More than 30 million Schaum’s Outlines sold!

Business

Statistics

Sefal§9UM'5

oufl/ines

CRASH COURSE

® INCLLDES FLLLY SOLVED PROBLEMS FOR EVERY TOFPN

® EAPERT TIPS FOR MASTERING BUSINESS STATISTICS

® ALL YOU NEED TO RNOW T PASS
THE CLOLESE

LEONARD ). KAZMIER, Ph.D






OverDrive, Inc.



SCHAUM’S Easy OUTLINES

BUSINESS
STATISTICS



http://dx.doi.org/10.1036/0071425845

Other Books in Schaum’s
Easy Outlines Series Include:

Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Oultline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:

Calculus

College Algebra

College Mathematics
Differential Equations
Discrete Mathematics
Elementary Algebra
Geometry

Linear Algebra
Mathematical Handbook

of Formulas and Tables

Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:

and Physiology

Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:
Schaum’s Easy Outline:

Precalculus
Probability and Statistics
Statistics

Trigonometry

Principles of Accounting
Principles of Economics
Biology

Biochemistry

Molecular and Cell Biology
College Chemistry
Genetics

Human Anatomy

Organic Chemistry

Applied Physics

Physics

Programming with C++
Programming with Java
Basic Electricity
Electromagnetics
Introduction to Psychology
French

German

Spanish

Writing and Grammar



SCHAUM’S Eas_y OUTLINES

BUSINESS STATISTICS

BASED ON ScHAUM’S
Outline of Theory and Problems of
Business Statistics, Third Edition
BY LEONARD J. KAzMIER, Ph.D.

ABRIDGEMENT EDITORS
DANIEL L. FuLks, PhD.
AND
MICHAEL K. STATON

SCHAUM’S OUTLINE SERIES
McGRAW-HILL

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan
Seoul Singapore Sydney Toronto


http://dx.doi.org/10.1036/0071425845

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or stored in a data-
base or retrieval system, without the prior written permission of the publisher.

0-07-142584-5

The material in this eBook also appears in the print version of this title: 0-07-139876-7

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales pro-
motions, or for use in corporate training programs. For more information, please contact George
Hoare, Special Sales, at george_hoare @mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUAR-
ANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMA-
TION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the func-
tions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inac-
curacy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the
work, even if any of them has been advised of the possibility of such damages. This limitation of lia-
bility shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort
or otherwise.

DOI: 10.1036/0071425845


http://dx.doi.org/10.1036/0071425845

‘7 Professional

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you’d like
more information about this book, its author, or related books
and websites, please click here.


http://dx.doi.org/10.1036/0071425845

For more information about this title, click here.

Contents

Chapter 1
Chapter 2

Chapter 3
Chapter 4

Chapter 5
Chapter 6

Chapter 7

Chapter 8

Chapter 9
Chapter 10

Chapter 11
Chapter 12

Chapter 13

Analyzing Business Data
Statistical Presentations

and Graphical Displays
Describing Business Data:
Measures of Location
Describing Business Data:
Measures of Dispersion
Probability

Probability Distributions

for Discrete Random Variables:
Binomial, Hypergeometric, and
Poisson

Probability Distributions

for Continuous Random Variables:

Normal and Exponential
Sampling Distributions and
Confidence Intervals for the Mean
Other Confidence Intervals
Testing Hypotheses Concerning
the Value of the Population Mean
Testing Other Hypotheses

The Chi-Square Test for the
Analysis of Qualitative Data
Analysis of Variance

18

26
37

46

54

60
72

80
94

106
113

Copyright © 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.


http://dx.doi.org/10.1036/0071425845

Vi BUSINESS STATISTICS

Chapter 14

Chapter 15
Chapter 16

Chapter 17
Chapter 18

Appendices
Index

Linear Regression and Correlation
Analysis 124
Multiple Regression and Correlation 135
Time Series Analysis and Business

Forecasting 143

Decision Analysis: Payoff Tables

and Decision Trees 155

Statistical Process Control 162
168

173



SCHAUM’S Easy OUTLINES

BUSINESS
STATISTICS



http://dx.doi.org/10.1036/0071425845

This page intentionally left blank.



Chapter 1
ANALYZING
BUSINESS DATA

IN THIS CHAPTER:

Definition of Business Statistics
Descriptive and Inferential Statistics
Types of Applications in Business
Discrete and Continuous Variables
Obtaining Data through Direct
Observation vs. Surveys

v Methods of Random Sampling

v’ Other Sampling Methods

v Solved Problems

SN XXX

Definition of Business Statistics

Statistics refers to the body of techniques used for collecting, organizing,
analyzing, and interpreting data. The data may be quantitative, with val-
ues expressed numerically, or they may be qualitative, with characteris-
tics such as consumer preferences being tabulated. Statistics are used in
business to help make better decisions by understanding the sources of
variation and by uncovering patterns and relationships in business data.

1
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2 BUSINESS STATISTICS

Descriptive and Inferential Statistics

Descriptive statistics include the techniques that are used to summarize
and describe numerical data for the purpose of easier interpretation.
These methods can either be graphical or involve computational analy-
sis.

Inferential statistics include those tech-
niques by which decisions about a statistical
population or process are made based only
on a sample having been observed. Because
such decisions are made under conditions of
uncertainty, the use of probability concepts
is required. Whereas the measured charac-
teristics of a sample are called sample sta-
tistics, the measured characteristics of a sta-
tistical population are called population
parameters. The procedure by which the characteristics of all the mem-
bers of a defined population are measured is called a census. When sta-
tistical inference is used in process control, the sampling is concerned
particularly with uncovering and controlling the sources of variation in
the quality of the output.

Types of Applications in Business

The methods of classical statistics were developed for the analysis of
sample data, and for the purpose of inference about the population from
which the sample was selected. There is explicit exclusion of personal
judgments about the data, and there is an implicit assumption that sam-
pling is done from a static population. The methods of decision analysis
focus on incorporating managerial judgments into statistical analysis.
The methods of statistical process control are used with the premise that
the output of a process may not be stable. Rather, the process may be dy-
namic, with assignable causes associated with variation in the quality of
the output over time.

Discrete and Continuous Variables

Adiscrete variable can have observed values only at isolated points along
a scale of values. In business statistics, such data typically occur through
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the process of counting; hence, the values generally are expressed as in-
tegers. A continuous variable can assume a value at any fractional point
along a specified interval of values.

You Need to Know /

Continuous data are generated by the process of
measuring.

Obtaining Data through Direct Observation
VS. Surveys

One way data can be obtained is by direct observation. This is the basis
for the actions that are taken in statistical process control, in which sam-
ples of output are systemically assessed. Another form of direct observa-
tion is a statistical experiment, in which there is overt control over some
or all of the factors that may influence the variable being studied, so that
possible causes can be identified.

In some situations it is not possible to collect data directly but, rather,
the information has to be obtained from individual respondents. A statis-
tical survey 1is the process of collecting data by asking individuals to pro-
vide the data. The data may be obtained through such methods as per-
sonal interviews, telephone interviews, or written questionnaires.

Methods of Random Sampling

Random sampling is a type of sampling in which every item in a popula-
tion of interest, or target population, has a known, and usually equal,
chance of being chosen for inclusion in the sample. Having such a sam-
ple ensures that the sample items are chosen without bias and provides
the statistical basis for determining the confidence that can be associated
with the inferences. A random sample is also called a probability sample,
or scientific sample. The four principal methods of random sampling are
the simple, systematic, stratified, and cluster sampling methods.

A simple random sample is one in which items are chosen individu-
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ally from the target population on the basis of chance.
Such chance selection is similar to the random draw-
ing of numbers in a lottery. However, in statistical
sampling a table of random numbers or a random
number generator computer program generally is
used to identify the numbered items in the population
that are to be selected for the sample.

A systematic sample is a random sample in which the items are se-
lected from the population at a uniform interval of a listed order, such as
choosing every tenth account receivable for the sample. The first account
of the ten accounts to be included in the sample would be chosen ran-
domly (perhaps by reference to a table of random numbers). A particular
concern with systematic sampling is the existence of any periodic, or
cyclical, factor in the population listing that could lead to a systematic er-
ror in the sample results.

In stratified sampling the items in the population are first classified
into separate subgroups, or strata, by the researcher on the basis of one or
more important characteristics. Then a simple random or systematic sam-
ple is taken separately from each stratum. Such a sampling plan can be
used to ensure proportionate representation of various population sub-
groups in the sample. Further, the required sample size to achieve a giv-
en level of precision typically is smaller than it is with random sampling,
thereby reducing sampling cost.

Cluster sampling is a type of random sampling in which the popula-
tion items occur naturally in subgroups. Entire subgroups, or clusters, are
then randomly sampled.

Other Sampling Methods

Although a nonrandom sample can turn out to be representative of the
population, there is difficulty in assuming beforehand that it will be un-
biased, or in expressing statistically the confidence that can be associat-
ed with inferences from such a sample.

A judgment sample is one in which an individual selects the items to
be included in the sample. The extent to which such a sample is repre-
sentative of the population then depends on the judgment of that individ-
ual and cannot be statistically assessed.

A convenience sample includes the most easily accessible measure-
ments, or observations, as is implied by the word convenience.
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A strict random sample is not usually feasible in statistical process
control, since only readily available items or transactions can easily be
inspected. In order to capture changes that are taking place in the quality
of process output, small samples are taken at regular intervals of time.
Such a sampling scheme is called the method of rational subgroups. Such
sample data are treated as if random samples were taken at each point in
time, with the understanding that one should be alert to any known rea-
sons why such a sampling scheme could lead to biased results.

Remember

The four principal methods of ran-
dom sampling are the simple, sys-
tematic, stratified, and cluster sam-
pling methods.

Solved Problems

Solved Problem 1.1 Indicate which of the following terms or operations
are concerned with a sample or sampling (S), and which are concerned
with a population (P): (a) group measures called parameters, (b) use of
inferential statistics, (c) taking a census, (d) judging the quality of an in-
coming shipment of fruit by inspecting several crates of the large num-
ber included in the shipment.

Solution: (a) P, (b) S, (¢) P, (d) S

Solved Problem 1.2 Indicate which of the following types of informa-
tion could be used most readily in either classical statistical inference
(CI), decision analysis (DA), or statistical process control (PC): (a) man-
agerial judgments about the likely level of sales for a new product, (b)
subjecting every fiftieth car assembled to a comprehensive quality eval-
uation, (c) survey results for a simple random sample of people who pur-
chased a particular car model, (d) verification of bank account balances
for a systematic random sample of accounts.
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Solution: (a) DA, (b) PC, (c) CI, (d) CI

Solved Problem 1.3 For the following types of values, designate discrete
variables (D) and continuous variables (C): (a) weight of the contents of
a package of cereal, (b) diameter of a bearing, (c) number of defective
items produced, (d) number of individuals in a geographic area who are
collecting unemployment benefits, (e) the average number of prospective
customers contacted per sales representative during the past month, (f)
dollar amount of sales.

Solution: (a) C, (b) C, (¢) D, (d) D, (e) C, (f) D

Solved Problem 1.4 Indicate which of the following data-gathering pro-
cedures would be considered an experiment (E), and which would be con-
sidered a survey (S): (a) a political poll of how individuals intend to vote
in an upcoming election, (b) customers in a shopping mall interviewed
about why they shop there, (c) comparing two approaches to marketing
an annuity policy by having each approach used in comparable geo-
graphic areas.

Solution: (a) S, (b) S, (¢) E

Solved Problem 1.5 Indicate which of the following types of samples
best exemplify or would be concerned with either a judgment sample (J),
a convenience sample (C), or the method of rational subgroups (R): (a)
Samples of five light bulbs each are taken every 20 minutes in a produc-
tion process to determine their resistance to high voltage, (b) a beverage
company assesses consumer response to the taste of a proposed alcohol-
free beer by taste tests in taverns located in the city where the corporate
offices are located, (c) an opinion pollster working for a political candi-
date talks to people at various locations in the district based on the as-
sessment that the individuals appear representative of the district’s vot-
ers.

Solution: (a) R, (b) C, (c)J
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v/ Bar Charts and Line Graphs
v Run Charts

v Pie Charts

v Solved Problems

Frequency Distributions

A frequency distribution is a table in which possible values are grouped
into classes, and the number of observed values which fall into each class
isrecorded. Data organized in a frequency distribution are called grouped
data. In contrast, for ungrouped data every observed value of the random
variable is listed.

Class Intervals

For each class in a frequency distribution, the
lower and upper stated class limits indicate the
values included within the class. In contrast,
the exact class limits, or class boundaries, are
the specific points that serve to separate ad-
joining classes along a measurement scale for
continuous variables. Exact class limits can be
determined by identifying the points that are
halfway between the upper and lower stated
class limits, respectively, of adjoining classes.
The class interval identifies the range of values included within a class
and can be determined by subtracting the lower exact class limit from the
upper exact class limit for the class. When exact limits are not identified,
the class interval can be determined by subtracting the lower stated lim-
it for a class from the lower stated limit of the adjoining next-higher class.
Finally, for certain purposes the values in a class often are represented by
the class midpoint, which can be determined by adding one half of the
class interval to the lower exact limit of the class.

For data that are distributed in a highly nonuniform way, such as an-
nual salary data for a variety of occupations, unequal class intervals may
be desirable. In such a case, the larger class intervals are used for the
ranges of values in which there are relatively few observations.
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* Note!

It is generally desirable that all class intervals in a

given frequency distribution be equal. A formula to

determine the approximate class interval to be

used is:

Approximate interval =

(Largest value in data — Smallest value in data)
Number of classes desired

Histograms and Frequency Polygons

A histogram is a bar graph of a frequency distribution. Typically, the ex-
act class limits are entered along the horizontal axis of the graph while the
numbers of observations are listed along the vertical axis. However, class
midpoints instead of class limits also are used to identify the classes.

A frequency polygon is a line graph of a frequency distribution. The
two axes are similar to those of the histogram except that the midpoint of
each class typically is identified along the horizontal axis. The number of
observations in each class is represented by a dot above the midpoint
of the class, and these dots are joined by a series of line segments to form
a polygon.

Frequency Curves

A frequency curve is a smoothed frequency polygon.

In terms of skewness, a frequency curve can be:

1. negatively skewed: nonsymmetrical with the “tail” to the left;

2. positively skewed: nonsymmetrical with the “tail” to the right; or

3. symmetrical.

In terms of kurtosis, a frequency curve can be:

1. platykurtic: flat, with the observations distributed relatively even-
ly across the classes;
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2. leptokurtic: peaked, with the observations concentrated within a
narrow range of values; or

3. mesokurtic: neither flat nor peaked, in terms of the distribution of
observed values.

Cumulative Frequency Distributions

A cumulative frequency distribution identifies the cumulative number of
observations included below the upper exact limit of each class in the dis-
tribution. The cumulative frequency for a class can be determined by
adding the observed frequency for that class to the cumulative frequency
for the preceding class.

The graph of a cumulative frequency distribution is called an ogive.
For the less-than type of cumulative distribution, this graph indicates the
cumulative frequency below each exact class limit of the frequency dis-
tribution. When such a line graph is smoothed, it is called an ogive curve.

Remember

Terms of skewness: Negatively
skewed, Positively skewed, or Sym-
metrical.

Terms of kurtosis: Platykurtic,
Leptokurtic, or Mesokurtic.

Relative Frequency Distributions

A relative frequency distribution is one in which the number of observa-
tions associated with each class has been converted into a relative fre-
quency by dividing by the total number of observations in the entire dis-
tribution. Each relative frequency is thus a proportion, and can be
converted into a percentage by multiplying by 100.

One of the advantages associated with preparing a relative frequen-
cy distribution is that the cumulative distribution and the ogive for such
a distribution indicate the cumulative proportion of observations up to the
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various possible values of the variable. A percentile value is the cumula-
tive percentage of observations up to a designated value of a variable.

The “And-Under” Type
of Frequency Distribution

The class limits that are given in computer-generated frequency distribu-
tions usually are “and-under” types of limits. For such limits, the stated
class limits are also the exact limits that define the class. The values that
are grouped in any one class are equal to or greater than the lower class
limit, and up to but not including the value of the upper class limit. A de-
scriptive way of presenting such class limits is :

5 and under 8 8 and under 11

In addition to this type of distribution being more convenient to im-
plement for computer software, it sometimes also reflects a more “natu-
ral” way of collecting the data in the first place. For instance, people’s
ages generally are reported as the age at the last birthday, rather than the
age at the nearest birthday. Thus, to be 24 years old is to be at least 24 but
less than 25 years old.

Stem-and-Leaf Diagrams

A stem-and-leaf diagram is arelatively simple way of organizing and pre-
senting measurements in a rank-ordered bar chart format. This is a pop-
ular technique in exploratory data analysis. As the name implies, ex-
ploratory data analysis is concerned with techniques for preliminary
analyses of data in order to gain insights about patterns and relationships.
Frequency distributions and the associated graphic techniques covered in
the previous sections of this chapter are also often used for this purpose.
In contrast, confirmatory data analysis includes the principal methods of
statistical inference that constitute most of this book. Confirmatory data
analysis is concerned with coming to final statistical conclusions about
patterns and relationships in data.

A stem-and-leaf diagram is similar to a histogram, except that it is
easier to construct and shows the actual data values, rather than having
the specific values lost by being grouped into defined classes. However,
the technique is most readily applicable and meaningful only if the first
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digit of the measurement, or possibly the first two
digits, provides a good basis for separating data into
groups, as in test scores. Each group then is analo-
gous to a class or category in a frequency distribution.
Where the first digit alone is used to group the mea-
surements, the name stem-and-leaf refers to the fact that the first digit is
the stem, and each of the measurements with that first-digit value be-
comes a leaf in the display.

Dotplots

A dotplot is similar to a histogram in that a distribution of the data value
is portrayed graphically. However, the difference is that the values are
plotted individually, rather than being grouped into classes. Dotplots are
more applicable for small data sets, for which grouping the values into
classes of a frequency distribution is not warranted. Dotplots are partic-
ularly useful for comparing two different data sets, or two subgroups of
a data set.

Pareto Charts

A Pareto chart is similar to a histogram, except that it is a frequency bar
chart for a qualitative variable, rather than being used for quantitative
data that have been grouped into classes. The bars of the chart, which can
represent either frequencies or relative frequencies, are arranged in de-
scending order from left to right. This arrangement results in the most im-
portant categories of data, according to frequency of occurrence, being
located at the initial positions in the chart. Pareto charts are used in
process control to tabulate the causes associated with assignable-cause
variations in the quality of process output. It is typical that only a few cat-
egories of causes are associated with most quality problems, and Pareto
charts permit worker teams and managers to focus on these most impor-
tant areas that are in need of corrective action.

Bar Charts and Line Graphs

A time series is a set of observed values, such as production or sales data,
for a sequentially ordered series of time periods. For the purpose of
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graphic presentation, both bar charts and line graphs are useful. A bar
chart depicts the time-series amounts by a series of bars. A component
bar chart portrays subdivisions within the bars on the chart. A line graph
portrays time-series amounts by a connected series of line segments.

Run Charts

A run chart is a plot of data values in the time-sequence order in which
they were observed. The values that are plotted can be the individual ob-
served values or summary values, such as a series of sample means. When
lower and upper limits for acceptance sampling are added to such a chart,
itis called a control chart.

Pie Charts

A pie chart is a pie-shaped figure in which the pieces of the pie represent
divisions of a total amount, such as the distribution of a company’s sales
dollar. A percentage pie chart is one in which the values have been con-
verted into percentages in order to make them easier to compare.

Solved Problems

Solved Problem 2.1

Rental rate Number of apartments
$350-379 3
380-409 8
410-439 10
440-469 13
470-499 33
500-529 40
530-559 35
560-589 30
590-619 16
620-649 12
Total 200

Table 2-1 Frequency distribution of
monthly apartment rental rates for 200
studio apartments
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(a) What are the lower and upper stated limits of the first class?

(b) What are the lower and upper exact limits of the first class?

(c) The class interval used is the same for all classes of the distribu-
tion. What is the interval size?

(d) What is the midpoint of the first class?

(e) What are the lower and upper exact limits of the class in which
the largest number of apartment rental rates was tabulated?

(f) Suppose a monthly rental rate of $439.50 were reported. Identi-
fy the lower and upper stated limits of the class in which this ob-
servation would be tallied.

Solution

(a) $350 and $379

(b) $340.50 and $379.50

(c) Focus on the interval of values in the first class.
$379.50 — $349.50 = $30

(d) $349.50 +30/2 = $349.50 + $15.00 = $364.50

(e) $499.50 and $529.50

(f) $440 and $469

Solved Problem 2.2 Prepare a histogram for the data in Table 2.1

Solution

40

30

20

—

349.50 379.50 409.50 439.50 469.50 49950 529.50 559.50 589.50 619.50 649.50

Rental rate (exact class limits), dollars

Figure 2-1
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Solved Problem 2.3 Prepare a frequency polygon and a frequency curve
for the data in Table 2.1. Describe the frequency curve from the stand-
point of skewness.

Solution

LEGEND
Frequency polygon

— — — Frequency curve

A 1 A i i 1 i i Il {

334.50 364.50 394.50 42450 454.50 484.50 514.50 544.50 574.50 604.50 634.50 664.50

Rental rate (class midpoints), dollars
Figure 2-2
The frequency curve appears to be somewhat negatively skewed.
Solved Problem 2.4 Prepare a cumulative frequency distribution for

Table 2.1. Present the cumulative frequency distribution graphically by
means of an ogive curve.
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Solution

Rental Class Number of Cumulative frequency
rate boundaries apartments (cf)
$350-379 $349.50-379.50 3 3
380-409 379.50-409.50 8 1
410-439 409.50-439.50 10 21
440-469 439.50-469.50 13 34
470-499 469.50-499.50 33 67
500-529 499.50-529.50 40 107
530-559 529.50-559.50 35 142
560-589 559.50-589.50 30 172
590-619 589.50-619.50 16 188
620-649 619.50-649.50 12 200

Total 200

Table 2-2 Cumulative frequency distribution of apartment
rental rates

cf

200

100

50 -

0 A i 1 F L 1 e 1 i L
349.50 379.50 409.50 439.50 469.50 499.50 529.50 559.50 589.50 619.50 649.50

Rental rate (exact class limits), dollars

Figure 2-3

Solved Problem 2.5 Given that frequency curve (@) in Figure 2-4 is both
symmetrical and mesokurtic, describe curves (b), (¢), (d), (e), and (f) in
terms of skewness and kurtosis.
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Solution
Curve (b) is symmetrical and leptokurtic; curve (c), positively skewed
and mesokurtic; curve (d), negatively skewed and mesokurtic; curve (e),
symmetrical and platykurtic; and curve (f), positively skewed and lep-
tokurtic.

f S

(@) X (b) X
f f

() X (d) X
S S

(e) X f) X

Figure 2-4
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Measures of Location in Data Sets

A measure of location is a value that is calculated

for a group of data and that is used to describe the

data in some way. Typically, we wish the value to

be representative of all of the values in the group,

and thus some kind of average is desired. In the

statistical sense an average is a measure of cen-

tral tendency for a collection of values. This chapter covers the various
statistical procedures concerned with measures of location.

The Arithmetic Mean

The arithmetic mean, or arithmetic average, is defined as the sum of the
values in the data group divided by the number of values.

In statistics, a descriptive measure of a population, or a population
parameter, is typically represented by a Greek letter, whereas a descrip-
tive measure of a sample, or a sample statistic, is represented by a Ro-
man letter. Thus, the arithmetic mean for a population of values is repre-
sented by the symbol u (read “mew”), while the arithmetic mean for a
sample of values is represented by the symbol X (read “X bar”). The
formulas for the sample mean and the population mean are:

X=XX/n
u=2X/N

Operationally, the two formulas are identical; in both cases one sums
all of the values ( X X ) and then divides by the number of values. How-
ever, the distinction in the denominators is that in statistical analysis the
lowercase n indicates the number of items in the sample while the up-
percase N typically indicates the number of items in the population.
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The Weighted Mean

The weighted mean or weighted average is an arithmetic mean in which
each value is weighted according to its importance in the overall group.
The formulas for the population and sample weighted means are identi-
cal:

= _2X(wX)
Op Xw - 2 w

Operationally, each value in the group (X) is multiplied by the ap-
propriate weight factor (w), and the products are then summed and di-
vided by the sum of the weights.

* Note!

The formulas for the sample mean and population
mean are as follows:

X=XX/n

u=2XIN

w

The Median

The median of a group items is the value of the middle item when all the
items in the group are arranged in either ascending or descending order,
in terms of value. For a group with an even number of items, the median
is assumed to be midway between the two values adjacent to the middle.
When a large number of values is contained in the group, the following
formula to determine the position of the median in the ordered group is
useful:

Med =X [(2/2) + (1/2)]
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The Mode

The mode is the value that occurs most frequently in a set of values. Such
a distribution is described as being unimodal. For a small data set in
which no measured values are repeated, there is no mode. When two non-
adjoining values are about equal in having maximum frequencies associ-
ated with them, the distribution is described as being bimodal. Distribu-
tions of measurements with several modes are referred to as being
multimodal.

