and the eigenvalues are there-
fore determined by the characteristic equation,

{M —A+BK -BK;
det

= det(M — A +BK) - det(\I — M) =0, (4.22
o Mn,.—M} det(\I — A + BK) - det(\I— M) =0, (4.220)

where I,,_, is the n — r-dimensional identity matrix.
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Equation (4.220) shows that the separation principle is also valid in this
case.

4.11 Summary

This chapter has presented three main subjects:

1. The use of full state feedback for control system design,

2. The use of deterministic observers for state estimation and

3. The combined use of observers and full state feedback in control system
design.

The basic method of designing feedback control loops for multivariable sys-
tems is eigenvalue placement and this is the subject of the Sects. 4.1, 4.2, 4.3, 4.4,
4.5 of this chapter. It has been shown that it is possible to place the closed loop
eigenvalues of any controllable system arbitrarily in the complex plane. A vital
practical issue is that feedback loops must nearly always be offset so that they
regulate around a point in input/state space which is not the origin. Once offset
there is very little difference in how the feedback loop itself is designed: a simple
application of superposition is sufficient given an accurate system model. When
there are well defined state disturbances in a system these may be suppressed by the
use of integrators as is well known in classical control system design.

Sections 4.6, 4.7, 4.8, 4.9 of this chapter have dealt with the design of linear
deterministic observers, sometimes called Luenberger observers, for state feed-
back systems. These observers can be based on incomplete or possibly noise
corrupted measurements of the states of the control object. Both full and
reduced order observers have been treated. Only one type of observer structure
has been considered but this is also the only type which is widely known in the
literature. Later it will be apparent that exactly the same type of observer,
having the same form, can also be derived from statistical considerations. In
this case the observer structure is called a Kalman filter (see Chap. 7).

The main method of observer design which has been treated is that of
eigenvalue placement and this method is entirely dependent on the character-
istic equation of the observer. The characteristic equation defines the dynamic
behavior of the observer with respect to the control object itself. In general an
observer is designed to be somewhat faster than the control object itself in order
to be able to follow the states of the system as rapidly and as accurately as
possible. This is necessary for accurate control. In this connection it must be
remembered that there is no requirement that the control object itself have non-
minimum phase or even stable dynamics. The only requirement is that the
observer is stable. This is in general possible within broad limits if the under-
lying control object is observable and the observer gains properly designed. If
reduced order observers are considered then the requirements are somewhat
stronger.
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Section 4.10 has dealt mainly with the separation principle and its use for
the design of observer based control systems. The main conclusion is that for
linear systems, because of the principle of superposition, it is possible to design
the observer and its corresponding full feedback control system independently
of each other. The resulting system will have sets of observer and feedback
eigenvalues at the design locations which can be placed independently of each
other. This is of course under the assumption that the control object is con-
trollable as well as observable.

4.12 Notes
4.12.1 Background for Observers

The explicit use of embedded models for state estimation in control systems is
by now a very old idea. In work published by Kalman and Bertram (1958) the
use of open loop observers first occurs. Closed loop observers appeared in the
early 1960’s, both as deterministic observers and stochastic filters. Kalman
filters were first mentioned in fundamental work on optimal filters by Kalman
(1960) and Kalman and Bucy (1961). Kalman filters were originally full order,
closed loop, stochastically optimal observers. A different approach was taken
by Luenberger (1964,1966,1971) who concentrated on deterministic systems.
His Ph. D. Thesis at Stanford from 1963 deals with a somewhat more general
estimation problem than that treated by Kalman and Bucy which lead to an
observer which has a reduced order with respect to the system with which it is
used. It was also Luenberger who originated the name ‘observer’. Thus ‘Luen-
berger observer’ is sometimes applied to reduced order observers.

4.13 Problems

Problem 4.1

Given the continuous second order system:

1 -2 2
X = X + u,
0.5 -1 2

y=[-1 1]x.

a. Find the eigenvalues of the system.

b. Design a state controller for the system such that the closed loop system
becomes two complex poles with the natural frequency 2rad/sec and the
damping ratio 0.707. Use the direct method of Example 4.3.

c¢. Calculate the closed loop system’s unit step response y(¢). Calculate also the
control signal u(f).
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Problem 4.2

a. Repeat questions b. and c. from Problem 4.1 but with the matrix B = [4; } .

b. Compare the results with those obtained in Problem 4.1 and comment on the
differences.

Problem 4.3

Given the system:

. [0 1 N 0
X = ) X : u.
a. Is the system stable?

Is the system controllable?
Can the system be stabilized by linear state feedback?

b. If possible, determine the gain matrix for a linear state feedback controller
by using Ackermann’s formula. The closed loop system eigenvalues must
be placed in the positions A = —1 + ;.

Problem 4.4

Consider the following discrete time model for a linear third order system:

2 -3 5 0
x(k+1)=|-0875 05 1|x(k)+ |1 |u(k).
~1.875 —0.5 3 1

The sample period is 7' = 0.2 sec.

a. Is the system stable?
Is the system controllable?
b. Transform the model to controller canonical form.
c. Design a linear feedback controller with the gain matrix K and with the
continuous time eigenvalues
N -2
cont — { _2 :I:]

d. Repeat c. by using Ackermann’s formula.

Problem 4.5
The following linear model for a third order system is given:
-4 -6 8 2
x=|—-4 -1 3|x+|-2]u
-5 -2 5 -1
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a. Show that the system is neither stable nor controllable.

b. Is the system stabilizable? (Use controllable subspace decomposition).

c. Design a state feedback controller such that the resulting closed loop system
has the complex conjugate eigenvalue pair A = —2 ;2.

d. Check the entire set of eigenvalues of the closed loop system.

Problem 4.6

Consider the hydraulic position servo from Example 3.26. Let the state vari-
ables be the position, the velocity and the pressure difference.

a. Formulate a third order linear state equation for the system, insert the data
from Example 3.26 and calculate the eigenvalues.

b. Design a state feedback controller with the gain matrix K and with the closed
loop eigenvalues

-20
hot = { —124/12°

c. Show that the system will have a stationary error for the reference r = 0 and
a constant load force f # 0. Calculate the error for /' = 500 N.

d. Design a state feedback controller with integration. Calculate K; for the
closed loop eigenvalues

-20
7\'(,’/1 - —16
—12412

e. Calculate the stationary error for /' = 500 N.
f. Calculate the unit step response of the system with and without integration.
Calculate also the response to a 500 N step in the disturbance in the two cases.

Problem 4.7

Reconsider the hydraulic servo of Problem 4.6 with the difference that a discrete
time controller shall be designed.

a. Use the same system data as in Problem 4.6 a. and discretize the system with
the sampling period 7" = 2ms.

b. Design a discrete time state feedback controller with the gain matrix K and
with the continuous time closed loop eigenvalues:

-20
Mt = { 124512

c. Show that the system will have a stationary error for the reference r(k) = 0
and a constant load force f(k) # 0. Calculate the error for f(k) = 500 N.
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d. Design a discrete time state feedback controller with integration. Calculate
K, for the continuous time closed loop eigenvalues

-20
7‘40[1 = —16
124512

e. Calculate the stationary error for f{k) = 500 N.
f. Calculate the unit step response of the system with and without integration.
Calculate also the response to a 500 N step in the disturbance in the two cases.

Problem 4.8
a. A full order observer should be designed for the system in Problem 4.3
with

y=1[0 3]x.

Is this possible?

b. If the answer is yes, transform the system to observer canonical form and
determine the observer gain matrix L such that the observer eigenvalues
becomes

ha, = —4+j4.

c. Repeat b. by use of Ackermann’s formula.
d. Draw a block diagram with observer and the state controller from
problem 4.3.

Problem 4.9

Given the following linear model for a third order system:

4 —6 8 2
x= -4 -1 3|x+|-2]u
-5 25 ~1

y=[-1 0 1]x.

a. Is the system stable?
Is it observable?

b. Is the system detectable? (Use observable subspace decomposition).

c. Design a full order observer such that the set of observer eigenvalues includes
the complex conjugate pair A = —5 £ /5.

d. Check the entire set of eigenvalues of the observer.
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Problem 4.10

Consider the tank system in Example 2.9. Suppose that the level H;, and the
temperature 75 can be measured. It is desired to design a reduced order observer
for estimation of the two remaining states H; and 7.

a. Use the matrices (2.102), (2.103), (2.104), (2.105) for the linearized system in
Example 2.9 and carry out a similarity transformation which will transform
the system to the form (4.169) which is required for the observer design in
Sect. 4.9. This means that the state vector should be

H,
MR
X = =
X2 H,
T,

b. Determine the observer matrices L, M, N and P such that the observer has
the eigenvalues

Ao = —0.4450.5.
One may want to use the MATLAB place function in the design process.
¢. Carry out a simulation (for instance using SIMULINK) on the linear system

and check if the reduced order observer works, also if the observer is started
in a ‘wrong’ state.






Chapter 5
Optimal Control

Abstract The principle of optimality in terms of minimization of a performance
index is introduced. For continuous and discrete time state space system models
a performance index is minimized. The result is applied in the case of a quad-
ratic index for a linear system and the resulting time dependent and time
independent Riccati equations are derived. The conditions for guaranteed
stability of the steady-state Linear Quadratic Regulator (LQR) are presented.
An cigenstructure assignment approach to the steady-state LQ regulator
problem is developed.

5.1 Introduction to Optimal Control

The design of a controller for the control of a process as shown in Fig. 5.1
consists of providing a control signal, the input, which will make the plant
behave in a desired fashion, i.e., make the output change in a way described in a
set of performance specifications. In classical control the performance specifi-
cations are given in terms of desired time domain and frequency domain
measures, such as step response specifications (overshoot, rise time, settling
time), frequency response specifications (bandwidth, resonance frequency,
resonance damping) and relative stability in terms of phase and gain margins.
Further, the specifications may be given in terms of disturbance rejection and
noise suppression measures, specifying the desired frequency response of the
sensitivity function and complementary sensitivity function.

As is well known in classical controller design, many of the above specifica-
tions are conflicting in the sense that they lead to impossible or conflicting
requirements for the controller parameters. Typically, short rise time and high
bandwidth require high gain controllers whereas small overshoot and good
relative stability favor small gains in the controller. Classical controller design
therefore often requires judicious and sometimes skillful selection of controller
structure and parameters in order to find a reasonable compromise between
conflicting performance specifications. This calls for time consuming ‘trial and
error’ tuning on the part of the control engineer and does not lend itself well to
automatic tuning. This is especially true with MIMO systems.

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 5, 293
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 5.1 The control Input Output
problem —_— Plant —

In an effort to overcome some of these problems and in order to be able to
design the ‘best possible’ controller, the methods presented here may be used.
Basically, a measure of the quality of a controller is formulated in this chapter in
terms of a performance index. This index is used to design the controller and
depends on the control signal and the state vector. In this way the ‘best’ control
signal is found that results in the minimum (or maximum) value of the index.

The job of the control engineer in Linear Quadratic Regulator (LQR) design
is therefore not to determine control parameters directly, but to define the
appropriate measure for controller quality, the performance index, and to
minimize or maximize it. Several types of performance index will be introduced,
leading to different kinds of controllers, but the basic idea is the same and will
be introduced in the following section.

5.2 The General Optimal Control Problem

In this section the general optimal control problem is introduced and then
solved in the following sections. Initially a general approach will be described
which is suitable for nonlinear systems. Later the discussion will be specialized
to linear systems.

Assume that an n-dimensional system with state vector x(¢) € R and input
vector u(z) € R™ is described by a general nonlinear, time varying state
equation:

(1) = £(x(1), u(1), 1). (5.1)
Assume further, that the state vector has the value x; at the initial time, i.e.,
X(lo) = Xp. (52)

It is desired to optimize the control over some time interval up to a final time,
t1. In addition an investigation will be made of optimal controllers both where
time 7; is given and also where there is a state or output requirement at the final
time.

The system performance can be described by a performance index, which is
a time integral depending on state and input vectors:

4

J(w) = B(x(11), 1) + J L(x(1), u(t), ). (53)

fo
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The integrand, L, is a real-valued function of state and input vector and may
also depend explicitly on time. It is often called the cost function. The function ® is
a real-valued function of the final state vector and the final time. The performance
index reflects the quality of a controller and should be constructed in such a way
that it is limited from below and such that the larger the index, the poorer the
control. This may be achieved by requiring that the first term and the integrand in
the second term in equation (5.3) be positive for all values of, x(z), u(¢) and .

The first term in equation (5.3) represents a constraint on the value of the
state vector at the final or terminal time. The closer the final state vector is to
some desired value, the smaller is the value of the performance index.

Once the cost function and the constraint have been defined, the objective is
to findthe optimal controller, i.e., the value of the control signal u(#) for the time
interval fy < ¢ < ¢; which provides the minimum value of J under the assump-
tion that the state vector obeys the state equation (5.1).

Example 5.1. A Typical Performance Index

A typical regulator problem involves forcing the plant to stay at a stationary
point, ry. If the plant state deviates from r, the object of the regulator is to make it
return as fast as possible and with as little overshoot as possible. Looking at
Fig. 5.2 the value of an output y(7) deviates at time 0 from the desired stationary
point ro. The time development of this output y(¢) is influenced by the controller
and it is desired to bring it back to ry as rapidly as possible. An optimal control
problem can be formulated by stating that the best controller is one that mini-
mizes the shaded area in Fig. 5.2. The shaded area is a time integral of the form:

J:o lv(t) — roldt. (5.4)

This is the form of index mentioned above and an optimal control problem
therefore consists in finding a control signal that will minimize the above

response

I

el

Fig. 5.2 Sample regulator
time response, here N
underdamped time
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performance index in (5.4) for the plant in question. As will be seen later the
index has to be modified in part because in (5.4) there is no restriction on the size
of the control signal and in part because the form of the index is inconvenient
for calculations. These problems will be returned to after the solution of the
general optimal control problem has been derived. O

5.3 The Basis of Optimal Control — Calculus of Variations

The calculus of variations is a general method for optimization of functions or
functionals (functions of functions). Only a brief overview of this method will be
given here. For a more in-depth treatment the reader is referred to more advanced
control theory textbooks on the subject: see for example Bryson and Ho (1975).
A basic problem in the calculus of variations is the following:
A scalar integral which is a function of the time dependent vector x(7), its
time derivative and the time is given:

J(x) = J” FIx(1), X(1), )dt, (5.5)

where F'is a scalar function as is J and x(7) is an n-dimensional vector whose
elements are unconstrained functions of time.

The task is to determine that specific value of the vector x(#) which minimizes
Jin time. Since x(7) is an n-dimensional vector, the task is actually to determine
n scalar time functions x;(¢), x2(), ..., x,(f) between the two time instants 7
(the initial time) and ¢ (the final time).

The function Fis usually called a loss function and J is called an optimization
index or a performance index.

In order to find the required time functions it is necessary to know the
boundary conditions for these functions.

Usually the initial condition is known or specified:

X(lo) = Xg. (5.6)
At the final time there are several possibilities:

. 11 is fixed and x(7;) is fixed.

. ty1s fixed and x(7;) is free.

. tyis free and x(1;) is fixed.

. x(¢) must satisfy certain constraint conditions at the final time.

BN =

To solve the problem it is convenient to introduce variations: perturbation
functions close to the optimum function.

Suppose that the vector x*(¢) is the optimum vector that minimizes J.
Figure 5.3 shows the situation in the case where x is a scalar. The optimum
and a variational function are shown. For simplicity the boundary condition
2. above is selected. The optimum (minimum) value of J can be written:
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Fig. 5.3 Time functions x(t)
and variations
t, fixed, x(t) free
x(1) (@) | x(r)=xx(r) + dx(r)
X*(T) Sx(to) =0
% dx(t))#0
t
fo f
Il
J = J Fx*(1), 5 (1), ). (5.7)
fo
By definition,
AJ=J—J >0, (5.8)

where

AJ = Jn F(x(1), X(1), 1)dt — J“ F(X(1), (1), t)dt

fo 1o

(5.9)
_ JI' FIX* (1) + 0x(2), X (1) + bx, )dr — JI' Fx*(2), %(1), 1)d.
o o
A Taylor series expansion of F around the optimal solution yields:
F(x(1), x(1), 1) = F(x* (1) + 8x(¢), X" (1) + ox(1), 1)
= F(x*(1), X" (1), ) + g—f *SX(Z) + 2—1: *SX(Z) TR 510

The *-notation on the partial derivatives means that the derivatives must be
evaluated for x(7) = x*(r) and x(7) = x*(¢). Note that only the first order
expansion terms have been written out.

If this series expansion is inserted into equation (5.9) the result will be:

" (OF| oF

6x(t)+...>dt§]+..., (5.11)

where dJ is called the first variation of J,
nrOF OF

o = —

Jfo (8X

SX(I) + &

Sx(z)) dt. (5.12)

*
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The last term of this equation is simplified using integration by parts:

hoF| OF| . [vd[oF
J,Oa_x (0= 5] ox(0) - L) - {& ] Sx(1)d
(5.13)
oF OF " g [oF
5 B0l — 5] ax(0), - Jm < [g } Sx(1)dt.

At the initial time ¢ = #( the variation is zero, 6x(¢)|, = dx(#) =0, and
therefore the second term in the last line of equation (5.13) disappears. If the
remaining terms are inserted into (5.12), then the following equality will be

satisfied,
"(OF
5"‘[ (& -

fo *

Tt 2

because for the optimal solution, x(7) = x*(¢), the variation 8J must be zero.
Since (5.14) must hold for arbitrary 6x(7) and 8x(7;) it is necessary to require
that the integrand and the last term are zero:

d[oF
dt | 0x

x(1)], =0, (5.14)

OF(x*(1), x*(1), t) d [OF(x*(1), x*(1), 1)
- _E{ I ] =0 (5.15)
and
aF(X*(tl)a).‘*(tl)v tl):O, (516)

0x

Equation (5.15) is called the Euler- Lagrange equation and it must be satisfied
by the optimal vector function x(7) = x*(#). The boundary condition (5.16) is
called a natural boundary condition.

Note that not necessarily all functions which satisfy the Euler-Lagrange
equation are optimal solutions. In other words, the condition is necessary but
not sufficient. This fact has a parallel in the ordinary optimization of functions.
It is necessary for an extremum that the function’s derivative is zero but this
condition is not sufficient. To ensure optimality it is also necessary to check the
sign of the second derivative of the function. Similarly, one should investigate
the second variation of (5.11). However this is cumbersome and it is thus omitted
in many textbooks. This is also the case here.

The Euler-Lagrange equation is a very general result which forms an excel-
lent basis for optimal control. However, two important modifications are
necessary.

1. Constraints to be met by the optimal x(¢) must be introduced.
2. A control input must be added.



5.3 The Basis of Optimal Control — Calculus of Variations 299

The constraint(s) is (are) simply the system state equation(s). In optimal
control the vector x(7) is the state vector in the state space model, equation (5.8):

x(1) = f(x(1), u(2), 1), with the initial condition, x(#y) = X, (5.17)

where the control vector u(¢) is m-dimensional.

Just as in static optimization (see Appendix A), the constraints are conve-
niently handled by introduction of Lagrange multipliers. In the dynamic case
the multipliers are functions of time arranged as an n-dimensional vector
usually denoted A(z).

The performance index will look a little different in the case of optimal
control. To emphasize this, the change the symbol of the loss function is altered
from F to L and the index becomes:

J(u) = Jrl L(x(0), u(t), 1)dt. (5.18)

The index is of course still a function of x as well as of the newly introduced
control vector u. However in control the main task is to determine the optimal
input u* (1) and therefore it is more reasonable to add the extra argument u to the
integrand. If u(r) is known, the state vector can be calculated from the state
equation (5.17).

Now a useful trick will be utilized. The index is adjoined to (augmented with)
the state equation arranged so that a zero is added to the performance index:

J(u) = Jt (L(x(2), u(z), 1) + xT(z)(f(x(t), u(r), 1) — x(2)))dr. ~ (5.19)

This ‘new’ cost function (the integrand of (5.19)) is called G here for reasons
which will become clear a little later:

G = L(x(1), u(t), 1) + A (1) (£(x (1), u(1), 1) — (1)) (5.20)

The following augmented vectors are introduced:
t X(t
2(1) = [X(H, ilr) = [’.‘(H, (5:21)

where z(7) has dimension n + m.
This means that the index (5.19) becomes a function of z and z:

1

J(u) = J G(z(1),z(1), t)dt. (5.22)

fo
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The rationale behind these manipulations is that the index (5.22) has
precisely the same form as (5.5). This means that the optimization problem
with the constraint (5.17) has been reduced to the unconstrained problem of
optimizing an expression like Eq. (5.5). Consequently the same Euler-Lagrange
equation can be used to solve the augmented optimal control problem.

Equation (5.15) becomes (the #-notation is omitted for simplicity):

9G(z(1),2(1),t)  d [0G(z(1),2(1), )] _
9z 7 BP =0 (5.23)
where the first term is
067 06
0z o
oG oG oG
6211 8xn &
8—G = = = . (5.24)
2 oG oG oG
aZnJrl ouy %
o6 | | o6
- aZﬂ+m = L 8um -

If the second term is handled similarly, the Euler-Lagrange equation can be
written:

061 6
ox d | Ox

—— =0. 5.25
06| | o6 o
Ou ou

According to (5.20) the four partial derivatives in equation (5.25) can be written:

oG 0L <6f>T
_ - + )\‘7

ox  Ox Ox

oG 0L <6f> T

— =t = )\"

8“ 811 8u (5.26)
96 _

ox

G

%—0.
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With the expressions in equation (5.26) the Euler-Lagrange equation (5.25)
becomes

oL [of\T. .

=t <&> A4+ i =0, (5.27)
oL [(of\T
9L (Y 5 o 2
T (au> L=0 (5.28)

Note that (5.27) contains 7 first order differential equations whereas (5.28) is a
set of m algebraic equations. If to this the state equation (5.17) (the constraint) is
added, one ends up with a total of # first order differential equations and m
algebraic equations which must be solved simultaneously.

The natural boundary condition in equation (5.16) will be:

G

% At
oG _ |ox| _[~H0] _y (5.29)
oz|, G 0

511 I

The usable parts of this expression are the n conditions,
M) =0. (5.30)

The remaining n boundary conditions necessary for solving the 2n differential
equations are the initial conditions for the state equation,

X(l()) = Xp. (531)

From (5.30) and (5.31) it may be seen that half of the boundary conditions
are valid at the initial time 7y and the rest are valid at the final time ¢;. This is
called a two point boundary value problem. It causes serious problems in working
with optimal control problems since it prevents direct solution of the set of
equations by analytical or numerical means.

So far the final value term in equation (5.3) has been omitted. To include this
term in the investigation the following is noted:

@(X([]), ll) = CI’(X([]), l]) + (I?’(X(l()), l(]) — @(X(lo), l()). (5.32)
Then the performance index of equation (5.3) can be written:

J(u) = J[l %(@(x(t), 1))dt + Jll L(x(1),u(t), t)dt + &(x(t0), t0), (5.33)

ty

where the last term is a known constant and consequently it has no influence
on the optimization problem. It can therefore be ignored.
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The total differential of the scalar function ®(x(¢), 1) of the n states is,

o o 0P
dd =—d —d dx,,. 5.34
(x(1),1) o X1 +8xz Xy + +8xn X (5.34)
The derivative with respect to time is then:
dd(x(1),1) 00 . 9 | 00 . (90\".
T—a’—xl)ﬂ—‘-a—xzxz—'—...—Fa—xn.}Cn— g X. (535)

Equation (5.35) is inserted into the performance index (5.33) and same term is
added as in (5.20) (the last term is omitted as explained above),

J; <(?§) Tx + L+ (f— x>> dr,

with the cost function,

ox

T
Go = (5;@) X4+ L+ A1 (f—x),

the Euler-Lagrange equation can be applied once more:

Gy
ox d
9Gy dt
ou

Calculating the partial derivatives leads to,

06 _oL e
ox  Ox  Ox?

T
i ()

Ou  Ou Ou
0Gy 0P N d

% ox

)-o.

Gy _ _ d (aap

o @\ on

(5.36)
(5.37)
Gy
o%
o —0. (5.38)
[
ou
o7’
&) M
5.39
0Gs) _ e o
ox ) " ox M
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If these expressions are used in equation (5.38) the Euler-Lagrange equations
become:

oL [of\T .

T <6x> A+1=0, (5.40)
oL  [of\T
= el — 41
ot <8u> L=0, (5.41)

which is exactly the same as achieved in Eqs. (5.27) and (5.28) without the final
state term in the performance index.
The only new change appears in the natural boundary condition (5.16),

0Ga) _ - (%—x>
" ox

0%
_ 8<I>(x(t1),tl)
ox(1) .

=0

n

, (5.42)

or

A1) (5.43)
Note the difference from equation (5.30).

The last step in this derivation has the purpose of avoiding the term f — x in
Eqgs. (5.36) and (5.37). The Hamilton function H is introduced (it is not a
function of X):

H(x(1),M(0),u(1), 1) = L(x,u, 1) + A7 (¢) - f(x(2),u(?), 1), (5.44)

which gives the performance index (5.19) the following appearance:

Ju) = ¢(x(11),11) + Jh [H(x(1),M1),u(2),1) — xT(z) -x(1)]dr.  (5.45)

1o

The partial derivatives of H are:'

)
)
t;, Mo, 1) i), (5.46)
)
)

Y
' The gradient of a scalar function f(x) is a column vector V/(x) = [00—\/]% . %] . The
gradient of f with respect to x is denoted as % and fx. See Appendix B for further details on

vector calculus.
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Now each of these terms will be considered in turn to show what they represent
physically.

Referring to the expression for H in Eq. (5.44) it is seen that the first equation
in (5.46) is the equation of motion of the system or the state equation. The
n-dimensional Lagrange multiplier vector A is also called the co-state vector
and therefore the second equation is called the co-state equation:

OH(X,u, L, 1)  OL(X,u,1) of(x,u, 1) T o
o I + 7u A= —\(1). (5.47)

The third and last equation is called the stationarity equation and normally gives
the relation between the control signal and the Lagrange multiplier A:

OH(x,u,\, 1) _ OL(x,u,t) n (8f(x,u, t)> TX _o. (5.48)

Ou Ou Ou

The Hamiltonian H plays a special role in the calculations. If H is not an
explicit function of time, i.e., if neither L nor f explicitly depend on ¢, then
the Hamiltonian is a constant over time. This can be demonstrated by differ-
entiation. By the chain rule for differentiation,

dH . OH
= Hx+HWN+ H)+—. 5.49
dl xx+ uu+ A + (9t ( )

Introducing the results in (5.47) and (5.48) one obtains

H__irsqoar st 2 _0A

a oo (5.50)

This remaining term is zero if H is not an explicit function of time.

5.4 The Linear Quadratic Regulator

In general the non-linear optimization problem discussed in the previous sec-
tions cannot be solved analytically and the optimal control signal will have to be
found numerically. This of course severely limits the usefulness and convenience
of the general optimization theory, which is why the controller design is nor-
mally based on a linearized state space model of the plant.

The plant which is to be investigated is therefore a linearized one but may be
time varying. Here the states and inputs are the incremental ones though they
will be written as x(7) and u(¢) here for the sake of simplicity:

x(1) = A(1)x(1) + B(t)u(z). (5.51)
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In general the cost function is also normally restricted to have a certain parti-
cularly simple structure which will now be motivated.

5.4.1 The Quadratic Cost Function

In the time-domain the performance of a controller is judged by its ability to
follow transient changes in an input, its ability to suppress disturbances and its
ability to limit or eliminate stationary errors. For example the controller per-
forms well if the step response rise time is short, the overshoot limited and the
settling time to a small stationary error is short. As depicted in Fig. 5.4 one can
arrive at this goal if the cross hatched area in the figure is minimized. If the input
step is r(7) and the response is termed y(¢), then this area is given by the time
integral

jx 1r(6) — y(0) .

0

This particular performance index is a valid function to minimize because it is
limited by zero from below. However, from a computational point of view it is
easier to use a quadratic performance index of the form

joou(z) ()

0

This has many of the same properties as the index above and also in a more
general framework, where y(7) is replaced by a general state vector, x(z), this
expression is often related to the energy of the system, e.g. its kinetic and
potential energy.

1.4 T T T T
Overshoot M),
12 Stationary error e
b
2 ‘
S i
% 08 I Settling time t,
N
x i
= 0.6 -
s y(®
0.4 p 4
02l rise time t, |
Fig. 5.4 Typical transient 0 1 2 3 4 5 6 7

response of a controller time
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From the integral above it is obvious that the optimal control signal is one
that gives y(¢t) = r(¢) for all z. However, this can only be achieved if the system is
made to change infinitely fast and therefore the control signal has to be infinite.
Obviously, for any physical system the cost function has to be modified to take
into account the fact that the control signal to the plant is limited in size and
bandwidth. This can be achieved by adding a term to the cost function which is
quadratic in the control signal u(r).

Initially, the regulator problem is considered, so the state is required to be
close to a stationary operating point. Since the plant will be linearized around
this operating point, the deviations in the state vector that should be added to
the cost function are deviations from the stationary point. This is zero in the
linearized model. This leads to an index of the form (written in terms of the
incremental states and inputs):

J= JII xT(H)Rx(2) 4+ u” (1)Rou(r)]dt.

to

The integral is assumed to have upper bound #; < oo, but later the special but
important case of an infinite upper bound will be considered. Before the
individual terms are discussed in detail, a final time state cost term is to be
included as a quadratic term. This then gives a quadratic performance index of
the form

J(u) = %XT(ZI)S(tl)x(ll) + %Jll X"R;()x(t) +u” ()Ry(H)u(t)]dt.  (5.52)

fo

The matrices S(#,), R;(7) and R,(7) are called the weight matrices and deter-
mine how much deviations of x(¢,), x(¢) and u(7) from their zeroes will add to the
overall cost function. A necessary condition for J to have a minimum is that it is
bounded from below. Therefore that all terms in the index are non-negative for
all values of x and u. This will be satisfied if S(#;) and R;(¢) are positive semi-
definite for all values of 7. Furthermore, since u(¢) should be bounded for all ¢ it
is necessary that R,(7) have the stronger property of being positive definite, i.e.,

S(ll) > 07 Vt,
Ri(?) >0, Vi, (5.53)
Ry(1)>0, V.

The three terms in (5.52) are quadratic forms. See Appendix B.4 for more
properties of quadratic forms.

The weight matrices will determine the influence of individual components of
the state vector or input vector relative to each other. For example if the element
[Ry] ; 1s large, then the corresponding product of state vector elements x;x; will
be penalized heavily in the cost function and the resulting optimal control law
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will tend to emphasize making that term small. In particular the relative sizes of
the quadratic forms x” ()R, (7)x(¢) and u”()R(7)u(7) will determine the speed of
the control system. If R;(7) is selected such that the first term is large compared
to the second term the system states will tend to respond faster at the cost of
increasing the control signal. In the opposite case the inputs are forced to
remain small. As a consequence the response will be slow and the overall
deviation of the state vector from stationary state (i.e., zero) will be larger. In
this way the relative weights of the two matrices can be used to tune the response
speed at the same time limiting of the size of the control signal.

The final state term takes into account the fact that it may not be possible to
reach the state zero exactly. The weight matrix S(¢,) penalizes errors in the final
state.

If it is known what the maximum sizes of the final initial states, continuing
states and continuing inputs are, then the following general rule can be given for
the selection of the weighting matrices:

1
S(1)].. = , 5.54
SO =) >y
1
[Rl(mn‘ = ([1 _ [0) -max([x,-(l)]z) ) (5.55)
1
Ra(0) = (t1 — o) - max([ui(1)]*) (-3
where i=1,2,...,n and j=1,2,...,m. If the time is not important in the

intended application then the time interval in the parenthesis, (#; — fy), may
be set equal to 1. Cross product terms may be used in the weighting matrices if
there is interaction among the input or state components.

5.4.2 Linear Quadratic Control

In this section what is perhaps the most important modern LQR controller will
be presented. This is a MIMO linear closed loop controller. The system is
assumed to be linear but possibly time varying, i.e., it is described by the state
equation

x(1) = A(1)x (1) + B(2)u(z). (5.57)

The controller is required to minimize a performance index of the form (5.52).

The final time is fixed but now the final state is allowed to deviate from zero.
It is inserted into the performance index with a positive semi-definite weight
matrix S(ty),
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S(ll) > 0.
The state and control signal weight matrices are assumed to be positive semi-
definite and positive definite respectively:

R () > 0 and Ry(7)>0, Vr.

The boundary condition is given by equation (5.43). Since
D(x(11),11) = %XT(ﬁ)S(l‘])X(Zl) this gives

A1) =S(0)x(1). (5.58)
The Hamiltonian of the system is

H= %XT(t)Rl (Ox(1) + %uT(I)Rz(I)u(l) FAT()(A()X(1) +B(Du(r).  (5.59)

Hence the co-state equation becomes

() = _% — Ry (Ox(0)x(1) — AT(OM() (5.60)

and the stationarity equation is

OH

~ () Ry (t)u(?) + BT ()M()=u(r) = —R;' ()BT (t)1(1).  (5.61)

The state equation and the co-state equation are two differential equations in
the state and co-state variables with the initial condition that the state vector
starts in x(zp) = X, and that at time ¢; the co-state obeys equation (5.58). In
general, solving these equations directly is difficult because of the two point
boundary value problem. However in the linear-quadratic case it is possible to
employ a trick which will make it possible to get around this problem.

If equation (5.61) is inserted into the state equation (5.57) then this equation
and (5.60) can be expressed as

A()  —B()R;'(n)B(1)
—Ry (1) —AT(1)

HARNAN

This is called the Hamilton equation and the matrix H(z) is called the
Hamiltonian.

The solution to this unforced 2n-dimensional state equation is, according
to (3.20),

ol =20 ] = Lo sioml Bl &
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where the state transition matrix has been partitioned into 47 X n matrices.
Applying the property (3.24), the solution can also be written

o) ~ Loy e o)

Using (5.58) and eliminating x(#;) from the two equations in (5.64) leads to

A1) = (d3(t,11) + bylt, 1)S(11)) - (b1 (1,1) + by (2, 11)S(11))7'x(1),  (5.65)

which can be written,

(5.64)

Mr) = P(0)x(1). (5.66)

The matrix P(¢) is obviously a function of the constant final time ¢; as well as of
t, so it would be more correct to write P as P(z, ¢;). However, it is common
practice to omit the final time as an argument as seen in Eq (5.66).

Equation (5.58) shows that

P(Z]) ZS(Zl). (567)
The control signal will be given by equation (5.61)
u(?) = —R; ' ()BT (1) P(£)x(2). (5.68)

Equation (5.68) shows that the control vector is derived from the state vector. In
other words, a closed loop control has been established which is very convenient
from an applications point of view.

The remaining problem is to determine the matrix P(¢). This matrix must
obey a differential equation that follows from differentiating (5.66) with respect
to time,

Mr) = P(0)x (1) + P(1)X(2). (5.69)
Inserting the state and co-state equations and using equation (5.66) yields
— Ry (1)x(t) — AT())P(1)x(1)
. (5.70)
= P(1)x(1) + P(1)[A(0)x() = B(0)R; ' (1)BT (1) P(1)x(1)].

This equation has a solution for all x(¢) if P(¢) obeys the differential equation:
—P(t) = P()A(t) + AT())P(1) — P()B(O)RS ()BT (H)P(¢) + Ry (¢).  (5.71)

This important differential equation is known as the Riccati equation. The
relevant boundary conditions are given by equation (5.67).

The Riccati equation is a coupled set of n* first order non-linear differential
equations, defined on the interval ¢y < ¢ < ¢; with n’ boundary conditions at
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the final time ¢;. This equation has to be solved backwards in time starting at
time #;. Under certain very general conditions the equation has one unique
solution. For an analysis of this point the reader is referred to Kwakernaak and
Sivan (1972) and Bryson and Ho (1975). S(#;) is symmetric and because the
Riccati equation is also symmetric, the solution will be symmetric for all values
of ¢ (see Problem 5.17). This means that the number of equations in equation
(5.71) is reduced to n(n + 1)/2.

The conclusion from the above is that under fairly loose conditions the
Riccati equation will have a real solution and from this a controller can be
designed that will minimize the quadratic performance index. The existence of a
solution to the Riccati equation does not require the system to be controllable.
Even with the loss of full controllability the controller will attempt to minimize
the performance index. However it is likely that it will be more capable if the
system is controllable.

Observing that in general the Riccati equation has a unique solution, it can
be concluded that the optimal controller for the linear quadratic regulator
problem has a unique solution in the form of a control signal that is a state
feedback controller:

u(r) = —K(1)x(1). (5.72)

The time-dependent feedback gain K(¢) is called the LOR (Linear Quadratic
Regulator) gain or optimal regulator gain and can be inferred from equation
(5.68) to be:

K(1) = Ry ()BT (1)P(1). (5.73)

Figure 5.5 shows the state feedback block diagram for the LQ regulator. It is
seen that in general the LQR gain will be time-dependent even when the system

r + u + X X y
B of | | ¢
- +
A [€
o~
K@) &

K

K (=R, (1) B'(1) P(¢)
—P(1) =P()A(1) + A" ()P(1) - P()B(OR,™ (B ()P(r) + R1(7)

Fig. 5.5 Closed loop linear quadratic regulator
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is LTI and the cost function has constant weight matrices. It should also be
noted that the LQR controller is a linear state feedback controller and that
the LQR gain is solely dependent on parameters known in advance and can
therefore be calculated off-line.

Having obtained the optimal control signal, the closed loop system becomes

£(1) = A(0x(1) = (A1) - BU)K(1)x(1), (5.74)

The optimal regulator’s eigenfrequencies are thus determined in the same way
as any state feedback controller and it has exactly the same structure.

Inserting the optimal gain into the Riccati equation it can be seen that it can
be written in the so-called Josephson stabilized form:

—P=P(A—BK)+ (A —BK)"P+K'R,K +R;. (5.75)

The value of the performance index can be evaluated based on the solution to
the Riccati equation. First note that

d :
7 (x"Px) = x"Px + x"Px + x"Px. (5.76)

If equations (5.57), (5.68) and (5.71) are inserted into (5.76), one finds that

%(XTPX) = —x’R;x —u/Ryu. (5.77)
Inserting this into the index leads to
1 1("[d T
J(u) = =x"(1)S(r)x(t) + —5 | |5 (x(2) P(2)x(2)) | dt
2 2), Ldt
1

= EXT(tl)S(ll)x(ll) - %xr(ll)P(tl)x(ll) + %xT(zO)P(zo)x(zo).

The first two terms disappear because of (5.67) and the optimum (minimum)
value of the performance index can be found:

Ioin = 5 X7 (0P ()X (1), (578)

Example 5.2. LQ Regulator for a First Order System

To show the basic characteristics of LQR regulators a controller for a simple
first order system will be designed first. The scalar state equation is,

X(t) = ax(t) + bu(1),
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where a and b are constants.
The performance index is the following quadratic function:

1 1"
J= Es(tl)xz(tl) + EJ (r1X%(t) + rau®(1))dt.
0
The boundedness of the performance index dictates that s(¢;) > 0, r; > 0 and
r» > 0. Without any loss of generality it may be assumed that the system starts at
time O (since the system is time invariant). The system starts with the state
variable x(0) = x,. The Riccati equation for the control object is the following
first order ordinary differential equation,
. » ,
— () = 2ap(0) + 11 = (1)

The solution to this equation can be inserted into equations (5.72) and (5.73) for
the LQR gain to give the state feedback controller:

u(t) = —K(1)x(1) = —bp(1)x(1).

In this simple example the solution of the Riccati equation can be found
analytically. Rearranging the terms in the equation and integrating gives:
dp b?

5 p(i1) dp 1
d_ b Z—Mt—r:J ——————:Jw
i =02 —n= [ e |

Integrating both sides of the equation on the right and rearranging the terms
yields

P2 — D1
(1) = pa — ! . (5.79)
)= | P) =1 -
p(t1) —p2
Here
a1 a2 1
=T\ ey
and

PEEm ey

Thus even in the simple scalar case the controller feedback becomes a relatively
complicated time varying function. However, since the solution only depends
on parameters known prior to controlling the process, the solution can be
calculated off-line and stored in the form of a table, so the online computational
load is limited.
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Fig. 5.6 Solution to the ! ! ! !
Riccati equation in the case : : : :
of a scalar system

p(0)

1.2

0 I 014 . 0j8 1
time [sec]

Giventhata = 3,b = 3,ry = 7, = 1,s(t;) = 3 and choosing the final time
t; = 1 the solution to the Riccati equation is obtained as shown on Fig. 5.6. The
function ends at time #; = 1 at the final value p(¢;) = s(¢;). If the time going
backwards from ¢, to zero is considered, p decreases to a constant value fairly
rapidly. This stationary value is found from the equation by letting #; — ¢ grow
‘large’. Since p, — p; < 0, the exponential function in (5.77) tends to zero for
large values of #; — ¢ and consequently p converges to the value

a 1 |2 n
=p1=—+—1/—=+—=1.276.
P =T\t

The state x(¢) for four different values of r; and for xo = 5 is plotted in Fig. 5.7.
The control signal is shown on Fig. 5.8. It is noted that the response becomes

5 T T T T
0 z 1 ‘
r=0
IR S AR SO S—
r =1 :
r=7
| :?0
1 I N 7
Fig. 5.7 Response of the i . ‘ i
0 0.2 0.4 0.6 0.8 1

first order system for
different weights t [sec]
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Fig. 5.8 Control signal of
the first order system for
different state weights

t [sec]

faster the larger the value of r| and the price to be paid is that the control signal
becomes larger. In the case r; = 0 the state is not taken into account at all in the
performance index.

It should also be noted that the LQR gain is approximately proportional to
\/r1/r; for large values of 1; — ¢. This is generally true for LQR regulators and is
a useful rule of thumb.

Since a is positive, the open loop system is unstable. This is no problem when
an LQR regulator is used. The closed loop system found with the LQR meth-
odology will always be stable under the proper conditions. O

Example 5.3. Closed Loop LQR for a Double Integrator

Consider now the double integrator described by the state equation:

x(1) = Ax(1) + Bu(t) = {g (1)] [’:Eg} + mu(z).

The state vector here is comprised of the position p(7) and the velocity v(f) and
the control input is the acceleration u(7). The performance index which has to be
minimized is the following:

J— %XT(“)S(ZI)X(IQ —+ %J“ (xT([)Rlx(l) + rzuz(l‘))dl‘.

to
Here the weight matrices are selected to be

st () Slz(ll)]

si(tr)  sao(t)

S(n) = {
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2 >0.

In order for S(#;) and R to be positive semi-definite, the parameters r,, r,, 1>
and the eigenvalues of S(7;) have to be non-negative. Introducing the weight
parameter matrices in the Riccati equation gives

—P(t) = AP(1) + P(t)A + R, — P(1)BR;'B"P(¢)

00 0 1 P, 0 0] 1
N

P(t) + P(¢
1 0 2 ()00 Ty

As P(7) is symmetric this leads to three equations for the elements of
P(1) = [[)11 Plz]:
P2 P2

) l,
—P11 =Tp ——P1os
mn

. 1
—P12 = P11 — —P12p;,
L)

. 1
—pP2 =1y + 2p12 — Epéz-

These equations have to be solved backwards in time from an initial value
at time #; of S(#1). A numerical integration with the parameter values at
si(t) = s12(t1) = s20(t1) = 1,1, = 3, r, = 4and r, = 1gives the solution
shown in Fig. 5.9 (remember that P(z;) = S(#)).

Fig. 5.9 Solution of the
Riccati equation for the 0 4 8 10
double integrator time [sec]
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Fig. 5.10 Response of the 1~
double integrator system ’
with LQR regulator

velocity
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It is seen from the figure that the three values of the matrix elements of
P(¢) approach a constant when 7; — ¢ becomes sufficiently large. It will be seen
later that this is a general quality of the Riccati equation that occurs under
certain well-defined conditions. Having established the values of P(¢) it is
easy to calculate the control signal from equation (5.72) and the LQR gain in
(5.73). Suppose the system starts at time ¢ = 0 and has the stationary position
x1(0) = 1. Then the optimal controller will give a response as seen in Fig. 5.10.
In the figure there are three different controls with different values of the R;
matrix. It is seen that the larger the values of the R; matrix elements, the faster
the response at the expense of a larger control signal. O

5.5 Steady State Linear Quadratic Regulator

The closed-loop LQR controller from Sect. 5.4.2 is the optimal controller that
minimizes the performance index over a finite time interval [z, #;]. As has been
demonstrated this leads to a time varying LQR gain matrix which can be
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calculated off-line. In most cases it is more convenient to have a constant gain
matrix and therefore attention is directed to the last example of the previous
section, Fig. 5.9. It is seen that the solution to the Riccati equation becomes a
matrix with constant elements over much of the time interval.

It would therefore be of interest to look at an optimal control problem with
a performance index extending to infinity:

J(u) = lim “l (xT ()R x() + u(?)Ryu(z))dt | . (5.80)

[—00 t()
Assume further that the system is time invariant, i.c.,
x(7) = Ax(7) + Bu(z), (5.81)

so that all of the matrices are assumed to be constants and R; > 0 and R, > 0.

Since the problem with standard LQR controllers is to move the incremental
states to the zero state in an optimal way, the state vector x(¢) will approach the
zero-vector as ¢ — oo if the closed loop system is stable. It is therefore of no
relevance to include a final state term here. This is the same as setting S(¢;) = 0
in equation (5.52).

It is not difficult to show that the optimum value J,,,;, of the index has an
upper bound for all values of the final time if the system is stabilizable. 1t is
obvious that the index is monotonically non-decreasing and these facts prove
that the index has a limiting value even for #; — oc.

The optimum value of the index is given by equation (5.78). Since the system
is time invariant, this value J,;,;, must be independent of the initial time 7, which
means that the matrix P must be constant. This implies that P = 0 and the
Riccati equation reduces to

0=A"P+ PA + R, — PBR;'B’P. (5.82)

This is a set of coupled nonlinear (quadratic) algebraic equations. It is common
practice to call this equation the Algebraic Riccati Equation (ARE) although it
is no longer a differential equation. The limiting constant solution is denoted
as P.

Equation (5.82) may have multiple solutions, but it can be shown that only
one of them is positive semi-definite (provided that the system is stabilizable)
and that particular solution leads to the minimum value of the performance
index:

1
Jmin - EngooX& (583)

The optimal steady state gain matrix is found as before as

K. =R;'B’'P, (5.84)
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and the control signal becomes
u(r) = —Koox(1). (5.85)

A very important property of LQR regulators is that the closed-loop system
is stable under certain conditions. The following theorem is stated without
proof and the interested reader should refer to Lewis (1986) and Bryson and
Ho (1975) for details:

Steady State Continuous LQR Regulator Theorem:

For the system described by the time invariant state equation,
x(7) = Ax(7) + Bu(z), (5.86)

subject to the following performance index,

J(u) = J (T (DR x (1) + u” () Rou(r) )dr, (5.87)
0
then the following holds true:

If the system in equation (5.86) is stabilizable and the matrix pair (A, /Rj) is
detectable then the algebraic Riccati equation has one and only one solution
which is positive definite. This solution, P, leads to the minimum value (5.83)
for the performance index.

If the system in equation (5.86) is stabilizable and the matrix pair (A, v/R;) is
detectable then the resulting state feedback law,

u(r) = —Kox(1) = —R;'B"P.x(), (5.88)

gives an asymptotically stable closed loop system.

This is probably one of the most important results in modern control theory
and one that has far-reaching consequences for the design of optimal control
systems. Basically, the theorem ensures that under very broad conditions
(stabilizability and detectability), which can easily be tested for LTI systems,
the state-feedback in equation (5.88) will give a stable control system.

