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Preface

Control engineering is a multidisciplinary subject which is critical to the
operation of modern technology and which is nearly invisible in daily life.
From atomic force microscopes, through PC disk drives and drive-by-wire
engine controls to Boeing 747’s and to space shuttles, multivariable controls
underlie many of a the devices which are available in the modern world
and without which, they would not function at all. This book is an introduc-
tion to the more advanced techniques which are used to design control
systems for the devices above and which were developed for this purpose
from about 1960.

Modern control theory and in particular state space or state variable meth-
ods can be adapted to the description of many systems because they depend
strongly on physical modelling and physical intuition. The laws of physics are in
the form of continuous differential equations and for this reason, this book
concentrates on system descriptions in this form. This means coupled sets of
linear or nonlinear differential equations. The physical approach is emphasized
in this book because it is most natural for complex systems. It also makes what
would ordinarily be a mathematical subject into a physical one which can
straightforwardly be understood intuitively and which deals with concepts
which engineering and science students are already familiar. In this way it is
easier to apply the theory to the understanding and control of ordinary systems.
Application engineers, working in industry and very pressed for time, should
also find this approach useful for this reason. In particular for those in small
and middle sized companies, like most of those in Denmark, this will be
the case.

In line with the approach set forth above, the book first deals with the
modelling of systems in state space form. Both transfer function and differential
equation modelling are methods decribed with many examples. Linearization is
treated and explained first for very simple nonlinear systems, then more com-
plex systems. Because computer control is so fundamental to modern applica-
tions, discrete time modelling of systems as difference equations is introduced
immediately after the more intuitive differential and transfer function models.
The conversion of differential equation to difference equations is also discussed
at length, including transfer function formulations.
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An important adjunct to modelling is the analysis of state space models to
understand their dynamics. One of the basic reasons for modelling systems is to
better understand them: the basis of control is system first understanding and
mathematical modelling second. The analysis of models encompasses both
continuous and discrete time models and is based on methods of solution of
state equations in both forms. This leads naturally to the important questions of
first stability and then controllability and observability and finally canonical
forms and realizability.

With the intuitive background established as above, the actual control
problem for SISO (Single Input/Single Output) and MIMO (Multiple Input/
Multiple Output) systems can be attacked in a simple way. This means using
tools of analysis already introducted to establish overall stable systems with
required time and frequency responses and necessary stability limits. Among
the necessary characteristics of control systems may be requirements for
zero steady state error in regulation and tracking systems and thus integral
controllers are next introduced. As complex models can be effectively and
inexpensively built into current control systems, deterministic observers are
naturally a part of modern control systems and are introduced next, both for
SISO and MIMO systems together with state feedback systems which use
observers.

Once state feedback is used, it is natural to consider how it can be optimized
and this is the next important subject which is treated. To make this important
subject less mystical, the subject of the calculus of variations is described in a
simple fashion and is further supported by an appendix on simple static opti-
mization. This leads to the benchmark Linear Quadratic Regulators (LQR)
which are the foundation of many modern controllers. Again both continuous
time and discrete time regulators are derived, discussed and exemplified in
the text.

A vital problem in classical and modern control is how to treat noise in
control systems. Nevertheless this question is rarely treated in depth in many
control system textbooks because it is considered to be too mathematical and
too difficult for a second course on controls. In this textbook a simple physical
approach is made to the description of noise and stochastic disturbances which
is easy to understand and apply to common systems. This requires only a few
fundamental statistical concepts which are given in a simple introduction. The
basic noise paradigms, Wiener processes and white noise, are introduced and
exemplified with simple physical models. These are then shown to give the
Lyapunov equation for noise propagation.

With the Lyapunov equation available, it is a very small step to add the
effects of state noise propagation and measurement noise to give the Riccati
equation for optimal state estimators or Kalman filters. These important
observers are derived and illustrated using simulations in terms that make
them easy to understand and apply to real systems. The use of LQR regulators
and Kalman filters give LQG (Linear Quadratic Gaussian) regulators which are
introduced at the end of the book.
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Detailed Chapter Description
Chapter 1: Introduction

Chapter 1 includes a history of automatic control of linear systems which
emphasizes the continuity of the subject and points out the most important
developments since ancient history, and briefly, the foundations for them. This
includes sections on the most primitive, ancient developments, the pre-classical
period, the classical period and finally the modern control period. The main aim
of the chapter is to show how modern control theory grew out of specfic
technical needs and to fix these developments approximately in time. Another
important aim is to show that the understanding of control systems is heavily
dependent on the mathematical descriptions which have been created for the
study of dynamic systems in physics.

Chapter 2: State Space Modelling of Physical Systems

In this chapter the reduction of physical systems to state space form is covered.
This includes a careful description of the linearization process which gives the
linear state space form most used in this book. Also treated are companion
forms of the type useful in linear systems control and transfer function forms for
state space systems. There are a number of examples of the use of the material
presented including electrical systems, mechanical systems, as well as the use of
the linearization method on common nonlinear control objects. This chapter is
supported by a set of problems which can be solved analytically but also with
the use of Matlab/Simulink.

Chapter 3: Analysis of State Space Models

The concepts and tools necessary to analyze multivariable dynamic systems are
detailed in this chapter. The main topics include solution of the linear state
equation, including the transfer function method, natural system modes, modal
decomposition, similarity transforms, stability definitions, stability of linear sys-
tems and external and internal stability. This consideration of stability leads
naturally to the problems of controllability, observability, reachability, detectabil-
ity and duality. Finally the chapter deals with modal decomposition, realizability
and minimal forms. Again the chapter is provided with simple and easily followed
examples which are easily remembered. The chapter is concluded with a summary
of the most important concepts presented. The solution of a long problem set at
the end of this chapter requires the use of Matlab/Simulink and the text in the
chapter suggests some standard routines which might be useful for analysis.
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Chapter 4: Linear Control System Design

In Chapter 4 the basic theory of state space feedback and observer design is
presented. This includes the general design rules for closed loop systems and
specifically deals with pole placement and eigenstructure assignment design.
The chapter has numerous examples of full state feedback control with both
continuous and discrete time controllers. It also describes dead-beat controllers
and introduces integral control of systems in multivariable, state space form.
The chapter develops full and reduced order deterministic observers and pole
placement and eigenstructure assignment for such estimators. The chapter
concludes by combining observers, state feedback and integral control for the
same control object in the same feedback loop. Both continuous and discrete
time controllers and observers are considered. This chapter has examples
simulated with Matlab/Simulink.

Chapter 5: Optimal Control

This chapter starts by describing the optimal control and general optimal
control problem in terms of the minimization of a performance index. With
the help a simplified explanation of the calculus of variations the general
optimal control problem is solved. The Linear Quadratic Regulator (LQR)
optimal control problem is solved, step by step, both in the open and closed
loops, both for continuous and discrete time systems. A careful discussion of the
selection of the weighting matrices in the LQR index is given which makes the
solution simple to apply to real problems. The steady state suboptimal solution
is given and an eigenstructure approach is also detailed. The robustness of LQR
control is discussed in a simple fashion which demarkates its limits without
going into complex detail. Finally the discrete time LQR regulator is developed
after a discussion of the conversion of the performance index to discrete time. In
all cases attention is focussed on illustrating the design methods introduced
using practical examples. These practical examples are often illustrated with
Matlab/Simulink simulations and plots.

Chapter 6: Noise in Dynamic Systems

A very clear and simple presentation is made of the problem of describing noise
in continuous dynamic systems in this chapter. The treatment uses the contin-
uous time treatment in order to make use of students’ natural intuition about
the physics of such systems. This chapter does not require any previous knowl-
edge of random variables or stochastic processes. It introduces the necessary
background in a simple, logical and intuitively appealing fashion. This makes it
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possible to introduce more complex noise descriptions as a natural result of
basic statistical concepts. It contains a simple physical picture of noise which is
useful for building an intuitive understanding of noise rather than a purely
mathematical one. Simple guidelines are given which make it possible to quan-
tify uniform or Gaussian distributed noise for simulation studies. Necessary
concepts such as variance, covariance, stationarity, ergodicity and independent
increment processes are illustrated with concrete examples and figures. The
final results of the chapter are the Lyapunov equations for both continuous
time and discrete time systems. These results give a natural introduction to the
next chapter on Kalman filtering. As with earlier chapters, Matlab/Simulink
support is used for the chapter text and a rather extentive set of problems.

Chapter 7: Optimal Observers: Kalman Filters

This chapter uses the introduction to noise in the preceding chapter to develop
Kalman filters as a natural consequence of applying the Lyapunov equation for
process (or state) noise propagation in linear systems. When a measurement is
added to the description of the process noise propagation, what results is the
Riccati equation, the basis of Kalman filtering. While the emphasis in the
chapter is on continuous systems for physical reasons, discrete time Kalman
filters are shown to be derivable from the continuous filter in a simple way.
After the discussion of Kalman filters, the separation theorem is introduced,
making it possible to construct Linear Quadratic Gaussian (LQG) regulators
for linear systems. Also given are the methods for calculating the noise perfor-
mance of LQG regulators based on apriori estimates of the state and measure-
ment noise in a control system. The unity of LQR regulators and Kalman filters
is stressed (in an appendix), making the transition from the deterministic to the
stochastic case simple and natural. In addition to simple problems, this chapter
includes a set of longer exercises which illustrate some real industrical control/
estimation problems.

Appendices

Because some of the material presented in the book might require a larger
mathematical background than some students may have at a level the book
targets, appendices are provided which include some of the most important
detail necessary to understand the text. These appendices, of which there are 4,
deal with optimization basics, linear algebra, derivation of the Riccati equation
and discrete time systems. In particular the last appendix should prove useful as
many engineering curricula no longer include the complex function theory
necessary to understand such systems. It is provided with extensive illustrations
and examples.



X Preface

Class Room Experiences with the Book

At the Technical University of Denmark (DTU) this book has been tested in the
second control course for 8 years and revised, extended and improved over this
period. During this time the students have willowed out a number of errors and
unclear formulations which existed in the original text. The authors are grateful
for their patience and understanding during this process. They are also grateful
for their real additions to the text through their questions and requests for more
information.

At DTU the second course in controls for which this text was written is a one
semester course. During this time the entire book is covered in lectures and
group work. The lectures are given twice a week and are typically 2 x 45 minutes
followed by a “laboratory exercise” of two hours. The laboratory exercise
consists of longer problems formulated as Matlab/Simulink problems requiring
problem formuation (model building from system descriptions), model analy-
sis, control system design and control system testing. It must be admitted that
this is perhaps too much of a work load but apparently the course and the
problems are sufficiently interesting that the students always continue to work
on the laboratory exercies long enough to get the content out of them. This has
been revealed over a period of time by questions directed to the instructors
between lecture days.

It is well known among the students that the course is not easy and is time
consuming to attend. Nevertheless the course is often over subscribed and
students appear after the course start to see if they can be allowed to attend
the lectures and go to exam. Final examination results show that in spite of the
difficulties involved, most of the students have obtained a good feel for the
material. Thesis work after course attendence (done some years later) shows
the material in the textbook has found application in the solution of problems
on a somewhat higher level than the course itself.

Lyngby, Denmark Elbert Hendricks
Lyngby, Denmark Ole Jannerup
USA Paul Haase Sorensen
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Chapter 1
Introduction

Abstract This book is primarily intended to be an introduction to modern
linear control theory but it is useful to review the classical control background
for this important area. This chapter gives a brief history of primitive and
classical controls followed by a review of some of the most important points
in the earlier history of modern control theory.

1.1 The Invisible Thread

Technological and scientific advances occur in steps with the creation of various
devices. In very early history these devices were simple and included such
advances as water clocks in 270 B. C., mechanical clocks in 1283 A. D., steam
boilers in 1681 A. D., steam engines early in the 1700s, and flushing toilets in
1775 A. D. In more recent times the devices invented were somewhat more
complex and included internal combustion engines in about 1886, automatic
pilots in 1914, electronic amplifiers in 1912 and accurate bomb sights in 1934.
What is not usually recognized about these advances is that they are all strongly
dependent on the use of feedback and/or automatic control.

The water clock is older than 270 B. C. but was improved significantly in
accuracy by the Greek Ktesibios who invented a float regulator for the clock
about this time. Mechanical clocks using the verge and foliot escapement were
much more accurate than water clocks and were first seen in Europe about
1283. Steam boilers were used for many purposes in the sixteen hundreds
and became practical with the invention of a steam pressure safety valve in
1681 by Dennis Papin. Steam engines became the prime mover for the Industrial
Revolution with the invention of the centrifugal governor speed control in 1788
by James Watt. Flush toilets were refined by Thomas Crapper using float
regulators and he received a Knighthood from Queen Victoria for his troubles.
Thus even in early times feedback control and regulators have played a critically
important but often nearly invisible part in making even simple technical
devices work in practice.

Closer to the present, diesel internal combustion engines became practically
possible with the creation of a fuel pressure pump/regulator to inject fuel into
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2 1 Introduction

them by Otto Diesel in 1889. An automatic pilot or stability augmentation
device based on the use of the gyroscope was first demonstrated at an air show
in Paris in 1914 by Lawrence Sperry. Electronic amplifiers constructed by
Edwin Armstrong in 1912, used positive feedback in radio receivers to increase
their sensitivity, making possible practical radio reception. Later negative feed-
back amplifiers were made by Harold Black in 1927 which made it possible to
reduce distortion in audio frequency amplifiers for voice telephone and later
music reproduction. Accurate bombsights were made possible by the use of
synchro-repeaters to send air speed, wind and altitude data to a simple com-
puter used in the Norden bombsight. These were used extensively by America
during the bombing attacks against Germany during the Second World War.
Again feedback and automatic control played an obscure or invisible (but ever
increasing) part in the operation of these very successful inventions.

Through history then, feedback control has been woven into many of the
most important technological innovations which have been created from other
technological bases. In many ways these innovations have overshadowed auto-
matic control but feedback control has facilitated many developments. Accord-
ing to Berstein (2002) feedback control has made possible most of the great
waves of technological and scientific development including “... the Scientific
Revolution, the Industrial Revolution, the Age of Aviation, the Space Age and
the Age of Electronics”. Thus feedback control is “an invisible thread in the
history of technology”. Automatic control enables modern technology in the
same way as do modern computers and software but is in general much less
visible. The description of feedback control as an “invisible thread” is due to
Berstein (2002).

1.2 Classical Control Systems and their Background

Classical control is rooted in the primitive period of control system design. This
period is characterized by many intuitive technical inventions and by the lack of
an underlying theoretical basis (except for a few notable exceptions). Often
clever mechanical devices were used to implement the actual control strategies.
This period extends from antiquity up to the beginning of the Second World
War, about 1940. At this stage the requirements of the war together with the
availability of electronic devices and of theoretical tools adapted from the
communications industry made possible a transition to the classical period of
control system development.

1.2.1 Primitive Period Developments

This book deals with the theory of control systems so it is appropriate to start
the review of the primitive control period at a time when theoretical tools
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came into use to analyze control systems. This ignores many of the earliest
developments in control systems but is reasonable given the scope intended. For
interesting reviews of the prehistory of controls the reader should consult Fuller
(1976a,b), Bellman and Kalaba (1964), Astrom (1968) and Berstein (2002).

General recognition of the value of control systems came during the
Industrial Revolution when James Watt began to use fly-ball speed governors
for his steam engines in about 1788. This invention was not new in itself:
windmills and watermills had used similar devices earlier but the application
to widely available practical engines brought the feedback control problem into
the open.

Unfortunately in some cases use of the governor lead to speed instability and
to solve this problem it was necessary to create a theory to explain why this
could occur. The first analysis of speed governors was carried out by George
Airy (Astronomer Royal at Greenwich from 1835). Clockwork mechanisms
were used to control the movement of large telescopes to compensate for the
rotation of the earth and these were fitted with speed governors in an attempt to
improve their accuracy. Using energy and angular momentum considerations,
Airy set up a simplified nonlinear differential equation for the system in about
1840. Considering the linearized form of this equation, it was possible to show
that in some circumstances small oscillations could build up exponentially and
thus account for the instability observed.

A direct attack on the problem of engine speed governors was made by James
Clerk Maxwell in a paper from 1868, “On governors”. Maxwell set up the
differential equations for the overall system and linearized them. In this work
it was pointed out that for stability the characteristic equation of the linearized
system must have roots with negative real parts. Airy’s and Maxwell’s papers
influenced indirectly the work of Edward Routh who published his well known
stability criteria in an Adams Prize Essay in 1877 at Cambridge University.

Independently of Airy and Maxwell, I. Vyshnegradskii carried out an ana-
lysis of governors in Russia in 1876. In continental Europe there were theore-
tical developments inspired by Vyshnegradskii’s paper (which was also
published in French). Aurel Stodola, who was working on the control of hydro-
electric turbines in Switzerland, noted Vyshnegradskii’s paper and asked Adolf
Hurwitz to consider the problem of finding a stability criteria for systems of
any order. Hurwitz was not aware of the work of Routh and found his own
form of the simple stability criteria for linear systems. This took the form of a set
of determinant inequalities in Hurwitz’s formulation.

In 1892 Alexandr Lyapunov considered the stability of a very general class of
nonlinear systems based on earlier work by Jean-Louis Lagrange. On the basis
of general energy considerations he was able to give a general stability criteria
for nonlinear systems as well as the conditions under which the method of
linearization yields a valid assessment of the stability of the underlying non-
linear system. Lyapunov’s paper was not well known in the West until about
1960 when it was re-discovered in the literature. Lyapunov’s analysis and
methods are now in wide general use in the design of control systems. At
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approximately the same time (1892—-1898) operational calculus (Laplace trans-
form analysis) was invented by Oliver Heavyside in England to analyse the
transient behavior of linear electrical systems. Both Lyapunov analysis and
the operational calculus played an important part in the theoretical develop-
ment of control theory in the next century.

1.2.2 Pre-Classical Period Developments

Experimenting with lighting lamps in 1880, Thomas Edison discovered the
Edison effect. This effect is that a current could flow through a vacuum to a
metal conductor in the lamp envelope. No explanation for this effect could be
given until the identification of the electron in 1897 by J. J. Thompson in
England. The discovery of the Edison effect was followed in 1904 by the
invention of the thermionic rectifier diode in 1904 by John Flemming in
England and eventually by the invention of the thermionic triode amplifier by
Lee de Forest in 1906 (though he did not understand how it worked). This was
the beginning of the Age of Electronics. Very rapidly hereafter feedback was
applied around the triode amplifier resulting first in regenerative or positive
feedback radio frequency amplifiers in 1912 and finally in negative feedback
audio amplifiers in 1927. These new inventions were the work of Edwin
Armstrong and Harold Black respectively.

On the theoretical side the complex algebra for A. C. circuits and frequency
analysis techniques were being developed by Charles Steinmetz at General
Electric in the United States in around 1906. The stable oscillations produced
by a triode amplifier when positive feedback was used were found to be due to
its nonlinearity. A theoretical study of the circuit was made by Balthasar van
der Pol in 1920 which is a classic paradigm of nonlinear time domain system
analysis.

In the early 1930s Harold Hazen made important contributions to the
solution of the problem of constructing simulators for control problems includ-
ing the solution of differential equations. Hazen made use of the experience
obtained to write two important papers which were published in 1934 which
studied the effects of feedback on electro-mechanical devices. For these papers
he coined the expression “servomechanisms”. This is the first use of this now
common word in the literature. Later the understanding of servomechanisms
which Hazen had obtained was used in the design of fast fire control systems for
ships, Bennett (1993).

The general use of amplifier circuits in radio frequency receivers and tele-
phone communication lead to a need to understand more deeply the theoretical
nature of amplifier circuits and the reasons for stable and unstable behavior.
This resulted in the work of Harry Nyquist on amplifier stability based on
transfer function analysis in 1932 and that of Hendrik Bode on magnitude and
phase frequency plots of the open and closed loop transfer functions of a system
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in 1940. The work of Nyquist resulted in the derivation of the Nyquist stability
criterion and that of Bode in the investigation of closed loop stability using
the concepts of gain and phase margin. In contrast to earlier work these stability
criteria gave an idea of the relative level of stability which could be obtained. All
of the available theory thus came from the electronics and communication
industries. Thus the stage was set for a period of intense control system devel-
opment at the beginning of the Second World War.

The Second World War made it necessary to develop electronic controllers
for many different devices including radar controlled gun laying, bomb aiming
and automatic pilot systems. By this time the size and power consumption of
triode and pentode amplifiers had been significantly reduced, while at the same
time their amplification, frequency range, robustness and reliability had been
increased. Thus these devices were available for application to the required
control systems and their performance in practical applications was well under-
stood. In fact automated devices of many types, including those mentioned
above, were developed during the war. A great deal of the development of radar
and general electronics was carried out at the Massachusetts Institute of
Technology in the Radiation Laboratory. This work was done using frequency
domain techniques and was of course classified during the war but became
generally known immediately afterward, likewise equivalent work done in the
aircraft industry. Many of the presently used control system design tools
emerged from these efforts including the general use of transfer functions,
block diagrams and frequency domain methods.

In 1947 Nathaniel Nichols published his Nichols chart for the design of
feedback systems based on work done in the Radiation Laboratory. Walter
Evans published in 1948 his root locus design technique which is suitable to
handle the large number of different states which describe the motion of an
aircraft. An important problem in all electronic systems and in particular radar
is noise. Albert Hall and Norbert Wiener realized the importance of this
problem and developed frequency domain methods to deal with it. Hall’s
contribution was a frequency domain formulation of the effect of noise on
control systems in 1941. Wiener introduced in 1942 the use of stochastic models
to treat the effect of noise in dynamic systems and created an optimal filter to
improve the signal to noise ratio in communication systems, the Wiener filter.
Hall and Wiener published their work immediately after the war in 1946 and
1949 respectively. More or less the entire record of the work done at the
Radiation Laboratory was published in a 27 volume series edited by Louis
Fidenour in 1946. There was in this collection of material a volume which
dealt specifically with the design of feedback control systems called “The
Theory of Servomechanisms”.

Thus began the period of Classical Control Theory: just after the end of the
Second World War. The main theoretical tools included the frequency domain
methods of Laplace transforms, transfer functions and s-plane analysis. Text-
books treating these subjects became rapidly and widely available as well as
standard design tools, mostly intented to be used for hand calculations and plots.



6 1 Introduction

1.2.3 Classical Control Period

The Classical Control period was characterized by a concentration on single
loop, Single Input, Single Output feedback (SISO) systems designed with the
theoretical tools developed during and just after the Second World War.
For the most part these could be applied only to linear time invariant systems.
The main underlying concept is that closed loop characteristics of a system can
be determined uniquely given the open loop properties of the system. This
includes the important disturbance rejection and steady state error properties
of the feedback system.

The theoretical tools were those developed by Nyquist, Bode, Evans and
Nichols earlier and the connection between these methods was clarified
and extended. Performance was assessed in terms of bandwidth, gain and
phase margin or rise time, percentage overshoot, steady state error, resonances
and damping. The connection between these performance goals was well
understood. More refined methods of tuning and compensating (using simple
lead/lag compensators) single loop systems were developed. However the single
loops involved had to be closed one at a time using a trial and error process
which could not guarantee good performance or even stability.

During the Classical Period feedback controllers became part of many
industrial processes because the methods of applying them were well known
and because of the commercial availability of electronic, pneumatic and
hydraulic controllers. This made feedback controllers a part of even home
appliances as well as more advanced technical systems. When transistors
became available in the 1960s Classical controls became even more wide spread.

In about 1956 a great interest developed in the control of aeronautical and
astronautical systems and in particular aircraft, missiles and space vehicles: the
Age of Space was beginning. Such systems have naturally a Multiple Input,
Multiple Output (MIMO) quality which confounds the use of Classical Control
Theory. While single loop analysis can be performed on such systems, the
interweaving of the responses in the different parts of the control object
make it impossible to use SISO design methods. In addition uncertainties and
modelling errors together with stochastic system disturbances and measu-
rement noise increase the order of the system which must be controlled and
this augments the design difficulties.

The problem in controlling ballistic (free flying) objects can be formulated
physically in terms of a coupled set of physically derived nonlinear differential
equations. Sensor dynamics and noise can easily be included in the description
of the control object itself. Thus one is lead naturally back to the time domain
problem formulation which was used by Airy and Maxwell in the 1800s. As an
important help in doing this one has available the classic variational formula-
tions of analytic mechanics as given by Lagrange and Hamilton on the basis of
physical conservation principles. This differential equation approach to the
problem formulation is called the state variable or state space approach in
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control technology and it the main subject of this book. While it is possible in
some cases to handle the nonlinearities involved directly, this book will only
deal with the linearization of the underlying system around some desired or
nominal operating point. Use of the state space approach makes it possible to
treat MIMO systems in a natural way and to use the compact and convenient
vector and matrix description of the control object and its associated feedback
system.

Thus the Classical Control Period lasted between approximately 1945 to
1956 and gave rise to the Modern Control Period from 1956 to the present. The
transition from the earlier period was forced by a requirement that more
complex control objects be analyzed and control systems be made for them.
Handling the details of the more complex systems has been enabled by the
availability of inexpensive digital computers for design purposes but also for
the direct implementation of the control systems themselves.

1.2.4 Modern Control Theory

The large number of states in MIMO state variable systems and the possibly
large number of feedback loops which might exist in a closed loop system make
it necessary to consider how decisions might be made about the feedback levels
in the different loops. It has turned out that this is not a simple question and it is
difficult to impossible in fact to make any reasonable, balanced statement about
what might be required. To solve this problem it has been found to be appro-
priate to attempt to design feedback systems which are optimal in the sense of
balancing input power in the different system inputs against the errors (powers)
which can accepted in the system outputs and/or states. This must be done
of course in such a way that the overall system is stable as well as the separate
loops in it.

This would be a daunting problem if it were not for work done much earlier
to solve physical optimization problems in the sixteen, seventeen and eighteen
hundreds by Leonard Euler, the Bernoullis (Jacob, I, I, Johannes, I, 11, I11, IV,
Daniel and Nicolaus, I, 11, II), Joseph-Louis Lagrange, William Hamilton and
others. These workers gave general solutions to a number of minimization and
maximization problems which have been adapted to solve past and current
MIMO control and estimation problems using the Calculus of Variations. The
initial work in adapting these mathematical methods to control problems
occurred in about 1957 and continues to the present.

In Modern Control Theory it is common to minimize a performance index
which may be a generalized quadratic energy function, in many cases with some
secondary constraints (or limitations on the range or character of the solution).
This may be seen as a “natural” requirement as most systems in nature operate
in such a way as to minimize energy consumption. This may be done either for
continuous or discrete time systems considered in the time domain. There are
however frequency domain formulations of the results found when desired.
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In 1957 Richard Bellman applied dynamic programming to the optimal
control of discrete time systems. This work demonstrated that it was possible
to solve control problems based on a performance index resulting in closed loop
feedback controls which could in general be nonlinear. The solution was also
immediately adaptable to computer based discrete time control systems. Lev
Pontryagin suggested a maximum principle in 1958 which solved the minimum
time control problem for a class of control objects using relay control.

In 1960 and 1961 a significant set of breakthroughs were made generally
available with the publication of four papers by Rudolf Kalman and co-workers.
These papers dealt with (1) the optimal control of discrete time systems (with
J. Bertram), (2) the design equations for the Linear Quadratic Regulator
(LQR), (3) optimal filtering and estimation theory for discrete time systems
and (4) the continuous time Kalman filter (with Richard Bucy). The first two
control papers are based on minimizing a very general energy control perfor-
mance index. The last two deal with applying the same techniques to the
optimum filtering (or estimation) problem which is a generalization of the
least squares fitting techniques due to Carl Fredrik Gauss. All of these solutions
were immediately compatible with computer control and estimation at a time
when computers first became generally available for on-line applications. Thus
the four theoretical breakthroughs above found immediate practical applica-
tion in the very visible aero-space programs of the time. LQR regulators and
Kalman filters form a central part of the material which is presented in this
book.

Computer control has become extremely important in control applications so
that it should be mentioned that discrete time control emerged at the same time as
modern control theory. This was due to the publications of a number of workers,
among whom are: John Ragazzini, Gene Franklin, Lotfi Zedah, Eliahu Jury,
Benjamin Kuo, Karl Astrom and Bjern Wittenmark, in the period of 1952 to
1984. The sampling theory, on which the success of modern computer control is
based, is due in part to the papers of Harry Nyquist from 1928, Claude Shannon,
who worked with sampling theory at Bell Labs in 1949, and Vladimir Kotelnikov
in Russia in 1933. Together with the state variable formulation of system
dynamics this work on discrete time control forms the backbone of current
technical and industrial control applications in many fields.

While automatic control systems and feedback have been an “invisible
thread” during most of time they have existed they will become less so in the
future. This is because the value of accurate control has come to be generally
recognized in many applications. For example the newer fighter and bomber
aircraft in the United States and Europe have been created to be unstable from
the outset in order to give them high maneuverability or stealth characteristics
and cannot be flown without their fly-by-wire control systems. Modern auto-
motive engines have electronic throttles and fuel controllers and cannot operate
without their digital Engine Control Units (ECUs). Such advanced applications
will become much more numerous in the future as the price of computer control
systems continues to decrease.



Chapter 2
State Space Modelling of Physical Systems

Abstract Modelling of state space models based on relevant physical laws is
introduced. Linearization of nonlinear models is discussed and the connection
between the transfer function model and the state space model is derived.
Discrete time models are also introduced.

2.1 Modelling of Physical Systems

Design of control systems is in most cases based on a model of the system to
be controlled. In ‘classical’ control engineering the model is usually presented
as a transfer function. A transfer function can be formulated for a restricted
class of systems: linear, time invariant systems. Such systems are very rare in
the real world — if they exist at all — and the linear model is therefore almost
always an approximate description of the real system. In spite of this, the
transfer function is a very useful tool for analysis and design of control
systems, and it is widely used by control engineers for a large variety of
control problems.

It is quite obvious though that transfer functions have their limitations.
While they are well suited for systems with one input and one output (also
called Single-Input-Single-Output or SISO-systems), they can be awkward to
use for systems with more than one input and one output (Multiple-Input-
Multiple-Output or MIMO-systems).

In this textbook an alternative type of system model will primarily be
used: the state space model. Such a model is, just like transfer function
models, based on a suitable set of physical laws that are supposed to
govern the system under consideration. In the state space modelling the
model equation is not transformed into the frequency domain as is done
in setting up transfer functions: one stays in the time domain. On the
other hand, the set of governing differential equations (which may be of
higher order) are translated to a set of first order coupled differential
equations.

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 2, 9
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10 2 State Space Modelling of Physical Systems
2.2 Linear System Models

For systems which are linear or for which one can formulate a linear model
which is sufficiently accurate for control purposes, the modelling procedure is
usually quite simple. The basic principles are illustrated in the examples below.

Example 2.1. RLC Circuit

On Fig. 2.1 a simple passive electrical RLC-circuit is shown.

It is desired to formulate a model where the terminal voltage v is the input
and the voltage across the capacitor v¢ is the output. Ohm’s and Kirchhoff’s
laws give the following relation for the voltages,

di(1)

Ri(t) + LW +ve(t) = v(1). 2.1

For the capacitor it is known that
dve(t)  dq(t)

1) =q(t =——==1i(1). 2.2
From these equations it can be seen immediately that
R. 1 n 1
i=——i——v¢ v,
L L L 2.3)
L
Ve = 61.

Here the time-argument has been omitted.

The system can obviously be described by these two coupled first order
ordinary differential equations. It is usually preferred to reformulate the
equations into one vector-matrix equation,

R !
N P A S [’% Ly, (2.4)
el l 0 \ el
C 0
If the state variables are defined as
R 1 l
x:[l}i(: A= L Ly g |L| .=,
\ el \Je l 0
C 0

D E
Fig. 2.1 Dynamic electrical ] i C l—-

RLC-circuit
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Equation (2.4) can be rewritten in a very compact way as
X = AX + Bu. (2.5)
A block diagram of this system is shown on Fig. 2.2.

Fig. 2.2 Block diagram V(1) i1
of the RLC-circuit

i |—1|vc<z>|7|vc<t>
Lel 1

EE

Note that the entries i(¢) and v.(¢) of the vector x are outputs from the two
integrators in the block diagram. Equations (2.4) or (2.5) are called the state
equations of the system on Fig. 2.1. Note that the differentiation of a vector
with respect to the scalar argument (in this case the time ) is accomplished by
simply differentiating each element of the vector.

Since the capacitor voltage is the output, a second equation should be added
to the description of the problem, the output equation:

y=ve=[0 1]x (2.6)

The combination of Egs. (2.5) and (2.6) is called the state space model of the
system.

Laplace transformation of the Eq. (2.3) would lead to the transfer function
model of the system,

Vi) !

(2.7)
0

In Example 2.1 the two-dimensional state vector selected is x = {:1] = U }
A2 C

The reason for choosing precisely two variables in the vector is that one knows from
electrical circuit analysis that such an RLC-circuit is a second order system. Even if
one has no a priori knowledge of the system, it is usually not difficult to choose the
correct number of elements in the x-vector. This will be demonstrated later.

The model in the example is what is called a /inear state space model since the
right hand side of Eq. (2.4) is a linear function of x and u. The matrices A and B
have constant elements and therefore the model is said to be time invariant.

The system above (or rather the model of the system) belongs to the class of
models for which it is also possible to formulate a transfer function model.
But the state space formulation is not limited to the description of such models.
In fact, the general state space model can be nonlinear and can be expressed as:
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(2.8)

When state space models are formulated the following standard notation
is used:

x(?): state vector of dimension n, x(z) € R",
x(?): time derivative of state vector, X(7) € R",
u(¢): input vector, u(z) € R",

y(7): output vector,. y(z) € R'.

The functions f and g are vector functions:

S1(x(2),u(2), t g1(x(2),u(r), 1
tex(.u(0.0 = [P0 ang g | EXOO0 )
L (x(1),u(r) ) & (x(0),u(), 1)

where the functions f; and g; are scalar functions of the vectors x(t) and u(t).
In the general linear case the system equations can be written:

X(1) = A()x(1) + B(1)u(0),

(2.9)
y(1) = C(2)x(1) + D(t)u(z).

Further, if all matrix elements are constant, these equations are reduced to:

x(1) = Ax(?) + Bu(z),

(2.10)
¥(1) = Cx(1) + Du(1),
and the model is said to be Linear and Time Invariant (LTT).
The following names are generally used for the matrices in Eq. (2.10):

A: system or dynamic matrix, A € R"™",

B: input matrix, B € R,

C: output matrix, C € ™",

D: direct transfer or feed forward matrix, D € ™",

The Eq. (2.10) can be drawn as the block diagram on Fig. 2.3. The double
lines indicate that vector quantities (multiple variables) are passed between the
blocks.

Sometimes it is convenient (or necessary) to divide the inputs of the system
into two groups: The group of quantities which one can manipulate and the
variables which have to be regarded as disturbances. The latter type of variables
are determined by the world surrounding the system and they assume values
beyond the designer’s control. In such cases the state equation can be written,
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Fig. 2.3 Block diagram of a
general continuous linear
state space model

x(1) = f(x(1),u(1),v(1), 1), (2.11)

or, in the LTI-case,
x(t) = Ax(¢) + Bu(r) + B,v(1), (2.12)
where v(t) is a vector of disturbance variables,
v(1) € B B, € R,

Although a model of a linear time invariant system can be a transfer function
as well as a state space model, it is important to realize that these two models
do not give the same insight into the system’s properties. The transfer function
is a very efficient description of the relationship between the input and the
output. The state space model provides the same information, of course, but in
addition, it also gives detailed information on the internal state variables. This
means that one can keep track of what is going on internally in the system. For
this reason the state space model is called an internal model whereas the transfer
function is an external model.

There are other important differences between the two model types. When a
transfer function is constructed one can be sure that it is a unigue model. In
contrast to this, the state space model is not unique. One has considerable
freedom when selecting the state variables and the resulting model obviously
depends on the specific choice of state variables. As will be seen later, this fact
allows one to construct state space models with certain special and useful
properties.

The state vector’s components are functions of time. Over a period of time
limited by the initial time and the final time 7 the state vector describes the
system’s behavior in an n-dimensional vector space. The path of the vector end
point is called the trajectory. An example is shown on Fig. 2.4 for some third
order system.

It is not easy to give a stringent definition of the term szate. Its importance
may be illustrated by considering the information it carries. If the state is known
at a particular time, it will be possible from the model to calculate all other
variables in the system at that time. Also, the model makes it possible to
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Fig. 2.4 System trajectory in X,
a 3-dimensional vector space

= Start point, t=t,
X0 p 0

Final point, t=T
X2
X1

calculate the state at any point in time, say ¢, if the initial state x(#p) and the
input in the time interval [fy, f] are known. This will be true for any proper
choice of state variables.

How the state variables should be selected is also difficult to express in general
terms. However, for particular system models, for instance presented in the form
of block diagrams, it is quite straight forward to point out one proper choice of
state variables. The procedure is illustrated in Example 2.2 below.

Example 2.2. DC Motor and Flexible Coupling

Figure 2.5 shows an electric DC-motor with a flexible coupling in the shaft between
the motor armature inertia and the load inertia. R and L are the resistance and the
inductance of the armature windings, k and b are the spring constant and a viscous
(linear) internal damping coefficient of the flexible coupling respectively and J,,, and
J; are the moments of inertia of the motor armature and load respectively. The
armature terminal voltage u is the input to the system and the load angular position
0, is the output.

If the two inertias are separated from each other and the appropriate torques
(Ty, Ty, T,) added as shown on Fig. 2.6, one can write Newton’s Second Law for
both of them as

Jmém = Kal + k(el - em) + b(el - 9m) - bmém» (213)
JiO; = —k(6;,—0,,) — b(6; — 0,,) — b6, (2.14)

K, is the torque constant, b, and b; are viscous bearing friction factors of motor
and load shaft respectively.

Fig. 2.5 DC-motor with
flexible coupling
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6
%"’ T.T, T;.T, %9/
Jj

State convention: 8,,<6,

6,,<9,

Fig. 2.6 Sign and state
convention for the system T,
on Fig. 2.5

Ohm’s and Kirchhoff’s laws applied to the electrical circuit yield

u:m+L@+h% (2.15)
dt
or
;1 : .
l:z(u—kgem — Ri), (2.16)

where k, is the induction coefficient of the motor armature windings.

A block diagram drawn directly from Eq. (2.13), (2.14) and (2.16) is shown
on Fig. 2.7. Since the state equations are first order differential equations, it is
obvious that the integrator outputs would be natural candidates for state vari-
ables. With this choice, the first order time derivatives are simply the inputs to
the integrators. If the Sth-order state vector is defined as

roT. . T
X = [X] X2 X3 X4 X5] = |:l 0,, 0,, 0; 91} , (2.17)

the time derivative of x will be
x:p%%@ﬂ, (2.18)

and the state equations can be written by inspection of the block diagram:

Fig. 2.7 Block diagram for the system on Fig. 2.5
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R k., +1
X —X] ——X3+—
1 I 1 I 3 L%
X = X3,
K, k b+ b, k b
X3 J—mxl—zxz— 7 X3 +EX4+E)C5’ (2.19)
X4 = Xs,
kk +b k b+ b,
X — — X3 — —X4 — .
5 7, 2 7, 3T 7 5

R ke
I -z 0 %

0 0 1 0 0 0
‘ S _% _bjmbm % Jﬂ x+ | ol @20

0 0 0 0 1 0

The output equation is then

y=[0 0 0 1 O]x. (2.21)
One sees that the systems on Fig. 2.5 is a 5th order system: it has 5 states. m

The state variables selected in Example 2.2 were the outputs from the inte-
grators in the block diagram. This particular set of state variables is called the
natural state variables. 1t should be noted, that the block diagram is not unique
and therefore the set of natural state variables is not unique either. The number-
ing order of the state variables can also be changed and this will result in other
matrices than those shown in the example. The matrix elements will certainly be
the same but they will appear in different places in the matrices.

Example 2.3. DC Motor Block Diagram

The electro-mechanical system in Example 2.2 had a flexible coupling between the
two rotating inertias. If this flexibility is absent, which means that the coupling is
completely stiff, the system equations will take on a quite different appearance.
A stiff coupling means that the spring coefficient is infinite: £ =2 co. One
cannot modify the elements of the matrices in Eq. (2.20) directly, since some of
them would also be infinitely large and this is not possible. Instead one must
revert to the set of Egs. (2.13) and (2.14) and modify them. It is obvious that the
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two angle positions will now be equal: 0,, = 6, = 6 and the moment of inertia
and the bearing friction factors will be the sum of the two separate ones:
J=J,+J;and b, = b,, + b;. The two equations are reduced to one second
order differential equation (Newton’s Second Law),

JO = K,i — b0. (2.22)

The electrical equations will be the same as before and the block diagram of the
new system is shown on Fig. 2.8.

Fig. 2.8 Block diagram
of the first reduced system

The number of states has been reduced to 3 and a proper choice is now
x=[xnx]"=[i06]" (2.23)

and the state and output equations are seen to be

_R 0 _& 1
L L I
X=10 0 1 |[x+]|g|u (2.24)
K, by
¥ 0 7 0
y=1010]x. (2.25)

Further reduction of the system can often be justified. For most small DC
servo motors the armature inductance is very small and it is sensible to omit its
influence on the model. Again, one cannot just set L = 0 in Eq. (2.24) but one
must go back to the electric circuit Eq. (2.15) and make the change there,

u= Ri+k,0. (2.26)

In the new block diagram (Fig. 2.9) the armature current 7 is no longer a state
and the only ones remaining are

x=1[00]", (2.27)
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Fig. 2.9 Block diagram of ]
the system in Fig. 2.8 with k
L=0

0 1 0

X = lo  byR+ Kok | x + | Ko |u, (2.28)
JR JR

y=1[10]x (2.29)

]

Example 2.4. Double RC Low Pass Filter

Now it will be shown how to derive a state space model of the passive electrical
network shown on Fig. 2.10. Using Ohm’s and Kirchhoff’s laws on the three
loop currents yields

1
ei = Rii; +—J(i1 — iz)dl‘,

G
O—IJ(' ')dt+1J‘dt+R' (2.30)
_Cl =1 c, (5] 202, .
1
—€, = _EJZZdt

Rearranging these equations,

1
R]il =e; — 7](1.1 - iz)dl,

Ci
R'—IJ(' i) dt lj'dl (2.31)
212—C1 I —n c Ldl, .
1.
e(,:ajlzdt,

leads to the block diagram on Fig. 2.11. Now it is simple to derive the state
equations directly from the diagram:

R R,
e O
L L
Gy G
T o) T e
Fig. 2.10 Simple electrical i i i3=0
network o . o
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Fig. 2.11 Block diagram + 1 i
of system on Fig. 2.10 . u——Q R
i= — 1
© ey
[ I a
=Y
@ J' 1
G
_ 1 i
1 1 1
1 C1<R1(HXI)R(XIX2))7
. . (2.32)
Xy = 62 <R2 (X] - X2)>.
Rearranging gives the state space model
R+ R 1 1
CiRiR CiR
X = P 2 x+ | CiRy fuyy
1 1 0 (2.33)
GRy GR,
y=10 1]x.
)

Example 2.5. Electrical Oven Process Plant

Figure 2.12 shows an electrically heated insulated oven which contains a pro-
duct to be heated. The temperature of the air in the oven space is Ty, the

Insulation
q
T, |
T, '
Product u
T q
4, 8 \
I TY
4 h Controlled
Fig. 2.12 Electrically heated power supply
oven production system
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temperatures of the product, the insulation material and the ambient air are
T,, T, and T, respectively. All temperatures are assumed to be uniform. The
heating power from the electrical heating element is called ¢, and the powers
entering the product and insulation are g, and ¢,. The heat loss to the ambient
air is ¢,,.

The controlled power supply is linear so that

q = ku, (2.34)

where k is a proportionality constant.
The exchange of heat energy is assumed to be by convection and therefore
the powers and the temperatures are related as follows,

e = ko(Ty — Tp),
qr = kr(Tv - 7—;)7 (235)
da = ka(Tr - Ta)7

where the k-coefficients are convection parameters depending on the area and
the physical nature of the surfaces.

If the total heat capacity of the oven air space, the product and the
insulation are denoted by C;, C, and C,, expressions for the time derivative
of the temperature of the different parts of the system can be formulated.
One finds

dT
CSW: qd—d4dg — 4rs
drT,
=g, (2.36)
dT.
r? =4r —Y4a-

A block diagram of the model can be seen on Fig. 2.13.
It is quite obvious, directly from the differential Eq. (2.36), that a sensible
choice of state variables could be

T
X=|x|=|Tg]|. (2.37)
T,

With input u, the disturbance v = T, and output y = T, it is now straightfor-
ward to obtain the set of state equations. It is only a matter of substituting the
proper variables into the Eq. (2.36). The result is
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Fig. 2.13 Block diagram of
the oven production system

ke + ke kg ky ]
a ¢ G k 0
. kg ke G 0
X Cy C, X+ | g |ut . v, (2.39)
ke 0 Ktk 0 [
I G
y=1[010]x. -

2.3 State Space Models from Transfer Functions
2.3.1 Companion Form 1

For a SISO system with a known transfer function it is possible to formulate
a state space model in a standard form.
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Assume that the transfer function is

Y(s)  bus" 4+ b, 5"+ .+ bls+ b
Uis) s"+a, "' +.. . +as+ay

(2.40)

Note, that this transfer function is proper, i.e., the numerator and the
denominator polynomials have the same order.

The procedure is started by performing the first step of a polynomial
division

n—1
Y(s):anr bp18 4+ .+ bis+ by :bn+B(S). (2.41)
STt ap s ars + ag A(s)

V() = 57 V) = AV = L), (2.42)
leads to
SVS) = —ap 15" V(5) — a2 2V(s) — ... — arsV(s) — aV(s) + Uls)  (2.43)
and to
Y(s) = b, U(s) + B(s) V(s). (2.44)

Now define the state variables as follows

(2.45)
X,a(s) = 5" V(s),
Xo1(s) = 5" V(s),
X, (s) = sV (s).

Multiplying each expression by s and substituting the state variables for the
right hand sides of the equations gives
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sXi1(s) = Xa(s
sXa(s) = Xi(s)

Sanz(S) = X1 V(S)a
SXn71(S) = Xn(s)a
X, (s) = 5"V (s).

Inverse Laplace transformation of these equations and of (2.43) gives

x1(1) = xa2(1),

xn72(t) = )C,7,1(l‘),
Xn—1(1) = x,(1),
Xn(1) = —apx1 (1) — ayx2(1) — ... — ap—axn—1(1) — ap_1x,(1) + u(r).

This set of first order differential equations constitutes the state equations for
the System (2.40). The vector-matrix form is seen to be

X1 o0 1 0 ... 0 0 X 0
X2 0 0 1 ... 0 0 X 0
= +
(2.46)
o O 0 0 .. 0 1 X1 0
i X, | |—d —ai —a ... —Ap-2 —dp-1| | Xpn | _1_
= Ax + Bu.

The output equation can be found by inverse Laplace transformation of (2.44),
y= [bo by...by_> bn,l]X-i-bnu = Cx + Du. (2.47)

Note that this state space model is very efficient in the sense of the number of
matrix elements. The matrix elements are the same as the coefficients of the
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transfer function model (2.41) and apart from the zeros and ones these are the
only parameters in the model. The coefficients of the denominator of (2.40)/
(2.41) can be found in the last row of A with the opposite signs and in reverse
order. The numerator coefficients of (2.41) are found in C in reverse order.

If the numerator polynomial is of lower order than the denominator (in
which case the system is said to be strictly proper), b, and maybe some of the
elements of C will be zero. The matrix D will be zero in this case. A block
diagram of the system based on the state equations is shown on Fig. 2.14.

=

Fig. 2.14 Block diagram of companion form 1 of a SISO system

The states selected here are often called the systems’phase variables and
the model is said to be in phase variable form. A matrix with the structure of
the system matrix in Eq. (2.46) is called a companion matrix and an alter-
native name for this model is the companion form 1.

Example 2.6. DC Motor Position Control

Return now to the third order system on Fig. 2.8 of Example 2.3. If one Laplace
transforms the operators in the block diagram, the transfer function for the
system can be derived and the result is

o) _ K,
U(s)  s(LJs? + (RJ + Lby)s + Rby + K,K,)

With the component data

J=02,L=0.01, R=3,b,=0.05 K, =0.35, K, =0.35,
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the transfer function turns out to be

O(s) 0.5 B 175
U(s)  5(0.002s2 + 0.6005s + 0.2725) 53 4+ 300.2552 + 136.25s

The matrices of the state space model can now be written down directly from
Eq. (2.46) and (2.47),

0 1 0 0
A=10 0 1 B=[0|,C=[175 0 0],D=0.
0 —136.25 —-300.25 1
Fig. 2.15 Block diagram of a u

third order system

A block diagram drawn along the same lines as Fig. 2.14 is shown on Fig. 2.15.
If this the block diagram is compared with that on Fig. 2.8, it is noted that they
are quite different although they are models of the same system. Figure 2.15
contains only 3 parameters, whereas Fig. 2.8 has 6. m)

2.3.2 Companion Form 2

Returning to the transfer function (2.41), a state space model can be constructed
by an alternative choice of state variables.
In this case an auxiliary variable is defined, but this time with the expression,

mgzggmm (2.48)
so that
Y(s) = b,U(s) + B(s) U(s) = b,U(s) + W(s) (2.49)
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and the following set of state variables is selected

X (s) = W(s),

2 State Space Modelling of Physical Systems

Xuo1(s) = sW(s) + an—1 W(s) — b1 U(s),

X,a(s) = 8> W(s) + ay_15W(s) — b,_1sU(s) + a,_2W(s) — b,_2U(s),

X1 = 5" "W(s) + ap1s" T W(s) — by_1s"2U(s) + ...+ ay W(s) — bU(s).

After inverse Laplace transformation these expressions can be written

xa(1) = w(t),

Xn—1(1) = X, (1) + an_1x,(2)

anz(l) = xnfl(t) + anf2xn(t)

x1(1) = Xa(1) + arx, (1) — byu(z).

- bn—l u(l)a
- bnfzu(l),

Multiplying the above expression for X (s) by s, using Eq. (2.48) and inverse
Laplace transforming, it is seen that

fC](l‘) = —aoxn(t) + b()u(l).

The set of first order differential equations can then be written in matrix-

vector form as

i X] ] o o 0 ... 0 —dy 1T X1 T i b() T
Xz 1 00 ... 0 —d| X2 b]
¥ o010 ... 0 - b
ACH @ ? lu=Ax +Bu. (2.50)
).Cn—l o0 0 ... 0 —dy-_2 Xn—1 bn_2
L Xn i _0 0o 0 ... 1 —dy—1] L Xp _bn,l_
The output equation can be found from Eq. (2.49),
y=x,+bu=1[000...01]x+ b,u=Cx+ Du. (2.51)

A block diagram of the companion form 2 is shown on Fig. 2.16.
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Fig. 2.16 Block diagram of companion form 2 of a SISO system

2.4 Linearization

For many systems one does not have useful a priori knowledge which allows
one to formulate a linear model immediately. In such cases it is necessary to
start the modelling by constructing a nonlinear model using the physical laws
and then - if possible - linearizing this model.

If one looks at the nonlinear model (2.11), it can be assumed that this
equation has been solved for a nominal initial state Xy, a nominal input function
u(7) and a nominal disturbance function v(7). The resulting nominal state vector
is supposed to be X(7). Now one would like to describe the system’s behavior in
the neighborhood of the nominal trajectory X(7). Assuming that a new initial
state and new input and disturbance functions are defined which are ‘close’ to
the nominal ones, one can define:

x(1) = x(1) + Ax(1),
u(7) = u(7) + Au(r),
v(t) = V(1) + Av(1),

Xo = Xo + Axp.

(2.52)

Ifit also is assumed that x(7) is close to X(¢) and that the function fin (2.11) is
differentiable to the first order in time, it is reasonable to expand finto a Taylor

series about the nominal values. With the expressions in Eq. (2.52) one can write
Eq. (2.11) as:

X(1) = X(1) + Ax(1) = £(X(1) + Ax(1), u(r) + Au(r), ¥(1) + Av(1), ). (2.53)

Since all terms of order higher than one are discarded, the series expansion
will be:
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of(x(1), u(r), v(1), 1)

0x
of(x(1), u(r), (1), 1)
ov

(1) + Ax(1) = £(x(1), 6(2),¥(1), ¥, 1) +

of(x(1), u(r), v(1), 1)
Ou

AXx(1)
(2.54)

+ Au(r) + Av(r)

The partial derivatives which must be calculated for the nominal time functions,
are in general matrices, the so called Jacobians. The i’th by j’th entry is the
partial derivative of the i’th scalar function in f with respect to the j’th variable
in X, uory.

The Jacobian matrix 0f/0x is quadratic since f and x have the same number
of elements:

[ofi(x,u,v, 1) Ofi(x,a,v,1) ofi(x,a,v, 1)
0x| 0x> o 0xy
8f()~(,ﬁ,{/7 [) 8/{2(;(;6;{’, t) afZ(iﬂlva t) aﬁ(ivﬁvea t)
ok a1 9x2 o 9, » (2.59)
(X, 0,¥, 1) Ofu(X,0,¥,1) I(X,0,¥,1)
L 8X1 8x2 o 8xn _

where the time argument has been omitted for simplicity. However, it is impor-
tant to note that since X(7), u(#) and X(¢) are functions of time, the entries of the
matrices are also in general functions of time (even if fis not explicitly a function
of time). If f is not explicitly a function of time then the nonlinear system (2.11)
is time invariant,

x(1) = f(x(1),u(t),v(1)). (2.56)

From the assumptions above it is clear that
X(1) = £(x(1), 8(1),¥(1), 1). (2.57)

Inserting this into Eq. (2.54), one obtains:

Ax(1) = A(1)Ax(1) + B(1)Au(z) + B, (1) Av(1) (2.58)
where
A() = af(igl, V1) B = 8f(i,8f:l, v, 1) B = 8f(i,af: V.1 2.59)

Equation (2.58) a linear approximation to the nonlinear system (2.11). The linear
approximation expresses the behavior of the system in the close vicinity of the
nominal trajectory X(7). The state variables here are the incremental state variables.