Relationship between the Mean and Median

For any symmetrical distribution, the mean, median, and mode all coin-
cide in value (see Figure 3-1 (a) below). For a positively skewed distri-
bution the mean is always larger than the median (see Figure 3-1 (b) be-
low). For a negatively skewed distribution the mean is always smaller

f f
| Mean '(/T\and:'
Median | édian
r/ Mode | ,‘l/\ Mean
o
| bl
J P
i / L4
X X
(a) Symmetrical (b) Positively skewed
f Mode
Median ’(\;ﬁ
Mean —/ Py
\ , I
P
fod
1 11
X

(¢) Negatively skewed

Figure 3-1
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than the median (see Figure 3-1 (c) below). These latter two relationships
are always true, regardless of whether the distribution is unimodal or not.

Mathematical Criteria Satisfied
by the Median and the Mean

One purpose for determining any measure of central tendency, such as a
median or mean, is to use it to represent the general level of the values
included in the group. Both the median and the mean are “good” repre-
sentative measures, but from the standpoint of different mathematical cri-
teria or objectives. The median is the representative value that minimizes
the sum of the absolute values of the differences between each value in
the group and the median. That is, the median minimizes the sum of the
absolute deviations with respect to the individual values being repre-
sented. In contrast, the arithmetic mean focuses on minimizing the sum
of the squared deviations with respect to the individual values in the
group. The criterion by which the objective is that of minimizing the sum
of the squared deviations associated with a representative value is called
the least-squares criterion. This criterion is the one that is most impor-
tant in statistical inference based on sample data.

Use of the Mean, Median, and Mode

We first consider the use of these measures of average for representing
population data. The value of the mode indicates where most of the ob-
served values are located. It can be useful as a descriptive measure for a
population group, but only if there is one clear mode. On the other hand,
the median is always an excellent measure by which to represent the “typ-
ical” level of observed values in a population. This is true regardless of
whether there is more than one mode or whether the population distribu-
tion is skewed or symmetrical. The lack of symmetry is no special prob-
lem because the median wage rate, for example, is always the wage rate
of the “middle person” when the wage rates are listed in order of magni-
tude. The arithmetic mean is also an excellent representative value for a
population, but only if the population is fairly symmetrical. For nonsym-
metrical data, the extreme values will serve to distort the value of the
mean as a representative value. Thus, the median is generally the best
measure of data location for describing population data.
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We now consider the use of the three measures of location with re-
spect to sample data. Recall from Chapter 1 that the purpose of statisti-
cal inference with sample data is to make probability statements about
the population from which the sample was selected. The mode is not a
good measure of location with respect to sample data because its value
can vary greatly from sample to sample. The median is better than the
mode because its value is more stable from sample to sample. However,
the value of the mean is the most stable of the measures.

Example 3.1 The wage rates of all 650 hourly employees in a manufac-
turing firm have been compiled. The best representative measure of the
typical wage rate is the median, because a population is involved and the
median is relatively unaffected by any lack of symmetry in the wage rates.
In fact, such data as wage rates and salary amounts are likely to be posi-
tively skewed, with relatively few wage or salary amounts being excep-
tionally high and in the right tail of the distribution.

Use of the Mean in Statistical Process Control

We observed that a run chart is a plot of data values in the time-sequence
order in which they were observed and that the values plotted can be in-
dividual values or averages of sequential samples. We prefer to plot av-
erages rather than individual values because any average generally will
be more stable from sample to sample than will be the median or the
mode. For this reason, the focus of run charts concerned with sample av-
erages is to plot the sample means. Such a chart is called an X chart, and
serves as the basis for determining whether a process is stable or whether
there is process variation with an assignable cause that should be cor-
rected.

Quartiles, Deciles, and Percentiles

Quartiles, deciles, and percentiles are similar to the median in that they
also subdivide a distribution of measurements according to the propor-
tion of frequencies observed. Whereas the median divides a distribution
into halves, quartiles divides it into quarters, deciles divides it into tenths,
and percentile points divide it into 100 parts. The formula for the medi-
an is modified according to the fraction point of interest. For example,
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Q, (first quartile) =Xy, 4, (172,
D3(th1rd decile) = X G0y + ar2))
P, (seventieth percentile) = X [(70n/100) + (1/2)]

Solved Problems

Solved Problem 3.1 For a sample of 15 students at an elementary school
snack bar, the following sales amounts arranged in ascending order of
magnitude are observed: $.10, .10, .25, .25, .25, .35, .40, .53, .90, 1.25,
1.35,2.45,2.71, 3.09, 4.10. Determine the (a) mean, (b) median, and (c)
mode for these sales amounts.

Solution

(a) Mean = $1.21

(b) Median = $0.53

(c) Mode = most frequent value = $0.25

Solved Problem 3.2 How would you describe the distribution in Prob-
lem 3.1 from the standpoint of skewness?

Solution
With the mean being substantially larger than the median, the distribution
of values is clearly positively skewed or skewed to the right.

Solved Problem 3.3 For the data in Solved Problem 3.1, suppose that
you are asked to determine the typical purchase amount only for this par-

ticular group of students. Which measure of average would you report?
Why?

Solution

Note that once we decide to focus only on this particular group, we are
treating this group as our population of interest. Therefore, the best choice
is to report the median as being the typical value; this is the eighth value
in the array, or $0.53.

Solved Problem 3.4 Refer to Problem 3.3 above. Suppose we wish to
estimate the typical amount of purchase in the population from which the
sample was taken. Which measure of average would you report? Why?
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Solution

Because statistical inference for a population is involved, our main con-
cern is to report an average that is the most stable and has the least vari-
ability from sample to sample. The average that satisfied this requirement
is the mean, because it satisfies the least-squares criterion. Therefore, the
value reported should be the sample mean, or $1.21.

Solved Problem 3.5 A sample of 20 production workers in a company
earned the following net pay amounts after all deductions for a given
week: $240, 240, 240, 240, 240, 240, 240, 240, 255, 255, 265, 265, 280,
280, 290, 300, 305, 325, 330, 340. Calculate the (a) mean, (b) median,
and (c) mode for this group of wages.

Solution

(a) Mean = $270.50

(b) Median = $260.00

(c) Mode = most frequent value = $240.00
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Measures of Dispersion in Data Sets

The measures of central tendency described in Chapter 3 are useful for
identifying the “typical” value in a group of values. In contrast, measures
of dispersion, or variability, are concerned with describing the variabili-
ty among the values. Several techniques are available for measuring the
extent of variability in data sets. The ones described in this chapter are
the range, modified ranges, average deviation, variance, standard devi-
ation, and coefficient of variation.

The Range and Modified Ranges

The range, or R, is the difference between highest and lowest values in-
cluded in a data set. Thus, when H represents the highest value in the
group and L represents the lowest value, the range for ungrouped data is:
R=H-L.

A modified range is a range for which some of the extreme values at
each end of the distribution are eliminated from consideration. The mid-
dle 50 percent is the range between the values at the 25 percentile point
and the 75" percentile point of the distribution. As such, it is also the
range between the first and third quartiles of the distribution. For this rea-
son, the middle 50 percent range is usually designated as the interquar-
tile range (IQR). Thus,

IQR:Q3_Q1

Other modified ranges that are sometimes used are the middle 80 per-
cent, middle 90 percent, and middle 95 percent.
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/ Important Point

A box plotis a graph that portrays the distribution of
a data set by reference to the values at the quar-
tiles as location measures and the value of the in-
terquartile range as the reference measure of vari-
ability. Abox plot is a relatively easy way of graphing
data and observing the extent of skewness in the
distribution.

The Mean Absolute Deviation

The mean absolute deviation, or MAD, is based on the absolute value of
the difference between each value in the data set and the mean of the
group. The mean average of these absolute values is then determined. It
is sometimes called the “average deviation.” The absolute values of the
differences are used because the sum of all of the plus and minus differ-
ences (rather than the absolute differences) is always equal to zero. Thus
the respective formulas for the population and sample MAD are:

. X -y
Population MAD = ————
N
X-X
Sample MAD = M
n

The Variance and Standard Deviation

The variance is similar to the mean absolute deviation in that it is based
on the difference between each value in the data set and the mean of the
group. It differs in one very important way: each difference is squared
before being summed. For a population, the variance is represented by
V(X) or, more typically, by the lowercase Greek o (read “sigma
squared”). The formula is:
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2
V(X)=o? = (X —p)
N
Unlike the situation for other sample statistics we have discussed, the
variance for a sample is not computationally exactly equivalent to the
variance for a population. Rather, the denominator in the sample variance
formula is slightly different. Essentially, a correction factor is included in
this formula, so that the sample variance is an unbiased estimator of the
population variance. The sample variance is represented by s2; its formula
is:
2 XX-X)

n—1
In general, it is difficult to interpret the meaning of the value of a
variance because the units in which it is expressed are squared values.
Partly for this reason, the square root of the variance, represented by the
Greek o (or s for a sample) and called the standard deviation is more fre-
quently used. The formulas are:

2
X -
Population standard deviation: ¢ = M
—\2
o [s(x-w)
Sample standard deviation: s = 1
’/l -

* Note!

The standard deviation is particularly useful in con-
junction with the so-called normal distribution.

Simplified Calculations for the Variance
and Standard Deviation

The formulas in the preceding section are called deviations formulas, be-
cause in each case the specific deviations of individual values from the
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mean must be determined. Alternative formulas, which are mathemati-
cally equivalent but which do not require the determination of each de-
viation, have been derived. Because these formulas are generally easier
to use for computations, they are called computational formulas. The
computational formulas are:

) XX -N

Population variance: o N

> X% - Nu?

Population standard deviation: 0 = N

2 _ 2
Sample Variance: 52 = Z‘X—HX
n—1
IXTonX?

Sample standard deviation: s = !
n —

Mathematical Criterion Associated
with the Variance and Standard Deviation

In Chapter 3 we described the least-squares criterion and established that
the arithmetic mean is the measure of data location that satisfies this cri-
terion. Now refer to the formula for population variance and note that the
variance is in fact a type of arithmetic mean, in that it is the sum of
squared deviations divided by the number of such values. From this
standpoint alone, the variance is thereby associated with the least-squares
criterion. Note also that the sum of the squared deviations in the numer-
ator of the variance formula is precisely the sum that is minimized when
the arithmetic mean is used as the measure of location. Therefore, the
variance and its square root, the standard deviation, have a close mathe-
matical relationship with the mean, and both are used in statistical infer-
ence with sample data.

Use of the Standard Deviation
in Data Description

As established in the preceding section, the standard deviation is used in
conjunction with a number of methods of statistical inference covered in
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later chapters of this book. A description of these methods is beyond the
scope of the present chapter. However, aside from the uses of the stan-
dard deviation in inference, we can now briefly introduce a use of the
standard deviation in data description.

Consider a distribution of data values that is both symmetrical and
mesokurtic. The frequency curve for such a distribution is called a nor-
mal curve. For a set of values that is normally distributed, it is always true
that approximately 68 percent of the values are included within one stan-
dard deviation of the mean and approximately 95 percent of the values
are included within two standard deviation units of the mean. These ob-
servations are presented diagrammatically in Figures 4-1(a) and (b), re-
spectively. Thus, in addition to the mean and standard deviation both be-
ing associated with the least-squares criterion, they are also mutually
used in analyses for normally distributed variables.

P
|
H—GS%—-‘
' |
| I
! 1 1
u—lo wu u+lco X
(a)
Figure 4-1(a)
P

95%

i 1| 1

u—-20 7 u+20 X
(b)

Figure 4-1(b)
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Use of the Range and Standard Deviation
in Statistical Process Control

As introduced in Chapter 3, the sample mean is used in process control
for averages by the construction of X charts. In addition to controlling
process averages, there is at least an equal interest in controlling process
variability. To monitor and control variability, either the ranges or the
standard deviations of the rational subgroups that

constitute the sequential samples are determined.

In either case, the values are plotted identically in

form to the run chart for the sequence of sample

mean weights. Such a chart for sample ranges is

called an R chart, while the chart for sample stan-

dard deviations is called an s chart.

From the standpoint of using the measure of variability that is most
stable, the least-squares oriented s chart is preferred. Historically, the
range has been used most frequently for monitoring process variability
because it can be easily determined with little calculation. However,
availability of more sophisticated weighing devices that are programmed
to calculate both the sample mean and standard deviation has resulted in
greater use of s charts.

The Coefficient of Variation

The coefficient of variation, CV, indicates the relative magnitude of the
standard deviation as compared with the mean of the distribution of mea-
surements, as a percentage. Thus, the formulas are:

Population: CV = % %100

Sample: CV = % x 100
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Remember

The coefficient of variation is useful
when we wish to compare the vari-
ability of two data sets relative to the
general level of values (and thus rel-
ative to the mean) in each set.

Pearson’s Coefficient of Skewness

Pearson’s coefficient of skewness measures the departure from symmetry
by expressing the difference between the mean and the median relative
to the standard deviation of the group of measurements. The formulas are:

3(u—Med)
O

3(X — Med)

S

Population skewness =

Sample skewness =

For a symmetrical distribution the value of the coefficient of skew-
ness will always be zero, because the mean and median are equal to one
another in value. For a positively skewed distribution, the mean is always
larger than the median; hence, the value of the coefficient is positive. For
anegatively skewed distribution, the mean is always smaller than the me-
dian; hence, the value of the coefficient is negative.

You Need to Know /

Several techniques are available for measuring
the extent of dispersion, or variability, in data sets.
The ones that are described in this chapter are the
range, modified ranges, mean absolute (or aver-
age) deviation, variance, standard deviation, and
coefficient of variation.
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Solved Problems

Solved Problem 4.1 For a sample of 15 students at an elementary school
snack bar, the following sales amounts, arranged in ascending order of
magnitude, are observed: $0.10, 0.10, 0.25, 0.25, 0.25, 0.35, 0.40, 0.53,
0.90, 1.25, 1.35, 2.45, 2.71, 3.09, 4.10. Determine the (@) range and (b)
interquartile range for these sample data.

Solution: (a) $4.00 (b) $1.925
Solved Problem 4.2 Compute the mean absolute deviation for the data
in Solved Problem 4.1. The sample mean for this group of values was de-

termined to be $1.21 in Solved Problem 3.1.

Solution: Using Table 4.1, the average deviation is $1.03.

X X—-X [ X — X|
$0.10 $—-1.11 $1.11
0.10 —1.11 1.11
0.25 —0.96 0.96
0.25 —0.96 0.96
0.25 —0.96 0.96
0.35 —0.86 0.86
0.40 -0.81 0.81
0.53 —0.68 0.68
0.90 —-0.31 0.31
1.25 0.04 0.04
1.35 0.14 0.14
245 1.24 1.24
2.71 1.50 1.50
3.09 1.88 1.88
410 2.89 2.89
Total $1545

Table 4.1 Worksheet for calculating
the mean absolute deviation for the
snack bar data
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Solved Problem 4.3 Determine the sample standard deviation for the
data in Solved Problems 4.1 and 4.2 by using (a) the deviations formula
and (b) the alternative computational formula, and demonstrate that the
answers are equivalent.

Solution: (a) s =$1.28 (b) s =$1.27

X X-X (X - X X2
$0.10 | $—1.11 1.2321 0.0100
0.10 —1.11 1.2321 0.0100
0.25 ~0.96 0.9216 0.0625
0.25 —0.96 0.9216 0.0625
0.25 —0.96 0.9216 0.0625
0.35 ~0.86 0.7396 0.1225
0.40 —0.81 0.6561 0.1600
0.53 —0.68 0.4624 0.2809
0.90 ~0.31 0.0961 0.8100
1.25 0.04 0.0016 1.5625
1.35 0.14 0.0196 1.8225
245 1.24 1.5376 6.0025
2.71 1.50 2.2500 7.3441
3.09 1.88 3.5344 9.5481
4.10 2.89 8.3521 16.8100
Total 22.8785 | Total 44.6706

Table 4.2 Worksheet for calculating the sample standard
deviation for the snack bar data

Solved Problem 4.4 Many national academic achievement and aptitude
tests, such as the SAT, report standardized test scores with the mean for
the normative group used to establish scoring standards converted to 500
with a standard deviation of 100. Suppose that the distribution of scores
for such a test is known to be approximately normally distributed. De-
termine the approximate percentage of reported scores that would be be-
tween (a) 400 and 600 and (b) between 500 and 700.

Solution: (a) 68% (b) 47.5% (i.e., one-half of the middle 95%)
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Solved Problem 4.5 Referring to the standardized achievement test in
Solved Problem 4.4, what are the percentile values that would be report-

ed for scores of (a) 400, (b) 500, (¢) 600 and (d) 700?

Solution: (a) 16, (b) 50, (c) 84, and (d) 97.5
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Basic Definitions of Probability

Historically, three different conceptual ap-
proaches have been developed for defining
probability and for determining probability
values: the classical, relative frequency, and
subjective approaches. By the classical ap-
proach to probability, if N(A) possible ele-
mentary outcomes are favorable to event A,
N(S) possible outcomes are included in the
sample space, and all the elementary out-
comes are equally likely and mutually exclu-
sive, then the probability that event A will oc-
cur is:

P(A) =N(A)/N(S)

Note that the classical approach to probability is based on the assumption
that each outcome is equally likely. Because this approach (when it is ap-
plicable) permits determination of probability values before any sample
events are observed, it has been called the a priori approach.

By the relative frequency approach, the probability is determined on
the basis of the proportion of times that a favorable outcome occurs in a
number of observations or experiments. No prior assumption of equal
likelihood is involved. Because determination of the probability values is
based on observation and collection of data, this approach has also been
called the empirical approach. The probability that event A will occur by
the relative frequency approach is:

P(A) = n(A)/n

Both the classical and relative frequency approaches yield objective
probability values, in the sense that the probability values indicate the rel-
ative rate of occurrence of the event in the long run. In contrast, the sub-
jective approach to probability is particularly appropriate when there is
only one opportunity for the event to occur, and it will either occur or not
occur that one time. By the subjective approach, the probability of an
event is the degree of belief by an individual that the event will occur,
based on all evidence available to the individual. Because the probabili-
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ty value is a personal judgment, the subjective approach has also been
called the personalistic approach. This approach to probability has been
developed relatively recently and is related to decision analysis.

Expressing Probability

The symbol P is used to designate the probability of an event. Thus P(A)
denotes the probability that event A will occur in a single observation or
experiment. The smallest value that a probability statement can have is 0
(indicating the event is impossible) and the largest value it can have is 1
(indicating the event is certain to occur). Thus, in general, 0 < P(A) < 1.
In a given observation or experiment, an event must either occur or not
occur. Therefore, the sum of the probability of occurrence plus the prob-
ability of nonoccurrence always equals 1. Thus, where A’ indicates the
nonoccurrence of event A, we have P(A) + P(A") = 1.

A Venn diagram is a diagram related to set theory in mathematics by
which the events that can occur in a particular observation or experiment
can be portrayed. An enclosed figure represents a sample space, and por-
tions of the area within the space are designated to represent particular
elementary or composite events, or event spaces.

As an alternative to probability values, probabilities can also be ex-
pressed in terms of odds. The odds ratio favoring the occurrence of an
event is the ratio of the relative number of outcomes, designated by a, that
are favorable to A, to the relative number of outcomes, designated by b,
that are not favorable to A:

Odds = a:b (read “a to b”)

Mutually Exclusive and Nonexclusive Events

Two or more events are mutually exclusive, or disjoint, if they cannot oc-
cur together. That is, the occurrence of one event automatically precludes
the occurrence of the other event.

Two or more events are nonexclusive when it is possible for them to
occur together.
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* Note!

This definition does not indicate that such events
must necessarily always occur jointly.

For instance, suppose we consider the two possible events “ace” and
“king” with respect to a card being drawn from a deck of playing cards.
These two events are mutually exclusive, because any given card cannot
be both an ace and a king. Suppose we consider the two possible events
“ace” and “spade.” These events are not mutually exclusive, because a
given card can be both an ace and a spade; however, it does not follow
that every ace is a spade or every spade is an ace.

The Rules of Addition

The rules of addition are used when we wish to determine the probabili-
ty of one event or another (or both) occurring in a single observation.
Symbolically, we can represent the probability of event A or event B oc-
curring by P(A or B). In the language of set theory this is called the union
of A and B and the probability is designated by P(A U B) (read “proba-
bility of A union B”’). There are two variations of the rule of addition, de-
pending on whether or not the two events are mutually exclusive. The rule
of addition for mutually exclusive events is P(A or B) = P(A U B) =P(A)
+ P(B).

For events that are not mutually exclusive, the probability of the joint
occurrence of the two events is subtracted from the sum of the simple
probabilities of the two events. We can represent the probability of joint
occurrence by P(A and B). In the language of set theory this is called the
intersection of A and B and the probability is designated by P(A N B)
(read “probability of A intersect B”). Thus, the rule of addition for events
that are not mutually exclusive is P(A or B) = P(A) + P(B) — P(A and B).
That formula is also often called the general rule of addition, because for
events that are mutually exclusive the last term would always be zero, re-
sulting in the formula then being equivalent to the formula for mutually
exclusive events.
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Venn diagrams can be used to portray the rationale underlying the
two rules of addition. In Figure 5-1(a), note that the probability of A or B
occurring is conceptually equivalent to adding the proportion of area in-
cluded in A and B. In Figure 5-1(b), for events that are not mutually ex-
clusive, some elementary events are included in both A and B; thus there
is overlap between these event sets. When the areas included in A and B
are added together for events that are not mutually exclusive, the area of
overlap is essentially added in twice. Thus, the rationale of subtracting
P(A and B) in the rule of addition for nonexclusive events is to correct the
sum for the duplicate addition of the intersect area.

Independent Events, Dependent Events,
and Conditional Probability

a

Figure 5-1

Two events are independent when the occurrence or nonoccurrence of
one event has no effect on the probability of occurrence of the other event.
Two events are dependent when the occurrence or nonoccurrence of one
event does affect the probability of occurrence of the other event.

When two events are dependent, the concept of conditional proba-
bility is employed to designate the probability of occurrence of the relat-
ed event. The expression P(B|A) indicates the probability of event B oc-
curring given that event A has occurred. Note that BIA is not a fraction.

Conditional probability expressions are not required for independent
events because by definition there is no relationship between the occur-
rence of such events. Therefore, if events A and B are independent, the
conditional probability P(BIA) is always equal to simple probability
P(B). If the simple probability of a first event A and the joint probability
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of two events A and B are known, then the conditional probability P(BIA)
can be determined by:

P(BIA) = P(A and B)/P(A)

There is often some confusion regarding the dis-
tinction between mutually exclusive and nonexclusive
events on the one hand, and the concepts of indepen-
dence and dependence on the other hand. Particularly,
note the difference between events that are mutually
exclusive and events that are independent. Mutual ex-
clusiveness indicates that two events cannot both oc-
cur, whereas independence indicates that the probability of occurrence of
one event is not affected by the occurrence of the other event. Therefore
it follows that if two events are mutually exclusive, this is a particular ex-
ample of highly dependent events, because the probability of one event
given that the other has occurred would always be equal to zero.

The Rules of Multiplication

The rules of multiplication are concerned with determining the probabil-
ity of the joint occurrence of A and B. This concerns the intersection of A
and B: P(A N B). There are two variations of the rule of multiplication,
according to whether the two events are independent or dependent. The
rule of multiplication for independent events is:

P(A and B) = P(A " B) = P(A)P(B)

For dependent events the probability of the joint occurrence of A and
B is the probability of A multiplied by the conditional probability of B
given A. An equivalent value is obtained if the two events are reversed in
position. Thus the rule of multiplication for dependent events is:

P(A and B) = P(A)P(BIA); or P(A and B) = P(B and A) = P(B)P(A|B)
The first formula is often called the general rule of multiplication,

because for events that are independent the conditional probability
P(BIA) is always equal to the unconditional probability value P(B), re-
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sulting in the formula being equivalent to the formula for independent
events.

Bayes’ Theorem

In its simplest algebraic form, Bayes’ theorem is concerned with deter-
mining the conditional probability of event A given that event B has oc-
curred. The general form of Bayes’ theorem is:

P(AIB) = P(A and B)/P(B)

This formula is simply a particular application of the general formu-
la for conditional probability. However, the special importance of Bayes’
theorem is that it is applied in the context of sequential events, and fur-
ther, that the computational version of the formula provides the basis for
determining the conditional probability of an event having occurred in
the first sequential position given that a particular event has been ob-
served in the second sequential position.

Joint Probability Tables

A joint probability table is a table in which all possible events for one
variable are listed as row headings, all possible events for a second vari-
able are listed as column headings, and the value

entered in each cell of the table is the probabili-

ty of each joint occurrence. Often, the probabili-

ties in such a table are based on observed fre-

quencies of occurrence for the various joint

events, rather than being a priori in nature. The

table of joint-occurrence frequencies that can

serve as the basis for constructing a joint proba-

bility table is called a contingency table. In the

context of joint probability tables, a marginal probability is so named be-
cause it is a marginal total of a row or a column. Whereas the probabili-
ty values in the cells are probabilities of joint occurrence, the marginal
probabilities are the unconditional, or simple, probabilities of particular
events.
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Permutations

By the classical approach to determining probabilities presented earlier
in the chapter, the probability value is based on the ratio of the number
of equally likely elementary outcomes that are favorable to the total num-
ber of outcomes in the sample space. When the problems are simple, the
number of elementary outcomes can be counted directly. However, for
more complex problems the methods of permutations and combinations
are required to determine the number of possible elementary outcomes.