Example 5.4. Steady State LQR for the First Order System
The first order system in Example 5.2 has the state equation,
xX(t) = ax(t) + bu(t),

which is controllable (and therefore also stabilizable) if » 0. The steady-state
performance index is:



5.5 Steady State Linear Quadratic Regulator 319

Here, r, > 0 and if r; > 0 the ‘matrix’ pair (a, /1) is observable (and detectable
of course). Then the steady-state optimal control law can be found by solving
the ARE,

0=2aps +r1 ——ps.
mn

This equation has one positive solution,

1 + ) +r1b2
o =7514 a —
P b2 r

Comparing with Example 5.2, it is clear that this is exactly the same as obtained
for large #; — t. The feedback control law is then:

um:—mﬂm:—e+ Gf#%mg

r2

The control law is seen to give large control signals for large values of r; / r, and
small control signals for small values of r; / r,. The LQR gain is approximately
proportional to \/(r; /r2) as noted earlier. The pole of the closed loop system is
easily calculated to be

1 |a? n r1
b b2 r2'

Again the general feature of the control law is to give a faster system for large
values of r/r;.

If controllability is lost, i.e., b = 0, control is impossible since the control
signal cannot influence the system. The LQR calculation does its best to cope
with the situation by making the control signal infinite. The closed loop state
equation reduces to x(7) = ax(), so stability depends on the sign of a. If r; — 0
the system is not observable and detectability may also have been lost. In this
case the control signal becomes

a |a
1) =—(=+ |- )x(0).
ul) == 5+ f5])x0
The closed loop state equation is consequently

, b
x(t) = — l |a|x(1).

and the stability now depends on the sign of b. O
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Example 5.5. Steady State LQR for the Double Integrator

The next example here is for the second order system from Example 5.3. This is
a double integrator with the state equation:

The controller has to minimize the performance index,
J= J (T (R X (1) + (1)),
0

p

The state weight matrix is chosen to be diagonal: R| = ] .1, and r, are

the position and velocity weights respectively. With the values above the alge-

braic Riccati equation results in the following three coupled equations:

1,
0=r, _gl’m

1
0=pi ——pipn,
]

|
0="2p1+r ——ph
r

Here, P, B 1 2 12} is the solution to the ARE. This algebraic equation is
12 P»

easily solved and gives the unique positive definite solution:
P11 = \[Tpr/ 2r2/Tpl2 + 1y12,
P12 = \/Tpl2,
D2 = \/2r2\/Tpr2 + 112,
The controller becomes a state feedback controller with the control signal:

= K. x(1) R;'B"Px(1)

g
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It is seen that the control gain increases as the weights of the states are
increased, i.e., r, and r, are increased compared to the control signal weight.
The closed loop characteristic equation can be found as

52+ 2\/§+ﬁs+\/§=0.
V' r

The corresponding closed loop eigenfrequency ®, and damping ratio ¢ can be
seen to be:

1 Ty

A RN

Now let r, = 1. It is then clear that if the weight of the velocity is zero (r, = 0)
the closed loop poles have a damping ratio of 1/(1/2) ~ 0.71. The root-locus as
a function of weights is seen in Fig. 5.11, where r,, varies from 0 till 10. For this
particular system it is seen that the damping ratio of the closed loop poles is
always guaranteed to be greater than 0.71 for positive weight matrix elements.
So for this type of second order system the steady-state LQ regulator gives a
well-damped system. O

Example 5.6. Steady State LQR for the Two Link Robot

The robot control problem in Example 4.14 is now repeated with the steady
state (continuous time) LQ regulator. The linear system model is given by:

Fig. 5.11 Root-locus for

Newtonian system for _15 i i i ;
variation of rp -2 -1.5 -1 -0.5 0 0.5 1
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0 1 0 0 0 0
. 17.832 0 —-3.0024 0 1.2514  —2.4337
x(1) = 0 0 0 . x(1) + 0 0 u(r)
—-30.063 0 10456 O —2.4337  6.5512

= Ax(t) + Bu(1).

In order to eliminate stationary errors, output error integration will be
introduced and the system augmented with two error integral states that obey
the state equation

The error is here the difference of a set of reference positions, r(¢), and the actual
outputs, y(7). The resulting augmented system has six states and therefore the
weight matrix for the states becomes

T 0 0 0 O 0 7
00 0 0 O 0
001 0 O 0
R, =
00 0 0 O 0
0 0 0 0 500 250
LO 0 0 0 250 500,

The error integrals are weighted harder to make sure that they will be
eliminated quickly. The selection of weight matrix elements is done by trial
and error, as is common practice. However, the overall guideline is quite simple.
If a given state vector element upon simulation is responding too slowly,
the corresponding state weight matrix diagonal element has to be increased.
Similarly for the relative strength of the control signals. Since cross coupling
between the two links is a major problem, the integral error cross coupling terms
are also weighted harder. The maximum torques that the actuators can exert on
the links are not available. If they were then a good relative weight for the
control signals would be

L 0

max(u?)

|

max(u3)

R2:p

The two control signals are weighted such that the lower link torque is allowed
to be relatively larger, since it carries a greater load. A good selection seems to
be

1 0
R25-104{ ]
0 10
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Fig. 5.12 Two-link robot 0.8 =
position

T T T T
frad] A . refeence . |
;. —LQR
----- Pole placement|

0.4 H

Asin Example 4.14 the robot starts from initial position (45°, —30°), makes a
stepat t=0.1secto (—45°, —30°) and finally at 7 = 3 sec makes another step to a
final position (—45°, 30°). The resulting state responses are depicted in Fig. 5.12.
The control signals are shown in Fig 5.13. For comparison a pole placement
controller is also shown that is designed to have roughly the same maximum
control signal inputs.

As is seen the LQR controller works well even on a non-linear system such as
the two link robot. Compared to the pole placement controller it is much faster
in response with roughly the same control signal. However the cross coupling
from link 2 to link 1 is substantial and it is likely that finer tuning could decouple
this interaction. a

Fig. 5.13 Control signals for
the two link robot
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5.5.1 Robustness of LOR Control

LQR regulators have some particularly useful characteristics as regards their
gain margin, phase margin and tolerance of modelling error. For time varying
control objects this robustness is dependent on the characteristics of the system
in question and what control is being required of it. For LTI control objects
however it is possible to be much more concrete. This subsection documents the
stability characteristics of LQR controllers when applied to LTI systems.

The approach to the robustness of LQR regulators here is based on Lyapunov’s
direct method which was reviewed in Sect. 3.7.5. Consider a Lyapunov candi-
date function, V(x) = x’Px, for a LQR regulator. It is known from previous
sections that P > 0 (is positive definite). This means that it must be so that the
time derivative of ¥ is neative for stability, i.e., V<0 for x #0. J can be found
by differentiation of the candidate Lyapunov function. Assume that the B
matrix of the control object is incorrect or has been changed to a different
one for some reason or another to Ba:

V=x"Px +x"Px

= x"P(A — BaK.)x + x"P(A” — K7 B )Px (5.89)

= x"(PA +A"P)x — x"(PBAK., + K'BiP)x,
where K is the optimal steady state LQR gain and the x time derivatives have
been replaced by the closed loop state equation, x = (A — BAK . )x, including
the modified input matrix, Bo. The input to the state equation can be ignored
because it does not influence the stability of the system. The term in the
parenthesis on the left in the last line above can be replaced by —R; + PBK
since the system is known to answer to the steady state Riccati equation (5.82).

The quantities in the parentheses in Eq. (5.89) are the argument of a quad-
ratic form, thus
V=x"(-R| 4+ PBK,.)x — x"(2PBAK,.)x

x”(=R; + PBK,, — 2PBAK, )x (5.90)
= Xr(—Rl + P(B — 2BA)KOC)X.

Now let BA = BA where A is a diagonal matrix of arbitrary gains. Then the
condition for stability, V'<0, requires that

R, — PB(I — 2A)K,, >0. (5.91)

If A is allowed to vary then for stability, A;> %, i=12,...,n, and an LQR
regulator allows for a one half gain reduction. On the other hand it is allowed
that A; — oo and an infinite gain margin is predicted for a gain increase, given
an accurate control object model.
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The phase margin can be investigated approximately by letting the diagonal
elements of A be phases, A; = /. In this case it is clear that it is permitted that
the real part of the matrix elements of A be greater than % for all | 6, | < 60 .
Thus there is a 60 phase margin for all inputs.

It is thus seen that LQR control of LTI systems can be realized with
guarenteed large gain and phase margins given accurate control object informa-
tion. This inherent robustness is one of the main reasons that LQR control is
currently so wide spread in so many different control applications. Moreover it
is the most important benchmark to which any other multivariable controller is
compared when considering a particular control application.

5.5.2 LOR Design: Eigenstructure Assignment Approach
Now a different way of designing a steady-state LQ regulator will be given. In

certain cases this method can be used to an advantage.
A LTI control object will be assumed to have the usual linearized form:

(1) = Ax(¢) + Bu(1), (5.92)

with the steady-state performance index:

J= %r (<T(ORx(1) + 07 () Rou(r)) dr. (5.93)
0

It is also assumed that the system (A, B) is stabilizable and that (A, v/R)) is
detectable.

It is now to be shown that the steady-state optimal state feedback gain K.
can be found directly from the Hamiltonian system (5.62) as

KA ERCEHA

(1) (1)
Moreover it will be shown that the optimal closed loop system,

A  -BR;'B”
R, —AT

(1) = (A — BK.o)x(1), (9.95)

has eigenvalues that are the stable eigenvalues of H. Above K is the state
feedback gain in equation (5.88).

The derivation of the state feedback gain K., starts with the observation
that the eigenvalues of H are symmetric on either side of the imaginary axis.
To show this start by noting that

JH'J = H,
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where J = {_OI (I)] If p is an eigenvalue for H there exists an eigenvector v
such that
Hv = pv,
since JT = —J R
JH Jv = pv < (Jv)'H = —p(JIv)”. (5.96)

So it can be observed that —p is also an eigenvalue with (left) eigenvector (Jv)”.
Consequently it can be concluded that H has 2n eigenvalues, n of which are
stable and n of which are unstable.

It will now be demonstrated that the n stable eigenvalues are also the closed
loop eigenvalues of the system in equation (5.94). Since the system is stabilizable
and detectable the closed loop system has 7 stable eigenvalues. Let ; be one of
these and assume that only the mode corresponding to this eigenvalue, L, is
excited. If X; is the corresponding eigenvector the state equation can be inte-
grated to give

x(1) = X;eM'. (5.97)
Since u(¢) and A(7) depend linearly on x(7) one also has that
u(?) = Uet,
(5.98)
)\,(l‘) = A,-e“"’.

For the Hamiltonian system this gives

AR ARERHEE R

So ;s also an eigenvalue of H. Since there are exactly n stable eigenvalues in H
it can be deduced that these are the n closed loop poles of the stable LQR state
feedback system.

The feedback gain K., can be determined from the eigenstructure of the
Hamilton matrix in the following way. From Egs. (5.61) and (5.88) one has:

U, = -R;'BTA; = K. X,

Since this is valid for all the n eigenvectors X; this may be written in matrix
form as

K. X =R;'B7A. (5.100)
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Here the system modal matrixis X = [X; X, ... X,Jand A = [A| A, ... A,]. For
a non-defective system, i.e., a system without repeated eigenvalues, the modal
matrix is non-singular, so it may be inverted it to obtain

K, = R;'BTAX ! (5.101)

So for a non-defective system the steady-state optimal controller can be
found from the eigenstructure of H. The method involves finding the eigenvec-
tors of H for its n stable eigenvalues. Comparing equations (5.101) and (5.88)
one sees that the solution of the algebraic Riccati equation is

P =AX". (5.102)
It is also clear that if the state weight matrix R; is zero the Hamilton matrix is

A -BR;'B”

H:
0 —AT

So its eigenvalues are the open-loop eigenvalues in A combined with the
eigenvalues of —A. Thus, if there is no state weight then the closed loop poles
are the n stable poles in A and —A. Therefore without state weight the poles of a
stable system cannot be moved with a steady state LQ regulator.

Example 5.7. Optimal Eigenstructure Assignment for the Double Integrator

The double integrator system from Example 5.6 has the state equation:

x(1) = Ax(1) + Bu(r) = [(O) (l)]x(t) + {ﬂu(z),

with the same weight matrices as before, R; = [rp } and r», = 1. The
Hamiltonian matrix can be obtained as 0

0 1 0 0

0 0 0 -1

—r, 0 0 O

0O —-r, =1 0

A -BB;'B
—R; —AT

H=

This matrix has the characteristic polynomial,
Ry r, =0,

which has four solutions, two in each half plane,

ry ry
A=H/ZE£ /=7,
25\2
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Fig. 5.14 Eigenvalues of the
double integrator

1 . 1 .
Hamiltonian %5(71 +J) %—ﬁ(l +7)

4[,,—( 1- 4[,,—(1 -

The two stable poles are the same as were found in Example 5.6. For r,, going to
zero, the four poles become (0, 0, /7y, —/r,), with marginal stability because
the system loses detectability.

For r, going to zero, the system retains detectability and the four closed loop

poles become
b=y [k /7T, = 4 /e,

The four poles are arranged as seen in Fig. 5.14.

The eigenvectors corresponding to the stable eigenvalues can be used to
calculate the state feedback gain. This is most easily calculated numerically, in
for example MATLAB. a

5.6 Discrete Time Optimal Control

In many practical applications the optimal controller is implemented in a
computer in digital form. Therefore a transformation of the results from con-
tinuous time to a form applicable to digital implementation is often necessary.
This transformation can be carried out in two distinctly different ways. One is
to design the controller in continuous time and then to derive an approximate
discrete version of it. A popular method is the Tustin approximation to the
discretization or any of a number of other discretization techniques. See for
instance a thorough treatment in Franklin, Powell and Workman (1990).

The alternative method to design a digital controller is to discretize the
continuous time model and perform the design in discrete time. In Chap. 2 it
was described how a discrete time model can be derived from a continuous time
model by integrating over a sample period of duration 7. In Chap. 4 it was
shown how make a pole placement controller in discrete time by placing the
poles inside the unit circle. It will be assumed here that a discrete time model has
been found for the system in the form of a linearized LTI state space model:
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x(k + 1) =Fx(k) + Gu(k). (5.103)

A linear quadratic controller in discrete time will be introduced here and the
discrete time equivalent optimal state feedback controller and the discrete
Riccati equation derived. First however, the problem of finding the discrete
cost function must be addressed.

5.6.1 Discretization of the Performance Index

The continuous time quadratic performance index for the LQ regulator is:

1 IR
J= EXT(ll)S(ll)X(ll) + EJ (xT (R x(2) +u” (t)Rou(1))dt. (5.104)
0
The cost function is also assumed time invariant and therefore the initial time is
defined as zero, which is not a limitation. It will now be assumed that the final
time is a whole number of samples, i.e., #; = NT and therefore the cost function
may be written:

—_—

1 . N— (k+1)T -
7 =3x8 EkZJ (ORX (1) + u” () Rou(1)]dr.

To a first approximation the state vector may be assumed constant between
samples and therefore the cost function can be approximated by the expression

N—1
J= %xT(zl)S(tl)x(zl) %kz_:[ x (k)R x(k) +u” (k)Ryu(k)] - . (5.105)

It is seen that the continuous time weight matrices are transformed into an
equivalent discrete time version by the following conversion:

Sd(N) = S(t1)>
Ry, —R,T, (5.106)
Ry, = R.T.

The discrete time cost function is then
1 1 M=
Ja=3x"(1)Su(N Z KR x (k) + ul ()Rsu(k)].  (5.107)
k:

This is the cost function that will form the basis for the derivation of the
discrete time linear quadratic regulator. As usual the requirement for a lower
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bound on the cost function is that the weight matrices have the following
properties:

S4(N) >0, Ris >0, R»;>0.

5.6.2 Discrete Time State Feedback

With the state equation in (5.103) and the cost function in (5.107) a vector of
Lagrange multipliers A € " is introduced and the Hamiltonian becomes:

H(x(k)u(k), \(k + 1))
= % (xT(k)Rygx(k) + u” (k)Ryqu(k)) (5.108)
+ AT(k + 1)(Fx(k) + Gu(k)).

Note that the Lagrange multiplier is indexed with the time k + 1 rather than k.
This is only for notational convenience and is just a convention.
The co-state equation gives

Ak) = ] = Rigx(k) + F'A(k +1). (5.109)

The stationarity equation leads to

OH T
Solving for u(k) gives
u(k) = —Ry G"\(k + 1). (5.110)

Inserting this in the state equation gives
x(k + 1) = Fx(k) — GRy G"A(k + 1). (5.111)
The boundary condition at final time sample N is

0

MN) = 9x(N)

B(x(N)) = Sq(N)x(N). (5.112)

Suppose that (analogous to the continuous time case) this relation is valid for
all time samples, i.e., that there exists a matrix P (k) such that
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(k) = Py(k)x(k) with Py(N) = Sy(N). (5.113)

As in the continuous time case this expression may be used to modify the
equations in (5.109) and (5.111) to obtain:

Py(k)x(k) = Rigx(k) + F'Py(k + 1)x(k + 1),
x(k 4 1) = Fx(k) — GR5; G"Py(k + 1)x(k + 1).

Solving the second equation with respect to x(k + 1) and inserting the result in
the first equation above,

P,(k)x(k) = Rigx(k) + FTPy(k + 1[I+ GR;, GTP4(k + 1) 'Fx(k).

If this is to be true for all values of x(k) then the discrete Riccati equation is
valid:

Py(k) = Rig+ FTPy(k + 1)[I+ GR;;G"P,(k + 1)] 'F.  (5.114)

The discrete Riccati equation is solved backwards in time from sample N where
the boundary value, PAN) = S4N), is given. This version of the Riccati
equation is most useful for hand calculations of smaller systems.

From equation (5.110) one has

u(k) = —RyG"P,(k + 1)x(k + 1).

Now this is not a very convenient form of the controller since it requires future
state variables. It may be rewritten in a more convenient compact form by
inserting the state equation in the control law to obtain

u(k) = —R;}G"P,(k + 1)(Fx(k) + Gu(k)).
Solving for the control signal a state feedback law is obtained in the form
u(k) = —Ka(k)x(k). (5.115)
Here the discrete LQR gain is given by
Ky (k) = [Rog + GTPy(k + 1)G] 'GTPy(k + 1)F. (5.116)

The Riccati equation may be solved using equation (5.114) but a more
compact form is found by the application of the matrix inversion lemma,’

! The matrix inversion lemma may be found in most linear algebra textbooks
and it supports the identity (valid for det(A4;,)#0): (Al’l1 + A12A22A2|)_l = A —
AAn(A2ALAR +A2721)71A21A11-
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Py(k) = Rig+ 5117
+FTPy(k + 1) = Py(k + )G[Roy + G™Py(k + 1)G] 'GP (k + 1)JF.

If the matrix Pk + 1) can be inverted this may further be simplified by
yet another application of the inversion lemma:

Py(k) = Ris+ FT[P;'(k + 1) + GRy/G']"'F. (5.118)

This version of the Riccati equation is most useful for machine calculations
because of its compact matrix form.

The closed loop state equation is found by inserting the state feedback signal
(equation (5.115)) into the state equation in equation (5.103):

x(k+1) = [I = G(Ryg + GTPy(k + 1)G) ' GTPy(k + 1)]Fx] (k).

5.6.3 Steady State Discrete Optimal Control

The discrete optimal controller above has the disadvantage that it is time
varying. Even for plants that are time-invariant and therefore for the control
of the plant over N samples, N x m control signals have to be calculated and
stored ready for control signal calculation. Therefore as in the continuous time
case, it is useful and convenient to see if a constant sub-optimal LQR gain can
be derived. The discrete time Riccati equation may for large N or as k — —oo
converge to a constant or it may not. If the Riccati equation solution converges
to a constant then this the limiting solution is denoted P,.,. Obviously if P,
exists it will be a solution to the discrete time algebraic Riccati equation, which is
found by setting Py, = Py(k + 1) = Py(k),

Pio = Rig+ F [Py — Py G(Rog + GTP 41 G) ' GTPy JF. (5.119)

This equation is in general a set of at most n* non-linear algebraic equations
which may have symmetric, positive semi-definite solutions, but which may also
have negative definite and even complex solutions. Therefore even though the
limiting solution is a solution to the algebraic Riccati equation, it may have
many other solutions and none of these may be positive semi-definite.

If the algebraic Riccati equation has a positive semi definite solution then the
steady-statefeedback controller can be written in the form:

u(k) = —KgsoX(k) = —[Rag + GTPy.G] 'GP Fx (k).  (5.120)
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As in the continuous case necessary and sufficient conditions will be stated for
the steady-state optimal LQ regulator to give stable control. The result is given
without proof. The reader is referred to Lewis (1986) and Bryson and Ho (1975)
for more details.

The following holds true for an LQR regulator:

Steady State Discrete LQR Regulator Theorem

If the system to be controlled, described by equation (5.103), is stabilizable then
there is a bounded limiting solution to the Riccati equation and the limiting
solution, P, is also a positive semi-definite solution to the algebraic Riccati
equation in (5.119).

If furthermore the matrix pair (F, v/Ry) is observable, then there is one and
only one positive semi-definite solution to the algebraic Riccati equation, which is
then also the unique limiting solution to the Riccati equation independent of the
final time boundary value, P {N). With the above conditions the closed loop system
formed with the control law in equation (5.120) is asymptotically stable.

Example 5.8. Discrete LQR for the First Order System
Consider a system with a discrete time state space equation given by:
x(k+1) = x(k) + Tu(k).

This corresponds to a discrete time integrator. A steady state discrete time LQ
regulator for this system can be designed for the cost function:

J = i i) + pu?(i)],
i=1

by using the discrete time Riccati equation (5.117) with R;; = 1 and R,; = p.
This gives:

272
pT
=1+4+1-|p— -1
P {p p+ TZP]
which reduces to the quadratic equation,
p
P—p— i 0.

The positive solution for this equation is

1 p
+oq /1 +4—=
T T

l\)l'—‘

p:
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and the optimal feedback gain is obtained from equation (5.120) as

Tp
p+1%p

K=[p+Tp ' T(p-1) =
Inserting the ARE solution gives for K,

(5.121)

2
K=——F .
T+ /T2 +4p

Note that a regulator which reduces the output of the system to zero as fast
as possible is found when p — 0, K = 1/ T, in which case the input power is
allowed to be as large as necessary. A deadbeat regulator for the system gives
the same result. The characteristic equation for the system becomes

A—(1—TK)=0, (5.122)

from which it is clear that K = 1/ T gives the required deadbeat regulator
gain. O

Example 5.9. Discrete LQR for the Double Integrator

The double integrator system from Example 5.6 has a discrete-time model
of the form

x(k+ 1) =Fx(k) + Gu(k) = [(1) |

The cost function weight matrices are chosen to be

r

R,=|"7
o

0
and Ry, = p.
Iy
For r, positive, the system with output matrix /R, and system matrix F is
observable and therefore the ARE solution will be positive definite and hence
regular. Therefore one may use the simpler form of the ARE which follows
from equation (5.118). The ARE then becomes

Ps. = Ry + F'[P;! + GRy/G']"'F.

Even for this relatively simple system the ARE is a set of three coupled quad-
ratic algebraic equations for the elements of P4... A numerical study where r, =
3, r, = 4and p = 1 gives a closed loop system with a step response as depicted
in Fig. 5.15. The system starts at rest at time zero and the LQ regulator drives
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Fig. 5.15 Response of a Control signal
double integrator with a T T
discrete time LQR regulator

1

the state to zero. The continuous time controller response with the same weight
matrix values is shown for comparison. O

Example 5.10. Discrete LQR Control of the Two Link Robot

A discrete time LQ controller is desired for the two link robot in Example 5.6.
The design is based on a linearized discrete time model as given in Example 4.14:

x(1) = Fx(1) + Gu(r),
where

1003.6 20.024 —0.60095 —0.0040071

| 357.19 1003.6 —60.152  —0.60118 10-2
~ | —6.0182 —0.040106  1002.1 20.014 '
—602.38  —6.0182 209.36 1002.1

0.25048 —0.48716

25.068  —48.758 .
Co04s716 13112 | 1°
—48.758  131.21

The sample time is 77 = 0.02 sec. If one attempts to use the same weight
matrices as in the corresponding continuous time case in Example 5.6, it turns
out that the control signal becomes much too large, so the weight on the
control signal has to be increased. After some adjustments the following weights
are used:
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Fig. 5.16 Robot link 0.8 . . . .
response with discrete time
LQ regulator and error [rad]
integration 0.4
0
-0.4
-0.8
1 1 1 1

time [sec]

(=]
Wi
S
S
(=]
o
S O O
S O O

Rl(l = ’
0 500 0 0

0

0

0 0 0 1000 250
0 0 0 250 1000 |

R 01[1 0]
M= 0 10

The response is shown in Fig. 5.16 and is compared to the corresponding
discrete-time pole placement controller from Chap. 4. In Fig. 5.17 the corre-
sponding control signal is given. It is seen that the response is much faster for

100
[Nm]
50

-100

-150 i i i i
Fig. 5.17 Robot control 0 1 2 3 4 5
signal (motor torques) time [sec]
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Fig. 5.18 Closed loop poles 1
for pole placement and LQ
controllers

o LQR ctj)ntrollejr

051/ . X Pole placement controller "\ |

the LQ regulator than for the pole placement controller, even though the
maximum control torque is the same. Also the cross coupling between the
two links is substantially reduced with the LQ regulator.

The closed loop poles are shown for the pole placement and LQ controller in
Fig. 5.18. It is seen that the LQ regulator gives poles that are faster than the
pole placement controller but also have somewhat the same pole lengths.

The step response of the LQR is significantly better than for the pole place-
ment. However this is with full state feedback, i.e., a controller that needs the
measurement of position and speed of both links. It is interesting to see what the
effect of using a pole placement observer is. This reduces the measurements to
position only. The pole placement observer will be tuned the same as in
Example 4.22. The pole position is such that the observer is ten times faster
than the corresponding regulator. The combined controller including analog-
digital converters and zero order hold networks is shown in Fig. 4.47. The
controller gains are the same as before in the state feedback case:

768.47 78.09 2312.02 22.55 —-65.50 —20.85

K, = [K,-K;] — .
1=K ] 266.74 27.48 169.99 16.02 -23.15 -15.77

The observer will be 10 times faster than the closed loop poles and the observer
gain matrix is

1.942 6.53-107*

47.39 —0.0162
—9.51-1073 2.032

—0.963 51.87
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Fig. 5.19 Observer based 0.8 T
LQ controller for the two [rad] |\ o S R
link robot 6 LQRr ! ‘

(UL O ------ Pole placement /' - """"""""

time [sec]

The resulting step response is given in Fig. 5.19. It is seen that the response is
similar to the state feedback case and that is substantially better than the pole
placement result. The corresponding control signal is shown in Fig. 5.20.

In order to investigate how the controller handles noise, because the observer
gains have to be rather high, quantization noise is introduced as depicted in
Fig. 4.51 on p. 339. In Fig. 5.21 the resulting response is shown for a 10 bit
converter resolution. It is seen that the control signal is so noisy that it is
probably useless in practice. If a 12 bit conversion is used the response is
much more acceptable however there could be a problem with the observer
amplification of noise, when such a fast observer is used. In the following
chapters the question of noise will be dealt with systematically and observers

designed to minimize the influence of noise in state estimation. a
150 T T T T
[Nm] . . . .
100
50
O L
=50
-100
Fig. 5.20 Observer based ; 3 3 3
LQ control signal for the ~150 i | i i
two-link robot (motor 0 1 2 3 4 5

torques) time [sec]
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0.6 - - - - 100
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Fig. 5.21 Response with fast observer (10 bit quantization)

5.7 Summary

This chapter has presented optimal control based on the formulation of a
general optimization problem for a general cost function and a general non-
linear system equation. The main topics of the chapter are:

1. The solution of the general optimization problem.

2. The introduction of the quadratic cost function and the formulation of the
linear quadratic regulator problem.

3. The solution of the LQR problem and the introduction of the Riccati
equation.

4. Presentation of the requirement for a limiting solution of the Riccati equa-
tion and the stability of the steady-state LQ regulator.

This last point, i.e., the theorem on p. 318, is probably the most useful result
in modern control theory for practical applications, since it guarantees the
stability of a steady state optimal controller in the form of a constant-gain
state feedback controller,

u(r) = —Koox(1) = =R, 'B'P (). (5.123)
Here, P is the solution to the Algebraic Riccati equation (ARE) in equation

(5.82) on p. 317. This state-feedback controller is stable for a linear system that
is stabilizable and detectable. A similar result holds for discrete time systems.
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The ARE is a nonlinear matrix equation for the elements of the symmetric
matrix, P... There exist numerous numerical solvers for this, e.g. in MATLAB
the function:

[K,P,e] = 1gr(A,B,R;,R,,N)

gives the state feedback gain, the ARE solution and the resulting closed loop
poles for a continuous time system

x(7) = Ax(7) + Bu(z),

with a performance index of the form

J = J (XTR1X +u'Rou + 2xTNu)dl.
0

Where also cross-products of states and control signals can be penalized. A
similar routine is offered for discrete time problems.

While the gains in an optimal controller are arrived at using special methods,
its structure is exactly like that of any state feedback regulator. Thus its
eigenfrequencies are determined in the usual way by solving the equation

det(M — A + BK) = 0.

The LQR state feedback controller can be combined with an observer and in
the subsequent chapters an optimal way of designing the observer will be
discussed and finally combined with the LQR regulator to form an optimal
output state feedback. This however requires the study of stochastic processes,
since one has to handle process and measuring noise in an optimal way.

This chapter is concluded by emphasizing that:

For time-invariant, linear systems steady-state LQR state feedback leads to
stable closed loop control provided the system is stabilizable and the matrix-
pair (A, /R;) is detectable.

5.8 Notes
5.8.1 The Calculus of Variations

A standard problem in differential calculus is to determine the point at which a
given curve is a maximum or minimum. A related problem (and a much more
difficult one) is to determine a curve such that a functional (for example an
integral along the curve) is maximized or minimized. In some cases it is also
required that the optimizing function satisfy some auxiliary conditions or
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constraints, that the interval or region of definition can vary, that the curve is
expressed in some parametric fashion and/or that the curve is a surface. All such
problems fall into the domain of the calculus of variations and which is an
important tool in modern physics and technology.

The calculus of variations emerged first as a collection of disparate problems
and solutions in the period from 1680 to 1700. As might be expected, the first of
these problems emerged with the invention of calculus itself by Isaac Newton
and Gottfried Wilhelm Leibniz, published in the period from 1667 to 1687. The
Leibniz form of calculus was based on a type of geometrical analysis combined
with an algebra of differentials. This method of infinitesimal analysis about a
point, together with Leibniz’s suggestive notation, )’ = Z—‘r, made it possible for
continental mathematicians to attack the problems of the calculus of variations
more conveniently than was possible in England with Newton’s fluxion nota-
tion: y. Thus continental mathematicians were able to contribute most signifi-
cantly to the initial development of the calculus of variations. In particular this
is true of the Bernoulli family: Johann, Jakob and Daniel. It is of interest to note
that the initial development of the subject was also closely related to the
problems of mechanics as well as the fundamental interest in analysis (advanced
calculus) itself.

One of the first problems considered was to derive the equation of the
cycloid. A cycloid is the curve traced by a point on a circle which rolls without
slipping on a straight line. This problem was proposed by Johann Bernoulli in
1696 and was solved by Newton, Leibniz, the Marquis de ’'Hospital and the
three members of the Bernoulli family mentioned above. Its solution was a
differential equation in the arc length of the curve.

Leonard Euler extracted from various solutions offered by the Bernoulli
family a unified approach to integral variational problems and published his
results between 1732 and 1741. The unified approach found was what is now
called the Euler-Lagrange equation: the fundamental necessary condition for
the integral variational problem. Euler also observed that his derivation was not
necessarily dependent on using any particular coordinate system, a fact which is
of great importance in physical applications.

As mentioned in an earlier note, Euler recognized the promise of a young
Frenchman, Joseph Louis Lagrange, and made sure of his employment as
director of the Berlin Academy after Euler. Lagrange honored this trust by
publishing in 1760 a method of deriving the Euler-Lagrange equation using the
method of variations which is currently used for this purpose. Euler himself
adopted this method and coined the name which is currently used to describe
the entire discipline: ‘calculus of variations’. Lagrange continued his researches
in this area and this work culminated in 1788 with the publication of his
analytical mechanics, the Lagrange equations of motion and the principles of
virtual work and least action.

Beginning from a result proved by Adrian-Marie Legendre in 1786, Carl
Jacobi investigated the question of when solutions of the single-integral varia-
tional problem actually lead to a minimum. Legendre was able to show that in
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addition to the Euler-Lagrange equation, a necessary condition is that the second
derivative of the integrand with respect to the first derivative of the minimizing
function is positive (in the domain of definition) as well as several other important
results. He was also able to provide a simple geometrical picture of his theory in
terms of the collection of extremals of the variational problem.

In the period from 1800 to 1850 considerable effort was expended in extend-
ing the single variable theory to multiple integrals. The most successful assault
on these problems was published by Frederic Sarrus in a paper published in
1846. Later this work was extended by Augustine-Louis Cauchy, who also
developed an acceptable theory of limits, and Francois Moigno. Sarrus’ name
is little remembered now but his contributions are considered to be some of the
most original and important of his century. The background for this work was
an overriding interest in the differential geometry of surfaces.

Karl Weierstrass was responsible for introducting rigor to study of the
calculus of variations, the now well-known ¢ — d terminology and the para-
metric theory of the first and second variations. The main advantage of the
parametric approach is its ability to handle geometric applications, in particular
the finding of geodesics (the shortest lines on surfaces). Weierstrass was slow in
publishing his work so that many of his results were made public in his lectures
at the University of Berlin from 1864 to about 1900. Among the students who
attended Weierstrass’ lectures were Sonya Kovalevski and David Hilbert.
Hilbert and his students began the modern era in the calculus of variations
with the introduction of topology in order to develop a macro-analysis. In
addition Hilbert made large contributions to mathematical physics in general
and quantum mechanics in particular with his introduction of Hilbert space.

5.9 Problems

Problem 5.1

The Lagrangian for a conservative physical system is its kinetic energy minus its
potential energy,

L=KE —PE

It can be shown that this quantity or its integral is a minimum for motion of the
system over any time interval.

Consider a harmonic oscillator whose position is x, velocity is v, spring
constant is k and which has a mass, m.

a. Write down expressions for its kinetic and potential energy and for its
Lagrangian.

b. Use the Euler-Lagrange equation to derive the equation of motion for the
harmonic oscillator when it has no external driving force. What is the
equation of motion when there is an external driving force, F,.,?
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If the harmonic oscillator is disturbed from a zero equilibrium position then it
will execute a harmonic movement.

¢. How will the movement look in phase space, i.e., when the position of the
oscillator is plotted against its velocity? What is the name of this figure? Give
an equation for it.

Problem 5.2

The Lagrangian for a conservative physical system is its kinetic energy minus its
potential energy,

L=KE —PE.

It can be shown that this quantity or its integral is a minimum for motion of the
system over any time interval.

A ball is thrown upward with an initial velocity v, at an angle of 0y degrees.
The following integral is a minimum for its movement:

1
J:J L dt.

to
The mass of the ball is m and the acceleration of gravity is g.

a. Write down an expression for the Lagrangian of the ball in two dimensions
(x and y coordinates).

b. Use the Euler-Lagrange equation to write down the equation of motion of
the ball.

c. Integrate the equations of motion found to find expression which give the
motion of the ball as functions of time. Is this what is to be expected?

Problem 5.3

Assume a linear system which is described by the equation,
y(x,u) = ax + bu+ ¢,

where a, b and ¢ are constants, x is the state and u is the input. What is required
is to find an input which minimizes the performance index:

L(x,u) = ri x> + ru?,

where r; > 0 and r, > 0 are constants.
a. Find the required input using the Euler-Lagrange equations.

The problem has been formulated as a scalar problem. Now let A (n X n
matrix), B (m x m matrix), C (n X n matrix), R, > 0 (n x n matrix) and R, > 0
(m x m matrix) be constant matrices and the state and input be vectors.
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b. What is the index that must be minimized?
¢. What is the input that minimizes this more general performance index?

Problem 5.4

Consider the problem of finding the curve which has the minimum arc length
between two points. The arc length between to arbitrary points (¢y, a) and
(t1, b) is

b b
J:J ldt:J V 1+ x2dt,

a a

since ds = \/ 1+ ((dx)/(dr))*dt = /T + x2dt.

a. By considering this as a control problem, find the general equation for the
curve.

b. Find the particular equation for the curve which goes through the two end
points specified above.

Problem 5.5

Use the information given in Problem 5.4 to find the shortest distance from a point
to a line. The initial condition for the state is that x(0) = 0. The target line is given by
the equation y(z) = —st + y;,,, where s and y;,, are constants.

Problem 5.6

Consider the simple electrical circuit below. It is desired to find the input voltage
which can charge the capacitor from a voltage v(r = 0) = v to w(#,) = v, while
at the same time minimizing the energy dissipated in the resistor.

s i)
u(t) C) C —— v(®

. Write down the state equation of the system.

. Write down the index which is to be minimized.
Write down the Hamiltonian of the system.

. Find the time dependent input voltage which minimizes the energy dissapated
in the resistor.

oo op
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Problem 5.7

A simplified state space model for an aircraft is given below:
V= —kv? — biv?sin(a) + by T,

h = —K + byV? sin(a),

where v is the speed, / is the height, o is the elevator angle, T'is the engine thrust,
and the other quantities are positive constants.

A LQR regulator is to be designed for the linearized system where the control
variables are the elevator angle and the engine thrust.

a. Linearize the model around the nominal operating point (vg, /p) and find the
corresponding input trim variables (o, 7).

b. Are the linearized model’s parameters dependent on /4y? Are they dependent
on vy?

c. Consider the incremental speed and height as the output of the system. Set up a
quadratic expression for the calculation of the stationary optimal state feedback
system. The relative weights for the speed and height are to be oy and o, while
for the two inputs they are y; and v,. The relative weight of the two states to the
two inputs is be p. Call the matrix elements for the system a1, a5, etc. and by,
b1, etc. Do not attempt to solve for the matrix elements of the P, matrix.

Problem 5.8

A plant consists of a D.C. motor which has and angular velocity () which is
driven by an input voltage V,(f). The system is described by the scalar state
equation

o(1) = —aw(t) + BV.(1),

where o and [ are positive constants. See Example 2.3 for the identification of
the constants o and f3.

a. Design an LQR regulator for this system which can minimize the perfor-
mance index

J = lim UI (0 + pl?2) dt}

1—00 0
Problem 5.9
Consider the double integrator system x = [x1, x»]":
X1 = X2,

szZld,
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with the performance index:

h

J= %xr(zl)x(n) + J (xT(0)x(t) +* (1)) dt.

to

a. Derive the Riccati equation as three coupled scalar differential equations and
write the gain matrix in terms of the solutions to the Riccati equation.
A solution to the Riccati equation above can be found numerically in
Matlab.

b. Find an analytic expression for the solution to the steady-state Riccati
equation for 7; — oo and find the optimal steady-state feedback gain.

Problem 5.10

A D.C. motor position control system for an electronic throttle control is
described by the state differential equation

HEI MR

where 0 is the angular position, o is the angular velocity, o is a viscous damping
coefficient, B is the D.C. motor velocity constant from the anchor voltage V..
Consider the problem of regulating this system about its zero state where the
controlled variable is the position, i.e.,

y = Cx, C=[1l 0]

a. Find and optimal steady state control for the system. Let the input weight-
parameter for the LQR index be R, = [r].

b. Sketch the movement of the poles of the closed loop system as a function of
the weight parameter p.

c. If the motor damping parameter o is (is not) equal to zero, i.e., [A]»» =
—a=0 (—a # 0) then what does the root curve look like? Explain by
inspection, do not calculate.

d. Use the numerical values o = 7.14 rad/sec, p = 286.3 rad/(Vsec?). Find the
value of r, such that the closed loop response has a 50 m sec response time.
Determine by computation or simulation the response of the closed loop
system given the initial conditions: 6(0) = 0.3 rad and ®(0) = 0 rad/sec.

Problem 5.11

In a soft drinks depot one wishes to regulate the warehouse stock as accurately
as possible. One counts the stock and makes a new order at a certain time every
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day. The new supply is received from the supplier the day after the order is
given. If the available supply for day number 7 is x(7) and the order is u(7) then it
is true that

x(i+1)=x@)+u@—1).

a. Determine the systems state equations. The states are to be called x; and x».

Because of a heat wave the sales suddenly increase and then stays constant at a
new value.

b. Find a regulator which can match the supply from the supplier to the new
sales in at most 2 days. The regulator must at the same time bring the
available supply back to the original level, x.

c¢. Find a state feedback which can minimize the criteria

J—lim[

—00

j;Kx(z') o 4 i — 1),

d. In what limit of the parameter p does the LQR regulator become identical
with the regular found under point ¢? What does this imply about the system
input level?

Problem 5.12

This exercise deals with a nonlinear optical fiber pulling process at NKT A/S
(Nordic Cable and Wire Company, Inc.), Denmark. In an earlier project a
linear control for this system was made, Hendricks et al. (1985). It has become
clear that because of newer products which require a variation of the fiber
diameter and high accuracy that a digital control of the process would be
advantageous. where D, is the preform diameter (about 10-15mm) and V), is
the preform advance velocity. Both D, and V), are approximately constant.

In the Fig. 5.22 a schematic drawing of the pulling process is shown. Optical
fibers are drawn from a quarts rod or preform. This is done by heating the
preform to a high temperature (about 2000°C) and pulling a fiber from the semi-
molten zone of the preform called the neck down region. The control object is to
control the diameter of the fiber, Dy (usually 0.125-1mm) by changing the
drawing speed, V, (usually 0.2-1 m/s).

The fiber is formed over a distance which is / but its diameter can be
measured (optically) only after it has traveled a further distance L. The process
is such that it obeys the mass conservation law:

2 2
D}Vy =DV,

The dynamic process model has been identified earlier and is in the form of a
transfer function for the process
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Fig. 5.22 Schematic N
drawing of an optical fiber N~

pulling process

D, (preform diameter)

b

neck down region: ~ 2000 C

fiber diameter
measuring point

-—

Dy (fiber diameter)

di(s) —K,e ™™
v(s)  1+ms

Y

where s is the Laplace operator, dyis the incremental fiber diameter, v, is the
incremental fiber pulling velocity, t,is the measurement time delay (= L/ V),
T, is the process relaxation time (= //V,), L = 2.5cm,/ = 5.0cm and K, is the
process amplification. t,, 1, and K, all depend on the large signal pulling
velocity, V. The process gain is given by the expression,

dDy
Kv =7
2Vy

where k is a constant.

a. Write down an differential equation which describes the dynamics of the
system when it is assumed that t,, T, and K, are constant.

b. What is the time constant and eigenfrequency of the system?

c. The tolerance for D,is £1%. Show using the mass conservation law that
Vis approximately constant in time.

Now the system is to be sampled in such a way that n samples are to be taken
in the least of the characteristic times t, or 1,, 1. €., T = (least time constant)/n,
where T'is the sampling period and 7 is a whole number. As both 1, and 1, are
scalars with respect to 1/, this leads to the state difference equation,
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dk+1)=adlk)+ (1 —a) vk —n),

where a is a constant and d(k) = d/(k).

d. Show that the difference equation above is correct and give expressions
for a and v in term of the original system parameters and constants. Also
select a reasonable sampling time (or n) for the system and explain this
choice.

e. Write down the state equations of this reduced system.

Design a steady state optimal regulator for the system.

g. What are the advantages of using a non-constant sampling time in the system
description? Name the technical disadvantages of such a choice.

-

Problem 5.13

Consider the damped harmonic oscillator given by the state equation x = [x,
T,
Xz] .

with the performance index

1

J= %xT(tl)x(tl) + J (xT(0)x() + r (1)) dt.
0

a. Derive the Riccati equation as three coupled scalar differential equations
and write the gain matrix in terms of the solutions to the Riccati equation.
A solution to the Riccati equation above can be found numerically in
Matlab.

b. Find an analytic expression for the solution to the steady-state Riccati
equation for #; — oo and find the optimal steady-state feedback gain.

Problem 5.14

A system is described by a bilinear state equation of the form
X(1) = ax(1) + dx(t)u(t) + bu(z).

x(t) and u(¢) are scalars and a, b and d are real constants. The cost function is
defined by
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1 2 1 r 2 2
J = 38(D(T) + 5 | (@x(0) +n(0)d.
0

Find a set of two coupled differential equations that describe the closed loop
system. u(t) has to be eliminated from the equations.

Problem 5.15
A plant is given by

0 1
2 -1

0

x(1) = { 1

]x(z) + { }u(z).

a. Verify the that plant is unstable and reachable.
b. Compute the open-loop optimal controller over the time interval [0, 1].

Problem 5.16

A discrete-time first order system is described by the state equation
x(k+ 1) =0.74x(k) + 0.26 u(k).

Design a time varying feedback controller that minimizes the cost function

4
J=) (x*(k) +0.2 (k).

k=0

Fork = 0,...,4 calculate the solution to the time varying Riccati equation, the
value of the feedback gain and the value of the control signal, if x(0) = 1. Why is

PA4) = 0?

Problem 5.17

Show that the matrix function,

t T
P(i) = J AUBRy'BTA 0 dr

fo

is the solution to the Lyapunov differential equation,
P(t) = AP(1) + P(1)A” + BR; 'B7,

with the initial condition P(zy) = 0.

a. Show that the unique solution to the Lyapunov differential equation is
symmetric.

b. Show that the solution to the Riccati equation is symmetric if P(¢;) is chosen
symmetric.



Chapter 6
Noise in Dynamic Systems

Abstract The purpose of this chapter is to present a brief review of the salient
points of the theory of stochastic processes which are relevant to the study of
stochastic optimal control and observer systems. Starting with a brief review of
the main properties of random variables, this chapter goes forward to a detailed
description of the main random process which is used as a model for noise in
technological systems: Gaussian white noise. Both time domain and frequency
domain descriptions of this important noise model are given. The main result of
these considerations is the time dependent Lyapunov equation which is a
compact way to express how white noise propagates through linear dynamic
systems. Both continuous time and discrete time versions of this equation are
given.

6.1 Introduction

Up to this point it has been assumed that control objects can be disturbed from
a desired operating point by some sort of signal. In general it has been assumed
tacitly that this signal is of a deterministic nature with zero mean, for example a
sine wave. [t has however never been specified what such a disturbance might be
exactly. Itis also clear that up to this point the entire description and analysis of
state space systems has been model based: in general for deterministic linear
systems. What is required now is a simple, mathematically tractable and suffi-
ciently general model of system disturbances, both for internal process- and
measurement-disturbances. One of the most useful disturbance models which
can be used in a reasonably efficient manner is a random process or a filtered
random process. The main reason for this is its mathematical simplicity and a
secondly because of its proved scientific and technical utility. Such a random
process in a deterministic system is generally called noise. What is needed here is
a model for noise and a description of how it influences and propagates through
dynamic systems.

It is well known that a number of different types of random processes or
noise are important in a number of different systems. Electrical resistors are
known to give Johnson noise which is proportional to the absolute temperature

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9_6, 351
© Springer-Verlag Berlin Heidelberg 2008
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at which they operate. Shot and 1/f noise influence strongly the operation of
transistor amplifiers and must be taken into account when such amplifiers
are used to amplify low level signals. Brownian motion or a random walk
takes place when pollen particles are immersed in a liquid solution. Chemical
mixing processes often have a large random component due to turbulence
effects. Mechanical friction is thought to be due to random attractions between
different areas of the surfaces which are in contact. Thus it is well established
that random processes play a very important part in common technical systems.
Many of these disturbances may be fairly accurately modelled as various kinds
of random processes.