If the problem involves a nonlinear output equation (see Eq. (2.8)), the
linearization of the output function follows exactly the same lines. The linear
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approximation to the output equation y(7) = g(x(¢),u(¢), ) is (it is assumed
that y(7) is not a function of the disturbance),

Ay(t) = C(1)Ax(t) + D(t)Au(z), (2.60)

where the large signal output is defined as

v(1) = §(1) + Ay(0). (2.61)

The relevant matrices are found from:
C(t)y=—"""""=, D(1)=—"—"=. (2.62)

A very important special case arises if the nominal matrix elements are all
constants. In this case the initial state and the nominal state can be considered
the same and this state is called a stationary state. These are natural bases for
the linearization. A stationary state is characterized by zero time derivatives
and from Eq. (2.11) it is seen that that the stationary states must satisfy the
nonlinear algebraic equation:

0= f(X(),ll(),V()). (263)

Note that here the treatment is confined to the time invariant case.
Having determined the stationary states from Eq. (2.63) (there may be more
than one), one can define, as in (2.52) and (2.61):

(2.64)

The A-variables above denote the (small) deviations from the stationary (con-
stant) values and are called the incremental states, inputs, disturbances and
outputs.

As before, the f vector function can be expanded about the stationary values
to find:

(1) = %o + Ax(1) = f(xo, up, vo) +

af(XO , Uo, VO)
du
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The Jacobians are now constant matrices, €.g.:

o on o]
ox;  Oxo 0x,

6f(X(),ll(),V0) % % afz

e I I I (2.66)
o W
LOx1  Ox Oxy 1o

The subscript 0 indicates that all entries in the matrix are calculated at the
stationary (linearization) points.

X is constant and consequently Xy = 0 and (1) = Ax(7). With the notation
from Eq. (2.66), equation (2.65) becomes the linearized state equation:

Ax(7) = AAX(7) + BAu(?) + B,Av, (2.67)
where
8u1 8142 8”}11
of 9 of
Of(x¢, ug, v 2L e 22
B _ 9o, o, Yo) Oa %) _ Quy  Ouy Oty (2.68)
u . . . .
o o o
| Ouy  Oup Oup 1o
and
[oh oh o O]
8v1 8\12 8vp
of, 9f I
8f(X(),llo,V0) - == ...
B\rZT: 5?)1 8?’2 ' 3?/1; . (2.69)
LOv)  Ovy vy,

As before, Eq. (2.67) is called a linear approximation to Eq. (2.11). Since the
matrices are constant, Eq. (2.67) is a LTI-model.

If the output equation is nonlinear as in Eq. (2.8), the problem is treated in
the same way. The linearized output equation is:

Ay(t) = CAx(t) + DAu(?), (2.70)
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where

C:

and

D=

8g(X07 U, VO)
ox

9g(Xo, o, Vo)

Ou

[ 981
8)61
022
8x1
0g;

L Ox

021
81,[1

92
8u1

ogr

_6u1

Example 2.7. Rocket with Air Resistance

4]
ox 2
022
(9x 2
0/
ox 2

og1
8u2
92
6u2
gy
8u2

Og1 ]
ox,
02>
ox,

g

O0xy |

0817
ou,y,
02
Oy,

0gr

ou,y, |

31

2.71)

(2.72)

This example deals with a rocket under the influence of gravity, an upward
thrust and a nonlinear wind resistance force. It is assumed that the rocket moves
in a vertical direction and that the long axis of the rocket is constantly vertical.
A sketch of the rocket is shown in Fig. 2.17. The x position axis points upwards
and the velocity is called v.
Newton’s second law says that

mi=—F,— F,+T=+bh*—-mg+T

Fig. 2.17 A rocket in
vertical motion
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or
i)——:I:—vz —|——1 T—_f(v T) (2 73)
g ? ? '

where m is the mass (which is assumed to be constant here), b is the air
resistance coefficient, g is the acceleration due to gravity and 7 is the thrust.
When the rocket moves upwards, then the wind resistance is a downwards
force. So the minus sign of the first right hand term is valid for upwards
movement (v > 0) and the plus sign for downwards movement (v <0).
Equation (2.73) shows that the model is first order. The velocity is the only
state variable, T is the input variable (= T) and the output is equal to the
state, y=v.

The stationary states can be obtained by setting the time derivative of v equal
to zero. This leads to the following relationship between the stationary values of
the variables,

HTo—mg) for v>0
Vo =
—\/+(mg —Ty) for v<O0.

A positive value for vy is only possible if T > mg. A negative value requires
that 7y <myg. If the thrust is zero, the rocket will fall and reach the terminal

velocity,
mg
Vo = Vierm = — 7

As in (2.64) the deviations from the stationary values are defined as

v(1) = vo + Av(1),
(1) = Ty + AT(1),

and the linearized system model can be derived according to Egs. (2.66), (2.67)
and (2.68). The state equation of the system is thus

Av = AAv + BAT, (2.74)
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where

2b f 0
Aid(f(VaT)) B —ZVO or v>
v ) 2
0 —bvo for v<O0,
m
5 de. ) 1
AT |, m’

The first order state Eq. (2.74) becomes

Ay = —’%vo Av+lAT.
m m

This linear differential equation can be Laplace transformed and the following
expression is found (for v(0) = 0):

2b 1
SAV(s) = —’% vo|Av(s) +%AT(S),

from which one obtains

Av(s)  1/m
T(s) _s+ 2—bv 7
Py

which is the transfer function of a first order system. The time constant is

.
2bV0

T =

and therefore it is known from classical control system analysis that the system
is stable for upwards as well as downwards movement. Note that the time
constant is a function not only of m and b but also of vy. A high velocity results
in a small time constant and vice versa. The basic dynamic characteristics of the
system are thus dependent on the stationary state in which the linearization is
carried out. This is typical for nonlinear systems.

It is also typical for nonlinear systems that the differential equations cannot
be solved analytically. This problem will be addressed in the next chapter. In the
present simple case a solution can be found by separation of the variables in
Eq. (2.73). Assuming that the thrust 7 is equal to zero it is found that
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dv
b
2p_g
m

=dt.

This equation can be integrated directly to yield,

g B _ [ e <
o) i e e

if it is in addition assumed that the rocket is initially at rest, i.e., v(0) = 0. The
solution shows that for small values of # and therefore at low velocity, the rocket
moves as if it were only subject to gravity and the constant acceleration g. At
large # and v, the velocity tends to the terminal velocity vie,.

Integrating Eq. (2.75) immediately gives the position of the rocket (assuming
that x(0) = xo),

x(t) —xp=— %ln (cosh (\/%Et>>

(1/2)g, 1< <+/m/(bg)
((5) m@ = Vimg)/bi), 1 >> \/m](Be).

Example 2.8. Hydraulic Velocity Servo

A simplified model for a hydraulic velocity servo can be expressed as follows

%v(t) = Ap(1) — (1),

4 p(e) = ag(t) — Av(),

q(1) = kn/p(2)u(?).

v is the piston velocity, p is the differential pressure over the piston, ¢ is
the volume flow from the servo valve and u is the input voltage to the valve.
A is the piston area, ¢ is a viscous friction coefficient, « is a constant related to
the stiffness of the hydraulic fluid and k is a valve coefficient.

The first step in the linearization procedure is to determine the stationary
state. This is accomplished by setting the time derivatives to zero. With the
initial elimination of ¢, the results are
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0= Ap(] — Vo,

0 = ak\/pouy — Avy.

The stationary values of the variables can be calculated for a given constant
input voltage, uy,

@k,
]70 = A4 MO,

@k
Vo = A3 Uy,

ak’c
qo = —A2 Uy

It is natural to choose the state and output variables,

xl(t)
x2(1)

x(1) = [ ] _ [”E’;] and y(1) = v(1).

plt

The nonlinear state equation becomes

(1) = { Ap(t) — ev(1) }
ak/p(t)u(t) — Av(1)

I
. 1
=
=
>
=
=
> >
s
=
=
| I

After defining the variables and their deviations by the expressions

v(t) = vo + Av(1),
p(t) = po+ Ap(1),
q(1) = qo + Aq(1),

the linear state model can be derived. One finds

Ax(1) = AAX(1) + BAu(1),
Ay(r) = CAx(1) + DAu(1),
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with the matrices,

o oY .
ox; 0x;

oh || 5

_TX] 8X2 0

)
Example 2.9. Water Tank Process Plant
Figure 2.18 shows water tank process for which a model is to be formulated.
Fig. 2.18 Water tank Control valves
process plant Tul 2 Level measurement
w TC
e
ot | to.
T | Tank L Tank R
T T,
H
1 H2
/: O eS)

= I 9
Stirrer 0, /
; 2 Valve area A,

Temperature measurement

Two tanks denoted L and R are connected as shown and into the left tank
can be pumped warm and cold water through control valves with the two input
signals U; and U,. The temperatures and the volume flows are T, T, Q,, and
Q.. The water levels in the two tanks are H; and H» respectively and the tanks
have the same cross sectional area 4. The flow between the tanks is O, and the
flow out of the outlet valve of tank R is Q. This last valve has the variable
opening area A,. The water is stirred rapidly in both tanks and therefore the
temperature is assumed to be constant over the entire volume of each of the tanks.
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Two quantities can be measured on the plant: the level and the temperature
of tank R. For the two measurement systems one has that:

1 = kpH,, (2.76)

2 = kT, (2.77)

where kj, and k; are transducer gains.
The two control valves have the same flow characteristics and it is assumed
that the following two relations are valid,

Qw = kau]a (278)

O, = kqua, (2.79)
where k, is the flow coefficient.
The mathematical model of the plant involves volume and energy conserva-

tion laws and suitable relations describing flow through orifices. Conservation
of fluid volume gives for the two tanks:

AH =0y + Q0 — O, (2.80)
AH, = Q, — 0. (2.81)
The energy content in the water volumes can be written:
E; = AH pc(T) — Tp), (2.82)
Er = AH>pc(T> — Tp).- (2.83)
p and ¢ are the mass density and the specific heat capacity of water. T} is the

reference temperature at which the energy is zero. It is easy to show that one can
set Ty = 0 and the energy equations are reduced to

EL = AH] pCT]7 (284)

Egr = AHzpCTz. (2.85)

For the flow through the orifices it is reasonable to assume that a square root
relation is valid. The formula for this can be written,
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0 = Cudoy /gAP, (2.86)
P

where AP is the differential pressure over the orifice, p is the mass density, 4, is
the area of the orifice and C, is a constant loss coefficient. The hydrostatic
pressure in a liquid at a level H below the surface is P, = pgH + P, (where the
atmospheric pressure is P,), where g is the acceleration due to gravity. The flow
through the outlet valve can thus be written,

Qb = DA, H27 (287)

where D, = Cy4\/2g. The orifice between the tanks has a constant flow area and
one can write,

0, = Co\/ Hi — Hy, (2.88)

where it is assumed that H, > H,.

Now the fact can be utilized that the net power flux into the tanks equals
the accumulated energy per time unit. Thus the time derivatives of the
energy expressions (2.84) and (2.85) give the left hand sides of two new
equations,

dE d

TIL = APCE (Hl Tl) = prCTW + QcpCTL‘ - QrpCTlv (289)
dE d
TIR = ADCE(Hsz) = Q,pcTy — QppcTh. (2.90)

Dividing all terms by pc and differentiating the product yields:

AH\ T, + HTY) = 0, T\, + O.T. — Q. T, (2.91)

A(H Ty + HaTo) = Q, Ty — Q3T (2.92)
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Inserting Egs. (2.80) and (2.81) into Egs. (2.91) and (2.92) respectively gives the
final system equations:

AH\T = 0, T+ Q.T. — Q. Ty — 0T, (2.93)
AH T, = 0, Ty — 0, T> (2.94)

The complete model of the plant now consists of the Egs. (2.76), (2.77),
(2.78), (2.79), (2.80), (2.81), (2.87), (2.88), (2.93) and (2.94). A block diagram
based on this set of equations can be seen on Fig. 2.19.

The natural choice of states is the output variables of the four integrators.
The outlet valve area and the two inlet temperatures are disturbances and the
two control valve voltages are the manipulable inputs. So, state, input and
disturbance vectors will be:

X1 H1

X H u Vi Ay

xo= |2 = |l =t |n | =] e
3 1 up ¥ T
x4 T2 3 ¢

Fig. 2.19 Block diagram of
the process plant
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Now there are four state equations and from the block diagram:

. 1
X = Z[ka(ul + ) — Co/X1 — X2 ],
1

Xy = 71 [Cov/X1 — X2 — Dyy/X2v1],

| (2.96)
X3 = s [(va = x3)kqtty + (v3 — x3)kaia],
. 1
X4 = T (X3 — X4)C0\/X1 — X2.
X2
The output equation is linear in the states,
V1 0 ky 0 0 }
1) = = 1). 2.97
o ="]=10 5 o g ]x0 @9)

The state Equations (2.96) can be written in the form (2.56) and it is natural
to linearize the model around a stationary operating point found using
the Formula (2.63). The equations (2.96), with their left hand sides set to zero,
lead to

ka(utio + o) = Cor/X10 — X20,
Cov/X10 — X20 = D\\/X20V10,
(v20 — X30)u10 = — (V30 — X30)U20,

(x30 — X40)v/X10 — X20 = 0.

(2.98)

The extra subscript (zero) denotes that these are stationary values. The 4
equations in (2.98) contain 9 variables. If for example values for the 2 inputs
and the 3 disturbance variables are selected, the 4 states can be determined
from Eq. (2.98).

The following parameter values will be assumed:
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A =0.785m?,
D, =2.66m'/?/sec,
Cy = 0.056m”? /sec,
k, = 0.004m? /volt - sec,
kp = 2volt/m,
k; = 0.1volt/°C,
assuming that the input voltages can take on values in the interval 0—10 volts

and choosing wujy = upg = 5 volts. Further, setting A,=0.0122m?, T,0=
60°C and T,.,=30°C, the Eq. (2.98) give the values of the stationary states,

X10 = 2.03 m,
X209 = 1.519m7
X30 = X40 = 45°C.

The matrices for the linearized system can be calculated according to
Egs. (2.66), (2.68), (2.69) and (2.71):

[ —Cy Co 0 0 ]
24310 — X0 247 /310~ %
Co -G Dy 0 0
A— 2A\/X10—XQO 2A\/X]0—XQ() 2A\/)?0
0 0 ~ kqttio + kauxo 0
AX10
0 0 Covxio—x20  Copy/X10—X20
L Axxo Axag
(2.99)
_ K, k., _
A A
0 0
B— , (2.100)

ka(vao — x30)  ka(v30 — X30)
Ax10 AX10

0 0
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i 0 0 0 7
Dv X20
- 0 0
B 4 (2.101)
o 0 koo kqu | '
Axyg Axyo
L 0 0 0
020 0
C= [0 0 0 0'1]. (2.102)
With the parameter and stationary variable values above one can find:
—0.0499  0.0499 0 0
0.0499  —0.0667 0 0
A= 0 0 —0.0251 0 ’ (2-103)
0 0 0.0335 —0.0335

0.00510 0.00510

0 0
B= , (2.104)
0.0377 —0.0377
0 0
0 0 0
—4177 0 0
B, = . 2.1
0  0.01255 0.01255 (2.105)
0 0 0

The linearized model describes the behavior of deviations from the station-
ary values. If the incremental system vectors are defined as in Eq. (2.64):

Axl AHl
A AH A
Ax(r) = | T2 = | T2 ,Au(t):{ ”‘}, (2.106)
Axs AT, Auy
AX4 ATz
Av1 AAV
A= |An | = AT, |,
AV3 ATC

where

H\(t) = Hyo+ AH, (1) (2.107)
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and likewise for the remainder of the variables one ends up with the state space
model,

AX(1) = AAX(7) + BAu(r) + B,Av(1), (2.108)

Ay(1) = CAX(1).

Example 2.10. Two Link Robot Arm

A two-link robot is shown in Fig. 2.20. The robot position is defined by the two
angles, 0; and 0,. The two robot links have the following characteristics:

Link 1: length /;, total mass m;, moment of inertia J;.
Link 2: length /,, total mass m,, moment of inertia J».

Itis assumed that the two links have a symmetric mass distribution so that the
centre of gravity is in the middle of the link. In order to formulate the equations of
motion the so-called Lagrange method can be used. This method defines a set of
generalized coordinates that specify the position of the system uniquely. In this
case the generalized coordinates are the two angles 6; and 6,. The Lagrangian is
defined as the difference between the kinetic and potential energies,

L(01,0,,01,0,) = K— P. (2.109)

Here, K and P are the total kinetic and the total potential energy of the system
expressed in terms of the generalized coordinates and their derivatives, the
generalized velocities.

y TCcP
CG of link 2
0,

CG of link 1
Motor with \ Motor with
torque T, torque T,

\§ e1 X
Fig. 2.20 Two-link robot ; _ S —

arm
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The equations of motion can now be derived as the following Lagrange equations,

d(oLy oL _
di\pp,) 96, "
4 (oL _OL _
di\op,) 90, %

These two equations are fully equivalent to Newton’s equations of motion.

The kinetic energy of the total system is the sum of the kinetic energy of each
link and this in turn is the sum of the kinetic energy due to linecar motion of the
centre of gravity and the kinetic energy of the rotation of the link around the
centre of gravity, i.e.,

(2.110)

1 1., 1 P
K= Emlvél +§J19§ +§m2véz +52(00 + 0,)%. (2.111)

If it is assumed that the center of gravity is positioned in the middle of each of
the links, the cartesian coordinates of the two centers are

(XG,,v6,) = (%cos 91,%Sin61),

, ; (2.112)
(XGyyVG,) = (ll cos 0y + gcos(el +0,),/;sin0; + %sin(el +0,)
The two velocity vectors will be
d
Vo, = (XG,,¥6,)
4 (2.113)

Vg, = E(ngasz)v

Evaluating these derivatives and evaluating their squares in Eq. (2.111) gives for
the kinetic energy, K,

LIS D S B
1
. ( L) @1y

1 P .
+ 5”12[1 12 cos(92)61 (91 + 92)
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The other term in the Lagrangian is the potential energy of the robot links due

to gravity,

P= mlg%sinel +m2g(11 sin 0, +l§2sin(91 + 92)). (2.115)

The two expressions in Eqs. (2.114) and (2.115) respectively are inserted into
the Lagrange equation and after some straightforward calculation one arrives
at the following equations of motion:

Mi10; + M50 + Ki(02,01,00) + G1(01,0,) = 7,

. .. . (2.116)
M>101 + M0y + K>(02,601,0,) + G2(01,02) = 1,
where the inertial components are,
1 > 1 2
M11 = Zl/ﬂl + my 11 +ZMZI2 +J1 +J2 +mzlllzcos92,
1 ) 1
My = My = ZWZZ 12 +J> —|—§le1[2 cos 0,
| (2.117)
My = Zn’lzlg + Ja,
[Mn Mu]
M = .
My My
The centrifugal and coriolis force components are,
. 1 ) .. .
K1(92, 01, 92) = —EWZzlllz Sln(ez) . 92(291 + 92),
| (2.118)
Kz(ez, 61, 92) = 57)’12[112 Sil’l(ez) . 9%
Finally, the terms due to gravity are,
11 [2
G1(01,0,) = mlgzcos 01 + mag| [ cos 6, +§cos(01 +6,) ],
(2.119)

/
G2(01,0,) = M2g§2COS(91 + 0,).

The complete robot system is a control object with two inputs. Normally the
torques are delivered by DC or AC motors with their own specific dynamics but
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in the present case it will be assumed that the control inputs are the torques
themselves,

uU):[TNﬂ]. (2.120)

The state vector is defined as
(2.121)

With H = M~! the non-linear state equation for the two-link robot takes the
following form:

XQ(I) 0 0
—H1(Ki +G) — Hp(K +G H H
(1) = (K 1) 12(K> + G2) L | 12 wn).  (2122)
X4(l) 0 0
—Hy (Ki + G1) — Hy (ks + Ga) Hy Hpy

In order to linearize this model, it is first noted that the coriolis and centri-
fugal forces are all quadratic in the angular velocity, so that for any linearization
around a stationary point, i.e., one with 8,5 = 89 = 0, these terms disappear.
Therefore for linearization around X, the state variables are

010
0
X(7) = xo + Ax(7) = + Ax(1),
020
0
T10 ATl(l)
u(?) =g + Au(t) = [Tzo + Am(1)

From these equations the incremental linear state space model is obtained,

Ax(1) = AAX(1) + BAu(1), (2.123)
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where
i 0 1 0 07
0 0
7—(H11G1+H12G2) 0 *—(H11G1+H12G2) 0
00, 0 00, 0
A= (2.124)
0 0 0 1
—i(HG+HG) 0 —i(HG+HG) 0
0, 211Gy 2220 0 216G 2220_
and
0 0
H H
g |l Hil (2.125)
0 0
Hyily  Hxl

In control applications the measured variables are often the joint angles so
that the output matrix will be

1 0 0 O

=)y o

]x(t). (2.126)

If the joint velocities are also measured, the C matrix will be the identity matrix.

In some real applications one is interested in the cartesian coordinates of the
tool-centre-point (TCP), i.e., the end point of link 2, where a tool is attached. In
this case the output expression will be nonlinear,

B /1 cos 0 + L, cos(0; + 6,)

= . 2.127
lisin®; + sin(91 + 92) ( )

y(
Numerical Example

The matrices for a small robot with the following data will now be calculated
using the parameter values,

m; =3kg, I =0.6m, J; = 0.12kgm?,
my =2.5kg, L, =0.8m, J, =0.15kgm?.
The first step of the linearization is to determine a stationary point. Inspecting

Eq. (2.116), it is seen that with all derivatives set to zero, a set of simple expres-
sions relating the remaining quantities at the stationary point can be found,
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Fig. 2.21 Robot y
configuration at the desired
linearization point

G1(010,020) = 70,

(2.128)
G2(010,020) = T,

This shows that one can choose any set of desired angles (09, 059) and calculate
the appropriate torques from (2.128). If the angles shown on Fig. 2.21 are
selected, the stationary torques are found from (2.128) and (2.119),

TI0 = Gl() == 26124N,
Tao = G = 9.476 N.

For the matrix M one has

B {1.84 +1.20cos0, 0.55+0.6cos 92]

0.55+0.6cos 0, 0.55
and for H,
I { 0.55 —(0.55+0.6.cos 62):|
 det(M) [ —(0.55+0.6cos0,)  1.84 +1.20cos 0,
where

det(M) = —0.36 cos® 0, + 0.7095.
Furthermore from Egs. (2.118) and (2.119) one obtains

K, (62, 91762) =-0.6 Sin(ez) . 62<261 + 92)
Kz(ez, 61 y 92) =0.6 Sil’l(ez) . Gf

and
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G1(61,0,) = 23.544 cos0; + 9.81 cos(6, + 0,),
Gz(el, 92) =928l COS(el + 62).

The stationary values for M and H are

| [2.8792 10695 [ 12514 —24337
"7 110695 055 |7 Y | 24337 6.5512 |

which means that the entries of the matrix B of the linearized system have also
been found (see Eq. (2.1295)),

0 0
| 12514 24337
N 0 0

—2.4337  6.5512

The remaining step in the linearization, i.c., determining A from (2.124), is
not difficult but quite laborious. The result is

0 | 0 0
17832 0 —3.0024 0
A= O 0 0 |
-30.063 0 10456 0

The eigenvalues of the matrix A can be found to be

{ +4.933
ha = .
+1.988

As will also be seen in Chap. 3, the eigenvalues contain important information
about stability of the system. m

2.5 Discrete Time Models

In the previous sections models have been dealt with in the case where all the
variables were functions of the continuous time ¢. This is quite natural since the
physical phenomena which it is desired to model usually are of continuous
nature. However, it is often practical to reformulate the continuous time models
to discrete time models, i.e. models in which the variables are functions of
discrete time.
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Discrete time models are usually the prerequisite for designing discrete
time controllers. Such controllers are of increasing importance because the
digital computer has become more and more common as the hardware basis
for the implementation of controllers. And, in contrast to natural physical
phenomena, a computer works in discrete time. In this section the discrete
time state space model will only be presented. The further treatment and the
way discrete models emerge during the analysis, will be left to later chapters
and appendix D.

In principle the discrete time model (DTM) looks very much like the con-
tinuous time counterpart (CTM) and the time argument ¢ is replaced with the
discrete argument, k7T, where T is the time period between the instants for which
the model is valid and k is the current instaneous sample number, counted from
some initial time, ky. T is usually called the sampling period or interval.

Whereas the CTM is a vector differential equation, the DTM is a vector
difference equation. The equations can be written in different ways. The most
correct notation for the system description is

x((k+1)T) =Fx(kT) + Gu(kT),
(2.129)
y(kT) = Cx(kT) + Du(kT).

The form in Eq. (2.129) is a bit awkward to work with and it is usually
simplified to:

x(k + 1) = Fx(k) + Gu(k),
(2.130)
y(k) = Cx(k) + Du(k),

or even to:

Xir1 = Fxi + Guy,
(2.131)
Yi = Cxy + Duy.

The form of the equations in (2.130) will be used throughout this book.

The notation above indicates that the matrices have constant entries, which
means that the system is time invariant or, as it is sometimes called, shift invariant
or step invariant. In the time varying case the equations must be written

x(k + 1) = F()x(k) + G(k)u(k),
y(k) = C(k)x(k) + D(k)u(k).

(2.132)

Note that the matrices in the state equation are denoted F and G rather than A
and B as in the CTM. If the DTM is a discretized version of the CTM (so that
the CTM and the DTM describe the same system), the matrices will be
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Fig. 2.22 Block diagram of a b
general linear discrete time

state space model

u(k)

different, whereas the matrices C and D in the output equation will be the
same. See Sect. 3.3.

A block diagram for the discrete time model looks very much like Fig. 2.3,
but the integrator block is replaced by the time delay or backward shift operator
g~'. This operator is defined by the expression,

x(k—1) = ¢ 'x(k). (2.133)
Similarly the forward shift operator, g, is defined by
x(k + 1) = gx(k). (2.134)

With the notation of (2.130) the general state space description for the nonlinear
discrete time system will be

x(k + 1) = f(x(k), u(k), k),

(2.135)
y(k) = g(x(k),u(k), k).

2.6 Summary

In this chapter it has been seen how continuous time state space models can be
derived based on appropriate physical laws governing a system. It has also been
seen how state variables can be selected directly from the equations or from a
block diagram of the system. The latter possibility is usually the most straight-
forward method.

Since most system models turn out to be nonlinear and since most of the
analysis and design tools are based on linear models, a very important linear-
ization technique has been introduced. Once the general state space model is
formulated and the possible stationary states have been found, it is quite easy to
derive a linear model which will describes the system properties in the vicinity of
the selected stationary state.

It was shown how one can set up state space models of systems with certain
special forms and finally discrete time state space models were introduced.
These are very important in the many cases where one has to design and
implement discrete time controllers with the intention using a computer to
perform the desired control tasks.
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2.7 Problems

Problem 2.1
Figure 2.23 shows a so-called inverted pendulum. If the driving force on the

cart, u, is the input to the system and the cart position p, the output, a model of

Fig. 2.23 Inverted
pendulum

Angle 9

Length 2L, Mass m

Position p

=

£

Force u P Mass M

—_— —t

Y Y

the system can be derived using Newton’s second law. The model can for
instance be formulated as two second order differential equations in the posi-
tion and the pendulum angle 6.

The equations are

. . 3 .
0’mLsin 0 —ngsmecoseJru
p= )
3
M+m—zmcos29

; ; 3 (2.136)
é:ﬁ(M+ m) sin O —Tmézsin()cos()—ﬁucose

3
M—f—m—zmcosze

)

where g is the acceleration due to gravity.

a. Choose an appropriate state vector and derive the nonlinear state
equation set,
% = f(x,u),
y=g(x,u).
b. Linearize the model by assuming small angles and velocities, and
consequently,

sinf =0, cosO==1, 6')2%07

and derive the linear state model,
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Ax = AAX + BAu,
Ay = CAx + DAu.

c¢. Show that the linear model can be divided into two models. One model describ-
ing the angle (the 0-system) and one model describing the position (the p-system)
and show that the 0-system is completely decoupled from the p-system.

Problem 2.2

a. Find the transfer function, G(s) = y(s)/u(s), for the system in Fig. 2.9.
b. Derive companion form 1 and companion form 2 for the system and draw
the block diagrams for these state space models.

Problem 2.3

a. Linearize the inverted pendulum model from Problem 2.1 a. by using the
method from Sect. 2.4 and assume the following stationary state,

. 4T
Xo=1[6 6 po po] =[0 0 1 0],

and use the parameter values,
m
M =2k =1k L=05 ~10—.
g7 m g7 m7 g seC2
b. Compare the result with the result from problem 2.1 b.

Problem 2.4

A simplified car suspension system is shown on Fig. 2.24. The components in
the figure represent a quarter of a car (or half a motorcycle). M is the body mass,
m is the so-called unsprung mass (wheel, tire, brake etc.), k,; and k; are the spring
constants of the tire and the spring respectively and b is the damping coefficient
of the shock absorber which is assumed to be a linear damper (the damping
force is proportional to the velocity difference between the two members of the

.
£

Fig. 2.24 Car suspension
system
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damper). Au is the position of the road. Only motion in the vertical direction
will be considered.

A model is to be set up which is valid around a stationary state where the
springs are in tension and shortened to their stationary length under
the influence of gravity.

a. Derive a model of the system using Newton’s second law on the two masses

b. Draw a block diagram and choose a set of state variables

c. Formulate a state space model where Au is the input and where the output is
the four dimensional vector,

AXx,
Axy

Af; |7
Ax,

Ay

where Af; is the tire force.
Problem 2.5
The electrical circuits on Fig. 2.25 are called bridged-T-filters.

Fig. 2.25 Common ]
electrical circuits a. R,
(Bridged-T-filters) I I
o o
i e,
e; e
R, o
o o
| ——
L T R
b. 2
[
o o
e
e; e
R, 0
o o

a. Use Ohm’s and Kirchhoff’s laws on the circuits to derive a linear model of
the filters.

b. Draw block diagrams of the circuits and choose in each case a set of state
variables.

c. Derive state space models for the two filters.

Problem 2.6

Figure 2.26 shows a hydraulic servo cylinder. The piston is positioned symme-
trically in the cylinder and the oil volume of the two cylinder chambers are
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Fig. 2.26 Hydraulic servo - x
cylinder

f P ] P2 |_

—

|
| \%4
'

therefore of equal size V. The ring shaped area of the piston is 4.. The mass of
piston and piston rod is M and the rod is loaded by an external force f.

The servo valve delivering the volume flows ¢; and ¢, is symmetric and
dynamically ideal (massless and frictionless) and the relation between the driv-
ing input voltage, u, and the flows is assumed to be

q1 = qo = ku.

The volume flow into a cylinder chamber can be divided into three parts,

q = Ydisplacement + qcompression + Qleakage-

For the left chamber one has,

.V
q1 = ALx“"EPl + Cl(pl _p2)7

where f is the stiffness coefficient for the oil (the so-called bulk modulus) and C;
is a laminar leakage coefficient. Note that the compression flow is proportional
to the time derivative of the pressure in the cylinder chamber.

a. Derive a model for the system with input u, disturbance v = fand output,
y =X
b. Draw a block diagram for the model and set up a linear state model of the form:

X = Ax + Bu + B,v,
y =Cx+ Du.

Problem 2.7

The following discrete time transfer function is given:

35342224245

H(z) = .
S oy B

Set up state space models in companion form 1 and companion form 2.
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Problem 2.8

A nonlinear system is given by the equations,

].7:*]7+OL\/E,

mj = pu—y* — j,

where u is the input and y is the output.

a. Draw a block diagram of the system and choose a state vector.
b. Derive a nonlinear state space model and find the stationary states of the model.
c¢. Linearize the system and derive the linear state space model.

Problem 2.9

A system with 3 interconnected tanks is shown on Fig. 2.27. The tanks have the
cross sectional areas Ay, A, and A4s. The input flows are proportional to the
input voltages,

qq = kuy,

qp = kuy.

The flows follow the square root law and since the pressures in the bottoms of
the tanks are proportional to the level, one has:

q1 = C1/ X1 — X2,
42 = C2/ X3 — X2,
qo = €0/ X2.

a. Derive a set of equations describing the system and formulate a nonlinear
state model with the two inputs u; and u;, and the output y = ¢o.
b. Linearize the model and derive the linear state space model

Ax = AAX + BAu,

Ay = CAx.
uy ”25
4 Vo,
A, A Ay
X M X3
2
e =
a1 a2

Fig. 2.27 Tank system l
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Problem 2.10

A high temperature oven with a product to be heat treated is shown on Figure
2.28. The outer surface temperature 7 of the oven is the same as the temperature
in the inner oven space. The ambient temperature is 7, and the product tempera-
ture is 7. All the temperatures are assumed to be uniform. The variables denoted
q are the heat powers exchanged between the different parts of the system.

Fig. 2.28 High temperature Controlled
oven production system T,| T power supply
q<_ I~ | Product L1
¢ q
Ty
-
qr q=ku

The oven surface temperature is so high that the heat loss to the surroundings
is not only due to convection but also to radiation. Assume that the convection
power is proportional to the temperature difference, i. e.,

qe = kc(TS - Ttt) andqg = kg(TS - Tg),
whereas the radiation heat loss follows the Stefan-Boltzmann law,
qr = kF(T? - Ti)’

Note that the temperatures here are absolute temperatures. The output is the
temperature 7T,. The total heat capacities of the oven air space and the product
are C; andC,.

a. Derive a nonlinear model of the system and formulate the state space model
in the form of Eq. (2.56).

b. Derive a set of equations for determining the stationary states.

c. Linearize the model and derive the matrices A, B, B, and C for the system.






Chapter 3
Analysis of State Space Models

Abstract In this chapter an overview of the properties of the state space models
will be given. A basis for the investigation of these properties is the solution of
the state equation given appropriate boundary conditions. The important
notions of stability, controllability and observability will be introduced and
the similarity transformation discussed. This makes possible the construction of
state space models with a number of useful properties.

3.1 Solution of the Linear State Equation

In this section first the solution of the general time varying state equation will be
obtained and then specialized for the time invariant case.

3.1.1 The Time Varying System

A reasonable starting point for the treatment in this chapter is the homogeneous
(or unforced) state equation,

x(1) = A(1)x(1). (3.1)

Prior to the search for solutions of this matrix differential equation, it is
important to know whether a solution exists and whether the solution found is
unique, given the initial state. x(7o) The answers to these questions are not trivial
and the conditions required to ensure that Eq. (3.1) has a unique solution will
not be derived here. It will only be stated that if A(¢)‘s elements are piecewise
continuous functions of #, a unique solution does exist. As a matter of fact, this
condition is more than what is required. It is sufficient but not necessary.
However, piecewise continuity is not a very restrictive requirement and the
vast majority of practical applications will be covered by this assumption. For
a more thorough treatment of these questions the reader is referred to Kailath
(1980) or Brauer and Nohel (1969).

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 3, 59
© Springer-Verlag Berlin Heidelberg 2008
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For the system (3.1) one can choose n linearly independent initial condition
vectors X(7p). An obvious choice would be:

xi(to)=[100 ... 0]'=e

!
x2(t) =010 ... 0]"=el, 42)

X:(t) =[000 ... 1]"=e¢’

n-*

The solutions to (3.1) corresponding to these initial conditions may be arranged
in a square matrix,

U() = [x1(0) x2(0) -..xa(0)]. (3.3)

Note that U(zy) = I, the identity matrix.
Assume now that the solutions in Eq. (3.3) are linearly dependent. Then, by
definition, there exists a nonzero constant vector z such that

[x1(7) x2(7) ... x4(1)]z =0, (3.4)

for all 7. In particular for = ¢,
[x1(70) x2(t0) ... Xp(to)]z=1[e1 €2 ... e,]z=0. (3.5)
But (3.5) contradicts the fact that all the e; vectors are linearly independent. The
conclusion is that all the solutions in (3.3) are linearly independent

and consequently that U(z) is regular for all ¢, or, in other words: U~ (¢) exists
for all +. With the definition of U() it can be seen that:

U(r) = A()U(2). (3.6)
Any solution U(7) to Eq. (3.3) is called a fundamental matrix of (3.1).

Now it is claimed that the solution to (3.1) for an arbitrary initial condition,
X(1), can be written:

x(1) = U(1)x(10). (3.7

Itis obvious that (3.7) holds for r = ¢,. Differentiating (3.7) with respect to time
gives:

x(1) = U()x(t0) = A()U(1)x (1) = A(1)x(1),

which shows that (3.7) does in fact satisfy the state equation (3.1).
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Now augment equation (3.1) to obtain the nonhomogeneous state equation,
x(1) = A()x(1) + B(¢)u(r). (3.8)

From U(1)U~!(¢) = I it follows that
S (UOU (1) =0 (3.9)

or (omitting the time argument)

dU du~!
—U'+U =0 3.10
dt + dt ( )
or, solving for the time derivative of the inverse,
du~! du
—=-U'!'—U'!=-U"A. 3.11
dt dt ( )

Postmultiplying the last expression with x yields

del

X = —-U'Ax. (3.12)

Premultiplying (3.8) with U™! gives U 'x = U 'Ax 4+ U"'Bu. Inserting
Eq. (3.12) into this expression leads to

-1

U"X—i—d[;t x =U"'Bu (3.13)

which can also be written

%(U’lx) = U 'Bu. (3.14)

Integrating from ¢y to ¢ on both sides of the equal sign yields

/told_ci(Ul(T)x(r))dr = /[01 U~ ' (1)B(t)u(t)dr (3.15)

or

U N (0)x(1) = U (10)x(19) = /IUI(T)B(‘E)U(T)d‘E. (3.16)
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Ordering the terms and premultiplying by U(t) gives the solution,
!
x(1) = U()U (10)x(to) + / U(t)U ' (7)B(t)u(t)dr. (3.17)
1o
Now the state transition matrix will be introduced:

o(t,7) = U(HU (7). (3.18)

The quadratic fundamental matrix U(#) depends on the initial state, according
to the definition in the beginning of this section. If two different fundamental
matrices U () and U(7) are selected, it is known that all columns in the two
matrices are linearly independent and therefore they can act as basis vectors in
the n-dimensional vector space. From linear algebra it is known that a constant
nonsingular matrix P exists such that U,(#)P = U, (7). From (3.18) it is clear
that

o(1,7) = Ui()U; (1) = L2()PP'U, (1) = Uh ()U; (1), (3.19)

This shows, that the state transition matrix is unique and independent of the
specific choice of U(7).

With the state transition matrix available, the solution (3.17) to the non-
homogeneous state equation (3.8) can be written in its final form, noting that

U(O)U (1) = ¢(1,10) -

x(1) = o(1,10)x(10) + /[(])(t, 7)B(1)u(t)dr. (3.20)

The solution has two terms. The first term (¢, 79)x (%) is the solution for
u(z) = 0 and it is therefore called the zero input solution. The integral term is
called the zero state solution because it is the solution if the initial state is a zero
vector. In other words, the solution is a superposition of the effects of the initial
conditions x(7y) and the effects due to the input u(7).

From Egs. (3.6) and (3.18) it can be seen that

% plt.10) = V(U™ (1) = AWUOU ™ () = AW (1. 10). (32D

The state transition matrix has some special properties. From the definition in
Eq. (3.18) it is obvious that

(I)(l(),to) =1L (3.22)
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It is also straightforward to conclude that

& (t,10) = U(t)U™ (1) = (10, 1). (3.23)

Thus, the inverse of ¢(z, 1)) is very easy to find. It is just a matter of inter-
changing its two arguments. It is equally easy to see that

b(12,10) = U(1)U ' (10) = U()U™ ' (1)U(11)U (1)

(3.24)
= &(12, 1) P(11, 10)-

It should be pointed out that although the solution, Eq. (3.20), to the time
varying state equation (3.8) looks simple, it is usually not applicable for prac-
tical calculations. The problem is that ¢(z,7)) can in general not be found
analytically given its defining differential equation (3.21) with the boundary
conditions (3.22). Except for special cases, one has to be satisfied with numerical
solutions, obtained using a computer.

The linear system’s output equation is

y(t) = C(H)x(r) + D(Hu(?). (3.25)

With the solution (3.20) the system’s response can thus be written as

¥ = COB(0)x(0) + [ €)1, OBEu(r)de + D(Du(y)

(3.26)
= (09 )x(0) + [ [C6(1IB() + D(D3( ~ (e
Defining
g(t,t) = C()d(t,t)B(t) + D(1)d(r — 1), (3.27)
for x(zp) = 0 Eq. (3.26) can be written,
y(1) = /[g(t, T)u(t)dr. (3.28)

g(1,7) is called the unit impulse response matrix or just the unit impulse response
of the system.

If the j’th input variable is a unit impulse at time ¢ = ¢, and all other entries of
u() are zero, i.e.,

u()=1[0...08(t—1,)0 ... O]T, 10W<t, <t,
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equation (3.28) then gives

£1j(2,1)8(t — 1) g(t,1p)
! (2,7)0(t — ¢ (1,1
y(l) :/ g2j( ‘C).(T p) dt — g2j(. p) . (3.29)
fo : :
gr.f(t7 T)S(T - [P) gljf([’ tp)
For the i’th output variable it is found that
yilt) = gi(t; 1p)- (3.30)

3.1.2 The Time Invariant System
The solution given in Eq. (3.20) is of course also valid for time invariant systems
and it can be simplified and made much more useful in such cases. For linear,

time invariant systems (LTI systems) the use of the Laplace transform is
possible. Start again with the homogeneous equation,

x(1) = Ax(1). (3.31)
Suppose now that the initial state is x(¢p) = x(0) = X¢. In the time invariant case
it can be assumed that 7y = 0 without loss of generality. Laplace transforming
the time dependent vectors in (3.31) element by element,

sX(s) — xo = AX(s), (3.32)

where the Laplace transform is denoted by X(s) = £ {x(7)}.
Rearranging the terms in (3.32) gives

(sT — A)X(s) =xo or X(s) = (s — A)"xq. (3.33)
Now, defining

U(s)=(sI—A)"" and (1) = 2 {U(s)}, (3.34)
the solution of the state equation can be written as

X(s) = ¥(s)xo, (3.35)
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or using the inverse Laplace transform,
X (1) = Y(1)xo. (3.36)
If the inhomogeneous case is considered,
x(1) = Ax(¢) + Bu(1), (3.37)
a result similar to that in (3.33) can be found,
X(s) = (s1 — A) 'xo + (sI — A)"'BU(s), (3.38)
or applying Eq. (3.34),
X(s) = ¥(s)xo + U(s)BU(s). (3.39)

The second term is the product of two Laplace transforms and the inverse
transform therefore takes the form of a convolution integral:

x(1) = W()xo + /0 (- 1)Bu(t)dk. (3.40)

This solution has a great deal of resemblance to Eq. (3.20). But in this case it is
possible to determine an analytical solution using (3.34). This can be quite
laborious, however, since this requires that the inverse of the matrix (sI — A)
is found symbolically.

For numerical calculations it is usually preferable to use another approach
based on the well known solution to a scalar, linear, time invariant, first order
differential equation

X(#) = ax(r) with x(0) = xo. (3.41)
The solution of this equation is
x(t) = " x. (3.42)

The series expansion of the exponential function is

2.2 o0 ktk

t
e“f:1+az+“7+ L=yt (3.43)
k=0 :
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Now define a square matrix by a series expansion similar to that in Eq. (3.43),

A2[2 [o.¢] A/Ctk
eA‘:I+At+T+ :ZT' (3.44)
k=0 :

The two series equations, (3.43) and (3.44), converge for all finite values of z.
el is called the matrix exponential.

Briefly, some of the properties of this matrix are:
1. From the definition (3.44) it follows that

d

— ARFT
di *

1 1
A= A+ A AP+ L
(N) = A+ A%+ AN T

1 1
A<I+At+2A212+ > = (I+At+2A212+ ...)A

7 (€M) = AeM = eMA. (3.45)

k=0 k! k=0 k!
A’2 AP A% AN

1 1
=T1+A(r+5) +5A2(z2 + 215 + 57) +6A3(r3 + 3157+ 35+ 57 + .

=1+ A(r+5) +%A2(z+s)2 +éA3(Z+s)3 + .= ;MU]{—J‘”)A
or
AL A = AU, (3.46)
If one lets s = —¢, it is found that
Al oA = AT — AO or (AT =AY

which means that the matrix exponential is nonsingular (because e A’ is

convergent for all finite 7). It is inverted by simply changing the sign of the
exponent.
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3. Note that it can be shown that e(A*B) is not in general equal to e’ - ¢ This is
only the case if A and B commute, i.e., if AB = BA.

If comparing Eq. (3.45) with (3.6), one can see that ¢*’ qualifies as a funda-
mental matrix. The state transition matrix (3.18) will then be

d(1,7) = eMemAT = AT, (3.47)

Note, that the state transition matrix is no longer a function of the two
independent arguments ¢ and t as in (3.20), but only a function of the difference
r—.

For t = t9 = 0 one finds that

&(1,0) = d(1) = M. (3.48)

Now it is seen that the solution, Eq. (3.20), of the general linear state equation in
this case reduces to:

x(1) = b(1)x0 + /0 "o(1 — 1)Bu(t)dr. (3.49)

Comparing (3.40) and (3.49) it is also seen that the matrix ¥(z), which was
introduced in (3.34), is exactly the same as (7). Therefore one finally has the
relation,

G() =U(1) = 2 {(ST—A)'} =N (3.50)
or
D(s) = U(s) = (sT—A) . (3.51)
The matrix ®(s) is called the resolvent matrix.
The right hand relation of Eq. (3.50) shows a closed form alternative to the

series expansion for eA’. With the matrix exponential, the solution (3.49) can be
written,

1
x(1) = eM'xg —|—/ AU Bu(t)dr. (3.52)
0

With the output equation,

y(t) = Cx(t) + Du(?), (3.53)
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one obtains

t
y(1) = Cer'xg + C / AU Bu(t)dt + Du(r). (3.54)
0

The impulse response in Eq. (3.27) can be written
g(t,7) = CAU VB + D3(1 — 1) = g(t — 7). (3.55)
After a change of variables this becomes
g(1) = CeMB + D3(1). (3.56)
The resolvent matrix can be written,

_1_ adj(sl — A)

D(s) = (sI — A) —m»

(3.57)
where adj and det denote the adjoint and the determinant of the matrix respectively.

The numerator of ®(s) is an n x n matrix. The denominator is a polynomial
and it is precisely the same polynomial which may be used for the determination
of the eigenvalues of the matrix A,

Poa = det(Al — A). (3.58)

In this context the polynomial is called the characteristic polynomial of A.
®(s) can be decomposed in a way similar to the partial fraction decomposi-
tion of transfer functions for SISO systems but in this case the residuals will in

general be matrices rather than scalars. If it is assumed that A has distinct as well
as repeated eigenvalues, they can be for example,

AyA2, ..., mtimes A, ..., Ag,

where the eigenvalue A, is repeated m times. Equation (3.57) can then be written

adj(sT — A)
D(s) = o . 3.59
() (=A)(s=22) ... (s—=2)" . (8= ho) (3-59)
The partial fraction decomposition turns out to be
Z, V)
D(s) =—— ..
(S) S — 7\,1 S — 7&2 +
+ Zrl Zr2 + + Zrm + + Zo‘ (360)
S*)\,r (s—?»,)z (S*}\.,»)m 377\457

where the matrices Z; have constants elements.
Inverse Laplace transformation of Eq. (3.60) gives the state transition matrix,
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(1)(1) :eAI = Zle}”t+Z2€x2t+... ( )
3.61
+ Lt 4 Lot + A Lot 4 L

The exponential function terms, ¢* and ¢/ ¢, are called the natural modes of
the system.

Computation of the matrix exponential is usually based on some modified
form of the series expansion (3.44). It turns out, however, that accurate com-
putation of A’ is not always simple. The expansion (3.44) converges quite
slowly and in some cases the results are difficult to use. This problem is of
numerical nature and it is beyond the scope of this text to pursue it in detail. The
reader is referred to books like Golub and Van Loan (1989). It is also strongly
recommended that the reader to use well-tested computer algorithms like those
found in packages like MATLAB for actual computations.

There is a special case where calculation is simple: this is when A is a diagonal
matrix. The diagonal elements are the eigenvalues of the matrix,

M0 ... 0 0
0 A ... 0 0
A= : : : : | =A. (3.62)
0 A1 0
0 0 N

A raised to the k’th power is simply

Moo .0
0 A ... 0
A= : : : (3.63)
0 0 ... M, o0
0 0 ... 0
and the series expansion (3.44) can be written
[ oo MKk ]
—- 0 0 0
kz::() k!
00 kk[k
0 > ﬁ . 0 0
o0 Aktk k=0 !
Al = Z 0 : : : : : . (3.64)
k=0 0 0 o 0k ik 0
&
%) )\,klk
0 0 0 4
L ,;0 k|
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The diagonal elements are the series expansion of the scalar exponential
function and consequently it is clear that

M0 0 0
0 e ... 0 0
M= : : : : . (3.65)
0 0 et 0
0 0 0 M

Example 3.1. Second Order LTI System

A second Order LTI-System is given by the equations.

=[5 e[
y=[2 0)x.

The system is SISO and thus « and y are scalars.
The resolvent matrix is

s+6 1
1 s 0 o 177" s 1] | g
O(s)=(I-A) = - = =+t — J
0s| |-8 -6 g s+6| S6HO+8
[ s+6 1 b 1 1/2 1/2
(s+2)(s+4) (s+2)(s+4) St2 5+4 5+2 5+4
—8 s 4 4, 4 1, 2
L(s+2)(s+4) (s+2)(s+4) s+27s+4  s+27s+4
2 1)2 112
L] e 2] oz oz
o s+2 s+4 S s+2 544

All the terms in the resolvent matrix can be inverse Laplace transformed and
the state transition matrix is readily found to be

28_2[ _ 6_4’ %e—Zl _ %6—41

1) =2 Hd(s)} = M = :
¢() { (S)} e [_482t+4€4t _6*2f+2€*4f
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The impulse response matrix (3.56) reduces to a scalar because the system is
SISO. G(¢) is the systems response to a unit impulse, u(t) = (¢),

G(t) = CA'B = y(o)

26_2l _ 8_4’ 16—21 _ 16—41 0
vy =[2 0] v — e e,
_46721 +4€74t _efzz 4 26741 1

The unit impulse response can be seen on Fig. 3.1.

Fig. 3.1 Unit impulse
response

t [sec]

For xg = [ ;} and u(#) = 0 the zero-input response can be calculated from

Eq. (3.52):
x.i(1) = eM'x
B 2672[ _ 674t %672t _ %67‘” 1 B 3672t _ 2674t
_4€—21 + 48—41 _6—21 + 26_4l 2 _66—21 + 86—4[ ’
These responses are shownion Flg..3.2. 0for <0
For xo =0 and u a unit step, i.e., u(f) = Lfor 1>0° the zero-state

response is

Fig. 3.2 Zero-input response
forxo=1[1 2]" 1 [sec]
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! L1 ,-2(t—1) _ 1 ,—4(1—1)
e e
Xzs(l‘) = @A(Z - T)B -1 -dt= ? 2 dt
_e—2(l—r) +28—4(t—r)
0 0

t
%efz(m) _ %674(1 —1) - F _ %6—21 +%e—4z1

1 ,2(-1) 1 ,—4(-1) Lo=2t 1o
;—¢€ +5e 0 2 2

Forxo = [1 2]" and u a unit step the results above can be combined using
superposition,

1 11 -2t 15 —4¢
s +ge T —<e
X(1) = xat) +xo(0) = [ 3 8 ]

11,2t 15 —4¢
—76 +7€

Finally the output can be calculated for the given initial conditions:

Y1) = Cx() =2 0] “%ew—%e—m] RN

_ ue—Zt + 1756—41

I =3t Tl

A plot of x(#) and y() is shown on Fig. 3.3. ]

Fig. 3.3 x(f) and y(f) for
xo=[1 21Tandu(r)aunit  2f N\
step

3.2 Transfer Functions from State Space Models

In Sect. 2.3 it was seen how to derive a state space model given a transfer
function. Here it will be related how this process can be reversed for a LTI

state space model.
The impulse response for such a system is expressed by Eq. (3.56) which will

be repeated here:

g(t) = CerB + D3 (1). (3.66)
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Recalling that Eq. (3.56) is the response given the condition that x(zy) = 0, it
can be Laplace transformed to obtain,

G(s) = C(sI—A)"'B+D, (3.67)

where the result, e*’ = ¢~ '{(sI — A)"'}, has be used.
Using Eq. (3.28) with g(7,7) = g(r — 1) and 7o = 0, it is seen that

y(1) :/0 g(t — t)u(r)dr. (3.68)

The right hand side of (3.68) is a convolution integral and Laplace transforma-
tion leads to the output transfer function,

Y(s) = G(s)U(s), (3.69)

and the analogy to the scalar case is obvious. The matrix G(s) is called the
transfer function matrix. It is of dimension r x m and its 7, j’th element is the
scalar transfer function from the j’th input to the 7’th output.