The number of permutations of n objects is the number of ways in
which the objects can be arranged in terms of order:

Permutations of n objects =n! =(n) X (n —1) X --- X (2) X (1)

The symbol #n! is read “n factorial.” In permutations and combina-
tions problems, # is always positive. Also, note that by definition 0! = 1
in mathematics.

Typically, we are concerned about the number of permutations of
some subgroup of the n objects, rather than all n objects as such. That is,
we are interested in the number of permutations of n objects taken r at a
time, where r is less than »:

L,=nll(n—r)!

Combinations

In the case of permutations, the order in which the objects are arranged
is important. In the case of combinations, we are concerned with the num-
ber of different groupings of objects that can occur without regard to their
order. Therefore, an interest in combinations always concerns the num-
ber of different subgroups that can be taken from 7 objects. The number
of combinations of n objects taken r at a time is:

LC.=nllrl(n—r)!
As indicated earlier in the chapter, the methods of permutations and

combinations provide a basis for counting the possible outcomes in rela-
tively complex situations. In terms of combinations, we can frequently
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determine the probability of an event by determining the number of com-
binations of outcomes that include that event as compared with the total
number of combinations that are possible. Of course, this again represents
the classical approach to probability and is based on the assumption that
all combinations are equally likely.

Solved Problems

Solved Problem 5.1 For each of the following situations, indicate
whether the classical, relative frequency, or subjective approach would
be most useful for determining the required probability value.

(a) Probability that there will be a recession next year.

(b) Probability that a six-sided die will show either a 6 or 1.

(c¢) Probability that a randomly chosen person who enters a large de-
partment store will make a purchase in that store.

Solution: (a) subjective, (b) classical, and (c) relative frequency

Solved Problem 5.2 Determine the probability of obtaining an ace (A),
king (K), or a deuce (D) when one card is drawn from a well-shuffled
deck of 52 playing cards.

Solution: P(A or K or D) = P(A) + P(K) + P(D) = 3/13

Solved Problem 5.3 In general, the probability that a prospect will make
a purchase after being contacted by a salesperson is P = 0.40. If a sales-
person selects three prospects randomly from a file and makes contact
with them, what is the probability that all three prospects will make a pur-
chase?

Solution: P(all are purchasers) = (0.40) x (0.40) x (0.40) = 0.064
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What Is a Random Variable?

In contrast to categorical events, such as drawing
a particular card from a deck of cards, a random
variable is a numerical event whose value is de-
termined by a chance process. When probability
values are assigned to all possible numerical val-
ues of a random variable X, either by a listing or
by a mathematical function, the result is a prob-
ability distribution. The sum of the probabilities for all the possible nu-
merical outcomes must equal 1.0. Individual probability values may be
denoted by the symbol f(x), which indicates that a mathematical function
is involved, by P(x = X), which recognizes that the random variable can
have various specific values, or simply by P(X).

For a discrete random variable, observed values can occur only at
isolated points along a scale of values. Therefore, it is possible that all nu-
merical values for the variable can be listed in a table with accompany-
ing probabilities. There are several standard probability distributions that
can serve as models for a wide variety of discrete random variables in-
volved in business applications. The standard models described in this
chapter are the binomial, hypergeometric, and Poisson probability distri-
butions.

For a continuous random variable, all possible fractional values of
the variable cannot be listed, and therefore, the probabilities that are de-
termined by a mathematical function are portrayed graphically by a prob-
ability density function or probability curve.

Describing a Discrete Random Variable

Just as for collections of sample and population data, it is often useful to
describe a random variable in terms of its mean and its variance, or stan-
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dard deviation. The (long-run) mean for a random variable X is called the
expected value and is denoted by E(X). For a discrete random variable, it
is the weighted average of all possible numerical values of the variable
with the respective probabilities used as weights. Because the sum of the
weights (probabilities) is 1.0, the following formula can be simplified,
and the expected value for a discrete random variable is:

E(X)=2XXP(X)

The variance of a random variable X is denoted by V(X); it is com-
puted with respect to E£(X) as the mean of the probability distribution. The
general deviations form of the formula for the variance of a discrete ran-
dom variable is:

V(X)=3[X - EX)]*P(X)

The computational form of the formula for the variance of a discrete
random variable, which does not require the determination of deviations
from the mean, is:

V(X)=XX*P(X)~[ZXP(X)I
= E(X")~[EX)P

The standard deviation for a random variable is simply the square root of
the variance:

An advantage of the standard deviation is that it is
expressed in the same units as the random vari-
able, rather than being in squared units.
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The Binomial Distribution

The binomial distribution is a discrete probability distribution that is ap-
plicable as a model for decision-making situations in which a sampling
process can be assumed to conform to a Bernoulli process. A Bernoulli
process is a sampling process in which:

1. Only two mutually exclusive possible outcomes are possible in
each trial, or observation. For convenience these are called suc-
cess and failure.

2. The outcomes in the series of trials, or observations, constitute izn-
dependent events.

3. The probability of success in each trial, denoted by p, remains
constant from trial to trial. That is, the process is stationary.

The binomial distribution can be used to determine the probability
of obtaining a designated number of successes in a Bernoulli process.
Three values are required: the designated number of successes (X); the
number of trials, or observations (n); and the probability of success in
each trial (p). Where g = (1 — p), the formula for determining the proba-
bility of a specific number of successes X for a binomial distribution is:

P(X n,p)=,Cxp*q" ¥

_ n! X n-X
xin-xn’ 1

Often there is an interest in the cumulative probability of “X or more”
successes or “X or fewer” successes occurring in 7 trials. In such a case,
the probability of each outcome included within the designated interval
must be determined, and then these probabilities are summed.

/ Important Point!

Because use of the binomial formula involves con-
siderable arithmetic when the sample is relatively
large, tables of binomial probabilities are often
used.
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The values of p referenced in a table of binomial probabilities typi-
cally do not exceed p = 0.50. If the value of p in a particular application
exceeds 0.50, the problem is restated so that the event is defined in terms
of the number of failures rather than the number of successes.

The expected value (long-run mean) and variance for a given bino-
mial distribution could be determined by listing the probability distribu-
tion in a table and applying the formulas presented earlier in the chapter.
However, the expected number of successes can be computed directly:

EX)=np

Where g = (1 — p), the variance of the number of successes can also be
computed directly:

V(X) = npq

The Binomial Variable Expressed
by Proportions

Instead of expressing the random binomial variable as the number of suc-
cesses X, we can designate it in terms of the proportion of successes p,
which is the ratio of the number of successes to the number of trials:

p=X/n

In such cases, the formula is modified only with respect to defining
the proportion. Thus, the probability of observing exactly p proportion of
successes in n Bernouilli trials 1s:

P(p=XIn np)= C,p*q"™>
P(p=X/n nm)= C,n*(1-m)=*

In the second formula, 7 is the equivalent of p except that it specifi-
cally indicates that the probability of success in an individual trial is a
population or process parameter.

When the binomial variable is expressed as a proportion, the distri-
bution is still discrete and not continuous. Only the particular proportions
for which the number of successes X is a whole number can occur. The
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expected value for a binomial probability distribution expressed by pro-
portions is equal to the population proportion, which may be designated
by either p or x:

E(p)=p or EPp) =z

The variance of the proportion of successes for a binomial probabil-
ity distribution, when g = (1 — p), is:

V(p)=pgin or V(p)=n(l —n)n

The Hypergeometric Distribution

When sampling is done without replacement of each sampled item taken
from a finite population of items, the Bernoulli process does not apply be-
cause there is a systematic change in the probability of success as items
are removed from the population.

Don’t Forget!

When sampling without replacement is used in a
situation that would otherwise qualify as a Bernoul-
li process, the hypergeometric distribution is the
appropriate discrete probability distribution.

The Poisson Distribution

The Poisson distribution can be used to determine the probability of a
designated number of events occurring when the events occur in a con-
tinuum of time or space. Such a process is called a Poisson process; it is
similar to the Bernoulli process except that the events occur over a con-
tinuum and there are no trials as such. An example of such a process is
the arrival of incoming calls at a telephone switchboard. As was the case
for the Bernoulli process, it is assumed that the events are independent
and that the process is stationary.
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Only one value is required to determine the probability of a desig-
nated number of events occurring in a Poisson process: the long-run mean
number of events for the specific time or space dimension of interest. This
mean generally is represented by A (Greek lambda), or possibly by u. The
formula for determining the probability of a designated number of suc-
cesses X in a Poisson distribution is:

A
X!

P(XI\)

Because a Poisson process is assumed to be stationary, it follows that
the mean of the process is always proportional to the length of the time
or space continuum. Therefore, if the mean is available for one length of
time, the mean for any other required time period can be determined.

You Need to Know /

This is important, because the value of A that is
used must apply to the time period of interest.

By definition, the expected value for a Poisson probability distribu-
tion is equal to the mean of the distribution: E(X) = A.

As it happens, the variance of the number of events for a Poisson
probability distribution is also equal to the mean of the distribution A:

V(X) =\

Poisson Approximation of Binomial
Probabilities

When the number of observations or trials # in a Bernoulli process is
large, computations are quite tedious. Further, tabled probabilities for
very small values of p are not generally available. Fortunately, the Pois-
son distribution is suitable as an approximation of binomial probabilities
when 7 is large and p or ¢ is small. A convenient rule is that such ap-
proximation can be made when n = 30, and either np < 5 or ng < 5. Dif-
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ferent texts use somewhat different rules for determining when such ap-
proximation is appropriate. The mean for the Poisson probability distri-
bution that is used to approximate binomial probabilities is: A = np.

When # is large but neither np nor ng is less than 5, binomial prob-
abilities can be approximated by use of the normal probability distribu-
tion.

Solved Problems

Solved Problem 6.1 The number of trucks arriving hourly at a ware-
house facility has been found to follow the probability in Table 6.1. Cal-
culate (a) the expected number of arrivals X per hour, (b) the variance,
and (¢) the standard deviation for the discrete random variable.

Number of trucks (X) 0 1 2 3 4 5 6

Probability [P(X)] 005 010 015 025 030 010 005

Table 6.1 Hourly arrival of trucks at a warehouse

Solution: (a) E(X) = 3.15 trucks, (b) V(X) = 2.1275, and (¢) 6 = 1.46
trucks

Solved Problem 6.2 If a fair coin is tossed five times, the probability dis-
tribution with respect to the number of heads observed is based on the bi-
nomial distribution, with n = 5 and p = 0.50. Determine (a) the expected
number of heads in five tosses and (b) the standard deviation of the num-
ber of heads by use of the special formulas applicable for binomial prob-
ability distributions.

Solution: (a) £(X) = 2.50 heads, (b) o =+/V(X) =1.12 heads
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v/ The Exponential Probability
Distribution
v Solved Problems

Continuous Random Variables

As contrasted to a discrete random variable, a
continuous random variable is one that can as-
sume any fractional value within a defined
range of values. Because there is an infinite
number of possible fractional measurements,
one cannot list every possible value with cor-
responding probability. Instead, a probability
density function is defined. This mathematical
expression gives the function of X, represented
by the symbol f(X), for any designated value of
the random variable X. The plot for such a func-
tion is called a probability curve, and the area
between any two points under the curve indicates the probability of a val-
ue between these two points occurring by chance.

Several standard continuous probability distributions are applicable
as models to a wide variety of continuous variables under designated cir-
cumstances. Probability tables have been prepared for these standard de-
viations, making it unnecessary to use the method of integration in order
to determine areas under the probability curve for these distributions. The
standard continuous probability models described in this chapter are the
normal and exponential probability distributions.

The Normal Probability Distribution

The normal probability distribution is a continuous probability distribu-
tion that is both symmetrical and mesokurtic. The probability curve rep-
resenting the normal probability distribution is often described as being
bell-shaped. The normal probability distribution is important in statisti-
cal inference for three distinct reasons:
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1. The measurements obtained in many random processes are known
to follow this distribution.

2. Normal probabilities can often be used to approximate other
probability distributions, such as the binomial and Poisson distri-
butions.

3. Distributions of such statistics as the sample mean and sample
proportion are normally distributed when the sample size is large,
regardless of the distribution of the parent population.

As is true for any continuous probability distribution, a probability
value for a continuous random variable can be determined only for an in-
terval of values. The height of the density function, or probability curve,
for a normally distributed variable is given by

F(X) = A O
276

where 1 is the constant 3.1416, e is the constant 2.7183, i is the mean of
the distribution, and o is the standard deviation of the distribution. Since
every different combination of ¢ and o would generate a different normal
probability distribution (all symmetrical and mesokurtic), tables of nor-
mal probabilities are based on one particular distribution: the standard
normal distribution. This is the normal probability distribution with g =
0 and o= 1. Any value X from a normally distributed population can be
converted into equivalent standard normal value z by the formula:

z=X-p) o

Important!

Any z value restates the original value X in terms
of the number of units of the standard deviation by
which the original value differs from the mean of
the distribution. A negative value of z would indi-
cate that the original value X was below the value
of the mean.
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Normal Approximation of Binomial
Probabilities

When the number of observations or trials # is relatively large, the nor-
mal probability distribution can be used to approximate binomial proba-
bilities. A convenient rule is that such approximation is acceptable when
n =30, and both np = 5 and ng = 5. This rule, combined with the one for
the Poisson approximation of binomial probabilities, means that when-
ever n = 30, binomial probabilities can be approximated by either the nor-
mal or the Poisson distribution, depending on the values of np and ng.
Different texts use somewhat different rules for determining when such
approximations are appropriate.

When the normal probability distribution is used as the basis for ap-
proximating a binomial probability value, the mean and standard devia-
tion are based on the expected value and variance of the number of suc-
cesses for the binomial distribution. The mean number of successes is:
U =np.

The standard deviation of the number of successes is: o = /npq .

Normal Approximation of Poisson Probabilities

When the mean A of a Poisson distribution is relatively large, the normal

probability distribution can be used to approximate Poisson probabilities.

A convenient rule is that such approximation is acceptable when A = 10.0.
The mean and standard deviation of the normal probability distribu-

tion are based on the expected value and the variance of the number of

events in a Poisson process. This mean is: u = A.

The standard deviation is: o =+/4 .

The Exponential Probability Distribution

If events occur in the context of a Poisson
process, then the length of time or space be-
tween successive events follow an exponential
probability distribution. Because the time or
space is a continuum, such a measurement is a
continuous random variable. As is the case of
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any continuous random variable, it is not meaningful to ask: “What is the
probability that the first request for service will arrive in exactly one
minute?” Rather, we must designate an interval within which the event
is to occur, such as by asking: “What is the probability that the first re-
quest for service will arrive within a minute?”

Since the Poisson process is stationary, with equal likelihood of the
event occurring throughout the relevant period of time, the exponential
distribution applies whether we are concerned with the time (or space)
until the very first event, the time between two successive events, or the
time until the first event occurs after any selected point in time.

Where 4 is the mean number of occurrences for the interval of in-
terest, the exponential probability that the first event will occur within the
designated interval of time and space is:

PT<H=1-e¢*

Similarly, the exponential probability that the first event will not occur
within the designated interval of time or space is:

P(T>t)=e*

Solved Problems

Solved Problem 7.1 The packaging process in a breakfast cereal com-
pany has been adjusted so that an average of u=13.0 oz of cereal is placed
in each package. Of course, not all packages have precisely 13.0 oz be-
cause of random sources of variability. The standard deviation of the ac-
tual net weight is 0 = 0.1 oz, and the distribution of weights is known to
follow the normal probability distribution. Determine the probability that
a randomly chosen package will contain between 13.0 and 13.2 oz of ce-
real and illustrate the proportion of area under the normal curve that is as-
sociated with this probability value.

Solution:

S X—u 132-13.0
o 0.1
P13.0<X<132)=P(0<2<+42.0)=04772

+2.0
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f(X)

13.0 132 X, oz

Figure 7-1

Solved Problem 7.2 For the situation described in Solved Problem 7.1,
what is the probability that the weight of the cereal will exceed 13.25 0z?
[lustrate the proportion of area under the normal curve that is relevant in
this case.

Solution:

. X—-p 13.25-13.0
o 0.1
P(X >13.25)=P(z > +2.5)=0.5000 - 0.4938 = 0.0062

=+42.5

f(X)

13.0 13.25 X, oz

Figure 7-2
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Point Estimation of a Population
or Process Parameter

Because of factors such as time and cost, the parameters of a population
or process frequently are estimated on the basis of sample statistics. A pa-
rameter is a summary value for a population or process, whereas a sam-
ple statistic is a summary value for a sample. In order to use a sample sta-
tistic as an estimator of a parameter, the sample must be a random sample
from a population or a rational subgroup from a process.

A point estimator is the numeric value of
a sample statistic that is used to estimate the
value of a population or process parameter.
One of the most important characteristics of
an estimator is that it be unbiased. An unbi-
ased estimator is a sample statistic whose ex-
pected value is equal to the parameter being
estimated. An expected value is the long-run
mean average of the sample statistic. The
elimination of any systematic bias is assured
when the sample statistic is for a random
sample taken from a population or a rational subgroup taken from a
process. Either sampling method assures that the sample is unbiased but
does not eliminate sampling variability, or sampling error, as explained
in the following section.

Table 8.1 presents some frequently used point estimators of popula-
tion parameters. In every case, the appropriate estimator of a population
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Population parameter Estimator
Mean, u X
Difference between the means of two populations, y; — u, X, -X,
Proportion, © p
Difference between the proportions in two populations, n, — 7, by — B,
Variance, a? s?
Standard deviation, ¢ s

Table 8.1 Frequently used point estimators

parameter simply is the corresponding sample statistic. However, note
that the formula in Chapter 4 for the sample variance includes a correc-
tion factor. Without this correction, the sample variance would be a bi-
ased estimator of the population variance.

The Concept of a Sampling Distribution

Your understanding of the concept of a sampling distribution is funda-
mental to your understanding of statistical inference. As we have already
established, a population distribution is the distribution of all the indi-
vidual measurements in a population, and a sample distribution is the dis-
tribution of the individual values included in a sample. In contrast to such
distributions for individual measurements, a sampling distribution refers
to the distribution of different values that a sample statistic, or estimator,
would have over many samples of the same size. Thus, even though we
typically would have just one random sample or rational subgroup, we
recognize that the particular sample statistic that we determine, such as
the sample mean or median, is not exactly equal to the respective popu-
lation parameter. Further, a sample statistic will vary in value from sam-
ple to sample because of random sampling variability, or sampling error.
This is the idea underlying the concept that any sample statistic is in fact
a type of variable whose distribution of values is represented by a sam-
pling distribution.

Sampling Distribution of the Mean

We now turn our attention specifically to the sampling distribution of the
sample mean. When the mean of just one sample is used in statistical in-
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ference about a population mean, it would be useful to
know the expected value and the variability to be expect-
ed from sample to sample. Amazingly, we are able to de-
termine both the expected value and the variability of the
sample mean by knowing the mean and standard devia-
tion of the population (or process). But what if the param-
eter values are not known, and we have data from only one
sample? Even then, the variability of the sample statistic, such as the sam-
ple mean, from sample to sample can still be determined and used in sta-
tistical inference.

The sampling distribution of the mean is described by determining
the mean of such a distribution, which is the expected value E(X), and the
standard deviation of the distribution of sample means, designated o
Because this standard deviation is indicative of the accuracy of the sam-
ple statistic as an estimator of a population mean, it is usually called the
standard error of the mean. When the population or process parameters
are known, the expected value and standard error for the sampling distri-
bution of the mean are:

E(X)=u
o
O-f:_

Vn

When sampling from a population that is finite and of limited size, a
finite correction factor is available for the correct determination of the
standard error. The effect of this correction factor is always to reduce the
value that otherwise would be calculated. As a general rule, the correc-
tion is negligible and can be omitted when n < 0.05N, that is, when the
sample size is less than 5 percent of the population size. Because popu-
lations from which samples are taken are usually large, many texts and
virtually all computer programs do not include this correction option. The
formula for the standard error of the mean with the finite correction fac-
tor included is:

o= 2 [N-n
* JnVN-=1

The correction factor in the above formula is the factor under the square
root that has been appended to the basic formula for the standard error of
the mean.
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You Need to Know /

This same correction factor can be appended to
the formulas for any of the standard error formulas
for the mean, difference between means, propor-
tion, and difference between proportions that are
described and used in this and the following chap-
ters.

If the standard deviation of the population or process is not known,
the standard error of the mean can be estimated by using the sample stan-
dard deviation as an estimator of the population standard deviation. To
differentiate this estimated standard error from the precise one based on
a known o, it is designated by the symbol s_.

The Central Limit Theorem

If the population or process from which a sample is taken is normally dis-
tributed, then the sampling distribution of the mean also will be normal-
ly distributed, regardless of sample size. However, what if a population
is not normally distributed? Remarkably, a theorem from mathematical
statistics still permits application of the normal distribution with respect
to such sampling distributions. The central limit theorem states that as
sample size is increased, the sampling distribution of the mean ap-
proaches the normal distribution in form, regardless of the form of the
population distribution from which the sample was taken. For practical
purposes, the sampling distribution of the mean can be assumed to be ap-
proximately normally distributed, even for the most nonnormal popula-
tions or processes, whenever the sample size is n = 30. For populations
that are only somewhat nonnormal, even a smaller sample size will suf-
fice. But a sample size of at least 30 will take care of the most adverse
population situation.
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Determining Probability Values
for the Sample Mean

If the sampling distribution of the mean is normally distributed, either be-
cause the population is normally distributed or because the central limit
theorem is invoked, then we can determine probabilities regarding the
possible values of the sample mean, given that the population mean and
standard deviation are known. The process is analogous to determining
probabilities for individual observations using the normal distribution. In
the present application, however, it is the designated value of the sample
mean that is converted into a value of z in order to uses the table of nor-
mal probabilities. This conversion formula uses the standard error of the
mean because this is the standard deviation for the variable X. Thus, the
conversion formula is:
_X-u

z=

O~

=

Example 8.1 An auditor takes a random sample of size n = 36 from a
population of 1,000 accounts receivable. The mean value of the accounts
receivable for the population is 4 = $260.00, with the population standard
deviation o = $45.00. What is the probability that the sample mean will
be less than $250.00?

(X

250.00 260.00 =
X, mean acct. bal.

1 1

-1.33 0

Figure 8-1
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Figure 8-1 portrays the probability curve. The sampling distribution is de-
scribed by the mean and standard error:

4 =260.00 (as given)

o= :£:7.50
6

X

__250.00-260.00 _ ~10

= =-1.33.
7.50 7.50

Therefore,

P(X <250.00 | =260.00, o =7.50) = P(z < —1.33)
P(z<—1.33)=0.5000 - P(~1.33< 2 < 0)
=0.5000 — 0.4082 = 0.0918.

Confidence Intervals for the Mean
Using the Normal Distribution

Example 8.1 above is concerned with determining the probability that the
sample mean will have various values given that the population mean and
standard deviation are known. What is involved is deductive reasoning
with respect to the sample result based on known population parameters.
We now concern ourselves with inductive reasoning by using sample data
to make statements about the value of the population mean.

The methods of interval estimation in this section are based on the
assumption that the normal probability distribution can be used. Such use
is warranted whenever n > 30, because of the central limit theorem, or
when n < 30 but the population is normally distributed and & is known.

Although the sample mean is useful as an unbiased estimator of the
population mean, there is no way of expressing the degree of accuracy of
a point estimator. In fact, mathematically speaking, the probability that
the sample mean is exactly correct as an estimator of the population mean
is P = 0. A confidence interval for the mean is an estimate interval con-
structed with respect to the sample mean by which the likelihood that the
interval includes the value of the population mean can be specified. The
level of confidence associated with a confidence interval indicates the
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long-run percentage of such intervals that would include the parameter
being estimated.

Confidence intervals for the mean typically are constructed with the
unbiased estimator at the midpoint of the interval. When use of the nor-
mal probability distribution is warranted, the confidence interval for the
mean is determined by:

>

tzo

X
or when the population ¢ is not known by:
X +zs2

The most frequently used confidence intervals are the 90 percent, 95
percent, and 99 percent confidence intervals. The values of z required in
conjunction with such intervals are given in Table 8.2.

z (the number of standard deviation Proportion of area in the
units from the mean) interval 4 + zo
1.645 0.90
1.96 0.95
2.58 0.99

Table 8.2 Selected proportions of area under the normal curve

Determining the Required Sample Size
for Estimating the Mean

Suppose that the desired size of a confidence interval and the level of con-
fidence to be associated with it are specified. If ¢ is known or can be es-
timated, such as from the results of similar studies, the required sample
size based on the use of the normal distribution is:

(%)
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In the above formula, z is the value used for the specified level of
confidence, ¢ is the standard deviation of the population, and E is the plus
and minus sampling error allowed in the interval (always one-half the to-
tal confidence interval).

The t Distribution and Confidence Intervals for
the Mean

Earlier in this chapter, we indicated that use of the normal distribution in
estimating a population mean is warranted for any large sample, and for
a small sample only if the population is normally distributed and o is
known. In this section we handle the situation in which the sample is
small and the population is normally distributed, but ¢ is not known.

If a population is normally distributed, the
sampling distribution of the mean for any sample
size will also be normally distributed; this is true
whether o is known or not. However, in the process
of inference each value of the mean is converted to
a standard normal value, and herein lies the prob-
lem. If o is unknown, the conversion formula in-
cludes a variable in the denominator, because s will be somewhat differ-
ent from sample to sample. The result is that use of the variable s rather
than the constant 6 in the denominator results in converted values that
are not distributed as z values. Instead, the values are distributed accord-
ing to the ¢ distribution, which is platykurtic as compared with the distri-
bution of z. The distribution is a family of distributions, with a somewhat
different distribution associated with the degrees of freedom (df'). For a
confidence interval for the population mean based on a sample of size n,
df=n-1.