Unfortunately the theoretical background for treating random processes in
dynamic systems is very complex for a number of reasons:

1. Advanced and difficult to use mathematical tools are required to handle
signals which are often not differentiable or integrable in the ordinary sense.

2. It is difficult to do experiments with random processes: often this requires
special equipment and long measurement times.

3. Nonlinearities introduce a very large perturbation of the linear theory and
thus many technical systems are difficult to model adequately in a simple way.

For these reasons and others the treatment of noise in these notes has to be
specialized to a particularly simple case: linear systems and Gaussian distributed
noise. This also requires that this chapter will be constructed mainly on a
heuristic basis. The mathematical formulations will be intuitively appealing,
formally correct for only one class of systems and disturbances but rigorously
incorrect. The results obtained however will be useful for many practical systems:
experience with real systems over many years suggests this conclusion.

As it will take some time to review the necessary background for the treatment
intended here, it is important here to define exactly the problem which will be
treated. It is desired to be able to construct optimal feedback control systems and
observers for the system:

x(1) = A(1)x(1) + B(t)u(z) + B, (2)v (1), 6.1
y(1) = C(0)x(1) +va(2), (6.2)

where v (¢) and v,(¢) are random processes. v; () is process noise and v, (¢) is
measurement noise. A(z), B(¢) and C(7) are the ordinary dynamic, input and
output matrices. B,(7) is a scaling and mixing matrix for the process noise
input(s). It will turn out to be possible to construct optimum estimators and
controllers for this simple model. Optimality is sought in the sense of minimum
energy: minimum control energy and maximum signal to noise power ratio.

It is assumed here that the reader has a basic knowledge of the theory of
probability. The background will be reviewed briefly however so that the reader
who does not have this background will be aware of the material which should
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be learned. Alternatively, the reader who has the proper background should be
able to review the material presented and be able to work constructively with it
on a short time scale.

6.1.1 Random Variables

A continuous random variable, X, is a variable which can take on a continuous
range of particular values, x, at random after no particular pattern. Such a
variable cannot be described in any other way than by specifying its Probability
Distribution Function (P.D.F.), F(x), or its probability density function (p.d.f.),
f(x). As s the conventional practice, random variables themselves will be written
as capital letters while small letters will be used for particular values of that
variable. Thus for example

1. xis a particular value of the random or stochastic variable X and
2. yis a particular value of the random or stochastic variable Y, etc.

The Probability Distribution Function (P.D.F.) (often shorted to distribu-
tion function) is defined by the expression:

F(x)=Pr(X <x), —oo<x< o0, (6.3)

where ‘ Pr’ means the probability of. Thus Eq. (6.3) may be read: the probability
distribution function is the probability that the random variable X is less than or
equal to a specified particular value x. The P.D.F. has the following
characteristics:

1. F(x) is monotone increasing.
lim F(x) =0, hmF( )= 1.

X——00,

3. F(x)is continuous from the right.

The probability density function (p.d.f.) is defined by the expression:

4 < < < o <
fx) = fim PrXSXSXHAY) o PrXS x4 A = PrX S v)

Ax—0 Ax Ax—0 Ax - (6.4

Equation (6.4) in its first form is read: the probability density function is the
probability that the random variable X is between x and x plus Ax, divided by
Ax as Ax goes to zero. The p.d.f. has the following properties:

1. f(x) is non-negative.
2. f Sl)dy = 1.
3PrX€A = [, S)dy, A CR.

The P.D.F. and p.d.f. are related to each other in a way which is easy to
express mathematically, one is the derivative of the other:
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A = [ " Ay (6.5)
and
S = 2. (66)

It is simple to give a geometrical interpretation of the meaning of the p.d.f. The
product f{x) dx is an element of area that represents an element of probability.
This is the probability that in a single trial that X falls in the infinitesmal interval
(x, x + Ax). Since the range of x is divided up into elements of length dx and
the element of probability, f{x)dx, is the probability of falling into one of
these elements, the density f(x) is actually a function which shows the relative
probability of X falling into the interval dx at x.

Example 6.1. Uniform Distribution

A scalar stochastic variable which is uniformly distributed over an interval
a < x < b has a probability density function

f@){bia,ifaﬁxﬁb .

0, if x<a x>b

That this distribution function has property 2 of the p.d.f. can be shown by the
calculation,

00 b 1
dy=[| —dy=1. 6.8
| = [ s (68)
The probability distribution function for this distribution can be found

using Eq. (6.5) on the density function in Eq. (6.7):

v X—a

X ) 1
Fo = [ fdi= gl =5 a<x<h (69)

which is monotone increasing. In addition F(x) is equal to zero for x < @ and
equal to 1 for x > b. This is of course as required to satisfy properties 1 and 2 of
the P.D.F.

The Fig. 6.1 (top) shows an example of a uniform distributed random
variable and how its distribution function is constructed. On the left of the
figure a collection of randomly distributed numbers in the interval 0 < X < 1is
shown. They have been plotted as a function of an arbitrary sample number, 7,
and 50 numbers have been selected. The second part of the figure shows the
same numbers plotted on a vertical scale so that their uniformity in the interval
above can be judged. At the far right in the top figure the distribution function
for the numbers is shown. )
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Fig. 6.1 Top: a set of uniformly distributed random numbers, the same numbers plotted on a
vertical scale and the corresponding probability density function. Bottom: a set of Gaussian
distributed numbers, the same numbers plotted on a vertical scale and the corresponding
probability density function

Example 6.2. Gaussian Distribution

One of the most widely used and important distribution functions for both the
theoretical and practical reasons is the Gaussian or normal distribution. This
has to do with its relative simplicity and wide applicability. The form of the
density function is given by the equation:

flx) = He "0, (6.10)

The three constants appear to be independent here but in reality the density
function is defined by only two parameters. This can be shown by using
property 3 of the p.d.f.:

/ fody = H / e gy — [ / e dy = H% =1, (6.11)

from which one can conclude that H = i/(/x). This gives the two parameter
version of the normal probability density function,

flx) = \%e—’ﬂx—“)z. (6.12)

The geometric interpretation of the parameters /7 and a can be found in Example 6.4.
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An example of a set of Gaussian distributed numbers is shown in Fig. 6.1
(bottom) on the left. The middle figure is vertical scale which shows the same
numbers so that their distribution is clear: note the strong concentration around
the value zero. At the right is the distribution function. O

It is interesting to note that the concepts above can be immediately applied to a
variable (random or deterministic) which changes in time. To do this consider a
signal y(7) as shown in Fig. 6.2. The probability that the amplitude Y(7) of the
given signal can be found between y and y + Ay is given by the relative probability,

t [sec]

Fig. 6.2 An example of how a probability density function can be found for a random signal.
See text

ZAti
APr(y)=Pr(y < Y <y+Ay) = Tlim ’T , (6.13)

where Y Ay, is the total time spent by y(¢) in the interval y to y + Ay during

the time interval 7. Thus the probability density function gives the relative
frequency of occurrence of the various instantaneous values of y(7) in
(y,y + Ay) and hence

f) = lim [ ——|. (6.14)

It is quite possible to build analog circuits which can carry out this operation
on real signals: they are called amplitude splitters and can be used to generate
approximate p.d.f.’s. of arbitrary signals. The time dependent random pro-
cesses which are the main subject of this chapter can be considered to be
described by p.d.f.’s generated using Eq. (6.14), see Sect. 6.3.

Discrete Random Variables

A discrete random variable is one which can only assume discrete values. The
sample space for a discrete random variable can be discrete, continuous or a
mixture of the two. A dice has for example a discrete sample space. The
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distribution and density functions above can be defined for discrete random
variables in the same way as for continuous variables except that the inte-
grations used for continuous variables must be replaced by summations. If
the values of the discrete stochastic variable X are denoted by x; then the
probability distribution function, P.D.F. F(x) can be written,

F(x) =Y Pr(X = x;) v(x — x,), (6.15)
where v(...) is the unit step function defined by

I, x>0
v(x) _{ = (6.16)
0, x<0

and N is infinite for some systems. The probability density function, p.d.f. f(x)
corresponding to the P.D.F. in Eq. (6.15) is

flx) = Z Pr(X = x;) 8(x — x;). (6.17)

Clearly Eq. (6.17) has been obtained by differentiating Eq. (6.15) as suggested
by the continuous case definition, Eq. (6.6).

6.2 Expectation (Average) Values of a Random Variable

The expectation, mean or average value of a random variable X can be com-
puted as the sum or integral of all the values which a random variable may
assume weighted by the probability that particular value will be taken. The sum
is used for a random variable that takes on discrete values while the integral is
for a random variable which can assume a continuous range of values. The
probability that X takes on a value in a small interval dx centered at x is given by
the probability density function f{x). Therefore the expectation value of X can
be written,

E(X} =me= 0 =¥ = [ s (6.18)

This is also called the mean value of X, the average value of X or the first
moment of X. In the limit as the number of observations of X tends towards
infinity, the average value of X will tend to the value given above in the right
hand expression.

It is possible to find the mean value of functions of a random variable in
the same way as the mean value of the variable. If Y is a random variable such
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that ¥ = g(X) then Y is also a random variable with a distribution function
which can be derived from the distribution function for X. It is however not
necessary to find this distribution function in order to find the mean value of
g(X). Tt is only necessary to calculate

E(Y} = E{g(1)} = (1) =00 = [ Tefd. (6.19)

o0

One of the most important functions of a random variable which one
would be interested in finding is the mean value of the square of the variable,
i.e., g(X) = X?. This gives

() = (00) =0 = [ g (6:20)

—00

This quantity is also called the second moment of X. The root-mean-square
(rms) value of X is the square root of E{X?}:

Yo = VEOOT = | [ pfin)a, (621)

The variance of a random variable is the mean squared deviation of that
variable from its mean value. It can be calculated as

o= [ - Bubd = EC) - (BOF. (620

The square root of the variance, oy, is the standard deviation of the random
variable. The rms value of a random variable which has zero mean is the
standard deviation.

Example 6.3. Expectation Values for the Uniform Distribution

The mean value of a uniformly distributed random variable can be found from

00 ] b 1 b
By = [ afodi= [agaa=t5t 62

The second moment is

b b 1 b*+a* +ab
E{X’} = / 1) dy, = / Ky = T (629

The standard deviation is easily computed using the results of Egs. (6.23)
and (6.24) as
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2
o} = (1) - (x? = L= (6.25)

For the uniformly distributed numbers in Fig. 6.1, p. 355 (top), a = 0, b = 1,
thus the mean value is 1/2 and the standard deviation is 1/v/12. a

Example 6.4. Parameters of the Normal Probability Density Function

The two parameter version of the normal probability density function was
found earlier in Example 6.2:

Sx) = (6.26)

—c
N
To find the physical interpretation of the parameters 4 and « it is useful to
compute the mean value of the variable X:

ah

7

Thus a can be interpreted as being the mean value of the variable X.
The variance or square of the standard deviation of the normally distributed
variable is

1
2 11 (x—a)* 2 —/12u2 2

from which & = 1/(5v/2). The probability density function of a normally
distributed variable with mean, a, and standard deviation o is thus

X= / x f() dy = *’12“‘dx—a (6.27)

(x—a)®
1 e
fo) =——e (6.29)

which is the well known bell curve centered around the mean value, a. The
probability density function for the set of random numbers shown in Fig. 6.1,
p. 355 (bottom) is shown on the right of the figure. For the numbers in the figure
the mean value is zero and the standard deviation is 1. The dotted and dashed
lines show the levels for 1o, 20 and +3c.

For a normally distributed variable with mean value a, the probability
distribution function is from property 1 of the p.d.f.:

7 a?
o2

F(x) = (6.30)

=TI

This equation cannot be integrated analytically but may be found in tables. O
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Example 6.5. Characteristics of the Gaussian Distribution

It is well to become acquainted with details of the Gaussian distribution and
density functions. As related above, the Gaussian density function is given by
the well known bell shaped curve given by
_(x=m)

fx) = ——e (6.31)

’ V2no ’ .
where the mean is given by m = E{X} and its variance is 6> = E{(X - m)*} or
N(m, 6. It is completely specified by only these two parameters and this is one
of the main reasons for its usefulness: its simplicity.

There are some properties of a Gaussian density function which are very
useful for rough calculations. The probability that a Gaussian distributed
variable, X(¢) (which takes on different values at different times, ¢ > 1y, &
arbitrary), will be between m —a and m + a is given by the integral

(m+a)

Pri(m—a) < X(0) < (m+a)) = |

(m—a)

flx)dx = erf{é}, (6.32)

where erf(x) = 2F(x) — 1, for o = 1. This means that the following relations
can be easily derived

Pr(|X(1) — m| < &) = 0.6827, (6.33)
Pr(|X(t) — m| < 20) = 0.9545, (6.34)
Pr(|X(1) — m| < 36) = 0.9973. (6.35)

This gives a simple and useful way to judge the value of o when one is
observing a realization of a Gaussian process, for example on an oscilloscope
screen or a recorded time series. The expression in Eq. (6.35) shows that such a
signal must remain within a + 36 window of its mean 99.73% of the time. Thus
when observed over a reasonably long period compared to the smallest time
period (1/ frequency) in the signal, it is likely that the signal will show its +£3c
limits and then o can easily be found.

It is also useful to know the amplitude of the probability density function at
the different o points above (i.e., distances from the maximum). The maximum
amplitude of the bell shaped curve is

1

hmax(m) :f‘(x)‘x:m = % . (636)

Assuming that ¢ = 1, at a distance of £1c from x = m (the maximum of
the curve) its amplitude is 0.607 of its maximum height, 1/ (271)1/ 2 =0.399
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or 0.242. At a distance of 25 it is 0.135 of its height or 0.0539. At a distance of
+3c it is 0.011 of its height or 0.0044. At a distance of +4c it is about 5 - 10 * of
its maximum height or 2 - 10, See Fig. 6.3 below. O

L L ]
-5 —4 -3 -2 -1 0 1 2 3 4 5

Standard deviations

Fig. 6.3 The P.D.F. (top) and p.d.f. (bottom) for a Gaussian distributed set of random
numbers. The horizontal scale is in standard deviations. The dotted and dashed lines centered
around x = 0 show the 1o, £25 , and £30 levels respectively

6.2.1 Average Value of Discrete Random Variables

The expectation or average value of a discrete random variable can be easily
defined on the basis of the definition of the discrete P.D.F. and p.d.f. Itis easy to
see that for a discrete random variable X,

E{X} = zN:x,- Pr(X = x;). (6.37)

i=1

For a function a random variable g(X) this implies that

E{g(X)} = g(x;) Pr(X = x;). (6.38)
i=1

The generalization of the continuous to the discrete case is thus immediate.
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6.2.2 Characteristic Functions

It is interesting to note that the results of Sect. 6.2 can be generalized to find the
expectation value of arbitrary weight functions such as

o0

mwm»:@xm:/’gmmmm, (6.39)

—00

where ¢ is a parameter. In particular this generalization works for time functions.

A particularly useful example is that represented by characteristic functions. This

allows the calculation of the probability density function of functions of time.
If g(X, 1) = e/X" in Eq. (6.39) then

oo

@@:mw%:w%:/ f(y) d. (6.40)

—00

This average is called the characteristic function of the probability density
function f{x) and is the Fourier transform of the probability density function.
Clearly Eq. (6.40) is one member of a Fourier transform pair. The inverse
Fourier transform is

Ax) = \/Lz_n /_ Z g(t)e ™, (6.41)

where f{x) is obviously the probability density function.

One of the most important properties of characteristic functions is that there
is an exact one-to-one correspondence between P.D.F.s (or equivalently,
p.d.f.s) and characteristic functions. This implies that if two distribution func-
tions have the same characteristic functions then it may be immediately con-
cluded that the distribution functions are the same. This fact has important
consequences and uses in the theory of random variables and stochastic process.
This is because Fourier transforms often make it possible to operate with
algebraic instead of integral or differential equations when working with linear
systems.

Example 6.6. Characteristic Function for a Uniformly Distributed Variable

If the stochastic variable X is uniformly distributed over the interval, a < x < b,
then its characteristic function is given by

1 0o L, if t=20
(1) = / eMdy =< bt _ pjat : (6.42)
b—a) € _—¢€- jt(bﬂe) , if t #0

For a stochastic variable uniformly distributed over the symmetrical
interval —c¢ < X < ¢ this becomes
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50 {1, if t=0 643
1) =< sinfe ) ) )
Sl f ¢ £0

a

One of the main uses of the characteristic function is to find the moments of
a given random variable or distribution function. Differentiating equation
(6.10) r times with respect to ¢ gives

d’ o -
G0 = [ Gore s =BGy (6.44)
For ¢ = 0 this becomes
d’ ,
2 ®(0) = E{X"}. (6.45)
Thus
MW=%@W®~ (6.46)

Example 6.7. Characteristic Function for a Normally Distributed Variable

The characteristic function of a normally distributed stochastic variable, X,
with mean, p, and standard deviation, o, (or X € N(u, 6?)) can be calculated
from the expression:

o0 7(;@*5)2 i 1 <272
o(1) = / eltle 207 gy = M T30 (6.47)

In order to find the moments of the distribution it is necessary to differentiate
this expression with respect to ¢ to find

; 12,2
dd(t ) Jut =507t
7%:@—&m (6.48)
and
; 12,2
o) [, a) M 20
dlz( ) = ,]2;12 — juc? — o’ — Gzl% e , (6.49)

for the first two moments. From the equations above, it is clear that

;n:qu}:}ém):u (6.50)
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and

E{X*} :jl2<i>(0) =p+o’ (6.51)

An interesting case to consider is that for the sum of N independent stoc-
hastic variables which are all normally distributed: X; € N(y;, 6i?),
i=1,2,...,N. From Eq. (6.47), the sum, Y = X; + X, + ... + Xy, has the
characteristic function

1
(1) = exp{j(pl s 4 py) — 5(csf +063+...+o3) lz}. (6.52)
This shows that the sum of the stochastic variables has a distribution func-
tion which is N(u + o + ... + U, 6124+ 04 ...+ GNZ). This is a useful result
which plays an important part in the analysis of multivariable noisy and
coupled systems. d

It is sometimes easier to determine the characteristic function and then
to transform it to obtain a probability density function than to determine
the probability density directly. From the definition of ®(7), Eq. (6.40), it is
the expected value of e/*, where X is the amplitude and ¢ is a parameter.
The characteristic function of any function, g(z), is the expected value of e /(%)
(Cramér, 1945). Using this fact it is possible to determine the characteristic
function and thus the probability density function of a deterministic periodic
signal. The mean value of the periodic function is then according to Cramér,

O(u) = iT/OTef”h(f)dz, (6.53)

where A(z) is a periodic function with period 7. Using this expression in
Eq. (6.41) (thus carrying out the inverse Fourier transform) gives the probabil-
ity density function of the deterministic signal:

1ore~r (T »
flx) = %/_OO [71/0 e ’“h(r)dr} e du. (6.54)
This result can be used to calculate the probability density function of common
deterministic periodic signals.

Example 6.8. Probability Density Functions of Periodic Waveforms

1. Sine Wave: h(1) = A4 sin(wot), wg = 27/ T.

1 77 /T . .
flx) = %/ [?/ e 4 S‘“<“’°T)dr} e " du (6.55)
—00 0



6.2 Expectation (Average) Values of a Random Variable 365

x| < A4
0, |x| > 4

(6.56)

f(x) is independent of the frequency and phase of the sine wave considered.
Notice that the probability density function becomes very large close to the top
of the sine wave. See Fig. 6.4, p. 365.

f(x) A . . . P
LS |8

Fig. 6.4 p.d.f’s for sine, square and triangle waves of Example 6.8

2. Triangle Wave. The time function which describes a triangle wave ramping
up and down between 0 and 4 is

Ui+D, -I<t<o
h(ty=14 T a2 6.57
) {%A(g—z), 0<t<I’ (6:57)

where T'is the period and A is the maximum amplitude. From this formulation

o =os [

—00

T
2

e/ (1, .
¢ / eﬂATd‘c] e " du (6.58)
0

T

A7 < x <4
—{  Osxsd (6.59)

o, x> A

See Fig. 6.4, p. 365.
3. Square Wave. A square wave stepping between —A4 and A with a period of
T can be expressed as



366 6 Noise in Dynamic Systems

A, 0<r< I
h)=4y_, T<i<T (6.60)
The probability density function is then
T
1 <11 2 JuA 1 : —juA —jux
f(x):ﬂ 7, e dt—i-? ;e dt|e ™ du (6.61)
o A
1
:E[S(X—A) +0(x+ A4)]. (6.62)

This density function is two delta functions each centered at the maximum
amplitude of the square wave. This is reasonable as the transition times assu-
med for the square wave edges are zero. See Fig. 6.4, p. 365. O

6.2.3 Joint Probability Distribution and Density Functions

It is often necessary to consider the simultaneous occurrence of several random
variables in connection with control or other dynamic systems. This section is
concerned with the background for describing and analyzing such systems. For
simplicity only the occurrence of two random variables will be considered in this
section. The generalization to larger numbers of variables is immediate.

In order to describe the statistical properties of multivariable stochastic
systems it is useful to extend the concept of probability distribution and density
functions to higher dimensions. This can be done by defining the joint prob-
ability distribution function,

F(x,y) = Pr(X <xand Y <y), (6.63)

where X and Y are two different random variables. The corresponding prob-
ability density function is

o 82F2(x7y)
fr(x,y) _Tay'

The individual separate distribution and density functions can be derived
from the corresponding joint distributions. It is possible to collapse the joint
P.D.F. and p.d.f. by either setting the upper limit in the definition to infinity
(P.D.F.) or integrating over the dimension (p.d.f.) which is to be removed. The
resulting P.D.F.s and p.d.f.s are called the marginal distribution or density
functions. In the case of the two dimensional system considered here:

Distribution function:

(6.64)

F(x) = Fa(x,00), F(y) = F2(0, ). (6.65)
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Density function:

1) = [ peendr ) = [ A (6.66

If X and Y are independent, the event (X < x) is independent of the event
(Y < y) and the probability for joint occurrence of these events is the product of
the probabilities of the separate events. This implies that

F(x,y)=Pr(X<xand Y <y) (6.67)
=Pr(X <x)Pr(Y <y) (6.68)
=Fx(x)Fy(y) & f2(x,p) =fx(x)fr(y). (6.69)

In the same way as for scalar random variables it is possible to calculate
expectation values for joint P.D.F.s and p.d.f.s. This is done using the
same methodology as shown above. For example, to calculate the expectation
value of a function g(X, Y) of two vector random variables, the following
integral has to be evaluated

Eex.n) = [ N / " o) i) dudy. (6.70)

An important special case of this is the covariance matrix which is the
expectation of the product of the deviations of two random variables from
their means

Py = E{(X — E{X})(Y — E{1})) 6.71)
-/ N / "= E{X)(y — E(Y}) dydy 6.72)
= E{XY} — E{X}E{Y}. (6.73)

The term E{XY} is the second moment of X and Y. The covariance matrix
measures the absolute level of correlation of X and Y. Often it is convenient to
normalize the covariance with the standard deviations of X and Y in order to
obtain information about the relative magnitude of variable correlation. This
results in the so called correlation coefficient, p:

o= E{XY} — E{X}E{Y}

(6.74)
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If X and Y are independent, p is zero. If X and Y are completely correlated then
p = +1 orif anti-correlated, —1. Attempts to make a linear approximation of ¥
using X results in an error in the approximation of *(1 — p %). Thus p is a
measure of the degree of linear dependence between X and Y.

It is of interest to find the expectation value of collections of more than
two random variables. In particular sums and products of random vari-
ables are often required. Let X, X5, ..., X,, be n random variables. The
expectation value of the sum of the variables is equal to the sum of the
expectations

E{X) + Xy + ...+ X,} = E{QX\} + E{Xo} + ...+ E{X,}.  (6.75)

It is immaterial here if the n variables are independent or not. If however they
are independent then the expectation value of the product is equal to the
product of the expectation values:

E{X\ - X2-...-X,} = E{X\} - E{Xa} - ... E{X,}. (6.76)

It is also true that the variance of the sum of random variables is equal to the
sum of the variances if the variables are independent,

X= i:X,- = oy = Z ox’ (6.77)
i=1 i=1

for independent X;, n = 1, 2, ... i,..., n.

There are some interesting and useful results that apply to random variables
which are independent and identically distributed. Among these are the strong
law of large numbers and the central limit theorem.

Law of Large Numbers

This law states that if the random variables, X1, X>, ..., X,,, are independent and
identically distributed, each with mean, m, then
. X1+ F X
Pr{ fim 2L ¥ 2 ¥ —m} —1. (6.78)
n—0oQ n

This means that in the limit as the number of variables becomes large, the mean
value of each of the random variables will converge in the mean to the same
overall average value independent of the separate distribution type. This ver-
sion of the law of large numbers is sometimes called the strong law of large
numbers.
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Central Limit Theorem

If the random variables, X, X», ..., X, are independent and identically dis-
tributed with mean m and variance o then

Xi+Xo+...+X,—nmm } 1 /x _
= F(x) = — e 2 dy. 6.79
{ =)L e O

o\/n sx

This equation has the interpretation that if the » random variables are inde-
pendent and identically distributed then their common distribution will con-
verge to a normal distribution as the number of variables becomes large. In
other words sums of large numbers of random variables give rise to normal
distributions independent of the form of their original distributions. This is a
very surprising conclusion which proves to be of good use in the analysis of
noise in dynamic systems.

It can be shown that even small numbers of distributions of sums of identi-
cally distributed stochastic variables (say 3 or 4) are very close to normal
distributions. This means that in any practical physical systems, even simple
ones, one can expect to see approximative normal distributions as the overall
effect or output. This again explains the use of normal distributions as models
for uncertainty and/or noise in static and dynamic systems.

Both the law of large numbers and the central limit theorem can be proved
using more advanced methods than are of interest in these notes. Other forms
of both theorems can also be proved but these formulations are beyond the
scope of this simple presentation.

lim Pr

n—o0

Example 6.9. A Cylindrical Joint Density Function

Consider a cylindrical joint probability density function which is specified by

f(x,y)z{%’ for x4y <1 (6.80)

0, otherwise

where « is a constant. See Fig. 6.5 below. The marginal density function for
v is then

f(x,y)

Fig. 6.5 A cylindrical joint
density function of two
random variables X
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2
) = Touy) di=—v1-p2 (6.81)

for —1 <y <1 and f{y) = 0 elsewhere. Integrated over all y this expression
yields the result,

N
2yally) _2ymyE_ (6.82)
a2 T(l) a2 1
which shows that the constant ¢ = 7. O

Example 6.10. Multivariable Uniformly Distributed Variables

For a random variable X7, uniformly distributed in one dimension (see example
6.1) between a; and b, the following probability distribution and density
functions can ecasily be constructed.

0, if x; <
Fxi) =Q =gt if @i <x <b, (6.83)
17 if b1 < x;
0, if x;< a; or x;>b;
fla) = {b L g <y <b (6.84)
1 —a

The corresponding n dimensional uniform distribution and density functions
can be written:

0, if x; < a; for one 1

F(x) = ﬁlgf_‘_gf, if @ <x;<b; for all i (6.85)
11,7 if x;>b; forone i
0, if x; <a; forone i

) = .ﬁl b,—la,-’ if @ <x;<b for all i (6.86)
é),i if x; > b; for one i

To determine the marginal distribution function for all variables but
X1, one only has to let x; — oo. To determine the corresponding marginal
density function one only has to integrate equation (6.86) over say, all x; for a
selected j. The example is from Meditch (1969). O
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Joint Distribution and Density Function for Discrete Variables

The development of distribution and density functions for multiple discrete
variables is immediate given their definitions for single variables. The joint
distribution function for the stochastic variables X (with N possible values of
x) and Y (with M possible values of y) is

N M

Fy(x,y) = Z Pr(X =x;and Y = y;) v(x — x;)v(y —p;). (6.87)
=1 j=1

The joint p.d.f. for X and Y is accordingly
N M
frlx,y) = Z ZPr(X: xiand Y=y;) 8(x —x;)0(y —y;). (6.88)
=1 j=1

Moments of such distributions can be found by generalizing Eq. (6.37)
and (6.38).

6.3 Random Processes

What is desired in this book is to use simple stochastic processes as mathema-
tical models for disturbances and noise phenomena in multivariable control
systems. The theory of stochastic processes deals with the description of
phenomena which are subject to probabilistic laws in which time or some
other variable is a parameter. While a rigorous treatment of this subject is
well beyond the scope of this book, it is possible to present formally, in a
heuristic manner, those parts of the theory which are necessary to the study of
disturbances in control objects and control systems. This is the only goal which
isintended here. For a more rigorous treatment the reader is encouraged to seek
more fundamental treatments in the references.

6.3.1 Random Processes

A stochastic or random process may be thought of as a collection or ensemble of
functions of time indexed by a parameter ¢ all of whose values lie in some
appropriate index set I, {X(7),¢ € I'}. x(¢) can be either a scalar or a vector.
Most often in control system technology it is necessary for x to be a vector.

The index set can be any abstract set but will here be either continuous or
discrete time intervals.

In the continuous time case the index set is intervals of the time axis such as
I={t:0<¢<T}ormorecompactly I = {r: 1> ty}. Such a process is called
a continuous time random or stochastic process.

In the discrete case the set is of discrete time instants 7 = {7 : k=0, 1,...},
where 7, < f;,+1, which are not necessarily uniformly spaced (but most often
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will be so in what follows). To simplify the notation it is convenient to specify
the index set as I = {k : k =0, 1,...}. In this case one can speak of a discrete
time stochastic process.

A scalar stochastic process can be thought of as a collection or ensemble of
time functions over the index set. The ensemble may contain either a non-
denumerable or countable number of elements. Only the first case is of interest
here. A random nth dimensional vector process is a collection of n scalar
random processes.

A typical example of an ensemble for a random process is shown in Fig. 6.6.
The ensemble is composed of N identical and identically prepared systems for
which the some of the time series, realizations or sample functions are indicated.

If one considers only the time #; then a random variable, X(¢1), is being
considered. In the ensemble picture, P.D.F. and p.d.f. concepts are directly
applicable. In fact the ensemble shown is for low pass filtered noise.

Since both time and ensemble concepts are used for a single random process,
the stochastic process is in reality a function of two variables, one of which is
from the time index set, 7, and the other being of the sample space index. This
can be indicated by the notation {X(, ?),® € Q, ¢ € I}, where Q is an appro-
priately defined sample space for the system under consideration. If X is a scalar
process the for a fixed value of 7, X(...,) is a scalar valued function on the
sample space, a random variable. If o is fixed then X (o, . ..) is a scalar function

X(x,t;)

1
I
T

|
‘ 1
0 | Iy
‘ T
|
|

Fig. 6.6 Example of an ensemble of a random process



6.3 Random Processes 373

of time which is called one possible realization or sample function of the
process. If on the other hand, X is a vector process for a fixed value of 7, X(¢)
is a vector valued function on the sample space, a random vector. In the vector
case, if @ is fixed then X(o,...), is a vector valued function of time which is
again called one possible realization or sample function of the process.

Example 6.11. A Scalar Stochastic Process

A simple scalar stochastic process {X(¢),7> 0} can be described by
X(t) = Asin(t), where A4 is a continuous random variable which is uniformly
distributed between +1 and —1,

L 1 <uc<
flay =42 ~r=Asl (6.89)
0,  otherwise

The ensemble of X contains an infinite number of elements and the
process is a continuous time stochastic process. The processes’ ensemble
consists of a group of sine waves of various amplitudes some of which are
apparently phase shifted 180° (multiplied by negative 4). Each of these
sine waves is a realization (sample function) of the process. For a fixed
value of r = t; > 0, X(#;) is a random variable, one point belonging to each
realization. The Fig. 6.7 shows a picture of the ensemble of the process.

1 T T T T T |
M \ ' : ' |
0 s 3 —
-15 1 7 3 . 5 6 7
X, (1) ]
0= : s
1 i i i i i i
10 1 2 3 4 5 6 7
0 f
-1 i i i i i i
0 1 2 3 . 4 5 6 ; 7
* 1y 21
1 X (1) T T T T l T T
t . . . . . .
0 : 3 : ; 3
-1 i i i i i i
0 1 2 3 4 5 6 7

t

Fig. 6.7 Ensemble for a (constructed) simple stochastic process composed of sine waves with
the same frequency and uniformly distributed amplitudes
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A discrete time stochastic process can be constructed by sampling X(¢) along
the time axis, say in such a way that {# : #x = (k/n)n,k =0,1,...}, where n is
a positive integer. d

Example 6.12. A Discrete Time Gaussian Random Process

Now consider a discrete time scalar stochastic process {x(k),k =0,1,...},
where for each k, x(k) is a zero mean random variable. The variance of x(k)
may depend on k and thus the probability density of y can be written

1 —
- o2x(k) 2 _ -2
v T ) = ER®) (6.90)

It is also assumed that the value of x(k) for a given £ is statistically independent
of its values at all other sample points in the index set.

This process is called an independent Gaussian sequence. For any given
value of &, the distribution of amplitudes across the ensemble is Gaussian. An
example of one realization of such a process was given earlier in Fig. 6.1, p. 355
(top, second figure). In this case one should consider the sample number to be
the time index k. The process in Fig. 6.1 has a mean value 0 and a standard
deviation o = 1. The example is adapted from Meditch (1969). a

S, k) =

Stochastic processes may be described in a way which is similar to that used
for random variables except that the time dimension must be taken into
account. In particular probability distribution and density functions are used.
For a scalar random process the probability distribution function is

F(.Xl,ll):P}’(X(ll)le) (691)
and the corresponding probability density function is

dF(xl,tl)

fx, ) = dn

: (6.92)

It is possible that the distribution function changes in time. To see how fast
this happens, it is necessary to observe the same variable at two (or more)
different times. The probability of the simultancous occurrence of two different
values in a certain range is given by the second order joint probability distri-
bution function,

Fz(xl, 11; X2, [2) = Pr(X(ll) < x; and X(lz) < XZ>, (6.93)
corresponding to the joint probability density function

P F(x1, 1152, 1)

6.94
6x1 ax2 ( )

S(xi, tix0, ) =
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Higher order joint distribution and density functions may be defined but in
general these are rarely used in control applications because of their complexity.

If two random processes are under consideration, the distribution and
density functions which can be used to display their joint statistical character-
istics are the functions

F(x,t1;p,6) = Pr(X(t;) < x and Y(5;) <vy), (6.95)

azF(X, [1§y7 t2)

6.96
0x0y (6.96)

flx, iy b) =

The generalization of the methodology above to vector random processes is
immediate. For a continuous stochastic vector process {x(7),t€ I},
I={t:0<1t<T}, the joint probability distribution function of m random
n vectors can be written,

F(xi,t1y..5x0, 1) = Pr(X(1) < xp,.00, X(1) < Xx0), (6.97)
with the corresponding joint probability density function,

O"F(x1, 1155 X, 1)
. X, ty) = . 6.98
f‘(xl; 15 3 X ) axl.”ax” ( )

Such complications will not however be of direct interest in what follows.
What is more important is how to deal with the moments of such distribution
and density functions. It is these moments which have the greatest use in
technological and scientific applications.

6.3.2 Moments of a Stochastic Process

The reason why it is the moments of a random process which are most useful in
real applications is because it is only these which can be realistically character-
ized in any reasonably simple and compact way. It is in general not possible to
write down the equation(s) for any particular realization of a process and
certainly not for any particular ensemble. What it is possible to write down
compactly is the result of taking an average over an ensemble. This is fortunate
because it turns out that such ensemble averages can be related to time averages
which can be practically measured.

In terms of the first density function, f (x, 1), the nth moment of a stochastic
process, X (), at a given ¢ € T'is defined by the integral

o0

malt) = E{X"(1)} = / X'f (0, ey, (6.99)

—00
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The first moment is the mean or average value of the stochastic process X(7) at 7,

m(t) = my() = E{X(1)} = / A0y (6.100)

Here the notation for the mean, my(7), or commonly, m(), has been intro-
duced. The mean square of X(¢7) at ¢ is given by Q(7) = my(r). The central
moments of the process also play an important part in the theory of stochastic
processes. The nth central moment of X(7) at 7 is

[o¢]

(1) = E{(X(1) = m(1))"} = / (ut) = m(e)'fi (g Dy (6.101)

—00

Of particular importance is the variance of X(¢) at ¢, p,(¢#) = Q(¢), which is the
square of the standard deviation of X,

(1) = o3 = o = E{(X(1) = m(1))’} = / T— il ndr (6102

As for random variables, the joint moments of X(7) are of great utility.
The moments of X(¢) defined in terms of its second order density function
are in effect the joint moments of two random processes. The joint
moment of X(7) at ¢; and 1, is

P11, 12) = E{Xn(11) Xom(12)} = / / 12 (s 115 s )b . (6.103)

The quantity Cxx(t1,t) = myx(t1, t2) is called the autocorrelation function
for X(¢) and is in general a function of both 7; and 7,. Sometimes this name is
shortened to correlation function when the syntax makes it clear what is meant.
In the same framework it is possible to talk about two different random
variables and to consider how strongly they are correlated. This leads to the
cross correlation function, defined by

Curlrn,12) = EQX(0)¥(e2)) = [ N / Gty )dxdy. (6.104)

The central mixed moments have an important role in what follows. The
autocovariance function for X(¢) is defined by

Hyx (11, 22) = Ryx(t1, 12) = E{[X(11) — m(11)][X(12) — m(12)]} (6.105)

:/ / (01— m1) (2 — ma) o1, s Aoy t2) Ay dya- (6.106)
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When 7, = 1, = 1, this quantity becomes the variance of X(7), oy°. The
normalized version of the autocovariance function is the correlation coefficient
function

Hyx(t,00)  Ryx(n, 1)
ox(ti)ox(ta) ox(t)ox(t2)

The interpretation of this function as a measure of linear dependence,
introduced in connection with random variables, carries over to random pro-
cesses as well. In this same vein the cross covariance function is defined as

Hyy(t1, 12) = Ryy(t1, 12) = E{[X(t1) — mx(11)][Y(£2) — my(t2)]}.  (6.108)

Pxx(ti, 2) = (6.107)

Example 6.13. Autocovariance Function of a Scalar Stochastic Process

For the continuous time scalar stochastic process of Example 6.11 the mean
value of the process is

m(t) = E{X(t)} = E{A4sin(?)} = 0, for all ¢, (6.109)

since A is uniformly distributed symmetrically around 0, between —1 and +1.
A is thus a zero mean random variable. The covariance function of X(¢) is

Rx(t1,12) = E{A*sin(t,)sin(t,)} (6.110)
= E(A4%)sin(1) sin(t2) (6.111)

= %sin(tl) sin(12). (6.112)

= 0(1) :%(sin(t))z, (6.113)

where Q(1) is the variance of X (). The example is from Meditch (1969). O

It is a straightforward process to extend the concepts above to the case of
vector stochastic processes. Consider a vector stochastic process, X(¢), {t € I},
the mean of the process is the mean of the components of the process,

my (1) = E{X(1)} = [E{X (0} EQG0 ) E(X(0)T. (6.114)

The second order joint moment matrix or autocorrelation matrix is

Cx(t1, 1) = E{X(11)X" (1)} (6.115)
E{X\(0) Xi(t)} E{Xi(t1) X2(2)} ... E{Xi(t1) Xu(t2)}
_ | ER(n) Xi(n)) E{Xa(n) Xa(n)) ... E{X2(n) Xa(22)} 6.116)

E{X,(t1) Xi(t)} E{Xu(t1) Xa(t2)} ... E{Xu(tr1) Xu(t2)}
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where the last matrix has been written out in detail for clarity. Each matrix

element of Cx(#, 1) is a scalar joint moment function.
The covariance matrix of the process is

Ry(n1,12) = E{[X(1) — m(0))][X(2) — m(12)]"}. (6.117)

It can be shown that the covariance matrix, Rx(#, #;), and the second order
joint moment matrix, Cy (71, t2), have the following important properties:

1. Ry(t1, 1) = RL(11, 12), for all 11, 12, (6.118)
2. Cy(t1,1) = Ch(t1,1p), for all 11,1, (6.119)
3. Qy(t) = Ry(t,1) > 0, for all ¢, (6.120)
4. Q'(1) = Cx(1,1) > 0, for all 1, (6.121)

5. Cx(ll, tz) = R)((ll, 12) + mX(tl)m)T((tz), for all £y, ;. (6.122)

The notation M > 0, where M is a square symmetric matrix, means that M is
positive semi-definite (or non-negative definite), i.e.,

x'M x > 0, for x € R". (6.123)

6.3.3 Stationary Processes

In order to establish a useful connection between the physical implications of
the theory of stochastic processes and technological applications it is necessary
to introduce two important concepts: stationarity and ergodic processes.
Stationarity makes it possible to attach reliable statistical characteristics to
stochastic processes and ergodicity makes it possible to connect realistically
achievable measurements to the basically theoretical ensemble concept which
has been described earlier. The concept of ergodicity will be described in the
next section.

A stochastic process, X(7), t € T, is said to be strictly stationary if its prob-
ability distribution or density functions are invariant for an arbitrary change of
the time parameter, i.e.,

Fo(x1, 81505 X, 1) = Fo(xi, 00 4+ 150005 X, 1+ 7), (6.124)
forall (t+1t) €T, j=1,2,...,n each n and an arbitrary time increment, t.

The sign of the time increment has not been specified thus the probability
densities are only dependent on time differences, not absolute values. More
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abstractly, the joint probability distribution and density functions which
characterize a strictly stationary stochastic process are invariant with respect
of a change of time origin. In the definition of a strictly stationary stochas-
tic process above, it is clear that the measurable qualities of the distribution,
its moments, are not as yet defined. It is important here that this definition
be specialized to make possible a direct application to technical problem
formulations.

A stochastic process, X(7), ¢t € T, is wide sense stationary if its first and
second order moments are finite and if its second order moment is only depen-
dent on the time difference, 71 — f,. That is if

1. m(zr) = (E{X(#)}) = constant (in its components), (6.125)
and

2. Cx(t,1) = E{X(t) XT(1)} <oo, in its elements, (6.126)
and its second order moment matrix has the quality that

3. Cx(n1, 1) = E{X(1) X" (12)} = Cx(t1 — 12), (6.127)

then the stochastic process, X(7), is said to be wide sense stationary. In the
list above, another condition is often substituted for 3 or added to the list
which is

4. Ry(n1,12) = E{[X(1;) —m(0))][X(12) —m(0)]"} = Ry(1) — 1).  (6.128)

This is a useful but in reality unnecessary clarification. 1, 2 and 3 are sufficient in
themselves or points 1, 2 and 4.

Clearly any strictly stationary process with a finite second order moment
matrix is also wide sense stationary. The converse is not in general true except
for an important exception, a Gaussian process, which is completely specified
by its mean and covariance functions. Thus a wide sense stationary Gaussian
stochastic process is also strictly stationary.

Example 6.14. A Constant Process

A constant process is given by
X()=7, (6.129)

where Y is a random variable. X(¢) is obvious strictly stationary and will also
be wide sense stationary if

E{Y*} < . (6.130)
)
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Example 6.15. A Dynamic Process

Let {X(7),t >0} be the scalar stochastic process which is defined by the
differential equation,

X =—wyx+v, (6.131)
where g = 1/7, 7 is the time constant, v is a zero mean random variable which

has a constant standard deviation c. Assuming that x(0) =0, any realization of
the process has the general form,

x(t) = —(1 —e ™), (6.132)
®o
for all r > 0. Moreover
62 2
Cx(t,1) = —2(1 L (6.133)
g

but as E{x(7)} =0,
Ry(n, 1) = E{X(0)X(1)} = S5 (1= e™") (1 —e™"),  (6.134)
0

which is clearly not stationary. However for large times

2
Ry(t1,12) — %,for 1ty — 0. (6.135)
0

Thus in the steady state, the stochastic process X(¢) becomes wide sense
stationary. m]

6.3.4 Ergodic Processes

A process is said to be ergodic if a certain statistic (or moment) calculated by averaging
over the members of an ensemble at a fixed time can also be calculated by time
averaging over any particular sample function or realization, given sufficient time.
Consider the stochastic process, {X(¢),—(7/2) <t<(T/2)} and see
Fig. 6.8. If one pictures a set of NV (large) random functions stacked up on top
of each other on N time axes (each of length 7') placed above each other, an
ensemble average of X(¢) (or some function of it) can be calculated by averaging
over the N ensemble members at a given fixed time, ¢;. This is a scientific
average, related to the ensemble concept. On the other hand if the N ensemble
members or sample functions are set end to end and an average taken over
the time interval NT then this time average should be representative of the
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Fig. 6.8 Visualization of the transition from ensemble to time averages

ensemble. This is a technical average, related to a simple measurement. The
ergodic assumption is that the ensemble and time averages will give exactly the
same result. Another way to say the same thing more exactly is to say that for a
function g[X(#)] of the stochastic variable, X(z),

(X)) = E{[X(1)]}, (6.136)

where () denotes a time average and E{-} denotes an ensemble average. This
means that

] 1 7/2

E{glX(1)]} = / cofdr = lim = [ gx(ldr,  (6.137)

—00 T—oo T -T7/2

thus taking a time average is equivalent to taking an ensemble average.

There are many definitions of ergodicity. There is ergodicity in the mean, the
mean square and the correlation function (see Soong, 1973, p. 53). In what
follows the ergodic assumption will be applied to all of these statistical measures
without further comment. In general it is very difficult to determine if a certain
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system in fact is ergodic experimentally or theoretically: measurements of the
necessary quality are very difficult to carry out and even then the statistical
interpretation of the experimental results is difficult.

The ergodic assumption obviously has very great technical implications:
what is not generally available in practice is a representative collection of
sample functions from a very large collection of identically prepared systems.
What is available is a certain sample function from one system on which one
can make measurements over more or less limited observation periods. In
general then ergodic properties must be considered to be a hypothesis. Ergodic
conditions are nearly always assumed to obtain because of their great technical
utility and because experience has shown that large errors do not seem to be
made in this way.

Example 6.16. A Constructed Non-ergodic Stationary Process

In general stationarity does not imply ergodicity. Consider a process whose
ensemble is a set of constant functions (for example sine waves with various
constant zero offsets). Such a process is stationary since it has a constant
distribution function. The average over one member of the ensemble will not
be the same as that over one sample function. Thus the stationary process is
not at the same time ergodic and ergodic processes are just a subset of stationary
processes. O

6.3.5 Independent Increment Stochastic Processes

A well known example of a process of independent increments is Brownian
motion. The observation of Brownian motion was first reported in 1785 by a
Dutch physicist, Jan Ingenhausz. The effect was however named for Robert
Brown who was a botanist who studied flower pollen suspended in water under
a microscope and published his results in 1828. He discovered that the pollen
particles which he was studying executed an apparently random motion of a
very irregular nature. This he first concluded incorrectly was a primitive form of
life but later, correctly, was due to molecular bombardment. A more complete
scientific and mathematical approach was taken later first by Einstein and
Smoluchowski and then in more detail by Wiener and Lévy (see note 6.6.2 at
the end of this chapter for more historical details).