The inverse matrix, Z{e’} = (s — A)™', in Eq. (3.67) can be written,

_adj(sl — A)

(1-4)" = det(sT — A)’

(3.70)

where adj(sI — A) is the adjoint matrix and det(sI — A) is the determinant of the
matrix (sI — A). Eq. (3.67) can then be rewritten:

_ Cadj(s1 — A)B + det(sI — A)D

G(s) det(sT — A)

(3.71)

The numerator is an r x m-matrix and for SISO systems it is a scalar. The
denominator is always a scalar; as a matter of fact, it is a polynomial in 5. For
the usual scalar transfer function of a SISO system the denominator polynomial
is called the characteristic polynomial and the same notation will be used
for MIMO systems. The systems poles are the solutions of the characteristic
equation:

det(sT — A) = 0. (3.72)

As noted on p. 68, the same equation must be solved to find the eigenvalues
of the matrix A,

det(M — A) = 0. (3.73)
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This shows that the poles of a transfer function of a LTI system are the same as
the eigenvalues of the system matrix of the corresponding state space model.

Note that in this statement the possibility has been neglected that zeroes and
poles cancel each other in the transfer functions. If such a cancellation occurs,
there are eigenvalues of A which are not poles in the transfer function. For this
reason it is necessary to distinguish between the eigenvalues of the A matrix and
the poles of the transfer function matrix.

3.2.1 Natural Modes

If the characteristic polynomial in Eq. (3.71) is factored the transfer function
can be written,

Gls) = Cadj(s1 — An)B + det(sT — A)D 7 (3.74)

[1(s—pi)

i=1

where p; are the poles. For simplicity it has been assumed that all the eigenvalues
are distinct.

This expression can be decomposed (using partial fractions) to a sum of
terms

R, Ry ~ R,

Gs)=——+—+...= . 3.75
) S=p1 S—pP2 ;S—Pi ( )

The constant residual matrices R; are of dimension r x m.

Inverse Laplace transformation of (3.75) yields the impulse response of the

system,

g(t)=> Rie?, 120, (3.76)
i=1

As it is the case for scalar systems, the response (3.76) is composed of terms
containing the exponential functions e?!’.

It may be recalled from p. 69 that these terms are called the natural modes of
the system. The natural modes determine the characteristics of the system’s
dynamic behaviour. The poles/eigenvalues, p;, can be real or complex. In the
first case, the system will have a time constant,

1
T =——\.
Di
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In the second case they will appear as complex conjugate pairs, p; i1 = o £ j,
and the system will have a natural frequency and a damping ratio associated
with each of them,

o

o2 + p?

If the eigenvalue, p;, is repeated k times, the corresponding natural modes
will be

el el Pelit .. {lell,
See also Eq. (3.61).

Example 3.2. Impulse Response of Second Order System

Consider the following system:.

The system matrix is the same as in Example 3.1, so it is known from that
example that

2 1 /2 _1/2
D(s) = s+42 s+44 s+12 s+24
— + —~ +
s+2"'s+4 s+2's+4

The transfer function matrix will be

2 0 2 Y2 12 0
G(s) =CD(s)B+ D = s+2 s+4 s+2 s+4
0 3||__4 + 4 1 + 2 1 0
s+2 "s+4 s+2 " s+4
1 4 -1 =2
I 1 4 2
s+2 s+4 s+2 s+4| -3 —12 N 6 12
| =3, 6 12, 12 | s+2 s+4
s+2's+4 s+2 " s+4
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The impulse response can be found by inverse Laplace transformation,

(0 1 4 5, -1 =2 »
1) = e '+ e
& -3 —12 6 12

efzt _ e—4t 46—21 _ 28—41
= ,l Z 0
—3e X4 6 —12e 4+ 127

3.3 Discrete Time Models of Continuous Systems

As will be apparent later, discrete time state equations are easier to solve than
the continuous equations, especially if a computer is used to do the job.
The discrete time state equations are actually difference equations and their
recursive nature makes them very easy to implement directly as computer
algorithms (see Sect. 2.5). Discrete time state equations are also important
for another reason. As will also be seen later, it is straightforward to design
controllers in discrete time and the natural basis for such a design procedure is a
discrete time state equation.

When deriving the discrete time counterpart of the continuous state equa-
tion, it is usually assumed that all signals in the system are constant between the
sample instants. Hence they can only change value at these sample instants.
This is equivalent to inserting samplers and zero-order holds in the model’s
signal lines. One of the consequences is of course that all signal information
between the sample instants is discarded but that is a problem that one always
has to live with when working in discrete time.

The solution to the LTI state equation (3.37) has been shown earlier to be

t
x(1) = eMxp + eA’/ e A"Bu(t)dr. (3.77)
0

If the solution of this equation for the two time instants 7; = k7 and
t = (k + 1)Tis calculated then one has

kT
x(kT) = e*Txq + eAkT/ e A Bu(t)dt (3.78)
0

and
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(k+1)T
x((k+1)T) = AW DTy 4 eA(k+])T/ e ABu(t)dt (3.79)
0

respectively.
Premultiplying (3.78) by eA” and subtracting the result from (3.79),

(k+1)T
x((k+1)T) = eAx(kT) + eA(kH)T/ e A"Bu(1)dr. (3.80)
kT

Since u(z) is considered constant between the sample instants, one has that
u(¢) = u(kT) on the interval ¢ € [kT, ((k + 1)T)]. Then (3.80) can be rewritten

(k+1)T
x((k+ 1)T) = ATx(kT) / AEDTIR g (k). (3.81)
kT

Changing variables of the integration, (k + 1)T — t = ¢, finally
T
x((k+1)T) = e*Tx(kT) + / eABdt -u(kT). (3.82)
0
Defining the two constant matrices,

T
F=e¢*Tand G = / ABdt. (3.83)
0

Equation (3.82) can be written,
x((k+1)T) =Fx(kT) + Gu(kT), (3.84)

which is the discrete time state equation. In agreement with (2.130) this is
abbreviated to,

x(k + 1) =Fx(k) + Gu(k). (3.85)

The corresponding output equation is identical to the continuous counterpart
with the exception that the time argument is discrete,

y(k) = Cx(k) 4+ Du(k) (3.86)
Since the derivation above is based on the assumption that all signals change

values in a step-wise manner (they are all staircase curves), the procedure is
sometimes called the step-invariant transformation.
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According to Frobenius’ theorem' the discrete time system matrix has the
eigenvalues

Ap = e T (3.87)
Example 3.3. Transfer Function of a Discrete Time System

For a SISO system the block diagram and the transfer function G(s), are given
on Fig. 3.4.

u(t) s+1 y(1)
—_— -
s2+125+20

Fig. 3.4 SISO system

Using the results in Sect. 2.3, it is possible to write down the continuous state
equation by inspection of the transfer function,

0 1 0
X = X + u,
-20 -—12 1

y=111]x.
On this basis the resolvent matrix can be calculated to be

D(s) = (sI— A) ' = 1 {S+ 12 1}

(s+2)(s+10) [ —20 s

and the state transfer matrix can be found by inverse Laplace transformation,

eAt _ d)(l) _ l 10672[ _ 28710[ e72t _ efl()t :| .
8 | =20 2 420100 D=2t 4 Qe 10

If a sampler and a zero-order hold are added in front of the system on Fig. 3.4 as
shown on Fig. 3.5 the system can be discretized by using (3.83).

u(t) u(kT) ()
Fig. 3.5 SISO system with JT —| ZOH G(s) ——>

sampler and zero-order hold

 Frobenius’ theorem: If a matrix A has the cigenvalues A; then the function f{A) has the
eigenvalues f{2;) if the function f{z) is analytic in a region in the complex plane containing the

eigenvalues A;. The function ¢T is analytic in any finite region of the complex plane.
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For a sample period, 7" = 1 sec, the matrices F andG can be found

AT 0.169 0.0169
F=e |T:l = ’
—0.338 —0.0338

the eigenvalues of A and F are

2 0.1353
7\, == 7\, =
A {—10 ) {4.54- 105

and it can be seen that Frobenius’ theorem (3.87) holds for the system .
o2 _ o0 ]

T 1 1
G = / ABdt = 7/
0 8Jo | —2e72% 4 10e 10

1 [=5¢e 241044 0.0415
B 100169 |

80| 10e72 —10e710
The matrix C will be the same as for the continuous system,

c=[11]

This method allows calculation of the exact discrete time matrices but will be
very laborious to apply for systems order greater than, say, 2 to 3. The alter-
native is to use computer computation. m

Example 3.4. Linearized Oven Process Plant

In Example 2.9 a linearized time invariant model of a thermal process plant
is derived,

A
—~
~
~—
|

Ax(7) +Bu(z) + B,v(1),
y(1) = Cx(1),

where v(7) is a vector valued disturbance function. Note that the A denoting the
incremental states has been omitted and that all variables are deviations from a
stationary operating point (see Eq. (2.64)).

The continuous model turned out to be of order 4 and with the given data the
system’s matrices are
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—0.0499  0.0499 0 0
W | 00499 00667 0 0
0 0 —0.0251 o |
0 0 0.0335 —0.0335
0.00510 0.00510 0 0 0
0 0 4177 0 0
T 100377 —00377 |7 " | 0 001255 0.01255
0 0 0 0 0

The eigenvalues of the system matrix A can be found to be

—0.00769
—0.1089
—0.0335
—0.0251

This means that the system is characterized by the 4 time constants,

130 sec
9.18 sec
29.9 sec
39.8 sec

T =

If the system is sampled approximately 5 times per T,,;,, this gives "= 2s which
corresponds to the sample frequency f; = 0.5 Hz.

MATLAB provides an algorithm for numerical computation of F and G.
The computation is executed by the command (‘continuous-to-discrete’):

[F,G] = c2d(A,B,T).

The result are

0.9094 0.0890 0 0 0.00973  0.00973
- 0.0890 0.8795 0 0 G 0.000471  0.000471
N 0 0 0.951 o | | 0.0735 —0.0735

0 0 0.0632 0.9352 0.00243  —0.00243
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The discrete equivalent to B, can be computed using the same command as
above but with B replaced by B,:

[F,Gv] = c2d(A,Bv,T),

—0.386 0 0
| -783 0 0
o 0 0.0245  0.0245

0 0.00081 0.00081

This shows that the numerical structures of the continuous time matrices and
their discrete time equivalents resemble each other to some extent. It should be
pointed out that such a similarity is not always found. This can also be seen in
the next example. m

Example 3.5. Phase Variable State Space Model

Considering a state space model in the phase variable form, it is known
(see Sect. 2.3) that it will only contain the necessary parameters, namely the
coefficients of the nominator and the denominator polynomials. An example
could be
0 1 0 0
. 0 0 1 0
1o 0o o 1M
-2 -5 -7 =2

u, y=1[1 3 0 0]x.

- o O O

A’s eigenvalues are

[ -0.597£j23.1
"1 —0.403+/ 0435

and the largest of the two natural frequencies is @ . = 2.39rad/s or
Jumax = 0.38 Hz. It is desireable to use a sample frequency at least 10 times
higher, choose f; = SHz or T = 0.2 s here.

The MATLAB command from Example 3.4 generates the result

0.9999  0.1997  0.0196 0.0012 0.0000611
—0.0024 09939  0.1913 0.0172 0.001193
=1 200343 —00883 08737 01570| | 001717
03140 —0.8193 —1.187 0.5597 0.1570

Itis clearly seen that the simple structure of A and B is lost by the discretization.
A and B had only 4 elements different from zero or one whereas F and G
have 20. m
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3.4 Solution of the Discrete Time State Equation

The discrete time and time varying state equation (2.132) is in principle easy to
solve because it is in reality a recursion formula,

x(k + 1) = F(k)x(k) + G(k)u(k), (55)
y(k) = C(k)x(k) + D(k)u(k). '

If the initial state is known, the state at the next sample instant can be
calculated and so on. If the initial time and state are ky and x(k) respectively,
it is found that

X(ko + 1) = F(ko)x (ko) + G(ko)u(ko),
x(ko +2) = F(ko + 1)x(ko + 1) + G(ko + Du(ko + 1)
= F(ko + 1)F(ko)x (ko) + F(ko + 1)G(ko)u(ko) + G(ko + L)u(ko + 1),

x(ko +k) = F(ko + k — 1)x(ko + k — 1) + G(ko + k — Du(ko + k — 1) 59
= F(ko + k — )F(ko + k —2) ... F(ko)x (ko)

+F(ko + k — 1)F(ko +k — 2) ... F(ko + 1)G (ko)u(ko)

+F(ko + k — 1)G(ko + k —2) ... F(ko + 2)G(ko + Du(ko + 1),

+F(ko + k — 1)G(ko + k — 2)u(ky + k — 2)
+ Glko +k — Dulko + k — 1).

Comparing Eq. (3.89) with (3.20) the discrete time state transition matrix can be
defined:

&(l,m) =F(—1)F(I—2)...F(m) , &(,]) =1. (3.90)

The general solution can then be written,

X(k()) for k:ko,

XKD =3 o, ko)x(ko) + 5 bk, i+ )G(u() for k> ko1, OOV

i:/CO
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and the output becomes,

C(ko)X(k()) + D(ko)ll(ko) for k= ko,
C(k)(k, ko)x (ko)

y(k) = . (3.92)
+ > C(k)d(k,i+ 1)G(i)u(i) + D(k)u(k) for k> ko+ 1.
i:k()
In this case the unit pulse response can be defined:
. D(k) for k=i
(ki) = . . : (3.93)
C(k)d(k,i+ 1)G(i) for k> i
For x(k¢) = 0,, the output is
k
y(k) = h(k, iju(i). (3.94)
i:k(]

The matrix element /y;(k, ) is the I'th element of y(k) when the j’th element
of u(k) is a unit pulse at time i and all other elements of u are zero, i.e.,

uk) =100 ... 0~4(k)0 ... 0]", (3.95)

where the unit pulse is defined as seen on Fig. 3.6.

Fig. 3.6 Unit pulse function v (k)

As in the continuous case, the results above are difficult to use for further
analytical purposes because a closed form expression for (3.90) cannot in
general be found.

3.4.1 The Time Invariant Discrete Time System
If the matrices in Eq. (3.88) are constant,

x(k + 1) = Fx(k) + Gu(k),

(3.96)
y(k) = Cx(k) + Du(k),
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then the initial time and state vector can be set to ky = 0 and x(k) = x(0) = xo.
This simplifies the solution considerably. Recursive calculation yields

x(1) = Fx¢ + Gu(0),
x(2) = Fx(1) + Gu(1) = F’x¢ + FGu(0) 4 Gu(1),

(3.97)
x(k) = F*xo + F*"'Gu(0) + ... + FGu(k — 2) + G(k — 1).
The expression for the &’th step can be rewritten as
k=1 '
x(k) = Fxo + Y _F“'"'Gu(i). (3.98)
i=0
The state transition matrix (3.90) is now reduced to
¢ (k) = F~. (3.99)
This is the discrete time counterpart of the continuous time exponential
matrix, eA’.

The parallel to the continuous solution (3.49) can clearly be seen. The first
term of (3.98) is the zero-input solution and the second term is the zero-state
solution. This sum is a discrete convolution of the two discrete time functions, F¥
and u(k).

For the output one has

k—1
y(k) = CF*xo + Y~ CF*"'"'Gu(i) + Du(k). (3.100)
i=0

The unit pulse response can also be defined here. Setting

D for k=0
h(k) = , 3.101
(k) {CF"IG for k>1 ( )

equation (3.100) for xo = 0 can be written as

k
i=0

y(k) => h(k — iu(i). (3.102)

The matrix element /i;(k) is the I'th element of y(k) when the j’th element of u(k)
is a unit pulse at time zero and all other elements of u are zero, see also the
expression (3.95) and Fig. 3.6.
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The Z-transform Method

It is possible to derive the solution to the time invariant equation in an alter-
native way using the Z-transformation. See also Appendix D.
The Z-transform of the discrete time function f{k) is defined by

Z{f0) = Fa) = 3 k)=, (3.103
k=

0

The shift properties of the Z-transform need to be used here:

Z{f(k — 1)} = z7'F(z) + f(—1) (backward shift), (3.104)
Z{f(k + 1)} = zF(z) — zf(0) (forward shift). (3.105)

The discrete time state vector x(k) can be Z-transformed element by element
and the time invariant state equation,

x(k + 1) = Fx(k) + Gu(k), (3.106)
1s transformed to

Z{x(k+ 1)} = zX(z) — zxo = FX(z) 4+ GU(=z), (3.107)

which can be solved for X(z),
X(z) = (z1 = F) 'zx¢ + (zI - F) " 'GU(2). (3.108)
With the definition,
U(z) = (1 —F) 'z (3.109)
The solution can be written down as
X(z) = U(2)x + (z1 — F)"'GU(2). (3.110)
Inverse Z-transformation of this equation leads to

x(k) = Z Y= F) ' 2¥xo + Z H{(zZ1 - F)'GU(2)}. (3.111)
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Comparing (3.111) with (3.98) and using (3.109), the discrete time transition
matrix can be found from,

dk) =F = Z7Y (A - F) 'z} = Z27H{U(2)}, (3.112)
which is the discrete time counterpart of (3.50). The matrix,
$(z) = (21— F) 'z, (3.113)

is called the discrete time resolvent matrix.
Equation (3.109) can be written as

_adj(z1 —F) -z

With the eigenvalues of F found from the characteristic equation,
det(Ml —F) =0, (3.115)
one can, similarly to the continuous case, factor the denominator in (3.114),

adj(z1 —F) - z

RN Ey S R s S ey v

(3.116)

where it is assumed that distinct as well as repeated eigenvalues exist in the
system.
Partial fraction decomposition yields

Z Z
;\I](z)iz—)\1+z—7\2 3117
+ Zrl + Zr2 + + Zrm + + ZG ( . )
z—N (Z—)\.r)z (Z_kl)m Z— Ao
or
zZ, zZ»
\IJ(Z)—Z_7Ll oy
+ ZZrl + ZZrZ + ZZrm + + ZZG (3118)
z — 7\" (Z _ }\q‘)Z cen (Z — }\’r)m e P 7\‘0
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and inverse Z-transformation gives the state transition matrix,

dk) =F- =Z X + 205 + ...
(3.119)
+ F(Zl‘thZv ey Zrﬂla ka )\')) + ... Zc7\,€_7

where the function F contains terms of the form Z,.qkq’lkf*k‘f, where k, is a
positive integer for g = 1,2,...,m.

3.5 Discrete Time Transfer Functions

Z-transforming the output equation in (3.96) and inserting (3.108) yields

Y(z) = CX(z) + DU(z) = C(zl — F) 'zx

(3.120)
+C(z1 - F)"'GU(z) + DU(z).
For the initial condition, xy = 0, it is seen that
Y(z) = (C(z21 - F)"'G + D)U(z). (3.121)
In accordance with the normal practice, the function,
H(s) = Cel —F) G+ p = SV =G+ detzI=FD )

det(z1 — F) ’

is called the discrete transfer function matrix. Equation (3.121) can then be
written

Y(z) = H(z)U(2). (3.123)

This could also have been found directly from Eq. (3.102). The right hand
side expression of this equation is the discrete convolution of the unit pulse
response and the input function. The Z-transform of (3.102) is the same
as (3.123).

As for the continuous case, the poles of the transfer functions will be the same
as the eigenvalues of the system matrix F if no pole-zero cancellation occurs in
the transfer function. This means that the poles are those solutions, z = p;, of
the equation
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det(z1 —F) = 0 (3.124)

which are not cancelled by zeros.

The terms p¥ or, in the case of repeated poles, k’ f-“k", are called the discrete
time natural modes. p; can be real or complex. For a real pole the continuous
system will exhibit a time constant,

- T
logepi '

For a complex pair of poles, p; i1 = o % j3, the continuous system will have the
natural frequency and damping ratio,

1 .

Linear State Equation Solution Overview

Continuous Time Discrete Time

State x(1) = Ax(7) + Bu(7), x(0) =xo  x(k+ 1) = Fx(k) + Gu(k), x(0) = x
equation y(1) = Cx(1) + Du(1) y(k) = Cx(k) + Du(k)
Resolvent O(s) = (sT—A)"" O(z) = (z1-F) 'z
matrix
State o(1) =M (k) = FF
Transition
matrix P
Solution x(1) = eA'xg + [y A9 Bu(t)dr x(k) = F'xo + Y F*""'Gu(i)

Impulse/pulse
response

Output
Eigenvalues

Natural modi

Transfer
function

g(1) = CeMB + D3(1)

y(1) = fyg(t = Du(t)de
Solutions to det(A\I — A) =0
ek,t tm—le}\;[

G(s) =C(sI—A) 'B+D

=0
_JDfork=0
h(k) = { CF'G for k> 1
k

y(k) = ;)h(k — iu(i)
Solutions to det(M —F) =0
S Y
H(z) =C(zI-F)'G+D

Example 3.6. Time Response of a Discrete Time System

Suppose that a system is described by the matrices:

—4 -

A:{O ILB:[H,C:HOLDza



3.5 Discrete Time Transfer Functions 89
The eigenvalues of A are complex conjugates,
s = —0.54+ j1.937,
which means that the natural frequency and the damping ratio are
o, = 2 rad/sec, ¢ =0.25.

The system is now discretized according to the rules in Sect. 3.3 using the
sample period 7" = 0.1 s. Applying Eq. (3.83) leads to the matrices,

[ 09807  0.09453 ~ [0.004821
1 —0.3781 08862 |7 | 0.09453 |’

The eigenvalues of F are
Ar = 0.9335 £+ ;0.1831

and it is seen that the relation,
>\'F _ eO.l)\.A

holds (see Eq. (3.87)).
One can calculate x by using the state equations recursively or by applying
Eq. (3.98). Assuming xy = 0 with u(k) a unit step, one obtains

1) = 0.9807:x;(0) + 0.09453x,(0) + 0.004821 - 1 = 0.004821,
x2(1) = —0.3781x1(0) + 0.8862x5(0) + 0.09453 - 1 = 0.09453,
p(1) =1 x;(1) = 0.004821.

X1

(
(

x1(2) = 0.9807x; (1) + 0.09453x5(1) + 0.004821 - 1 = 0.01849,
x2(2) = —0.3781x1 (1) + 0.8862x3(1) + 0.09453 - 1 = 0.1765,
p(2) =1-x(2) = 0.01849.

3) = 0.9807x1(2) + 0.09453x,(2) + 0.004821 - 1 = 0.03963,
x2(3) = —0.3781x1(2) + 0.8862x2(2) + 0.09453 - 1 = 0.2439,
¥(3) = 1-x1(3) = 0.03963.

X1

(
(
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Fig. 3.7 Discrete time states 0.4
for a unit step input
(T =0.1)

02}

-0.2 - . .
0 2 4 6 t [sec] 10

A plot of the two states can be seen on Fig. 3.7.

On Fig. 3.8 the response y(k) = x| (k) is shown for the same input. For
comparison the unit step response y(¢) of the continuous system is also shown.
Note that the discrete time curves are drawn as staircase curves. From a
rigorous point of view this is not correct. The discrete state equation (and
the discrete transfer function) provides information on the system beha-
viour at the sample instants only. The staircase curves are used to illus-
trate that the discrete signals are assumed constant between the sample
instants.

It should also be noted that the continuous and the discrete responses
coincide with each other at the sample instants. This is most clearly seen on
the enlarged section of the plot on Fig. 3.9. The two models obviously describe
the same system at these time instants.

0.4
035
03}
0.25
02
0.15
0.1f

0.05 |
Fig. 3.8 Continuous and 0
discrete response for T = 0.1 0 2 4 6 t[sec] 10

0.3

0.2F

0.1}

Fig. 3.9 Enlarged section 0
of Fig. 3.8 ’ : : © t[sec]

—_
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Fig. 3.10 Response for 0.4
T=205s
03}
02} ()
y(k)
0.1}
0
0 2 4 6 8 10

t[s]

When generating a discrete time model of a continuous system, one
can in principle choose an arbitrary sample period. It should be pointed
out, however, that the discrete model’s ability to display the original
system’s properties will deteriorate if 7 is too large. On Fig. 3.10 the
unit step response for 7=0.5s is shown. On this figure the system’s
oscillations agree reasonably well with those of the continuous system.
Figure 3.11 shows the response for 7= 2s. In this case it is difficult to

Fig. 3.11 Response for 0.4
T=2s
03}
0.2}
- y(®)
01} i)
0 -
0 2 4 6 Time [s] 10

see the resemblance between the continuous and the discrete responses.
Although the discretization is formally correct (note that the responses
still coincide at the sample instants), this discrete model is hardly an
appropriate tool for further investigations. The sample period 7= 2s is
more than half the oscillation period of the continuous system (which is
3.14 s) and that is obviously inadequate. An even larger sample period
would completely disguise the original system’s important oscillatory
properties.

The transfer function can be found from (3.122). For T=0.1 s one
obtains

z—0.9807 —0.09453 . z—0.8862  0.09453
zZI-F = , adj(zI — F) = ,
0.3781 z—0.8862 —0.3781 z—10.9807
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and
det(zl — F) = 22 — 1.8669z + 0.9048.

The transfer function becomes

H(2) Cadj(z1 = F)G  0.004821z + 0.004663
z) = = :
det(zI — F) z2 — 1.8669z + 0.9048

The natural modes are,
my = (0.933540.1831)% and m, = (0.9335 — j0.1831)",

and the corresponding natural frequency and damping ratio are
_ |log,(0.9335 +0.1831)|

On 0.1
¢ = — cos(£(0.9335 + j0.1831)) = 0.707.

=141,

3.6 Similarity Transformations

As it has been shown in Chap. 2, the state space model is not unique. If the state
variables are selected in the way as in Examples 2.2 and 2.9, it is possible to
generate one of the many possible state models. This ‘natural’ choice of state
variables is often quite sensible for all practical purposes in terms of analysis,
simulation and design of controllers.

Sometimes it is, however, necessary or practical to change the model to
a form different than the one initially selected. In principle it is quite
simple to alter the state space model. It is just a matter of changing the
choice of state variables. This can be done by similarity transformations. 1f
a n-dimensional state variable x is given, one can obtain another simply by
multiplying by a nonsingular constant matrix P of dimension n X n,

z=Pxex=P 'z (3.125)

The state model for the new state vector is readily found. Whether one
considers a continuous or a discrete model:
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x(7) = Ax(7) + Bu(7), y(¢) = Cx(¢) + Du(?),
or (3.1206)
x(k + 1) =Fx(k) + Gu(k), y(k) = Cx(k) + Du(k),
one can rewrite the state equations in terms of the new state vector z by
substituting for x in (3.126):
P~ 'z(t) = AP '2(7) + Bu(t), y(1) = CP~'z(¢) + Du(?),
or (3.127)
P~ 'z(k 4 1) = FP~'z(k) + Gu(k), y(k) = CP"'z(k) + Du(k).

Premultiplying the first equation in each line by P yields the result:

(1) = PAP 'z(1) + PBu(¢), y(1) = CP'z(¢) + Du(),
or (3.128)
z(k + 1) = PFP~'z(k) + PGu(k), y(k) = CP"'z(k) + Du(k).

The new equations written in the standard form are

z(t) = Az(t) + Bu(r), y(1) = Ciz(t) + Dou(1),
or (3.129)
z(k+ 1) =Fz(k) + Gu(k), y(k) = Cz(k) + Du(k),

where

A, =PAP!' or F, = PFP,

B, =PB or G, = PG,
(3.130)
C,=CP !,

D;:D.

Usually well defined physical variables are used when the state space model
is formulated, e.g. by using the ‘natural’ state variables in the examples of
Chap. 2. Applying the transformation (3.125) a new set of state variables is
obtained. These will in general be linear combinations of the original state
variables and consequently they will usually not be quantities with a specific
physical meaning. This is sometimes taken as a disadvantage of the similarity
transformation technique, since the person making and working with the
model seems to lose the immediate ‘feel” for what is going on in the model.
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However, as will be apparent later, transformation can provide considerable
benefits when it is applied.

As will be seen here and in what follows, the transformed system does retain
the essential dynamic properties of the original system. In Sects. 3.2.1 and 3.5
the eigenvalues and the corresponding natural modes were found to be of great
importance for the system’s behaviour. Eigenvalues for the system matrix are
found from the characteristic equation,

det(M — A) = 0, (3.131)

or from the analogous equation involving F. Writing the characteristic equation
for the transformed system leads to

det(OM — A;) = det(L,PP~' — PAP™') = det(P(A,1 — A)P~)
= det(P) - det(\1 — A) - det(P™') = 0 (3.132)
= det(MI— A) = 0.
The last implication follows from the fact that P and P~! are both nonsingular
and hence their determinants are nonzero. Equation (3.132) shows that A, and
A have the same eigenvalues.
For the continuous time state transition matrix (3.48) which uses the trans-

formed system matrix one obtains (using the series expansion for the matrix
exponential)

: 1
b,(f) = M = PAP 1 L PAP +5PAPTPAP 7 4.

| (3.133)
= P(I + At + EA%Z +.. > P! = PP =PH(1)P .
Similarly for the discrete time transition matrix (3.99) it is clear that
o,(k) = F* = (PEP~)* = (PFP~")(PFP') ... = PF'P~' = P (k)P
k factors
(3.134)

Diagonal transformation

Every constant quadratic matrix with distinct eigenvalues has a full set of
linearly independent eigenvectors. Denoting the eigenvectors v;, the so called
modal matrix,

M=[vivy ... V] (3.135)

is nonsingular.
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For matrices with multiple eigenvalues it may be found that some eigenvec-
tors are linearly dependent and consequently the modal matrix is singular.
Matrices with this peculiarity are called defective.

From the expression defining eigenvectors with the eigenvalue
equation,

AV,‘:A,,'VZ',V,'#O,I.ZI,...,I’I, (3136)
it is seen that
M 0 ... 0
0 2 ... 0
Alviva .o vy =[viva ... V] . . _ e (3.137)
0 0 M

Designating the diagonal matrix as A,
AM = MA. (3.138)

Assuming that A is non-defective one observes that

A=MAM ' o A=M"TAM. (3.139)

Equation (3.139) shows that the system matrix can be transformed to
diagonal form if the similarity transformation matrix P=M"' is
used, i.e.,

z=Px=Mx. (3.140)
The systems (3.126) will be transformed to
2(1) = Az(t) + Bu(1), y(r) = Ciz(t) + Dou(z),

or (3.141)
z(k+ 1) = Az(k) + Gu(k), y(k) = Cz(k) + Du(k),
where
A=M"'AM or A =M 'FM,
B,=M"'B or G,=M"!G,

C, =CM,
DI == D

(3.142)
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The continuous state equation in (3.141) can be written

M0 L..00

. 0 X ... 0

= | ' ' ~|z+Bau. (3.143)
0 0 ... A

For the i’th state variable one has,
n
=Nz + Y by, (3.144)
=1

which shows that the states are completely decoupled from each other. For
this reason the diagonal form is especially convenient for system analysis
purposes.

If the system matrix has repeated eigenvalues and is defective the diagonal
transformation is not possible. Based on the notion of generalized eigenvectors
it can be shown however (see Sect. B.2 of Appendix B) that a non-singular
transformation matrix can be generated which is close to the diagonal form in
this case. If the system matrix has / distinct eigenvalues, the transformed system
matrix will have the form

J 0 0
0 J, ... 0
J=1 ) ) . (3.145)
0o 0 0 J
where
Aox 0 0
0 A = 0
Ji = : 0 (3.1406)
0 0 0 X =
0 0 0 O

U mixm;

The * in the superdiagonal can be 0 or 1.
The state space model with the system matrix (3.145) is called the Jordan
normal form or the modified diagonal form. The submatrices J; are called Jordan
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blocks. They have the dimension m; x m; where m; is the number of times the i’th
eigenvalue occurs.

Example 3.7. Modal Matrix of a Continuous System

The following system is given:

0o 1 -1 1
x=|-6 —11 6 |x+|0]u
6 —11 5 2

y=1[001]

The characteristic equation is:

v =1 1
det(M —A) =det| 6 L+11 —6 | =0,
6 I ar=5

or

AL+ 11D (A =5) 436+ 66— 6(h+ 11) +6(h — 5) + 661 = 0
=AM+ 6+ 110+6=0.

This equation has the solutions

-1
A=< =2
-3.
The eigenvector v; for A; = —1 can be found by and inserting in (3.136)
0 1 -1 V11 V11
-6 —11 6 V21 =—1- V21
-6 —11 5 V3] V31

or

Vit +var —v31 =0,
6vi1 + 10vy — 6v3; =0,.
6vi] + 11vy; — 6v3; = 0.
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From these equations clearly
vii =31 and vy =0,

so a possible solution for the first eigenvector is

1
vV = 0
1
Similarly one finds that
1 1
vo=1|2|and v3= |6
4 9

The modal matrix and its inverse become,

5
11 1 35—2
M=1|0 2 6|.M'=|-3 —4 3|,
1 4 9 L3
2

and with the similarity transformation z = M~ 'x the new state model can be
computed

z=Az+Bu, y=Caz.

where
-1 0 0 —1
A=|0 -2 0|, B,B=M'B=| 3|, C,=CM=[149].
0 0 -3 —1

Using M™! as a transformation matrix implies that the new set of state
variables is

5
z1 = 3x; +§x2 — 2x3,

zy = —3x1 — 4x, 4+ 3x3,

zZ3 = X +§X2 — X3.
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Since the two state models above are models of the same physical system,
they will be equivalent to the same transfer function. This can be verified using
Eq. (3.71). In both cases the transfer function is

2824 16s+12  2(s+7.162)(s + 0.8277)
B0+ 1s+6  (s+1)(s+2)(s+3)

G(s)

Example 3.8. Modal Matrix of a Discrete System

Discretizing the continuous system,

0 0 05 10
00 1 0 0
A=|1 0 o|,B=|0 2|, C= ., D= ,
1 00 0 0
-8 —4 -1 0 0

with the sample interval 7'= 1 s, the following matrices for the discrete time
system are found,

—0.2468 —0.5153  0.1246 0.5069 —0.4325
F=| 05069 0.7838  0.1288 |, G= | 0.3658 1.8787
—3.0245 —-0.9970 —0.4960 —2.4936 —-2.0611

Here the MATLAB c2d-function has been used.
The eigenvalues of A and F are
{ —0.2334 £ 1.9227
ha =
—0.5332
—0.2729 +;0.7433
0.5867

The eigenvectors for complex eigenvalues will in general have complex
entries and so will the modal matrix for F. To avoid the slightly cumbersome
manipulations with complex numbers, MATLAB will be used to compute the
modal matrix. The command,

[M,E] = eig(F),

provides M as well as with the matrix E (which is diagonal with the eigenvalues
in the diagonal),

0.1578 +,0.1912  0.1578 —0.1912  —0.4205
M = | 0.08816 —j0.09280 0.08816 +j0.09280  0.7887
—0.8088 +0.5177 —0.8088 — j0.5177  0.4484
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Note that MATLAB normalizes the eigenvectors, i.e., all columns in M have
unity 2-norm,

||Vi||2 =

n 5
Z |vll| =1,
J=1

which can easily be verified.
Diagonal-transformation this system using (3.142) one finds that

—0.2729 + j0.7433 0 0
A= 0 —0.2729 — j0.7433 0 ,
0 0 0.5867

1.6415 —j0.1037 1.6099 + j0.3188
G, = | 1.6415+,0.1037 1.6099 —;0.3188 |,
0.1212 1.9471
—0.8088 +;0.5177 —0.8088 —j0.5177  0.4484
0.1578 +,0.1912  0.1578 —0.1912  —0.4205 .

C[:

Although the states of this state space model are decoupled, this is
not necessarily convenient for practical computations. However the
transfer functions will of course still have real polynomials. For this
MIMO system with two inputs and two outputs there are four transfer
functions,

where

Hll(Z) H12(Z):|

H(z) = {Hzl(z) Hy(z) |

The transfer function matrix H(s) can be found from Eq. (3.122) based on
the matrices above. The MATLAB command is for input number 1 (see the last
right hand side argument),

[num,den] = ss2tf (Lambda,Gt,Ct,D,1).

The denominator polynomial is the same for all four transfer functions,
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A(z) = 2 — 0.040942> + 0.3068z — 0.3679.

The numerator polynomials are

B (z) = —2.49362% — 0.5587z + 1.2564,

Biy(z) = —2.06112> +0.5418z + 1.5193,

(2)

(2)
By (z) = 0.5069z> — 0.6451z + 0.1382,
Bo(z) = —0.43252% — 1.1005z — 0.2629.

3.7 Stability

Stability is one of the most important properties of dynamic systems. In most
cases the stability of a system is a necessary condition for the practical applic-
ability of the system.

There are several possible definitions of stability. Most of them involve the
notion of an equilibrium point. For a system governed by the state equation,

or (3.147)
x(k + 1) =f(x(k),u(k),v(k), k).

A point X, is said to be an equilibrium point or state for the system if the state
is X, at some initial time #( or ko and at all future times in the absence of inputs or
disturbances. This means that

0 =1(x,,0,0,7) for t > 1y
or (3.148)
x(k+1) =x, =1(x,,0,0,k) for k > k.

In other words if the system is positioned in an equilibrium point, it will
remain there if not influenced by any input or disturbance. At this early
stage of the investigation, it is intuitively obvious that the existence of an
equilibrium point does not assure stability. If for instance the simple
dynamic system shown on Fig. 3.12 is considered, it is noticed that both
balls are in an equilibrium point but only the left ball is in a stable
equilibrium point.



102 3 Analysis of State Space Models

Fig. 3.12 Stable and
unstable equilibrium

Unstable equilibrium

Stable equilibrium

Comparing the above definition of an equilibrium point with the definition
of a stationary point in Sect. 2.4, it is seen that an equilibrium point is the same
as a stationary point in the special case ug = 0 and vy = 0 (compare Eq. (3.148)
with (2.63)).

For the linear systems the equilibrium points can be found by solving:

0=A(rx,
or (3.149)
x, = F(k)x,.

X, = 0 is always an equilibrium state for the linear system but there may be
others. In the continuous case the origin is the only equilibrium state if A is
nonsingular for all z. Such an equilibrium point is called isolated. If A is singular
(which means that it has at least one zero eigenvalue and def(A) = 0 ) there will
be infinitely many equilibrium points. Similarly if the discrete system matrix F
has the eigenvalue 1 for some k. In these cases Eq. (3.149) can be written

A(D)x, =0-X,,
F(k)x, =1-x,,

which shows that all the infinitely many eigenvectors ax, are equilibrium states.
For nonlinear systems the matter can be much more complicated. In
Fig. 3.13 a so-called phase plane plot is shown. The curves are possible trajec-
tories for a second order nonlinear system with the states x; and x,. The timeis a
parameter along the trajectories. One can see several trajectories for different
values of the initial states. The unshaded area is an unstable region. Two isolated
equilibrium points are apparent: one is stable and one is unstable. Trajectories
started near the closed contour in the bottom of the unstable region (in the top
of the fourth quadrant) will eventually follow the contour. Such a contour is
called a limit cycle. If an initial state is in the unshaded region, the trajectory will
go towards such a limit cycle or disappear into the infinite distance. Trajectories
started in the shaded stable region will end at the stable equilibrium point.
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i:’ X1 Trajectories

Unstable region

]

Stable region

\ X

Isolated stable
o ) Limit cycle equilibrium point
Isolated unstable equilibrium point

Fig. 3.13 Stable and unstable regions

From the Figs. 3.12 and 3.13 it is obvious that it is necessary to distinguish
between local and global stability. The systems on the figures are stable only for
certain values of the states but not for other combinations of the state variables.
In such cases one talk about local stability. If the entire state space is a stable
region, the system is said to be globally stable.

Now some more formal definitions of stability will be given. Note that the
definitions below are stated for continuous systems but they are also perfectly
valid for discrete time systems. It is only a matter of replacing the continuous
time ¢ with the discrete time k.

Stability Definition 1

The state x, is a stable equilibrium point at the time ¢ = ¢, if for any given
value & > 0 there exists a number (g, 7o) such that if ||x(79) — x.|| <&, then
IIx(7) — x.|| <e for all 1 > 1. A system which is stable according to this defini-
tion is also called stable in the sense of Lyapunov or stable i.s.L. For a second
order system the definition can be clarified as shown on Fig. 3.14. Stability i.s.L.
implies that if the system is started somewhere within the disk with radius 6 then
the trajectory will remain within the disk with radius € at all times.
If 8 is independent of ¢, the system is said to be uniformly stable i.s.L.

Stability Definition 2

The state x, is an asymptotically stable equilibrium point at the time ¢t = ¢ if
itis stablei.s.L. and if there exists a number 8, (#y) such that if ||x(#)) — X.|| <31,
then lim ||x(r) — x| = 0. If 3, is independent of 7y the system is uniformly
asymll)?oofically stable.



104 3 Analysis of State Space Models

Fig. 3.14 Stability in the X5
sense of Lyapunov

>
N

X

Fig. 3.15 Asymptotic stability X,

NP

X

On Fig. 3.15 is shown what this means for the second order system example. If
the systems’ initial state is within the disk with radius 9; then the trajectory will
remain within the disk with radius & (because asymptotic stability also implies
stability i.s.L.) and the state will tend to the equilibrium state x, as ¢ goes to infinity.

The two stability definitions above only depend on the properties of the
homogeneous (unforced) state equation. They deal with zero-input stability. An
alternative definition, which also includes the input, is the following:

Stability Definition 3

If any input satisfying the condition |[u(z)|| < kj <oo (i.e. the input is bounded)
for all 7 results in an output satisfying the analogous condition ||y (¢)|| < k» <oo
for all ¢, then the system is bounded-input-bounded-output stable or BIBO stable.

3.7.1 Stability Criteria for Linear Systems

Based on the definitions above a criteria for stability of linear systems is derived.
Consider the equilibrium point x, = 0 (the origin).

Stability Theorem 1A
The state x, = 0 of the homogeneous linear system

x(1) = A(1)x(1) (3.150)
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is stable i.s.L. if and only if there exists a finite constant M < oo such that
(2, 20)|| < M for all ty and ¢ > ¢,. (3.151)

The matrix norm will be used here:

Q|| = sup Qx| _ sup [|Qx]|. (3.152)

o XN =
The ‘if’-part (sufficiency) will be proved first. In other words, if (3.151) is

true, then it will be proved that the system is stable i.s.L.
The solution of (3.150) is

x(1) = &(1, to)Xo. (3.153)
From Eq. (3.152)
Qx| < QI - lIx]]- (3.154)
From (3.153), (3.154) and (3.151) one finds
IX(D)] = [lo(1, 0)xoll < [[0(1, 20)[| - Ix0l| < M - ||x0]- (3.155)

If for a given positive € one chooses § = ¢/ M, from (3.155) it is clear that
Isoll < 8= [Ix(1)]| < M- 57 == (3.156)

which shows that the system is stable i.s.L. according to definition 1.

It is also easy to see that condition (3.151) is necessary for stability. Assume
that the system is stable i.s.L. but (3.151) does not hold, i.e., the norm ||$(z, 79)]|
can take arbitrarily large values for some 7. This means that for given values of €
and & one can be sure that for instance,

(1, 20)]] >831 where 0<8; <. (3.157)

Now choose the vector v with ||v|| = | and such that

(2, 20)v]l = [1o(z, 20) I (3.158)

Furthermore, choose

X0 :61V‘ (3159)
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This means that

[[xol <8 (3.160)

which is the condition which is desired for the initial state.
But now

X = bz 10)x0ll = 81| (2, 20)v]|

(3.161)
=81[d(t, t0)]| > &1 = =€,

&

which contradicts the assumption that the system is stable i.s.L and the theorem
is proven.
Along the same lines one can prove:

Stability Theorem 1B
The state x, = 0 of the homogeneous linear system,

x(1) = A(0)x(1), (3.162)

is asymptotically stable if and only if there exists a finite constant M < oo such
that,

(2, 20)|| < M for all ty and ¢ > 1, (3.163)
and
tlim (2, 20)|| = 0 for all 7. (3.164)

The theorems above seem simple and their practical uses are somewhat
limited, since they are based on the norm of the state transition matrix for
which a closed form analytical expression does not exist in general. However,
for time invariant systems, the theorems lead to very useful stability rules.

3.7.2 Time Invariant Systems

The theorems in the last section are valid for continuous as well as for discrete
time systems and in the following specific rules will be derived for each of these
systems.

Continuous Time Systems
For the time invariant system,
x(1) = Ax(1), (3.165)
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one has (see Eqgs. (3.47) and (3.48))

(1, 10) = d(1) = eM. (3.166)

Fromequation (3.61), if A has no repeated eigenvalues, then the norm of ¢(¢)
can be written

1ol = ‘

i

<"1 - |1zl (3.167)
i

where the following matrix norm property has been used
[A+B+C+...|| <|All+|B] +|IC|| + ...

The matrices Z; are constant and so are their norms. The eigenvalues are in
general complex, A;;1 = a=£jb (and of course are real for b = 0) and the
exponential functions can therefore be written in the form,

ek,-t _ eat eﬂ”.

If the real part is nonpositive, i.e. a < 0, then all the exponential functions in
(3.167) are bounded and one can choose

M=sup || |12 (3.168)
i

and immediately it is clear that the condition of theorem 1A,
[o(D)]| <M, (3.169)

is fulfilled.

If A has repeated eigenvalues, Eq. (3.61) will contain terms of the form
Z,it'e“te | where [ is a positive integer. If ¢ < 0, the result of the procedure
above will be unchanged because

lim #e®e” = 0 for a<0. (3.170)

—00
If a = 0 this is not true since
|/ — oo for t — oo (3.171)

and the condition in Eq. (3.151) can obviously not be met.
The result of this investigation is as follows:
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e The state x, = 0 of the time invariant system (3.165) is stable i.s.L. if
and only if the eigenvalues of the system matrix A have nonpositive
real parts and if eigenvalues on the imaginary axis are simple
(nonrepeated).

If the real parts of A’s eigenvalues are strictly negative it is obvious from the
development above that the condition for asymptotic stability,

lim || ()] = 0, (3.172)

1—00

is satisfied and it can be stated that:

e The state x, = 0 of the time invariant system (3.165) is asymptotically stable
if and only if the eigenvalues of the system matrix A have negative real parts.

Example 3.9. Stability of a Phase Variable System

In this example consider a continuous time 4th order system with three different
eigenvalue locations,

-1.5 0 0
a. -2 b. -2 C. 0
—-0.3+;1.5 —0.3+1.5 —0.3+;1.5

The matrices are

0 1 0 0 0
0 0 1 0 0
A= . B= ,C=[1 0 0 0], D=0.
0 0 0 1 0
—dy —dad; —dy —djz 1

As a matter of fact only the system matrix A is important here since the stability
will be investigated according to stability definitions 1 and 2.
The characteristic polynomial of A is

P(A) = M+ @ + ol + ah+ a

with the coefficients

as 75} ay ao
System a 4.1 7.44 9.99 7.02
System b 2.6 3.54 4.68 0

System ¢ 0.6 2.34 0 0
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System a has all it’s eigenvalues strictly in the left half plane and it is therefore
asymptotically stable.

System b is stable i.s.L. because it has an eigenvalue on the imaginary axis.
System ¢ has a double eigenvalue on the imaginary axis and hence it is neither
asymptotically stable nor stable i.s.L. It is unstable.

A simulation (numerical solution of the system equations) in system a. for the
initial state xo = [0 1 1 0]” and u(r) = 0 results in the responses shown on
Fig. 3.16. On the left plot the phase plane plot is given for the first two states, which

Fig. 3.16 Responses for 2 ’ 2
system a 1

-2 0 x@ 2 0 10 t[sec] 20

means that x; is drawn as a function of x;. The right plot shows the usual time
response plot of the two states. As expected the states tend to zero in time since the
system is asymptotically stable and the only equilibrium point is the zero state
(see the remarks following Eq. (3.149)).

The responses for system b. are shown in Fig. 3.17. The system matrix for
system b. is

0 1 0 0

0 0 1 0
A =

0 0 0 1

0 —4.064 -354 =26

The eigenvector associated with the eigenvalue A, =0isv; =[¢ 0 0 0]7

where ¢ is any number and consequently any initial vector equal to this eigen-
vector will be an equilibrium point,
Xg = V] = Xe.

x(1)

Fig. 3.17 Responses for -2 : -1 :
system b -2 0 x@» 2 0 10 1 [sec] 20



110 3 Analysis of State Space Models

If this initial state is chosen for some ¢, the system will remain in that state at all
times. However, the initial state selected here is not an equilibrium point, which
is clearly seen on Fig. 3.17.

The simulation gives the final state,

X = lim x(1) =[1.312 0 0 0],
which is the equilibrium point found above for ¢ = 1.312. If it is desired that the
system come to rest closer to the origin (i.e., if a smaller value of € is required),
this can be achieved by choosing an initial state closer to the origin (picking a
smaller §). As a matter of fact € can be chosen arbitrarily small. This is in
agreement with stability definition 1: The system is stable i.s.L.

From the plots for system c. (Fig. 3.18) it is obvious that the system is
unstable. The phase plane plot as well as the plot of x;(¢) vs. ¢ goes to infinity
with time. This is also in agreement with the stability criterion above. One or
more eigenvalues in the right half plane would give a similar result. m

Fig. 3.18 Responses for 2 ; 10
system ¢ 3

()

2 )

. O .
0 10 x,0) 20 0 10 [sec] 20

Example 3.10. Eigenvalues of a Robot Arm

The two-link robot in Example 2.10 is a nonlinear system but earlier a linearized
model for a specific pair of link angles was derived. It was found that the
eigenvalues of the 4. order system matrix with the link angles 6, = 45° and
0, = —30° were

{ +4.933
ha =
+1.988

Linearizing the system for other angle combinations, other quite different
sets of eigenvalues would be found. Fixing the angle 6, = —30° and varying 0,
the results as shown on Fig. 3.19 can be obtained. Apparently the system is
unstable for the two positive values of the angle 0, since it has two eigenvalues in
the right half plane. For the two negative values of 0, the picture changes
completely. The eigenvalues are now purely imaginary (and nonrepeated) and
the system will be stable i.s.L. in these configurations.
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R
My = { +6.639 ! ; ;
+3214 R
el
% 0 6
6
o | 4933 : 1 1
R I i
0,=45° : : :
el
6 0 6
6
—_N° : * .
| e=0 Ay = { +0.0076 ! : 3
—*< +/3.794 ) R AR
. * .
oL AR
6 0 6
6 e Kool
Ay = { +73.012 *
+76.291 O o
. *
PSS
6 0 6
o=
! #
Ay = { +j3.214 ol -
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*
el
6 0 6

Fig. 3.19 Eigenvalues for two-link robot

It is obvious that the system’s properties will change considerably when the
angle configuration and therefore also the basis for the linearization is altered.
This is typical of nonlinear systems. m)

Discrete Time Systems

For the discrete time system which is time invariant,

x(k + 1) = Fx(k), (3.173)
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the solution (3.98) was found earlier with the state transition matrix given

by (3.119).
If F has only simple eigenvalues then

blk) =F =) "7}, (3.174)

For ;1 a complex conjugate pole pair one can write,
A= a+jb = |\i|e™, (3.175)

thus

()| = ’

>z
i

If the magnitude of all the eigenvalues has the property,

<>tz (3.176)

<1, (3.177)
all terms in (3.176) will be bounded. Setting

M =sup > il |2 (3.178)

one finds that
lb(k)|| <M. (3.179)

From (3.119) it is clear that this is still true even if F has repeated poles
provided they have magnitude less than 1 because the terms originating from
repeated eigenvalues will disappear with time:

Jim K n< = 0. (3.180)

Only if |A,| = 1 for some repeated eigenvalue will there be difficulties because in
that case the term will go to infinity with time,

k| — oo for k — oo. (3.181)

It can be concluded that

e The state x, =0 of the time invariant system, Eq. (3.173), is stable
i.s.L. if and only if the eigenvalues of the system matrix F are not
located outside the unit circle and if eigenvalues on the unit circle are
simple.
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If F’s eigenvalues are all strictly inside the unit circle, then it is certain that
Jim {6 (k)| =0 (3.182)

and hence:

e The state x, = 0 of the time invariant system (3.173) is asymptotically stable
if and only if the eigenvalues of the system matrix F are strictly within the
unit circle.

Example 3.11. Eigenfrequencies of a Time Varying System

Examples have been found which show that the stability rules involving the
eigenvalues of time invariant systems should not be applied to other classes of
systems. One such example is the following:

Consider the continuous time, time varying and unforced system,

—1 +acos?(t) 1 — asin() cos(?)
—1 —asin(r)cos(r)  —1 + asin’(7)

X(1) = x(1).

The eigenvalues are obtained from the characteristic equation,
M+ Q2-ah+2—a=0,
and the result is

2
XZ_Z oci 2—a)

- 2.
> 4 +a

It can be seen that the eigenvalues are real and negative or have negative real
parts for a<2.
The solution of the state equation above for 7o = 0 is

X(t) = d)(ta O)XO

where

e Dicos(r) e 'sin(t)
—eDisin(r) e ' cos(t)

¢(2,0) =

This can be seen by direct substitution in the state equation.

If o> 1 the elements in the first column of ¢(z,0) will clearly take on
arbitrarily large values as 1 — oo and hence the system is unstable even though
its’ eigenvalues are strictly in the left half plane for o > 2. m)

The results from this and similar examples should not lead to the presump-
tion that stability evaluations based on eigenvalues always will give wrong
results for time varying systems. As a matter of fact, the eigenvalues will often
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give reliable information on stability also in these cases. This subject will not be
pursued further here but the interested reader is referred to more specialized
textbooks such as Rugh (1996).

3.7.3 BIBO Stability

According to stability definition 3 on p. 104 the input-output stability or BIBO
stability problem can be treated in a way similar to the development in Sect. 3.7.1
and 3.7.2. In this case the derivations will be omitted and only the final results stated.
For a more detailed discussion the reader is again referred to Rugh (1996).