The degrees of freedom indicate the number of values that are in fact
“free to vary” in the sample that serves as the basis for the confidence in-
terval. Offhand, it would seem that all of the values in the sample are al-
ways free to vary in their measured values. However, what is different for
the ¢ distribution as compared to the z is that both the sample mean and
the sample standard deviation are required as parameter estimators in or-
der to define a confidence interval for the population mean. The need for
the additional parameter estimate is a limitation on the sample. Without
considering the mathematical abstractions, the bottom line is that, in gen-
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eral, one degree of freedom is lost with each additional parameter esti-
mate that is required beyond the one parameter toward which the statis-
tical inference is directed.

Use of the ¢ distribution for inference concerning the population
mean is appropriate whenever o is not known and the sampling distribu-
tion of the mean is normal (either because the population is normally dis-
tributed or the central limit theorem is invoked). Just as is true for the z
distribution, the ¢ distribution has a mean of 0. However, it is flatter and
wider than the z (and thus has a standard deviation > 1.0). With increas-
ing sample size and df, the ¢ distribution approaches the form of the stan-
dard normal z distribution. For hand calculations, a general rule is that re-
quired ¢ values can be approximated by z values when n > 30 (or df < 29).

Summary Table for Interval Estimation
of the Population Mean

Population Sample size o known ¢ unknown
Normally Large (n = 30) X + zo, X +ts;
distributed or

X + zs**
Small (n < 30) X + zo, X +ts,
Not normally Large (n > 30) X + zo* X + ts.*
distributed or
X + zs.t
Small (n < 30) Nonparametric procedures directed toward
the median generally would be used.

* Central limit theorem is invoked.
** 7 1s used as an approximation of ¢.

t Central limit theorem is invoked, and z is used as an approximation of ¢.

Table 8.3 Interval estimation of the population mean




70 BUSINESS STATISTICS
Solved Problems

Solved Problem 8.1 For a particular brand of TV picture tube, it is
known that the mean operating life of the tubes is z = 9,000 hr with a stan-
dard deviation of o =500 hr. (a) Determine the expected value and stan-
dard error of the sampling distribution of the mean given a sample size
of n=25. (b) Interpret the meaning of the computed values.

Solution: (a) E(X)=p=9,000

o; =100
(b) These calculations indicate that in the long run the mean of a large
group of samples means, each based on a sample size of n =25, will be
equal to 9,000 hr. Further, the variability of these sample means with re-
spect to the expected value of 9,000 hr is expressed by a standard devia-
tion of 100 hr.

Solved Problem 8.2 Suppose that the standard deviation of the tube life
for a particular brand of TV picture tube is known to be o =500, but that
the mean operating life is unknown. Overall, the operating life of the
tubes is assumed to be approximately normally distributed. For a sample
of n = 15, the mean operating life is X = 8,900 hr. Determine the 95 per-
cent confidence intervals for estimating the population mean.

Solution: The normal probability distribution can be used in this case be-
cause the population is normally distributed and o is known.

= o
X 205 =8,900%1.96——
Jn

=8,647 109,153

Solved Problem 8.3 With respect to Solved Problem 8.2, suppose that
the population can be assumed to be normally distributed, but that the
population standard deviation is not known. Rather, the sample standard
deviation s = 500 and X = 8,900. Estimate the population mean using a
90 percent confidence interval.

Solution: Because n = 30 the normal distribution can be used as an ap-
proximation of the ¢ distribution. However, because the population is nor-
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mally distributed, the central limit theorem need not be invoked. There-
fore,

X +z5-=8,900+1 .645(ﬂ) =8,761109,039 hr

V35

Solved Problem 8.4 A prospective purchaser wishes to estimate the
mean dollar amount of sales per customer at a toy store located at an air-
lines terminal. Based on the data from other similar airports, the standard
deviation of such sales amounts is estimated to be about ¢ = $3.20. What
size of random sample should be collected, as a minimum, if the pur-
chaser wants to estimate the mean sales amount within $1.00 and with 99
percent confidence?

Solution: n = (zo/E)? = [(2.58)(3.20)/1.00]> = 68.16

Solved Problem 8.5 Referring to Solved Problem 8.4, what is the min-
imum required sample size if the distribution of sales amounts is not as-
sumed to be normal and the purchaser wishes to estimate the mean sales
amount within $2.00 with 99 percent confidence?

Solution: n = (zo/E)? = [(2.58)(3.20)/2.00]*> = 17.04

However, because the population is not assumed to be normally distrib-
uted, the minimum sample size is n = 30, so that the central limit theo-
rem can be invoked as the basis for using the normal probability distri-
bution for constructing the confidence interval.
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Confidence Intervals for the
Variance and Standard Deviation
v’ Solved Problems

Confidence Intervals for the Difference
between Two Means Using the Normal
Distribution

There is often a need to estimate the difference between two population
means, such as the difference between the wage levels in two firms. The
confidence interval is constructed in a manner similar to that used for es-
timating the mean, except that the relevant standard error for the sampling
distribution is the standard error of the difference between means. Use of
the normal distribution is based on the same conditions as for the sam-
pling distribution of the mean, except that two samples are involved. The
formula used for estimating the difference between two population means
with confidence intervals is:

(XI_YZ)iZle_ or (Yl_)?z)izs

X X, -,
When the standard deviations of the two populations are known, the
standard error of the difference between means is:

_ ’ 2 2

When the standard deviations of the populations are not known, the
estimated standard error of the difference between means given that use
of the normal distribution is appropriate is:

_[2, 2
5%, =455 T 5%,

S,
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* Note!

In addition to the two-sided confidence interval, a
one-sided confidence interval for the difference be-
tween means can also be constructed.

The t Distribution and Confidence Intervals
for the Difference between Two Means

As explained in Chapter 8, use of the ¢ distribution in conjunction with
one sample is necessary when:

1. Population standard deviations ¢ are not known.

2. Samples are small (n < 30). If samples are large, then ¢ values can
be approximated by the standard normal z.

3. Populations are assumed to be approximately normally distrib-
uted.

In addition to the above, when the ¢ distribution is used to define con-
fidence intervals for the difference between two means, rather than for in-
ference concerning only one population mean, an additional assumption
usually required is: the two populations variances are equal.

Because of the above equality assumption, the first step in deter-
mining the standard error of the difference between means when the 7 dis-
tribution is to be used typically is to pool the two sample variances:

52 _ (= Ds? +(n, — 1)s3

l’l1+n2—2

The standard error of the difference between means based on using
the pooled variance estimate is:
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Where df = n, + n, — 2, the confidence interval is:

(X, = X)) 1463 5,

Note that in the two-sample case it is possible for each sample to be
small, and yet the normal distribution could be used to approximate the ¢
because df =2 29. However, in such use the two populations must be as-
sumed to be approximately normally distributed, because the central lim-
it theorem cannot be invoked with respect to a small sample.

Confidence Intervals for the Population
Proportion

The probability distribution that is applicable to pro-

portions is the binomial probability distribution.

However, the mathematics associated with deter-

mining a confidence interval for an unknown popu-

lation proportion on the basis of the Bernoulli

process is complex. Therefore, all applications-

oriented textbooks utilize the normal distribution as

an approximation of the exact solution for confi-

dence intervals for proportions. However, when the population propor-
tion p (or m) is not known, most statisticians suggest that a sample of n >
100 should be taken.

The variance of the distribution of proportions serves as the basis for
the standard error. Given an observed sample proportion of p, the esti-
mated standard error of the proportion is:

p-p)

n

S, =
In the context of statistical estimation, the population p would not be
known because that is the value being estimated. If the population is fi-
nite, then use of the finite correction factor is appropriate. As was the case
for the standard error of the mean, use of this correction is generally not
considered necessary if n < 0.05N. The approximate confidence interval
for a population proportion is p + zs . In addition to the two-sided confi-
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dence interval, a one-sided confidence interval for the population pro-
portion can also be determined.

Determining the Required Sample Size
for Estimating the Proportion

Before a sample is actually collected, the minimum required sample size
can be determined by specifying the level of confidence required, the
sampling error that is acceptable, and by making an initial estimate of T,
the unknown population proportion:

(p—p)% ZSp-p,

Above, z is the value used for the specified confidence interval, &t is
the initial estimate of the population proportion, and E is the “plus and
minus” sampling error allowed in the interval (always one-half the total
confidence interval).

If an initial estimate of 7 is not possible, then it should be estimated
as being 0.50. Such an estimate is conservative in that it is the value for
which the largest sample size would be required. Under such an assump-
tion, the general formula for sample size is simplified as follows: n =
(zI2E)>.

Confidence Intervals for the Difference
between Two Proportions

In order to estimate the difference between the proportions in two popu-
lations, the unbiased point estimate of (n, — xt,) is (p, — p,). The confi-
dence interval involves use of the standard error of the difference between
proportions. Use of the normal distribution is based on the same condi-
tions as for the sampling distribution of the proportion, except that two
samples are involved and the requirements apply to each of the two sam-
ples. The confidence interval for estimating the difference between two
population proportions is:

(=Pt “Sp—p,



CHAPTER 9: Other Confidence Intervals 77

The standard error of the difference between proportions is deter-
mined by the formula below, wherein the value of each respective stan-
dard error of the proportion is calculated as described before:

2 2

AooA = PO T Y
sl’l—l’z SPl st

The Chi-Square Distribution and Confidence
Intervals for the Variance and Standard
Deviation

Given a normally distributed population of values, the 2 (chi-square)
distributions can be shown to be the appropriate probability distributions
for the ratio (n — 1)s?/c2. There is a different chi-square distribution ac-
cording to the value of n — 1, which represents the degrees of freedom
(df). Thus,

(n—1)s>
X421f == 2

o

Because the sample variance is the unbiased
estimator of the population variance, the long-run
expected value of the above ratio is equal to the de-
grees of freedom, or n — 1. However, in any given
sample the sample variance generally is not identi-
cal in value to the population variance. Since the ra-
tio above is known to follow a chi-square distribution, this probability
distribution can be used for statistical inference concerning an unknown
variance or standard deviation.

Chi-square distributions are not symmetrical. Therefore, a two-sided
confidence interval for a variance or standard deviation involves the use
of two different chi square values, rather than the plus and minus ap-
proach used with the confidence intervals based on the normal and ¢ dis-
tributions. The formula for constructing a confidence interval for the pop-
ulation variance is:

(n—1)s* cg2 (= )s?

2 2
X df ,upper X df Jlower
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The confidence interval for the population standard deviation is:

(n—1)s> <ol (n—1)s>
2 - - 2
X df ,.upper X df lower

Solved Problems

Solved Problem 9.1 A random sample of 50 households in community
A has a mean household income of X = $44,600 with a standard devia-
tion s = $2,200. A random sample of 50 households in community B has
amean of X = $43,800 with a standard deviation of $2,800. Estimate the
difference in the average household income in the two communities us-
ing a 95 percent confidence interval.

Solution:

sz, =5/ yn; =$311.17
Sy, =8, /\/ny =$396.04

St,-x, =+/5% 55, =3503.66

X=X

(X, —X,)*zs; o =800£987.17=-8187.17 to $1,787.17

X2

Solved Problem 9.2 For the income data reported in Solved Problem
9.1, estimate the maximum difference between the mean income levels
in the first and second community by constructing a 95 percent lower con-
fidence interval.

Solution:
Est. (1, —u,)<800+1.645(503.66) < $1,628.52

Solved Problem 9.3 A college administrator collects data on a nation-
wide random sample of 230 students enrolled in M.B.A. programs and
finds that 54 of these students have undergraduate degrees in business.
Estimate the proportion of such students in the nationwide population
who have undergraduate degrees in business, using a 90 percent confi-
dence interval.
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Solution:

n
pt zs;, = 0.235+1.645(0.028)

=0.235+£0.046 =0.19100.28
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v Solved Problems

Introduction

The purpose of hypothesis testing is to deter-
mine whether a claimed (hypothesized) value
for a population parameter, such as a popula-
tion mean, should be accepted as being plau-
sible based on sample evidence. Recall from
Chapter 8 on sampling distributions that a
sample mean generally will differ in value
from the population mean. If the observed
value of a sample statistic, such as the sample
mean, is close to the claimed parameter value
and differs only by an amount that would be
expected because of random sampling, then the hypothesized value is not
rejected. If the sample statistic differs from the claim by an amount that
cannot be ascribed to chance, then the hypothesis is rejected as not being
plausible.
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Three different procedures have been developed for testing hy-
potheses, with all of them leading to the same decision when the same
probability (and risk) standards are used. In this chapter we first describe
the critical value approach to hypothesis testing. By this approach, the
so-called critical values of the test statistic that would dictate rejection of
a hypothesis are determined, and then the observed test statistic is com-
pared to the critical values. This is the first approach that was developed,
and thus much of the language of hypothesis testing stems from it.

More recently, the P-value approach has become popular because it
is the one most easily applied with computer software. This approach is
based on determining the conditional probability that the observed value
of a sample statistic could occur by chance, given that a particular claim
for the value of the associated population parameter is in fact true. Final-
ly, the confidence interval approach is based on observing whether the
claimed value of a population parameter is included within the range of
values that define a confidence interval for that parameter.

No matter which approach to hypothesis testing is used, note that if
a hypothesized value is not rejected, and therefore is accepted, this does
not constitute a “proof” that the hypothesized value is correct. Accep-
tance of a claimed value for the parameter simply indicates that it is a
plausible value, based on the observed value of the sample statistic.

Basic Steps in Hypothesis Testing
by the Critical Value Approach

Step 1. Formulate the null hypothesis and the alternative hypothesis.
The null hypothesis (H ) is the hypothesized parameter value that is com-
pared with the sample result. It is rejected only if the sample result is un-
likely to have occurred given the correctness of the hypothesis. The al-
ternative hypothesis (H,) is accepted only if the null hypothesis is
rejected. The alternative hypothesis is also designated by (H,) in many
texts.

Step 2. Specify the level of significance to be used. The level of signif-
icance is the statistical standard that is specified for rejecting the null hy-
pothesis. If a 5 percent level of significance is specified, then the null hy-
pothesis is rejected only if the sample result is so different from the
hypothesized value that a difference of that amount or larger would oc-
cur by chance with a probability of 0.05 or less.
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Note that if the 5 percent level of significance is used, there is a prob-
ability of 0.05 of rejecting the null hypothesis when it is in fact true. This
is called Type I error. The probability of Type I error is always equal to
the level of significance that is used as the standard for rejecting the null
hypothesis; it is designated by the lowercase Greek ¢ (alpha), and thus o
also designates the level of significance. The most frequently used levels
of significance in hypothesis testing are the 5 percent and 1 percent lev-
els.

AType Il error occurs if the null hypothesis is not rejected, and there-
fore accepted, when it is in fact false. Determining the probability of Type
IT error is explained later in this chapter. Table 10.1 summarizes the types
of decisions and the possible consequences of the decisions which are
made in hypothesis testing.

Possible states
Null Null
hypothesis hypothesis
Possible decision true false
Accept null hypothesis Correctly Type 11
accepted error
Reject null hypothesis Type 1 Correctly
error rejected

Table 10.1 Consequences in decisions in
hypothesis testing

Step 3. Select the test statistic. The test statistic will either be the sam-
ple statistic (the unbiased estimator of the parameter being tested), or a
standardized version of the sample statistic. For example, in order to test
a hypothesized value of the population mean, the mean of a random sam-
ple taken from that population could serve as the test statistic. However,
if the sampling distribution of the mean is normally distributed, then the
value of the sample mean typically is converted into a z value, which then
serves as the test statistic.
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Step 4. Establish the critical value or values of the test statistic. Hav-
ing specified the null hypothesis, the level of significance, and the test
statistic to be used, we now establish the critical value(s) of the test sta-
tistic. There may be one or two such values, depending on whether a so-
called one-sided or two-sided test is involved. In either case, a critical
value identifies the value of the test statistic that is required to reject the
null hypothesis.

Step 5. Determine the actual value of the test statistic. For example,
in testing a hypothesized value of the population mean, a random sample
is collected and the value of sample mean is determined. If the critical
value was established as a z value, then the sample mean is converted into
a z value.

Step 6. Make a decision. The observed value of the sample statistic is
compared with the critical value (or values) of the test statistic. The null
hypothesis is then either rejected or not rejected. If the null hypothesis is
rejected, the alternative hypothesis is accepted. In turn, this decision will
have relevance to other decisions to be made by operating managers, such
as whether a standard of performance is being maintained or which of two
marketing strategies should be used.

Testing a Hypothesis Concerning the Mean
by Use of the Normal Distribution

The normal probability distribution can be used for testing a hypothesized
value of the population mean whenever n = 30, because of the central lim-
it theorem, or when n < 30 but the population is normally distributed and
6 is known.

A two-sided test is used when we are concerned about a possible de-
viation in either direction from the hypothesized value of the mean. The
formula used to establish the critical values of the sample mean is simi-
lar to the formula for determining confidence limits for estimating the
population mean, except that the hypothesized value of the population
mean (i, is the reference point rather than the sample mean. The critical
values of the sample mean for a two-sided test, according to whether or
not o is known, are:
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Xcr =Ho 20

or
Xcg=to £ g

Instead of establishing critical values in terms of the sample mean,
the critical values in hypothesis testing typically are specified in terms of
z values. For the 5 percent level of significance the critical values z for a
two-sided test are —1.96 and +1.96, for example. When the value of the
sample mean is determined, it is converted to a z value so that it can be
compared with the critical values of z. The conversion formula, accord-
ing to whether or not ¢ is known, is:

X_
z= o
Ox
or
X —
z= o
5%

A one-sided test is appropriate when we are concerned about possi-
ble deviations in only one direction from the hypothesized value of the
mean.

There is only one region of rejection for a one-sided test. The region
of rejection for a one-sided test is always in the tail that represents sup-
port of the alternative hypothesis. As is the case for a two-sided test, the
critical value can be determined for the mean, as such, or in terms of a z
value. However, critical values for one-sided tests differ from those for
two-sided tests because the given proportion of area is all in one tail of
the distribution. Table 10.2 presents the values of z needed for one-sided
and two-sided tests. The general formula to establish the critical value of
the sample mean for a one-sided test, according to whether or not o is
known, is the same as the two-sided test.
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Type of test
Level of significance One-sided Two-sided
5% +1.645 +1.96
(or —1.645)
1% +2.33 +2.58
{or —2.33)

Table 10.2 Critical values of z in hypothesis testing

Type | and Type Il Errors in Hypothesis
Testing

In this section Type I and Type II errors are considered entirely with re-
spect to one-sided testing of a hypothesized mean. However, the basic
concepts illustrated here apply to other hypothesis testing models as well.

The maximum probability of Type I error is designated by the Greek
o (alpha). It is always equal to the level of significance used in testing the
null hypothesis. This is so because by definition the proportion of area in
the region of rejection is equal to the proportion of sample results that
would occur in that region given that the null hypothesis is true.

The probability of Type Il error is generally designated by the Greek
B (beta). The only way it can be determined is with respect to a specific
value included within the range of the alternative hypothesis.

With the level of significance and sample size held
constant, the probability of Type II error decreases as
the specific alternative value of the mean is set farther
from the value in the null hypothesis. It increases as the
alternative value is set closer to the value in the null hy- <
pothesis. An operating characteristic (OC) curve por- \||ﬁ1|||||||||||||:§5|h
trays the probability of accepting the null hypothesis
given various alternative values of the population mean. Figure 10-1 is
the OC curve applicable to any lower-tail test for a hypothesized mean
carried out at the 5 percent level of significance and based on the use of
the normal probability distribution. Note that it is applicable to any such
test, because the values on the horizontal axis are stated in units of the
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Figure 10-1

standard error of the mean. For any values to the left of u, the probabil-
ity of acceptance indicates the probability of Type II error. To the right of
U, the probabilities indicate correct acceptance of the null hypothesis. As
indicated by the dashed lines, when 1 = i), the probability of accepting
the null hypothesis is 1 — a.

In hypothesis testing, the concept of power refers to the probability
of rejecting a null hypothesis that is false, given a specific alternative val-
ue of the parameter. Where the probability of Type II error is designated
B, it follows that the power of the test is always 1 — 3. Referring to Fig-
ure 10-1, note that the power for alternative values of the mean is the dif-
ference between the value indicated by the OC curve and 1.0, and thus a
power curve can be obtained by subtraction, with reference to the OC
curve.

Determining the Required Sample Size
for Testing the Mean

Before a sample is actually collected, the required sample size can be de-
termined by specifying:

1. The hypothesized value of the mean

2. A specific alternative value of the mean such that the difference
from the null hypothesized value is considered important

3. The level of significance to be used in the test



88 BUSINESS STATISTICS

4. The probability of Type II error which is to be permitted
5. The value of the population standard deviation c.

The formula for determining the minimum sample size required in
conjunction with testing a hypothesized value of the mean, based on use
of the normal distribution, is:

(zo — 74 )2 o’
= 2
(g — o)
In the above formula, Zo is the critical value of z used in conjunction
with the specified level of significance (o level). The value of ¢ either
must be known or be estimated. The formula can be used for either one-

sided or two-sided tests. The only value that differs for the two types of
tests is the value of z; which is used.

Testing a Hypothesis Concerning the Mean
by Use of the t Distribution

The ¢ distribution is the appropriate basis for determining the standard-
ized test statistic when the sampling distribution of the mean is normally
distributed but ¢ is not known. The sampling distribution can be assumed
to be normal either because the population is normal or because the sam-
ple is large enough to invoke the central limit theorem. The ¢ distribution
is required when the sample is small (n < 30). For larger samples, normal
approximation can be used. For the critical value approach, the procedure
is identical to that described for the normal distribution, except for the
use of ¢ instead of z as the test statistic. The test statistic is:

The P-Value Approach to Testing Hypotheses
Concerning the Population Mean

The probability of the observed sample result occurring, given that the
null hypothesis is true, is determined by the P-value approach, and this
probability is then compared to the designated level of significance o.
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Consistent with the critical value approach we de-

scribed in the preceding sections, the idea is that a

low P value indicates that the sample would be un-

likely to occur when the null hypothesis is true;

therefore, obtaining a low P value leads to rejec-

tion of the null hypothesis. Note that the P value is

not the probability that the null hypothesis is true given the sample result.
Rather, it is the probability of the sample result given that the null hy-
pothesis is true.

For two-sided tests, the P value for the smaller tail of the distribu-
tion is determined, and then doubled. The resulting value indicates the
probability of the observed amount of difference in either direction be-
tween the values of the sample mean and the hypothesized population
mean.

The P-value approach has become popular because the standard for-
mat of computer output for hypothesis testing includes P values. The
reader of the output determines whether a null hypothesis is rejected by
comparing the reported P value with the desired level of significance.

* Note!

When hand calculation of probabilities based on
the use of the t distribution is required, an exact P
value cannot be determined because of the limita-
tions of the standard table. However, no such lim-
itations exist when using computer software.

The Confidence Interval Approach to Testing
Hypotheses Concerning the Mean

By this approach, a confidence interval for the population mean is con-
structed based on the sample results, and then we observe whether the hy-
pothesized value of the population mean is included within the confi-
dence interval. If the hypothesized value is included within the interval,
then the null hypothesis cannot be rejected. If the hypothesized value is
not included in the interval, then the null hypothesis is rejected. Where o
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is the level of significance to be used for the test, the 1 — o confidence in-
terval is constructed.

For a one-tail test, a one-sided confidence interval is appropriate.
However a simpler approach is to determine a two-sided interval, but at
the level of confidence that would include the desired area in the one tail
of interest. Specifically, for a one-sided test at o = 0.05, the 90 percent,
two-sided confidence interval is appropriate because this interval in-
cludes the are of 0.05 in the one tail of interest.

The confidence interval approach is favored in texts that emphasize
the so-called data-analysis approach to business statistics. In the area of
statistical description, the data-analysis approach gives special attention
to exploratory data analysis. In the area of statistical inference, the phi-
losophy of the data-analysis approach is that managers are more con-
cerned with estimation and confidence intervals concerning unknown pa-
rameters, such as the uncertain level of sales for a new product, rather
than in the concepts of hypothesis testing.

Testing with Respect to the Process Mean
in Statistical Process Control

The use and interpretation of control charts in statistical process control
is a direct application of the methods and concepts of hypothesis testing.
The null hypothesis is that the process is stable and only common causes
of variation exist. The alternative hypothesis is that the process is unsta-
ble and includes assignable-cause variation. The critical value approach
to hypothesis testing is used, with the norm being that the lower and up-
per control limits (which are the same as “critical values” in the present
chapter) are defined at +3 standard error units from the hypothesized
mean for the process.
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Solved Problems

Solved Problem 10.1 A representative of a community group informs
the prospective developer of a shopping center that the average income
per household in the area is $45,000. Suppose that for the type of area in-
volved household income can be assumed to be approximately normally
distributed, and that the standard deviation can be accepted as being equal
to o = $2,000, based on an earlier study. For a random sample of n = 15
households, the mean household income is found to be X = $44,000. Test
the null hypothesis that 4 = $45,000 by establishing critical limits of the
sample mean in terms of dollars, using the 5 percent level of significance.