If one imagines a small particle suspended in a liquid bombarded by mole-
cules, from a given starting point, the motion of the particle will be a succession
of connected straight line segments. The function described by projecting this
motion onto x, y and z axes would intuitively be continuous but would have
very sharp corners everywhere. Also the particle would wander away from its
starting point and would in the mean eventually wander out to an infinite
distance from its starting point. It will be useful to keep this picture of a sample
function of a random walk process in mind in what follows.
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A stochastic process with uncorrelated or independent increments is the
basic model which is to be used in this book to model noise in dynamic systems.

A process with independent increments, X(7), ¢t > 0, can be defined by the
following characteristics.

1. Initial value:
X(t) = 0. (6.138)

2. Given any sequence of time instants, ¢;, ¢, f3 f4, such that
to <11 < 1, < 13 < 14, the increments, X(7;) — X(¢1) and X(z4) — X(73) have
zero means and are independent of each other

E{X(12) = X(1)} = E{X(13) = X(13)} =0, (6.139)
E{[X(12) — X(11)][X(24) — X(23)]} = 0. (6.140)

The mean value of the independent increment process can be computed
directly as

m(r) = E{X(1)} = E{X(r) — X(%)} =0, t > 0. (6.141)

The covariance matrix of the process can be found similarly as

R y(t1, 1) = E{X(1;)X"(12)} (6.142)
= E{[X(11) — X(20)][X(t2) — X(11) + X(t1) — X(10)]"}  (6.143)
= E{[X(11) — X(2)][X(11) — X(t)]"} (6.144)
= E{X())X" (1)} (6.145)
=Q(1), b >t > t, (6.146)

where Q(7) = E{X(#) X”(¢)} is the variance of the process. In the same way it
can be shown that

Rx(t1,2) = Q(12), t1 > 12 > to. (6.147)
These equations show that an independent increment process cannot be wide
sense stationary because the variance of the process is time dependent. It can

also be shown that Q(¢) increases monotonically in time, i.e.,

Q(lz) > Q(Il) iS4 Q(lz) — Q(l]) >0, forall tp < t; < 13, (6.148)
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or in other words, the difference is positive semi-definite.
Assuming that the matrix function Q(7) is absolutely continuous it is possible
to write it as the integral,

t
Q(r) = / V(t)dr, (6.149)
0
where V(¢) is a symmetric positive semi-definite matrix function. It follows that

E{[X(12) = X(1)][X(12) = X(11)]"} = Q(2) — Q(11) (6.150)
= /,2 V(1)du. (6.151)

Combining this result with that from Egs. (6.146) and (6.147), the covariance of
the independent increment process can be written as

min(ty,t;)
Ry(11, 1) = / V(1)dr. (6.152)

fo

As mentioned earlier, a random walk or Brownian motion is one of the
best examples of a process with independent increments. Such a process is also
called a Wiener or Wiener-Lévy process. It is in fact the process in the integrand
in Eq. (6.152).

Example 6.17. Wiener Process

Let {X(¢), 7 > 0} be a scalar stochastic process such that:

1. X(0) =0,
2. the process is an independent increment process,
3. for t, > t;, the increments have a Gaussian distribution:

X2

1 x
m/w exp (‘ m) dy, (6.153)

then this is a normalized Wiener (or Wiener-Lévy) process. If W(r) = cX(1),
where X(7) is a normalized Wiener process then

Pr([X(n) — X(n)] < x) =

E{W(1)} = E{cX(1)} = cE{X(1)} =0, (6.154)

because X(¢) is a zero mean process. Also the increments of the process have
Zero means,

E{X(12) — X(11)} =0, (6.155)
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and the variance of the incremental process is
E{(W(5) = W(1)]’} = " E{[X(12) — X(1))]} = &”|1a — 1], (6.156)

for any #; and ¢, because the increments have a Gaussian distribution function
(Eq. (6.153)). This means that any Wiener process can be formed from a
nomalized Wiener process and this is often convenient in calculations. From
Eq. (6.156), if say a pollen particle in a liquid suspension starts at /; = 0, then
the uncertainty in its position will increase with v/time:

0(1) = wy (1) = c*¢. (6.157)

This is a general characteristic of Wiener processes. A pictorial representation
of the process is shown on Fig. 6.9. Starting from a very localized variance at
zero time, the process spreads out according to Eq. (6.157).

A Wiener process is the simplest possible example of a diffusion process. It
can be shown that almost all sample functions of a Brownian motion process
are nondifferentiable. Intuitively they are continuous but have corners nearly
everywhere. These sample functions are also of unbounded variation: this
property precludes the use of ordinary Riemann integrals. Thus it is necessary
to develop new mathematical tools in order to do rigorous calculations with
random processes as inputs to dynamic systems. )

A Wiener process cannot itself be a good choice for a general noise model. It
is not stationary and can become infinite for large times. It can however be used
to obtain a model which is generally applicable for noise modelling. An obvious
method of attack is to differentiate the Wiener process formally in order to
obtain a process which has no D.C. or zero frequency component.

Fig. 6.9 The spreading out of
the variance of a normalized
Wiener process in time
shown up to # = 10 only.
Att = 0, the variance is 5(0)
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Example 6.18. White Noise: Derivative of an Independent Increment Process

Proceeding purely formally from the above, it is possible to show that white
noise is the derivative of an independent increment process. Consider now the
derivative of the vector independent increment process, {X(7), ¢ > t}:

_ aX(19)

= 1
(== (6.158)
The mean of the derivative process can be found from
. d
E{X(1)} :EE{X(I)} =0. (6.159)

The covariance matrix of the derivative process can be obtained by
formally differentiating the integral in Eq. (6.152) and using Leibnitz’
differentiation rule for integrals (see starred note *, p. 387). Proceeding
in this way,

R, (11, 1) = E{X(1))X (1)} (6.160)
= a—zE{X(mxT(rz)} (6.161)
01101y
2
= me(tl,tz), t,th > 1. (6.162)

Now differentiating equation (6.152) using Leibnitz’s rule yields
9
ndn
=V(1)d(t1 — 1), t1,12 > 1, (6.164)

R/\',(ll,lz) = V(min(tl,lz)) min(tl,lg) (6163)

where §(...) is the Dirac delta function. This is the covariance function of a
white noise process. V(.. .) is the intensity or strength of the white noise signal.
See Fig. 6.10 for a graphical ‘derivation’ of Eq. (6.164). Equation (6.164) implies
that a white noise process is correlated only when #; = 1,.

White noise is thus an extremely irregular process. From the above it is
generated formally by differentiating a Wiener process which is also very
irregular. For practical simulation purposes, white noise is generated by
using a sampled random number generator with a constant sample time.
This sample time has to be much smaller than the fastest time constant in
the system being studied. In principle the sample time should be varied in a
random way in the same way as the amplitude of the signal. The random
number generator used most often has a Gaussian distribution function with
a variance of 1. A Gaussian distribution function is used because it is simple
and often encountered in physical systems.
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Fig. 6.10 Graphical
‘derivation’ of a white noise min(t,, t,)
signal. See example 6.18

— I
0 u,\ -
I

“Leibnitz’ rule: Suppose that

b(u)
I(u) = fix,u) dx = I=1(b,a,u), (6.165)
a(u)

then
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db
—. 6.167
n (6.167)

a

b(u)
= [, e s fla G 5.0

The example above shows the form which will generally be used for white
noise in this book from this point. White noise is the derivative of a Wiener
process with a mean value zero, a Gaussian amplitude distribution and which
has a covariance or correlation matrix which is

Ry(t) = E{X(t) X"(t + 1)} = V3(r) (6.168)

where V is a symmetric, square, constant matrix. The diagonal elements of the
matrix are the variances of the components of X(7) (say like G%,l, i=1,2,...,n)
while the off diagonal elements express the correlation between the components
of X(#) (say like oy,oy,, where i,j=1,2,...,n). White noise is in reality a
mathematical abstraction because physically speaking, it does not (and cannot)
exist. It turns out however that its use leads to relatively simple expressions for
state and output noise in linear time-invariant dynamic systems. This is the
reason why it is so widely used in disturbance modelling.

Recall that the power dissipated in a resistor is proportional to V%,,s, the
squared effective (or squared RMS) voltage across the resistor, or I%,/g,
the squared effective (or squared RMS) current through the resistor, with the
proportionality constants 1/R and R respectively. The corresponding quantity
for a random variable is the squared standard deviation (or variance) of the
stochastic variable, o>. The diagonal matrix elements of the covariance matrix
are thus the power (apart from a constant) in the components of the stochastic
variable X(7). The nondiagonal elements are the power in the cross correlation
components. For independent variables these off diagonal elements are zero.
Thus the description of stochastic variables is in terms of their power content
not the details of their specific realization (or actual time dependence).

As is clear from the example above, white noise is closely related to a process
of independent increments. White noise obtains its name from the fact that its
spectrum in the frequency domain is perfectly flat for all frequencies. White
light contains all colors or equivalently all frequencies in the visible light range.
Hence the name: white noise. More details about white noise and its use will
appear later in this chapter: it is in fact the main noise and disturbance model
which will be used in this book.

The approach to deriving the white noise process above is seemingly very
abstract. It is useful to try to develop a more intuitive physical model or
paradigm for this process as it is in such universal use.

Example 6.19. An Undamped Random Walk: White Noise

In order to obtain a more intuitive physical picture of a Wiener process it is
useful to consider a simple physical picture of a random walk. Consider a grain
of pollen suspended in a liquid. Such a particle is held in suspension by the
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random motion of the molecules of the fluid around it. At random times the
pollen grain is hit by molecules of the liquid in what can be considered to be
instantaneous hard sphere collisions. The equation of motion of the pollen
particle in one dimension for a single collision event is then

ma =mv = F(1) 8(t — t9), (6.169)

where m is the mass of the particle, a is the acceleration, v is the velocity, ¢,
is(are) some arbitrary collision(s) time(s). F(z) is the strength of the forces
exerted on the pollen grain in the collisions. Equation (6.169) can be rewritten as

dv F(1)
BT ). (6.170)

The quantity F(¢)/m determines the acceleration of the particle. It can be seen
that the motion of the pollen grain is governed by a succession of delta function
accelerations with a random strengths at random times: see Fig. 6.11.

Because the pollen particle is effectively free between collisions, its velocity
will be constant between collisions. To find its path, the velocity components
must be integrated in time. The motion in each dimension can then be repre-
sented by two integrators in series. The input to first integrator is the delta
function forces, the resulting velocities are the output of the first integrator
(a set of random step functions) and the output of the second integrator is the
path length (a set of random ramps). The velocity is a white noise process and
the path length (a random walk) is a Wiener process.

It should also be noted that there is no damping of the velocity of the
particles built into the physical model. This means that the particle velocities
can in principle become infinite. This implies that a collection of particles can
contain infinite energy and this is of course not possible. Thus the model above
is a mathematical idealization which is not physically reasonable.

Itis easy to simulate the overall system above, using a uniform distribution
to define the different collision times and a Gaussian amplitude distribution
for the delta function collision force intensities. These collision force intensi-
ties are used to drive the first integrator which in turn drives a second
integrator. The output of the first integrator is white noise. The output of
the second integrator is a random walk or Wiener process. The results of
such a simulation are shown on Figs. 6.11, 6.12 and 6.13.

Figure 6.13 shows a random walk for a particle in two dimensions. It is
composed of two independent Wiener processes, X (7) and X,(¢). Each of these
processes is generated separately as shown in Figs. 6.11 and 6.12 using uni-
formly distributed (in time) delta function forces, which have a Gaussian
amplitude distribution. It is the vertical and horizontal velocities of the particle
which are white noise processes, V1(z) and V(1). O

The large frequency content of a white noise process is one of the characteristics
which makes it non-physical; it is the quality which gives it an infinite energy
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Fig. 6.12 Construction of an independent Wiener process: x, dimension

content. It can also be shown that the Wiener process is only an accurate model
for a random walk for times which are large compared with the mean time
between collisions.
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Fig. 6.13 Construction of a two dimension random walk using the independent one dimen-
sional random walks of Figs. 6.11 and 6.12

It is possible to construct a more physical model of a random walk which
includes the necessary requirement that it have a finite bandwidth. This is
detailed in Example 6.20 below.

Example 6.20. A Damped Random Walk: Bandlimited White Noise

The physical model in Example 6.19 can easily be extended to include the
viscous damping force on the pollen particles in addition to the random colli-
sion forces. The differential equation which is the result of this extension is
classical and is known as the Langevin equation. It is
%z—%v—k%é‘)(l—m), (6.171)
where b is a damping coefficient and F(r) is the same Gaussian distributed
intensity as in Example 6.19 above. It implies the existence of processes in which
the kinetic energy associated with the pollen grain is dissipated to other degrees
of freedom such as the molecules in the suspension liquid, etc.
The result of solving the Langevin equation is a process which has much less
high frequency content than an undamped white noise/Wiener process. This
process, v(¢), is an Ornstein-Uhlenbeck process. It has a Gaussian distribution
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but unlike the Wiener process, it does not have independent increments. It can be
shown however that the overall system, its displacement as well as its velocity, is
an accurate description of the random walk of a pollen particle. This is true both
for long times compared to a collision time but also for short times. A typical
realization of the process would look like an undamped random walk but it
would be smoother, indicating a lower high frequency content. Such a system
also has a finite energy content, making it more physical than the ideal process.

In fact it is possible to give a more detailed model for the damping parameter,
b, by using Stokes’s law for a viscous liquid. It can be expressed as

b = 6mna, (6.172)

where n is the viscosity of the liquid and « is the particle radius. It can be shown
that introducing this damping coefficient results is a low pass filtering of the
white noise which would otherwise be the result of solving Eq. (6.170) above
(see Example 6.19). The time constant of this low pass filter can be shown to be

m m
T, =—

= . 6.173
b 6mna ( )

For a typical pollen particle this time constant is on the order of 1 micro-
second which implies a high frequency cutoff at about 6.28 - 10® Hz. This is of
course quite high and means that the bandlimited white noise process is close
to being undamped white noise for most practical purposes.

Another example of physically generated, low pass filtered, white noise is
the thermal noise generated in an electrical conductor by the thermal agitation
of the electrons. Such noise has a flat spectrum up to 10'? = 1000 GHz at room
temperature (20 C). Above this the spectrum falls off with frequency. O

6.4 Noise Propagation: Frequency and Time Domains

The response of linear systems to random signals can be built up around the
theory of deterministic signals in such networks. It is also a requirement that
the statistical measures which have been considered above be interpreted in the
light of this linear theory. The response of a linear network which has an
impulse response, g(¢), to an input signal u(z) is given by the convolution
integral:

y(1) = /000 g(t)u(r—1) dr = /[ g(r—1) u(t) du. (6.174)

This equation is valid both for scalar and vector systems. A simple example
of a scalar system is a low pass filter.
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Example 6.21. Impulse Response of a Low Pass Filter

The response of a first order low pass filter with a D.C. gain of 1 is defined by the
differential equation

dy(r) 1
— == (—y(t t 6.175
2L = (30 + (), (6.175)
where T is the time constant. The impulse response of the filter is an exponential
function
0, <0
g(n) = _L . (6.176)
lTe T, t>0
For an arbitrary input u(z) the response of the filter is given by the integral
©1 —7T
»(1) = / —e u(t—1)d. (6.177)
o T

a

In the frequency domain the relation of the input to a system to its output is
given by the transfer function from input to output,

Y(jo) = G(jo)U(jm), (6.178)

which is in general a matrix equation as shown. This is merely the result of
transforming the convolution integral of Eq. (6.174) to the frequency domain.
G(jo) is the Fourier transform of the impulse response, g(¢):

G(jo) = [w g(t)e/dr, (6.179)

where ® = 2xf, and f is the frequency. This is of course only one half of a
Fourier transform pair. The other half is

g(t) = %/_oo G(jo)e do. (6.180)

The equations above are valid both for scalar and vector systems.

The Fourier transform is a general way of associating a frequency response
with a time response. A time response can be seen as a superposition of sine
waves having certain amplitude and phase relationships. Any time response can
be reproduced from sine waves (possibly infinitely many) in this way. A delta
function contains sine waves of equal amplitudes at all frequencies. The impulse
response of a filter is the result of propagating the continuous flat spectrum of a
delta function pulse through the dynamics of the filter. A Fourier transform of
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the impulse response of the filter is thus in reality it’s transfer function. This
relationship is often used in signal analysis. For more details the reader can
consult (see Papoulis, 1977).

Example 6.22. Frequency Response of a Low Pass Filter
For the differential equation of Eq. (6.175) the frequency response correspond-

ing to the impulse response is simply

L Y(o)

Glo) =177~ Ujo)

: (6.181)

This low pass filter obviously has a gain of 1 at D.C. (o = 0). 0

Itis possible to apply these same frequency domain concepts to the treatment
of random processes as will be clear in the next sections.

6.4.1 Continuous Random Processes: Time Domain

At this point it is clear that in order to deal with random variables in dynamic
systems it will be necessary to consider averages of the variables or some
function of the variables. This is necessary because it is very difficult to deal
with the sample functions of a random process: it is not in fact possible to write
down an equation for a single realization of the process.

Consider the problem of finding the mean (or expectation value) of
Eq. (6.174) when u(7) is a stochastic process,

m (0= £} = B{ [ atout - oef =£{ [ e Ou(e)de . (6182

oo

It can be shown that this expression has good meaning if the dynamic system is
asymptotically stable and y(¢) is a stochastic process which has finite second
order moments (see Astrom (1970)). This then means that one can write

m (0= £{ [ stout-0aeh = [Tapui- oy @18

-/ " g(@m(t - ), (6.184)

o0

where the operations of integration and expectation have been exchanged.
Likewise for the covariance of the process one has

Ruy(l],lz) :E{u(l1)yT(l2)} (6185)
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:/ g(1) Ry(t1, 12 — 1) dr, (6.186)
0
and

R,(11,6) = E{y(1) y'(12)} (6.187)

=/ / g(o)R, (1) — g, 1o — 1)g" (z) dg dr. (6.188)
0 0

In particular for a random process which is strongly stationary such that

m,(f) = m, = constant, (6.189)
Ru(tla t2) = Ru(tl - [2)7 (6190)
one has
m},:/ g(t) dr - m,, (6.191)
0
Ry(n—1)= [ g0 Rt~ 7) (6.192)
0

R,(1 — 1) = /0 /0 g OR(1 —1r—c+17) g (1) de dr.  (6.193)

In the two last equations it should be noticed that both equations are only
functions of the time difference ¢, — t,. Thus it is common to write them as
functions of a single variable: for example T = #; — 1,.

Example 6.23. Finite Time Averaging

From a technical view point, in order to make useful averages it is convenient
to use the ergodic assumption and assume that the ensemble averages which
have been important up to this point will be equivalent to the time averages
which can practically be measured. Thus it is necessary here to consider the
nature of time averages and how such averages propagate through linear
dynamic systems. In order to obtain reproducible results it is important to
consider only wide sense stationary stochastic processes here.

A time average which one might imagine has the same accuracy as the
ensemble averages considered earlier might be

t

y(1) = lim 1 x(1) dr, (6.194)

T—o00 T —T
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for a certain realization of the continuous stochastic process, X(z), z > 0. This is
nothing more or less than a linear filter with an impulse response

L 0<t<oo
t)=< 1 - . 6.195
g(1) {07 C=0 (6.195)

While this should yield good results, it is inconvenient to have to carry out the
average over an infinite time period. Thus a practically applicable time average
would be

W) =& / " () de. (6.196)
—T

Such a finite interval time averager can be realized in a number of different
ways, for example using an operational amplifier integrator with a time
constant of T = RC.

To consider the finite interval time averager from an ensemble point of view
it is useful to consider a number of different experiments with it, all collecting
sample functions over the time interval 7. This makes is possible to consider the
output Y(¢) as a stochastic process generated by another stochastic process
X(¢). Assuming that the input signal is an ergodic process, the finite interval
time average can be written

Y(1) = lT/,_[TX(f) dr. (6.197)

In this way the first moment (average) and covariance functions of Y(¢) can be
found as

my(t) = E{Y(1)} = E{%/I_ZTX(T) dr} (6.198)
- lT/t_tTE{X(r)} de — %[jrmx(r) dr, (6.199)

and
Ry(t1,12) = E{[Y(11) = my(1)][Y(12) — my(12)]"} (6.200)

~e{ / / Q) — i)~ ma(0)” s e | (6200

1 1] 1
= —2/ / Rx(g,7) dg dr, (6.202)
T tL—TJt,-T
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where it has been assumed that it is possible to exchange the operations of
expectation and integration. This corresponds to changing the order of the
two integrations. It can be shown that this is possible under fairly general
conditions. It is not difficult to show that for a wide sense stationary stochastic
process that the equations above lead to the results my =my and
Ry(‘[) = R)(<‘E).

The results above can be immediately generalized for other impulse
responses than those corresponding to finite horizon averaging and for vector
stochastic processes.

6.4.2 Continuous Random Processes: Frequency Domain

To treat the propagation of a stochastic signal through a linear network it
is necessary to obtain a picture of how the covariance matrix looks in the
frequency domain. For a wide sense stationary stochastic process this can be
done by obtaining the Fourier transform of the covariance matrix. This quan-
tity is called the power spectral density for a scalar variable and the power
spectral density matrix for a vector process. Making the variable substitution
T = t; — t, (which is valid for a wide sense stationary stochastic process) this
matrix can be expressed as

Sx(o) = /OO e " Ry(1) dr. (6.203)

oo

From this equation, for symmetry reasons, it is clear that it must also be
true that

Ry (1) = % / Sx(m)e’™ do. (6.204)

Equations (6.203) and (6.204) are called the Wiener-Khintchine relations
(or theorem). What the first matrix equation above expresses is the power
density of the stochastic variable X(#) as a function of frequency. It has the
following important and useful properties:

1. Sy(—w) = S¥(w), for all o,
2. Sy*(®) = Sy(w), for all o,
3. Sx(o) > 0, for all o,

where the * denotes the complex conjugate transpose. The inequality in 3
indicates that the spectral power density matrix is positive semi-definite.
From the definition of the spectral power density, it should be clear that it
expresses the power in a variable per unit frequency.

One of the most important uses of the spectral power density function is
exactly to describe the propagation of an input signal to the output of a system.
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Consider an asymptotically stable time invariant linear system with a transfer
function given by the matrix G(jw). If the input to this system is a wide sense

stationary stochastic process, {U(7), ¢ > 0}, and the transfer function of the
system is given by

Gls) = /0 " e STg(r) dr, (6.205)

then using the fact that m,(7) is given by the convolution integral above,
Eq. (6.184), the mean value at the output of the system is

m, = G(s)|,_om, = G(0) m,. (6.206)
This expression says that the mean value of the input, when multiplied by
the D.C. gain of the network is the mean of the output. With a power

spectral density matrix S,(o) which is constant in time, the output of the
system is also a wide sense stationary stochastic process, Y(7), where

S, () = / T R, (1) de (6.207)

/ e f“”/ (t—s) ds dr (6.208)
= / / /g (5)e IR, (T +5) ds dr,  (6.209)
—o0 J0

or
Sy (®) = G(—jo) S,(o). (6.210)

The power spectral density matrix, S (o), is given by

S, (o) :/OO e R, (1) dr (6.211)

/ 7""// R, (t — s+ 0)g" (1) ds di dr (6.212)

= / / / e g(s5)e TSTIR (1 — s + 0)gT (1)’ ds dt dr  (6.213)

00 J0 0
or

S, (0) = G(j»)S,(0)G' (—jo). (6.214)
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For a wide sense stationary stochastic variable, V(7), with zero mean and
with covariance matrix Ry (7, — 1), a quantity proportional to the total A.C.
power in the components of the vector is given by

ir[Ry(0)] = E{[V(11) = m(11)]"[V(12) — m(22)]} (6.215)
— i Eﬂ/wm sy(m)dm} =i Uwoosy(f)df}, (6.216)
where 7r[...] means the sum of diagonal elements of the matrix, [...], and f'is the

frequency (27 = ®) (see Example 6.24 below). This corresponds to the total
A.C. power in it given that the mean value is zero. The matrix elements of

R(0) = —/OC Sy(0) do (6.217)

are proportional to the A.C. power in its components.
For a variable which is not zero mean, the matrix elements of Cy(0) are
proportional to the A.C. plus D.C. powers in components of the signal, where

Cp(0) = 2 /Oo Sy (m)do = /Oo Sy (f)df. (6.218)

") o .

tr[Cy(0)] is proportional to the total power in the signal V(7). Ry(0) is never-
theless still proportional to the A.C. powers in the signal components.

Example 6.24. Stochastic Quadratic Forms

The result of Eq. (6.216) can be obtained in a simple way by direct calculation.
Consider the problem of evaluating a quadratic expression of the form,

EGVT (W (o)v(1)} = E{Z > vl W;-(t)w(t)}, (6.219)

where v(7) is a stochastic vector (with n elements) and W(7) is a sym-
metric weighting matrix. This is clearly a quadratic expression in the
elements in the vector v(z). W(¢) is invariably selected to be a positive
semidefinite as what is desired is an expression for the overall power in
the system.

The equation above can be evaluated using elementary methods:

E{Z Z vi(1) W,y(z)vj(z)} = E{Zl Z} W,»j(t)v,»(t)vj(t)} (6.220)
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= > Wi Efi(0)v(1)} (6.221)
=1 j=1
= b Wii(1)Cy (1, 1) (6.222)
i=1 j=1
= wr[W(t)C,(1,1)]. (6.223)
Thus
ENVT(OW()v(1)} = tr[W(0)C, (1, 1)]. (6.224)

If v(¢) is a wide sense stationary stochastic process with zero mean such
that Eq. (6.128) is satisfied and W(¢) is constant, then

ENVT(OW(t)v(£)} = tr[W(£)R,(0)]. (6.225)

Moreover if v(z) is zero mean and a power spectral density matrix which
is S, (),

ENVT()Wvy(8)} = tr [i /_OO W(z)Sv(m)dm]. (6.226)

These results have already been used without detailed derivation in Eq. (6.217).
Itis important to remember this technique as it makes it possible to calculate the
mean square value of any set of stochastic variables. O

Example 6.25. White Noise

As mentioned above, white noise has a constant amplitude spectrum. Its
spectral power density matrix reflects this characteristic but is an expression
of the ‘power’ in the noise. Thus for a wide sense stationary white noise process
having a constant intensity, V' = o2, expressed as

Sy(w) =V =0c, (6.227)

(a constant). One has then that

Ry(1) = L / N Ve do = V3(1), (6.228)

o0

as V' is constant and the integral expression is a delta function. Thus

Ry(1) = V3(1) = 6%8(1). (6.229)
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From the expression for the spectrum, it is clear that the white noise
signal must contain infinite energy and thus is physically unrealistic and
can only be an approximation. Nevertheless white noise is a good model
for random disturbances in dynamic systems because in general practical
dynamic systems contain their own high frequency filtering. See Fig. 6.14,

below. a
Fig. 6.14 Covariance ) . )
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Example 6.26. Exponentially Correlated Noise

In Examples 6.21 and 6.22 above a unity gain (at ® = 0) low pass filter is
treated. White noise filtered with this filter has the covariance function

o2 _ |ll — l‘2| o2 |i
Rx(t) = Rx(t1 — 1) = Te T = Te T. (6.230)
It is easy to Fourier transform this quantity to find the corresponding
spectral density function,

252

o) =1

(6.231)
for T'> 0, remembering the result of Eq. (6.175). Low pass filtered white noise is
a very common model for many types of disturbances or noise in dynamic
systems. See Fig. 6.14, p. 401. O
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Example 6.27. A Sine Wave and its Autocorrelation Function

To give an idea of the meaning of Eqs. (6.203) and (6.204) it is a instructive to
look at a deterministic signal like a sine wave. It is not difficult to show that the
autocorrelation function of a cosine wave, x(1) = 4 cos(wy?), is given by the
expression

Ry(t) = A* cos(mgr). (6.232)
When transformed using Eq. (6.203) this yields the expression

Sy(w) = gAZ[S(o) — o) + 8( + wp)]. (6.233)

This is clearly a spectrum of a signal which consists of two ‘teeth’, one at ®y and
another at —®, as one would expect. See Fig. 6.14. O

6.4.3 Continuous Random Processes: Time Domain

The description of stochastic processes in the time domain in Sect. 6.4.1 is
somewhat unsatisfactory because it involves ensemble averages which can be
technically difficult to use. In the previous Sect. 6.4.2, a frequency domain
version of the same concepts is given but this also involves measurements
which must be carried out over long time periods. This is also technically
inconvenient. In this section a method of describing the running time develop-
ment of stochastic averages will be developed. This will make it more conve-
nient to deal with stochastic processes in real time observer and control systems.
This differential equation method is also part of the foundation of the concept
of Kalman filtering and also makes it possible to deal with noise in nonlinear
systems under certain conditions.

Consider now a linear dynamic system driven by white noise. The system
being considered is

x(1) = A(6)x(1) + B, ()v(1), (6.234)
where A(r) and B,(¢) are possibly time varying dynamic and input matrices.
v(¢) is here wide sense stationary, white noise with a zero mean and
R, (7) = V(1)d(7). The initial conditions (I.C.) for the integration are

I.C.: E{x(#)} = my, (6.235)
E{Xo(lo)X&(lo)} = Q([()). (6236)

The solution to the state equation (6.234) can be written formally as
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x(1) = ®(1,10) x(19) + /[<I>(t,r) B, (1) v(1) dr, (6.237)

fo

where ®(1, 1)) is the transition matrix of the system. This makes it possible to
form the product

X(ll)XT(lz) = ‘I)(l], l()) X(lo)XT(lo)q)T(lz, l())

b T (6.238)
T (1, 1)x(t0) [ RS Bv<r>v<r>dr}

)

w000 B | (0)970,10)

fo

+ UO" (11,7) Bv(T)V(T)d‘L':| [/t: (12, 7) Bv(T)V(r)df} r'
(6.239)

Taking the expectation value of both sides of this equation, remembering
that the white noise source is given by a delta function and letting t = ¢ = 1,, an
equation for Q(7) can be found:

Q1) =Ry(1,1)

‘ (6.240)
= O(1,40)Q(10)®7 (1, to)+/ ®(1,7)B,(7)V(1)B, (1)@ (¢, 7)dr.

)

To convert this integral expression into a differential equation it is only
necessary to differentiate it with respect to time. This results in the expression

_dQ(r) _ d®(t, 1) d®T (1, 19)

Q(1) Q(t0)®7(1,10) + @7 (1, 10)Q(10)

dt dt dt
dl [’ T T
+E O(1,7)B,(7)V(1)B," (1)@ (1, 7)dr|. (6.241)
fo
Using now Leibnitz’ rule in the form,
d ' Lof(t,7)
7 /0 St 1) de = flt, 1) + /0 YRGS (6.242)
and, remembering that,
)
A1) _ Ao, 1), (6.243)
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for every ¢ and t, one obtains from Eq. (6.241) the expression

Q1) = A()QU) + QA" (1) + B,()V(1)B! (1). (6.244)

This equation is sometimes called the degenerate Riccati equation (the
second order nonlinearities are not present) but the name which will be used
here is the time dependent Lyapunov equation. This equation describes the
propagation of white noise through a dynamic system both in time and in the
stationary and transient cases. It is thus of a completely different nature than
the noise descriptions in Sects. 6.4.1 and 6.4.2 above as it is in a form which
makes it directly useful for estimation and control purposes on a digital com-
puter. It is the basis of optimal stochastic estimators or Kalman filters as will be
seen in the next chapter.

Another important quality of Eq. (6.244) which should be observed is that it
only describes the main statistical property of zero mean Gaussian stochastic
signals which propagate through linear systems or networks, namely the var-
iance (or squared standard deviation) of the signal. No statement is made about
the details of any particular realization of v(7) or of higher moments of more
complex stochastic signals. The reason for this is pure necessity: there is no
particular time function which can be written down for v(z) and more comp-
lexity is difficult to treat simply and compactly (and most often is not required).

Equation (6.244) is particularly useful in the stationary state for time
invariant stable systems where it reduces to

AQ. +Q. A" +B,V B/ =0, (6.245)

where the infinity subscript on Q indicates that this is the steady state value of
Q(?). This form of the equation is in general called the Lyapunov (matrix)
equation which explains the choice of name above for Eq. (6.244). From
Eq. (6.244) it is clear that the solution of Eq. (6.245) is the value of variance
matrix at large times:

lim Q(1) = Q. = / eNB,VB,Ter dr. (6.246)

1—00 0

Using this equation is often much easier than using Egs. (6.193) and (6.214):
only algebraic equations need be solved. Integrating is often more difficult and
time consuming if it is at all possible.

Example 6.28. A Low Pass Filter with White Noise Input

Consider a low pass filter described by the state and output equations

1

x(1) = - [—x(1) + u(t)] = wo[—x(2) +u(?)], (1) = x(2), (6.247)
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where 7 is the filter time constant and oy is the filter cutoff frequency. Note that
if the derivative on the left is zero (stationary state) then x = u and the gain of
the filter is 1 for ® — 0.

The transfer function for the low pass filter can be obtained by Laplace
transforming the state and output equations:

1 ! !
sX(s) = ~[X(s) + U(s)] = (S + 1.> ) =20 )
Y(é) = X(S)7
- X(s) _Y(s) _ 1 1 (6.249)

It is easy to check that this is the correct answer. Using Mason’s formula it
is found that

I S U
1_(_%%) 1+ st

It is now assumed that the filter is excited by white noise at its input with an
intensity V' = o2. The noise variance at the output of the filter can be found by
using Eqgs. (6.193) or (6.214),

o

H(s) (6.250)

L[> L[~
2 2 . .
o =0l=y /_ Sy (oo = 5 /_ Hljo)S, () H(=jo)do. (6251
This quantity is an expression of the power in the output signal, y(7). The
problem above involves a scalar system, moreover, S,(®) = 62, a constant,
for all ® and so (see footnote below):

1 [ ol [ 1 ®
e — H(jo)|?c?do =~ | —— oy d[ — 6.252
G} 27_[ o | (]('0)| Gu ® 271: oo 1 ® 2(00 (DO ( )
+ (0_0)
- %cﬁ. (6.253)

Notice that the output noise power increases linearly with the cutoff frequency
of the low pass filter. See also Fig. 6.15, p. 406.

It is possible to calculate the result of Eq. (6.253) in another way using the
time independent Lyapunov equation. The stationary noise variance (or covar-
iance) for the low pass filter can be found by solving the equation:

The integral in Eq. (6.252) can be found in standard definite integral tables see equation
(6.256).
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Fig. 6.15 Simulation of a low pass filtered white noise signal. Top: filter input, bottom: filter
output

AQ + 0 A" + BV BT = (— %) (UNE S UN (— ;) + (—) V(%) =0. (6.254)

= 0, =—0, =—0.. (6.255)

This result has been verified (roughly) by simulation and the graphic results are
shown in see Fig. 6.15, above.
Note:

R |

a
Figure 6.15 is a simulation which shows the result of filtering a white noise
signal (with a standard deviation of 1) with a first order low pass filter with a
time constant of 10s. According to Eq. (6.253) or (6.255) this should result in
a white noise signal with a standard deviation of /®y/2 = /1/20 = 0.224.
The value actually observed is about 0.205 with the realization shown, using the
3o rule of thumb in Example 6.5. However it should be remembered that
0.224 is an average statistical result over a large number of possible realizations,
not a single one as in this example.
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In this example white noise is integrated using a standard integration routine
for a deterministic differential equation. In fact the addition of a noise as a
driving source converts the deterministic differential equation the low pass
filter (Eq. (6.247)) into a stochastic differential equation. Special numerical
integration methods must be used for such differential equations so that the
results shown above in Fig. 6.15 are somewhat fortuitously accurate. Further
information on this important subject can be found below in the following
Sect. 6.4.4, p. 408.

Example 6.29. The Langevin Equation

It is interesting now to return to the Langevin equation treated earlier in
Example 6.20. If it is desired to describe the overall movement of the pollen
particle, position as well as velocity, the state equations which must be solved
are

dx
— = 6.257
~=y, (6257)
dv b 1
E:_Ev—i_%‘}l(l)’ (6258)

where the system is now to be driven by a white noise process,
vi(1) = F(1)6(t — 19), as in Eq. (6.171), with covariance r,. The A and B,
matrices for the system are thus

0 1 0
A= { ] and B, = [1] (6.259)
m

o -

Using these matrices in the time dependent Lyapunov equation (6.244)
and writing down the three differential equations which result for the matrix
elements of Q, one has

g = 2q12, (6.260)
. b
qi2 = ——q12 + q22, (6.261)
m
. 2b Ty
2 =——¢n+—. (6.262)
m m

Assuming that the pollen particle starts from a known zero position, the initial
conditions for the integration of these equation are ¢;1(0) = 0, ¢12(0) = 0 and
¢2(0) = r,/(2bm). Use of these initial conditions makes it possible to integrate
equations (6.260, 6.261, 6.262). The solutions obtained are
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Ty m _by
qll(t)b—2{tz<le m )}, (6.263)
=2 (1= mt (6.264)
= — m .
q12 2 )
ry
) =——. 6.265
qn(t) bm ( )
For small times such that t«z, = %, using the series expansion
L o1 /1\?
e Tr:1__+_<_> -, (6.266)
T, 2\1,
it is clear that
'y
(X?) = 5 2, (6.267)

and the particle moves as though it is a free particle with a constant speed

v = /r /2. (6.268)

For large times such that r» 7, = %, Eq. (6.266) becomes
Iy
(X% = b—zt, (6.269)
and the particle moves as though it is diffusing and executing a random walk.

It can be shown that covariance is related to the thermally induced kinetic
energy of the particle and that

ry = 2bkT, (6.270)

where k is Boltzmann’s constant and 7' is the absolute temperature. Thus the
mean value of the particle position at large times is

kT D
= t=—1, (6.271)
3npa 3np

(%)

where «a is the radius of the particle, p is the coefficient of viscosity and
D = (kT)/a is the diffusion constant. O

6.4.4 Inserting Noise into Simulation Systems

In many cases it is necessary to insert noise sources into systems to simulate the
effect of state noise, disturbances, signal inputs or measurement noise. Most
often this is done by assuming that the noise is small compared to the input or
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state signals levels. ‘Small’ in this case means a small amplitude in relation to the
size of the deterministic signals and/or sizes of the nonlinearities in the system.
Assume that the noise is to be inserted into the state equation,

x(1) = f(x(2),u(1),v1 (1)), (6.272)

where v; () is a zero mean noise source which also may be a vector process. In
a general nonlinear system, v;(z) may be added to the states or the states may
be a function of the noise or the noise may be added to only some of the
states. Linearization of Eq. (6.272) may be carried out in the usual way to
obtain

AX = AAX + BAu + B,Avy, (6.273)
where
of of of
- X =Xp 3 = A |x=xp dB»—_x—xo
8x u=ug a u=nug " 8V1 u=uy

and the nominal linearization point is x = X, u =uy and v; =vy =0, by
definition. The noise amplitude is then Av;. Similar expressions to that in
Eq. (6.273) may be associated with ‘small’ noise sources associated with the
inputs or with other sources built into the control object or its associated
systems. In some cases it may be necessary to use the chain rule for differentia-
tion in order to find the matrix B,.

To simulate the noise with the proper amplitude it is necessary to determine
its standard deviation (amplitude) or variance (power). In Matlab/Simulink this
can be done using either of the internal generators: Random Number or
Bandlimited Noise. Before using either generators the documentation for it
should be consulted.

Random Number Generator

Noise which is effectively white can be generated by choosing a sample time
which is 10-20 times smaller than the smallest time constant in the system
being studied. This is equivalent to saying that the sampling frequency is
10-20 times the highest cutoff frequency in the subject system. As the random
numbers generated have a variance of 1, the white noise generators must
be followed by a gain element which adjusts the amplitude of the noise to
the level required in the simulation. If the approximate maximum amplitude
of the noise signal is £4 then the noise amplitude should be selected to be
2A4/6 = A/3 as the noise will then remain in this window 99.75% of the time:
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this is the 6o limit, 6 times the standard deviation. Outliers will of course occur
occasionally outside this window.

Many other simulation packages have noise generators based on the use of
random number generators.

Band Limited White Noise

In Simulink the Band Limited White Noise is generated using a random
sequence with a correlation time much smaller than the shortest time constant
in the system. This correlation time is the sampling time used in the block. In
the documentation of the block it is suggested that the correlation time be
selected as

127
te=—— 6.274
‘= o ( )

where ¢ = 100 and o, is the cut-off frequency of the system. ¢ can be selected
smaller, say 10-20 for typical systems. Choosing an extremely small correlation
time can increase the sampling time significantly due to the large number of
rapid transients introduced into the integration algorithms.

The algorithm used in the block automatically scales the white noise so that
the generator outputs a noise covariance which is the noise power, o2, divided
by the correlation time, 62/z.. The purpose of this scaling is to ensure that
the approximate white noise has the same covariance as the system would have
if responding to real white noise (with an infinite frequency spectrum).

The ‘white’ noise generated using either of the methods above is equivalent.
If true white noise is to be inserted into a system, then it is a good idea to low
pass filter it before inserting into the system. This will make it easier for the
integration routines used to solve differential equations to integrate the system
equations without having to deal with the singularities which the steps in the
white noise sequences represent. The variance of the noise from low pass filtered
white noise is given in Eq. (6.253).

Reproducing White Noise

In principle a basic characteristic of white noise is that it can never be repro-
duced because if it were reproduceable, it would have to be correlated with
itself. This could be inconvenient in simulation studies because one would
always have to look at a system with different noise inputs. Fortunately it is
possible to avoid this problem using standard random noise generators. This is
done by choosing different seeds for the random number generators. By using
the same seed (or seeds) for different simulations, the identically same
sequence(s) can be generated reproducably: the generators are deterministic
with respect to the sequences which they generate with a given seed. They are
however apparently stochastic for the shorter periods of time in which they are
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used for simulations. If different independent noise sequences are required in
different blocks, the seeds used in the different independent generators must be
selected to be different.

Other ‘Noise’ Sources

In many cases other kinds of disturbance signals than white noise are encoun-
tered. In such cases it is the Root Mean Square (RMS) value of the signal which
is that with should be compared with the standard deviation used for white
noise amplitudes. The effective power of for example sine wave is its rms value
squared. The effective power of any deterministic signal can be easily found as
required. Note that the frequency spectra of noise signals other than Gaussian
white noise are very different from white noise: they are in general not white
(have flat frequency spectra). This must be taken into account for in simulating
them.

Integrating Stochastic Differential Equations

While it straight forward to insert Gaussian white noise signal into linear or
nonlinear systems accurately with the correct mean value, variance and density
(or distribution) function, it is not easy to obtain the correct states and outputs
using the standard integration routines available in Matlab or Simulink. The
reason for this is that inserting noise into differential equations automatically
makes them stochastic differential equations which have different mathematical
characteristics than deterministic differential equations.

Whereas the integration of deterministic differential equations is based
on a first order approximation to their solution, stochastic differential
equations must be based on a second order approximation. The reason
for this is Eq. (6.157) which implies that at each time step, %, an integral of
a noise driving term in a differential equation must be updated as

Aw = oV, (6.275)

where w is a Wiener process. This obviously is not possible using a normal
integration routine. Equation (6.275) results in the integral of w being,

h o2 5
/ wdw = > (w(h)™ — h, (6.276)
0

which is not the result which one would expect. This result is obtained using one
interpretation of the stochastic integral (the Ito interpretation, see Sect. 6.6.3).
Clearly then, an important error will be introduced by using ordinary integra-
tion rules and numerical integration algorithms. See Gran (2007), Chapter 5,
for more detail.
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In general in control applications, the errors introduced using ordinary
integration algorithms on systems with noise sources are ignored. It is assumed
that the errors introduced (given reasonable signal to noise ratios) are small
enough that they may be overcome by the feedback and/or estimation loop(s) in
the system. This fortunately also often proves to be the case. One can expect that
the results using ordinary integration routines are accurate to an approximation
which is no better than 0(4*/?) under the condition that a fixed step size is used
and the noise is assumed constant and equal to w(/h) over the step interval.
Significant errors may occur if these conditions are not met, depending on the
nonlinearities in the control object and the signal to noise ratio. The covariance
errors which might be expected will generally be on the order of 5-10% for
reasonable signal to noise ratios.

Evaluating Noise Covariances

Once a system has been simulated using random noise sources for the state and
measurement noise, one often wishes to evaluate the results and compare them
to the theoretical predictions of say Egs. (6.244) or (6.245) which are correct for
linear systems. This of course cannot be accomplished in a completely satisfac-
tory manner because 1. standard integration routines cannot integrate stochas-
tic differential equation correctly and 2. one can only obtain at one noise
realization at a time.

Thus one usually resorts to using standard integration routines and adjusting
the sample time of the noise generators so that the results approximate those
obtained with Egs. (6.244) or (6.245). In this process one must insure that the
sample time is still on the order of 10 times less than the smallest time constant
in the system. To reduce the statistical uncertainty, many runs are usually
conducted using a Monte Carlo selection of the seeds in the noise generators
and averaging states and outputs over say 10—100 runs. The noise covariances
can be calculated using the MATLAB algorithm cov (X) or cov(X,Y).

In some cases, for example for financial applications, accurate integration
results must be obtained. Such a case could be predicting commodity prices for
option speculation. Under these conditions one can find specialized integration
routines for stochastic differential equations of varying accuracy and complex-
ity. A useful introduction to the theory of stochastic differential equations may
be found in Soong (1973) and specialized integration routines for stochastic
differential equations in Gran (2007).

6.4.5 Discrete Time Stochastic Processes

Discrete time random processes have characteristics which are analogous to
those of continuous processes and are described in very much the same way. For
this reason it is not necessary to go into detail to reformulate the definitions and
rules which have been given for continuous time processes. It suffices to sketch
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roughly a few concepts and to let the reader deal with discrete time systems as
analogies to the material which has already been presented above.

Discrete time random variables have already been defined in Sect. 6.3.1.
Discrete time vector stochastic processes can be defined by specifying all of its
joint probability distributions. If for all real x;, x,, ... , X, and for all integers
i1, b, ... , in and all integers n and k,

Pr(X(il) S X],X(iz) S X2,. .. ,X(i,7) S Xn) =

(6.277)
PV(X(i] + k) < Xl,X(iz + k) < Xp,... ,X(in + k) < Xn),

then the process is stationary, where the vector inequalities are to be understood
as earlier, component for component. It is also Gaussian if all of the component
distributions are Gaussian.

The mean or expectation value of the stochastic process X (k) is defined by
the equation

m(k) = E{X(k)}. (6.278)
Its second order joint moment matrix or autocorrelation matrix is
Cx(i,j) = E{X() X"())}, (6.279)
while the covariance matrix of the process is
Ry(iyj) = E{IX(i) - m(@)][X() — m(j)]"}. (6.280)

The variance of the process is

Qu(k) = E{[X(k) — m(k)][X(k) — m(k)]"} (6.281)

and Cy(k, k) is the second order moment matrix.

A strictly stationary process is one which has a constant mean value(s) and,
at the same time, its joint moment and covariance matrices depend only on the
time difference i—j. A wide sense stationary discrete time process is one which
has the characteristics that

1. m(7) = (E{x(k)}) = constant (in its components), (6.282)
2. Cy(k, k) = E{X(k) X" (k)} <oo0, in its elements, (6.283)
3. Cx(irj) = E{X(i) X" ()} = Cx(i —)), (6.284)

or

4. Ry(i,)) = E{X() - m(@]X() - m()]"} = Ra(i—)). (6285
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6.4.6 Translating Continuous Noise into Discrete Time Systems

The model of Egs. (6.1) and (6.2) commonly arises from physical considerations
in continuous time. This is true not only of the deterministic portion of the
model but also the stochastic part of it. For this reason it is often necessary to
convert a continuous time model to a discrete time one for design purposes. This
means that discrete time equivalents are required of the state noise and the
measurement noise process models.