Note that in the stability theorem below the influence of the D-term of the
output egs. (3.25) or (3.88) is not mentioned. It is obvious, that if D is bounded
it will not affect the boundedness of the output and if it is not bounded, then
the output is not bounded either. The theorem is based on the unit impulse
response (3.28) or, in the discrete time case, the unit pulse response (3.93).

Stability Theorem 2
The continuous time linear state equation (3.8) and (3.25) is BIBO-stable if and

only if there exists a finite constant ¢ such that the unit impulse response satisfies
the condition:

t
/ la(t, )| dx < ¢ for ¢ > o, (3.183)
[

The discrete time linear state equation (3.88) is BIBO-stable if and only if there
exist a finite constant ¢ such that the unit pulse response satisfies the condition:

k—1
> llgk, )| < ¢ for k > ko. (3.184)
i=ko

Note, that for linear systems in general, BIBO-stability and zero-input stability
of the origin as discussed in Sect. 3.7.1 are not necessarily equivalent.

Time Invariant Systems

e The continuous time LTI system (3.37) and (3.53) is BIBO-stable if and only if
the poles of the transfer function matrix (3.71) are strictly in the left half plane

e The discrete time LTI system (3.96) is BIBO-stable if and only if the poles of
the transfer function matrix (3.122) are strictly within the unit circle.

As can be judged from the above stability rules, zero-input stability and
BIBO-stability are equivalent for LTI-systems if the systems’ eigenvalues and
poles are the same. This is not always the case and therefore one must distin-
guish between internal and external stability.
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3.7.4 Internal and External Stability

The state space model is an internal model and the stability investigation
based on the state model will reveal whether or not the system is internally
stable. For LTI systems this property is determined by the eigenvalues of the
system matrix.

If the model is represented by a transfer function matrix (Eq. (3.71) or
(3.122)), then one is dealing with an external model and the placement of the
poles gives information on the system’s external stability. If an unstable eigen-
value/pole is cancelled by a zero, the system may be externally stable although it
is internally unstable. Conversely, an internally stable LTI-system will also be
externally stable.

Example 3.12. Externally Stable and Internally Unstable System

Consider the SISO continuous time LTI system,

-3 4 12 1
x=|1 0 0 |x+]0]u,
0 1 0 0

y=[1 -1 =2]x.
The eigenvalues which are found from the expression

A+3 -4 —12
det| —1 A 0 [=0
0 -1 A

are

2

and it is obvious that the system is not internally (asymptotically) stable.
The external model is the transfer function

(s) _ 2 —s5—2
w) = A B e T

(s+1)(s—2) (s+1)

(s+3)(s+2)(s=2) (s+3)(s+2)°
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Thanks to the cancellation of the pole-zero pair, the systems poles are

{ -3
S =
-2
and the system is externally stable.
If u(r) is a unit step applied to the system and the response simulated the

results on Figs. 3.20 and 3.21 are obtained. All three states go to infinity for
t — oo but the output y(7) = x;(7) — x2(7) — 2x3(7) remains finite at all times.

Fig. 3.20 Output of 0.25
externally stable system y() ! ! ! 3
02F -/~ N~ e e R

05 | f oo P P e ]
O ffeee o e e e

0.05 ff-nmmmmeee- B R RRRREEE R RRRRRRRRE e

0 1 2 3 4 t[sec] S

Fig. 3.21 States of internally 10
unstable system

4 t[sec] 5

Consequently it is reasonable to state that the system is internally unstable
but externally stable. In spite of this interesting result, one should keep in
mind that exact cancellation of pole-zero pairs is more often found in text-
book examples than in real practical systems.

With matrix entries differing slightly from the integers in this example one
might see zeroes and poles very close to each other but not exactly equal. In that
case the unstable eigenvalue would remain as a pole in the transfer function and
the response y(f) would contain the corresponding unstable natural mode
although possibly with a very small weight factor. The first 5 s of the response
could very well look almost like that in Fig. 3.20 but at some later time it would
diverge and go to infinity. 0
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3.7.5 Lyapunov’s Method

Except for LTI-systems, stability analysis can be quite difficult. As indicated
above, there are several definitions of stability and a variety of stability criteria
for different classes of systems can be found. The Russian mathematician
Lyapunov formulated one of the most general stability criteria known. Only a
brief overview of the Lyapunov’s second (or direct) method will be given here.
For more details please refer to Vidyasagar (1978) or to Middleton and Good-
win (1990).

The Lyapunov method is based on the notion of positive definite functions of the
state vector x. The continuous scalar function W(x) is positive definite if and only if

1. W(0)=0,
2. W(x) > 0 for all nonzero x and
3. W(x) — oo for ||x]| — oo.
The scalar time dependent functions V(x, 7) and V(x, k) are positive definite
if W(x) is positive definite and if and only if
V(x,1) > W(x) for all x and 7 > 1, (continuous time)
or
V(x,k) > W(x) for all x and k > k (discrete time).

Stability Theorem 3A
The systems,

or (3.185)
x(k+ 1) =f(x(k), k)

are stable i.s.L. if V(x,7) or V(x,k) is a positive definite function and if and
only if

d
—V(x,1) <0
d[ (X’)—

or (3.186)

Vix(k+1),k+1) = V(x(k),k) <0.
Stability Theorem 3B
The systems (3.185) are asymptotically stable if V(x, ¢) or V(x,k) is a positive
definite function and if and only if
d
—V(x,1)<0

dt
(3.187)

or
Vix(k + 1),k + 1) — V(x(k), k) <0.
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The positive definite functions fulfilling the conditions of Egs. (3.186) or
(3.187) are called Lyapunov functions. Although these criteria look simple, they
are not necessarily easy to use in practical situations. The problem is to find a
Lyapunov function for the system at hand. It should be pointed out that lack of
success in finding such a function is of course not a proof of instability.

An example of a Lyapunov function with an obvious physical significance is
the energy function of a system. The total energy of a system is always positive.
If the (unforced) system dissipates energy with time, the total energy will
decrease as expressed in (3.186) or (3.187) and the system will be stable.

Example 3.13. Stability i.s.L. for a Nonlinear System

Consider the mechanical system on Fig. 3.22. A block with the mass M is
moving on a horizontal surface and it is assumed that the friction between the
block and the surface is of the Coulomb type (‘dry’ friction). The block is
connected to the surface frame via the linear spring with the stiffness constant k.

Fig. 3.22 Mass-spring \

system with o
Coulomb-friction Coulombfrlctlonforceff

When the block moves, the Coulomb friction force can be written
Jfr=d-sign(x). (3.188)

The friction force has the constant numerical value d and it is always directed
opposite to the velocity. Note that the sign-function is only defined for x # 0.
For x = 0 the friction force can assume any value in the range,

—d<f<d. (3.189)

The system model can be found simply by applying Newton’s second law to
the block’s mass,

MX = —kx —d - sign(%), x#0. (3.190)

If the velocity is zero at ¢ = 0, it will remain so for all future times if the spring
force is smaller than the maximum friction force d because one has

Mi=0, =0, |kx|<d. (3.191)
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If for some t, X = 0 and |kx| > d, the friction force will assume its maximum
value and in that instant of time Newton’s second law will be

MX = —kx +d - sign(x). (3.192)
The total energy is the sum of the kinetic energy of the block and the

potential energy accumulated in the spring.
Define now the state vector,

X1 X
x:{ }:H (3.193)
X2 X

Since the spring force is proportional to the deformation, the expression for the
total energy is

1 1
E(x) = meg + Ekxf. (3.194)

E(x) is quadratic in both state variables so it is found that

E(x) =0 for x =0,
E(x) > 0 for x # 0, (3.195)

and E(x) is a positive definite function.
The time derivative of E(x) is seen to be

%E(x) = mxyX; + kxx;. (3.196)

For x; # 0 the following expressions for the state equations are valid,

X1 = X2,
1 (3.197)
Xy = %(—kxl —d - sign(xy)),
which, inserted into (3.196), leads to
d .
EE(X) = —dx; - sign(x,) <0 for all x; # 0. (3.198)
For x, = 0 one has
d
—E(x)=0. (3.199)

dt
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Equations (3.198) and (3.199) can be combined to show that

d
TE(x) <0. (3.200)

This means, according to theorem 3A above, that the system is stable i.s.L.

Note that this system has infinitely many equilibrium points, namely all
points in the state plane (the system is second order) where

d d
Xzzoand —ESX]S% )

Lyapunov’s Direct Method for LTI Systems

For the homogeneous LTI system,

%(1) = Ax(1),

x(k+1) = Fx(k), (3:200)

a quadratic form can be formed by choosing a symmetric, constant matrix P,

V(x) = x"Px. (3.202)

If P is positive definite, Eq. (3.202) is a Lyapunov function candidate.
For the continuous and the discrete time cases respectively,

d
—V(x) = x"Px + x"Px,

dt (3.203)
AV =V(x(k+1)) — V(x(k)) = x"(k+ 1)Px(k + 1) — xT (k)Px(k).
Inserting the expressions (3.201) into (3.203) gives,
% V(x) = x"(ATP + PA)x,
AV = xT(k)(FTPF — P)x(k). (3.204)

Applying theorem 3B it can now be seen that if it is possible to find another
positive definite matrix Q such that

ATP+PA=-Q
or (3.205)
F'PF-P=-Q

then the systems (3.201) are asymptotically stable. These two equations above
are called the Lyapunov equations.
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3.8 Controllability and Observability

In the effort to design controllers for dynamic systems one is often con-
fronted with the question whether or not it is possible to give a closed loop
system an appropriate set of properties. This question may be divided into
several subquestions such as: can a controller be designed which will
stabilize an unstable system? Can one be sure that the system state can
be forced to achieve any desired value in state space? Can one be sure that
no state in the system can achieve undesired values? Is it possible to
determine all states in the system from the knowledge available in the
measured system output?

Answers to such essential questions can be found by considering a systems
controllability and observability. Before proceeding to formal definitions of
these concepts an introductory example will be given.

Example 3.14". Stability with Mixed Controllability/Observability Characteristics

Consider a fourth order LTI SISO system with the following state space model:

2 3 2 1 1
-2 =3 0 0 -2
X = X + u,
-2 =2 -4 0 2
(3.206)
-2 -2 -2 =5 -1
y=1[7642]x.
The system transfer function can be found from Eq. (3.71),
53+ 9s% + 265 + 24
G(s) = . 3.207
()= @105 1 35 + 305 1 24 (3-207)
The zeroes and the poles can be found from the polynomials of G(s),
—1
-2
-2
zi=4 =3 ,pi= 3 (3.208)
—4
—4

 Example 3.14 is borrowed from Friedland (1987).
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Three of the poles are cancelled by the zeroes and the transfer function is in
reality not of fourth order but only first order as

B 1
e

G(s) (3.209)
A block diagram of the system is shown on Fig. 3.23. It is not possible to see
from the model in Eq. (3.207) or from the block diagram that the system has an
order less than 4.

However if the system is transformed into the diagonal form (see p. 94), some
insight can be gained into the nature of the problem. Since all eigenvalues are
distinct, the modal matrix is regular and the similarity transformation can be
carried out without difficulties. With the modal matrix M a new state vector will
be introduced given by

v=M'x. (3.210)

Using MATLAB it is found that

-1 0 0 0 1.4142
0 -2 0 0 0
A = 5 B[ =
0 0 -3 0 2.4495
(3.211)
o 0 0 -4 0

C,=1[0.7071 0.4082 0 O0].

With this model representation a quite different block diagram on Fig. 3.24 can
be obtained. If the transfer function from the two block diagrams are found they
give exactly the same result as (3.209). The input-output description is the same.

From Fig. 3.24 one can see that the four states have different status in the
system. The state variable v; can be influenced directly via the input # and it can
be observed directly at the output. The state v, is not coupled to the input and
since all state are decoupled from each other, v, can not be affected by any other
state either. v, can be observed at the output just like v;. With v3 the opposite is
the case. It can be influenced from u but can not be ‘seen’ at the output. The last
state can neither be controlled via u nor be observed at y.

It seems natural to divide the system into the four first order subsystems
visible on Fig. 3.24:

Subsystem with v, is controllable and observable,
Subsystem with v, is not controllable but observable,
Subsystem with v3 is controllable but not observable,
Subsystem with vy is not controllable and not observable.
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Fig. 3.23 Block diagram of fourth order SISO system

Only one of the four states is controllable as well as observable and, as will be
seen later, this is the reason why the transfer function is in reality only of first order.
In the diagonalized system on Fig 3.24 it is obvious what consequences the lack of
controllability or observability have. In this case the four eigenvalues are uniquely
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Fig. 3.24 Block diagram of system on diagonal form

connected to each of the four subsystems. One can see that for instance the
subsystem with the eigenvalue v, can not in any way be affected from the input
by which one can hope to control the system and this eigenvalue’s influence on the
output must be accepted as it is. Similarly the two unobservable subsystems with
eigenvalues v3 and v4 will be invisible from outside the system. Since the system is
internally (and therefore also externally) stable, one can probably live with this state
of affairs. Even if the initial values of the states v, and v4 are nonzero, they will decay
to zero with time and they will do no harm. The state v; is affected by the input but it
will remain within finite limits for all times. m)

Note that a system where all uncontrollable states are stable is called
stabilizable, because any unstable state can be affected via the input and
therefore it may be stabilized. A system where the unobservable states are
stable is said to be detectable.

3.8.1 Controllability (Continuous Time Systems)
Controllability Definition

The linear system,
x(1) = A(1)x(z) + B(7)u(z), (3.212)

is controllable on the finite time interval [z, 7] if there exists an input u(#) which
will drive the system from any initial state x(#y) = X, to the zero state x(#;) = 0.
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Controllability is a property connected to the inner structure (i.e., the cou-
plings between the states) and the way the states are coupled to the input
variables. Controllability has nothing to do with the system outputs and
therefore only the state equation (3.212) is of interest for judging this property.
For obvious reasons, controllability defined as above is sometimes called
controllability-to-the-origin. See also Sect. 3.8.3.

There are several ways in which it is possible to determine whether a system is
controllable or not. Some of the criteria which can be used are closely related to the
type of direct inspection used in Example 3.14 but others are much more abstract in
nature. The study of the matter will start with a criterion of the last category.

Controllability Theorem CC1

The linear state space model (3.212) is controllable on [ty, #/] if and only if the
quadratic n X n matrix,

Wello,17) = / (10, OBOBT ()07 (10, 1), (3.213)

is regular. The matrix W.(1, ty) is called the controllability Gramian. It will first
be shown, that the test condition is sufficient, i.e., if the Gramian is regular, then
the system is controllable.

Assume that W.(1, #7) is regular and for a given arbitrary initial state vector
Xy, let the input vector be

u(r) = =BT ()d" (10, )W, (10, t)X0 , 1 € [to, 1/]. (3.214)

From Eq. (3.20) it is clear that the solution to the state equation at the final time
can be written

X(1) = (s o+ [ " 617 DB(u(x)de

. (3.215)
'f
= (17, 10)X0 — / o (1, )B(T)BT (1) (10, YW, (49, ty)Xodlt.
1o
Property (3.24) of the state transition matrix means that one can write
d(17,71) = d(17, 10) b (t0, T). (3.216)

Using this expression in the integral of (3.215) yields
I
x(1r) = &(1r, t0)x0 — d(1p, fo)/ & (10, T)B(T)BT (1) (10, )t W, (10, 17)X0
)

=0. (3.217)
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To see that the regularity condition is necessary, it can be assumed that it is
not and obtain a contradiction. In other words, suppose that the system is
controllable but W.(1, #/) is singular.
If the Gramian is singular then there exists a nonzero vector X such that the
quadratic form

x{W.(to, t9)xg = 0 (3.218)

or

xo We(to, t7)x0 = / T, BB ()07 (10, (xodi = 0. (3.219)

fo
Defining
z(1) = BT (1)) (1o, 1)xo, (3.220)
the integrand can be written
x1 & (10, BB (7 (10, 1)x0 = 27 (1)2(0) = (DI (3.221)
So the integrand is the square of the norm of a vector and therefore always

nonnegative. An integral with a nonnegative integrand can only be zero if the
integrand is identically zero over the entire integration interval,

Xgd(to, 1)B(t) =0, t € [ty 1. (3.222)
Since the system is controllable an input vector, u(¢), can be found such that
Iy
0 = d(t7, 10)X0 + / o(tr, 1)B(t)u(r)dt (3.223)
oy

or using (3.23) and (3.24),

Xo = —/[fd)(to,r)B(r)u(r)dt. (3.224)

Premultiplying by x{ and applying (3.222) gives the result,
Iy
x{xg = —/ x{ d(t9, T)B(1)u(t)dr = 0, (3.225)
to

which contradicts the fact that x( is a nonzero vector and the necessity of the
condition above has been proved.
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The quadratic controllability Gramian is clearly symmetric and furthermore it
can be shown that it is in general positive semidefinite. If the system is controllable,
the Gramian must be positive definite.

In the LTI case the transition matrix is

d(1,7) = AU (3.226)

and the controllability Gramian becomes

iy
We(to, ) = / Ao BBTeA (00 gy (3.227)

4

or, if one lets 7o = 0,
Iy -
W, (1) = / e ABB e A dr. (3.228)
0

Controllability theorem CCI1 is not convenient to use for practical controll-
ability tests but fortunately for LTI systems, an alternative criterion is available.

Controllability Theorem CC2
The LTI system model,

x(1) = Ax(1) + Bu(1), (3.229)
is controllable if and only if the controllability matrix,
M.=[B AB A’B ... A"'B], (3.230)

has rank n, i.e., full rank.

It will now be demonstrated that this rank requirement fails if and only if
the controllability Gramian is singular. If W,(z;) is singular the condition,
Eq. (3.222), is satisfied. For the LTI system the transition matrix is
¢ (0, 1) = d(7) = eA and (3.222) becomes

/() =xlerB =0, 10, 1] (3.231)

Since this vector is identically zero on the entire time interval, its time deriva-
tives must also be zero:

dz’ (t)/dt = x}e*'AB = 0,

P27(1))di? = xIeAA’B = 0,
0/ 0 (3.232)

d" 21 (1) /dt" " = x[eMAT'B = 0.
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This means that

xje*[B AB A’B ... A"'B|=x{e"M,=0. (3.233)

Al is a nonzero | x n vector whose elements are time functions

x(e
x{eM = [ai (1) ax(t) ... an(1)]. (3.234)

The n rows are called M.,

rf
l.T
M.=| |, (3.235)
r
and from (3.233) it is seen that
> anr! =o. (3.236)
i=1

The last expression shows that the n rows of M, are not linearly independent
and this means that M, has less than full rank.

The ‘only if’-part can be proven as follows. Using the series expansion
(3.44) of the matrix exponential and additionally the Cayley-Hamilton
theorem, e~A’ can be expressed as the finite series

-1

=

e—Ar — ZAk(_l)k _

o (1) AX. (3.237)
k=0 k!

(]

>~

=0

Postmultiplying by the n x m-dimensional B-matrix gives the n x m-
dimensional matrix,

ImO(O(Z)
—At — k 2 1 Imal(l)
e B=) w()A'B=[B AB A’B ... A"'B] . ., (3.238)
k=0 :
Imocn—l(t)

where I, is the m-dimensional identity matrix.
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The transpose of this matrix is

BT

B7A"
T,-ATr _
B'e = [ImO(O(t) Imocl([) cee Imanfl(l)] . (3.239)

BT(AT)nfl
Inserting (3.238) and (3.239) into (3.228) one obtains the result,

ImBll(t) ImBlZ(t) ImBln(l)

ff Iln Irﬂ e I"'I n
W, (1) :Mc/o B?I(I) B?z(f) | B? (1) M7

C

(3.240)

ImBnl (t) ImBn2([) ce ImBnn(Z)
= MLQM(Ty

where the B-functions are products of the a-functions above.

This equation shows that even if Q has full rank (i.e., nm), the quad-
ratic n x n matrix product to the right can not have rank larger that the
rank of M,. In other words, if M, has less than full rank, the Gramian will
be singular.

Note that from the development above, controllability due to theorem CC2
is independent of the final time #,. This means that if the system (3.229) has a
controllability matrix (3.230) of full rank, then the controllability matrix (3.228)
will be regular for any t,.

In addition to the two controllability theorems above there is a third one
which is based on certain properties of the eigenvectors of the system matrix A.

The usual 7’th eigenvector corresponding to the ’th eigenvalue of A is defined by

AVl':>\,,'V,', v,-;éO, = 1,...771. (3241)
Because of the order of multiplication in this equation the eigenvector v; is
sometimes called the right eigenvector. Similarly the left eigenvector is w; defined
by the relation
ThA _ T P
w,A=hw', w,#0, i=1,...,n (3.242)
Taking transpose on both sides of the equal sign in (3.242) gives

Alw, = hw; (3.243)

and it is seen that the left eigenvectors of A are the right eigenvectors of A”.
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All of the expressions (3.242) can be written in a compact form,

w wl

T T
"2 la=A|" | or QA = AQ. (3.244)
wl wl

Assuming that the left eigenvectors are linearly independent (which will be the
case unless A is defective), it is seen from (3.244) that

AQ ' = Q7 'A. (3.245)
Comparing this expression with Eq. (3.138) one has that

T
Wi

T
W

Q'=MorM'=Q= (3.246)

T
Wy

Controllability Theorem CC3

Part 1
The LTI system (3.229) is controllable if and only if no left eigenvector of A
exists such that:

w/B =0, (3.247)

1

which means that no left eigenvector of A must be orthogonal to all the
columns of B.

Part 2
The LTI system (3.229) is controllable if and only if the n x (n + m) -dimen-
sional matrix,

R, =[sI-A B], (3.248)
has rank » for any complex scalar s. This theorem is proved in RUGH (1996).

The controllability test in the two-part theorem CC3 is called the Popov-
Belevitch-Hautus test or thePBH test. Based on theorem CC3 a controllability test
for systems can finally be found with diagonal system matrices which is particularly
easy to use since it can answer the controllability question simply, by inspection.

Controllability Theorem CC4

A diagonal LTI system with distinct eigenvalues is controllable if and only if the
B matrix has no zero rows.
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The state equation for such a system can be written:

MO . 0 b bio bim
0 7\4 “e e O b b b m
x=Ax+Bu=| 7 x| 7F 7 u,(3.249)
0 0 e )\.,1 bnl an bnm

so A = AT and therefore right and the left eigenvectors are the same. Equation
(3.242) becomes

M 0 ...00
0 2 ... 0

(Wi wy Wi | = [hwi;i Awyy Aiwni ] (3.250)
0o 0 ... A\,

and the elements of /’th eigenvector are determined from the equations

Wk,'}\.k = 7\.,‘%’]([. (3251)
Since all eigenvalues are distinct it is found that
wii = 0 for k # i,
wii = q; for k=i, (3.252)
or
w/=[0 0 ... 0 ¢g 0 ... 0 0], q#0. (3.253)
The product (3.247) will have an appearance like
[0 0 0 0
0 0 0 0
WiTB = C]ibil qibiZ q:'bi3 q;'bim (3~254)
0 0 0 0
| 0 0 0 0 |

It is evident from (3.254) that w/B = 0 if and only if the /’th row of B is a zero row.
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If there are repeated eigenvalues, other eigenvectors than (3.253) can be
generated and the system can be uncontrollable even if B has no zero rows.
Applying theorem CC2, it can be proved that controllability is preserved by a
similarity transformation.

3.8.2 Controllability and Similarity Transformations

Using the transformation matrix P on a system with the matrices A and B,
Eq. (3.130) can be used to find the matrices of the transformed system,

A, = PAP,
(3.255)
B, = PB,
and the controllability matrix is
M. = [PB PAP PA’B ... PA"'B|=PM. (3.256)

where M. is the controllability matrix for the original system. The quadratic
P-matrix is regular and has full rank and therefore Eq. (3.256) shows that M.
and M., have the same rank.

In other words, controllability is preserved during similarity transformations.

3.8.3 Reachability (Continuous Time Systems)

In addition to the definition of controllability on p. 124, there is a similar
definition of reachability.

Reachability Definition

The system (3.212) is said to be reachable on the finite time interval [z, /]
if there exists an input u(#) which will drive the system from any initial
state X(7) = Xo to any final state x(#;). Sometimes the initial state is taken
to be the origin and in that case reachability is denoted controllability-
from-the-origin. For continuous time systems the issue of reachability
does not call for further investigations, since controllability and reach-
ability are equivalent for systems in continuous time. The theorems CCl1-
CC4 can therefore also be used as tests for reachability for this class of
systems.

Example 3.15. Controllability Analysis with the PBH Test

The system in Example 3.14 can be tested for controllability by applying the
theorems above.



3.8 Controllability and Observability 133

With the system matrices

2 3 2 1 1
-2 =3 0 0 -2
A= ) B= )
-2 =2 -4 0 2
-2 -2 =2 =5 -1

the controllability matrix M. can be calculated as
1 -1 1 -1
-2 4 -10 28
2 -6 18 —-54
-1 3 -9 27

M.=[B AB A’B A’B]=

The matrix has rank 2 and it is concluded that the system is not controllable.
The left eigenvectors corresponding to the eigenvalues are

wi=[4 3 2 1] for 1 = —1,
wi=[3 3 2 1] for Ay =2,
wi=[2 2 2 1] for A3 =3,
wi=[1 1 1 1] for a4 =—4.

It can be seen immediately that wIB = 0 and again, this time according to the
PBH-test, the conclusion is that the system is not controllable.

This result is plausible in the light of the block diagram on Fig. 3.24. It was
seen above that controllability is not changed by the similarity transformation:
if the diagonal system is not controllable, neither is the original system. That the
diagonal system is not controllable is evident not only from Fig. 3.24 but also by
theorem CC4 which can be applied here since the eigenvalues are distinct. The
B,-matrix has two zero rows and the system is certainly not controllable. m

Example 3.16. Controllability of an Electrical Network

Consider the electrical system on Fig. 3.25.
Itis desired to create a model of the system with the voltage « as input and the
current y as output.

Fig. 3.25 Passive electrical
circuit
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Using Ohm’s and Kirchhoff’s laws and the relations for inductive and capaci-

tive impedances on the two branches of the circuit,
diy

u= Ry + LE,
u= Ryir +v, (3.257)
1
=— | bdt.
v CJ 1o
Differentiating the third equation and inserting for i, in the second one yields
di
=Ry +L—
u 11+ ar
dv (3.258)
=R, C—+.
u ) 7 +v
Choosing the state vector, x = [i] V] T, the state equation for the circuit can
easily be found:
SIONE
X = Xt = (3.259)
" R,C R,C

The output y is the sum of the two currents,
u—v 1 1 1 1
R = X —— —u=1— —u. 3.260
y=i+ih=1i+ % X1 R2x2+R2u [ RJX+R2L{ ( )

The system is by its nature in diagonal form and the controllability theorem

CC4 can be applied if the eigenvalues are distinct.
From (3.259) it can be seen directly that the eigenvalues are

>"l = _%7
(3.261)
o L
2T T RC

Since both rows of B are always nonzero, it is obvious that the system is

controllable if the eigenvalues are distinct, i.e., if

R 1
— F = 3.262
7 R, C’ (3.262)
the controllability matrix is
1 R
L 12
M.=[B AB]|= ) e (3.263)

R,C R
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This quadratic matrix has rank 2 if the determinant is nonzero, which is
precisely the case if the condition (3.262) is fulfilled.
If the component values

Ry = 1009,
Ry, = 1kQ,
L=1H,

C = 10 uF,

are selected the model below emerges:

. [—100 0 ] { 1 ]
X = X + u,
0 —100 100

y=[1 —0.001]x+ 0.001u.

(3.264)

In this case the eigenvalues are equal and theorem CC4 does not apply. Thus,
even though the B matrix has no zero rows, one cannot conclude that the system
is controllable. On the contrary, the controllability matrix M, does not have full
rank and the system is clearly uncontrollable.

In this case it is simple to see why this must be the case. A block diagram of
the system is seen on Fig. 3.26.

The two states are decoupled and the two independent first order differential
equations,

X1 = —100x; + u,
X2 = —100x2 + 100u, (3.265)
can casily be solved. The solutions are
xi(1) = e (xig + p(r),
x2(1) = e 1% (xp0 + 100p(2)), (3.266)

where x;o and x,q are the initial values and

Fig. 3.26 Block diagram of
the uncontrollable system
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u(t) = /0 t %% (1) dr. (3.267)

If the situation is considered where it is desired to drive the system from an
initial state to the zero state,

xl(tf) 0
-[230]- (]
x2(1r) 0
for some final time f4 it is seen from (3.266) that this is only possible if
x20 = 100x19. But this is in disagreement with the definition of controllability,

which requires that the system is taken from any initial state to the zero statein a
given finite period of time. Consequently, the system is not controllable. m

Example 3.17. Controllability of the Water Tank Process

In the tank Example 2.9 a linearized MIMO model was derived for a specific
stationary state. The inputs to the system were the two input voltages u; and u;
to the control valves, the outputs were the measured level H, and temperature
T, of the R-tank and the state vector was composed of the two levels and the
two temperatures,

H,
H,
1) =
X = |
T
The system matrices turned out to be:
[—0.0499  0.0499 0 0
A 0.0499  —0.0667 0 0
- 0 0o  -00251 o |
. 0 0 0.0335  —0.0355
[0.00510 0.00510
0 0
B:
0.0377 —0.0377
. 0 0
[0 2 0 0
C= .
100 0 0.1

Using MATLAB the controllability matrix can be found,
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509.5 509.5 —25.45 —25.45 2.541 2.541 -0.2711 —0.2711
0 0 2545 2545 —2.968 —2.968 0.3249 0.3249
3766 —3766 —94.56 94.56 2.374 —2.374 —0.05961 0.05961
0 0 126.3 —126.3 —7.408 7.408 0.3291 —0.3291

The first 4 columns of M, are linearly independent and therefore the matrix has
full rank and the system is controllable. Canceling the first column of the
B-matrix, which means discarding the first input voltage u;, one might expect
difficulties with the controllability. However, testing the controllability from
the matrix-pair A (unchanged) and the reduced input matrix,

0.00510
0
—0.0377 |’
0

B =

it is discoverd (using MATLAB’s rank function) that the system is still
controllable. 0

3.8.4 Controllability ( Discrete Time Systems)

A definition of controllability exists for discrete time systems and it is quite similar
to the definition on p. 124. However, whereas for continuous systems the properties
of controllability and reachability are equivalent (controllability implies reach-
ability and vice versa), this is not necessarily the case for discrete time systems.

If a discrete time system is reachable one can find a sequence of control
inputs which will bring the system from any initial state to any final state.
Choosing the origin as the final state, the system fulfills the requirements for
controllability and it is seen that if the system is reachable, it is also controllable.
The following simple example shows that the converse need not be true.

Example 3.18. Non-Reachable System

Consider now the second order discrete time LTI system

x(k+1) = [(1) Hx(/«” [Hu(k). (3.268)

For the individual states one can write

(3.269)
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The system is clearly controllable because if for an arbitrary initial state one
has

Xp) = [a b]T
one can set

u(k) = —(a+5),0,0,...
and find that
x(k) =0 for k > 1,

which shows that the system is controllable. However, the second state x, (k) is
zero for all £ > 1 no matter what the input is and it is obviously not possible to
move it somewhere else. Therefore the system is not reachable. m

It turns out that this problem only arises if the discrete time system matrix F
is singular. If F is regular, controllability implies reachability as in the contin-
uous time case.

Although singular system matrices may be rare, the consequences of the
finding above must be accepted and the conclusion is that reachability is the
better measure for characterizing discrete time systems. Thus, in the following
the theorems and tests presented will be in terms of reachability.

3.8.5 Reachability ( Discrete Time Systems)
Reachability Definition

The discrete time linear system,
x(k+ 1) = F(k)x(k) + G(k)u(k), (3.270)

is said to be reachable on the finite time interval [ko, k] if there exists an input
sequence u(k) which will drive the system from the initial state x(ko) = 0 to any
final state x(ks). This property can also be denoted controllability-from-the-
origin. Sometimes the initial state is taken to be any vector x(ko) in the state
space. In the theorems and proofs below it is assumed that x(k¢) = 0 but only
minor and immaterial changes will occur if another initial state is selected.

Reachability Theorem RD1
The system (3.270) is reachable on [ko, k] if and only if the quadratic reach-
ability Gramian,

k/,]

W, (ko,ky) = D dlky.i+ NGOG ()¢ (Kpyi + 1), (3.271)
i=ko

is regular.
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It can be proved that the condition is sufficient by assuming that W,(ko, k) is
regular and then, for x(ko) = 0 and an arbitrary final state x(ky), choose the
sequence of input vectors,

u(k) = GT(k)d" (kp, k + DYW, ko, kp)x(ks) , k = ko, ki, ..., kp— 1. (3.272)

According to Eq. (3.91) the solution to the state equation at the final time can be
written as

k-1
X(tr) = > O(kyi+ 1)
i—ko
=1 (3.273)
=D Olkp i+ DGHGT ()T (kyi + 1)

i:ko
= x(ky)

and this shows that the system is reachable on [k, k/].

Conversely, assume that the system is reachable but the Gramian is singular.
If so, a nonzero vector x, can be found such that it’s quadratic form with
W, (ko, kr) becomes zero,

W, (ko, kp)x4 = 0, (3.274)
or
k1
W, (ko,kp)xa = Y X0 dlky, i + GG (1) ky, (i + 1)xa = 0. (3.275)
i=ko
Defining
2(i) = GT (D)o  (kpyi+ D)Xy, i = ko, ki, ooy kp— 1, (3.276)

it is seen that the summand can be written,

xT(ky i+ NGOG (NS (kyy i+ Dx, = 2 (2() = 2. (3.27)
Since the norm is nonnegative, z(7) must be identically zero for (3.275) to hold.

It was assumed that the system is reachable, so choosing x(ks) = X,, it is
known that an input sequence u,(k) can be found such that

X, = X(17) = Z¢ (kg i+ 1)G(i)uy(i). (3.278)
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Premultiplying by x! gives
k/ 1 k/ 1

=> x1d(kpi+ 1)G => 2(u,(i)=0 (3279

i= k() i= k()

which contradicts the assumption that x, # 0. The conclusion is that if the
system is reachable, then the Gramian must be regular.

The Gramian is in general symmetric and positive semidefinite. If the system
is reachable, the Gramian is positive definite.

In the time invariant case,

x(k + 1) = Fx(k) + Gu(k). (3.280)

The corresponding state transfer matrix is (see Eq. (3.90))
O(kpyi+ 1) =Fo 1 (3.281)

and the reachability Gramian can be written (for ko = 0)
W, (k) = > FHIGGT (FT )1 (3.282)
i=0

or, changing the summation index toj = ky— 1 — i,

W, (k) = Y FGG"(F"Y. (3.283)
=0
Reachability Theorem RD2
The LTI system model,
x(k + 1) = Fx(k) + Gu(k), (3.284)

is reachable if and only if the reachability matrix,

M,=[G FG FG ... F"'G], (3.285)

has rank n, i.e., full rank.
The solution to (3.284) at the final time k,is given by Eq. (3.98),

k=1
x(kp) =Y F¥"'"'Gu(i) for x(0) = 0. (3.286)
i=0
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The solution can be written
x(ks) = F¥"'Gu(0) + ... + FGu(k; — 2) + Gu(k; — 1)

[u(ky—1)]

3.287
=[G FG F*G ... F"'G]| u(2) ( :

For reachability it is required that x(k;) can be assigned any value in the
n-dimensional state space and with the input sequence in (3.287), it is
therefore required that the vectors in the matrix immediately to the right
of the last equal sign have at least n linearly independent columns. If this
is not the case for some k;, one may improve the situation by letting k,
increase, thus adding more columns to the matrix. However, according to
Cayley-Hamilton’s theorem all powers F?, for p > n can be expressed as a
linear combination of the powers up to n — 1, so one does not gain any-
thing further by letting k, grow larger than n. This shows that Eq. (3.287)
has a unique solution if and only if M, has full rank. The reachability
matrix is precisely the same as the controllability matrix (3.230) for con-
tinuous time systems and very often M, is called the controllability matrix
for the system (3.284).

Reachability Theorem RD3

The PBH test is also valid for discrete time systems.

Part 1
The LTI system (3.280) is controllable if and only if no left eigenvector of F
exists such that

w/G=0 (3.288)

1

which means that no left eigenvector of F must be orthogonal to all the columns
of G.

Part 2
The LTI system (3.280) is controllable if and only if the n x (n + m)-dimen-
sional matrix,

R =[ZI-F G (3.289)

has rank 7 for all complex scalars z.
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Reachability Theorem RD4

A diagonal LTI system with distinct eigenvalues is controllable if and only if
the G matrix has no zero rows.

The proofs for theorems RD3 and RD4 are similar to the proofs for theo-
rems CC3 and CC4.

3.8.6 Observability (Continuous Time Systems)
Observability Definition

The linear system,
%(1) = A()x(1) + B(u(1), x(1o) = o,
y(2) = C(0)x (1),

is said to be observable on the finite time interval [z, ¢/ if any initial state x, is
uniquely determined by the output y(¢) over the same time interval.

Observability has nothing to do with the input to the system but only
with the way the states are interconnected and the way the output is
connected to the states. Consequently only the unforced state space
model is considered.

(3.290)

Observability Theorem OC1

The linear state model (3.290) is observable if and only if the quadratic n x n
matrix,

Walto,t) = [ 67 () C (OCOO( w)dr (3.291)

is regular. The matrix W, (7, t/) is called the observability Gramian.
To see that the condition is sufficient consider the output solution (see Eq. (3.26)),

(1) = C(1)d(2, t0)Xo. (3.292)
Premultiplying by ¢ (7, 10)C” (¢) and integrating on both sides of the equal sign
yields

/ ! &7 (1, 10)CT ()y(1)dt = W, (10, 17)Xo (3.293)

which is a set of linear equations in the elements of xo. If W, (79, #/) is regular, x,
is uniquely determined.
Conversely, if the Gramian is singular, a nonzero vector x,, can be found such that

Wo(l‘(), lf)Xg =0 (3.294)
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and therefore also

xIW, (1o, t)x, = 0. (3.295)
But then

X(ITWO(Z(), ff)X,,T = /tf XZ(])T(t» IO)CT(t)C(Z)d)(tv tﬂ)xadt
’°U_ (3.296)
. / 27 (D2()dt = 0
where z(7) has been defined as
z(1) = C(1)d(t, 10)Xq- (3.297)

The integrand in the right hand term of (3.297) is the square of the norm of z(¢)
and since the norm is nonnegative, it can be concluded that

C()d(t,t0)xa =0, 1 € [to, /] (3.298)

Note that z(¢) is precisely the output of the system for x(¢y) = x,, and since
this output is identically zero over the entire time interval, x(#) cannot be
determined from y(¢) and the system is clearly not observable. In other words,
the regularity of the Gramian is also a necessary condition for observability.

For LTI systems one has ¢(z, ) = e*"") and for f, = 0 the observability
Gramian becomes

oo
W, (1) = / eAicTcerMdr. (3.299)
0

Observability Theorem OC2
The LTI system model,

x(1) = Ax(?),
) ® (3.300)
y(1) = Cx(1),
is observable if and only if the observability matrix
C
CA
M, = | CA? |, (3.301)
CA”71

has rank n, i.e., full rank.
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It can be shown that this rank requirement fails if and only if the observability
Gramian is singular. If Wy (#) is singular the condition (3.298) is applicable. For
the LTI system it is known that (7, 1) = ¢(z) = €A’ and (3.298) becomes

z(t) = CeMx, =0, t €0, ], (3.302)

Since this vector is identically zero on the entire time interval, its time deriva-
tives must also be zero

da(t)/dt = CAer'x, = 0,
d’z(t)/df* = CA*eA'x, = 0,

(3.303)
d"'z(t)/di"" = CA" ! eMx, = 0.
This means that
C
CA
CA? |eMx, = Myet'x, = 0. (3.304)
CA.nfl
eMx, is a nonzero n x 1 vector whose elements are time functions,
by (l
by (t
erix, = 2.( al (3.305)
bu(1)
If the n columns of M, are denoted M,
M, =c; €2 ... (3.306)
It is seen from (3.304) that
n
> ai(t)e; = 0. (3.307)
i—1

The last expression shows that the n columns of M,, are not linearly independent
and this means that M, has less than full rank.
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The ‘only if*-part can be proven as follows.
Using the series expansion (3.44) of the matrix exponential and additionally
the Cayley-Hamilton theorem, eA’ can be expressed as the finite series,

00 k k n—1
A = ZA;!Z) =3 () A" (3.308)

k=0 =0

b

Premultiplying with the » x n-dimensional C-matrix gives the » x m-dimensional
matrix,

C
. CA
CeM = " (CA* = [Ly()) Lyi() ... Ly()]| CA* |, (3.309)
k=0 .
CA"!

where I, is the r-dimensional identity matrix. The transpose of this matrix is

11‘70 (t)

r Ly (¢
ACT = [CT ATCT ... (AT)"'CT) Vf() (3.310)

Ir'Ynfl (t)

Inserting (3.309) and (3.310) into (3.299) results in the matrix,

LBi(6) LB ... LBy,(1)

LBo() LBan(t) ... LBy(7)

Iy
W, (1) = M! /0 dtM, = MIQM,, (3.311)

I"Bnl(l) Ii‘BnZ(l) tee Il’Bnn(l)

where the B-functions are products of the v -functions above. This equation
shows that even if Q has full rank (i.e., rn), the quadratic n x n matrix product
on the right can not have rank larger that the rank of M,. In other words, if M,
has less than full rank, the Gramian will be singular.

If the observability matrix M,, has full rank, then the system is observable for
all values of the final time #.

The PBH test for observability is expressed in the next theorem. In this case
the ordinary eigenvectors (right eigenvectors) are used:

AV,’ = 7\/,'V,f. (3312)
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Observability Theorem OC3

Part 1
The LTI system (3.300) is observable if and only if no right eigenvector of
A exists such that

Cvi=0 (3.313)

which means that no right eigenvector of A must be orthogonal to all the rows of C.

Part 2
The LTI system (3.300) is observable if and only if the (r + n) X n-dimensional
matrix,

R,—| © 3.314
=4 (33149

has rank » for any complex scalar s.

The theorem is proved in Middleton and Goodwin (1990).
For a diagonal system the following theorem is valid

Observability Theorem OC4

A diagonal LTI system with distinct eigenvalues is observable if and only if the
C matrix has no zero columns.

The proof can be based on observability theorem OC3 and follows the same
lines as the proof of controllability theorem CC4 on p. 130.

3.8.7 Observability and Similarity Transformations

Using the transformation matrix P on a system with the matrices A and C,
Eq. (3.130) can be used and find the matrices for a transformed system,

A, = PAP,
(3.315)
C,=CP !,
and the controllability matrix,
cp!
CAP™!
M, = | CA’P"' | =M, P, (3.316)



3.8 Controllability and Observability 147
where M, is the observability matrix for the original system. The quadratic P~
matrix is regular and has full rank and therefore Eq. (3.316) shows that M, and
M,, have the same rank.

In other words, observability is preserved during similarity transformations.

Example 3.19. Observability of the Water Tank Process
Consider now the observability property for the tank system in Example 2.9 (see

also Example 3.17).
The observability matrix can be computed to be

0 2-10° 0 0
0 0 0 104
9987 —1.134-10* 0 0
M, = 0 0 3354 3354 10-5
—1165 1389 0 0
0 0 —-19.67 11.25
127.5 —150.1 0 0
L 0 0 0.8712  —0.3773

By using MATLARB it is found that M, has full rank (the first four rows are
linearly independent) and it is concluded that the system is observable.

Omitting the temperature 7, as an output, a reduced output matrix is
obtained,

Cra=1[0200],

and the new observability matrix for the pair (A, C,.y) is

0 2-10° 0 0
j— . 4
M, .= 9987 1.344-10 0 O 10-5.
’ —1165 1389 0 0
127.5 —150.8 0 0

This matrix is obviously singular (as it has zero columns) and the system with
only the single output y; is not observable.
The system matrix A has the eigenvalues,

—0.03354
—0.02511

A — )
—0.109

—0.007686

and the corresponding right eigenvectors are
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0 0 06459 —0.7634
0 0  —07934 —0.6459
v v =10 00438 o 0
1 09698 0 0

Using the PBH-test for observability, the following products are found:

0 0 0 —1.292
CV] = ,CV2 = ,CV3 = 7CV4 = .
0.1 0.097 —1.527 0

None of these vectors are zero vectors and this shows that the original system
with two outputs is observable.

Carrying out the same calculation based on the reduced output matrix, C,.4,
one finds

Cde] = 0, C,,ngZ =0 CredV3 = —1.527, C,TdV4 = —1.292.

Since two of these products (in this case scalars) are zero, it can be concluded as
before, that the system with only one output is not observable. 0

3.8.8 Observability (Discrete Time Systems)

As it is the case for controllability/reachability, the proofs are often easier to
carry out in discrete time than in continuous time and therefore the proofs are
not given in this section. The proofs can be found in Kailath(1980), Rugh(1996)
or in Middleton and Goodwin (1990). The proofs can also be carried out as a
useful exercise for the reader.

Observability Definition (Discrete Time)

The discrete time linear system,

x(k+1) = F(k)x(k), x(ko) = xo, (3.317)

is said to be observable on the finite time interval [ko  k/] if any initial state X is
uniquely determined by the output y(k) over the same time interval.

Observability Theorem OD1

The state model (3.317) is observable if and only if the quadratic n x n
observability Gramian,

W, (ko, ky) = Zd» (i, ko) CT (k) CP (i, ko), (3.318)
i=ko
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is regular. W,(ko, ky) is symmetric and in general positive semidefinite. If the
system is observable, the Gramian is positive definite.
For an LTI system with ¢(i, ko) = F~% and with ko = 0 the Gramian is

W, (k) = > (F')'C"CF". (3.319)
i=0
Observability Theorem OD2

The LTI system,
x(k+ 1) =Fx(k),
( ) (k) (3.320)
y(k) = Cx(k),

is observable if and only if theobservability matrix,

C
CF
M, = | CF* |, (3.321)

CF”71

has rank #» (full rank).

Observability Theorem OD3
The PBH test.

Part 1
The LTI system (3.320) is observable if and only if no right eigenvector of
F exists such that

Cvi=0 (3.322)

which means that no right eigenvector of F is orthogonal to all the rows of C.

Part 2
The LTI system (3.320) is observable if and only if the (r + n) x n-dimensional
matrix,

R, = ¢ 3.323
=] (3.323)

has rank n for all complex scalars z.

Observability Theorem OD4

The diagonal theorem is the same as the continuous time observability
theorem OCA4.
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On the following pages an overview of the controllability/reachability and
the observability theorems is given.

3.8.9 Duality

If the two LTI state space models below are considered:

X = AX + Bu
Sy (3.324)
y =Cx
with the model
. T T
S. : {Z_AT”C u (3.325)
y=B'z

The controllability and observability matrices for the latter systems are:

C T
1 CA T
M..=[c" ATc" ... @A"Yy c'l=| =M!_, (3.326)
CAn71
BT
BTAT
M, = . =[B AB ... A"'B]" =M. (3.327)
BT(AT)H—]

This shows that the system S is controllable if and only if S, is observable and
that the system S. is observable if and only if S, is controllable. This property is
called duality.

3.8.10 Modal Decomposition

In the solutions of the state equations will be again investigated here in the light
of controllability and observability.
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As the starting point, take the diagonal transformation of a nondefective
continuous time LTI system and for such a system, apply Eq. (3.133) with
P~! = M (the modal matrix). Carrying this through one obtains for the state
transition matrix,

AL MMM (3.328)
The complete solution (3.52) of the state equation can now be written
t
x(1) = e*'x +/ A" Bu(t)dr
0

I (3.329)
= MMM x, +/ MeA I M~ Bu(t)dx.
0

If expressions (3.135) and (3.246) are used here, the zero-input solution
becomes

Xu:()(l) = MeA[M71x0

M0 0 1[wf
0 &M 0 | |w]
=[vi v A/
b a O (3.330)
0 0 Mt wh
= Zv eniwl X0
m=
Since ™" as well as wlxg are scalars, (3.330) can be written
n
Xu=o(t) = > (Whxo€" ). (3.331)

m=1

Following the same lines, the complete solution is

X(1) = Z(w X0€"" )V +va(J P 1=1) CBu(r)dr). (3.332)

=1 m=

Note that the integral contained in the right hand term is also a scalar.
A similar treatment of the discrete time solution (3.98) using (3.134) leads to
essentially the same result,

n

x(k) = " (wpxohy,) vm+2vm (ZM iwI Gu( )) (3.333)

m=1

the expressions in the parentheses again being scalars.
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These particular forms of the solutions are called modal decompositions.

It is obvious that the contribution to the solutions originating from the
eigenvalue X, (or rather, from the natural mode ¢*' or Xf;) will lie in the
direction of the corresponding right eigenvector v,,.

It is also obvious that if

w/B#0 or w.G#0 forallm

then all natural modes will be excited by the input. As has been seen, this is the
same as saying that the system is controllable/reachable (see controllability/
reachability theorems CC3/RD3).

The output becomes (the D-matrix is of no importance here and is set to zero)

n n t
(1) =) (whxoe")Cvy + > Cv,, < / e*m<”>w,7,;Bu(r)dr> (3.334)
m=1 0

m=1
and

n k—1

y(k) = (whxoky)CVi + Y Cyy, <Z K,k;,_l_iw;GU(i)>. (3.335)
m=1

m=1 i=0
In both terms on the right side of the equal sign it can be seen that if
Cv,, #0 forall m

then all natural modes will be present in the output. According to observability
theorem OC3 or OD3, this is equivalent to observability.

3.8.11 Controllable| Reachable Subspace Decomposition

If a system is not controllable/reachable, it is possible by a suitable similarity
transformation to decompose the system into controllable and noncontrollable
parts. The theorem supporting this possibility will be stated here without proof.
The proof can be found in Kwakernaak and Sivan (1972).

Decomposition Theorem 1

If the system with the matrices A, B and C is not controllable (i.e., A is of
dimension n x n and rank(M,) = p<n) then a similarity transformation can be
found given by z = Q~!x such that the transformed matrices have the form,

A(? A12

Ar—QlAQ—[O A

],Bt =Q 'B= []ﬂ ,C,=CQ=[C. Cp,]l,(3.336)
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where dim(A,) =p x p, dim(B,) =p x m, dim(C,) =r x p and where the
matrix pair {A., B.} is controllable,
and where

C(sI—A) 'B=C.(s1 —A.) 'B. = G(s). (3.337)

The transformation matrix Q can be generated as follows:

M, has dimension n X nm and since its rank is p, p linearly independent
columns can be found among the columns of M,. Suppose that these columns
arecy, ¢y, ...c,c,. Then choose n — p column vectors v, v2, . .. v,—, such that the
7 X n matrix,

Q=[er @ ... ¢ Vi V2 ... Vu,l (3.338)

becomes nonsingular.

Example 3.20. System Controllability Decomposition

Consider the 2 x 2 system,

-5 —10 10 1 4 Lo o
A=|2 -1 —2|,B=|1 of,Cc= . (3.339)
010
0 -4 1 12

The controllability matrix is readily computed to be

1 4 =50 5 =20
M,=|1 0 -1 4 -3 -8
1 2 =32 1 -14

One finds that rank(M,) = 2 and the system is not controllable.
It is obvious, that the first two columns of M, are linearly independent and if
vi = [1 0 0" is selected, it is found that,

4 1 0 1 0
Q=|1 0 0| and Q'=|0 —-55 05/,
2.0 11 =2
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and then
1 4 '2
A=Q'AQ=|-1 —1.-1],
0 1 =3
1 0
1 3.340
Bf = Q_lB = ) ( )
0 0
1 411
C,=CQ= L
1 0.0
Now, clearly,
-1 4 1 0 1 4
A, = ,B. = ,C. = ) (3.341)
-1 -1 0 1 1 0

It can also be seen that the noncontrollable part of the system is described by
the state equation,

Z3 = —3z3. (3.342)

The state z3 is decoupled from the other states as well as from both inputs and it
is therefore clearly not controllable. In contrast to this, it is easy to verify that
the system with the matrices {A., B} is controllable.

It is also quite easy, although a bit more cumbersome, to verify that the
original system (3.339) and the reduced system (3.341) have the same transfer
function matrix,

s—3 4(s+2)
$24+25+5 s2+25+5

G(s) =
s+ 1 4

24+25+5 242545

Note, that the state vector of the transformed system (3.340) can be found from
the expression z = Q~'x. With the Q found above one finds

Z1 = X2,
zo = —0.5x, + 0.5x3,

73 = X1 + Xp — 2X3.
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As seen from the reduced system (3.341), the state z3 is superfluous in the sense
that it is not necessary for the input-output description of the system.

Finally, it is noted that the uncontrollable system has the eigenvalue A = —3,
which means that this part of the system is stable. Thus it can be concluded, that
the system is stabilizable, see p. 124. 0

3.8.12 Observable Subspace Decomposition

If a system is not observable, it is possible by a suitable similarity transforma-
tion to decompose the system into observable and unobservable parts. The
proof of this theorem can also in this case be found in Kwakernaak and
Sivan (1972).