Sollltion: Since H,: u = $45,000 and H: u # $45,000, the critical limits
of X (= 0.05) are:

X = 45,000 +1.96(516.80) = $43,987 and $46,013

Since the sample mean of X=$44,000 is between the two critical lim-
its and in the region of acceptance of the null hypothesis, the communi-
ty representative’s claim cannot be rejected at the 5 percent level of sig-
nificance.

Solved Problem 10.2 Test the hypothesis in Solved Problem 10.1 by us-
ing the standard normal variable z as the test statistic.

Solution: H:u=%$45,000 and H : u # $45,000
Critical z (¢ =0.05)=%£1.96
o; =$516.80
z=-1.93

Since the computed z of —1.93 is in the region of acceptance of the null
hypothesis, the community representative’s claim cannot be rejected at
the 5 percent level of significance.

Solved Problem 10.3 With reference to the first two problems, the pro-
spective developer is not really concerned about the possibility that the
average household income is higher than the claimed $45,000, but only
that it might be lower. Accordingly, reformulate the null and alternate hy-
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potheses and carry out the appropriate statistical test, still giving the ben-
efit of the doubt to the community representative’s claim.

Solution: H:u=$45,000 and H : u < $45,000
Critical z (& =0.05) =—-1.645
s =$364.96
z=-1.93

Since the computed z is less than the critical value, the null hypothesis is
rejected, and the alternative hypothesis that the mean is less than $45,000
is accepted.

Solved Problem 10.4 For Solved Problem 10.3, suppose that the popu-
lation standard deviation is not known, which typically would be the case,
and the population of income figures is not assumed to be normally dis-
tributed. For a sample of n = 30 households, the sample standard devia-
tion is s = $2,000 and the sample mean remains X = $44,000. Test the
null hypothesis that the mean household income in the population is at
least $45,000, using the 5 percent level of significance.

Solution: H:u=%$45,000 and H : u < $45,000
Critical z (¢ =0.05) =—1.645
sz =$364.96
z=-2.74

Since the computed z is less than the critical value, the null hypothesis is
rejected , and the alternative hypothesis that the mean is less than $45,000
is accepted. Notice that the computed value of z in this case is arithmeti-
cally smaller in value and more clearly in the region of rejection as com-
pared with Solved Problem 10.3. This is due entirely to the increase in
sample size, which results in a smaller value for the standard error of the
mean.
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Testing a Hypothesized Value of
the Variance Using the Chi-Square
Distribution

Testing with Respect to Process
Variability in Statistical Process
Control

The F Distribution and Testing
the Equality of Two Population
Variances

Alternative Approaches to Testing
Null Hypotheses

Solved Problems

Testing the Difference between Two Means
Using the Normal Distribution

The procedure associated with testing a hypothesis

concerning the difference between two population

means is similar to that for testing a hypothesis con-

cerning the value of one population mean. The pro-

cedure differs only in that the standard error of the

difference between the means is used to determine the

z (or t) value associated with the sample result. Use

of the normal distribution is based on the same con-

ditions as in the one-sample case, except that two independent random
samples are involved. The general formula for determining the z value for
testing a hypothesis concerning the difference between two means, ac-
cording to whether the ¢ values for the two populations are known is:

X=X - (i~ 1)

% -X,
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or

_ (}?1 —)?2)—(,[11 — )
N

X,-X,

As implied by the above formulas, we may begin with any particu-
lar hypothesized difference, (1, — Hy)g s that is to be tested. However, the
usual null hypothesis is that the two samples have been obtained from

populations with means that are equal. In this case, (1, — u,), =0, and
the above formulas are simplified as follows:

X, - X
,=217 A2
XI_XZ
or
X1—-X2
=
S%1-X»

In general, the standard error of difference between means is com-
puted as described in Chapter 9. However, in testing the difference be-
tween two means, the null hypothesis of interest is generally not only that
the sample means were obtained from populations with equal means, but
that the two samples were in fact obtained from the same population of
values. This means that o, = o, which we can simply designate o. The
assumed common variance is often estimated by pooling the two samples
variances, and the estimated value of 62 is then used as the basis for the
standard error of the difference. The pooled estimate of the population
variance is:

g2 o (- s +(ny —1)s3

The estimated standard error of the difference based on the assump-
tion that the population standard deviations are equal is:

~2 ~2

N () +G
Oy v = |—+—
X1—X2 n n,
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The assumption that the two sample variances were obtained from
populations with equal variances can itself be tested as the null hypothe-
sis.

You Need to Know /

When the difference between two means is tested
by the use of the t distribution, a necessary as-
sumption in the standard procedure used in most
texts is that the variances of the two populations
are equal.

Testing the Difference between Means
Based on Paired Observations

The procedures in the previous sections are based on the assumption that
the two samples were collected as two independent random samples.
However, in many situations the samples are collected as pairs of values,
such as when determining the productivity level of each worker before
and after a training program. These are referred to as paired observations,
or matched pairs. Also, as contrasted to independent samples, two sam-
ples that contain paired observations often are called dependent samples.

For paired observations the appropriate approach for testing the dif-
ference between the means of the two samples is to first determine the
difference d between each pair of values, and then test the null hypothe-
sis that the mean population difference is zero. Thus, from the computa-
tional standpoint the test is applied to the one sample of d values, with
Hy:p,=0.

The mean and standard deviation of the sample d values are obtained
by use of the basic formulas, except that d is substituted for X. The mean
difference for a set of differences between paired observations is:

>d

a=
n
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The deviations formula and the computational formula for the stan-
dard deviation of the differences between paired observations are, re-

spectively,
S(d-d)?
NS

>d* - nEZ

n—1

Sq =

The standard error of the mean difference between paired observa-
tions is obtained by the formula for the standard error of the mean, ex-
cept that d is again substituted for X:

Sq
SE = T
n
Because the standard error of the mean difference is computed on the
basis of the standard deviation of the sample of differences (that is, the
population value 6, is unknown) and because values of d generally can
be assumed to be normally distributed, the ¢ distribution is appropriate for
testing the null hypothesis that pu ,= 0.
The degrees of freedom is the number of differences minus one, or
n — 1. The standard normal z distribution can be used as an approxima-
tion of the ¢ distributions when n = 30. The test statistic used to test the
hypothesis that there is no difference between the means of a set of paired
observations is:

Z‘ZJ/SJ

Testing a Hypothesis Concerning the Value
of the Population Proportion

The normal distribution can be used as an approxi-
mation of a binomial distribution when »n > 30 and
both np =5 and n(g) = 5, where g =1 — p. This is the
basis upon which confidence intervals for the pro-
portion are determined, where the standard error of
the proportion is also discussed. However, in the
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case of confidence intervals, a sample size of at least n = 100 is general-
ly required.

In determining confidence intervals, the sample proportion p serves
as the basis for the standard error. In hypothesis testing, the value of the
standard error of the proportion generally is based on using the hypothe-

sized value Ty
_ | mp(l—mp)
o, = (=9 07
n

The procedure associated with testing a hypothesized value of the
proportion is identical to that described in Chapter 10, except that the null
hypothesis is concerned with a value of the population proportion rather
than the population mean. Thus, the formula for the z statistic for testing
a hypothesis concerning the value of the population proportion is:

Determining Required Sample Size
for Testing the Proportion

Before a sample is actually collected, the required sample size for testing
a hypothesis concerning the population proportion can be determined by
specifying:

1. The hypothesized value of the proportion

2. A specific alternative value of the proportion such that the differ-
ence from the null hypothesized value is considered important

3. The level of significance to be used in the test

4. The probability of Type II error which is to be permitted.

The formula for determining the minimum sample size required for
testing a hypothesized value of the proportion is:

e zOJﬁO(l —7y) —zh/ﬂ1 (1-m) ?

72'1 —72'0
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In the above formula, Zo is the critical value of z used in conjunction
with the specified level of significance (o level) while z| is the value of z
with respect to the designated probability of Type II error (B level). On
determining sample size for testing the mean, z, and z, always have op-
posite algebraic signs. The result is that two products in the numerator
will always be accumulated. Also, the formula can be used in conjunc-
tion with either one-tail or two-tail tests and any fractional sample size is
rounded up. Finally, the sample size should be large enough to warrant
use of the normal probability distribution in conjunction with i, and =, .

Testing with Respect to the Process
Proportion in Statistical Process Control

The use and interpretation of control charts in statistical process control
is a direct application of the methods and concepts of hypothesis testing.
The control limits for a process proportion are defined at + 3 standard er-
ror units for the hypothesized (acceptable) value.

Testing the Difference between Two
Population Proportions

When we wish to test the hypothesis that the proportions in two popula-
tions are not different, the two sample proportions are pooled as a basis
for determining the standard error of the difference between proportions.
The pooled estimate of the population proportion, based on the propor-
tions obtained in two independent samples, is:

mp;+np,
ny—n,

T =

The standard error of the difference between proportions used in con-
junction with testing the assumption of no difference is:

ny n,

:\/7%(1—7%)+7%(1—7%)

The formula for the z statistic for testing the null hypothesis that there
in no difference between two population proportions is:
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A

_P1—DP

T hi=bs
A test of the difference between proportions can be carried out as ei-
ther a one-sided test or a two-sided test.

Testing a Hypothesized Value of the Variance
Using the Chi-Square Distribution

For a normally distributed population the ratio (n — 1)s?/c? follows a y?
probability distribution, with there being a different chi-square distribu-
tion according to degrees of freedom (n — 1). Therefore, the statistic that
is used to test a hypothesis concerning the value of the population vari-
ance is:
2 _(n=Ds’
%

The test based on the above formula can be either a one-sided test or
a two-sided test, although most often hypotheses about a population vari-
ance relate to one-sided tests.

Testing with Respect to Process Variability
in Statistical Process Control

The use and interpretation of control charts in statistical process control
is a direct application of methods and concepts of hypothesis testing.
Process variability is monitored and controlled either with respect to the
process standard deviation or the process range. As is the case with con-
trol charts for the process mean and process proportion, the control lim-
its are defined at 4+ 3 standard error units with respect to the expected
centerline value on the chart when the null hypothesis that there is no as-
signable-cause variation is true.
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The F Distribution and Testing the Equality
of Two Population Variances

The F distribution can be shown to be the appropriate probability model
for the ratio of the variances of two samples taken independently from
the same normally distributed population, with there being a difference
F distribution for every combination of the degrees of freedom df asso-
ciated with each sample. For each sample, df = n — 1. The statistic that is
used to test the null hypothesis that two population variances are equal
1s:
Fy oy =
dfy.df s%

Since each sample variance is an unbiased esti-
mator of the same population variance, the long-run
expected value of the above ratio is about 1.0. How-
ever, for any given pair of samples the sample vari-
ances are not likely to be identical in value, even
though the null hypothesis is true. Since this ratio is
known to follow an F distribution, this probability
distribution can be used in conjunction with testing
the difference between two variances. Although a necessary mathemati-
cal assumption is that the two populations are normally distributed, the F
test has been demonstrated to be relatively robust and insensitive to de-
partures from normality when each population is unimodal and the sam-
ple sizes are about equal.

Alternative Approaches to Testing
the Null Hypothesis

The P-value approach and the confidence interval approach are alterna-
tives to the critical value approach to hypothesis testing used in the pre-
ceding sections of this chapter.

By the P-value approach, instead of comparing the observed value
of a test statistic with a critical value, the probability of the occurrence of
the test statistic, given that the null hypothesis is true, is determined and
compared to the level of significance a. The null hypothesis is rejected if
the P value is less then the designated a.



CHAPTER 11: Testing Other Hypotheses 103

By the confidence interval approach, the 1 — a confidence interval is
constructed for the parameter value of concern. If the hypothesized val-
ue of the parameter is not included in the interval, then the null hypothe-
sis is rejected.

Solved Problems

Solved Problem 11.1 A random sample of 7, = 12 students majoring in
accounting in a college of business has a mean grade-point average of
2.70 (where A = 4.0) with a sample standard deviation of 0.40. For the
students majoring in computer information systems, a random sample of
n, =10 students has a mean grade-point average of 2.90 with a standard
deviation of 0.30. The grade-point values are assumed to be normally dis-
tributed. Test the null hypothesis that the mean-grade point average for
the two categories of students is not different, using the 5 percent level of
significance.

Solution: Hy:(u,—py)= 0,H:(u,—u,)=0,X,=270,X,=2.90,s, =
0.40, s, =0.30, n, =12, n, = 10,

Critical ¢ (df = 20, o = 0.05) = +2.086

t=-1.290

The calculated value of r = —1.290 is in the region of acceptance of the
null hypothesis. Therefore the null hypothesis that there is no difference
between the grade-point averages cannot be rejected.

Solved Problem 11.2 A company training director wishes to compare a
new approach to technical training, involving a combination of tutorial
computer disks and laboratory problem solving, with the traditional lec-
ture-discussion approach. Twelve pairs of trainees are matched accord-
ing to prior background and academic performance, and one member of
each pair is assigned to the traditional class and the other to the new ap-
proach. At the end of the course, the level of learning is determined by an
examination covering basic information as well as the ability to apply the
information. Because the training director wishes to give the benefit of
the doubt to the established instructional system, the null hypothesis is
formulated that the mean performance for the established system is equal
to or greater than the mean level of performance for the new system. Test
this hypothesis at the 5 percent level of significance. The sample perfor-
mance data are presented in the first three columns of Table 11.1
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Trainee Traditional New approach d

pair method (X,) (X,) (X, - X, d?
1 89 94 -5 25

2 87 91 —4 16

3 70 68 2 4

4 83 88 -5 25
5 67 75 —8 64

6 71 66 5 25
7 92 94 -2 4

8 81 88 -7 49

9 97 96 1 1
10 78 88 - 10 100
11 94 95 —1 1
12 79 87 —8 64
Total 988 1,030 —42 378

Table 11.1 Training program data and worksheet for computing the

mean difference and the standard deviation of the difference

Solution:

Mean performance (traditional method) = (988/12) = 82.33
Mean performance (new approach) = (1030/12) = 85.83

Hy:u,=0 H;:u,<0

Critical 7 (df = 11, 2 =0.05) =-1.796

g=21_%_ 55
n 12
5, =458
s, 458
s-=—L="""213)
Vi 12
(=435 heso
Sa

The computed value of ¢ of —2.652 is less than the critical value of
—1.796 for this lower tail-test. Therefore the null hypothesis is rejected at
the 5 percent level of significance, and we conclude that the mean level
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of performance for those trained by the new approach is superior to those
trained by the traditional method.

Solved Problem 11.3 It is hypothesized that no more than 5 percent of
the parts being produced in a manufacturing process are defective. For a
random sample of n = 100 parts, 10 are found to be defective. Test the
null hypothesis at the 5 percent level of significance.

Solution:

H,:1=0.05 H,:n>0.05

Critical z (a0 =0.05) = +1.645

(Use of the normal distribution is warranted because n 2 30, nm, 25,
and n(1 —m,) =5.)

o = \/ﬁo(l—ﬂo) _ \/(0.05)(0.95) 002
n 100

p
p—m, 0.10-0.05
o, 0.022

=+2.27

zZ=

The calculated value of z of +2.27 is greater than the critical value of
+1.645 for this upper-tail test. Therefore with 10 parts out of 100 found
to be defective, the hypothesis that the proportion defective in the popu-
lation is at or below 0.05 is rejected, using the 5 percent level of signifi-
cance in the test.
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General Purpose of the Chi-Square Test

The procedures that are described in this chapter all involve the compar-
ison of the observed pattern of the frequencies of observations for sam-
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ple data have been entered into defined data categories, with the expect-
ed pattern of frequencies based on a particular null hypothesis.

Use of the y? (chi-square) probability dis-
tribution with respect to statistical inference
concerning the population variance is de-
scribed in Chapters 9 and 11. The test statistic
presented in the following sections also is dis-
tributed as the chi-square probability model,
and since hypothesis testing is involved, the
basic steps in hypothesis testing described in
Chapter 10 apply in this chapter as well.

This chapter covers the use of the chi-
square test for testing the goodness of fit, test-
ing the independence of two variables, and testing hypotheses concern-
ing proportions. One of the tests of proportions is that of testing the
differences among several population proportions, which is an extension
of testing the difference between two population proportions.

Goodness of Fit Tests

The null hypothesis in a goodness of fit test is a stipulation concerning
the expected pattern of frequencies in a set of categories. The expected
pattern may conform to the assumption of equal likelihood and may
therefore be uniform, or the expected pattern may conform to such pat-
terns as the binomial, Poisson, or normal.

For the null hypothesis to be accepted, the differences between ob-
served and expected frequencies must be attributable to sampling vari-
ability at the designated level of significance. Thus, the chi-square test
statistic is based on the magnitude of this difference for each category in
the frequency distribution. The chi-square value for testing the difference
between obtained and expected patterns of frequencies is:

2
2 :Z(fo—fe)
x £,

By the above formula, note that if the observed frequencies are very
close to the expected frequencies, then the calculated value of the chi-
square statistic will be close to zero. As the observed frequencies become
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increasingly different from the expected frequencies, the value of chi-
square becomes larger. Therefore it follows that the chi-square test in-
volves the use of just the upper tail of the chi-square distribution to de-
termine whether an observed pattern of frequencies is different from an
expected pattern.

The required value of the chi-square test statistic to reject the null hy-
pothesis depends on the level of significance that is specified and the de-
grees of freedom. In goodness of fit tests, the degrees of freedom df are
equal to the number of categories minus the number of parameter esti-
mators based on the sample and minus 1. Where k& = number of categories
of data and m = number of parameter values estimated on the basis of the
sample, the degrees of freedom in a chi-square goodness of fit test are df
=k-m-—1.

When the null hypothesis is that the frequencies are equally distrib-
uted, no parameter estimation is ever involved and m = 0. The subtrac-
tion of 1 is always included, because given a total number of observa-
tions, once observed frequencies have been entered in k£ — 1 categories of
a table of frequencies, the last cell is in fact not free to vary.

Computed values of the chi-square test statistic are based on discrete
counts, whereas the chi-square distribution is a continuous distribution.
When the expected frequencies f, for the cells are not small, this factor is
not important in terms of the extent to which the distribution of the test
statistic is approximated by the chi-square distribution. A frequently used
rule is that the expected frequency f, for each cell, or category, should be
at least 5. Cells that do not meet this criterion should be combined with
adjacent categories, when possible, so that this requirement is satisfied.
The reduced number of categories then becomes the basis for determin-
ing the degrees of freedom df applicable in the test situation.

* Important!

The expected frequencies for all cells of a data
table also can be increased by increasing the over-
all sample size.

The expected frequencies may be based on any hypothesis regarding
the form of the population frequency distribution, if the hypothesis is
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based on the observed historical pattern of frequencies, then, as in the
case of the equally likely hypothesis, no parameter estimation is involved,
anddf=k-m—-1=k-0-1=k-1.

Tests for the Independence
of Two Categorical Variables
(Contingency Table Tests)

In the case of goodness of fit tests there is only one categorical variable,
such as the screen size of TV sets which have been sold, and what is test-
ed is a hypothesis concerning the pattern of frequencies, or the distribu-
tion, of the variable. The observed frequencies can be listed as a single
row, or as a single column, of categories. Tests for independence involve
(at least) two categorical variables, and what is tested is the assumption
that the variables are statistically independent. Independence implies that
knowledge of the category in which an observation is classified with re-
spect to one variable has no affect on the probability of the other variable
being in one of the several categories. When two variables are involved,
the observed frequencies are entered in a two-way classification table, or
contingency table. The dimensions of such tables are defined by r X k, in
which 7 indicates the number of rows and & indicates the number of
columns.

If the null hypothesis of independence is rejected for classified data,
this indicates that the two variables are dependent and that there is a re-
lationship between them.

Given the hypothesis of independence of the two variables, the ex-
pected frequency associated with each cell of a contingency table should
be proportionate to the total observed frequencies included in the column
and in the row in which the cell is located as related to the total sample
size. Where f, is the total frequency in a given row and f, is the total fre-
quency in a given column, a convenient formula for determining the ex-
pected frequency for the cell of the contingency table that is located in
that row and column is:

The general formula for the degrees of freedom associated with a test for
independence is: df = (r — 1)(k—1).
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Testing Hypotheses Concerning Proportions

Testing a Hypothesized Value of the Proportion

Given a hypothesized population proportion and an observed proportion
for a random sample taken from the population, in Chapter 11 we used
the normal probability distribution as an approximation for the binomial
process in order to test the null hypothesis. Mathematically it can be
shown that such a two-sided test is equivalent to a chi-square goodness
of fit test involving one row of frequencies and two categories. Since the
chi-square test involves an analysis of differences between obtained and
expected frequencies regardless of the direction of the differences, there
is no chi-square test procedure that is the equivalent of a one-sided test
concerning the value of a population proportion.

Testing the Difference Between Two Population Proportions

A procedure for testing the null hypothesis that there is no difference be-
tween two proportions based on use of the normal probability distribu-
tion is presented in Chapter 11. Mathematically, it can be shown that such
a two-tail test is equivalent to a chi-square contingency table test in which
the observed frequencies are entered in a 2 X 2 table. Again, there is no
chi-square test equivalent to a one-sided test based on use of the normal
probability distribution.

The sampling procedure used in conjunction with testing the differ-
ence between two proportions is that rwo random samples are collected,
one for each of two (k) categories. This contrasts with use of a 2 X 2 table
for testing the independence of two variables, in which one random sam-
ple is collected for the overall analysis.

Testing the Difference Among Several Population Proportions

The chi-square test can be used to test the differences among several (k)
population proportions by using a 2 X k tabular design for the analysis of
the frequencies. In this case, there is no mathematically equivalent pro-
cedure based on use of the z statistic. The null hypothesis is that the sev-
eral population proportions are all mutually equal (or, that the several dif-
ferent sample proportions could have been obtained by chance from the
same population). The sampling procedure is that several independent
random samples are collected, one for each of the k data categories.
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Solved Problems

Solved Problem 12.1 It is claimed that an equal number of men and
women patronize a retail outlet specializing in the sale of jeans. A ran-
dom sample of 40 customers is observed, with 25 being men and 15 be-
ing women. Test the null hypothesis that the overall number of men and
women customers is equal by applying the chi-square test and using the
5 percent level of significance.

Solution:
H ,: The number of men and women customers is equal.
H | : The number of men and women customers is not equal.

df=k-m-1=2-0-1=1
Critical y? = 3.84 and calculated 2 = 2.50

The calculated test statistic of 2.50 is not greater than the critical value of
3.84. Therefore the null hypothesis cannot be rejected.

Solved Problem 12.2 With reference to Solved Problem 12.1, suppose
it had instead been claimed that twice as many men as compared with
women were store customers.

Solution:
H ,: There are twice as many men as there are women customers.
H : There are not twice as many men as women customers.

df=k-m-1=2-0-1=1
Critical 2 = 3.84 and calculated x> = 0.31

The calculated chi-square statistic of 0.31 clearly does not exceed the crit-
ical value of 3.84. Therefore the null hypothesis cannot be rejected. The
fact that neither of the null hypotheses in these two problems could be re-
jected demonstrates the benefit of the doubt given to the null hypothesis
in each case.

Solved Problem 12.3 For the situation described in Solved Problem
12.1, suppose the same null hypothesis is tested, but that the sample fre-
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quencies in each category are exactly doubled. That is, of 80 randomly
selected customers 50 are men and 30 are women. Test the null hypoth-
esis at the 5 percent level of significance and compare your decision with
the one in Solved Problem 12.1.

Solution:
H ,: The number of men and women customers is equal.
H : The number of men and women customers is not equal.

df=k-m-1=2-0-1=1
Critical y? = 3.84 and calculated 2 = 5.00

The calculated chi-square value of 5.00 is greater than the critical value
of 3.84. Therefore the null hypothesis is rejected at the 5 percent level of
significance. Even though the sample data are proportionally the same as
in Solved Problem 12.1, the decision now is to reject H, instead of ac-
cept H,,. This demonstrates the greater sensitivity of a statistical test as-
sociated with a larger sample size.
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Basic Rationale Associated with Testing the
Differences among Several Population Means

Whereas the chi-square test can be used to test the differences among sev-
eral population proportions, the analysis of variance can be used to test
the differences among several population means. The null hypothesis is
that the several population means are mutually equal. The sampling pro-
cedure used is to collect several independent random samples, one for
each of the data categories (treatment levels).

The assumption underlying the use of the
analysis of variance is that the several sample
means were obtained from normally distrib-
uted populations having the same variance
o2. However, the test procedure has been
found to be relatively unaffected by viola-
tions of the normality assumption when the
populations are unimodal and the sample
sizes are approximately equal. Because the
null hypothesis is that the population means
are equal, the assumption of equal variance
(homogeneity of variance) also implies that for practical purposes the test
is concerned with the hypothesis that the means came from the same pop-
ulation. This is so because any normally distributed population is defined
by the means the variance (or standard deviation) as the two parameters.
All of the computational procedures presented in this chapter are for
fixed-effects models as contrasted to random-effects models.

The basic rationale underlying the analysis of variance was first de-
veloped by the British statistician Ronald A. Fisher, and the F distribu-
tion was named in his honor. The conceptual rationale is as follows:

1. Compute the mean for each sample group and then determine the
standard error of the means s_ based only on the several sample means.
Computationally, this is the standard deviation of these several mean val-
ues.