A discrete time state noise intensity, V4, can be derived from a continuous
time one, Vi, using the following considerations. Let the sampling time be
defined as 7 and consider the model of Eq. (6.1). If the state noise is ideal low
pass filtered white noise, v(¢), (with bandwidth 1/(27)) then sampling this
source results in the equation

(k+1)T
v(k) = / AEDTIR y(7) dr. (6.286)
kT

Taking the expectation value of both sides of this equation shows that the mean
value of the stochastic variable, v(k), is zero because the mean value of v(¢) is
Zero.

The covariance of the process, v(¢), has to be calculated from the equation

Via = E{v(k)v' (k)}

(k+)T  pk+1)T ,
:/ / eA[(k+1)Tfr]BVE{V(T)VT(G)}BVTQA’[(k+1)T7cs]dT do
kT kT

(k+1)T
= / AlRNTR v BTA ()T g (6.287)
kT

where the last equality comes from the fact that the noise source v(z) is
white and thus E{v(t)v’(c)} = V,8(t — o). Making the variable changes
u=(k+1)T — trand —t = u, the following equation relating V, and V results:

T
Vie= / AB,V, BT A (6.288)
0

This integral can be difficult to evaluate but it is often possible to make an
approximation which is valid when the sampling time is small compared to the
smallest effective time constant in the system. The exponential under the
integral sign can under this assumption be replaced by its series expansion,

1
eAT%l—Ar—&-EAzz—.... (6.289)
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This results in an approximation to an order in 7" which can be selected by
choosing the relevant number of terms, 7, in the series expansion. In general
only one term in the series expansion is sufficient for most practical cases. This
gives the expression

V=B,V B/'T. (6.290)

This expression shows approximately how to convert a continuous time process
noise to its discrete time equivalent. This expression is only valid if 7" is much
smaller that the smallest system time constant. For further details see Franklin,
et al., (1990), p. 454.

To discretize the measurement noise covariance it should be noticed that the
covariance of a continuous white noise process is

R, (1) = V,5(7). (6.291)

This process is to be approximated with a discrete white noise process,
w(k), which can be written

R, (k) = V23(k), (6.292)
where (k) is the Kronecker delta and

I, if k =1
d(k) = { L. (6.293)
0, otherwise

The transition will obviously involve a limiting process as the delta function
is a singularity which only has meaning under an integral sign. Define the
rectangle approximation to the continuous delta function as,

. t
5(1) = lim 1 (?) (6.294)
where
' LT, T
L (?> Y pih-3=si=3 (6.295)
0, otherwise

This suggests the identification,

. t
V2d(1) = lim (VaiT) L (3), (6.296)
and hence that
%
Vog=—2. (6.297)

T
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This is of course because the smallest time which can be resolved in a discrete
time system is a sampling time. The effect of sampling on the measurement noise
intensity is thus to increase the measurement noise intensity (if the sampling
time is small). For further details see Franklin, et al., (1990), p. 456.

6.4.7 Discrete Random Processes: Frequency Domain

The power spectral density matrix, S(w), of a wide sense, discrete time
stationary stochastic process, X(k), can be defined as

Sy(®) = i Ry (k)e /% (6.298)

k=—00

which is valid for —n < ® < 7 or equivalently —f;/2 < f'< f,/2 where

® = 2nfT = ol (6.299)

ﬁ’
and T is the sampling period, f'is the frequency and f; = 1/T is the sampling
frequency.
An important property of the spectral density matrix for a zero mean, wide
sense stationary, discrete time stochastic process is that

T

E{X(k) XT(k)} = Ry(0) = ﬁ [ Sx(o)do. (6.300)

s

This is true because by definition,

1 [ I 7] & -

o _ —jko

5 [ nSX(co)dw =3 k;OORX(k)e ]dm (6.301)

= Y Ry(k) [i / efk“’dm} = Ry(0), (6.302)
k=—c0 2n I
and a discrete time delta function is given by

1 [ _ I, for k=0

3(k) = — / e—ﬂ"ﬂda:{ orx—r (6.303)
2n ), 0, otherwise

The transfer function picture of the propagation of a stochastic process
through a dynamic system is also valid for a discrete time system. An asympto-
tically stable linear time invariant system which is described by the transfer
function H(z) is assumed to have as an input, U(k), a wide sense stationary
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discrete time stochastic process with the spectral density matrix, S,(®). The
output, Y(k), of such a system is a realization of a discrete time stochastic
process which has the spectral density matrix, S, (), given by

S,(®) = H(e™)S,(0)H (e 7). (6.304)

The description of white noise in discrete time is very close to that which
is used for white noise in continuous time. Consider a stochastic process
which is a sequence of mutually uncorrelated, zero mean, stochastic variables
with constant variance matrix, Q. The covariance of this wide sense stationary
process is then

R, (i —j) = Qd(i —j){ 8’ g ::J , (6.305)
where the Kronecker delta function can be written
8(i—j) = {(1) :i ::J (6.306)
The spectral density matrix of the process is then
Su(w) = Q, (6.307)

which is the discrete time analog of white noise. It is not an equivalent to
continuous time white noise because it has a somewhat different frequency
spectrum due to the effect of sampling. This is because the Fourier transform
of equation ( 6.298) is that of a pulse of finite width, the sampling time, as this is
the minimum time which can be resolved in a discrete time system. This is not
the same as a continuous time delta function.

Example 6.30. Sampled White Noise

In reality discrete time white noise should be obtained by sampling band limited
continuous time white noise. Practically it is never done this way. Discrete time
noise is nearly always generated by drawing random numbers at constant
sample times like the responses in Figs. 6.12 and 6.12. White noise is by
definition Gaussian so it is the lower figure on Fig. 6.1 which is most often
relevant. The sample number # then becomes the time index, k.

The noise spectrum which results from using a random number generator is
not white. This is because the spectrum which is generated can be seen as the
Fourier transform of a flat, band limited, noise spectrum (with a bandwidth
®. = 1/[2T]), convoluted with a periodic delta functions at whole multiples of
the sampling frequency. In detail the amplitude spectrum of band limited noise
white is given by an expression of the form
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T sin
Vd(i(,l)) = 7_,

) Z 6( ) (6.308)

I=—00

N|85|7§

where the * denotes convolution, 7 is the width of the sampling pulse and 7' is
the time between samples. In the special case where T = T, the sampling pulses
completely fill the time between samples. This is exactly the result which is usually
obtained by using a zeroth order hold network which is the conventional way of
sampling. In this case the equation above becomes

sin (mT>
Va(jo) = TTZ % _Z 5 (0) — 12—;> (6.309)
7 I=—00

or equivalently in terms of ordinary frequencies,

v = S ”fT Zs( ) (6.310)

I=—00

This is a collection of sin x/x spectra, each centered at the sampling frequency
and its harmonics: f;, =n/T or equivalently oy = (27nn)/T, where
n=...—2,—1,0,1,2,.... Tt is clear that the sample time should be small
enough that the main sampling spectrum and its harmonics should be separated
from each other by at least 5/ T for proper system noise performance.

Figure 6.16 below shows the main sampled white noise amplitude spectrum
on a linear plot of the expressions in Egs. (6.309) and (6.310). The main
spectrum is that centered around fio = 0. Only the main spectrum is shown on
the plots: its sampled copies (centered at multiples of the sample frequency) are
suppressed for the sake of simplicity. Other details have also been suppressed
for simplicity, see Papoulis (1977). In the top figure the sample frequency is
100 Hz and in the bottom it is 200 Hz. The dashed curves on both plots show
the responses of first and second order systems with —3dB frequencies of 10 Hz.
The second order system is critically damped and falls off more rapidly than
the first order system.

It is clear that if the spectrum of Fig. 6.16 is to be used to represent white
noise in a control system then the system bandwidth should not be above about
f51/10 or so as shown. Otherwise the noise bandwidth will not be sufficiently
large to give a good approximation of continuous time white noise. In fact
it should be somewhat above this in some cases. This is easy to see from the
log-log plots in Fig. 6.17 corresponding to those in Fig. 6.16. Here it is obvious
that it is possible to use the 100 Hz sampled white noise for a second order
system while the 200 Hz sampled white noise will be more reasonable for the
first order system.
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0 50 100 150 200 250 frHz] 300

Fig. 6.16 ‘White’ noise spectrum derived using a random number generator and a constant
sample time T, plotted on linear axes. The sampling frequency is 100 Hz (above) and 200 Hz
(below). A second order filter cuts off more rapidly than a first order one

0.01

0.01

1 10 10> f[Hz]
Fig. 6.17 White noise spectrum of Fig. 6.16 plotted on logarithmic axes. Again a second order
filter cuts off more rapidly than a first order one

Example 6.31. Sampled Low Pass Filtered White Noise
A scalar low pass filtered white noise process, with intensity o2, has a auto-
covariance function which is

_'(i—,i)T
Ry(i—j)=c% | = | (6.311)

where T is the sampling time and t is the time constant of the low pass filter.
The power spectral density function of the process is then
62(1 _ 67(2T)/r)

Sx(0) = Th e T e —e T (6.312)
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It should be noted here that in order for this expression to be valid, it is
necessary to sample the low pass filtered noise spectrum with a sampling
frequency which is 4-10 times larger than the bandwidth of the spectrum.
Otherwise aliasing will occur and the expression above will be invalid. 0

6.4.8 Discrete Random Processes: Running in Time

What has to be accomplished is to find a discrete time analog to the time
dependent Lyapunov equation. The dynamic linear difference equation which
describes the propagation of a zero mean stochastic process, v(k), is

x(k + 1) = F(k) x(k) + G, (k) v(k), (6.313)

where the dynamic and input matrices are constant. The covariance of v(k) is
R, (k). Initial conditions for this process are m(0) = my and R, (0) = Ry.
Taking the expectation of each side of Eq. (6.313) yields

m(k + 1) = F(k) m(k), (6.314)

because v(k) is a zero mean process. The mean value will thus propagate
normally through the system.

To find out how the noise covariance propagates through the system it is
useful to introduce the notation,

Q(k) = E{x(k) X" (k)}, (6.315)

where X(k) = x(k) — m(k).
Clearly because of Egs. (6.313) and (6.314), x(k) satisfies Eq. (6.313). Thus
using this fact it is possible to form the equation,

X(k +1) X(k + 1) = [F(k) x(k) + G, (k)v(k)][F(k)x(k) + G, (k)v(k)]" (6.316)
= F(k)x(k) X" (k) F(k) + F(k) X(k)v' (k) G (k)
+ Gy (k)X (k)v! (k) FT (k) + Gy (k) v(k)v" (k) Gy (k).
(6.317)

Taking the expectation value of each side of this equation and remembering that
there is no correlation between the noise source, v(k), and X(k), it is possible to
obtain the equation

QUk + 1) = F(R)Q(K)F (K) + G, (k)R, (k)G (k). (6.318)
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This equation shows how the noise covariance propagates in time and might be
called the time dependent Lyapunov difference equation in analogy with
the equivalent equation found for continuous time systems. It suggests that if
the noise source v(k) is zero mean and Gaussian then its behavior is completely
specified by Egs. (6.314) and (6.318). Again, it is only exactly valid for linear
systems which have a form like that in Eq. (6.313).

Example 6.32. A First Order Scalar Stochastic System

A linear first order, discrete time system driven by a Gaussian, zero mean, white
noise source v(k) can be expressed as

x(k+1)=fx(k)+g vk), (6.319)

where f'and g are constants. The noise covariance of v(k) is assumed to be r,. At
the time k¢ the mean value of the process is my while the initial covariance is r.
The mean value is given by the equation,

m(k + 1) = fin(k), (6.320)
and hence the mean value of x(k) at any time is
m(k) = K = ko, (6.321)
Equation (6.318) for the system above yields the expression
qlk+1) = f2q(k) + &°ry. (6.322)

Using iterative methods, the solution of Eq. (6.322) can be easily obtained, it is

| — f2—k)

_ £2(k—k
q(k) = f* ‘))Vo+1_7fzg Iy.

(6.323)

In the stationary state, corresponding to ko — —oo, and assuming that
|/] <1, the following solutions are obtained:

m(k) — 0,
2, (6.324)
&gy
The covariance of the state noise can be calculated from
24,
rolk 47, K) = ry(c) = £ gk = &L (6.325)

=7
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This corresponds to a spectral density which is

I
Sy(w) = 27 (ef — f) (e — f) (6.326)
1 g |
T 2nl+ /7 = 2fcos(w)”
O

6.5 Summary

The main purpose of this chapter is to provide simple mathematical and
physical tools to deal with the problem of analyzing the effect of stochastic
signals in linear systems. Because of the nature of random signals (or more
specifically noise), this has involved a review of methods of applying statistical
and signal analysis methods to linear systems. Thus it has been necessary to take
a very broad view of linear systems theory and it is this broad background
which is often the main difficulty in learning about noise in dynamic systems.

The review of statistical methods has concentrated on first random variables
and vectors and then on random scalar and vector processes. This has made
it possible to introduce the concept of independent increment, random walk
or Wiener processes in a natural way. As a bi-product of this treatment, white
noise has emerged as a precondition for constructing a Wiener process. A
Wiener process is just an integrated white noise process, subject to certain initial
conditions. While this treatment is heavily dependent on a dynamic system
picture formulated in the time domain, the name white noise itself comes from
frequency domain considerations. Thus it has been a requirement that some
basic results of signal analysis be reviewed for linear systems. Some of these
results have made it clear that white noise is only a mathematical idealization
which has to be used with some care in modelling noise sources in real systems.
Experience shows however that reasonably accurate results can be obtained
when this is done properly.

The main results of the chapter with respect to later chapters are two
equations which can predict the time development of two of the main statistical
measures which can be used on stochastic signals: the mean values and the
covariance matrix. These measures are sufficient to completely characterize
the propagation of Gaussian distributed noise in linear systems but give no
information about any particular realization of the noise process. The propaga-
tion of the covariance matrix has been shown to be predicted by an equation
which has been called the time dependent Lyapunov equation. This usage in not
common but will be useful in what follows as it makes it possible to separate
noise propagation from uncertainty reduction due to the use of measurements
(and the associated measurement noise) in a straight forward way. This will
become apparent in the next chapter.
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The reader should be cautioned that the results obtained in this chapter,
while being formally correct, have been obtained by using methods which are
not rigorous. Fortunately, used in the proper framework on linear systems,
the results presented are also rigorously correct. In order to treat the subject of
random signals in general systems correctly, somewhat more advanced methods
are necessary. The interested reader is referred in the first case to ‘Notes for
Chapter 6’ below and in the second to the references at the end of this book.

6.6 Notes
6.6.1 The Normal Distribution

The normal distribution was first discovered by Abraham De Moivrein 1733 asa
bi-product of his investigation of the limiting form of the binomial distribution.
This work was not generally known and it was not until this distribution was
rediscovered by Karl Fredrich Gauss in 1809 and Pierre Simon de Laplacein 1812
that it became generally known. In fact Gauss did breach the subject briefly much
earlier in work published in 1780 but the he went into depth with it in work
published first in 1812. Both Gauss and Laplace were led to the normal distribu-
tion in connection with their study of the general question of the interpretation of
observational errors. They are also credited with a number of applications of the
normal distribution to various matters in the general theory of probability.

Laplace is responsible for the first statement of the Central Limit Theorem,
though it was at first incomplete. Due to the great influence of Gauss and
Laplace it was for a long period of time believed that stochastic distributions
of nearly all kinds would approach a normal distribution in the limit if only a
sufficiently large number of observations could be assembled. This went so far
that it was supposed that any deviation of a stochastic variable from its supposed
mean was regarded as an ‘error’. Even though this is now known to be in error,
many types of observational data (demographic, biological, astronomical and
physical) yield, as far as can be determined, approximate distributions which are
very close to being normal. According to Crameér, ‘...mathematical proof tells us
that, under certain qualifying conditions, we are justified in expecting a normal
distribution, while statistical experience shows us that, in fact, distributions are
often approximately normal’ (Cramér, 1946, p. 232).

6.6.2 The Wiener Process

The study of Brownian motion was the beginning of the investigation of stochastic
differential equations and the mathematical theory thus evolved is one of the most
important developments in the theory of stochastic processes. The first satisfactory
theories for Brownian motion were developed independently by Albert Einstein
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and M. von Smoluchowski at the beginning of the 1900s. Norbert Wiener and P.
Lévy gave the first rigorous treatments of the process and hence the names Wiener
and Wiener-Lévy are attached firmly to it. The most significant theoretical con-
tribution is due to Wiener and dates from about 1923.

6.6.3 Stochastic Differential Equations

In general the problem which has to be solved when considering a system of
the type considered in this text with a stochastic input is

P fx(0,0)+ &lx(0),1 v(0) (6327)

where fand g are nonlinear real valued functions and v(¢) is a random input
(usually assumed to be white noise). This problem with additive white noise is
a generalization of the Langevin problem. The process v(z) is delta function
correlated and is not integrable in the ordinary way. Thus Eq. (6.327) has no real
mathematical meaning and has to be reformulated for use on the problem at
hand.

Recalling that v(#) is formally the derivative of a Wiener process, it can be
written as

v@):‘%iﬂ, (6.328)

where w(7) is now a Wiener process. This means that Eq. (6.327) can be
reformulated as the equation

dx(t) = f(x(1),1) dt + g(x(1), 1) dw. (6.329)
This equation only has meaning if its integral is defined,

t t
xm—ﬂmz/jmaﬂw+/gmmwwwy (6.330)

t to
where it is assumed that proper initial conditions have be specified for the
integration. The first integral can be defined as a Riemann integral but the
second cannot. In the theory of stochastic processes the second Stieltjes integral
is commonly defined in two ways: as a Stratonovich or as a Ito integral. Because
the increment of a Wiener process, dw, has a magnitude which is proportional
to /dr, neither of these integrals can be of an ordinary type and new integration
rules have to be derived. To go further here is beyond the scope of the current
treatment. The interested reader is referred to the references for a more com-

plete development, in particular the list of references should read: Astrom
(1970), Doob (1953), McGarthy (1974) and Soong (1973).
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6.7 Problems
Problem 6.1

Consider the problem of expressing the results of an experiment where a coin is
flipped four times. To associate a stochastic variable with the experiment, a
1 will be scored for a heads and a 0 for tails. For four flips of the coin the
maximum score is 4 while the minimum is 0. For a given series of experiments,
the score is a stochastic variable, X.

a. By enumerating the possible results of the experiment, find the probability
density function for the experiment and sketch it on a graph.

b. Given the probability density function above, find the corresponding
probability distribution function and sketch it on a graph.

c. What is the most probable result for the score of the experiment?

d. What is the most probable value of X??

e. What is the average result for a large number of trials and what is the
standard deviation?

Problem 6.2
A random variable, X, has the probability density function,
a
f(x) - xz + 1 )

and is defined for all real x.

a. Find the value of the constant a.

b. Find the distribution function which corresponds to the p.d.f. above.

c. Find the probability that the stochastic variable, Y= X, is between 1/4 and 1.
d. Find the probability that the stochastic variable, ¥ = X 2, lies between 1/4 and 1.

Problem 6.3
The probability density function for a stochastic variable, X, is
Il—e™, x>0
F(x) = .
0, x <0

a. Find the corresponding probability density function.
b. Find the probability that X > 5.
c¢. Find the probability that —5 < X < 5.

Problem 6.4

In a game of darts a round target is used. By independent experiment it has been
found that the probability of a dart hitting between r and r +dr is
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2
Pr(r> Rzr—f—di‘):a[] — (g) }dr,

where R is the distance of the hit from the center of the target, « is a constant and
b is the radius of the target. Assume that during a game that there are no
complete target misses.

a. What is probability of hitting the bull’s eye (center of the target) if it has a radius ¢?
b. Is the answer completely correct? Explain.

Problem 6.5

Find a set of differential equations which can be used to find the running mean
value and root mean square (RMS) value of an arbitrary continuous input
signal. By definition, for any given initial time, #,, and for  — oo,

t
Varg (1) :l/ v(t)dr,
fo

t

)= (3 / blorar)”

a. What is the meaning of these differential equations?

b. Can these equations be used for the practical determination of the mean
and RMS values of a signal? Under what circumstances?

c. If the answer to b. is yes then what is (are) the advantage(s) and disadvantage(s)
of doing this?

d. Can the equations above be used on a random (noise) signal?

D=

Find the linearized equations corresponding to the differential equations above.

e. What do these equations tell about the dynamics of the ‘measuring instru-
ments’ which can be constructed using the equations above?
f. On what time scales can one expect an exact answer?

Problem 6.6

The average of a discrete signal u(k) can be calculated as the expression,
1 k .
(x(R) = 2> ul),
J=1
while its average squared value can be calculated from
oy IS5~
(x(k) = u())>
=1

Given that the sampling time is A7, derive recursive expression for the average
and squared averaged values of the input which can be used for on line
calculation of these quantities.
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. Compare the expressions found with those of Problem 6.5.

. Will the averages calculated using the discrete recursion equations above agree
with those found using the continuous differential equations of Problem 6.5?
What information is lost by using the discrete averaging equations rather
than the continuous ones?

Problem 6.7

A system is described by the differential equation,

X(1) = —ax(t) + 2u(r),

where u() € N(0, 1?) is white noise.

a

. What is the stationary variance of x(7)?

Assume now that u(¢) is low pass filtered white noise which has been pre-

p

b

rocessed by the system
y(1) = =8y(1) +v(1),
u(t) = y(1).

. What are the state equations of the system? Note that v(¢) € N(0, p?)

c. What is now the covariance of x(¢) calculated in the time domain?

d

. What is the covariance of x(¢) calculated in the frequency domain?

Problem 6.8

A block diagram of a second order system is given below.

a
b

. What is the transfer function of the system from u to x;?
. Sketch a Bode plot of the asymptotic frequency response of the system.

¢. What is the D.C. gain of the network?

d

. What is such a filter called?

e. Write down the state equations of the network.

Now assume that the input is Gaussian white noise such that u(r) € N(0,c2).
Given that for a low pass filter with cutoff frequency ®g, a D.C. gain of one,

d

riven with white noise u(7) € N(0, c2), the output is

)
2 0 >
o) =5 Ou-
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f. Calculate the size of the signal at v in the diagram above using the informa-
tion given.

g. Now calculate the noise at the output of the filter a the point x;, using the
result of the point f. above and the information given.

h. Is the same result obtained by using the Lyapunov equation for the overall
system? Why is the result found using the Lyapunov equation different than
that obtained using the given information?

Problem 6.9

A second order system is described by a transfer function which is,
X(s) _ o

H = =
(s) U(s) s+ 2Lops + 0F

where s is the Laplace operator, ¢ and oy are positive constants. This system can be
represented simply in at least two different differential equation formulations.

a. What are two of these formulations? Draw block diagrams for each of these
realizations.

The input, u(7), to either of the system realizations in question a. is assumed
to be a white noise source with the characteristics, u(¢) € N(0,52)

b. What is the steady state covariance of the output of the two possible realiza-
tions of the system, x(7)? Should it be the same or different?
¢. What happens when ¢ — 0? Can it ever be zero?

Problem 6.10

Find a system which can realize the transfer function

X(s) o3s

H(s) = = .
(5) U(s) s>+ 2Lops + of

a. What is such a filter called?
b. Does it have a useful application? Which?
¢. Draw a Bode plot of the system’s response.

Assume that the input is driven by a white noise signal which is u(7) € N(0, c2).

d. What is the noise signal at the output of the filter?

e. What happens when the damping parameter goes to zero? Is this in practice
possible? Under what conditions is such a system used?

Problem 6.11

Assume that it is given that a certain test system has as its output a stationary
stochastic process, Y(z), with the following covariance function:

RY(T>={“( =), el

0, otherwise
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a. Find the power spectral density matrix for the system and sketch it.
b. Can this spectral density be realized as the output of a system with finite
order which is driven by a white noise source? Explain you answer.

Select the coefficients of the first order transfer function,

b

H =
(5) =

such that the output power of this system for low frequencies is the same as
Y(t) at low frequencies. It is to be assumed that the noise input of the system is
u(t) € N(0, 1).

c. What are the constants of the transfer function H(s)?

d. Plot the two spectra for « = 1 and b = 1 up to a frequency ® = 2.

e. What is the 3 dB power bandwidth for the Y(¢) signal (the frequency
above which lies half to the total signal power)?

Problem 6.12

Consider the following dynamic system
X -3 2 7[x 1
= 14 s
I I R MG

X
y=[1 1] [ ] -
X2
It is assumed that this system is driven with a zero mean white noise source with

intensity, V' = 1.

a. Derive and expression for the power spectral density matrix for this system
and for its output in the stationary state.

b. Calculate the stationary variance matrix for the states of the system and
find the noise power on the output of it.

Consider the quadratic expression

1]
J= E{/ xR x dr}.
to

¢. How can R be selected, given that it has to be symmetrical and so that

J= E{/[O“ (1) df}.

d. How does this integral develop for large times?






Chapter 7
Optimal Observers: Kalman Filters

Abstract This chapter has the purpose of reviewing the most important design
aspects of Kalman filters as well as some of their most important properties.
Heuristic derivations are given of the Kalman filter ‘equations for both con-
tinuous time and discrete time dynamic systems. It is shown that the state mean
values propagate according to the same observer equations as given in Chap. 4.
Moreover it is shown that the state noise propagates according to the time
dependent Lyapunov equation derived in Chap. 6. When measurements are
made on the system this equation has to be modified with a term which
expresses the decrease of uncertainty which the measurements make possible.
The combination of these two results yields the main stochastic design equation
for Kalman filters: the Riccati equation. Solving this equation immediately
gives the optimal observer gain for a Kalman filter. Combining a Kalman filter
with optimal or LQR feedback results in a very robust controller design: the
LQG or Linear Quadratic Gaussian regulator.

7.1 Introduction

In many practical situations very few of the states or functions of the states of a
dynamical system may be measured directly without error. In general this
occurs either because the states or the measurements of the states (or most
commonly, both) are corrupted by noise. In such cases it is reasonable to
consider the problem of finding an optimal estimate of all the states of the
system given noisy measurements of some or all of the other states. Here
‘optimal” may mean optimal in the sense of least squares, minimum variance,
or some other optimality criterion.

Briefly this can be accomplished by forcing a mathematical model of the system
dynamics to follow the states of the plant or control object itself. The effects of the
state noise are accounted for by effectively propagating the state noise through the
same mathematical model and filtering it from the state estimates with a weight
depending on the measurement noise. Recognizing that no analytical solution is
actually required, the state and noise differential equations are solved recursively
to find the state estimates. One of the most common such mathematical models

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 7, 431
© Springer-Verlag Berlin Heidelberg 2008
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and its associated noise suppression algorithm is called a Kalman filter. Currently
the large computational burden which this entails is often placed on a digital
computer but in some cases may also be carried using analog methods. It is also
possible to apply the basic Kalman filter to parameter estimation and/or nonlinear
processes though the sense in which it is optimal is changed.

Kalman filters are at present used in many of the control systems which are
familiar. Navigation systems for airplanes, ships and spacecraft based on such
filters are very common and applications to automotive navigation systems are
currently in production in several companies. Attitude control for these trans-
port systems, including optimal estimators are also becoming common. Posi-
tioning systems for oil well drilling platforms, which require great accuracy and
where cost is not a object are also a natural application area. Automotive engine
controllers using nonlinear Kalman filters have recently been put into produc-
tion and will become more widely used as emission restrictions for automobiles
become more stringent. Thus Kalman filters are becoming more prevelent as
the desired accuracy and functionality of every day products increases and the
price of microprocessors and microcontrollers continues to fall.

In order to use the Kalman-Bucy algorithm effectively, its method of opera-
tion should be understood. This is particularly true when the algorithm is to be
applied to discretized systems. In order to show how the original linear algo-
rithm works, the next three sections of this chapter will analyze and describe the
linear continuous and the discrete Kalman filters (CKF and DKF). The use of
optimal stochastic observers together with optimal (LQR) controllers will be
discussed in the final section of this chapter. Such systems are called LQG or
(optimal) Linear Quadratic Gaussian control systems.

7.2 Continuous Kalman Filter

The system for which a continuous Kalman filter (CKF) is to be realized has the
usual form except that noise sources are added to model the system distur-
bances. The state equation is

x(1) = A(0)x(1) + B(r)u(r) + B, (1)vi(7) (7.1
and the output equation is

y(2) = C(0)x(2) + v2(2). (7.2)

For a Kalman filter to exist for the system above, it is necessary that the system
be completely observable (or reconstructable). Alternatively the unobservable
portion of the system has to be stable.

The term v (¢) models the process or state or noise: this disturbance is usually
built into the control object itself. v,(7) is the observation or measurement noise
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which is most often external to the control object. Most often the components
of the state and measurement noise sources are assumed to be uncorrelated. It is
in other words assumed that the joint noise process can be described by white
noise with a matrix intensity,

Ry(t1,0) = E{ {“(’1;] [vi7(12) vg(zQ)]} =Vt — 1), (1.3)

Vol

where clearly,

Vi(ti, ) Vit t
_ [ u(t, ) Vit ) (74
Voi(ti, 1) Vao(ti, 1)

If Via(...) = V3i(...) =0 then the state and measurement noise sources are
uncorrelated and this will be assumed initially for the sake of simplicity. Also it
will be assumed that Vy(...)>0. In other words there is noise on all the
measurements.

The initial conditions for the control object are

E{x(t)} = xo, (7.5)
E{[x(ty) — Xo][x(to) — Xo]"} = Qy. (7.6)

A linear, full order, optimal, stochastic observer is to be constructed which
has the general form,

X(1) = M(1)X(1) + N(2)u(1) + L(2)y(2), (7.7)

where M(7), N(7) and L(¢) are to be determined. Clearly, one should choose
B(7) = N(¢) immediately on the basis of the observer derived in Chap. 4. The
basic requirements of this observer are that 1. the state estimates are unbiased
and 2. the covariance of the state estimate error is a minimum.

A method of dealing with this problem is to focus on the error equation as in
Chap. 4, where the error is defined by the difference between the states and the
state estimates,

e(r) = x(1) — x(1). (7.8)

If the observer equation is subtracted from the state equation including noise
sources, assuming that B(7) = N(7), one obtains
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é(1) = x(1) — x(1)
= A(1)x(1) + By (0)v1 (1) — M()X(1) — L(2)C(1)x(1) — L(1)v2(2)

7.9
= [A(1) = L(OC(0)]x(1) = M(O)x(2) + By ()vi(2) — L(1)v2(0). 7

Taking the mean value of both sides of this equation, since the order of
expectation and differentiation can be reversed (they are both linear operations)
and the mean values of the noise sources v;(7) and v, () are zero, it is clear that
for an unbiased error that it has to be true that

M(z) = A(r) — L(¢)C(z). (7.10)
Thus the observer of equation (7.7) has to have the form,

(1) = [A(r) — L()C(0)]X(t) + B(r)u(t) + L(1)y (1),
or
X(1) = A(1)x(1) + B(2)u(r) + L(0)[y(1) — C()x(2)]. (7.11)

This is the equation for the optimal observer and it is the same as for a deterministic
observer. It suggests that the state estimate is the mean value of the state,

x(1) = E{x(1)}. (7.12)

The initial condition for the estimation error is e(fy) = x(z9) — X(#)) = ey.
Using the value for M(7) in Eq. (7.10), the error differential equation
becomes

Vl(f)}

(7.13)
Vo (t

(1) = [A(1) — L)C(]e(r) + [By(1) — L(7)] [

Equation (7.13) has the same form as the system analyzed with the time dependent
Lyapunov equation in Chap. 6, if the overall noise input matrix is redefined to be
B! (1) = [B,(r) — L(¢)]. Thus it is possible to write down immediately the equation
which describes the time development of the variance of the reconstruction error:

Q(1) =[A(1) — L(NC(1)]Q(1) + Q([A(r) — L(C(1)]"

(7.14)
+ B, ()Vi(1)BI(2) + L(1)Va()LT(2).

The initial condition for this differential equation is Q(#) = Q.
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Using the solution to the LQR problem of Chap. 5, it is possible to find the
optimal value of L(z) which minimizes the estimation error covariance matrix
from Eq. (7.14). In Appendix C it is shown that this gain is given by

L(1) = Q(C ()V; (7). (7.15)

This is the Kalman gain matrix. As L(7) is time dependent, the filter is in fact
optimal in time at every instant.

Using the result above for the Kalman gain, a more compact and convenient
form of equation (7.14) can be obtained which is the optimal observer Riccati
equation:

Q(1) = A(1Q(7) + Q1A' (1)

(7.16)
+ B, ()V1(1)BI () — Q(t)CT () V5 () C(1)Q(1).
Equations (7.11) and (7.16) are the solution to the optimal stochastic observer or
Kalman filtering problem.
The initial conditions for the state estimate time update and the covariance
time/measurement update are the expected start values of the state vector, x(),

E{x(10)} = x(10), (7.17)

and the expected start value of the error covariance matrix, Q(t),

E{ [x(10) = X(10)][x(10) = X(10)]" } = Q(t0). (7.18)

This is effectively the information available to the filter about the system before
it is started up.

The term A()Q(¢) + Q(#)A”(¢) above in Eq. (7.16) represents the internal
response of the system due to the state noise input B,(¢)V;(¢)B! () (which
increases the statistical uncertainty because of the state noise). These three
terms together with the time derivative are the time dependent Lyapunov
equation for the system. The negative term, —Q(#)C” (¢)V, 1(£)C(#)Q(t), repre-
sents the decrease the overall uncertainty as a result of the measurements. One
can think of the solving of the Riccati equation as a method of using the apriori
information available about the state and measurement noise to find the error
covariance of the system at a given time ¢.

Thus a Kalman filter is constructed in such a way that it keeps track in time
of the two main variables which describe the Gaussian distributed stochastic
state vector: its mean value, X(¢), and its error covariance matrix, Q(7). Notice
also that the measurement noise in Eq. (7.13) goes directly into the reconstruc-
tion error and is multiplied by the observer gain, L(z). This implies that a large
gain will lead to a large measurement noise sensitivity.
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The Kalman filter as derived above can be shown to be the minimum mean
square linear estimator and a better linear estimator cannot be made using any
techniques. It can also be shown that under certain additional assumptions
(Gaussian initial conditions, state and measurement noise) the Kalman filter is
the best minimum mean square estimator of all estimators, linear or nonlinear.

The gain in the Kalman filter is obviously mainly dependent on the aprori
noise assumptions embodied in V;(7) and V, (). This means that in principle the
necessary gain can be computed off line and stored for later use. This makes it
unnecessary to calculate the Riccati equation on line though in fact this is quite
possible. This is technically possible because in contrast to the optimal regulator
or LQR Riccati equation, the observer equation is solved forward in time: it has
initial conditions rather than terminal constraints. Moreover Q(7) is symmetric
(containing n(n + 1)/2 independent elements) and this is some aid in saving
computation. Not having to solve the Riccati equation on line however reduces
the computational burden significantly.

Control objects which are characterized by constant (or approximately con-
stant) process and measurement noise intensities lend themselves to the use of a
constant gain matrix L(¢). This is because for such systems, Q(z) goes to a
constant value for large times which is independent of the initial conditions. In
the time invariant case with constant system matrices and constant noise
intensities, a constant solution can be obtained by setting the time derivative
in Eq. (7.16) equal to zero. This yields the algebraic or time independent Riccati
equation. The solution to this equation gives the error variance of a Kalman
filter which is optimal for steady state operation,

0=AQ+QA" +B,V,B/ —QC'V;'CQ, (7.19)
and from which a constant Kalman gain is obtained which is
L=QC"v;' (7.20)

Under midely restrictive conditions equation (7.19) provides a gain which makes the
Kalman filter asymptotically stable with A, = A — LC. Such an observer is an
optimal steady state observer. This observer is often used instead of a time dependent
one even though its performance is less than optimal — it is only optimal in the sense
that its error covariance is minimum only for large times (or in the steady state) with
respect to all other time invariant observers at the selected operating point.

7.2.1 Block Diagram of a CKF

A block diagram of a continuous Kalman filter can be found on Fig. 7.1 while a
summary of the equations which characterize it and the process to which it is to
be applied are given in Table 7.1. The process or system to be filtered must be
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Fig. 7.1 Block diagram of a v, (1)
conventional continuous
Kalman filter. The double

lines indicate that vector B,
quantities are being v, (1)
connected
(1) x(1)
+ +
B I c
y(?)
V()
— 1 AQ+QA"+B, VB
u(r) + Qn 1 QW +
V,(1) QCTV2—1CQ
L
y(0)
B C

linear or linearized. It is characterized by the dynamic, control, and output
matrices: A(z), B(#) and C(7) respectively. In addition to the control input u(z),
the system is driven by two vector, zero mean, normal, and independent white
noise sources. These are the state noise, v|(¢), and the measurement noise, v»(7),
with covariance matrices V(7) and V,(r) respectively. These matrices are
assumed to be known for the process to be filtered. The equations given assume
that the different state noise sources may be ‘mixed’ (to create correlated state
noise) and possibly scaled by the input gain matrix B, (7). The actual process and
measurement descriptions are given in the first row of Table 7.1.

The Kalman filter itself is shown in the middle and bottom of Fig. 7.1 and
has the same form as a Luenbuerger observer with a gain L(7). It has two main
elements: the state estimate time/ measurement update and the covariance time/
measurement update.

The state estimate time update is simply an exact copy of the dynamics of the
process (as well as they are known) fed with the same control input as the system
itself. Such an observer is called an identity ovserver. If one imagines that the
process model has no inputs but u(z) then its states will be the zeroth order
estimates of the states of the process itself.
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The state estimate measurement update involves first finding the output
innovations or residuals e(z) = y(7) — C(¢)x(¢) = y(¢) — y(¢) which are the dif-
ferences between the outputs of the process, y(7), and the estimates of the outputs,
y(#). The second step is to multiply the innovations with the weighting matrix,
L(¢), and to add the results to the summing junction of the process model.

The matrix L(z) is again the Kalman gain matrix and its elements are roughly
the ratios between the statistical measures of the uncertainty in the state estimates
and the uncertainties in the measurements. If the elements of V() are small
(corresponding to little state noise) while V,(¢)’s are large (great measurement
noise) then this means that the measurements cannot be trusted and L(¢) will be
small. Thus the residuals will only give small corrections in the state estimates and
the filter’s output will be dependent mostly on the process model. Conversely if the
elements of V(7) are large while V;(7)’s matrix elements are small then there is a
great deal of state noise but the measurements can be trusted and L(7) ’s elements
will be large. The residuals will then have a great influence on the state estimates.

In order to find L(#), the time development of the assumed state noise must
be projected and the effects of the measurement noise taken into account using
the Riccati equation, Eq. (7.16). This is the function of the block in the center of
Fig. 7.1 and it is of a completely different nature than the state estimate time/
measurement update component of the filter. It has no inputs from the system
itself but only ‘internal” inputs V;(z) and V,(¢), which again are assumed to be
known. These are inserted into the matrix Riccati equation as shown.

One of Kalman’s contribution was to show that the gain which yields the
minimum variance and least square error estimates of the states is given by
L(1) = Q(¢)C"(1)V5 ' (¢). Thus another way to look at the filter of Fig. 7.1 is a
Luenberger observer with a stochastically optimized gain, the Kalman gain, L(¢).

Example 7.1. Time Dependent Kalman Filter

This example concerns a Kalman filter designed around a first order low pass
filter. The system equations are

X(t) = —ax(t) + bu(t) + vi (1), (7.21)

W(1) = x(1) + n(0), (7.22)

where a and b are constants and v;(¢) € N(0, V) and vy(¢) € N(0, V) are
white noise sources such that

E{vi(0)} =0,R,, (1 — 12) = 07 8(t1 — 12), (7.23)
E{vy(1)} = 0, Ry, (1 — 12) = 028(t1 — ). (7.24)

The initial conditions for the system are E{x(0)} = 0 and E{x*(0)} = go. The
Riccati equation for this system can be written as
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. 1
q=—2aq+0, — <J—Z> q. (7.25)

V2

In this simple case the Riccati equation can be directly integrated to find ¢(7):

_ q1 + 42
) =0 T ) o+ e T -

=q(t) — q1, for t— oo,

where oo = /a® + (02 /02)). 1 = 03 (& — a), g2 = 03, (& — a). The optimal time

V)

dependent observer for this system is then
X = —ax+bu+ (q(t) /o) (y — %), %(0) =0, (7.27)

— X =—a%+bu+(q/0l)(y— %), for t— oo, (7.28)

where the Kalman gain is obviously

I(1) = L(1) = 0()CT (1), (1) = q(1) /.. (7.29)

Notice that for large ¢ the Kalman gain is:

() =T =\ Ja 4 (02 )o2) —an T2 for 1—o0.  (7.30)
V2

In other words the Kalman gain is approximately proportional to the square
root of the ratio of the state noise intensity to the measurement noise intensity.
Note that this result is not dependent on the deterministic input signal.

The response of the Kalman filter above has been simulated for the system
parameters a = b = 1,0, =0.5,0,, = 0.1. The results are shown on Fig. 7.2.
The response of the system to the square pulse input of the first box in the figure
is shown on the second figure. It is the typical response of a first order system
corrupted with white state and measurement noise. The output of the system
with measurement noise is superimposed on the actual state of the system. Also
shown for reference is the uncertainty in the state estimate, x(z) £ 1/¢(¢). The
third figure shows the state and the state estimate (which is smoother than the
state). Even in the presence of a large state noise component, the state estimate
is close to the actual state of the system.

It should be noted that the remarks made in the last chapter with respect to
the accuracy of simulations using noise and deterministic differential equation
integration algorithms also apply to systems which include Kalman filters here.
Only results which are approximately correct can be expected. This is true here
and Fig. 7.2 exemplifies this in the error covariances calculated: they are not
exactly what may be predicted theoretically.
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Fig. 7.2 Simulation of the response of a Kalman filter for the first order system of Example 7.1.
The three figures show the input signal, the state and output of the system and the state and state
estimate of the system. The smoother trace in the last two figures is the state estimate

Because of the time dependence of the error convariance, the Kalman gain is
time dependent as show in Eq. (7.29). In fact this gain is shown in Fig. 7.3 for the
same simulation shown in Fig. 7.2. It should be noticed that the Kalman gain
rapidly reaches a final value which is close to a constant which is for this example,

I(t — 00) = /14 (0.5/0.1)* — 1 = 4.099, (7.31)
20 [
4 OO S N O U S O O I
5 U0 O O O N O S
Si ....... ]
0 i i i i i | i i | i
0 2 4 6 8 10 12 14 16 18 20 22

Fig. 7.3 Time dependent Kalman gain for the Kalman filter of Example 7.2
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as predicted by Eq. (7.30). That this commonly is the case is often used to justify
the use of a constant Kalman gain even though it is in principle time varying.
This implies that often the Kalman gain for a given set of noise sources can be
calculated off line, thus simplifying the use of the filter. The simulation was made
with SIMNON, Elmquist (1975). O

Example 7.2. Estimation of the States of a Hydraulic Servo

This example is based on the hydraulic servo cylinder in Example 3.26. What is
desired is to construct a Kalman filter which can be used to estimate the state
variables of the cylinder given noisy measurements of the velocity of the
cylinder in the stationary state.

In Example 3.26 it was shown that the state equations for the cylinder can be
written

(1) = %(—cfv + Ac(p1 = p2) +);

20 =8 (a0 o ) +9) (1.32)
b

pa(t) = I_/(AL'V + Ci(p1 — p2) + q)-
Here the first state equation in the original model has been ignored and the
orginal state and input variables have been used.

In real estimation and control problems it is always advantageous to reduce
the order of the system if possible. Here the order of the system can be reduced
by subtracting the last equation from the second in Eq. (7.32). Moreover the

leakage terms are small and can be ignored. Thus the system reduces to

A,

. Cr

O VAR V2 733
. 284 2 '
Ap(t) = — Bch—i—VBq.

Often hydraulic cylinders are very poorly damped so that the damping term,
Cr/M, is small. The state equation (7.33) can thus be reformulated as

X| = X2,
5 s (7.34)
Xy = —wyXx1 + Wy,

where u=gq, x; =v, x; = (4./M)Ap, of =2BA>/(VM) and @&;=2BA,/
(VM). These equations have the same form as those for an undamped,
forced harmonic oscillator, see Example 4.4. The measurement which is to
be made is



7.2 Continuous Kalman Filter 443

v =1 m[“} (7.35)

X2

The state noise sources will be assumed to be zero mean white noise such that
vin(t) € N0, V111) on x; and vixa(f) € N(0,V122) on x,. The measurement
noise is assumed to be of the same type and is given by v,(z) € N(0, V3). The
Riccati equation which must be solved is

0=V, —QC’V;'CQ +AQ + QA" or
|V 0 [(]11 qi2 ll 1 qi qlzl
0 Vin g gn||0] V2 qi2 492 (7.36)

+

0 Iilqgun g N qu g ][0 -}
—w% 0[gq12 q» qi2 gn ||l 0 '
This matrix equation gives three quadratic equations which must be solved simul-
taneously to find the matrix elements of Q and hence the Kalman gain matrix:

Q%l
0=V ——+2
111 V2+ q12,

qi11412

0=0—
Via

— wyqn1 + 42, (7.37)
2

0="Vin— 7o 2wiqia.
Vs

The solution of these equations is

qi» = —wyVs + VWi Vi + VinVa,
g =V V2V + 2q12), (7.38)

qi1q12
Vv, ’

q»n = U—%qn +

where the positive sign has to be selected in the first equation in order for Q to
be positive definite. The Kalman gain can then be calculated to be

_ quu qu2] 1] 1 1
L= 0V1:{ H ]: 7.39
QC'V, 0 anl 0] 75 Vz[q” q12] (7.39)
0

Example 7.3. Estimation of a Constant

In many cases Kalman filters are not only used to estimate states but also
constants or parameters in the model of the plant which is of interest. Such
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applications are becoming increasing common because of the desire to use less
time adjusting control systems for different examples of the same product.
Such adjustments are costly and cannot be maintained during product ageing
and wear. Moreover the more complex algorithms necessary are easily within
the performance envelope of inexpensive modern microprocessors or
microcontrollers.