Decomposition Theorem 2

If the system with the matrices A, B and C is not observable (i.e. A is of
dimension n x n and rank(M,) = p<n), then a similarity transformation can
be found, given by z = Px, such that the transformed matrices assume the form,

A, 0
A21 Ano

o

A, =PAP ! = [ } B, =PB = [ ] C,=CP ' =[C, 0], (3.343)

no
where dim(A,) = p x p, dim(B,) = p x m,dim(C,) = r x p,
where the matrix pair {A,, C,} is observable,

and where

C(sT—A)'B=C,(sI —A,) "B, = G(s). (3.344)

The transformation matrix P can be generated as follows:

M, has dimension nr x n and since its rank is p, p linearly independent rows can
be found among the columns of M,. Suppose that these rows are ry,rs,...,1,,
then choose n — p row vectors v, va, ..., v,_, such that the n x n matrix,

I
I

p
pP— : (3.345)
Vi

V2

LY(n—p) J

becomes nonsingular.
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Example 3.21. System Observability Decomposition

The system,
-1 -4 4 30
01 0
A=|-3 -4 6|,B=|1 1|, C= L3 ol (3.346)
-3 -5 7 2 1

is controllable but not observable, as the (M,) = 2.
The observability matrix is

0 1 07
3 -2
-3 -4 6
M, =
4 -6 38
-3 -2 6
-2 0 4]

The first two rows of M, re linearly independent and these rows are selected as
the first two rows of the transformation matrix. If one selects v = [1 0 0], P
becomes regular:

01 0 0 0 1
P=|1 3 2|, P'=1]1 0 0
1 0 0 1,5 —-0,5 0,5
Then one finds that
5 -3'0
A, =PAP'=|6 -4 . 0],
2 21
11
2 1 (3.347)
B, = PB = ,
30
1 0.0
C,=CP'= -
0 1'0

and

5 -3 I 1 1 0
A, = { ], B, = { ], C, = { } (3.348)
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The second order system (3.348) is controllable as well as observable.
The system (3.348) as well as the original system (3.346) has the transfer
function matrix,

o
Gs) = [°} Ios | 2 (3.349)
s+1 s—2

All the transfer functions in (3.349) are of first order but nevertheless the system
is second order as seen from the controllable and observable state space model
(3.348).
The eigenvalues of the original system (3.346) are
-1
=11
2

-1
=1

The remaining unstable eigenvalue, A = 1, must belong to the unobservable
part of the system and it is therefore not detectable. m

and for the reduced system,

3.9 Canonical Forms

Depending on the controllability/reachability and observability properties of a
system, it is possible to construct state space models of a particularly simple
structure. These special model forms are called canonical or companion forms.
Below some important canonical forms for SISO systems will be presented.
Similar forms can be defined for MIMO systems but they do not have a form
which is as simple as those for SISO systems. Their practical use is thus some-
what more limited. The MIMO cases are treated in Kailath (1980).

3.9.1 Controller Canonical Form

In Sect. 2.3 it was demonstrated how a state model could be derived from a
SISO transfer function. Using the method of Sect. 2.3, the state space model
turned out to be on a special form which was called the phase variable form or
the companion form 1, see Eq. (2.46) and (2.47). This form is also known by
another name: the controller canonical form.

It was seen that a proper transfer function leads to a state space model with a
nonzero direct transfer matrix D. If the transfer function is strictly proper, the
D-matrix becomes zero.
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If a controllable SISO-system is considered,

X = Ax + Bu,
(3.350)
y = Cx + Du,
it is known that all the » columns of the controllability matrix,
M.=[B AB A’B ... A°' B, (3.351)

are linearly independent.
The characteristic polynomial for the system is

Pua = det(M — A) = X"+ a, (X" + ...+ a)h + a. (3.352)

Now a set of n column vectors can be defined as follows:

pl = B7
P = Apl + ap—1Pp; = AB + anlea
p; = Ap, + @, op; = A’°B +a, |AB +a, »B, (3.353)

p,=Ap, | +aip,=A""'B+a, | A"*B+...+axAB + aB.

It can be shown that the p-vectors are linearly independent because the
columns of M. are linearly independent. Consequently, defining the square
matrix,

P= [pn Pt P2 --- pl]’ (3354)

it is known that P~! exists.
Applying the Cayley Hamilton theorem,

Ap, = (A" +a, A"+ ..+ &A” + A + ag])B — a)B
= —aB=—ap, =P[000 ... 0 —a)’,

Ap, ;=p,—aip, =P[100 ... 0—a]”,
n—1 1 1P1 [ 1] ) (3355)
Ap, > =P, —ap; =P010 ... 0—a)

>

Ap; =Pr—ayip; =P[000... 1—a, ],
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this can be written

Alp, Py P -+
0o 1
0 0
=P
0 0
—dy —dadp

which means that

or

P
0o ... 0
0
0o ... 0
—a —dp-2
AP = PA,.
A.. = P'AP.

161
0
0
: =PA.. (3.356)
1
—dp—1
(3.357)
(3.358)

The last result shows that if the similarity transformation z = P~'x is used,
the system matrix of the new model representation will be

Which gives the immediate result that

B

which gives

The output matrix becomes

1 0
0 1
0 0
—a
=P[000 ...
0
0
P 'B=B. = |:
0
1
C.e=CP=[by by by ...

—dp-2

01)"

0

0
: (3.359)

1

—dp—1

(3.360)
(3.361)
bui]- (3.362)
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Finally one find that

D. =D.

(3.363)

The controllability matrix of the controller canonical model is easily com-

puted to be

Mc,(fc = [Bcc A(?L'B(?(? Achcc ce AZC_IBC(J]

0
0

0
0
0
0

—dp—1

—dp—1

2
ay—1 — dn-2

1
—dy—1
2
a, | —dp-2

3
—a, |+ 20a,-1Gp—2 — Qp-3

017
1 X
XX
L XX
XX

X X

(3.364)

where the X-elements are functions of the coefficients a;. The determinant of
M, . is always equal to 1 or —1 independent of the a;-coefficients and that is, of

course, in accordance with the precondition that the system is controllable.

Example 3.22. Controller Canonical Form Transformation

Consider a continuous time SISO system with the matrices,

1 6 -3 1
A=|-1 -1 1], B=|1l], C=[0 0 1]
-2 2 0 | 1
The controllability matrix is
(1 4 =2
M,=[B AB A’B]= |1 -1 -3
|10 —10

and since the determinant is det(M,) = 36, the system is clearly controllable.
The characteristic polynomial can be calculated to be

A—1 -6 3
Poa=det| 1 A+l —1|=1-31+2
2 -2

which means that
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ay = 0,
ay = —37
[ 2.

The eigenvalues are

A

I
—

-2

so the system is unstable.
The p-vectors (3.353) can readily be found to be,

1
pi=B=|1],
1
4
p=AB+axB=AB=|—1|{,
0
-5
p;=AB+mAB+aB=AB-3B=| —6 |,
-13
and the matrix P and its inverse are
-5 4 1 0.02778  0.11111  —0.13889
P=[p; p, pjJ=| -6 —1 1|, P'=]0.19444 —0.22222 0.02778
—13 0 1 0.36111  1.44444 —0.80556

The similarity transformation leads to the new model representation in the
controller canonical form,

0 10 0
Ae.=P'AP=|0 0 1|,B.=P'B=|0]|, C.e=CP=[-13 0 1].
3.0 1

-2
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Fig. 3.27 Block diagram for
the controller canonical

+
form Y+~ |T|Z3 |T|Zz | 21 _y

The block diagram for the controller canonical representation is shown on
Fig. 3.27.

As expected, the block diagram has the same structure as the block diagram
in Fig. 2.14. This kind of block diagram, containing only constants, integrators
and summers, is often used as a basis for setting up analog or digital computers
for simulation purposes.

It is known that the system on Fig. 3.27 is controllable. The observability
matrix is

C 0 0 1
M,=|CA|=|-2 2 0
CA’ -4 —14 8
and since det(M,) = 36, the system is also observable. 0

As it has been pointed out previously, the controller canonical form is very
efficient in terms of number of parameters. A strictly proper n’th order SISO
system will in general have n> 4 2n parameters in its matrices. The correspond-
ing controller canonical form will at most have 2n parameters different from
zero or one, precisely the same as in the transfer function.

3.9.2 Observer Canonical Form

For an observable SISO system,

X = Ax + Bu,
(3.365)
y = Cx + Du,

with the characteristic equation,

Poa = detO ] —A) ="+ a, (N ..+ ah+ap, (3.366)
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the following set of linearly independent n-dimensional row vectors can be

defined:

q =C,
q; = CA + an71C7
q; = CA2 + an71CA + aan(jv

q/ =CA" ' +a, |CA" + ...+ a,CA + a,C.

Further, define the nonsingular n x n matrix,

(3.367)

(3.368)

The Q-matrix for the similarity transformation z = Qx can be used to obtain
the following matrices for the alternative model representation, which is called

the observer canonical form,

0 0 O 0 —ap T
0 0 0 —-a
Loloo1 o 0 -
Ay = QAQ =
00 0 ... 0 —a,,
L0 0 0 ... 1 —a, ]
bo
by
B, = OB = . ’
bnfl

(3.369)

(3.370)

(3.371)

(3.372)
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The observability matrix for the observer canonical form is

Coc
CocAoc
Mo,oc = CocAi(-

n—1
C”CAoc

[0 0 0 0 0 1 ]
0 0 0 0 1 — 1
0 0 0 — 1 aﬁ_] )
=10 0 1 —ay1 & —ay2 —@ | +2a,1ay-2 — a3 |(3.373)
o1 ... X X X X
1 X ... X X b% b |

Since det(M,,.) is equal to 1 or —1, the system is observable.
The observer canonical form is identical to the companion form 2 from
Sect. 2.3.2.

Example 3.23. Observer Canonical Form Transformation

Now an alternative method of achieving the observer canonical form for the
system of Eq. (3.365) will be considered.

If one supposes that one can obtain the observer canonical form (3.369)—(3.372)
by a similarity transformation z = Qx, then it is known that the original model
(3.365) must be observable. This follows from the fact that observability is invariant
under a similarity transformation, see section 3.8.7. So one knows that the obser-
vability matrices M, and M, ,., for the original model and the observer canonical
form respectively, are both nonsingular. From Eq. (3.316) it is known that

Mu,oc = M0Q71 (3374)
or
Q=M,! M,. (3.375)

The system of Example 3.22 has the matrices
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The coefficients of the characteristic polynomial are

a2:O,
ay :73,
a0:2

and the observability matrix (3.373) of the observer canonical form can be
written down directly:

0 0 1 0 0 1
My = |0 1 —apy | =01 0
1 —ap @ —aya 1 0 3

The transformation matrix is computed as

-4 —14 5
Q:M;})L,M,,: -2 2 0
0o 0 1

and the matrices of the observer canonical form become

0 0 -2
Ay = (2/&(271 =10 30,
0 1 0
—13
B, = QB = 0 )
1

Co.=CQ'=[0 0 1].

If the procedure of Sect. 3.9.2 is used, the same result will of course be obtained.

3.9.3 Duality for Canonical Forms
If the matrices in Sect. 3.9.1 and 3.9.2 are compared, it is found that

A=Al

oc?

B, =C’ (3.376)

oc?

Ccc = BT

oc?
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and it can be concluded that the controller canonical form and the observer
canonical form are dual models according to the definition of Sect. 3.8.9.

3.9.4 Pole-zero Cancellation in SISO Systems

In the preceding sections it was shown that a SISO state space model in
controller canonical form is always controllable and a model in observer
canonical form is always observable. On the other hand, the controller canoni-
cal form need not be observable and the observer canonical form need not be
controllable.

For a strictly proper transfer function the connection between transfer
function and the state space model is

G(s) =C(sI—A)"'B
or (3.377)
H(z) = C(zl - F)'G.
The following argument deals with the continuous time case but is equally valid

for the discrete time models.
If A is nondefective, Eq. (3.377) can be written,

G(s) =C(sI—A) 'B=CMM (s — A) 'MM'B
=CMM '(sT—AM) 'M'B=CM(sI —M'AM) 'M"'B  (3.378)
= CM(sl — A)"'M'B,

where M is the modal matrix for A. Using Eqgs. (3.135) and (3.246) one arrives
at the result

n

_ WT C,' TB
G(s)=Cl[vi Vs ... v,](sI—A)" '2 Bzzviw’x- (3.379)

i1 ST M

The pole/eigenvalue A; will only be present in the transfer function if the
products Cv; and w/B are both nonzero. One knows from the PBH observa-
bility and controllability tests that this means that the state space model is
observable and controllable. If, for some i, one has that CV; or w[TB =0 (or
both), then the pole/eigenvalue A; will not appear in the transfer function. It is
cancelled by a zero.
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This shows that if a SISO state space model is not controllable or not
observable (or neither) then zero/pole cancellation(s) will occur in the transfer
function. Note that this rule is not valid for MIMO systems.

3.10 Realizability

In this section the problem of the construction of state space models from
transfer function matrices for MIMO LTI systems is addressed.

The presence of a direct transfer matrix D in the state space model is
unimportant for the treatment of this subject and therefore it is assumed that
the state space models have the simpler form:

x(?) = Ax(¢) + Bu(r),
y(1) = Cx(1),
or (3.380)
x(k+ 1) =Fx(k) + Gu(k),
¥(k) = Cx (k).

If one starts by considering the SISO case, one can return to the development
in Chap. 2, Sect. 2.3. One can see directly from this section that one can
construct (or realize) a state space model with D = 0 for any strictly proper
SISO transfer function G(s) or H(z), i.e., any transfer function where the
numerator polynomial has a smaller degree than the denominator polynomial.
In this context the state space model (3.380) is called a realization of G(s) or
H(z). Note that Sect. 2.3 dealt with continuous time systems only but construc-
tion of the companion forms works equally well for discrete time systems. This
finding can be extended to MIMO systems.

Realizability Theorem

An LTI realization for the transfer function matrices G(s) or H(z) can be found
if and only if all elements of the transfer function matrix are strictly proper
transfer functions. The relation between the matrices of the realization and the
transfer function matrices is

C(sI—A)"'B=G(s)
or (3.381)
C(zI—F)"'G=H(z).

(Do not confuse the continuous time transfer function matrix G(s) with the
discrete time input matrix G).
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To prove the ‘only if” part of the theorem above it can be assumed that G(s)
or H(z) has the realization (3.380) and then it is known from Sects. 3.2 and 3.5
that (3.381) is true. From the above argument it is also known that the elements
of G(s) or H(z) are strictly proper transfer functions.

The ‘i’ part can be proved as follows. Suppose that G(s) or H(z) have
strictly proper transfer functions. If one looks at all the denominator poly-
nomials of say the elements Gj(s) of the r x m -dimensional G(s), one can
find the least common polynomial containing all factors in these denomi-
nator polynomials,

dis) =" +dprs™ + .+ dis + do. (3.382)
Then one can write
d(s)G(s) =N,_1 "+ N, o’ T+ ..+ Nis+Np (3.383)

where N; denote constant r x m -matrices.
It is now claimed that the following state space model is a realization
of G(s):

r 0, I, 0, ... 0, 0, 7
0, 0, L, ... 0,
A= ;
0, 0,, 0, ... 0, I,
| —dol,, —diL, —dol, ... —dyoly —dy 1,
(3.384)
0, -
0,
B=|: |, C=[NogN, ... N,,N, ],
0,,
LT,

where 0, and I, are the quadratic zero and the identity matrices,
both of dimension m. As seen from A, the state space model has the
dimension mp.
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Define the transfer function matrix:

Z(s)=(sI—A)'B= : . (3.385)
Z, i(s)
Z,(s)

The Z,(s)-matrices have the dimension m x m and Z(s) has the dimension
mp x m. If multiplying (3.385) by (sI — A), one finds that

sZ — AZ + B (3.386)
or
- V4 .
SZ1 Z2
SZZ .3
: = ’ . 3.387
- (3.387)
Sprl 7
sZ ’
’ _*dOZ] - dl Z2 B p—2Zp—] - dp—IZp + lm_

This equation gives two relations:
SZ,‘:ZH,I, i:1,2,...,p—1 (3388)

and
SLy, +doy +d\ Ly + ...+ dy L, =1, (3.389)

If successively the relations (3.388) are inserted into (3.389), it is found that

Z, = ﬁlm (3.390)
and, using (3.388) again,
Ly
! sk,
Z(s) = m L, . (3.391)
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Finally premultiplying by C one obtains

C(s1 — A)"'B = CZ(s)

1 - . (3.392)
= m [NO Nis ... NP,Q.SJ prlsp } = G(S)
Example 3.24. Realizability of a MIMO System
Consider a MIMO LTI system with the transfer function matrix:
1 3
B (s+ 1) s—2
G(s) = 543 ) (3.393)

GrG-2) (s-2)

The system has two inputs and two outputs, so r = m = 2.
The d-polynomial must contain all factors of the four denominator
polynomials,

d(s) = (s + 1)2(S— 2)2 =5t — 25 — 35" + 45 + 4.

Since 0,, = [8 8} and I, = { (1) (1)] , the matrices A and B of the state

space realization (3.384) are

0 0 1 0 0 0 0 07 [0 07
0o o0 0 I 0 0 0 O 0 0
o o0 o0 0 1 0 00 0 0
A o o0 o0 0 01 00 B= 0 0 (3.394)
o 0 0 0 001 0 0 0
0o 0 0 0 0 0 01 0 0
-4 0 -4 0 3 0 2 0 1 0
L0 -4 0 -4 0 3 0 2] L0 1]

Multiplying G(s) by d(s) yields,

2 —4s+4 38— 95— 6
d(s)G(s) =
(5)6(s) {s3+252—5s—6 2s2+4s+2}
which can be written,

d(s)G(s) = N3s* + Nas® + Nys + Ny
0 3 1 0
e S3+
1 0 2

—4
~5 4

|
Ne

s+
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One can now set up the remaining output matrix,

4 -6 -4 -9 1 0 0 3
C= , (3.395)
6 2 -5 4 2210

and a state space model corresponding to (3.393) is established. The state
space realization is of 8’th order which is a result of the method which has
been used.

The order of the transfer functions in (3.393) is one or two, so one might
suspect that the order of the state space model is greater than necessary. That is
in fact the case. One can however find state space models with the same transfer
function matrix but of lower order than 8.

If the state space model is tested for controllability, it is found that the
controllability matrix M, has the rank 8 and the system is certainly controllable.
The observability matrix M, has, however, only rank 4, so the model is not
observable. As will be seen later the model loses observability because it has
superfluous states. 0

3.10.1 Minimality

If one generates a state space realization of a system with a given transfer
function matrix G(s) (or H(z)), one knows that this realization is not unique.
One cannot be sure that the realization has the lowest possible order, i.e. that
the system matrix A (or F) of the state space model has the smallest possible
dimension. To be able to handle such realizability problems, it is useful to state a
formal definition of minimality. The definition can for instance be found in
Kailath (1980).

Minimality Definition

A minimal realization corresponding to G(s) is a state space model which has the

smallest possible system matrix A for all triples {A, B, C} satisfying the relation
C(sT—A)"'B=G(s). (3.396)

The definition is similar for discrete time systems:

A minimal realization corresponding to H(z) is a discrete time state space
model which has the smallest possible system matrix F for all triples {F, G, C}
satisfying the relation

C(z1 —F)"'G = H(2). (3.397)

It turns out that there is a simple connection between minimality and controllability/
observability. In fact one can prove the following theorem.
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Minimality Theorem

A realization {A,B,C} is minimal if and only if it is controllable and
observable.

A discrete time realization {F, G, C} is minimal if and only if it is reachable
and observable.

The continuous time version of the theorem will now be proved. A proof of
the discrete time version can be found in Rugh (1996). First assume that {A, B}
are not controllable. If that is the case then by application of the result from
Sect. 3.8.11, one could find another realization of smaller order with the same
transfer function matrix. But then {A, B} could not have been be minimal and
that proves the ‘only if” part of the theorem.

To prove the ‘if” part, it is assumed that the n’th order realization {A, B, C} is
controllable and observable and that one can find another controllable and
observable realization {A, By, C,} with the order n; < n.

The two realizations have the same transfer function matrix so one knows
that

G(s)=C(s1—A)'B=C (s — A;) 'B,. (3.398)

The impulse response (3.56) must therefore also be the same. With D = 0 one
finds that

g(t) = CerB = C e'B;. (3.399)
Stepwise differentiation with respect to time yields:
CAeMB = C1AMBy,
CA’¢A'B = C|Aje* By,

(3.400)
CA"eMB = C 1AM 'B;.
If one evaluates all of these expressions for # = 0 one obtains
CA'B = C,A/B; for all i. (3.401)
The controllability and the observability matrices for {A, B, C} are
C
CA
M,=| CA* |, M.=[B AB A’B ... A" 'B] . (3.402)
CA”71

nrxn
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and multiplying the two matrices,

CB CAB ... CA"'B
2 n
M,M., — CAB CA’B ... CA'B . (3.403)
CA"'B CA"B ... CA™’B

nrxnm

Similarly, for {A, By, C,} one calculates,

C
CiA,

M, =| CA} |, M. =B AB; AB; ... AI"'B;], ... (3.404)

C]A'li_l

nrxng

although it was assumed that n; < n. From Eq. (3.401) one can see that
calculation of MIO,IM;.I gives exactly the same matrix as in (3.403), so

MM, =M, M. (3.405)
Since {A,B,C} is controllable and observable, the Sylvester inequality’
shows that
rank(M,) = rank(M,) = n (3.406)
from which it follows that
rank(M,M,) = n. (3.407)
{A|, By, C,} is also controllable and observable and therefore
rank(M;, ) = rank(M,,) = n (3.408)
and

rank(M.,

0,1

M) =n. (3.409)

 The Sylvester inequality: If the matrix A has dimension m x n and B has dimension n x p,
then rank(A) + rank(B) — n < rank(AB) < min(rank(A), rank(B))
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But then, from (3.405) it follows that n; = n, which clearly contradicts the
assumption that n; <n. In other words, if {A,B,C} is controllable
and observable, no realization of lower order exists and the theorem is
proved.

Example 3.25. Minimality Analysis of a MIMO System

By application of the minimality theorem above, a suspicion concerning the
realization in Example 3.24 is confirmed. The state space model (3.394)—(3.395)
is controllable but not observable and therefore it is not minimal. The obser-
vability matrix has dimension 16 x 8 and rank p=4. To carry out the obser-
vable subspace decomposition of Sect. 3.8.12, one must pick the same number
of linearly independent rows from M,. It turns out that its first four rows are
linearly independent and one can set up the transformation matrix P as follows:

T4 6 -4 -9 00 37

6 2 -5 4 2 210

0 —12 4 —18 —4 0 1 6

4 0 10 2 -2 4 4 2

P=l 170 0 "0 T 00 of
0O 1 0 0 0 100

0o 0 1 0 0 010

L 0 0 0 1 0 00 1]

The upper four rows are the rows from M, and the rows under the dotted line
were selected in such a way that P becomes nonsingular.

The similarity transformation (3.343) yields the matrices of the minimal
realization,

z = A,z + B,u,
y = COZ,

where

o0 1 0
I N 1 B

12375 3735 1375 —1.6875| °
0.75 275 075 0625

Ie
|

[1000]
01 0 0]

A - = O
N NS W
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It can be verified that the reduced system {A,,B,,C,} is controllable and
observable and therefore a minimal realization. It can also be verified that the
system has the transfer function matrix (3.393). The state variables of the
minimal model can be found using the transformation z = Px.

The system {A,,B,, C,} has the eigenvalues

-1

-1
2
2

ha, =

The 8’th order state space model (3.394) has the 8 eigenvalues,

—1
—1
—1

ha =

2

Since the unobservable part of (3.394)/ (3.395) has unstable eigenvalues, it is not
detectable. 0
Example 3.26. Analysis of a Hydraulic Servo Cylinder

A simplified model of a symmetric control cylinder of a hydraulic position servo
shown on Fig. 3.28 can be modelled as follows.
Expressions for the two volume flows can be written,

. V.

q1 = Ax + Epl + Ci(p1 — p2)s (3.410)
. V.

g = AcX — Epz + Ci(p1 — p2), (3.411)

, o m 1

Fig. 3.28 Hydraulic servo —‘T | | l|7

cylinder 9
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where A, is the cylinder area, V' is the oil volume for each of the cylinder cha-
mbers, B is the bulk modulus (the stiffness coefficient) of the oil, p; and p, are
the pressures in the cylinder chambers and C; is a leakage coefficient. x is the
position of the piston and f'is an external load force.

If the cylinder is fed by a perfect, symmetric servo valve, the volume flows can
be considered equal and if the valve is linear and very fast compared to the
dynamics of the rest of the system, the simple relationship,

Q1 = q» = ku, (3.412)

can be assumed where u is the input voltage to the servo valve and k is a
proportionality constant.

The model is completed by using Newton’s second law for the total mass M of
piston and piston rods:

M=+ Adp1 — p) — Cri. (3.413)

The last term of Eq. (3.413) is the viscous friction between cylinder and piston.

The set of equations (3.410)—(3.413) is the basis for the block diagram on
Fig. 3.29. Defining the state variables as indicated on the block diagram, the state
equations can be written down by direct inspection . Withx =[x x p; p2]”
one finds

X| = X2,

Xy = LM(_C/‘XZ + Ac(x3 — x4) + 1),

£ =0 (e — Gy — i) k), (3.414)
X4 = IE/(Asz + Ci(x3 — x4) — ku),

Y =X

<
[~ ]

Fig. 3.29 Block diagram of
hydraulic servo cylinder
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or in matrix-vector form

0 1 0 0 0 0
C A, A,

0 -% ¥ W 0 W

X = 0 _Ab _GB cp X+ | gp Ut 0 1

roor g 3.415)

0 AP CB _Cp K 0 e
4 4 4 4

y=I[1 0 0 O]x.
Insert the following data in the equations:
A, = 150cm?,

V = 3000 cm’,

M = 500kg = 0.5 - 1000 kg,

B = 7000 bar
3
cm
Ci=1
! bar - sec’
10N -
Cr=01—C
cm
3
k=20—"0
sec - volt

Note that the units cm? 1000 kg and bar are used, instead of the SI-units: meters,
kilograms and Pascals. The reason for this is that the alternative units lead to

matrices which are better conditioned for numerical computations than the SI-
units.

With the data above the system matrices are:

0 1 0 0 0 0
0 -02 300  —300 0 2
A= , B= B, = | |,
0 —350 —2.333 2.333 46.67 0
0 350 2333 —2333 —46.67 0
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The eigenvalues of A are

—2.433 +j458.3

If the controllability and the observability matrices are found, it will be
discovered that the system is neither controllable nor observable. The controll-
ability matrix can be computed to be

0 0 2.8-104 —1.363-10°

M, — 0 2.8-10* —1.363-10° —5.88-10°

46.67 2178  —9.8-10° 9.342 - 107

—46.67  217.8 9.8-10° 9.342 - 107
det(M,) = 0.

One can also find that rank(M,) = 3, which means that 3 columns of M, are
linearly independent. A closer look at M, shows that the first 3 columns are
linearly independent and a suitable transformation matrix for a controllable
subspace transformation (see Sect. 3.8.11),

7=Q 'x, (3.416)
could be
0 0 28104 0
0~ 0 28104 —1.363-10° 0
| 4667 —217.8 —98-10° 1
—46.67 217.8 9.8-100 1
which gives
75 1.666-10~4 1.071-10"2 —1.071-1072
o' — 1.738 - 1074 3.571-10° 0 0
~|3.571-1073 0 0 0

0 0 0.5 0.5

The matrices of the transformed system will be:
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0 0 0 )
1 1 0 —21-1050
At:Q_AQ: ' )
0 1 —4866 '0
0 0 0 )
1
0

B=Q 'B=|0 | C=0cQ=/0028-100],

0
and the controllable part of the system is described by the matrices

[0 0 0

Ac=1|1 0 -2.1-10°],
|0 1 —4.866
1

B.=|0[,C,=[0 0 2.8-10*].
K

The system {A., B., C.} is not only controllable, it is also observable. The
states of the transformed system can be found from Eq. (3.416):

7.5x1 + 1.666 - 1074x, + 1.071 - 1072 (x3 — x4)

Z 1.071 - 1072x; + 3.571 - 105x;,
z2= |- | = 3.571-107%x,
Zm’
0.5(x1 + x2).

The controllable (and observable) system has the 3 states in the state vector z..
and these states are of course linear combinations of the original states. But it is
also seen that the cylinder chamber pressures x3 and x4 (p; and p; respectively)
are no longer present individually but only as the pressure difference, x3 — x4. It
can thus be concluded that the two pressures can not be controlled (or observed)
individually.

One of the 4 states of the original system is superfluous. Looking at the
differential equations or block diagram on Fig. 3.29, this is not a surprising
result. As a matter of fact, the two chamber pressures only occur as the
difference p; — p, and it would be natural to choose this pressure difference as
a state instead of the two individual pressures. m
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3.11 Summary

This chapter has dealt with the problems of investigating the characteristics of
dynamical systems. The treatment has included the following main issues:

Solution of the state equations.
Similarity transformations.
Stability.

Controllability and observability.
Realizability and minimality.

SAEal i

Regarding 1

Since an analytical solution to the general state equations (2.8) and (2.135)
usually cannot be found, the treatment was restricted to the linear equations
(3.8) and (3.88). It turns out however that an analytical solution is difficult to
achieve even in this case. For the time invariant equations (3.37) and (3.96), the
situation is more favourable. In this case it is easy to obtain a solution which is
immediately useful. It is also possible to apply Laplace and Z-transformation to
these equations and define a generalization of the transfer function and the
notion of impulse response known from the classical discussion of SISO sys-
tems. It should be noted that the importance of the analytical solutions is
primarily connected to further analysis issues such as stability and controll-
ability. Determination of a specific response for a more or less complicated
system, linear or nonlinear, is much more easily found by computer simulation.

Regarding 2

In contrast to the transfer function system formulation, the state space model is
not unique. The state vector can be chosen in indefinitely many ways and
certain choices provide one with specific advantages. Given one state space
model, one can easily change it to another by a similarity transformation where
one basically selects a new set of state variables by using the expression (3.125).
It is important to note that the new model shares all the important properties
of the original one. A particularly simple state model is the model with a
diagonal system matrix. In such a diagonal system all states are completely
decoupled from each other and this makes most analysis easier. All system
models with nondefective system matrices can be diagonalized with a similarity
transformation.

Regarding 3

One of the most important characteristics of dynamic systems is stability. It can
be a quite difficult task to determine whether a general nonlinear system models
is stable or not. Even for linear time varying models this question is not trivial.
On the otherhand, for LTI models there is a simple stability criteria based on the
position of the system eigenvalues in the complex plane. This is the case no
matter which of the several possible stability definitions one wants to use. When
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using these criteria, it must be remembered that the linear time invariant
model is always an approximation to a more comprehensive and correct
description of the system. In most cases, the LTI model has emerged by a
linearization of a nonlinear system around a stationary operating point. Con-
sequently, the stability analysis based on this linear model can only (at most) tell
about the stability in a close vicinity of this stationary state. Nevertheless, the
linear model stability criteria are very useful for practical analysis purposes.

Regarding 4

When designing controllers for dynamic systems, it is very important, prior to
the design process, to be able to determine which options are available for the
design. The notions of controllability and observability provide tools for ana-
lysis in this area. Loosely expressed, a system is said to be controllable if it is
possible to obtain entry into the system via the input variables and influence all
states individually. Similarly, the system is observable if one can obtain infor-
mation about all the states by viewing the system through the output. There is a
variety of criteria for determination of controllability and observability.
The most important ones are expressed in the controllability theorems CC2/
RD2 (Egs. (3.230) and (3.285)) and in the observability theorems OC2/0OD2
(Egs. (3.301) and (3.321)).

A system is said to be stabilizable if any non-controllable state is stable. A
system is detectable if any non-observable state is stable. For systems which are
not controllable or not observable, it is possible to carry out a similarity trans-
formation which reveals the non-controllable or non-observable states. This
allows one to determine if the system is stabilizable or detectable respectively.

Regarding 5

Realizability is concerned with the problem of formulating state space models
from a transfer function matrix. It turns out that this is always possible if the
individual transfer functions are all strictly proper. Moreover, the direct transfer
matrix D will be zero in this case. Another problem connected to state space
models and especially models derived from a transfer function matrix, is minim-
ality. One says that a state space model equivalent to a given transfer function
matrix is minimal if it has the smallest possible number of states. It was shown,
that the system is minimal if and only if it is controllable as well as observable.

3.12 Notes
3.12.1 Linear Systems Theory

The main mathematical background for this chapter is what is now called linear
systems theory. This theory, though presented as a whole here, has emerged
piecemeal from the work of many different investigators both mathematicians
and physicists, over a period of nearly 400 years.
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This first main contribution to linear systems theory was published by René
du Perron Descartes in 1637. Descartes was a French mathematician and
philosopher and one of the first modern scientists. He originated what is now
called analytic or coordinate geometry. The first exposition of the elements of
Cartesian coordinate geometry (Geometry) was published as an appendix to a
natural philosophical work (Discourse on the Method of Reasoning Well and
Seeking Truth in the Sciences). Discourse was an attempt to collect together
Descartes’ thoughts on the underlying order in the physical world and a great
departure from the traditions of his time. While Discourse was revolutionary,
Geometry was an evolution of the mathematics known at that time: its goal was
the unification of geometry and algebra. The natural philosophical methods
and principles of Discourse proved to be very popular and were not generally
displaced until the time of Newton, some 30 years later.

While it is generally acknowledged that the invention of differential calculus
is due to Newton, Pierre de Fermat was responsible for an approach to finding
the tangent to a curve, effectively differentiation, in about 1630 as well as
extentions to the coordinate geometry of Descartes. These results were first
published after his death in around 1682 and they make Fermat the first worker
to actually differentiate a function.

Isaac Newton was the originator of differential and integral calculus but his
results were first published in 1687, about 10 years after their actual discovery.
This was three years after the publication of similar work by Gottfried Wilhelm
Leibniz in 1684. Newton is responsible for the notation for the time derivative
(or fluxion at that time) which is x. Leibniz’s notation was intuitively much
more suggestive for he wrote the same quantity as % It is also Leibniz who
introduced the notation s for sum (or integral) or, in modern terms, Jx dt. The

work of Newton and Leibniz emphasized the inverse relationship of differen-
tiation and integration and set the stage for the exposition of the basic laws of
mechanics, Newton’s Laws.

Further important developments in the area of differential equations and their
application to physical problems are due in particular to three members of the
Bernoulli family, Jakob, Johann and later Daniel Bernoulli, in the period from
about 1690 to 1770. The Bernoullis learned calculus from the work of Leibniz and
were in constant contact with him and thus adopted his notation. In part, because
of the intuitive quality of Leibniz’s notation, they made significant contributions to
the theory and applications of differential equations and the calculus of variations.

The active period of the Bernoulli family overlapped that of Leonhard Euler
who is responsible for the use of symbols 7 and e and for discovering the Euler
identity e = sin(0) + icos(0) and relating its properties. Euler is also credited
with important contributions to the theory of analysis (advanced calculus),
differential equations and the calculus of variations.

When Euler left Berlin for St. Petersburg in 1766, it was arranged that his
position as director for the mathematical division of the Berlin Academy be
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filled by Joseph Louis Lagrange. Lagrange introduced the method of variation
of parameters to solve differential equations, extentions of the calculus of
variations in a modern form and an influential book on the mathematical
unification of general mechanics. An assistant to Lagrange during one of his
later appointments was Pierre Simon de Laplace who, apart from important
contributions to celestial mechanics, the theory of partial differential equations
and the theory of probability, is responsible for the Laplace transform.

Karl Friedrich Gauss (1777-1855) was a singularly gifted mathematician who
was also interested in physics. It is Gauss who first introduced the modern
requirements and standards for rigorous mathematical proofs. His production
of new mathematics was so profound and fundamental that it would be difficult
to relate here his actual contribution to linear systems theory. It will only be noted
here that Gauss was the first to plot complex numbers as points in a two
dimensional plane. That is the representation where the complex number is
represented with as the abscissa on the real axis and is the ordinate on the
imaginary axis. On this background it is not surprizing that Gauss is also
responsible for the analytic geometry of complex numbers and functions and
the rigorous foundation for complex variable theory. The possibility of drawing a
picture established complex variable theory as a valid branch of mathematics
whereas earlier it had been viewed with some scepticism by other mathematicians.
This work was published in 1831. Another of Gauss’s discoveries, the Gaussian
probability distribution function, will be treated in a later chapter of this book.

Vector analysis is a degenerate form of the mathematics of quaternions,
developed most completely by William Rowan Hamilton and published in
1843. Quaternions are four-fold numbers which have some of the qualities of
vectors for multipicative algebraic operations. In spite of Hamilton’s best
efforts, they were never widely used because they are too complex for easy
understanding and application. The vector analysis which is currently used is a
simplification of Hamilton’s work due to an American physicist, Josiah Willard
Giggs, originating from about 1880.

The invention of, as well as the mechanics of the manipulation of matrices is due
to an Englishman, Authur Cayley in many publications from about 1863 to 1883.
The proofs of many of his results are due to his friend and co-worker, James Joseph
Sylvester. In fact the word matrix is due to Sylvester and was first mentioned in a
publication in 1848. Many of the important connections between matrices and
determinates and the theory of invariants is also due to these workers.

Linear systems theory requires the solution of systems of coupled linear
differential equations with constant coefficients. A simple method for doing
this is Laplace Transform, Operator or Heavyside Calculus and is due to the
efforts of Oliver Heavyside, an innovative but unconventional English electri-
cal engineer from about 1891. This work was not initially appreciated because
of its apparent lack of rigor and because of its odd notation. Now this calculus
is widely recognized and used to solve physical and engineering problems
involving systems of linear differential equations. It has also been given a
respectible mathematical foundation using function theory, though with
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some difficulty, by Carson and Bromwich and others. Heavyside also made
contributions to the development and practical applications of James Clerk
Maxwell’s electromagnetic theory. The Heavyside layer in the atmosphere is
named after the same engineer.

To complete the picture of the linear systems theory now currently used, Jean
Baptiste Joseph Fourier should be mentioned here because of his unifying
influence on the time and frequency domain formulations of the theory. In its
original form, Fourier’s book from 1822 showed that any periodic function can
be represented as an infinite sum of sine and cosine functions of varying
amplitudes. Such a collection of sine and cosine functions is called the spectrum
of the signal. It is possible to extend such formulations to aperiodic functions
using Fourier transforms. These concepts are often used in modern signal
analysis and in many practical devices such as frequency synthesizers and
spectrum analyzers.

From the statements above, it is clear that the vital elements of linear systems
theory were all more or less available from 1900. It has been further developed
and simplified into its current convenient form through numerous applications
of it by many workers. These applications have been primarily to electrical and
electronic circuits but also to control systems, especially in the last 50 years. The
control applications are extremely wide ranging and stretch from microscopic
solid state electric motors to aircraft, ships and even buildings (stabilization
against earthquakes).

3.13 Problems

Problem 3.1
Given the time varying linear system:

0
1

t

0 ¢

x(1) = [0 O}x(r) +

u(1), x(1o) = lx“’]. (3.417)

*20

a. Find the state transition matrix ¢ (7, 7y) (Hint: Solve the two state equations
for the homogeneous equation directly).

b. Check the result by application of equation (3.21).

c¢. Find the complete solution of (3.417) for u(z) =1 for > 1.

d. Check the solution of part c. by inserting into (3.417).

Problem 3.2
One has the continuous time system:
. -3 2 1
x:{ { _2]X+{b}u,y:[l 0]x.

a. Find eigenvalues, resolvent matrix, transfer function, state transition matrix
and impulse response.
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b. Determine the parameter b such that the input only influences the natural
mode corresponding to the eigenvalue farthest away from the origin.

¢. Choose the initial statexo = [1 —1]" and the input u(¢) = 2¢/, 7> 0and
determine b such that lim y(7) = 0.

t—00
Find y(¢) for this value of b.

Problem 3.3
A linear 3. order system has the system matrix:
4 Loy
A— 2
-0 -1 8
0o 0 =3

a. Determine the resolvent matrix ®(s) and the state transition matrix ¢(7).
b. Determine the state vector x(¢) for 7 > O when u(1) = 0Oandxo = [0 1 0],

Problem 3.4

Given the discrete time system:

0 1

x(k+1) = [_% % x(k) + mu(k), () = {—é —ﬂx(k)
a. Set xo = [8] and u(k) = 1 for all k.

Find y(0), y(1) and y(2).

. Determine the eigenvalues, the natural modes and the resolvent matrix.
Find an analytical expression for the state transition matrix F¥.

. Find the transfer function H(z) = y(z)/u(z).
Find an analytical expression for the unit pulse response /(k).

o a0 o

=n

Forxg = {8

(hint: apply Eq. (3.102)).

Compute y(1) and y(2) and compare with the results from question a.

} and u(k) = 1 for all k , find an analytical expression for y(k)

Problem 3.5
Consider the system with the A-matrix from Problem 3.3:
X=Ax, xo=[0 1 0]

a. Find the eigenvalues and a set of eigenvectors for A.

b. Carry out the diagonal transformation of A.

c. Use the diagonal transformation and Eq. (3.65) to determine the state
vector x(t).
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Problem 3.6
A linear system is given by its state space model:
. -4 -3 3
x:[1 0]x+[0}u,y=[o 1]x.

a. Find the eigenvalues and the eigenvectors of the system.

b. Determine the diagonal transformed system.

¢. Determine the state transition matrix of the diagonal system.

d. Determine the state transition matrix of the original system (Hint: use (3.133)).
Problem 3.7

A perfect ball rolls in the vertical plane on the surfaces shown on Fig. 3.30.

Fig. 3.30 Rolling ball on
surface in the vertical plane : :

La. With no rolling resistance ~ 2a. With no rolling resistance
1b. With rolling resistance 2b. With rolling resistance

A~ N

4. With rolling resistance

a. Use stability definitions 1 and 2 in the beginning of Sect. 3.7 to characterize
the stability properties in all 6 cases.

Justify the results.

Problem 3.8
Given the continuous time state space model,

x(7) = Ax(7) + Bu(z),

with the following system matrices

] -2 3 5
(I
. A= 2. A=|3 2 -5
)
- 2 1 -3
-2 -3 5 2 =3 5]
3. A=]6 15 -21 4. A=|10 20 -20
514 19 9 19 —18]
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a. In all four cases, find the eigenvalues and mark them on a drawing of the
complex plane.
b. Characterize the four system’s stability properties.

Problem 3.9

One has the discrete time state space model,
x(k + 1) = Fx(k) + Gu(k),

with the following system matrices,

T 10 0
11
. F= _21 T 2F=|5 5 0
L2 -1
[ -1 2 -1 (1.5 —0.5 0.25
3. F=|—15 25 —I 4 F=|1 0 025
3 =3 2 0.5 —0.5 075

a. In all four cases, find the eigenvalues and mark them on a drawing of the
complex plane with the unit circle.
b. Characterize the four system’s stability properties.

Problem 3.10

Consider the system:

0 1 0
x(k—&—l):[_l é]x(k)—i—[l]u(k), yk)=[-2 1]x(k).

2

a. Find the system’s eigenvalues and natural modes.
Is the system asymptotically stable?

b. Find the transfer function of the system.
Is the system BIBO-stable?

Problem 3.11

Given the following continuous time LTI-system:
. [0 1 N 0 _q 1
X = L o X | y=la X.

a. Is the system internally stable?
b. Determine « such that the system is BIBO-stable.
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Problem 3.12
One has the system:

-3 4 11 12
e S o R N Al IR

a. Is the system controllable?
Is it observable?

Now the system is changes in such a way that

S R |

b. How does this change influence the controllability and the observability?

Problem 3.13
Consider the system:

-1 1 1 1

‘ 0 0 1 |x+]0 0 boo
X = X u, y= X.
" Y=o 2 o0
0 —2 -3

. Compute the eigenvalues and the corresponding eigenvectors for 4.
. Use a similarity transformation to achieve the diagonal form of the system.
Draw block diagrams of the original as well as of the diagonal system.
. Determine the transfer function matrix for both systems.
Find the left eigenvectors for the system matrix 4 (hint: use Eq. (3.246),
Wy

T
w>

o oo o

-1

ie., =[vi v ... V]

W,

f. Use Eqgs. (3.230) and (3.301) to determine controllability and observability of
the system.

g. Repeat f. using the PBH-test.

Problem 3.14
Given the following system:
-2 -3 5 0
x=|4 5 =5|x+|1l|uy=[-2 -5 5]x.
3 4 -3 1

a. Find the characteristic polynomial of the system.
b. If possible, find the controller canonical form and the observer canonical
form for the system.
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c¢. Determine the transfer function
d. Comment on the system’s controllability and observability in relation to the
properties of the transfer function.

Problem 3.15

For a linear system a model is given in the form of the following differential
equation:

dy dy v, _du
das  dr? a YT '

a. Show that the system model can be written as the state space model:

01 0 0
x=10 0 1 [x+|0]u y=[-2 1 0]x (3.418)
4 4 -1 1

b. Is the system internally stable?

Is the system minimal?
c. Find a minimal state model for the system.
d. Is the system (3.418) stabilizable?

Is the system (3.418) detectable?

Problem 3.16
A block diagram of a MIMO LTI system is seen on Fig. 3.31.

Y1

Y2

Fig. 3.31 Block diagram of a
MIMO system
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a. Determine the transfer function matrix G(s) of the system:

Lol =50 o)

. Choose the natural state variables and derive a state space model.
Is the state model minimal?
d. Derive a state space model using the method in Sect. 3.10 (the Eq. (3.384)).
Is this system minimal?
e. Find a minimal system by controllable subspace decomposition.
f. Is the system in part b. stabilizable and detectable?

oo



Chapter 4
Linear Control System Design

Abstract In this chapter a review of the design of multivariable feedback
controllers for linear systems will be considered. This review treats mainly
deterministic control objects with deterministic disturbances. After giving an
overview of the type of linear systems to be treated, this chapter will handle the
basic control system design method known as pole or eigenvalue placement.
First systems where measurements of all the states are available will be treated.
For cases when such complete state measurements are not available the concept
of deterministic observers to estimate the states which are not measured directly
will be introduced. It will also be shown that it is often possible to design
reduced order observers where only the unmeasured states are estimated.

4.1 Control System Design

Before going into the specific task of designing linear control systems it is
necessary to set the ground rules for the treatment. This can be done by present-
ing an overall picture of the components and configuration of the system which is
to be considered.

A control system is a dynamic system which is designed to operate in a
prescribed manner without external interference, in spite of unavoidable effects
(disturbances) which impede its proper operation. The main purpose of this
book is to present methods to analyze and synthesize such systems. A second
purpose is to present methods to model disturbances and design control systems
for minimum disturbance sensitivity. This requires a tabulation of the main
elements of such systems and a presentation of their general configuration.

The main components of a control system are

. The plant or control object.

. The actuators or drivers for the plant.

. The sensors which measure the current operating point of the plant.

. The controller which drives the plant in accordance with the overall control
objective given the sensor measurements.

AW o —
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Fig. 4.1 Block diagram of a Plant Sensor
typical control system. disturbances disturbances
The plant or control object
is shown in the upper part
of the figure while the Control obj
Ac ]ect I
controller and feedback cuators (Plant) Sensors
loop is shown at the bottom Plant Plant
inputs outputs
Control Sensor
signals outputs
Feedback loop
Controller
Reference j
inputs

A block diagram of a typical control system is presented on Fig. 4.1. Note, that
the actuators and sensors are usually considered to be external to the control
object itself. However it is often necessary that the dynamics of these components
are taken into account in the design of the overall feedback control system.

The plants or control objects which may be controlled in this way can be of
many different types: mechanical, electrical, fluid dynamic, economic, biologi-
cal, etc. or combinations of such plants. The only limitation to the nature of the
plant (as far as this book is concerned) is that it be described in terms of a
coupled set of differential or difference equations. Actuators are devices which
are coupled to the control inputs of the plant to supply the energy necessary to
effectuate the control commands of the controller. Sensors are devices for
measuring the outputs and/or states of the plant. This general description can
be used on many types of systems. The controller is in general a dynamic system
which on the basis of the measurements provided by the sensors gives an input
to the actuators which drive the control object in such a way as to accomplish
the desired control objective.

The main feature of control system theory is feedback. This means use of
the sensor measurements to derive a signal or signals which are used to drive the
actuators of the control object to accomplish a given control task. Such a
feedback (loop) is shown on Fig. 4.1 and it is in general external to the control
object itself. This mechanism is used to increase the speed or bandwidth of the
control object, to increase control accuracy at one or many operating points or
to achieve some other desirable control effect.

Another important feature of feedback control systems is an external input
which is inserted into the controller in order to provide information as to what
the desired control point or trajectory is. This input is shown on the bottom of
Fig. 4.1 and is commonly called the reference or command input. Often this
input takes the form of a desired value for one or more of the outputs or states of
the control object. It may be either constant or variable.
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One of the main reasons to use control systems is to suppress disturbances of
the control object or minimize the effect of noisy or inaccurate measurements of
the state of the plant. Disturbances which are inherent in the plant are often
called state disturbances, biases or noise. These are indicated on Fig. 4.1. Such
disturbances are often generated physically in the plant but may also include
changes in the characteristics of the control object itself. These modelling error
disturbances are just as important as those which come from other sources
because they make it difficult to know the nature of the plant itself. Thus they
destroy the basis for proper modelling and accurate design. Such disturbances
are called plant parameter variations or modelling errors. When measurements
are made on the states of a system, it is often the case that disturbances are
introduced in the measurement mechanism or sensor itself. This is shown on
Fig. 4.1 as the measurement disturbance or noise source. In this chapter the
presence of the state disturbance will be considered indirectly and it will be
assumed to be of an unmodelled ‘deterministic’ type. Disturbances cannot in
general be manipulated by the control system designer so that the designer can at
best suppress or minimize the effects of disturbances on a given control system.
This nearly always involves a design compromise between carrying out the
desired control task while at the same time suppressing system disturbances.

Many examples of control systems are readily visible in the world at the
present time. These include control systems for chemical process plants, hard
disk drives, automotive engines and vehicles, aircraft autopilots, space vehicle
attitude and navigation, investment and economic management systems. In fact
the availability of inexpensive semiconductor chips as central processing units
(CPUs) and analog signal processors ensure that control systems will be built
into a very large percentage of the more complex industrial products and
services which will be offered in the future.

Currently most of the control systems which have been produced are for
physical or chemical systems. As an easily understood physical example one can
take an aircraft autopilot. In such systems the control objective is to control the
speed, altitude and attitude of the aircraft as accurately as possible. A second
main objective is to provide for automatic path following as well, but only the
first objective will be considered here. The plant is of course the aircraft itself:
it is a dynamic system because the control surfaces and engine of the aircraft,
once activated, can only react with time constants and/or time delays. Increas-
ing for example the throttle control of a jet engine will cause an increase in
thrust only on time scales of say 10-30 s.

The actuator for the engine is the fuel injection nozzle and fuel control valve.
For attitude control the actuator is the control surface positioning mechanism.
This mechanism is often an electric or a hydraulic motor. Sensors on aircraft
include gyroscopes to sense the angle of the aircraft with respect to the horizon
and rate gyros to sense rate of rotation. Air speed sensors are often pitot
tubes. Currently the sensor signals are fed into a controller which is a digital
computer. In former times the controller was a electrical/mechanical analog
computer. One important disturbance which prevents an aircraft from
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following a desired path is the air movement around it. This can take the form
of side wind, updrafts and downdrafts. When the aircraft deviates from its
desired flight path because of external air movements, the job of the controller is
to maintain a certain attitude and speed as closely as possible. Additionally it
can be stated that aircraft autopilots are currently so advanced that the pilots’
main task in many cases (even during landing and takeof¥) is reduced to simply
monitoring the aircraft’s attitude and path controllers.

The consideration of control systems for other types of systems than physical
or chemical has also reached an advanced level in some areas. One of the most
interesting of these areas is control and/or planning applied to economic systems.
Consider the case of the inventory control. A sales organization wants to
control the size of its inventory so that it can always fill its orders. Its inventory
on any given day is equal to the size of its stock plus the orders which are given
to the organization’s supplier the previous day, minus its daily sales. From
experience the manager knows that his sales vary around a certain value every
day. The question is: what sort of control must be applied in order to make
certain that there is always something to sell? The sensor here is the counting up
of the stock every day. The actuator is the giving of the order. Dynamically the
system is dominated by its inherent time delays. Possible state disturbances in
the system are the sales level which changes and the variability of production
quantity and quality. Measurement disturbance could be possible mistakes in
counting up the stock or difficulties in keeping track of large numbers of
different commodities. This is a typical management problem but other inter-
esting problems are for example optimal investment strategies and commodity
pricing.

4.1.1 Controller Operating Modes

Control systems can obviously be used for many different purposes but in
general they operate in two basic control modes:

1. As regulators, intended to operate around a single set or operating point in
state space.
2. As trackers, intended to follow a certain trajectory in state space.

For linear systems, which do not change their dynamic characteristics with
their operating point in state space, there is very little difference between these
two modes of operation. However, as most control objects are nonlinear, there
may be significant control problems involved in operating in these two different
modes.

When operating in the regulator mode a control system has the goal of
keeping the control object at a certain location (or set point) in state space.
This location is specified by defining a constant value of a single state or output
variable, multiple states or outputs or some linear combination of them. This is
probably the most common operating mode for a control system.
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When a control system operates in the tracking mode, it is the intention that
the state vector describe a certain path (trajectory) in state space. Usually this is
accomplished by changing the reference input to the control system according
to some predetermined pattern in order to cause it to move as desired. This is the
second most common operating mode for a control system.

Example 4.1. Regulator for the Idle Speed of a Spark Ignition Engine

Modern gasoline driven vehicles spend on the order of 30% of their operating life
at idle when operating in cities. It is also true that drivers in large measure judge
the quality of their vehicles by the evenness of their engines in idle speed. This
means that it is important for vehicle manufacturers to ensure that
their engines idle at a constant speed (usually 600-1200 rpm) and smoothly,
despite load disturbances. These disturbances are mainly due to secondary
engine loads (lighting, generators, pumps for steering assistance, electric
windows, air conditioning, etc.).