2. Now, given the formula s; =s/ «/; it follows that s = «/;sf and

that s* = ns%. Therefore, the standard error of the mean computed in Step
1 above can be used to estimate the variance of the (common) population
from which the several samples were obtained. This estimate of the pop-
ulation variance is called the mean square among treatment groups
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(MSTR). Fisher called any variance estimate a mean square because com-
putationally a variance is the mean of the squared deviations from the
group mean.

3. Compute the variance separately for each sample group and with
respect to each group mean. Then pool these variance values by weight-
ing them according to n — 1 for each sample. This weighting procedure
for the variance is an extension of the procedure for combining and
weighting two sample variances. The resulting estimate of the population
variance is called the mean square error (MSE) and is based on within
group differences only. Again, it is called a mean square because it is a
variance estimate. It is due to “error” because the deviations within each
of the sample groups can be due only to random sampling error, and they
cannot be due to any differences among the means of the population
groups.

4. If the null hypothesis that u, =, - - - = u, is true, then it follows
that each of the two mean squares obtained in Steps 2 and 3 above is an
unbiased and independent estimator of the same population variance 2.
However, if the null hypothesis is false, then the expected value of MSTR
is larger than MSE. Essentially, any differences among the population
means will inflate MSTR while having no effect on MSE, which is based
on within group differences only.

5. Based on the observation in Step 4, the F distribution can be used
to test the difference between the two variances. A one-sided test is in-
volved, and the general form of the F test in the analysis of variance is:

If the F ration is in the region of rejection for the specified level of sig-
nificance, then the null hypothesis that the several population means are
mutually equal is rejected.

Although the above steps are useful for describing the conceptual ap-
proach underlying the analysis of variance (ANOVA), the extension of
this procedure for designs that are more complex than the simple com-
parison of k£ sample means is cumbersome. Therefore, in the following
sections of this chapter each design is described in terms of the linear
model that identifies the components influencing the random variable.
Also, a standard analysis of variance table that includes the formulas that
are needed for the calculation of the required mean square values is pre-
sented for each type of experimental design.
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One-Factor Completely Randomized Design
(One-Way ANOVA)

The one-way analysis of variance procedure is concerned with testing the
difference among k sample means when the subjects are assigned ran-
domly to each of the several treatment groups.

The linear equation, or model, that represents the one-factor com-
pletely randomized design is:

Xy=uto t+g,

where u = the overall mean of all k populations, &, =
effect of the treatment in the particular group k from
which the value was sampled, and € = the random
error associated with the process of sampling (€ is the
Greek epsilon).

Table 13.1 is the summary table for the one-factor completely ran-
domized design of the analysis of variance, including all computational
formulas. The symbol system used in this table is somewhat different
from that used in the previous section because of the need to use a sys-
tem which can be extended logically to two-way analysis of variance.
Thus, MSTR becomes the mean square among the A treatment groups
(MSA). Further, note that the definition of symbols in the context of analy-
sis of variance is not necessarily consistent with the use of these symbols
in general statistical analysis. For example, ¢, is concerned with the ef-
fect on a randomly sampled value originating from the treatment group
in which the value is located; it has nothing to do with the concept of o
in general hypothesis testing procedures. Similarly, NV in Table 13.1 des-
ignates the total size of the sample for all treatment groups combined,
rather than a population size. New symbols included in Table 13.1 are T,
which represents the sum (total) of the values in a particular treatment
group, and T, which represents the sum of the sampled values in all
groups combined.

Instead of the form of the null hypothesis described earlier, the gen-
eral form of the null hypothesis in the analysis of variance makes refer-
ence to the relevant component of the linear model. Thus, for the one-
way analysis of variance the null and alternative hypotheses can be stated
as:

Hy:puy =uy,=---=p, orequivalently, Hj:a,=0
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H:notall py = py ==y, H:a, #0.

Two-Way Analysis of Variance
(Two-Way ANOVA)

Two-way analysis of variance is based on two dimensions of classifica-
tions, or treatments. For example, in analyzing the level of achievement
in a training program we could consider both the effect of the method of
instruction and the effect of prior school achievement. Similarly, we
could investigate gasoline mileage according to the weight category of
the car and according to the grade of gasoline. In data tables, the treat-
ments identified in the column headings are typically called the A treat-
ments; those in the row headings are called the B treatments.

Interaction in a two-factor experiment means that the two treatments
are not independent, and that the effect to a particular treatment in one
factor differs according to levels of the other factor.

* Note!

For example, in studying automobile mileage a
higher-octane gasoline may improve mileage for
certain types of cars but not for others.

In order to test for interaction, more than one observation or sampled
measurement (i.e., replication) has to be included in each cell of the two-
way data table.

The Randomized Block Design
(Two-Way ANOVA, One Observation per Cell)

The two-way analysis of variance model in which there is only one ob-
servation per cell is generally referred to as the randomized block design,
because of the principal use for this model. What if we extend the idea of
using paired observations to compare two sample means to the basic one-
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way analysis of variance model and have groups
of k matched individuals assigned randomly to
each treatment level? In analysis of variance, such
matched groups are called blocks, and because the
individuals (or items) are randomly assigned
based on the identified block membership, the de-
sign is referred to as the randomized block design.
In such a design the blocks dimension is not a treatment dimension as
such. The objective of using this design is not for the specific purpose of
testing for a blocks effect. Rather, by being able to assign some of the
variability among subjects to prior achievement, for example, the MSE
can be reduced and the resulting test of the A treatments effects is more
sensitive.

The linear model for the two-way analysis of variance model with
one observation per cell (with no replication) is:

where ¢ = the overall mean regardless of any treatment, ,B/. = effect of the
treatment ;j or block j in the B dimension of classification, a, = effect of
the treatment £ in the A dimension of classification, and £, = the random
error associated with the process sampling.

Table 13.2 is the summary table for the two-way analysis of variance
without replication. As compared with Table 13.1 for the one-way analy-
sis of variance, the only new symbol in this table is T?, which indicates
that the total of each j group (for the B treatments, or blocks) is squared.

Two-Factor Completely Randomized Design
(Two-Way ANOVA, n Observations Per Cell)

When replication is included within a two-way design, the interaction be-
tween the two factors can be tested. Thus, when such a design is used,
three different null hypotheses can be tested by the analysis of variance:
that there are no column effects (the column means are not significantly
different), that there are no row effects (the row means are not signifi-
cantly different), and that there is no interaction between the two facts
(the two factors are independent).

A significant interaction effect indicates that the effect of treatments



120 BUSINESS STATISTICS

paziwopue) [[99 J9d UoneAIISqO U0 YIM IJUBLIBA JO SISA[RUE ABM-0M) J10] d[qe) Arewrung 7'¢T d[qeL

(usrsap yooyq

N 1= ¥=/
——x X X =1ss 1-N (L) reroL
th X r
a->00-r)
ass ASIW | gSS —VSS — LSS=4aSS | (1 =1 —r) () 10115 Burduweg
ASW I—r N =i o B (g) syo01q 1o ‘sdnoig
asw 7 gss W I ot M p —ass b= yuowjeon) Fuowy
ASW T—Y N u ﬁwu_ _ B (v) sdnoig
VSN ¥sS VS L ALy =VsS =3 Juouneax) Suowy
oner (sm) (s8) (Jp) wopaay UOTBLIBA
arenbs uea]y sarenbg jo wng Jo sa2133(] Jo a21nog




CHAPTER 13: Analysis of Variance 121

for one factor varies according to levels of the other factor. In such a case,
the existence of column and/or row effects may not be meaningful from
the standpoint of the application of research results.

The linear model for the two-way analysis of variance when repli-
cation is included is:

Xijk =,u+ﬂj +Olk +ljk +gijk

where p = the overall mean regardless of any treatment, . = effect of the
treatment j in the B (row) dimension, ¢, = effect of the treatment & in the
A (column) dimension, L= interaction between treatment j (of factor B)
and treatment k (of factor A) (where 1 is the Greek iota), and €= the ran-
dom error associated with the process of sampling.

Table 13.3 is the summary table for the two-way analysis of variance
with replication. The formulas included in this table are based on the as-
sumption that there are an equal number of observations in all of the cells.

Solved Problem

Solved Problem 13.1 Fifteen trainees in a technical program are ran-
domly assigned to three different types of instructional approaches, all of
which are concerned with developing a specified level of skill in com-
puter-assisted design. The achievement test scores at the conclusion of
the instructional unit are reported in Table 13.4, along with the mean per-
formance score associated with each instructional approach. Use the
analysis of variance procedure to test the null hypothesis that the three
sample means were obtained from the sample population, using the 5 per-
cent level of significance for the test.

Solution:

1. The overall mean of all 15 test scores is 80. The standard error of
the mean, based on the three sample means as reported, is 5.0.

2. MSTR =125.0.

. MSE =37.3.

4. Since MSTR is larger than MSE, a test of the null hypothesis is
appropriate.

W
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Instructional Total Mean test
method Test scores scores scores
A, 86 79 81 70 84 400 80
A, 90 76 88 82 89 425 85
A, ]2 68 73 71 81 375 75

Table 13.4 Achievement test scores of trainees under three methods

of instruction

Critical F (2, 12; = 0.05) = 3.88.

5. F=MSTR/MSE =3.35

Because the calculated F statistic of 3.35 is not greater than the critical F
value of 3.88, the null hypothesis that the mean test scores for the three
instructional methods in the population are all mutually equal cannot be
rejected at the 5 percent level of significance.
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v The Coefficient of Correlation
v Solved Problems

Objectives and Assumptions of Regression
Analysis

The primary objective of regression analysis is to estimate the value of a
random variable (the dependent variable) given that the value of an as-
sociated variable (the independent variable) is known. The dependent
variable is also called the response variable, while the independent vari-
able is also called the predictor variable. The regression equation is the
algebraic formula by which the estimated value of the dependent, or re-
sponse, variable is determined.

The term simple regression analysis indicates that the value of a de-
pendent variable is estimated on the basis of one independent, or predic-
tor, variable. Multiple regression analysis is concerned with estimating
the value of a dependent variable on the basis of two or more indepen-
dent variables.

The Method of Least Squares for Fitting
a Regression Line

The linear equation that represents the simple linear regression model is:
Y.=B,+B,X,+¢

where Y, = value of the dependent variable in
the ith trial, or observation; By= first param-
eter of the regression equation, which indi-
cates the value of ¥ when X = 0; 3, = second
parameter of the regression equation, which
indicates the slope of the regression line; X, =
the specified value of the independent vari-
able in the ith trial, or observation; and g =
random-sampling error in the ith trial, or ob-
servation (¢ is the Greek epsilon)
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The parameters 3, and 3, in the linear regression model are estimat-
ed by the values b, and b, that are based on sample data. Thus the linear
regression equation based on sample data that is used to estimate a sin-
gle (conditional) value of the dependent variable, where the “hat” over
the Y indicates that it is an estimated value, is:

Depending on the mathematical criterion used, a number of differ-
ent linear equations can be developed for a given scatter plot. By the
least-squares criterion the best-fitting regression line (and the best equa-
tion) is that for which the sum of the squared deviations between the es-
timated and actual values of the dependent variable for the sample data
is minimized. The computational formulas by which the values of b, and
b, in the regression equation can be determined for the equation which
satisfies the least-squares criterion are:

_ XY —nXY
T yx? —nx?

Once the regression equation is formulated, then this equation can be
used to estimate the value of the dependent variable given the value of
the independent variable. However, such estimation should be done only
within the range of the values of the independent variable originally sam-
pled, since there is no statistical basis to assume that the regression line
is appropriate outside these limits. Further, it should be determined
whether the relationship expressed by the regression equation is real or
could have occurred in the sample data purely by chance.

Residuals and Residual Plots

For a given value X of the independent variable, the regression line val-
ue Y often is called the fitted value of the dependent variable. The differ-
ence between the observed value ¥ and the fitted value Y in called the
residual for that observation and is denoted by e:
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e=Y-Y.

A residual plot is obtained by plotting the residuals e with respect to
the independent variable X or, alternatively, with respect to the fitted re-
gression line values Y. Such a plot can be used as an alternative to the use
of the scatter plot to investigate whether the assumptions concerning lin-
earity and equality of conditional variances appear to be satisfied. Resid-
ual plots are particularly important in multiple regression analysis.

The set of residuals for the sample data also serve as the basis for cal-
culating the standard error of estimate, as described in the following sec-
tion.

The Standard Error of Estimate

The standard error of estimate is the conditional standard deviation of the
dependent variable Y given a value of the independent variable X. For
population data, the standard error of estimate is represented by the sym-
bol o, .. The deviations formula by which this value is estimated on the
basis of sample data is:

) _\/zaz-ff _\/2e2
rx n—2 n—2

Note that the numerator in the formula is the sum of the squares of
the residuals described in the preceding section. Although the formula
clearly reflects the idea that the standard error of estimate is the standard
deviation with respect to the regression line (that is, it is the standard de-
viation of the vertical “scatter” about the line), computationally the for-
mula requires that every fitted value Y be calculated for the sample data.
The alternative computational formula, which does not require determi-
nation of each fitted value and is therefore generally easier to use is:

Y% —byZY — b ZXY
Syx = _2

As will be seen in the following sections, the standard error of esti-
mate serves as the cornerstone for the various standard errors used in
the hypothesis testing and interval-estimation procedures in regression
analysis.
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Inferences Concerning the Slope

Before a regression equation is used for the purpose of estimation or pre-
diction, we should first determine if a relationship appears to exist be-
tween the two variables in the population, or whether the observed rela-
tionship in the sample could have occurred by chance. In the absence of
any relationship in the population, the slope of the population regression
line would, by definition, be zero: B .= 0. Therefore, the usual null hy-
pothesis tested is H,:B, = 0. The null hypothesis can also be formulated
as a one-tail test, in which case the alternative hypothesis is not simply
that the two variables are related, but that the relationship is of a specif-
ic type (direct or inverse).

A hypothesized value of the slope is tested by computing a ¢ statistic
and using n — 2 degrees of freedom. Two degrees of freedom are lost in
the process of interference because two parameters estimates, bo and bl,
are included in the regression equation. The standard formula is:

b=y

where

_ Sy.x

i VEX? —nX’

However, when the null hypothesis is that the slope is zero, which gen-
erally is the hypothesis, then the first formula is simplified and is stated
as:

by

Sp

=

1

The confidence interval for the population slope B, in which the degrees
of freedom associated with the ¢ are once again n — 2, is constructed as
follows:

by £1sy,
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Confidence Intervals for the Conditional Mean

The point estimate for the conditional mean of the dependent variable,
given a specific value of X, is the regression line value Y. When we use
the regression equation to estimate the conditional mean, the appropriate
symbol for the conditional mean of Y that is estimated is /1y :

fly =by +b X

Based on sample data, the standard error of the conditional mean
varies in value according to the designated value of X and is:

Sz =8 l+ (XX
XX Ty [(2X)2 / n)

Given the point estimate of the conditional mean and the standard er-
ror of the conditional mean, the confidence interval for the conditional
mean, using n — 2 degrees of freedom, is:

Again, it is n — 2 degrees of freedom because the two parameter es-
timates b, and b, are required in the regression equation.

Prediction Intervals for Individual Values
of the Dependent Variable

As contrasted to a confidence interval, which is concerned with estimat-
ing a population parameter, a prediction interval is concerned with esti-
mating an individual value and is therefore a probability interval. It might
seem that a prediction interval could be constructed by using only the
standard error of estimate. However, such an interval would be incom-
plete, because the standard error of estimate does not include the uncer-
tainty associated with the fact that the position of the regression line based
on sample data includes sampling error and generally is not identical to
the population regression line. The complete standard error for a predic-
tion interval is called the standard error of forecast, and it includes the
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uncertainty associated with the position of the regression line value itself.
The basic formula for the standard error of forecast is:

_[2 2
SY(nexty =Sv.x TSy ¢

The computational version of the formula for the standard error of
forecast is:

s =s I+ 1 + (X-X)°
Y (next) Y.X n EXZ _ [(ZX)Z /l’l]

Finally, the prediction interval for an individual value of the depen-
dent variable, using n — 2 degrees of freedom, is:

Y+ tSY(next)

The Coefficient of Determination

Consider that if an individual value of the dependent variable Y were es-
timated without knowledge of the value of any other variable, then the
variance associated with this estimate, and the basis for constructing a
prediction interval, would be the variance oz. Given a value of X, how-
ever, the variance associated with the estimate is reduced and is repre-
sented by o ... If there is a relationship between the two variables, then
o5 Will always be smaller than oz. For a perfect relationship, in which
all values of the dependent variable are equal to the respective fitted re-
gression line values, Gi x =0. Therefore, in the absence of a perfect re-
lationship, the value of o, indicates the uncertainty remaining after con-
sideration of the value of the independent variable. Or, we can say that
the ratio of 62, to o indicates the proportion of variance (uncertainty)
in the dependent variable that remains unexplained after a specific value
of the independent variable has been given:

2 . . .. .
oy x _ unexplained variance remaining in Y

oy total variance in Y

Given the proportion of unexplained variance, a useful measure of
relationship is the coefficient of determination minus the complement of
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the above ratio, indicating the proportion of variance in the dependent
variable that is statistically explained by the regression equation (i.e., by
knowledge of the associated independent variable X). For population data
the coefficient of determination is represented by the Greek p? (rho
squared) and is determined by:

2

pl=1- o Y.2X
Oy

proportion of explained variance = 1 — (proportion of unexplained
variance)

For sample data, the estimated value of the coefficient of determina-

tion can be obtained by the corresponding formula:
2
s
21— Y.2X
Sy

For computational purposes, the following formula for the sample
coefficient of determination is convenient:

2 _DEY +bIXY —nY
by CI

The Coefficient of Correlation
Although the coefficient of determination 72 is rela-
tively easy to interpret, it does not lend itself to

statistical testing. However, the square root of the

coefficient of determination, which is called the co-

efficient of correlation r, does lend itself to statisti-

cal testing because it can be used to define a test sta-

tistic that is distributed as the ¢ distribution when the

population correlation p equals 0. The value of the

correlation coefficient can range from — 1.00 to +1.00. The arithmetic
sign associated with the correlation coefficient, which is always the same
as the sign associated with B, in the regression equation, indicates the di-
rection of the relationship between X and Y (positive = direct; negative =
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inverse). The coefficient of correlation for population data, with the arith-
metic sign being the same as that for the slope B, in the regression equa-
tion, is:

The coefficient of correlation for sample data, with the arithmetic
sign being the same as that for the sample slope b, is:

r=Ar?

In summary, the sign of the correlation coefficient indicates the di-
rection of the relationship between the X and Y variables, while the ab-
solute value of the coefficient indicates the extent of relationship. The
squared value of the correlation coefficient is the coefficient of determi-
nation and indicates the proportion of the variance in Y explained by
knowledge of X (and vice versa).

The following formula does not require prior determination of the re-
gression values of b, and b,. This formula would be used when the pur-
pose of the analysis is to determine the extent and type of relationship be-
tween two variables, but without an accompanying interest in estimating
Y given X. When this formula is used, the sign of the correlation coeffi-
cient is determined automatically, without the necessity of observing or
calculating the slope of the regression line. The formula is:

. nYy XYy -YX>Y
InE X2 = (T X2 nSY? —(3Y)>

Solved Problems

Solved Problem 14.1 Suppose an analyst takes a random sample of 10
recent truck shipments made by a company and records the distance in
miles and delivery time to the nearest half-day from the time that the ship-
ment was made available for pickup. Construct the scatter plot for the
data in Table 14.1 and consider whether the linear regression analysis ap-
pears appropriate.
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Sampled shipment 1 2 3 4 5 6 7 8 9

10

Distance (X), miles | 825 | 215 | 1,070 | 550 | 480 | 920 | 1,350 | 325 | 670 | 1,215

Delivery time
(Y), days 3.5 1.0 4.0 20 1.0 3.0 4.5 1.5 3.0

5.0

Y, delivery time, days

Table 14.1 Sample observations of trucking distance and delivery time

for 10 randomly selected shipments

Solution: The scatter plot for these data is portrayed in Figure 14-1. The
first reported pair of values in the table is represented by the dot entered
above 825 on the X axis and aligned with 3.5 with respect to the Y axis.
The other nine points in the scatter plot were similarly entered. From the
diagram, it appears that the plotted points generally follow a linear rela-
tionship and the vertical scatter at the line is about the same for the low
values and high values of X. Thus linear regression analysis appears ap-
propriate.

Solved Problem 14.2 Determine the least-squares regression equation
for the data in Solved Problem 14.1, and enter the regression line on the
scatter plot for these data.

I L n 1 A 4 I i

200 400 600 800 1,000 1,200 1,400

X, trucking distance, miles

Figure 14-1
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Solution:
_ X XY -nXY
1= 2 v2
>X —nX
by =Y —bX =0.1068=0.11

A

Y = by +b,X =0.11+0.0036X

=0.0035851=0.0036

Solved Problem 14.3 Using the regression equation developed in
Solved Problem 14.2, estimate the delivery time from the time that the
shipment is available for pickup for a shipment of 1,000 miles. Could this
regression equation be used to estimate delivery time for a shipment of
2,500 miles?

Solution:

Y =0.11+0.0036X =3.71 days

It is not appropriate to use the above equation for a trip of 2,500 miles be-
cause the sample data for this estimated linear regression equation in-
cluded trips up to 1,350 miles distance only.
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Objectives and Assumptions of Multiple
Regression Analysis

Multiple regression analysis is an extension of simple regression analy-
sis to applications involving the use of two or more independent variables
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(predictors) to estimate the value of the dependent variable (response
variable). In the case of two independent variables, denoted by X . and X,
the linear algebraic model is:

Y, =B+ 5 Xy + 5. X5 €

The definitions of the above terms are equivalent to the definitions
for simple regression analysis, except that more than one independent
variable is involved in the present case. Based on the sample data, the lin-
ear regression equation for the case of two independent variables is:

The multiple regression equation identifies the best-fitting line based
on the method of least squares. In the case of multiple regression analy-
sis, the best-fitting line is a line through n-dimensional space. The as-
sumptions of multiple linear regression analysis are similar to those of
the simple case involving only one independent variable. For point esti-
mation, the principal assumptions are:

1. The dependent variable is a random variable.

2. The relationship between the several independent variables and
the one dependent variable is linear.

3. The variances of the conditional distributions of the dependent
variable, given various combinations of values of the independent
variables, are all equal.

4. The conditional distributions of the dependent variable are nor-
mally distributed.

5. The observed values of the dependent variable are independent of
each other.

Violation of assumption 5 is called autocorrelation.

Additional Concepts in Multiple Regression
Analysis

Constant
Although the b, and the several b, values are all estimates of param-
eters in the regression equation, in most computer output the term con-
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stant refers to the value of the b, intercept. In multiple regression analy-
sis, this is the regression equation value of the dependent variable Y giv-
en that all of the independent variables are equal to zero.

Partial regression coefficient

Each of the b, regression coefficients is in fact
a partial regression coefficient. A partial regression
coefficient is the conditional coefficient given that
one or more other independent variables (and their
coefficients) are also included in the regression
equation. Conceptually, a partial regression coef-
ficient represents the slope of the regression line between the independent
variable of interest and the dependent variable given that the other inde-
pendent variables are included in the model and are thereby statistically
“held constant.” The symbol b,,, , is the partial regression coefficient for
the first independent variable given that a second independent variable is
also included in the regression equation. For simplicity, when the entire
regression equation is presented, this coefficient usually is designated by
b,.
Use of the F Test

The analysis of variance is used in regression analysis to test for the
significance of the overall model, as contrasted to considering the signif-
icance of the individual independent variables by use of ¢ tests, below.

Use of the ¢ Tests

The ¢ tests are used to determine if the partial regression coefficient
for each independent variable represents a significant contribution to the
overall model.

Confidence interval for the conditional mean

Where the standard error of the conditional mean in the case of two
independent variables is designated by s ,,, the formula for the confi-
dence interval is:

Uy £ 17 15
Prediction intervals

The prediction interval for estimating the value of an individual ob-
servation of the dependent variable, given the values of the several inde-
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pendent variables, is similar to the prediction interval in simple regres-
sion analysis. The general formula for the prediction interval is:

Y+ tSY(next)

Stepwise regression analysis

In forward stepwise regression analysis, one independent variable is
added to the model in each step of selecting such variables for inclusion
in the final model. In backward stepwise regression analysis, we begin
with all the variables under consideration being included in the model,
and then (possibly) we remove one variable in each step. These are two
of several available approaches to choosing the “best” set of independent
variables for the model.

The Use of Indicator (Dummy) Variables

Although the linear regression model is based upon the
independent variables being on a quantitative mea-
surement scale, it is possible to include a qualitative
variable in a multiple regression model. Examples of
such variables are the sex of an employee in a study of
salary levels and the location codes in a real estate ap-
praisal model.

The indicator variable utilizes a binary 0,1 code. Where k designates
the number of categories that exist for the qualitative variable, k — 1 in-
dicator variables are required to code the qualitative variable. Thus, the
sex of an employee can be coded by one indicator variable, because k =
2 in this case. The code system then can be 0 = female and 1 = male. For
a real estate appraisal model in which there are three types of locations,
labeled A, B, C, k = 3 and therefore 3 — 1 = 2 indicator variables are re-
quired. The difficulty associated with having a qualitative variable that
has more than two categories is that more than one indicator is required
to represent the variable in the regression equation.