Let the state x(¢) represent the constant. A constant can be represented as the
initial condition of an integrator with no input. This constant is then given by
the state equation,

X(f) =0, (7.40)

with the initial condition x(0) = (x¢), which has a variance ¢(0) = go. Assum-
ing a measurement of the variable is made with observation noise, v,(¢), the
measurement model is

»(1) = x(1) + v2(2), (7.41)

where v,(7) is white noise with an intensity, V>, which is constant.
An observer for the system can be constructed by appending an innovation
based on the measurement to the state equation (7.40),

¥(1) = 1) [v(r) = (1), (7.42)

where the initial condition is X(0) = (xo) and /(¢) is the Kalman gain. From the
system model this gain is determined as

I(1) = an) (7.43)

i =-L2 (7.44)

with the initial condition ¢(0) = go.
This simple equation can be integrated directly and the solution is

qoV>
=272 7.45
q(1) 7yt ol (7.45)

for t > 0. From this the Kalman gain is

q0
() = ———, 7.46
(1) Vs + qot ( )
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for ¢ > 0. It is interesting to note that as ¢ becomes large, the error variance, ¢(7)
goes to zero as does the Kalman gain. Thus for large times the estimated
constant or parameter becomes constant and nothing in the algorithm can
change it, not even new and possibly significant measurements. a

Example 7.4. Estimation of a Slowly Varying Constant

It is possible to rework the observer above so that it can estimate a constant
effectively over a longer time horizon. This is done by using a slightly more
complex model for the dynamics of the constant. To include the possibly of long
term changes in the value of the constant, it can be modelled as an integrated
white noise process, i. €., a Wiener process. The model then becomes

x(t) = vi (1), (7.47)

y(1) = x(2) + va(1), (7.48)

with v(¢) and v, (7) white noise sources with zero mean and intensities V; and
V5 respectively. The Riccati equation for this system is

(7.49)

with the initial condition ¢(0) = ¢¢. Equation (7.48) can be integrated directly
and yields for ¢() the expression

q(t) = V1 Vs tanh(\/%t—&—tanh(\/%)). (7.50)

The time dependent Kalman gain is of course given by

_a0
I(1) = v 7 for 1 — co. (7.51)

The observer for this system can be written down immediately as

(1) = (0)y(1) = %(0)]. (7.52)

It is interesting to look at the frequency response of the observer when it attains
steady state operating conditions. The transfer function from the filter ‘input’,
(1), to the filter output, the state estimate, can be found by Laplace transforming
equation (7.52) and solving for the output divided by the ‘input’. This yields

o T
H()—iﬁ_m. (7.53)
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This is a first order low pass filter with unity gain and a cut-off frequency which
is v/ V1/V>. The filter is apparently attempting to separate the signal (informa-
tion about the constant) from the background white noise with a first order
filter which is the best it can manage, given the system order. 0

In the examples in this section analytic solutions for the Kalman gain have
been obtained as far as is possible. In general, if this is possible, it gives the most
useful form for the Kalman gain as one can see immediately the effect of
changing the nature of the noise source and of changing the system parameters.
It is also a valuable way see the sensitivity of the filter to possible modelling
errors and to check the correctness of the solution which has been found. Even
when it is not feasible to find exact analytic solutions, perturbation or other
forms of approximate analytic solutions can often be obtained. The alternative
is to obtain numerical solutions and to plot these as a function of the parameter
changes or other effects which one is investigating. This gives an idea of how
small changes affect the system under study close to a given operating point.
Unfortunately this gives a very poor feeling for the overall behavior of the filter
under very different operating conditions, for example during initialization,
significant operating point changes or in the presence of outliers (large, but
statistically insignificant noise bursts or pulses).

7.3 Innovation Process

One of the most interesting and important characteristics of a Kalman filter is
the nature of its innovations or residuals: the difference between the measured
output(s) and the estimate(s) of the output(s). This quantity is defined by the
equation,

in(1) = y(1) — C(0R(2), (7.54)

where the hat indicates the estimate of the state x(7). This may be thought of as
the bearer of the extra detailed information on the state of the observer (apart
from that in the observer model itself) carried back to the observer model input.
The purpose of this section is to show that under ideal circumstances, the
innovations process is white noise which is the same size as the measurement
noise source. In ideal conditions (accurate model), the state noise source does
not contribute to the innovations, a somewhat surprizing conclusion.

In this section only the case of uncorrelated, zero mean, white state noise,
vi(#) (intensity V(7)) and measurement noise, v,(#) (intensity V,(z)) will be
considered. The method of attack will be to calculate the covariance matrix of
the noise source associated with the innovations in Eq. (7.106). The estimation
error will as usual be defined by

e(r) = x(1) — x(1). (7.55)
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If the integral of the innovations is denoted by n(¢) then,
n(z) = y(2) — C()x(1) = C(r)e(1), (7.56)

with the initial condition n(zy) = 0. Using the same considerations as used to
derive equation (7.13), the following matrix equation can be written down for
the errors and innovations:

0] [0 e s [y o

where L(7) is the Kalman gain matrix. This is a set of linear matrix differential
equations driven by a noise source. Such a system has a noise output which can
be calculated using the time dependent Lyapunov equation, of Sect. 6.4.3. The
result is

} . (1.57)

. A(t) — L(¢)C 0 Tin _ T T T
o) = (1) c(,()t) (1) O]Q(ZHQ(Z) AT(r)-C (Ot)L (1) Co(t)
I —L(0) || Vi(r) 0 I 0
o 0 Va2 ||-L7() 1]' (7.58)

The initial condition for the integration of this equation is
Q(79) = diag[Q, 0]. Choosing a block structure for the system corresponding
to the four obvious blocks in Eq. (7.58) the following structure for Q(z) is
suggested

Qi (1) le(l)} (7.59)

Q) = {Qﬂm Q)]

Using this block structure and carrying through the multiplication indicated in
Eq. (7.59), the following subsiduary matrix differential equations can be
derived:

Qui(t) = [A(r) = L(1)C(0)]Qy (1) + Qi ()[A(r) — L(1)C(1)]" (7.60)
L V1(1) + L)V ()L (2), '

Qi(1) = C(1)Qy (1) + Quu(1)[A(r) — L(1)C(1)]" = V2 (1)L (z),  (7.61)

Qu (1) = C(NQN (1) + Q12 (1)CT (1) + V(). (7.62)

The initial conditions for the integration of these equations are Qy; (%) = Qy,
Q1, (%) = 0 and Qx(79) = 0 respectively.
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The first equation is for the Kalman filter itself. Substituting for the Kalman
gain in Eq. (7.60) from L(¢) in equation (7.15), the standard Riccati equation
(7.16) for a Kalman filter is obtained. Thus the first equation is simply the error
covariance of the estimation error.

If the Kalman gain in Eq. (7.15) is used in Eq. (7.61) then it is reduced to a
homogeneous equation:

Qux(1) = C(1)Qu (1) — Va(1)V3 ' (1) C(1)Qua (1) + Qo (1)[A(r) — L(f)C(l)]T

or

Qua(1) = Qua(N[A(r) — L(1)C(1)]". (7.63)

Given the initial condition for this equation, Q;,(7) = 0.
Using this solution for Q,(¢) in the last equation, (7.62), it is found that the
variance of the innovation error is the solution of the equation,

Qs (1) = Va(1). (7.64)

The integral form of this equation is

Qx (1) :/ Va(t)dr. (7.65)

[

The covariance matrix of a linear system can be written in terms of the variance
matrix as

Q(11)®"(r2,11), forn>1

: (7.66)
D(11,1)Q(12), fort;>1,

R(t,1) = {

where ®(z, 1) is the transition matrix of the system. The transition matrix for the
portion of the system in Eq. (7.57) which produces the innovations is I, the identity
matrix. Thus the covariance matrix which corresponds to equation (7.65) is

min(tl,tz)
Rn(ll, 12) = / Vz(‘t)d‘[. (767)

fo

This matrix shows that the innovations process is a white noise process with
the same intensity as the measurement noise. Thus if a perfect model of the system
is used in a Kalman filter, the errors between its estimates and the state of the
system will be white noise. In fact this is one of the most important ways of
judging the quality of a given Kalman filter design: the whiteness of the noise on
the innovations. In general failure to use a perfect model of the plant will
introduce deterministic excitations into the white noise of the innovations signals.
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Fig. 7.4 Innovation in the Kalman filter for the first order system of Fig. 7.2

Example 7.5. Innovation for a Simple Kalman Filter

As an example of the dependence of the dependence of the innovation of a
Kalman filter only on the state noise, the system of Example 7.2 is used. For the
simulation of this example, the innovation was also calculated. This quantity is
shown below in Fig. 7.4. In this example, o,, = 0.1 , which agrees approxi-
mately with the £3¢ amplitude seen in the figure. This simulation was made
using SIMNON, Elmquist (1975). 0

7.4 Discrete Kalman Filter

Discrete Kalman filters (DKF) are based on the same considerations as the
continuous Kalman filters but their form can vary more. This is because the
method of administering the time sampling and equation updating may be
different from one application to another and thus from one realization to
another. Two methods of constructing a discrete Kalman filter will be treated
here: one which shows clearly how the filter works but has an open form and a
second which will yield a closed form which is on the surface apparently more
like a continuous filter. In all cases it must be remembered that the dynamics of
differential and difference equations are different because the active element in
a continuous block diagram is an integrator, while in a discrete diagram it is a
time delay. This also helps to give the discrete algorithm a different appearance
and function than in the continuous case.

7.4.1 A Real Time Discrete Kalman Filter (Open Form)
The system which is to be considered has a form which is

x(k + 1) = F(k)x(k) + G(k)u(k) + G, (k)v (k) (7.68)
and the measurement equation is

y(k) = C(k)x(k) + va (k). (7.69)
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In Egs. (7.68) and (7.69), vi(k) and v,(k) are zero mean, uncorrelated white
noise sequences with covariances Vi (k) and V, (k). Here it will also be assumed
that both noise sources have a Gaussian distribution for the sake of simplicity.

What is required is a recursive estimator for the state of a system at the time
1y (or k here) just before and just after a measurement y(k). If the state before
the measurement is denoted by X(k)~ and the state after a measurement by
%(k)*, then an estimate is to be made of the form,

%(k)" = M(k)x(k)™ + L(k)y(k), (7.70)

where the M and L are possibly time varying gains which are to be determined in
such a way to obtain optimum filtering characteristics.

Concentrating once again on the filter error, the errors before and after
measurements are given by

(k)" =x(k) +e(k)", (7.71)
x(k)” =x(k) +e(k). (7.72)
Starting with the first equation above, solving for e(k)",
e(k)” = x(k)* —x(k). (7.73)
Then substituting for X(k)* from equation (7.71) and for X(k)~ from the Eq.
(7.72) one obtains, remembering that y(k) = C(k)x(k) + v2(k) and after collect-
ing like terms,
e(k)" = [M(k) + L(k)C(k) — I)x(k) + M(k)e(k)™ + L(k)v,(k). (7.74)
The expectation value of the noise source is zero and the expectation value of
the errors is required to be zero. This means that taking the expectation value of
both sides of equation (7.74), the requirement is that

M(k) =1 — L(k)C(k). (7.75)

Using this expression in Eq. (7.70), the following estimator equation can be
found,

(k)" = [I = L()C(k)Jx(k)~ + L(k)y(k)

(7.76)
(k)” +L(k)[y(k) — C(k)x(k)].

This equation shows how the measurement of the output, y(k), is to be used to
progress from the time before sampling to the time after sampling. This equa-
tion is called the state measurement time update equation.
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To obtain an equation for the error covariance matrix measurement update,
equivalent to that above for the state measurement update equation, it is
convenient to start with the estimation error which can be shown from Egs.
(7.69), (7.71), (7.72) and (7.76) to be

e(k) = [I - L(K)C(k)Je(k)™ + L(k)va(k). (7.77)
The error covariance matrix is by definition,
Q(k)" = Efe(k)e"(k)"}
= E{[l - LI)C(k)]e(k)[e” (k) (1 — LI)C()” + ()L (k)] (7.78)
+ Lk)va (k) [e” (k)" (1 = L(k)C(k))" + v] (k)L (K)]},
where Eq. (7.77) has been used. By definition
E{e(k) e’ (k) } = Q(k)",  E{v2(k)v; (k)} = Va(k). (7.79)
The measurement errors and noise source sequences are uncorrelated, thus
Efe(k) vi(k)} = E{va(k)e" (k) } =0, (7.80)

which can be used to simplify Eq. (7.78)
Q(k)" = 1 = LI)C(R)IQ(K)~[I = L)C(k))" + L(k) V2 (k)L (k). (7.81)

This is the error covariance measurement update equation.

In order to fix the optimal value of the Kalman gain, L(k), some criterion for
optimality must be given. In this case the trace of the diagonal elements of the
error covariance matrix should be minimized. This corresponds to minimizing a
quantity proportional to the total A.C. power in the error,

J(k) = tr E{e(k)"eT(k)"} = tr Q(k)*. (7.82)

To carry this through with the system in matrix form, the following derivative
identity for matrices is required,

% [tr(ABAT)] = 2AB, (7.83)

where B has to be symmetric. The differentiation is to be carried out with
respect to L(k) because the index or criterion function is to be minimized with
respect to the Kalman gain.
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Using Eqs. (7.71) and (7.72) in Eq. (7.82) and (7.83) and setting the result
equal to zero gives

—2[1 = L(k)C(k)]Q(k) C” (k) + 2L(k)Vy(k) = 0. (7.84)
Solving this equation for L(k) yields the optimum (Kalman) gain,
L(k) = Q(k)~C(k)[C(k)QUK)~CT (k) + Va (k)] " (7.85)

It can be shown by calculating the Hessian matrix of J(k) that this value of the
gain actually does give the minimum value of the index. Substitution of this
value of the gain into Eq. (7.81) yields a simple expression for the covariance
measurement update,

Q(k)" = I = L()C(k)]Q(k) ", (7.86)

after some manipulation.

Thus the equations that describe the measurement updating of the
estimate of x(k) and the error covariance matrix are Equations (7.87)
(repeated from (7.76)) and (7.88) with the optimal gain given in equation
(7.89) are

X(k)" = %(k)” + L(k)[y(k) — C(k)x(k)], (7.87)
Q)" = 1-L(k)C(h)Q(k) ", (7.88)
L(k) = Q(k)~CTIC(k)Q(k)C" (k) + V2 (k)] . (7.89)

What must now be accomplished is to describe how the state and covar-
iance estimates propagate between sampling instants. This can be done in
more or less the same way as for a continuous time system. Consider the
system estimator

X(k+ 1) = F(k)x(k) + G(k)u(k). (7.90)
Subtracting Eq. (7.68) from this equation, the following result is found,
e(k+ 1) =F(k)e(k) — G,(k)v,(k), (7.91)

where e(k) = x(k) — x(k). Taking the expectation value of both sides of equa-
tion (7.40) shows that the estimator above will be unbiased (will have mean
value zero) since the mean value of the error and the noise is zero.

The error covariance is given by
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QU+ 1) = E{e(k + 1)e” (k+ 1)}
= E{(F(k)e(k) — G,(k)vi (k) (F(k)e(k) — G, (k)vi (k))"}
= E{F(k)e(k)e’ (k)F (k) — F(k)e(k)vi (k)G, (k)
— Gy (k)i (k)e” (k)FT (k) + Gy (k)vi (k)v, " (k)GT (k) }

v

or
Q(k + 1) = F(k)Q(k)F' (k) + G, (k) V1 (k)G (k). (7.92)

This is the discrete time version of the time dependent Lyapunov equation.

In order to make the equations above compatible with the measurement
update equations their arguments have to be changed to agree with those used
above:

x(k)” =F(k — D)x(k —1)" + G(k — Du(k — 1), (7.93)

Q(k)” =F(k—1)Q(k — 1) FT(k — 1) + G, (k — 1)Vi(k — )G (k — 1). (7.94)

A summary of the equations of the open form of the discrete Kalman filter
(DKF) is given in Table 7.1 on p. 438.

7.4.2 Block Diagram of an Open Form DKF

The discrete open form Kalman filter has approximately the same block dia-
gram as the continuous version except for the structure of the internal block and
the switching networks required by the sampling process. This may be seen in
Fig. 7.5.

The substitutions above imply that the continuous white noise signals must
be replaced by discrete white noise sequences. In the same way the input and
output vectors are now discrete sampled signals and the operations denoted by
the summing points are to be performed at the sampling times 7, k = 0, 1, 2,....
This does not imply however that the conditions for the validity of the filter
equations have been changed or that the filter is of a principally different nature
than in the continuous case. The requirements of the system to be filtered
(translated to discrete time) and the functions of the covariance time/measure-
ment update are the same as before. The equations characterizing the discrete
process and the Kalman filter are again to be found in Table 7.1. Here they may
be compared to the equations for the CKF.

The main differences between the continuous and the discrete Kalman filters
are the differences that always exist between continuous and discrete systems
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Fig. 7.5 Block diagram of an open form discrete Kalman filter

and the explicit separation that becomes necessary in the time and measurement
updates in time. This is shown in Fig. 7.6. After the sampling time #;_, the state
estimates are X(k — 1) and the error covariances are Q(k — 1)*. Time updat-
ing these estimates and covariances consists of propagating them through the
system dynamics to the time 7 just before a measurement is taken. This is
accomplished by using the discrete time transition matrix of the system F(k) and
the covariance time update equation. At the time update the state estimates and
covariance matrix are denoted by x(k) and Q(k)~. Taking a measurement at a
time #; makes it possible to perform a measurement update bringing these two
quantities into the new time interval as x(k)" and Q(k)". A new time update
can now be performed and so on. Thus the separation of the time and measure-
ment updates in the discrete Kalman filter is due to the fact that measurements
on and inputs to the system may only occur at sampling times. In the continuous
case these activities occur concurrently and at all times.

The main disadvantage that the discrete filter has in relation to the contin-
uous one is exactly the same as that discrete regulators have in relation to
continuous regulators: for finite sampling intervals there is less information
available to the filter about the state of the system because it only works at
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T T
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Fig. 7.6 Time axis showing the explicit time separation of the time and measurement updates
in an open form discrete Kalman filter. Sampling takes place at the time events, #;_; and #.
The detailed method of operation of the filter is indicated on the diagram as the actual
measurement and time update equations shown leading up to the time instant, #;

sampling times. Only when the sampling period approaches zero can the
discrete filter’s response become as fast and as noise free as that of a continuous
filter. The main advantage of the discrete time filter is that it can be easily
realized immediately in a lower level computer language (for example Assem-
bler) in an event driven microprocessor.

Example 7.6. Discrete Estimation of a Constant
A constant can be estimated from the system dynamics and measurement models:
x(k+1) = x(k), (7.95)

y(k) = x(k) + va (k). (7.96)

It is assumed that the noise source v, (k) is a normally distributed white noise
sequence with an intensity or variance V,(k). The initial condition for the
variance is that E{Q(0)} = ¢o.

The time development of the variance is given by equation (7.43). As F = 1
and ¥ = 0, it is clear that g(k 4+ 1)~ = ¢(k)". This means, using Eq. (7.90) in
Eq. (7.89), it is possible to write

(k)™ = q(k)” — qlk)~CT[Cq(k)~CT + V2]~ Cq(k)~ (7.97)

which implies that

q(k)" = = (7.98)
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for this problem. Because of its simplicity and structure this difference equation
can be solved directly by iteration:

+_ 490
)" =g
V>
q(z)-‘r q1q q0
(RS R O
7, Vs (7.99)

1+ k%
The Kalman gain is then
L(k) = %) (7.100)
and the observer
X(k+1) =x(k) + L(k)[y(k) — x(k)]. (7.101)

For large times (k large) it can be seen that the Kalman gain goes to zero and
new measurements are effectively not processed as earlier for the continuous
time analog. 0

7.4.3 Closed Form of a DKF

It is possible to derive a closed form of the Kalman filter equations above. To
accomplish this it is only necessary to substitute Eq. (7.76) and (7.88) into the
right sides of equations (7.93) and (7.94) respectively. This gives

X(k) = F(k = D{X(k = 1) + L(k = 1)[y(k = 1) = C(k — 1)x(k — 1)]} (7.102)
= F(k — )x(k —1) +F(k — DL(k — 1)[y(k — 1) — C(k — )X(k — 1)]
where x(k) = x(k)~ and
Q(k) = F(k — 1)[I = L(k)C(k — 1)]Q(k — F"(k — 1)
+G,(k— 1)V (k= 1)GI(k —1)
=F(k—1)Q(k — )FT(k—1)
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—F(k —1)L(k — 1)C(k — 1)Q(k — 1)FT(k — 1)

(7.103)
+Gy(k—1)Vi(k — )Gl (k- 1),

where Q(k) = Q(k)™.
In the last equations if the Kalman gain is be redefined to be
L'(k) = F(k — 1)L(k — 1) then the Kalman filter equations may be written as

x(k+ 1) =F(k)x(k) + G(k)u(k) — L' (k)[y(k) — C(k)x(k)] (7.104)

Q(k +1) =F(k)Q(KF” (k) + G\ (k) V1 (k)G (k)

(7.105)
— L'(k)C(k)Q(k)F" (k),
with a change in the time index. The second equation is the discrete time Riccati
equation. In this case the Kalman gain is in this case given by

L'(k) = F(k)Q(k)CT (k)[C(k)Q(k)CT (k) + Va(k)] ™' (7.106)

As in the case of the continuous time Kalman filter it is often convenient to
use a steady state solution of the Riccati equation instead of a time dependent
one for linear time invariant control objects. This is possible because in general
the Riccati equation will approach a constant solution for large times. This
comes about because the noise variances of the state and measurement noise
sources are the only active inputs to the Riccati equation. This is made clear in
the block diagram, Fig. 7.7. The closed form of the Riccati equation makes this
straight forward. Table 7.2 on p. 458 shows the equations for the closed form of
the discrete Kalman filter and compares these to the equations for the open
form See Lewis (1992) for a different treatment.

It is often necessary to construct a suboptimal Kalman filter by using a
constant Kalman gain. This is most often accomplished by assuming that
V', and V, are constant and solving the Riccati equation for this assump-
tion. The Riccati equation can then be solved for the stationary case by
setting the error variance on the left hand side of equation (7.105) equal to

Q(k),

Q(k) = F(k)Q(k)FT (k) + G, (k)V (k)G (k) — L' (k)C(k)Q(k)FT(k), (7.107)

and inserting the Kalman gain from Eq. (7.106). This yields a set of coupled
quadratic equations which can be solved for Q(k). Once the error variance has
been found the actual value of the constant Kalman gain can be found. While
the solution found in this way is suboptimal, it will in general be good enough to
obtain stable and accurate observer characteristics around the design operating
point.
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Fig. 7.7 Block diagram of a
closed form discrete Kalman
filter

Vl(k)

v Vz(k)

x(k+1) x(k)

a T .
y(k)
F

V(%)
— ” FQF'+G,V,G,’
u(k) +y Qhk+D) — QW) .
, g .
V, (k)

y(k)

Example 7.7. Discrete Kalman Filter for a Discrete Integrator

A digital integrator is described by the transfer function which emerges when a
Z-transform is taken of a zeroth order hold network in series with an analog
integrator. This is

-1
yez) Tz
= 7.108
u(z) l—az! ( )
The state equations and output equations for a digital integrator disturbed by
state and measurement noise sources are thus

x(k+1) = ax(k) + Tu(k) + v, (k), (7.109)

y(k) = x(k) + vo(k). (7.110)
a is a constant while T is the sampling time interval. It will be assumed that the
state and measurement noise sources are white uncorrelated Gaussian noise
with constant intensities V' and V, respectively.
Equation (7.105) is only a function of k in steady state. This makes it possible
to drop the time index and write:
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I=aQ [0+ Vo] " (7.111)
Q can be found from the equation,

Q:[Q—L]Qa+ V1

» (7.112)
=la—aQ(Q+ V) '|Qa+ V.
This can be reduced to the quadratic equation,
O*+0[(1—a®) Vo — 1] — V1V =0, (7.113)
which has to be solved for Q. The solution is given by
1 2 1 12
0 =5V~ (1-a)Vi] iz\/[Vl (=@ 4V, (1114)

where the positive (definite) solution has to be selected. This quantity depends
on the sign and magnitude of ¢ and the relative magnitudes of V; and V,. When
0 has been found then it has to be substituted into the equation,

aQ
= ——, 7.115
0+ 7 (7.115)
to find the required stationary value of the Kalman gain. 0

Example 7.8. Kalman Filter for a First Order Discrete System

Consider the first order system which was treated in Example 7.1. The
z-transform of the state equation (including a zeroth order hold network)
yields the expression,

z b(l — e 9T)1
o= o (7.116)

This transfer function is easily translated into a state space description which is
x(k+ 1) = e “Tx(k) + b(1 — e “Dyu(k). (7.117)

Assuming noise sources like those in Example 7.1, the discretized model for
the first order system becomes,

x(k+1) = e Tx(k) + b(1 — e Nu(k) + Ty (k), (7.118)

y(k) = x(k) +=v2(k), (7.119)



7.4 Discrete Kalman Filter 461

where the discretized versions of the noise sources in the earlier example have
been used.

If f=e¢ T and g = b(1 — e ) then a Kalman filter for the system above
can be expressed as:

X(k+ 1) =fx(k) + gu(k) + l[y(k) — x(k)], (7.120)
where the Kalman gain is given by
217!
I(k) = fq(k) {q(k) +T—22} : (7.121)
q(k) is found by solving the discrete Riccati equation,

qlk+ 1) =2 q(k) + 2 T* — I(k)f q(k). (7.122)

In the stationary state ¢(k) becomes

li k 1 ‘7% 1 2 272 :tl ‘7% 1 2 272 ’ 45202
]CLnOlO‘I( )H*E ﬁ( —f7) = o 3 ﬁ( —f?) — o +407027,
(7.123)

where the positive sign has to be selected in order that the error covariance is
positive. Using the same input and the same values for the parameters in this
cascasin Fig. 7.2,a = 1,b = 1,01 = 0.5and 0, = 0.1, the results of simulating
the discrete time Kalman filter with a continuous estimation object are shown in
Fig. 7.8. The sample time is 7' = 0.2 sec.

These results should be compared to those shown in Fig. 7.2. It is apparently
the case that the continuous and discrete filters have approximately the same
performance given similar operating conditions. Note also that the innovation
noise level corresponds to o, = 0.1/0.2 = 0.5 in contrast to the earlier example.
See Fig. 7.4. d

7.4.4 Discrete and Continuous Kalman Filter Equivalence

It is not difficult to show that the discrete and continuous Kalman filters
can be derived from each other. In this section it will be shown that the
continuous Kalman filter can be derived from the open form discrete
Kalman filter.

Using the Euler integration approximation to the continuous time dynamics
with a sampling period 7, the system equations can be written
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Fig. 7.8 Simulation of a Kalman filter for a first order system. The input is the same as in
Fig. 7.2 and results should be compared with those shown in this figure. See also Fig. 7.4

x(k+ 1) = I+ AT)x(k) + BTu(k) + B,v,(k), (7.124)

y(k) = Cx(k) + va(k), (7.125)

where vi (k) € N(0,V,T),v>(k) € N(0,%) with the standard initial conditions.

The state estimate discrete update equation can be written down using
Eq. (7.87) and the fact that

x(k+1)" = Ax(k) + Bu(k). (7.126)

This implies that

R(k+1)" =+ AT)x(k)” + BTu(k)

(7.127)
+ L(k+ D[y(k + 1) — C(1 + AT)X(k) — CBTu(k)].

Rearranging and dividing through by T yields
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X(k+1) —%(k) = Ax(k) + Bu(k)

r L (7.128)
+ % [y(k+ 1) — Cx(k) — C(Ax(k) + Bu(k))T].
The Kalman gain is given by
VAN
L(k+1) = Q(k + 1)—CT<CQ(k+ 1)‘CT+72> : (7.129)
from Eq. (7.89) and thus from Eq. (7.129),
L(ki;fl): QUk + 1) CT(CQUk + 1) CTT+Vo)"".  (7.130)
For T'— 0 one has that
. Lk+1) B T
%}H%)#HL(I) =Q(nC'Vv;. (7.131)

This results in the continuous time/measurement update for the state estimate
or state mean value,

AX(1) + Bu(r) + Q(1)CTV; '[y(r) — Cx(1)]
AX(7) + Bu(1) + L(1)[y(1) — Cx(1)];

X (7.132)

which is the same as Eq (7.7) (when it is remembered that X(k7) = x(k) and
L(kT) = (1/T)L(k)). The initial condition for integrating equation (7.132) is
)A((O) = X0.

The same approach as above can be used to derive the continuous convariance
time/measurement update or Riccati equation. The discrete error covariance
update equation is

Qhk+ 1 ' =[T-L(k+ 1)CQ(k+1)7, (7.133)
from Eq. (7.88) and
Q(k+1) = (I+AT)Q(k)(I+ AT)" +B,V,B'T, (7.134)
from Eq. (7.92). From Eq. (7.134) it is clear that

Qk+ 1) =Q(k)" + (AQ(k) + Q(k)AT + B, V,BI) T +0(7%).  (7.135)



464 7 Optimal Observers: Kalman Filters
If Q(k)" is substituted into this expression from Eq. (7.133),

Q(k +1)" =[I - L(k)C]Q(k)~ + [A(I - L(k)C)Q(k)"]T

(7.136)
+ [(IT - L(k)C)Q(k)" AT + B,V BT + 0(T?).
Dividing through by 7" and rearranging this equation becomes
QD — QM) _ s~ + Q) A" + BV,B]
T (7.137)
L(k) _ L(k) _.r L(k) _
- TTCQ(k) —TTCQ(k) A —TCQ(k) .
Now letting 7 — 0 and remembering that Q(kT) = Q(k)™ results in
A1) =A A'(T
Q1) =A(NQ(1) + Q(1)A(T) (7.138)

+B,(1)V1(t)BI (1) — Q(1)CT (1) V5 (1)C(1)Q(1),

which is the Riccati equation for continuous systems. The initial condition for
integrating this equation is Q(0) = Q.

7.5 Stochastic Integral Quadratic Forms

In what follows the problem of combining Kalman filters with LQR regulators
will be considered. In order to evaluate the error which might be involved in
joining such systems together it is necessary to evaluate scalar indexes which
have the form:

J=E /xT(r)R(r) dv+x"(t)P()x(11) 3. (7.139)

lo

Modified techniques of the same kind as above can be used to evaluate such
indexes (where R(7) is symmetric and positive definite and P(#;) is constant,
symmetric and positive semidefinite). Indexes of this type often occur in
optimal control and optimal observer control systems which contain stochastic
signals.

Consider a linear dynamic system which has a form which is,

x(1) = A(0)x(t) + B(0)v(1), (7.140)

where v(f) is white noise with an intensity which is V(¢) and where x(¢) is a
vector stochastic variable subject to the initial conditions x(zy) = X, and
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E{xox}} = Qq. If R() is a symmetric and positive semidefinite matrix (for 7y <
t < t;) and Py is symmetric, constant and positive semidefinite then it can be
shown that

J=E /xT(r)R(r)x(r) dv+xT(1))P(t1)x(t))

to
(7.141)

1

— ir|Pl)Qu+ [ BEV(EB(P(r) de .

t
where

P(1) = /@T(r,z)R(r)cb(r, 1) dv+ ®T (11, 1)P1®(11, 1), (7.142)

where ®(1, 1p) is the transition matrix of the system in Eq. (7.140). Moreover it
can be shown by direct differentiation that P(¢) satisfies the equation

—P(t) = AT()P(1) + P()A(2) + R(2) (7.143)

with the terminal condition that P(z;) = P;.
When ¢y « t; — oo and the matrices A, B, V and R are constant, Eq. (7.142)
reduces to

4]
P(1) = / A TRAC ) gr 4 A (0P A1), (7.144)

t
In the limit when #; — oo if A is stable one finds that

oo

lim P(7) = P, = / A ORAC ) g (7.145)

1 —00
13

which is a constant matrix. Since P(¢) satisfies Eq. (7.143) and large values of 7,
are being considered, it must be so that

0=A"P,+P,A+R (7.146)

which is the time independent Lyapunov equation. This algebraic equation has
a unique solution and it is clear that for large 7,
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J=E /xQnRak@mp+ﬂthmxm)

14

= tr[PQq + (11 — 10)BVB7P,].

(7.147)

Example 7.9. Performance Index of a First Order Filter

In Example 6.28 a low pass filter was considered. The index above for this
simple system if it is driven by a white noise source with intensity ¥ and given
that R = 1 and Qy = Ois,

1
tr[BVBTP, ] = B*VP,, = 32V< ﬂ> (7.148)

. LYy (7.149)

which is the same result which was obtained in the earlier example. The
corresponding index is

1
wo

J= /xTRx dv == V(t; — to). (7.150)

to

7.6 Separation Theorem

Earlier is has been shown that if a full state feedback loop is combined with a
full order observer then the two systems can be designed independently of each
other. If this is done with a an optimal full state feedback system and a Kalman
filter then an even more favorable situation obtains. In this case it can be shown
that the system then becomes optimal overall, both with respect to the feedback
system and the observer. This is fact known as the separation theorem. It is also
known as the certainty equivalence principle.
Consider the index for a LQR regulator. It can be written

J = %xT(tl)Sl(tl)x(tl) +%/[XT(T)R1(T)X(T) +u' (DR (t)u(0)ldr, (7.151)

[}

where x(7) is the controlled variable, R;(f) > 0, Ry(¢) > 0 and S(¢) > 0 are
weighting matrices. Let X(¢) be the state estimate and calculate
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E{x"(0R: (0x(1)} = {[x(1) = %(1) + %(0] Ri () [x(1) = %(1) + x()]}
= E{[x(t) = () Ri () x(1) — %(1)] | (7.152)

From example 6.24 it is known that

E{x(0) = () Ri()x(1) = x(1)]} = 0Ri(0Q()],  (7.153)

where Q(7) is the variance of the estimation error. Moreover the cross product
terms involving the estimation error, e(z), and the state estimates are uncorre-
lated. Thus it is possible to write

E{X"(11)S(0)x(11)} = tr[S(11)Q(11)] + E{X"(1)S(1)x(1) }, (7.154)
E{XT(0)Ry (1)x(11)} = tr[Ry (1)Q(11)] + E{KT (R, (1)x()}.  (7.155)

Using these expressions, the index can be written

1

J=F /[E{f(T(r)Rl(r)X(r)} +u’ (D)Ry(1)u(1)]dr
0

+ E{X"(0))S(1)x(11) } (7.156)

+ tr [/[1 R (1)Q(t)dt + S(11)Q(1y)|.

fo

In this equation it can be seen that the last two terms are independent of the
control applied to the system. It is also known that for the Kalman filter
equation the innovations are a zero mean white noise process with an intensity
V,(1), corresponding to the measurement noise alone. Thus the problem of
minimizing the criterion or index above is a stochastic optimal regulator pro-
blem where the complete state is observed.

It can be shown that the solution to the stochastic optimal regulator problem
is to use a control which is,

u(r) = —K(1)x(1), (7.157)

with K(¢) = Ry ' (1)B” (¢)P(¢), where P(¢) is the solution of the matrix Riccati
equation,
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—P(t) = R (1) = P()B(0)R; ' (1) BT (1) P(1) + A(0)P (1) + P(1)AT (1),  (7.158)

with the terminal condition S(#;) = S;. The minimum value of the criterion is in
this case given by

3]

A S(zl)Q(11)+/R1(t)Q(r)dr . (7.159)

fo

Because of this, the overall optimal linear solution to the state feedback
stochastic regulator problem is given with the linear control,

u(r) = —K(1)x(1), (7.160)

where K(7) is as given in Eq. (7.157). This is also the solution of the deterministic
optimal regulator problem. A similar result can be shown to be true in the case
of correlated state and measurement noise sources. The linear control which is
obtained above is the same that would be found if there were no disturbances
and if the state vector was known exactly: there is effectively no uncertainty in
the feedback law. This explains the name certainty equivalence principle.

The solution above is the best linear solution. It can be shown that if the noise
processes are Gaussian, it is the optimal linear solution, without qualification.
There are other forms of the principle which are even less restrictive than
expressed here. A block diagram of an LQR control system is shown in Fig. 7.9.

Vl(t)

M vy ()

r(t) + +
:»Q: u(r) F@
_ L >

X x(1) 0

Fig. 7.9 Block diagram of
an LQG control system. The

portion of the block diagram

of the Kalman filter which

solves the Riccati equation T
has been dropped for the K

sake of simplicity here
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7.6.1 Evaluation of the Continuous LQG Index

As stated above, when a feedback control system is composed of a LQR
regulator and a Kalman filter it is called an LQG regulator. It is often desirable
to evaluate the performance index of such a system with the given noise inputs.
This can be accomplished by calculating the noise variances of the state esti-
mates and the estimate errors.

Consider first a system which is driven by white noise which has an intensity
Vi(¢) on which noise corrupted measurements are made (the measurement
noise is white and has an intensity V;(7),

x(1) = A(0)x(1) + B()u(r) + v (), t > to, (7.161)

where x(#)) = X is a stochastic vector with mean X, and variance Q. The
measurement variable is given by the expression,

y(£) = C(0)x(1) +va(1), 1 > to. (7.162)
The overall noise in the system is then has an intensity which is

I, — |: V]([) V]z([)

Vai() Va(t) ],t > 1, (7.163)

where obviously Vo (¢) = V{,(1).

An interconnection of a LQR regulator and a Kalman filter can be made by
using the state estimates of the Kalman filter in the LQR regulator in such a way
that

u(r) = —K(1)x(1), (7.164)
where the Kalman state estimates are found as the solution of the equation,
X(1) = A()X(1) + B()u(r) + Lly(z) — C()x(1)], (7.165)
where the Kalman gain is found as
L(1) = Q(C () V5 (1), (7.166)

by solving the relevant Riccati equation (Eq. (7.16) with B,(z) =1 and
Q(%) = Q). The feedback gain matrix is obtained as

K(7) = Ry ()BT (1)P(2), (7.167)

where P(7) is found as the solution of the LQR Riccati equation with
P(7;) = P,. Consider now the vector [X(7), e(z)] = [x(¢), x(¢) — X(7)]. Because
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the state feedback and the Kalman filter are interconnected the overall system is
described by the state equation,

[iiiﬁ“lléféﬁf mA(z) —10<<r>C<r>] Kig]% _Efff ] [28]’”'168)

with the initial condition that [e(1o), X(19)]" = [x(o) — X0, %o]". To find the
noise contributions of the error and state estimates the variance matrix of the
system in Eq. (7.168) has to be found. This can be accomplished by direct
calculation. If,

lQll(f) le(f)]

QL) Qun(1) (7.169)

then this is equivalent because of symmetry to three coupled matrix differential
equations.
Qui(1) = [A(1) = L(NC(1]Qu1 (1) + Qui (N[A(1) — L(1)C(n)]"

(7.170)
+ Vi (8) + L()Va ()L (2),

Qi (1) = Qu(NC (LT (1) + Qua(1)[A(r) - B()K(1)]"

(7.171)
+[A(1) = B(OL(1)]Qua(1) — L(1) V(1)L (1),

Qu(1) =QL(NCT (LY (1) + Qu(1)[A(1) — B()K(1)]" + L(Z)C(I)le(l)a 172)

+[A(1) = B(NK(1)]02(1) + L(1)Va(r)L (1),

subject to the initial conditions Q,; (7)) = Qq, Q2(%) = 0, and Q4 (79) = 0. If
Eq. (7.170) is rewritten then it becomes
Qi1 =A()Q (1) + Qu(1)AT(1) = L()C(1)Qy (1) — Quy () CT (L (1)

(7.173)
+Vi(t) + L())Va2 ()L ().

The quantity Q;, is the variance of the state estimation error. Using the
Kalman gain from Eq. (7.166), the last four terms on the right in this equation
reduce to

Vi(1) = Qu()CT (1) V5 (1)) C(1)Qy4 (1), (7.174)
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using the Kalman gain from Eq. (7.15). But this means that Eq. (7.173) is just
the Riccati equation used to determine the optimal observer feedback or
Kalman gain for the system, which is of course satisfied. Using this result in
Eq. (7.171) results in the expression,

Qix(1) = Qu(0[A() = B(OK ()] + [A(1) = BI)L()]Qua(1), (7.175)

which is homogeneous. Given the initial condition that Q,(#y) =0 it can
immediately be seen that

Qi(1) =0, 1> 19, (7.176)

which shows that the estimation error, e(f), and the state estimate, X(¢), are
uncorrelated.

The quantity Q», is the variance of the state estimate and it is given by the
differential equation (7.172) above with the correct expression for the Kalman
gain inserted. With this substition it reduces to the equation,

Qx (1) = [A(1) = B(OK(1)]Qaa (1) + Qua(1)[A(1) — B()K(1)]"

(7.177)
+ L(6) V2 ()L (1),

with the initial condition that Q,»(zy) =0.
Because the state is equal to it’s estimate plus the error, x(z) = X(7) + e(¢)

E{x()x"(1)} = E{X()X" (1) + x(1)e" (1) + e(0)x(¢) + e(r)e" (1)} ~ (7.178)
and the error and state estimates are uncorrelated, it is clear that,

E{XT(O)W.x(0)} = tr[W E{x(/)x" (1)}]

(7.179)
= 0r[W{Qux (1) + x()x" (1) + Qi (1)},

where W is some weighting matrix used to select the relevant states. In the same
way it is possible to find the variance of (or power in) the input variable(s)
because of the way the LQG feedback is defined in Eq. (7.164):

E{u"(NW,u(1)} = E{X" ()K" (1)W,K(1)x(2) }
= KT ()W, K()E{x()x"(1)}] (7.180)
= o[KT()W.K(0) {0 (1) + x()X" (1)},

where W, is again a (input) weighting matrix. Equations (7.179) and (7.180) make it
possible to find the power in the states as well as the input power once the Kalman
gain and LQR gain matrices are known. This is obviously useful for practical
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system design. Equation (7.173) gives the power in the estimation error. Thus it is
possible to find the value of the indexes used to design the LQR regulator.
Typically an index or criteria for an LQG regulator is expressed in the form

J(n) = E{/[l X ()R (1)x(t) + u’ (1)Ry(t)u(1)] dr + XT(ZI)PIX(Zl)}7 (7.181)

fo

which is to be minimized over a time horizon 7y <t <t where R((7)>0,
R,(1)>0 and P; > 0 are symmetric weighting matrices. Using the results
derived above the minimum value of this performance index can be shown to
be either of the expressions below:

J(11) =x"(10)P(10)X(10)

+ tr /11 [P(t)L(t)V2(t)LT (1) + Q(1)R; ()] dr + PIQ(II)]

=x"(10)P(10)X(to) 75

+arlPiuo) + [ PV (1) + QUK ()R, (r)KTm]dr} ,

fo

where P(7) and Q(¢) are the solutions to the LQR and Kalman filter Riccati
equations respectively. This value of the index will be obtained if the assump-
tions behind the derivation of the LQR and Kalman gains are fulfilled.

In the special case of a time invariant system in the stationary state these
expressions reduce to:

Joo = E{xXT ()R x(t) +u” (£)Ryu(t)} (7.183)
= tr[Px Lo VoLZ + QRy] (7.184)
= tr[P Vi + Q. KL RK. ], (7.185)

where the infinity subscripts mean that these are the stationary variables of
these variables.

It should be pointed out here that certainty equivalence applies to a large set
of linear dynamic systems with different noise sources apart from the simple
systems treated in this book. It also applies to systems with non-Gaussian state
and measurement noise, as well as those with correlated state and measurement
noise. In addition it applies to systems which have colored (filtered) Gaussian
state and measurement noise.

The results above can be shown using the methods discussed at the beginning
of Sect. 7.5. For a more detailed treatment see Kwakernaak and Sivan (1972)
and Friedland (1987).
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Example 7.10. LQG Controller for the Hydraulic Servo

Consider the problem of combining the Kalman filter of Example 7.2 with an
LQR regulator. This regulator will be designed here. If the damping of the
original model is assumed to be small, the hydraulic servo becomes a harmonic
oscillator. The dynamic and input matrices of the system are:

[ e[l 150

—Wo 0

where &3 = 2BA4./(VM) = 1400 and wj = 2BA42/(VM) = 2.1 x 10°, using the
units of the example. The output matrix of the system is C = [1 0]. The state
noise scaling matrix will be assumed to be I for simplicity here.

First it must be shown that the approximate model of the equation above
yields nearly the same eigenfrequencies predicted by the earlier linearized
model. Using units of the example the eigenfrequency of the approximate
model is wy = 458.26 while that of the linearized model is wy = 458.31
(no units are given here because of the unusual mix of units used in the
example). The input matrix element of the approximate model is wy = 37.42.
The linearized model has an input matrix element which is 46.67. The approx-
imate model’s parameters are thus fairly close to those of the linearized model.

The LQR regulator Riccati equation for this second order system is:

0=R; —PBR;'B’P+PA+A'P or

Rin 0 pu pi|| 0] 1 Lq PP
- R, [0 &5]
0 Rixn P12 p» 2 P2 p» (7.187)

pu P2 0 1 0 —wil|[pn pr2
+ , + :
pi2 pn||—w; O 1 0 P12 P»
With the weighting factors, the following coupled set of nonlinear second order
equations results:

.
Wo

LDS 2 2
0=Rin1——pih— 2W0P127
Ry

4
W
0=—R—ZP11P22—W3P22 + i, (7.188)

& o
0= R122 — Ripzz + 2]712~
2

These equations can be solved for the matrix elements of the P matrix:
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(.«.)2 1 w2 R111
R 0 0
P12 = K <8 ,g ,g R2 B

VR
P2 =" VR + 2, (7.189)

0

—4
P11 = (wé +ﬂP11>P22~
R,

The LQR state feedback matrix is then

_ 1 _ pil P12 2
K=R,;'B'P=—[0 &;? { ]—0 . 7.190
2 Rz[ 0] o P R (P12 P2 ( )

Now the units of Example 3.26 can be used to find the optimal LQR gain for
the hydraulic servo with the weighting matrices, R; = diag[105 0.11} and
R, = 0.4 This unusual selection of weights is necessary because the control
object is very powerful and at the same time small. This means that large forces
are involved and this makes the system very fast. This is shown by the resonance
frequency of the bare control object, my = 458.26. It is desired that the closed
loop system be about twice this fast, well damped and have complex eigenfre-
quencies: this is the reason for the selection of the weight matrices above.

With the design specification above, the gain of the LQR regulator is
found to be K = [8.612-10*> 1.526] giving closed loop eigenfrequencies of
Le = (—1.0685 Fj0.5233) - 10°. These gains and eigenfrequencies were obtained
using both the matrix elements of the P matrix in equations (7.189-7.190) and the
MATLAB routine 1gr: [K,S,Ereg]l] = lgr(A,B,R1,R2,0).

To design the Kalman filter the state and measurement noise intensities must be
specified. Here the noise intensities V| = diag[l -10° 500] and V, = 1 were
selected. This gave the Kalman gain of L = [3.162~ 102 1.527]T. Again the
numerical qualities of the model gave the large asymmetry of the different gains.
The ecigenfrequencies of the Kalman filter were determined to be
Lo = (—1.581 £4.301) - 10%. These results were found using either the MATLAB
routine, 1ge: [L,P,Eest] = lge(A,G,C,V1,V2,N), G = eye2, N =
[0 01’, or equations (7.38) and (7.39) above. The two results were nearly
identical, differences were due to the numerical accuracy of the calculation.

The Kalman filter estimation error was found with the MATLAB routine
lge and the equations above the results using both methods gave

3.163-107 0

107,
0 6.641

Qll =
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This result was confirmed emprically using Simulink simulation. In the same
way Q> was calculated mathematically using the two different methods, with
nearly equal results, namely

9.888 - 1076 0.005
107

Q2= 005 3s12)

Simulation proved less reliable. The results using Simulink were incorrect with a
factor of two. The difficulty is the large spread in the numbers in the problem
and the difficulties involved in integrating numerically the white noise in the
dynamic system in Matlab/Simulink. O

7.6.2 Evaluation of the Discrete LQG Index

The evaluation of the index for a discrete time LQG system can be carried out in
the same way as for the analogous continuous time system. The structure of
discrete time controllers and Kalman filters and their equation representation
has already been reviewed in detail above so there is no reason to repeat these
here. What must be accomplished here is to find the discrete equivalents to
equations (7.184) and (7.185).