Mostly because of emission restrictions, modern vehicles are nearly all pro-
vided with electronic engine actuators, sensors as well as three-way catalyst
exhaust systems. In fact the main reason for the advanced engine controls is
emissions legislation. Recently it has become clear for reasons of cost that most
vehicles will be provided with drive-by-wire throttle bodies. In such systems the
accelerator pedal is connected to a potentiometer and the throttle plate operated
with an electric motor position control system. This makes it possible to eliminate
several other actuators for other engine functions than idle speed control and thus
reduce the overall cost of the engine control system. Thus idle speed control is
accomplished by controlling the position of the throttle plate and hence the air
flow to the engine. A secondary engine speed control is via the spark timing. The
throttle plate is a butterfly valve placed just before the intake manifold or
plenum of the engine. This plenum is then connected by runners to the engine
ports on the engine head itself. The actuator for the throttle plate is often a DC
electric motor with or without some gear reduction. The sensor for the engine
speed is a magnetic pick up which is coupled to the engine crank shaft.

Figure 4.2 is a block diagram for an idle speed control system. Here it is
shown that the idle speed control system measures the crank shaft speed, n, and
on this basis adjusts the port air mass flow, m,,, via the throttle plate angle o and
the engine spark timing. In general for physical reasons the throttle angle
control is used for slow speed control while spark timing is used only for fast,
momentary speed control. Also shown on the block diagram only for the sake
of completeness is the air/fuel ratio control which is assumed in this example to
be ideal (the ratio of the port air mass flow to the fuel mass flow is fixed at
Mgy /My = 14.7. This ratio is the stochiometric air/fuel ratio (AFR) necessary
for low emission operation of modern catalyst equipped engines. The idle
speed control subsystem has to work in conjunction with the engine air/fuel
ratio control loop. O
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Fig_. 4.2 Block diagram for | Fuel Spark
an idle speed control system injectors || timing
for a port injected gasoline l
engine Pedal "fi
mput | Throttle Intake + A+ Eneine .
plate manifold 8
o r Mgy
Air/Fuel
DC-motor ratio control

Idle speed
control
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Example 4.2. Optical Tracking of a Labyrinth Game

An interesting tracking control study with numerous possible industrial appli-
cations has been carried out at Department of Automation at the Technical
University of Denmark on a labyrinth game using a television sensor. The control
object for this study is an x—y game labyrinth equipped with actuators (small
DC-motors) for the x and y directions. The object of the game is to use the x and
ycontrols to tip the game board in either direction to move a small ball around a
predetermined path marked on the game board. To sense the position of the ball
on the game board, a small CCD television camera is used together with a frame
grabber. To make this exercise more difficult, holes are cut in the game board
close to the target path on the game board.

Figure 4.3 is a block diagram of the experimental set up. The television
camera acts as a two dimensional optical sensor for the position of the ball on
the labyrinth game board. To make its pictures understandable for the con-
troller microprocessor a frame grabber is used to digitize the picture. The
camera picture also provides information about the target track along which
the ball must be moved. This is the path which must be tracked by the control
system. The tracking controller generates x and y angular inputs to the
tipping actuators built into the labyrinth game box. These are control vol-
tages Vpcy and Vpc, which drive the DC-motors. The main state disturbances
for the ball are the irregularities in the surface of the labyrinth game board
and the ball itself. Measurement noise enters the system via the digitizing of
the television camera picture and consists of pixel noise and scattered light
from the surroundings.

To start a game the ball is placed in its starting position. The controller and
its associated software then locates the outline of the game board and the target
track on it. It also locates the optical center of the ball. To move the ball along
the target trajectory, the reference for the ball center is moved continuously
along it slowly enough for the ball to follow. In other words the ball is set to
track a certain changing position or state trajectory on the game board. m
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Fig. 4.3 Path tracking y-direction x- and y-axis x-direction
controller of a labyrinth controllers
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4.2 Full State Feedback for Linear Systems

In this section the control object under consideration will be described by the
LTI state equation known from Chap. 2. For a continuous time system a vector
state equation can be used:

x(7) = Ax(7) + Bu(z) + B,v(7). 4.1)

The disturbance v(7) is assumed to be of a deterministic nature. Measurements
are made on this system which can be either the states themselves or linear
combinations of them:

y(1) = Cx(1) + w(1). 4.2)

The vector w(?) represents the measurement noise, but it will not be considered
explicitly in this chapter.

In order to establish linear feedback around the system above, a linear feed-
back law can be implemented which can be written:

u(r) = —Kx(1) +r(1), (4.3)
where K is a feedback matrix (or a gain matrix) of dimension n x m. r(¢) is the

reference input vector to the system. It has the same dimension as the input
vector u(z).
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As all of the states are measured, the resulting feedback system is called a full
state feedback system. Usually it is intended that the output of the control object
should follow the reference input in some sense. A short name for the state
feedback controller which is sometimes used is state controller. A block diagram
of the closed loop system is seen on Fig. 4.4.

Fig. 4.4 Closed loop system / .
with full state feedback 10,0, g L3020, [ 20

8- + y(@®)

K |¢

Inserting Eqgs. (4.3) into (4.1) and ignoring the state disturbance for the
moment, an equation for the closed loop system can be derived:

(1) = (A — BK)x(1) + Br(1). (4.4)

Equation (4.4) is the state equation of the closed loop system with the linear state
feedback. This system is asymptotically stable if and only if the system matrix,

Ax = A — BK, (4.5)

has all its eigenvalues in the left half plane. As will be seen later, it is possible—
under mild conditions—to place the eigenvalues of Ak arbitrarily when full state
feedback is used. The eigenvalues are determined as the solutions to the equation:

det(M — A + BK) = 0. (4.6)

This method of design is often called pole placement and is a common method
for initial system design, Jacobs (1993), Friedland (1987). Before going into a
more complete development of the eigenvalue placement method, it is useful to
look at an introductory example based on the DC-motor of Example 2.3.

Example 4.3. Pole Placement Regulator of a DC Motor

Consider an example where a DC-motor is used for angular or linear position

control. A practical example of the former control type is the throttle position control

subsystem which forms part of the idle speed control system in Example 4.1. An

example of a controller for linear movement is that for the x and y coordinates of an

x—y plotter. For the sake of simplicity an angular position control is considered here.
The states are the angular position and velocity respectively,

x1:9,

)CQZO.
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Assume that the armature inductance is negligible so that an adequate state
equation is Eq. (2.28),

0 1 0
T 0 by R + K.k, X+ K, %
- JR JR 4.7)
y=1[1 0]x.

To obtain some insight into the meaning of the matrix elements, the transfer
function for the motor can be found. First the individual equations are written
down,

).Cl = X2,
bbR+Kake Ku
_ Sake  Ka 48
X TR 2t Rt (4.8)
Yy =X

Then these equations are Laplace transformed:

sx1(s) = xa2(s),

B byR + K k.

T xa(s) + euls), 49)

sx2(s) =
y(s) = xi(s)-
Eliminating the state variables gives directly the relation between u and y,

K,

yGs) b, R+ K.k, Ky (4.10)

JR T s(tus+ 1)
S<bbR + Kakes * 1) ( )

where 7, is the motor time constant and K, the static motor gain. In many
cases it is true that,

bbR < Kakea
and therefore,
JR 1
Tm = m and K, = k_e
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Substituting these quantities into the state Equation in (4.7) one finds

0 1 0
X = [0 ] ]x+ [K]u (4.11)
T S

It is desireable to place the eigenvalues of the closed loop system in prede-
termined positions. For instance one can choose,

7\‘01 = - i]B?

where o and B are positive numbers. This means that it is desired that the closed
loop characteristic polynomial to be

Pa(M) = (A + o4 B) A+ o4 —jB) =A% + 20k + o + B (4.12)
This is also the characteristic polynomial of the closed loop system matrix Ak,
Poy(N) = det(M — Ag) = det(M — A + BK), (4.13)
with
K=k k]

and with the matrices from Eq. (4.11), one has

v 0 1 0 0
Pcho\‘) = det [ ] : 0 L ki Ky ko Ky
0 % T T T (4.14)
_ 7\‘2 + 1 -+ sz‘,m 7\‘ + levm )
T Tm

Equating (4.12) and (4.14) leads directly to expressions for the determination
of k; and k»,

1+ kZKvm

T m

=2

)

(4.15)
levm — 0(2 + Bz’
Tm

which gives
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) 2
ki =—— + B),
=2+ )

‘[’-ﬂl 1
kz = <20( — —) .
Kvm Tm
From classical system theory it is known that the reciprocal of the time
constant is the cutoff (or break frequency) of the first order system,

(4.16)

1
— = Wp.
Tm

For the characteristic polynomial (4.12) of the second order system it is also

known that
®, =1/ + % and Lo, = o.

If the natural frequency ®, is to be, say 5 times the cutoff frequency and the
damping ratio to be { = v/2/2, then the parameters must be

5v2
o = B = —
2T,
which gives the gains
k] - 2 )
KomTm
(4.17)
b V21
: KW‘I? ’

A block diagram of the closed loop system is shown on Fig. 4.5. Now it is
obvious that what has been achieved here is nothing but a reinvention of the
classical position servomechanism with internal tachometer feedback. But, as
will become clear presently, this achievement has much wider perspectives.

Armature I_,

Fig. 4.5 DC-motor with
state feedback L
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Example 4.4. Pole Placement for a Mass, Spring, Damper System

A large number of dynamic systems can be described as second order systems
with more or less damping. These include suspensions for transport vehicles,
various hydraulic components, simple seismometers, simple rate gyros, loud-
speakers and many other technical devices. It is also often true that the effective
response of complex higher order systems is dominated by a single complex pole
pair, again, more or less damped. Thus it is relevant to look at such systems in
order to evaluate the effect of full state feedback. A simple system which can be
used as an example is a forced mass-spring-damper system.
The differential equation describing such a system can be written,

mi = —kx — bx + F, (4.18)

where m is the mass, x is its position, k is the spring constant,  is the damping
coefficient and F'is an external driving force. A sketch of the system is shown on
Fig. 4.6.

Fig. 4.6 A driven mass-spring-damper system .

m —

R Ty
D
B

Damping coefficient b

Usually for mechanical systems the position and the velocity are selected as

state variables,
{ . } { ; }
X = fr— . y
X2 X

and the state equations can readily be formulated as

xl = X2,
. b 1
Xp = ——X| —— X2 +—F.
m m m

If one lets the driving acceleration be the input to the system (i.e., u = F/ m) the
following dynamic and input matrices result:

0 1
k b
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Deriving the transfer function the same way as in Example 4.3 the natural
frequency and the damping ratio for the system are found to be

k
W, = —
m
- b
B 2Vmk

If it is desired to design a state controller with measurement of and feedback
from the two states, one can proceed as in Example 4.3. Choosing the closed
loop natural frequency ®,,; and damping ratio {, the closed loop characteristic
polynomial becomes

Po(M) = A2 + 20, Ok + @2,
The closed loop characteristic polynomial is
Pey(M) = det(M — A + BK) = A% + (ka + 2L0,) + ky + @2,
where the feedback gain matrix which has been used is
K=[k k]

Comparison the two expressions for P.,(A) gives the gains,

2
" (4.19)
kZ - z(cclmm‘l - C(Dn)-

2
ki = Wype — O

Notice that the treatment above allows the possibility that the original
damping ratio { of the system can be either positive or negative. A negative
damping may be hard to imagine in this case but second order systems
with negative damping do exist. Moreover, the natural frequencies may
have any value. If it is desired that the closed loop system to be slower
than the original system (co,21d<o)£) then the gain k; becomes negative. So it is
always possible to stabilize the system no matter how badly damped or how fast
it is. The only requirement is that an adequate driving force can be generated.

Now a numerical example will be given which is representative of a heavy

industrial system. Assume the following data

m=1500ke, k=20000, b= 15
m m
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i

The system’s eigenvalues, natural frequency and damping ratio are

This leads to the matrices,

0 1

A= , B=

—1.333 —-0.1167

d
A= —0.0583 +/1.153, ®, = 1.155%, £ = 0.0505.

This is a system with very low damping and an objective for the control
system design will be to increase the damping. If the values

rad
Wyl = 2@7 Ccl = 067

are selected, the feedback gains may be calculated from Eq. (4.19),
ki = 2.666,

ko = 2.283.

Figure 4.7 shows the closed loop system. The result of a simulation of the
system with and without feedback is shown on Fig. 4.8. The input signal to
the system with feedback is a unit step and for the uncontrolled system it is a
step of height 1/3.

The force time function for the feedback case is seen on Fig. 4.9. The
responses show that the dynamic behaviour of the system has been improved
considerably by the feedback. In spite of the fast response of the controlled
system, the force necessary for the movement is not excessive.

oy u T X |T| X |T| x
—r - | L L]

b

k

System o

ky

Fig. 4.7 Mass-spring- —
damper system with state k,
feedback L
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Fig. 4.8 Response of the 0.5 ‘ : ‘
system on Fig. 4.7 with and x [m] . Without feedback
without state feedback o I A NG D A

%% 5 10 15 fsec) 20
Fig. 4.9 Force for the 1500
system with state feedback
F[N] : :
1000 /- ................. .................
500 |
0 .
0 5 10 15 t [sec] 20
a

The last example shows that stable or unstable systems can be stabilized using
full state feedback. In fact the eigenvalues have been placed arbitrarily in the
complex plane in order to satisfy a predetermined performance requirement.
This has been done for a low order system but it can also be done for a higher
order system though this may require more sophisticated design procedures that
those used here. Notice however that the simple method presented above gives no
clue as to where the eigenvalues of the closed loop system might be placed for
optimal results. This requires a more complex treatment which will be presented in
Chap. 5.

Though the remarks and examples above indicate that full state feedback can
be used to obtain any given eigenvalue placement, some cautionary remarks are
in order with respect to what can be accomplished on general systems. One of
the reasons for caution is that the discussion above has not considered the
question of system zeros. As will be detailed later, system zeros cannot be
moved using this type of feedback (for SISO systems) and this means that
they may set a fundamental limit to system performance. Zeros have an impor-
tant influence on the transient response of a system. In particular a zero can
cause a large overshoot even in a stable system. Nonminimum phase zeros
(those in the right half plane) are particularly worrying in this respect. It must
be remembered that right half plane zeros cannot be cancelled with right half
plane poles.
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4.3 State Feedback for SISO Systems
4.3.1 Controller Design Based on the Controller Canonical Form

The design procedure in Sect. 4.2 can be systematized in several ways. For SISO
systems the most obvious general approach is based on the controller canonical
form of the state equation. In Sect 3.9 it was seen that a controllable system can
always be transformed into the controller canonical form using the similarity
transformation,

z=P'x, (4.20)

where P can be found from Eq. (3.354). If the state equation is given as a
controller canonical form, as will be the case if the state model is derived directly
from a transfer function, then one already knows beforehand, that the system is
controllable.

The controller canonical form is:

7= Az + B,

(4.21)
y = C(’CZ7
where
0 0 0 0
0 0 o 0 0 0
Ao = : : : : : , Bee=1:1, (4.22)
0 0 0 0 1 0
—dy —ayp —dr ... —dp2 —dy]
Cooe=1[bo by by... byl
With the full state feedback,
u=—K.z+r, (4.23)
and the feedback gain matrix,
K. = [k, K,.. k], (4.24)
the following closed loop system is obtained,
z = Ag,z+ B,r,
(4.25)

y = C(’Cza
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where the system matrix becomes

AK = Acc - BCCKC(‘

cc

0 | 0 0 0 1
0 0 1 0 0
(4.26)
0 0 0 0 1
L —do —k/] —d _k/2 —da —kg . —Adp2 —kiF] —dp—1 _k:1_

Since the input matrix is still the same as before, it is seen immediately that the
closed loop system is also in the controller canonical form. This means that the
elements in the bottom row of Ak, are the coefficients of the characteristic
polynomial of the closed loop system.

Now if it is desired that the eigenvalues of the closed loop system are to be
placed in specific positions in the complex plane,

7\4(’1 = 7\40113 7\'(,’/27 ) )\‘L’I)‘l? (427)

the closed loop characteristic polynomial can be written

P, agy = [JO0=her) =M+ o+ okt og. (4.28)

i=1

Comparing (4.26) and (4.28) allows one to set up a very simple set of equations
for determination of the feedback gains

oy = do + k/lv
o =day + k/27
(4.29)
Op—1 = dp—1 + quv
which implies that
k| = o — ap,
k’z =0 —ay,
(4.30)

/
kn = p—1 — dp—1-
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Substituting (4.20) into (4.23) the gain matrix for the original system can be
found:

u=-K. P 'x+r=—-Kx+r
(4.31)
=K=K.P"

If the system (4.21) is the original system and not the result of a similarity
transformation this last step is of course irrelevant.

4.3.2 Ackermann’s Formula

It is possible to avoid the similarity transformation prior to application of the
design procedure above. To show how this can be achieved the treatment will be
specialized for a third order system for the sake of simplicity. The result can
immediately be extended to systems of any order.
The controllability matrix for the third order system,
x = Ax + Bu, (4.32)
is

M.=[B AB A’B]. (4.33)

If the controller is transformed into canonical form (using z = P~ 'x)
one finds

Z = A.z+ B..u, (4.34)
with the controllability matrix (see Eq. (3.256)),
Mcc = [B. A.B. A2B.]=P 'M, (4.35)
which shows that
P! =M. M. (4.36)
The matrices A and A, have the same characteristic polynomial,

Pch,AO\') = 7\43 + 6127\.2 +ah+ay = Pch,A..(x)» (437)

cc
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which means that

0 1 0 0 0 0 1
Ae=1]0 0 1 |, Be=|0|andM.,.=|0 1 —a |. (4.38)
—dy —d; —ap 1 1 —day a% —da

As before the coefficients of the closed loop characteristic polynomial are
selected:

Po ac(M) = 0P 4 00h? 4+ oqh + o, (4.39)
In this polynomial substitute A, for A and obtain the matrix polynomial:
Popag(Ace) = A2+ 0nA2 + oA + ol (4.40)
From the Cayley-Hamilton theorem it is known that
Al + A2, + A + apl = 0. (4.41)

Subtracting (4.41) from (4.40) yields

Pch,AK (Acc) = (OL2 — az)AgC + (0(1 — al)Acc + (OL() — ao)I. (442)
Since
0 0 1
Al = | —a —a —a (4.43)

aay —ap+aiay —a)+a;
Equation (4.42) becomes

Qo —do O —dyp O —d

Poac(Ac) = | X X X (4.44)
X X X
where the elements marked X are functions of the coefficients ¢; and o;.
From Eq. (4.30) one has that
ch = [O(o —dyp 0] —da oy — az] (4.45)
which means that one can write
Kie=[1 0 0]Pyac(A)=[1 0 0]Py s (P 'AP)  440)

=[1 0 0]P'Py a (AP
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Equations (4.31), (4.46) and (4.36) lead to

K=K.P'=[1 0 0]P'Pyac(A)

=[1 0 0]M. oM. Py s (A) = . 40
= ¢, cctVi, c/1.AK( )— [0 0 I]M(; Pch,AK(A)-

As mentioned earlier, there is no difficulty in extending this method to
systems of arbitrary order n and the complete Ackermann’s formula for the
gain is therefore

K=[0 0 ... 0 1M, 'Py ac(A), (4.48)

where the row vector to the right of the equal sign has the length 7.

4.3.3 Conditions for Eigenvalue Assignment

Equation (4.48) shows that K can be found if M, is nonsingular, i.e., if the
system is controllable. This was also the case for the first design procedure in
this section and it is concluded that controllability is a sufficient condition for
arbitrary eigenvalue placement.

Considering an uncontrollable system the controllable subspace decomposi-
tion in Sect. 3.8.11 can be applied. A similarity transformationz = Q'x is used
where Q is found from (3.338). If it is assumed that a gain matrix K has been
found for the system (4.1) then it is clear that

K, = KQ, (4.49)

where K, is the gain matrix for the transformed system.
The eigenvalues for the closed loop system are the solutions of the equation

det(M — A + BK) = 0. (4.50)

Pre- and post-multiplying with the determinants of Q_; and Q and carry
through the following calculation:

det(Q") - det(\l — A + BK) - det(Q) = det(Q ' (M — A + BK)Q)

4.51
= det(M — Q 'AQ + Q 'BKQ) = det(Ml — A, + BK,) = 0. (430

If the system’s controllability matrix has the rank p the gain matrix can be
partitioned,

Kt == [Ktl Ktz L (4~52)
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such that K,; has the length p and K, has length n — p. Now insert the
partitioned matrices into the last expression in Eq. (4.51) and see that

Ac A12 Bc
delO\.I — A[ + B[K[) =det| M — A [K,] K,z]
ne
. M, — A, +BK,; .—A;+BKp, (4.53)
= el - = - - = - = = - = ==
0 ! 7\4171711 - Anc

— det(M, — A, + B.K,) - det(M,,_, — A,.) = 0.

The last expression shows that the closed loop eigenvalues consist of the
p eigenvalues which can be influenced by the gain matrix K;; and the remaining
n — p eigenvalues of the uncontrollable system matrix A,,.. These eigenvalues
cannot be influenced by the feedback gains and will therefore remain in their
original positions. Thus it is concluded that controllability is also a necessary
condition for arbitrary eigenvalue placement.

Another important conclusion can be drawn from the result above. It is clear
that all the eigenvalues in the controllable subspace can be assigned specific
values, even if the controllable subsystem is not stable. If the eigenvalues of the
uncontrollable system are also in the left half plane then the closed loop system
can be made stable by a proper choice of K,;. So it can be seen that it is quite
reasonable to call such a system stabilizable. See p. 124.

System Zeros

If a full state feedback controller for the system in controller canonical form
is designed, it will be noticed that the output matrix is not changed by the
feedback. Since the coefficients of the numerator polynomial of the transfer
function are given entirely by the C.. matrix and since the transfer function is
unique, it is obvious that the zeros of the system will remain unchanged by the
state feedback. See also the remarks in the end of Sect. 4.2, p. 207.

Discrete Time Systems

It should be pointed out that the design procedures detailed earlier in this
section are also valid for discrete time systems. The only difference is the actual
positions which are normally selected for the closed loop system eigenvalues.

If the system equations are

x(k + 1) = Fx(k) + Gu(k),

4.54
y(k) = Cx(k), (39
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the linear feedback law will be
u(k) = —Kx(k) + r(k) (4.55)

resulting in the closed loop equations

x(k + 1) = (F — GK)x(k) + Gr(k),

(4.56)
y(k) = Cx(k).
The closed loop system matrix is
Fx =F — GK. (4.57)
The eigenvalues are determined by the equation,
det(Ml — F 4+ GK) = 0. (4.58)

The conditions for eigenvalue assignment stated above are equally valid for
discrete time systems.

The relations between the eigenvalues in the continuous and discrete time
domains are given by Eq. (3.87):

1
Ap =T oy = Flog AF- (4.59)

Thus if a continuous time eigenvalue pair is given by
M =axjb (4.60)
the corresponding discrete time eigenvalue pair will be
A = e“T(coshT + jsin bT). (4.61)

In general the controller designer will attempt to give the closed loop system well
damped eigenvalues with a sufficiently high natural frequency, or if real eigenvalues
are selected, time constants of a reasonable magnitude will be chosen. These
requirements can be illustrated by the eigenvalue placements on Fig. 4.10. If the
eigenvalues are placed in the shaded region, they will have a certain minimum
damping and a certain minimum natural frequency (or a maximum time constant).
For the discrete time system the corresponding region will be as shown on
Fig. 4.11 (see also appendix D),

Itis important to note that one should not try to place the eigenvalues too far
to the left or too close to the origin in the continuous and discrete time cases
respectively (see the dashed curves on the figures). This will result in large gain
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Im

Fig. 4.10 Eigenvalue
placement for continuous
time systems
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Fig. 4.11 Eigenvalue
placement for discrete time
systems
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values in the K-matrix and therefore also to excessively large input signals and
high noise sensitivity.

Example 4.5. Continuous Control via the Controller Canonical Form

The continuous third order system,

—0.14 033 —0.33 0
x=| 01 —028 0 |x+| 0 |uy=[2 0 0]x, (462
0 1.7 —0.77 —0.025

will now be investigated. This system has the eigenvalues

[ —0.8986
| —0.1457 £ 0.2157
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which correspond to

T =1.11 sec,

o, = 0.26sec”!, (=0.56

The determinant of the controllability matrix for the system of Eq. (4.62) is
nonzero, so the system is controllable. It is desired to design a state controller
such that the closed loop system has real eigenvalues corresponding to time
constants of about 1.5s. Therefore choose the closed loop eigenvalues,

—0.67
ha={ —0.67, (4.63)
—0.67

which means that the closed loop characteristic polynomial will be
Poi(h) = A +2.012% 4 1.3467A + 0.3008.

First the design method involving the controller canonical form will be used.
The necessary similarity transformation matrix is found from Eq. (3.353).
One has

231 825 0
P=[p;p,p;]=| 0825 0 0 | x107?
—0.155 —10.5 -25

and

0 1212 0
P'=|121.1 -3394 0
-50.9 135  —40

and consequently

0 1 0 0
Aee = 0 0 1 , Bee=10],
—0.06087 —0.3296 —1.19 1

C.. =1[0.00462 0.0165 0].



4.3 State Feedback for SISO Systems 217
This is all that is required to determine the feedback gains from (4.30),
Kee = [k,I k/z kg],
where

k| = a9 — ap = 0.3008 — 0.06087 = 0.2399,
Ky =0y —a; = 1.3467 — 0.3296 = 1.10171,
ky=03—a;=2.01-1.19=0.82.

The feedback matrix for the control canonical form has been found here. To
transform back to the original system one has to use Eq. (4.31),

K=K.P'=[81.54 5626 —32.8].
Using this gain matrix the eigenvalues of the closed loop system are found to be

—0.687 = 0.029

det\l —A+BK)=0= A, = {
—0.637
This is not precisely what was specified and the reason is small round off errors
in the calculation above. The deviations are of no significant importance
though. The system designed will have properties which can hardly be distin-
guished from the system with the specified eigenvalues, Eq. (4.63).
A simulation of the closed loop system,

x = (A — BK)x + Br, y = Cx, (4.64)

can now be carried out. If 7 is a unit step, the responses on Fig. 4.12 are found.
The initial state is a zero-vector. The output has an overshoot of approximately
12 percent, a feature which cannot be explained from the real eigenvalues. If the
transfer function of the System (4.62) is calculated, one finds

Gls) = yis) 0.0165s + 0.004262
Cu(s) s34 1.1952 4+ 3.2965 + 0.06087

The system has the zero,
z = —0.28,
and since the state feedback does not influence the zeros, the same zero will be

present in the closed loop system. This zero is close enough to the eigenvalues to
be responsible for the overshoot on Fig. 4.12. 0
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Fig. 4.12 Output and input 0.02 T T T
signals for unit step ‘ } ‘
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Example 4.6. Discrete Control via the Controller Canonical Form

Now a discrete time controller for the system in Example 4.5 will be designed.
The procedure starts with the discretization of the continuous system using the
Formulas (3.83)

x(k + 1) = Fx(k) + Gu(k), y(k) = Cx(k).

First an appropriate sample period must be selected, one which is approxi-
mately one fifth of the system time constant:

T =0.2sec.
Using MATLAB’s Control System Toolbox it is found that

0.9730  0.05293 —0.06031
F=cAT = 0.01918 0.9461 —0.00061
0.003142 0.3063  0.8572

and

. 1.554-107*
G= / ABdt = | 1.0369 - 1076
0 —4.635-1073



4.3 State Feedback for SISO Systems 219

Using the same closed loop eigenvalues as in the previous example, the discrete
time eigenvalues will be,

0.87459
Mt = €T = { 0.87459
0.87459

which means that the closed loop characteristic polynomial will be
P re (M) = A2 — 2.6238)% 4 2.2947) — 0.66898.

This time applying Ackermann’s formula, the matrix polynomial is easily
found by substituting F for A in this polynomial,

Pev (F) = F? — 2.6238F> + 2.2947F — 0.668981.
The controllability matrix is found to be

15539 430.72  658.96
M= [GFGFG]=| 1.0369 6.7881  17.107 | -107°.
—4633.9 —3971.4 —3400.9

Some the elements of M. are very small and the determinant of M., is therefore
also small:

det(M,) = —7.641 - 1072,

Ackermann’s formula requires the inverse of M, and consequently the very small
values for det(IM,) can cause numerical problems when the gain matrix is calculated.
However, in this case the formula works properly and the gain matrix
obtained is

K=[0 0 1]M.'P, g (F)=[74.634 47.719 —30.393].
Testing the closed loop eigenvalues yields the result,

0.87827 £ j 0.002375

det()] — F + GK) = 0= &, = {
0.87724

This is close to the desired placement and it indicates that the matrix inversion
did not cause significant numerical problems.

Problems may arise, however, if det(M.) becomes too small. If, for instance,
a sample period is selected which is ten times smaller, 7= 77 = 0.02s. Repeat-
ing the entire procedure, one will end up with a controllability matrix M,1 with
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det(M,1) = —1.051-107"7.

The corresponding gain matrix for the same closed loop eigenvalues turns out
to be,

K; = [12974 265900 —667.14],

or up to a factor 5000 larger than before. When the controllability matrix
comes close to being singular (the system is close to ‘lose controllability’), the
controller must then work much harder to maintain the desired control. Gains
of this size may give rise to severe accuracy and noise problems if they are
implemented in a real system.

A discrete time simulation of the unit step response for the closed loop
system with the gain matrix K,

x(k+1) = (F — GK)x(k) + Gr(k), y(k) = Cx(k),

is easily carried out using the state equation directly as a recursive formula.
For a zero initial state vector the result on Fig. 4.13 is seen. The responses are
almost exactly equal to the responses of the continuous system at the sampling
instants which is also expected. It might be noted that the stationary value of
the discrete time output differs slightly from that of the continuous system.
This is caused by the fact that no attempt has been made to ensure that the
stationary gain for the closed loop system should have a specific value. So far

0.02 ! ! ! !

0.01

T= 0;2 sec

1
Fig. 4.13 Output and input 0 20 30 60 80 100
signals for unit step Sample no.
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the only problem considered has been of giving the systems certain dynamic
properties. m

Example 4.7. Control of an Uncontrollable but Stabilizable System

A state controller for the uncontrollable system below will now be designed:

-5 —10 10 4
x=|2 -1 =2[|x+|0|u, y=[1 0 0]x
0 -4 1 2
The eigenvalues are
—1+,2
ha =
T

and although the system is uncontrollable, it is stabilizable because all eigenva-
lues are in the left half plane.
The controllability matrix and its determinant are readily found:

40 —20
M. |0 4 -8, der(M,)=0.
2 2 -14

The rank of M, is 2 and it is immediately seen that the two first columns are
linearly independent.

The matrix required for the controllability subspace decomposition can be
for instance (see Eq. (3.338)),

)

Il
SRR
N oA o

which has

0.125 —0.125 0.25
det(Q) =—16 and Q'= |—0125 0.125 025
0.5 05  —I
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The similarity transformation z = Q~'x gives the matrices

0 —5; -3 |
lemz_Ljf;f_LmolBhy
0 0 -3 0

C=cQ=[* 0i 0]

and the controllable part of the system is described by the matrices,
0 -5 1
A , Be= , C.=[4 0],
1 -2 0

with the nonsingular controllability matrix,

1 0
Mcuc = .
o 1]

Since this system is controllable the two eigenvalues can be assigned arbi-
trary values by the two-dimensional gain matrix K,; (see Egs. (4.52) and (4.53)).
If the eigenvalues and characteristic polynomial are chosen as

4
xAKzl B =Pop 1 = A%+ 9+ 20,
-5

the gain matrix can be found from Ackermann’s formula,
Ki = [0 1]M ! P (Ac) = [7 1].

The third element in the total gain matrix K, has no influence on the closed
system eigenvalues and it can be assigned any value, for instance zero,

K, =[Ky Kp]=[7 1 0]
Re-transformation to the original basis gives finally
K=KQ'=[075 —0.75 2].
Note that with the above choice of Q, all states are fed back. But in contrast
to the controllable case, the K-matrix is not unique. As a matter of fact it is

dependent on the specific choice of the columns of Q which can easily be
verified.
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One can test the closed loop eigenvalues as usual by solving
det(\I — A+ BK) =0

and obtain

-3
which is precisely as expected. The uncontrollable eigenvalue A= —3 is kept
unchanged and the two other eigenvalues are as assigned. m
Example 4.8. Control of the Labyrinth Game

It is an interesting exercise to derive a position regulator for the labyrinth
game presented in Example 4.2. This can be accomplished by considering one
degree of freedom at a time, for example the x direction. Figure 4.14 shows a
schematic drawing of the forces working on the ball on the game board in the
x direction. Applying Newton’s Second Law to the system, assuming that the
angle 0 is small and the acceleration 0 is negligible, gives

mx = mg0 — Fy+ mézx,
I(b = I‘Ff.
If it 1s assumed that the ball rolls on the board, it must be true that
X =rm

Inserting the moment of inertia for the ball,

Variable tilt Ball with
angle © mass m
moment of inertia I

\Q\/ Velocity o
Fy
X
Fig. 4.14 Schematic mg\

drawing of the labyrinth
game board

/
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and eliminating Fyand o from the three equations above leads to the result:

(g0 + x6%). (4.65)

jé‘:

|

The Model (4.65) is nonlinear and it has two inputs, 6 and 0.
If the position and velocity vectors are defined as

=] e o[- 1]
X=|, |= and u=|.| = ,
X X2 0 up
the model can be described with the state equation,

X2
x=f(x,u)= |5 S
( ) 7gu1—|—7x1u5

Linearizing the model around the stationary state x, =0, up=0, one has
Ax = AAX + B'Au

where

0 1 0 0
A= and B'|5 )
00 2g 0

Since the last column of B is zero, the system is reduced to a single input system
with the input matrix

0

5 1.

78

The A-matrix shows that the linear system approximating the nonlinear one is
nothing but a double integrator: the acceleration of the ball is simply propor-
tional to the board tilt angle.

It is desired to design a discrete time controller for the system and since the
controller involves video information, the sample period is given by the CCIR
video scan rate. This is 25 Hz. So choose T=0.04s. In this simple case the
discretization can be carried out by hand using the Formulas (3.83):

B=—
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S
Il
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|

where o= 5g/7.
Inserting the values for 7 and g finally gives the model,

1 0.04 . 1073
=) 0% a [0 107,

The controllability matrix is

M, =[G FG] = { (4.66)

g g1+ng] B [5.606-103 0.01681}
<5} ) L 0.2803 0.2803 |

det(M.)#0 and the system is controllable.

The closed loop system is rquired to have a natural frequency of approxi-
mately 1 Hz (®,,,= 6.28 rad/s) and the damping ratio {.,=0.5. The continuous
eigenvalues providing these properties are

he = —3.14 £5.44.
The corresponding discrete time eigenvalues are found from Eq. (4.61),
ha = 0.8611 £;0.1904,
which implies that the characteristic polynomial is

Pa(h) =A% — 172221 4 0.7778.

The gain matrix is readily found using Ackermann’s formula,
K = [0 1]M_ ' P.,(F) = [4.959 0.8919)].

A closed loop step response is shown on Fig. 4.15 m
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Fig. 4.15 Output and 0.4 . . : : :
control signal for unit 1 : : ;
step input

0.5}
0 s Y
u(k) T=0.2sec
05 I L L L I
0 10 20 30 40 50 60
Sample no.

4.4 State Feedback for MIMO Systems

The design methods in Sect. 4.3 are simple but unfortunately only valid for
systems with one input. For MIMO systems (or rather for systems with multiple
inputs, MI systems, since the output is not involved in the control) the situation
is somewhat different and more complicated.

A more comprehensive treatment of MIMO state feedback will be left until
Chap. 5 and in this section the treatment will be confined to a quick overview of
a couple of available methods for MIMO feedback design. Only the continuous
time case will be treated but the methods work equally well for discrete time
systems.

The main principle in the control is still the linear state feedback according to
the control law:

u=—-Kx+r. (4.67)

Inserting this control signal in the state equation gives, as seen before, the closed
loop state equation,

x = (A — BK)x + Br = Axx + Br. (4.68)

Eigenvalue assignment means that a gain vector K must be found such that
the eigenvalues assume preselected values:
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M
A
Mg =2 . (4.69)

K

7\‘11

It can be shown, that the conditions for eigenvalue assignment for SISO systems
discussed in Sect. 4.3.3 are also valid in the MIMO case:

1. The closed loop eigenvalues for the System (4.68) can be placed arbitrarily if
and only if the system is controllable.

2. The System (4.68) can be stabilized if and only if the uncontrollable states are
stable (the system is stabilizable).

4.4.1 Eigenstructure Assignment for MIMO Systems

Whereas the eigenvalue placement can be accomplished uniquely (i.e., for a
unique K) for any controllable SISO system, it turns out that further options
exist for MIMO systems. Besides assigning the eigenvalues, it is also possible to
make some demands on the eigenvectors. This is important, because the eigen-
vectors determine the system’s response as seen from the modal decomposition
in Sect. 3.8.10.

A controller design involving eigenvalues as well as eigenvectors is called
eigenstructure assignment. The closed loop eigenvectors are defined by the
relation

(A — BK)V,‘ = 7\4V,‘. (470)

This equation can be rearranged to obtain

- A B]L{vi ] —0. @.71)
Vi

Foreach A;(4.71) is a homogeneous set of linear equations. The set consists of n
equations with n + m unknowns. It is known from the controllability theorem
CC3 that the left hand matrix (the coefficient matrix) has full rank » if and only
if the open loop system is controllable. Then the theory of linear equations
requires that there will be m linearly independent solutions for each of the
chosen A,. This indicates again, that in the SISO case there will be only one
solution since m=1.

Equation (4.71) also shows that one cannot pick eigenvalues and eigenvec-
tors completely arbitrarily. The solution vector,
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=] 472
v= )=o) 67

must lie in the nullspace N of the coefficient matrix T, = [A, 1 — A B]J.

The nullspace of T; is spanned by a set of m linearly independent vectors
n;i,n;2,...,n;, each of dimension n+ m. The solution vector p;is in the nullspace
if it can be composed of a linear combination of the vectors n; j,n;2, ..., n; .
According to the definition in (4.72) one has that Kv; = q; from which

Klvi v» ... vi]=[q ¢ ... q,] (4.73)
or
KV = Q. (4.74)

If all the eigenvectors are selected to be linearly independent then the gain
matrix below can be found,

K=QV (4.75)

K must be a real valued matrix but this is assured if the eigenvalues as well as the
eigenvectors are selected as complex conjugate pairs.

Thus to complete the design task the n eigenvalues A; must be chosen, n
vectors p; determined satisfying (4.71) and then K computed from (4.75). The
procedure may seem simple, but it can be quite laborious for higher order
systems.

Example 4.9. Eigenstructure Control of a MISO System

A design for an eigenstructure state controller for the MISO-system,

0 0 1 1 0
x=|-51 =3|x+|0 O0|u, y=[0 0 1]x, (4.76)
0 1 0 0 1

is to be made here. The eigenvalues of the system matrix are

-1
7\‘ p—
A {1112

The system has a complex conjugate eigenvalue pair in the right half plane and
it is therefore unstable.
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The system is to be stabilized with the closed loop eigenvalues,

-2
g =4 -3 - 4.77)
—4
The matrix T, is
i 0 -1 1 0
T,=[M-A B]=|5 -1 3 0 0
0 -1 Ao 01

Now the vectors spanning the nullspace have to be found. This can be done in
several ways but an easy one is selected here: the MATLAB function null.
The following results for the three closed loop eigenvalues are found:

=2,
[0.6923 [—0.2308 ]
2 0 -1 10 0.7692 0.0769
Ti=|5 -3 3 0 0[,n,;=|—03846|,m,= | 04615
0 -1 -2 0 1 1 0
L 0 J L 1 J
M =3,
[0.375 ] [—0.17
3 0 -1 1 0 0.375 0.1
T,=|5 -4 3 - My = | —0.125 | my,y=| 03
0 —1 =3 — 1 1 0
L 0 J L 1 J
s = —4,
[0.2644 ] [—0.0575]
4 0 -1 10 0.2299 0.0805
Ts=|5 =5 3 0 0,ny; = |—0.0575|,m,=| 0.2299
0 —1 —4 0 1 1 0
L 0 J L 1 J
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The next step is to assign the p-vectors and hereby the eigenvectors of the
closed loop system. The three p-vectors can be constructed as arbitrary linear
combinations of the respective n-vector pairs,

P, = ;1M + oon; ).

The three uppermost entries of the p-vector constitute the eigenvector of the
closed loop system. If the Ith entry is selected to be zero then the corresponding
eigenvalue, A; (and natural mode e*), will not appear in the I'th state variable.
This follows from Eq. (3.332).

Following this scheme it is easy to obtain the following p-vectors:

0 0.074 0.0575
~0.2308 0 0.0575

p = |-02308|, p,=|-0125|, ps=| 0
~0.2308 0.1 0.2299
~0.6923 ~0.375 0.0575

Now the matrices V and Q can be found by inspection,

0 0.075  0.0575
V=1]-02308 0 00575,
| —0.2308 —0.125 0
[—0.2308 0.1  0.2299
| —0.6923  —0.375 0.0575]’

and finally the gain matrix is

K —Qv-! {5.5 ~1.5 2.5}

25 =15 45

Testing the closed loop eigenvalues assures that the requirement (4.77) is
met. The unit step responses for the closed loop system are shown on Fig. 4.16.
The two curves are the output y(7) for a unit step on each of the two reference
inputs. 0

Robust Eigenstructure Assignment

The freedom to select eigenvectors in multi-input state feedback can be used
to increase the robustness of the control system. This subject will not be pursued
at this point but it is only mentioned that robustness against deterioration of the
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Fig. 4.16 Unit step response
for the MISO system

t [sec]

system performance caused by imprecise or incomplete modelling or by devia-
tions between the linearization state and the actual operating state is an impor-
tant issue. It can be shown, that if the closed loop eigenvectors v; are chosen
orthogonal (or as close to orthogonality as possible) then sensitivity of the
eigenvalue location subject to parameter changes in the model will be minimized.

Orthogonality algorithms have been developed and one of them is imple-
mented in the MATLAB function place. This algorithm is based on a paper
by Kautsky et al. (1985).

Example 4.10. Eigenstructure Control of a MISO System with Matlab

Returning to the system from Example 4.9 and using the MATLAB place
function with the same eigenvalues as before a different gain matrix can be
found. The function is invoked by the command,

K =place(a,B,[-2 —3 —4])
and the result is the gain matrix,

5785 —2.080 2.681
2,016 —0.5358 4.215]°

A simulation similar to the one in Example 4.9 leads to the result shown
on Fig. 4.17. Apart from the stationary values, the responses resemble those
of Example 4.9. It is noted though that the overshoot for the step input to
input channel no. 2 is much smaller here than on Fig. 4.16. In this respect the
eigenvector assignment is more favorable with the MATLAB place func-
tion than with the scheme used in Example 4.9. m
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Fig. 4.17 Unit step response
for the MISO system (with
the MATLAB place
function)

4.4.2 Dead Beat Regulators

Usually a continuous time controller has a discrete time equivalent and vice
versa. However there is an exception to this rule. One can design discrete time
controllers which do not have a continuous counterpart and which are very
fast.

The reason for this is that the transformation which is used to discretize
continuous systems has the particular characteristic that continuous time eigen-
values with Re(\.) = —oo are mapped into discrete time eigenvalues at the
origin. If a state controller is designed for all closed loop eigenvalues placed at
the origin, the characteristic equation will be very simple,

PC/LFK(?\') =N+ 0(,1_17\,n71 + . oA toy = A (478)
All the a-coefficients are zero.
Cayley-Hamilton’s theorem states that every quadratic matrix satisfies its
own characteristic equation or
Fi + o, F '+ + oy Fg + ool = 0. (4.79)
But, since all the coefficients are zero, this leads to
Fg =0 (4.80)
which obviously means that

Fiy =0 for p>n. (4.81)
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If the asymptotically stable closed loop system,
x(k + 1) = Fgx(k) + Gu(k), (4.82)

is released in the initial state xo and u(k)=0 for all k£ then a response will be
found such that (see Eq. (3.98))

x(k) = Fixo. (4.83)
According to (4.80) this will then achieve the result that
x(k)=0 for k>n. (4.84)

In other words, the system comes to rest in at most n sample periods. Systems
with this behaviour are called dead-beat or finite settling time systems.

If one lets u(k) = ug (a constant vector) then the zero-state output can also be
found from Eq. (3.98),

k—1
x(k) =Y F§ ' Guo = (F{ '+ Fg 2+ ...+ Fx + DGy, (4.85)
i=0

This shows that because of (4.80), the output will be constant for k>n. So the
system also has a dead-beat behaviour for a constant nonzero input.

With a dead-beat regulator the system can apparently be made as fast as desired.
It is just a question of choosing a sufficiently small sample period. But of course
there are limits. The cost of the very rapid response is very large feedback gains
which implies large actuator drive signals and high noise sensitivity. It also implies a
large sensitivity to unmodelled dynamics. This in turn can lead to poor transient
response and in the worst case, instability.

For a deadbeat regulator the only design parameter is the sampling time.
This means that for any given plant several different sample periods will have
to be tried in order to find one which will yield the desired performance of that
system. This is especially true in the presence of modelling error or neglected
dynamics. In any case it must be remembered that the input signals will usually
be large compared to those in a more common eigenvalue placement regula-
tor. For these reasons the practical implementation of a dead-beat controller
can be somewhat problematic.

Example 4.11. Deadbeat Control of the Labyrinth Game

If a dead-beat controller is designed for the labyrinth game board from Example
4.8, Ackermann’s formula can be used with (4.66) because this system is SISO.
The characteristic matrix polynomial is
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pan(F) = F2 = {1 2T}

0 1
One finds a gain matrix:

K=[0 l]MglFZ:[# %}:[89.2 5.352].

A step response with y reaching the same final value as in Example 4.8 is shown
on Fig. 4.18. Comparing this with Fig. 4.15, one can clearly see that the settling

Fig 4.18 Output and control ! 1
signal for step input for the : :
labyrinth game

k)
02} 1

20 1 ;

okt S L S

5 10 15 20 25
Sample no.

time has been reduced from approximately 50 times the sample period (10s) to
exactly 2 (0.4s). The price is that the maximum value of the control signal is
increased by a factor of 18. m

4.5 Integral Controllers

One of the drawbacks of state variable feedback is that the output of the system
is not directly involved in the control. This means that the controller design does
not provide the possibility of assigning a predetermined stationary relationship
between the inputs and the outputs.

Consider the closed loop system with state feedback law:

% = Akx + Br. (4.86)
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Ifisis assumed that the system is in a stationary state then the time derivative of
the state vector is zero,

0= AKX() + Bl‘(). (487)

The system matrix Ag will probably not have any eigenvalues at the origin so it
will be nonsingular and the stationary state can be found by solving Equation
(4.87) for x:

Xo = —Ag 'Bry. (4.88)
The stationary output with this state will be
¥oCxo = —CA¢'Bry. (4.89)

If the system has the same number of inputs and outputs (m = r), the right hand
matrix will be square and the necessary reference vector for a given output can
finally be determined to be

ro = —(CAg'B) "y, (4.90)

provided of course that the matrix CAy 'B is also nonsingular.

It should be kept in mind however that the basis for the state controller
design is a linear model which is usually the result of a linearization of a
nonlinear system model at some stationary operating point. This means that
even in cases where the reference vector (4.90) can be found, it is only useful if
the system’s state is exactly the stationary state on which the linearization was
based. Another difficulty arises if the system is subject to disturbances since the
‘plain’ state controller does not take a nonzero v-vector into account. Fortu-
nately, as in classical control, all of the problems mentioned here can be more or
less overcome by a single means: system augmentation with integrators.

Integration can be included in state feedback control in several ways but the
following scheme is the most straightforward. Figure 4.19 shows the overall
system. The state is fed back as before, but in addition the output is also
measured and fed back in an outer loop to a new primary summation point.
The output of this summing point is the system error vector. e(t). The output
vector and the reference vector must have the same dimension, r, but since a new
gain matrix K; has been inserted, this need not be the same as the number of
inputs to the system, i.e., the dimension m of the input vector u. As usual, the
system can only be in a stationary state if the outputs x; of the integrators are
constant. This can only be the case if the error is zero since

e=x. 4.91)
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Fig. 4.19 State feedback
with integration

This is the case no matter which constant values of r and v are imposed on the
system.

By adding integrators the order of the system is by increased the number of
integrators used. Therefore it is natural to define a new augmented state vector,

X
X, = [ } (4.92)

.9;

The new state vector will have the dimension n, = n + r, where r is the number
of integrator states. The equations governing the augmented system are

X = Ax + Bu + B,v,

u = —Kx + Kjx;,
(4.93)
X;=—-Cx+r,
y = Cx.
This can be written in matrix form as
X A 0]x B 0 B,
= u—+ r-+ v,
X; —-C 0] |x; 0 I, 0
(4.94)
X
y=I[C o] |,
Xi
or using the augmented state vector,
X, = A1X, + Bju+ B,r + B,v,
(4.95)

Y= Clxa-
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L, is the r-dimensional identity matrix and

A = AD B—B B—0 B—B" C,=[C 0 4.96
]|:C 0:|7 l|:0:|a r|:lr:|7 vl|:0:|7 1*[ ] ()

The input equation can be written,
X
u=-[K —K[]{ } = —Kix,, (4.97)

where
K, =K -K;] (4.98)
Inserting this into Eq. (4.95) leads to
X, = (A1 — B1K})x, + B,r + By v. (4.99)

Apart from the fact that a disturbance term has been added, this equation is
precisely the same as Eq. (4.4), with the augmented matrices replacing the
original ones. As before, if it is desired to design the state controller by eigen-
value or eigenstructure assignment, then the gain matrix K; must be found such
that the solutions to the equation,

A —BK BK;
del(M — A —|—B1K1) = d€l<7\.l — |: :|>

=0, 4.100
_c 0 ( )

are the desired eigenvalues.

Discrete Time Systems

The integrating state controller can also be implemented in discrete time
systems. The continuous time integrator on Fig. 4.19 is an r-dimensional
dynamic system whose state equation can be written, see Eq. (4.91),

X[:0xi+e, (4101)
where the ‘system matrix’ is a zero matrix with r eigenvalues which are all zero.
The discrete equivalent to this system is a system with r eigenvalues which are all
one. Such a system has the discrete state equation,

xi(k+ 1) = Lx;(k) + e(k) = x;(k) + e(k), (4.102)

where the system matrix is the r-dimensional identity matrix.
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Fig. 4.20 Discrete time state  y(x) 4 _e(k) x(k+1) x;(k) u
feedback with integration ==

y(k)

The discrete time integrator can be inserted as shown on Fig. 4.20. The set of
equations for the overall system is now

x(k + 1) = Fx(k) + Gu(k) + G,v(k),
u(k) = —Kx(k) + Kix;(k), 4.103)
Xi(k +1) = x;(k) — Cx(k) +r(k),
y(k) = Cx(k).
Defining again the augmented state vector,
_ [ x(k)
X4 (k) = L[(k)], (4.104)
(4.103) can be written
x(k+1) F 0] [x(k) G 0 G,
_ | e+ | v,
x;(k+1) -C I || xi(k) 0 L
(4.105)
poric o *®
y(k) =1 o |
or
X,(k+ 1) =Fix,(k) + Giu(k) + G,r(k) + G,v(k), (4.106)
y(k) = Cixa(k),
where
F 0 G 0 G,
n=[ e [o] e =] ] e =[] e=ic o @
Inserting the feedback law
u(k) = —[K —K,»]{X(k) ] = —Kixa(k) (4.108)
x;(k)
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where
K, =[K -K;] (4.109)
gives finally,
X,(k+ 1) = (F; — GK})x,(k) + G,r(k) + G,1v(k), (4.110)

which is quite similar to Eq. (4.99).

The result of the investigation in this section is that addition of integrators
does not give rise to new problems. By augmenting the state vectors and the
matrices, the integral control case can be formulated as a standard state feed-
back control problem. This problem can then be solved in the standard way
using eigenvalue and/or eigenstructure assignment. This also means that the
necessary and sufficient condition for full eigenvalue placement is that the
matrix-pairs (A, B;) or (F;, G;) are controllable.

Itis known from classical control that insertion of integral control (usually in
the shape of a PI or a PID controller) may give dynamic problems caused by the
negative phase shift of the integrator. Problems of this sort do not arise when
using state feedback. As long as the augmented system is controllable, the
closed loop system dynamics can be designed as desired in spite of the presence
of the single (or multiple) integrator(s).

Example 4.12. Integral Control of a Third Order System

In this example the third order system from Examples 4.5 and 4.6 will again be
considered. The continuous system is augmented with an extra integrator for
the state x;,

—-0.14 033 -0.33 0 0 0

[k 01 —028 0 0 0 0
Xa = = Xqg + u—+ r,

X; 0 .7 =0.77 0 —0.025 0

-2 0 0 0 0 1

y=[2 0 0 0]x,.

The augmented system is controllable. The gain matrix will be found using
Ackermann’s formula and the four eigenvalues are selected as in Example 4.5,

—0.67
—0.67
—0.67
—0.67

7\‘01 =
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Using MATLAB’s Control System Toolbox and invoking the Ackermann
design function by the command,

K1 = acker (Al,B1, [-0.67 -0.67 -0.67 -0.671),
a gain matrix can be obtained which is
K, =[K —k;]=[210.7 —88.95 —59.6 —43.62].