Analysis of Variance in Linear Regression
Analysis

An F test is used to test for the significance of the overall model. That is,
itis used to test the null hypothesis that there is no relationship in the pop-
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ulation between the independent variables taken as a group and the one
dependent variable. Specifically, the null hypothesis states that al/ of the
net regression coefficients in the regression equation for the population are
equal to zero. Therefore, for the case of two independent variables, or pre-
dictors, the null hypothesis with respect to the F testis H,, : B, =B, =0.

If there is only one independent variable in the regression model,
then the F test is equivalent to a two-tail  test directed at the slope b,.
Therefore use of the F test is not required in simple regression analysis.
For clarity, however, we focus on the simple regression model to explain
the rationale of using the analysis of variance.

Consider the scatter plot in Figure 15-1. If there is no regression ef-
fect in the population, then the Y line differs from the ¥ line purely y
chance. It follows that the variance estimate based on the differences,
called mean square regression (MSR), would be different only by chance
from the variance estimated based on the residuals, called mean square
error (MSE). On the other hand, if there is a regression effect, then the
mean square regression is inflated in value as compared with the mean
square error. Table 15.1 presents the standard format for the analysis of
variance table that is used to test for the significance of an overall re-
gression effect. The degrees of freedom k associated with MSR in the
table are the number of independent variables in the multiple regression
equation. As indicated in the table, the test statistic is:

F =MSR/IMSE

<D

. -——- (Y-Y)

Figure 15-1
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Degrees of Sum of squares
Source of variation freedom (df) (5S) Mean square (MS) F ratio
SSR MSR
R i R k SSR MSR =—— F=—-—
egression (R) P MSE
. SSE
Sampling error (E) n—k-—1 SSE MSE = P
n—k—
Total (T) n—1 SST

Table 15.1 Analysis of variance table for testing the significance of
the regression effect

Objectives and Assumptions of Multiple
Correlation Analysis

Multiple correlation analysis is an extension of simple correlation analy-
sis to situations involving two or more independent variables and their
degree of association with the dependent variable. As is the case for mul-
tiple regression analysis, the dependent variable is designated Y while the
several independent variables are designated sequentially beginning with
X,

The coefficient of multiple correlation, which is designated by the
uppercase R, , for the case of two independent variables, is indicative
of the extent of relationship between two independent variables taken as
a group and the dependent variable. It is possible that one of the inde-
pendent variables alone could have a positive relationship with the de-
pendent variable while the other independent variable could have a neg-
ative relationship with the dependent variable.

Remember

All Rvalues are reported as absolute
values.

The coefficient of multiple determination is designated by R}2/.12 for

the case of two independent variables. Similar to the interpretation of the
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simple coefficient of determination, this coefficient indicates the propor-
tion of variance in the dependent variable that is statistically accounted
for by knowledge of the two (or more) independent variables. The sam-
ple coefficient of multiple determination for the case of two independent
variables is:

2

2 Sy.12
Rmz—l_—z

Sy

The assumptions of multiple correlation analysis are similar to those
of the simple case involving only one independent variable. These are:

All variables involved in the analysis are random variables.

The relationships are all linear.

The conditional variances are all equal.

For each variable, observed values are independent of other ob-
served values for that variable.

5. The conditional distributions are all normal.

el s

These requirements are quite stringent and are seldom completely
satisfied in real data situations.

Solved Problem

Solved Problem 15.1 Refer to the residual plot in Figure 15-2, which
plots the residuals with respect to the fitted values, and observe whether
the requirements of linearity and equality of conditional variances appear
to be satisfied.

Solution: The assumption of linearity appears to be satisfied. With re-
spect to the equality of the conditional variances, however, it appears that
the conditional variances may be somewhat greater at large values of the
estimated salary, beyond $60,000 on the horizontal scale of the residual
plot.
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Figure 15-2 Residual plot for the fitted values.
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The Classical Time Series Model

A time series is a set of observed values, such as production or sales data,
for a sequentially ordered series of time periods. A time series is portrayed
graphically by a line graph, with the time periods represented on the hor-
izontal axis and time series values represented on the vertical axis.

Time series analysis is the procedure by which
the time-related factors that influence the values
observed in the time series are identified and seg-
regated. Once identified, they can be used to aid in
the interpretation of historical time series values
and to forecast future time series values. The clas-
sical approach to time series analysis identifies four
such influences, or components:

1. Trend (T ): The general long-term movement in the time series val-
ues over an extended period of years.

2. Cyclical fluctuations (C): Recurring up and down movements
with respect to trend that have a duration of several years.

3. Seasonal variations (S): Up and down movements with respect to
trend that are completed within a year and recur annually.

4. Irregular variations (I): The erratic variations from trend that can-
not be ascribed to the cyclical or seasonal influences.

The model underlying classical time series analysis is based on the
assumption that for any designated period in the time series the value of
the variable is determined by the four components defined above, and,
furthermore, that the components have a multiplicative relationship.
Thus, where Y represents the observed time series value,

Y=TXCxSxI
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The model represented is used as the basis for separating the influences
of the various components that affect time series values.

Trend Analysis

Because trend analysis is concerned with the long-term direction of
movement in the time series, such analysis generally is performed using
annual data. Typically, at least 15 or 20 years of data should be used, so
that cyclical movements involving several years duration are not taken to
be indicative of the overall trend of the time series values.

The method of least squares is the most frequent basis used for iden-
tifying the trend component of the time series by determining the equa-
tion for the best-fitting trend line. Note that statistically speaking, a trend
line is not a regression line, since the dependent variable Y is not a ran-
dom variable, but, rather, a series of historical values. Further, there can
be only one historical value for any given time period and the values as-
sociated with adjoining time periods are likely to be dependent, rather
than independent. Nevertheless, the least-squares method is a convenient
basis for determining the trend component of a time series. When the
long-term increase or decrease appears to follow a linear trend, the equa-
tion for the trend-line values, with X representing the year, is Y. = b, +
b,X. The b, represents the point of intersection of the trend line with the
Y axis, whereas the b, represents the slope of the trend line. Where X is
the year and Y is the observed time-series value, the formulas for deter-
mining the values of b, and b, for the linear trend equation are:

_ XY —nXY

b —
: ZXz—an

In the case of nonlinear trend, two types of trend curves often found
to be useful are the exponential trend curve and the parabolic trend curve.
A typical exponential trend curve is one that reflects a constant rate of
growth during a period of years. An exponential curve is so named be-
cause the independent variable X is the exponent of b, in the general equa-
tion:Y,. = b b, where b, = value of Y. in Year 0 and b, = rate of growth.
Taking the logarithm of both sides of the above formula results in linear
logarithmic trend equation,

log Y, .=log b,+ X logb,
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The advantage of the transformation into logarithms is that the lin-
ear equation for trend analysis can be applied to the logs of the values
when the time series follows an exponential curve. The forecasted log
values for Y. can then be reconverted to the original measurement units
by taking the antilog of the values.

Important /

Many time series for the sales of a particular prod-
uct can be observed to include three stages: an in-
troductory stage of slow growth in sales; a middle
stage of rapid sales increases; and a final stage of
slow growth as market saturation is reached.

Analysis of Cyclical Variations

Annual time series values represent the effects of only the trend and cycli-
cal components, because the seasonal and irregular components are de-
fined as short-run influences. Therefore, for annual data the cyclical com-
ponent can be identified as being the component that would remain in the
data after the influence of the trend component is removed. This removal
is accomplished by dividing each of the observed values by the associat-
ed trend value, as follows:

Y TxC_
Y; T

C

The ratio is multiplied by 100 so that the mean cyclical relative will
be 100. A cyclical relative of 100 would indicate the absence of any cycli-
cal influence on the annual time series value. In order to aid in the inter-
pretation of cyclical relatives, a cycle chart that portrays the cyclical rel-
atives according to year is often prepared.
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Measurement of Seasonal Variations

The influence of the seasonal component on time series values is identi-
fied by determining the seasonal index associated with each month (or
quarter) of the year. The arithmetic mean of all 12 monthly index num-
bers is 100. The identification of positive and negative seasonal influ-
ences is important for production and inventory planning.

The procedure most frequently used to de-
termine seasonal index numbers is the ratio-to-
moving-average method. By this method, the ra-
tio of each monthly value to the moving average
centered at that month is first determined. Be-
cause a moving average based on monthly data
for an entire year would average out the seasonal and irregular fluctua-
tions, but not the longer-term trend and cyclical influences, the ratio of a
monthly value to a moving average can be represented symbolically by:

Y _TXCXSxI

; = Sx1I
Moving average TxC

The second step in the ratio-to-moving-average method is to average
out the irregular component. This is typically done by listing the several
ratios applicable to the same month for the several years, eliminating the
highest and lowest values, and computing the mean of the remaining ra-
tios. The resulting mean is called a modified mean, because of the elimi-
nation of the two extreme values. The final step in the ratio-to-moving-
average method is to adjust the modified mean ratios by a correction
factor so that the sum of the 12 monthly ratios is 1,200.

Applying Seasonal Adjustments

One frequent application of seasonal indexes is that of adjusting observed
time series data by removing the influence of the seasonal component
from the data. Such adjusted data are called seasonally adjusted data, or
deseasonalized data.
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* Note!

Seasonal adjustments are particularly relevant if
we wish to compare data for different months to de-
termine if an increase or decrease relative to sea-
sonal expectations has taken place.

The observed monthly time series values are adjusted for seasonal
influence by dividing each value by the monthly index for that month.
The result is then multiplied by 100 to maintain the decimal position of
the original data. The process of adjusting data for the influence of sea-
sonal variations can be represented by:

Y TxCxSxI
S S

=TxCxlI

Although the resulting values after the application are in the same
measurement units as the original data, they do not represent actual data.
Rather, they are relative values and are meaningful for comparative pur-
poses only.

Forecasting Based on Trend
and Seasonal Factors

A beginning point for long-term forecasting of annual values is provided
by use of the trend-line equation. However, a particularly important con-
sideration in long-term forecasting is the cyclical component of the time
series. There is no standard method by which the cyclical component can
be forecast based on historical time series values alone, but certain eco-
nomic indicators are useful for anticipating cyclical turning points.

For short-term forecasting one possible approach is to deseasonalize
the most-recent observed value and then to multiply this deseasonalized
value by the seasonal index for the forecast period. This approach as-
sumes that the only difference between the two periods will be the dif-
ference that is attributable to the seasonal influence. An alternative ap-
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proach is to use the projected trend value as the basis for the forecast and
then adjust it for the seasonal component. When the equation for the trend
line is based on annual values, one must first “step down” the equation so
that it is expressed in terms of months. A trend equation based on annual
data is modified to obtain projected monthly values as follows:

bo +iX

T=12 " 144

A trend equation based on annual data is modified to obtain project-
ed quarterly values as follows:

=t By
4 16

The basis for the above modifications is not obvious if one overlooks
the fact that trend values are not associated with points in time, but rather,
with periods of time. Because of this consideration, all three elements in
the equation for annual trend have to be stepped down.

Cyclical Forecasting and Business Indicators

Forecasting based on the trend and seasonal components of a time series
is considered only a beginning point in economic forecasting. One rea-
son is the necessity to consider the likely effect of the cyclical component
during the forecast period, while the second is the importance of identi-
fying the specific causative factors which have influenced the time series
variables.

For short-term forecasting, the effect of the cyclical component is of-
ten assumed to be the same as included in recent time series values. How-
ever, for longer periods, or even for short periods during economic in-
stability, the identification of the cyclical turning points for the national
economy is important.
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Remember

The cyclical variations associated
with a particular product may or may
not coincide with the general busi-
ness cycle.

The National Bureau of Economic Research has identified a number
of published time series that historically have been indicators of cyclic
revivals and recessions with respect to the general business cycle. One
group, called leading indicators, has usually reached cyclical turning
points prior to the corresponding change in general economic activity. A
second group, called coincident indicators, are time series that have gen-
erally had turning points coinciding with the general business cycle. The
third group, called lagging indicators, are those time series for which the
peaks and troughs usually lag behind those of the general business cycle.

Forecasting Based on Moving Averages

A moving average is the average of the most recent n data values in a time
series. This procedure can be represented by:

_ X(most recent n values)

MA
n

As each new data value becomes available in a time series, the newest
observation replaces the oldest observation in the set of »n values as the
basis for determining the new average, and this is why it is called a mov-
ing average.

The moving average can be used to forecast the data value for the
next (forthcoming) period in the time series, but not for periods that are
farther in the future. It is an appropriate method of forecasting when there
is no trend, cyclical or seasonal influence on the data, which of course is
an unlikely situation. The procedure serves simply to average out the ir-
regular component in the recent time series data.
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Exponential Smoothing as a Forecasting
Method

Exponential smoothing is a method of forecasting

that is also based on using a moving average, but it is

a weighted moving average rather than one in which

the preceding data values are equally weighted. The

basis for the weights is exponential because the

greatest weight is given to the data value for the pe-

riod immediately preceding the forecast period and the weights decrease
exponentially for the data values of earlier periods. The method present-
ed here is called simple exponential smoothing.

The following algebraic model serves to represent how the expo-
nentially decreasing weights are determined. Specifically, where o is a
smoothing constant discussed below, the most recent value of the time se-
ries is weighted by o, the next most recent value is weighted by o(1 — a),
the next value by a(1 — a)?, and so forth, and all the weighted values are
then summed to determine the forecast:

Y =aY,+a(-a)Y_ +a(l—a)’Y,_, ++a(l-a)Y,_,
where:
Y,,, = forecast for the next period

o = smoothing constant (0 <0 < 1)

Y, = actual value for the most recent period
= actual value for the period preceding the most recent period
= actual value for k periods preceding the most recent period

Y,y
Y

Although the above formula serves to present the rationale of expo-
nential smoothing, its use is quite cumbersome. A simplified procedure
that requires an initial “seed” forecast but does not require the determi-
nation of weights is generally used instead. The formula for determining
the forecast by the simplified method of exponential smoothing is:

Y, =Y, +a(Y,-Y,)

where:
Y, , = forecast for the next period
Y, = forecast for the most recent period
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o, = smoothing constant (0 <a <1)
Y, = actual value for the most recent period

Because the most recent time series value must be available to de-
termine a forecast for the following period, simple exponential smooth-
ing can be used only to forecast the value for the next period in the time
series, not for several periods into the future. The closer the value of the
smoothing constant is set to 1.0, the more heavily is the forecast weight-
ed by the most recent results.

Other Forecasting Methods That Incorporate
Smoothing

Whereas the moving average is appropriate as the basis for forecasting
only when the irregular influence causes the time series values to vary,
simple exponential smoothing is most appropriate only when the cycli-
cal and irregular influences comprise the main effects on the observed
values. In both methods, a forecast can be obtained only for the next pe-
riod in the time series, and not for periods farther into the future. Other
more complex methods of smoothing incorporate more influences and
permit forecasting for several periods into the future. These methods are
briefly described below. Full explanations and descriptions of these meth-
ods are included in specialized textbooks in forecasting.

Linear exponential smoothing utilizes a
linear trend equation based on the time series
data. However, unlike the simple trend equa-
tion presented earlier in this book, the values
in the series are exponentially weighted
based on the use of a smoothing constant. As
in simple exponential smoothing, the con-
stant can vary from O to 1.0.

Holt’s exponential smoothing utilizes a
linear trend equation based on using two
smoothing constants: one to estimate the current level of the time series
values and the other to estimate the slope.

Winter’s exponential smoothing incorporates seasonal influences in
the forecast. Three smoothing constants are used: one to estimate the cur-
rent level of the time series values, the second to estimate the slope of the
trend line, and the third to estimate the seasonal forecast to be used as a
multiplier.
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Autoregressive integrated moving average (ARIMA) models are a
category of forecasting methods in which previously observed values in
the time series are used as independent variables in regression models.
The most widely used method in this category was developed by Box and
Jenkins, and is generally called the Box-Jenkins method. These methods
make explicit use of the existence of autocorrelation in the time series,
which is the correlation between a variable, lagged one or more periods,
with itself. The Durbin-Watson test serves to detect the existence of au-
tocorrelated residuals (serial correlation) in time series values. A value
of the test statistic close to 2.0 supports the null hypothesis that no auto-
correlation exists in the time series. A value below 1.4 generally is in-
dicative of strong positive serial correlation, while a value greater than
2.6 indicates the existence of strong negative serial correlation.

Solved Problems

Solved Problem 16.1 Table 16.1 presents sales data for an 11-year peri-
od for a software company incorporated in 1990. Included also are work-
table calculations needed to determine the equation for the trend line. De-

Coded year Sales, in
Year (X) millions (Y) XY X2
1990 0 $02 0 0
1991 1 04 04 1
1992 2 0.5 1.0 4
1993 3 0.9 27 9
1994 4 1.1 44 16
1995 5 1.5 7.5 25
1996 6 1.3 7.8 36
1997 7 1.1 7.7 49
1998 8 1.7 13.6 64
1999 9 1.9 171 81
2000 10 23 23.0 100
Total 55 12.9 85.2 385

Table 16.1 Annual sales for a graphics software firm, with
worktable to determine the equation for the trend line
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termine the linear trend equation for these data by the least-square
method, coding 1990 as 0 and carrying all values to two places beyond
the decimal point. Using the equation determine the forecast of sales for
the year 2001.

Solution: Y,.=b,+ b X
X=5.00,Y=1.17,b,=0.19, and b, = 0.22

Y, =0.22 +0.19X (with X = 0 at 1990)
Y,(2001) =0.22 + 0.19(11) = $2.31 (in millions)

This equation can be used as a beginning point for forecasting. The slope
of 0.19 indicates that during the 11-year existence of the company there
has been an average increase in sales of 0.19 million dollars annually.
($190,000)

Solved Problem 16.2 Refer to the annual time series data in Table 16.1.
Using the actual level of sales for 1994 of 1.1 million dollars as the “seed”
forecast for 1995, determine the forecast for each annual sales amount by
the method of simple exponential smoothing. First use a smoothing con-
stant of o = (.80, then use a smoothing constant of a =0.20, and compare
the two sets of forecasts.

Solution: Table 16.2 is the worktable that reports the two sets of fore-
casts.

a =020 a = 0.80
Sales in Forecast Forecast
Year millions Forecast error Forecast error
0 (¥) (%) (Y, - %) (f) (¥.— %)
1995 $1.5 $1.1 $0.4 $1.1 $0.4
1996 1.3 1.2 0.1 1.4 —0.1
1997 1.1 1.2 -0.1 1.3 —0.2
1998 1.7 1.2 0.5 1.1 0.6
1999 1.9 1.3 0.6 1.6 0.3
2000 2.3 14 09 1.8 0.5
2001 1.6 2.2

Table 16.2 Year-by-Year forecasts by the method of exponential smoothing

The forecast errors are generally lower for a = 0.80. Thus, the greater
weight given to the forecast errors leads to better forecasts for these data.
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The Structure of Payoff Tables

From the standpoint of statistical decision theory, a decision situation un-
der conditions of uncertainty can be represented by certain common in-
gredients that are included in the structure of the payoff table for the sit-
uation. Essentially, a payoff table identifies the conditional gain (or loss)
associated with every possible combination of decision acts and events;
it also typically indicates the probability of occurrence for each of the mu-
tually exclusive events.

In Table 17.1, the acts are the alternative courses of action, or strate-
gies, that are available to the decision maker. As the result of the analy-
sis, one of these acts is chosen as being the best act. The basis for this
choice is the subject matter of this chapter. As a minimum, there must be
at least two possible acts available, so that the opportunity for choice in
fact exists.

Acts
Events Probability A, A, A, "
El Pl Xll X12 X13 Xln
E2 P2 X21 X22 X23 XZn
E3 P3 X31 X32 X33 X3n
Em Pm Xml XmZ Xm3 an

Table 17.1 General structure of a payoff table

The events identify the occurrences that are outside of the decision
maker’s control and that determine the level of success for a given act.
These events are often called “states of nature,” ““states,” or “outcomes.”
We are concerned only with discrete events in this chapter.

The probability of each event is included as part of the general for-
mat of a decision table when such probability values are in fact available.
However, one characteristic of decision analysis is that such probabilities
should always be available since they can be based on either objective
data or be determined subjectively on the basis of judgment.
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*Note!

Because the events in the payoff table are mutual-
ly exclusive and exhaustive, the sum of the proba-
bility values should be 1.0.

Finally, the cell entries are the conditional values, or conditional eco-
nomic consequences. These values are usually called payoffs in the liter-
ature, and they are conditional in the sense that the economic result that
is experienced depends on the decision act that is chosen and the event
that occurs.

Decision Making Based upon Probabilities
Alone

In such cases, one decision criterion that might be used is to identify the
event with the maximum probability of occurrence and to choose the de-
cision act corresponding with that event. Another basis for choosing the
best act would be to calculate the expectation of the event and to choose
the act accordingly. However, because neither of these criteria make ref-
erence to the economic consequences associated with the various deci-
sions acts and events, they represent an incomplete basis for choosing the
best decision.

Decision Making Based upon Economic
Consequences Alone

The payoff matrix that is used in conjunction with decision making based
only upon economic consequences is similar to Table 17.1, except for
the absence of the probability distribution associated with the possible
events. Three criteria that have been described and used in conjunction
with such a decision matrix are the maximin, maximax, and minimax re-
gret criteria.

The maximin criterion is the standard by which the best act is the one
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for which the minimum value is larger than the
minimum for any other decision act. Use of
this criterion leads to a highly conservative de-
cision strategy, in that the decision maker is
particularly concerned about the “worst that
can happen” with respect to each act. Compu-
tationally, the minimum value in each column
of the payoff table is determined, and the best
act is the one for which the resulting value is
largest.

The maximax criterion is the standard by which the best act is the
one for which the maximum value is larger than the maximum for any
other decision act. This criterion is philosophically the opposite of the
maximin criterion, since the decision maker is particularly oriented to-
ward the “best that can happen” with respect to each act. Computation-
ally, the maximum value in each column of the payoff table is determined,
and the best act is the one for which the resulting value is largest.

Analysis by the minimax regret criterion is based on so-called regrets
rather than on conditional values as such. A regret, or conditional oppor-
tunity loss, for each act is the difference between the economic outcome
for the act and the economic outcome of the best act given that a partic-
ular event has occurred. Thus, the best or most desirable regret value is
“0,” which indicates that the act perfectly matched with the given event.
Also, note that even when there is an economic gain associated with a
particular act and a given event, there could also be an opportunity loss,
because some other act could result in a higher payoff with the given
event.

Decision Making Based upon Both
Probabilities and Economic Consequences:
The Expected Payoff Criterion

The methods presented in this section utilize all the information con-
tained in the basic payoff table. Thus, we consider both the probabilities
associated with the possible events and the economic consequences for
all combinations of the several acts and several events.

The expected payoff (EP) criterion is the standard by which the best
act is the one for which the expected economic outcome is the highest, as
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a long-run average. Note that in the present case we are concerned about
the long-run average economic result, and not simply the long-run aver-
age event value (demand level) discussed earlier.

You Need to Know /

Computationally, the expected payoff for each act
is determined by multiplying the conditional payoff
for each event/act combination by the probability
of the event and summing these products for each
act.

The best act identified by the expected payoff criterion can also be
determined by identifying the act with the minimum expected opportu-
nity loss (EOL) or expected regret. This is so because the act with the
largest expected gain logically would have the smallest expected regret.

Expected Utility as the Decision Criterion

The expected payoff criterion is typically used in conjunction with both
payoff table analysis and decision tree analysis. However, when the de-
cision maker perceives one or more of the economic consequences as be-
ing unusually large or small, the expected payoff criterion does not nec-
essarily provide the basis for identifying the “best” decision. This is
particularly likely for unique, rather than repetitive, situations.

Utility is a measure of value that expresses the true relative value of
various outcomes, including economic consequences, for a decision mak-
er. Any given utility scale can begin at an arbitrary minimum value and
have an arbitrarily assigned maximum value. However, it is convenient
to have utility values begin at a minimum of 0 and extend to a maximum
of 1.00, and this is the scale most frequently used. With such a scale, an
outcome with a utility of 0.60 is understood to be twice as desirable as
one with a utility of 0.30.

Using a reference contract, you can determine an individual’s utili-
ty values for different monetary values. By this approach, the individual



160 BUSINESS STATISTICS

is asked to designate an amount certain that would be accepted, or paid,
as being equivalent to each of a series of uncertain situations involving
risk. The first risk situation portrayed always includes the two extreme
limits of the range of monetary values of interest.

Solved Problems

Solved Problem 17.1 Based on a new technological approach, a manu-
facturer has developed a color TV set with a 45-in. picture tube. The own-
er of a small retail store estimates that at the selling price of $2,800 the
probability values associated with selling 2, 3, 4, or 5 sets during the three
months of concern are 0.30, 0.40, 0.20 and 0.10, respectively. Based only
on these probability values, how many sets should the retailer order for
stock, assuming no reorders are possible during the period?

Solution: Based on the criterion of maximum probability, three sets
should be ordered, since the probability 0.40 associated with three sets
being sold is higher than the probability of any other event. On the other
hand, the expectation of the demand level is 3.1. Based on this expecta-
tion of the event, the act that comes closest to corresponding with it is
also that of ordering three sets.