As before the focus is on finding the equations which describe the variances of the
state estimation error and the state estimates. The state estimate error is defined by

e(k) = x(k) —X(k). (7.191)
The discrete version of Eq. (7.168) is:

e(k+1)] [AWK) - L(k)C(k) 0 e(k)]

R(k+1) K(k)C(k) A(k) = B(k)K(k) | | x(k) (7.192)
I —K(k) [vl(k)]
0 Kk) ||va(k)|

which are to be evaluated with the initial conditions,
le(ko), % (ko)]" =
of [e(k),x(k)]" is
[Qn(k) Qua(k)
Q1 (k) Qu(k)
E{ [ e(k) — E{e(k)}
X(k) — E{x(k)}

As in the continuous case Q;;(k) is the variance of the state error which is
calculated with the Kalman filter design equation, (7.107). Q»(k) = 0 is zero as

[x(19) — X0, Xo]”. The matrix which gives the variance matrix

(7.193)
] le(k) — Efe(k)}]7R(k) E{ﬁ(k)}ﬁ},k > ko,



476 7 Optimal Observers: Kalman Filters

the estimation error and the state estimate are not correlated with each other as for
the continuous case. Q,,(k) has to be found by evaluating the difference equation,

Qua(k + 1) = [A(k) — B(k)K(k)]Qa (k)[A(K) — B()K(K)]"

(7.194)
+ K(K)[C(k)Qy (k)CT (k) + Va (k)K" (k),

with the initial condition, Q»>(ky) = 0. The stationary state value of this
variance can of course be obtained by setting the equation above equal to
Q2>(k) and solving the resulting equation for Q.

The value of the index can be written in the time varying case:

J(k) = X3 P(ko)Xo + tr{P1Qy; (k1) }
ki—1
+ > o {Ry(k+ 1)Qyi(k+ 1)+ [P(k+ 1) + Ry (k + 1)]L(k)  (7.195)
k=kq

x [C(k)Qui (K)CT (k) + V2 (k)L (k)},

which can also be written in an alternative form:

J(k) *Xo P(ko)xo + tr{PoQ; 1(ko)}
ki—1
+ > r{[Ri(k + 1) + P(k + D]Vi (k) + Q; (kK (k) (7.196)
k=ko

x {Ra(k) + BT (K)[Ry (k + 1) + P(k + 1)]B(k) }B(k)K(k)}.

For a time invarient system the index is

Joo = lim E{x"(k+ )R (k+ Dx(k + 1) +u’ (k)Rau(k)} (7.197)

1\()*> oo

= tr{R1Q) o + (Px + R|)Loo(CQ 1, C" + Vo)LL } (7.198)

= tr{(R; + Pc)Vi + Q1. KL [Ry + BT(R| + P )BJK. }. (7.199)

In the last three equations above with the infinity subscripts of course mean that
these are the steady state values of these variables. For a more detailed treat-
ment see Kwakernaak and Sivan (1972) and Stengel (1986).

7.7 Summary

The main subject of this chapter is the derivation of Kalman filters both for
continuous time and for discrete time linear systems. A secondary aim is to
show that stochastic optimal observers can with advantage be used for the
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construction of full state feedback systems which are optimal in a wider sense
than would be the case if only pole placement or LQR design methods are used.

The advantage of Kalman filters in relation to ordinary observers is that they
can be shown to be optimal in the sense that they have the best performance of
any other observer, linear or nonlinear for a given system. Moreover the design
procedure is constructive: given models for the system and the noise sources, a
Kalman filter automatically emerges from the procedure which is optimal for
the system in question. Optimality is here understood to be in the sense of best
signal power to noise power ratio. If a suboptimal solution is selected for
various subsidiary reasons, a Kalman filter can be used for comparison in
order to understand what a compromise costs in terms of overall performance.

Kalman filters for continuous systems have the same structure as the pole
placement observers which were designed in Chap. 4. The main difference
between Kalman filters and ordinary observers is that they take account of the
noise built into the control object both in terms of its internal dynamics and in
terms of the noise which must accompany any measurement made on it. This
is done by keeping track of mean values of the states and the error covariance
of the observer itself, the two moments of the assumed Gaussian system noise.
In detail this accomplished by calculating the state noise power which propa-
gates through the control object and comparing this to the noise which is
associated with the measurement. This comparison leads to a selection of the
observer- or Kalman- gain matrix which is the best compromise between the
inherent system noise and the measurement noise. It has been shown that
the gain matrix is obtained by solving the time dependent Riccati equation.
The Riccati equation emerges naturally from the theory as the time dependent
Lyapunov equation appended with a term which embodies the uncertainty
reduction due to measurement. This is true both for continuous time and
discrete time systems.

Discrete time Kalman filters have a structure which is close to that of
continuous Kalman filters and they work on the same principle of state/mea-
surement power noise compromise. But there are some differences which are
due to the fact of sampled time operation. In particular the time update of the
mean values of the states and the error covariance is separate from the measure-
ment update. One of the positive differences is that there is some flexibility in
handling the method in which the measurement data is used, leading to different
filter algorithms. A negative difference is that measurements are only available
at sample times and this introduces an inavoidable time delay into the system.
Moreover for this reason, continuous measurements cannot be used even if they
are available. This means that for a given system, a continuous Kalman filter
will nearly always have a better performance that a discrete Kalman filter,
independent of what sampling time is used. Discrete time Kalman filters (and
indeed also discrete time regulators) have however the advantage of being
immediately compatible with conventional digital computers and are more
easily implemented in them, at least at the present time.



478 7 Optimal Observers: Kalman Filters

The final section of this chapter shows that when the optimal or LQR
regulators of Chap. 6 are combined with Kalman filters a very unusual situation
obtains. In part it can be shown that the LQR regulator and Kalman filter can
be designed independently of each other and in part what emerges from this
construction is nevertheless overall optimal in itself. This separation theorem is
the stochastic equivalent of the separation principle presented in Chap. 4 for
deterministic systems. It simplifies observer/controller design enormously and
is one of the prime reasons why LQG controllers have found such wide use in
many different control applications.

7.8 Notes
7.8.1 Background for Kalman Filtering

In 1959 Swerling (1959) introduced a unbiased minimum variance estimation
algorithm for linear systems similar to that later published by Kalman (1960). It
is Kalman’s work that drew the greatest attention and thus the name ‘Kalman
filtering’ is applied to this kind of filtering or estimation algorithm.

What Kalman and later Kalman and Bucy did (Kalman and Bucy (1961))
was to produce a recursive algorithm which is optimal in the sense of minimum
variance and least square error, and which can at the same time be easily
implemented and solved on a digital computer. The optimally of the filter is
important as it gives the designer confidence that the system found is the best
that can be achieved without tedious experimentation or simulation. The filter
is thus very practical to realize for a number of different applications especially
since the price of small digital computers continues to fall.

Another way of describing the filter is to say that it circumvents the
problem of solving the Wiener-Hopf integral equation (Wiener (1949) and
Kolmogrov (1941)) by working with the equivalent differential equation.
Then recognizing that no analytic solution is actually required, the differential
equation is solved recursively to find the state estimates. The large computa-
tional burden incurred in this way is placed on a digital computer (Sorenson
and Stubberund (1970)).

Through a parallel line of development due to Stratonovich (1960), it was
later found possible to apply the Kalman filter to nonlinear processes without
doing violence to its structure or to its basic principles of operation (Schwartz
(1970)), though the sense in which it is optimal is changed. Such a filter is
called an extended Kalman filter (EKF). There are continuous (CEKF),
continuous- (propogation) discrete (measurement) (CDEKF) and discrete
(DEKF) versions of such filters for nonlinear systems (Meditch (1969),
Jazwinski (1970) and Gelb (1974), Kushner (1967), Maybeck (1979), Safonov
and Athers (1977)).



7.9 Problems 479
7.9 Problems

Problem 7.1

A plant consists of a D.C. motor which has and angular velocity w(7) which is driven
by an input voltage V,(t). The system is described by the scalar state equation

(1) = —aw(r) + PVa(t) + o1 (1),
where o and P are positive constants. w; (¢) is due to a torque disturbance which
acts on the shaft and it is white noise with a mean value 0 and an intensity V5.
The velocity of the D.C. motor is observed with an additive noise component,
w1 (1), which is white noise with a mean value 0 and a noise intensity V5. w;(7)
and w,(7) are uncorrelated. Both 7} and ¥, are constants.

a. What is a reasonable measurement model for the system?

b. Design a Kalman filter for the system which is capable of estimating the
speed optimally in the steady state. The Kalman gain is to be given in terms
of the system parameters and constants.

c. If the signal to noise ratio of the system is poor, what is the optimal observer
for the system assuming that the model of it is accurate? What is such a
degenerate ‘observer’ called?

d. If the signal to noise ratio is good (the measurement noise is small relative to
the plant noise), how does the Kalman filter make use of this?

Problem 7.2

Discretize the system of Problem 7.1 assuming a sampling time of 7. Design a
Kalman filter for the resulting system which is optimal in the steady state.

a. What are the advantages and disadvantages of this filter with respect to the
filter designed in Problem 7.1?

Problem 7.3

The D.C. motor of Problem 7.1 is to be used in an angular position control for
an actuator. This means that the state equation in the original problem for-
mulation has to be augmented with an equation which describes the angular
position, 8(t), of the system.

a. Write down the overall state equations of the position control system,
including the torque disturbance. The state vector of the augmented system
is to be [0 w]”.

b. Can one design a Kalman filter for this system based on using the measure-
ment of the angular velocity alone assuming steady state operation? Explain.

A more direct measurement of the system performance is desired. For this
reason the angular position of the system is to be measured. This measurement
is also corrupted with noise. The measurement model is thus
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o0 =10 0wl

(1)
we(f) is measurement noise and is characterized by the expression wy(?)
€ N(0, V) where V/, is the noise intensity (constant).

c. Design a Kalman filter for this system based on using the measurement of the
position of the system alone. Again only stationary performance of the filter
is of interest.

d. Which of the Kalman filters above will give the best overall performance?
Why?

Problem 7.4

Consider a continuous system which has a state space form

xX(1) = —x(1) + u(t) + v(1),
y(t) = x(1) + =(2),

where x(7) is the system state, u(¢) is its control input, v(¢) is low pass filtered
white noise with zero mean and an intensity which is 1, y(¢) is the output of the
system and z(¢) is low pass filtered white noise. It is assumed that this input
comes from the system

2(1) = —100z(7) + 100 w(z).

Here w() is Gaussian, zero mean, white noise with an intensity 0.01. It is desired
that x(¢) be estimated (as x(7)) given the output measurement y(z).

a. Find the stationary variance of the estimation error e() = x(¢) — x(¢), if the
estimate x(¢) = y(1).

The measurement noise source is now to be approximated with a white noise
source which has an intensity which corresponds to the spectral density of z(7) at
the frequency o =0.

b. Find a full order stationary Kalman filter which minimizes the stationary estima-
tion error’s variance given that the approximate noise source above is used.

¢. Find the stationary variance of the estimation error when the Kalman filter
of question b and the calculation still uses the simplified measurement noise
model. Compare the result of question ¢ with that of b. Examine the approx-
imation that white noise is an acceptable approximation. Explain the answer
found.

d. Find the exact value of the estimation error’s stationary variance when the
coloring of the measurement noise is taken into consideration, but where the
simplified full order Kalman filter of question b is still used.
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Problem 7.5

Consider a discrete system which is given in terms of a transfer function,

1 7z
Z3 Gio(s)—p = ——,
{ o) s} 1 —z!
where s is the Laplace operator, Z is the Z-transform, G,,(s) is the transfer
function of a zeroth order hold network and 7 is the sampling time.

a. Write down the state equation of the system.

The state of the system has state noise which has an intensity, } (a constant). The
state of the system is to be measured with an additive noise source. This noise
source has a noise intensity which is W (a constant) and is zero mean.

b. Is the assumption of broad band white noise reasonable under the circum-
stances? What additional assumptions are necessary to use such a model?
c. Design a Kalman filter for this system to estimate its state.

The Kalman filter is to be used in conjunction with an ordinary state feedback
system.

d. Design a pole placement regulator for the system. In what limit kan one find
a minimum variance (or deadbeat) regulator?

e. Design an LQR regulator for the system which can minimize an index having
the form

J= i i) + pu (i),

i=0
where p is a weighting factor.

f. In what limit can one find a minimum variance regulator?

g. When the Kalman filter is used to estimate the state of the system and an
LQR regulator is used with it to control the state, what kind of control
system is obtained? This is a fairly complex and thus expensive control
system. Is there any particular reason then to use it?

Problem 7.6

A disc drive positioning actuator is described by the differential equation,
ma = Ky 1,

where m is the moving mass, a is the acceleration of the head, K is the force
constant and / is the driving current Bell et al. (1984). The position of the head is
given by x and the velocity by v. Both the position and velocity of the head are
subject to disturbances which can be modelled as white noise such that the state
noise on x and v are given by w.(z) € N(0, W) and w,(t) € N(0, W,) respectively.
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Because of noise in the disc drive dynamics it is desired to establish an
observer to estimate its position. This estimation is to be made on the basis of
a noisy position measurement:

y(1) = x(1) + w(t),
where w(¢) is white noise such that w(z) € N(0, ).

a. Write down the differential equations which describe the disc drive system,
including the disturbances.

b. Design a Kalman filter to estimate the position of the head. The Kalman gain
should be expressed in terms of the parameters and constants of the system.

¢. Design an LQR regulator for this system in order to use the estimates of the
Kalman filter which has been found.

d. Under what circumstances would it be advantageous to use a continuous
observer/regulator for this system?

Problem 7.7

Assume that there is only state noise on the position component of the system in
Problem 7.6. The system is to be sampled with a sampling time 7.

a. Design a discrete Kalman filter to estimate the position of the head drive in
Problem 7.6.

b. Design a regulator for the system which will insure that the overall system
performance is optimal.

c. Can the performance of the discrete system be as good as that for a corre-
sponding continuous system? In what limit?

d. What are the advantages of using a discrete observer/control system instead
of a continuous one?

Problem 7.8

The height of a hot air ballon with a mass M and a ballon volume ¥ can be
controlled with the addition of a heating power ¢. The air in the ballon has a
temperature T and a density p. Physical effects apart from those which are
explicitly mentioned in the exercise are to be ignored.
The equation which controls the air temperature in the ballon is
%: a(T—T,) + cq.

a and ¢ are constants. 7, and p, are the temperature and density of the ambient
air and are related to the temperature and density of the air in the ballon by the
equation

pT =p,Th,.

If v is the vertical velocity of the ballon then Newton’s second law requires that

dv
— = Vg(p, — p) — Mg — by,

M
dt
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where g is the acceleration of gravity and b is the air resistance coefficient.
M, V, b and g are constants while 7, T,, p and p, are variables.

a. Set up the nonlinear state equations for the system, choosing the states as T'
and v, the input as ¢ and the state disturbance as 7,.

Assume now that the ballon is hovering with a constant altitude.

b. Find the required stationary heating power, ¢g, expressed in terms of the
stationary values of T, p, and the system constants.

c. Linearize the system around its stationary state and write down the state
equation of the linearized system.

d. Investigate whether or not the linearized system is stable. Investigate also
whether or not it is controllable.

In the final portion of the exercise only that portion of the system which is
concerned with the temperature will be considered. That is to say the portion of
it which has the form:

AT = AAT + BAg + B,AT,.

e. Find A4, B and B, as functions of the system constants.
f. Solve the LQR Riccati equation which minimizes the index,

J= / (AT + pAg?)dr,
0
and determine the corresponding feedback gain, K.

AT, in the equation above (question d) is now to be considered as a white noise
process with E{AT,} =0 and E{AT2} = V. The temperature AT is to be
measured in such a way that the system output equation is

Ay = AT+ w,

where w is white noise process with E{w} = 0 and E{w?} = W. The state and
process noise are independent and uncorrelated, i.e. E{AT, w} = 0.

g. Determine the Kalman gain L for a Kalman filter which can estimate the
state of the temperature subsystem and write down the equations for it.

Problem 7.9

This exercise deals with a nonlinear optical fiber pulling process at NKT A/S
(Nordic Cable and Wire Company, Inc.), Denmark. In an earlier project a linear
control for this system was derived: Hendricks et al. (1985). It has become clear
that because of newer products which require a variation of the fiber diameter
and high accuracy that a digital control of the process would be advantageous.

In the figure below (Fig. 7.10) a schematic drawing of the pulling process is
shown. Optical fibers are drawn from a quarts rod or preform. This is done by
heating the preform to a high temperature (about 2000 C) and pulling a fiber
from the semi-molten zone of the preform called the neck down region. The
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Fig. 7.10 Schematic N
drawing of an optical fiber N

pulling process

D, (preform diameter)

-

neck down region: ~ 2000 C

!

~

-—~

fiber diameter
measuring point

Dy (fiber diameter)

Vi

control object is to control the diameter of the fiber, Dy, (usually 0.125-1 mm)
by changing the drawing speed, V7, (usually 0.2—-1 m/s).

The fiber is formed over a distance which is / but its diameter can be
measured (optically) only after it has traveled a further distance L.

The process is such that it obeys the mass conservation law,

2 2
D}V = D}V,

where D, is the preform diameter (about 10-15mm) and V), is the preform
advance velocity. Both D, and V), are approximately constant.

The dynamic process model has been identified earlier and is in the form of a
transfer function for the process.

di(s) _ —Kye™™™
vi(s)  T+1s

3

where s is the Laplace operator, d,is the incremental fiber diameter, v,is the
incremental fiber pulling velocity, 1,is the measurement time delay (= L/ V), 1,
is the process relaxation time (= // V) and K, is the process amplification. 1, T,
and K, all depend on the large signal pulling velocity, V. The process gain is
give by the expression,

K, = @.a
2V,

where k is a constant.
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a. Write down an differential equation which describes the dynamics of the
system when it is assumed that t,;, 1, and K, are constant.

b. What is the time constant and eigenfrequency of the system?

c. The tolerance for D, is +1%. Show using the mass conservation law that
Vyis approximately constant in time.

Now the system is to be sampled in such a way that n samples are to be taken in the
least of the characteristic times 7, or 1, i.e., T = (least time constant)/n, where T'
is the sampling period and 7 is a whole number. As both t,and t, are scalars with
respect to 1/ V7, this leads to the state difference equation,

dlk+1)=adlk)+ (1 —a)v(ik—n),
where a is a constant and d(k) = dy(k).

d. Show that the difference equation above is correct and give expressions for a
and v in terms of the original system parameters and constants. Also select a
reasonable sampling time (or n) for the system and explain this choice.

Assume now that n=1. The additive state noise can be described as
v(k) = N(0, V) and that measurements of d(k) = dy(k) are made subject to
measurement noise which is w(k) = N(0, W).

e. Write down the state equations of this reduced system.

f. Design a Kalman filter for this system.

g. What are the advantages of using a non-constant sampling time in the system
description? Name the technical disadvantages of such a choice.

Problem 7.10

This problem concerns an idle speed control system for a gasoline engine. When
an operator takes his foot off the accelerator pedal of a car, the engine speed
generally falls to below 1200 rpm (revolutions per minute), and an idle speed
control system takes over control of the engine speed. The idle speed control
system keeps the engine speed constant at about 900 rpm in spite of other engine
loads such as the generator, power steering pump, air conditioning compressor,
etc. The throttle plate position is regulated in and around the nominal engine
speed by a D.C. motor, usually via a gear reduction box. See Fig. 7.11.

injector mg+ ny exhaust manifold
w || |
—} /;7 *L- engine exhaust —»
Fig. 7.11 Schematic m, ‘
drawing of a single point ‘
injection, spark ignition po— U load
engine. The arrow shows the ) ) : n
positive direction for the intake manifold

throttle angle crank shaft
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The gear box drives the throttle plate directly. Usually a return spring is provided
to return the throttle to its closed position (not shown) when there is no throttle input
from the operator. The closed throttle angle is usually between 5 and 15 degrees.

The equation which describes the acceration of the inertia of the engine (plus
its load) is

LS (Pr+ Py) + Humimy

7 \2 n- | =Inn = 1 b uilny,
where 7 is the crank shaft speed, 7 = 0.25(Kgm?) - (27/60)/1000 is the engine
inertia, H, =43-103 Kg/kg is the heating value of the fuel, 7; = 0.33

(at 900 rpm) is the engine thermal (indicated) efficiency, m,(kg/s) is the fuel
mass flow and P, is the load power. Here

Pr=n(k s+ kypin) +kpon,

with  kro =0.4500-107° (kW/rpm), ks =0.2321-10"% (kW/rpm) and
kpo =0.9326 - 10~ (kW/rpm).

The air supply to the engine comes through the intake manifold which is
described by the equation,

P = —kin,,pn+kamg(a,p),

where 0 <p<1 is the normalized manifold pressure (i.e., p = Ppan/P,,; =
manifold  pressure/ambient  pressure).  k; = 15.118-107%  (1/rpm),
ky = 1.3822 - 10° (s/kg) and m, (kg/s) is the air mass flow to the engine. Given
that o is the throttle angle (degrees), the air mass flow is given by

g0, p) = mao + ma ®(p)(1 — cosar),

and mgo = 1.0938 - 1073 (kg/s), m, = 0.7854 (kg/s) and ®(p) is the flow coeffi-
cient for a compressible gas through a converging/diverging nozzle:

[2 k+1 . P
VKEI pk—p K, if PZ(Kil) l
e > v 2 w1
K — ; O
()< it p<(3)
K
and k=1.4 for air. If p<(2/(xk + 1))x — I then the air flow is sonic and is

limited by the shock wave around the throttle plate.
The volumetric efficiency is given by the equation,

Nyt (P) = Mo + MiP,

with ng = 0.5966 and n; = 0.2363. Both of these constants are dimensionless.
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Finally it is necessary that modern engines run with a control which gives a
normalized stochiometric air/fuel ratio, A, as a Three Way Catalyst (TWC) has
to be used because of emission restrictions. The normalized air/fuel ratio is

my

A

-~ myLy,’

where L,;, = 14.67. This subsidiary control loop is not under consideration here
but keeps A constant and equal to 1 over the entire operating range of the engine.

Before one can design a regulator for the idle speed, it is necessary to find the
stationary operating point of the engine in idle. As an aid in determining this
point, it is given that n can be considered to be constant, that 7y =900 rpm and
that the effective time constant for the manifold pressure is very small in
relation to the effective crank shaft speed time constant.

a. Write down the gasoline engine’s nonlinear state equations.
b. What is the fuel mass flow at the desired idle speed in the stationary state?
What is the corresponding air mass flow? The engine is not loaded in idle.
¢. Find an expression for the normalized manifold pressure p in terms of the
known constants and variables at the desired operating point in the station-
ary state. Find its value in idle.

d. If one has calculated m,, in idle it is possible to find the numerical value of p at
this point, po. What is it? What is the value of ®(py)? What is the throttle
angle in idle?

As a gasoline engine and its control system are a higher order system, it is
necessary to introduce some approximations in order to reduce the order of the
system for hand calculations. The manifold pressure reaches its equilibrium
rapidly so that one can assume that its dynamics can be neglected.

e. Write down the approximate nonlinear state equations for the engine control
system alone when the dynamics of the intake manifold pressure are
neglected.

f. Write down the corresponding linearized state equation for this system.

The throttle plate is driven by a gear box by the D.C. motor (see Fig. 2).
The D.C. motors transfer function is
_ Kvm
1+ 8Ty

Tm / J
1+ st

o(s) Va(s) — Mpe(s)

where o is the axel’s angular speed, V, is the rotor voltage, K,,,,=20.76 ((rad/s)/
volt) and t,, = 6.6323 - 1073 s. M, is the load torque (Nm) calculate for the axel
of the D.C. motor. The gear ratio between the motor axel and the throttle plate
axelis R,=0.0019. Because the D.C. motors time constant is very small compared
to that of the gasoline engine, it is possible to neglect the dynamics of the D.C.
motor drive system. Again, a reduction of the order of the system model is

required.
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g. Write down the resulting approximate state equations for the throttle control
system which are compatible with the gasoline engine’s state equation. These
model is to include the torque load on the D.C. motor.

h. Design an optimal feedback matrix for the idle speed control system which is able
to keep the crank shaft speed constant in idle when disturbances are ignored.

The stationary solution is desired so that the criteria which has to be
minimized is
4

J=1lim [ [(n—no)* + p(AV,)*|dr

11 —00 f

where p is an arbitrary weighting factor. To simplify these calculations it is
given that o and n can be measured and that the system state equations have the

general form
0 O Aa by
= + AV,.
az; dx» An 0

The A’s in front of the variables above indicates that they are incremental
variables. This problem can be solved explicitly, without calculation by using
the results of earlier examples.

Aa
An

i. How can the parameters of this example be arranged in such a way that this is
possible? It is not required that the Riccati equation be actually solved here.

j. Ifpart g. of this problem has been solved then it is possible to express a,, d2»
and b; in terms of the gasoline engine and D.C. actuator system parameters
and constants. Give expressions for these quantities.

In order to close the throttle plate when the accelerator pedal is released, the throttle
plate is spring loaded (see the second figure in this problem). This results in a
constant torque loading of the D.C. motor. Also the gasoline engine itself is loaded
with a dynamo and perhaps and air conditioning system. It is also obviously
necessary to take account of other accessories and the fact that the engine and its
components will be worn and will age. Moreover the control system has to work on
all vehicles in a particular production series in spite of production tolerances.

k. Under what conditions is it possible to obtain a low frequency compensation
for loading of both the D.C. motor and gasoline engine? Are these conditions
satisfied for the system which has been designed above?

1. Give a well supported solution of the loading problem if the engine is to run
with approximately constant speed in idle. A complete solution is required
with a control law and other detail taken into account. If a Riccati equation
solution is required for this purpose, it is not to be solved here. Only a
symbolic solution is desired.

Problem 7.11

A test mass accelerometer is a measuring system for a vehicle (for example a
ship, an aircraft of a car. In this problem a test mass accerometer is to be used to
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— =—— electromagnet

D .
I C*D ball container
C*D /
vertical position sensor | O, I P S
X
7777777777 reference level

Fig. 7.12 Drawing of a test mass accelerator

measure vertical accelerations. Figure 7.12 shows a simplified drawing of the
accelerometer. The test mass is a steel ball with a mass m =10 g. The ball is held
floating in a magnetic field by the electromagnet above it. The vertical position
of the ball is measured by the position sensor on the left side to the ball
container.

The force in Newtons which keeps the ball floating is given by the equation:

F(X,I) =1.805 x 10°X? + 14.44 X I — 6.498 X + 0.02888 F*
+0.3740 7 — 0.1742,

where X is the ball’s position (in meters) in relation to the reference point (see
the Fig. 7.13) and 7 is the current (in Amperes). The function F( X, I) is pictured
on the graph below. The ball is also influenced by air resistance. The force which
air resistance exerts on the ball is

FV) = =V(er + V)

where ¢; = 1.55 x 107 N(m/s), ¢; = 2.2 x 104 N(m/s)” and the ball’s velo-
city, V, is measured in m/s.
The accelerometer is under the influence of an external vertical acceleration, A4.

a. Show that the nonlinear, large signal, movement of the ball can be described
by the equation

d’x 1 1
—=—FV)+—-FX,I)+ A4 -
dtz m ( )+m ( ?)+ g7

where g=9.81 m/s? is the acceleration of gravity.

b. The system in exercise a. above is to be linearized around a working point
which is X'=2.5mm. What is the corresponding controlling current in the
electromagnet at this operating point? At most two decimals accuracy is
required. A graphic solution is possible.
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c. Show that the system’s linearized state equations can be written in the form

X = apy,

V= axXx+ a»v+a+ bi,

where x, v, a and i are the incremental state and input variables correspond-
ingto X, V, Aand I, and ay», a»1, a»» and b are constants. Show that a;, = 1,
a1 >0and ay; <0. Numerical results are not necessary at this stage but might
be helpful later.

For a measuring system the accelerometer has unusual dynamics.

d. Calculate the transfer function of the accelerometer and show this. A numer-
ical result is not necessary at this stage. Why is feedback necessary in order
for the system to work as an accelerometer?

It is desired to design a full feedback system which is capable of minimizing the
index

t

J=lim [ (3 + pi*)dr

—00 0
where p is a weighting factor.

e. Set up the Riccati equation which has to be solved in order to find the
optimal feedback matrix. Solve the Riccati equation. Write down the opti-
mal gain matrix in terms of the solution of the LQR Riccati equation.

T T T T T T

021 FOCDN e e e i A 1
0.18 : :
0.16
0.14
0.12
0.1
0.08
0.06
0.04

0.02

Fig. 7.13 The function F( X, I) with the electromagnet current as a parameter
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f. Draw a complete block diagram of the overall system.

g. If the feedback system in question c. is used to measure the unknown
acceleration, a, is it possible to measure a directly? What does one then
measure and why? Is such a measurement accurate? The effects of noise are
to be ignored in answering the question.

In order to find the unknown acceleration, a, more accurately it is helpful to
estimate it with the use of a Kalman filter. That is to say that « is to be assumed
to be modelled as integrated white noise with an intensity ;. The position
measurement is noisy and the measurement model is thus

y=X+WV

where V/5(t) is assumed to be white noise with an intensity V5.

h. Write down the Kalman filter’s state equations in such a way that one can
estimate a as a slowly varing constant in the stationary state.

i. Write down the Kalman filter Riccati equation which has to be solved in
order to find the Kalman filter gain matrix. Write down the gain matrix in
terms of the solution of the Riccati equation. Finally the equation is to be
solved in order to find the explicit Kalman gain matrix.






Appendix A
Static Optimization

In optimization one is interested in finding the extreme values of a function of
the one or more variables under certain constraints. In order to formulate the
necessary equations the function to be optimized (maximized or minimized) has
to be defined. Such a function is usually called an optimization or a perfor-
mance index.

A.1 Optimization Basics

Assume that J is a real function of an n-dimensional vector u € R":
J=J(u). (A.1)

The value of u where the minimum of J is obtained has to be found among the
solutions of the equation:'

oJ
T 0. (A.2)
The solutions of this equation give either a minimum of J(u), a maximum of
J(u) or neither (a saddle point).

The method to determine the nature of the solution is to look at the second
derivative of J, the Hessian matrix. A sufficient condition for a minimum is that
the Hessian matrix is positive definite,

0*J 0*J
o OuOu;  ~ OuyOu,
= : : > 0.
Judu : :
0*J 0*J
Ou,0u, ~ Ou,Ou,

" The gradient of a real valued function f(x), x € ®" is defined as a column vector

. . . AT
VI=E=fo= [

dx1 0x2. " " " Ox,

493
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A maximum has a negative definite Hessian and if the Hessian is neither positive

nor negative definite the solution to equation (A.2) is a saddle point.

Example A.1. Minimum of a Multivariable Function

The real-valued function J(u) is given by

J(u) = %(xz 4 4 x(y— 1)) (A3)

The shape of the function is indicated in Fig. A.1. Here u = [x, y]" € ®2.
The gradient of the function J is

oJ 1
aJ Ox X+ B) =1
dy Y 2 x
This gradient is only zero in one point, which is
2
u= H 3] (A.5)
y 1
3

At this point the function has a global minimum, since the Hessian matrix is
positive definite:

*?J 04 1
0*J ox>  OxOy 2
won | o o | |1 1 . (A.6)

Fig. A.1 The function J(u)
from Example A.1
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To check for positive definiteness the following test is made:

0*J 0*J 3
—  =1> =— > 0. .
B 1> 0, det ( % 811) 1 0 (A.7)

O
It is desired to generalize this method for more complicated situations.
Therefore the simple static optimization problem is formulated in a way
which lends itself to the more complicated problems.
Again let J(u) be a real-valued function of the vector variable u € R". Let
n € N be an arbitrary vector and € € #& a small real number. The function,

Ju+en),

is now considered as a function of the real value €. Then, according to basic
calculus the minimum of J has to be found among the solutions u to the equation

d
—J(u+en)

. =0. (A.8)

e=0

Application of the chain rule gives for this expression:

Since this condition has to hold for all values of n € R the result in equation
(A.2) is obtained again. This method will be used in the later sections.

d
£J(u +en)

Example A.2. Minimization by Using Variational Techniques

For the function in example A.l the insertion of ¢ gives for arbitrary
T
n=Mnm",

J(e) = J(uten) =
1 ) 5 (A9)
=5 ((x+eny)” + (v +en,) + (x+en) (v +en, - 1)),
When differentiating this function with respect to € one finds

limiJ(s) =

N —

For arbitrary n, and 7, this will only be zero if x and y are the same as in
equation (A.5S). 0



496 A Static Optimization

A.1.1 Constrained Static Optimization

The minimization above is valid if the values of u are unconstrained and
unbounded. However in the case of a constraint on the values that the variable
can attain this procedure must be modified. Assume that the task is to find
the value of u that optimizes J and at the same time obeys the constraint
equation:

f(u) = 0. (A.11)

This is known as an equality constraint. Here, f € ®”. Assume that p <n,
which means that the constraint equation (A.11) is the equation of a
p-dimensional surface in R”".

In the optimum (where J, = 0) where the constraint is fulfilled the following
differentials must be zero:

T
dJ = <8J> du=Jldu=0,
du

df:gdu = f,du=0.
Ou

These are p + 1 linear equations in the n variables du, which in matrix form are

[ 0 ar
o Ouy
of of duy
[dq: o ou || :m.
df ) ) : 0
: : du,
% Uy
[ Oup " Ouy

If this set of linear equations is to have non-trivial solutions the matrix must
have less than full rank or the rows must be linearly dependent, i.e., there must
exist a p + 1 — dimensional vector of the form [1, A, Xs,...,A,] such that

JT
[1,7»1,7»2,,7»1,][;} =0

u

The vector A = [A1, o, , Ap) Tiscalled a Lagrange multiplier and it is seen that by
appropriate transposition the above matrix equation becomes:

Ju+fL=0.
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Inspecting this set of equations the Hamilton function is introduced,
H(u,\) = J(u) + A f(u). (A.12)
The differential of H is given by
dH = Hldu+ H] d\
= (Ju +fI0) du + 1)
=0.

This is true, because f(u) = 0 and because J, + fyA = 0. It is now possible to
draw the following conclusion:

A necessary condition for the optimal solution of equation (A.1) under the
constraint in (A.11) is that u and A obey the two equations:

" (A.13)
oH _,
o

Here H(u, )) is given in Eq. (A.12). Tt is seen that the problem has been reduced
to solving a set of unconstrained equations at the price of introducing p new
variables, the Lagrange multipliers. This is the way in which equality con-
straints in the optimal control problem are to be treated.

Example A.3. Minimization with Constraints
The function J(u) from Example A.1 is now to be optimized under the equality
constraint:

flu) =x—-2y=0. (A.14)

Introducing a scalar Lagrange multiplier, A, gives the un-constrained
optimization problem,

H(u, %) = (J(u) + % - f{u))
| (A.15)

=5 (457 x(r = D)+ Mx = 2y).

The un-constrained optimization gives the three equations,

%H X+Hip =1+ 0
u = 1y, =
D=1 r+ir-2 g . (A.16)

. *=2y
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There is one solution to this set of coupled equations,
2 1 1
M=z = =|.
SORIE

This simple example could be solved by inserting the constraint x — 2y = 0
into the function J, i.e., if x = 2y the function becomes

T, )|y = 80) =5 @7 + 2 +29(y = 1)) = 5 (7" = 2).

N —
N =

The minimum of the function g(y) is the solution of

dg 1

This is of course the same as above, but the above method can also be used in
more complex optimization problems. a

A.2 Problems

Problem A.1

Find the extrema of the function:
J(x,y) =e"-cos(r).

Here (x,y) = (rcosf,rsinf). Show that origin is a local maximum.
Problem A.2

Find the extrema of the function,
J(x,p) = x> — xy + 17 + 3x,
under the constraint,

f(xvy) =0

Here f(x,y) = x — 4y. Show that the extremum found is a minimum.
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Problem A.3

A rectangle has side lengths x and y respectively.

a. Find the rectangle with the largest area given that its perimeter is p.

b. Find the rectangle with smallest perimeter given that its area is a?.

Problem A.4
Minimize the cost function,

1 1 0 1 (2 1
L(x,u):—xT{O 2}x+§uT[1 Ju,

=)l

At the minimum find the values of x, u, A and L.

subject to the constraint,






Appendix B
Linear Algebra

This appendix gives a short introduction to the basic matrix properties necessary
for this book. The reader is referred to the literature for a more in depth treatment
of linear algebra, e.g. Golub and Van Loan, 1993.

B.1 Matrix Basics

A n x m matrix is a collection of real or complex numbers, a; organized in a
rectangular array with n rows and m columns:

ayny dyp ... dim
asy axyy ... dyy

A={a}=1| . . e (B.1)
[ a2 ... Opm

Addition of two matrices is accomplished by adding their clements.
Multiplication of two matrices, e.g. A = B - C is done by combining the rows
of C with the columns of B according to the formula:

)4
ag=> bi-cgi=1,...nj=1,...m (B.2)
k=1

For this to be possible B has to have the same number of columns as C has rows,
i.e., if the size of B is dim[B] = n x p and the size of C is dim[C] = p x m the
product has the size dim[A] =#n x m. Generally this multiplication does
not obey the commutative law, i.e.,

AB +# BA. (B.3)

For a matrix A = (a;;) a number of related manipulations are defined. The
transposed matrix is obtained by interchanging columns and rows,

501
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(A7), = a. (B.4)
A symmetric matrix, Ag, is equal to its transpose, i.c.,

AsT = Ag, (B.5)
and likewise an anti-symmetric matrix, A 4 changes sign when transposed,

Al = —A,. (B.6)

The trace of a quadratic matrix (a matrix with equal number of rows and
columns) is the sum of the diagonal elements, i.e.,

lV(A) = X”:aii. (B7)
i=1

For two quadratic matrices one has: 1r(AB) = tr(BA).
The identity matrix is

1 0 0
01 ... 0

I=|. . e (B.8)
0 0 1

The inverse matrix A~ of a quadratic matrix A obeys the equation,
AATT=ATA=L (B.9)

A quadratic matrix can only be inverted if it is non-singular. To determine if a
matrix is non-singular the determinant of a matrix is introduced which is defined as

detA = " ayy;. (B.10)
Jj=1

On the right hand side of equation (B.10) the index can be any number in the
interval [1, n]. v, is the (i,j) the cofactor of A defined by:

vi = (=1)"detA;;. (B.11)
The matrix A,-j has the same elements as A except that the i’th row and the j’th

column have been removed so that A;; has the dimension (n — 1) x (n — 1). Itis
seen that the determinant is defined and can be calculated recursively.
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The complementary matrix of A is defined as
Ca = {}- (B.12)
The transpose of C, is called the adjoint matrix of A:
adj(A) = Cy (B.13)

and this allows a closed formula for the inverse of a non-singular matrix to
be given:

| adi(A)
detA -

(B.14)

This formula is most convenient for calculating the inverse symbolically.
For numerical computation better and more efficient methods can be found
in the literature.

The rank of a matrix is defined as the number of linearly independent
columns or rows, i.e., if A is a n X m — dimensional matrix, then r is the rank
if any r 4+ 1 columns or rows of A are linearly dependent but any r columns
or rows are linearly independent. This means that if [a;,a,,...,a,] are any
r columns or rows then the following implication is true:

oja; +oay +...+oa,=0=0o0,=0, Vi (B.15)

If the rank is r then all (r 4+ 1) x (r + 1) —dimensional complementary matrices
will be singular whereas at least one r x r — dimensional one will not be.

A diagonal matrix is a quadratic matrix, where all off-diagonal elements
are zero,

M 0 ... 0
0 A ... 0

diagh,... k)= | . . | (B.16)
0 0 ... M

The determinant of the diagonal matrix is the product of the diagonal elements.

B.2 Eigenvalues and Eigenvectors
The characteristic polynomial for a quadratic n x m matrix A is defined as:

a(s) = det(sI — A) = 5" + a,_ 15" + ...+ ar1s + a. (B.17)
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The n roots of the characteristic polynomial are called the eigenvalues of A. For
each of the eigenvalues A;,i=1,...,n there exists a non-zero vector v;,
the eigenvector, such that the eigenvector equation is satisfied:

AV,’ = 7\,iV,f. (Blg)

If v; is an eigenvector then any multiplication of v; with a non-zero scalar is
also an eigenvector. If the characteristic equation has no two eigenvalues equal,
then all the corresponding eigenvectors are linearly independent and will there-
fore span all of R". If all the eigenvectors are linearly independent the matrix is
said to be simple. The matrix consisting of the eigenvectors as columns is called
the modal matrix:

M = [vi,V2,..., V). (B.19)

For simple matrices the modal matrix will be a non-singular similarity trans-
formation and from (B.18) one has

AM = diag(A;, ..., 0,)M (B.20)
or
M~'AM = diag(L,..., ). (B.21)

In the space spanned by the eigenvectors the matrix becomes a diagonal
matrix with the eigenvalues in the diagonal. This is very convenient but unfor-
tunately this only holds for simple matrices. If the characteristic polynomial has
multiple roots (which is not unusual) the eigenvectors can not be guaranteed to
be linearly independent. Such a matrix is known as being defective. In this case
another set of n linearly independent vectors has to be chosen. Assume that a
given eigenvalue A; has a multiplicity of r;, then one can define r; vectors
Vi, V5, ..., v recursively with the following formula:

AVi =MV Vi, k=0, (B.22)

Define v{, = 0, then the formula is valid for kK = 0 and the first vector vj is the
eigenvector corresponding to A;. These vectors are called generalized eigenvec-
tors and are linearly independent. All these generalized eigenvectors form a set
of n linearly independent basis vectors and may be collected in the matrix,

M= [v},],...,v},vfz, e ,v%, .. ,vf,[, e ,vll]. (B.23)
Here / is the number of different eigenvectors, such that r; +m + ... +r =n.
Multiplying with A gives
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AM = JM. (B.24)

The so-called Jordan normal form is obtained for the matrix in the basis
spanned by the column vectors in M. The Jordan normal form is a block
diagonal matrix in the form:

J 0 0
0o J, ... 0
J= . (B.25)
0 ... 0
0 0 J
Here, the individual blocks are:
Ao 1 0
0 x 1
J; = . (B.26)
A
0O ... 0 N

The blocks in the Jordan normal form have the eigenvalues in the diagonal and
either 1’s or 0’s over the diagonal.

Apart from the eigenvectors which are also sometimes called the right
eigenvectors the left eigenvectors may be defined as the solution to the linear
equation:

WA = Aw. (B.27)

Forming the modal matrix from the left eigenvectors one has in a way similar to
Eq. (B.21):
N= [W],W27.- . 7wl/l}a

(B.28)
NA = diag(Ay, ..., A,)N.

If A is simple the left modal matrix is non-singular and therefore on has the
relation:

NAN ' = (A,...,%,) = M 'AM. (B.29)

This means that N = M~! and therefore the left and right eigenvectors are
orthogonal:

1 1 1 for i=j
WV =Wy, = T (B.30)
/ 0 for i#j
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For a quadratic matrix A with the characteristic polynomial, a(s), given by
Eq. (B.17) the so-called Cayley-Hamilton theorem states that

a(A) = A"+ a, | A" ..+ a1 A+ al = 0. (B.31)

That A is a solution of in its own characteristic equation.

B.3 Partitioned Matrices

A block diagonal matrix is defined in the form,

An 0 ... 0
0 An ... 0

D=1 . . . . (B.32)
0 ... 0 A,

and it can also be written in the form:
D = diag(A1,An, ..., Aum). (B.33)

A (lower) lower triangularupper triangular block matrix has all the elements
(above) below the diagonal equal to zero:

Al Ap ... Aqy,
0 A22 e A2]1

A= ) ] ) L (B.34)
0 0 ... A,

Its determinant is the product of the determinants of the diagonal matrices,
det(A) = det(AH)det(Azz) - det(A,m). (B35)
For the block partitioned matrix,

A= {A” A”}, (B.36)

Ay Ax
the Schur complement of Aj; is defined to be:

Dy = A — ApAS) Ay, (B.37)
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and the Schur complement of A,;,
Dy = An — AnAjAp. (B.38)

Then depending on whether det(A4,;) # 0 or det(A4x) # 0 or both, it can be
shown that the inverse of the A is,

(A7 + AT A LD Ay AT —ATALDS) ]
Al — 11 11 112 2 121 1 11 112 2 e det(41) #0,
—Dy AnAY D, ]
D} —D;'ApAS) |
Al = e ! 2 2| for det(dn) #£0, (B.39)
| —ApAuDy Ay + Ay AnD ARAY, |

Al = D/ —AAD;,)

= B for det(A4;) # 0 and det(A4;;) # 0.
~A5 A2 Dy D,

This is most easily verified by doing the multiplications, A"'A = AA™! = L.
From these forms the well-known matrix inversion lemma can be derived:

(A —ApAL AL = AT + AT AL(An — Ay AT AR) TANATL (B.40)

B.4 Quadratic Forms
For any square matrix, Q the quadratic form can be constructed:
x7Qx. (B.41)

This gives a mapping from R" to R. All matrices may be divided into a
symmetric, Qg, and an anti-symmetric part, Q 4, with the following trick:

1

Q=3(Q+Q")+3(Q- Q") =0Qs+Q, (B42)

\S]]

In the quadratic form however the anti-symmetric component gives no con-
tribution, since

x"Qx = (x"Qx)" =x"Q"x = x"Q,x = 0. (B.43)

Therefore one can always assume that the matrices in quadratic forms are
symmetric without loss of generality.
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For a given matrix, Q, the following may be defined:

Q is positive definite, (Q > 0), if x”Qx >0 for all non-zero x,
Q is negative definite, (Q < 0) if x’Qx <0 for all non-zero x,
Q is positive semi-definite, (Q > 0) if x’Qx > 0 for all x,
Q is negative semi-definite, (Q < 0) if x’Qx < 0 for all x.

For a positive definite n x n matrix, Q, the corresponding Q-norm can be
defined from the expression,

||xHQ = /xTQx. (B.44)

This has all the qualities of a norm on the vector space R". It is a positive
number except when x is zero. If Q is the identity matrix one obtains the normal
Euclidean norm.

For a positive semi-definite matrix the square root matrix, S, is defined
such that

Q =S7S or Q =SS7, (B.45)

and one writes S = +/Q. In general there will be many different square root
matrices for a given positive definite matrix and they are all non-singular.
To check for definiteness, the easiest way is to calculate all the eigenvalues,

A, of Q. The rule is:

Q>0ifall ;> 0,

Q >0ifall A; >0,

Q<oifall ) <0,

Q<oifall A; <0,

(B.46)

An alternative test can be made by calculating the leading minors of Q = [g;]:

mp =dqii,
_6111 q12

my = det ,
L4921 g2
_Chl q12 413

B.47
my =det| g g» ¢ |, ( )

L4931 432 {33

m, = detQ.
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Then if Q > 0, is all the leading minors are positive, if Q < 0 then the minors
alternate between positive and negative values. As far as semi-definiteness is
concerned all minors (not just the leading ones) have to be non-negative and
non-positive respectively.

B.5 Matrix Calculus

For a quadratic matrix A the exponential is defined by the infinite sum,

1 1
eA:1+A+§A2+§A3+... (B.48)

It can be shown that this sum always converges for any A. The exponential has
the following properties:

ﬂeAt _ AeAt,
di (B.49)

eAtleArz _ eA(tlthz).

and for a non-singular matrix A one has further that
(M) = A (B.50)
On the other hand the exponentials do not generally commute, i.e.,
eheB £ AT L BeA (B.51)

unless A and B commute, i.e., AB = BA.
For a real-valued function L(x) € R, where x € " the gradient is defined
as the column vector:

oL
8x1
oL
oL _ Ly= |0x2|. (B.52)
[0).¢ .
oL
_axn_

The total differential of L is then:

OL "~ OL

T
dL = <&> dx = > o (B.53)
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If L were a function of two variables, x and y, the total differential is:

T T
dL = oL dx + oL dy. (B.54)
ox ay

The Hessian for the function L(x) is defined as the n x n-matrix:

O*L O*L
Ly = = (—8xi ax_,) (B.55)

For a vector valued function f(x) € R the Jacobian (the Jacoby matrix) is
defined as the p x n — dimensional matrix:

oo o]
ox; Ox» ~ Ox,
g |2
=2 = ox Ox 8}(”
Jx o 1 '2 il (B.56)
N Ay
LOx; Ox, ~ 0x, ]

For A and y of appropriate dimensions the following rules hold true:

9 1oy _ 9 1 _

Y X) =5 (%) =y,

0 0

&(YTAX) = &(XTATY) = ATy,

. (B.57)
8—(XTAX) = ATx + Ax,

X

O pi 0
) = £ (00T = /.