Carrying out a simulation based on a model with the block diagram on
Fig. 4.19 with r = 0.1 and with B, = 0, the output y(¢) and the input u(¢) can be
determined just as in Example 4.5. The responses are plotted on Fig. 4.21. The
desired final value is now achieved exactly for ¢+ — oco. The control signal is
somewhat larger than in Example 4.5 and the reason is that the gains, especially
the first entry of Ky, are quite large. As a matter of fact, one may be demanding
too much of this system. It requires a large control effort to achieve the
eigenvalues selected here. If they were moved closer to the origin, the gains
would decrease and consequently the settling time would increase. Figure 4.22
shows the four states,

Xal X1
Xa2 X2
X(I = = s
Xa3 X3
Xa4 Xi

0.2 T

Fig. 4.21 Responses for

third order system with
integrator 0 5 10 15 t[sec] 20
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Fig. 4.22 States for third 0.06 ‘ ‘ ;
order system with integrator X, | i : e E—
sl S ]

0ol /S I S

oL ]

-0.02

004 b N\ . b

-0.06
0 t [sec]

during the settling of the system. Note that the plot shows x;/5.
For the discrete time case the matrices from Example 4.6 will be used. The
state vector is augmented to find

0.9730  0.05293 —0.06031 0
0.01918 09461 —0.00061 0
0

Xa(k+1) = Xq(k)
0.003142  0.3063  0.8572
-2 0 0 1
1.554-1074 0
1.0369 - 10° 0
u(k r(k).

—4.634-1073 0
0 1

Using Ackermann’s formula again, one can find K; for the desired eigenvalue
placement. If the continuous time eigenvalues above are translated into the
discrete time values they are the same as in Example 4.6.

In order to reduce the gains, one can alternatively compute the gain matrix
for a discrete eigenvalue set at a greater distance from the origin. One finds

Case 1
—0.67 0.8746

At = —0.67 = At = 0.8746 = K; =[193.78 —77.55 —53.49 —7.529],
—0.67 0.8746

—0.67 0.8746
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Case 2
—0.35 0.9324
—0. 9324
Aot = 0.35 = Aeld = 0.93 =K, =[37.99 —38.36 —8.809 —0.6358].
-0.35 0.9324
—0.35 0.9324

The ‘slower’ eigenvalues result in gain values which are up to a factor 12 smaller
than in the ‘fast’ case. This could be important in preventing noise problems.

The response to a step of height 0.1 is seen on Fig. 4.23 and 4.24. In both
cases it can be seen that the integrator fulfills its required function. The sta-
tionary value of the output is exactly 0.1.

Case | resembles the continuous time system on Fig. 4.21 as would be
expected. Case 2 has a longer settling time but it has no overshoot and the
control signal does not have the peak observed in Case 1. 0

y(k)

Fig. 4.23 Responses for : : 1 T=0.2sec
. . . 0 i ; i
discrete time systems with 0 50 100 1

. 50 200
integrator Sample no.

Fig. 4.24 Control signals for : ; T=0.2sec
discrete time systems with 0 50 100 150 200
integrator Sample no.
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Example 4.13. Water Tank Process Control with Multiple Integrators

The tank system in Example 2.9 has the state vector, input vector and distur-
bance vectors,

X H,
1 AV
X2 H> ui
X = = , U= s, v=|wmn|=|T,
X3 T, u
V3 Tc
X4 T2

The inputs to the system are the two control valve voltages.
The system was linearized at the stationary operating point given by

2.03
0.0122
1.519 5 60
Xp = , Uy = , Yo = )
45 5
30
45

and the dynamic, input, disturbance and output matrices found were:

—0.0499  0.0499 0 0 0.00510  0.00510
_ | 0.0499  —0.0667 0 0 B— 0 0
0 0 —0.0251 0 ’ 0.0377 —0.0377 |’
0 0 0.0335 —0.0335 0 0
0 0 0
B, — —4.177 0 0 Cc= {0 2.0 0 }
0 0.01255 0.01255 0 0 0 0.1
0 0 0

A state controller with integration is to be designed for the system outputs. A
simplified block diagram of the entire system with the controller is shown on Fig.
4.25 (Compare this with Fig. 2.19). The block named Tank system contains the
nonlinear set of differential equations governing the system. So the figure illus-
trates a model of the nonlinear system with a controller which will be designed on
the basis of the /inear model. As is the case with most controllers designed from a
linear model, there is an inconsistency between the controller and the system it is
meant to control. There will only be complete agreement between the controller
and the nonlinear system model if the system is operating exactly at the lineariza-
tion point given by the stationary state, input and disturbance given above.

It is therefore extremely important that the overall system’s behaviour is
investigated carefully under operating conditions different than the lineariza-
tion point. For this reason it should be clear that access to reliable simulation
software is just as important as analysis and design software.
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Fig. 4.25 Tank system with V) vy Vs
integral controller ‘ l ‘
N
Tank
system |
Y2

The system is sixth order and thus six eigenvalues must be selected. A natural
frequency for the eigenvalues of 0.1 rad/s is desired with a damping ratio of at
least 0.5. In accordance with these demands the closed loop eigenvalues will be
selected to be

~0.095 £ 70.02
At = { —0.08 £0.06
—0.05 £0.085

These eigenvalues are shown on Fig. 4.26: they lie approximately on a semi-
circle. Using the MATLAB place function gives the gain matrix

_[2.642 5308 2466  7.159 , 0.1975 —4.242

K, =[K —-K|= . .
19.46 46.39 —1.838 —4.028, —1.77 1.919
Figure 4.27 shows 1000 s of a simulation of the closed loop system. The initial
values are the stationary linearization values. At t = 100 sec a step occurs on the
reference value | requiring the system’s level H, to change from the initial value 1.519
to 1.6m. Atz = 500 s a step on r, orders the temperature 75 to rise it from 45 to 48°C.

0.1

0.05

-0.05

Fig. 4.26 Eigenvalue

placement for the overall 0.1 i i i
system -0.1 -0.05 0 0.05
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Fig. 4.27 Step responses 1.7 5 @ ‘ T
for the outputs : ‘ :

1.5
50

T, [°C]

48

PP T S S

44 1 I I 1
0 200 400 600 800 1000
1t [sec]

The stationary values are achieved exactly, before as well as after the
changes, because of the integrators. The dynamic responses are also satisfactory
but it is seen that there is dynamic cross-coupling between the two outputs.
When the level changes a transient is seen on the temperature and vice versa.

A plot of the two control signals is seen on Fig. 4.28. If it is assumed that the
maximum span of the control signals is 0-10 volts, it is noted that both signals
keep within this limit.

Fig. 4.28 Control signals 10
U, [voli]

i i i i
0 200 400 600 800 1000
t [sec]

To see the effect of changes in the disturbance variables, another simulation
is carried out where the disturbances are changed as follows,
A, :0.0122m? — 0.0134m?at 7 = 100+,
T, :60°C — 95°Catr=400s,
T,:30°C — 10°Catt =700 s.
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Fig. 4.29 Outputs for § '

disturbance changes L
H, [m]

T, [°C]
sabo S A ]

45

44.8

446 i i i i
0 200 400 600 800 1000
t [sec]

Fig. 4.30 Control signals for 10
disturbance changes U, [volt]

0 ! 1 I 1
0 200 400 600 800 1000
t [sec]

The responses of the outputs and the control signals are seen on Fig. 4.29 and
4.30. The desired stationary values are held perfectly in all cases but dynamic
errors do occur after the changes in the disturbance variables. The errors are
well damped. In the close vicinity of the linearization point this is of course in
accordance with the positions of the eigenvalues but it is not known in advance
how the system would behave if the system is moved away from this operating
condition. As seen on the plots, there is no indication of any deterioration of the
system properties even for large changes in the disturbances. 0

Example 4.14. Two Link Robot Arm Control with Multiple Integrators

Here a discrete time controller with integration will be designed for the two-link
robot from Example 2.10. The design will be based on the model linearized
around the state given by the two link angles: 0; = 45° and 6, = —30°, see p. 48.

Prior to the controller design the model must be discretized with the sample
period desired for the controller. The robot is a relatively fast mechanical
system, so 7' = 0.02 s will be used. This means that it will be possible to handle
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frequencies up to about 5 Hz (one tenth of the sample frequency) with reason-
able accuracy. If further investigations show that this is not adequate, the design
must be revised with a different sample period selection.

The discrete time matrices become (using MATLAB’s c2d function),

[ 1003.6 20.024 —0.60095 —0.0040071
Fo 357.19 1003.6 —60.152  —0.60118 10-3
—6.0182 —0.040106  1002.1 20.014 ’
| —602.38  —6.0182 209.36 1002.1
[ 0.25048 —0.48716
G- 25.068 —48.758 102
—-0.48716  1.3112
| —48.758 131.21

The eigenstructure design is characterized by the position of the eigenvalues.
For good damping, ¢ > 0.7 is selected, and for fast response, a natural fre-
quency in the neighborhood of 10 rad/s. Consequently the eigenvalues are

T +7
Mg =4 —8.6+j5
97426

and the discrete eigenvalues become,

0.86085 4 j0.12131
Netg = "0 = ¢ 0.83777 £ j0.084058
0.82254 4 j0.042811

The MATLAB place function gives the gain matrix

841.3  76.385 153.99 20.175 ,—63.628 —8.1492

K =[K-K]= , :
=1 1= 134388 30304 90155 10,891 127411 —5.175

The gains are to be realized as constants in the control computer. This is usually
easier than realizing the gains using analog operational amplifiers (as will usually
be the case for a continuous time controller). It should be kept in mind though
that large gains may cause noise sensitivity, especially in the discrete case.

The overall system with controller is shown on Fig. 4.31. Note that the
outputs y; and y, are equal to the states x; and x3 respectively. Note also that
the figure is divided into two parts. The continuous time nonlinear robot system
to the right of the thin vertical line and the discrete time controller to the left of
the line. When passing this interface, the continuous (‘analog’) signals are
converted to discrete (‘digital’) signals by the analog-to-digital converters,
ADC. The discrete signals are converted to continuous signals by the digital-
to-analog converters, DAC.
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Fig. 4.31 Discrete time
controller for a two-link
robot

0
O

X
ADC

S
D 2
S
D
gy
D

.
Y2
—
Y
Discrete time Continuous
controller time system

All the operations to the left of the vertical line take place in a real time
computer.

The results of a simulation carried out on the system of Fig. 4.31 are shown
on the two Figs. 4.32 and 4.33. The initial state is the same as the linearization
point of Example 2.10:

S
a

S
a

=
a

45° 7/4
o] | o
YT 300 | T | —a/6
0 0

Two steps are imposed upon the system. At = 0.1 s the reference r| is changed
from n/4 rad to —n/4 rad and at 7 = 3 s the reference r; is changed from —n/6
rad to /6 rad. The initial and the final configurations are shown on Fig. 4.34.

0.8 . " . .
fraaj |\ T R— e |
04 ftooe s AR SRS
oaf e

02t B e e fe
04 F A e b T RRE CRTRITERE
06\ ]
08F\ — — ——

Fig. 4.32 Robot link angle 0 1 2 3 4
step responses t [sec]
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Fig. 4.33 Control signals 100
(motor torques)

-150

t [sec]

Fig. 4.34 Link
configurations before
and after steps

Final
configuration

Initial
configuration

0, =—45°

8,=30°

After the transients the new angles are accurately achieved but with some
dynamic interaction between the two outputs. The control signals (the motor
torques) on Fig. 4.33 are stair case functions because they are outputs from the
DAC-converters.

Although the system properties change considerably under this change of
configuration (see Example 3.10), there are no signs of performance deteriora-
tion in the responses. The controller seems to be robust enough to allow large
changes in the operating point. m

Example 4.15. Discrete Control of a Stock Inventory

A discrete time example of a non-technical problem is the control of the stock
inventory of a commodity (for example candy, beer, underpants, etc.) given
the requirement that some stock must always be available for sale. Given is
that the quantity of a commodity c¢(k) must be equal to its value on the
previous day plus that which is ordered, o(k), on the previous day from a
supplier. The quantity sold on any day, s(k), has to be subtracted from the
existing stock. The state equations which describes this system are:
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c(k + 1) = (k) + o(k) — s(k),
o(k +1) = u(k),
y(k) = c(k),

or in vector-matrix form:
clk+1)
ok +1)

117 [e(k)
- lo O] L(k)
(k) = [1 0]x(k).

The sampling period is 7' = 1 day.

What is desired in this example is to keep the stationary value of the stock
constant independent of arbitrary constant sales. The sales must be considered
a disturbance to the system as indicated in Eq. (4.111). This can be accom-
plished by adding a discrete time integral state as on Fig. 4.20,

-1

x(k+1) = ]s(k),
0 @.111)

u(k) +
1

xi(k +1) = r(k) = y(k) + xi(k) = r(k) — Cx(k) + xi(k).

The system is augmented in the usual way,

clk+1) I 1 077 ck) 0 -1
olk+1) | =10 0 O0f]|ok)|+|L]uk)+]| 0 [s(k),
X,’(k + 1) -1 0 1 )Cl'(k) 0 0

with the augmented matrices,

1 1 0 0
Fi=|0 0 0f|and G, = |1
-1 0 1 0

It is easy to find the controller gain using Ackermann’s formula.
Selecting the closed loop eigenvalues,

0.2
)\'cl = 02 y
0.2

it is found that

K, = [k ky —k;]=[19214 —0.512].
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Fig. 4.35 Disturbance 3
response of stock control
system

Sample no.
(Days)

The daily order can then be calculated from the formula:
ok + 1) =u(k) = —=Kx(k) + kix;(k) = —kic(k) — kyo(k) + kix;(k).

A simulation on the closed loop system (see Eq. (4.110)) gives the result on
Fig. 4.35. At the start of the simulation the sales and the ordered inventory are
1.4 per day (measured in some appropriate unit) and the stock is 1.2 which is
what is desired. At day no. 5 the sales go up from 1.4 to 2 and consequently the
stock has decreased at the morning of day 6. This causes the ‘controller’ to take
action and the ordered inventory increases on day 7. After the transients a new
equilibrium is established at day 13, with a new constant daily order equal to the
sales with the stock available the same size as before the disturbance. 0

4.6 Deterministic Observers and State Estimation

From previous sections of this chapter it is clear that full state feedback is very
useful in obtaining control systems which have good stability and robustness
properties. In order to use full state feedback it is necessary that all states of a
given system are measured. In practice this is not always possible or desirable.
In some cases sensors are simply not available or cannot be made for the states
which one would desire to measure. In other cases the required sensor is too
expensive for the intended application. It has to be remembered that each
measurement requires a sensor and its associated power supply, signal condi-
tioning equipment and measurement connections. This means that each sensor
channel represents a significant investment of time and money. Moreover in
addition to the noise in the process to be controlled each measurement is also a
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source of noise which can reduce the accuracy with which a control object can
be controlled.

If the process which is to be controlled is observable and a reasonably
accurate model is available for it, then it is possible to use a modified model
of the process to estimate the states of the process which are not measured. The
main model modification is to add a term which corrects for modelling error
and internal disturbances. Under the proper conditions, the state estimates can
then be used instead of direct measurements in a full state feedback system.
Such a modified model, used in a feedback system is called a Luenberger observer
or a Kalman filter, depending on how it is designed. Often this is shortened to
‘observer’ with it being understood from the problem formulation or context
which kind of observer or filter is being considered. As will become apparent in
what follows, observers also have the very useful property that they can be used to
effectively suppress or reduce both process and measurement noise in feedback
systems and in some cases, this is their main advantage. The intention of the
modifications which are introduced in the system models which form an observer
is to cause the state estimates to follow more or less exactly and rapidly the states
of the control object independent of internal or external disturbances. Here
‘disturbances’ can be actual signals as well as modelling errors.

Luenberger observers are modified models of control objects which are
designed from deterministic considerations. Kalman filters are in structure
identical to Luenberger observers but they are modified models of control
objects which are designed from statistical considerations. In this chapter only
deterministic (or Luenberger) observers will be considered.

4.6.1 Continuous Time Full Order Observers

In what follows the control object is to be described by the usual system
equations:

(1) = Ax(1) + Bu(), 4.112)
y(1) = Cx(1). (4.113)

If the Egs. (4.112) and (4.113) were exact and undisturbed by noise, it would
be reasonable to use the states estimated with the model of the system alone as
the basis of a state feedback system. Such an observer might be called an open
loop observer, see Kailath (1980). Unfortunately it is rare that a system is known
with such accuracy and is noise free. Thus it is necessary to introduce feedback
around the system model itself in order to force it to follow the control object
accurately. Such a configuration might be called a closed loop observer. In control
circles only such systems are called observers: open loop observers are most
correctly called feed forward systems.
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In order to practically estimate the state x(¢) of the linear system described by

Eqgs. (4.112) and (4.113) a system of differential equations can be constructed
which has the form,

(1) = Mx(t) + Nu(z) + Ly(1), (4.114)

where X(7) is estimate of the state variable x(z). Equation (4.114) is the state
equation of an observer for (4.112) if

x(t9) = x(ty) implies x(¢) = x(¢) for all ¢ > #, and for all u(z). (4.115)
As all of the states of the system are estimated, the observer is a full order
observer.

Equation (4.114) is now subtracted from (4.112), (4.113) is inserted and the
following equation is obtained

X(1) — X(1) = é&.(1) = (A — LO)x(¢) — Mx(¢) + (B — N)u(z). (4.116)
The vector,
e.(1) =x(1) — x(1), (4.117)
is called the estimation error. Letting
M=A-LCand N=B (4.118)
Equation (4.116) becomes
e.(1) = (A —LC)e.(1). (4.119)
If the system in Eq. (4.119) is asymptotically stable, i.c., if the eigenvalues of the
system matrix A — LC are all in the left half plane, then the condition (4.115) is
fulfilled and (4.114) is an observer or a state estimator for (4.112).

Even if the estimator is ‘started’ in an initial state such that x(7o) # x(1), the
asymptotic stability will, according to Eq. (4.119) ensure that

X(7) — x(1) for — occ.

For this reason (4.114) is called an asymptotic state estimator for (4.112).
If the estimated output is defined as

y(1) = Cx(1) (4.120)

then (4.114) can be written with insertion of (4.118) as
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x(1) = AX(1) + Bu(z) + L(y(1) — y(2)). (4.121)

The gain matrix L is called the observer gain matrix and is to be selected by the
designer.

Fig. 4.36 Full order
continuous time observer

¥

Linear system model

Observer ,T‘ f‘ *

Figure 4.36 shows a block diagram of a full order observer. It is implicit in
the block diagram that the system to be controlled and the observer have exactly
the same A, B and C matrices. Both the control object and the observer are
supplied with the same input. The outputs of the control object and observer
model are subtracted from each other and this output difference is multiplied by
the observer gain L and inserted into the summing point in front of the observer
model. This difference is called a residual or an innovation. Figure 4.37 shows an
alternative block diagram of the observer.

Clearly the properties of the observer in Eq. (4.121) are strongly dependent
on the matrix L. The most important point here is that the Eq. (4.119) describ-
ing the estimation error is stable and sufficiently fast to ensure that initial
estimation errors will vanish rapidly. These qualities are reflected in the eigen-
values of the observer system matrix,

AL =A - LC, (4.122)

u() Yy

X(0)

Fig. 4.37 Alternative block
diagram of the observer of
Eq. (4.121)
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which is sometimes called the stability matrix of the observer (4.121). The
eigenvalues of the stability matrix are the solutions of the equation:

det(M — A + LC) = 0. (4.123)

4.6.2 Discrete Time Full Order Observers

In the discrete time case the methods used to analyze and describe the properties
of observers are nearly the same as above for continuous systems. The observers
which can be constructed may however have somewhat different properties. This
is in large measure due to the fact that the pure time delay is an inherent dynamic
element in discrete time systems. This means that no input can influence a control
object or observer between sampling times and no discrete measurement can
resolve what a control object is doing between sampling times.
For the discrete time system,

x(k + 1) = Fx(k) + Gu(k),

(4.124)
y(k) = Cx(k),
the discrete observer equivalent to (4.121) will be
X(k + 1) =Fx(k) + Gu(k) + L(y(k) — y(k)). (4.125)
Defining the estimation error,
e.(k) = x(k) — x(k), (4.1206)

and subtracting (4.125) from (4.124) gives the equation governing the error,
e.(k+1)=(F—LCelk), (4.127)
and it is not surprising to find that the stability matrix is
FL=F-LC. (4.128)

The observer (4.125) calculates the state estimate at time k + 1 as soon the
measurement y is taken at time k. In other words, the observer predicts what
the state will be one sample period forward. Therefore (4.125) is called a
predictive observer. Sometimes it is argued, that the observer (4.125) does not
lead to the best possible result since is does not benefit from the last
measurement, i.e., the measurement y(k + 1).
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It is of course not possible for any real time computer to make a measure-
ment, to calculate the state estimate and to calculate the control signal instan-
tancously. However, if the plant to be controlled is much slower than the
computer, a computation delay may be immaterial and in such cases the
observer above can be improved.

To accomplish this an intermediate state, X(k), is introduced and the state
estimation calculation is split into two steps. During the sample period from
time k to time k + 1 the time update is calculated,

X(k+ 1) =Fx(k) + Gu(k), (4.129)

and at time k + 1 the system output y(k + 1) is measured and the measurement
update is calculated (‘instantancously’), i.e., the actual state estimate,

X(k+1) =Fx(k) + Gu(k) + L(y(k + 1) — Cx(k + 1)). (4.130)
Since the current value of the output is used, the observer (4.129) and (4.130) is
called a current observer.
If Eq. (4.129) is inserted into (4.130), it can be rewritten as
x(k+ 1) = (F — LCF)Xx(k) + Gu(k) — LCGu(k) + LCx(k + 1).  (4.131)
Using the state Eq. (4.124) leads to
X(k + 1) = (F — LCF)x(k) + Gu(k) + LCFx(k). (4.132)
Subtracting this from (4.124) gives
x(k+1) —x(k+ 1) =x(k) — (F — LCF)x(k) — LCFx(k)  (4.133)
or, introducing again the estimation error (4.126),
xX(k+1)—x(k+1)=e(k+1) = (F—LCF)e,(k). (4.134)

The stability matrix in (4.134) resembles that of Eq. (4.127). The only difference
is that the output matrix C is replaced by the product CF, which has the same
dimension as C.

4.7 Observer Design for SISO Systems
4.7.1 Observer Design Based on the Observer Canonical Form
Any observable SISO system can be brought into observer canonical form by

a similarity transformation as shown in Sect. 3.9.2. The state transformation is
carried out by the expression z = Qx where Q is found from Eq. (3.368).



4.7 Observer Design for SISO Systems

The observer canonical form is:

z = A,z + Byu,

y:CDsz
where

0 0 O 0 —ay T

0 0 0 —-a
0 0 0 -m

AO( = ) BOL =

0 0 0 ... 0 —a,,
000 0 ... 1 —ap,]

Coe=[00...01]

The observer for this system will be,

2(1) = Anez(t) + Boeta(t) + Lo (y(1) — (1)),

with the gain matrix,

and the stability matrix,

AL - Aoc - LucCoc"

oc

Inserting these matrices into (4.139) gives

o 0 0 ... 0 —ay — I
1 00 ... 0 —dq —l’z
0O 1 0 ... 0 —a2—1’3

oc

U
0 —dp-2 — ln—l

1 —dy—1 — l/n J
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(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)
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The stability matrix is also in observer canonical form, so the last column
contains the coefficients of the characteristic polynomial of the stability
matrix.

If it is desired that the eigenvalues of the observer be placed in the specified
positions in the complex plane,

Mo = Loty o2, - - 5 hon, (4.141)

then the stability matrix characteristic polynomial can be written,

n

Pch, AL, — HO\‘ - )\'oi) = 7\4” + Oﬂnfl)vn_1 + ...+ 0517» =+ . (4142)
i=1

Comparing (4.140) and (4.142) leads to a set of equations for determination of
the gains:

o =ag+ 11,
o =a; + 15,
(4.143)
Oy—1 = dp—1 + l/n;
or
I'y = o — ap,
Iy =04 —a,
(4.144)

/
Iy =01 — ap_y.

For the original system the stability matrix is Ay, = A — LC. The transfor-
mation means that,

AL =A-LC=Q'A,.Q-LC,Q=Q 'A,.Q-Q'QLC,Q w.145)
= Q_] (Aac - QLCoc)Q = Q_IALocQ = Q_l (Aac - LUL‘COL‘)Q7 .

which shows that
L=Q 'L,. (4.146)
The stability matrix of the predictive discrete time observer has the same form

as in the continuous case so this design method will also work for the predictive
observer.
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4.7.2 Ackermann’s Formula for the Observer

The problems of designing a state feedback controller and a full order observer
are very much alike. The controller closed loop system matrix and the observer
stability matrix are

Ak = A — BK,

(4.147)
AL =A - LC.

Looking at the dual systems introduced in Sect. 3.8.9 and specializing to the
SISO case,

«=Ax+B
S\.:{;‘:C?L “ (4.148)
and
. T T
SZ:{)Z}:‘;T?'_C u. (4.149)

Designing an observer for the system S, leads to the stability matrix above. It’s
transpose is

Al =AT-CTLL (4.150)
Design of a controller for system S, leads to the matrix,
Ag. = AT - C'K.. (4.151)

If L_{ = K. the two matrices in (4.150) and (4.151) are equal. This shows that
designing an observer for the system S, is precisely the same as designing a
controller for the dual system S..

Formulation of Ackermann’s formula for the design of a controller for S.
yields

K.=[00 ... 0 1]M_!Pya, (A7), (4.152)

where M. - is the controllability matrix for S. and P ak. (AT) is the closed loop
characteristic polynomial with the system matrix AT replacing A. Now the
observer gain matrix for S, can be found as

0
0

L,=K/ =P}, (ADHMDT|:|. (4.153)
0
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From Eq. (3.326) it is known that M[_ = M, and therefore also that

M HT =m; ! (4.154)

¢z
and for the characteristic polynomial one finds that
PZ;z.,AK: (AT) = PZ;LALT (AT)

= (AT + o (AT + .+ oy AT+ ooD)” (4.155)
— A” + an*]Anil + . + ulA + uol — P("thLv\» (A).

By these simple manipulations Ackermann’s formula for the full order observer
for the system of Eq. (4.148) has been derived:
0
0
L=Pya (AM,"|:|. (4.156)
0
1

Ackermann’s formula can be applied to continuous as well as discrete time
systems. For the predictive observer the formula is used unchanged, with the
system matrix F replacing A and with the usual observability matrix,

- C -

CF
M,=| CF* |. (4.157)

Canl

For the current estimator the output matrix C is replaced by the product CF

(see Eq. (4.134)) and consequently M, in Ackermann’s formula is replaced

by

" CF
CF?

M, = | CF° |. (4.158)

| CF”
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Example 4.16. Observer Control of a Marginally stable System

Many mechanical and electrical systems (or combinations of them) can be
described as un- or underdamped harmonic oscillators. For example hydrau-
lic/mechanical motors, tuned circuits (electrical or mechanical/electrical), etc.
The state and output equations of such a system are easy to write down.
Choosing the position and the velocity as the states, the equations will be

X1 0 1
L ol
y=[10}[m]-

®, is the natural frequency of the system. The eigenvalues are purely
imaginary,

0

Xi
+

1

X2

A= :tj(’)n;
so the system is Lyapunov stable.

It is assumed that only the position of the body is measured. An observer for
this system can be found from Eq. (4.121),

. 0 1
X =
—o2 0

where L is two-dimensional,

X+ u+ L(y — Cx),

1]
L= .
b
In this simple case the gains can be found directly by comparing coefficients.
The characteristic polynomial of the stability matrix is
[10] )

=N+ L4 02 + b =2 + 20,000k + @2,

0 1

2
-, 0

[
_|_

20
det(M — A + LC) = det -
0

1)

where ®,, is the natural frequency and (, is the damping ratio of the observer.

In order for the observer to be reasonably fast with respect to the control
object, the observer eigenvalues should be on the order of 5-10 times as ‘fast’ as
the system itself. This means that one could select ®,, = 5w,. The damping of
these eigenvalues should be good: (, = 0.707. In other words,
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Iy = 26,0, = 7.07,
o + b =250% = b = 240’

It should be noticed here that the control object is a system which is not stable
itself. The observer for this system is however stable and fast so that it can
follow the control object independent of its nonstable behavior or its initial
conditions. There is no contradiction in this: the situation is parallel to the
design of a stable controller for a nonstable or unstable control object. m)

Example 4.17. Discrete Observer for a SISO System

In this example a discrete time predictive observer for the system in Examples
4.5 and 4.6 is to be designed. The system is SISO and therefore Ackermann’s
Formula (4.156) can be applied.
The continuous system’s eigenvalues are
[ —0.8986
© | =0.1457 +£0.2157

Again, it is desired that the observer to be much faster than the system itself, so
the following observer eigenvalues are selected:

-5
h—
« {—3.5 +j3.5 '

which means that the observer will not only be fast, it will also be well
damped.The discrete time eigenvalues with the sample period 7= 0.2 s will be

ppy — M _ 0.3679
! 0.3798 +0.3199

With these eigenvalues the characteristic polynomial for the stability matrix
becomes,

P, v, (F) = F? — 1.1275F% 4 0.5260F — 0.090721I,

where
0.9730  0.05293 —0.06031
F= 0.01918 09461 —0.00061
0.003142  0.3063 0.8572

The observability matrix is,

C 2 0 0
M,=| CF | = |19459 0.10586 —0.12062 |,
CF’ 1.8949 0.16621 —0.22082
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and the observer gain matrix is readily computed,
0.8244
L= | -8.8262
—15.592

Carrying out a simulation of the estimation error determined by the state
Equation (4.127), the results as shown on Fig. 4.38 will appear. In this case the
initial error,

0
€.0 = 0.1 s

was assumed.

Fig. 4.38 Estimation error 0.3
for e, = [0 0.1 0]" : : :
0.25 f oo R CERITR PR e B

02 R E AR EEREETERTRRPRREE . ................ 4
0.15 e R b ]

0l =] L4 b L]

0.05 | f e b

iT:O.Z sec

—-0.05 : :
0 5 10 20
Sample no.

As should be expected, the error tends to zero and it has disappeared in about
11 samples or approx. 2.2s. m

Example 4.18. Current Observer for the SISO System

The current observer (4.129) and (4.130) can be designed the same way as in the
predictive case. The only difference is that the output matrix C must be replaced

by the product CF.
The modified observability matrix becomes

CF 1.9459 0.10586 —0.12062
M, = |CF*| = | 1.8949 0.16621 —0.22082
CF’ 1.8462 0.18991 —0.30368

The new observer gain matrix is found to be

0.44245

L= |-9.3475],

—14.735
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Fig. 4.39 Estimation error 0.3
for e,p = [0 0.1 0]7 (current
observer) 025+

02f = e b P
oash || S S ]
01 = A A .

0.05 | R R ]

T=0.2sec

-0.05 :
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Sample no.

which is not far from the gain matrix in the previous example. The estimation
error is now governed by the state equation:

e.(k+1) = (F — LCF)e, (k).

The solution for the same initial error as in Example 4.17 is found by
simulation. See Fig. 4.39. Comparing with Fig. 4.38, a slight decrease in the
errors can be noted on Fig. 4.39, but in this case the difference is not very
significant. m

4.7.3 Conditions for Eigenvalue Assignment

The Formula (4.156) show that L can be found if M,, is nonsingular, i.c., if the
system is observable. It can be concluded that observability is a sufficient
condition for arbitrary eigenvalue placement for the observer.

If a unobservable system is considered the observable subspace decomposi-
tion in Sect. 3.8.12 can be applied. A similarity transformation z = PXis applied
where P is found from (3.345). If it is assumed that an observer gain matrix L
has been found then it is known from Eq. (4.146) that

L, = PL, (4.159)

where L, is the gain matrix for the transformed system. The cigenvalues for the
stability matrix are the solutions of the equation:

det(M — A + LC) = 0. (4.160)
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Multiply now by the determinants of P and P~! and make the transformation:

det(P) - det(M — A 4+ LC) - det(P~") = det(P(M — A + LC)P™) ( :
4.161
= det(M — PAP™! + PLCP™!) = det(M — A, + L,C,) = 0.

If the system’s observability matrix has the rank p, the gain matrix is partitioned
as

L
L,:[ "}, (4.162)
Lo

such that L;; has the length p and L, has length n — p. Insertion of the parti-
tioned matrices into the last expression in Eq. (4.161) yields

[Co 0])
M, — Ay +L;Co, 0
2 S e (4.163)
—App + LpCy : )\'Infp — Ay

= det(?»lp — Ay + L,1C0) . det(?»ln,p — A,m) =0.

Ay 0
A 12 Ano

L,

det(}\l - At + L[C[) = det 7\] -
Lo

The last expression shows that the eigenvalues consist of the p eigenvalues
which can be influenced by the gain matrix L,; and the remaining n —p
eigenvalues of the non observable system matrix A, 0. These eigenvalues cannot
be influenced by the observer gains and will therefore remain in their original
positions. Thus it can be concluded that observability is also a necessary con-
dition for arbitrary eigenvalue placement.

Another important conclusion can be drawn from the result above. It is clear
that all the eigenvalues in the observable subspace can be assigned specific values,
even if the observable subsystem is not stable. If the eigenvalues of the unobservable
system are also in the left half plane then the observer can be made stable by proper
choice of L;;. A system where the unobservable cigenvalues are stable is called
detectable. See p. 124. Precisely similar conditions apply for discrete time systems.

4.8 Observer Design for MIMO Systems
It can be shown that the conditions for eigenvalue assignment for SISO observers
discussed in the previous section are also valid in the MIMO case:

1. The observer eigenvalues can be placed arbitrarily if and only if the system is
observable.
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2. The stability matrix can be stabilized if and only if the unobservable states
are stable (the system is detectable).

To find a design method for MIMO observers the duality properties can
once again be utilized. The essential matrices for the controller and the obser-
ver cases are:

Ax = A — BK,

(4.164)
AL =A-LC.

Following the same line of development as in Sect. 4.7.2, it is easy to see that
designing a controller for the system,

X = Ax + Bu
Sy , (4.165)

y =Cx

is the same as designing a state feedback controller for the dual system,

S, :

(4.166)

2=A"z+C"u
y =Bz

4.8.1 Eigenstructure Assignment for MIMO Observers

The robust eigenstructure assignment implemented in the MATLAB function
place, can thus be used for observer design with a simple modification. The
observer gain matrix L for the MIMO system (4.165) is determined by the
command,

L=place(A,C, [Ai,A2,..., hal),

where Ap,Aa,..., A are the observer eigenvalues. Note that prime (°) in
MATLAB denotes matrix transposition.

4.8.2 Dead Beat Observers

By a derivation completely parallel to the treatment in Sect. 4.4.2 it can be
shown that a discrete time observer with dead beat behaviour is obtained if the
eigenvalues of the stability matrix are all placed in zero.

In this case the characteristic polynomial becomes

det(M — F + LC) = Pe, (M) =1+ o A+ fouk +og = 1" (4.167)
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A deadbeat observer will now be desiged for the system of Example 4.19.

Example 4.19. Predictive Deadbeat Observer

A predictive dead beat observer is designed by using the n eigenvalues,
Ao =0,0,...,0.

Repeating the procedure from Example 4.17 leads to the gain matrix

1.3881
L= | -30.616
—47.111

and a simulation of the estimation error under the same circumstances as in the
two previous examples gives the responses on Fig. 4.40. All error components

Fig. 4.40 Estimation error 0.6 .
T .

f()l‘ €0 = [0 0.1 0} ] ee3(k)i : :

(dead beat observer) 05F- ST SITREE SRR TP PEPEPERE e CETEREREREREPEVET

041 5 RRREE SRRRTEEPRRNERPPS o P

S T — S

02F-- I R RERREEEEEE ................. ..................

7] 0% O — E— —

e, (k) T=0.2sec

Sample no. 20

are exactly zero from the third sample instant, clearly indicating the dead beat
behaviour. The price is, as it is usually the case with dead beat systems, that the
gains as well as the signal amplitudes are large compared to the cases with more
‘normal’ eigenvalue placements. 0

4.9 Reduced Order Observers

The observers which have been described above are all full order. This means
that all the states of the control object are estimated whether or not this is
necessary. In some cases control objects have states which can be effectively
measured without internal state or measurement noise while other states have
large noise components. It may also be true that the modelling of some states is
very accurate while the measurements of others are inaccurate.



268 4 Linear Control System Design

Under these circumstances it might be advantageous to estimate a subset of
the state variables. Such model reductions may be advantageous because they
make it possible to simplify the control system and thus reduce system costs. This
is nearly always an interesting proposition because not only does this reduce
hardware costs but also implementation time and tuning difficulties. For these
reasons reduced order observers are of great interest for practical applications.

Consider now a system divided into blocks containing the states which can be
accurately measured directly, x;, and another set for which an observer is
required, X;. In contrast to what is usually the case, it is clearly important
here to order the states properly.

The state vector,

X|
X = [ ] (4.168)

defines the blocks of the overall system according to the state equation,
X An A12:| [Xl] |:B1:|
| = + u, 4.169
[Xz ] |:A21 Axn | [ X2 B, ( )
where the state vector x is measured according to
y = Cixp. (4.170)

It will be assumed for simplicity here that the matrix C; is quadratic and
nonsingular. This will very often be the case and the method presented will
therefore cover most practical problems, although it is not applicable in all cases.
The assumption is not absolutely necessary but it introduces a useful simplifica-
tion and a straightforward design technique. For a more general approach the
reader should see Friedland (1987) or Kwakernaak and Sivan (1972).

If a full order observer is to be constructed for this system, it should estimate
the entire state vector,

X1
%= [ } 4.171)

Xo
However there is no reason to estimate the upper component of the state vector
since it is available through the measurement (4.170). Therefore let

X =x; =C/ly. (4.172)

On the other hand it is necessary to introduce a general observer for the lower
component x, of the state vector,

X, =z + Ly, (4.173)
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where the auxiliary state vector z is determined from a state equation of the
form,

i =Mz + Nu + Py. (4.174)

This vector has the same order as x,, 1.e., 7 — rsince x; and y have the dimension r.
If the estimation error is defined as before, the expression for the error will be

X; — X €l 0
e, = = = . (4.175)
X2 —X2 €e2 €e2
Using Eqs. (4.169) and (4.173) an expression for €,, can be derived:
€ =X — Xo = AsX; + Anx2 + Bou— Ly — . (4.176)
Further using Eqs. (4.170) and (4.174) yields

éd:)'(z—;Q:Az])q +A»nxs+Bu—LCx; —MZ—NU—Py

4.177)
=AyX; +Apxo+Bu—LCi (A 1X; +A2X2 +Bju) —Mz — Nu— Py.
From (4.173), (4.170) and (4.175) is seen that
Z=X)y — € —LC]X]. (4178)
Inserting this into (4.177) and after some manipulation this gives
é()z = (A21 — LC1A11 + MLCl— PC])X] -+ (A22 — LC]Alz — M)X2 (4 179)
+ (B, — LC;B; — N)u + Me,.. '
The first three right hand terms can be made zero by setting
M = Ay — LC/Ap,
N =B, - LCBy, (4.180)
P = (Ay — LC1A|)C;! + ML,
and (4.179) becomes
éo = Me., = (A — LCiApp)e.. (4.181)

This last differential equation shows that M is the stability matrix of the
reduced order observer and the design task is once again, reduced to deter-
mining L such that M will have a desired set of eigenvalues. The problem is
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quite parallel to finding L in the full order observer such that the matrix,
Ay, = A — LC, gives the desired eigenvalues. The usual eigenvalue or eigen-
structure design can therefore be used with the only modification that C
must be replaced by C;Aj».

The eigenvalues of the reduced order observer stability matrix are the
solutions to

det(M — Azy + LCiA ) = 0. (4.182)

The condition for eigenvalue or eigenstructure assignment is also as before. The
necessary and sufficient condition is that the observability matrix,

CiAp
CiApAxy
M = | CApA}, |, (4.183)

n—r—1
C1A12A22

has the full rank n — r.
A block diagram of the reduced order observer is shown on Fig. 4.41.

Fig. 4.41 Reduced order

u(r) . .
observer Linear state equation

(A and B)

Linear system model

Observer

)

X0

+ XF i) f 2(f) +

Discrete Time Case

It should be noticed that the derivation above can be carried out in exactly
the same way with difference equations and discrete time versions of the
observer design shown above can easily be constructed. If the discrete time
system matrix is partitioned in the same way as in Eq. (4.169),

Fi, F
F = [ ! 12} (4.184)
Far Fp
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then the estimation error is determined by the difference equation,

ea(k+ 1) =Mey(k) = (Fnn — LC Fi2)en(k), (4.185)
and the stability matrix is seen to be

M = F» — LCFy>. (4.186)

Example 4.20. Reduced Order Observer for a Third Order System

Returning to the third order system from Example 4.5. The model for this system is

~0.14 033 —0.33 0
x=1] 01 —028 0 |[x+| 0 |uy=[2 0 0
0 17 —0.77 —0.025

Supposing that only the first state variable can be measured according to the
output equation, an observer for estimation of the two remaining states is
needed.

The system matrix partition (4.169) leads to

Ay =—0.14, Aj; =[0.33 —0.33],

0.1 —0.28 0
Ap = ; Ap = )
0 1.7 =0.77
and the output equation can be written
y=Cx; =2x;.

L will have dimension 2 x 1 and can be found if the matrix pair {A, CiA},} is
observable. It is found that

CiAp
CiA A

/

—1.3068 0.5082

0.66 —0.66
[ ]and det(M))) = —0.5281.

so the observability requirement is fulfilled.
The observer should be much faster than the system and the following
eigenvalues are selected,

Ao = —3.5+/3.5.
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Fig. 4.42 Unit step response 0.02 - - - - -
of system and reduced order 3 3 3 : :
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Ackermann’s Formula (4.156) for the observer case can be applied and the
following result is found:
—28.32
L= )
—37.34

The result of a simulation of the overall system is shown on Fig. 4.42. The
block diagram of the system is seen on Fig. 4.41 and the system’s initial state
vector is a zero vector. The observer is however started with incorrect initial

conditions, namely:
o — {)}20} B {0.01]
7 k0] L002)

A deviation between the states x; and x3 on one side and the corresponding
estimated states X, and X3 on the other side is clearly visible over the first 1.5 s of
the simulation. After this the curves coincide, showing that the estimation
errors have vanished as was intended. 0

4.10 State Feedback with Observers

Itis clear from Sects. 4.6, 4.7, 4.8, 4.9 that it is possible to estimate the states of a
linear system using a linear system model called an observer. Even if only a
subset of the states of a control object is measured, it is still possible to make all
the states available for feedback purposes, albeit some only as estimates. It is
clear however that proper design techniques must be used to ensure accurate
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Fig. 4.43 State feedback
with full order observer, the
design situation
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State controller
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estimates. It now has to be investigated how the combination of observer state
estimates and full state feedback will work in conjunction with each other.

A block diagram of the observer structure to be studied in this chapter is in
Fig. 4.43. It may be seen on the figure that the observer structure of Sect. 4.6 has
been retained without any changes. What is new is that the state estimates are
used in the control loop instead of direct state measurements. Most importantly,
it is necessary to specify design guidelines for such apparently complex systems
given the requirement that overall asymptotic stability must be attained.

It should be kept in mind that the observer (full order as well as reduced
order) is a linear approximation to the real system and therefore it cannot exactly
follow the states of the real system which is most likely nonlinear. It is very
important to study the possible consequences of this fact. Usually this is most
conveniently done by simulation as shown in Example 4.22.

4.10.1 Combining Observers and State Feedback
As before the control object is to be described by the state equations:
x(1) = Ax(¢) + Bu(1), (4.187)

y(1) = Cx(1), (4.188)

and the observer by the equation,
x(1) = AX(1) + Bu(7) + L(y(r) — Cx(1)). (4.189)
To establish full state feedback using the state estimates, the feedback law is

u(r) = —K&(¢) + r(1). (4.190)
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This immediately leads to the observer state equation (the time argument is
omitted),

x = (A —BK — LC)X + Ly + Br. (4.191)
The estimation error is
e =X—X=X=X—¢,. (4.192)

If x is inserted into (4.190) and the resulting u into (4.187), the following
equation is obtained

x = (A — BK)x + BKe, + Br. (4.193)
The estimation error is governed by the equation
¢, = (A—LC)e,. (4.194)

Equations (4.193) and (4.194) can be combined to the 2n-dimensional state

equation,
X A — BK BK X B
= + r. (4.195)
€, 0 A—LC] e, 0

The characteristic equation of the overall system is
M — A + BK —BK

0 M—-T-A+LC
= det(M — A+ BK) - det(M — A + LC) = 0.

det

(4.196)

This shows that the eigenvalues of the overall system (4.195) consist of the union
of the eigenvalues of the controller and the eigenvalues of the observer.

In other words, the eigenvalues of the controller and those of the observer are
independent of each other. If the controller as well as the observer separately
have been given eigenvalues in the left half plane, then one can be sure that the
overall system will be asymptotically stable. This important result is often called
the separation principle though this label was originally applied to stochastic
systems.

In the presentation of the observer/full state feedback control system above,
no account has been taken of the response time of the observer. In fact this has
not been necessary at all. The reason for this is that if overall stability can be
achieved then the response time of the observer is not important in itself, as long
asitis atleast as fast as the system itself, given the input which one wishes for the
control system to follow. If the observer is not fast enough to follow the control
object then this will degrade the quality of the control which can be attained,
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though not its stability, given a reasonably accurate system model for the
controller and observer design.

To ensure that the observer is fast enough, the observer eigenvalues should
normally be placed to the left of the controller eigenvalues in the complex plane.
For continuous time systems it is often suggested that the observer eigenvalues
are selected according to

Ao =a- A, (4.197)

where A is the controller eigenvalue and the multiplication factor a is 3-10.

If this rule is applied a good result is achieved in most cases, but it should
remembered that it is merely a coarse rule of thumb. Sometimes adequate
performance is obtained even if the observer eigenvalues are placed quite
close to the controller eigenvalues. It should also be noted that if the eigenvalues
are placed too far into the left half plane, large observer gains and severe noise
and disturbance sensitivity may be the result.

Discrete Time Case

As before for controllers and observers, it is obvious that the discrete time
systems can be treated precisely the same way as the continuous ones above.
The discrete version of the 2n-dimensional overall system state Equation (4.195)
is

[x(k—i—l)] _ [F—GK GK Hx(k)

ec(k+1) 0 F-LC ee(k)]Jr[ﬂr(k) (4.198)

and consequently the characteristic equation reflecting the separation principle
becomes

M —-F+GK —-GK
det
0 M—F+LC
= det(MI — F + GK) - det(\I — F + LC) = 0.

(4.199)

Example 4.21. Combined Observer/Pole Placement Control

For the third order system in Example 4.5 a state controller was designed with
the gain matrix,

K=[81.54 5626 —32.8],

resulting in the closed loop eigenvalues,
—0.67
et =< —0.67
—0.67
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If the full state feedback is to be replaced with an observer and feedback of the
estimated states instead of the real states, an observer gain matrix must be found
such that the observer stability matrix has suitable eigenvalues. If the observer
eigenvalues,

-3
7\40{ )
242

are selected, it is obvious that the observer is considerably faster than the
controller.

The block diagram of the overall system is the one depicted on Fig. 4.43 with
the exception that the input # and the output y are both scalars and the L matrix
can be determined by application of Ackermann’s Formula (4.156). The following
matrix is obtained:

2.905
L= |-23.65]. (4.200)
—44.21
If the system and the observer are both started with a zero initial vector (i.e
X9 = X = 0), it will hardly be possible to distinguish the step responses x(7) and
x(¢) from each other and the output and the control signal will be as on Fig. 4.12.
However if the two initial vectors are not the same, an estimation error will occur,
at least for a period of time depending on how fast the observer is.
Now, two simulations are carried out using two different observer gain
matrices, namely (4.200) and the matrix,
0.1050
L= |-0.01988 |,
—03985

giving the observer eigenvalues,

{ —0.6
7\40 = ;
—0.4+0.4

which means an observer which is five times ‘slower’ that the first one.

The estimation errors e, () = x(¢) — X(¢) are shown on Fig. 4.44 for the two
cases. The initial values are

e = [0.0005 —0.0005 0.001]".
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Fig. 4.44 Estimation error for the two different observer cases
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Fig. 4.45 Input end output for the two different observer cases

If the fast observer is used, the initial estimation errors have disappeared in less
than 4 s, whereas the slow observer needs more than 15s to remove the error.
The apparently large differences in the estimation errors do not reflect similar
differences in the input and output signals, which are shown on Fig. 4.45. Both
signals are almost identical for the fast and the slow observer.

This example indicates that it is not necessarily advantageous to make the
observer very fast compared with the controller. In fact, the slow observer has
much smaller gains than the fast one and it will therefore be less prone to
exhibiting undesired noise sensitivity.

4.10.2 State Feedback with Integral Controller and Observer

The observer based state feedback controller can be combined with the error
integration introduced in Sect. 4.5. A simplified block diagram of an overall
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Fig. 4.46 State feedback
with integral controller and
observer. Note, that in the
real situation the linear
system model above is
replaced by the physical
system which in most cases
is nonlinear

r(r) e(t) x,(1), y(1)
= Linear system model

Observer
X(1)

system with such a controller structure is shown on Fig. 4.46. The entire set of
equations for the system consists of the already known relationships:

X = AX + Bu,
x; =r — Cx,

X = AX 4 Bu + LC(x — %),
u = —Kx + Kjx,.

(4.201)

If an overall system state vector is defined, the following model can be obtained:

X A BK; ~BK X 0
X |=|-C o0 0 x; | + | L |r. (4.202)
X LC BK, A—-LC-BK]|[x 0

Similarity transformation of this system using the matrix,

L, 0 0
P=(0 I 0 |=P" (4.203)
I, 0 —I,
leads to the state vector,
X X X
z=P|x; | = X; =[x, (4.204)
X X — X e,

and the overall system matrix,

Ay,=PAP'=| —C 0 0 , (4.205)
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where A, is the system matrix in Eq. (4.202).
The matrix is block triangular and the eigenvalues can be found from

A-BK BK;. BK
det(Ml = Ag) = det| M— | —C 0 0 (4.206)
0 0 ‘A-LC
A—-BK BK, |

-C

= det <M -

This means that the overall set of eigenvalues consists of the eigenvalues for the
feedback integral controller (see Eq. (4.100)) plus the observer eigenvalues.

) -det(\] — (A — LC)) = 0.

Discrete Time Case

For the discrete time systems, quite similar manipulations can be carried out
and the overall system matrix corresponding to the state vector,
x(k)
z(k) = | x;(k) |, (4.207)

becomes

F.=| -C L 0o |. (4.208)
0 0 F-LC

One can immediately see that the conclusion concerning the separation eigen-
values is precisely the same as for (4.205).

Example 4.22. MIMO Observer/Integrator Control of the Robot Arm

Example 4.14 investigated the integration state controller for the two link robot
from Example 2.10.

If the full state feedback controller is replaced with a full order observer and
the additional output feedback and the integrators maintained, the overall
system on Fig. 4.47 results. The system is the continuous/discrete ‘hybrid’
version of the system on figure 4.46. To obtain a design for the entire control
system it is only necessary to combine the integrating controller from example
4.14 with the controller gain matrix,

K, =[K -K/]
841.3 76.385 15399 20.175 —63.628 —8.1492
| 343.88 30304 90.155 10.891 —27.411 —5.175 |

and with an observer gain matrix ensuring an appropriate eigenvalue placement
for the stability matrix Fy, =F — LC.
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Robot

L
'y,
L
L [
Observer >
. Yy
=
|— K
Discrete time Continuous
controller time system

Fig. 4.47 Controller and observer for two link robot

The six controller eigenvalues are

—7+j7
Ao =4 —8.6+/5
—9.7+£2.6

in continuous time and

0.86085 + j0.12131
Nerg = 0% = ¢ 0.83777 +0.084058 (4.209)
0.82254 + j0.042811

in discrete time. The sample period is 7 = 0.02s.

According to the usual rule of thumb, the observer should be 3-10 times
faster than the controller. If the 4 best damped controller eigenvalues above are
picked as a starting point and if a factor 5 is selected, the following discrete time
observer eigenvalues will be obtained:
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0.3714 +0.2029
o { 0.3663 j:j'0.0975 (4.210)
Applying the MATLAB place function leads to the gain matrix
1.2644  2.341-107%
22.373 —0.083636 @211)

—0.013327 1.2715
—1.0311 20.879

If all the known matrices are inserted into the 10 x 10-dimensional overall
system matrix (4.208), it will be found that the 10 eigenvalues will be the union
of (4.209) and (4.210), precisely as expected.

A simulation corresponding to the one carried out in Example 4.14 gives the
results on Figs. 4.48 and 4.49. Comparison with Figs. 4.32 and 4.33 reveals that
the system with observer is not quite as robust as the system in Example 4.14.
The performance is slightly inferior (more oscillatory) after 1 = 3s. where the
links have moved far away from the linearization point. This is not uncommon
for control systems containing observers.

It may be possible to improve the performance by making the observer
faster. If a factor 10 is used for the observer eigenvalues instead of 5, the result
on Fig. 4.50 is obtained. Only the angle 0, and the input u; are shown for
simplicity. The angle response is clearly better than the previous one for a slower
observer. However some of the gains are also larger,

1.7578 —1.594- 1074
39.190 —0.031706
4.212
-9.1553-1073 1.8106 ’ ( )
—0.89259 42.294

and this will increase the noise sensitivity.

0.8 ; ; ; T
frady |\ S L ]
oaf | e
oaf |B e
of | T .
4l o\ T R T
08P\ - o

-0.8
-1

Fig. 4.48 Robot link angle 0 1 > 3
step responses t [sec]
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Fig. 4.49 Control signals 150
(motor torques) [Nm]

100

50

ool — S ]

-150
0

0.8 : : 150

[rad]

“100H- ......