Order quantity

Market demand A2 A, 3 Ay 4 Ay: S
E;:2 $400 $100 —$200 —$ 500
E;:3 400 600 300 0
E;: 4 400 600 800 500
E,;:5 400 600 800 1,000

7
Minimum $400 $100 —$200 —-§ 500
L
Maximum $400 $600 $800 $1.000

Table 17.2 Number of TV sets to be ordered according to the
maximin and maximax criteria
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Solved Problem 17.2 For the inventory decision situation in Solved
Problem 17.1, the profit margin for each set sold is $200. If any sets are
not sold during the three months, the total loss per set to the retailer will
be $300. Based on these economic consequences alone, and ignoring the
probability values identified in Solved Problem 17.1, determine the best
decision act from the standpoint of the maximin and the maximax crite-
ria.

Solution: With reference to Table 17.2, for the maximin criterion the best
act is A;: Order two sets. For the maximax criterion, the best act is A ;:
Order five sets.
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Total Quality Management

Total Quality Management (TQM) is an approach to management in
which the quality of the organization’s output is given first and foremost
attention. The output can be in the form either of a product or service.
Further, the output may be one that is delivered to external customers, or
it may be internal output to other units of the organization. How is qual-
ity determined? It is based on the judgment
of the customer. Thus, customer satisfaction
is the ultimate objective of TQM.

The TQM approach not only sets out to
achieve high quality, but incorporates the
philosophy by which this objective can be
achieved. Traditional methods of quality as-
surance focused on finding and correcting
product defects. The result was the use of a
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hierarchical command structure and an ever-increasing number of in-
spection steps. In an inspection-oriented manufacturing plant, half of the
workers can be involved in finding and reworking rejects. The TQM phi-
losophy is that quality should be designed into the product or service, and
that sampling-based statistical quality control should be used, rather than
attempting to inspect every unit of output. Further, quality should be mon-
itored by those who are responsible for the output, rather than by staff
personnel who represent higher management echelons. This approach re-
sults in elimination of traditional inspectors. Instead, employee teams
have both the authority and responsibility for the quality of their output
and its improvement. Thus, employee participation in setting unit goals
and devising the strategies by which they are to be achieved is critical to
the success of TQM.

* Note!

An example of an external product output is the
production of video recorders. An example of an in-
ternal product output is the production of the gear
department being sent to the transmission assem-
bly department of a vehicle plant.

Statistical Quality Control

Although there are several different ingredients that constitute TQM, the
statistical contribution has its roots in statistical quality control. Sampling
techniques for quality inspection date back to the 1930s. These include
the development of statistically-based sampling plans as an alternative to
100 percent inspection and the associated use of control charts. Howev-
er it was not until the 1970s, when U.S. industry began to react serious-
ly to the high quality of products imported from Japan, that the applica-
tion of statistical quality control became widespread. The continuing
trade imbalance with Japan became a national issue during the 1980s and
1990s, and thus spurred further interest in quality improvement
Ironically, the high quality of Japanese products was achieved large-
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ly because they adopted suggestions of U.S. consultants in the restruc-
turing of their manufacturing processes after World War II. Preeminent
among these consultants was the statistician W. Edwards Deming, after
whom the Deming Award for Quality was named in Japan. Deming de-
veloped a philosophy of quality management that was the precursor of
what is now called Total Quality Management, and which he summarized
in his “14 Points.”

1. Create consistency of purpose for improvement of products
and services. That purpose should be quality, not short-term profits.
2. Adopt the new philosophy. Reject the focus on the inspec-
tion-rejection-rework viewpoint in favor of a preventive approach.
3. Cease dependence on mass inspection to achieve quality. Im-
prove product design and institute sampling-based process control.
4. End the practice of awarding business on the basis of price tag
alone. Consider quality and the development of supplier loyalty.

5. Improve constantly and forever the system of production
and service.

6. Institute training.

7. Institute leadership. Autocratic management is not true lead-
ership.

8. Drive out fear. People do their best work if they feel secure.

9. Break down barriers between departments. Different areas
should not have conflicting goals.

10. Eliminate slogans, exhortations, and numerical targets for
the work force. Simply telling people to improve does not work.

11. Eliminate numerical quotas. Such quotas do not take quality
into consideration, and in centralized economies such quotas have of-
ten been achieved at the expense of other products or services.

12. Remove barriers to pride of workmanship. These include
poor supervision, poor product design, defective materials, and de-
fective machines.

13. Institute a vigorous program of education and self-
improvement for everyone in the organization. This includes the
need to know modern methods of statistical process control.

14. Take action to accomplish the transformation. This re-
quires the leadership of top management to establish the new envi-
ronment.

Table 18.1 Deming’s 14 Points



CHAPTER 18: Statistical Process Control 165
Types of Variation in Processes

A process is a sequence of operations by which such inputs as labor, ma-
terials, and methods are transformed into outputs, in the form of products
or services. Earlier in the chapter we differentiated internal and external
outputs as well as product and service outputs. In any process, some vari-
ation in the quality measure from product to product or from service to
service is unavoidable.

Statistical process control refers to the application of the methods of
statistical quality control to the monitoring of processes (and not just to
the inspection of the final outputs of the processes). The purpose is to con-
trol the quality of product or service outputs from a process by maintain-
ing control of the process. When a process is described as being “in con-
trol,” it means that the amount of variation in the output is relatively
constant and within established limits that are deemed acceptable. There
are two kinds of causes of variation in a process. Common causes of vari-
ation to be expected. Assignable causes, or special causes, of variation
due to unusual factors that are not part of the process design and not or-
dinarily part of the process.

A stable process is one in which only common
causes of variation affect the output quality. Such a
process can also be described as being in a state of
statistical control. An unstable process is one in
which both assignable causes and common causes
affect the output quality. Such a process can also be
described as being out of control, particularly when
the assignable cause is controllable.

The way we set out to improve the quality of output for a process de-
pends on the source of process variation. For a process that is stable, im-
provement can take place only by improving the design of the process. A
pervasive error in process management is tampering, which is to take ac-
tions that presume that a process is not in control, when in fact it is sta-
ble. Such actions only increase variability, and are analogous to the over-
correcting that new drivers do in learning to steer a car. For a process that
is unstable, improvement can be achieved by identifying and correcting
the assignable causes.
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Control Charts

A control chart is a time series plot with levels of output quality on the
vertical axis and a sequence of time periods on the horizontal axis. For
statistical process control the measurements that are graphed are sample
data collected by the method of rational subgroups as described in the
section on Other Sampling Methods in Chapter 1. The chart includes low-
er and upper control limits that identify the range of variation that can be
ascribed to common causes. The standard practice is to place the control
limits at three standard error units above and below the target quality lev-
el; this is called the 3-sigma rule. Two types of control charts that are used
to monitor the level of process quality are control charts for the mean and
for the proportion. Two types of control charts that are used to monitor
process variability are control charts for the range and for the standard
deviation.

Solved Problems

Solved Problem 18.1 From the perspective of TQM, who ultimately de-
termines the quality of a product or service?

Solution: The customer of that product or service.

Solved Problem 18.2 Who has the responsibility for quality control in
a traditional manufacturing plant, as contrasted to a plant that follows the
TQM philosophy?

Solution: By the traditional approach, inspectors are employees of a
quality control staff that, in effect, represents upper management control
of operations. In contrast, TQM places full authority and responsibility
for quality on the employee groups and their supervisors who produce the
output.

Solved Problem 18.3 Differentiate a stable process from an unstable
process.

Solution: A stable process is one that exhibits only common cause vari-
ation. An unstable process exhibits variation due to both assignable and
common causes.
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Solved Problem 18.4 Describe how the output of a stable process can
be improved. What actions do not improve a stable process, but rather,
make the output more variable?

Solution: A stable process can be improved only by changing the design
of the process. Attempts to make adjustments to a stable process, which
is called tampering, results in more variation in the quality of the output.

Solved Problem 18.5 What is the purpose of maintaining control charts?

Solution: Control charts are used to detect the occurrence of assignable
causes affecting the quality of process output.
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Appendix B

Proportions of Area for the f Distribution

Areas reported

below:*
I
|
|
|
: Proportion of
: area (one tail)
|
i
1

—~ 00 H t <+ oo

af 010 005 0025 001 0.005 | 4f 010 0.05 0.025 0.01 0.005
1 3.078 6314 12706 31.821 63.657 | 18 1330 1.734 2101 2552 2878
2 1886 2920 4303 6965 9925, 19 1328 1.729 2093 2539 2.861
3 1.638 2353 3182 4541 5841 20 1.325 1725 2086 2528 2.845
4 1533 2132 2776 3747 4604 | 21 1323 1.721 2080 2518 2.831
5 1476 2015 2571 3365 4.032| 22 1321 1717 2074 2508 2819
6 1440 1943 2447 3143 3707 23 1319 1714 2069 2500 2807
7 1415 1895 2365 2998 3499 24 1318 1711 2064 2492 2797
8§ 1397 1860 2306 2896 2355 | 25 1316 1708 2.060 2485 2.787
9 1383 1.833 2262 2821 3250

10 1372 1.812 2228 2764 3169 | 26 1315 1.706 2056 2479 2779

27 1314 1703 2052 2473 2771
11 1363 1796 2201 2718 3106 | 28 1313 1701 2.048 2467 2.763
12 135 1.782 2179 2681 3.055| 29 1311 1.699 2045 2462 2756
13 1350 177t 2160 2650 3.012| 30 1310 1.697 2.042 2457 2750
14 1345 1761 2145 2624 2977
15 1341 1753 2131 2602 2947 40 1303 1.684 2.021 2423 2704
60 1296 1.671 2000 2390 2.660
16 1337 1746 2120 2583 2921 | 120 1289 1.658 1980 2358 2617
17 1333 1.740 2110 2567 2898 | oo 1.282 1.645 1960 2326 2.576

* Example: For the shaded area to represent 0.05 of the total area of 1.0, value of t with 10 degrees of
freedom is 1.812.
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Appendix C

Proportions of Area for
the 32 Distribution

Areas reported below:*

2 2

4 X
Fordf = 1,2 Fordf > 3

Proportion of area

df I 0500 | 0.100 | 0.050 | 0.025 | 0.010 { 0.005
1} 0455 271 3.84 5.02 6.63 7.88
21 1386 4.61 5.99 7.38 921§ 10.60
31 2366 6.25 7.81 935 1134 1284
4 3.357 7.78 949 | 11.14| 1328 14.86
51 4.251 924 1107 | 1283 | 1509 | 16.75
6] 535 1064 | 1259 | 1445 | 1681 | 18.55
71 6.35 1202 1407 | 1601 | 1848 | 20.28
8{ 7.34 1336 | 1551 | 17.53 | 2009 | 2196
91 834 1468 | 1692 | 1902 | 2167 | 23.59

10] 9.34 1599 1 1831 | 2048 | 2321 | 2519

11} 1034 1728 | 19.68 | 2192 | 2473 | 26.76
12 ] 11.34 1855 | 21.03 | 2334 | 2622 | 2830
13 ] 1234 1981 | 2236 | 2474 2769 29.82
14 ] 1334 21.06 | 2368 | 2612 | 29.14 3132
151 1434 2231 | 2500 | 2749 | 30.58 | 32.80

16 | 1534 2354 | 2630 | 2885 | 3200 34.27
171 16.34 2477 | 2759 | 30.19 ) 3341 3572
181 17.34 2599 | 2887 31.53| 3481} 3716
19 ] 18.34 2720 | 30.14 | 3285 36.19| 38.58
20| 19.34 2841 | 31.41| 3417 3757} 40.00

211 20.34 29.62 | 3267 3548 3893 | 4140
221 21.34 30.81 | 3392 3678 | 4029 4280
231 22.34 3201 3517 38.08 | 41.64| 44.18
24 1 23.34 3320 | 3642 39.36 | 4298 | 4556
25| 24.34 3438 | 37.65] 40.65| 4431 | 46.93

26 | 2534 3556 | 3889 41.92| 4564 | 4829
27 | 26.34 36.74 | 4011 43.19 | 4696 | 49.64
28 | 27.34 3792 4134 | 4446 | 4828 | 5099
29 | 28.34 39.09 | 4256 § 4572 | 4959} 5234

30 | 29.34 4026 | 4377 | 4698 | 50.89 | 53.67

*Example: For the shaded area to represent 0.05 of the total area of
1.0 under the density function, the value of 2 is 18.31 when df = 10.
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Appendix D

Values of F Exceeded with
Probabilities of 5 and 1%

df (numerator)

1 2 3 4 5 6 7 8 9 10

df (denominator)

sy

161 200 216 225 230 234 237 239 241 242
4,052 4,999 5403 5625 5,764 5859 5928 5981 6022 6,056

211851 1900 1916 1925 1930 1933 1936 1937 1938 1939
98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 9939 99.40

3|1013 955 928 912 901 894 888 884 881 878
34.12 3082 29.46 28.71 28.24 27.91 27.67 27.49 27.34 2723

4|/771 694 659 639 626 616 609 604 600 596
21.20 18.00 16.69 1598 1552 15.21 1498 1480 14.66 14.54

5661 573 541 519 505 495 488 482 478 474
16.26 13.27 12.06 11.39 1097 10.67 10.45 10.29 10.15 10.05

61599 514 476 453 439 428 421 415 410 406

13.74 1092 978 9.15 875 847 826 810 798 7.87
71559 474 434 412 397 387 379 373 368 363
1225 955 845 785 746 7119 700 684 6.71 6.62
8532 446 407 384 369 358 350 344 339 334
1126 865 7.59 7.01 663 637 619 603 591 582
91512 426 38 363 348 337 329 323 318 313
1056 8.02 699 642 606 580 562 547 535 5.26
10/ 496 410 371 348 333 322 314 307 302 297
1004 756 655 599 564 539 521 506 495 4.85
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Index

Absolute deviations, 22
Alternative hypotheses, 82
Analysis of variance, 138—139.
See also ANOVA
And-Under frequency distribu-
tion, 11
ANOVA:
conceptual approach, 115
one-way, 116-118
two-way, 118—121
a priori approach to probability,
38
ARIMA (autoregressive integrat-
ed moving averages), 153
Arithmetic average, 19
Arithmetic mean, 19
Assignable causes, 165
Autocorrelation, 153
Autoregressive integrated moving
averages (ARIMA), 153
Average deviation, 27
Averages, 19

Bar charts, 12—13

Bayes’ theorem, 43

Bernoulli process, 49
Bimodal distributions, 21
Binomial distributions, 49-50
Binomial probabilities, 57
Blocks, 119

Box-Jenkins method, 153
Box plot, 28

Business data:
analyzing, 1-6
describing
measures of dispersion, 26—
33
measures of location, 18-24
Business forecasting, 144—153
Business indicators, 149—-150

Census, 2
Central limit theorem, 64
Chi-square:
distribution, 77-78, 101
test, 106—110
Class boundaries, 8
Classical approach to probability,
38
Classical statistics, 2
Classical time series model, 144—
145
Class intervals, 8—9
Class midpoint, 8
Cluster sampling, 4
Coefficients:
correlation, 131-132
determination, 130-131
multiple correlation, 140
multiple determination, 140—
141
partial regression, 137
variation, 27, 32—33
Coincident indicators, 150

173

Copyright © 2003 by The McGraw-Hill Companies, Inc. Click here for Terms of Use.




174 INDEX

Combinations, 44—45

Common causes, 165

Completely randomized design,
119-121

Component bar charts, 13

Computational formulas, 30

Conditional means, 129, 137

Conditional probability, 41-42

Confidence interval approach to
hypotheses testing, 82

Confidence intervals, 66—-67, 73—

78,129, 137
Confidence level approach to hy-
potheses testing, 89—-90
Confirmatory data analysis, 11
Constant, 136—-137
Contingency tables, 43, 109-110
Contingency table tests, 109
Continuous random variables, 47,
55-58
Continuous variables, 3
Control charts, 13, 166
Convenience sampling, 4
Correlation:
linear regression, 125-132
multiple regression, 135-141
serial, 153
Correlation analysis, 125-132
Critical value, 84
Critical value approach to hy-
potheses testing, 82—84
Cumulative frequency distribu-
tions, 10
Cyclical fluctuations, 144
Cyclical forecasting, 149-150
Cyclical turning points, 149—
150
Cyclical variations, 146

Data, 8. See also Business data
deseasonalized, 147-148
population, 22
sample, 23
seasonally adjusted, 147—148
Data analysis, 11-12, 90
Deciles, 23-24
Decision analysis, 2, 156160
Decision trees, 156-160
Deductive reasoning, 66
Degree of belief, 38
Degrees of freedom, 68—69
Deming, W. Edwards, 164
Deming Award for Quality, 164
Dependent events, 41
Dependent samples, 97
Dependent variables, 125
Descriptive statistics, 2
Deseasonalized data, 147—-148
Deviations, 22
Deviations formulas, 29-30
Difference between two means,
74-175

Difference between two propor-
tions, 7677

Direct observation, 3

Discrete random variables, 47—
48

Discrete variables, 2-3

Disjoint events, 39

Dotplots, 12

Dummy variables, 138

Durbin-Watson test, 153

Empirical approach to probability,
38

EOL (minimum expected oppor-
tunity loss), 159



EP (expected payoff), 158—159

Events, 156

Exact class limits, 8

Expectation, 157

Expected frequency, 108—-109

Expected payoft (EP), 158—159

Expected utility, 159

Expected value, 48, 61

Exploratory data analysis, 11, 90

Exponential probability distribu-
tion, 57-58

Exponential smoothing, 151-152

Expressing probability, 39

Failure, 49

F distribution, 102

Finite correction factors, 63
Fitted values, 126

Forecasting, 144—153

Frequency curves, 9-10
Frequency distributions, 8, 10-11
Frequency polygons, 9

F test, 137

General rule of addition, 40

General rule of multiplication,
42-43

Goodness of fit, 107—-109

Graphical displays, 9-13

Grouped data, 8

Histograms, 9

Holt’s exponential smoothing,
152

Homogeneity of variance, 114

Hypergeometric distribution, 51

Hypotheses testing, 81-91, 95—
103

INDEX 175

Hypothesized value of the vari-
ance, 101

Independent events, 41, 49
Independent variables, 125
Indicators, 149-150
Indicator variables, 138
Individual values, 129
Inductive reasoning, 66
Inferential statistics, 2
Interaction, 118
Interquartile range, 27
Intersection, 40
Interval estimation of the popula-
tion mean, 69
Interval of interest, 56
Interval of values, 56
Irregular variations, 144

Joint probability tables, 43
Judgment sample, 4

Kurtosis, 9-10

Lagging indicators, 150

Leading indicators, 150

Least squares, 125-126
Least-squares criterion, 22
Leptokurtic frequency curves, 10
Level of confidence, 67

Level of significance, 82—83
Linear exponential smoothing, 152
Linear regression, 125-130
Line graphs, 12-13

Lower-tail test, 86—87

Marginal probability, 43
Matched pairs, 97
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Maximax criterion, 158
Maximin criterion, 157—158
Maximum probability, 157
Mean, 47-48
arithmetic, 19-20
conditional, 129, 137
confidence interval testing, 89—
90
control charts, 166
and median, 21-22
modified, 147
normal distribution difference
test, 95-98
paired observation testing, 97—
98
population mean, 8§1-91
process mean, 90
P-value testing, 88
required sample size for testing,
87-88
sample, 65-66
sampling distribution, 62—64
standard error, 63, 65
statistical process control, 23
t distribution testing, 88
weighted, 20
Mean absolute deviation, 28
Mean square among the A treat-
ment groups (MSA), 116—
117
Mean square among treatment
groups (MSTR), 114115
Mean square error (MSE), 115,
139
Mean square regression (MSR),
139
Measures of central tendency, 19
Measures of dispersion, 26—33

Measures of location, 18-24

Median, 20, 21-23

Mesokurtic frequency curves, 10

Method of least squares, 125—
126

Method of rational subgroups, 5,
166

Minimax regret, 158

Minimum expected opportunity
loss (EOL), 159

Mode, 21

Modified mean, 147

Modified ranges, 27

Moving averages, 150, 153

MSA (mean square among the A
treatment groups), 116—117

MSE (mean square error), 115,
139

MSR (mean square regression),
139

MSTR (mean square among treat-
ment groups), 114-117

Multimodal distributions, 21

Multiple regression analysis, 125

Mutually exclusive events, 39-40

National Bureau of Economic Re-
search, 150

Negatively skewed frequency
curves, 9

Nonexclusive events, 39—-40

Normal approximations, 57

Normal curve, 31

Normal distribution, 84 —86, 96—
97

Normal probability distribution,
55-56

Null hypotheses, 82, 102—-103



Objective probability values, 38

Odds, 39

Ogive, 10

Ogive curve, 10

One-factor completely randomized
design (ANOVA), 116-118

One-sided test, 85—86

Operating characteristic curve,
86-87

Opportunity loss, 158

Paired observations, 97-98

Parameters, 61

Pareto charts, 12

Partial regression coefficients, 137

Payoffs, 157

Payoff tables, 156—160

Pearson’s coefficient of skewness,
33

Percentage pie charts, 13

Percentiles, 23-24

Percentile values, 11

Permutations, 44

Personalistic approach to proba-
bility, 39

Pie charts, 13

Platykurtic frequency curves, 9

Point estimation of a population,
61-62

Point estimator, 61

Poisson approximation of binomi-
al probabilities, 52—53

Poisson distribution, 51-52

Poisson probabilities, 57

Poisson process, 51-52

Population data, 22

Population mean, 81-91

P-value testing, 88

INDEX 177

Population parameters, 2, 19, 62
Population proportions, 75-76,
98-99, 100-101
Population standard deviation, 30
Population variances, 30, 102
Positively skewed frequency
curves, 9
Power, 87
Power curve, 87
Prediction intervals, 129—-130,
137-138
Probability, 3845
curve, 55
density function, 55
distributions, 47—-58
expected payoff criterion, 158—
159
maximum, 157
payoff tables, 156—157
sample, 3
values for sample mean, 65—
66
Processes, 165
Bernoulli, 49
Poisson, 51-52
Process mean, 90
Process proportion, 100
Process variability, 101-102
Proportions, 50-51, 99, 110, 166
P-value approach to hypotheses
testing, 82, 88—89

Qualitative data, 106—110
Qualitative variables, 12
Quartiles, 23-24

Randomized block design, 118—
119
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Random sample, 61
Random sampling, 3—5
Random variables, 47-48
Range, 27, 32, 101, 166
Rational subgroup, 61

Ratio-to-moving-average method,

147
R charts, 32
Reference contract, 159-160
Regression analysis, 125-130
Regression equation, 125
Regret, 158
Relative frequency approach to
probability, 38
Relative frequency distribution,
10-11
Replication, 118
Residual plots, 126127
Residuals, 126-127
Response variables, 125
Rules of addition, 40—41
Rules of multiplication, 42—43
Run charts, 13

Sample data, 23
Sample mean, 65-66
Sample size, 67-68, 76, 87—88,
99-100
Sample standard deviation, 30
Sample statistics, 2, 19
Sample variance, 30
Sampling, 3-5
distributions, 61-69
error, 61, 62
without replacement, 51
s charts, 32
Scientific sample, 3
Seasonal adjustments, 147—148

Seasonally adjusted data, 147148

Seasonal variations, 144, 147
Serial correlation, 153
Simple exponential smoothing,
151
Simple random sample, 3—4
Simple regression analysis, 125
Skewness, 9
Pearson’s coefficient, 33
Smoothing, 151-153
Special causes, 165
Squared deviations, 22
Stable processes, 165
Standard deviation, 27-32, 47—
48,717, 101, 166
Standard error of estimate, 127
Standard error of forecast, 129—
130
Standard error of the mean, 63, 65
Stated class limits, 8
Statistical experiments, 3
Statistical presentations, 7—11
Statistical process control, 2,
162-166
mean, 23
process mean, 90
process proportion, 100
process variability, 101
range, 32
standard deviation, 32
Statistical quality control, 163—
164
Statistical surveys, 3
Statistics, 1, 2
Stem-and-leaf diagrams, 11-12
Stratified sample, 4
Strict random sample, 5
Subjective approach to probabili-
ty, 38
Success, 49



Surveys, 3
Symmetrical frequency curves, 9
Systematic sample, 4

Tampering, 165
t distribution, 68—69, 7475, 88
Testing:
hypotheses, 81-91, 95-103
independence, 109
population means, 114-115
population proportions, 110
two categorical variables (con-
tingency tables), 109—110
Theorems:
Bayes’, 43
Central limit, 64
3-sigma rule, 166
Time series, 12—13
Time series analysis, 144—153
Total Quality Management
(TQM), 162-163
TQM (Total Quality Manage-
ment), 162—-163
Trends, 144-146, 148-149
t test, 137
Two categorical variables, 109
Two-sided test, 8687
Type I error, 83, 86—87
Type II error, 83, 86—87

INDEX 179

Unbiased estimator, 61
Unequal class limits, 8—9
Ungrouped data, 8
Unimodal distributions, 20
Unstable processes, 165
Utility, 159-160

Value of the population mean,
81-91
Variability, 27
Variables, 2—3, 125
continuous random, 47, 55—
58
discrete, 2—3
discrete random, 47—-48
dummy, 138
qualitative, 12
random, 47-48
repsonse, 125
Variance, 2830, 47-48, 77,
114-121
Venn diagram, 39

Weighted average, 20

Weighted mean, 20

Weighted moving average,
151

Winter’s exponential smoothing,
152
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