If fand g are vector functions the product rule gives the following Jacobian:

o o
o ('g) = I (") = gif + &' (B.58)



Appendix C
Continuous Riccati Equation

This appendix deals with the details of deriving the optimal solution to the
estimator problem used in Chap. 7. These results have been judged to be too
complex to be inserted into the text of the chapter at the proper point. For
further details see Kwakernaak and Sivan (1972) and Friedland (1987).

C.1 Estimator Riccati Equation

In order to use the LQR control solution to derive the optimal estimator
solution, it is necessary to reverse the time axis in this solution.

C.1.1 Time Axis Reversal

It is easy to show (using a simple change of variables) that the two differential
equations,

~ PO _ ppy,f— i<, U

with an initial condition p(#,) = p; and

U0 _ g, 10> 1 (©2)

with an initial condition ¢(#y) = ¢o and where
th=tog+ 1,00 <1, (C.3)
have the solutions which have the follow relationships:

p([) = q(t, - [)7t§ I,

(C.4)
q(t) =p({ = 1)1 > 1.

These relationships will be used in what follows.
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C.1.2 Using the LQR Solution

In Chap. 7 the following equation was derived

Q'(1) =[A(1) - L(NC(1)]Q'(1) + Q'(1)[A() — L(1)C(n)]"

(C.5)
+ B, (1)V1()BL(2) + L(£)Va (1)L (2).
The initial condition for integration of this equation is Q'(z9) = Qy.

What is required now is an optimal value of L(#) which will allow the
estimation error covariance matrix in equation (C.5) to be minimized. To do
this the time axis in equation (C.5) has to be reversed in order to be able to use
the solution of the optimal regulator problem (Sect. 5.3, Eq. (5.37)). This is
effectively only a change of variables as shown above.

Letting ¢ = t; + 19, Q'(r) = P'(# — ¢) and the regulator terminal condition
be P'(1;) = Qy, the time reversal of the LQR Riccati equation (C.5) leads to

—P'(1) =[AT(/ — 1) = CT(/ = )LT(/ = 1)]"P'(1)
+P (AT — 1) = CT({ — )LT({ —1)] (C.6)
+ B, (! —0)Vi({ — )BI({ — 1) + L({ — t)Va() LT (¢ — 1),

where t < ty, ¢ =ty + t; and here V(¢) = R (¢) and V,(¢) = R,(¢) in equation
(5.36).

In this form, Eq. (C.6) can be identified with the solution to the optimal
regulator problem. This is given by the Riccati equation,

—P(1) = [A(t) — B()K(1)]"P(1) + P(1)[A(t) — B(1)K(7)] ©)
+R(1) — K(OR()KT(2), '

with the terminal condition P(7;) =Py, 7o <t <. The optimal regulator
feedback gain for equation (C.7) has be shown to be given by

K(1) = Ry ()BT (1)P(). (C.8)
From the previous section it is clear that
Q' (1) =P(—1), (C.9)
where the terminal condition is now P'(#;) = Q,.
Using the results from the LQR control solution, it is clear that the optimal

solution to equation (C.6) is

L({ — 1) =V;'({ —1)C({ — 1)P(), (C.10)
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in the interval ¢ < © < ¢1. With this substitution for L(7), Eq. (C.6) becomes

—P(t) =P()AT({ — 1) + A(/ — 1)P(¢r)
+B,({ = )V ({ —)BI({ — 1) (C.11)

v

—P()CT({ — )V (! — 0)C({ — 1)P(1),

for ¢t < t;, with the terminal condition P(¢;) = Q, . P(¢) has been minimized in
the sense that P(7) < P'(¢), 1 < 1.

Reversing time back again in equation (C.11), one obtains the desired
equation which is

Q(1) =A()Q(1) + Q(1)AT(1) C.12)
+B,()Vi ()BT (1) — Q(1)CT (1) V5 (1)C(1)Q(1), '

where it is clear that Q'(7) > Q(r), t > to. The optimal stochastic observer or
Kalman gain is then

L(1) = Q(C ()V; ' (1). (C.13)

The initial condition for this equation is Q(#) = Q. Because L(¢) is time
dependent, the filter is in fact optimal in time at every instant.






Appendix D
Discrete Time SISO Systems

This appendix gives a short overview of the classic analysis methods for treating
discrete time systems and systems with continuous as well as discrete time
signals ( sampled data systems).

D.1 Introduction

Many simple feedback control systems are of SISO nature: they have one input
and one output. Even control systems integrated in larger and more complex
process plants are sometimes considered as SISO systems although they actu-
ally interact with other feedback loops in a more or less complicated way. In
some cases the influence from the other control loops can be interpreted as
disturbances to the SISO system. But that means of course that it is no longer
a true SISO systems but a MISO system.

In this overview such problems will not be explored in depth but rather
some useful general results for analysis and design of discrete time systems
will be presented. Some of the methods are derived directly as discrete time
equivalents to the continuous time techniques.

Figure D.1 shows a typical SISO control loop where the controller is imple-
mented as an algorithm in a digital computer. The process plant and the
measurement system are continuous time elements and the computer is a
discrete time element. The two parts of the system are divided by a digital-to-
analog converter (DAC) and an analog-to-digital converter (ADC). The ADC
acts as a sampler which provides the computer with measured values of the
output at discrete instances, the sampling instances, which are determined by a
clock within the computer. At similar instances the digital control values from
the computer are converted to a continuous (‘analog’) control signal (usually a
voltage or a current) which is fed to the actuator inputs of the process plant.
Note that the time arguments for the signals are the continuous time ¢ and the
discrete time k respectively. k is convenient abbreviation for k7 where T is the
(usually constant) sampling period.

515
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. k) —— u(t)
Digital u(
—-|DA l——
Computer .C

Clock

Fig. D.1 Sampled data (k) (k)
control system ha

Process y()

Plant

Actuator

v.(k) [——| Ye(® | Measurement
ADC System

The system in Fig. D.1 resembles that of the simplest continuous time SISO
control systems. The difference is that the continuous controller has been
replaced by a computer and that, consequently, the AD and DA converters
have been added.

It is important to note that the discrete time signals (r(k), e(k), u(k)) are only
defined at the sampling instants, whereas the continuous time signals are
defined at all times. Figure D.2 shows examples of signals in the system on
Fig. D.1.

Fig. D.2 Discrete and ye(®) u(k)
continuous time signals
/\ i . .
o
t k
1 2 3 4 5 6
ye(k) u(t)
L .
.
° o - -
T
T ; ,

Note that the conversion from the discrete values u(k) to the continuous
control signal u(7) implies that the u(7) signal is maintained constant between the
sampling instants. Since this way of generating the continuous (or rather piece-
wise continuous) control signal can be called a zero-order interpolation, the
DAC is said to contain a zero-order-hold ( ZOH).

D.2 The Sampling Process

If the two left hand curves on Fig. D.2 are combined it is possible to construct a
mathematical description of the process of sampling.
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Consider Dirac’s unit impulse function 8(¢). The function is zero everywhere
except at 7 = 0. The impulse function 6(z — kT) is a similar impulse which
‘arrives’ at the time ¢t = kT, i.e., the k’th sampling instant. If the signal y.(k) is
seen as train of pulses arriving at the sampling instants ...(k— 1)7, kT,
(k+1)T..., the discrete signal can be expressed as:

o0

ety =yelt) D 3(1—kT), (D.1)

k=—00

where the *—notation shows that the entire signal for all k in the interval [0, oo]
is considered.

Since the impulse train function »_ 6(¢ — kT) is periodic with the period T,
it can be expanded into a Fourier-series. It can be shown that the Fourier-series
of y*(¢) can be written:

i 8(t — kT) le i MOy, (D.2)

k=—00 n=—00

where o, is the sampling frequency in [rad/s],

o= (D.3)

If (D.2) is inserted into (D.1), the expression can be Laplace-transformed
(assuming that the functions are Laplace-transformable):’

yels) = L{yi(0)} = /_OO (1) (lT i gnwi)e—szd,

n=—0oQ

o0

1 -
_ - Z/ e]nu) —vtdl T Z g(e/nwxyc(t)) (D4)

I’l_*OO n=—00

= 7 Z ]n(Dv

I‘I—*OO

If the Laplace-operator s is replaced by jo the frequency spectrum of the
sampled signal yi(7) is obtained:

o0

Viljo) =2 3 Yo — o). (D.5)

n=-—00

t The Laplace-transform used her is the two-sided transform where the integral is taken on the
interval [— oo, oo]. In the more often used one-sided transform the interval is [0, oo].
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Flg. D.3 Amplltude abs(Y*,(jm))

spectrum of sampled signal m [_w /_j /
. ’ To, 0]
2

3m O
T2

8

s

|

2

e

Thus the spectrum is a sum of the spectra:

Y (joo) = lT(. 4 Va0 — 09) + V(o) + Yeli(®+ ) +..),  (D.6)

where the ‘center-spectrum’ Y, (jo) is the spectrum one would get if no sam-
pling had taken place and only the continuous time signal y.(¢) had been
considered.

If the numerical value (Y} (jw)) is calculated the amplitude spectrum is
obtained it will look like Fig. D.3. It is obvious that the spectrum is periodic
with the period my. The center spectrum is the spectrum of the continuous signal
(multiplied by the gain 1/7) and the side spectra are by products of the sampling
process.

Ifit is desired to reconstruct the continuous signal (i.e., convert y.(k) back to
ve(1), it will necessary to filter y.(k) to cut off all the side spectra. The filter
required would have to have the amplitude response on Fig. D.4. The filter has
the transfer function H(s). Note that for physical reasons only positive frequen-
cies are considered.

Apart from the fact that this ideal filter cannot be realized, it is also clear that
the reconstuction of the continuous signal will only be possible if the original
continuous signal spectrum is band limited. If this not the case, the situation on
Fig. D.5a may arise where there is spectural overlap. It will not be possible to
reconstruct the original signal here even if the ideal filter could physically be
made. If the continuous signal contains frequencies higher than half the sample
frequencys, it will never be possible to reconstruct the signal after the sampling
because the side spectra will ‘spill” amplitude content into the frequency interval

Fig. D.4 Ideal reconstruction ®2
filter transfer function 2
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Fig. D:5 _The _effect of non abs(Yj(jo))) abs(Y:(jo)))
band limited signals
’_}K‘ m ’\m X/‘ m
2 2
(] (O]

s K

(a) (b)

[0, ws/2] and there is no way to remove this content. This phenomenon is called
aliasing. The frequency,

oy = /2, (D.7)

is called the Nyquist frequency. So it is seen that the continuous signal must not
contain frequencies above the Nyquist frequency. This statement is often called
the Shannon sample theorem.

The reconstruction filter usually applied is the zero-order-hold. Figure D.6
shows the impulse response of the ZOH. The impulse response is a unit pulse.
The time response is composed of two unit step functions, the last one negative
and with the delay T:

y(t)=h(t)—h(t—T). (D.8)

The Laplace transform of the impulse response is the transfer function and is
readily found as
1 1 N
Gu(s) =~ ——e =% (D.9)
s s K
The frequency response of this filter can be determined in the usual way. If s is
replaced by jo it is seen that

sin%w _oT
Giljo) = T—7—e 17 (D.10)
2
x(1) ¥(1)
Unit x(1) y(1) 1

impulse — ZOH [—

Fig. D.6 Zero-order-hold (ZOH) time response
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The amplitude ratio is the absolute value of this complex number:

abs {sin %}

A(w) = abs(Gy(jo)) =T oT (D.11)
2

A(w) as a function of the normalized frequency ®/®, can be seen on Fig. D.7.

Fig. D.7 Amplitude 127 ‘ — ‘ ‘ ‘ ‘
response of a zero-order- — Idealfilter
0.6T
04T - -
02T F e
0 :
0 0.5 1 1.5 2 2.5 3 9 35
o O
O

The gain is seen to deviate significantly from that of an ideal filter.

The problem of aliasing can be solved (or at least reduced) by the application
of an antialiasing filter. This is a continuous time filter (an ‘analog’ filter) that
is inserted in the measurement channel in front of the sampler, i.e., between
the measurement system and the ADC, see Fig. D.8. The filter should have a
steep roll off starting below the Nyquist frequency, assuring that the frequencies
above oy are removed or only remain present with very small amplitudes so
that the more favorable situation shown on figure D.5b can be achieved.

In the time domain it is easy to see what effect aliasing has on the recon-
structed signal. Figure D.9 shows a sinusoidal signal with the frequency
o, = 5.65rad/sec (f. = 0.9Hz). The signal is sampled with the sampling fre-
quency ®; = 6.28rad/sec which means that the Nyquist frequency is
oy = 3.14rad/sec. Since ®, > oy, the sampling theorem is clearly violated.

(1)
ycf(k) y(f(t) ve() Measurement
ADC G, (s) System
Antialiasing
filter

Fig. D.8 Application of an antialiasing filter
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Fig. D.9 Sampling of a
sinusoidal signal with
aliasing

0 2 4 6 8 10
’ Time [sec]

The frequency detected in the sampled signal (see the dots on figure D.9)
is 0.628 rad/sec (0.1 Hz). This is what one should expect because the signal
frequency is ‘folded back’ into the interval [0, my] symmetrically relative to
oy, see Fig. D.10.

Fig. D.10 ‘Folding back’ o
of the signal frequency / . \
above the Nyquist frequency
(aliasing) | |
t t t o [rad/sec]
|0.628 O

Co(,‘
3.142 5.655

D.3 The Z-Transform

If a continuous time signal y(¢) is sampled with the sample period 7, the Laplace
transform of the sampled signal can be written (see (D.1) and (D.4)):

YO =200} = [ 30 Y 8- kne
R S (D.12)
=Y / y(1)8(t — kT)e™"dr.
The impulse function has the property that
/ O(t — kT)x(t)dt = x(kT). (D.13)

Applying this rule to (D.12) yields:
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o0

Yi(s)= > p(kT)e ™, (D.14)

n=-—00

where the last relation is valid because only function values at the sampling
instants k7 are defined for the sampled signal.
Now a new complex variable is introduced. It is defined as

z=e". (D.15)
This allows a new notion to be established: the z-transform of the sampled

signal. It is derived directly from (D.14) and (D.15):

00

Z{r()y=Y(z) = ) y(kT)z* (D.16)

k=—0c0

If y(7) = 0 for t < 0, which is often the case, (D.16) is reduced to:

Y(z) =) y(kT)z . (D.17)
k=0
Expansion of (D.17) gives the result:
Y(2) =y(0) +y(D)z ' +yQT)z 2+ ...+ y(nT)z"+.... (D.18)

Example D.1. Discretization of Time Functions

The step function on Fig. D.11a can easily be z-transformed using the definition
(D.17) and applying a sum-formula for infinite series,

Xl(z):ZI-z_k:1+z_1—|—z_2+...:
=0

— (D.19)

bl

The pulse function on Fig. D.11b with the period 7 will have exactly the same
z-transform. This will be the case for all continuous signals which coincide at the

sampling instants. )
xq(1) X,(1) x5(1)
I 1 1
Fig. D.11 Step and pulse ] |._.‘
functions @ r o T ©
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Example D.2. Discretization of Pulse Time Functions

For a unit pulse as shown on Fig. D.11c¢ is found that:

X;(Z):Zl-sz:1—1—0-271—&—0-2724—
k=0

Example D.3. Discretization of a First Order Low Pass Filter
For the exponential function,

0 for t<0
M) = {

e~ for t>0

is known that the Laplace transform is

1
Y(s) = .
() = a
The z-transform can be calculated to be
ie—akT k e—aTZ—l =+ e—2(1TZ—2 —

k=0

523

(D.20)

(D.21)

(D.22)

(D.23)

a

A short table of z-transforms and the corresponding Laplace transforms are

given in Table D.1.

From the definition expression it is possible to deduce the following proper-

ties of the z-transform.

1. The constant rule:

Z{af()} = aF(2).

2. Linearity rule:

Z{af(t) + bg(t)} = aF(z) + bG(z).
3. Backward shift or delay theorem:
n—1
Z{f(t—nT)} =z"F(z) + > _fl(k = n)T)=" .
k=0

4. Forward shift theorem:

Z{f(t = nT)} = 2"F(z) = 2" Y _f(kT)="*



524 D Discrete Time SISO Systems

Table D.1 Laplace and Z-transform Pairs

J(t) or flk) H(s) Fz)
1 Unit impulse §(7) 1 1
2 8(t —nT) e z™"
3 Unit step A(7) % = |
4 Unit ramp ¢ %2 TZI)»
% Z — -
Tz(z + 1
5 P % ( ! )
(z-1)
6 e 5 Jlr a P
1 —at 1 &
7 (=) s(s+a) a(z—1)(z—e )
8 et — obt b—a (T — ez
(s+a)(s+b) (z—eT)(z—e?T)
9 a z = a
10 " coskn zjr;a
1 i of o zsinwl
R 2+ 22 —2zcosoT + 1
n s _z(z—cosol)
cos i 2+ o2 22 —2zcosoT + 1
Car o e TzsinaT
13 e “sin ot m Z ¢ Tzcoswl +e¢ 27
2 —aT
14 —at P _ SHa z-—e Y zcosoT
e COsS® (S T a)g + 0)2 22 — 2(’7“TZ cosoT + e—ZuT

5. Initial value theorem:

£(0) = lim F(z).

Z—00
6. Final value theorem:

lim (k) = lim (1 — z HF(2).

k—o00

This rule is only valid if all poles of (1 — z~!)F(z) are inside the unit circle.

D.4 Inverse Z-Transform

The simplest method for generating the discrete time signal x(k) from the z-
transform X(z) is to use the result (D.18).
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Example D.4. Discrete Transfer Function Step Time Response
Consider the z-transform,

0.2858z
22 —0.4500z + 0.03020
Dividing the numerator and denominator by the highest power of z,

B 0.2858z"!
"1 —0.4500z"" +0.03020z-2’

X(x) =

(D.24)

X(z2)

and carrying out a polynomial division,
0.2858Z' /(1 —0.4500z~" 4 0.03020z %) = 0.2858z " +0.12862>

+0.04923z73 + 0.01827z"* + 0.006734z > + 0.002478z° + . . ..

According to (D.18) the coefficients of the right hand polynomial in z~! are the
values of x(k) at the sample instants indicated by the negative power of z.
The initial value theorem shows that the value x(0) is,

0.2858z""
0) = li =0
X(0) = im T30 4 0.03020.2 ~

and the sequence of x(k)-values are:

x(0) =0,

x(1) = 0.2858,

x(2) = 0.1286,

(3) = 0.04923,

X(4) = 0.01827, (D.25)
x(5) = 0.006734,

x(6) = 0.002478,

IEY I N T——

02k RSP PR SR SO S

) IS AT T ——

Fig. D.12 The sequence 06 5 ° o o—ci : ‘
x(k) of equation (D.25) 0 2 4 6 8 10 &k 12
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The z-transform (D.24) is actually the transform in entry 8 of Table D.1 with
a=2,b=5and T=0.5s. If the time instants t = 0, 7, 27,37, ... are inserted
into the left hand continuous function e~* — ¢~"" in the table, exactly the same
function values as equation (D.25) will be found. a

An alternative method for inverse z-transform is based on backwards appli-
cation of the z-transform table. The method is also known from calculation
of the Laplace transform.

Example D.5. Discrete Transfer Function Explicit Time Response

The z-transform of equation (D.24) is considered again. The first step is a partial
fraction expansion into terms which can be found in the z-transform table.

Since almost all z-transforms have the factor z in the numerator, it makes the
fraction expansion a little easier if X(z)/z is expanded instead of X)z). In this
case one obtains:

X(z) 0.2858 0.2858

z 22— 04500z +0.03020 (z — 0.3679)(z — 0.08209)

1 1
T 2-03679 z—0.08209°

which means that

B z z
- z—-03679 z—0.08209°

X(z)
The two last terms can be found in Table D.1, row 6. When the sample period is

known ( 7= 0.5s), it is immediately seen that

log, 0.3679 _ 1og,0.08209
D 05

5,
and that the values at the sampling instants are

X(kT) _ 672kT _ 675kT.

D.5 Discrete Transfer Functions

An input-output relationship for a linear time invariant continuous time system
is usually expressed as a differential equation of the form:
any™ (1) + a1V () + .+ aoy(t)

(D.26)
= byt (1) + byt V(1) + ..+ boul(t).
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Laplace transforming this equation leads to the continuous transfer function:

Y(S) . bys™ + ...+ bis+ by
CU(s)  aps"+...dais+ap

(D.27)

For a discrete time system a difference equation is the natural way to
represent a system model,

yk)+ayk—1)+ayk—=2)+ ...+ ay(k —n)

(D.28)
=box(k) + bix(k — 1)+ bax(k = 2) + ...+ bix(I - 1).

This equation is z-transformed by applying the backward shifting theorem
to each term:

Y(2) +aiz7 ' Y(2) + @z 2 Y(2) + ...+ a,z " Y(2)
(D.29)
=boX(z) + b]ZilX(Z) + szﬁzX(Z) + ...+ b/ZilX(Z).

Factoring Y(z) X(z) out and dividing on both sides of the equal sign gives

Y(z) bo+biz ' bzt 4 bz
X(z) 1+az'+az24... fa,z"

= H(z) (D.30)

Multiplying numerator and denominator by z" gives the alternative form,

Y(z) bz 4 b1z + by 24+ b B(2)
X(z) 4 az ' ta 4. 4a,  Az)

= H(z). (D3I

H(z) is called the discrete time transfer function for the system modelled
by equation (D.28). The transfer function is usually a rational fraction with
polynomials B(z) and 4(z) as numerator and denominator.

The solutions of the equation,

B(z) =0, (D.32)
are called the zeros of the transfer function and the solutions to
A(z) =0 (D.33)

are the poles. The denominator polynomial A4(z) is called the characteristic
polynomial of H(z) and Eq. (D.33) is the characteristic equation.

Just as in the continuous case it is now possible to express an input—output
relationship using the transfer function,

Y(z) = H(z)X(z). (D.34)



528 D Discrete Time SISO Systems
D.6 Discrete Systems and Difference Equations
The output expression (D.34) can be written:

. by +b1271 —l—sz*Z + ... —|—b127]
T l4az ' +az 4. taz"

Y(2) X(2). (D.35)

Simple manipulation of this equation leads to

Y(z) =(bo + b1z + bz + ...+ bz ) X(2)
(D.36)
—(az " az .+ anz" ") Y(2).

Inverse z-transformation gives (only values at the sampling instants kT
are relevant),

y(k) = box(k) + bix(k — 1) + byx(k — 2) + ... + byx(k — I)

(D.37)
—aylk—1)—aylk—-2)—...—ay(k —n)

Equation (D.37) is a difference equation which allows computation of y at the
time = k7 when y is known at the times 1 = (k — )T, (k = 2)T,...,(k—n)T
and x is known at t = kT, (k — )T, (k=2)T,...,(k—]T.

If the transfer function is considered as a discrete (or ‘digital’) filter then the
difference equation is very easy to implement on a computer. The computation
at each sampling instant requires that at the most n previous y-values and
[ previous x-values are stored in the computer’s memory. If by # 0 the x-value
must be known at the time of the calculation.

D.7 Discrete Time Systems with Zero-Order-Hold

In many cases it is required to describe the entire continuous part of the
hybrid system on Fig. D.1 in the discrete time domain. This means that it is
necessary to generate a discrete model equivalent to the continuous time part of
Fig. D.1. This is shown in a slightly simplified form on Fig. D.13a. The discrete
equivalent is shown on Fig. D.13b.

The problem is to find the z-transform of the continuous transfer function
preceded by a ZOH. The transfer function of the ZOH is (D.9). So what has to
be determined is

Haon(z) = 2{1_76“ G(s)}. (D.38)

N

One finds by direct calculation that
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Fig. D.13 Continuous u(k) DAC | u(®) y.(1) v (k)
and discrete time model (ZOH) G(s) ADC (——-
equivalents
(@
u(k) ye(k)
Hyop(2) ‘
(b)

{2 ef2),

where the last result is due to the fact that e™** gives a delay of one sample
period, and therefore the backward shift theorem can be used. The final result is

(D.39)

—Ts

Hzon(z) = (1 - zl)Z{G(S)}. (D.40)

N

D.8 Transient Response, Poles and Stability

The transient response of a discrete system can be calculated from (D.34).

The simplest case arises if the input function X(¢) is the unit impulse function on
figure D.11c because its z-transform is X(z) = 1. In this case the transient response
becomes the transfer function itself and the discrete time function is found simply
by inverse transformation as in examples D.4 and D.5. So the response on Fig.
D.12 is the unit pulse response of a system with the transfer function (D.24).

Example D.6. Continuous System Response with Zeroth Order Hold

Given the continuous system with transfer function,

b—a 3
) = 6T GTeES) (D-41)

with a zero-order-hold added the discrete transfer function is obtained,

Hzon(z) = (1 — Z_I)Z{m}.

The unit step response is found from
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Y(z) = Hzou(z)X(s) = (1 - Zl)Z{S(S+ 2;(s+ 5)} Zi 1

3 0.3 0.5 0.2
7zl > L _ZlU
{s(s+2>(s+5>} {s s+2+s+5}

z z z
=03 -0.5 0.2 .
z—1 P -

With the sample period 7=0.2s it is found that

Yo = 0.038422% + 0.02410z
7 T 232038222 + 128482 — 0.2466

The inverse z-transform can be found by polynomial division:

»(0) =0,

y(1) = 0.03842,
y(2) = 0.1024,
$(3) = 0.1594,
$(4) = 0.2027,

The result is seen on Fig. D.14. On the same figure is drawn the unit step
response for the continuous system (D.41).
It is clearly seen that the two responses coincide at the sampling instants.

0.35
03 oo ST SN 4

025 b oo ............ ......................

02 e N b
R Discrete time system

0151 o R AN S .
. Continuous time system

01k I ."., 2 BN ..................... R

005 . L L2

Fig. D.14 Unit step
response for discrete 0l— ; :

. 0 1 2
and continuous system

Time [sec] 3
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As seen from the z-transform table there is a simple correspondence between
the poles of the Laplace and the z-transforms.

If the continuous signal (or system) has a pole at s, and the equivalent
discrete signal (or system) has a pole at z,, then they are related as follows:

. 1
p=er e, = ?loge Zp. (D.42)

This is in agreement with the definition of the z-transform (D.15). The zeros of
the signals and transfer functions do not follow this simple rule.

If the poles are real, s, = r, the discrete poles will also be real, and the relation
is simply

1

Zp = e = ?loge Zp. (D.43)

If the poles are complex,
5, = 0 L jo, (D.44)

z, = o+ jB, '
then the relation will be
Zp = eTa 3 ejTu)

or (D.45)

a=+jB = e’ cos To + je’sinTo < o+ jo = lloge \/ o2 + B2 :I:learctang.

The upper expression in (D.45) shows that if ¢ < 0 then Mod

z, =/ + B2 < 1. In other words, if the continuous poles are in the left

half plane, then the discrete poles are inside the unit circle disc.
This leads to a very simple stability criterion for discrete time systems:

A discrete time system given by the transfer function (D.30) and (D.31) is
asymptotically stable if and only if all poles are inside the unit circle.

A mapping of the continuous s-plane on the discrete z-plane can be carried
out from the above relations. It is shown in Fig. D.15.

Note that the curves in the z-plane for constant damping ratio are logarith-
mic spirals.

A more accurate picture of the curves for constant damping ratio and for
constant natural frequency is shown on Fig. D.16
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s-plane z-plane
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Curve for constant / —On
damping ratio

1
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Fig. D.15 The correspondence between s-plane and z-plane (z-transform)

D.9 Frequency Response

For continuous systems the frequency response can be found by replacing the
Laplace operator s by jo in the transfer function G(s) and then calculating
the complex number for appropriate frequencies in the interval [0, o], i.e., s is
given values on the positive half of the imaginary axis. The amplitude ratio
and the phase are Abs(G(jo)) and Arg(G(jw)) respectively.

The procedure is quite similar for discrete time systems. In the transfer func-
tion H(z) the operator z is replaced by ¢/7®. The frequencies must now be kept
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Fig. D.16 Discrete time 1 T I
(z-plane) curves for constant ®, = z—’; 27 c=20
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to the interval o € [0, m,/2] since it does not make sense to expose a discrete time
system to frequencies higher than the Nyquist frequency. In other words, z is
given values on the upper half of the unit circle. See also Fig. D.15.

Example D.7. Bode Plots for a Continuous and a Discrete System

The continuous system from Example D.6 has the transfer function,

3
Gs)=————. D.46
(5) (s+2)(s+5) ( )
With a ZOH the discrete time transfer function was found to be
(z— 1)(z*> +0.62742)
HZOH(Z) =0.03843 3 5
z(z3 —2.038222 + 1.2848z — 0.2466) (D.47)

z+40.6274
22 — 1.0382z + 0.2466°

=0.03842

with 7=0.2s and oy = % = 15.17rad/s rad/s.

On Fig. D.17 can be seen the Bode plot for the discrete system (D.47) and the
continuous system (D.46). The magnitude curves only deviate slightly from
each other close to the Nyquist frequency. For the phase the situation is
different. The discrete system has a larger phase lag than the continuous system.
A little below the Nyquist frequency more than 200° is seen as opposed to 155°.
As a matter of fact this is what could be expected. Looking at the step responses
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Fig. D.17 Bode plots for 0 ‘ —y ‘ ‘ T
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for the same systems on Fig. D.14, it is clearly seen that the ‘best’ continuous
approximation to the discrete staircase response of the discrete system is the
thin dashed curve shown on the figure. This curve is the continuous response
delayed half the sample period, T/2. So the sampling and the zero-order-hold
process can be approximated with a delay of 7/2. A delay generates a phase lag
proportional to the frequency. The extra phase lag for a time lag of 7/2 is,

oT
Pa = B (D.43)
which provides a reasonable explanation to the result on Fig. D.17. a

D.10 Discrete Approximations to Continuous Transfer Functions

Design of discrete time controllers for simple feedback systems can be accom-
plished by application of root locus or frequency response methods to the discrete
transfer functions. However these techniques are easier to use and they are also
better known for the continuous domain. It is therefore common to design
standard controllers (P, PI, PID) as continuous controllers and then to ‘translate’
the transfer functions in s to an equivalent transfer function in z which allows easy
implementation as a computer algorithm as discussed in Sect. D.6.

In principle, the translation could be done by replacing s by z according to
(D.15) but unfortunately that would lead to non-rational transfer functions for
which simple inverse transforms cannot be found.
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D.10.1 Tustin Approximation
Instead of direct substitution a rational approximation to the exponential

function is used. A well known example of such a simple approximation is the
first order Padé-approximation:

1+ Ts/2

Ts
= >~ D.49
1—Ts/2 ( )
The inverse expression,
2z—1
s —— D.50
ST (D.50)
Is called the Tustin approximation.
The continuous transfer function,
m
(s + 52)
G(s) =5—, (D.51)
Hl (s + 5pi)
has m zeros —s.i, —$-2, ..., =S,y and n poles —s,1, =2, ..., —Spn-

The corresponding approximate discrete transfer function is

m

P H[(l +IS;1')Z— (1 _Iszi)}
Hyp(z) 2 G(s)|, 20 = <§(2+ 1)) ijl i i (D.52)
FT1(1-+£90)2— (1~ £

i=1

where r = n — m > 0 is called the relative order of the transfer function. If G(s)
has no zeros (M =0), the numerator of (D.52) is replaced by the constant
numerator of G(s). Note that H(z) has always the same number poles and
zeros (namely n) and that r of the zeros are in the same position: z=—1.

All the poles and the m zeros of (D.52) can be found directly from the
continuous poles and zeros by using (D.49). The additional discrete zeros in
z=—1 of (D.52) cannot be found in (D.51). If one insists on translating
these zeros with (D.50), one finds that s.; =2 co. In this context it is sometimes
said that (D.51) has r zeros at infinity.

The mapping of the s-plane into the z-plane looks like Fig. D.18 (similar to
Fig. D.17 for the z-transform).
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s-plane z-plane

Fig. D.18 The correspondence between s-plane and z-plane (Tustin-approx.)

Example D.8. Tustin Approximation of a Continuous System

For the continuous system from Examples D.6-D.7 with the transfer function
(D.41) it can immediately be found that (for 7=0.25),

3
(122 —0.8)(1.52— 0.5)

Hr(z) = (0.1(z+ 1))?

(D.53)
~0.01667z% 4 0.03333z + 0.01667
N 72 —z+40.2222
The poles are
{ 0.6667
zZp =
0.3333
which could also have found directly from (D.49).
The transient behaviour of H4(z) is discussed in Example D.9. a

D.10.2 Matched-Pole-Zero Approximation (MPZ)

This approximation method allows generation of discrete transfer function
equivalent in a very simple way. The method can be said to be intermediate
between the exact z-transform and the Tustin approximation.

The MPZ equivalent to a continuous transfer function G(s) with m zeros
and n poles is constructed according to the following set of heuristic rules.

1. A continuous pole s, is mapped into the discrete pole z, = .

2. A finite zero s. is also mapped into the zero z, = e”*.
3. The r infinite zeros of G(s) are mapped into zeros in z=—1.

Sometimes the number of zeros in z=—1 is reduced to r—1. This means that
the discrete transfer function will have a pole surplus of one. The effect is that the
difference equation will only contain input terms at time k—1 and earlier. This

can be advantageous from a computation time point of view. See Example D.9.
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4. The static gain of the discrete transfer function H(z) is selected equal to that
of the continuous transfer function, i.e., such that

Hypz(Z)]:=1 = G(S)s=0 (D.54)

O

Example D.9. Matched Pole and Zero (MPZ) Approximation
The poles of the transfer function (D.41) are

-2
Sp = s

The poles of the MPZ-equivalent found from rule 1 above are
{ 0.6703
Zp =
0.3679

G(s) has no finite zeros and consequently H,,p(z) should have two zeros in
z—1. This leads to

Hupr(2) = K (z+1)° (D.55)
zZ) = . .
mrz (z — 0.6703)(z — 0.3679)
Equation (D.54) is used for calculation of K,
4
Kk 4 3
0.3297-0.6321 2-5
= K =0.01563,
and finally:
0.1563z% + 0.03126z + 0.01563
Hypz(z) = (D.56)

z2 — 1.0382z + 0.2466

If the unit step response is computed for the three discrete transfer functions
(D.47), (D.53) and (D.56), the plots on Fig. D.19 are obtained. The Tustin and

0.35

03 p-mmrrmemeeeeees R R L TR T PP
Continuous = .

0.25
02 T R

0.5 F--mmv AT Tustin equivalent ---------------

O1F--- - . N *MPZ equivalent . ......................

) _ 005F [T+ R LEEE EITEERPRRERRPRPRR
Fig. D.19 Unit step K N ZOH (from figure D.14)
responses for discrete [
equivalents 0 1 2 Time [sec] 3
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the MPZ equivalents only deviate very little from each other but they are both
somewhat different from the ZOH response. As a matter of fact, they are a
closer approximation to the continuous response (the thin dashed curve) than
the ZOH response.

If one of the zeros in z=—1 is omitted in Hy,p~(z) a modified version of the
MPZ-equivalent is obtained,

z+1 0.03126z 4 0.03126
H =K = . (D.57
yaerz(2) (z — 0.6703)(z — 0.3679) 22 — 1.0382z + 0.2466 (D-57)
Note that K has been recalculated accordingly. The step responses for Hyp (2)

and H s yp7(2) are shown on Fig. D.20.

Fig. D.20 Unit step 0.35
responses for Hymprz(z) and
Hympz(z)

03 f e R g e ooe
Continuous - .

025N\ R e R IIRMITMTES

02 . - b ]
015 oo o ------------------------
01 S MPZequivalent ----------------------
0.05p - g | |

0 1 2 Time [sec] 3

It is clearly seen that the output y(0) is zero for the latter transfer function but
not for Hyp,(2).

If the responses y (k) are found by inverse z-transformation from (D.56) and
(D.57) the following results are obtained:

MPZ (nominator and denominator have the same order, i.e., no pole surplus):

y(k) = 0.01563x(k) + 0.03126z(k — 1) + 0.01563x(k — 2)

(D.58)
+ 1.0382y(k — 1) — 0.2466y(k — 2).
MMPZ (pole surplus):
y(k) =0.03126x(k — 1) + 0.03126x(k — 2
(k) (k—1) (k—2) (D.59)

+1.0382y(k — 1) — 0.2466y (k — 2).

If the transfer functions should be implemented as an algorithm in a
computer these difference equations show exactly how it should be done. The
significant difference is that in the case of MPZ the input x(k) at the current
sampling instant kT is needed for the calculation of y(k). This means that the
calculation time must be very short compared to the sampling period.
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For the MMPZ only x-values up to time k—1 are necessary for the calcula-
tion of y(k) and therefore the entire sampling period is available for the
calculation. This is an advantage if the sampling period must be short compared
to the computer’s calculation speed. That will be the case if the transfer function
is some kind of a discrete filter for a fast process. 0

Example D.10. Tustin and MPZ Approximation Comparison

The frequency response for (D.41) and its discrete time equivalents are seen on
Fig. D.21. As expected the Tustin and MPZ equivalents have quite similar frequency
responses.

Fig. D.21 Bode plots for the 0 T AN T T T
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equivalents I R e P T
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E : : Tustin/MPz;/ :
3= T R S R o\
2 : ‘MMPZ:
= : :
Z80 |
1 1
0 T T
Tustin/MPZ
_ 100}
o
3
= . . . . . . . .-
= : : : : DN : :
200} ----- AAAAAA AAAAAAA AAAAAAAA / N A - AAAAAAAA AAAAAA
: : : czon? % : :
-300 i et bl f i
0.1 1 o [rad/sec] 10 oy 100

The ZOH transfer function and the MMPZ equivalent exhibit more
phase lag than the Tustin and MPZ equivalents. This could also be anticipated
having Figs. D.19 and D.20 in mind. So the suitable computation properties of
ZOH and MMPZ are paid for by excess phase lag. 0

D.11 Discrete Equivalents to Continuous Controllers

It is simple to compute discrete equivalents to the well known standard
continuous controllers (series compensators) for SISO feedback systems.
The most important controllers are:

1. PI-controller:
m(s) s + 1
G = =K .
ri(s) e(s) 7o

(D.60)
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2. Lead-compensator:

T8+ 1
Glea =K . D.61
l d(s) ’ otys + 1 ( )
3. PID-controller:
Ts+1 s+ 1
Gpip(s) = K, . D.62
rin(s) = K, TS oTgs + 1 ( )
or
1 T4S
G =K, 1+— . D.63
ri(s) p( +ris+vrds+ 1) ( )
4. Miscellaneous filters (low pass, high pass, notch etc.):
B(s)
Gi(s) = —= D.o4
where B(s) and A(s) are appropriate polynomials in s.
Example D.11. Use of Matlab for System Discretization
Consider the PID-controller,
8s+1 42s+1
s)=5—— —— =0.23. D.
Grn(s) = 3=~ Gogsr1 * =03 (D.65)

The discrete equivalents can be found by application of Eq. (D.50) or the MPZ-
rules on p. 536. In this case the rather tedious insertion work has been avoided by
use of MATLAB’s c2d-function (continuous-to-discrete conversion).

The Tustin equivalent is (for 7=0.25s),

—0.9753 4.057z — 3.868
z—1 z—0.8113
22 — 1.9288z + 0.9299
N 20'5422 —1.8113z+0.8113"

Hi(z) = 5.063=

(D.66)

The step and the frequency responses are shown on Figs. D.22 and D.23. The
discrete as well as the continuous responses are shown.

The discrete step response is seen to follow the continuous response nicely
and the Bode plots hardly differ from each other except that the discrete
response is limited by the Nyquist frequency o,y. 0

Example D.12. Discrete SISO PID Controller Responses

Figure D.24 shows a SISO control system with the continuous PID-controller
(D.65) from Example D.11. As it will often be the case the lead-compensator is
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placed in the feedback branch of the system. The system is fitted with a low pass

prefilter to improve the step response. The controller is designed for a 48° phase
margin. The crossover frequency o, = 0.43 rad/s was obtained.
Figure D.25 shows the same system but with the discrete controller (D.66).

The prefilter discrete Tustin equivalent can be found to be

PID-controller

Prefilter
r t q;
L) s8st ] 400l Pl _0.01 0
65+ 1 . 8s 245+ 1
PI
42s+1 0.15
. . 0.96s + 1 65+ 1
Fig. D.24 Continuous
Lead
control system
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Fig. D.25 Discrete version Discrete Discrete PID-controller :
of the system on Fig. D.24 prefilter 0
r(k) e(k) m (k) 0
— Hi) [t Hp(2) —=DAC L] s d
_ 24s + 1
PI
H(z) ADC|<{ 215
65+ 1
Lead
Discrete Continuous
Hy(=) = 0.01693— 1
(z) = 0. B ——
/ Z—0.9672

Step responses and control signals for the two systems are found on Fig. D.26.
The differences are minor. The main difference is that the control signal from the
discrete controller is clearly a staircase signal.

This good result is partly due to the size of the sample period. The control
object has the two time constants 24 s and 6s. In this context the sample period
T=0.2sis small in comparison. The consequence is that the control computer
is unnecessarily burdened by the task of controlling this rather slow system. If
the procedure is repeated with a more sensible sample period 7=2s, the
responses in Fig. D.27 are obtained.

0(y) and 0,(1)

m(t) and m(t)

Fig. D.26 Responses for ‘ : : :
continuous and discrete 20 25 30 35 40
system (7=0.2s) Time [sec]
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Fig. D.27 Responses for 8
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This result is obviously not good. With such a small sample frequency the
effect of the sampling process is very severe. As it was pointed out previously
(see Example D.7) the sampling causes a time delay and this is known to
influence the stability margins negatively. By calculating discrete equivalents
to continuous controllers such effects are ignored. O

It is not difficult to take the sampling process effects into account. It would
be a reasonable first step to include the zero-order-hold into the continuous
system. The ZOH has the transfer function (D.9) where a time delay is directly
represented by the term e~ ”*. It is usually preferred to insert a rational function
instead of the non-rational exponential function. Just like the case of the Tustin
equivalent, a first order Padé approximant can be used. This leads to the
transfer function:

1-Ts/2
l—e ™ l=mpp T
Gy(s) = = = . D.67
(s) s s Ts/2+1 ( )

This transfer function has a stationary gain 7. Thus if one desires to insert
the function into the continuous system without changing the stationary loop
gain, the factor 1/7 must be included. The following transfer function is the
overall result:

T

Gron(s) = 77

(D.68)
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With this transfer function as a part of the open loop continuous system it is
possible to redesign the continuous PID-controller and obtain new controller
parameters more suitable for the discrete time conversion by the Tustin or the
MPZ method.

If an anti-aliasing filter is necessary, it will also be wise to include this as a
new transfer function in the open loop before the redesign. The same could be
the case if a substantial computation delay must be anticipated. Such a delay
can be approximated by a new Padé approximant. O

Example D.13. Zeroth Order Hold Redesign of a SISO PI Controller

If the ZOH approximation derived above is added to the continuous system in
Example D.12, the feed forward branch will be as seen on Fig. D.28.

Fig. D.28 Insertion of . 1| meo) 7 o
Gzonu(s) into continuous Sl w G 7ou(5) = 2400}—= 0.01
system P 245+ 1

PI

The redesign is carried out in the same way as the original design and the
following continuous controller is obtained,

Ils+1 7s+1

Gels) = 18—~ T 1 17

(D.69)

The phase margin is considerably higher than before: 66°. The crossover fre-
quency is smaller: 0.3 rad/s.
The Tustin equivalent for 7=25s is:

z—0.8334 3.774z — 2.8302

Hr(s) = 1.9636——— 2 —0.0566

(D.70)
741 22 — 5833z 4 0.625
T 22 - 1.0566z 4 0.05661
The best prefilter is in this case:
1 z+1
Gy(s) & Hy(z) =0.2222 (D.71)

T 35541 Z—0.5556

The responses are shown on Fig. D.29. The oscillations seen on the previous
figure have disappeared and the step response has only a minor overshoot. The
settling time is slightly larger than for the system with the continuous controller,
an effect of the smaller crossover frequency and bandwidth.
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Fig. D.29 Responses after
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Although the a-factor is smaller than before the control signal amplitude is
actually smaller during this response. O

D.11.1 Choice of Sampling Period

Although it is not readily apparent, the sampling period in most of the examples
in this appendix (and, as a matter of fact, in the rest of the book) have been
selected by an iterative trial-and-error method. Such methods are probably
the preferable in most practical cases.

Shannon’s sample theorem (see Eq. (D.7) on p. 519) provides a theoretical
hint to the proper size of the sampling period but the Nyquist frequency is rarely
well defined because virtually no signal is strictly band limited.

As a more useful first step in the sample period selection an empirical rule is
usually used. There are several to choose from:

1. Ifis desired to design closed loop control for a process which has a dominant
time constant 4, then the sampling period 7 should be chosen such that

Td
T<—.
10

2. It is desired to have a closed loop settling time ¢, T is required to satisfy

Ts
T<—.
10
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3. Similarly, if the bandwidth o, is desired, T should satisfy

T (i.e., o3> 100,).

<
100);7

If the closed loop system has a dominant natural frequency o, this fre-
quency can be inserted in the formula above instead of w.

4. If the process has a dominating time delay 7, a reasonable requirement
could be

Td
T<—.
4

Such rules should only be considered as coarse guidelines allowing the designer
to make a reasonable initial choice of the sampling period.
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Uniform, multivariable, 370

Unit impulse response, 63

Unit impulse response matrix, 63
Unit pulse, 83

Unit pulse response, 83

Unstable equilibrium point, 102
Unstable region, 102

Upper triangular block matrix, 506

A%

Van der Pol, B., 4
Variance, 358, 376-377
Vector-matrix equation, 10
Viscous damping, 346, 391
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Weight matrix, 307-308
White noise, 351, 386, 388-392, 400407,
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discrete, frequency domain, 416-417
sampled, 417
White noise power spectrum, 419
White noise spectrum, 418, 419
Wide sense stationary, 379
Wiener-Khintchine relations, 397
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Wittenmark, B., 8
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Zero-input solution, 84, 153
Zero-input stability, 104
Zero-order-hold, 516
Zero/pole cancellation, 169
Zeros under state feedback, 213
Zero-state solution, 62, 84
Zeros of transfer function, 527
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Modern contral theory and in particular state space or state
variable methods can be adapied to the description of many
systems because they depend strongly on physical modelling
and physical intuition. The laws of physics are in the form of
continuous differential equations and for this reason, this book
concentrates on system descriptions in this form: coupled sets
of linear or noalisnear differential equations. The physical
approach is emphasized in this book because itis most natural
for complex systems. [t also mikes it easier to immediately
apply the theory to the understanding and comrol of many
dilferent lypes of syslems.

In line witls the approach set forth abeve, the book first deals
with system modelling in state space as well as transter func-
tioe form, The modelling metheds are described with many
examples, Linearization is treated in detail, Because computer

contral is so fundamental to modern apphications, discrete

Lime moedeliing of systems as dillerence eguations is mleo-
duced immediately after the more intuitive differential and
transfer function models, Many control schemes, based on line-
arized state space models, are treated in the deterministic as
wll as in the stochastic case. These contriol methods inclhade
Lisear Qruadeatic (LQ) optimal control and LOG ( Linear Quad-
ratic Gaussian) control {LOQ contrel with Kalman filters),
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