-150

Fig. 4.50 Responses with a faster observer

Noise effects are not pursued at this point, but it must be pointed out that at
least one source of noise is inevitable in hybrid systems with analog-to-digital
converters. The converter will not only sample the continuous signal at discrete
instants of time, it will also quantize it. The deviation between the continuous
signal and the quantized signal depends on the resolution of the ADC and this is
given by the number of bits the converter can handle linearly. There is no
quantization involved in the simulations above but this can easily be included
in the simulation. It is just a matter of adding the quantizers in the output lines
as seen on Fig. 4.51. A new simulation using the fast observer (4.212) and with a
12 bit converter gives the responses on Fig. 4.52. The angle seems unaffected but
the control signal is clearly noisier than before because the quantization noise
propagates through the system from the quantizer to the input signal. A part of
a record of the quantization noise is seen on Fig. 4.53. If a 10 bit converter is
used, the measurement noise problem becomes even more evident as seen on
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Fig. 4.51 Quantizers
inserted into output lines
[ u
DAC 1
‘ Robot
U
—®| DAC
X1 3
Xig
-« ADC |=
ADC |=a il
| X3q ? _yi
e
M
0.8 : : 150
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50 |
0
0
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-1 . .
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0 4 0 2
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Fig. 4.52 Responses with a faster observer (12 bit quantization)
103
5 X
il X3 =434 |
0
1k il
Fig. 4.53 Quantization -2
g % 0.45 0.5 0.55 0.6 0.65

noise (12 bit quantization)

t [sec]
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0.8 : - 150

[rad]

—100 [ SARRRRRRREEE SR

-150
4 0 2
t [sec] t [sec]

Fig. 4.54 Responses with a faster observer (10 bit quantization)

Fig. 4.54. In this case the input noise has become worse and now one can also
see faintly that the noise influences the link angle 6,. With the slower observer
(4.211) this noise influence would be much more modest.

It can be concluded that there is a price to be paid if the observer is made too
fast. This is in fact a general problem. It is usually the case that there is a trade
off between the requirement that the observer should follow the states closely
and its sensitivity to noise and disturbances. This problem is treated in more
detail in later chapters. 0

4.10.3 State Feedback with Reduced Order Observer

Given the simplicity that the separation principle makes possible in the design
of full order observer/feedback systems, it is of great interest to determine how
full order feedback will function together with reduced order observers. The
overall system is shown on Fig. 4.55.

A reduced order observer has been derived in Sect. 4.9 for the control object
given by Equation (4.187). In this treatment the states x; are measured while
the remaining states are estimated on the basis of these measurements. The
estimation errors are given by

€1 = X1 — )A(] =0 (4213)
€,n = Xp — )Aiz = )A(z = X2 — €, (4214)
and e, is governed by the state equation

éeZ = Meez = (A22 — LC]A]z)eez. (4215)
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Fig. 4.55 State feedback
Rk t x, (1) y(1)
with reduced order observer £ +O u) Linear system model ]—Jc_‘—s

1
(see the remarks to Fig. 4.46) - L

Observer

X, (1)

4 State controller
{ K] |4:
+

The control signal is given by

u=—Ki+r=—[K, Kz]{Xl} +r (4.216)
Xo

since X; = Xxi. Inserting (4.216) and (4.214) into (4.187) yields,
X A A B;K; B/K B
[%1}:[ 1 12}[?(1]_[ 1K By 2][ X }—F[ l]r, 4217)
X2 Ay An][x B:K; BoKs | [x2 —e B,
where the partitioning of A and B is the same is in Eq. (4.169). Combining
(4.217) with (4.215) leads to

X A —BiK; A12—BIK2:B1K2 X B,
Xo | = [A1 —BoK; Ay —BoKy BoKs | [ xo | + [Bo|r (4.218)
eo| [0 0 M ||en 0
or
X A — BK BK, X B
= +| e (4.219)
€2 0 M () 0

The overall system matrix is block triangular and the eigenvalues are there-
fore determined by the characteristic equation,

{M —A+BK -BK;
det

= det(M — A +BK) - det(\I — M) =0, (4.22
o Mn,.—M} det(\I — A + BK) - det(\I— M) =0, (4.220)

where I,,_, is the n — r-dimensional identity matrix.
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Equation (4.220) shows that the separation principle is also valid in this
case.

4.11 Summary

This chapter has presented three main subjects:

1. The use of full state feedback for control system design,

2. The use of deterministic observers for state estimation and

3. The combined use of observers and full state feedback in control system
design.

The basic method of designing feedback control loops for multivariable sys-
tems is eigenvalue placement and this is the subject of the Sects. 4.1, 4.2, 4.3, 4.4,
4.5 of this chapter. It has been shown that it is possible to place the closed loop
eigenvalues of any controllable system arbitrarily in the complex plane. A vital
practical issue is that feedback loops must nearly always be offset so that they
regulate around a point in input/state space which is not the origin. Once offset
there is very little difference in how the feedback loop itself is designed: a simple
application of superposition is sufficient given an accurate system model. When
there are well defined state disturbances in a system these may be suppressed by the
use of integrators as is well known in classical control system design.

Sections 4.6, 4.7, 4.8, 4.9 of this chapter have dealt with the design of linear
deterministic observers, sometimes called Luenberger observers, for state feed-
back systems. These observers can be based on incomplete or possibly noise
corrupted measurements of the states of the control object. Both full and
reduced order observers have been treated. Only one type of observer structure
has been considered but this is also the only type which is widely known in the
literature. Later it will be apparent that exactly the same type of observer,
having the same form, can also be derived from statistical considerations. In
this case the observer structure is called a Kalman filter (see Chap. 7).

The main method of observer design which has been treated is that of
eigenvalue placement and this method is entirely dependent on the character-
istic equation of the observer. The characteristic equation defines the dynamic
behavior of the observer with respect to the control object itself. In general an
observer is designed to be somewhat faster than the control object itself in order
to be able to follow the states of the system as rapidly and as accurately as
possible. This is necessary for accurate control. In this connection it must be
remembered that there is no requirement that the control object itself have non-
minimum phase or even stable dynamics. The only requirement is that the
observer is stable. This is in general possible within broad limits if the under-
lying control object is observable and the observer gains properly designed. If
reduced order observers are considered then the requirements are somewhat
stronger.
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Section 4.10 has dealt mainly with the separation principle and its use for
the design of observer based control systems. The main conclusion is that for
linear systems, because of the principle of superposition, it is possible to design
the observer and its corresponding full feedback control system independently
of each other. The resulting system will have sets of observer and feedback
eigenvalues at the design locations which can be placed independently of each
other. This is of course under the assumption that the control object is con-
trollable as well as observable.

4.12 Notes
4.12.1 Background for Observers

The explicit use of embedded models for state estimation in control systems is
by now a very old idea. In work published by Kalman and Bertram (1958) the
use of open loop observers first occurs. Closed loop observers appeared in the
early 1960’s, both as deterministic observers and stochastic filters. Kalman
filters were first mentioned in fundamental work on optimal filters by Kalman
(1960) and Kalman and Bucy (1961). Kalman filters were originally full order,
closed loop, stochastically optimal observers. A different approach was taken
by Luenberger (1964,1966,1971) who concentrated on deterministic systems.
His Ph. D. Thesis at Stanford from 1963 deals with a somewhat more general
estimation problem than that treated by Kalman and Bucy which lead to an
observer which has a reduced order with respect to the system with which it is
used. It was also Luenberger who originated the name ‘observer’. Thus ‘Luen-
berger observer’ is sometimes applied to reduced order observers.

4.13 Problems

Problem 4.1

Given the continuous second order system:

1 -2 2
X = X + u,
0.5 -1 2

y=[-1 1]x.

a. Find the eigenvalues of the system.

b. Design a state controller for the system such that the closed loop system
becomes two complex poles with the natural frequency 2rad/sec and the
damping ratio 0.707. Use the direct method of Example 4.3.

c¢. Calculate the closed loop system’s unit step response y(¢). Calculate also the
control signal u(f).
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Problem 4.2

a. Repeat questions b. and c. from Problem 4.1 but with the matrix B = [4; } .

b. Compare the results with those obtained in Problem 4.1 and comment on the
differences.

Problem 4.3

Given the system:

. [0 1 N 0
X = ) X : u.
a. Is the system stable?

Is the system controllable?
Can the system be stabilized by linear state feedback?

b. If possible, determine the gain matrix for a linear state feedback controller
by using Ackermann’s formula. The closed loop system eigenvalues must
be placed in the positions A = —1 + ;.

Problem 4.4

Consider the following discrete time model for a linear third order system:

2 -3 5 0
x(k+1)=|-0875 05 1|x(k)+ |1 |u(k).
~1.875 —0.5 3 1

The sample period is 7' = 0.2 sec.

a. Is the system stable?
Is the system controllable?
b. Transform the model to controller canonical form.
c. Design a linear feedback controller with the gain matrix K and with the
continuous time eigenvalues
N -2
cont — { _2 :I:]

d. Repeat c. by using Ackermann’s formula.

Problem 4.5
The following linear model for a third order system is given:
-4 -6 8 2
x=|—-4 -1 3|x+|-2]u
-5 -2 5 -1
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a. Show that the system is neither stable nor controllable.

b. Is the system stabilizable? (Use controllable subspace decomposition).

c. Design a state feedback controller such that the resulting closed loop system
has the complex conjugate eigenvalue pair A = —2 ;2.

d. Check the entire set of eigenvalues of the closed loop system.

Problem 4.6

Consider the hydraulic position servo from Example 3.26. Let the state vari-
ables be the position, the velocity and the pressure difference.

a. Formulate a third order linear state equation for the system, insert the data
from Example 3.26 and calculate the eigenvalues.

b. Design a state feedback controller with the gain matrix K and with the closed
loop eigenvalues

-20
hot = { —124/12°

c. Show that the system will have a stationary error for the reference r = 0 and
a constant load force f # 0. Calculate the error for /' = 500 N.

d. Design a state feedback controller with integration. Calculate K; for the
closed loop eigenvalues

-20
7\'(,’/1 - —16
—12412

e. Calculate the stationary error for /' = 500 N.
f. Calculate the unit step response of the system with and without integration.
Calculate also the response to a 500 N step in the disturbance in the two cases.

Problem 4.7

Reconsider the hydraulic servo of Problem 4.6 with the difference that a discrete
time controller shall be designed.

a. Use the same system data as in Problem 4.6 a. and discretize the system with
the sampling period 7" = 2ms.

b. Design a discrete time state feedback controller with the gain matrix K and
with the continuous time closed loop eigenvalues:

-20
Mt = { 124512

c. Show that the system will have a stationary error for the reference r(k) = 0
and a constant load force f(k) # 0. Calculate the error for f(k) = 500 N.
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d. Design a discrete time state feedback controller with integration. Calculate
K, for the continuous time closed loop eigenvalues

-20
7‘40[1 = —16
124512

e. Calculate the stationary error for f{k) = 500 N.
f. Calculate the unit step response of the system with and without integration.
Calculate also the response to a 500 N step in the disturbance in the two cases.

Problem 4.8
a. A full order observer should be designed for the system in Problem 4.3
with

y=1[0 3]x.

Is this possible?

b. If the answer is yes, transform the system to observer canonical form and
determine the observer gain matrix L such that the observer eigenvalues
becomes

ha, = —4+j4.

c. Repeat b. by use of Ackermann’s formula.
d. Draw a block diagram with observer and the state controller from
problem 4.3.

Problem 4.9

Given the following linear model for a third order system:

4 —6 8 2
x= -4 -1 3|x+|-2]u
-5 25 ~1

y=[-1 0 1]x.

a. Is the system stable?
Is it observable?

b. Is the system detectable? (Use observable subspace decomposition).

c. Design a full order observer such that the set of observer eigenvalues includes
the complex conjugate pair A = —5 £ /5.

d. Check the entire set of eigenvalues of the observer.
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Problem 4.10

Consider the tank system in Example 2.9. Suppose that the level H;, and the
temperature 75 can be measured. It is desired to design a reduced order observer
for estimation of the two remaining states H; and 7.

a. Use the matrices (2.102), (2.103), (2.104), (2.105) for the linearized system in
Example 2.9 and carry out a similarity transformation which will transform
the system to the form (4.169) which is required for the observer design in
Sect. 4.9. This means that the state vector should be

H,
MR
X = =
X2 H,
T,

b. Determine the observer matrices L, M, N and P such that the observer has
the eigenvalues

Ao = —0.4450.5.
One may want to use the MATLAB place function in the design process.
¢. Carry out a simulation (for instance using SIMULINK) on the linear system

and check if the reduced order observer works, also if the observer is started
in a ‘wrong’ state.






Chapter 5
Optimal Control

Abstract The principle of optimality in terms of minimization of a performance
index is introduced. For continuous and discrete time state space system models
a performance index is minimized. The result is applied in the case of a quad-
ratic index for a linear system and the resulting time dependent and time
independent Riccati equations are derived. The conditions for guaranteed
stability of the steady-state Linear Quadratic Regulator (LQR) are presented.
An cigenstructure assignment approach to the steady-state LQ regulator
problem is developed.

5.1 Introduction to Optimal Control

The design of a controller for the control of a process as shown in Fig. 5.1
consists of providing a control signal, the input, which will make the plant
behave in a desired fashion, i.e., make the output change in a way described in a
set of performance specifications. In classical control the performance specifi-
cations are given in terms of desired time domain and frequency domain
measures, such as step response specifications (overshoot, rise time, settling
time), frequency response specifications (bandwidth, resonance frequency,
resonance damping) and relative stability in terms of phase and gain margins.
Further, the specifications may be given in terms of disturbance rejection and
noise suppression measures, specifying the desired frequency response of the
sensitivity function and complementary sensitivity function.

As is well known in classical controller design, many of the above specifica-
tions are conflicting in the sense that they lead to impossible or conflicting
requirements for the controller parameters. Typically, short rise time and high
bandwidth require high gain controllers whereas small overshoot and good
relative stability favor small gains in the controller. Classical controller design
therefore often requires judicious and sometimes skillful selection of controller
structure and parameters in order to find a reasonable compromise between
conflicting performance specifications. This calls for time consuming ‘trial and
error’ tuning on the part of the control engineer and does not lend itself well to
automatic tuning. This is especially true with MIMO systems.

E. Hendricks et al., Linear Systems Control, DOI: 10.1007/978-3-540-78486-9 5, 293
© Springer-Verlag Berlin Heidelberg 2008
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Fig. 5.1 The control Input Output
problem —_— Plant —

In an effort to overcome some of these problems and in order to be able to
design the ‘best possible’ controller, the methods presented here may be used.
Basically, a measure of the quality of a controller is formulated in this chapter in
terms of a performance index. This index is used to design the controller and
depends on the control signal and the state vector. In this way the ‘best’ control
signal is found that results in the minimum (or maximum) value of the index.

The job of the control engineer in Linear Quadratic Regulator (LQR) design
is therefore not to determine control parameters directly, but to define the
appropriate measure for controller quality, the performance index, and to
minimize or maximize it. Several types of performance index will be introduced,
leading to different kinds of controllers, but the basic idea is the same and will
be introduced in the following section.

5.2 The General Optimal Control Problem

In this section the general optimal control problem is introduced and then
solved in the following sections. Initially a general approach will be described
which is suitable for nonlinear systems. Later the discussion will be specialized
to linear systems.

Assume that an n-dimensional system with state vector x(¢) € R and input
vector u(z) € R™ is described by a general nonlinear, time varying state
equation:

(1) = £(x(1), u(1), 1). (5.1)
Assume further, that the state vector has the value x; at the initial time, i.e.,
X(lo) = Xp. (52)

It is desired to optimize the control over some time interval up to a final time,
t1. In addition an investigation will be made of optimal controllers both where
time 7; is given and also where there is a state or output requirement at the final
time.

The system performance can be described by a performance index, which is
a time integral depending on state and input vectors:

4

J(w) = B(x(11), 1) + J L(x(1), u(t), ). (53)

fo



5.2 The General Optimal Control Problem 295

The integrand, L, is a real-valued function of state and input vector and may
also depend explicitly on time. It is often called the cost function. The function ® is
a real-valued function of the final state vector and the final time. The performance
index reflects the quality of a controller and should be constructed in such a way
that it is limited from below and such that the larger the index, the poorer the
control. This may be achieved by requiring that the first term and the integrand in
the second term in equation (5.3) be positive for all values of, x(z), u(¢) and .

The first term in equation (5.3) represents a constraint on the value of the
state vector at the final or terminal time. The closer the final state vector is to
some desired value, the smaller is the value of the performance index.

Once the cost function and the constraint have been defined, the objective is
to findthe optimal controller, i.e., the value of the control signal u(#) for the time
interval fy < ¢ < ¢; which provides the minimum value of J under the assump-
tion that the state vector obeys the state equation (5.1).

Example 5.1. A Typical Performance Index

A typical regulator problem involves forcing the plant to stay at a stationary
point, ry. If the plant state deviates from r, the object of the regulator is to make it
return as fast as possible and with as little overshoot as possible. Looking at
Fig. 5.2 the value of an output y(7) deviates at time 0 from the desired stationary
point ro. The time development of this output y(¢) is influenced by the controller
and it is desired to bring it back to ry as rapidly as possible. An optimal control
problem can be formulated by stating that the best controller is one that mini-
mizes the shaded area in Fig. 5.2. The shaded area is a time integral of the form:

J:o lv(t) — roldt. (5.4)

This is the form of index mentioned above and an optimal control problem
therefore consists in finding a control signal that will minimize the above

response

I

el

Fig. 5.2 Sample regulator
time response, here N
underdamped time
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performance index in (5.4) for the plant in question. As will be seen later the
index has to be modified in part because in (5.4) there is no restriction on the size
of the control signal and in part because the form of the index is inconvenient
for calculations. These problems will be returned to after the solution of the
general optimal control problem has been derived. O

5.3 The Basis of Optimal Control — Calculus of Variations

The calculus of variations is a general method for optimization of functions or
functionals (functions of functions). Only a brief overview of this method will be
given here. For a more in-depth treatment the reader is referred to more advanced
control theory textbooks on the subject: see for example Bryson and Ho (1975).
A basic problem in the calculus of variations is the following:
A scalar integral which is a function of the time dependent vector x(7), its
time derivative and the time is given:

J(x) = J” FIx(1), X(1), )dt, (5.5)

where F'is a scalar function as is J and x(7) is an n-dimensional vector whose
elements are unconstrained functions of time.

The task is to determine that specific value of the vector x(#) which minimizes
Jin time. Since x(7) is an n-dimensional vector, the task is actually to determine
n scalar time functions x;(¢), x2(), ..., x,(f) between the two time instants 7
(the initial time) and ¢ (the final time).

The function Fis usually called a loss function and J is called an optimization
index or a performance index.

In order to find the required time functions it is necessary to know the
boundary conditions for these functions.

Usually the initial condition is known or specified:

X(lo) = Xg. (5.6)
At the final time there are several possibilities:

. 11 is fixed and x(7;) is fixed.

. ty1s fixed and x(7;) is free.

. tyis free and x(1;) is fixed.

. x(¢) must satisfy certain constraint conditions at the final time.

BN =

To solve the problem it is convenient to introduce variations: perturbation
functions close to the optimum function.

Suppose that the vector x*(¢) is the optimum vector that minimizes J.
Figure 5.3 shows the situation in the case where x is a scalar. The optimum
and a variational function are shown. For simplicity the boundary condition
2. above is selected. The optimum (minimum) value of J can be written:
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Fig. 5.3 Time functions x(t)
and variations
t, fixed, x(t) free
x(1) (@) | x(r)=xx(r) + dx(r)
X*(T) Sx(to) =0
% dx(t))#0
t
fo f
Il
J = J Fx*(1), 5 (1), ). (5.7)
fo
By definition,
AJ=J—J >0, (5.8)

where

AJ = Jn F(x(1), X(1), 1)dt — J“ F(X(1), (1), t)dt

fo 1o

(5.9)
_ JI' FIX* (1) + 0x(2), X (1) + bx, )dr — JI' Fx*(2), %(1), 1)d.
o o
A Taylor series expansion of F around the optimal solution yields:
F(x(1), x(1), 1) = F(x* (1) + 8x(¢), X" (1) + ox(1), 1)
= F(x*(1), X" (1), ) + g—f *SX(Z) + 2—1: *SX(Z) TR 510

The *-notation on the partial derivatives means that the derivatives must be
evaluated for x(7) = x*(r) and x(7) = x*(¢). Note that only the first order
expansion terms have been written out.

If this series expansion is inserted into equation (5.9) the result will be:

" (OF| oF

6x(t)+...>dt§]+..., (5.11)

where dJ is called the first variation of J,
nrOF OF

o = —

Jfo (8X

SX(I) + &

Sx(z)) dt. (5.12)

*
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The last term of this equation is simplified using integration by parts:

hoF| OF| . [vd[oF
J,Oa_x (0= 5] ox(0) - L) - {& ] Sx(1)d
(5.13)
oF OF " g [oF
5 B0l — 5] ax(0), - Jm < [g } Sx(1)dt.

At the initial time ¢ = #( the variation is zero, 6x(¢)|, = dx(#) =0, and
therefore the second term in the last line of equation (5.13) disappears. If the
remaining terms are inserted into (5.12), then the following equality will be

satisfied,
"(OF
5"‘[ (& -

fo *

Tt 2

because for the optimal solution, x(7) = x*(¢), the variation 8J must be zero.
Since (5.14) must hold for arbitrary 6x(7) and 8x(7;) it is necessary to require
that the integrand and the last term are zero:

d[oF
dt | 0x

x(1)], =0, (5.14)

OF(x*(1), x*(1), t) d [OF(x*(1), x*(1), 1)
- _E{ I ] =0 (5.15)
and
aF(X*(tl)a).‘*(tl)v tl):O, (516)

0x

Equation (5.15) is called the Euler- Lagrange equation and it must be satisfied
by the optimal vector function x(7) = x*(#). The boundary condition (5.16) is
called a natural boundary condition.

Note that not necessarily all functions which satisfy the Euler-Lagrange
equation are optimal solutions. In other words, the condition is necessary but
not sufficient. This fact has a parallel in the ordinary optimization of functions.
It is necessary for an extremum that the function’s derivative is zero but this
condition is not sufficient. To ensure optimality it is also necessary to check the
sign of the second derivative of the function. Similarly, one should investigate
the second variation of (5.11). However this is cumbersome and it is thus omitted
in many textbooks. This is also the case here.

The Euler-Lagrange equation is a very general result which forms an excel-
lent basis for optimal control. However, two important modifications are
necessary.

1. Constraints to be met by the optimal x(¢) must be introduced.
2. A control input must be added.
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The constraint(s) is (are) simply the system state equation(s). In optimal
control the vector x(7) is the state vector in the state space model, equation (5.8):

x(1) = f(x(1), u(2), 1), with the initial condition, x(#y) = X, (5.17)

where the control vector u(¢) is m-dimensional.

Just as in static optimization (see Appendix A), the constraints are conve-
niently handled by introduction of Lagrange multipliers. In the dynamic case
the multipliers are functions of time arranged as an n-dimensional vector
usually denoted A(z).

The performance index will look a little different in the case of optimal
control. To emphasize this, the change the symbol of the loss function is altered
from F to L and the index becomes:

J(u) = Jrl L(x(0), u(t), 1)dt. (5.18)

The index is of course still a function of x as well as of the newly introduced
control vector u. However in control the main task is to determine the optimal
input u* (1) and therefore it is more reasonable to add the extra argument u to the
integrand. If u(r) is known, the state vector can be calculated from the state
equation (5.17).

Now a useful trick will be utilized. The index is adjoined to (augmented with)
the state equation arranged so that a zero is added to the performance index:

J(u) = Jt (L(x(2), u(z), 1) + xT(z)(f(x(t), u(r), 1) — x(2)))dr. ~ (5.19)

This ‘new’ cost function (the integrand of (5.19)) is called G here for reasons
which will become clear a little later:

G = L(x(1), u(t), 1) + A (1) (£(x (1), u(1), 1) — (1)) (5.20)

The following augmented vectors are introduced:
t X(t
2(1) = [X(H, ilr) = [’.‘(H, (5:21)

where z(7) has dimension n + m.
This means that the index (5.19) becomes a function of z and z:

1

J(u) = J G(z(1),z(1), t)dt. (5.22)

fo
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The rationale behind these manipulations is that the index (5.22) has
precisely the same form as (5.5). This means that the optimization problem
with the constraint (5.17) has been reduced to the unconstrained problem of
optimizing an expression like Eq. (5.5). Consequently the same Euler-Lagrange
equation can be used to solve the augmented optimal control problem.

Equation (5.15) becomes (the #-notation is omitted for simplicity):

9G(z(1),2(1),t)  d [0G(z(1),2(1), )] _
9z 7 BP =0 (5.23)
where the first term is
067 06
0z o
oG oG oG
6211 8xn &
8—G = = = . (5.24)
2 oG oG oG
aZnJrl ouy %
o6 | | o6
- aZﬂ+m = L 8um -

If the second term is handled similarly, the Euler-Lagrange equation can be
written:

061 6
ox d | Ox

—— =0. 5.25
06| | o6 o
Ou ou

According to (5.20) the four partial derivatives in equation (5.25) can be written:

oG 0L <6f>T
_ - + )\‘7

ox  Ox Ox

oG 0L <6f> T

— =t = )\"

8“ 811 8u (5.26)
96 _

ox

G

%—0.



5.3 The Basis of Optimal Control — Calculus of Variations 301

With the expressions in equation (5.26) the Euler-Lagrange equation (5.25)
becomes

oL [of\T. .

=t <&> A4+ i =0, (5.27)
oL [(of\T
9L (Y 5 o 2
T (au> L=0 (5.28)

Note that (5.27) contains 7 first order differential equations whereas (5.28) is a
set of m algebraic equations. If to this the state equation (5.17) (the constraint) is
added, one ends up with a total of # first order differential equations and m
algebraic equations which must be solved simultaneously.

The natural boundary condition in equation (5.16) will be:

G

% At
oG _ |ox| _[~H0] _y (5.29)
oz|, G 0

511 I

The usable parts of this expression are the n conditions,
M) =0. (5.30)

The remaining n boundary conditions necessary for solving the 2n differential
equations are the initial conditions for the state equation,

X(l()) = Xp. (531)

From (5.30) and (5.31) it may be seen that half of the boundary conditions
are valid at the initial time 7y and the rest are valid at the final time ¢;. This is
called a two point boundary value problem. It causes serious problems in working
with optimal control problems since it prevents direct solution of the set of
equations by analytical or numerical means.

So far the final value term in equation (5.3) has been omitted. To include this
term in the investigation the following is noted:

@(X([]), ll) = CI’(X([]), l]) + (I?’(X(l()), l(]) — @(X(lo), l()). (5.32)
Then the performance index of equation (5.3) can be written:

J(u) = J[l %(@(x(t), 1))dt + Jll L(x(1),u(t), t)dt + &(x(t0), t0), (5.33)

ty

where the last term is a known constant and consequently it has no influence
on the optimization problem. It can therefore be ignored.
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The total differential of the scalar function ®(x(¢), 1) of the n states is,

o o 0P
dd =—d —d dx,,. 5.34
(x(1),1) o X1 +8xz Xy + +8xn X (5.34)
The derivative with respect to time is then:
dd(x(1),1) 00 . 9 | 00 . (90\".
T—a’—xl)ﬂ—‘-a—xzxz—'—...—Fa—xn.}Cn— g X. (535)

Equation (5.35) is inserted into the performance index (5.33) and same term is
added as in (5.20) (the last term is omitted as explained above),

J; <(?§) Tx + L+ (f— x>> dr,

with the cost function,

ox

T
Go = (5;@) X4+ L+ A1 (f—x),

the Euler-Lagrange equation can be applied once more:

Gy
ox d
9Gy dt
ou

Calculating the partial derivatives leads to,

06 _oL e
ox  Ox  Ox?

T
i ()

Ou  Ou Ou
0Gy 0P N d

% ox

)-o.

Gy _ _ d (aap

o @\ on

(5.36)
(5.37)
Gy
o%
o —0. (5.38)
[
ou
o7’
&) M
5.39
0Gs) _ e o
ox ) " ox M
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If these expressions are used in equation (5.38) the Euler-Lagrange equations
become:

oL [of\T .

T <6x> A+1=0, (5.40)
oL  [of\T
= el — 41
ot <8u> L=0, (5.41)

which is exactly the same as achieved in Eqs. (5.27) and (5.28) without the final
state term in the performance index.
The only new change appears in the natural boundary condition (5.16),

0Ga) _ - (%—x>
" ox

0%
_ 8<I>(x(t1),tl)
ox(1) .

=0

n

, (5.42)

or

A1) (5.43)
Note the difference from equation (5.30).

The last step in this derivation has the purpose of avoiding the term f — x in
Eqgs. (5.36) and (5.37). The Hamilton function H is introduced (it is not a
function of X):

H(x(1),M(0),u(1), 1) = L(x,u, 1) + A7 (¢) - f(x(2),u(?), 1), (5.44)

which gives the performance index (5.19) the following appearance:

Ju) = ¢(x(11),11) + Jh [H(x(1),M1),u(2),1) — xT(z) -x(1)]dr.  (5.45)

1o

The partial derivatives of H are:'

)
)
t;, Mo, 1) i), (5.46)
)
)

Y
' The gradient of a scalar function f(x) is a column vector V/(x) = [00—\/]% . %] . The
gradient of f with respect to x is denoted as % and fx. See Appendix B for further details on

vector calculus.
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Now each of these terms will be considered in turn to show what they represent
physically.

Referring to the expression for H in Eq. (5.44) it is seen that the first equation
in (5.46) is the equation of motion of the system or the state equation. The
n-dimensional Lagrange multiplier vector A is also called the co-state vector
and therefore the second equation is called the co-state equation:

OH(X,u, L, 1)  OL(X,u,1) of(x,u, 1) T o
o I + 7u A= —\(1). (5.47)

The third and last equation is called the stationarity equation and normally gives
the relation between the control signal and the Lagrange multiplier A:

OH(x,u,\, 1) _ OL(x,u,t) n (8f(x,u, t)> TX _o. (5.48)

Ou Ou Ou

The Hamiltonian H plays a special role in the calculations. If H is not an
explicit function of time, i.e., if neither L nor f explicitly depend on ¢, then
the Hamiltonian is a constant over time. This can be demonstrated by differ-
entiation. By the chain rule for differentiation,

dH . OH
= Hx+HWN+ H)+—. 5.49
dl xx+ uu+ A + (9t ( )

Introducing the results in (5.47) and (5.48) one obtains

H__irsqoar st 2 _0A

a oo (5.50)

This remaining term is zero if H is not an explicit function of time.

5.4 The Linear Quadratic Regulator

In general the non-linear optimization problem discussed in the previous sec-
tions cannot be solved analytically and the optimal control signal will have to be
found numerically. This of course severely limits the usefulness and convenience
of the general optimization theory, which is why the controller design is nor-
mally based on a linearized state space model of the plant.

The plant which is to be investigated is therefore a linearized one but may be
time varying. Here the states and inputs are the incremental ones though they
will be written as x(7) and u(¢) here for the sake of simplicity:

x(1) = A(1)x(1) + B(t)u(z). (5.51)
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In general the cost function is also normally restricted to have a certain parti-
cularly simple structure which will now be motivated.

5.4.1 The Quadratic Cost Function

In the time-domain the performance of a controller is judged by its ability to
follow transient changes in an input, its ability to suppress disturbances and its
ability to limit or eliminate stationary errors. For example the controller per-
forms well if the step response rise time is short, the overshoot limited and the
settling time to a small stationary error is short. As depicted in Fig. 5.4 one can
arrive at this goal if the cross hatched area in the figure is minimized. If the input
step is r(7) and the response is termed y(¢), then this area is given by the time
integral

jx 1r(6) — y(0) .

0

This particular performance index is a valid function to minimize because it is
limited by zero from below. However, from a computational point of view it is
easier to use a quadratic performance index of the form

joou(z) ()

0

This has many of the same properties as the index above and also in a more
general framework, where y(7) is replaced by a general state vector, x(z), this
expression is often related to the energy of the system, e.g. its kinetic and
potential energy.

1.4 T T T T
Overshoot M),
12 Stationary error e
b
2 ‘
S i
% 08 I Settling time t,
N
x i
= 0.6 -
s y(®
0.4 p 4
02l rise time t, |
Fig. 5.4 Typical transient 0 1 2 3 4 5 6 7

response of a controller time
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From the integral above it is obvious that the optimal control signal is one
that gives y(¢t) = r(¢) for all z. However, this can only be achieved if the system is
made to change infinitely fast and therefore the control signal has to be infinite.
Obviously, for any physical system the cost function has to be modified to take
into account the fact that the control signal to the plant is limited in size and
bandwidth. This can be achieved by adding a term to the cost function which is
quadratic in the control signal u(r).

Initially, the regulator problem is considered, so the state is required to be
close to a stationary operating point. Since the plant will be linearized around
this operating point, the deviations in the state vector that should be added to
the cost function are deviations from the stationary point. This is zero in the
linearized model. This leads to an index of the form (written in terms of the
incremental states and inputs):

J= JII xT(H)Rx(2) 4+ u” (1)Rou(r)]dt.

to

The integral is assumed to have upper bound #; < oo, but later the special but
important case of an infinite upper bound will be considered. Before the
individual terms are discussed in detail, a final time state cost term is to be
included as a quadratic term. This then gives a quadratic performance index of
the form

J(u) = %XT(ZI)S(tl)x(ll) + %Jll X"R;()x(t) +u” ()Ry(H)u(t)]dt.  (5.52)

fo

The matrices S(#,), R;(7) and R,(7) are called the weight matrices and deter-
mine how much deviations of x(¢,), x(¢) and u(7) from their zeroes will add to the
overall cost function. A necessary condition for J to have a minimum is that it is
bounded from below. Therefore that all terms in the index are non-negative for
all values of x and u. This will be satisfied if S(#;) and R;(¢) are positive semi-
definite for all values of 7. Furthermore, since u(¢) should be bounded for all ¢ it
is necessary that R,(7) have the stronger property of being positive definite, i.e.,

S(ll) > 07 Vt,
Ri(?) >0, Vi, (5.53)
Ry(1)>0, V.

The three terms in (5.52) are quadratic forms. See Appendix B.4 for more
properties of quadratic forms.

The weight matrices will determine the influence of individual components of
the state vector or input vector relative to each other. For example if the element
[Ry] ; 1s large, then the corresponding product of state vector elements x;x; will
be penalized heavily in the cost function and the resulting optimal control law
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will tend to emphasize making that term small. In particular the relative sizes of
the quadratic forms x” ()R, (7)x(¢) and u”()R(7)u(7) will determine the speed of
the control system. If R;(7) is selected such that the first term is large compared
to the second term the system states will tend to respond faster at the cost of
increasing the control signal. In the opposite case the inputs are forced to
remain small. As a consequence the response will be slow and the overall
deviation of the state vector from stationary state (i.e., zero) will be larger. In
this way the relative weights of the two matrices can be used to tune the response
speed at the same time limiting of the size of the control signal.

The final state term takes into account the fact that it may not be possible to
reach the state zero exactly. The weight matrix S(¢,) penalizes errors in the final
state.

If it is known what the maximum sizes of the final initial states, continuing
states and continuing inputs are, then the following general rule can be given for
the selection of the weighting matrices:

1
S(1)].. = , 5.54
SO =) >y
1
[Rl(mn‘ = ([1 _ [0) -max([x,-(l)]z) ) (5.55)
1
Ra(0) = (t1 — o) - max([ui(1)]*) (-3
where i=1,2,...,n and j=1,2,...,m. If the time is not important in the

intended application then the time interval in the parenthesis, (#; — fy), may
be set equal to 1. Cross product terms may be used in the weighting matrices if
there is interaction among the input or state components.

5.4.2 Linear Quadratic Control

In this section what is perhaps the most important modern LQR controller will
be presented. This is a MIMO linear closed loop controller. The system is
assumed to be linear but possibly time varying, i.e., it is described by the state
equation

x(1) = A(1)x (1) + B(2)u(z). (5.57)

The controller is required to minimize a performance index of the form (5.52).

The final time is fixed but now the final state is allowed to deviate from zero.
It is inserted into the performance index with a positive semi-definite weight
matrix S(ty),
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S(ll) > 0.
The state and control signal weight matrices are assumed to be positive semi-
definite and positive definite respectively:

R () > 0 and Ry(7)>0, Vr.

The boundary condition is given by equation (5.43). Since
D(x(11),11) = %XT(ﬁ)S(l‘])X(Zl) this gives

A1) =S(0)x(1). (5.58)
The Hamiltonian of the system is

H= %XT(t)Rl (Ox(1) + %uT(I)Rz(I)u(l) FAT()(A()X(1) +B(Du(r).  (5.59)

Hence the co-state equation becomes

() = _% — Ry (Ox(0)x(1) — AT(OM() (5.60)

and the stationarity equation is

OH

~ () Ry (t)u(?) + BT ()M()=u(r) = —R;' ()BT (t)1(1).  (5.61)

The state equation and the co-state equation are two differential equations in
the state and co-state variables with the initial condition that the state vector
starts in x(zp) = X, and that at time ¢; the co-state obeys equation (5.58). In
general, solving these equations directly is difficult because of the two point
boundary value problem. However in the linear-quadratic case it is possible to
employ a trick which will make it possible to get around this problem.

If equation (5.61) is inserted into the state equation (5.57) then this equation
and (5.60) can be expressed as

A()  —B()R;'(n)B(1)
—Ry (1) —AT(1)

HARNAN

This is called the Hamilton equation and the matrix H(z) is called the
Hamiltonian.

The solution to this unforced 2n-dimensional state equation is, according
to (3.20),

ol =20 ] = Lo sioml Bl &
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where the state transition matrix has been partitioned into 47 X n matrices.
Applying the property (3.24), the solution can also be written

o) ~ Loy e o)

Using (5.58) and eliminating x(#;) from the two equations in (5.64) leads to

A1) = (d3(t,11) + bylt, 1)S(11)) - (b1 (1,1) + by (2, 11)S(11))7'x(1),  (5.65)

which can be written,

(5.64)

Mr) = P(0)x(1). (5.66)

The matrix P(¢) is obviously a function of the constant final time ¢; as well as of
t, so it would be more correct to write P as P(z, ¢;). However, it is common
practice to omit the final time as an argument as seen in Eq (5.66).

Equation (5.58) shows that

P(Z]) ZS(Zl). (567)
The control signal will be given by equation (5.61)
u(?) = —R; ' ()BT (1) P(£)x(2). (5.68)

Equation (5.68) shows that the control vector is derived from the state vector. In
other words, a closed loop control has been established which is very convenient
from an applications point of view.

The remaining problem is to determine the matrix P(¢). This matrix must
obey a differential equation that follows from differentiating (5.66) with respect
to time,

Mr) = P(0)x (1) + P(1)X(2). (5.69)
Inserting the state and co-state equations and using equation (5.66) yields
— Ry (1)x(t) — AT())P(1)x(1)
. (5.70)
= P(1)x(1) + P(1)[A(0)x() = B(0)R; ' (1)BT (1) P(1)x(1)].

This equation has a solution for all x(¢) if P(¢) obeys the differential equation:
—P(t) = P()A(t) + AT())P(1) — P()B(O)RS ()BT (H)P(¢) + Ry (¢).  (5.71)

This important differential equation is known as the Riccati equation. The
relevant boundary conditions are given by equation (5.67).

The Riccati equation is a coupled set of n* first order non-linear differential
equations, defined on the interval ¢y < ¢ < ¢; with n’ boundary conditions at
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the final time ¢;. This equation has to be solved backwards in time starting at
time #;. Under certain very general conditions the equation has one unique
solution. For an analysis of this point the reader is referred to Kwakernaak and
Sivan (1972) and Bryson and Ho (1975). S(#;) is symmetric and because the
Riccati equation is also symmetric, the solution will be symmetric for all values
of ¢ (see Problem 5.17). This means that the number of equations in equation
(5.71) is reduced to n(n + 1)/2.

The conclusion from the above is that under fairly loose conditions the
Riccati equation will have a real solution and from this a controller can be
designed that will minimize the quadratic performance index. The existence of a
solution to the Riccati equation does not require the system to be controllable.
Even with the loss of full controllability the controller will attempt to minimize
the performance index. However it is likely that it will be more capable if the
system is controllable.

Observing that in general the Riccati equation has a unique solution, it can
be concluded that the optimal controller for the linear quadratic regulator
problem has a unique solution in the form of a control signal that is a state
feedback controller:

u(r) = —K(1)x(1). (5.72)

The time-dependent feedback gain K(¢) is called the LOR (Linear Quadratic
Regulator) gain or optimal regulator gain and can be inferred from equation
(5.68) to be:

K(1) = Ry ()BT (1)P(1). (5.73)

Figure 5.5 shows the state feedback block diagram for the LQ regulator. It is
seen that in general the LQR gain will be time-dependent even when the system

r + u + X X y
B of | | ¢
- +
A [€
o~
K@) &

K

K (=R, (1) B'(1) P(¢)
—P(1) =P()A(1) + A" ()P(1) - P()B(OR,™ (B ()P(r) + R1(7)

Fig. 5.5 Closed loop linear quadratic regulator
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is LTI and the cost function has constant weight matrices. It should also be
noted that the LQR controller is a linear state feedback controller and that
the LQR gain is solely dependent on parameters known in advance and can
therefore be calculated off-line.

Having obtained the optimal control signal, the closed loop system becomes

£(1) = A(0x(1) = (A1) - BU)K(1)x(1), (5.74)

The optimal regulator’s eigenfrequencies are thus determined in the same way
as any state feedback controller and it has exactly the same structure.

Inserting the optimal gain into the Riccati equation it can be seen that it can
be written in the so-called Josephson stabilized form:

—P=P(A—BK)+ (A —BK)"P+K'R,K +R;. (5.75)

The value of the performance index can be evaluated based on the solution to
the Riccati equation. First note that

d :
7 (x"Px) = x"Px + x"Px + x"Px. (5.76)

If equations (5.57), (5.68) and (5.71) are inserted into (5.76), one finds that

%(XTPX) = —x’R;x —u/Ryu. (5.77)
Inserting this into the index leads to
1 1("[d T
J(u) = =x"(1)S(r)x(t) + —5 | |5 (x(2) P(2)x(2)) | dt
2 2), Ldt
1

= EXT(tl)S(ll)x(ll) - %xr(ll)P(tl)x(ll) + %xT(zO)P(zo)x(zo).

The first two terms disappear because of (5.67) and the optimum (minimum)
value of the performance index can be found:

Ioin = 5 X7 (0P ()X (1), (578)

Example 5.2. LQ Regulator for a First Order System

To show the basic characteristics of LQR regulators a controller for a simple
first order system will be designed first. The scalar state equation is,

X(t) = ax(t) + bu(1),
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where a and b are constants.
The performance index is the following quadratic function:

1 1"
J= Es(tl)xz(tl) + EJ (r1X%(t) + rau®(1))dt.
0
The boundedness of the performance index dictates that s(¢;) > 0, r; > 0 and
r» > 0. Without any loss of generality it may be assumed that the system starts at
time O (since the system is time invariant). The system starts with the state
variable x(0) = x,. The Riccati equation for the control object is the following
first order ordinary differential equation,
. » ,
— () = 2ap(0) + 11 = (1)

The solution to this equation can be inserted into equations (5.72) and (5.73) for
the LQR gain to give the state feedback controller:

u(t) = —K(1)x(1) = —bp(1)x(1).

In this simple example the solution of the Riccati equation can be found
analytically. Rearranging the terms in the equation and integrating gives:
dp b?

5 p(i1) dp 1
d_ b Z—Mt—r:J ——————:Jw
i =02 —n= [ e |

Integrating both sides of the equation on the right and rearranging the terms
yields

P2 — D1
(1) = pa — ! . (5.79)
)= | P) =1 -
p(t1) —p2
Here
a1 a2 1
=T\ ey
and

PEEm ey

Thus even in the simple scalar case the controller feedback becomes a relatively
complicated time varying function. However, since the solution only depends
on parameters known prior to controlling the process, the solution can be
calculated off-line and stored in the form of a table, so the online computational
load is limited.
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Fig. 5.6 Solution to the ! ! ! !
Riccati equation in the case : : : :
of a scalar system

p(0)

1.2

0 I 014 . 0j8 1
time [sec]

Giventhata = 3,b = 3,ry = 7, = 1,s(t;) = 3 and choosing the final time
t; = 1 the solution to the Riccati equation is obtained as shown on Fig. 5.6. The
function ends at time #; = 1 at the final value p(¢;) = s(¢;). If the time going
backwards from ¢, to zero is considered, p decreases to a constant value fairly
rapidly. This stationary value is found from the equation by letting #; — ¢ grow
‘large’. Since p, — p; < 0, the exponential function in (5.77) tends to zero for
large values of #; — ¢ and consequently p converges to the value

a 1 |2 n
=p1=—+—1/—=+—=1.276.
P =T\t

The state x(¢) for four different values of r; and for xo = 5 is plotted in Fig. 5.7.
The control signal is shown on Fig. 5.8. It is noted that the response becomes

5 T T T T
0 z 1 ‘
r=0
IR S AR SO S—
r =1 :
r=7
| :?0
1 I N 7
Fig. 5.7 Response of the i . ‘ i
0 0.2 0.4 0.6 0.8 1

first order system for
different weights t [sec]
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Fig. 5.8 Control signal of
the first order system for
different state weights

t [sec]

faster the larger the value of r| and the price to be paid is that the control signal
becomes larger. In the case r; = 0 the state is not taken into account at all in the
performance index.

It should also be noted that the LQR gain is approximately proportional to
\/r1/r; for large values of 1; — ¢. This is generally true for LQR regulators and is
a useful rule of thumb.

Since a is positive, the open loop system is unstable. This is no problem when
an LQR regulator is used. The closed loop system found with the LQR meth-
odology will always be stable under the proper conditions. O

Example 5.3. Closed Loop LQR for a Double Integrator

Consider now the double integrator described by the state equation:

x(1) = Ax(1) + Bu(t) = {g (1)] [’:Eg} + mu(z).

The state vector here is comprised of the position p(7) and the velocity v(f) and
the control input is the acceleration u(7). The performance index which has to be
minimized is the following:

J— %XT(“)S(ZI)X(IQ —+ %J“ (xT([)Rlx(l) + rzuz(l‘))dl‘.

to
Here the weight matrices are selected to be

st () Slz(ll)]

si(tr)  sao(t)

S(n) = {
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2 >0.

In order for S(#;) and R to be positive semi-definite, the parameters r,, r,, 1>
and the eigenvalues of S(7;) have to be non-negative. Introducing the weight
parameter matrices in the Riccati equation gives

—P(t) = AP(1) + P(t)A + R, — P(1)BR;'B"P(¢)

00 0 1 P, 0 0] 1
N

P(t) + P(¢
1 0 2 ()00 Ty

As P(7) is symmetric this leads to three equations for the elements of
P(1) = [[)11 Plz]:
P2 P2

) l,
—P11 =Tp ——P1os
mn

. 1
—P12 = P11 — —P12p;,
L)

. 1
—pP2 =1y + 2p12 — Epéz-

These equations have to be solved backwards in time from an initial value
at time #; of S(#1). A numerical integration with the parameter values at
si(t) = s12(t1) = s20(t1) = 1,1, = 3, r, = 4and r, = 1gives the solution
shown in Fig. 5.9 (remember that P(z;) = S(#)).

Fig. 5.9 Solution of the
Riccati equation for the 0 4 8 10
double integrator time [sec]
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Fig. 5.10 Response of the 1~
double integrator system ’
with LQR regulator

velocity
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It is seen from the figure that the three values of the matrix elements of
P(¢) approach a constant when 7; — ¢ becomes sufficiently large. It will be seen
later that this is a general quality of the Riccati equation that occurs under
certain well-defined conditions. Having established the values of P(¢) it is
easy to calculate the control signal from equation (5.72) and the LQR gain in
(5.73). Suppose the system starts at time ¢ = 0 and has the stationary position
x1(0) = 1. Then the optimal controller will give a response as seen in Fig. 5.10.
In the figure there are three different controls with different values of the R;
matrix. It is seen that the larger the values of the R; matrix elements, the faster
the response at the expense of a larger control signal. O

5.5 Steady State Linear Quadratic Regulator

The closed-loop LQR controller from Sect. 5.4.2 is the optimal controller that
minimizes the performance index over a finite time interval [z, #;]. As has been
demonstrated this leads to a time varying LQR gain matrix which can be
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calculated off-line. In most cases it is more convenient to have a constant gain
matrix and therefore attention is directed to the last example of the previous
section, Fig. 5.9. It is seen that the solution to the Riccati equation becomes a
matrix with constant elements over much of the time interval.

It would therefore be of interest to look at an optimal control problem with
a performance index extending to infinity:

J(u) = lim “l (xT ()R x() + u(?)Ryu(z))dt | . (5.80)

[—00 t()
Assume further that the system is time invariant, i.c.,
x(7) = Ax(7) + Bu(z), (5.81)

so that all of the matrices are assumed to be constants and R; > 0 and R, > 0.

Since the problem with standard LQR controllers is to move the incremental
states to the zero state in an optimal way, the state vector x(¢) will approach the
zero-vector as ¢ — oo if the closed loop system is stable. It is therefore of no
relevance to include a final state term here. This is the same as setting S(¢;) = 0
in equation (5.52).

It is not difficult to show that the optimum value J,,,;, of the index has an
upper bound for all values of the final time if the system is stabilizable. 1t is
obvious that the index is monotonically non-decreasing and these facts prove
that the index has a limiting value even for #; — oc.

The optimum value of the index is given by equation (5.78). Since the system
is time invariant, this value J,;,;, must be independent of the initial time 7, which
means that the matrix P must be constant. This implies that P = 0 and the
Riccati equation reduces to

0=A"P+ PA + R, — PBR;'B’P. (5.82)

This is a set of coupled nonlinear (quadratic) algebraic equations. It is common
practice to call this equation the Algebraic Riccati Equation (ARE) although it
is no longer a differential equation. The limiting constant solution is denoted
as P.

Equation (5.82) may have multiple solutions, but it can be shown that only
one of them is positive semi-definite (provided that the system is stabilizable)
and that particular solution leads to the minimum value of the performance
index:

1
Jmin - EngooX& (583)

The optimal steady state gain matrix is found as before as

K. =R;'B’'P, (5.84)
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and the control signal becomes
u(r) = —Koox(1). (5.85)

A very important property of LQR regulators is that the closed-loop system
is stable under certain conditions. The following theorem is stated without
proof and the interested reader should refer to Lewis (1986) and Bryson and
Ho (1975) for details:

Steady State Continuous LQR Regulator Theorem:

For the system described by the time invariant state equation,
x(7) = Ax(7) + Bu(z), (5.86)

subject to the following performance index,

J(u) = J (T (DR x (1) + u” () Rou(r) )dr, (5.87)
0
then the following holds true:

If the system in equation (5.86) is stabilizable and the matrix pair (A, /Rj) is
detectable then the algebraic Riccati equation has one and only one solution
which is positive definite. This solution, P, leads to the minimum value (5.83)
for the performance index.

If the system in equation (5.86) is stabilizable and the matrix pair (A, v/R;) is
detectable then the resulting state feedback law,

u(r) = —Kox(1) = —R;'B"P.x(), (5.88)

gives an asymptotically stable closed loop system.

This is probably one of the most important results in modern control theory
and one that has far-reaching consequences for the design of optimal control
systems. Basically, the theorem ensures that under very broad conditions
(stabilizability and detectability), which can easily be tested for LTI systems,
the state-feedback in equation (5.88) will give a stable control system.

Example 5.4. Steady State LQR for the First Order System
The first order system in Example 5.2 has the state equation,
xX(t) = ax(t) + bu(t),

which is controllable (and therefore also stabilizable) if » 0. The steady-state
performance index is:
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Here, r, > 0 and if r; > 0 the ‘matrix’ pair (a, /1) is observable (and detectable
of course). Then the steady-state optimal control law can be found by solving
the ARE,

0=2aps +r1 ——ps.
mn

This equation has one positive solution,

1 + ) +r1b2
o =7514 a —
P b2 r

Comparing with Example 5.2, it is clear that this is exactly the same as obtained
for large #; — t. The feedback control law is then:

um:—mﬂm:—e+ Gf#%mg

r2

The control law is seen to give large control signals for large values of r; / r, and
small control signals for small values of r; / r,. The LQR gain is approximately
proportional to \/(r; /r2) as noted earlier. The pole of the closed loop system is
easily calculated to be

1 |a? n r1
b b2 r2'

Again the general feature of the control law is to give a faster system for large
values of r/r;.

If controllability is lost, i.e., b = 0, control is impossible since the control
signal cannot influence the system. The LQR calculation does its best to cope
with the situation by making the control signal infinite. The closed loop state
equation reduces to x(7) = ax(), so stability depends on the sign of a. If r; — 0
the system is not observable and detectability may also have been lost. In this
case the control signal becomes

a |a
1) =—(=+ |- )x(0).
ul) == 5+ f5])x0
The closed loop state equation is consequently

, b
x(t) = — l |a|x(1).

and the stability now depends on the sign of b. O
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Example 5.5. Steady State LQR for the Double Integrator

The next example here is for the second order system from Example 5.3. This is
a double integrator with the state equation:

The controller has to minimize the performance index,
J= J (T (R X (1) + (1)),
0

p

The state weight matrix is chosen to be diagonal: R| = ] .1, and r, are

the position and velocity weights respectively. With the values above the alge-

braic Riccati equation results in the following three coupled equations:

1,
0=r, _gl’m

1
0=pi ——pipn,
]

|
0="2p1+r ——ph
r

Here, P, B 1 2 12} is the solution to the ARE. This algeb